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Abstract 
 

Representation remains ubiquitous in scientific explanations of cognition. At the same 

time, philosophers continue to question what, if anything, representation contributes to 

cognitive science. Whilst some practically define cognition in terms of operations 

performed over representations, others take the very concept of subpersonal 

representation to be incoherent. Despite the longstanding debate, this thesis argues that 

we now possess the resources needed to provide a satisfactory account of cognitive 

representation, taking the challenges raised by eliminativists as an opportunity to refine 

our understanding of its explanatory role. 

 

I defend a ‘mechanistic approach’ that presents representational explanations as a kind of 

mechanistic explanation. This approach has three main parts which pull together several 

promising threads in the literature to form an original account. The first part is a 

mechanistic interpretation of explanations in cognitive science. This interpretation 

provides insight into the sort of explanans cognitive science offers, and the sort of 

theoretical entity a cognitive representation might be. The second part is acceptance of 

the increasingly popular notion of ‘structural’, ‘simulation’ or ‘surrogate representation’ 

(‘S-representation’). This notion provides an empirically plausible and well-defined set 

of functional criteria for a genuinely representational mechanism, drawing an 

illuminating analogy between the functional role of a possible cognitive mechanism and 

a type of ordinary representation. The third part is a ‘mechanistic account of content’. 

This provides a naturalistically respectable foundation for representation’s paradigmatic 

semantic properties at the subpersonal level. Overall, the mechanistic approach ensures 

that representation ascriptions play a robust role anchored in our dominant explanatory 

framework. From this perspective, the future of cognitive representation looks bright. 
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Thesis Introduction 

 

 

Familiar forms of representation play a crucial role in our daily lives. A successful road 

trip to a foreign city depends on a map correctly mirroring the highways and byways that 

we intend to drive. A successful cinema outing depends on the film listings correctly 

reflecting the start time of the film we wish to see. A successful soufflé depends on our 

recipe correctly identifying the culinary instructions we need to follow. In each case, 

representations help us to smoothly coordinate with each other and the world. 

 

Less familiar forms of representation are also sometimes thought to play a crucial role in 

our daily lives. Scientists frequently appeal to the idea that the brain constructs, stores 

and manipulates internal ‘cognitive representations’ to explain the success (and failure) 

of essential cognitive capacities like perception, object recognition and navigation. And 

yet, philosophers continue to dispute what exactly, if anything, representation contributes 

to cognitive science. Whilst some practically define cognition in terms of operations 

performed over cognitive representations, others argue that the concept of cognitive 

representation is incoherent and should be exorcised from scientific practice. This 

discrepancy is largely driven by a lack of clarity over the criteria for the justified 

ascription of cognitive representation at the ‘subpersonal level’—roughly, the level of 

brain processes and events. A vital question thus remains: what role, if any, does cognitive 

representation play in explanations of cognition? 

 

This thesis addresses that question. I argue that we now possess the resources needed to 

provide a satisfactory account of cognitive representation, taking sceptical challenges as 

an opportunity to refine our understanding of its explanatory role. I acknowledge that 
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many historical justifications for ascribing representation are unsatisfactory. However, I 

maintain that when characterised appropriately, cognitive representation informatively 

describes the underlying causes of cognition according to some of our most promising 

scientific theories. To this end, I defend a ‘mechanistic approach’ that characterises 

cognitive representation as a type of cognitive mechanism. Accordingly, representational 

explanations of cognition are a type of mechanistic explanation of cognition.  

 

My mechanistic approach has three main parts which pull together several promising 

threads in the existing literature. The first part is a mechanistic interpretation of 

explanations in cognitive science. This interpretation refines our understanding of what 

sort of explanans cognitive science strives for, and what sort of theoretical entity a 

cognitive representation might be. The second part is an argument in favour of the 

increasingly popular account of ‘structural’, ‘simulation’ or ‘surrogate representation’ 

(‘S-representation’). This account provides an empirically plausible set of functional 

criteria for a genuinely representational mechanism. In doing so, it draws an illuminating 

analogy between the functional role of a cognitive mechanism and a type of ordinary 

representation that includes cartographic maps and scientific models. Both ordinary and 

cognitive S-representations are characterised by the way they mirror the structure of the 

world and guide the actions of their consumers accordingly. The third part is a 

mechanistic account of ‘representational content’ (what a representation ‘is about’). This 

provides a naturalistic foundation for the semantic properties of representation at the 

subpersonal level.  

 

Overall, the mechanistic approach ensures that representation ascriptions play a 

significant role in our explanations of cognition. Though not an empirical theory itself, 
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the mechanistic approach does suggest that cognitive representation will play a part in 

some of our best theories in contemporary cognitive science, including ‘predictive 

processing’ as well as cognitive neuroscience more generally. 

 

The thesis proceeds as follows. Chapter 1 discusses ‘representationalism’ and 

‘eliminativism’—where, roughly, the former position affirms the explanatory value of 

cognitive representation whilst the latter position denies it. I offer two important 

distinctions that help to clarify the commitments of these broad positions. The first 

distinction is between two kinds of eliminativism. One kind takes cognitive 

representation to be eliminated by our best available theory of cognition whilst the other 

takes cognitive representation to be eliminated because it involves a category error. I 

argue against the latter, leaving open the possibility that cognitive representation plays an 

explanatory role in cognitive science. The second distinction is between the explanatory 

role of cognitive representation on the one hand and the ontological status of cognitive 

representation on the other. Assessing representation’s explanatory role comes apart from 

evaluating whether cognitive representations are real in any strong, metaphysical sense. 

I argue that the former is of primary importance to cognitive science. 

 

Chapter 2 examines what sort of theoretical entity cognitive representation might be if it 

is to play an explanatory role in cognitive science. I argue that for an entity to count as a 

cognitive representation in any interesting sense, it must function in a way that is 

distinctly representation-like. I present a mechanistic framework for understanding 

explanations in cognitive science and suggest that we understand cognitive representation 

as a type of mechanism characterised by its distinctly representation-like role in realising 

a cognitive capacity. I close by evaluating three notions of cognitive representation that 
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are common (implicitly or explicitly) within the scientific and philosophical literature. 

These are: ‘receptor representation’, ‘action-oriented representation’ and ‘intentional 

stance representation’. I argue that all three are unsatisfactory as far as securing 

representation’s explanatory role in cognitive science is concerned.  

 

Chapter 3 continues to evaluate common ways of understanding cognitive 

representation, turning to the relationship between computation and representation. It is 

often supposed that a computational approach to cognition implies representation. I argue 

that this is false because computation and representation are distinct functional kinds. 

Physical computation does not presuppose representation and, furthermore, there is 

nothing special about the structure of computational explanations of cognition that 

straightforwardly implies representation. Along the way, I defend a mechanistic view of 

computational individuation.  

 

Chapter 4 begins the constructive part of the thesis. I outline and defend a version of the 

S-representation account. Once embedded within a mechanistic framework, this account 

suggests that a cognitive representation is a cognitive mechanism whose functional role 

resembles a type of ordinary representation characterised by the way a vehicle structurally 

corresponds to its ‘target’ on behalf of its consumer. I argue that such ‘representational 

mechanisms’ find plausible vindication in the empirical literature. I also respond to 

several objections, and in doing so, bolster what I take to be the strongest version of the 

S-representation account. 

 

Chapter 5 continues the constructive project by discussing how to think about content in 

representational mechanisms. I articulate two ‘problems of content’ that any complete 
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account of representation must overcome. The first problem is the ‘hard problem of 

content’ which concerns the legitimacy of positing content at the subpersonal level. I 

argue that if a mechanism meets the functional criteria for S-representation then there is 

sufficient justification for positing ‘correctness conditions’, and thus content, at the 

subpersonal level. The second problem is the ‘content determination problem’ which 

concerns how a given representation comes to have the content that it does: what makes 

a token representation about x and not y? I defend the ‘mechanistic account of content’. 

According to this account, the content of a token representation refers to the state of 

affairs that would need to be actual for it to realise a cognitive capacity and generate 

behavioural success. This provides an alternative to traditional ‘causal-historical theories’ 

that focus on the evolution, learning history or other aspects of a system’s etiology, in 

favour of a view that places the action-affordances of a mechanism front and centre. 

Ultimately, I argue that the S-representation account, especially once embedded within a 

mechanistic framework, dissolves worries surrounding the semantic properties of 

cognitive representation, securing a firm footing for representation to play an effective 

role in explanations of cognition. 
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Chapter 1  

 

Representationalism and Eliminativism1 

 

1. Introduction 

 

This thesis concerns the longstanding debate over the role of representation in cognitive 

science. The issue is often framed as a conflict between representationalists on the one 

hand and eliminativists on the other, where representationalists are understood as those 

who affirm the value of subpersonal cognitive representation in scientific explanations of 

cognition, and eliminativists are understood as those who deny it. However, 

characterising the debate in these terms fails to fully capture the complexity of the 

conceptual landscape. This chapter elucidates the conceptual landscape by drawing 

attention to two distinctions that are typically overlooked. This sets the scene for the 

remainder of the thesis by clarifying its primary focus. 

 

The first distinction is between two varieties of eliminativism about subpersonal cognitive 

representation. I call these ‘a posteriori eliminativism’ and ‘a priori eliminativism’. 

According to the former, we should be eliminativists about cognitive representation 

because our best scientific theory of cognition makes no reference to such entities. 

According to the latter, we should be eliminativists about cognitive representation 

because the notion involves a category error, and hence the ascription of cognitive 

representation could not be explanatory, no matter what an empirical investigation into 

the nature of cognition reveals. This chapter argues against a priori eliminativism, thereby 

                                                
1 Portions of this chapter appear in Lee (2017). 
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leaving open the question of whether appealing to cognitive representation is explanatory 

in our best theory of cognition. 

 

The second distinction is between the explanatory role of cognitive representation and 

the ultimate ontological status of cognitive representation. The question of whether and 

how cognitive representation contributes to explanations in cognitive science is distinct 

from the question of whether there are really any such things as cognitive representations. 

The former question concerns the theoretical posits of scientific theories and whether 

such posits count as representations. The latter question concerns the ontological 

commitments of scientific theories and depends on wider suppositions about how to view 

the existence of unobservables. For example, it may be that talk of cognitive 

representation is explanatory, but that would not by itself tell us whether such entities 

exist in a strong, metaphysical sense. The explanatory role of subpersonal cognitive 

representation will be my primary concern from chapter 2 onwards. 

 

The chapter proceeds as follows. Section 2 introduces the notion of ‘cognitive 

representation’ and outlines the difference between ‘representationalism’ and 

‘eliminativism’. Section 3 develops this discussion by establishing our first major 

distinction—that between a posteriori eliminativism and a priori eliminativism. It then 

raises two objections to a priori eliminativism. Section 4 establishes our second major 

distinction—that between the explanatory role of cognitive representation and its ultimate 

ontological status. It then builds on this distinction by noting the difference between the 

‘scientific path’ and the ‘metaphysical path’ toward cognitive representation, borrowing 

from a suggestion by Dennett (1991). The section concludes with a reflection on the 
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consequences of separating these paths for a mechanistic approach to representation, of 

the sort pursued in subsequent chapters. 

2.1 What is representation? 

 

Maps, models and portraits are just some of the familiar representations that play a 

significant role in our everyday lives, as are the written sentences that you will read 

throughout this thesis. But what do these objects have in common? Philosophers are often 

quick to note two crucial features of familiar representations: (i) they are physical things, 

and (ii) they have semantic properties, intentionality or content (for recent examples see, 

Egan, 2014, p. 115; Fresco, 2014, p. 16; Shea, 2018, p. 5). Maps, models and portraits are 

all physical entities, and like other physical entities, they have causal powers. At the same 

time, maps, models and portraits are also about something. Moreover, these two crucial 

features are related: familiar representations appear to have causal powers in virtue of 

their semantic properties. This is evident when we observe the importance of ‘correctness’ 

or ‘incorrectness’ in determining the outcome of behaviour caused by a representation. 

 

The success or failure of behaviour in ordinary life is often explained, in part, by appeal 

to the correctness (truth/accuracy etc.) or incorrectness (falsity/inaccuracy etc.) of a 

representation that is involved in causing behaviour. For instance, a mountaineer’s 

successful ascent of a mountain might be explained, in part, by the fact that their map 

accurately mirrors the topology of the mountain they were climbing. In other words, the 

mountaineer’s behavioural outcome is partly explained by correct representation. 

Likewise, a mountaineer’s failure to ascend a mountain might be explained, in part, by 

the fact that their map inaccurately mirrors the topology of the mountain they were 

climbing. In other words, the mountaineer’s behavioural outcome is partly explained by 
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incorrect representation. In each case, the map is required to meet certain conditions to 

count as correct and cause the mountaineer to succeed in climbing. All familiar 

representations have such ‘correctness conditions’: states of affairs under which they 

count as correct (true, accurate etc.). I use ‘correctness conditions’ here as an umbrella 

term for different semantic measures of success, encompassing the common notions of 

‘truth conditions’ and ‘accuracy conditions’ (truth conditions suggest that correctness is 

all or nothing, whilst accuracy conditions suggest that correctness is a matter of degree). 

We will return to the idea of correctness conditions throughout this thesis. 

 

We are starting to see that familiar representations, like maps, models and portraits, share 

a distinctive kind of ‘functional role’ characterised by their semantic nature (Haugeland, 

1991; Ramsey, 2007). In this way, representation is a ‘functional kind’; a genus defined 

by the functional role of its members (akin to pumps, pulleys, filters or indicators). 

Function is intended in the teleological sense, whereby, if x has the function to y, it has 

the ‘purpose’ or ‘end’ to y (more on function in chapter 2). In other words, maps, models 

and portraits are all representations because they all share the purpose or end of 

representing.  

 

We can be a little more precise in capturing what is distinctive about representation as a 

functional kind, keeping our examples of familiar representation in view. At first pass, to 

represent is to stand-in for, simulate or replicate some entity (object, state, process, 

activity etc.) on behalf of some ‘user’, ‘interpreter’ or ‘consumer’ (the latter term is 

common in philosophical parlance), in a way that implies correctness conditions. 

Ordinary maps, models and portraits all meet this description. For instance, a map might 

stand-in for a mountain range on behalf of a mountaineer, such that the map counts as 



12 

 

 

correct when it appropriately mirrors the topology or other features of the mountain range 

and incorrect when it does not. Following this description, representation can be thought 

of as a triadic relation (Peirce, 1998, p. 478). The relation holds between a 

‘representational vehicle’ (for example, a map), a ‘represented entity’ (for example, the 

Himalayas), and a ‘representation consumer’ (for example, a mountaineer). Future 

chapters will build on this understanding of representation (for related discussion see 

Haugeland, 1991; von Eckardt, 1993; Menary, 2007; Ramsey, 2007). 

 

Maps, models and portraits are familiar to everyday life, but cognitive science frequently 

appeals to a special kind of representation: ‘cognitive representation’. Cognitive science, 

in its broadest sense, is the interdisciplinary scientific study of cognition encompassing 

psychology, artificial intelligence, cognitive neuroscience, and other sciences of the mind. 

Across these disciplines, representation is thought to help explain a diverse range of 

‘cognitive capacities’—roughly, those capacities associated with the intelligent 

behaviours of minded creatures. These include visual-spatial perception, object 

recognition and categorisation, self-relative position tracking, attentional control, and 

language comprehension.2  

 

Unlike ordinary maps, models and portraits, cognitive representations are thought to be 

located internally to a cognitive system, usually within the brain. It is often supposed that 

a cognitive system is able to operate within an uncertain and complex world by 

performing operations over these internal representations. In this way, cognitive 

                                                
2 The literature often refers to ‘cognitive tasks’. I take ‘capacities’ and ‘tasks’ to be synonymous, each 

reflecting the primary explananda of cognitive science encompassing, as Lakoff & Johnson would have 

it, ‘any mental operations and structures that are involved in language, meaning, perception, conceptual 

systems, and reason’ (1999, p. 12). I opt for the term ‘capacities’ where possible. This is because the 

term is common in the mechanism literature with which I wish to stress continuity. 
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representation is thought to help ‘mediate’ between the world and the actions of a 

cognitive system, much like ordinary representations help mediate between the world and 

the actions of an agent. According to one popular characterisation, a cognitive 

representation ‘is any internal state that mediates or plays a mediating role between a 

system’s inputs and outputs in virtue of that state’s semantic content’ (Dietrich & 

Markman, 2003, p. 97).3 Malafouris offers a similar characterisation: 

 

The idea of representation furnished a simple mechanism by which we could 

feed our cognitive apparatus with facts and information from the “external 

world”; it also suggested how we materialize and externalize our mental 

contents by way of behavioural output to the world. (2013, pp. 25-26) 

 

 

For instance, representation has been thought, by many, to help explain how the brain 

processes visual percepts of distal objects: given some initial, relatively impoverished 

retinal stimulation, the brain employs internally coded rules and representations in order 

to process a 3D image that reconstructs the causes of that stimulation (for example, see 

Rescorla, 2015). Or to take another example, representation has been thought, by many, 

to help explain how an organism stores, plans and rehearses navigational routes through 

its spatial environment, specifically, by constructing, storing and exploiting internal 

‘maps’ of its surroundings (for example, see Bechtel, 2016). Such representations are 

typically posited at the ‘subpersonal’ level.  

 

Representation can be ascribed to cognitive systems at both the ‘personal’ and 

‘subpersonal’ levels. In the book in which he coins the terms, Dennett summarises the 

personal level as the ‘level of people and their sensations and activities’ (1969, p. 93). 

Personal level representations are those that are ascribable to individual agents, and in 

                                                
3Although, we shall see later that the notion of ‘semantic content’ is somewhat ambiguous, and mere 

‘mediation’ is not sufficient for representation (see chapter 2). 
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some cases, by extension, to groups of such agents. These include linguistic utterances, 

explicit beliefs and desires, and conscious percepts. There is some dispute over just what 

counts as representational at the personal level. For instance, some question whether 

conscious percepts are representational in nature (for example, see Hutto & Myin, 2013, 

chapter 6). Nonetheless, few would question all paradigmatic personal level 

representations.4 More controversial, as we shall soon see, is the notion of subpersonal 

representation. As Dennett summarises, the subpersonal level is the ‘level of brains and 

events in the nervous system’ (1969, p. 93). Subpersonal representations are those thought 

to be ascribable to parts of agents, usually parts of the brain, with underlying neural 

structures and activity serving as representational vehicles.5 Subpersonal processes that 

are thought to involve representation are paradigmatically non-deliberative, and not 

accessible to conscious awareness.  

 

The exact meaning and value of the personal vs. subpersonal distinction is controversial 

(for discussion, see Drayson, 2012, 2014). Nonetheless, the difference between personal 

and subpersonal representation is sufficiently transparent and useful for our purposes. 

This thesis focusses on explanation at the subpersonal level, and so, ‘cognitive 

representation’ will hereafter refer to internal representation posited at the subpersonal 

level. Note that ‘cognitive representation’ is often synonymous with ‘mental 

                                                
4Miłkowski (2015a) proposes ‘semantic nihilism’ as a hypothetical position that denies all representation 

at every level. He observes that semantic nihilism is self-defeating, as an argument for its truth would 

rely on premises with correctness conditions (hence, representation): ‘it is a minimal requirement for 

rational argumentation in philosophy; one has to assume that one’s statements can be truth-bearers.’ (p. 

74). Therefore, at least natural language representations exist. Miłkowski raises semantic nihilism 

because he thinks ‘radical enactivist cognition’, a candidate case for what I label ‘a priori eliminativism’ 
in section 3 below, threatens to slide into this absurd position by raising the standards for correctness 

conditions exceedingly high. 
5 The ‘4E cognition’ movement has widened the potential scope of cognitive vehicles to encompass aspects 

of both body and world (we will return to 4E in section 3.2 below and in future chapters). 4E invites 

the possibility that some cognitive representations are realised, in part, by vehicles external to the brain. 

This thesis will primarily concern theories that posit cognitive representations realised in the brain, but 

nothing major hinges on extending the scope of possible vehicles to include extra-neural entities. 
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representation’. However, I use the former term where possible as ‘mental representation’ 

sometimes carries connotations of consciousness, folk psychology or the personal level. 

The term ‘cognitive’ also emphasises the relationship between representation and theories 

in cognitive science, which is of central importance to this thesis. 

2.2 Representationalism and eliminativism 

 

 

Despite the ubiquity of representation-talk throughout cognitive science, there remains 

considerable disagreement over whether and how representation contributes to 

explanations of cognition. The debate is often framed as a clash between 

‘representationalists’, who affirm the explanatory value of appeals to subpersonal 

cognitive representation, and ‘eliminativists’, who deny the explanatory value of appeals 

to subpersonal cognitive representation. In what follows, I will unpack this dichotomy 

further before turning to examine its limitations for expressing the conceptual landscape.  

 

Representationalism states that representation ascriptions are of value in (at least some) 

scientific explanations of cognition, taking our best theory of some phenomenon to posit 

subpersonal cognitive representation. Different versions of representationalism vary in 

their scope. Some representationalists take representation to play a key role in explaining 

all or almost all of cognition. For example, the traditional ‘cognitivist’ paradigm models 

all or almost all of cognition in terms of computational operations performed over 

symbolic representations realised within the brain (Fodor, 1975). Such positions fall 

under the bracket of what I dub ‘global representationalism’. Other representationalists 

hold only that representation plays a key role in explaining certain domains of cognition. 

For example, a representationalist might grant that basic motor control in response to 

one’s present environment does not require representations, whilst maintaining that more 
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complex capacities such as counter-factual reasoning do (for related discussion, see Clark 

& Toribio, 1994). Such positions fall under the bracket of what I dub ‘local 

representationalism’. ‘Global representationalism’ and ‘local representationalism’ mark 

two ends of a continuum, with different proponents asserting the scope of representation’s 

value in scientific explanations to a greater or lesser extent. 

 

Eliminativism states that representation ascriptions are not of value in (at least some) 

explanations of cognition, taking our best theory of some phenomenon to ‘eliminate’ 

subpersonal cognitive representation. This understanding of eliminativism is broader than 

traditional ‘eliminative materialism’ which specifically targets the mental states of folk 

psychology, like beliefs and desires, suggesting such entities have no place in our best 

scientific explanations of cognition (for example, see Churchland, 1981; see chapter 3 

for more on folk psychology). Eliminativism, as I present it here, encompasses 

eliminative materialism but also includes positions that seek to eliminate cognitive 

representation in other guises (such as map-like representations; see chapter 4).  

 

Mirroring representationalism, different versions of eliminativism vary in scope. Some 

eliminativists deny that cognitive representation plays a key role in any explanation of 

cognition. For example, some proponents of dynamical systems theory, such as van 

Gelder (1995) and Chemero (2009), claim that representation has no role to play within 

our best (dynamical) theories of cognition (more on this view below). Such positions fall 

under the bracket of what I dub ‘global eliminativism’. Other eliminativists deny only 

that representation plays a key role in explaining certain domains of cognition. For 

example, Orlandi (2014) advocates a non-representational ‘ecological view’ of visual 

processing but does not necessarily deny the importance of representation in explaining 
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other phenomena (more on this view below). Such positions fall under the bracket of what 

I dub ‘local eliminativism’. ‘Global eliminativism’ and ‘local eliminativism’ also mark 

two ends of a continuum, with different proponents denying the efficacy of cognitive 

representation to a greater or lesser extent. Notice that if one is only a representationalist 

with respect to certain domains of cognition then one is an eliminativist with respect to 

those other domains of cognition which are thought not to involve representation. In this 

way, local representationalism implies local eliminativism (and vice versa). We will 

return to this point in section 3.2 below. 

 

Though the representationalism/eliminativism dichotomy does reflect the broad contours 

of the debate over representation’s role in cognitive science, we must be careful to respect 

two further distinctions that it fails to underscore: the distinction between a priori and a 

posteriori eliminativism, and the distinction between the explanatory role and ontological 

status of subpersonal cognitive representation. Visiting these two distinctions will help to 

clarify the conceptual landscape and the topic of this thesis. The first of these two 

distinctions captures the fact that the global and local categories of eliminativism are not 

the only significant ones for appreciating diverging attitudes held across the eliminativist 

continuum. 

3.1 Two kinds of eliminativism 

 

There are two emblematic tendencies that fall under the broad banner of eliminativism. 

‘A posteriori eliminativism’ is the view that cognitive representation is eliminated by our 

best available scientific theory. This can take the form of either local eliminativism or 

global eliminativism because the a posteriori eliminativist can hold that subpersonal 

cognitive representation is eliminated from our best scientific theory of either some or all 
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of cognition. ‘A priori eliminativism’ is the view that cognitive representation is 

eliminated because it involves a category error. This is a form of global eliminativism 

because the a priori eliminativist holds that the very notion of subpersonal cognitive 

representation is incoherent and so could not explain any cognitive phenomenon, no 

matter what an empirical investigation reveals. 

 

The distinction between a posteriori eliminativism and a priori eliminativism is idealised 

and blurs at the edges. However, it remains informative. The distinction helps to frame 

different accounts of eliminativism that are fuelled by different sets of arguments, not all 

of which are susceptible to the same objections. By locating a given version of 

eliminativism in relation to these two idealisations, the eliminativist can better articulate 

the nature of their anti-representationalist commitments whilst their opponent can better 

formulate their response. As such, this underexamined distinction is important. The 

remainder of this section will explore both versions of eliminativism in greater detail, 

before raising objections to a priori eliminativism. 

3.2 A posteriori eliminativism 

 

A posteriori eliminativism is characterised by an evaluation of the role of representation 

in our best theories in cognitive science. This tendency is evident in much of the history 

of anti-representationalism. For example, in the early days of embodied, embedded, 

extended and enactive cognition (so-called ‘4E cognition’), proponents were often 

concerned with demonstrating that some cognitive capacities—traditionally understood 

in terms of brain-based computational operations performed over discrete, symbolic 

representations—were best explained by non-representational processes. Amongst other 
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things, 4E draws attention to the power of bodily morphology, body-environment 

coupling, environmental offloading, and frugal environment-based heuristics.6  

 

Partly inspired by developments in robotics and the sciences of artificial life (for example, 

Brooks, 1991; Chiel & Beer, 1997), much of the 4E movement has appealed to the best 

explanations of cognition given the data when appraising the need for cognitive 

representation (for example, see Chemero, 2009). Discussing anti-representationalist 

‘embodied’ approaches to visual perception, Orlandi writes, ‘As embodied theorists 

themselves concede, whether we can do without representations […] is an empirical issue. 

It is generally believed that we have to wait and see how things turn out’ (2014, p. 14). It 

is also worth noting that many approaches falling within 4E were (and are) concerned 

with toppling the hegemony of a particular sort of representational explanation—one that 

assumes cognitive representation is discrete, language-like, wholly brain-bound and 

entirely descriptive (for related discussion, see Clark, 1997). Only a minority of the 4E 

movement has been hostile to cognitive representation tout court. 

 

This tradition of selective, scientifically driven eliminativism continues. Consider 

Orlandi’s (2014) ‘ecological’ picture of visual processing. Orlandi argues that visual 

processing is best understood as the result of an ‘embedded system’, as opposed to a 

cognitive process. Orlandi defines a cognitive process as an essentially representational 

                                                
6 To illustrate, take the following problem: how does a baseball outfielder catch a fly ball? In contrast to 

traditional explanations that appear to posit rich internal representations that simulate forward 

projectile motion (e.g., Saxburg, 1987a, 1987b), some 4E proponents have argued that a better model 
eliminates the need for representation. For instance, according to Wilson & Golonka (2013), our best 

explanation appeals to the idea that outfielders move laterally so as to ensure that the ball appears to 

trace a straight line, exploiting a strategy known as ‘linear optical trajectory’ (McBeath, Shaffer, & 

Kaiser, 1995). As the story goes, this strategy exploits a basic relation between the perception of the 

ball and the organism, ensuring that the two are continuously coupled, and eliminates the need for the 

organism to construct any internal representation. 
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and inferential affair (Orlandi thus adopts a narrower definition of ‘cognition’ than the 

one used throughout this thesis). According to Orlandi’s conception, visual processing 

has traditionally been understood by ‘inferentialists’ in terms of encoded rules operating 

over internal representations within the brain. Orlandi’s alternative ecological view drops 

the appeal to cognitive representation. In its place, Orlandi depicts the perceptual 

apparatus as an evolved physical system with hardwired sensitivities to producing certain 

outputs. The take-home message of the ecological view is twofold. Firstly, we should not 

view the biases and constraints of visual processing in terms of rules encoded within the 

system operating over representations, but in terms of built-in physiological features of 

the system. These hardwired features are ‘literally just connections, akin to wires or 

valves, that cause something to happen whenever something else happens’ (2014, pp. 45-

46). Secondly, these features are the result of evolutionary pressure for a system to 

become attuned to salient features of its environment; for instance, we detect edges when 

faced with discontinuities because we lived (and continue to live) in a world of edges, 

and edges were (and are) useful to detect. 

 

According to the ecological view, our best theory of visual processing is, as a matter of 

fact, a non-representational theory. Orlandi is not against representation ascriptions 

simpliciter—in fact, they allow for representation ascriptions in domains outside of visual 

processing (2014, chapter 1). Orlandi selectively opposes a representational explanation 

of visual processing because they believe there is a better non-representational 

explanation on offer. Recent responses to Orlandi have picked up on this. Mole & Zhao 

write in their ‘empirical refutation’ of Orlandi’s ecological view that, 

 

Because it is an inference to the best explanation, Orlandi’s argument depends 

on the premise that our theories of vision are not able to give better 
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explanations when they are allowed to postulate the use of “representational 

resources” to produce visual percepts. (2016, p. 365) 

 

Adopting this kind of a posteriori eliminativism results in a debate that is analogous to 

other areas of disagreement in science—a debate over our best theory of some 

phenomenon. In their response to Orlandi (2014), Mole & Zhao (2016) draw on a ‘visual 

merging’ experiment (Zhao, Cakal, & Yu; submitted). Briefly, Mole & Zhao argue that 

within visual processing, certain information becomes encoded in an abstract way—

information that influences processing which occurs at a significantly later time than 

when the system was exposed to that information. In the experiment in question, colour-

patterning was shown to affect localization-responses. Participants were shown a series 

of arrays consisting of ten distinctly coloured disks. In one condition, the ‘structured 

condition’, there were rules governing the pairwise patterning of how these disks were 

positioned, based on their colour. For example, a red disk would always appear to the left 

of a blue disk. In the other condition, the ‘unstructured condition’, there were no such 

rules. The participants were unaware of the conditions. Following many iterations, 

participants were allowed a break for as long as they wished (averaging at two minutes) 

before finally being asked to make a visual judgement on the location of a single disk that 

appeared for 100ms. Participants pointed to where they believed the disk had appeared 

using a mouse pointer. The study showed that those participants who had undergone the 

structured condition tended to locate the single disk closer in space to where its colour 

partner had appeared. Mole & Zhao argue that, 

 

The observed influence of color-patterning on localization-responses 

indicates that, in the 15-minute exposure phase of these experiments, some 

information comes to be encoded concerning the regularity that governs the 

distribution of the colored disks. It is our contention that the best explanation 

of this phenomenon requires that one deny Orlandi’s claim that the visual 

system uses no representations […] the visual system must be using this 
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representation in a way that makes a behaviorally-relevant contribution to the 

experience produced by the subsequently flashed disk. (2016, p. 368) 

 

 

Whether Mole & Zhao are correct in their interpretation of the study is of less significance 

for present purposes than the form of their argument. Mole & Zhao concur with Orlandi’s 

conception of what sort of contingent evidence is required to demonstrate that visual 

processing involves representation, but argue that the empirical evidence, as it happens, 

casts doubt on the ecological view. They conclude by saying, 

 

Inference to the best explanation has respectable epistemic credentials only if 

the theories that it favors give us the best explanation for all of the relevant 

explananda [...] That is true of Orlandi’s theory, but it is no less true of its 

cognitivist rival which we have been defending here [...] We have suggested 

that these data swing the balance of probabilities in favor of the idea that 

visual processes form and use representations in the course of generating our 

experiences. (2016, p. 372) 

 

The structure of this debate highlights that Orlandi and their opponents rely on contingent 

empirical evidence to defend a limited form of eliminativism and representationalism 

respectively. The possibility of an empirically-driven anti-representationalism implied by 

such debate underscores the essence of a posteriori eliminativism. 

 

Orlandi (2014) offers a version of local a posteriori eliminativism. In keeping with our 

earlier observation, if one is a local eliminativist, holding representation to be eliminated 

from some subset of cognitive science, then one is a representationalist when it comes to 

those other areas of cognitive science that are thought to remain representational. With 

this in mind, it is worth noting that the conclusions I reach in subsequent chapters could 

be utilised to support both local a posteriori eliminativism and local representationalism 

simultaneously. I argue that many traditional notions of cognitive representation are 
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unsatisfactory because they fail to identify theoretical entities that possess a distinctly 

representation-like function (see chapter 2 and chapter 3). Nonetheless, there is at least 

one account, the S-representation account, that demonstrates how cognitive 

representation can play a robust explanatory role (see chapter 4 and chapter 5). Though 

the S-representation account itself does not constitute a commitment to how prevalent 

representation ascriptions are in practice, it does (as it happens) appear to reflect the 

commitments of some of our most promising theories in cognitive science. To the extent 

that S-representations are posited as part of our best theories, the account that I defend 

supports a local, empirically-driven form of representationalism. 

 

At this point, we should observe that my above characterisation of a posteriori 

eliminativism is too simplistic in one vital respect. Fortunately, the simplification is 

instructive. My characterisation implies that representationalists and eliminativists share 

a unified and satisfactory understanding of cognitive representation, merely disagreeing 

over whether our best theory posits entities that meet this understanding—akin to, say, 

cosmologists debating whether data on the velocity of gas clouds at the centre of the 

Milky Way indicates the presence of a black hole. However, unlike black holes, there is 

no agreed upon understanding of cognitive representation. On the contrary, the 

explanatory role of cognitive representation remains so controversial, in part, because 

different theorists hold widely varying standards. As such, we cannot assess the value of 

representation for cognitive science solely by examining whether theorists use the term 

‘representation’ to describe entities in our best theory because it is unclear whether the 

standards by which they do so are satisfactory. In other words, it remains possible for 

scientists to talk about representation without referring to entities that meet reasonable 
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standards for genuine representation (we will return to this idea in section 3.4 and section 

4.2 below). 

 

As it happens, many eliminativists, including Orlandi (2014), do attempt to spell out 

reasonable standards for cognitive representation before arguing that these are not met in 

this or that arena of scientific investigation. This is the correct way to proceed. 

Substantive agreement or disagreement requires shared meaning, and to decide whether 

cognitive representation plays a role in our best theory, an approximate consensus on what 

counts as a cognitive representation is required. Again, future chapters will be devoted to 

articulating a set of reasonable standards for the justifiable attribution of cognitive 

representation that accords with the kind of explanations offered by contemporary 

cognitive science—namely, mechanistic explanations of cognitive capacities. 

 

Despite the limitations of the a posteriori eliminativism label, it remains important for 

capturing significant similarities in strategy shared by a subset of eliminativists. 

Furthermore, it highlights the difference between these theorists, who rely on assessing 

the contingent efficacy of cognitive representation in scientific practice, and those that 

believe the very notion of cognitive representation is incoherent. This will become clearer 

as we turn to examine a priori eliminativism next. 

3.3 A priori eliminativism 

 

Drawing on a broadly Wittgensteinian and Rylean heritage, the a priori eliminativist 

maintains that ascriptions of cognitive representation rest on a failure to understand the 

essential character of both representation and the subpersonal level. In turn, this 

misunderstanding begets a category error. I will focus on two versions of a priori 
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eliminativism, drawing on the contemporary literature. The first version provides perhaps 

the most explicitly a priori eliminativist argument and comes courtesy of Bennett & 

Hacker (2007). The second version is less clear-cut but offers informative (and to my 

mind more persuasive) a priori eliminativist concerns. This comes courtesy of Hutto & 

Myin (2013; 2017). Let’s examine these in turn. 

 

Bennett & Hacker (2007) provide the most straightforward argument for a priori 

eliminativism about cognitive representation. For Bennett & Hacker, representation-talk 

in neuroscience is part of the larger practice of attributing ‘psychological predicates’ to 

the brain. Other examples of these predicates include, ‘believing’, ‘storing’ and 

‘hypothesising’. They write, 

 

[T]his application of psychological predicates to the brain makes no sense [...] 

The brain is not a logically appropriate subject for psychological predicates. 

(ibid., p. 21. Original emphasis.) 

 

 

The essential idea behind what I dub the ‘nonsense view’ of psychological predicates at 

the subpersonal level, is that psychological predicates refer to capacities or properties of 

whole persons by definition. For Bennett & Hacker, the ‘mereological fallacy’ is 

committed by scientists who attribute predicates that refer only to whole persons, to parts 

of persons (ibid., p. 22). They write, 

 

The organs of an animal are parts of the animal, and psychological predicates 

are ascribable to the whole animal, not to its constituent parts. (ibid., p. 22) 

 

The nonsense view operates on the principle that certain predicates have necessary limits 

on the domains in which they successfully refer. Intuitive support for this idea comes 

from the consideration of ordinary examples that highlight the limitations on literal 
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reference. The sea does not literally roar, dance or devour, it only does these things 

metaphorically. Pencils do not themselves literally write, they only do so in a derivative 

sense (persons write using pencils). In much the same way, we might doubt that neurons 

can worry, hope, love and laugh. Such terms appropriately describe activities at the level 

of persons, but it is hard to imagine their literal application to neurons. The force of the 

nonsense view derives from a generalisation of these intuitive cases to include all 

psychological predicates. This establishes the psychological and the neural—roughly, the 

personal and the subpersonal—as unique realms that strictly demarcate the legitimate 

application of all psychological predicates. For Bennett & Hacker, eliminating 

psychological predicates at the subpersonal level is an exercise in the correct application 

of concepts. Psychological predicates apply ‘essentially’ (ibid., p. 22) and 

‘paradigmatically’ (ibid., p. 23) to whole animals. To think otherwise is to be entranced 

by a ‘degenerate form of Cartesianism’ (ibid., p. 20). 

 

The nonsense view rests on two shaky assumptions. The first assumption is that all 

psychological predicates share the same fate—for example, that loving and predicting are 

both necessarily bound by the same limitations on reference—and so are all equally 

nonsensical when applied to the subpersonal level. The second assumption is that the 

domains of successful reference for a predicate can be determined from the armchair. And 

yet, there are good reasons to think that knowing whether a psychological predicate at the 

subpersonal level successfully refers depends on ascertaining, on a case-by-case basis, 

the properties implied by a predicate, and the results of attempting to extend that predicate 

into a new sphere of explanation. In lieu of a general argument that shows otherwise, 

though we may concede that many (even most) prototypically psychological predicates 

are likely to remain within the bounds of the psychological domain, we cannot rule out 
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the possibility that a subset of psychological predicates will successfully refer elsewhere. 

We will return to this point in the objections to a priori eliminativism below. For now, the 

central message of the nonsense view is that, just as only agents can worry, hope, love 

and so on, only persons can represent—brains cannot. 

 

The idea that cognitive representation begets a kind of category error is also discernible 

in arguments for ‘radical enactivist cognition’ (REC). Articulating an a priori eliminativist 

version of REC is useful because, unlike Bennett & Hacker, Hutto & Myin avoid 

eliminating psychological predicates wholesale, instead highlighting a narrower problem 

with the concept of cognitive representation—namely, that it implies subpersonal 

correctness conditions (Hutto & Myin, 2013, 2014, 2017; Myin & Hutto, 2015).7   

 

According to REC, there is no representation at the level of ‘basic cognition’. Such basic 

cognition, I take it, encompasses all cognitive activity at the subpersonal level. Hutto & 

Myin agree with the characterisation of representation offered above, holding that 

representation involves the possession of content in a way that implies correctness 

conditions. However, for Hutto & Myin, this understanding reveals the ‘hard problem of 

content’: any purported case of representation must bear correctness conditions if it is to 

meet the requirements for genuine representation-hood; and yet, there is no satisfactory 

justification for attributing correctness conditions at the level of basic cognition.8  

                                                
7 There is a degree of ambiguity in the arguments for REC. One might contend that Hutto & Myin are not 

committed to a priori eliminativism because they only hold that no account to date has shown how 

subpersonal representation plays a legitimate role in scientific explanations (leaving open the future 
possibility of a successful account). This degree of ambiguity is unsurprising given that the categories 

of a posteriori and a priori eliminativism are fuzzy at the edges. In any case, Hutto & Myin are clearly 

concerned with the conceptual foundations of subpersonal representation, and from this we can tap an 

instructive a priori vein. 
8 The tradition of ‘autopoetic enactivism’ raises similar a priori worries about the compatibility of 

correctness conditions and the subpersonal level, though from a somewhat different angle (Varela, 

Thompson & Rosch, 2016). I touch on this tradition again in chapter 3. 
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For Hutto & Myin, basic cognition is entirely a matter of sensitively and selectively 

responding to information—more precisely, ‘natural information’ (see chapter 2 and 

chapter 5 for further discussion on information). Supposed content ascriptions at the 

subpersonal level reduce to the identification of ‘informational relations’. This ‘co-

variation’ or ‘co-occurrence’ based understanding of representation is common in the 

literature. For example, a frog’s brain state might be said to represent ‘fly’ because of 

some reliable pattern of covariation between activation of the brain state and the presence 

of fly stimuli. And yet, information (understood as ‘information-as-covariance’) is 

logically distinct from representational content (Hutto & Myin, 2013, p. 67). This is 

because representational content implies correctness conditions, whereas covariation (at 

least by itself) does not. Therefore, mere information is not sufficient for representation.  

 

Hutto & Myin further claim that genuine representational content only arises with the 

introduction of intersubjective norms for it is only these norms that produce standards for 

genuine correctness. Such norms emerge amongst socialised (possibly only language-

using) agents with relatively complex cognitive capacities. In short, those adopting REC 

hold that only ‘public representations’ established by intersubjective, sociocultural 

practices enable the semantic properties required for representation (2015, p. 6). Tonneau 

expresses a similar assumption about the need for socialised agents to enable genuine 

representation. In discussing Ramsey’s (2007) defence of cognitive representation’s role 

within certain theories of cognition (discussed in later chapters), Tonneau writes: 

 

Ordinary representation is rooted in a set of social practices and contexts […] 

It would be absurd to suppose that these social factors are present in the case 

of neural states […] If social practices are needed to make of an entity a 
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representation, however, Ramsey should conclude that there are no 

representations in the brain and that there cannot be any. (2011, p. 339) 

 

Malafouris (2013), in defending a version of enactivism within the context of cognitive 

archaeology, expresses some related concerns about the possibility of genuine 

representation outside of human engagement with material culture (following Steiner, 

2010). He writes,  

 

[T]he only representations with any substantial or real implication for human 

cognition are to be found outside the head. Internal representations are simply 

a misleading attempt to explain the unfamiliar intricate workings of the 

human mind and brain by way of a more familiar model: that of the external 

material symbol. (ibid., p. 31) 

 

In summary, for those inclined towards REC-style eliminativism, social or cultural factors 

are necessary for genuine representation. By definition, such factors are not present at the 

subpersonal level. There is no content at the subpersonal level, therefore, there is no 

representation at the subpersonal level. 

 

We are now equipped with an understanding of the important distinction between the two 

kinds of eliminativism. The remainder of this section surveys two objections to a priori 

eliminativism. Casting doubt on a priori eliminativism is important because if it is correct, 

and cognitive representation is an incoherent concept, then any hope for 

representationalism is dashed. As the target is wide, the objections will be broad. These 

objections are not intended as knockdown arguments. Rather, they are intended to cast 

enough doubt over a priori eliminativism that the idea of cognitive representation playing 

an explanatory role in cognitive science remains plausible. 
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3.4 Objection 1: A priori eliminativism and the ubiquity of representation 

 

The a priori eliminativist faces a prima facie problem: they claim that cognitive 

representation results in a category error and so should be eliminated, yet cognitive 

science is replete with theories that invoke cognitive representation. In turn, one might 

reasonably suspect that pervasiveness of representation-talk indicates its explanatory 

utility for at least some of cognitive science. More narrowly, the thought goes, if 

representation ascriptions feature in our best explanations of some cognitive phenomena 

then we should believe that such ascriptions are explanatory for those phenomena. 

However, this conflicts with the a priori eliminativist’s claim that the notion of cognitive 

representation results in a category error. 

  

One strategy available to any eliminativist when tasked with addressing the prevalence 

of representation-talk is to deny that representation features in our best theory. The 

ubiquity of cognitive representation in scientific practice does not support 

representationalism unless our best scientific theory features cognitive representation. 

However, the opponent of a priori eliminativism could reasonably insist that this strategy 

only indicates the contingent eliminability of representation. This is because it is a 

strategy that relies on a conditional claim about what sort of entities are posited as part of 

our best scientific theory. Indeed, whilst this strategy highlights that the 

representationalist cannot appeal solely to the ubiquity of representation ascriptions—

because such ascriptions do not necessarily feature in our best theory—one could still 

hold that this ubiquity indicates that representational theories of cognition are on offer. 

For instance, a proponent of Orlandi’s (2014) ecological view might concede that 

legitimate representation ascriptions are common throughout theories of visual 

processing, whilst maintaining that our best theory of visual processing happens to be the 
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ecological view. In doing so, one would allow that there are legitimate representational 

theories of visual processing competing with the ecological view. 

 

There is a further, subtly different strategy open to the a priori eliminativist. This strategy 

allows that entities referred to as ‘representations’ sometimes feature in even our best 

theories; however, it denies that those entities ever meet the minimum requirements for 

genuine representation. The eliminativist here draws attention to a real possibility: 

theorists can talk about representation without actually positing anything distinctly 

representation-like. Recall from our earlier discussion that talk of representation is not 

sufficient to prove the efficacy of representation ascriptions (qua representation) in our 

best theory of cognition. This is because scientists can misdescribe the entities that are 

posited as part of a theory (see section 3.2 above). For instance, a theoretical entity might 

resemble representation—hence, the temptation to label it as such—but still, lack some 

core characteristic that justifies the representation label. Indeed, future chapters will show 

that whilst some purported cognitive representations share certain properties with familiar 

representations they do not resemble anything that we would intuitively classify as a full-

blown representation. For instance, many so-called representations within cognitive 

science are more accurately described as ‘casual relays’, or otherwise possess a more 

basic function than representing (see chapter 2). This second strategy is consistent with 

a priori eliminativism. Nonetheless, a priori eliminativism does not straightforwardly 

follow: one can agree that some so-called cognitive representations are mislabelled 

without thinking that cognitive representation results in a category error. The question 

remains whether so-called cognitive representations are always, and by necessity, 

mislabelled. This brings us to our next objection. 
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3.5 Objection 2: A priori eliminativism and ‘armchair boundary drawing’ 

 

The most serious objection to a priori eliminativism targets the idea that the armchair is 

a suitable location from which to ascertain the legitimate domains of reference for some 

or all psychological predicates, and suggests that this armchair adjudication lends itself 

to unresonable standards for cognitive representation. This is particularly problematic for 

Bennett & Hacker’s version of a priori eliminativism though, as we shall see, it raises a 

challenge for Hutto & Myin’s version of a priori eliminativism too. 

 

A natural worry about a priori eliminativism is that it sets the bar for cognitive 

representation too high. In particular, the nonsense view implies that all psychological 

predicates are conceptually bound to whole persons. But it is this very person-centric 

understanding of representation that the representationalist finds unmotivated. Such a 

rejection of the personal level as (a priori) necessary for representation is supported by 

the reasonable intuition that determining the appropriateness of representation ascriptions 

involves examining their application on a case-by-case basis. Thus, we can assess whether 

activity in the new domain matches the paradigmatic activity that the predicate describes, 

such that the novel application is warranted. For example, we can assess whether a 

purported cognitive representation is performing a role that is analogous to familiar cases 

of representation, such that the representational label usefully describes its properties. 

