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Abstract 

 

Abstract 

 

Effects of a customised total knee implant (CTKI) on the contact forces and relative 

motions of the tibiofemoral and patellofemoral joints have been investigated with 

computer simulations by applying the patient-specific muscle forces on the lower limb 

and the joint reaction forces at the ankle and hip joints. 

 

Firstly, a method was proposed and realized to create a CTKI based on the geometry of 

a patient’s knee joint using ANSYS Mechanical APDL. Secondly, a patient-specific 

musculoskeletal model was built to calculate the muscle forces and joint reaction forces 

during a squat motion. Finally, a dynamic finite element (FE) model was created in 

ANSYS incorporating the aforementioned forces and the CTKI to calculate the contact 

forces and relative motions of the tibiofemoral and patellofemoral joints. In addition, an 

off-the-shelf symmetric total knee implant (STKI) with cruciate ligaments (CLs) 

retained was simulated for comparison analysis. 

 

Knee joint collateral ligaments with nonlinear properties and pretensions were created 

in the dynamic FE model. A series of dynamic simulations of a squat motion with 

different initial laxities of the collateral ligaments were performed on the CTKI model 

under three treatment scenarios of CLs: both CLs retained, anterior cruciate ligament 

(ACL) removed and both CLs removed. Results showed that only the CTKI model with 

both CLs retained resulted in similar femoral external rotation and posterior translation 

with those of the healthy knees. There were not big differences in the tibiofemoral 

compressive forces among the three scenarios. All the three tibiofemoral compressive 

forces showed good agreement with other research results from either in-vivo 

measurements or simulations. The CTKI has better mobility than the traditional STKI 

designs.  

 

The curvatures of the tibial bearing surfaces have been varied in the transverse and 

longitudinal directions. Compared with the STKI, the CTKIs could restore patient’s knee 

function to normal, though the tibiofemoral compressive force observed in CTKIs was 

larger than that of the STKI in the late 25° of simulated knee flexion angles, which was 

caused by the large passive knee ligament forces and the larger knee motion ranges.  



ii 
Abstract 

 

The patella has also been studied and compared between the unresurfaced and resurfaced 

patellar components. The laxity of patellofemoral ligament was firstly tested on the 

unresurfaced patellar component. Then, the same dynamic boundary conditions were 

applied on three different patellar button components. Differences were found in the 

patellar internal rotation and medial tilt motions between the unresurfaced and 

resurfaced patellar components. The original patellar button component showed contact 

between the patellar bone and the femoral component apart from contact between the 

patellar component and the femoral component. The scaled-up button was able to avoid 

the contact between the patellar component and the femoral component and reduce the 

patellar medial translation. However, it resulted in larger patellofemoral force than that 

of the original and flat patellar components. The patellofemoral forces on the scaled-up 

patellar component were more fluctuating due to less conformity of the contact surfaces. 

The scaled-up patellar components were found to have two contact areas on the 

patellofemoral joint, while the original one had only one contact area. 
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Chapter 1 

Introduction 

Total knee replacement (TKR), also known as total knee arthroplasty (TKA), has been 

an effective surgical procedure to relieve the pain of patients of severe osteoarthritis. 

The number of people undergoing TKR surgery is still increasing. According to the 

National Joint Registry (NJR) for England, Wales and Northern Ireland, around 90 000 

TKRs were carried out each year.1 The number of TKR surgeries was also projected to 

increase to 3.48 million by 2030 in the USA.2 

 

Although the TKR is one of the most common procedures in orthopaedic surgery and 

one of the most successful in all of medicine, the satisfaction of patients after the surgery 

is only about 80% 3–5. According to the literature 6,7, the TKR is not achieving its goal 

of relieving the residual pain or restoring the limited function in large proportion of 

patients. 27% of clinically residual knee pain was caused by the femoral implant 

overhang and the overhang was correlated with a 90% increase in the risk of pain.8 The 

study of Bonnin et al. 9 also pointed out that the mediolateral oversizing might lead to 

worse clinical results and unexplained pain in patients. As regard to the functional 

limitation of implanted knees, it is mainly because of the widely used traditional design 

of the off-the-shelf total knee implants (TKIs). The traditional designs of TKIs are 

characterized with the symmetric geometric shape and simplified arc-shaped condyles. 

Due to the standardisation of sizes and types of the traditional designs, it would not only 

restrain the mobility of implanted knees, but also lead to the overhang or underhang of 

the femoral component over the bones, bringing in potential risks of postoperative knee 

pains and discomfort. 

 

Under this circumstance, experimental asymmetric design of TKI was tested and 

compared with the symmetric posterior stabilized designs by Walker et al. 10. The 

asymmetric design was concluded to be able to produce the asymmetries in the motion 

of the anatomic knee. ConforMIS is the first and only company that apply customised 

TKI based on patient-specific knee shapes. Its customised TKI is built based on three 

curves: medial, lateral J-curves and patellofemoral J-curve which can be extracted from 

the geometric information of patient-specific knee 11,12. 
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Patil et al. 12 used the active infrared surgical navigation system and Oxford knee rig to 

compare a customised knee implant from ConforMIS with a standard off-the-shelf 

cruciate retaining (CR) TKI from DePuy and found that patient-specific designed knee 

implant could produce kinematics that were more closely resembling normal knee 

kinematics than standard off-the-shelf implants. Zeller et al. 5 also conducted the 

kinematic analysis between the ConforMIS implant and a traditional design TKI from 

Zimmer by using fluoroscopic method. Same conclusion was drawn that the customised 

TKI could produce a kinematics more similar to a normal knee. 

 

1.1 Research aim and objectives 

 

Given the drawbacks of off-the-shelf symmetric TKIs, and lack of studies on the design 

and analysis of customised TKI, this study aims to create a customised TKI and predict 

its performance using a dynamic finite element model with consideration of patient-

specific muscle forces. 