 

Figdor (2014, 2017, 2018) presents a similar scepticism about the armchair enforcement 

of restrictions on psychological predicates (Figdor, 2018, positions her view in opposition 

to Bennett & Hacker’s). For Figdor, activity-referring terms originating in the 

psychological domain sometimes refer to activities in non-psychological domains too. 

Furthermore, it is only by examining the application of psychological predicates in novel 
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domains on a case-by-case basis that we discover what, if anything, justifies extending 

the scope of reference. This way of thinking about psychological predicates has, as I see 

it, two chief components. The first is a claim about what our default reading of 

psychological-predicate use in science should be; that is, we should understand scientists 

as using psychological predicates literally. The second is a claim about what that reading 

implies; that is, psychological predicates can, at least sometimes, successfully refer within 

non-psychological domains.9 Let’s examine Figdor’s position further. 

 

For Figdor, science takes priority over commonsense intuition when determining whether 

the extension of a psychological predicate (the set of entities that satisfy the term’s 

meaning) includes entities in a novel domain of scientific explanation. When scientists 

deploy psychological predicates like ‘hypothesising’, ‘predicting’ and ‘representing’ at 

the subpersonal level they are typically selecting those terms because they take them to 

appropriately describe the phenomenon in question (Figdor also examines the application 

of psychological predicates within biology). In this way, scientists are attempting to 

appropriately apply predicates in a literal fashion. This does not mean that scientists are 

infallible in their choice of description; the use of a psychological predicate may or may 

not accurately describe activity in the new domain. Rather, it is to say that the ascriptions 

of psychological predicates by scientists are typically best interpreted as literal—

scientists intend the sameness of reference across psychological and non-psychological 

domains. It also does not mean that scientists never use psychological predicates in a 

                                                
9 Literalism should not be confused with scientific realism (see section 4.1 below). Literalism, as intended 

here, offers a thesis about how to interpret descriptions within an arena of discourse. This is not the 

same as a thesis about the ultimate ontological status of theoretical entities. What matters is that 

literalism supports the potential explanatory value of psychological predicates by interpreting their 

scientific use at the subpersonal level as analogous to their use at the personal level: psychological 

predicates can contribute to an explanation within non-psychological realms, by referring in the same 

(literal) way they do in the psychological realm. 
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metaphorical or similar ‘as-if’ fashion. However, such uses are an exception, not the rule. 

By interpreting the standard scientific usage of psychological predicates in this literal 

way, we open ourselves to evaluating the appropriateness of psychological predicates on 

a case-by-case basis. Figdor (2018) suggests this can be done through qualitative 

comparison—judging whether activity in a novel domain is similar enough to activity in 

the psychological domain to warrant application of the same psychological predicate—

or, if available, by testing whether the formal model of an activity that prototypically 

occurs within the psychological domain also applies to activity in a novel domain.10 

 

Supporting Figdor’s view that psychological predicates can refer in non-psychological 

domains, there is no obvious reason to assume that a psychological predicate necessarily 

encapsulates agent or human-only information. Psychological predicates capture 

activities that, in principle, can occur across different domains. As Figdor points out, 

superordinate-categories of objects (classes of objects across different domains) are often 

bound by activities that are common across those object domains (Figdor, 2014). There 

is no reason, in principle, that just because a term originally referred to activity in one 

domain (say, the psychological), it could not refer to activity in another (say, the neural). 

When scientists apply psychological predicates to non-personal level phenomena, they 

often do so because they have observed an interesting similarity between activities. For 

example, when a Bayesian psychologist talks of the brain ‘estimating’, they are not 

bewitched by Cartesian black magic but are selecting what they take to be the most 

accurate predicate for capturing the phenomenon, given the parallel between everyday 

                                                
10 An example of the latter is the Drift-Diffusion Model of two-choice decision-making (Ratcliff & 

McKoon, 2008) that applies, it transpires, to the behaviour of both humans and fruitflies (Figdor, 2018). 

This model accounts for relatively automatic two-choice decisions in terms of accumulating 

information over time at a certain rate (the ‘drift rate’) until evidence for one option exceeds a 

prespecified threshold and a response to the decision-making task is given. 
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estimation and activity performed by the brain. In turn, ‘estimation’ is revealed to be more 

prevalent throughout nature than first thought. Figdor writes of psychological predicates, 

 

Rather than think such uses are cognitively defective, it is more plausible that 

they pick out categories of which some of their human manifestations are 

familiar prototypes, but which have equally real, as-yet non-prototypical, 

members. We stand to be able to understand psychological capacities better 

by seeing the full range of ways in which they can be possessed and by 

developing formal models of them that are applicable across many domains. 

(2017, p. 4306) 

 

 

In short, extending the use of psychological predicates into novel areas of science is 

sometimes a justifiable act of capturing natural phenomena in familiar and informative 

terms. By doing so, we arrive at a fuller, scientifically-driven appreciation of that 

psychological predicate and its place in nature. To borrow from Dennett, ‘there is no 

bright line between analysis and revision’ (2018, p. 59). In summary, there is no reason 

to suppose that representation could not refer to activity at the subpersonal level simply 

because it counts as a psychological predicate.  

 

The present objection chiefly targets Bennett & Hacker’s nonsense view of psychological 

predicates at the subpersonal level. This is because Hutto & Myin do not seek to eliminate 

cognitive representation through its membership as a psychological predicate. Rather, 

they identify a particular feature of representation, namely content, and argue that this 

feature is essentially bound to the personal level, never mind what fate befalls other 

psychological predicates. Following Figdor, an important question remains: are the 

personal level norms that Hutto & Myin rightly identify as essential to prototypical, 

personal level representation necessary for all entities legitimately typed as 

representation; and does ascribing cognitive representation always subtract from, and 

never add to, the accuracy of our theoretical descriptions? Future chapters argue that in 
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contrast to what Hutto & Myin suggest, it is possible for a class of subpersonal ‘cognitive 

mechanism’ to sufficiently resemble a class of familiar representation without invoking 

the intersubjective norms of socialised agents. Theories that posits such mechanisms are 

representational theories because they posit entities with distinctly representation-like 

functions, in a manner that implies content, as a part of their explanations of cognition.11  

 

This section has raised two reasons to be suspicious of a priori eliminativism. I have 

argued that we should not dismiss cognitive representation on the grounds that it involves 

a category error, leaving open the possibility that representation could play an explanatory 

role in cognitive science. And yet, even if subpersonal representation does turn out to play 

an explanatory role in cognitive science, it does not follow that such representations exist 

in any strong, metaphysical sense. This brings us to our second distinction that helps 

clarify the conceptual landscape surrounding representationalism and eliminativism. 

4.1 Representationalism vs. realism about representation 

 

 

There is an important difference between the explanatory role of subpersonal cognitive 

representation on the one hand and its ultimate ontological status on the other. Of course, 

the issues are related: if talk of subpersonal cognitive representation is not explanatory, 

then there is no reason to think that subpersonal cognitive representations exist. 

Nonetheless, the issues are distinct. Representationalism and eliminativism, as I have 

presented them, are chiefly concerned with the explanatory role of representation. It 

follows that ‘representationalism’ is different from ‘realism about representation’ in any 

strong metaphysical sense, and they should not be conflated. 

                                                
11My thanks go to Carrie Figdor for discussing the points raised in this section with me (personal 

communication). 
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To appreciate the distinction under examination, observe that there are different 

‘ontological stances’ that a representationalist can adopt and not all of these imply realism 

about cognitive representation. These ontological stances are informed by orthogonal 

assumptions about the ontological commitments of a scientific theory, as discussed within 

the realism/anti-realism debate in philosophy of science. A complete exploration of the 

scientific realism/anti-realism debate would steer us too far off course. For the purposes 

of this chapter, it will suffice to briefly survey the core differences between scientific 

realism and anti-realism, and their relationship to representationalism and eliminativism. 

This will accentuate the difference between a stance on the theoretical value of cognitive 

representation and a stance on the final ontology of cognitive representation. 

 

For present purposes, the scientific realism/anti-realism debate can be viewed primarily 

as a debate over the ontological commitments of a scientific theory (following Quine, 

1948). Scientific realism is a broad family of views that urge us to accept the existence 

of the theoretical entities featured in our best scientific theories. These theoretical entities 

are typically understood as ‘unobservables’: those entities posited by a theory (objects, 

properties, processes, mechanisms etc.) that cannot be observed directly. Exemplar 

unobservables include subatomic particles like quarks and microscopic biological units 

such as DNA. According to scientific realism, if our best theories in physics posit quarks, 

then we ought to believe in the existence of quarks; if our best theories in biology posit 

DNA, then we ought to believe in the existence of DNA. 

 

Anti-realism is a broad family of views that reject scientific realism. Anti-realists hold 

that we are not compelled to believe in the existence of the unobservables featured in our 
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best scientific theories. According to one prominent strain of anti-realism, 

‘instrumentalism’, the success of a scientific theory is measured by its capacity to help us 

navigate the observable world. For the instrumentalist, ascriptions of unobservables are 

legitimated by their role in theories that play an ‘instrumental role’ in prediction, 

manipulation and problem solving grounded in observable phenomena. As such, for the 

instrumentalist, we are not compelled to believe in the existence of a theoretical entity 

just because that entity is of explanatory value in our best theory of some phenomenon. 

 

Cognitive representation is an unobservable in so far as it is a type of theoretical entity 

posited by scientific explanations that cannot be directly observed. If representation does 

feature in our best theory then, like quarks and DNA, one’s view on the ontological status 

of representation will be informed by broader assumptions pertaining to the ontological 

commitments of a theory. In this way, a representationalist can adopt either some form of 

realism or anti-realism toward cognitive representation. A realist about representation 

takes cognitive representation to feature in our best theory of some phenomenon and 

holds that this supports belief in the existence of such representation (in a strong, 

metaphysical sense). An anti-realist about representation takes cognitive representation 

to feature in our best theory of some phenomenon but does not hold that this supports 

belief in the existence of such representation (in a strong, metaphysical sense). 

 

At this stage, one may point out a complication in our gloss of scientific realism and anti-

realism. As presented so far, anti-realism reflects a universal attitude toward the 

ontological commitments of scientific theories. However, some hold a narrower anti-

realist stance toward cognitive representation without necessarily subscribing to anti-

realism more generally. Such a position results from scepticism about the realism of 
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subpersonal representation in particular, not from scepticism about the existence of 

unobservables in general. Proponents of this view maintain that cognitive representation 

makes a contribution to our best scientific theory of some phenomenon, thus avoiding 

eliminativism, whilst resisting belief in the existence of such representation—though they 

do not necessarily extend that resistance to other theoretical posits (such as quarks and 

DNA).12 In fact, the possibility of this narrower anti-realism further highlights my general 

point: belief in the explanatory value of cognitive representation is consistent with 

multiple, often nuanced, ontological stances toward cognitive representation. 

 

I also raise the possibility of this narrower anti-realism because it helps to frame attacks 

on anti-realism about cognitive representation. To see this, take Rescorla’s (2016) 

objection to ‘instrumentalism’ about representation. Rescorla’s principle concern is 

Bayesian psychology which he says posits representations in the form of ‘probabilistic 

state estimates’: subpersonal hypotheses with probability assignments carrying 

correctness conditions fixed by a system’s environment (ibid., p. 20). Rescorla criticises 

anti-realists about representation—under the bracket of which he includes McDowell, 

(1994), Dennett (1987), and Hornsby (2000)—for failing to appreciate the seriousness of 

representation-talk within domains like Bayesian psychology. According to these anti-

realists, representation plays a merely ‘instrumental role’ in explanation and prediction. 

However, for Rescorla, Bayesian psychology ‘does not advance these intentional 

                                                
12 This position is especially evident in recent discussions of ‘fictionalism’ about cognitive representation 

(for example, see Sprevak, 2013; and in particular, Downey, 2018). Fictionalism is a variety of narrower 

anti-realism that stresses the fictional status of (otherwise useful) representation ascriptions at the 

subpersonal level. The fictionalist agrees with the realist that representation ascriptions are theoretically 

valuable, but unlike the realist, denies that cognitive representation exists in a strong, metaphysical 

sense. In this context, fictionalism concerns the ontology of cognitive representation in particular, and 

not the scientific realism vs. anti-realism debate more generally. 
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attributions in a metaphorical or “as if” fashion’ in the way that anti-realists suggest (ibid., 

p. 28). He goes on to say, 

 

Talk about forward models, priors, state estimates, and cost assignments is 

not just a useful predictive device. Sensorimotor psychologists postulate these 

theoretical entities for their explanatory power, just as physicists postulate 

gravitational forces and biologists postulate genes for their explanatory 

power.  (ibid., p. 29) 

 

 

Of particular note, Rescorla is a scientific realist (ibid., p. 23), and his attack on anti-

realism about representation appears to assume that his opponent is also a scientific realist 

about things like gravitational forces and genes. As such, his analogy between 

representation in Bayesian psychology and gravitational forces in physics targets a 

version of anti-realism that is only concerned with the instrumental nature of cognitive 

representation. In other words, the version of instrumentalism that Rescorla has in mind 

assigns an exclusively instrumental role to cognitive representation whilst maintaining 

realism towards other unobservables. Rescorla thus appears to assume that his opponent 

is an anti-realist in the narrower sense. However, we should recognise that if one is an 

anti-realist in general, then the explanatory power of gravitational forces or genes, let 

alone cognitive representation, bears no special ontological weight. 

 

In closing this section, it is worth visiting Chemero’s (2009) discussion of dynamical 

systems theory. Doing so will help us to further appreciate the importance of separating 

representationalism from realism about representation. In brief, Chemero believes that 

our best explanations in cognitive science are acquired by adopting a particular stance: 

the ‘dynamical stance’. The dynamical stance offers explanations in terms of an agent’s 

trajectory through state space described via differential equations, where cognition is 

characterised as complex, non-linear, self-organising and emergent (for a useful 
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introduction to dynamical system approaches, see Clark, 2014, chapter 7). This stands in 

stark contrast with a neuro-centric, symbol-crunching ‘cognitivist’ approach. According 

to Chemero, the dynamical stance has no need for cognitive representation.13 At the same 

time, Chemero says, the dynamical stance avoids unnecessary metaphysical baggage: 

‘The dynamical stance, like Dennett’s stances on which it is based, is blissfully 

metaphysics-free’ (2009, p. xi). This suggests, quite rightly I think, that the predictive and 

explanatory effectiveness of dynamical systems theory is independent of any deep 

metaphysical contention. However, Chemero adds, 

 

Computationalism and representationalism, though, are not: they are tied to 

the posit that the mind (or brain) is a computer and full of representations 

being acted upon by algorithms. (2009, p. xi) 

 

 

Chemero’s presentation indicates a contrast between the metaphysical neutrality of the 

dynamical systems stance with the staunch realism of computationalism and 

representationalism.14 It is true that advocates of representational explanations have 

historically identified as realists about representation. For instance, many self-identifying 

representationalists have been proponents of the ‘language of thought’, which has been 

taken to imply ‘intentional realism’—a position that affirms the reality of certain 

representational states (Fodor, 1975). However, ‘intentional realism’ is not necessary for 

representationalism more broadly construed. A representational theory of cognition is no 

                                                
13 In fact, the idea that dynamical systems theory is anti-representational remains controversial. See Bechtel, 

1998, for an early attempt at reconciliation.  
14 Chemero’s (2009) discussion notably takes place within the context of responding to the ‘problem of 

discovery’: the problem of how a theory generates new hypotheses for testing. Chemero believes that  

the instrumentality of dynamical system theory engenders a lack of background assumptions that are 
helpful for producing new hypotheses—a problem not faced by computationalism and 

representationalism because of their staunch (but ultimately misguided) commitment to the existence 

of computations/representations within the brain. I suspect that Chemero is conflating two 

commitments here. One is the commitment of computationalism and representationalism to the 

explanatory power of positing certain internal mechanisms and processes within brain. The other is a 

commitment to the metaphysical reality of those entities. The former is consistent with anti-realism. 

The wider issue surrounding the problem of discovery need not concern us here. 
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more inherently committed to realism about its theoretical posits (in a strong, 

metaphysical sense) than dynamical systems theory. In short, representationalism is as 

metaphysically neutral as Chemero’s dynamical stance because any ontological stance 

toward cognitive representation requires further suppositions about the relationship 

between representational theories and their ontological commitments. Once more, there 

is no straightforward mapping from the explanatory role of cognitive representation to 

how we should think about the final ontological status of cognitive representation.15 

4.2 The metaphysical vs. the scientific path 

 

Section 4.1 above suggested that the debate between representationalists and 

eliminativists is not, first and foremost, a debate over the final ontological status of 

cognitive representation. From this starting point, we can see that divergent metaphysical 

commitments do not directly impinge on whether and where representation plays an 

explanatory role in cognitive science. If cognitive representation plays a role in our best 

theory of some phenomenon, then it does not matter (for the purposes of that theory) if 

one is a realist, anti-realist or whatever-else-ist about cognitive representation; just as 

one’s view on the ontological status of quarks does not directly impinge on whether 

quarks feature in our best theory in physics. The priority then becomes assessing how 

cognitive representation could play a part in our best theory, and in turn, whether it does. 

 

If what I have said so far is correct, then there is potential common ground across the 

realist/anti-realist divide so long as all parties agree on the conditions for the justifiable 

                                                
15 The unique metaphysical neutrality of dynamical explanations becomes even harder to defend if one 

thinks that dynamical explanations ultimately service ‘mechanistic explanations’ (Zednik, 2011)—or 

that dynamical explanations must service mechanistic explanations if they are to truly explain and not 

merely describe (Kaplan & Craver, 2011)—and that computational and/or representational 

explanations are a kind of mechanistic explanation. In fairness, Chemero is reluctant to accept the 

continuity of dynamical and mechanistic approaches (Chemero & Silberstein, 2008; Chemero 2009). 
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attribution of representation in explanations of cognition. In this way, we can imagine two 

paths from which to approach the puzzle of cognitive representation, borrowing from 

Dennett (1991): the ‘metaphysical path’ and the ‘scientific path’.16  

 

The metaphysical path and the scientific path form two approaches to theoretical entities 

in general. The metaphysical path concerns itself with what ultimately exists, and so 

addresses the final ontological status of theoretical entities (thus overlapping with the 

scientific realism vs anti-realism debate sketched above). It is the job of the metaphysical 

path to guide us toward a true understanding of the ultimately real things, non-real things 

and any things left in between. The scientific path concerns itself with the utility of 

theoretical entities within a scientific explanation. It is the job of the scientific path to 

guide our understanding of whether something plays a useful part in scientific practice, 

and what that part is.  

 

The idea that we can separate assessing the scientific role of a theoretical entity from 

evaluating its metaphysical status is evident in work by Dennett (1987, 1991). Dennett is 

concerned with the reality of what he dubs ‘abstract objects’, a particular consequence of 

his notion that representation ascriptions pick up on certain abstract patterns in a system’s 

holistic behaviour from the point of view of an observer’s ‘intentional stance’. Of note, 

Dennett principally discusses the mental states of folk psychology, such as beliefs and 

desires, and is not necessarily concerned with all entities that might fall under the 

umbrella of cognitive representation as defined above. Furthermore, interpreting whether 

Dennett is committed to some form of realism or anti-realism about representation has 

long been debated, by Dennett himself, and by others (for a recent discussion, see Kukla, 

                                                
16The two paths are also akin to Chemero’s distinction between ‘metaphysical’ and ‘epistemic’ claims about 

representation (2009, pp. 67-68). 
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2018). In any case, Dennett’s own theory of representation need not concern us for now 

(see chapter 2 for further discussion). The present point is to draw on the helpful 

distinction between ‘metaphysical’ and ‘scientific’ concerns about representation. The 

primary question of interest to Dennett is the one that interests those following the 

scientific path: ‘is it good or bad for our science?’ Once again, this question can be asked 

independently from asking about the final ontological status of cognitive representation.17 

 

At first glance, the scientific path seems easily traversed: we need only look and see 

whether representations feature in our scientific theories of cognition. Yet this is harder 

than it seems. We cannot discover whether representations feature in our scientific 

theories of cognition solely by examining whether theorists talk about unobservables as 

representations. The issue is not purely verbal. As section 3 above highlighted, we must 

also evaluate purported cases of representation and determine whether ‘representation’ 

really captures the role of the entity in question. After all, eliminativists might embrace a 

scientific theory whose unobservables have been historically labelled as 

‘representations’, insisting that such entities are not really playing a recognisably 

representational role and therefore that the scientific theory is not really representational. 

 

To judge whether cognitive representation plays an explanatory role within a theory in 

cognitive science we must first secure reasonable criteria that show how an entity could 

play an explanatory role (qua representation) in cognitive science. Our initial 

                                                
17 Those of a pragmatic persuasion might question whether there are any meaningful metaphysical 

questions about cognitive representation beyond asking whether and where it is good or bad for our 

predictive and explanatory purposes. Therefore, anything that can be said about the ontological status 

of representation will be settled by discoveries made along the scientific path. I sympathise with this 

view. However, this position still requires going beyond an exploration of representation’s explanatory 

role in scientific practice because it demands further controversial assumptions about how to interpret 

the ontological implications of prediction and explanation. To this extent, it still requires treading the 

metaphysical path. 
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understanding of representation as a functional kind characterised by the role of standing-

in for something on behalf of a consumer provides a starting point. Building on this, 

chapter 2 affirms the importance of comparing the causally-relevant features of a 

purported cognitive representation to the core features of familiar representations such as 

models, maps and portraits. It also identifies more precisely what sort of theoretical entity 

might play the explanatory role of representation within a theory of cognition: namely, a 

type of functional mechanism.18 

4.3 Realism and mechanism 

 

There is an emerging consensus that contemporary cognitive science is in the business of 

discovering, reconstructing and manipulating mechanisms (Machamer, Darden, & 

Craver, 2000; Glennan, 2002; Bechtel & Abrahamsen, 2005; Craver, 2007; Bechtel, 

2008). The ‘mechanistic framework’, ‘new mechanism’ or just ‘mechanism’, will be 

further explored in the next chapter. However, given our present discussion, it is prudent 

to point out now that mechanists often hold that successful mechanistic explanations track 

truth and uncover the real existing constituents responsible for a phenomenon (for related 

discussion, see Craver, 2007; Bechtel, 2008; and in particular, Gładziejewski, 2015). 

Taken at face value, this position commits mechanists to a form of scientific realism: 

orthodox mechanists believe that we ought to believe in the truth of our best mechanistic 

                                                
18The importance of settling on ‘rules’ to judge cases of purported representation is reflected in Haugeland’s 

conception of ‘objective truth’ in science (1998, chapter 13). As I interpret Haugeland, there is a fact 

of the matter as to whether a theoretical posit counts as a quark, gene, representation or whatever. 

Nonetheless, that fact is not independent of the greater instrumentally justified norms pertaining to 

scientific practice. For example, determining whether Pluto is a planet required empirical observation 

but also involved settling on the appropriate extension of the term ‘planet’, and was constrained by 

factors such as a desire for consistent and useful categorisation practices. In general, determining 
whether x counts as y is both empirical and normative. Such a perspective also bears an interesting 

resemblance to themes in the conceptual engineering literature, though space prohibits further analysis 

at present (I intend to explore these connections in future research). For some relevant discussion, see; 

Dupré (1995, 2002); Haslanger (2012); Brun (2016); Sawyer (2018); see also Lee (2017), for expanded 

discussion on Haugeland (1998). 
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explanations. Thus, if our best explanation of a phenomenon says mechanism x performs 

operation y, then we ought to believe in the existence of x and the existence of y (in a 

strong, metaphysical sense).  

 

Regardless of any intuitive connection between mechanism and scientific realism, I want 

to suggest that any substantive conclusions about the existence of mechanisms and their 

operations must result from a further debate over how best to interpret the ontological 

commitments of mechanistic explanation. This debate is non-trivial. In fact, there is no 

straightforward consensus on the relationship between mechanism and scientific realism 

in the literature (for example, see Kaiser, 2017).   

 

This point matters for our purposes because there are reasons to believe that our most 

promising understanding of representation will be a mechanistic understanding (for 

example, see Gładziejewski, 2015; Miłkowski, 2015b). Gładziejewski (2015) suggests a 

way of situating the popular theory of ‘S-representation’—a theory that provides 

cognitive representation with a clear set of functional criteria—within a mechanistic 

framework, increasingly taken to capture the dominant form of explananda in cognitive 

science. This is an approach that subsequent chapters will concur with and develop. 

According to this mechanistic perspective, cognitive representations are mechanisms or 

mechanism components (components are often mechanisms in their own right), with the 

function to stand-in for something on behalf of a cognitive system. At least one way a 

mechanism achieves this role is by realising four functional criteria: structural 

correspondence, action guidance, decouplability and system-detectable error. 
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As an orthodox mechanist, Gładziejewski claims that the effectiveness of a 

representational explanation depends on the existence of representational mechanisms. In 

doing so, he explicitly rejects Chemero’s (2009) distinction, similar to my own, between 

‘metaphysical’ and ‘epistemic’ questions concerning representation (Gładziejewski, 

2015, p. 70). Here I think Gładziejewski oversteps what is required to establish the value 

of a mechanistic approach. The explanatory success of positing ‘representational 

mechanisms’ may ultimately favour a kind of realism about representation. More 

generally, conceptualising cognitive representation as a kind of mechanism may help to 

frame discussion over the existence of cognitive representation: if cognitive 

representation is a kind of mechanism, then perhaps we can better tackle the issue of its 

ontological status by assessing the ontological implications of mechanistic explanation 

more generally. All the same, the mechanistic framework does not straightforwardly 

imply any particular ontological stance toward representation, that is, in a manner free 

from further argumentation. By emphasising realism about representation and collapsing 

the distinction between the metaphysical and scientific path, the mechanist about 

cognitive representation thereby carries the baggage of an ontological commitment. This 

baggage is not necessary to appreciate the value of a mechanistic approach to 

representation (as we shall soon see). As this approach continues to evolve, it would be 

prudent for those marketing mechanistic accounts to distinguish their beliefs about the 

greater ontological implications of mechanistic explanation from narrower claims about 

the epistemic benefits of treating cognitive representations as a variety of mechanism. 

 

To summarise section 4, evaluating the ultimate ontological status of cognitive 

representation is not the same thing as evaluating its explanatory role. We can postpone 

our final metaphysical judgement of cognitive representation whilst we assess if and how 
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it contributes to our scientific theories of cognition. Because of this, it is important to 

remember that ‘realism about representation’ and ‘representationalism’ are not 

equivalent. 

5. Conclusion 

 

This chapter discussed representationalism and eliminativism about subpersonal 

cognitive representation and presented two important distinctions that help to clarify the 

conceptual landscape surrounding these broad positions. The first distinction is between 

two tendencies within eliminativism: a posteriori eliminativism and a priori 

eliminativism. I advanced two objections that undermined a priori eliminativism thereby 

leaving open the question of whether appealing to subpersonal representation is 

explanatory in cognitive science. The second distinction is between representation’s role 

in scientific explanations and its ultimate ontological status. Along the way, I suggested 

that following the ‘scientific path’ involves more than settling on whether theorists talk 

about representation. It also requires formulating reasonable standards for genuine 

cognitive representation in order to evaluate the commitments of our best theories. 

 

Moving forward, mechanistic approaches would do well to separate the epistemic virtues 

of characterising cognitive representation as a type of mechanism from any strong 

commitment to its final ontological status. Building on this discussion, the next chapter 

offers minimum criteria for an entity to play a distinctively representational-like role 

within an explanation of a cognitive capacity, drawing on the characteristics of familiar 

representations, and situating these within a mechanistic framework of explanation.
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Chapter 2  

 

Cognitive Representations as Mechanisms 

 

1. Introduction 

 

To discover whether and how representation plays a role in explanations of cognition we 

require an understanding of what sort of explanations cognitive science offers, and hence 

what sort of theoretical entity a subpersonal cognitive representation might be. This 

chapter builds on the idea that representation is a functional kind and discusses what sort 

of subpersonal entity might function as a representation. To this end, I situate the notion 

of function within the emerging consensus that contemporary cognitive science offers 

mechanistic explanations. This lends itself to a ‘mechanistic account of representation’. 

 

According to the mechanistic account of representation, to be a cognitive representation 

is to be a mechanism with the function (i.e., causal role) to stand-in for something relative 

to the realisation of a cognitive capacity; spelling out how a mechanism might fulfil this 

function then becomes the key challenge for demonstrating the explanatory value of 

cognitive representation in practice. Equipped with rough criteria for the legitimate 

ascription of cognitive representation, we can assess existing notions in the literature. It 

turns out that several orthodox notions of representation are inadequate. This is because 

they fail to demonstrate that there are cognitive mechanisms (or analogous causal entities) 

that function in a distinctly representation-like way.  
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The chapter proceeds as follows. Building on the discussion from the previous chapter, 

section 2 spells out in greater detail what it means to function as a representation, and in 

doing so, raises Ramsey’s (2007) ‘job description challenge’ (JDC). This test demands 

that for any entity to qualify as a cognitive representation, its role within a cognitive 

process or architecture must be recognisably representational. I take this opportunity to 

distinguish between two kinds of information in cognitive science: ‘natural information’ 

and ‘non-natural information’. Representational content ought to be identified with the 

latter. Section 3 suggests that we understand ‘function’ in terms of activities performed 

by cognitive mechanisms: organised sets of causally-related spatiotemporal parts that are, 

in part, responsible for a cognitive capacity. I will discuss what it means for a mechanism 

to have a function, which in turn grounds what it means to have the function to represent. 

This lays the foundations for the mechanistic account of representation. Section 4 tests 

out the JDC using the mechanistic account of representation as a reference point. I 

examine three popular notions of representation in the scientific and philosophical 

literature. I dub these ‘receptor’, ‘action-oriented’, and ‘intentional stance’ representation. 

I show that none of these notions affords sufficient justification for subpersonal cognitive 

representation. Therefore, we will have to search elsewhere if we wish to defend the value 

of representation in explanations of cognition.  

2.1 The job description challenge: Representation as a functional kind 

 

To assess whether cognitive representation plays a role in explaining cognition, and if so, 

how, we must secure a grip on the approximate conditions required for legitimate 

ascriptions of representation (see chapter 1). To my mind, the clearest expression of what 

is required to meet this task is offered by Ramsey (2007) and his ‘job description 

challenge’ (JDC). Ramsey is concerned that the term ‘representation’ is often used in an 
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overly liberal manner, with little clarity over what it contributes to a scientific theory of 

cognition. Ramsey suggests that many representation ascriptions are eliminable without 

any loss of understanding because supposedly representational entities often fail to 

resemble anything recognisably representational. As a result, more parsimonious, non-

representational terminology would better describe many theoretical entities (even if 

theorists continue to talk about representation). In a similar vein, Gładziejewski writes, 

‘the representational terminology too often serves as an empty and misleading ornament, 

devoid of any real explanatory value—a mere representational gloss on what is at its core 

a non-representational story about cognition’ (2016b, p. 560). Put differently, though the 

representation label may frequently appear in theories of cognition, the concept is often 

stretched to the point where it no longer signifies anything of interest, and so, contributes 

nothing to a theory of cognition qua representation (more on this in section 4 below).1 

 

For cognitive representation to contribute towards a theory, qua representation, it must 

pass the job description challenge. To pass the JDC, the entity in question must play a 

distinctly representational-like role. To borrow again from Ramsey, we must ask, ‘Is there 

an element of a proposed process or architecture that is functioning as a representation in 

a sufficiently robust or recognizable manner, and if so, how does it do this?’ (2007, p. 34). 

If a theory of cognition posits an entity at the subpersonal level that is distinctly 

representation-like, then talk of cognitive representation accurately reflects a theoretical 

commitment. Otherwise, representational descriptions are inappropriate or, at best, a mere 

gloss. The JDC thus guards against the over-extension of representation. 

 

                                                
1 Cummins likewise warns against accounts of cognitive representation that trivialise representational 

explanations in science. He advises that ‘A good theory of mental representation […] ought to make us 

understand how appeals to the capacity to represent could explain cognitive capacities’ (1996, p. 93). 
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The most straightforward way to show that a purported cognitive representation possesses 

a distinctly representation-like role is to show that it functions in a way that resembles 

prototypical representation (for related discussion, see Ramsey, 2007, pp. 8-14). In other 

words, a purported cognitive representation is distinctly representation-like when we 

would reasonably count its functional role as analogous to the functional role of more 

familiar representations.  

 

A puzzle remains: what would it take for a purported cognitive representation to function 

in a way that is analogous to more familiar representations? Following chapter 1, familiar 

representations, such as models, maps and portraits, are notable for the fact that they 

function to stand-in for other entities (objects, processes, states, activities etc.) on behalf 

of a consumer (Haugeland, 1991; Ramsey, 2007). By functioning in this way, familiar 

representations are of causal relevance to the behaviour of a consumer in virtue of their 

semantic properties. Taking this as my starting point, I suggest that for a theoretical entity 

x to function as a cognitive representation, for it to pass the JDC, x must be a subpersonal 

entity (at first pass, a neural or computational structure) which possesses a functional role 

that meets three broad conditions:  

 

(i) x possesses representational content; 

(ii) x is of causal relevance to a cognitive system S (i.e., x affects subsequent 

cognitive processing and/or motor output of S); 
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(iii) x’s causal relevance to S is due, at least in part, to x’s representational 

content.2  

 

These conditions are intended to reflect the minimum standards by which we would judge 

something to possess a distinctly representation-like function but avoid assuming details 

about what form cognitive representation might take (Sprevak, 2011, p. 670, articulates 

similar criteria in reviewing Ramsey’s position; see also Strasser, 2010). In this way, we 

remain open to evaluating types of purported cognitive representations on a case-by-case 

basis. Let’s examine these conditions further. 

 

First, condition (i). As chapter 1 highlighted, ‘content’ is key to the identity of any 

representation. Content concerns a representation’s semantic properties. Representations 

are said to be about those things they stand-in for such that they can be correct or 

incorrect. For instance, a map might stand-in for features of a mountain range on behalf 

of mountaineers; Tudor portraits might stand-in for physical features of long-dead royalty 

on behalf of historians; CCTV footage might stand-in for events at a crime scene on behalf 

of detectives—in each case, the representation may succeed or fail to correspond to that 

which it stands-in for. For a theoretical entity to count as a representation in any 

substantive sense, it must possess content in a manner that similarly implies correctness 

conditions.  

 

                                                
2 Following much of the mechanism literature I subscribe to an interventionist account of causation. 

Roughly, according to an interventionist account, C is a cause of E just in case manipulating C results 

in a manipulation of E (for example, see Woodward, 2003). However, I take it that nothing major hinges 

on the specifics of this account. In particular, I assume that the causal relevance of content, as explicated 

in chapter 4 and chapter 5, could be couched in the terms of any plausible account of causation (for 

related discussion, see Gładziejewski & Miłkowski, 2017). 
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Next, condition (ii). Familiar representations are of causal relevance to their consumers. 

Representations are exploited by agents, affecting the agents’ inferences concerning and 

actions towards the things represented. An ordinary map of the Himalayas stands-in for 

the Himalayas, at least in part, because it is consumed (i.e. used) or intended to be 

consumed, by some past, current or future agent in a way that informs their behaviour 

towards the Himalayas. By contrast, a slab of rock on a distant lifeless planet that just so 

happens to resemble the Himalayas does not represent the Himalayas, at least in part 

because it is causally irrelevant to the behaviour of any agent. For something to play a 

role qua representation in explaining the behaviour of a cognitive system, it must be 

causally relevant. 

 

Note that in familiar cases where we explain an agent’s behaviour with reference to a 

representation, it is that agent who counts as the consumer. This is because it is that agent 

for whom the representation is causally relevant. For instance, when we explain the 

capacity of a hiker to ascend a mountain using a map, it is the hiker who consumes the 

map. Though obvious, this point is worth emphasising because it highlights the analogous 

part to be played by a cognitive system in the case of cognitive representation: when we 

explain the capacity of a cognitive system by ascribing subpersonal representation, we 

imply that it is the cognitive system itself (and not us) that counts as the consumer 

(Millikan, 1984). This is because it is the cognitive system itself for whom the 

representation is causally relevant. At first pass, for a representation to be of causal 

relevance to a cognitive system, the representation must affect the cognitive processing 

and/or motor outputs of the cognitive system in question. To do this, the representation 

must interact with other states, activities and so on, or must interact directly with the 

system’s motor effectors. Section 3.4 below and chapter 4 will elaborate on this idea, 
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suggesting that a cognitive system counts as a consumer when some capacity of that 

system depends on a mechanism playing an appropriate causal role. 

 

Finally, condition (iii). Familiar representations not only earn their representational status 

by bearing content and by being causally relevant to their consumer, but by being causally 

relevant to their consumer in virtue of bearing content. We ordinarily think that a map 

being about the Himalayas is relevant to how it affects a mountaineer—its semantic 

properties are of causal relevance. Following Dretske (1988), Ramsey writes, 

 

[T]o be a representation, a state or structure must not only have content, but 

it must also be the case that this content is in some way pertinent to how it is 

used. We need, in other words, an account of how it actually serves as a 

representation in a physical system; of how it functions as a representation. 

(2007, p. 27. Original emphasis.) 

 

 

In articulating a version of anti-representationalism, Garzón makes a similar point, 

 

 

When we claim that representational states have causal powers we mean to 

say that a system contains physical states that stand for other states and that 

can play a causal role in the behavior of the system because of the content of 

the state in question. (2008, pp. 261-262) 

 

Condition (iii) bridges conditions (i) and (ii), ensuring that semantic properties are 

causally relevant in cases of cognitive representation, as they are in cases of familiar 

representation. 

 

The remainder of the thesis will be devoted to assessing whether any subpersonal entity 

posited as part of a theory of cognition does or could satisfy these three conditions. To 

make progress, it will first prove useful to point out a mapping between the terms 
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‘representational content’ and ‘non-natural information’. Along the way, we can 

distinguish between two potentially conflated notions of information in cognitive science.  

2.2 Representational content and two kinds of information 

 

Chapter 1 revealed that some eliminativists have assailed representationalism by 

undermining the plausibility of naturalising representational content at the subpersonal 

level. For instance, Hutto & Myin (2013, 2017) claim that content is an ‘informational 

notion’, but that information in cognitive science amounts to information in the sense of 

‘information-as-covariance’. In turn, information-as-covariance cannot accommodate 

correctness conditions. If radical enactivists are correct, nothing at the subpersonal level 

could pass the JDC. At this stage, it is worth recognising that there are at least two notions 

of information utilised by cognitive science. Distinguishing these will help us better 

appreciate what it means to establish or reject the claim that content is of causal relevance. 

This distinction will be drawn on again below and in subsequent chapters. 

 

Hutto & Myin’s separation of mere information from full-blown (content implying) 

representation corresponds to a common distinction in philosophy between two kinds of 

‘information’ or ‘meaning’. Most famously, Grice (1957) distinguishes ‘natural meaning’ 

from ‘non-natural meaning’. Natural meaning is exemplified in cases such as ‘smoke 

means fire’ or ‘spots mean measles’. In cases of natural meaning, if x means that y, then 

the presence of x entails the presence of y. By contrast, in cases of non-natural (or 

‘conventional’) meaning,  as Grice says, ‘x means that p and x meant that p do not entail 

p’ (1957, p. 378). For example, suppose that three rings on the bus mean that the bus is 

full. This is consistent with the bell’s ringing and the bus not in fact being full. Whilst 

Grice thinks both these kinds of information are kinds of meaning—notably mirroring 
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the conclusion below that false non-natural information is a kind of information—only 

the latter implies conditions of semantic evaluation. 

 

Grice’s two kinds of meaning help unpack two kinds of information implicit in cognitive 

science. These are ‘natural information’ and ‘non-natural information’ (Piccinini & 

Scarantino, 2010, 2011). At its most basic, x bears natural information about y, iff x 

nomically (non-accidentally) correlates with y. In this case, x bears natural information 

about y just in case changes in the value of y are accompanied by systematic changes in 

the values of x. I here assume what has elsewhere been labelled a ‘deflationary view’ of 

natural information, where there is nothing more to information-carrying than nomic 

dependency. This contrasts with a ‘realist view’ where information is something that 

emerges from nomic dependency but is ontologically distinct from it (Ramsey, 2007, pp. 

132-140). In keeping with Grice’s understanding of natural meaning, it was once common 

to understand natural information as implying veridicality, whereby if x bears information 

about y, y must obtain (Dretske, 1981; Floridi, 2005, 2010). However, it is increasingly 

common to understand natural information probabilistically, whereby if x bears 

information about y, x increases the likelihood of y being the case (Piccinini & Scarantino, 

2010, 2011; Scarantino, 2015; Millikan, 2017). Intuitive illustrations of ordinary natural 

information include dark clouds bearing information about imminent rain, or the number 

of growth rings in a tree bearing information about the organism’s age.  

 

In contrast to natural information, x bears non-natural information about y iff x stands-in 

for y, where x’s bearing information about y does not depend on a nomic correlation with 

y. As such, a tokening of x does not entail the truth or increased probability of y. In this 

case, x may bear non-natural information about y without changes in the value y 
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accompanying systematic (non-accidental) changes in the values of x. Intuitive 

illustrations of ordinary non-natural information include a portrait bearing information 

about its subject’s appearance, or a map bearing information about a mountain’s topology. 

This should remind us of representational content (more on this momentarily). Piccinini 

& Scarantino summarise by writing that non-natural information bearers, 

 

[…] need not be physically connected to what they are about in any direct 

way. Thus, there must be an alternative process by which bearers of 

nonnatural information come to bear nonnatural information about things 

they may not reliably correlate with. (2011, p 24) 

 

Everyday conventions provide at least one way in which artefacts come to bear nonnatural 

information about things they may not correlate with, such as when a community decides 

that a set of marks on paper will stand-in for features of a mountain (features which may 

or may not obtain). As illustrated by ordinary conventions, non-natural information 

requires a consumer of some variety to connect x and y as, by definition, x and y need not 

bear any independent causal relationship for x to stand-in for y. Marks on paper do not 

bear non-natural information about the topology of a mountain range unless an agent or 

community use those marks to bear non-natural information about the topology of a 

mountain range. Non-natural information presumes a consumer of that information. 

 

As already implied, both kinds of information constitute an exploitable relation: if x bears 

(natural or non-natural) information about y, then a consumer may exploit x to make 

inferences about or guide behaviour towards y. In other words, x ‘informs’ its consumer 

about y. Following Piccinini & Scarantino (2010, 2011), I take these two kinds of 

information to be evident in the practices of cognitive science. Both kinds of information 

refer to relations that a cognitive system may use to behave within a noisy, complex world, 
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acting and communicating with other systems in a manner that is ‘informed’. In other 

words, both kinds of information concern the reduction of uncertainty within a cognitive 

system (ibid., p. 21).  

 

I indicated above that non-natural information bearers are distinct from natural 

information bearers in that they are both causally decouplable from the conditions they 

bear information about, and the information they bear may be incorrect (false/inaccurate 

etc.). Yet both intuitively and implicitly within cognitive science, false/inaccurate non-

natural information remains ‘informative’. This is reflected in the way we treat ordinary 

false beliefs. For instance, if one holds a false belief (e.g., that Pokhara is the capital of 

Nepal) then one holds information about a state of affairs (e.g., the capital city of Nepal), 

albeit the information is incorrect. This indicates that false non-natural information should 

still be considered as a genuine kind of information. Piccinini & Scarantino write, 

 

An important implication of our account is that semantic information of the 

nonnatural variety does not entail truth. On our account, false nonnatural 

information is a genuine kind of information, even though it is epistemically 

inferior to true information. (2011, p. 24) 

 

 

The authors observe that the orthodox assumption in philosophy has been to regard all 

so-called false information as not really information at all, principally because philosophy 

has equated information with natural information. This has played an important part in 

theorising about representation, where a common assumption has been that representation 

reduces to a form of natural information-carrying. 

 

It is worth pausing here to elaborate on this idea, examining the role played by the 

philosophical conceptualisation of information in traditional ‘causal-historical theories’ 
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of representational content (for example, Dretske, 1981, 1988; Millikan, 1989b, 1990; 

Neander, 1991).3 Many causal-historical theories of content understand representation in 

terms of information but distinguish between what an entity merely carries information 

about from what an entity represents—in our terminology, they distinguish mere natural 

information from non-natural information—by defining the latter as a subset of the 

former, typically thought to be determined by the ‘proper function’ of the representing 

entity. In their simplest form, causal-historical theories say that R is about C if C reliably 

causes a tokening of R. For example, a population of neurons firing might represent ‘fly’ 

because the presence of flies causes the neurons to fire. This reliable causation establishes 

a type of reliable correlation that defines natural information. However, as it stands, this 

delivers an exceptionally weak notion of representation because it fails to yield any 

semblance of misrepresentation. After all, if R represents the causes of its tokening, R 

will always (trivially) succeed in representing. Therefore, most sophisticated causal-

historical theories add that R only represents when tokened by the subset C that R has the 

proper function to represent. In turn, R’s proper function is given by some feature of R’s 

evolutionary, developmental or learning history. For instance, according to Dretske, R 

must not only bear a causal relationship with C1 to represent C1, but it must also be the 

case that C1 caused R to become part of its system’s cognitive processing fixed under the 

evolutionary history of ancestor organisms or under an organism’s ‘period of learning’. 

This secures R’s proper function. Therefore, the reason why a token representation R is 

about C1 and not C2 even if R was caused by C2, is because R is a ‘symbol token’ that 

belongs to a ‘symbol type’ whose functional role is to respond to C1 and not C2 (Dretske, 

                                                
3 I avoid categorising these theories as ‘teleological’, as is commonplace given the appeal to functions. This 

is because I regard my preferred theory of content determination, defended in chapter 4 and chapter 

5, to be teleological but not ‘causal-historical’. As will soon become apparent, I understand mechanism 

functions in cognitive science principally in terms of what a mechanism causes—its ‘causal role’ 

relative to some cognitive capacity—and not in terms of what causes a mechanism. 
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1981, p. 198). In summary, for at least some traditional causal-historical theories, a 

representation cannot carry false information, for there is no such thing, but it can 

misrepresent if it fails to carry the appropriate information fixed by its proper function.4 

Using our terminology, non-natural information reduces to the carrying of the natural 

information, plus proper function. Representation succeeds when natural information and 

proper function coincide and fails when they diverge.  

 

Each causal-historical theory faces its own individual criticisms. However, there are at 

least two generic objections that are worth surveying at this stage. These will be explored 

further later. The first objection is that causal-historical theories, like Dretske’s, are 

insufficient for establishing that an entity functions as a representation. The problem is 

that even if an entity is required to be caused by appropriate conditions to fulfil its proper 

function, this does not mean that the entity functions as a representation. For example, 

hearts contract in the presence of excess blood, but we would not describe the heart as a 

representation, even if we can say that hearts bear natural information (following our 

deflationary definition above). In other words, lots of non-representational mechanisms 

have functional roles that involve reliably correlating with certain conditions (I will 

discuss this issue further in section 4.1 below). Nonetheless, one might think that the 

constraints introduced by a theory like Dretske’s forms one part of a complete story of 

cognitive representation; that evolutionary history, learning periods or other historical 

factors tell us something about how the content of a representation is determined, even if 

                                                
4 Miłkowski has responded to Hutto & Myin (2013) by noting that causal accounts of content typically 

acknowledge the inadequacy of mere covariance as a foundation for representation, observing (with 

approval) that some notion of proper biological function is typically taken to be the key additional 

ingredient for establishing correctness conditions (2015a, pp. 82-84). For the reasons outlined in this 

section and subsequently, I regard this as an unsatisfactory response. In short, Hutto & Myin can 

reasonably claim that the conditions introduced by theories like Drestke’s are insufficient for 

transforming a functional role that relies on mere covariation into full-blown representation. 
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they fail to identify in virtue of what something functions as a representation.5 This brings 

us to the second objection. Under the mechanistic approach developed throughout the 

remainder of the thesis, functions are attributed to cognitive mechanisms in virtue of their 

causal roles within some cognitive capacity, irrespective of their own causal history. This 

undermines appeals to historical factors in determining content because these factors are 

not strictly relevant to whether a cognitive mechanism has the causal role to represent. 

According to the ‘mechanistic account of content’ that I will develop, it does not matter 

how a mechanism got there, it matters what a mechanism does. I address this objection 

further in section 3.3 below and in chapter 4 and chapter 5. 

 

With worries about causal-historical theories of content in the background, let’s now 

return to our distinction between natural and non-natural information. Again, in contrast 

to the idea that genuine information cannot be false and following observations of 

scientific practice, Piccinini & Scarantino (2010, 2011) advise us to understand non-

natural information, whether it’s correct or incorrect, as a genuine kind of information. 

Following Piccinini & Scrantino’s observations of the potential dual use of information 

in cognitive science, I take their conceptual mapping to be instructive and useful for our 

present purposes. Therefore, non-natural information is a genuine kind of information, in 

keeping with the nuanced notion of information in cognitive science.  

 

We can turn to the example of the increasingly popular ‘predictive processing’ framework 

to gesture toward how cognitive science may utilise both kinds of information. In brief, 

the predictive processing framework conceives of the brain as a hierarchically-structured 

                                                
5 Ramsey (2016) suggests such a view. Though a theory like that offered by Dretske is insufficient for 

addressing the ‘functional role dimension’ of representation, it might address the ‘content grounding 

dimension’. Ramsey takes addressing these two independent dimensions to be critical for any complete 

theory of cognitive representation. I discuss this idea further in chapter 4. 
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hypothesis-testing device. The brain is essentially tasked with minimising the error in its 

own internally generated (top-down) predictions of the incoming (bottom-up) sensory 

input (for an introduction, see Friston, 2009; Hohwy, 2013; Clark, 2013, 2016). This 

constitutes an energetically efficient strategy, the thought goes, whereby the brain 

processes only the difference between the incoming signal and its own predictions. It does 

this by encoding prior expectations (or ‘priors’) about sensory input, pitched at multiple 

spatial and temporal scales spread across its processing hierarchy. Priors consist of a 

‘hypothesis’ that reflects an expectation of the hidden (worldly) causes of stimuli, and an 

assignment of probability to that hypothesis. According to some versions, hypotheses are 

selected (are assigned a ‘posterior value’) as a function of their prior probability plus their 

‘likelihood’—the probability that the state of affairs captured in the hypothesis would 

cause the received sensory input, were it true—in approximate accordance with Bayes’ 

theorem:6 

 

𝑝(𝐴|𝐵) = 
 𝑝(𝐵|𝐴) 𝑝(𝐴) 

𝑝(𝐵)
 

 

A cognitive system has two strategies for minimising the error that results from the 

discrepancy between its own predictions and the incoming sensory signal: update its 

hypothesis or update the world. For some proponents, these two strategies underlie the 

difference between perception and action respectively. Perception and action form two 

strategies aimed at the same error-minimising task, but with different directions of fit 

(world-to-mind and mind-to-world). 

                                                
6Bayes’ theorem describes how probable an event is given prior knowledge. 𝐴 and 𝐵 are events. 𝑝(𝐴) is the 

marginal probability of 𝐴 occurring. 𝑝(𝐵) is the marginal probability of 𝐵 occurring. The marginal 

probability of an event is the probability of the event occurring without reference to any other event. 

𝑝(𝐴|𝐵) and 𝑝(𝐵|𝐴) are conditional probabilities: respectively, the likelihood of event 𝐴 occurring 

given that event 𝐵 occurred, and the likelihood of event 𝐵 occurring given that event 𝐴 occurred. 
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This brief sketch of the predictive processing framework is sufficient to appreciate the 

prima facie plausibility that both kinds of information are at work. Incoming signals carry 

probabilistic natural information about things in the world in so far as the occurrence of 

these signals reliably correlates with the worldly causes of stimuli. At the same time, the 

predictive processing framework relies on non-natural information in so far as it posits a 

mechanism for endogenously generating top-down predictions of the sensory signal 

ahead of the sensory signal itself. This is possible, the thought goes, because the brain 

deploys a kind of internal generative ‘model’ of the world in the form of stored priors 

(Hohwy, 2013; Clark; 2016). Very roughly, this internal model can be thought of as a 

causal-probabilistic structure that maps onto the hidden worldly causes of stimuli. One 

might reasonably treat such internal models as possessing non-natural information: the 

generative model produces predictions which inform the cognitive system about states of 

affairs that may or may not obtain, with the resulting error between (top-down) 

predictions and the (bottom-up) sensory signal fed back into future predictions. 

Importantly, the notion of information invoked through the positing of these models goes 

beyond causal dependency. Indeed, these models are plausibly interpreted as embodying 

a case of ‘S-representation’, a purported type of map or model-like representation that 

chapter 4 and chapter 5 argue satisfies the JDC (for further discussion on the relationship 

between predictive processing and S-representation, see Gładziejewski, 2016b; for some 

anti-representationalist pushback, see Hutto & Myin, 2017, pp. 57-74). 

 

In summary, there are at least two notions of information that must be distinguished: 

natural and non-natural. We have been creeping up on the idea that representational 

content is equivalent to the latter. If an entity bears non-natural information, then it is 
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semantically evaluable—it has some ‘correctness value’. For an entity to bear non-natural 

information, the thought goes, it must serve as a stand-in for something on behalf of a 

consumer. When Hutto & Myin talk of content as an informational notion, and 

information at the subpersonal level as information as covariation, they imply that there 

is no such thing as non-natural information at the subpersonal level. Through a brief 

sketch of the predictive processing framework, we have seen how some theories plausibly 

appeal to both natural and non-natural information. Moving beyond this cursory sketch, 

more is required to expatiate the value of positing cognitive representation, and with it, 

non-natural-information/content at the subpersonal level. To understand what ascriptions 

of cognitive representation might successfully refer to, it will prove instructive to outline 

a framework that characterises the form of explanation that cognitive science offers.  

3.1 The mechanistic framework of explanation7 

 

This section lays the foundation for the idea that cognitive representation is a type of 

cognitive mechanism, and that representational explanations of cognition are a type of 

mechanistic explanation. Mechanistic explanation is a common feature of the biological 

and engineering sciences, but a consensus has begun to emerge that says contemporary 

cognitive science is concerned with offering mechanistic explanations too. According to 

mechanists, cognitive science explains ‘cognitive capacities’ by identifying and 

decomposing underlying causal mechanisms, typically located in the brain, and 

                                                
7Parts of section 3.1 appear in a manuscript co-written with Joe Dewhurst. This is a work in progress 

intended for future publication. 
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sometimes beyond.8 Paradigmatic cognitive capacities include event recollection, object 

categorisation, self-relative position tracking, route planning, object-distance estimation 

and so on. I will largely take the mechanistic framework for granted, focusing my efforts 

on elucidating what mechanistic explanation is, and how the notion of mechanistic 

explanation informs our understanding of what it means for a subpersonal entity to 

possess a function, such as representing. 

 

The past two decades have seen a move towards the adoption of a mechanistic framework 

of explanation in philosophy of biology and cognitive science. There are several distinct 

(and somewhat heterogeneous) accounts of mechanistic explanation, including relatively 

canonical presentations by Machamer, Darden, & Craver (2000), Glennan (2002), 

Bechtel & Abrahamsen (2005), Craver (2007) and Bechtel & Richardson (2010). In this 

section, I focus on the essential elements of mechanistic explanation, capturing generally 

agreed upon features, but focusing especially on Craver’s (2007) presentation. 

 

The mechanistic framework developed partly in response to the classical deductive-

nomological accounts of explanation (Hempel, 1942; Hempel & Oppenheim, 1948; 

Popper, 1959), which was thought to be ill-suited to explanation in the special sciences 

(Bechtel & Abrahamsen, 2005). According to the standard deductive-nomological 

                                                
8 As previously noted, according to some 4E approaches, cognitive vehicles sometimes extend into the 

world beyond the biological boundary of both brain and body. For example, an artefact, such as a 

notebook, may form a constitutive part of the extended cognitive system, assuming a role that might 

otherwise be performed entirely by a mechanism within the brain (Clark & Chalmers, 1998). I take it 

that there is nothing incompatible between a mechanistic approach and the ‘extended mind hypothesis’. 
At first pass, whether some external object counts as a cognitive vehicle depends on whether the object 

is integrated (as a constitutive causal component) into the mechanism responsible for some cognitive 

capacity. Mechanists introduce notions like mutual manipulability to differentiate mechanism 

components from environmental factors, where not only should changes in a component affect the 

mechanism but changes in the mechanism should affect the component (see Craver, 2007). Future 

research should further unpack the relationship between the mechanistic framework and the extended 

mind hypothesis (for some initial discussion, see Miłkowski et al., 2018). 
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approaches, explanations must be expressible as logical arguments, with the explanandum 

forming the conclusion and explanans forming the premise set, where the latter includes 

at least one ‘covering law’ (or ‘general law’). In this way, scientific explanations possess 

the structure of a deductive argument (for influential criticism, see Eberle, Kaplan, & 

Montague, 1961; Forge, 1980; Salmon, 1984). By contrast, mechanistic explanation 

typically focuses on explaining the production or constitution of particular phenomena 

under particular circumstances by identifying underlying causal structures.9 A 

phenomenon, such as the pumping of blood around the cardiovascular system, is to be 

explained by positing a mechanism, such as the heart, that produces the phenomenon. 

 

A mechanism is an organised set of causally-related physical entities (components), 

whose activities (or ‘operations’) and interactions with one another ‘produce’ or 

‘constitute’, or more generally, ‘are responsible for’, a phenomenon.10 For example, the 

heart is a mechanism for blood circulation because the causal properties and organisation 

of its parts (valves, atrium, aorta etc.) produce the pumping of blood around the body. 

The production or constitution of the phenomenon by the mechanism is said to explain 

the phenomenon, insofar as we can tell a satisfactory story about how the phenomenon is 

                                                
9 Following Glennan (2002) and others, I take mechanistic explanations to still offer generalisations of at 

least two varieties. Firstly, they offer generalisations in so far as they describe a mechanism’s regular 

behaviour over time; what Glennan calls the ‘stable dispositions’ of ‘stable arrangements’ (2002, p. 

345). Secondly, they offer ‘general models’ of mechanism types (e.g. a model of the neuron that 

‘subsumes countless neural events’; Glennan, 2002, p. 345). Following Bechtel & Abrahamsen (2005), 

I take general models of mechanism to form ‘prototypes’ that frequently guide research into a set of 

mechanisms that share a family resemblance. Part of mechanistic explanation involves assessing how 

a mechanism under study diverges from a model system (ibid., pp. 438-439). See Craver, 2001, 2009, 

for related discussion on individuating mechanisms. 
10Mechanisms are variably said to produce or constitute a phenomenon. A mechanism produces a 

phenomenon if its activities result in the production of the phenomenon to be explained. A mechanism 
constitutes a phenomenon if the activities and interactions between components are themselves the 

phenomenon that is to be explained. For example, we might say that the stimulated tendons and muscles 

in the Biceps brachii constitute the phenomenon of elbow flexion. We will mostly be concerned with 

production mechanisms, in so far as representational mechanisms are part of a wider ‘sensory motor 

mechanism’ that produces behaviour; for example, cognitive maps, qua representational mechanisms, 

are in part responsible for producing navigation behaviour in rats (see chapter 4). Mechanists 

sometimes replace ‘produce’ and ‘constitute’ with the more neutral ‘is responsible for’. 
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produced or constituted, by reference to the causal and organisational properties of 

component parts. Mechanisms are hierarchically organised: they are invoked across 

varying levels of complexities in nature—for instance, ecosystems, kinship groups, 

organisms, organs, cells etc. Mechanisms are also nested: the components of one 

mechanism are often mechanisms in their own right. For example, the circulatory system 

is a mechanism comprised of other mechanisms, such as the lungs, kidneys and heart, 

which are comprised of other mechanisms such as valves, chambers and so on. 

 

Mechanistic explanations involve identifying and analysing a mechanism (the explanans) 

that is causally responsible for a target phenomenon (the explanandum). A mechanism’s 

causal powers are explained by the activities, organisation and structure of its underlying 

component parts. The causal powers of a component are in turn explained by the 

activities, organisation and structure of its component parts and so on.11 At some level, 

components will bottom out in purely physical descriptions, namely when their activity 

is no longer explained by the composition of organised entities. Even though such a 

‘bottoming-out’ is in theory always possible, it is not always necessary for a satisfactory 

grip on a target phenomenon. For example, one need not understand the chemical 

components of heart cells to possess a working understanding of the heart’s role in the 

circulatory system. The extent to which one is required to descend the mechanistic 

hierarchy will be relative to the explanandum and the relative explanatory demands given 

the context of the scientific investigation. An ethologist studying spatial navigation in rats 

need not necessarily understand the cellular mechanisms that comprise the hippocampus 

                                                
11It is not always the case that descending the hierarchy is required for increased explanatory power. For 

many phenomena, the explanatory burden demands that we focus up the hierarchy. For example, to 

explain why an organism’s insulin levels have increased, one might ‘look up’ to the organism’s recent 

carbohydrate consumption, rather than the depolarization of Beta cells in the Islets of Langerhans. See 

Craver & Darden (2013), for discussion. 
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to have sufficient understanding of the hippocampus as a mechanism that underwrites the 

spatial memory system. 

 

A target phenomenon (explanandum) is whatever it is that we are explaining. In the case 

of a mechanism such as the heart, the phenomenon to be explained might be the pumping 

of blood around the body. Accordingly, mechanists observe that a mechanism is always a 

mechanism for something, meaning that there is no such thing as a mechanism in the 

absence of a target phenomenon (for instance, see Craver, 2007, p. 122). Before a 

mechanistic explanation can be given, a target phenomenon must be identified, often 

through a process that Piccinini & Craver (2011) describe as ‘functional analysis’ 

(following Cummins, 1975). Functional analysis produces a ‘mechanism sketch’ 

consisting of a description of the phenomenon and a parenthetical (or otherwise 

incomplete) description of a mechanism or mechanisms responsible. For example, we 

might conduct an initial analysis of blood circulation and conclude that the heart is likely 

to be functioning as a pump, without yet describing in any detail how it performs this 

function. A complete explanation requires us to specify the underlying structures that 

realise this pumping role. In this way, mechanists hold that there is no sharp distinction 

between functional explanations and mechanistic explanations in cognitive science 

(Piccinini & Craver, 2011; for some pushback, see Barrett, 2014). 

 

As our discussion so far indicates, talk of functions is ubiquitous in mechanistic 

explanation. However, philosophers continue to dispute exactly how to understand 

mechanism functions (for an overview of the debate, see McLaughlin, 2000; Garson, 

2016). I take most theories about function to fall within two major families: ‘causal-role’ 

accounts and ‘selectionist’ (or ‘etiological’) accounts. Following Schwartz (2004) and 
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Garson (2018), I think it is a mistake to conceive of these accounts as competing. Rather, 

these accounts reflect different sets of questions. Causal-role functions explain how a trait 

causes a phenomenon; in other words, they explain the contribution of a trait to a ‘system-

level effect’ (Cummins, 1975). Selectionist functions explain why a trait is there. Kitcher 

similarly argues that there are two kinds of questions that biology may answer: historical 

questions that concern the evolution of a system, and structural questions that concern 

how traits work (1984, p. 320).  

 

Given that different accounts of function sometimes address different sets of questions, I 

adopt a form of ‘pluralism’ about function that makes space for both causal-role and 

selectionist accounts (for related discussion, see Godfrey-Smith 1993; Garson, 2016, 

2018). Nonetheless, I take selectionist functions to address the wrong kind of question 

when considering the role of mechanism function in explanations of cognitive capacities. 

Cognitive scientists typically wish to explain how an organism or artificial system 

achieves some cognitive capacity such as facial recognition. Relative to this 

explanandum, the function of a cognitive mechanism is its causal contribution, which can 

come apart from its selection history. It will prove fruitful to further sketch these two 

approaches to function and raise the limitations facing selectionist accounts. 

3.2 The causal-role account of function 

 

The causal-role account says that the function of a mechanism is the causal contribution 

of that mechanism to a target phenomenon. In turn, the phenomenon is fixed by the agent 

or community investigating the phenomenon (Cummins, 1975; Hardcastle, 1999, 2002; 

Craver, 2013). Craver (2013) offers the most focused presentation of the approach and I 

will take this as my lead (there are hints of the causal-role account in Craver’s earlier 
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work; see Craver, 2001, 2007, 2009). The attribution of a function to a mechanism, or 

component of a mechanism, is often an essential step in giving a mechanistic explanation. 

This is because the physical system that composes the mechanism will be involved in all 

sorts of activities, behaviours, and causal interactions, not all of which will be relevant to 

the explanandum.12 In the context of explaining how blood is pumped around the 

cardiovascular system, the function of the heart is to pump blood, because it is pumping 

blood that contributes to the production of the target phenomenon. Each individual 

component of the heart will have its own function, which in turn contributes to the 

production of the target phenomenon—one component might function as a valve, whilst 

another might function as a tube, allowing blood to flow at a certain speed and pressure.  

 

Before we can explain how a mechanism causes a phenomenon we must ascertain which 

aspects of the physical system are relevant to our explanation. By first giving a plausible 

functional description of the system we can often sketch out, in rough terms, which parts 

of the system are relevant to the phenomenon at hand, and what kind of contribution we 

think those parts make. Further analysis of the system, in terms of the activities and 

organisation of physical components, can then determine how (or indeed if) those parts 

carry out those functions. If it transpires that there is no conceivable way a system’s part 

could perform the attributed function, then we go back to the drawing board, but if we 

can identify a plausible physical structure that implements or performs the function, then 

we have something that is beginning to look like a complete mechanistic explanation. 

Therefore, we can begin putting together a full mechanistic explanation, based upon an 

initial functional attribution. 

 

                                                
12It is for this reason that Craver is not entirely satisfied with earlier causal-role accounts, such as that given 

by Cummins (1975), although he does take inspiration from these. 
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Craver elaborates the causal-role account by usefully outlining three kinds of functional 

description that are involved in mechanistic explanations: ‘etiological’, ‘constitutive’, and 

‘contextual’. These functions serve ‘as a way of tersely indicating an etiological 

explanation, as a way of framing constitutive explanations, and as a way of explaining 

the item by situating it within higher-level mechanisms’ (2013, p. 133). Let’s examine 

these in turn. 

 

Etiological functions are typically attributed in the context of giving an ‘etiological 

explanation’, that is, an explanation in terms of the history of a system (see Craver 2013, 

pp. 145-146). One common type of etiological explanation is selectionist explanation, 

particularly evolutionary explanation: explaining the existence of a trait by appealing to 

its evolutionary history. What all etiological explanations have in common is that they are 

‘backwards-looking’, explaining how something is now in terms of how something was 

in the past. Etiological functions are also backwards-looking. If we say that the function 

of the heart is to pump blood because that is the role it was selected for in the evolutionary 

history of ancestor organisms, then we are appealing to the past to say something about 

the present. Craver raises some familiar concerns about etiological explanations, 

including that they are speculative and typically indeterminate, and say nothing about 

how a mechanism produces or constitutes a phenomenon in the here-and-now (ibid., pp. 

146-148). However, Craver concedes that attributions of etiological functions ‘can be 

heuristically useful as a guide to creative thinking about what an organism or organ is 

doing’ (ibid., p. 148). For the causal-role theorist, I take it, attributing an etiological 

function to a mechanism helps explain why a mechanism exists. It may also capture one 

causal role that a mechanism presently serves. However, that etiological function is not 

privileged. For example, the function of past hearts to pump blood is the causal role that 
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led to the reproduction of hearts and explains why hearts now exist. Pumping blood is 

also one causal role that hearts continue to serve. Nonetheless, hearts possess other causal 

roles relative to phenomena other than blood circulation, for instance, making thump-

thump noises relative to their role in diagnosing cardiovascular illness (for related 

discussion, see Glennan, 2002; Craver, 2013). Pumping blood may indeed be the heart’s 

‘proper function’, in so far as pumping blood is the causal role which caused hearts to be 

reproduced—but so-called proper functions are not the only functions a mechanism may 

serve. We will return to this issue momentarily. 

 

Constitutive explanations play a key role in mechanistic explanations, focusing on the 

synchronic causal structure of a system (Craver, 2013, pp. 149-151). In contrast with 

purely etiological explanations, constitutive explanations capture how, in the here-and-

now, a mechanism is causally capable of causing a phenomenon. A description of the 

heart in terms of the opening and closing of valves might serve as a constitutive 

explanation of how blood is pumped around the body. A function, in this sense, is a 

description of how relevant physical structures produce the phenomenon that we are 

interested in: to say that the heart (constitutively) functions as a pump is simply to say 

that it has the correct kind of physical structure to perform the pumping function. For 

Craver, such attributions are ‘perspectival’ insofar as there are many possible ways in 

which we could describe the physical structure of a system, only some of which will be 

relevant to our current explanation. The choice of which description to give thus depends 

on our explanatory perspective: if we are interested in explaining the circulation of blood, 

then it makes sense to attribute the function of pumping to the heart, whereas if we are 

interested in explaining the synchrony of a child’s heartbeat to its mother’s, then it might 

be more appropriate to attribute a different function, and thus to emphasise different 
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aspects of its physical structure. The term ‘perspectival’ is somewhat misleading in so far 

as the function of a mechanism is perfectly objective relative to a given explanandum. 

For instance, relative to the circulatory system, the function of the heart is, as a matter of 

fact, to pump blood. Chapter 5 will raise a related defence of a mechanistic approach to 

content, against the accusation that it makes content unpalatably observer-dependent. 

 

Finally, a contextual explanation is one that locates the constitutive function within the 

broader environment of a system and attributions of contextual functions must, therefore, 

consider a mechanism’s environmental context (Craver 2013, pp. 151-154). As Craver 

summarises, 

 

[W]e should add that functional characterizations often describe those 

capacities in a manner that includes wider and wider regions of the causal 

structure of the system under consideration [...] There is a difference, after all, 

between knowing that plugs produce sparks and knowing how that sparking 

is situated in the mechanisms of an engine [...] in the latter we describe its 

role contextually. (2013 p. 152) 

 

Livers in general function (constitutively) as filters. A token liver functions (contextually) 

to filter alcohol out of the blood of an individual who has drunk heavily the night before; 

however, it would not make sense to attribute this function to the liver of a teetotaller. 

Therefore, two mechanisms may share the same constitutive function whilst differing in 

the details of their contextual function. Contextual functions are also important when it 

comes to situating a component within a higher-level mechanism that it is part of. It only 

makes sense to talk of the heart as a mechanism for pumping blood, as opposed to just 

being a pump simpliciter, within the broader context of its role within the cardiovascular 

system, which is itself a mechanism for circulating oxygenated blood around the body.  
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Building on the observation that mechanistic explanations often consider a mechanism’s 

broader context, it is worth stressing that cognitive mechanisms are typically taken to be 

responsible for capacities that facilitate coordination between a cognitive system and its 

environment. Because of this, explanations of cognitive capacities often make 

ineliminable reference to task environments. Explaining an organism’s capacity to 

estimate the distance between two objects, for example, implies the existence of two 

objects in its surroundings—the capacity relates the organism to its environment. In 

chapter 4 and chapter 5, I will suggest that we can understand the ‘target’ of a given 

representational mechanism—roughly, what that mechanism functions to stand-in for—

in terms of its embeddedness within a higher-level mechanism and task environment. 

3.3 Selectionist accounts of function 

 

Selectionist accounts state that the function (or ‘proper function’) of a biological 

mechanism is fixed by what that type of mechanism was selected for in the past (Williams 

1966; Wright, 1973, 1976; Millikan, 1989a, 1989b; Neander, 1991). At their most basic, 

selectionist accounts say that a mechanism type M (for example, hearts) has the function 

to x (for example, pump blood) just in case M exists (was selected for) in virtue of doing 

x. Selection history is traditionally understood in terms of Darwinian natural selection: 

the change in heritable traits of a population across generations due to differential 

reproduction. In recent years, more nuanced versions of the selectionist account have 

developed that take into consideration other natural selection processes, such as trial-and-

error learning and antibody selection (for example, see Godfrey-Smith, 1992; Garson, 

2015, 2016, 2018; Millikan, 2017). My focus in this section will be on orthodox 
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selectionist accounts that take Darwinian evolution as their basis. Nonetheless, some of 

the problems raised below apply to any selectionist account.13  

 

The selectionist approach goes back at least as far as Williams (1966), who writes that 

‘The designation of something as a means or mechanism for a certain goal or function or 

purpose will imply that the machinery involved was fashioned by selection for the goal 

attributed to it’ (p. 9. Quoted in Garson, 2013, p. 322. Original emphasis). For example, 

the function of the heart is to pump blood because pumping blood contributed to the 

survival of ancestor organisms (presumably, the same does not apply to the heart’s 

making thump-thump noises). Likewise, a mechanism has the function to represent, the 

thought goes, just in case it was representing that caused the mechanism to be reproduced. 

 

Selectionist accounts face long-standing challenges. For brevity, I will limit myself to 

highlighting one general issue and two problems that are particularly pertinent to the topic 

of cognitive representation. To begin, selectionist accounts concern a mechanism’s 

function relative to the selection history of that mechanism. A prima facie limitation arises 

when we observe the common practice of assigning functions to produce or constitute 

phenomena that mechanisms were not selected for. Most strikingly, biologists and 

cognitive scientists talk of mechanisms for pathologies. For example, one might talk of 

the mechanism for metastasis or the mechanism for psychosis (see Craver, 2013, for 

discussion). And yet, in most cases, the mechanism responsible for causing a pathological 

                                                
13 Selectionist accounts are not the only alternative to orthodox causal-role accounts, though they have been 

the most popular. Working within a mechanistic paradigm, Maley & Piccinini (2017) reject selectionist 
accounts as too narrow. However, they also claim that causal-role accounts are too permissive. They 

opt for a view that emphasises a mechanism’s contribution toward the ‘survival’ and ‘inclusive fitness’ 

of an organism. I will return to this ‘objective goal account’ in chapter 5, where I will suggest that it 

is not really a rival to the causal-role account. Rather, it is a nuanced version of the causal-role account 

fit for the purposes of biology and cognitive science. As we shall see, the objective goal account helps 

to assuage worries over ‘perspectivalism’ about content, which is the view that the content of a given 

representation is determined, at least in part, by an observer. 
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phenomenon was not selected for producing that phenomenon. Such considerations work 

in the favour of the causal-role account: selectionist accounts are limited to explaining 

how a trait came to be, but scientists often wish to explain how a trait causes a 

phenomenon, regardless of its history.  

 

In response to these observations, Garson suggests that talk of mechanisms for 

pathologies in biology is ‘elliptical’ (2013, p. 329). What scientists really mean when they 

talk about a mechanism for, say, metastasis is that there is a mechanism for cell elasticity 

that has been disrupted (where cell elasticity is the function that the mechanism was 

selected for). In fact, following Krickel, the causes of metastasis cannot be explained 

solely with reference to the disruption of ‘normal healthy mechanisms’, such as RNA 

repair mechanisms (2018, p. 46), but requires positing unique entities and processes 

(though Krickel does not give an example, such mechanisms and processes plausibly 

include protein degradation by the tumorous cells in the extracellular matrix). Garson 

does acknowledge that there may be genuine counterexamples in which scientists do talk 

of mechanisms functioning (non-elliptically) for pathologies, yet he dismisses these cases 

as insignificant for selectionist accounts ‘as long as they are infrequent’ (ibid., p. 329). 

However, based on Garson’s discussion, the following remains unclear: (i) how much 

non-elliptical talk of mechanisms for pathologies would count as significant, and (ii) 

whether biologists (non-elliptically) talk of mechanisms for pathologies to this degree. 

Notably, Garson does subscribe to a selectionist account that considers broader selection 

processes beyond evolution (2017) and has subsequently developed a form of pluralism 

that allows a place for function ascriptions based on causal roles (2018). 

 



78 

 

 

There are two additional obstacles facing selectionist accounts as they apply to function 

attributions in cognitive science. The first issue picks up on a general theme in 

contemporary cognitive neuroscience: the plasticity of neural circuitry (for example, see 

Wexler, 2006). More specifically, this issue concerns the phenomenon of ‘neural reuse’ 

and ‘neural recycling’—that is, the recruitment of evolved circuitry to serve novel 

cognitive capacities. Theorists who study neural reuse point out the disparity between the 

evolutionary era under which at least some human neural structures evolved, and the 

recentness of many cognitive capacities (such as reading) that those structures appear 

responsible for causing. This suggests that many cognitive mechanisms are a special kind 

of ‘exaptation’ or ‘spandrel’: traits that serve one or more role which they were not 

selected for.  

 

Feathers are a well-known example of non-cognitive exaptation. It has been suggested 

that feathers were initially selected for their role in thermoregulation (feathers are good 

insulators), only later serving a role in flight. Schwartz (2004) offers another example, 

following Millikan (1993), of front flippers in sea turtles. These limbs were likely selected 

for their role in swimming, but later became used by female turtles to dig holes in which 

to lay their eggs. Barve & Wagner (2013) go so far as to suggest that common metabolic 

traits may be exaptations, concluding that, ‘Metabolic systems thus contain a latent 

potential for evolutionary innovations with non-adaptive origins’ (2013, p. 203). If these 

examples are correct, then exaptations are common across nature.  

 

It should perhaps be especially unsurprising that exaptations play a prominent role in the 

brain, given the plasticity and sensitivity of neural circuitry to specific environmental 

features during development. Gould presents an early and powerful expression of this 
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idea, claiming that we should expect most of the brain’s traits to be a kind of exaptation 

(Gould & Lewontin import the term ‘spandrel’ from architecture in their 1979 essay). 

Gould colourfully summarises his view as follows: 

 

The human brain is the most complicated device for reasoning and 

calculating, and for expressing emotion, ever evolved on earth. Natural 

selection made the human brain big, but most of our mental properties and 

potentials may be spandrels—that is, nonadaptive side consequences of 

building a device with such structural complexity. If I put a small computer 

(no match for a brain) in my factory, my adaptive reasons for so doing (to 

keep accounts and issue paychecks) represent a tiny subset of what the 

computer, by virtue of inherent structure, can do (factor-analyze my data on 

land snails, beat or tie anyone perpetually in tic-tac-toe). In pure numbers, the 

spandrels overwhelm the adaptations. (1997. Online) 

 

Recent studies into numerical cognition and reading have produced a neuroscientifically 

informed version of the same general idea: the ‘neural recycling hypothesis’ (Dehaene & 

Cohen, 2007; Dehaene, 2009). This hypothesis focusses on the plasticity of the brain, 

whereby the brain ‘hijacks’ the neural circuitry evolved for one purpose to serve 

capacities that have only recently emerged from cultural development, such as numerical 

cognition and reading. From a somewhat different angle, Anderson (2010) argues that 

evolved networks of neurons are constantly recruited and linked to serve a multitude of 

novel tasks. Essentially, the brain’s extreme plasticity allows the same neural circuits to 

be flexibly combined and redeployed, preventing the need to evolve unique neural 

mechanisms for more recent cognitive capacities.  

 

The precise details of the brain’s exaptive nature remain controversial. For example, there 

is some debate between the frameworks just mentioned over the degree to which recent 

cognitive capacities either directly hijack existing circuits (Dehaene & Cohen, 2007; 

Dehaene, 2009) or are required to recombine older circuits into more complex novel 
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circuits (Anderson, 2010). Nonetheless, the broader point remains consistent: the 

evolution of a trait often comes apart from at least some of the capacities that trait now 

serves. The causal-role account can accommodate this result, noting that functions are 

often attributed to traits solely in virtue of the capacities they cause, not their evolutionary 

role. Admittedly, more nuanced selectionist accounts may be able to address neural reuse 

too, for instance, drawing on an organism’s learning history to explain how evolved 

circuits are selected to serve newer capacities. At the very least, the phenomenon of neural 

reuse puts pressure on narrower selectionist accounts. The onus remains on broader 

selectionist accounts to demonstrate how other selection processes adequately account 

for function attributions to neural circuits for recently developed cognitive capacities.  

 

The second problem facing selectionist accounts in cognitive science targets even the 

most sophisticated version. This problem concerns the opaqueness of a mechanism’s 

selection history and the apparent irrelevance of that opaqueness to mechanistic 

explanation. The unknowability of a trait’s history is a general problem for any inherited 

biological mechanism, but it is particularly salient in the case of cognitive mechanisms. 

The selection history of almost all traits cannot be observed. This is less of a problem 

when the selection history of a trait appears straightforward. For instance, there is little 

doubt that the activity of blood circulation was key to the propagation of hearts, and so 

we assume that hearts have the (selected) function to pump blood. However, it is more 

challenging to provide straightforward historical interpretations of cognitive mechanisms 

(of which cognitive representations, let’s suppose, are a kind). This is because cognitive 

mechanisms are exceedingly complex and difficult to study. If functions are understood 

in terms of selection histories, then the opaqueness of selection histories would seem to 

undermine the explanatory power of function attributions. At the same time, ignorance 
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about the history of a mechanism does not prohibit scientists attributing functions to 

cognitive mechanisms in practice. For instance, we need not know the history of the visual 

cortex to attribute the role of detecting edges in the primary visual cortex (V1). Again, 

the causal-role account makes sense of this: scientists are interested in the causal 

contribution of mechanisms in V1 to visual processing. In such cases, a mechanism’s 

function is attributed because of its causal role and not its selection history.  

 

I embrace a pluralism towards theories of function, as noted above. Sometimes scientists 

appeal to selection histories, and sometimes they appeal to causal roles. The modest 

conclusion I wish to draw here is that selectionist accounts are inadequate for capturing 

the explanatory role of function attributions in at least many scientific explanations, 

specifically explanations involving cognitive mechanisms. If what I have said is correct, 

then cognitive scientists (at least often) attribute functions to mechanisms based on their 

causal contribution to an explanandum capacity and not based on their etiology. A major 

consequence follows: if cognitive representation is conceived of as a kind of mechanism, 

then there is pressure on theories of representational content that rely on a mechanism’s 

etiology (such as Dretske’s 1981, 1988 account; or Millikan’s, 1989b, 1990 account). 

This is consonant with the broader worry raised above that the historical causes of a 

representation’s tokening (of whatever kind) are not constitutive of its content-

determining relations. I will return to this point in chapter 4 and chapter 5 when I discuss 

how to think about content in representational mechanisms. For now, when discussing 

the function of a mechanism or its component, I will assume the causal-role account. 
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3.4 The mechanistic account of representation 

 

If cognitive science is in the business of studying the mechanisms responsible for 

cognitive capacities, then a promising strategy for showing that cognitive science does or 

could posit theoretical entities with a distinctly representation-like function begins by 

conceiving of cognitive representation as a type of mechanism with an appropriate causal 

role. This brings us to the ‘mechanistic account of representation’. This account depicts 

the ‘vehicle’ of cognitive representation as a mechanism contained within a cognitive 

system—most straightforwardly, a mechanism realised by neural structures in the brain. 

To count as a representational vehicle, a mechanism must play the causal role of a stand-

in for something relative to some capacity of a cognitive system. The ‘consumer’ is the 

cognitive system whose capacity depends on that mechanism. For example, a cognitive 

map is a candidate representational mechanism; a hypothesised mechanism located in the 

mammalian hippocampus, whose role as a stand-in for features of an organism’s 

environment explains an organism’s capacity to navigate (see chapter 4 for more on 

cognitive maps). 

 

To my knowledge, the closest position in the existing literature to the mechanistic account 

of representation is offered by Gładziejewski (2015). For Gładziejewski, representational 

explanations are also a kind of mechanistic explanation. He summarises the commitments 

of his approach as follows: 

 

(1) A mechanistic explanation M of a cognitive capacity C is representational iff 

M explains C by a representational mechanism.  
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(2) A mechanism M is representational iff M has at least one component part 

whose function within the mechanism consists in representing. (2015, p. 67) 

 

Note that in (2), Gładziejewski defines a representational mechanism in terms of a 

mechanism that possesses a component that functions to represent. Again, this 

representational component will itself be a mechanism, that is, a system whose capacity 

to represent is explained by the organisation and properties of its component parts (and 

so on).14 We can elaborate on Gładziejewski’s explication of representational explanation 

by adding a third condition that combines (i) what it means for something to function as 

a representation (i.e., to serve as stand-in), with (ii) what it means for a mechanism to 

possess a function at all (i.e., for it to possess a causal role in some capacity): 

 

(3)  A mechanism has at least one component part whose function within the 

mechanism consists in representing iff that component has the causal role to stand-

in for something relative to the production or constitution of a cognitive capacity. 

 

We can further distil the essentials of the mechanistic account of representation in the 

following way: 

 

Mechanistic Account of Representation: M is a cognitive representation iff 

M is a mechanism with the causal role to stand-in for something relative to a 

cognitive capacity.  

 

                                                
14 Gładziejewski’s phrasing draws attention to the fact that a representational mechanism will likely explain 

some capacity as part of a higher-level mechanism of which it is component. For example, cognitive 

maps are not solely responsible for causing successful navigation in rats—various other neural and 

physiological components are required. See chapter 4 for related discussion. 
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Observe that the mechanistic account only commits a proponent to what sort of entity a 

cognitive representation might be (a mechanism), and what constitutes a representational 

explanation (a mechanistic explanation). In this sense, it is a partial account. It does not 

commit one to a view of what component properties could fulfil the required criteria, and 

whether such entities play a part in our best scientific theories. As such, one could agree 

that the mechanistic account provides a promising way to conceive of representation’s 

role in explanations of cognition but conclude that there are no such mechanisms in our 

best scientific theories. To determine this, however, we must answer the following 

question: how might a cognitive mechanism fulfil the function to represent? Following 

Cummins (1989), Ramsey (2007), Gładziejewski (2015) and others, chapter 4 will 

defend a version of the ‘S-representation’ account, arguing that it provides satisfactory 

conditions under which a cognitive mechanism may be said to function as a 

representation. Before we turn to this account, it will prove illustrative to examine some 

of the most popular notions of representation in cognitive science and philosophy and test 

them against the mechanistic account of representation. 

4.1 Receptor representation 

 

Armed with the JDC, and a better understanding of what it could mean for something to 

count as a cognitive representation, we are ready for a field test. I will review three notions 

of representation in the literature. Each of these fails to supply a notion of representation 

that passes the JDC because they do not provide the basis for subpersonal mechanisms, 

or analogous causal entities for that matter, with the function to represent on behalf of a 

cognitive system. ‘Receptor’ and ‘action-oriented’ representation concern subpersonal 

mechanisms, but do not, by themselves anyway, supply criteria for properly 

representational mechanisms. ‘Intentional stance’ representation abstracts away from the 
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mechanistic composition of a system and is indifferent to whether there are any 

subpersonal mechanisms that function as representations. I do not intend this discussion 

to serve as a comprehensive presentation of the notions visited, each of which could fill 

their own thesis, but to provide a flavour of the mechanistic account in action. 

 

An orthodox use of ‘representation’ in cognitive neuroscience refers to the activity of a 

set of neurons or computational structures reliably tokening in response to a stimulus, 

where that activation is relevant to the role the entity plays in subsequent cognitive 

processing and/or motor output. For instance, cells in the primary visual cortex reliably 

activate in the presence of edges, hence the common label ‘edge detectors’ (Hubel & 

Wiesel, 1962). In turn, these cells are often referred to as representations of edges. 

Underlying this notion of representation is the idea of ‘nomic dependency’, where x 

represents y just in case x is nomically dependent on y. In Ramsey’s words, representation 

is supposed to occur where ‘some sort of internal state reliably responds to, is caused by, 

or in some way nomically depends upon some external condition’ (2007, p. 123). Here 

we find our first common notion of cognitive representation: ‘receptor representation’. 

 

Much has already been written about the receptor notion and how it fails to provide 

representation with a robust explanatory role (for discussion see Cummins, 1996; O’Brien 

& Opie, 2004; and especially Ramsey, 2007; Gładziejewski, 2015; Gładziejewski & 

Miłkowski, 2017). Nonetheless, receptors remain an important part of the representation 

debate. Therefore, I will briefly summarise why receptors fail the JDC, before 

contributing an additional comment that situates the temptation to classify receptors as 

representations in the context of the distinction made in section 2.2 above between the 

two different kinds of information relevant to cognitive science. 
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By themselves, receptors fail to pass the JDC. The essential problem is that describing 

receptors as representations adds nothing of explanatory value on top of their role as 

‘causal mediators’ or ‘relays’. In turn, describing them as representations encourages an 

overly permissive notion of cognitive representation. This is chiefly because 

representational content plays no role in the explanation of how receptors affect a 

cognitive system’s behaviour. Receptors rely on their relationship of dependency with 

external states of affairs, but x’s reliable tokening in the presence of y is insufficient for x 

to represent y (compare the reliable tokening of steam following boiling water). In 

general, covariation is insufficient for representation. 

 

Of course, receptors do more than covary. Receptors affect the cognitive system in virtue 

of covarying. In other words, x’s activation following y affects x’s containing system. The 

activation of edge detectors, for example, is crucial for visual processing in many animals. 

In this way, receptors function as causal mediators or relays in so far as they mediate or 

relay between a stimulus and subsequent cognitive processing and motor behaviour 

(Gładziejewski, 2015, p. 68). However, there are plenty of mechanisms that have parts 

whose function involves similar causal mediation, but whose function we would not 

classify as representation. For example, the firing pin in a gun ‘bridges a causal gap 

between the pulling of the trigger and the discharge of the round […] However, no one 

thinks the firing pin serves as some sort of representational device’ (Ramsey, 2007, p. 

136). To classify receptors as representations is to obscure an explanatorily relevant 

difference between distinct functional roles, and thus weaken the efficacy of 

representation ascriptions. Borrowing from Ramsey again, to classify receptors as 

representations is to turn the ‘substantive idea that cognition is a process that involves 
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representational states’, into the ‘remarkably boring thesis that cognition is a process that 

involves states that are triggered by specific conditions’ (ibid., p. 125). 

 

A natural response to dismissing receptors as insufficient for providing representation 

with a substantive role in cognitive science involves bolstering the notion with an 

additional constraint of the sort offered by a causal-historical theory of content. As 

Ramsey (2007) discusses, a proponent of Dretske’s theory acknowledges that x’s causal 

dependency on y is insufficient for x to represent y; roughly, it must also be the case that 

it was x’s dependency on y that caused x to become part of the system’s processing, in 

other words, x’s proper function must be to reliably respond to y. The problem, as 

anticipated earlier, is that Dretske’s additional constraint fails to transform x’s functional 

role into one of representing. In assessing Ramsey’s (2007) position, Sprevak usefully 

summarises the inadequacy of the receptor notion by observing that even in the face of a 

view like Dretske’s, nomic dependency is sufficient to capture the role of receptors: 

 

The problem with the receptor notion is that the nomic dependency relations 

do all the explanatory work. The content does not have an explanatory role 

over and above the effects involved in the nomic correlation. This goes for 

firing pins and spark plugs and just as much for ‘edge detector’ cells in the 

V1 cortex. (2011, p. 673. Original emphasis.) 

 

 

As introduced in section 2.2 above, Dretske’s view is supposed to allow for 

misrepresentation, because x only successfully represents when it is tokened by certain 

conditions. However, all an account like Dretske’s can tell us when applied to receptors 

(if we accept it) are those conditions under which x successfully plays the role of causal 

mediator; not those conditions under which x misrepresents. In other words, a receptor 

may malfunction when it fails to respond to the appropriate causes, but it does not 
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misrepresent. Let’s grant that the proper function of edge detectors is to respond to edges 

and not non-edges, in which case, when edge detectors are caused by non-edges (as when 

directly stimulated by experimental instruments), they are responding to the ‘wrong’ 

stimuli and so fail to fulfil their proper function.15 This is analogous to the heart failing 

to contract in response to excess blood. Both cases of malfunction are disanalogous to, 

say, the case where a cartographic map fails to stand-in for some geographical region. In 

general, not all malfunction is misrepresentation.  

 

We have seen that information and representation are closely connected. In his 

introduction to cognitive science, Bermúdez writes that ‘Hand in hand with the concept 

of information goes the concept of representation. Information is everywhere, but in order 

to use it, organisms need to represent it’ (2014, p. 24). Bermúdez goes on to define 

representation as a ‘structure carrying information about the environment’ (ibid., p. 493). 

However, this invites an overly-liberal understanding of cognitive representation that fails 

to distinguish between mere receptors and representations. The tendency to think of 

receptors as representations is appreciable given that receptors bear interesting 

correlations to select states of affairs and given the common conflation between the two 

kinds of information presented above. If we understand content informationally and fail 

to distinguish between two kinds of information, then we can easily slip into labelling 

anything whose role might be classed as information bearing as a representation. Indeed, 

we can grant that receptors bear a class of information because they inform a consuming 

system about that which they reliably respond to—for example, edge detectors inform 

                                                
15 The causal-role account can acknowledge this function’s importance without needing to privilege 

learning periods, selection history or the like—though, again, consideration of such factors may explain 

how a mechanism came to have a causal role and may serve as a useful heuristic for identifying 

probable causal roles in the here-and-now. Ultimately, cognitive scientists wish to explain a prominent 

cognitive capacity like the visual processing of a 3D environment, which causally depends on a 

mechanism reliably responding to edges, regardless of how the mechanism got there. 
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their containing system about edges—but, by these lights alone, receptors only bear 

natural information.16 Once again, not all information is non-natural information, i.e., 

representational content. Not all information-bearing entities are representations. 17  

 

One may fail to shake the feeling that receptors do bear a kind of content in so far as their 

causal role concerns external entities (that which they reliably respond to). In this way, 

receptors are ‘directed to’ external entities, and to this extent, are still ‘about things’ in 

the world. For example, edge detectors reliably respond to edges, and that responsiveness 

to distal properties plays a crucial role in visual perception. As such, one may be tempted 

to describe edge detectors as being about edges and, therefore, as possessing a kind of 

content. However, nothing major hangs on this way of talking. This is a weaker sort of 

content than representational content; a ‘natural content’, analogous to natural 

information, that any eliminativist should concede. In fact, this concession is somewhat 

reflected in the literature when theorists give a semantic characterisation of otherwise 

non-representational entities. For instance, Piccinini & Scarantino classify natural (non-

representational) information as a kind of ‘semantic information’ (2010). Under their 

                                                
16 One may worry that the functional role of receptors no more involves the ‘bearing of information’ than 

it does for hearts, firing pins and other causal mediators; all involve reliable correlation with certain 

states of affairs (for related concerns, see Ramsey, 2007, pp. 132-140). In so far as I adopt a deflationary 

account of natural information, I think hearts bear natural information about volumes of blood and 

firing pins bear information about triggers being pulled. But I also think there is reason why we might 

describe receptors, and not hearts and firing pins, informationally. The fact is that a heart’s correlation 

with blood volume and a firing pin’s correlation with a trigger being pulled is uninteresting because 

the correlation is relatively uniform, inflexible and proximal. By contrast, much of cognitive science 

involves uncovering the complex web of correlations that occur between neural activity and distal states 

of affairs. As Piccinini & Scarantino put it, ‘Large portions of neurophysiology are devoted to the 

detection, description, and explanation of the detailed causal correlations that exist between neural 

responses and variables in the external (distal) environment of organisms’ (2011, p. 30). These 

correlations are of interest because they are often exploited by cognitive systems to direct inferences 
and behaviour toward states of affairs in interesting ways. 