 

The objectives of this thesis are: 

 

• proposing a computer modelling method of creating a customised TKI based on 

patient’s knee anatomy;   

 

• calculating patient-specific lower limb muscle forces and ankle joint loads for 

evaluating dynamic responses of the customised TKI; 

 

• creating a patient-specific finite element knee simulation model that incorporates  the 

effect of the lower limb inertias, muscle forces and ankle joint loads; 

 

• analysing and comparing motions and forces of the tibiofemoral and patellofemoral 

joints between the customised TKI and an off-the-shelf TKI. 
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1.2 Structure of the thesis 

 

The thesis consists of ten chapters. 

 

Chapter 1 introduces an outline of the research and the structure of the thesis. 

 

Chapter 2 is the literature review. Human knee joint, total knee replacement implants, 

knee test rigs and musculoskeletal models are introduced and described. 

 

Chapter 3 proposes a method of creating a customised femoral implant based on the 

patient-specific shape of distal femur and building the tibial implant based on the 

condylar surfaces of the femoral implant. The parametric modelling of both femoral and 

tibial components is performed in ANSYS Mechanical APDL. The original three 

dimensional (3D) knee joint model is built from the knee joint computed tomography 

(CT) images which are downloaded from the online accessible resource 13. 

 

In Chapter 4, a patient-specific musculoskeletal model is built to calculate the muscle 

forces and joint reaction loads for the squat motion using OpenSim. The kinematic 

marker data and ground reaction forces used for musculoskeletal model simulations are 

from the same subject whose knee joint CT images are used for creating the customised 

total knee implants (CTKIs) in Chapter 3. All the experimental data including CT scans 

were downloaded from the online accessible resource 13 and measured and collected by 

Fregly et al. 14. 

 

In Chapter 5, an ANSYS transient dynamic FE model is created based on the Oxford 

knee rig and Kansas knee simulator. In the dynamic model, the TKI models are coupled 

with the knee joint ligaments and muscles across the knee and ankle joints. Two contact 

pairs of tibiofemoral and patellofemoral joints are recruited. 

 

In Chapter 6, the dynamic performances of both CTKI and one symmetric TKI (STKI) 

from DePuy are investigated. The tibiofemoral compressive forces, relative motions and 

ligament forces and elongations of two designs are compared. The results of CTKIs 

under three scenarios of knee cruciate ligaments are also shown and compared. 
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In Chapter 7, the effect of curvatures of tibial bearing surfaces on the dynamic responses 

of CTKIs is investigated. Apart from the tibiofemoral compressive forces, relative 

motions and ligament forces and elongations, the tibiofemoral and patellofemoral 

contact stresses of CTKIs in five knee flexion angles are also shown and compared with 

those of the STKI.  

 

In Chapter 8, the effect of resurfaced and unresurfaced patella on the knee joints is 

investigated. The joint forces, relative motions and contact stresses of both patellar 

models are compared and analysed. The size and shape of patellar button implants are 

also studied to compare their influences on the patellofemoral relative motions and 

contact stresses. 

 

In Chapter 9, the main findings, conclusions and research limitations are summarised 

and discussed. 

 

Chapter 10 is the last chapter of this thesis. It puts forward some ideas about improving 

the customised total knee implant modelling and the musculoskeletal modelling for 

future study.  

 

1.3 Original contribution to the body of knowledge 

 

The main contribution of the research is creating a computer model of customised total 

knee implant and a dynamic computer knee simulation model with consideration of 

physiological muscle forces and ground reaction loads, in order to address patient 

dissatisfaction with traditional TKI due to the component overhang and restricted 

mobility. This work is the first to combine the total knee implant model with the patient-

specific muscle forces and joint reaction loads in the knee joint simulation. It can 

virtually test either customised total knee implants or traditional designs with realistic 

loads, and optimise design parameters. The customised TKI is computationally 

simulated to have better mobility than the traditional design, and meanwhile have the 

potential to replicate normal knee kinematics. 

 

The original contributions of this thesis to the body of knowledge are listed below: 
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• A method of creating customised total knee implant is proposed. The femoral 

component is built based on the geometry of the patient-specific distal femur. The 

condylar surface curvature of the femoral component is then used to determine the 

tibial component bearing surfaces. 

 

• A dynamic FE knee simulation model is built based on the Oxford knee rig and 

Kansas knee simulator to assess the dynamic performances of total knee replacement 

implants. Unlike previous studies, the closer-to-physiological muscle forces across 

the knee and ankle joints are applied for simulation along with the nonlinear 

properties of ligaments. The effect of the quadriceps muscle wrapping around the 

femur distal is also considered. The improved simulation models also allow applying 

three translational forces and two torques on the ankle joint. The muscle insertion 

locations are determined from the OpenSim patient-specific musculoskeletal model, 

which makes simulation closer to physiological environment rather than using a 

mechanical experiment rig. 

 

• The joint reaction forces and muscle forces applied on the dynamic FE model are 

patient-specific and imported from the simulated results of the OpenSim 

musculoskeletal model. In the process of calculating those forces, the ground 

reaction forces are included. This can help directly observe and understand the 

dynamic responses and characteristics of the customised implant under more 

practical, physiological and patient-specific loading conditions rather than using 

simplified experimental forces. 

 

• The FE dynamic responses of the CTKI under three different scenarios of knee 

cruciate ligament treatments are simulated and compared along with a traditional 

design, STKI. The loading on the medial and lateral knee condyles during the squat 

motion can be obtained together with the motions of knee joint and all ligaments 

forces and their elongations. This helps understand kinematic and kinetic differences 

between the CTKI and STKI.  

 

• The influence of the curvatures of tibial bearing surface on the tibiofemoral joint is 

investigated. The stresses of both tibiofemoral and patellofemoral joints of CTKI 

and STKI are shown and compared. 
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• The influence of the unresurfaced and resurfaced patella on the patellofemoral joint 

is analysed. The influence of the size and shape of patellar button components on the 

patellofemoral joint is also investigated. 