17 The difference between ‘receptors’ and ‘representations’ bears some correspondence to the distinction 

between two fundamental forms of evolved interaction between an organism and its environment 

recently proposed by Schulz (2018): those purely reflexive interactions where a stimulus triggers a 

response, and those representational interactions that require further downstream processing and 

informational integration. A full analysis of the relationship between the current ideas under scrutiny 

and Schulz’s theory will need to wait for another day. 
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classification, something can bear semantic information without bearing representational 

content. From a different perspective, Hutto & Myin also allow semantic notions to come 

apart from representational content, separating the primitive ‘intentionality’ of basic 

cognition from the representational content of complex cognition (2013, 2017). 

4.2 Action-Oriented representation 

 

Briefly introduced in chapter 1, the broad church of embodied, embedded, extended and 

enactive (‘4E’) cognition was, and continues to be, a response to ‘cognitivist’ and related 

‘classical sandwich’ models of cognition (Hurley, 2011). Amongst other things, 

cognitivist approaches are characterised by their tendency to depict cognition as the sole 

purview of the brain, taking cognition and action to be wholly independent processes, and 

holding the brain to construct detailed, descriptive internal models of the world. To 

varying degrees and in diverse ways, 4E approaches replace cognitivism and the 

sandwich model with theories and models that emphasise the role of the agent’s body and 

active engagement with the environment in constituting or enabling cognition. For 

proponents, perception, cognition and action are closely entangled, and for some, wholly 

inseparable (for example, Hurley, 2001, 2002). 

 

Many in the 4E movement have been suspicious of cognitive representation in its 

traditional guise because it seems to go together with the passive, brain-bound view of 

cognition that they resist. The thought goes that the cognitivist approach erroneously 

depicts the brain as constructing action-independent, computationally-costly 

representations of the world with purely ‘declarative’, or ‘factive’ contents. Wheeler 

elaborates, writing that, 
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According to the generic orthodox cognitive-scientific model, representations 

are conceived as essentially objective, context-independent, action-neutral, 

stored descriptions of the environment. (2005, p. 196) 

 

 

Action is then conceived of as a kind of mere output, the product of the brain manipulating 

what Mandick labels ‘output representations’ (2005, p. 293). Yet in the process of 

rejecting such ideas, many 4E proponents have held onto the notion of representation, 

infusing it with their own action-oriented focus. This has given birth to what Clark (1997) 

dubs ‘action-oriented representation’ (AO-representation).  

 

Different proponents offer somewhat diverging versions of AO-representation, but there 

are two typical traits associated with the notion. The first is that AO-representations are 

sensitive to the biological needs of the representing system. According to proponents, 

ecologically plausible representations will not involve the construction of action-

independent and computationally-costly models of the world but will reflect only those 

features of the world that are relevant to the system’s needs in a time-sensitive manner. 

The second trait is that AO-representations concern ‘commands’, ‘imperatives’ or 

‘instructions’ for action, often framed in terms of what their contents refer to. AO-

representations not only represent action-independent states of affairs but how the system 

can and should act. As Clark puts it, ‘These are internal states which […] are 

simultaneously encodings of how the world is and specifications for appropriate classes 

of actions’ (1997, p. 151). Mandik summarises AO-representations as those, ‘that have, 

in whole or in part, imperative content’ (2005, p. 293).18 

 

                                                
18According to Mandik (2005), Clark’s (1997) view contrasts with his own in so far as Clark holds that 

AO-representations are both descriptive and imperative, whereas for Mandik, some AO-representations 

possess only imperative content. Clark’s notion resembles Millikan’s (1995) ‘pushmi-pullyu’ 

representations, which are defined as simultaneously ‘descriptive’ and ‘directive’. 
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A guiding principle behind the idea of AO-representation is that traditional treatments of 

representation associated with cognitivism and the sandwich model are mistaken in 

thinking that cognitive systems construct descriptively rich representations of the world 

through passive perception, where action is a mere product of manipulating those 

representations internally. Rather, it is more biologically plausible that cognitive systems 

evolve and develop representations that are geared toward organism-specific behaviour, 

and which efficiently utilise the system’s own bodily resources. Such representations 

‘involve the capacity to support the computationally cheap guidance of appropriate 

actions in ecologically normal circumstances’ (Clark, 1997, p. 152). To illustrate the idea 

implemented in artificial systems, Wheeler (2005, p. 196) considers a robot, built by 

Franceschini, Pichon & Blanes (1991), tasked with navigating to a light source whilst 

avoiding obstacles. The robot’s navigation mechanism works by using a layer of motion-

detectors that are responsive only to movement and blind at rest. The robot generates a 

‘snap map’ using the previous movements in its own motor sequence to detect objects 

around it. This is combined with information concerning the angular bearing of light 

sources to form a ‘motor map’ which guides the robot’s next movement. The content and 

format of the robot’s representation of its environment, it would seem, are deeply 

dependent on the robot’s need for action. These supposed representations also eschew the 

need to build and store environmental models in favour of using the robot’s own bodily 

resources to help inform the system only of what’s relevant to its ecologically situated 

behaviour. These mechanisms are ‘ego-centric control structures for situation-specific 

actions’ (ibid., p. 197). 

 

The central limitation of the AO-representation account is that it does not, by itself, 

demonstrate that there are theoretical entities with distinctly representation-like functions. 

https://www.semanticscholar.org/author/Nicolas-Franceschini/49942927
https://www.semanticscholar.org/author/Jacques-Pichon/46754707
https://www.semanticscholar.org/author/Christian-Blanes/50249866
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Proponents of AO-representation rightly draw attention to the importance of considering 

cognitive representation within the context of evolved, resource-bound systems, which in 

turn informs the architecture and engineering of embodied artificial systems. However, 

action-oriented approaches have been less concerned with establishing that theoretical 

posits really do serve as representations. Indeed, many purported cases of AO-

representation are not good candidates for representational mechanisms. For instance, 

Millikan (1995) considers cells located in the inferior premotor cortex of Macaque 

monkeys, whose firing reliably correlates both with the execution of an action and the 

perception of the same action in a conspecific, to count as a ‘pushmi-pullyu’ 

representation—a version of what others call AO-representation. However, though this 

correlation with the execution and perception of motor activity may signify the duel 

importance of these cells for both the execution and perception of action, this does not 

establish that these cells function in a distinctly representation-like way. Such purported 

AO-representations may actually function as receptors, or otherwise, possess functional 

roles that diverge from anything distinctly representation-like.   

 

Gładziejewski (2016a) similarly worries that action-oriented approaches have tended to 

underemphasise the need to show that a purported representation plays the right 

functional role in favour of focussing on the importance of action guidance for plausible 

cognitive mechanisms. He relates this worry back to the JDC, ultimately claiming that 

such approaches require a supplementary account that stresses ‘structural similarity’ to 

ensure that the theoretical entities in question function as representations (see chapter 4 

for a related account). He writes, 

 

According to this diagnosis, by putting so much emphasis on the role that 

representations play in controlling actions, proponents of ACToRs [action-
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oriented theories of representation] have lost sight of what is equally 

important for making representations what they are, namely the fact that using 

representations consists in exploiting a relation that holds between the 

representational vehicle and what is represented. (2016a, p. 24. My 

parenthesis.) 

 

 

In short, more is needed to demonstrate the explanatory value of representation than an 

emphasis on ecological plausibility, imperative contents and the like. We also need to 

demonstrate that a theoretical entity is functioning as a representation in the first place. I 

do not mean to dismiss the importance of 4E cognition for theorising about cognitive 

representation—only to acknowledge the limitations of action-oriented approaches when 

it comes to addressing whether appeals to representation are of value in explanations of 

cognition. The hope is that action-oriented considerations can be accommodated within 

a fuller account that properly considers whether and how a cognitive mechanism 

functions in a distinctly representation-like way. Chapter 5 will present a view of content 

that I take to be broadly harmonious with the spirit of 4E cognition. 

 

At this juncture, it is worth mentioning the related ‘guidance theory of representation’ 

(Anderson & Rosenberg, 2008). According to guidance theory, 

 

[R]epresentational content is derived from the role a representational vehicle 

plays in guiding a subject’s actions with respect to other things. (ibid., p. 68) 

 

Guidance theory also emphasises the importance of characterising representational 

content in terms of ecologically plausible features of a system’s real-world need for action 

in its environmental niche, and a rejection of accounts of content that stress ‘objective 

environmental conditions’ (ibid., p. 64). As it stands, guidance theory alone, like many 

action-oriented approaches, does not provide us with an adequate defence of how 

theoretical entities in cognitive science serve as representations in the first place. At times, 
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Anderson & Rosenberg imply that representational content is found wherever there is an 

internal state that guides actions toward objects in the world. This permits the same weak 

conception of representation cautioned against already. For instance, Anderson & 

Rosenberg classify simple fly-detection mechanisms in frogs as representations. In such 

cases, retinal ganglion neurons reliably activate in the presence of fly-like stimuli, causing 

activation in the optic tectum which subsequently causes fly-catching behaviour (Lettvin 

Maturana, McCulloch & Pitts, 1959). Yet such mechanisms seem to function as receptors 

and are not distinctly representation-like (Gładziejewski, 2016a). Therefore, such 

examples do not demonstrate the value of representation in explanations of cognition.  

 

Anderson & Rosenberg write, ‘Our contention is essentially that representations are what 

representations do’ (2008, p. 56). However, when we recognise that representing is a non-

trivial functional role for a potential subset of cognitive mechanism, we appreciate that 

representation is not just about what a cognitive mechanism does for a consumer (for 

example, causes spatial navigation), but about how a mechanism does it (i.e., causes 

spatial navigation by standing-in for the environment). When it comes to evaluating 

whether a mechanism is a representation, the means of action guidance is as important as 

the action guidance itself.  

4.3 Intentional stance representation 

 

Section 2 explicated what it means for a subpersonal entity to have the function to 

represent in terms of a mechanism with a certain causal role in producing or constituting 

a cognitive capacity. One might resist this picture by arguing that it wrongfully assumes 

representational explanations are only justified when they identify ‘concrete’ theoretical 

entities, akin to other scientific posits, like DNA, quarks or proteins, but that this is not 
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the role of representational explanations. Such might be the thinking of a proponent of 

Dennett’s ‘intentional stance theory’, briefly introduced in chapter 1. This brings us to 

our final variety of representation to be explored in this chapter: ‘intentional stance 

representation’ (IS-representation).19 

 

According to Dennett’s intentional stance theory, we can (and regularly do) usefully 

predict the behaviour of many systems, including humans, non-human animals and some 

artefacts, in terms of representation. By ‘representation’, Dennett principally has in mind 

the ‘propositional attitudes’ of folk psychology, such as beliefs and desires (see chapter 

3 for more on folk psychology). This strategy operates from a certain interpretive stance 

called the ‘intentional stance’. When we adopt the intentional stance towards a system, 

we treat that system as rational. By treating a system as rational, we treat its behaviour as 

interpretable in terms of reasons. Beliefs and desires (and other propositional attitudes) 

are just those reasons we offer to make sense of a system from the intentional stance. The 

beliefs and desires we attribute to a system are those that best make sense of the system 

as rational given its capacities, biological needs and biography.  

 

The intentional stance is most transparently at play when we interpret the behaviour of 

other persons. However, the intentional stance can also sometimes predict behaviour 

below the level of whole persons too. A system can sometimes be decomposed into parts 

that can be interpreted using the intentional stance, so long as treating those parts as 

rational remains predictively effective. To this extent, whole agents can be taken to be 

composed of mini-agents, or ‘sub-persons’ (for a recent discussion, see Drayson, 2012; 

                                                
19 Ramsey (2007, chapter 5) also discusses Dennett’s work in relation to the JDC but his presentation and 

discussion differs somewhat from that given here, taking place within a larger critique of ‘tacit 

representation’—the idea that a system represents knowledge implicitly through the dispositions of its 

cognitive machinery rather than explicitly through discrete, identifiable states. 
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Huebner, 2018). Again, what systems count as possessing beliefs and desires, and what 

those beliefs and desires are, is a matter of whether and what propositional attitudes 

predict a system’s behaviour. Dennett summarises his own position best when writes, 

 

Here is how it works: first you decide to treat the object whose behaviour is 

to be predicted as a rational agent; then you figure out what beliefs that agent 

ought to have, given its place in the world and its purpose. Then you figure 

out what desires it ought to have, on the same considerations, and finally you 

predict that this rational agent will act to further its goals in the light of its 

beliefs. A little practical reasoning from the chosen set of beliefs and desires 

will in most instances yield a decision about what the agent ought to do; that 

is what you predict the agent will do. (1987, p. 17) 

 

 

In short, by interpreting the behaviour of a system through the intentional stance we 

assume that target system is (i) rational, (ii) possesses reasons, and (iii) is predictable 

given the conjunction of (i) and (ii).  

 

The intentional stance is not the only stance that we can adopt when interpreting the 

behaviour of a system. Two others stand out for Dennett: the ‘physical stance’ and the 

‘design stance’. The physical stance allows us to interpret a system through the lens of 

physical properties and causal laws (think physics and chemistry). The design stance 

allows us to interpret a system through the lens of design principles, function and 

teleology (think biology and engineering). The shift from the physical stance to the design 

stance to the intentional stance is a shift in the level of increasing abstraction with which 

one interprets a system. As one goes up a level, one loses accuracy but gains 

computational traction, essentially by dropping irrelevant and computationally costly 

details. What matters, from the perspective of the intentional stance, is not the physical 

or design details of a system, but whether a system is usefully interpretable in terms of 

intentional idioms. 
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An important result follows: the validity of IS-representation, that is, propositional 

attitude ascriptions from the perspective of the intentional stance, does not hinge on 

empirical details about the inner causes of cognition. After all, the intentional stance can 

operate without any knowledge of how a system’s machinery is structured and organised; 

what matters is that the gross behaviour of the system in question is predictable by treating 

it a rational with appropriate beliefs and desires. In this way, the success of the intentional 

stance is indifferent to how a system works mechanistically (Dennett, 1969, 1987). By 

contrast, the kind of representation that we are searching for reflects important details 

about the machinery of subpersonal cognition: the properties and relations within and 

between its spatiotemporal parts that are causally responsible for behaviour. In this way, 

the intentional stance does not identify entities that would pass the JDC. 

 

The preceding conclusion might be thought to have one of two implications: either the 

propositional attitude ascriptions of the intentional stance do not imply genuine 

representation; or the JDC enforces overly restrictive conditions (it simply turns out that 

legitimate representational explanations do not require positing the sorts of functional 

mechanism that we have been gesturing toward). To think either of these is to miss the 

point. The intentional stance is playing a different game from the mechanistic 

explanations of contemporary cognitive science. The intentional stance treats the system 

it is interpreting as a black box, abstracting away from mechanistic details to predict 

behaviour at a less demanding level. In other words, IS-representations are not cognitive 

representations. Shea similarly distinguishes between the propositional attitude 

representations that Dennett’s intentional stance targets from the ‘neural representations’ 

of cognitive science (2018, p. 14). Pöyhönen also notes that ‘Dennett’s disregard for the 

mechanistic constraints in explanation implies that his theory should not be interpreted as 
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a full-blown theory of causal explanation’ (2014, p. 104). Rather, so far as it goes, ‘the 

explanatory strategy of the intentional stance consists in analysing rational behavior into 

sub-tasks that themselves can be described as if they were rational.’ (ibid., p. 104). This 

also reminds us that the intentional stance is concerned with representation within a 

rational framework. And yet, rationality is not a necessary constraint on the justifiable 

attribution of subpersonal mechanisms that much of cognitive science is concerned with, 

for instance, cognitive maps that underly spatial navigation (see chapter 4).  

 

In summary, Dennett’s intentional stance theory attempts to capture the power of 

representation ascriptions from the viewpoint of a particular interpretive strategy that is 

independent of the representation ascriptions of mature cognitive science. It is because of 

this difference in explanatory goals that the intentional stance is unconcerned with 

subpersonal representational mechanisms. As a result, one could accept Dennett’s 

intentional stance theory whilst accepting either representationalism or eliminativism 

about subpersonal representational mechanisms. 

 

In this section, we have seen that the receptor representation, action-oriented 

representation and intentional stance representation notions all fail to guarantee entities 

that pass the JDC. The receptor and AO-representation account do not, by themselves, 

identify mechanisms or analogous entities that play a distinctly representation-like role 

on behalf of a cognitive system and the IS-representation account is not concerned with 

identifying subpersonal mechanisms at all. An important consequence follows: one could 

consistently champion some version of global eliminativism—in the sense of rejecting 

the explanatory value of subpersonal representational mechanisms—whilst 

simultaneously advocating the explanatory value of the entities posited by these accounts. 
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This is because receptor-representation, AO-representation and IS-representation do not, 

by themselves, imply full-blooded representation in the sense that should matter to the 

eliminativist. As a result, we must look elsewhere if we are to find a convincing defence 

of representation’s role in explanations of cognition.  

5. Conclusion 

 

This chapter has shown that any successful account of cognitive representation must make 

sense of how a subpersonal entity can function as a representation on behalf of a cognitive 

system, such that content/non-natural information is causally relevant to that cognitive 

system. I have argued that the mechanistic account of representation provides the broad 

outlines of how this might be possible. Drawing on the view that cognitive science offers 

mechanistic explanations, it says that a cognitive representation is a mechanism that has 

the function to stand-in for something on behalf of a containing system, such that its 

causal role (qua stand-in) contributes to the realisation of a cognitive capacity. 

 

I have also argued that several popular notions of cognitive representation do not show 

that representational mechanisms (or analogous entities) do serve or could serve a role in 

theories of cognition. The next two chapters will explore additional species of so-called 

representation common to the scientific and philosophical literature. The first suggests 

that our best theories of cognition posit representations because our best theories of 

cognition are computational (see chapter 3). Unfortunately, support for the explanatory 

significance of cognitive representation is found lacking here too. It will take a new 

notion, that of ‘S-representation’, to show how cognitive representation could serve a 

robust explanatory role, by detailing how a mechanism could function in a distinctly 

representation-like way (see chapter 4).  
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Chapter 3  

 

Computation and Content1 

 

1. Introduction 

 

This chapter explores the relationship between computation and cognitive representation. 

There is a common assumption that our best theories of cognition imply cognitive 

representation because our best theories are computational, and computation presupposes 

representation. Fodor writes, 

 

My point will be that not only considered action, but also learning and 

perception, must surely be viewed as based upon computational processes; 

and, once again, no computation without representation. (1975, p. 34)2 

 

Anti-representationalists also speak of computation and representation as mutually 

supporting pillars of received cognitive science (for example, see Garzón, 2008), and 

often take the elimination of one to entail the elimination of the other (for example, see 

Varela, Thompson & Rosch, 2016). 

 

And yet, on closer inspection, the relationship between computation and representation 

is less clear-cut than many imagine. This chapter argues that computational theories of 

cognition are not necessarily representational theories of cognition. This is because 

computation and representation are distinct functional kinds. Some computing systems, 

                                                
1 Portions of this chapter appear in Lee (forthcoming a). 
2 Sometimes Fodor seems to suggest that the inference is the other way around: cognition involves the 

transformation of representations; therefore, cognition is computational (for example, see Fodor & 

Pylyshyn, 1981, pp. 139-140). Read at face value, one may fear an encroaching circularity. 
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including cognitive systems, may represent, but computation does not entail 

representation. 

 

The primary argument addressed by this chapter can be summarised as follows: 

 

P1. There is no computation without representation. 

P2. Our best theories of cognition are computational. 

C. Our best theories of cognition are representational. 

 

Our focus will be P1. In contrast to the traditional idea that ‘semantic properties’—

typically equated with representational properties—are necessary for individuating 

computation, I contend that all that is required for individuating computation is some 

mechanism that transforms medium-independent digits in accordance with formally 

specifiable rules. As such, there is computation without representation. I will also explore 

and reject the idea that there is something special about computation in the context of 

cognition that entails representation; in particular, I reject both the claim that 

computational explanations of cognition imply representation because they vindicate the 

propositional attitudes of folk psychology and the claim that computational explanations 

of cognition imply representation because of their task-decompositional structure. 

 

The chapter proceeds as follows. Section 2 begins by examining the ‘semantic view’ 

(SV). Semanticists think that computation presupposes semantic properties because 

semantic properties are required to individuate computation. I take this to be the ‘received 

view’ of computation (Sprevak, 2010), and the source of many claims about 

computation’s representational nature. I then discuss two problems with the SV. Section 
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3 sketches a promising alternative, the ‘mechanistic view’ (MV), before discussing a 

counter-attack on behalf of the semanticist. I close this section with a further challenge to 

the representationalist who relies on the SV, questioning whether the semantic properties 

invoked by the SV are really representational properties. Section 4 looks at the ‘classical 

computational theory of cognition’ (CCTC), and with it, the ‘representational theory of 

mind’ (RTM). I claim that the argument for representation in the orthodox RTM is not 

satisfactory. This is because the RTM either (a) adopts the semantic view, or (b) 

incorrectly assumes that if the CCTC provides a naturalised reduction base for 

propositional attitudes, then the CCTC implies cognitive representation. I close by 

critiquing the notion of ‘input/output representation’ in cognitive science. 

2.1 What is computation? 

 

Debates over the nature of computation typically begin by considering the Turing 

Machine. The Turing Machine (originally, ‘the automatic machine’) was the first 

formalisation of computation as a concrete concept (Turing, 1936/2004). It is a 

mathematical model of an abstract machine designed to perform rote operations of the 

sort historically performed by humans (the term ‘computer’ originally referred to a person 

who performed calculations).3 The Turing Machine offers a specification for a machine 

that automates the kinds of rote mathematical operations human computers would 

perform using fixed, formal methods, on paper or in their heads. A Turing Machine 

consists of an infinite tape (avoiding storage limitations) divided into cells that contain 

                                                
3Turing later wrote that electronic computers are ‘intended to carry out any definite rule of thumb process 

which could have been done by a human operator working in a disciplined but unintelligent manner’ 

(1950, p. 436). If the mind is a kind of physical Turing Machine (as Turing thought), it does not follow 

that humans compute in the same way that an electronic computer computes—nor that Turing thought 

so. For discussion on Turing’s views on the relationship between computation and mind, see Boden 

(2006, chapter 4). 
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‘symbols’ or ‘digits’ taken from a finite alphabet,4 a read/write head, a state register, and 

a look-up table containing a finite set of ‘instructions’ or ‘rules’. The Turing Machine 

‘reads’ the symbols on the tape, then ‘manipulates’ the symbols by moving the head, and 

erasing, writing or ignoring the symbols. The instructions in the machine’s table entirely 

determine what manipulations it will perform given (i) the current state of the machine’s 

state register, and (ii) the symbol the machine reads. In turn, this captures the process of 

the human computer, whose behaviour ‘at any moment is determined by the symbols 

which he is observing, and his “state of mind” at that moment’ (1936/2004, pp. 75-76). 

Note that this description does not make any explicit reference to representation. 

 

The Turing Machine is an abstract model that shows how, in principle, an automated 

device could compute any sufficiently well-specified problem. Though computation can 

be studied solely from the perspective of mathematical formalisms, this chapter is 

concerned with ‘physical computation’. This is because we are interested in computation 

as it relates to cognition. By physical computation, I mean physical processes performed 

by physical systems, where the fact that computation is performed explains some 

behaviour of those systems.5 Here I limit myself to consideration of physical ‘digital 

computation’—computation performed over discrete variables (as implied by the Turing 

Machine). The other notion of physical computation relevant to cognitive science is 

‘analogue computation’—computation performed over continuous variables.6 I limit the 

scope of the discussion for brevity and because historically most computational-

                                                
4In computer science, an alphabet is a finite, non-empty set of elements commonly referred to as ‘symbols’ 

or ‘digits’, over which operations are defined. The most common set in artificial computing systems is 

the ‘binary alphabet’ {0,1}. Elements of an alphabet combine to form ‘strings’. 
5From an anti-realist perspective, a physical computer is a physical system whose behaviour is best 

explained by treating that system as computing. 
6 This way of defining the digital-analog distinction is not entirely without controversy. However, weighing 

in on this debate is not necessary for our purposes. For some discussion, see Maley (2018).  
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representational approaches to cognition have assumed digital computation. 

Nevertheless, much of the discussion below will apply to analogue computation too. In 

summary, ‘computation’ hereafter refers to physical digital computation. 

 

A final clarification: I will sometimes be required to use the term ‘symbol’ and ‘digit’ 

interchangeably given their use in the literature. I will use the term ‘digit’ where possible. 

This is because the term ‘symbol’ connotes representational content—the very thing at 

stake. The more neutral term ‘digit’ is suited to capture what is generally agreed upon by 

semanticists and non-semanticists alike: that computation involves physical input states 

whose functional properties, alone or alongside the present state of the system and a set 

of instructions, determine the production of a physical output state. 

 

Accounts of physical computation draw from their theoretical roots. As such, almost 

everyone acknowledges that physical computation involves the transformation of input 

states to output states in accordance with formally-specifiable rules. What they disagree 

on are the details and implications of this gloss. In the remainder of this section, I will 

sketch the semantic view (SV) of computation. If the SV is correct, physical computation 

presupposes semantic properties because semantic properties individuate computation. 

Under an orthodox interpretation, these semantic properties are equivalent to 

representational content (though see section 2.4 below). 

2.2 The semantic view of computation 

 

Most would agree that not all representations involve computation. The Mona Lisa, 

Michelangelo’s David and the Arc de Triomphe are unlikely candidates for computing 
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systems. If correct, then representation is not sufficient for computation.7 However, the 

semanticist claims that semantic properties are necessary for computation. A brief detour 

will show that there are in fact two ways of interpreting this claim. 

 

The first interpretation concerns the conditions that make a physical system a computing 

system as opposed to something else. This raises the following question: under what 

conditions does a system implement computation? Here, the semanticist thinks that 

semantic properties form part of the necessary criteria for a system to count as performing 

computation simpliciter. Typically, these semantic properties are cashed out in terms of 

representation: for a system to count as performing computation, it must represent 

something. This criterion is then used to show how computing systems are demarcated 

from other systems by demonstrating that only a subset of systems—of an appropriate 

size and kind that reflect our intuitions about paradigmatic computing systems—meet the 

representation requirement. 

 

The second interpretation concerns the question of what individuates computations 

themselves. When we ask what individuates members of x we ask by what criteria 

different members of x are determined, or equivalently, what makes two or more members 

of x of the same or different kind. This second interpretation raises the following question: 

what conditions determine the identity of a computation? Here, the semanticist thinks that 

semantic properties are necessary for distinguishing between the realisation of different 

kinds of computation, where equivalence and difference of computation are understood 

by reference to the contents represented by input and output states. 

                                                
7Even if pancomputationalism is correct, and paintings, marble statues and triumphal arches do compute, 

they do so because just about everything computes, not because they are representations. According to 

pancomputationalism, collar bones, pogo sticks and asparagus compute too (see below, this section, 

for further discussion). 
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These two interpretations of the semanticist’s claim are asymmetrically related. If 

representation is necessary for individuating computation, then it follows that for any 

system to perform computation, it must represent something (i.e., the second 

interpretation implies the first). However, one need not justify the claim that computation 

presupposes representation by holding that computation is individuated by representation. 

In principle, one could hold that all computation involves representation, without thinking 

that the contents of the representations involved individuate the computation being 

performed (i.e., the first interpretation does not imply the second)—though, to my 

knowledge, no one holds this view. 

 

Distinguishing between these two interpretations aids our appreciation of the conceptual 

landscape. In practice, I take the orthodox semanticist to accept both claims. Accordingly, 

computation is individuated by representational content, and in turn, computing systems 

are set apart from other systems, in part, by representation. Shagrir captures the scope of 

the orthodox SV when he writes, 

 

The semantic view claims that the individuation of these systems (etc.) takes 

into account their semantic properties. This means that semantic properties 

play a role in determining whether a certain system (etc.) is computing or not, 

whether two systems (etc.) are computationally similar or computationally 

different, whether or not changes in semantic properties alter computational 

identity, and so on. (Forthcoming. Manuscript, p. 3) 

 

 

Variations on the SV can be found throughout the literature (for instance: Crane, 1990, 

2016; Churchland & Sejnowski, 1990; Shagrir, 2001, 2006, forthcoming; Ladyman, 

2009; Sprevak, 2010; Rescorla, 2012). Crane captures the shared spirit succinctly when 

he writes, 
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So what is essential to a computer? The rough definition I will eventually 

arrive at is: a computer is a device which processes representations in a 

systematic way. (2016, p. 59. Original emphasis.) 

 

According to the SV, for instance, to understand a spell-checker as performing 

computation we must reference the manipulation of states that represent letters, and to 

understand a calculator as performing computation we must reference the manipulation 

of states that represent numbers. Physical computers manipulate physical vehicles, but 

those vehicles are individuated by what they represent. In this way, the symbols of 

computation have a ‘dual character’, at once both semantic and physical (Egan, 2010, p. 

253). The argument for the orthodox SV can be summarised as follows: 

 

Pi. If y is individuated by x, then there is no y without x. 

Pii. Computation is necessarily individuated by representation. 

C. There is no computation without representation. 

 

Notice that the conclusion here is identical to P1, the premise that is needed to establish 

the earlier, primary argument for deriving cognitive representation from computation. 

The present argument for the SV is valid. I take Pi to be self-evident. The argument then 

rests on Pii. Putting this together, the argument for the necessity of representation from 

computation depends on whether computation really is individuated by representation. 

 

A prime source of support for Pii is that representation provides constraints with which 

to minimize the number and kind of systems that count as computing in a way that is 

approximately consistent with our intuitions about which systems fall under the umbrella 

of computation. For example, computation is often framed as the transformation of an 
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input state into an output state in accordance with a formally specifiable 

(mathematical/logical) function—this is chiefly how a computing system’s instructions 

or rules for manipulating digits are defined. However, very many physical systems can 

be described in terms of instantiating such functions. The orbit of the planets, for example, 

can be described as instantiating Newton’s second law of motion (F = ma), taking two 

values as inputs (corresponding to the planet’s mass and acceleration), performing a 

multiplication function on them, and producing another value as output (corresponding 

to the force exerted on the planet). At its most extreme, the ‘mapping view’ of 

computation states that a system implements a computation iff the system contains a 

sequence of physical states that can be mapped onto the sequence of states specified in a 

formal description of a computation (Putnam, 1988; Searle, 1992; Godfrey-Smith, 2009). 

Proponents of the mapping view often see the multiple-realizability of computation as 

giving way to trivial-realizability because the formal states of a computation can be 

mapped onto any large enough open system (i.e., a system with input/output relations of 

sufficient cardinality). As such, any arbitrary computation will be implemented by any 

large enough open system, giving way to a kind of ‘pancomputationalism’. This is an 

undesirable outcome, both because it goes against our intuitions that only a limited 

number of systems are computing systems and because it undermines the significance of 

computational explanation: if everything computes, then explanatory appeals to 

computation are uninformative. 

 

The SV offers an alternative to the mapping account. It evades pancomputationalism by 

adding the constraint that a computing system must represent. Most physical systems do 

not represent, after all—planets do not represent their mass or their acceleration. In turn, 

representation marks a distinction between physical systems that may be described 
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computationally from those that actually perform computation. Crane (2016) embodies 

this perspective when he writes, 

 

What the adding machine really does is take numerals – that is, 

representations of numbers – as input, and gives you numerals as output. This 

is the difference between the adding machine and the planets: although they 

instantiate a function, the planets do not employ representations of their 

gravitational and other input to form representations of their output. (p. 71. 

Original emphasis.) 

 

Therefore, representation constitutes a vital ingredient for determining whether a system 

is truly performing computation. Representation also provides plausible grounds for 

‘computational equivalence’. Sometimes, two systems that take distinct physical vehicles 

as inputs and outputs appear input/output equivalent in a manner that matches our 

intuitive categorisation practices. Let’s borrow an example from Sprevak (2010, p. 268). 

Imagine two different devices. The first device reads ink-marks shaped like Roman 

numerals (I, II, III etc.) as input, and produces the same as output. The second device 

reads ink-marks shaped like Arabic numerals (1, 2, 3 etc.) as input, and produces the same 

as output. Despite the differences in the inputs and outputs, these two systems could 

perform the same numerical calculation, such as the addition function. These systems 

appear to have equivalent inputs and outputs. What does this equivalence consist of? One 

plausible answer, the one that Sprevak (2010) offers, is that the inputs and outputs 

represent the same thing. Representation thus accounts for computational equivalence. 

2.3 Two problems with the semantic view 

 

The SV is an intuitively appealing account that provides a way to rescue computation 

from the threat of triviality. Nonetheless, there are two related worries that call into 

question the truth of Pii. As these worries have been discussed at length elsewhere (for 
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example, see Piccinini, 2008, 2015; Miłkowski, 2013; Dewhurst, 2018), and will be 

further drawn out in the rest of the chapter, I will limit myself here to a brief sketch of 

each. There is also a third, less well-explored problem concerning the assumption that the 

semantic properties required by the SV are full-blown representational properties in the 

sense that matters to cognitive representation. I will turn to this in section 3.3 below. 

 

The first worry is that the SV suffers counterexamples. As Pii is a necessity claim, only 

one counterexample is needed to prove that the claim is false. Proponents of the SV 

defend Pii by claiming that paradigmatic computing systems are intuitively thought to 

manipulate representations, and that manipulation of representations is key to the 

character of the computation in question. For example, an ordinary syntax checker 

manipulates electric signals that represent strings of letters (Sprevak, 2010, p. 268). 

However, even if this correctly characterises our understanding of a syntax checker as a 

computing system, there appear to be cases where states are not required to represent 

anything for us to recognise and identify computation. For example, one might construct 

a machine that takes some strings of entirely arbitrary digits as input, performs an 

arbitrary (but formally specifiable) operation on those inputs, then outputs further 

arbitrary digits. Such a machine looks very much like a paradigmatic computing device—

but not because it represents anything. Imagine, for instance, a physical device that is fed 

marks on a page as input, taken from the following complete alphabet: {~, <, *}. The 

machine takes one of these marks as input and produces another mark as output. The 

machine has one rule which can be captured as follows: ‘if the input is * write < otherwise 

do nothing’. We do not need to characterise this machine as representing anything for us 

to recognise it as a computing system. This recognition is possible because there are 

physically distinct digit types that are transformed in a nomic fashion (mirroring the 
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character of a Turing Machine). One might insist that the system does represent 

something: the marks it reads. However, though we must acknowledge that the system is 

sensitive to the marks, it seems superfluous, for the purposes of identifying computation, 

to say that the system represents the marks. We recognise inputs, outputs, and 

transformation rules, even in the absence of characterising the marks in terms of 

representation. As Orlandi puts it, 

 

[D]igits in a computer do not need to stand for something in order to count as 

digits. As long as a state is distinguishable from others in different contexts, 

and as long as it enters into lawful transitions with other states, it is a digit 

even if it has no semantic interpretation. (2014, pp. 206-207) 

 

In turn, these digits and their transformations provide a basis for individuating 

computation utilising only the number of distinct digit types and the transformation rules 

that process them. In so far as this is true, appeals to representational content are not 

necessary for recognising computation or characterising the computation being 

performed. This anticipates the mechanistic view to be sketched momentarily.8 

 

The second worry about the SV is that any semantic individuation is parasitic on prior 

non-semantic individuation and that this undermines the necessity of the former. To 

begin, notice that it is unclear in what way, if any, the semantic properties of digits are 

causally relevant to computing systems. After all, calculators do not manipulate electrical 

states in virtue of what their states represent (for some pushback see Rescorla, 2014). As 

the useless computer example helps to show, it is often assumed that computing systems 

are causally sensitive only to the ‘form’ of their digits (for an early formulation of this 

idea as it pertains to cognition, see Fodor, 1980). The form of a digit refers to the abstract 

                                                
8 For a different take on a similar point see Piccinini (2008); Miłkowski (2013). 
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property of the physical vehicle that comprises the digit and which the computing 

system’s transformation rules respond to. Types of digits and internal states of the system 

are mutually defined by the number and kinds of form which the system is sensitive to 

and the lawful ways in which the system responds to those digits. 

 

The fact that computing systems are causally sensitive to the formal features of their digits 

implies that for any given semantic individuation, a non-semantic ‘notation’ is required 

to pick out the relevant inputs and outputs (Piccinini, 2015, p. 37). For example, in the 

case of a logic gate, semantic individuation presupposes a way of individuating the inputs 

and outputs of the device in terms of the difference between digits instantiated in the 

difference of voltage levels to which the device is sensitive to (see section 3.2 below). In 

traditional parlance, any ‘semantic’ individuation supervenes on a prior ‘syntactic’ 

individuation (though computing systems need not have a syntax in the sense of a 

grammar-like structure). 

 

We can better appreciate the point being made by observing that traditional theories of 

content in computation cannot, by themselves, individuate computation. If one claims 

that computing systems necessarily represent, as the semanticist does, then one must 

ultimately deliver a supplementary account of how states acquire their content. The SV 

itself is neutral as to which account of content determination is correct. However, the 

semanticist is committed to there being some correct account of content determination 

down the line. Thus, the truth of the SV depends on the possibility of showing how, say, 

a calculator represents numbers, by what means a syntax checker represents strings of 

letters, and for the representationalist who justifies cognitive representation on the basis 

of the SV, in virtue of what cognitive systems represent the states of affairs that they do. 
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Several theories of content determination are popular amongst semanticists. Each of these 

theories falls under the umbrella of either ‘naturalistic accounts’, conceiving of content 

as determined by a naturalistic relation, or ‘non-naturalist accounts’, conceiving of 

content as determined by an agent’s attribution of content. For illustrative purposes, I will 

defer to Piccinini’s (2015) taxonomy of the main players associated with the SV and will 

briefly outline each. Firstly, there are theories which fall under the umbrella of ‘functional 

role semantics’ (for example, Block, 1987). FRS theories are naturalistic. FRS theories 

claim that states have contents in virtue of the functional relations that obtain between 

other states, inputs, and outputs that exist internally within a system. In this context, those 

functional relations are understood to be computational relations. Secondly, there are 

‘causal-informational’ accounts, equivalent to what I called causal-historical theories in 

chapter 1, which includes Dretske’s (1981, 1988) causal-informational theory and 

teleosemantics (Millikan, 1989b, 1990). Causal-informational accounts are naturalistic. 

Causal-informational accounts claim that states acquire their content in virtue of some 

privileged causal or informational relation that exists between the state and what it 

represents. The precise nature of this relation differs depending on the theory. Lastly, 

there is ‘interpretivism’ or ‘interpretational semantics’ (Dennett, 1969, 1987; Cummins, 

1983, 1989). Interpretivism is a non-naturalistic theory. 9 It claims that states have their 

content fixed by an observer’s semantic interpretation of the underlying syntactic or other 

functionally defined processes. Interpretivists deny that computation involves 

manipulating ‘natural representations’ and claim that there is no intrinsic relation which 

fixes a digit’s content. Rather, the sort of representation involved is ‘conventional 

                                                
9 The SV is not wed to a naturalised theory of content. As Shagrir writes, ‘the debate about the semantic 

view is not about naturalism […] the semantic view is consistent with, but not committed to, the view 

that all computational contents can be naturalized’ (Forthcoming. Manuscript, p. 26). 
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representation’. The reason why a calculator represents numbers rather than something 

else (or nothing at all), is because an agent decides so. Note that ‘hybrid theories’ of 

content are also popular amongst semanticists (Shagrir, forthcoming). One common view 

holds that artificial computing systems, like calculators, have their contents in virtue of 

an observer’s interpretation, but that natural computing systems, like brains, have their 

contents in virtue of some privileged causal relation. 

 

Each of these accounts of content depends on the prior non-semantic individuation of 

computing systems and their states. As Piccinini points out, FRS relies on a prior notion 

of there being computationally relevant states that acquire their semantic content in virtue 

of the relations that obtain (2015, p. 33). A similar story can be given for causal-

informational accounts. These require a way of individuating the states in which the 

relevant semantic-bestowing relation holds. Finally, the interpretivist relies on there being 

a principled way of picking out the relevant processes and their states which are subject 

to semantic interpretation. Every theory of content determination requires some pre-

semantic individuation criteria. 

 

The semanticist may respond that this second worry only demonstrates what everybody 

already agreed: that representation is not sufficient for computation. This does not 

preclude the possibility that representational content is jointly necessary for computation. 

However, when coupled with examples like the useless computer above, we begin to see 

the possibility that non-semantic features are not only necessary but sufficient; non-

semantic features of (at least some) systems are exhaustive of those systems’ 
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computational properties.10 To fully appreciate this, however, we need to turn to an 

alternative view that takes as its starting point the need for a physical parallel to the (non-

semantic) mathematical notion of computation, and places at its heart the lawful 

transformation of medium-independent digits. Enter the ‘mechanistic view’. 

3.1 The mechanistic view of computation 

 

This section begins by charting the mechanistic view (MV). This will help to anchor the 

remainder of our discussion on the relation between computation and representation. The 

MV constitutes an instructive and promising alternative to the SV. It encompasses the 

intuitions raised above by the criticisms of the SV and resonates with the broader 

mechanistic approach to explanation outlined in chapter 2.11 Though proponents of a 

mechanistic approach to computation differ in the details they espouse, I will outline those 

characteristics that I take to be most common and relevant for our present discussion. 

 

The MV approaches physical computation as a species of mechanistic activity resulting 

from the properties of a physical system (Piccinini, 2008, 2015; Fresco, 2014; Miłkowski, 

2013; Orlandi, 2014). Computation is a functional kind in the teleological sense. A 

computing system is, in turn, a kind of functional mechanism, where a mechanism is 

defined as a system comprised of organised spatiotemporal components (see chapter 2). 

Paradigmatically, such components might include strings of digits, processors and 

memory stores and the relevant relations between such components would include signal 

transmission (Piccinini, 2015).  

                                                
10 Some semanticists may think that I have under-emphasised a crucial step in their argument: semantic 

properties are necessary for individuating computation in line with the logical/mathematical operations 

we take computations to perform. I confront this point in section 3.2 below. 
11 In accordance with the broader mechanistic framework outlined in chapter 2, we can understand the 

brain as a computing system just in case it contains a mechanism that contains at least one component 

with the causal role of computing relative to the production or constitution of some cognitive capacity. 
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Mirroring the mathematical conception of computation, mechanists typically take the 

function to compute as the function to transform strings of medium-independent digits 

according to a rule that is sensitive only to a subset of the vehicles’ physical properties 

(for example, see Piccinini, 2015, pp. 125-126). A rule is a lawful mapping of input states 

to output states. Digits are ‘medium-independent’ in so far as rules by which they are 

manipulated may be implemented in different physical media (Garson, 2013; Piccinini, 

2015). This is possible because an input/output (I/O) mapping is not characterised by the 

way particular types of physical states (electric, magnetic, mechanical etc.) are 

transformed, but by the variation in the degrees of freedom of the vehicles that the 

mapping is sensitive to.12 Therefore, the same transformation can be implemented in 

different physical systems so long as the appropriate degrees of freedom are preserved 

and manipulated correctly by the mechanism (Piccinini, 2015, p. 122). Digits are 

understood to interconnect to form strings. As Piccinini says, ‘A string of digits is a 

concatenation of digits, namely, a structure that is individuated by the types of digits that 

compose it, their number, and their ordering (i.e., which digit token is first, which is its 

successor, and so on)’ (2007, p. 107. Original emphasis). Digits and the rules that describe 

their manipulation are mutually specified: rules are defined by the kinds of nomic 

manipulations the systems perform on types of digits, and types of digits are individuated 

by the portion of the vehicles (degrees of freedom) that the system is sensitive to. 

 

                                                
12In his more recent work Piccinini presents a ‘generic account’ of computation that encompasses both 

digital and analogue computation (2015). The main difference between that account and the one 

presented here is that ‘digits’ are replaced with the more encompassing notion of a ‘vehicle’. This latter 

allows for computation to be defined over the manipulation of both discrete and continuous variables. 

I present the orthodox ‘digital’ version of the mechanistic account for the reasons noted above and 

because it resonates most straightforwardly with other authors working within the burgeoning 

mechanistic paradigm. 
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For the MV, any ‘symbols’ necessary for individuating computation are not defined by 

their semantic character. Again, they are equivalent to digits, which are physical vehicles 

that fall under different functional types, defined by number and kinds of transformation 

a system performs on them. Symbol strings are ‘to a first approximation, a physical 

realization of the mathematical notion of string’ (Piccinini, 2007, p. 108). Miłkowski puts 

it as follows, 

 

From the semiotic point of view, a formal symbol is a sign whose function is 

determined merely by its form (which is not to be identified with its shape, as 

not all vehicles have visual forms; a form is an abstract property of a vehicle). 

(2013, p. 36) 

 

This characterisation of computing symbols does not preclude the possibility that some 

computing systems represent, or that semantic interpretations of digits form part of our 

conventional relationship with computing systems. However, the MV does insist that 

semantic properties are not essential for digits to play a role in computation. In short, the 

manipulation of ‘symbols’ is the manipulation of functionally-typed physical states. This 

strengthens the idea that computation and representation are functional kinds that come 

apart.13 

3.2 The semanticist strikes back: Individuating computation by task 

 

So far, we have examined the claim that computation is individuated by semantic 

properties. We looked at two problems facing that claim and outlined the mechanistic 

                                                
13It was noted above that one appeal of the SV is that it evades pancomputationalism. The MV supplies a 

non-semantic solution to this same problem. In brief, some physical systems count as computing 

systems because they are mechanisms with spatiotemporal components that function to manipulate 

strings according to rules defined over medium-independent digits (relative to explaining some 

capacity of the system). Like other mechanisms and their functions (hearts, thermostats and engines 

etc.) it is generally supposed that there will exist a limited class of entities whose capacities are 

explained by the appropriate causal structures required to be legitimately typed as performing 

computation (Piccinini, 2015, chapter 7). 
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view as a non-semantic alternative. In this section, I will assess what I take to be the 

strongest response on behalf of the semanticist. Doing so will ultimately strengthen the 

mechanistic view. 

 

The semanticist counterattack I wish to consider was anticipated in the above example 

from Sprevak (2010) of two seemingly equivalent computations. It appeared that two 

devices performed the same computation because they performed the same mathematical 

operation. Reflecting on such considerations, it has been claimed that computation must 

be individuated with respect to the operations or tasks commonly assigned to computing 

systems (typically logical/mathematical functions), and that semantic properties are 

required to achieve this. In general form, the argument is as follows: 

 

Pa. Computing systems perform tasks/operations (e.g., mathematical/logical 

functions). 

 Pb. Tasks/operations require semantic individuation. 

 C. Therefore, computation requires semantic individuation.   

 

Take the example of a logic gate. Logic gates are paradigmatic computing devices that 

take one or more input, usually of a binary form, perform some function, and produce 

some output, usually of a binary form. These inputs/outputs are typically instantiated by 

voltage levels. Nothing thus far indicates the need for semantic individuation. Plausibly, 

a logic gate’s activity is individuated (qua computation) by the number of physically 

instantiated digits the device is sensitive to and the transformations they enter into. Two 

logic gates perform the same computation when the number of digits and their nomic 

manipulations (regardless of their physical basis) remain the same. 
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At this point, the semanticist will point out that logic gates are conventionally 

individuated in accordance with the logical operation they perform (AND, OR, NAND, 

NOR etc.) For example, a logic gate would implement the AND operation iff its output 

was 1 (or ‘True’) in case both inputs are 1, and 0 (or ‘False’) in all other cases. A logic 

gate would implement the OR operation iff its output was 0 just in case both inputs were 

0, and 1 in all other cases. But logic gates do not operate on numbers or truth values. 

Logic gates operate on physical states. The problem is that which states of a logic gate 

correspond to 0 and which states correspond to 1 is underdetermined by mere 

consideration of the device’s transformation of, say, electrically implemented digits. 

Sprevak (2010) employs a version of this idea to argue in favour of the SV. Imagine a 

logic gate with the following functional profile: 

 

Table 1. AND or OR gate? 

Input a  Input b  Output 

0V   0V   0V 

0V   5V   0V 

5V   0V   0V 

5V   5V   5V 

 

Intuitions tend toward the conclusion that the gate implements the AND operation [0V = 

0; 5V = 1] because we tend to associate higher numbers together and lower numbers 

together (Dewhurst, 2018). However, the profile shown in table 1 is consistent with the 

OR operation too! We simply need to switch our labelling around [0V = 1; 5V = 0]. In 

the absence of any prior reason to suppose that 5V = 1, our labelling is arbitrary. 
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Therefore, the mere consideration of the I/O table above underdetermines the Boolean 

operation performed. Moreover, because the above description is consistent with more 

than one computation being implemented, the device appears to perform multiple 

computations simultaneously. This is the so-called ‘problem of multiplicity’ (Coelho 

Mollo, 2018). 

 

The mechanist claims that the transformation of (non-semantically defined) digits is 

sufficient for individuating computation. But such intrinsic properties of a computing 

mechanism underdetermine which logical operation the above system performs. The 

semanticist insists that individuation should make sense of such paradigmatic operations 

and promises a way out of this problem: we can determine which operation is performed 

if we suppose that different vehicles represent different truth values. In other words, a 

logic gate performs AND or OR because the states of the logic gate represent one or other 

truth value.14   

 

There are two main strategies available to the mechanist in response. I will label these the 

‘narrow-functional’ and ‘wide-functional’ strategies. The narrow-functional strategy 

concedes that computational individuation underdetermines which logical/mathematical 

operation a computing system performs according to the MV. However, it maintains that 

this does not matter for the purposes of individuating computation. The wide-functional 

strategy maintains that the MV can account for which logical/mathematical operation a 

                                                
14It could be argued that the SV does not have the resources to deal with multiplicity because it does not 

tell us how contents are determined (Miłkowski, 2017, pp. 4-5). Therefore, the worry goes, the SV 
cannot tell us whether the device performs AND or OR because it cannot tell us which truth values are 

represented by what states. I think this is correct, but what it really highlights is that the SV is an 

incomplete theory of individuation. As noted above, the SV only commits one to the idea that semantic 

properties are required to individuate computation. A complete account of individuation would require 

an additional theory of content determination that explains how computational states come to have the 

contents that they do. This division of the problem space is useful in so far as two semanticists may 

disagree over how to think about content determination. 
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computing system performs after all. In what follows, I will examine these two strategies 

before suggesting that they are compatible and strengthen each other when combined.  

 

The narrow-functional strategy sees the mechanist bite-the-bullet and accept that the 

functional transitions captured by the I/O table above are unable to determine which 

logical operation a logic gate performs. The mechanist can do this whilst maintaining that 

computation remains individuated by the non-semantic transformation of digits in the 

way outlined in the previous section. Dewhurst (2018) offers a version of this response 

(see also Piccinini, 2015, p. 128). Dewhurst does agree with Sprevak (2010) that an 

answer to the question of which logical operation is being performed requires semantic 

individuation but holds that this semantic individuation is not equivalent to computational 

individuation. The key move here is to claim that any individuation required of a 

computing system, on top of the sort captured in table 1, is not strictly computational 

individuation. Accordingly, the mechanist denies the premise implied by the objection: 

that an account of computational identity must settle which logical operation (if any) a 

computing device performs. As Dewhurst would have it, the inability of the MV to 

determine which logical operation is being performed, 

 

[…] does not mean that computational processes cannot be individuated 

without representation—rather, it means that computational processes must 

be individuated in a way that remains neutral with regard to what logical 

function they carry out. (2018, p. 107) 

 

The essence of Dewhurst’s positive view is that all one needs to individuate computation, 

in a way that matters qua computation, is the ‘physical description’ of the system. 

 

To help appreciate the force of the narrow-functional strategy, take the following table 
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for a second logic gate (table 2): 

 

Table 2. AND or OR gate? 

Input a  Input b  Output 

5V   5V   5V 

0V   5V   5V 

5V   0V   5V 

0V   0V   0V 

 

Mirroring the case above (table 1), intuitions tend to suggest that this gate implements 

the OR operation because of our tendency to associate higher numbers together and lower 

numbers together (Dewhurst, 2018). But again, converse mappings of either [0V = 1; 5V 

= 0] or [0V = 0; 5V = 1] are perfectly coherent. This means that table 2 can be interpreted 

as implementing the AND operation or the OR operation. Nonetheless, the MV can 

taxonomize the logic gate of table 1 as different from that of table 2 by reference to their 

functional properties alone. Therefore, the MV can distinguish between the two gates—

albeit not by appealing to semantic content. Rather, computational individuation can be 

achieved ‘with simply a physical description of how the various components of the 

mechanism function’ (ibid., p. 108). 

 

As an aside, though Dewhurst (2018) refers to the ‘physical description’ of a computing 

mechanism as sufficient for individuation, I take the term ‘functional description’ to be 

preferable. Following Coelho Mollo (2018), it is important to stress that what matters for 

individuating computation is not any old physical properties of a system but those 

relevant to the number of digits the mechanism is sensitive to, together with the 
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transformations it performs on those digits. Hereafter, I will refer to these properties of a 

computing device as its ‘narrow-functional properties’. The important point, for present 

purposes, is that the microphysical states of a computing device are grouped, in virtue of 

a set of their physical properties, into digits based on the sensitivities of the mechanism. 

In the case of the logic gate, electrical inputs are grouped by their voltage level because 

the system’s nomic transformations are sensitive to electric potential difference; the 

difference that makes a (functional) difference. What matters as far as computation is 

concerned is not the different voltage levels of a logic gate per se, rather the fact that these 

provide a physical medium that instantiates the digits of an input-output mapping. In any 

case, a Dewhurst-style strategy avoids the problem of multiplicity by adjusting the level 

at which computational identity is determined. A logic gate does not perform multiple 

computations—qua narrow-functional individuation—it performs one computation, as 

defined by the number of digits and the transformations performed on them. A mechanist 

adopting the narrow-functional strategy can thus live with a computational description 

underdetermining which logical operation is being performed. 

 

The narrow-functional strategy provides a strong rebuttal to the idea that the logic gate 

example demonstrates the necessity of semantic properties for individuating computation. 

A description of a mechanism’s narrow-functional properties plausibly supplies a useful, 

well-specified, and non-semantic individuation of computation. However, two worries 

remain. First, one may feel that the narrow-functional strategy commits the mechanist to 

a troubling error theory. It is common practice for computer scientists to describe 

computations based on the logical operations they perform. One might feel uncomfortable 

with the resulting disconnect between individuating computation and logical descriptions, 

especially if one wishes their account of computation to do justice to the intuitions of the 
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scientific community that appears to individuate computation in line with the logical 

operations computing systems supposedly perform (Sprevak, 2010). 

 

Second, Dewhurst concedes that semantic properties are required to pick out which 

logical operation a logic gate performs (maintaining that this does not affect its 

computational individuation). As such, the representationalist about cognition who draws 

on computation’s supposedly semantic nature for support might grant that the narrow-

functional strategy is correct so long as computation still invites some form of semantic 

individuation: representation does not individuate computation per se, the thought goes, 

but computational explanations of cognition still imply representation given that 

computing mechanisms perform mathematical/logical operations and representation is 

required to make sense of what mathematical/logical operation is performed.15 

 

The wide-functional strategy is sensitive to both these worries. This second strategy in 

response to the semanticist’s counterattack indicates that the MV does possess the 

resources required to individuate computation in line with paradigmatic 

logical/mathematical operations, but in a way that does not require representation. This 

is achieved by appealing to the wider functional context of a computing mechanism (the 

notion of a mechanism’s ‘wide function’ resembles that of ‘contextual function’ 

introduced in chapter 2, and the overlap will be touched on again below). To appreciate 

the wide-functional strategy, it will prove useful to visit Shagrir’s (2001) version of the 

claim that the paradigmatic tasks involved in computation require semantic individuation. 

 

Shagrir (2001) shares similar concerns with Sprevak (2010), maintaining that semantic 

                                                
15 I thank Joe Dewhurst for discussing this point with me (personal communication). 
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individuation is necessary for capturing the explanatory power of computation. In fact, 

unlike Sprevak, Shagrir allows that computing systems implement multiple (non-

semantically individuated) computations, provided under what he calls a ‘syntactic 

interpretation’ (2011, p. 374); this resembles Dewhurst’s narrow-functional description. 

However, Shagrir says that there is only ever one computational description that explains 

a computing system’s performance on some task—what he dubs ‘the structure underlying 

the task in question’ (ibid., p. 375). Tasks are individuated semantically, Shagrir suggests. 

Therefore, in so far as computation explains a system’s performance on some task, it must 

be individuated semantically (see also, Piccinini, 2015 p. 40). As Piccinini’s (2015) 

interpretation of Shagrir’s argument is more straightforward than the original presentation 

I will follow his reformulation of the problem. 

 

Imagine a device that takes two input digits and produces one output digit. The device is 

sensitive to three digit types. Voltage levels physically realise these digits, corresponding 

to 0V, 1V and 2V. We can label these digits respectively with the following values: ‘0’, 

‘1/2’, and ‘1’. The I/O table for the device then reads as follows (table 3):  
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Table 3. Averaging, AND or OR? 

Input a  Input b  Output 

0   0    0 

0  ½   ½ 

½  0    ½ 

0  1    ½ 

1  0   ½ 

½    ½   ½ 

½  1   ½ 

1  ½   ½ 

1  1   1 

 

On the face of it, this device performs a kind of averaging operation (albeit some of the 

averages are rounded up whilst others are rounded down). We might naturally imagine 

the designer of the device labelling the digits in this way for the very reason that it is 

intended to be used as an averaging device. Under this description (or ‘labelling scheme’), 

the device takes two values as input and produces their average as output. However, other 

descriptions are possible (Piccinini, 2015, p. 41). For example, we can group ‘0’ and ‘1/2’ 

together and re-label them ‘0’, or we can group ‘1/2’ and ‘1’ together and re-label them 

‘1’. In choosing the former description, we have shown how the device could be used to 

implement the AND operation. In choosing the latter description, we have shown how 

the device could be used to implement the OR operation. These labelling schemes are 

contrived, but they are coherent (one really could use the device to perform the AND or 

OR operations). Nonetheless, Shagrir submits that in any given context, there is a fact of 

the matter as to which description captures the role of the computing device. For instance, 
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observing how the designer of our device uses her machine to calculate arithmetic 

problems, we see how describing the device as computing averages captures its role in 

completing the task at hand. Simply examining the number of digits and how they are 

manipulated would not tell us this. Shagrir rightly demonstrates that relations captured in 

the table above are insufficient for determining which logical/mathematical function (of 

the many that the device satisfies), is the appropriate description relative to its 

contribution to some task. We must appeal to some additional individuation criteria to 

make sense of this. Shagrir thinks this must be semantic individuation. 

 

The crux of the problem is that the narrow-functional properties captured in table 3 

cannot privilege a description that captures the role of the system in completing some task 

because such a description captures the system in context. However, following Piccinini, 

I propose that semantic individuation is not required to solve this problem. Piccinini 

agrees with Shagrir that narrow-functional properties are ‘insufficient to determine which 

task a mechanism is performing within a context, and thus which computation is 

explanatory in that context’ (2015, p. 43.). However, whilst he accepts that multiple 

computations are being performed, Piccinini argues that non-semantic but ‘wide-

functional’ factors constrain which of the many possible computational descriptions are 

explanatory. The key observation here is that the context of a mechanism’s containing 

system, which itself can be understood as a higher-level mechanism, introduces additional 

constraints into our description of the computation. This context includes the broader 

causal nexus that exists between the computing mechanism and its containing system. 

For example, ‘By looking at whether the containing mechanism responds differentially 

to a ‘0’, ‘½’ or ‘1’ or responds identically to two of them, we can determine which 

computational description is explanatory without needing to invoke any semantic 
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properties of the computations’ (ibid., pp. 43-44). Therefore, we can determine whether 

the device is serving, say, an averaging role, by looking at whether the wider system is 

sensitive to all three digits, without needing to think that these digits represent numbers. 

 

The semanticist may question just how far these wide-functional considerations get us: 

wide-functional properties supervene on the causal sensitivities of the containing system, 

but these sensitivities are not always sufficient to determine which task a system performs 

in a given context. In other words, wide-functional properties are not wide enough. For 

instance, imagine an explanation that posits a cognitive subsystem that computes 

distances between the containing system’s hand and distal objects. One might question 

what causal sensitivities of the containing system could privilege this description. In turn, 

one might think the subsystem must represent features of the task.16 I will offer three 

observations in response. These observations collectively act to further undermine the 

necessity of semantic properties for bridging computation and task performance.  

 

First, wide-functionalism strongly indicates that semantic properties are not always 

necessary to select the task that a computing system performs in a given context because 

the causal sensitivities of the wider mechanism will sometimes suffice. Secondly, if 

semantic properties are only sometimes required for individuation, then it does not follow 

that the orthodox SV is true because the orthodox SV claims that semantic properties are 

always necessary for individuation. Admittedly, if semantic properties are sometimes 

required to individuate computation then this would also undermine the orthodox MV 

                                                
16 I share some of these concerns in Lee (forthcoming a). There I move away from conventional mechanistic 

views and outline a kind of pluralism about individuation. This pluralism permits semantic properties 

to play a limited role in individuating some cases of computation. However, I also remain neutral about 

the nature of these semantic properties, allowing much weaker notions than full-blooded representation 

to satisfy a semantic individuation of computation (see section 3.3 below). The resulting position is 

remote from the orthodox SV. 
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because the orthodox MV claims that non-semantic properties are always sufficient for 

individuation. However, such a result would only imply a form of pluralism (not the SV). 

According to the pluralist view, semantic properties are sometimes required for 

individuating computation, and sometimes not (see Lee, forthcoming a). Thirdly, it 

remains unclear whether semantic properties are sometimes required for individuation—

a clear counterexample is still owed. For instance, a wide-functional story about the above 

problem case could go something like this: to understand the sub-system as computing 

the distance between the hand and the distal object we need only observe the ways in 

which the subsystem is affected by the containing system’s causal sensitivities (the 

containing system’s processing and motor outputs). A cognitive system will be sensitive 

to stimuli corresponding to its hand and the distal object producing input for the 

computing subsystem, which subsequently (because of its output) generates motor 

behaviour consonant with judging the distance between two objects; for example, the 

system reaches for the object with its hand. 

 

Dewhurst’s ‘narrow-functionalism’ and Piccinini’s ‘wide-functionalism’ have been 

recently framed as competing positions (Coelho Mollo, 2018). For the purposes of 

evaluating the SV, this hardly matters so long as semantic properties are not required. 

However, I think these views can be formulated in a mutually complementary way that 

is worth briefly exploring for clarificatory purposes. Coelho Mollo points out that 

Piccinini accepts ‘multiplicity’. Piccinini allows that multiple computations are 

performed by a single mechanism; however, he holds that which explanatorily relevant 

computation is being performed is constrained by a wide understanding of functions 

(Coelho Mollo, 2018, p. 3492). For some, this is an unsatisfactory concession. I take the 

motivation for this dissatisfaction to be that multiplicity is counterintuitive, and therefore 
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accepting its existence weakens one’s position.17 It follows that the MV would be 

strengthened if it could avoid entailing multiplicity. Coelho Mollo thinks Dewhurst’s 

account is stronger than Piccinini’s because it rejects the premise that the MV leads to a 

multiplicity of computations. It does this by providing an account of individuation which 

references only the narrow-functional properties of the mechanism. 

 

I propose that we combine the narrow-functional and wide-functional strategies into a 

strengthened mechanistic view of computation. The narrow-functional strategy guards 

against multiplicity—which otherwise besets wide-functionalism—whilst the wide-

functional strategy guards against an error theory—which otherwise besets narrow-

functionalism. The crux of this revised mechanistic view is as follows: computation is 

individuated qua computation at the level of narrow-functional properties and so 

multiplicity is avoided (only one computation is performed given the narrow-functional 

properties of the device). However, in addition to this individuation qua computation, 

computing mechanisms are also individuated by the logical/mathematical operations they 

perform (for example, the addition operation). There are thus two mutually compatible 

‘mechanistic levels’ which inform how computing mechanisms are described: the narrow 

functional and the wide functional. One level concerns computation per se, the other level 

concerns computation in context. Representation is not required at either of these levels.  

 

The distinction and compatibility between the narrow-functional and wide-functional 

properties of a computing mechanism—suggested by the revised MV—has a precedent 

in the mechanism literature in so far as they overlap with Craver’s (2013) notions of 

                                                
17 I question whether multiplicity is really a problem for wide-functionalism if it can sufficiently constrain 

which of the multiple computations being performed is explanatory given the broader relations between 

a computing device and its containing mechanism. For now, let’s grant that an account of computational 

individuation is strengthened if multiplicity is avoided. 
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‘constitutive explanation/function’ and ‘contextual explanation/function’ respectively 

(see chapter 2).18 Recall that constitutive explanations concern whether and how the 

properties of a mechanism produce a phenomenon and focus on its synchronic causal 

structure (Craver, 2013, pp. 149-151), whereas contextual explanations concern the wider 

environmental context of a mechanism (Craver 2013, pp. 151-154). Two mechanisms 

may be functionally equivalent in so far as they perform the same constitutive function, 

but functionally dissimilar in so far as they perform different contextual functions. This 

means that two physically identical pumping devices could be used to pump different 

substances, for example, blood or air. Whether one wants to say these two mechanisms 

are functionally equivalent or different, therefore, depends on whether one is referring to 

narrow or wide functions. Likewise, whether two computing devices are functionally 

equivalent or different will be informed by whether one is taking into consideration the 

wider context of the computing devices. 

3.3 Does the semantic view really imply representation? 

 

We have so far been assuming that the semantic properties invoked by the SV imply 

representational properties, and hence that the SV implies representation. This allows the 

representationalist to support the explanatory value of cognitive representation by 

appealing to the idea that our best explanations of cognition are computational. And yet, 

one can question whether the SV really supports representationalism in this way. The 

problem is that the ‘semantic properties’ invoked by the SV are ambiguous and may imply 

something weaker than representation. This objection is not concerned with whether the 

                                                
18One could possibly defend an even more liberal view that encompasses an additional ‘semantic level’ on 

top of the ‘narrow-functional’ and ‘wide-functional’ levels. Depending on how the relevent semantic 

properties are understood, this level might correspond to Craver’s third kind of explanation/function: 

‘etiological explanation/function’ (see Lee, forthcoming a, for related discussion). 
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SV is true, but instead questions whether the semantic properties invoked by the SV serve 

as a basis for full-blown cognitive representation. 

 

Recall that to pass the job description challenge (JDC) an entity must function in a way 

that is distinctly representation-like, namely, as a stand-in for something on behalf of a 

cognitive system. To do this, I suggested that an entity must possess representational 

content, (a) in a sense that implies correctness conditions, and (b) in such a way that 

content is causally relevant to the cognitive system itself. However, it is unclear whether 

the semantically individuated states required of the SV necessarily possess content in this 

way. To begin, take Sprevak’s understanding of the sort of representation required for the 

SV to be true, 

 

Roughly speaking, a representation need support no more than a basic notion 

of aboutness or reference. A representation should link an entity and a 

content, such that the entity represents its content. Nothing more is required. 

(2010, p. 261. Original emphasis.) 

 

As it stands, this relatively non-committal characterisation appears to tolerate minimal 

notions of representation, such as receptor representation—the sort we might concede as 

being semantic in a weak sense but rejected in the previous chapter as unfit to support a 

distinctly representational theory of cognition. There are two problems mirroring the 

conditions of the JDC just mentioned: (a) it is unclear whether the semantically 

individuated states of the SV play a causal-role in virtue of the semantic properties they 

possess, and (b) it is unclear whether the semantic properties possessed by these states 

imply representational content. Let’s examine these problems further. 
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The first problem is straightforward. We saw in section 2.3 above that at least some 

computing systems appear to be sensitive only to the formal properties of their digits. 

This fuelled our suspicion that semantic properties are not required for individuation. 

However, one might insist that semantic properties are jointly necessary for computation, 

even if they are, at least sometimes, causally irrelevant. Sprevak (2010) makes this point 

explicit in his defence of the SV, claiming that the causal irrelevance of semantic 

properties does not entail their irrelevance for individuation. For Sprevak,  

 

[The semanticist] does not claim that the causal dynamics of computations 

depend on representational content. Her claim is that the individuation of 

computations depends on their representational content. The battleground for 

the received view are the facts about the individuation of computations, not 

the facts about their dynamics. (ibid., p. 261. My parenthesis.) 

 

In other words, something does not need to be causally relevant to be necessary for 

individuation. One might question whether something causally irrelevant to a physical 

system could really determine the identity of processes in that system. Regardless, 

Sprevak demonstrates that the semanticist’s priority is not to establish the causal 

relevance of semantic properties for a computing system. This differentiates the so-called 

representations required by the SV from the representations sought by the JDC. 

 

The second problem concerns whether the semantic properties invoked by the SV are 

necessarily representational in nature, the suspicion being that weaker semantic relations 

suffice. Take the example of visual processing, typically taken to involve computation. 

Even if we grant some privileged semantic relation between state x in the visual cortex 

and some distal object y, where computations are performed over state x such that x ‘is 

about’ y in some sense, it does not follow that x stands-in for y in the robust sense required 

for cognitive representation. For instance, if the semantic relation consists solely of nomic 
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causal dependency, then x functions as a receptor and only carries natural information. 

Alternatively, if the relation consists of a conventional mapping fixed by an observer’s 

interpretation, then the representing relation is non-naturalistic, and x is only a 

representation to the extent that an observer treats it as such. If either of these relations is 

sufficient for grounding the semantic properties of states under the SV, then those states 

do not function as representations on behalf of a cognitive system. 

 

To see the point being made more clearly, recall the relations implicit in the causal-

informational and interpretivist theories. First, consider causal-informational theories. 

The previous chapter distinguished between two notions of information, and by 

extension, content—a distinction that maps on to Grice’s notions of natural and non-

natural meaning. According to this taxonomy, representational content is equivalent to 

non-natural information/meaning and implies the existence of correctness conditions. I 

argued that, at best, receptor representation implies a weaker notion of content (equivalent 

to natural information) than representational content (equivalent to non-natural 

information). If this weaker notion of content is sufficient for the SV, then the SV does 

not necessitate representation. Orlandi makes a similar point: 

 

The digits in a computer may be states that co-vary with environmental 

elements—thereby carrying information about them—and they may enter in 

encapsulated transitions without being representations. (2014, p. 207) 

 

 

They go on to add that, 

 

 

[I]n some cases, computations may be usefully individuated in terms of 

informational content while also not requiring appeal to representations […] 

It seems to follow from this that an information-processing system is not, ipso 

facto, a representation-processing system. (ibid., p. 207) 

 

In short, if computing systems and their states bear semantic properties only in virtue of 
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nomic causal relationships to distal objects, then those states possess semantic properties, 

but those states do not possess representational content.19 

 

Second, consider interpretivist theories. In a sense, interpretivism side-steps the worry 

about semantic states not necessarily constituting representations.20 The JDC raises the 

bar for the justifiable attribution of natural representation, but the interpretivist denies that 

computation involves natural representation. For the semanticist who embraces 

interpretivism, the representation that individuates computation is conventional 

representation (attributed by an observer).21 However, interpretivism brings its own 

baggage. If one defends cognitive representation on the grounds of the SV, and one is an 

interpretivist about content even for cognitive systems, then one imports that observer 

dependency about content into one’s conception of cognitive representation. This does 

not deliver the naturalistic notion of representation that representationalists typically 

subscribe to. At the very least, it undermines the idea that cognitive representation is as 

observer independent as other theoretical posits in cognitive science. This is in part 

because it reinforces the suspicion raised by the first problem—that the semantic 

properties invoked by the SV are causally irrelevant and, therefore, not the sort of 

properties that support the explanatory power of cognitive representation. 

 

In summary, it does not follow from the fact that our best theory depicts the brain as a 

computing system, and the fact that the SV is true, that cognitive representation plays a 

robust role in explanations of cognition. If this is correct, then there are far-reaching 

                                                
19 A similar point applies to all naturalistic theories of content. For instance, even if FRS rightly identifies 

computational states as having a sort of content in virtue of their relationship with one another, this is 

insufficient for demonstrating that computational states function as representations. 
20 My thanks go to Mark Sprevak for drawing my attention to this point (personal communication). 
21 Egan (2010) offers an interesting position that arguably eschews the SV but maintains interpretivism 

about content, where content is assigned a purely heuristic role within a computational theory. 
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consequences for anti-representationalism. To close this section, I will touch upon one of 

these consequences. 

 

Recent efforts have been made by sympathisers of ‘autopoietic enactivism’ (or simply 

‘enactivism’) to free computation from the grips of representation (Villalobos & 

Dewhurst, 2017; Villalobos & Dewhurst 2018).22 Autopoietic enactivism stands in 

opposition to representationalism. This is because autopoietic enactivism takes 

representationalism to imply an erroneous relationship between organism and world. 

Where an organism represents the world, the thought goes, an organism infers or re-

constructs facts about the world. There are different ways of unpacking the enactivist’s 

antagonism towards this idea, but one view has it that organisms and their worlds are 

better explained as ‘co-arising’ or ‘co-constructed’ whereas representation implies a 

fundamental separation between organism and world (Varela, Thompson & Rosch, 

2016). For an organism to represent, the world must possess a set of pre-given properties 

to be represented. An organism that makes inferences over representations implies an 

organism that can get things ‘right or wrong’, measured against an objective fact about 

the world. In other words, representation implies correctness conditions.  

 

That computation implies representation is typically taken for granted by enactivists 

(Varela, Thompson & Rosch, 2016; Thompson, 2010). For example, Thompson writes, 

‘A computer is supposed to be a symbol-manipulating machine. A symbol is an item that 

has a physical shape or form, and that stands for or represents something’ (2010, p. 4). 

                                                
22 ‘Enactivism’ is ambiguous and often refers to one of two related but distinct traditions: autopoetic 

enactivism (discussed here) or ‘sensorimotor enactivism’. See Ward, Silverman & Villalobos (2017) 

for recent discussion on the relationship between these traditions. ‘Radical enactivism’ (Hutto & Myin, 

2013, 2018) is a third and more recent form of enactivism that draws on these earlier traditions (see 

chapter 1). 
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As such, received autopoietic wisdom holds that computational explanations of cognition 

must be rejected. However, Villalobos & Dewhurst argue that the SV is false, therefore, 

enactivism can draw on computational explanations whilst evading the toxic notion of 

representation (Villalobos & Dewhurst subscribe to the MV).  

  

As we have seen, the SV is not the only game in town. If the MV is true, then Villalobos 

& Dewhurst are right to conclude that computational approaches are compatible with 

enactivism; or at least, they are not incompatible because of representation. I wish to 

emphasise a different point. If what I have said in this section is right, then the SV does 

not necessarily imply full-blown representation anyway. Thus, enactivists and other like-

minded anti-representationalists need not reject computational explanations of cognition 

on the grounds that the SV is true. On the flipside, semanticists need not reject anti-

representationalist approaches solely because our best theories are computational. As a 

general lesson, before we affirm or reject an approach which invokes ‘representation’, we 

ought to be clear on the strength of the notion implied.  

4.1 The representational theory of mind 

 

Preceding sections have undermined the idea that physical computation implies cognitive 

representation. In short, the semantic view is probably not correct, but even if it is, full-

blown representation does not follow. We turn now to the ‘representational theory of 

mind’ (RTM). According to one interpretation of this theory, computational approaches 

to cognition imply representation because of the sorts of explanations they offer within 

the context of cognition, not because physical computation simpliciter presupposes 

representation. More specifically, the RTM claims that computational approaches to 

cognition imply representation because they depict the brain as instantiating a computing 
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system that vindicates the representational posits of folk psychology. The computational 

explanations that proponents of the RTM have in mind are part of the ‘classical 

computational theory of cognition’ (CCTC). 

 

The CCTC explains some or all of cognition in terms of the serial processing (the 

execution of one task at a time within a well-specified time interval) of discrete symbols 

(inner ‘syntactic states’), in accordance with formally specifiable rules. At heart, this view 

depicts cognition as caused by the deterministic or stochastic storing, combining, re-

combining and erasure of discrete, atomic symbol tokens which join to make complex 

symbol tokens. Such symbol manipulation is typically seen as conducted in accordance 

with language-like rules within an algorithmic structure. This means that a given 

cognitive capacity is explained by breaking down a cognitive system into parts that 

perform increasingly simple symbol-crunching operations. At each level, the 

manipulation must conform to an appropriate ‘input-output conversion’, relative to the 

task the computation is supposed to explain (Ramsey, 2007, p. 42). This conformity can 

be understood in terms of an appropriate mirroring of the input-output transformations 

and processes between the task domain and the computation. 23 

 

So far, our gloss of the CCTC is consonant with the mechanistic view: nothing within the 

above characterisation entails representation. Yet according to the representational theory 

of mind, the computational architecture posited by the CCTC provides a way to think of 

                                                
23The CCTC is characterised by a type of computational architecture and is not to be confused with the 

broader theory that cognition is computational in some sense. The broader theory is consistent with 

other frameworks—in particular, connectionism. In contrast to the CCTC, connectionism models 

cognition via the emergent behaviours resulting from the parallel processing of interconnected 

networks of single processing units. The differences and similarities between the CCTC and 

connectionism have been well documented (Franklin, 1995, provides a useful overview). Fortunately, 

we are not required to wade into the murky waters surrounding the debate between proponents of the 

frameworks concerning their relative compatibility, and their comparative explanatory value. 
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mental processes as causal processes that involve transitions between mental 

representations. The key move is to draw a parallel between the CCTC and folk 

psychology.  

 

Folk psychology concerns the ordinary ways in which agents predict and explain 

behaviour. It is often assumed that this practice depends on the attribution of 

‘propositional attitudes’, like beliefs and desires, as evidenced through daily mentalistic 

discourse—such as when I say, ‘I believe blueberries are good for you’ upon being asked 

why I have eaten a whole punnet. Indeed, the term ‘folk psychology’ is sometimes used 

synonymously with ‘propositional attitude psychology’. For example, Hutto writes that 

folk psychology is ‘stricto sensu […] the practice of making sense of a person’s actions 

using belief/desire propositional attitude psychology’ (2008, p. 3).24  

 

Propositional attitudes are the paradigmatic representations familiar to the ‘manifest 

image’ of daily life (Stich, 1983, p. 5). Beliefs and desires are usually regarded as the 

most prominent, but they also include wishes, hopes, fears and so on. Propositional 

attitudes have three degrees of freedom, consisting of an agent who bears a relation to a 

proposition. The relation is the attitude (for example, belief, or desire). The proposition 

refers to a state of affairs specifiable by a ‘that clause’, for example, ‘that blueberries are 

good for you’. In so far as propositional attitudes consist of an agent’s relation toward a 

proposition, they stand-in for states of affairs in a way that implies correctness conditions: 

                                                
24 According to a growing body of research, primarily on animal and infant social cognition, the role of 

propositional attitudes in our daily prediction of behaviour is more restricted than has been traditionally 
assumed by philosophers. Many now claim that propositional attitudes play a predictive role only 

within a limited subset of relatively sophisticated ‘mindreading’, and/or propositional attitudes 

primarily play a role in justifying behaviour rather than predicting it. For some influential discussion, 

see Gergely, (2002); Gergely & Csibra, G (2003); Apperly & Butterfill (2009); Bermúdez, (2009); 

Sodian, (2011); Zawidzki, (2011). For some recent pushback, see Borg, (2018). I put this research aside 

due to limited space and because I wish to be maximally concessional to the RTM.  
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beliefs are true or false; desires are satisfied or unsatisfied (Fodor, 1987, p. 8). The belief 

that blueberries are good for you is either true or false. The desire for blueberries is either 

satisfied or unsatisfied.  

 

The RTM offers a view on the relationship between folk psychology and cognitive 

science by drawing an intimate connection between the CCTC and folk psychology. 

According to the RTM, the causal relations between inner symbols in the CCTC mirror 

those causal relations between representations suggested by folk psychology. The 

symbols of the CCTC are syntactic states, in so far as their causal properties are purely 

formal, but they bear contents that correspond to the representations of daily mentalistic 

discourse. For proponents of the RTM, the explanation for why folk psychology is 

effective is that it directly tracks the real inner causes of behaviour. 

 

The key move made by proponents of the RTM is to claim both that (a) the CCTC is our 

best scientific theory of cognition, and (b) the CCTC offers a scientific vindication of folk 

explanations. There is thus a convergence between the prima facie plausibility of folk 

explanations, supported by their apparent predictive and explanatory power, and our best 

scientific explanation of cognition. Most crucially, the propositional attitudes of folk 

psychology are to be understood as relations to a complex of inner syntactic states of the 

sort posited by the CCTC. According to the RTM, if one has a thought then one is standing 

in relation to a sentence, composed of atomic mental symbols in ‘mentalese’, or the 

‘language of thought’ (Fodor, 1975). For example, if I think the proposition that Khan 

hates Kirk, I am standing in relation to the mentalese sentence composed of corresponding 

symbols organised in a corresponding structure {KHAN, HATES, KIRK}.  

 



142 

 

 

In constructing this parallel between folk psychology and computation, the RTM 

proponent claims that a type of attitude is individuated by its causal role within the matrix 

of rule-governed principles made possible by the computational architecture hypothesised 

by the CCTC. A belief is a belief, as opposed to a desire, because of the sorts of causal 

relations it enters into. Take a folk psychological explanation of behaviour, like going to 

the fridge to retrieve blueberries. This behaviour is to be explained in terms of the causal 

relations between attitudes and their contents, such as the desire that I want blueberries 

(P), the belief that there are blueberries in the fridge (Y), motoric outputs of going to the 

fridge (Q), and the generalisation that one tends to pursue one’s desires in accordance 

with one’s beliefs. If we understand the mind in terms of computation, and computation 

in terms of symbols processed in accordance with formally specifiable rules, then we 

discover a means by which the theoretical posits of folk explanation can be instantiated. 

What is required is the physical realisation of symbols that correspond to P, Y, the rule P 

Λ Y ⊃ Q, and the capacity for generating Q.  

 

In addition to the above, the RTM depicts the CCTC as naturalising supposedly 

elementary features of thought, such as they are implicit in folk psychology. Most 

notably, the CCTC explains the apparent properties of ‘productivity’—the fact a thinker 

can generate novel and potentially unbounded numbers of thoughts—and 

‘systematicity’—the fact that mental states seem to enjoy systematic relations that partly 

determine the capacity for what other thoughts one can have. For example, if someone 

can entertain the thought that Khan hates Kirk, then they can also entertain the thought 

that Kirk hates Khan. These features can be understood by reference to an underlying 

‘representational system’ that allows for the combining of atomic representations into 

compound representations via a combinatorial syntax, with no formal boundary on the 
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length of compound representations (for foundational discussion, see Fodor & Pylyshyn, 

1988; for an argument that thought is not productive in the way RTM depicts, see 

Johnson, 2004). 

 

According to the RTM, the CCTC uncovers a supremely explanatory parallel between 

folk and scientific explanation. This gives rise to a conception of the CCTC as 

mechanizing rationality, providing a bridge between the ‘normative’ (folk psychological) 

and the ‘physical’ (neurophysiological) (for critical discussion, see Dupuy, 2009). As 

Fodor puts it, computers ‘show us how to connect semantically with causal properties for 

symbols’ (1987, p. 20). If this picture is correct, the semantic relations amongst the 

contents of thought can be successfully captured via the mind as a ‘syntax-driven 

machine’ processing symbols with representational content (ibid., p. 20). As Shores 

clarifies, Fodor’s ‘language of thought’ is committed to a ‘nomological’ correspondence 

between the contents of folk psychological states and the contents of internal mental 

representations which agents bear relations to. This is because ‘the same explanatory role 

is assigned to the belief as to the relation’ (1985, p. 62). So, if an agent has the belief that 

blueberries are good for you, they are standing in a law-like relation to a representation 

with the content that blueberries are good for you. For the proponent of RTM, the CCTC 

thus provides a plausible explanation of how a physical system like the brain can capture 

the normative relations associated with the contents of thought through the processing of 

internal representations. 

4.2 ‘Representation’ in the representational theory of mind 

 

There are two sorts of objections to the RTM: empirical objections and conceptual 

objections. Empirical objections attack the RTM’s scientific basis. For instance, one 
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could deny that the CCTC offers the best theory of cognition, or alternatively, claim that 

the best version of the CCTC does not posit inner states that systematically correspond to 

folk psychology. One version of this objection is pursued by the eliminative materialist, 

for whom the correct account of cognition ‘will bear about as much resemblance to FP 

[folk psychology] as modern chemistry bears to four-spirit alchemy’ (Churchland, 1981, 

p. 82. Parenthesis added). Conceptual objections attack the way the RTM proponent 

infers representation from the CCTC. I think empirical objections to the RTM are 

powerful. However, I am presently interested in the extent to which the CCTC really 

implies representation, not whether or what version of the CCTC is correct. Therefore, 

the remainder of this section will focus on conceptual objections to the RTM.  

 

According to the RTM, the CCTC implies computational states that correspond to the 

propositional attitudes of folk psychology. There are actually two possible ways of 

interpreting this claim. In evaluating the RTM, it is important that these interpretations 

are separated. The first interpretation says that the symbols of the CCTC are 

representations because any symbol within computation is a representation. This 

interpretation pertains to generic considerations about the nature of computation.  The 

second interpretation says that the symbols of the CCTC are representations because they 

are analogues to propositional attitudes. This interpretation pertains to special 

considerations introduced by the naturalisation of folk psychology. I will briefly consider 

the first interpretation before focussing my discussion on the second interpretation. 

 

The first interpretation essentially constitutes a commitment to the SV: computational 

approaches to cognition imply representation because all computation implies 

representation. If this is the appropriate interpretation of the RTM, then the Fodorian 
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slogan ‘no computation without representation’ is really a thesis about the nature of 

physical computation simpliciter. This interpretation is evident in parts of Fodor (1975) 

and is usefully summarised by Shores (1985). Shores writes that the notion of 

computation adopted by the RTM is one where computation ‘is a process that involves 

the manipulation of interpreted syntactic objects’ (ibid., p. 13). He goes on to write that, 

‘Interpreted syntactic objects are syntactic objects that have semantic properties such as 

meaning, truth, or reference’ (ibid., pp. 13-14).25 I have argued against this view of 

computation in preceding sections. It is enough to say that the RTM does not introduce 

any novel argument for the SV. Drawing from the lessons above, note that the SV does 

not follow merely from the fact that computations serve in cognitive tasks or capacities 

(see section 3.2 above; we will return to this argument in section 4.4 below). Moreover, 

there is nothing special about the RTM that would ease the concern, raised in section 2.4 

above, that a weaker notion of semantics suffices for the truth of the SV. 

 

The RTM proponent may concede that physical computation itself does not presuppose 

representation but maintain that there is a stronger reason for thinking that the CCTC 

implies representation.26 As sketched already in section 4.1 above, the appeal to the 

necessity of representation in the CCTC then comes to rest on an observation about the 

special relationship between symbols in the CCTC and the representations of folk 

psychology. If our best theory explains the predictive power of propositional attitudes by 

conceiving of them as relations to the inner symbols of the CCTC, then the inner symbols 

                                                
25 Observe that if the SV is true, an appropriate version of the CCTC is true, and the SV does imply genuine 

representation (pace the worries raised in section 2.4 above), then this is sufficient for justifying the 

explanatory significance of cognitive representation. In other words, cognition would be 

representational even if the CCTC failed to vindicate folk psychology. 
26Shores (1985, chapter 4) acknowledges something like this in response to Stich’s (1983) ‘syntactic 

argument’ against the necessity of representation in the CCTC. See below, this section, for related 

discussion.   
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of the CCTC ought to be conceived of as a kind of cognitive representation. 

 

The problem with this argument is that all the CCTC demonstrates (if correct) is that folk 

psychology is successful because there exists a level at which inner syntactic processes 

mirror those of folk psychology. The RTM assumes that if this parallel obtains, then 

computational processes inherit the representational properties of states in folk 

psychology. According to this logic, to show that propositional attitudes map onto the 

causally potent states of CCTC is to show that the CCTC must represent the contents of 

those propositions. To borrow from Cummins, for the RTM, ‘thinking that p requires 

representing the proposition that p’ (1996, p. 3. Original emphasis). The CCTC is 

committed to causally potent symbols whose processing is sensitive only to the ‘syntactic 

properties’ of those vehicles, and in turn, let’s grant, those processes mirror the processes 

of folk psychology. But this mirroring relation does not entail that the symbols of CCTC 

retain the semantic properties of propositional attitudes. It does not follow from the fact 

that the success of folk psychology needs explaining, and that the CCTC explains this 

success by positing a level of corresponding syntactic states, that the properties of CCTC 

symbols inherit all the properties of states as they appear in folk psychology. In general, 

explanans need not feature identical properties of their explananda. 

 

Dupuy (2009) articulates a version of this worry, distinguishing between the 

‘preservation’ and ‘creation’ of meaning. Dupuy says that whilst ‘syntactic rules’ 

preserve the internal coherence of symbolic representations, this is not enough to show 

that they bear representational content. It is for this reason that ‘one of the stumbling 

blocks the computer model faces is the problem of determining how symbols acquire 

meaning.’ (ibid., p. 39). I think the central insight implicit within Dupuy’s observation is 
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that the traditional problem of content determination can be traced back to the opaque 

role of representational content in the CCTC, where attributions of said content are 

motivated by the fact that the syntactic relations of the CCTC are capable of mirroring 

the semantic relations of folk psychology. I will argue in chapter 4 and chapter 5 that 

representational content becomes less mysterious when we ground its attribution in the 

causal role played by a set of representation-like mechanisms. 

 

The present objection can be traced back to Stich (1983), whose central idea can be 

summarised as follows: by itself, the CCTC only provides the grounds for positing 

processes over syntactically defined states, providing no additional reason to think that 

these states are properly representational. According to Stich’s ‘syntactic theory of mind’, 

offering a computational description of the mind commits one to the idea that relations 

among neurological states map to syntactic relations among parts of ‘mental sentences’ 

that obtain at a higher level of description. Stich’s point is that computational description 

occurs at this syntactic level and in the ‘formal relations amongst the syntactic objects of 

mental sentences’ (ibid., p. 151).27 It is these formal properties that are responsible for 

explaining the contribution of computational states to the behaviour of a system. 

According to Ramsey, following Stich, the ‘standard interpretation’ holds that the CCTC 

provides a reduction base for propositional attitudes; thus, the notion of representation 

ascribed to the CCTC is the very same notion of representation suggested by folk 

psychology. He writes, 

                                                
27 The MV has been framed as an evolution of Stich’s syntactic view (Piccinini, 2015, pp. 46-47). The 

main difference is that the MV avoids committing to the characterisation of computation in terms of 

‘syntactic’ relations. As far as the present discussion is concerned, the takeaway message of the 

syntactic and mechanistic view remains the same: for at least some cases of computation, the 

explanatory purchase earned by computational descriptions is carried by the transformation of 

functionally-defined digits, not by the transformation of representations. 
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[T]he Standard Interpretation comes with the tacit assumption that we can 

show how symbols are representations by claiming that they realize or 

instantiate propositional attitudes [...] this doesn’t work. You can’t use the 

fact that A is the proposed reduction base for B to establish that A has all the 

relevant features of B. That is, you can’t make computational symbols 

function as representational states by proposing that they serve as the things 

with which folk mental representations are identified. (2007, pp. 64-65) 

 

Schweizer (2017) makes a similar point when he says, 

 

[T]he unique ‘content’ postulated by RTM is superfluous to the formal 

procedures of CTM [computational theory of mind]. And once these 

procedures are implemented in a physical mechanism, it is exclusively the 

causal properties of the physical mechanism that is responsible for all aspects 

of the system's behaviour. So once again, postulated content is rendered 

superfluous. (p.65. Parenthesis added. Original emphasis) 

 

Each of these objections offers the same essential observation: even if the CCTC provides 

a reduction base for folk psychological attitudes, the role of representation for scientific 

explanations of cognition remains opaque. 

4.3 Input-Output representation reconsidered 

 

The criticisms of the RTM surveyed above accord with Ramsey’s (2007) objections to 

supporting the explanatory significance of cognitive representation within the CCTC by 

appealing to its role in vindicating folk psychology. However, Ramsey insists that the 

CCTC does invoke representations of two sorts. These take the form of ‘input/output 

representation’ (IO-representation), and ‘structural’, ‘simulation’ or ‘surrogate 

representation’ (S-representation). I will defend a version of the latter in the next chapter. 

In closing this chapter, I suggest that the IO-representation notion provides less 

convincing support for the explanatory significance of cognitive representation. 
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For Ramsey (2007), following Cummins (1991) and others, cognitive science is generally 

in the business of offering explanations of how a system performs a task or achieves a 

capacity by demonstrating how ‘inputs’ are converted into ‘outputs’ via internal 

processes.28 These inputs and outputs are not themselves features of the task or capacity 

to be explained. Rather, these inputs and outputs represent features of the task or capacity 

to be explained. In this way, cognitive science depicts cognitive processes as converting 

representational inputs into representational outputs. As Ramsey summarises, 

 

For now, the key point is that we are justified in treating a cognitive system’s 

inputs and outputs as representations because, given what we know about 

cognitive systems, we are justified in characterizing many of their operations 

as having certain types of starts and finishes; namely, starts and finishes that 

stand for other things. (2007, p. 70) 

 

Take the example of a cognitive system’s capacity to recognise faces. The input that the 

cognitive system receives is not an actual face but ‘some sort of visual or perhaps tactile 

representation presented by the sensory system’ (ibid., p. 69). The resulting output is also 

not an actual face but a representation: ‘perhaps something like the recognition “That’s 

so-and-so,” or perhaps a representation of the person’s name’ (ibid., p. 69). In short, 

Ramsey suggests that the states received and generated by a cognitive process can be 

thought to represent features of the cognitive capacity that they explain. 

 

Not all cognitive theories offer explanations in terms of discrete starts and finishes. For 

example, the kinds of explanations offered by dynamical systems theory (Chemero, 2009) 

                                                
28Such processes can be recontexualised in terms of the mechanistic framework of explanation. In so far as 

explanans possess an input-output structure, cognitive science posits what Glennan calls ‘input-output 

mechanisms’. An input-output mechanism is ‘a complex system that is situated in its environment in 

such a way that there are characteristic environmental events (inputs) that trigger a sequence—perhaps 

multi-stranded—of interactions between parts of the mechanism. This sequence concludes with some 

terminating event, the output’ (2002, p. 347).  
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and some versions of enactivism (Hurley, 2002) eschew this neat input/output structure. 

Nonetheless, Ramsey’s characterisation covers a common form of explanation including 

those offered by the CCTC. Before continuing, it is important to recognise the relative 

innocuousness of IO-representation as presented so far. Assume for a moment that 

Ramsey’s analysis of IO-representation is correct. A theory that offers explanations in the 

form of I/O transformations is not necessarily a representational theory of cognition. To 

be a representational theory of cognition is to be a theory that posits internal 

representations as part of the cognitive apparatus that causes behaviour (for related 

discussion, see Ramsey, 2007, p. 71). As such, even global eliminativists may concede 

that IO-representations are a feature of cognitive science simply given the structure of 

explanans in cognitive science. This would not shake their faith that our best theories in 

cognitive science eschew all internal cognitive representation. And yet, Ramsey (2007) 

argues that the CCTC is indeed a representational theory of cognition. This is for two 

reasons: because the CCTC implies ‘S-representations’ (see next chapter), and because 

the CCTC implies internal IO-representations. 