7 
Chapter 2 Literature review 

 

Chapter 2 

Literature review 

 

2.1 Human knee joint and its anatomy  

 

Human knee is one of the largest and most complex joint in the human body. As shown 

in Figure 2. 1, the knee joint consists of three major bones: a femur, tibia and patella 

bone. The knee joins the thigh with the leg/shank and consists of two joints: one between 

the femur and tibia, which is called tibiofemoral joint, and another between the femur 

and patella, which is patellofemoral joint.15 The femur distal consists of two condyles 

and a trochlear groove. The femoral condyle which is located on the inner side of the 

body is called medial condyle, while another is named lateral condyle which is on the 

outer side of the body. The medial condyle is larger than the lateral condyle due to more 

weight bearing caused by the centre of mass being medial to the knee.  The two femoral 

condyles articulate with the corresponding tibial bearing surfaces, while the femoral 

trochlear groove accommodates the patella and allows it to slide as a pulley system. 

 

Lateral 
Condyle

Medial 
Condyle

Femur

Trochlear 
groove

Tibia
Fibula

 

Figure 2. 1 Knee joint bones and some ligaments 16 

https://en.wikipedia.org/wiki/Thigh
https://en.wikipedia.org/wiki/Human_leg
https://en.wikipedia.org/wiki/Joint
https://en.wikipedia.org/wiki/Femur
https://en.wikipedia.org/wiki/Tibia
https://en.wikipedia.org/wiki/Patella
https://en.wikipedia.org/wiki/Centre_of_mass
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Figure 2. 2 Tibia in the proximal view 17 

 

 

Figure 2. 3 Medial and lateral menisci 18 

 

In Figure 2. 2 and Figure 2. 3, two crescent-shaped pieces of cartilage are shown and 

called the medial and lateral menisci. They are located on the top of the tibial plateau 

and act to protect and cushion the joint surface and bone ends, such as dispersing the 

load of the body weight, reducing friction during movement, and absorbing shock 

between the femur and tibia produced by activities such as walking, running and 

squatting. Because of the menisci’s wedge shape in the radial cross section, two tibial 

bearing areas are actually concave shapes, although the lateral tibial plateau is convex 

shape.  

 

Surrounding the bones of knee joint are ligaments which play important roles in 

protecting the knee and provide stability: cruciate ligaments (anterior and posterior 

cruciate ligaments, ACL and PCL) which are located in the centre of the knee as shown 

in Figure 2. 1 and Figure 2. 2, tibiofemoral collateral ligaments (medial and lateral 
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collateral ligament, MCL and LCL) on two sides of the knee respectively in Figure 2. 1, 

patellofemoral collateral ligaments (medial and lateral patellofemoral collateral 

ligaments, mPFCL and lPFCL) in Figure 2. 4 that connect patella with femur and patellar, 

retinaculum ligaments/patellotibial ligaments (medial and lateral retinaculum ligaments, 

mRL and lRL) in Figure 2. 4 connecting patella with tibia and providing medial and 

lateral stability to the patella. The ACL prevents the femur from sliding backward on the 

tibia (or the tibia sliding forward on the femur) and also controls rotational movement 

of the tibia in relation to the femur, while the PCL prevents the femur from sliding 

forward on the tibia (or the tibia from sliding backward on the femur). The MCL and 

LCL prevent the femur from sliding side to side and restrict extreme varus-valgus motion. 

The latter four ligaments are recognized as four major ligaments that play the most 

significant roles in stabilizing the knee joint during all kinds of daily activities.  

 

 
Figure 2. 4 Patellofemoral and Patellotibial ligaments 19 
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Figure 2. 5 Knee joint anatomy lateral view 20 

 

Besides the effective action of ligaments, muscles acting over the knee joint provide 

secondary dynamic stability.21 The most important one is the quadriceps muscle group 

which is shown in Figure 2. 5. It is composed of four distinct muscles and provides the 

main extension moment for the knee joint. The four distinct muscles are the rectus 

femoris (RF), the vastus medialis (VM), the vastus lateralis (VL) and the vastus 

intermedius (VI) shown in Figure 2. 6. Among quadriceps muscles, the RF is the only 

muscle bundle that acts on both the hip and knee joints, while the other three bundles 

connect the patella with the femur bone on different muscle insertion points. The 

quadriceps muscle loads are balanced by the passive force produced by the patellar 

tendon in Figure 2. 5 or also called patellar ligament (PL) that attaches to the tibial 

tuberosity. The hamstrings muscles which are located on the back of thigh act 

antagonistically to the quadriceps muscles to flex the knee. They are comprised of three 

muscles: the biceps femoris (BF), the semitendinosis (ST) and semimembranosus (SM) 

muscles. The hamstrings flex the knee while also extending the hip. Many of the muscles 

that cross the knee joint also cross other joints, giving them functionality about two joints. 

It is this dual functionality and partial redundancy which leads to complexity when 

modelling the joints.22 A summary of the muscles that act across the knee joint is shown 

in Table 2. 1. 
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Figure 2. 6 Human lower extremity muscles 23 

 

Table 2. 1 Major muscles acting over the knee joint 24 

 

 

2.2 Knee Kinematics 

 

Driven by the lower extremity muscles and restricted by the knee articulation structures, 

the femur can move with respect to the tibia in a controllable and regular way. The main 

rotation of the knee is flexion-extension (F-E). Apart from this motion, there are also 

internal-external (I-E) rotation, adduction-abduction (A-A) rotation, anterior-posterior 

(A-P) translation, medial-lateral (M-L) translation and superior-inferior (S-I) translation 
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between femur and tibia. The magnitudes and patterns of these motions are dependent 

on the geometric shapes and conditions of knee joint, effects of muscles and ligaments 

around knee joint, and external loads such as the ankle joint loads transmitted from the 

ground reaction forces. When the knee is flexed, the shank or lower leg is internally 

rotated, while when the knee is extended, the shank is externally rotated. With the flexion 

of knee joint, the passive A-A rotation of knee joint also increases. It can reach a few 

degrees with the knee flexion up to 30°. When the knee is flexed beyond 30°, instead, 

motion in the frontal plane again decreases because of the limiting functions of the soft 

tissues.25, 26 

 

During the knee flexion, the tibia also moves posteriorly with regard to the femur. The 

mean A-P range measured by Belvedere et al. 26 was 25.8±5.9 mm and it mostly occurred 

within the first 70° of knee flexion. Additionally, the mean range for the M-L translation 

was reported 4.8±2.8 mm, while that of the S-I translation was 23.8±3.3 mm. 