 

Under Ramsey’s analysis, there are different possible ‘layers’ of IO-representation. As 

we have seen, the top layer characterises how explanations of cognition start by positing 

start-up and finishing conditions that reflect the capacity to be explained. In addition, 

Ramsey says that the CCTC depicts a series of sub-layers of I/O transformations as part 

of its explanatory apparatus. This is because the CCTC adopts a ‘task-decompositional’ 

approach, explaining the capacity of cognitive systems by positing a series of increasingly 

simpler computing sub-systems with their own I/O transformations. It follows that these 

computing sub-systems will themselves require IO-representations: ‘Internal mini-

computations demand their own inputs and outputs, and these representations that are 
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external to the mini-computation are, of course, internal to the overall system’ (p. 72. 

Original emphasis). Hence, the CCTC implies internal IO-representations. 

 

Ramsey is right that the sorts of sub-systems featured in the CCTC are treated as 

computing operations, like addition, in a way that accords with the system-level 

capacity—or higher-level mechanism capacity—that they explain. However, I am 

sceptical that this implies these states function as representations on behalf of the 

system.29 The idea that a theory like the CCTC requires IO-representations depends on 

the assumption that if computational processes do not manipulate the features of the 

capacities that they explain—for example, if they don’t interact directly with faces, but 

they do explain facial recognition—they must manipulate representations of those 

features—for example, they must manipulate representations of faces. However, 

following the conclusions reached above, I submit that representation is not required to 

capture the role that computational processes play in completing some task or capacity. 

What is required is some causal connection between the computing mechanism and 

features of the task being explained. A computing subsystem in the brain does not 

compute in a vacuum but is connected to myriad other perceptual channels and 

subsystems for motor output. A subsystem may be said to compute, say, the distance 

between the system’s hand and some object to be reached (i.e., we can privilege this 

description of the many that are compatible with the narrow-functional properties of the 

subsystem), not because the subsystem’s states represent hands and objects, but because 

of the way that subsystem is embedded in a system that is sensitive to hand and distal 

                                                
29 Ramsey does expresses doubt over whether the internal IO-representations of the CCTC ‘actually are’ 

representations (2007, p. 76. Original emphasis). He (somewhat tentatively) concludes that IO-

representations do function as representations within the CCTC in a robust sense: ‘computational 

processes treat input and output symbolic structures a certain way, and that treatment amounts to a kind 

of job assignment – the job of standing for something else’ (ibid., pp. 76-77).  
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object stimuli, and which produces appropriate motor output. This corresponds to the kind 

of ‘wide-functional’ individuation sketched earlier. 

 

Following Block (1990), Ramsey uses the example of explaining how an agent performs 

multiplication by positing an internal subsystem that repeatedly adds numbers. He writes, 

 

If there is an inner sub-system that is an adder, then its inputs must be 

representations of numbers and its outputs representations of sums. If these 

internal structures are not serving as representations in this way, then the sort 

of task-decompositional analysis provided by the CCTC doesn’t work. (2007, 

p. 72) 

 

However, it strikes me that we can understand a subsystem as performing addition in 

accordance with task-decompositional analysis without accepting that the digits of the 

underlying process represent features of addition, like numbers and sums, on behalf of 

the cognitive system. Adopting the revised mechanistic view, I propose that a task-

decompositional analysis of a system is only committed to there being a parallel between 

the number of digit types and their transformations (its ‘narrow-functional properties’) 

and the addition operation—plus some fact about the context of the computation that 

privileges the addition operation over other descriptions (its ‘wide-functional 

properties’). In general, a computing mechanism can perform an operation, like addition, 

relative to some capacity to be explained, without representing features of that operation. 

In the above example, the subsystem explains how an agent performs multiplication, so 

we can assume that the subsystem possesses causal connections with other subsystems 

within the agent that are sensitive to number-related stimuli and appropriate verbal and 

other motor outputs. These connections make sense of why the addition function is 

privileged. Another way of thinking about the same point is this: according to the MV, 

we should not begin by thinking of the subsystem as performing addition, which in turn 
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explains how the agent performs multiplication. Rather, we should begin by thinking of 

the subsystem as performing computation qua its narrow-functional (capacity neutral) 

digit transformations. When embedded in a wider mechanistic context, this process 

explains how an agent performs multiplication, at which point, the addition operation 

description captures the role that the subsystem plays for the agent (the same subsystem 

could perform a different operation relative to a different capacity).  

 

In closing, note that a mechanistic interpretation of task-decompositional analysis does 

not preclude agents treating the states of a cognitive subsystem they are investigating as 

representations for their own heuristic purposes (for related discussion, see Egan, 1995). 

It may be that interpreting inner subsystems as transforming representations is useful for 

tracking the relevant transformations given their role in some cognitive capacity of a 

containing system. The present point is that a task-decompositional approach does not 

necessarily commit a theory to cognitive representation in any substantive sense. 

Recognising the potential heuristic value of representation-talk is different from claiming 

that a computational theory itself posits entities that function as stand-ins for a cognitive 

system (for related remarks, see Schweizer, 2017, pp. 74-75).  

5. Conclusion 

 

This chapter argued that there is no necessary connection between computation and 

representation. I claimed that the semantic view of computational individuation faces 

several potent objections. In turn, I showed that the alternative mechanistic view has the 

resources to individuate computation in accordance with its role in serving paradigmatic 

tasks without the need to appeal to semantic properties. In keeping with the mechanistic 

view, I contend that to compute and to represent are distinct functional kinds. However, 
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there is a good reason to suspect that even if the semantic view is correct, full-blown 

representation does not follow. Finally, I examined the relationship between the classical 

computational theory of cognition and the representational theory of mind. There are two 

principal reasons why a proponent of the representational theory of mind would think that 

the classical computational theory of cognition presupposes representation: because the 

semantic view is true, and because computation provides a naturalised reduction base for 

propositional attitudes. I have argued that both reasons are unconvincing.  

 

If the above arguments are correct, then a system may perform computation without 

representation. Therefore, appealing to computational explanations of cognition alone 

will not serve to show that subpersonal cognitive representation plays a significant 

explanatory role in cognitive science. This carries positive consequences for explanatory 

acuity: computation and representation mark distinct functional kinds, and so determining 

whether cognition is representational as well as computational is a significant discovery. 

More generally, determining what systems compute, what systems represent, and the 

intersection of these sets identifies non-trivial facts about where and to what extent these 

different functional types overlap within mechanisms for different phenomena. 

 

The following chapter defends a characterisation of cognitive representation in terms of 

internal structure-preserving map or model-like mechanisms. As it happens, these ‘S-

representations’ are consonant with many computational explanations of cognition, 

including the classical computational theory of cognition. Though computation and 

representation are conceptually distinct, there are good reasons to suspect that our best 

explanations will depict cognition as both computational and representational. 
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Chapter 4  

 

The S-Representation Account 

 

1. Introduction 

 

This chapter defends a version of the ‘S-representation account’. I argue that when a 

cognitive mechanism meets the functional criteria for S-representation, that mechanism 

serves as a representation on behalf of a cognitive system, and therefore counts as a 

cognitive representation. In turn, when an empirical theory posits a mechanism that meets 

the functional criteria for S-representation, it counts as a representational theory. 

 

As I intend it, the S-representation account depicts cognitive representation in terms of 

structure-preserving mechanisms that function analogously to a class of ordinary 

representation (the ‘S’ handily encompasses the terms ‘simulation’, ‘surrogacy’ and 

‘structural’, all of which have been deployed in the literature to similar ends). This class 

of ordinary representation includes cartographic maps and at least some scientific models. 

Mechanisms that meet the criteria for S-representation determine, in part, the success or 

failure of a cognitive capacity in virtue of the extent to which they structurally correspond 

to some entity. In doing so, they imply correctness conditions that are causally relevant 

to a cognitive system. In addition to presenting the S-representation account, this chapter 

responds to some of the strongest objections in the literature. Along the way, I will suggest 

that far from being a relic of the classical computational theory of cognition, the S-

representation account remains in touch with alternative computational approaches (cf. 

Ramsey, 2007). The S-representation account is an account of representation, not an 

empirical theory. However, frameworks like predictive processing, as well as specific, 
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cross-framework mechanisms such as ‘cognitive maps’ indicate the continued relevance 

of S-representation for cognitive science.  

 

The chapter proceeds as follows. Section 2 outlines the S-representation account. Section 

3 surveys how the S-representation account is vindicated in the empirical literature. 

Section 4 examines two potent objections. The first objection says that S-representation 

is defined using a structure-preserving relation (isomorphism) that is too demanding. The 

second objection says that the S-representation account cannot naturalise the consumer 

required for genuine representation. I use this discussion as an opportunity to clarify the 

central commitments of the S-representation account as I present it. Finally, section 5 

presents Ramsey’s (2016) distinction between the ‘functional role dimension’ and 

‘content grounding dimension’ of representation. Though Ramsey’s distinction is useful 

for highlighting what a complete account of representation must address, I raise two 

reasons to be cautious. The first reason is that the distinction, as presented, blurs the 

notions of ‘representational target’ and ‘representational content’ which are importantly 

separable under some accounts of content. The second reason is that Ramsey invites a 

traditional causal-historical theory of content to supplement the S-representation account, 

and yet such a theory conflicts with a mechanistic framework. I close by indicating that 

the S-representation account, when embedded within a mechanistic framework, can 

address both dimensions in one fell swoop. This discussion lays the groundwork for a 

complete treatment of how to think about content in chapter 5. 

2.1 Ordinary S-representation 

 

Previous chapters argued that for representation to play an explanatory role in cognitive 

science a purported cognitive representation must pass the job description challenge 
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(JDC) (Ramsey, 2007). I claimed that to pass the JDC, an entity must function in a 

distinctly representation-like manner in a way that implies representational content is of 

causal relevance to a cognitive system. The mechanistic account of representation further 

framed this perspective in terms of mechanistic explanation but did not demonstrate if or 

how a cognitive mechanism could fulfil the appropriate functional role. One strategy for 

demonstrating that a mechanism does function in a distinctly representation-like manner 

is to show that it functions analogously to a particular type of ordinary representation. 

The S-representation account deploys this strategy.  

 

In broadest terms, the S-representation account concerns a type of representation 

characterised by the way a vehicle structurally corresponds to that which it functions to 

represent for a consumer (what I will come to label its ‘target’). One set structurally 

corresponds to a second set when elements of the first set map to elements of the second 

set such that some relation between elements in the first set is preserved. Two sets are 

‘homomorphic’ just in case there exists some structure-preserving mapping between 

elements of the two sets. Two sets are ‘isomorphic’ just in case there exists a one-to-one 

structure-preserving mapping between elements of the two sets. In this way, isomorphism 

is a type of homomorphism that admits an inverse. We will return to how best to unpack 

structural correspondence in cases of cognitive S-representation below. 

 

Agents exploit ‘ordinary S-representations’ in everyday life to learn and reason about the 

entities that they stand-in for via structural correspondence. Cartographic maps are one 

example. Cartographic maps preserve various relations between geographical features in 

the relations between their own parts. Maps thus mirror the structure of a geographical 

region (to an appropriate degree of approximation). For instance, maps commonly 
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preserve the proportional spatial distance between points in a geographical region, where 

the proportional distance between, say, Lisbon, Berlin and Edinburgh might be preserved 

in the proportional distance between three marks on a map.1 Similarly, contour lines 

mirror the elevation of points in real space by systematically joining points on the map 

that correspond to an equal height. As a result, the space between contour lines mirrors 

the difference in elevation between points in a geographical region. Agents exploit this 

structural correspondence, using the map to make inferences about features of a 

geographical region. For example, mountaineers use contour lines to learn about the 

topography of a mountain, which allows them to, say, judge the steepness of a slope. By 

playing this role, the map as a whole can be said to stand-in for the mountain, and 

elements of the map can be said to stand-in for particular features of the mountain.  

 

Notice that maps often err by failing to structurally correspond to some geographical 

region. This affects the outcome of behaviours that depend on maps. When a mountaineer 

draws conclusions about the peaks, penitents and plateaus of a mountain by examining 

their map, the truth of those conclusions depends on how adequately the map structurally 

corresponds to the mountain. In turn, the mountaineer’s failure to draw the right 

inferences about the mountain is sometimes explained by a failure of the map to 

structurally correspond to the mountain. This failure need not be all or nothing: parts of 

the map might fail to correspond whilst others succeed, and the failure of parts might be 

more-or-less severe—contour lines might stray from their real-world counterparts with 

greater or lesser severity. Error is often a matter of degree. In any case, the explanatory 

                                                
1 The preservation of proportional distance makes the correspondence abstract or formal. Two marks on a 

map representing Lisbon and Berlin are not required to be 1438 miles apart; the distance between the 

two marks need only preserve the proportional distance between the two cities, as determined by the 

relations between the two marks and the other marks on the map representing, say, other cities. 
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importance of error reveals that the correctness or incorrectness of the map is causally 

relevant (and crucially so) to the outcome of a mountaineer’s behaviour. 

 

In his influential paper, Swoyer (1991) offers another example of ordinary S-

representation: a model plane in a wind tunnel that facilitates ‘surrogative reasoning’ 

about how a real plane will perform when flying. More generally, engineering and 

scientific models are good candidates for ordinary S-representation. Like cartographic 

maps, many ordinary models preserve spatial relations of a domain in the spatial relations 

of their own elements; for example, an orrery preserves the relative distances between 

solar bodies. More abstract models preserve various physical and temporal relations 

within equations; for example, a mathematical model of climate change might preserve, 

amongst other things, the relationship between values of CO2 in the atmosphere, solar 

radiation, and average terrestrial temperature over a period of time. In each case, 

structural correspondence endows agents with the ability to conduct surrogative 

reasoning, allowing them to draw inferences about phenomena in the absence of direct 

observation. Models of planetary motion, DNA binding and climate change allow 

scientists to form predictions and explanations of diverse phenomena that challenge more 

direct forms of interaction. Mirroring cartographic maps, the correctness of conclusions 

drawn about explananda using such ordinary models can be explained by reference to the 

degree of structural correspondence that obtains. 

 

Like ordinary maps or models, ‘cognitive S-representations’ are said to affect the 

behavioural outcomes of a consumer by structurally corresponding to some entity 

relevant to behaviour. For both ordinary and cognitive S-representation, understanding a 

vehicle as a stand-in for some entity on behalf of a consumer is critical for knowing how 
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a system fails or succeeds to achieve some capacity. By functioning analogously to 

ordinary S-representations, cognitive mechanisms play a causal role that is distinctly 

representation-like. 

2.2 Cognitive S-representation 

 

The S-representation account offers a well-articulated and empirically driven notion of 

cognitive representation in terms of a cognitive vehicle’s ability to structurally correspond 

to some entity in a manner that is crucial to explaining the behaviour of a cognitive system 

(for influential discussion, see Cummins, 1989). This mirrors the characteristics of 

familiar S-representations like maps and models. Indeed, those frameworks within 

cognitive science that appeal to viable instances of S-representation, such as the classical 

computational theory of cognition, often conceive of representations as serving as internal 

maps or models of the distal world on behalf of the cognitive system (for an early 

expression of this idea, see Craik, 1943). If the S-representation account is correct, then 

explaining certain cognitive capacities will plausibly require reference to the exploitation 

of inner structures that map or model some behaviourally relevant target in a manner that 

parallels cases of ordinary S-representation. 

 

Following Gładziejewski (2015), I take it that the S-representation account offers four 

functional criteria for cognitive S-representation (though my articulation differs 

somewhat). I take each of these conditions for cognitive S-representation to match those 

necessary for ordinary S-representation. The four criteria are as follows: 
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1. Structural correspondence: An S-representation R structurally 

corresponds to (or has the capacity to structurally correspond to) some entity 

x. 

 

2. Action guidance: R affects the behaviour (cognitive processing and/or 

motor output) of some cognitive system S in relation to x, such that some 

capacity of S causally depends on R’s structural correspondence with x. 

 

 

3. Decouplability: R need not be causally-coupled with x to perform action 

guidance for S in relation to x, i.e., R may be temporally and/or spatially 

distant from x. 

 

4. System-detectable error: S is (at least sometimes) causally sensitive to 

some lack of structural correspondence between R and x, such that the lack 

of structural correspondence between R and x affects the behaviour of S 

(cognitive processing and/or motor output). Such behaviour may include 

updating R, i.e., changing R’s structure to strengthen structural 

correspondence between R and x. 

 

The central conjecture of this chapter and the next is that these four criteria are sufficient 

for a mechanism to play a functional role that is distinctly representation-like. In turn, if 

a theory of cognition posits mechanisms that meet these four criteria, then that theory 

counts as a representational theory. We have not yet detailed precisely how to conceive 

of content within the S-representation account; however, the possibility of a functional 

parallel between ordinary artefacts and cognitive mechanisms already indicates the 
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plausibility of causally-relevant correctness conditions at the subpersonal level. To fully 

appreciate how these four criteria allow an entity to pass the JDC, we must unpack them 

further, paying special attention to structural correspondence and its interaction with the 

other criteria. 

 

As with ordinary S-representation, the idea of structural correspondence (sometimes 

‘structural resemblance’ or ‘structural similarity’) lies at the heart of cognitive S-

representation. O’Brien & Opie clarify this condition when they write, 

 

[O]ne system structurally resembles another when the physical relations 

among the objects that comprise the first preserve some aspects of the 

relational organisation of the objects that comprise the second. (2004, p. 15. 

Original emphasis.) 

 

For two entities to structurally correspond to one another they need not share the same 

‘first-order properties’ (such as colour, size, density etc.), but only certain ‘second-order 

relations’ (O’Brien & Opie, 2004; Morgan, 2014, p. 223). Exploiting a structural 

correspondence between two superficially different systems is common to ordinary S-

representations such as maps and models. For example, mathematicians might exploit a 

geometric diagram that represents an object moving through space to predict that object’s 

velocity (Cummins, 1989). As Morgan puts it: ‘we must look to the functional, 

dispositional properties of the mechanism, not to its static, categorical properties’ (2014, 

p. 221). O’Brien & Opie further refine this idea when they write, 

 

Two systems can share a pattern of relations without sharing the physical 

properties upon which those relations depend. Second-order resemblance is 

actually a very abstract relationship. It is a mathematical or set-theoretic 

notion […] Essentially nothing about the physical form of the relation defined 

over a system SV of representing vehicles is implied by the fact that SV 

resembles SO at second-order; second-order resemblance is a formal 
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relationship, not a substantial or physical one. (2004, p. 13. Original 

emphasis.) 

 

The formal nature of structural correspondence allows one entity to represent another 

even when their first-order order physical properties diverge. For example, neural activity 

can represent features of a geographical region through correspondence between firing 

rates of neurons and spatial distance between points in the environment (Bechtel, 2016; 

see section 3.2 below). 

 

The structural correspondence relation is often unpacked in terms of ‘isomorphism’—

that is, a one-to-one structure-preserving mapping. It is worth raising and setting aside an 

immediate worry that one may have about characterising cognitive representation in this 

way. The worry is that isomorphism possesses the wrong formal properties and so 

isomorphism cannot ground representation, hence structural correspondence cannot be a 

condition for cognitive representation. I take ‘symmetry’ and ‘reflexivity’ to be the most 

pertinent properties and so take these as my focus (for related discussion, see Goodman, 

1968). 

 

First, if isomorphism is a 1-1 correspondence, it is a bijective relation and admits an 

inverse; in other words, isomorphism is symmetrical. This means that if A is isomorphic 

to B, then B is isomorphic to A. However, symmetry is not characteristic of everyday 

representation (Sprevak, 2011, p. 671). A map may represent the Himalayas without the 

Himalayas representing the map. Isomorphism implies symmetry and so, the thought 

goes, implies the wrong formal relations for representation. Second, isomorphism is a 

reflexive relation because every structured object is ‘automorphic’: any structured entity 

will possess a 1-1 correspondence with itself. However, such reflexivity is not 
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characteristic of everyday representation. A map may represent the Himalayas without 

representing itself. Isomorphism implies reflexivity and so, the thought goes, implies the 

wrong formal relations for representation. 

 

The problem with symmetry and reflexivity is that they seem to overproliferate the 

representing relation. At this stage, we should note that isomorphism is not necessary for 

defining structural correspondence. Isomorphism is one type of ‘homomorphism’. As 

defined above, homomorphism refers to any structure-preserving mapping. 

Homomorphism encompasses isomorphism but also permits one-to-many and many-to-

many mappings. Defining structural correspondence in terms of the more liberal notion 

of homomorphism is advantageous in avoiding other worries about the S-representation 

account, in particular, the worry that isomorphism is too restrictive (see section 4 below). 

However, allowing for one-to-many mappings will not help overcome the present worry 

because all that does is permit additional kinds of mappings to fulfil the structural-

correspondence condition alongside isomorphism. For instance, allowing for weaker 

forms of structural correspondence does nothing to prevent the fact that a structured entity 

is isomorphic to itself. The solution to the worry that isomorphism implies the wrong 

formal properties rather lies in stressing that structural correspondence is not sufficient 

for representation.  

 

According to the S-representation account, one entity does not represent another just 

because some structural correspondence obtains. Equally important is the way a system’s 

capacity depends on the exploitation of one entity’s resemblance to another for action (for 

related discussion see Gallistel 1990; Cummins 1996). As Shea puts it, S-representations 

involve a form of ‘exploitable isomorphism’ (2014). The criteria for S-representation 
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ensure that the direction of action guidance between two entities plays a part in 

determining the ‘representation’ and the ‘represented’. At least one reason why a map 

may represent a mountain range, but the mountain range does not (usually) represent the 

map is because the structure of the map is exploited to guide action towards the mountain 

range and not vice-versa. Similarly, the map does not (usually) represent itself because 

the structure of the map is not exploited to guide action towards itself. The necessity of 

action guidance ensures that an S-representation R may stand-in for an entity x without x 

standing-in for R (avoiding symmetry) and without R standing-in for R (avoiding 

reflexivity).  

 

The worry that isomorphism implies the wrong formal properties is closely related to 

another objection to structural-correspondence based accounts of cognitive 

representation: that they trivialise content or entail ‘massive indeterminacy in content’ 

(Sprevak, 2010, p. 671). This objection is addressed in chapter 5 where my solution is 

similar to the one just offered: the semantic properties of a given cognitive representation 

are determined (and thus limited) by the context in which the representation is exploited 

by a consuming cognitive system. Structural correspondence is only of semantic 

significance when it is used by a cognitive system to act in the world. 

 

Building on the need for more than mere structural correspondence, the ‘decouplability’ 

criterion captures the fact that paradigmatic representations guide their consumer’s 

actions without needing to directly interact with that which is represented (Haugeland, 

1991).2 After all, ordinary S-representations, like maps and models, are notable for their 

capacity to influence the behaviour of an agent in relation to a represented entity without 

                                                
2 Both decouplability and system-detectable error can be viewed as subcriteria of action guidance, in so far 

as they clarify and substantiate the conditions for action guidance that S-representation involves. 
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the representation being causally coupled to the represented entity. Decouplablity 

underlies some of ordinary representation’s most impressive feats of action guidance, 

such as when mountaineers plan a trek of the Himalayas, or when scientists predict the 

behaviour of distant stars approaching supernova.  

 

There are two kinds of decouplability: ‘weak’ and ‘strong’ (Gładziejewski, 2015, pp. 77-

78). Weak decouplability requires only that there is no direct causal connection between 

some entity x and a representation R. Strong decouplability further requires that there is 

no causal connection between x and R’s consumer. Weak decouplability occurs in 

ordinary S-representation when a mountaineer uses a map as they trek the Himalayas: the 

map informs the agent about the Himalayas, and the map is not directly causally 

connected to the Himalayas—and yet the mountaineer is causally connected to the 

Himalayas. Strong decouplability occurs in ordinary S-representation when the 

mountaineer uses a map before they trek the Himalayas: the map informs the agent about 

the Himalayas, and the map is not directly causally connected to the Himalayas—and 

furthermore, the mountaineer is not causally connected to the Himalayas. To borrow from 

Gładziejewski, in cases of strong decouplability, S-representations ‘enable the system to 

guide its action with respect to states of affairs that are not “reliably present” for the 

system because they are not present for the system at all’ (2015, p. 78. Original emphasis).  

 

‘System-detectable error’ further strengthens the action-guidance criterion—though it 

may strike some as the weakest ingredient in the above recipe for S-representation. 

Advocates of the system-detectable error criterion claim that it is only within systems 

capable of detecting error for which incorrect representation can be said to matter for that 

system (for this line of thought, see Miłkowski, 2013, 2015b; Gładziejewski, 2015; 
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following Bickhard, 1999). Nonetheless, one might contend that ‘representational error’ 

(sans system-detection) has a role to play for a mechanism that meets only the first three 

criteria for S-representation. This is because it seems that decouplable action guidance 

via structural correspondence is sufficient for something to stand-in for something else 

on behalf of a cognitive system. I leave this debate aside. For the purposes of this chapter 

and the next, I will adopt the system-detectable error criterion as necessary because I 

think it presents the strongest case for S-representation. As we shall see, the system-

detectable error condition supports the action-guidance condition by strengthening the 

notion that it is the cognitive system itself which counts as a consumer. This is because 

the significance of structural correspondence between a mechanism and some entity for 

a cognitive system is strengthened if that system is sensitive to a lack of structural 

correspondence between the mechanism and entity in question. However, it should be 

noted that if the S-representationalist can establish that system-detectable error is not 

required for a cognitive mechanism to possess a function analogous to ordinary S-

representation, then the empirical possibility of cognitive S-representation is 

strengthened, as the conditions for its realisation are weakened. 

 

There are two prima facie worries one may have about the possibility of system-

detectable error in a cognitive system. The first is how a cognitive system could detect a 

lack of structural correspondence between an S-representation and what it represents. The 

second is that the system-detectable error condition smuggles in representational content, 

which is the very thing at stake. This is because the ability to detect ‘error’ implies the 

ability to detect something false, inaccurate etc., the thought goes. Responding to both 

these worries requires us to observe how cognitive systems ordinarily receive feedback, 

namely through sensitivity to the outcome of their own behaviour. Within the literature, 
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system-detectable error has been most straightforwardly unpacked in terms of a system’s 

sensitivity to ‘action failure’ (for example, see Bickhard, 1999). In this sense, error 

detection is second-hand: a cognitive system is not sensitive to the degree of structure-

correspondence between a vehicle and the entity it represents per se but to the failure of 

action that results from that relationship. Gładziejewski frames this as follows, 

 

[T]he mechanism in question should be equipped with internal components 

whose function is to detect the fact that the action guided by the representation 

vehicle (through its effect on the representation consumer) fails to achieve 

success. (2015, p. 80) 

 

This parallels many instances of error detection in ordinary S-representation. For 

example, a mountaineer might detect a lack of structural correspondence between a map 

and a mountain when they follow a route which the map depicts as a gentle slope only to 

discover a sheer cliff face. In other words, the mountaineer is sensitive to a lack of 

structural correspondence via their sensitivity to the failure of their own actions. This 

sensitivity to action failure does not itself presuppose representational content. It only 

presupposes that there is (i) some capacity that the system attempts to complete, and (ii) 

some method by which the system receives feedback on the success or failure of that 

capacity. System-detectable failure suggests incorrectness only when it results from a 

mechanism with other representation-like characteristics, such as when it results from a 

decouplable mechanism that guides action via structural correspondence. Once again, the 

mutual interplay between all four conditions for S-representation is important for 

justifying the representational label. 

 

To close our initial sketch of the S-representation account, it is worth noting that there are 

two ways to identify a representational vehicle given the criteria for S-representation (for 
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a similar point see Ramsey, 2018, p. 261). The first way is to conceive of the ‘whole S-

representation’ as the vehicle. The second way is to conceive of individual parts of the S-

representation as the vehicle. In mechanistic terms, this is roughly the difference between 

a whole mechanism that structurally corresponds to, say, some geographical region, and 

the mechanism’s components that individually correspond to elements of that region. This 

reflects a difference pertaining to ordinary S-representation too, for example, the 

difference between a whole cartographic map and its individual marks. A whole 

cartographic map may be regarded as a representation of a geographical region whilst its 

individual marks may be regarded as representations of features within that geographical 

region. This is the difference between a map standing-in for Nepal (in virtue of its global 

structural correspondence with Nepal), and a mark on that map standing-in for 

Kathmandu (in virtue of its relative position on the map).  

 

To my mind, there is no disadvantage to viewing both the whole S-representation (i.e., 

the whole mechanism) and its parts as representational vehicles. However, it is important 

to stress that, like cartographic maps, those parts only serve as representations in so far 

as they bear relations to other parts within the wider S-representation. A mark on a map 

functions as a representation because of its relationship to other marks that together 

realise a structural correspondence with the represented domain (for related discussion 

see Ramsey, 2007, p. 78; 2018, p. 261). As such, a contour line does not function to 

represent because of some intrinsic feature of the contour line itself. Rather, it functions 

to represent because its relationship to other contour lines realises a structure that mirrors 

the relationship between points of elevation in the world (which in turn allows one to 

draw inferences about the world from the map). This holistic perspective has implications 

for how we understand the representational role of ‘symbols’ posited by frameworks like 
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the classical computational theory of cognition. If cognition is to be explained in terms 

of computations performed over symbols implemented in the brain, then as far as the S-

representation account is concerned, those symbols do not represent anything in virtue of 

their intrinsic properties but represent (if at all) in virtue of their role as elements in a 

wider structure-preserving mechanism. 

2.3 S-representations as mechanisms 

 

The S-representation account and the mechanistic account of cognitive representation 

(see chapter 2) are conceptually distinct: a proponent of the S-representation account is 

not necessarily a proponent of the mechanistic framework and vice versa. Nonetheless, 

the two accounts make strong companions. This is because we can understand the 

vehicles which realise the functional criteria for S-representations as cognitive 

mechanisms. Recall that, according to the mechanistic account of representation, M is a 

cognitive representation iff M is a mechanism that has the causal role to stand-in for 

something relative to some capacity of a cognitive system. The S-representation account 

provides the missing specification for how this role could be realised. 

 

The benefits of uniting the S-representation account with a mechanistic approach go two 

ways. On the one hand, the mechanistic account of cognitive representation is 

substantiated by a story of what properties a mechanism ought to possess to count as a 

representation; the S-representation account articulates a set of well-specified functional 

criteria that may be fulfilled by a class of cognitive mechanism. On the other, the S-

representation account is strengthened by elucidating what sort of theoretical entity meets 

its criteria; a mechanistic approach ensures that S-representation ascriptions are 

consonant with our dominant explanatory paradigm, and in doing so, clarifies what it 
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means for a theory to ascribe S-representations. Hereafter, a ‘representational mechanism’ 

or ‘R-mechanism’ will refer to a cognitive mechanism with a causal role (relative to some 

cognitive capacity) that meets the four criteria for S-representation. To be a cognitive 

representation is to be an R-mechanism. 

2.4 S-representation and classical computation 

 

Chapter 3 argued that computation and representation are distinct functional kinds. 

However, this does not mean that a computing system cannot also be a representing 

system. The idea that the states and processes of a computing mechanism might be 

exploited by a cognitive system to map or model a domain, offers a clue as to how to 

provide representational content with a proper role within a computational approach. This 

is because we can start to see how the correspondence between digits and their 

transformation in a computing system and states of affairs relevant to behaviour could 

play a systematic role in explaining the capacities of a cognitive system. 

 

Under the S-representation account, the computational processes of cognition remain 

‘mechanical’. In this sense, there is no difference between the causal properties of an S-

representation and any old (non-S-representational) computing system. What makes the 

former representational is that the success or failure of the containing system depends on 

the degree of correspondence between the structure of a computing mechanism and some 

target entity, and because of this, we can reasonably characterise the functional role of 

that mechanism as ‘standing-in for’ features of that entity (more on the significance of 

targets and a system’s success/failure in chapter 5). As alluded to above, parts of an R-

mechanism can be identified as standing-in for parts of a domain given their role in the 

wider structural correspondence of that domain. When we ask what it is about marks on 
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a map that facilitate successful navigation, we must say that they accurately model 

features of the task-relevant environment. When we further ask how they model the 

environment, we must say that they preserve pertinent relations between features of the 

environment. By doing so, they stand-in for those features. An analogy to this sort of 

schema underlies Ramsey’s (2007) defence of the role representation plays in the classical 

computational theory of cognition (CCTC). The CCTC commonly presents cognition as 

involving the construction and deployment of inner cognitive models, realised by a 

classical architecture. These inner models preserve the structure of some task domain. 

Symbols within the CCTC (over which computational operations are performed) can be 

understood as standing-in for parts of that domain. Ramsey writes, 

 

Understanding how computers work involves understanding more than the 

nature of their physical operations. We also want to understand what it is 

about those specific operations that enable the system to perform some sort 

of task. (2007, p. 86) 

 

We are compelled to ask, 

 

“What is it about the causal/physical nature of this system that enables it to 

solve a particular problem?” And the CCTC answer is this: These 

syntactic/physical operations are successful in solving this problem because 

they implement a model of a problem domain, and, as such, employ elements 

that stand for various aspects of that domain. (ibid., p. 86. Original emphasis.) 

 

The CCTC posits internal models that preserve the structure of some domain (the 

structural-correspondence condition). This structural correspondence causally affects the 

system such that it determines, in part, the success or failure of a system’s capacity (the 

action-guidance condition). These models are constructed and operated on at a temporal 

and spatial distance from the entity which they stand-in for (the decouplability condition), 

and we can easily imagine these models updating following feedback (the system-

detectable error condition). In short, the CCTC plausibly posits S-representations.  
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Ramsey (2007) affirms the role of S-representation in the CCTC. And yet, he offers a 

pessimistic prognosis for S-representation.3 This is because the dominant computational 

paradigms of contemporary cognitive science, in particular connectionism, eschew any 

substantive notion of internal structure-preserving models. In response, several authors 

have noted that Ramsey’s (2007) analysis does not match the commitments of many 

connectionist approaches or contemporary cognitive neuroscience more generally. It is 

worth briefly considering some of the counterexamples which have been proposed. 

 

A notable instance of this rebuke can be found in Shagrir’s (2012) discussion of the 

contemporary ‘model-based’ understanding of the oculomotor system. Motor control in 

the oculomotor system is taken to be governed by the modelling of eye position. This is 

achieved because different states in the underlying ‘attractor network’ are responsible for 

encoding a unique eye position; the distance between two eye positions is systematically 

mirrored in the distance between states in the line attractor (which describes eye position 

in response to stimuli).4 Shagrir writes, ‘The state-space of the network could be seen as 

a map whose line attractor corresponds to the space of eye positions’ (p. 14. Original 

emphasis). In other words, relations in the underlying computational process 

systematically mirror eye position.  

 

                                                
3Ramsey’s recent work expresses a more optimistic outlook. In discussing the S-representation account he 

writes, ‘In truth, virtually every area of cognitive modelling has involved theories that appeal to 
representations of this sort. This includes various accounts of reasoning, knowledge representation, 

memory, learning, navigation, perception, language comprehension, motor control, and several other 

cognitive competencies’ (2018, p. 263). 
4 In connectionist approaches, an attractor network is a type of recurrent network—basically, a neural 

network that uses feedback loops to feed information back into the system—that over time evolves 

toward a stable pattern (defined as a subset of possible states). Attractor networks are frequently used 

in contemporary computational neuroscience to model cognitive capacities.  
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Also responding to Ramsey (2007), Sprevak makes a related point regarding the 

generalisability of a model-based notion of representation. Far from being the sole remit 

of the CCTC, ‘It is commonplace in cognitive neuroscience, connectionism, indeed all 

areas of cognitive science, to explain behavioural success in terms of the agent’s 

inferences about internal models’ (2011, p. 673). He offers the example of explanations 

that depict an agent making inferences about ‘edges’ in her visual field via the modelling 

of edges implemented by neurons in V1 (ibid.). Along similar lines, Grush (2008) 

suggests that Ramsey (2007) underplays the role of S-representation in contemporary 

motor-control theory. This is because of the prevalence of ‘forward models’. A forward 

model is a model-based prediction of the agent’s body position that takes the input of a 

motor command and outputs an estimation of body position. These outputs can then be 

compared to actual body position, with resulting error fed back to inform future motor 

commands. Grush’s suggestion that forward models are potential S-representations 

notably anticipates Gładziejewski’s (2016b) sustained defence of S-representations in the 

predictive processing framework (see chapter 2 and section 3.1 below). 

 

I do not intend my brief sketch of these counterexamples to conclusively demonstrate the 

need for S-representations in our best computational explanations. Nor do I mean to take 

sides with regards to the effectiveness of any particular approach. I mean only to indicate 

that the empirical relevance of the S-representation account is not straightforwardly tied 

to the fate of the CCTC. We now turn to a more detailed example of S-representation in 

the contemporary cognitive science literature.  
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3.1 Cognitive S-representation in action 

 

The S-representation account proposes a set of conditions that may be met by several 

otherwise distinct cognitive mechanisms. Gładziejewski describes the conditions for S-

representation as a ‘highly idealized sketch of a possible mechanism’ (2015, p. 69. 

Original emphasis). This is partly because the account offers functional criteria that may 

be realised by components with different structural details or with roles in different 

cognitive capacities. For example, psychologists working within mental model theory 

postulate ‘mental models’ (Johnson-Laird, 1983, 1998) and ‘mental images’ (Kosslyn, 

1994) as related but distinct representations.5 Both suggest the possibility of R-

mechanisms: many purported mental models and mental images plausibly involve 

underlying de-couplable mechanisms that guide action by way of encoding spatial-

analogical information about entities in the world. Capturing the central role of structural 

correspondence in mental models, Johnson-Laird says, ‘the structural relations between 

the parts of the model are analogous to the structural relation of the world’ (1998, p. 447). 

At the same time, mental models and mental images are importantly distinct notions 

within much of the literature. For one thing, they are differentiated in their anatomical 

properties (for example, mental model theory localizes the parietal lobe as responsible for 

mental models, but the occipital lobe, particularly V2, for mental images). For another, 

these mechanisms are involved in different cognitive processes. These examples illustrate 

that the S-representation account does not refer to a single kind of mechanism as 

individuated by scientific practice but specifies the conditions for a family of possible 

mechanisms whose members share the same high-level functional properties. 

 

                                                
5 For a recent comparison of these two frameworks that highlights some of their representational 

commitments, see Sima, Schultheis & Barkowsky (2013). 
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Our discussion so far indicates that there are two broad strategies for illustrating how the 

S-representation account is vindicated by the empirical literature. The first strategy 

involves observing the generic posits of a theoretical framework, noting that these suggest 

functional properties that correspond to the requirements of S-representation. The second 

strategy involves identifying a specific cognitive mechanism whose functional properties 

correspond to the requirements of S-representation. Such a mechanism may be posited 

by multiple frameworks. The first strategy has at least two major precedents. The first is 

Ramsey’s (2007) discussion of the classic computational framework, already visited 

above. The second is Gładziejewski’s (2016b) discussion of the predictive processing 

framework. Gładziejewski’s analysis was anticipated in our sketch of the predictive 

processing framework in chapter 2 where we suggested that the framework provided 

prima facie support for the relevance of ‘non-natural information’ in cognitive science. A 

complete discussion of Gładziejewski’s analysis would take us too far off course. 

However, Gładziejewski succinctly summarises how generative models in the predictive 

processing framework fulfil the criteria for S-representation when he writes that, 

 

[C]ognitive systems navigate their actions through the use of a sort of causal–

probabilistic “maps” of the world. These maps play the role of representations 

within the theory. Specifically, this map-like role is played by the generative 

models. It is generative models that, similarly to maps, constitute action-

guiding, detachable, structural representations that afford representational 

error detection. (2016b, p. 569) 

 

 

In short, the generative models of predictive processing suggest decouplable, structure-

preserving mechanisms that guide action and update in lieu of error; they suggest R-

mechanisms. 
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‘Cognitive maps’ serve as a notable example of the second strategy for illustrating how 

the S-representation account is vindicated in the empirical literature. Cognitive maps play 

a prominent role across contemporary cognitive psychology and cognitive neuroscience.6 

As cognitive maps are frequently discussed in the literature on S-representation and will 

serve as a useful reference point in the remainder of this chapter and the next, it is worth 

discussing their essential features. 

3.2 Cognitive maps as S-representations 

 

First posited by Tolman (1948), the idea of a ‘cognitive map’ (sometimes ‘mental map’ 

or ‘hippocampal map’) gained traction with O’Keefe & Nadel (1978) and was developed 

by Gallistel (1990).7 Often studied through ethological and neurophysiological 

experiments on rats, cognitive maps are mechanisms, principally located within the 

mammalian hippocampus, that appear to play a crucial role in spatial-navigational 

capacities (see Bechtel, 2016, for an overview). Specifically, cognitive maps are thought 

to be responsible for encoding, storing and decoding information about locations and 

features of an organism’s spatial surroundings. In Tollman’s (1948) original experiments, 

rats were trained to navigate mazes and locate food. It was discovered that if a rat was 

trained on a circuitous route, then placed in a maze with a more direct path to the reward, 

the animal would take the direct route rather than the circuitous route which had been 

reinforced in previous trials. This was taken to indicate that the rats did not navigate solely 

via stimulus-response learning. In subsequent experiments, various other tools were 

                                                
6Some do still doubt the evidence for cognitive maps. For example, see Bennett (1996); Jensen (2006). 
7 Neuroanatomy is rife with talk of sensory and motor ‘maps’ that serve as potential S-representations: for 

instance, ‘somatotopic maps’ and ‘retintopic maps’. It is often suggested that these serve as a kind of 

‘topographic representation’, in so far as they instantiate an ordered correspondence between neural 

structures and a sensory surface—for example, the body to the sematosensory cortex and retina to the 

primary visual cortex. I leave assessing the representational credentials of these mechanisms aside, and 

focus on cognitive maps, as they more straightforwardly demonstrate the criteria for S-representation 

that I have set out. 
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employed to control for factors such as local environmental cues outside the maze—for 

instance, the ‘Morris Water navigation task’ in which the animal must navigate a pool of 

water that obscures possible auditory, visual, or olfactory cues (Morris, 1984).  

 

Present evidence indicates that the neurological basis for these mechanisms resides in 

large part in the selective activation of specialised ‘place cells’ and ‘grid cells’ 

corresponding to specific spatial locations, which collectively function as a map of an 

environment (for example, see Moser, Kropff & Moser, 2008). Of significance, the firing 

rate and strength of connections between cells within cognitive maps are thought to 

correspond proportionally to the distances between features in the environment; that is, 

they structurally correspond. To clarify, a cognitive map does not preserve the spatial 

relations between elements of an environment in the spatial relations of neurons. Rather, 

a cognitive map preserves spatial relations within the relations between firing rates and 

the strength of connections between neurons. As such, a cognitive map is not a literal 

cartographic map. Recall that structural correspondence is a second-order relation: one 

set need not possess the identical spatial relations of a second set for the first set to 

preserve the structure of the second set. More technically, what matters is that the first set 

instantiates an exploitable ‘geometric structure’—a set of objects satisfying those axioms, 

pertaining to topographical or metrical relations, that function to preserve relations 

between objects within another set (for discussion see, O’Brien & Opie 2004; Rescorla, 

2009). Within the computational approaches that reference them, cognitive maps are 

expected to serve as maps in so far as the organised objects of which they are composed 

satisfy a set of relevant axioms (Rescorla, 2009).  
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Cognitive maps are candidates for R-mechanisms because they cohere with the four 

criteria listed above. By encoding features of the animal’s environment, cognitive maps 

guide action through structural correspondence. The maps are also (strongly) de-

couplable as they are thought to be involved in anticipating and planning future behaviour 

(Bechtel, 2016; Miłkowski, 2015b). Finally, cognitive maps are highly modifiable as the 

rat’s environment changes, and thus involve a form of system-detectable error (Jeffery, 

2015). The precise role of cognitive maps within the wider cognitive economy and their 

pervasiveness matters less for our purposes than the fact that they illustrate a plausible 

case of how the S-representation account might be vindicated. Note that though cognitive 

maps form a plausible case of an R-mechanism, proponents of the S-representation 

account (as an account of cognitive representation) need not carry any specific 

commitments about whether and where S-representations obtain (as an empirical fact). 

 

So far, we have sketched the S-representation account and witnessed how it might be 

vindicated in the empirical literature. We now turn to explore two possible objections. In 

doing so, we will come to better understand the S-representation account, as I intend it. 

This discussion will also lay the groundwork for a proper examination of content through 

the lens of S-representation, to be taken up fully in chapter 5. 

4.1 Objection 1: Isomorphism is too strong 

 

One notable objection to characterising representation in terms of structural 

correspondence claims that the condition is too strong. Recall that structural 

correspondence is frequently cashed-out in terms of isomorphism. Strictly speaking, an 

isomorphism’s bijective mapping demands that two systems are structurally equivalent. 

This strong reading of structural correspondence forbids intuitive cases of S-
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representation, disallowing any divergence from perfect 1-1 correspondence (Sprevak, 

2011; Shea, 2014). This is not a problem for relatively straightforward cases of S-

representation with few elements in need of correspondence; for example, Galileo’s 

classical representation of nonspatial magnitudes using geometrical figures (see 

Cummins, 1989, pp. 28-29). However, these strict conditions would seem to prohibit 

many intuitive cases of S-representation. For instance, an octagonal map could still be 

used to represent Nepal, despite failing to meet the conditions required to be strictly 

isomorphic with the geography of Nepal—think of the simple shapes used to represent 

territories in the board game Risk. This is an extreme example, but as Shea points out, 

 

[E]ven the most accurate map does not satisfy this requirement since there 

are always slight inaccuracies (for example due to projecting a curved world 

onto a flat sheet). So spatial relations on maps are simply not isomorphic in 

the mathematical sense to spatial relations on the ground. (2014, p. 124) 

 

To overcome this problem, we must relax our understanding of the mapping relation 

implicit in the structural-correspondence criterion for S-representation. The most 

straightforward way to do this is to replace isomorphism with a weaker structure-

preserving relation. The generic term ‘homomorphism’ captures this possibility (O’Brien 

& Opie, 2004).8 As we saw above, not all homomorphs are isomorphs, and some allow 

for one-to-many mappings. Homomorphism allows for imperfect correspondence, 

making it possible for one object to preserve the structure of another whilst ‘losing 

information’. 2D maps are homomorphic to 3D environments; that is, they preserve the 

structure of 3D environments but not perfectly so. 

 

                                                
8 It strikes me that fears over the appropriateness of isomorphism result from misunderstanding the way the 

term is often deployed by psychologists. As I understand it, psychologists have historically adopted a 

more liberal notion of ‘isomorphism’ than mathematicians, where isomorphism (in the psychologist’s 

sense) is equivalent to homomorphism (in the mathematician’s sense). 
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This solution allows us to define S-representation in a way that allows for ‘partial 

structural correspondence’. Strict isomorphism sets the bar for representation too high, 

but we can adjust the standard for structural correspondence to a degree of reasonable 

attainability. Again, this feature of cognitive S-representation is paralleled in cases of 

ordinary S-representation. Clearly, a 2D cartographic map does not need to be strictly 

isomorphic to a geographical region in order to represent it. Drawing on a theme from 

section 2.2 above, what matters in the case of a cartographic/cognitive map is that the 

cartographic/cognitive map mirrors the structure of the relevant environment such that it 

serves the task at hand, be it navigating a mountain range or a laboratory maze.  