 

Freeman et al. 27 used magnetic resonance imaging (MRI) to study the relative 

movements between the femur and tibia. To understand the knee motion, the knee 

flexion was divided into three arcs on the femoral condyle in the sagittal plane, which 

were extension arc, functional active arc and passive arc. The extension arc was defined 

as the range between 20° knee flexion and full extension. The knee flexion angles 

between 20° ±10° and 110°/120° was called the functional active arc that covered most 

of human daily activities. Over this arc, the medial condyle was found not to move 

anteroposteriorly due to the medially cup-shaped tibial bearing surface, while the lateral 

condyle rolled back producing the tibial internal rotation with the knee flexion. The 

posterior horn of the medial meniscus was attached firmly to the tibia to provide a 

posterior wall to the cup-shaped tibial surface, however, the lateral meniscus moved with 

the anteroposterior motion of the lateral femoral condyle in relation to the tibia during 

the knee flexion and rotation. Between 110°/120° and 145°/160° knee flexion was the 

passive arc, in which the effective moment arm was not affected by the effect of thigh 

muscles. Both femoral condyles were found to be in contact with the posterior horns of 

the menisci instead of the tibial articular surfaces.  
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2.3 Total knee component designs 

 

The knee is vulnerable to injury and to the development of osteoarthritis. Once patients 

are diagnosed with severe destruction of the knee joint associated with the progressive 

pain and impaired function, they would be recommended for the total knee replacement 

(TKR). During a surgery of TKR as shown in Figure 2. 7, a surgeon removes the surface 

of patient’s bones that have been damaged by osteoarthritis or other causes, and replaces 

the knee with an artificial implant that can best fit patient’s anatomy.  

 

 

Osteoarthritis 
of knee

 

Figure 2. 7 Before and after total knee replacement (TKR) surgery 28 

 

There are typically three components used in the traditional TKRs: femoral component, 

tibial component and patellar implant. The femoral component (see Figure 2. 8, B) is 

generally made of cobalt-chrome alloy and comprised of two symmetric arc-shaped 

condylar surfaces. In the middle anterior of the two condylar entities is a groove that 

allows the patella to move up and down as the knee joint flexes and extends. The tibial 

component (see Figure 2. 8, C and D) usually consists of two parts: tibial insert or spacer 

which is made of ultra-high molecular weight polyethylene (UHMWPE), and titanium-

alloy tibial tray. The patellar implant (see Figure 2. 8, F) is a dome-shaped or button-

shaped piece of polyethylene that is attached to the retained patella bone and in contact 

with the femoral groove during all sorts of daily activities.  

 

https://en.wikipedia.org/wiki/Osteoarthritis
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Figure 2. 8 Components of TKR 29 

 

It was reported in literature 30 that there were over 150 designs of knee implants on the 

market. According to the implant functions and surgery purposes, the implant designs 

could be categorised into several groups. One of the most commonly used type of 

implant in TKR is a posterior-stabilized (PS) component 31. In this design, the cruciate 

ligaments are removed and a cam-post mechanism substitutes (see Figure 2. 9) for the 

function of posterior cruciate ligament (PCL). With the cam-post mechanism, the femur 

bone can be prevented from sliding forward too far in relation to the tibial counterpart. 

However, according to the study of Van Duren et al. 32, the cam-post mechanism was 

not very effective in that it did not generate normal femoral roll-back, and the cam might 

contribute to roll back above 80 degree. Additionally, this type of design may induce 

some other problems such as high risk of cam-mechanism polyethylene wear. Therefore, 

the ultra-congruent (UC) inserts, also named deep-dish components, were developed in 
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order to increase the implant conformity and to reduce stresses on the bone-implant 

interface.33 But the problem it would cause was early loosening due to the high 

congruence and low mobility of the implant.34 Lützner et al. 35 concluded that UC inserts 

might be useful to preserve bone stock in case of PCL deficiency, but it could not 

increase the range of motion (ROM). Another design similar to the PS component with 

a post-cam mechanism is the cruciate-substituting components. It was designed with a 

dual cam mechanism shown in Figure 2. 10 for purpose of substituting for the function 

of anterior cruciate ligament (ACL) and PCL. It had the same issue with the PS design 

that although the medial-lateral stability had been improved because of the increased 

contact between the cam-post components, the wear also increased significantly. It 

appeared that wear severity was highly dependent on ligament balancing, because it was 

rarely an issue with a well-balanced knee. If the post was acting as a secondary stabilizer 

to coronal motion, it would wear out over time.36 

 
Figure 2. 9 Fully conforming post-cam mechanism of posterior stabilizer 31 

 
Figure 2. 10 cruciate-substituting implant design 37 

 

As contrast to the PS component, cruciate-retaining (CR) designs do not have the cam-
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post mechanism but to retain patient’s posterior cruciate ligament if it is healthy enough 

to continue stabilizing the knee joint. Studies comparing a CR-TKR with intact PCL 

with a CR-TKR without PCL showed significant decline in kinematics in the design 

removing PCL.36 There are also designs of bi-cruciate retaining which could help knee 

function and feel more like a non-replaced knee, but in most TKR surgeries, the ACL is 

resected for the issue of precisely placing implant component. In order to imitate the 

tibial rotation, ball-in-socket component was proposed by MicroPort® as EVOLUTION 

Medial-Pivot Knee System 38, to allow the lateral condylar rotation and in the meantime, 

allow the medial socket to replicate the stability of ACL, PCL and meniscus. 

 

According to the function of tibial components, the designs can be divided into two 

groups: fixed and mobile bearing prostheses. These two designs have exactly the same 

components of the above designs except that the tibial insert of mobile bearing 

prostheses (see Figure 2. 11) can rotate inside the metal tibial tray. This is designed to 

allow a few greater degrees of rotation to the medial and lateral sides of patients’ knee. 

Due to the better mobility, the knee joint motion requires the support and help of 

surrounding ligaments to maintain the joint stability, otherwise, the joint is more likely 

to dislocate. Although the mobile bearing prostheses were developed or evolved from 

the fixed counterpart, it was proved through clinical study 39 that there was no advantage 

of mobile bearing over fixed bearing. In addition, Lu et al. 40 concluded there was more 

wear in the bottom surface of the mobile bearing which interfaces with the tibial tray. 

 

 

 
Figure 2. 11 Mobile-bearing tibial insert prostheses design 41 
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Figure 2. 12 A: Photograph of patient-specific cutting guides. B: Photograph of patient-specific 

implant 12 

 

Patil et al. 12 introduced a customised design of TKI shown in Figure 2. 12. Its femoral 

component was generated from three patient-specific J-curves that were extracted from 

medial condyle, lateral condyle and trochlear groove in the sagittal plane. Its tibial 

counterpart was then created based on the three J-curves of the patient’s femoral 

condyles. The goal of this design is to maximise bony coverage and restore patient’s 

knee kinematics by closely approximating patient’s natural anatomy. 

 

2.4 Mechanical and kinematic alignments of TKA 

 

Total knee implants were placed on patients’ knees based on two accepted principles: 

mechanical alignment and kinematic alignment. 42 In the mechanical alignment, the 

femoral and tibial components were installed in alignment with the femoral and tibial 

mechanical axes respectively. The femoral mechanical axis was defined by connecting 
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the femoral head centre and the intercondylar notch centre, while the tibial counterpart 

was determined by connecting the talus bone centre with the proximal tibial centre. 

Regarding the kinematic alignment, it was based on three fixed functional kinematic 

axes which were intended to dynamically describe the relative relationships between the 

femur and tibia and between the femur and patella. The primary axis was a transverse 

axis in the femur about which the tibia flexed and extended. It passed through the centre 

of a circle fit to the posterior femoral condyles. There was a second transverse axis in 

the femur about which the patella flexed and extended. It was parallel, proximal, and 

anterior to the primary transverse axis. The third axis was a longitudinal axis in the tibia 

about which the tibia internally and externally rotated on the femur. It was perpendicular 

to each of the two transverse axes in the femur. The mechanical alignment of TKA was 

used to make the knee joint loads evenly distributed on two femoral condyles through 

changing the knee joint line orientation angle which was defined by the angle between 

the knee joint line and the line parallel to the ground. By contrast, the kinematic 

alignment was implemented to keep patient’s knee joint line orientation angle before the 

TKA surgery. Ji et al. 43 reported Kinematic alignment of TKA could align the knee joint 

line to horizontal line by investigating the standing subject knee joints. But its influence 

on the dynamic knee loading was unknown. 

 

2.5 The Oxford knee rig and other knee testing systems 

 

The Oxford knee rig (OKR) was designed for biomechanical testing of post-mortem 

human knee-joint specimens during simulated flexed-knee stance, such as riding a 

bicycle, rising from a chair, or climbing stairs. Zavatsky 44 demonstrated that the OKR 

allowed full spatial degrees of freedom (DOFs) of knee joints by using a mathematical 

analytic method and a criterion of general mobility for spatial linkages. But the further 

detailed knee joint motion trajectories were not calculated. 

 

The first version of the OKR was built by O’Connor et al. 45 and used to study various 

knee implants. Refinements of the original OKR were made later to study the tibial 

rotation, contact force distribution between the medial and lateral compartments of the 

tibiofemoral joint, and the relationships between quadriceps force and other externally 

applied loads.44 Several following knee simulator rigs were mainly developed based on 

the OKR.  
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The main components of the OKR are an ‘ankle’ assembly and a ‘hip’ assembly, as 

shown in Figure 2. 13. The ankle assembly has three sets of rotary bearings whose axes 

intersect at a fixed point which can be regarded as the centre of ankle joint. This 

assembly allows spherical movement of the tibia about the ankle centre. To be specific, 

the spherical movement is composed of flexion-extension (F-E), abduction-adduction 

(A-A), and internal-external (I-E) tibial rotations. The hip assembly has two sets of 

rotary bearings which allow femoral F-E and A-A rotations in relation to ‘pelvis’ 

component. 

 

Varadarajan et al. 46 reviewed the commonly used the OKR and the robotic knee testing 

system in Figure 2. 13 validating that both experiments could replicate the femoral 

rollback and 'screw home' tibial rotation in healthy subjects, and the reduced femoral 

rollback and absence of 'screw home' motion in TKR patients. For the robotic knee 

testing system, the cadaver knee was mounted in an inverted position with the tibia 

attached to the robot arm through a six-axis load cell. 

 

 
Figure 2. 13 Oxford knee rig and robotic knee testing system 46 
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Figure 2. 14 Kansas Knee Simulator 47 

 

Based on the Purdue knee simulator 45, 46, the Kansas knee simulator (KKS) in Figure 2. 

14 was built and studied in literature 50–54. The KKS allowed different simulations of 

daily dynamic loading activities on either cadaveric knee specimens or total knee 

implants. The KKS was characterised of five axes of control that consisted of three loads 

(quadriceps load, vertical hip load and adduction-abduction translational ankle load) and 

two torques (ankle flexion moment and internal rotation moment), but the flexor muscles 

of the knee such as hamstring and gastrocnemius were neglected. The PID-control was 

integrated into the simulator to drive the quadriceps actuator and calculate the 

instantaneous quadriceps displacement in order to match the target hip flexion motion 

profile. 

 

Baldwin et al. 53 used ABAQUS/Explicit to build a finite element (FE) model of the 

KKS that considered not only the specimen-specific bone and implanted components 

but also the quadriceps tendon and ligaments around the knee. The PID-control was 

implemented the way as the experimental KKS simulator. The simulation kinematic 

results were compared with the ones measured from the experiment, which showed good 
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agreement in both trends and magnitudes. 

 

 

Figure 2. 15 Schematic representation of robotic knee simulator55 

 

Verstraete 55 proposed an improved knee simulator shown in Figure 2. 15, which allowed 

the ankle joint to be controlled vertically and horizontally. Apart from the controllable 

ankle position, a continuously variable quadriceps force was applied by using a 

servomotor, while a constant hamstring force was adopted by attaching a constant mass 

to a pulley system. To simulate and control the knee simulator’s motion and loading 

independently, two linear position sensors were installed near two actuators in the 

sagittal plane, while one multi-axial load cell was mounted at the 4-DOF ankle joint to 

give feedback of ankle force to the target quadriceps force. The actual quadriceps force 

could be also directly matched with its target value by using PID controllers.  