 

Chakravartty (2010) raises a similar point in relation to scientific models (for related 

discussion see Frigg, 2006). Chakravartty argues that strict correspondence relations such 

as isomorphism are idealisations used in ‘epistemological theorizing’ but that such 

idealisations are not necessary in practice: 

 

[B]y itself the perhaps ubiquitous failure of strictly defined mathematical 

similarities between representations and their targets tells us nothing about 

whether such similarities obtain, not strictly, but within reasonable bounds of 

approximation. (ibid., p. 8) 

 

In short, by relaxing the strength of correspondence that we expect to obtain between 

representation and represented we solve the worry that S-representation implies a 

condition for cognitive representation that is too demanding. Structural correspondence 

only matters to the degree that it serves the actions of a consuming system. Yet this 

reliance on a ‘consuming system’ invites a more serious worry. 
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4.2 Objection 2: Cognitive S-representations have no consumer 

 

Representation requires a consumer for whom a vehicle represents. In cases of ordinary 

representation, the consumer takes the form of an interpreting agent; for example, a 

mountaineer in the case of a cartographic a map or a scientist in the case of a climate 

model. My defence of the S-representation account depends on an analogy to a type of 

ordinary representation. But is there really an analogous consumer in cases of cognitive 

S-representations? In answering, I favour a response that stresses the role of an R-

mechanism for the ‘whole system’ whose capacity it underwrites. 

 

There has been a tendency within the literature to treat the consumer of a cognitive 

representation as an identifiable sub-system that possesses a function which is dependent 

on a representation for success (Millikan, 1984; Papineau, 1984). Though such functions 

are often understood in terms of a sub-system’s selected ‘proper function’ (see chapter 

2), Gładziejewski (2015) provides a non-etiological spin that is well-suited to our 

mechanistic inclinations. For Gładziejewski, a consumer is a mechanism component with 

a functional role that depends on a state of affairs (external to the mechanism) that it must 

be ‘adapted’ to in order to succeed (ibid., pp. 74-76). To count as a consumer, the 

component must be causally coupled with the representational vehicle but not causally 

coupled with the external state of affairs, and its functional role must depend on the 

representational vehicle’s structural correspondence to those state of affairs (ibid., p. 74).  

 

Following Cummins (1996) and Ramsey (2007), Gładziejewski (2015) offers the 

following toy example to illustrate his idea of a consumer component: imagine a self-

driving car that must navigate through an S-shaped track. The car can navigate through 

the S-shaped track in part because of a rudder attached to an S-shaped groove (an ‘internal 
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map’) inside the car. The rudder moves along the groove which in turn steers the wheel 

that moves the front wheel. In this example, Gładziejewski understands the steering wheel 

to be the consumer of the representation. The steering wheel must be ‘adapted’ to the S-

shaped track to play its role, but the steering wheel is not causally-coupled with the track. 

Instead, the steering-wheel depends on a correspondence between the representation (the 

groove) and the track: ‘The steering wheel makes use of the representational vehicle – 

the groove – to succeed at performing its function’ (ibid., p. 75).9 It is important for 

Gładziejewski that the groove ‘indirectly guides the car (the system as a whole) by 

directly “guiding” the steering wheel (internal consumer)’ (ibid., p. 75). Note that selected 

functions are not required to make sense of the steering wheel as a consumer in this 

example: what matters is that the car’s steering through the track (the capacity being 

explained) causally depends, in part, on the representation structurally corresponding to 

the track such that the steering wheel turns appropriately (though see footnote 9 below).  

 

Following Gładziejewski’s definition, I think it is reasonable to characterise the steering 

wheel as a consumer component. However, I am uncertain whether such a consumer 

component is necessary or of central importance to the S-representation account. Recall 

that cognitive maps earn their S-representational credentials in virtue of their functional 

role relative to causing a cognitive capacity—say, successful spatial-navigation in a rat. 

Given this, it is unclear that some separate consuming subsystem is either identifiable or 

required for cognitive S-representations to count as being ‘consumed’. What matters is 

                                                
9 Though our description of the car involves structural correspondence, action guidance and (weak) 

decouplability, it does not involve ‘system-detectable error’. Strictly speaking, then, the system does 

not possess an S-representation under the four criteria listed above. It is easy to supplement the example 

with the system-detectable error criteria (as Gładziejewski later does; 2015, pp. 80-81). However, note 

that it is because examples like this might intuitively appear to involve representation even in the 

absence of system-detectable error that one may want to drop the system-detectable error condition, as 

suggested in section 2.2 above. 
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the role played by an R-mechanism in causing the rat to navigate. In this way, the whole 

system—the rat in this case—can be understood as the consumer, for it is the rat’s 

capacity that depends on the mechanism playing a representational-role. So long as an R-

mechanism plays a causal role in a capacity of that system, qua S-representation, then we 

have sufficient grounds to think that a representation is being consumed. 

 

In drawing an analogy to ordinary maps and models, it is important to stress that 

conscious interpretation is not required for an R-mechanism to be consumed. Nor do we 

need to posit any inner interpreting ‘homunculi’ of increasingly simpler sub-systems, as 

some have imagined (Dennett, 1982).10 This is because, sans conscious interpreter or 

inner homunculus, ‘representation’ continues to accurately describe the role of an R-

mechanism within a cognitive system. To illustrate, imagine we were to replace a human 

map reader of the sort associated with ordinary S-representations with a robot dubbed 

‘NavBot’. In addition to some basic motor and navigational competencies (such as 

steering around environmental obstacles), NavBot is notable for the fact that it can scan 

ordinary cartographic maps that correspond to its environment and move itself to certain 

‘goal locations’ depending on the properties of the map. Specifically, if NavBot detects 

an ‘X’ it will move to a corresponding location in the world. NavBot can do the following:  

 

(i) Scan the map and detect an ‘X’ mark. 

(ii) Estimate a location in the world (L1) that corresponds to X’s coordinates on 

the map. 

                                                
10 The type of strategy I offer here resembles a version of what Ramsey labels the ‘mindless strategy’ (2007, 

p. 193). Ramsey coins this term when discussing ways to avoid a regress of ‘little inner minds’ in 

accounting for the use of cognitive representation (ibid., p. 190). 
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(iii) Determine coordinates on the map that correspond to NavBot’s own location 

in the world (L2). 

(iv) Plan a navigational route from L2 to L1. 

(v) Move to L1.  

 

NavBot’s ability to reach L1 depends on a structural correspondence between X on the 

map and NavBot’s environment. When asked what role the map plays (in causing NavBot 

to reach L1), we can reasonably say it stands-in for features of NavBot’s environment 

(such as the spatial distance between L1 and L2). When asked how it plays this role, we 

must say that the map preserves the structure of the environment through the relations of 

its own elements; for example, the proportional spatial distance between L1 and L2 in the 

environment corresponds to the proportional distance between NavBot’s coordinates and 

X on the map. This role of the map for NavBot parallels the role of a map for an ordinary 

agent; NavBot consumes a cartographic map in a manner analogous to an ordinary agent. 

NavBot’s map thus serves as a representation. Furthermore, there is no change in the role 

of the map-as-representation for NavBot if we (a) move the map inside NavBot’s head 

and (b) change the map from an ordinary cartographic map to a digital map of the sort 

commonly used in ‘robotic mapping’ (for an introduction to robotic mapping see Thrun, 

2002). The explanatory utility of characterising NavBot as a representation consumer 

remains unshaken by internalising and digitalising the map. 

 

If the present analysis is correct, then the explanatory role played by the robot’s 

consumption of the map (qua representation) is not undermined by the fact that NavBot 

is not consciously using the map as a representation of its environment. Nor do we need 

to invoke an internal homunculus that uses the representation. What matters is the role 
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the map serves in causing NavBot’s behaviour and determining the success or failure of 

its actions. Returning to a theme established in chapter 1, if we assume that NavBot must 

be a conscious interpreter for its map to count as a representation then we eliminate the 

possibility of subpersonal cognitive representation playing an explanatory role from the 

outset. Such demanding standards are not warranted. What should be gained from 

ascribing representation to cognitive systems is some appreciable explanatory purchase—

some contribution to our grip on the target phenomena. R-mechanisms achieve this by 

capturing a distinct functional role that so closely resembles a class of ordinary 

representation. Ramsey similarly rejects the need for conscious interpretation to justify 

the legitimacy of cognitive S-representation (as genuine representation) when he writes, 

 

Is S-representation comparable to full-blown conscious thoughts? No, it is a 

technical notion of representation based on our commonsense understanding 

of things like maps, invoked by a theory to explain cognition in a certain way. 

(2007, p. 89) 

 

Of course, we can grant that the personal level marks a unique domain of representation; 

we could even insist that ultimately, from some privileged metaphysical standpoint, only 

those representations involving conscious agents are real representations. This does not 

preclude there being an epistemic role for representation in scientific explanations pitched 

at the subpersonal level (see chapter 1). In the present case, talk of representation 

consumption usefully demarcates a significant type of functional contribution that a 

mechanism makes toward the capacity of a cognitive system when that capacity causally 

depends on a mechanism that meets the requirement for S-representation. 

 

The above example alone is unlikely to sway those antagonistic towards the possibility 

of naturalising content at the subpersonal level. Unlike genuine representation, the 
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thought goes, NavBot’s mechanisms do not cause NavBot’s capacities in virtue of their 

representational content (Hutto & Myin, 2013, 2017). Thus, NavBot does not really 

consume a representation. The next chapter will be fully devoted to showing how R-

mechanisms possess content by any reasonable standard. First, it will prove useful to visit 

a proposal from Ramsey (2016): that the ‘functional role dimension’ and the ‘content 

grounding dimension’ are conceptually distinct dimensions of cognitive representation 

that a complete account must address.  

5.1 The functional role vs. content grounding distinction 

 

Chapter 2 presented Ramsey’s (2007) JDC as an effective method for adjudicating 

legitimate ascriptions of cognitive representation. Ramsey (2016) subsequently clarifies 

what he takes the role of the JDC to be—a sort of ‘meta job description’ (the distinction 

is touched upon in Ramsey, 2007 and again in 2018). This provides Ramsey with an 

opportunity to draw a distinction between the ‘functional role dimension’ and the ‘content 

grounding dimension’ of representation, and in doing so, illustrate the limitations of an 

account like S-representation. Similar distinctions between a representation’s ‘functional 

role’ and a representation’s ‘content grounding’ is sometimes implicit in the literature.11 

However, Ramsey’s (2016) paper provides the most explicit and thorough exposition. For 

Ramsey, both the functional role and content grounding dimensions must be addressed to 

provide a complete account of representation. I agree with Ramsey that both dimensions 

must be addressed. However, in what follows, I will argue that the S-representation 

account has the resources to address both, at least when situated within a mechanistic 

                                                
11 In a recent example, Thomson and Piccinini define a representation as something that has ‘semantic 

content’ and has ‘an appropriate functional role’, where that functional role is to ‘as serve as a “stand 

in” for X so as to guide behavior with respect to X’ (2018, p. 193). Taken at face value, this gives the 

impression that serving as a stand-in and having content come apart. 
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framework. The ‘mechanistic account of content’ that I will come to defend suggests that 

the ‘representational target’ and ‘representational content’ of a token R-mechanism fall 

out of facts pertaining to the context in which that R-mechanism serves as an S-

representation (see chapter 5). This, it seems to me, is sufficient for addressing the 

content grounding dimension. As a consequence, we avoid needing to supplement the S-

representation account with, say, a traditional causal-historical theory of content, such as 

teleosemantics.12 The following discussion will build the foundations for this view. 

 

According to Ramsey’s analysis, the ‘functional role dimension’ concerns what it is for 

something to function as a representation, whilst the ‘content grounding dimension’ 

concerns the conditions for determining a given representation’s content; what makes a 

representation about x and not y. Ramsey writes of the functional role dimension: 

 

Here we are talking about those conditions and features of a state or structure 

that give rise to its having a representational function (in the teleological 

sense). Many have argued that representation is a functional kind and I 

believe this assessment is correct. (2016, p. 4) 

 

 

Ramsey writes of the content grounding dimension: 

 

Here, rather than explaining a certain type of role, we are interested in a 

certain type of relation; namely, the content relation that exists between a 

representation and its intentional object. Our question is, what conditions or 

properties or relations make a representation about what it is about? (ibid., p. 

4) 

 

                                                
12This attitude towards Ramsey’s distinction is paralleled in the next chapter. There I differentiate between 

two ‘problems of content’. The ‘hard problem of content’ and the ‘content determination problem’ bear 

a correspondence to the functional role dimension and content grounding dimension respectively. 

Though I think these two problems are conceptually independent and both must be addressed, I also 

think that a solution to the content determination problem falls out of our best response to the hard 

problem of content. 
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To help illustrate the intended distinction, observe that one could know that something 

functions as a representation (for example, a map), without knowing what it represents 

(for example, what it is a map of). At the same time, one could know something is a 

representation, without knowing what functional properties make it a representation. 

Ramsey writes, 

 

[O]ne can learn that something is a representational device of some sort, and 

that it has a specific content by virtue of certain causal links, but remain 

uncertain about how it is actually used by the cognitive system it serves. 

(ibid., p. 6) 

 

Ramsey concludes that a complete account must answer two questions:  

 

1) what makes it the case that a physical state or structure (such as a 

neurological state or structure) functions as a representational state (and not 

something else)? and, 2) what makes it the case that something functioning 

as a representational state has the content it does (and not some other 

content)? (ibid., p. 5) 

 

All this leads Ramsey to suggest that a ‘map/model notion’ (ibid., p. 11) addresses the 

former but requires a supplementary theory of content grounding to address the latter. I 

take it that the map/model notion encompasses the S-representation account. 

 

Ramsey’s distinction between the functional role and content grounding dimension of 

representation is useful for at least two reasons. Firstly, it reinforces the need to specify 

the conditions under which a cognitive entity functions as a representation, as the S-

representation account does. I agree with Ramsey that ‘in various accounts of mental 

representation, the functional role of representing is more or less blurred together with 

the issue of content, or, alternatively, ignored altogether’ (ibid., p. 5). Secondly, the 

distinction highlights that a complete account of cognitive representation must address 
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how to think about the content of a token representation. It is right that merely specifying 

generic functional criteria, as the S-representation account does, will not tell us how a 

token representation has its content determined. Nonetheless, there are two related 

considerations that should heighten our caution when affirming the distinction between 

the functional role and content grounding dimensions. 

 

The first consideration to keep in mind is that, as presented, Ramsey’s distinction 

potentially obscures another useful distinction: between ‘representational content’ and 

‘representational target’. Ramsey sometimes appears to treat these synonymously: 

 

[W]e have seen that while maps and models may provide a good sense of how 

something functions as a representation, there is nevertheless a problem of 

content indeterminacy. How do we specify the target of the broader 

map/model structure?’ (2016, p. 9) 

 

The value of the target/content distinction will depend on one’s method for addressing 

the content grounding dimension. However, it is crucial to the mechanistic account of 

content that I will present in chapter 5. Very roughly, a representation’s content concerns 

how it presents the world to its consumer, whereas a representation’s target concerns how 

the world is (think of the difference between the way a map depicts the topology of the 

Himalayas and the actual topology of the Himalayas). Successful representation occurs 

when there is sufficient alignment between content and target (for related discussion see 

Cummins, 1996).   

 

Importantly, terms sometimes used to describe content, such as ‘intentional object’ 

(Ramsey, 2016, p. 4), are somewhat ambiguous between target and content as just 

defined. Furthermore, some of the entities that Ramsey (2016) identifies as a 
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representation’s content might sometimes be better described as a representation’s target 

according to the mechanistic account of content. Also drawing on the example of 

cognitive maps, Ramsey writes, 

 

On the one hand, neurons in the hippocampus are supposed to comprise a 

map of the environment. That suggests the map/model notion of 

representation is in play [...] On the other hand, neurons are described as 

representing places in the environment because their activation levels co-vary 

with proximity to these locations. That suggests the causal/informational 

notion of representation is at work; that neurons are representations because 

their activity is strongly correlated with environmental cues. So which is it? 

(ibid., p. 11) 

 

 

Ramsey contends that both are at work: the cells function as elements in a map, but their 

contents are determined by the way their activation nomically depends on proximity to 

locations in the organism’s environment. Of course, the selective activation of neurons in 

response to stimuli reveals something vital about how those neurons serve the system.  I 

agree with Ramsey that reliable activation in proximity to places in the environment is 

evidence that the neurons represent those places. However, in allowing this, we must be 

careful to disambiguate target and content. According to the mechanistic account of 

content, whilst the map targets the organism’s environment, the map’s content may 

sometimes fail to refer to the actual environment, instead referring to a possible 

environment that would need to be actual for the mechanism to generate behavioural 

success. This distinction between content and target might strike some as definitional nit-

picking, but it plays a significant part in allowing for misrepresentation (see chapter 5).  

 

The second consideration I wish to raise with regards to the functional role vs. content 

grounding distinction concerns what theory of content determination it primes us for. One 

might think that if the functional role of representation comes apart from its content, then 

an account like S-representation will need to be supplemented with a traditional causal-
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historical theory of content, such as teleosemantics or a Dretskean causal-informational 

theory (Ramsey, 2016, 2018, mentions both).13 However, such theories are not the only 

options on the table, and if we are to distinguish between function role and content 

grounding then we must ward ourselves against thinking that the distinction entails the 

necessity of a causal-historical theory, especially if we wish to ensure that S-

representation is consonant with mechanistic explanation (see chapter 2 and chapter 5 

for related problems with causal-historical theories of content). To help understand this, 

it is worth considering Ramsey’s dalliance with a more controversial thesis. 

 

I take Ramsey’s (2016) chief concern to be establishing that representational function and 

representational content are conceptually independent. However, in response to 

Neander’s (2009) dismissal of the idea that something could count as a representation 

without representing anything, Ramsey briefly raises the idea that it might be possible (in 

principle) for function and content to be physically independent—in particular, for a 

creature to possess states that function as representations without possessing any 

representational content (2016, pp. 6-7). Regardless of how serious Ramsey considers 

this possibility, it is worth examining because it helps to highlight diverging attitudes 

toward content determination.  

 

To illustrate his point, Ramsey appeals to Davidson’s (1987) Swampman thought 

experiment. In brief, Davidson imagines a freak lightning strike hitting a swamp 

comprised of a primordial-soup of elemental ingredients. The energy from the blast 

                                                
13 I do not mean to suggest that Ramsey is committed to addressing the content dimension with a causal-

historical theory of content. Indeed, elsewhere he mentions alternative theories of content that appeal 

to the way a representation is used, similar to the account I defend in chapter 5 (Ramsey, 2007; see 

also Ramsey, 2016, p. 9, footnote 6). I merely intend to highlight that, as presented, the functional 

role/content grounding dimension distinction invites the possibility of combining the S-representation 

account with causal-historical theories, and that we ought to be wary of such a move.  
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happens to break and bond the alchemical broth in such a way that it spawns forth an 

uncanny creature. This being is physically identical and indistinguishable from an 

ordinary person. Because this ‘Swampman’ is physically identical to an ordinary person, 

its internal states are physically identical to an ordinary person’s. From this starting point, 

we are supposed to consider the internal vehicles of Swampman as indistinguishable from 

an ordinary person’s. Ramsey points out that ‘many have claimed to hold the intuition 

that such a being would have internal states that are functionally similar to normal 

representations, but that would nonetheless lack content’ (2016, pp. 6-7). This supports 

the possibility of a mechanism that meets the functional criteria for S-representation but 

lacks representational content. 

 

Before passing judgement on whether Swampman’s states have content, consider that the 

case is softened if we allow that Swampman has internal states that are merely 

‘functionally similar’ and not identical to an ordinary person’s (Ramsey, 2016, p. 6). 

Swampman does not have any etiological functions; thus, if Swampman’s internal states 

have functions at all, presumably they have functions in the causal-role sense frequently 

invoked in mechanistic explanations (see chapter 2).14 And yet, Swampman’s states have 

identical causal roles to an ordinary person’s states. Thus, Swampman’s states are 

functionally identical to an ordinary person’s states. In response, one might insist that 

Swampman’s states do not possess content and that content makes a causal difference; 

but that would not support the proposition that the conditions for functioning as a 

representation could be met without meeting the conditions for representational content. 

For the thought experiment to hold water we must consider the following possibility: can 

                                                
14 A Dretskean causal-historical theory of content somewhat complicates matters. According to Dretske’s 

learning based approach, Swampman would not begin with representational content but could gain 

representational content once he ‘gets going’ and acquires a learning history. For a similar point, see 

Shea (2018, pp. 22-23). 
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Swampman possess states that function identically to that of an ordinary person’s without 

possessing representational content? 

 

Chapter 2 suggested that a successful account of cognitive representation ought to 

provide representational content with causal relevance; after all, some eliminativists 

claim correctness conditions at the subpersonal level contribute nothing to our 

explanation of a system’s behaviour to support their cull of subpersonal representation 

(for example, see Hutto & Myin, 2013, 2018). A plausible way to do this is to show that 

content is relevant to the causal role of a cognitive mechanism. To concede that 

Swampman’s cognitive mechanisms function as representations but lack content (and are 

therefore not full-blown representations), is to concede that content is not causally 

relevant to our explanation of Swampman’s behaviour. In turn, this undermines the idea 

that content is of causal relevance in explanations of cognition. And yet, content does 

appear to be of causal relevance in our explanations of Swampman’s behaviour. This is 

because the degree of correspondence between Swampman’s ‘R-mechanism’ and some 

state-of-affairs causally determines the success/failure of Swampman’s behaviour (just as 

it does for a non-Swamp person), and this is key to the causal relevance of content. 

 

Consider another case closer to home. Imagine a cognitive neuroscientist is studying the 

brain of a rat in order to understand its capacity to navigate a maze and locate a reward. 

Let’s name our subject ‘Original Rat’. During her observations, our scientist concludes 

that Original Rat’s hippocampus contains internal cognitive maps that possess the 

functional properties required to be an R-mechanism. These cognitive maps structurally 

correspond to the animal’s environment and allow it to successfully navigate its 

environment. Suddenly, a freak lightning strike results in a peculiar explosion in the 
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experimental physics lab next door causing the generation of a physically identical being. 

Let’s designate this unworldly doppelgänger ‘Swamp Rat’. Let’s further imagine that 

Original Rat is destroyed during the event, only to be instantaneously replaced by Swamp 

Rat in precisely the same location. Distracted by the incident, the experimenter is none 

the wiser and assumes the creature in front of her to be Original Rat.  

 

Swamp Rat has identical behaviours to Original Rat—both ‘narrowly’, in terms of its 

bodily properties, and ‘broadly’, in terms of its interaction with the environment. Swamp 

Rat has a physically indistinguishable anatomy and physiology to Original Rat, including 

an indistinguishable brain with the same cellular organisation and activation patterns, and 

is located in the very same environment. As such, Swamp Rat has identical navigational 

capacities to Original Rat. The scientist continues to identify Swamp Rat’s ‘R-

mechanisms’ as representations of the creature’s environment and, as far as the scientist 

is concerned, the relative correspondence between these mechanisms and the creature’s 

environment continues to play the same explanatory role. The intuition I wish to pump is 

that content is as relevant to explaining Swamp Rat’s capacities as it is to explaining 

Original Rat’s capacities. This is because there is an identical causal role being played by 

a mechanism that meets the requirements for R-mechanism in determining the success or 

failure of a system’s capacity. If correct, this indicates that a causal-historical theory of 

content is inappropriate and unnecessary when it comes to R-mechanisms.15 We will 

return to Swamp Rat in chapter 5. 

 

                                                
15 Swamp Rat’s origins are as preposterous as Swampman’s. Real cognitive mechanisms result from 

mundane biological and learning histories. My aim is not to deny the importance of such histories in 

creating mechanisms, only to put pressure on the idea that content determination is best understood in 

terms of etiological factors instead of what a mechanism presently contributes to a system’s capacities. 
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In summary, the functional role vs. content grounding distinction is useful for highlighting 

what a complete account of representation must address. Nevertheless, we must be careful 

to appreciate the potential for a further distinction between a representation’s content and 

a representation’s target, as some theories distinguish the two. Furthermore, we need not 

assume that the S-representation account requires a traditional causal-historical theory of 

content, as such theories seem problematic for a mechanistic approach.  

5.2 Representation tokens and contextual functions 

 

We are almost ready to pull our threads together and propose a complete account of 

content for R-mechanisms. To close our discussion of the functional role vs. content 

grounding distinction, and further lay the foundations for the account of content that I 

will defend, I wish to draw attention to a contrast between properties of a ‘representation 

type’ on the one hand and properties of a ‘representation token’ on the other. 

Representation types are a class of mechanism. The S-representation account can be 

characterised as articulating functional criteria for a representation type. Representation 

tokens are individual members of a representation type. Representation tokens realise the 

generic properties of their representation type within a wider mechanistic context. 

Recognising this wider mechanistic context is important because whilst the S-

representation account cannot itself tell us what a token R-mechanism represents—

because it only specifies generic functional criteria—it may be that the token semantic 

properties of a given R-mechanism become transparent when we observe the broader 

circumstances under which it serves as an S-representation. In this way, the content 

dimension is addressed by observing the exploitation of a given S-representation in 

context. This further supports the notion that the S-representation account does not 

require a supplementary causal-historical theory of content. The remainder of this section 
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will unpack the importance of context further, before pursuing my theory of content more 

fully in the following chapter. 

 

Token R-mechanisms exist within a wider mechanistic context in two senses. Firstly, a 

token R-mechanism is likely to be embedded within a higher-level mechanism; for 

example, a cognitive map forms part of a greater spatial-navigation mechanism. Secondly, 

a given R-mechanism serves as an S-representation relative to a cognitive capacity that 

is embedded within a task environment; for example, a rat’s capacity to locate food might 

take place within a laboratory maze. Thus, token R-mechanisms are posited within the 

context of a higher-level mechanism and a task environment. Let’s examine these 

contextual factors in turn. 

 

There is a precedent in the literature for emphasising the contextual nature of many 

mechanisms. Chapter 2 introduced the idea of ‘contextual function’. A contextual 

function is part of a contextual explanation; one that considers the broader environment 

of a mechanism. This is necessary when situating a mechanism within a higher-level 

mechanism (Craver, 2001; Craver 2013). The underlying idea is that when a mechanism 

plays a causal role in a higher-level mechanism, function attribution must reference 

entities external to the mechanism itself. As Craver summarises, 

 

Contextual explanations are characteristically outward looking and upward 

looking. They are outward looking because they refer to components outside 

of the item to be explained and they are upward looking because they 

contextualize that item within the behaviors of a higher-level mechanism. 

(2013, p. 153)  

 

For example, to describe the heart as functioning to pump blood is to describe the heart 

contextually. This is because describing the heart as functioning to pump blood locates 
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its pumping activity within a higher-level mechanism—a wider set of spatiotemporal 

components comprising the cardiovascular system. Following Craver once more, ‘A 

description of the heart’s mechanistic role function is contextual to the extent that it makes 

explicit reference to objects other than the heart itself and its parts.’ (ibid., p. 152). R-

mechanisms are also likely to be located within higher levels that underlie a capacity. 

Take rat navigation. A cognitive map will be connected to perceptual processing and 

motor mechanisms that allow a rat to sense its surroundings and physically move. 

Together, these mechanisms form components within a higher-level spatial-navigation 

mechanism. In this way, R-mechanisms play their S-representational role within the 

context of a higher-level mechanism. 

 

The contextual nature of cognitive mechanisms does not stop at the bounds of the higher-

level mechanisms that comprise the cognitive system. A mechanism’s environment 

provides background conditions and influences on the mechanism that are frequently 

important for understanding the mechanism’s part in an explanandum. This is especially 

true of many biological and cognitive mechanisms because the capacities of cognitive 

systems typically concern the system’s interaction with its environment. As Bechtel 

writes, ‘In biological systems, even the behavior of the parts themselves is often affected 

by the organization and environment in which they function and learning about such 

behavior requires studying the part in such a context’ (2009, p. 560). Cognitive science 

seeks eventually to explain the capacities of whole cognitive systems. Such capacities 

concern a system’s engagement with its environment, implying some relation between 

the parts of the system and features of its task environment. Indeed, cognitive capacities 

as diverse as route planning, facial recognition, mind reading, object categorisation, self-

relative position tracking and so on, imply entities external to the system itself but located 
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within the environment in which the capacity takes place. In this way, R-mechanisms play 

their S-representational role within the context of a task environment. 

 

The context of a token R-mechanism (the higher-level mechanism and task environment 

it is situated within) cannot be discerned merely by examining the generic properties of 

S-representation. However, in an important sense, the higher-level mechanism and task 

environment that contextualise a token R-mechanism are not independent of its S-

representational role. Rather, such context arises from the individual conditions under 

which a mechanism serves as an S-representation. The same can be said of many 

mechanisms. The fact that the heart pumps blood is determined by the conditions under 

which it plays its pumping role, that is, within the higher-level cardiovascular system—

something we could not determine only by knowing that a mechanism functions as a 

pump—and the way a receptor neuron responds to edges in the environment is determined 

the conditions under which it plays its receptor role—something we could not determine 

only by knowing that a mechanism functions as a receptor. Distinguishing between the 

generic properties of a representation type (i.e., S-representation) and how a token 

mechanism realises the functional criteria for that representation type (e.g., a token 

cognitive map) helps to frame Ramsey’s (2016) observation that one can know how 

something functions as a representation (for example, as an S-representation) without 

knowing what it represents. The S-representation account is an account of the generic 

functional properties belonging to a type of mechanism.  

 

The contextual properties of a token R-mechanism inform the particular character of its 

functional role, adding detail beyond the generic properties shared by all R-mechanisms. 

In closing, I suggest that this wider mechanistic context helps us to understand the 
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individual semantic properties of a token representation. Essentially, what a given R-

mechanism represents—strictly speaking, what I label its ‘target’ (see section 5.1 above; 

chapter 5)—can be understood by consideration of its causal role in context. For 

example, where a cognitive map contributes to a rat’s capacity to navigate, the function 

of the mechanism is to stand-in for its present environment. This is because it is the rat’s 

present environment, and not anything else, that the token R-mechanism must structurally 

correspond to for the capacity that causally-depends on that mechanism to succeed. As 

we shall see, the content of a token R-mechanism can be seen to fall out of its ability to 

succeed or fail to match its target. To this extent, the S-representation account supplies 

the resources to address the content grounding dimension.  

6. Conclusion 

 

The preceding two chapters undermined many of the traditional reasons for assuming that 

representation plays a role in explanations of cognition. I argued that some notions of 

cognitive representation did not identify theoretical entities with the function to represent 

and that computational explanations of cognition were not necessarily representational 

explanations of cognition. This chapter began the constructive part of this thesis. By 

drawing an analogy to a type of ordinary representation that includes cartographic maps 

and scientific models, the S-representation account provides a set of functional criteria 

under which a cognitive entity counts as standing-in for something else on behalf of a 

cognitive system. Moreover, the S-representation account accords with a more general 

mechanistic account of cognitive representation. Synthesising these two accounts lays the 

foundation for a well-defined, empirically-driven notion of representation. 
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The next chapter continues the constructive project by returning to a theme established in 

chapter 1 and touched on repeatedly throughout the thesis: the role of representational 

content at the subpersonal level. By drawing on the functional properties of S-

representation within a mechanistic framework, I will show how the representationalist 

can provide a naturalistically respectable account of content at the subpersonal level.
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Chapter 5 

 

The Two Problems of Content1 

 

1. Introduction 

 

The S-representation account promises to provide cognitive representation with an 

explanatory role that accords with the increasingly popular mechanistic understanding of 

explanation in cognitive science. Hard-line anti-representationalists are unlikely to be 

swayed, remaining suspicious of so-called representational mechanisms (R-mechanisms) 

and their ability to bear genuine representational content. In this final chapter, I build on 

the view that began to emerge in chapter 4 and tackle the issue of representational content 

head on. Though I will concur with some existing trends in the literature, I will elaborate 

and adjust where necessary, and show in detail how we can provide a naturalistically 

respectable understanding of content that resists the eliminativist’s strongest objections. 

 

There are two overlapping but distinct ‘problems of content’ implicit within the literature, 

a distinction that subsequent discussion should remain sensitive to. The first problem 

concerns the justification for attributing representational content at the subpersonal level 

(i.e., what makes a subpersonal mechanism possess content in the first place?). I label this 

the ‘hard problem of content’ (HPC), following Hutto & Myin (2013, 2017). The second 

problem concerns the conditions that determine a token representation’s particular 

content (i.e., what makes a representation about x and not y?). I call this the ‘content 

                                                
1 Portions of this chapter appear in Lee (forthcoming b). 
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determination problem’. This chapter argues that the notion of an R-mechanism provides 

the resources to remedy both problems.2 

 

I will argue that the HPC dissolves when we acknowledge the role correctness conditions 

play in accurately describing the functional character of an R-mechanism, given the 

requirement of structural correspondence between an R-mechanism and some state of 

affairs for the realisation of a cognitive capacity. This mirrors the causal relevance of 

correctness conditions for ordinary S-representation. Building on this response to the 

HPC, I further argue that the content of a token R-mechanism refers to the state of affairs 

that would need to actual for it to realise a cognitive capacity and generate behavioural 

success. The degree of overlap between an R-mechanism’s content and an R-

mechanism’s ‘target’ underwrites its semantic evaluability, and engenders the possibility 

of misrepresentation. I label this view the ‘mechanistic account of content’ (MAC). As I 

frame it, the MAC is not an independent theory of content determination per se. Rather, 

the MAC grounds content determination in the features of an R-mechanism already 

implicit within the S-representation account. It does this by framing content 

determination in terms of how a token R-mechanism plays its S-representational role 

within the context of realising a cognitive capacity embedded within a task environment. 

These responses to the two problems of content are mutually reinforcing. They both rely 

on (and support the adequacy of) R-mechanisms and combined yield a thorough account 

of subpersonal content. 

 

                                                
2 Ramsey’s (2016) ‘functional role’ and ‘content grounding’ distinction can be recast in light of these two 

problems (see chapter 4). The HPC concerns the functional role dimension and the content 

determination problem concerns the content grounding dimension. Mirroring Ramsey’s analysis, I 

think the traditional debate has concentrated on the latter at the expense of the former. This is 

unfortunate because our response to the HPC can inform our response to the content determination 

problem, as we shall soon see. 
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The chapter proceeds as follows. Section 2 returns to examine the concept of 

‘representational content’ in greater detail, outlines the HPC and demonstrates how the 

S-representation account surmounts this first problem of content. Section 3 examines the 

content determination problem. I will briefly discuss the possibility of pursuing a ‘hybrid 

view’ (first touched upon in chapter 4), that combines the S-representation account with 

a traditional causal-historical theory of content such as teleosemantics. I close by 

defending the MAC as an alternative to traditional causal-historical theories. 

2.1 What (exactly) is representational content? 

 

Previous chapters suggested that representational content must be of causal relevance to 

a consumer of any genuine representation. Chapter 4 then claimed that the S-

representation account delivers adequate criteria for a cognitive mechanism to play a 

genuinely representational role. Those sceptical of cognitive representation will naturally 

demand to know precisely how so-called R-mechanisms play a functional role such that 

their carrying content is causally relevant to their supposed consumer. At this stage, it is 

worth pausing to recall and refine our understanding of representational content. 

 

We have seen many times already that content relates to the ‘semantic properties’ 

associated with representation. As a useful starting point, Brown writes, ‘A state with 

content is a state that represents some part or aspect of the world; its content is the way it 

represents the world as being’ (2014. Online, section 1. Original emphasis). Most 

importantly, a representation’s content refers to some state of affairs (‘the way it 

represents the world’) such that the representation is ‘semantically evaluable’. A 

representation is semantically evaluable in so far as it bears correctness conditions, i.e., 
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in so far as there are states of affairs under which the representation counts as correct or 

incorrect. 

 

Rescorla reflects this orthodoxy, summarising that a mental state has content if it is 

‘associated with veridicality conditions: conditions for veridical representation of reality’ 

(2016, p. 17. Original emphasis). What all diverging theories of content share, according 

to Rescorla, is the assumption that ‘many important mental states are evaluable as 

veridical or non-veridical’ (ibid., p. 17). Though I take Rescorla’s definition to be 

essentially correct, we should be careful not to assume that representational content 

requires a mental state to be associated with a literally true state of affairs. After all, many 

ordinary representations correctly represent counter-factual histories, imaginary worlds 

or possible futures—though we need not consider these ‘veridical representations of 

reality’. For example, I might write an accurate ‘what if’ history considering world events 

if JFK had not been assassinated, draw a faithful map of Middle-Earth, or construct a 

precise model of future climate change. Following earlier chapters, I will settle for the 

term ‘correctness conditions’. This term allows that successful representation is not 

necessarily strictly veridical. Correctness conditions also permit that a representation’s 

semantic evaluation (its ‘correctness value’) is not necessarily binary (in other words, a 

representation can be more or less correct), and is general enough to encompass truth, 

accuracy or other preferences for defining semantic measures of success. In summary, 

something possesses representational content just in case it is associated with correctness 

conditions, that is, conditions for the correct representation of some state of affairs. 

 

Recall that the need to account for representational content at the subpersonal level is tied 

to the need to address the possibility of misrepresentation (see chapter 2). If something 
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possesses correctness conditions, then it is possible for it to be incorrect. As with ordinary 

representation, incorrectness is supposed to be causally relevant to cognitive 

representation. For example, a mountaineer’s map is capable of misrepresenting features 

of the Himalayas such that this misrepresentation causally affects the outcome of the 

mountaineer’s actions. The challenge is to show how misrepresentation could be causally 

relevant in the case of a subpersonal cognitive representation in a manner analogous to 

ordinary representation. Shea puts the problem in the following way: 

 

Whether a representation is correct or incorrect depends on factors outside 

the organism, which seem to make no difference to how the representation is 

processed within the organism (e.g. to how activity of some neurons causes 

activity of others). Yet its truth or falsity, correctness or incorrectness, is 

supposed to make a crucial explanatory difference. (2018, p. 10) 

 

In summary, any successful account of content for R-mechanisms must address the 

conditions under which an R-mechanism counts as correct or incorrect in a way that 

makes its correctness or incorrectness causally relevant to a cognitive system. If we 

cannot do this, then we have not accounted for content at the subpersonal level. 

 

It will prove instructive to anticipate some of the conclusions about content in R-

mechanisms drawn below by returning to what Menary labels the ‘Peircean principle’ 

(2007, p. 95), touched upon in chapter 1. Peirce’s original analysis of representation 

identified three necessary components: a representational vehicle (or ‘sign’), the 

represented object, and an interpreter or consumer that exploits some salient property of 

the vehicle (for related discussion, see von Eckardt, 1993; Ramsey, 2007). Under the 

present account, the vehicle is an R-mechanism. The consumer is the wider containing 

cognitive system whose behavioural success causally depends on the R-mechanism. 

Drawing on the previous chapter, the position I outline below frames the represented 
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object in terms of an R-mechanism’s ‘representational target’. A representational target 

is that which an R-mechanism must structurally correspond to for it to fulfil its function 

and realise the capacity of the consuming system (ceteris paribus). Given this mapping 

of terms within the R-mechanism story to the Peircean triadic analysis of representation, 

how should we understand content determination in R-mechanisms? The answer is that 

the content of a token R-mechanism refers to the state of affairs that would need to obtain 

for the R-mechanism, such that it is, to realise the capacity and generate behavioural 

success. Misrepresentation is made possible by the disconnect between content and target. 

Before properly attending to this understanding of content determination, however, let’s 

return to the idea that there can be no correctness conditions at the subpersonal level. 

2.2 The hard problem of content 

 

In chapter 1 we saw that Hutto & Myin (2013, 2017) argue that there can be no 

subpersonal cognitive representation because representation requires content, and there 

is no such thing as content at the subpersonal level. I put pressure on an a priori 

interpretation of this argument that assumes the notion of representation does not apply 

at the subpersonal level as a matter of respecting strict category boundaries. However, the 

onus remains on an account of subpersonal representation to demonstrate how content is 

afforded a legitimate role within a theory of cognition. With the S-representation account 

now on the table, let’s re-examine Hutto & Myin’s argument. 

 

Hutto & Myin propose that any form of representationalism aimed at the level of ‘basic 

cognition’ cannot explain how a so-called representation could ‘be about’ something in a 

‘non-spooky’ way (2013, p. 66). To account for content, the thought goes, we must be 

able to provide a naturalistically respectable explanation of how a subpersonal cognitive 
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entity could possess correctness conditions. Hutto & Myin’s starting assumption has been 

shared throughout this thesis: that an effective account of representation cannot take 

representational content as a given. They write, 

 

Naturalistic theories with explanatory ambitions cannot simply help 

themselves to the notion of information-as-content, since that would be to 

presuppose rather than explain the existence of semantic or contentful 

properties. (2013, p. 67) 

 

If we accept that representation is a functional kind, then justified attributions of 

representational content are predicated on content playing a part in the functional role 

(qua representation) of a subpersonal cognitive mechanism. The question is whether it is 

possible to provide an account which offers content that part. Hutto & Myin’s answer is 

a resolute no. My answer is a resounding yes. 

2.3 What kind of content? 

 

Recall that Hutto & Myin’s argument rests on the observation that many so-called 

representations are best understood in purely ‘informational’ terms, and that information 

and representational content are conceptually distinct (2013, p. 67). Hutto & Myin hold 

that the mental states and processes of basic cognition, which representationalists treat as 

contentful, are better understood as information bearing. This is because their essential 

explanatory role is cashed out in terms of covariance (not ‘standing-in for’ in the sense of 

bearing correctness conditions). This is ‘information-as-covariance’ and is to be 

understood in the sense that x carries information about y, just in case x lawfully or reliably 

covaries with y. In other words, information-as-covariance is ‘natural information’. 
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Hutto & Myin hold that covariance is insufficient to ground representational content 

(2013, p. 67). Let’s examine this in a little more detail. Hutto & Myin believe that there 

is no property of covariation that, by itself, can secure correctness conditions. In their 

terms, something doesn’t ‘say’ or ‘mean’ anything ‘just in virtue of instantiating 

covariance relations’ (ibid., p. 67). Entities that merely covary with some feature fail to 

capture the unique explanatory potential that paradigmatic representations play; to covary 

with some state-of-affairs, by itself anyway, is not to stand-in for that state-of-affairs. It 

is from this starting point that Hutto & Myin derive their ‘Covariance Doesn’t Constitute 

Content Principle’. They summarize their view by writing, 

 

[I]f we stick to the notion of information-as-covariance there are no grounds 

for thinking that the world, standing apart from agentive systems, contains 

anything that could be called informational content. If covariation is assumed 

to be the only worldly source of informational content, then, in light of the 

Covariance Doesn’t Constitute Content Principle, we have, as yet, no 

explanation for the natural occurrence of informational content in the world. 

(2013, p. 71. Original emphasis.) 

 

In keeping with earlier arguments, I agree with Hutto & Myin’s principle: covariation is 

indeed insufficient for grounding representational content in any significant, theoretically 

interesting sense. And yet, this does not show that there is no alternative notion of 

information at the subpersonal level from which to source representational content. 

 

The ‘covariance doesn’t constitute content principle’ can be understood as an 

unsurprising consequence of the well-established distinction between two notions of 

information. Chapter 2 suggested that we ought to (a) distinguish between two notions 

of information in cognitive science, natural and non-natural, that map onto the Gricean 

notions of natural and non-natural meaning, and (b) consider that representational content 

(as an informational notion) is equivalent to non-natural information. The content sceptic 
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should be satisfied with the distinction between the two kinds of information as it helps 

articulate their worry: natural information plays an explanatory role in cognitive science, 

but there is no justification for positing non-natural information. Hutto & Myin hold that 

genuine non-natural information can only occur within and between encultured agents, 

for it is only within this intersubjective (personal level) arena that the norms required for 

genuine content arise. The S-representation account challenges this view. 

2.4 The hard problem and propositional attitudes 

 

To better appreciate the potency of the S-representation account as a response to the HPC, 

it is worth briefly exploring an unnecessary assumption about the type of representation 

that cognitive science is committed to. Though Hutto & Myin intend the HPC to threaten 

all forms of representation at the level of ‘basic cognition’, at times they talk as if the 

ascription of ‘propositional content’, by which they mean semantically evaluable content, 

is tied-up with ascribing propositional attitudes. At one stage, they affirm their agreement 

with eliminative materialism that we ought to avoid projecting the properties and structure 

of everyday language onto our explanations of basic cognition (2013, p. 13). They write, 

‘Like classic eliminativism, REC denies that basic mentality and cognition should be 

modelled in terms of propositional attitudes’ (ibid. p. 13). They go on to say, 

 

[R]EC does not claim that propositional attitude explanations are never 

appropriate. REC holds that some organisms have more than one way of 

getting around cognitively, and that some organisms—language users, at 

least—are capable of genuinely contentful, representational modes of 

thinking and reasoning. (ibid., pp. 13-14) 

 

Read at face value, this description implies REC’s opposition to a form of 

representationalism committed to propositional attitudes, which is to say, agents bearing 

belief/desire style relations to inner syntactic states. However, such an assumption fails 
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to capture the full sweep of representation types posited in scientific practice. In response, 

the anti-representationalist could insist that only propositional attitude representations 

serve as a foundation for the legitimate ascription of content. Therefore, in the absence of 

such representations, there is no justification for ascribing content.3 However, I see no 

reason to assume this. After all, there are plentiful examples of ordinary iconic, abstract 

and other content-bearing representations (for example, maps, photographs, portraits etc.) 

on the basis of which one might attempt to model cognitive representation. 

 

The takeaway message is that the fate of representation in cognitive science does not 

hinge on the fate of propositional attitudes. This is vital because one may reject the 

relevance of propositional attitudes for ‘basic cognition’ whilst holding onto the value of 

cognitive representation in an alternative guise. One may even embrace core aspects of 

Hutto & Myin’s philosophy—for example, conceding that propositional attitudes are a 

phylogenetically and ontogenetically advanced development heralded by the advent of 

sociocultural practices (Hutto, 2008; Hutto & Myin, 2013; 2017), whilst also maintaining 

that subpersonal representation is to be found in another form. In summary, the legitimate 

ascription of content at the subpersonal level does not hinge on the legitimate ascription 

of propositional attitudes.  

                                                
3 We can thus imagine a form of anti-represenationalism which combines traditional eliminative 

materialism with a conceptual analysis that ties all content ascription to propositional attitude 

ascriptions. 
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2.5 The hard problem and S-representation 

 

Hutto & Myin are correct to question versions of representationalism that help themselves 

to semantic properties rather than explaining their presence and relevance within a theory 

of cognition. Nevertheless, I previously suggested that we leave open the possibility that 

some account of cognitive representation could, in principle, provide adequate and ‘non-

spooky’ justification for the attribution of semantic properties at the subpersonal level 

(see chapter 1). We are now in a better position to appreciate that the notion of R-

mechanism shows how this is possible. In short, R-mechanisms systematically determine 

the outcome of a capacity or task  (of the sort studied by cognitive science) based on the 

degree of structural correspondence between a mechanism and some state of affairs (what 

I call the ‘representational target’). This, I contend, satisfies any reasonable demands on 

what it takes for a subpersonal entity to count as bearing correctness conditions.   

 

Our starting premise is that there is no good a priori reason to suppose that non-natural 

information must necessarily derive from personal level conventions (see chapter 1). In 

Piccinini & Scarantino’s words, ‘What matters for something to bear nonnatural 

information is that, somehow, it stands for something else relative to a signal recipient’ 

(2011, p. 24). In my words, what matters for something to bear representational content 

is that, somehow, it stands-in for something else relative to a consuming system (in a way 

that affects its behaviour in some significant respect). By meeting the functional 

properties for S-representation, R-mechanisms do just that.  

 

To appreciate how R-mechanisms achieve this, it is crucial to recall that where an R-

mechanism plays a causal role in a cognitive capacity, the occurrence of that cognitive 

capacity causally depends on the degree of structural correspondence between the 
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mechanism and some target state of affairs (see chapter 4 and section 3 below). Because 

of this, it is natural to describe an R-mechanism as ‘standing-in for’ the state of affairs 

that it is required to correspond to, and in turn, to describe it as possessing correctness 

conditions that are met if the required correspondence occurs. For example, imagine that 

a rat’s capacity to navigate from a starting location to a reward location within a maze 

involves an R-mechanism in the form of a cognitive map. In order for the rat to navigate 

to the reward location, for its capacity to occur, the R-mechanism must structurally 

correspond to the maze (to a sufficient degree). Furthermore, we can imagine that if the 

rat fails to locate the reward due to insufficient structural correspondence, then its 

cognitive map will update. This will increase the probability that the required structural 

correspondence now obtains, and the rat will subsequently succeed in navigating (more 

on system-detectable error below). Thus, the structural correspondence between cognitive 

map and maze is causally relevant to the rat’s behaviour. Given this, the cognitive map 

serves a causal role akin to an ordinary map, standing-in for the maze on behalf of the rat. 

In turn, the map possesses correctness conditions that correspond to the conditions under 

which it succeeds or fails to stand-in for its target: the map counts as correct when its 

structure sufficiently matches the maze’s structure, and incorrect when it does not. In 

summary, once we acknowledge the relationship between an R-mechanism, a target and 

behavioural success, attributing correctness conditions to an R-mechanism becomes 

informative—tracking those conditions under which it succeeds or fails to play its 

representation-like role. 

 

It is worth emphasising that this emergence of correctness conditions from the interplay 

between vehicle, target and behavioural success is analogous to the way ordinary S-

representations suggest correctness conditions. An ordinary map’s structure must 
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correspond to, say, the topology of the Himalayas for a mountaineer to successfully 

conduct a hike. In turn, the map is said to possess correctness conditions that correspond 

to the states of affairs under which it succeeds or fails to stand-in for its target: the map 

counts as correct when it sufficiently mirrors the topology of the Himalaya’s, and 

incorrect when it does not. In this way, content is justifiably ascribed to R-mechanisms 

because their functional role is analogous to the very functional role of ordinary S-

representations that supplies their correctness conditions. 

 

Recall that the justifiable attribution of correctness conditions is conceptually tethered to 

accounting for misrepresentation. Where a system’s success in realising some capacity 

causally depends on an R-mechanism, misrepresentation occurs because of a mismatch 

between the structure of the mechanism and the structure of the state of affairs it must 

correspond to for the capacity to succeed. For example, the relative success of a rat’s 

capacity to navigate its environment depends on the extent to which its cognitive map 

corresponds to features of its environment. We can view misrepresentation as a form of 

malfunction, albeit one that does not depend on selection or learning history: an R-

mechanism malfunctions when it fails to cause a cognitive capacity in the here-and-now. 

The way a cognitive capacity’s failure is explained by a mechanism’s lack of 

correspondence to some state of affairs is analogous to the way many everyday failures 

are explained by an ordinary S-representation’s lack of correspondence to some state of 

affairs. For instance, a mountaineer might fail to trek the Himalayas because portions of 

her map fail to sufficiently correspond to the structure of the relevant geographical 

features of the Himalayas. The causal relevance of misrepresentation in R-mechanisms 

thus parallels the causal relevance of misrepresentation in ordinary S-representations. 
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A crucial implication of the present analysis is that correctness conditions appropriately 

capture how a system containing an R-mechanism works (for related discussion, see 

Bartels, 2006). Returning to the quote from Shea (2018) above, it remains true that  

‘factors outside the organism’ make no difference to how the representation is processed 

within the organism per se, but a representation’s correctness or incorrectness does play 

a crucial explanatory role in so far as it captures the efficacy of a mechanism in relation 

to a cognitive system embedded within a task environment. In the absence of invoking 

correctness conditions, we lose an informative perspective on the role an R-mechanism 

plays in causing a capacity to succeed or fail (or something in between). Gładziejewski 

& Miłkowski make a similar point, arguing that ‘similarity’ is causally relevant to an S-

representation’s functional contribution towards behaviour. It is worth quoting the authors 

in full when they write, 

 

[A]n S-representation cannot do its job (i.e., enable success) without being 

structurally similar to the target. Here, the pattern of relations between 

components of the S-representation plays a crucial role. For example, a 

map—be it artifactual map or neurally-realized cognitive map—needs to 

stand in a structural resemblance relation to the terrain if it is to perform its 

S-representational job; and any figure placed within a map can act as an S-

representational surrogate only insofar as it stands in certain relations to other 

figures or lines on the map. (2017, p. 348) 

 

In short, the degree of correspondence or similarity between an R-mechanism and some 

target state of affairs is not incidental but critical for determining the outcome of an 

embedded system’s behaviour. Once more, the requirement of structural correspondence 

ensures correctness conditions are causally relevant at the subpersonal level.  

 

Despite any apparent temptation to think that R-mechanisms parallel the criteria for 

correctness conditions in ordinary S-representations, Hutto & Myin are explicit in their 
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rejection of (so-called) cognitive S-representations achieving genuine representation-

hood. This is because attributing representational content adds nothing to the explanatory 

work achieved by attributing structural correspondence. Hutto & Myin write, 

 

[F]unctional isomorphisms are all that need to be exploited for the purposes 

of mapping and navigating. Yet it is not at all obvious why the exploitation of 

such correspondences need entail the existence of representational contents. 

(2017, p. 159) 

 

Tonneau similarly states that, 

 

Whenever behavior is explained by appealing to an internal isomorph of the 

environment, what does the explanatory job is the notion of isomorphism and 

not that of representation. (2012, p. 342) 

 

I agree that a mechanism which structurally corresponds to ‘another state or process does 

not, by itself, explain why such stand-ins should be thought to instantiate or bear 

representational content’ (Hutto & Myin, p. 2017, p. 158). And yet, to describe the S-

representation account in this way—that is, merely in terms of structural 

correspondence—is to undersell the account. The S-representation account captures the 

possibility of a decouplable mechanism guiding action in a way that systematically 

determines the degree of a system’s success in achieving some capacity through 

‘functional isomorphisms’ (structural correspondence), reinforced by the role of system-

detectable error. When we consider all four conditions in play, dismissing cognitive S-

representations as mere internal isomorphs of the environment becomes harder to sustain. 

Once more, I suggest that the conditions for cognitive S-representation mirror those that 

enable ordinary S-representations to bear content. Cognitive S-representations are no 

more or less mere internal isomorphs of the environment than cartographic maps are mere 

external isomorphs of the environment.   
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Of course, we must concede that it is possible to describe the interaction between a 

mechanism that meets the criteria of S-representation and a wider containing system 

without appealing to correctness conditions. However, this itself is an uninteresting 

observation. After all, it is possible to describe just about anything without appealing to 

correctness conditions including ordinary S-representations. For example, in principle, 

we could describe the interaction between a map and a mountaineer in terms of atomic 

particles and physical forces (for a similar point, see Ramsey, 2007, pp. 33-34). If the 

issue is whether representational content can be exorcised from explanations of cognition, 

then the anti-representationalist wins by fiat. The more interesting question is whether 

ascribing correctness conditions contributes anything of explanatory value from a certain 

level of description (and I think Hutto & Myin agree: see, for example, 2017, chapter 1). 

In the case of S-representation, this contribution consists in relating the systematic 

relevance of structural correspondence between a class of action-guiding mechanism and 

some state of affairs to the success or failure of a cognitive system’s capacities. 

 

Ultimately, what matters is that the category ‘R-mechanism’ individuates a class of 

potential mechanisms whose functional contribution to the cognitive economy closely 

resembles the way a class of ordinary representation contributes to the behaviour of 

agents in everyday life. In fact, even if we were to capitulate to the content sceptic’s 

conviction that R-mechanisms do not count as possessing genuine representational 

content—because, despite everything that has been said, we dismiss the relationship 

between R-mechanisms, targets, and cognitive capacities as sufficiently like the 

relationship between ordinary representations, targets, and an agent’s actions—we would 

still be compelled to mark out mechanisms that meet the functional criteria for S-
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representation as an interesting class precisely because their functional role so closely 

resembles a type of ordinary representation. And yet, it is precisely this close resemblance 

to a type of ordinary representation that motivates the classification of these mechanisms 

as representations, at least for the explanatory purposes of appropriately describing the 

distinctive functional character of our theoretical posits—what more could one want? 

 

In closing, I want to emphasise that the system-detectable error criterion reinforces the 

part that strength of structural correspondence plays in grounding correctness conditions. 

If a theory of a system’s behaviour posits an S-representation with a feedback component, 

whereby the system adjusts its behaviour based on a mismatch between the structure of 

an R-mechanism and some state of affairs relevant to a task, then such a mismatch 

provides further justification for thinking that error, therefore correctness conditions, 

therefore content, contributes to our understanding of how the mechanism works. Thus, 

versions of the S-representation account that feature a system-detectable error component 

present an even stronger case for representational content than those that do not. 

 

At this stage, the content sceptic may concede that the S-representation account provides 

content with causal relevance in the abstract. Nonetheless, they will insist that we have 

failed to show how a given representation has its particular content determined. In other 

words, they will ask how we are supposed to think of a token R-mechanism’s particular 

content—what makes a token R-mechanism about x and not y? Until we address this, the 

justifiable attribution of content at the sub-personal level will be threatened. 
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3.1 Causal-historical theories of content determination 

  

Perhaps the most obvious strategy that proponents of the S-representation account might 

deploy to address content determination is to opt for a ‘hybrid view’, to borrow from 

Ramsey (2016), that combines the S-representation account with a traditional causal-

historical theory of content, such as teleosemantics (for example, Millikan, 1989b, 1990). 

We do not have the space to discuss every possible iteration of such a hybrid view. Instead, 

I will settle for noting a general worry with this strategy. This worry was anticipated in 

the previous chapter in the discussion of Ramsey’s (2016) distinction between the 

‘functional role’ and ‘content grounding’ dimensions of representation and concerns the 

inappropriateness of etiology for fixing content. 

 

The underlying worry is that causal-historical theories place undue attention on the 

proximal conditions, evolutionary history or other etiological factors that are in some 

sense responsible for the existence or tokening of a representation. Chapter 2 argued 

against purely selectionist accounts of function, suggesting their emphasis on a system’s 

history is of limited value to mechanistic explanation. Consideration of a mechanism’s 

etiology is interesting in its own right. It is also of heuristic value when considering what 

possible causal roles a mechanism might play. However, mechanistic explanation is 

principally concerned with how a phenomenon is causally constituted or produced by the 

organisation of and interaction between spatiotemporal parts and their operations. If 

cognitive representation is to be understood as a class of mechanism, then we should 

doubt the adequacy of etiological approaches. Consideration of ‘swamp cases’ in chapter 

4 reinforced this suspicion, suggesting that the causal relevance of content is separable 

from a system’s history because R-mechanisms are explanatory, qua representation, even 

for swamp creatures. In summary, if representational explanations primarily figure in 
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mechanistic explanations of system capacities, then we can reasonably question whether 

the (evolutionary or ontogenetic) history of the mechanism is of central importance to 

content determination.  

 

In contrast to traditional causal-historical theories, I suggest that we shift our focus away 

from a representation’s origins and towards how a representation figures in the 

constitution or production of a consuming system’s capacities—the very thing that 

justifies attributing correctness conditions at the subpersonal level in the first place (see 

section 2 above). Rather than wedding content determination to a set of causal 

antecedents, we should locate content within those very structural relations of a 

representational mechanism that are available for exploitation by a cognitive system. This 

chimes with a criticism of causal-historical views courtesy of Anderson & Rosenberg, 

who write, 

 

[L]et us say, by way of situating our own account of representational content, 

that we find the various causal approaches too input focussed, meaning they 

give too much importance to the ways in which the environment affects the 

organism to endow its states with representational meaning (2008, p. 56. 

Original emphasis.) 

 

The authors add that none of the traditional causal-historical theories, ‘give sufficient 

weight to the full range of what a subject does with its representations’ (ibid. Original 

emphasis). It is similar intuitions that drive the account of content I defend below. The 

conditions that cause a representation to exist or token bear a non-necessary relationship 

to what a representation does for a consuming system. In turn, what a representation does 

for a consuming system should be central to fixing its content.  
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As a final note on the hybrid view, it is worth considering ‘content pluralism’ as a potential 

complementary position. Traditional debate frames the content determining relation of a 

token representation as determinate and exclusionary. Hence, theories of content 

determination are usually taken to be in competition (for example, teleosemantics vs. 

causal-informational theory). However, according to content pluralism, multiple content-

bestowing relations co-exist. To my knowledge, content pluralism has been 

underexplored within the context of both the S-representation account and 

representational mechanisms more generally. Future research ought to examine the 

plausibility of content pluralism.  

 

There are two possible versions of content pluralism. The first version says that different 

types of representation have their contents determined by different relations (Shea, 2013, 

presents a view close to this). For instance, one type of representation may have its 

content determined by selection history whilst another has its content determined by 

learning history. The second version says that the same token representation may 

simultaneously bear multiple content determining relations, and thus bear different 

contents relative to different relations (I briefly explore a related position in relation to 

the semantic view of computation in Lee, forthcoming a). For instance, the very same 

representation may have one content in virtue of its selection history and another in virtue 

of its learning history. Notably, if either version of content pluralism is correct, and my 

worries about traditional causal-historical theories are misguided, then perhaps the 

mechanistic account of content determination defended below can co-exist alongside 

causal-historical accounts, as one part of a larger pluralism about content determination. 
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3.2 The mechanistic account of content determination 

 

According to the ‘mechanistic account of content’ (MAC), an R-mechanism’s content 

refers to the state of affairs that the R-mechanism does structurally correspond to and 

would need to be actual for the capacity in question to be realised and behavioural success 

to occur. Equally important is an R-mechanism’s ‘target’. An R-mechanism’s target is the 

actual state of affairs that the R-mechanism must structurally correspond to for the 

capacity in question to be realised and behavioural success to occur. The degree to which 

an R-mechanism counts as correct is determined by the degree to which its content and 

target overlap (see section 2.5 above).4 The remainder of this section will elaborate the 

MAC, beginning with the dual significance of targets and contents. 

 

For the MAC, representational contents require representational targets. The target of a 

token R-mechanism is fixed by a brute fact about the capacity it serves and the task 

environment which embeds that capacity. For example, the target of a cognitive map that 

is responsible for allowing a rat to navigate from a start location to a reward location 

within a maze is, roughly, the maze. This is because it is the maze that the cognitive map 

must correspond to for the capacity it serves to be realised. In other words, the maze is 

the state of affairs that the representation must emulate for the rat to succeed at the task 

at hand. (see chapter 4). As Bechtel again helps to illustrate, for cognitive science, 

 

The focus is not on the material changes within the mechanism, but rather on 

identifying more abstractly those functional parts and operations that are 

organized such that the mechanism can interact appropriately in its 

environment […] That is, cognitive scientists identify mental operations and 

                                                
4 Again, correctness need not be all-or-nothing. There may be degrees of correctness measured by the extent 

to which a representation’s relative structural correspondence to its target causes partial or total 

behavioural success—for example, when a rat partially navigates towards a reward hidden in a maze 

before losing its way. 
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consider how they contribute to the individual’s functioning in its 

environment. (2008, p. 23) 

 

Of course, a cognitive map may or may not correspond to its actual environment. The 

MAC states that the content of an R-mechanism refers to the state of affairs that it does 

correspond to and would need to be actual for the R-mechanism to realise the capacity in 

question, that is, the state of affairs that would need to be the target for it to generate 

behavioural success (for related discussion, see Bickhard, 1999; Gładziejewski, 2015). 

This state of affairs is determined by the structure of the R-mechanism’s action-guiding 

parts and the capacity it serves. To illustrate, imagine that a rat is attempting to locate 

food within its environment. As it happens, the rat is located within an S-shaped maze. 

Unfortunately, the rat possesses a cognitive map whose structure corresponds to a T-

shaped maze (causing the rat to plan and move as if it was located in a T-shaped maze). 

In this scenario, the content of the cognitive map refers to a T-shaped maze, that is, the 

state of affairs that would need to be actual for the R-mechanism to generate behavioural 

success. Notice that whilst the R-mechanism will structurally correspond to very many 

things (see chapter 4), it is only the T-shaped maze that is relevant to the capacity which 

the R-mechanism plays a part in. Put otherwise, it is only the T-shaped maze that reflects 

a relevant counter-factual (more on this below). Understanding both representational 

contents and representational targets in terms of the correspondence required for the 
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realisation of a cognitive capacity provides the MAC with a mechanistic footing whilst 

capturing the importance of a system’s wider embeddedness.5  

 

The correctness or incorrectness of a token R-mechanism results from the degree of 

overlap between its content and its target. This is consistent with the intuition that S-

representations, whether cognitive or ordinary, succeed when there is an appropriate 

alignment between ‘the way the world is presented’ to the consumer, and ‘the way the 

world is’. It is important to stress that whilst an R-mechanism’s content is partly 

determined by its structure once it enters a representational relationship, structure alone 

carries no semantic significance. It is only in relation to a representational target that a 

representational content bears any explanatory significance. In this way, representational 

targets and representational contents are co-defining. 

 

The MAC presents an alternative to many causal-historical theories by relating content 

determination to the causal relevance of a mechanism for the success or failure of a 

cognitive capacity in the here-and-now. Correct representation is tethered to a subpersonal 

entity fulfilling its functional role (as, say, teleosemantics would suggest), but such 

fulfilment is cashed out in terms of a mechanism’s ability to realise some capacity of a 

containing cognitive system. At the same time, the MAC circumvents the worry that S-

representation trivialises content (Sprevak, 2011; Morgan, 2014). The trivialisation 

                                                
5 In Lee (forthcoming b) I make a distinction between the ‘content’ and ‘contextual content’ of an R-

mechanism. The content of an R-mechanism refers to the formal structure of its action-guiding parts. 

The contextual content of an R-mechanism is equivalent to what I call ‘content’ in the present chapter. 

Characterising content in this way is arguably useful because it helps to underscore what is semantically 
similar about two structurally identical mechanisms playing a role in two different tasks. However, I 

have since questioned the necessity of this distinction and worry that my previous formulation of 

content invites accusations of a vehicle/content conflation. The key, I think, is to retain the idea that 

structure is a determinant of content—hence, the ‘semantic continuinty’ between two structurally 

identical mechanisms—without treating the content of a mechanism as referring to formal structure 

itself. In any case, I here take what I previously called ‘contextual content’ to be the explanatorily 

primary notion of content when it comes to R-mechanisms. 
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concern is built on the assumption that if structural correspondence obtains between an 

S-representation and some state of affairs, then the content of that S-representation must 

refer to that state of affairs. The MAC says that this characterisation is misguided. Once 

again, the content of an S-representation does not refer to anything that it shares structure 

with. The content of an S-representation refers only to that which it shares structure with 

and is relevant to the behavioural success of a cognitive system (for related discussion 

and an alternative appraisal, see Cummins, 1996). 

 

With a preliminary sketch of the MAC complete, it will prove helpful to further illustrate 

the account using an analogy to ordinary S-representation. Imagine that you visit an IKEA 

store to buy a new office desk. At the beginning of your journey through the cavernous 

trove of furniture and household appliances, you pick up a store map. You use this map 

to guide your way to the appropriate department and locate your purchase. The fact that 

the structure embodied in the map corresponds to the store explains your ability to 

navigate. Imagine now that the night before your visit a disgruntled manager (with a 

penchant for performative irony) has taken out their frustration over recent corporate 

restructuring by restructuring the layout of the IKEA store itself. Now when you use your 

map to guide your way toward the office desks you arrive at the standing lamps instead. 

This time the lack of correspondence between the map and the store explains your failure 

to navigate. According to the MAC, the content of the map remains the same across both 

scenarios—because the conditions under which the map would cause you to locate the 

office desks are identical—whilst the target differs—because the actual location of the 

office desks diverges. Put otherwise, the correctness conditions of the map remain the 

same across the two scenarios, whilst the correctness values of the map differ. 

 



 226 

 

 

Now imagine that you visit an IKEA store in a foreign country and that you bring your 

old map with you. Despite myriad superficial differences between the foreign store and 

the original store, it transpires that you are equally capable of navigating the foreign store 

using your old map. In fact, you can successfully navigate any IKEA store of similar size 

(in the absence of sabotaging managers). This is because each of these IKEA stores 

instantiates the same structure to a sufficient approximation. Given the example, one 

might be tempted to say that the content of the map must refer to any generic IKEA store 

of a certain size. Indeed, it is no accident that these maps allow for the successful 

representation of any generic IKEA store given the coordination behind the construction 

of IKEA stores and the maps used to navigate them. Notice, however, that one could, in 

principle, successfully navigate any environment that instantiates a similar structure but 

is not an IKEA store—say a virtual simulation of an IKEA store, or a hardware store with 

the same layout (more on this shortly). Keeping successful action front and centre, the 

MAC suggests that we think of content as referring to whatever state of affairs reflects 

the possibility of behavioural success, depending on the task in question. 

 

Let’s turn now to another example of cognitive representation to help further illustrate 

the MAC. Imagine that we are explaining a cognitive capacity in terms of a state estimate 

of the sort posited by Bayesian sensorimotor psychology. Assume that we are interested 

in explaining the capacity of a system to estimate distances between its hand and objects 

in the environment, in this instance, a punnet of blueberries that the system is trying to 

reach. Let’s grant, for illustrative purposes, that part of the underlying mechanism is an 

R-mechanism. Call the actual distance between the hand and the blueberries D1. The 

target of the representation is D1. This is because D1 is the actual condition that the state 

needs to estimate for the capacity to succeed (understood in terms of what the state must 
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structurally correspond to). Suppose that given its structure, the R-mechanism causes the 

system to misestimate the distance between hand and blueberries (the R-mechanism fails 

to structurally correspond to D1). Instead, the R-mechanism structurally corresponds to a 

shorter distance in the agent’s environment (conditions that instantiate the vehicle’s 

structure), causing the system to reach this distance. Call this point D2. The MAC says 

that the content of the representation refers to D2. This captures the fact that if D2 were 

the target—if the R-mechanism was required to structurally correspond to D2 because the 

blueberries were at D2—then the behaviour would succeed. The R-mechanism will 

structurally correspond to many things, but only D2 reflects a relevant counter-factual. 

 

The action-centeredness of the MAC equips us with a framework for better understanding 

the appeal of ascribing content to Swamp Rat (see chapter 4). Recall that Swamp Rat 

possesses a mechanism that is physically identical to an R-mechanism in Ordinary Rat 

(i.e., a cognitive map). I claimed that Swamp Rat’s mechanisms play the same 

explanatory role (qua representation) for Swamp Rat as they do for Ordinary Rat. From 

that premise, I tentatively concluded that Swamp Rat’s mechanisms possess content. 

Failing to allow this would endanger the causal relevance of content to the production or 

constitution of cognitive capacities of the sort studied by cognitive science. From the 

perspective of the MAC, the mechanisms in Swamp Rat and Ordinary Rat have identical 

semantic properties in accordance with the causal role of their underlying mechanisms. 

Take some capacity that Swamp Rat and Ordinary Rat both display, like navigating from 

a starting location in a laboratory maze to a location elsewhere in the laboratory maze 

containing a reward. Assume that the relative success of this behaviour depends on the 

structural correspondence between an R-mechanism and, roughly, the layout of the 

laboratory maze. Further assume that both creatures, being physically indistinguishable 
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and located within identical environments, succeed and fail to navigate under equivalent 

circumstances. According to the MAC, the target and content of the mechanisms in both 

creatures are the same. After all, the creatures display equivalent capacities within the 

same task environment, and their mechanisms are structurally identical. Though Ordinary 

Rat inherited its mechanisms through the normal processes of evolution and learning, and 

Swamp Rat inherited its mechanisms through the unusual process of a cosmic miracle, 

the indistinguishable behaviour of both creatures is explained by mechanisms playing the 

same representational role, with the same representational content. 

 

By dispensing with traditional causal-historical theories, one may wonder just how 

widely the MAC construes the scope of ‘correct representation’. The short answer is that 

correct representation begins and ends with successful action. A correct representation is 

rarely the result of blind luck. And yet, blind luck, should it ever occur, is just as good as 

mundane biological history when it comes to realising a cognitive capacity. Our analogy 

to ordinary S-representation helps to demonstrate this. Of course, it is no accident that a 

map of IKEA correctly represents multiple targets. Multiple IKEA stores all bear the same 

layout because those stores were produced according to a shared plan—that is, there are 

additional mechanisms that reliably coordinate the production of representation and 

multiple targets ensuring that the structure of the former systematically matches the 

structure of the latter. And yet, an IKEA map could feasibly facilitate the navigation of a 

shopper in an independent hardware store that just so happened, by freak coincidence, to 

share the same layout as an IKEA store. To the extent that the structural correspondence 

between map and layout causally explains how one successfully navigates the hardware 

store, the map can be said to correctly represent the hardware store.  
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As an aside, note that the MAC can still make sense of why one might say that the map 

represents IKEA when asked—even following successful navigation of the hardware 

store. This is because when asked what something represents in ordinary life, one is often 

being asked about its originally intended or typical target, given the reliable (but non-

necessary) connection that holds between the target that a map was designed to stand-in 

for or usually stands-in for, the set of targets the map will successfully stand-in for, and 

the target a given user is intending the map to stand-in for.  

 

The above IKEA map example highlights that the MAC permits ‘lucky correctness’ (in 

principle). This is a major difference between it and many traditional causal-historical 

theories. Of course, freakish coincidences are rare. We should expect additional 

mechanisms and biological histories to explain how a cognitive representation comes to 

correctly stand-in for, say, one’s local environment or the distance between one’s hand 

and an object. Correct cognitive representations do not usually pop into existence 

following freak lightning strikes (let’s assume) but are reliably produced and coordinated 

by other mechanisms and are shaped by an organism’s evolutionary and learning history. 

However, these important facts do not themselves determine the criteria for evaluating 

correctness and misrepresentation. As repeatedly suggested already, the history of a 

mechanism does not account for the role a mechanism plays in realising a capacity in the 

here-and-now. Hence R-mechanisms, like other mechanisms, may feature in successful 

explanations even when one remains ignorant about their history. In summary, for the 

MAC, though correct representation is likely the reliable product of additional 

mechanisms and a system’s history, the criterion for evaluating correctness is to be 

identified with the extent to which an S-representation allows a consumer to complete a 
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capacity or task that causally depends on the S-representation’s action-guiding structure. 

In a slogan, ‘correct representation = successful action’. 

 

In closing this introduction to the MAC, it is worth acknowledging the debt that the 

account owes to Cummins (1989, 1996). A complete exegesis comparing the MAC to 

Cummins’ positive account of representation is beyond the scope of this thesis. 

Nonetheless, it is worth noting Cummins’ (1996) suspicion of S-representation deriving 

from his belief that it is beholden to a ‘use-based theory’ of content. For Cummins, all 

such theories are flawed because, by identifying the content of representation with how 

representation is used (as he thinks they do), use-based theories conflate content and 

target. S-representations, therefore, cannot create the mismatch between content and 

target required to make sense of representational error. Cummins argues that what is 

needed is a theory that ties content to intrinsic features of the representation. Error is made 

possible because of the potential mismatch between these intrinsic features and their 

‘application’. In other words, error occurs when the ‘target of tokening’ fails to satisfy the 

representation’s content (ibid., p. 6). This reasoning reflects the same ethos evident in the 

MAC. It is true that the MAC may be thought of as a use-based theory in so far as it 

claims that a mechanism derives its semantic properties from the way it is exploited by a 

consuming system, and it is only that structure which is relevant to action that contributes 

towards content determination. However, following Cummins’ insights, the MAC also 

allows for error by drawing a distinction between the content of an R-mechanism and its 

target. In this way, the MAC avoids the pitfall that Cummins thinks befalls all use-based 

theories (for related discussion see Ramsey, 2007, pp. 104-107).  
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3.3 Clarifications and criticisms of the MAC 

 

Reviewing some possible objections to the MAC will help to further clarify and 

strengthen the account. Perhaps the most obvious complaint is that the MAC has things 

backwards: surely it is a prior theory of content that explains where and why a mechanism 

counts as correct. But the MAC appears to portray the opposite picture: the MAC uses a 

prior notion of correspondence—the structural correspondence between a mechanism and 

some state of affairs required to realise a capacity and generate behavioural success—to 

explain how we should think about content. However, the very insistence of things 

needing to be in this order—for a theory of content, independent of the functional role 

played by a mechanism, to specify where correctness begins and ends—is precisely the 

narrative that the MAC resists. This owes in part to the observation of the explanatory 

role played by those theoretical posits which inspire the S-representation account, for 

example, cognitive maps. Prior to our theorising about content, scientific explanations of 

cognitive capacities that draw on ‘iconic representations’, like cognitive maps, already 

imply the importance of correspondence between a mechanism and some target given the 

way their structure determines the containing system’s behaviour (Bechtel, 2008). The 

MAC says that we ought to think of subpersonal content in terms of the correctness 

conditions already implicit in these explanations of cognition. 

 

One might suspect that the problem of content determination originated in a tension 

inherent in the traditional lingua-form representations associated with the language of 

thought (see chapter 2). It was often taken that the semantics of (apparently 

representational) cognitive states was not relevant to their causal powers within a 

cognitive system. This belief is reflected in Fodor’s (1980) ‘methodological solipsism’, a 

position which holds that cognitive processes and states are to be construed with reference 



 232 

 

 

only to formal operations performed over internal vehicles which are themselves 

individuated by their functional relationship with one another (see Wilson, 2004, for more 

recent discussion). At the same time, these vehicles were often assumed to possess 

representational content given their role as the reduction base for propositional attitudes. 

Again, however, the very identification of representations like cognitive maps (which 

inspire the S-representation account), involves an implicit attribution of content. To 

borrow from Bechtel, ‘neuroscientists have tended to make the relation to the content 

central to the identification of vehicles and so have not faced the challenge of 

reconnecting the content to the vehicle.’ (2008, p. 161). He goes on to say, 

 

The connection between content and vehicle is fundamental to how 

representations are characterized in neuroscience; consequently, neuroscience 

representations are more clearly grounded in the causal nexus relating 

organisms to their environments than are those advanced in cognitive science. 

(ibid., p. 186) 

 

Though Bechtel does not defend any detailed account of content in particular, his 

observation captures the same spirit that inspires the MAC.6 Take another example. In 

Bayesian psychology, ‘state estimates’ are first identified as a theoretical posit because 

the framework deems it necessary to posit probabilistic estimations of environmental 

conditions. These conditions reflect the features of a token system’s environment that the 

structure of the underlying mechanism needs to match for the capacity to succeed. There 

exists an implicit notion of target and content in the positing of a state estimate; a notion 

                                                
6 I adopt a more liberal understanding of cognitive science than Bechtel does, one which encompasses both 

neuroscientific and non-neuroscientific theories of cognition that posit similar representations (such as 

the classical computational theory of cognition). Bechtel (2008) also subscribes to a far more 

permissive notion of representation than the one defended in this thesis. 
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of what needs estimating and what is estimated—where success or failure is explained 

with recourse to the degree of correspondence between the two.7 

 

The present discussion does draw attention to a more grievous doubt that arises from 

situating content determination within functional mechanisms: the threat of 

indeterminacy. Historically, representational content has been assumed to be fixed and 

determinate (for discussion, see Egan, 2014). This is often taken to mean that a 

representation’s content is objective and does not vary with scientific practice (i.e., does 

not change depending on divergent explanatory goals). Such objectivity seems key to 

ensuring cognitive representation’s naturalistic credentials. However, general anxieties 

about the determinacy of mechanism properties threaten to infect our conceptualisation 

of content in R-mechanisms. 

 

There are two issues that one may have concerning the determinacy of content in R-

mechanisms. Firstly, a component may plausibly play the role of representation in several 

mechanisms, meaning that the component’s target and content will vary with the wider 

mechanism it serves. To my mind this is the least serious of the two issues, as though it 

implies that semantic properties are less fixed than traditional naturalised accounts of 

content assume, these nevertheless result from objective properties of the mechanism’s 

wide functional relations. This is consistent with the kind of interrelatedness and reuse of 

neural structures that have become a fixture of contemporary cognitive science (for 

example, see Anderson, 2010). This was discussed in chapter 2. Secondly, whether a 

                                                
7Once again, the need for a target/content distinction is strengthened by the possibility of system-detectable 

error. In those mechanisms capable of system-detectable error, as suggested in many Bayesian 

approaches, the system updates its future estimations to better match a set of target conditions. The 

capacity for updating an estimate implies the notion of a state bearing a content in need of updating (to 

better serve some system goal). 
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vehicle has content at all depends on whether there is a phenomenon that is explained by 

the capacity of an underlying mechanism with a functional role satisfying the criteria for 

S-representation. However, according to some, the explanandum capacity of a 

mechanistic explanation is fixed by the perspective of an observer (Craver, 2013). 

Therefore, the function of a mechanism depends on an explanandum fixed by the 

perspective of an observer. For example, the function of the heart is to pump blood 

relative to the circulatory system but to make thump-thump noises relative to diagnosing 

cardiovascular disease. Mechanisms do not have any essential, definitive functions, but 

only causal roles relative to the phenomena of interest to agents. Thus, R-mechanisms 

only possess their representational function (and thus content) given the explanatory 

inclinations of observers. If correct, the worry goes, R-mechanisms and the MAC threaten 

the objectivity of representational content. 

 

I will note two related points in response to the more serious second worry. The first point 

is that the MAC avoids content becoming radically indeterminate, even if the more 

serious worry is correct. This is because once an explanandum is fixed (for example, 

navigation), and the resulting causal mechanisms identified (for example, a cognitive 

map), the function to represent becomes objective, and the specification of the target and 

the content-determining structure becomes fixed irrespective of any agent’s judgement. 

This is true for any mechanism function. For example, relative to its role in blood 

circulation, the function of the heart to pump blood is fixed. It is for this reason that I 

think the term ‘perspectivalism’ (adopted by Craver, 2013) overemphasises the 

arbitrariness of functions under the causal-role account.  
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The second point is that worries about indeterminacy arise from broader issues 

concerning the mechanistic framework. To what extent mechanisms and their functions 

are indeterminate depends on this broader (and live) debate. Therefore, the proponent of 

the MAC may accept that content fixation is indeterminate, but only insofar as functional 

mechanisms are indeterminate more generally. Nonetheless, some mechanists have 

sought to modify the mechanistic framework to secure a more objective foundation for 

mechanism functions. For instance, Piccinini (2015, chapter 6) and Maley & Piccinini 

(2017) argue for a contemporary naturalistic account that seeks to provide objective 

criteria for ‘teleological functions’ in mechanisms. For Maley & Piccinini, a mechanism’s 

function is the ‘stable contribution by a trait (or component, activity, property) of 

organisms belonging to a biological population to an objective goal of those organisms’ 

(p. 244).  Let’s examine this account further.  

 

Maley & Piccinini reject etiological accounts of function for reasons similar to those 

offered in earlier chapters. These include concerns about the opaqueness of a system’s 

selection history and the irrelevance of selection history to the present causal powers of 

a trait (2017, pp. 238-239). However, they also reject the adequacy of the standard causal-

role account because they think it threatens to overproliferate functions and leads to a 

counterintuitive perspectivalism (ibid., p. 240). By contrast, Maley & Piccinini seek an 

objective and ‘ontologically serious’ foundation for ‘teleological functions’ in 

mechanisms (ibid., pp. 236-237). They maintain that, on their account, ‘functions are an 

aspect of what a system is, rather than an aspect of what we may or may not say about 

that system’ (ibid., p. 237. Original emphasis). I will call the kind of functions Maley & 

Piccinini discuss ‘objective goal functions’. 
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Maley & Piccinini’s account contains many subtleties, but the fundamental idea is that a 

mechanism’s function must contribute to a system’s goals. Science seeks to explain the 

causal contribution of a living system’s parts to those goals, ascribing functions 

accordingly.8 Goals are understood as states that the system is organised to bring about 

and a mechanism’s function is its contribution towards that goal. More exactly, systems 

have ‘objective goals’ understood in terms of survival and inclusive fitness.9 These are 

states ‘toward which the energy expenditure, via mechanisms, must work in order for 

organisms to exist’ (2017, p. 243). A mechanism’s function is a stable contribution to 

survival or inclusive fitness. For example, the objective goal function of the heart is to 

pump blood (as opposed to making thump-thump noises) because pumping blood is the 

causal contribution of the heart to the survival of the containing organism. Another way 

to think about this is that living systems behave in such a way as to contribute to their 

survival and inclusive fitness, and a mechanism’s function is its role in bringing about 

that behaviour (ibid., p. 247). For instance, when a rat seeks out food within its 

environment it contributes to its own survival; the function of a cognitive map is to 

represent its environment because that is its role in bringing about that survival-

contributing behaviour. Also note that Swamp Rat possesses objective goal functions, in 

so far as it is organised (just like Ordinary Rat) to survive and reproduce. As such, Swamp 

Rat’s cognitive maps also have the objective goal function to represent. In summary, the 

objective goal account offers an alternative to etiological approaches to function and 

appears to accord with much function ascription within scientific practice (ibid., p. 253). 

                                                
8 The subtleties of Maley & Piccinini’s arguments allow, for example, the extension of their account to 

include artefacts and human aims (so-called ‘subjective goals’) that may be orthogonal to strictly 

biological ends. 
9 ‘Inclusive fitness’ refers to the theory that a gene may contribute towards its own selective success through 

its contribution to the reproduction of other organisms who possess copies of that gene (Hamilton, 

1964). This provides a means for the evolution of altruistic behaviour.  
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Maley & Piccinini are careful to distinguish their position from standard causal-role 

accounts as well as etiological accounts (2017, pp. 240-241). However, the core of Maley 

& Piccinini’s theory is not in conflict with the causal-role account. Instead, I suggest, it 

supplements it. After all, objective goal functions are still a kind of causal role (Krickel 

offers a characterisation of objective goal functions that emphasises this fact; 2018, p. 

45). Maley & Piccinini’s account does not undermine the importance of causal roles for 

grounding function so much as limit the sorts of causal roles that count as objective goal 

functions. From this starting point, we can imagine a modified version of Maley & 

Piccinini’s account that accepts the base causal-role account—a mechanism’s functional 

role is its causal role relative to the production or constitution of some explanandum—

whilst individuating an interesting subset of causal roles, namely, those which contribute 

towards an organism’s ‘objective goals’. It is just these objective goals, let’s grant, that 

are of interest to biology and cognitive science. Under this interpretation, hearts really do 

have the function to make thump-thump noises relative to diagnosing heart disease (a 

conclusion Maley & Piccinini resist; 2017, p. 240). However, unlike pumping blood, 

making thump-thump noises does not count as an objective goal function—the sort of 

function that biologists are interested in.10 The function of the heart to pump blood 

remains ‘objective’, in so far as pumping blood is objectively its causal role relative to 

the organism’s objective goal. This interpretation of Maley & Piccinini’s account 

conforms with the pluralist approach to accounts of function outlined in chapter 2.11  

 

                                                
10 Hearts do have other ‘objective goal functions’ besides pumping blood, such as thermoregulation. The 

objective goal account does not prohibit mechanisms from possessing multiple objective goal 

functions. For discussion, see Piccinini (2015, p. 103). 
11 One major advantage of this interpretation over the standard objective goal account of functions presented 

by Maley & Piccinini is that it still permits us to continue to talk about the functions of maladaptive 

mechanisms (see chapter 2). 
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Maley & Piccinini’s objective goal account offers a promising alternative to etiological 

approaches whilst constraining the sort of causal roles that count as functions relative to 

the interests of biology and cognitive science. I do not intend this brief sketch to 

conclusively demonstrate the determinacy of content given a mechanistic approach to 

cognitive representation. Rather, I intend only to gesture towards the possibility of further 

cementing the objectivity of content by modifying the base causal role account of 

mechanism functions. Ultimately, these issues go beyond the scope of R-mechanisms and 

the MAC. The account of representation I defend takes for granted the explananda of 

cognitive science (i.e., paradigmatic cognitive capacities) which, once fixed, serve to 

ground the criteria for R-mechanisms and their content, leaving it to accounts like those 

defended by Maley & Piccinini to explain the significance of such explananda. 

 

In closing our discussion of the MAC, it is worth returning to worries about representation 

raised by certain proponents of 4E cognition. Recall from chapter 2 that the action-

oriented representation (AO-representation) account questions those concepts of 

cognitive representation that suggest ‘objective’ and ‘action-neutral’ contents, instead 

emphasising the importance of ecological constraints on any plausible form of 

representation, and the possibility of action-relevant ‘imperative’ contents (for example, 

see Clark, 1997; Mandik, 2005). Such contents are, in some sense, related to the real 

world needs and behaviours of a resource-bound system. Is the MAC friendly to an 

action-oriented approach to representation? 

 

Future research will be devoted to further exploring the relationship between R-

mechanisms, the MAC, and 4E approaches to cognition in general. For now, I will settle 

for noting a prima facie sense in which the account of representation on offer is friendly 
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to AO-representation. I already stressed above that the MAC takes the exploitation of 

cognitive representation for action seriously in so far as it adopts the success/failure of 

cognitive capacities as its focal point for characterising content determination. According 

to the MAC, contents require targets, and targets are specified by the needs of the acting 

system consuming the representation—needs that may be highly species- and individual-

relative. The content of an R-mechanism refers only to that which is relevant to the 

realisation of behavioural success. In turn, whilst intrinsic structure helps determine 

content, it only the structure of action-relevant parts of the mechanism that is semantically 

relevent, that is, those parts that affect the system’s processing and motor outputs. In this 

way, the MAC places action front and centre. 

 

It is also worth simply noting that that the R-mechanism account is consonant with more 

general lessons from 4E cognition concerning the non-representational nature of at least 

some cognition, and the likely interplay between both representational and 

bodily/environmental resources for those capacities that do involve representation. 

Finally, it strikes me that the action-oriented flavour of the MAC is enhanced when 

combined with an account of function like Maley & Piccinini’s. If the objective goal 

account is correct, then an R-mechanism’s function to represent is firmly rooted in the 

survival and inclusive fitness of an ecologically embedded system. An R-mechanism and 

its content are thus tethered to the needs of the active system they play a role within. To 

summarise, R-mechanisms and the MAC are well placed to deliver an account that not 

only articulates a clear set of conditions under which ascriptions of subpersonal cognitive 

representation make a robust explanatory contribution but do so in a way that accords 

with the considerations of 4E cognition. 
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4. Conclusion 

 

This chapter distinguished between two closely related problems about representational 

content. The ‘hard problem of content’ concerns the justification for attributing 

representational content at the subpersonal level. The ‘problem of content determination’ 

concerns how a token representation acquires its particular content. The hard problem 

becomes easier when we consider that correctness conditions emerge from the need for 

structural correspondence in cases where a cognitive capacity depends on an R-

mechanism. In turn, the content determination problem is assuaged by observing that 

token R-mechanisms have certain target states of affairs that they must structurally 

correspond to in order to count as correct—as determined by the capacity they serve and 

the wider task environment. Under the ‘mechanistic account of content’, a 

representation’s content refers to the state of affairs that must obtain for it to realise a 

cognitive capacity and generate behavioural success. The relative overlap between target 

and content underwrites an R-mechanism’s degree of correctness or incorrectness and 

thus allows for the possibility of misrepresentation. Together, these responses to the two 

problems of content firmly plant the semantic properties of cognitive representation 

within causal-mechanistic explanation. 

 

A principal virtue of the S-representation account is that traditional problems associated 

with naturalising content begin to dissipate. The justifiable ascription of semantic 

properties at the subpersonal level and the content determination of a token representation 

are grounded in ordinary facts concerning the causal role played by a class of mechanisms 

in routine cognitive capacities. Content no longer looks spooky, and so, the compulsion 

to wholly exorcise representation from cognitive science is dispelled. 
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Thesis Conclusion 

 

This thesis examined the role of representation in explanations of cognition. Such a 

longstanding issue may sometimes seem like a perennial philosophical dispute, with so 

many competing intuitions that it’s unclear whether a solution is even possible. And yet, 

this thesis indicates that a solution is finally within our grasp. The mechanistic approach 

that I have advocated takes the best lessons from both sides of the debate to hone our 

understanding of cognitive representation. Cognitive representation can play a role in 

explanations of cognition: a cognitive representation is a type of cognitive mechanism—

one that meets the criteria for S-representation. In turn, a representational explanation is 

a type of mechanistic explanation. 

 

Let’s summarise our findings. I have argued that we should hesitate before assuming the 

notion of cognitive representation is a category error, remaining open to the possibility 

that ‘representation’ informatively describes cognitive activity at the subpersonal level. 

As we saw, exploring whether ascriptions of representation at the subpersonal level 

contribute to a scientific theory is not the same thing as settling the final ontological status 

of cognitive representation. Whether and how representation plays a part in our best 

scientific theory of cognition is of primary importance to cognitive science, not whether 

subpersonal cognitive representations are ultimately real in a strong, metaphysical sense.  

 

If my analysis is correct, then several traditional ways of thinking about subpersonal 

cognitive representation fail to secure its explanatory significance. Receptors do not 

possess a functional role that is distinctly representation-like. Neither do action-oriented 

considerations, by themselves, show that subpersonal entities serve as representations. 
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Adopting the intentional stance also fails to support representationalism, remaining 

neutral on the sorts of internal mechanistic processes that cognitive science investigates. 

Finally, a computational approach to cognition does not automatically imply a 

representational approach to cognition. Physical computation does not presuppose 

representation and there’s nothing about the structure of computational explanations in 

cognitive science that necessitates representation.  

 

Despite these negative results, there remains at least one notion in philosophy and 

cognitive science that does supply representation with a substantive explanatory role. 

According to the S-representation account, a cognitive representation is a type of internal 

map or model-like entity that guides the actions of a cognitive system by mirroring the 

structure of the world. This provides a clear set of empirically plausible functional criteria 

that is consonant with a broader mechanistic framework of explanation in cognitive 

science. The resulting picture of a ‘representational mechanism’—a cognitive mechanism 

that meets the functional criteria for S-representation—provides the grounds for a robust 

and distinctive form of representational explanation. In this way, if a theory of cognition 

posits representational mechanisms, then it is a representational theory in a well-defined 

and substantive sense. 

 

The notion of a representational mechanism dissipates many traditional worries 

associated with naturalising cognitive representation. In particular, it accounts for 

representation’s paradigmatic semantic properties at the subpersonal level. The functional 

criteria met by a representational mechanism allows for the attribution of semantic 

properties in a naturalistically respectable fashion. At the same time, these functional 

criteria supply an intuitive way to think about content determination. The mechanistic 
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account of content unpacks the particular semantic properties of a token representational 

mechanism in terms of what state of affairs needs to be actual for the mechanism to realise 

a capacity and generate behavioural success. 

 

Questions inevitably remain. Moving forward, I intend to strengthen the mechanistic 

approach to representation by developing some suggestions touched upon throughout this 

thesis. Three main research areas stand out. The first research area concerns whether the 

burgeoning conceptual engineering literature can help assuage worries over ascribing 

representation at the subpersonal level. Building on the ethos of this thesis, I think it will 

prove fruitful to move further towards a normative approach to psychological concepts 

that examines how our understanding of representation can serve (and be revised by) 

scientific needs. The second research area concerns the compatibility of the account 

outlined in this thesis with 4E approaches which I have only been able to touch upon 

briefly. Such approaches traditionally vary in their acceptance of cognitive 

representation. The mechanistic approach promises to help taxonomize and adjudicate 

the representational commitments of different 4E approaches. On a related note, the final 

research area concerns ecologically-focussed theories of mechanism function. I will 

further explore how the objective goal account can complement the mechanistic approach 

to cognitive representation whilst sustaining a broadly pluralist attitude toward theories 

of function. I also intend to investigate connections between the objective goal account 

and similar notions of function within the cybernetics tradition. Pursuing these research 

areas will test the boundaries of the mechanistic approach to cognitive representation, and 

in doing so, promises to advance our understanding of explanation in cognitive science. 
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