 

Walker et al. 56  designed the Stanmore knee simulator for kinematics and wear testing 

of total knee replacements which is shown in Figure 2. 16. The simulator had five axes 

of controls which allowed inferior-superior translation, valgus-varus rotation and 

flexion-extension rotation of femoral component, and anterior-posterior translation, 

internal-external rotation of tibial component. Godest et al. 57 built an explicit FE model 

based on the Stanmore knee simulator to predict the kinematics and the internal stresses 

of total knee implants. 
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Figure 2. 16 The mechanical arrangement for the Stanmore knee simulator 56 

 

 

Figure 2. 17 Schematic representation of the test rig: (1) load cell; (2) and (11) actuators of the 

6-6 Gough-Stewart manipulator for loading system; (3) platform of the 6-6 Gough-Stewart 

manipulator for loading system; (4) base; (5) tibia; (6) femur fixation system; (7) femur; (8) 

pulley of the system for extensor muscle simulation; (9) portal; (10) tibia fixation system; (12) 

actuator for extensor muscle simulation 58 
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Forlani 58 designed a test rig shown in Figure 2. 17 for in-vitro evaluation of the knee 

joint behaviour. The femur was fixed on the portal (Figure 2. 17 (9)) which could only 

rotate about a fixed revolute axis. The revolute axis was chosen to be approximately 

coincident with the transepicondylar axis of the femur distal.  The longitudinal axis of 

tibia was kept perpendicular to the portal revolute axis for calculating the femoral flexion 

angle. The quadriceps muscle force was adjusted by a control system to keep the joint 

balanced. The actuators of the 6-6 Gough-Stewart manipulator were used to apply 

external loads to the tibia bone for simulating the ground reaction forces, however, those 

loads were not applied on the distal of tibia but on its middle segment through the 

platform of actuators manipulator.  

 

2.6 Boundary conditions used on knee joint simulations 

 

Fitzpatrick et al. 59 predicted the internal-external (I-E) and anterior-posterior (A-P) joint 

loads by applying I-E and A-P joint motions that were measured from fluoroscopy to the 

FE model, and meanwhile, holding the tibiofemoral compressive forces constant at three 

different values respectively. The femoral component was fully constrained, while tibial 

counterpart was applied with 5-DOF loads and one F-E kinematics. In their another 

study 60, the femoral component was allowed to flex around the tibial counterpart by 

applying a combination of vertical hip force and hamstring muscle force. The quadriceps 

force was applied to extend the knee. In 2016, Fitzpatrick et al. 61 developed a 

computational model of a new 6-DOF joint simulator which allowed to apply loads or 

motions in any combination for all six DOFs of tibiofemoral joint. In that model, the F-

E motion was applied in a kinematic function while the remaining five DOFs were load-

driven, which was more complicated than the Stanmore simulator.  

 

Bersini et al. 62 created a lower extremity dynamic model by modelling patella as a 

cylinder in contact with the femoral trochlear groove. An inextensible cord was used to 

connect patella with tibia. On the other side of patella, the quadriceps force was applied 

on a chain of three short cylinders which could get into contact with trochlear groove 

during squatting motion. The expression of quadriceps force was written as a sigmoid 

function of the knee joint angle from 200 to 900 N. 

 

Guess et al. 47 built a computational model of the KKS with a structure representing a 
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prosthetic knee installed inside. A constant vertical load was applied at hip sled to push 

the hip joint downward to simulate squat motion, while the ankle joint was applied a 

sinusoidal vertical torque to test tibia A-A and I-E laxities. The ankle joint was allowed 

to translate mediolaterally by applying M-L ankle forces. The quadriceps muscle was 

represented by a patellar strap. An axial actuator connecting the patellar strap was used 

to control the hip flexion angle. 

 

In the knee simulator proposed by Verstraete et al. 55, the hip joint was only allowed to 

flex, while the ankle joint was allowed to move in all six DOFs. Among these DOFs of 

ankle joint, the S-I and A-P translations were under the control of two linear electric 

servo actuators. All six DOFs of knee joint was considered, however, the knee flexion 

was also actively controlled by the above two actuators. 

 

Shu et al. 63 combined the patient-specific musculoskeletal model with its FE models for 

predicting the TKR loads and stress distributions of one single gait after the TKR surgery. 

The muscle forces, ground reaction forces and lower extremity kinematics were 

imported into the FE model with supplement of the collateral ligaments and posterior 

cruciate ligament to calculate the dynamic tibiofemoral compressive forces.   

 

2.7 Influence of knee joint geometry on the performance of TKR 

 

Comparing to traditional knee implants mentioned in above sections, customised knee 

implant designs of which are closer to human’s natural anatomical shape were much less 

studied, though extensive literature demonstrated the asymmetric nature of knee 

morphology, stability and motion.10 Walker et al. 64 measured the motions of four PS 

designs and one experimental asymmetric PS design by using a Desktop Knee Machine 

which could apply combinations of forces representing a range of daily activities, and 

concluded that asymmetric design was able to produce the asymmetries in the motion of 

the anatomic knee.  

 

Patil et al. 12 compared a customised knee implant from ConforMIS with a standard off-

the-shelf CR knee implant from DePuy based on Oxford knee rig and found that patient-

specific designed knee implant could produce kinematics that more closely resemble 

normal knee kinematics than standard off-the-shelf implants. The experiment result 



25 
Chapter 2 Literature review 

 

showed that the difference from normal kinematics was lower for the customised design 

than the traditional one by comparing active femoral rollback, active tibiofemoral 

adduction, and passive varus–valgus laxity.  

 

Zeller et al. 5 conducted an in-vivo kinematic analysis between the ConforMIS implant 

and a traditional design TKI by using fluoroscopic method. Same conclusion was drawn 

that the customised TKI could produce a kinematics more similar to a normal knee. It 

was also found that the customised design had better stability due to minimal condylar 

lift-off than the traditional design. 

 

Willing and Kim 65 combined a rigid body TKR kinematics simulation model in software 

MSC ADAMS and a numerical optimization algorithm of sequential quadratic 

programming for designing optimum shapes of the femoral component and UHMWPE 

tibial insert. An objective function based on joint constraint and flexion range of motion 

was established with consideration of 14 design variables, which allowed the optimizer 

to search a large design space. The optimization iteration started from a symmetrically 

designed implant. Large improvement in the Anterior-posterior constraint at 0° flexion 

was obtained, as well as an increase in the flexion range of motion to 143 degree. The 

final design was asymmetric condyles which implied the necessity of customised 

asymmetric design. 

 

Gerus et al. 66 investigated the influence of subject-specific geometry and knee joint 

kinematics on the tibiofemoral contact forces prediction utilising a calibrated EMG-

driven neuromusculoskeletal model of the knee joint. They found using the subject-

specific knee geometry could improve the accuracy of predicted medial contact forces, 

though using the subject-specific kinematics did not improve estimates of medial and 

lateral contact forces. Meanwhile, they also suggested that the EMG-driven approach 

could be used to predict muscle and joint forces without optimization after completing 

an optimization-based calibration process.  

 

Pandit et al. 67 investigated the influence of component geometry and the adoption of PS 

cam-post mechanism via comparing the kinematics of a polyradial femur implant with 

that of a single radius design. Both designs are considered with and without a cam-post 

mechanism. It was found that neither of the TKR design kinematics were influenced by 
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cam-post mechanism, however, the surface geometry did determine the joint kinematics. 

Single-axis, single-radius femoral component performed much closer to normal knee 

patterns than polyradial femoral one in both tests of extension against gravity and set-

up, even though both kinds of implants kinematics were still abnormal.  

 

Clary et al. 68 studied the influence of TKR geometry on mid-flexion stability. The 

amplitude of anterior-posterior translation was found to be attenuated by replacing 

traditional dual-radius femoral components with a gradually reducing radius femur 

design. The dual-radius femoral component had an instantaneous transition from the 

distal to posterior radius. Additionally, it was demonstrated that the overall magnitude 

of the anterior slide was affected by the tibial conformity, with the greatest anterior slide 

occurring for the least conforming tibial insert.  

 

Fitzpatrick et al. 69 evaluated the mechanics of the unresurfaced patella and compared 

with the natural and resurfaced patella conditions through building finite element models 

of the patellofemoral joint. The result showed that the compressive patellar bone strain 

in the unresurfaced conditions was higher than that in the resurfaced conditions in the 

knee flexion over 40°. The unresurfaced patella with the natural-shaped femoral implant 

showed smaller contact pressures than the same patella model with the off-the-shelf 

femoral components, but still it is much larger than that of the natural knee due to the 

harder femoral component surface.  

 

Simpson et al. 70 studied the effect of tibial bearing congruency, thickness and alignment 

on the stresses in the unicompartmental knee replacements by inserting four different 

unicompartmental knee replacement implant designs into a validated finite element 

model of a proximal tibia. The four implants include the fully-congruent model with a 

spherical femoral component articulating on a spherical and mobile tibial bearing, the 

partially-congruent model with a poly-radial femoral component articulating on a fixed 

concave tibial bearing, the non-congruent-metal-backed model and the non-congruent-

all-polyethylene model. The results showed only the fully-congruent model experienced 

the peak von Mises and contact stresses below the lower fatigue limit for the 

polyethylene during the step-up activity. The highest polyethylene contact stresses were 

observed in the partially-congruent and non-congruent-metal-backed models. These two 

models experienced approximately three times the lower fatigue limit 70 (17 MPa) of the 
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polyethylene. The fully-congruent design could be markedly thinner without 

approaching the material failure limit. It has a greater potential to preserve bone stock 

and is less likely to fail mechanically. 

 

Rawlinson and Bartel 71 analysed three tibial two-dimensional configurations of flat-on-

flat, curved-on-flat, and curved-on-curved geometries by using the FE method with 

nonlinear material properties. Although the conformity of the articular surfaces has a 

large effect on the resultant stresses, the perfect conformity arising from flat contact did 

not reduce the contact stresses in the UHMWPE component. The curved-on-curved 

geometry was found to produce the lowest von Mises stress and strain among the three 

configurations, which, to some extent, implied the significance of conformity between 

femoral and tibial bearing surfaces. However, allowing for the relative motions between 

those two components, tibial bearing geometry should be designed based on the 

kinematic relationship between the articular bones. 

 

Walker 72 proposed a design method for TKI which could generate a range of total knee 

implant surfaces, and potentially helped restore the arthritic knee to more normal 

function. The method was to build the tibial bearing surface by smoothening the lower 

position surfaces of multiple rotating positions of the femoral component. To provide 

motion guidance for the femoral component on the tibial bearing in the absence of the 

cruciate ligaments, two types of design were generated. One was created with a post-

cam mechanism by reducing the depth of the patella groove on the distal and posterior 

parts of the femoral component, while another design used the femoral condylar surfaces 

by moving the dwell point of the lateral femoral surface on the tibial surface inwards or 

outwards with the knee flexions. 

 

2.8 Customised modelling by feature identification of bone contour  

 

Harrysson et al. 73 customised both the articulating surface and the bone-implant 

interface based on a computed tomography (CT) scan of the patient's joint. After 

obtaining 3D model from Mimics (Materialise, Leuven, Belgium), a software named 

Geomagic Studio V7.0 (Raindrop Geomagic, Triangle Park, NC) was used to convert 

the stl-file format into a NURBS (Non-Uniform Rational B-Spline) format whose 

surfaces can be exported as a solid CAD model using a STEP-file format. Finally, the 
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proposed customised implant design was done using Pro/ENGINEER (PTC, Needham, 

MA) creating a set of spline curves along the interface surface in a radial pattern, and a 

single spline to connect all curves in a central plane between the condyles. A swept-

blend command was used to create the smooth articulating surface. Additional cuts and 

fillets were added to provide an implant with smooth surfaces and edges. Through 

applying FE analysis, a customised implant with a free-form bone interface could 

provide a more even stress distribution on the bone interface than the traditional femoral 

components. 

 

Li et al. 74 developed a computational framework including pattern recognition algorithm 

for sectioning the sagittal view condyle profiles, a least-squares algorithm for fitting and 

analysing the profiles, and an optimisation algorithm for establishing a unified sagittal 

plane. For the least-squares algorithm, they chose to use a parametric-form ellipse to fit 

the identified articulating portion of a condyle profile. However, their work was limited 

by only using the sagittal contours of the distal femur. 

 

Sholukha et al. 75 used multiple regression method based on quadric surface fitting to 

approximate the position of its morphological joint centres and the shape morphology. 

Their study results showed that this type of approximation was enough to reconstruct 

typical bone convex and concave forms with good accuracy for most anatomical features. 

 

Cerveri et al. 76 developed a computer algorithm which could automatically compute the 

proximal femur morphological parameters by processing the mesh surface of the femur. 

Numerical methods such as least-squares cylinder fitting, least-squares sphere fitting and 

minimal area of the cross section by evolutionary optimization were utilised to identify 

the axis of the shaft of femur, head surface and centre and femur neck axis and radius 

respectively. The final results of computed parameters were validated in well agreement 

with the manually identified parameters in the original CT images by medical experts. 

 

For automating the design of resection guides specific to patient anatomy in knee 

replacement surgery, Cerveri et al. 77 extracted the inter-condylar fossa or trochlear 

groove from the distal femur surface, synthesized the inter-condylar fossa with a 

hyperbolic paraboloid by exploiting an algorithm of curvature mean-shifted, and finally 

identified the whiteside line as the main saddle direction. The whiteside line is defined 
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as the line connecting the deepest part of the anterior patellar groove to the centre of the 

posterior intercondylar notch and is commonly adopted as a reference line to determinate 

the knee flexion–extension axis and help position the femoral component.  

 

2.9 Modelling of human knee joint ligaments 

 

Human ligaments are the important soft tissue to stabilise joints. They are also essential 

elements for FE dynamic analysis. The ligament mathematic model was often 

established as elastic spring for the purpose of saving computational cost. And it was 

also regarded as the most efficient computational method. The most popular spring 

model for ligaments is the force-displacement curve which was first introduced by 

Wismans 78 and Blankevoort et al. 76, 77. In that model, the ligament was thought to have 

a non-linear toe region of the relationship between its force and displacement. It is 

caused by the initial crimping of the ligament fibres, and once all the fibres become taut, 

it will behave as a linear spring.  

 

In some studies, ligaments were modelled as three-dimensional constitutive elements 81. 

Through this method, the wrapping effect of ligaments over the bones can be included. 

However, it highly demands the computational resource and cost. Besides, the 

mathematical description of the material properties in the continuum material is still 

difficult to know. Beidokhti et al. 82 studied the effect of two ways of ligament modelling 

on the accuracy, and concluded that the continuum two-dimensional (2D) fibre-

reinforced membrane model could produce more accurate contact outcomes. However, 

when the joint kinematics is the major concern, the spring ligament model could provide 

not only faster solution but also acceptable result. Baldwin et al. 49, 50 built the ligaments 

of knee joint as capsular soft tissue structures for the knee simulations. The penalty-

based contact was defined between all the soft tissue structures and bones or articular 

surfaces for wrapping. Fitzpatrick et al. 60 also used to build soft-tissue such as medial 

and lateral collateral ligaments as 2D membrane model with ligament pre-strain and 

stiffness. 

 

2.10 OpenSim applications in knee joint biomechanics 

 

In the aforementioned in-vitro knee test rigs, there is a common issue that neither close-

to-physiological muscle forces nor hip and ankle joint forces corresponding to the 



30 
Chapter 2 Literature review 

 

practical ground reaction forces were applied. However, in reality, muscle forces do play 

important role in joint motion and joint stability. Medium to high quadriceps, hamstrings, 

and gastrocnemius activities were reported during squatting.83 Although recruiting only 

quadriceps or hamstrings in the aforementioned in-vitro experiments or simulations 

could reduce the complexity of operation and save cost of computation, it doesn’t mean 

that other leg muscles such as gastrocnemius and anterior tibialis are not or less 

important. Gastrocnemius muscle is an important flexor muscle of knee joint, and 

anterior tibialis is an important flexor muscle of ankle joint. Both effectively influence 

not only the rotations but also the translation of knee joint. Neglecting the effect of these 

muscles or the effect of muscle coordination could result in the knee joint simulations 

less consistent with that in a realistic physiological and physical conditions. Therefore, 

it is very necessary to apply the muscle forces for the analysis of kinematics and kinetics 

of skeletal and numerical models.  

 

 

Figure 2. 18 OpenSim Graphic User Interface 84 

 

To solve muscle and skeleton coupled problems, Delp et al. 85–87 firstly introduced the 

software package SIMM which enabled users to create or edit musculoskeletal models 

and even simulate movements such as walking, cycling, running and stair climbing. 

Later in 2007, Delp et al. 84 introduced the biomechanical simulation software OpenSim 
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which allowed calculation of muscle excitation for helping produce coordinated 

movement. Through the user-friendly graphic user interface shown in Figure 2. 18, users 

are allowed to edit muscles shown in red lines and plot muscle variables of interest such 

as muscle activation, lengths, and active or passive forces. Models of various 

musculoskeletal structures, including the lower extremity, upper extremity and neck, can 

be loaded, viewed and analysed. The blue spheres are the virtual markers which are the 

reference points. Each body segment’s kinematic results such as displacement, velocity 

and acceleration can be calculated based on the imported marker data which are collected 

through motion capture experiment. The experimental markers can be attached to a 

specific subject of interest for joint motion and load analyses.  

 

As can be seen in Figure 2. 19, for a typical simulation process of OpenSim, a generic 

musculoskeletal model is normally loaded from the OpenSim musculoskeletal model 

database into the software interface. In the first step, the measured experimental 

kinematic data, i.e., x-y-z trajectories of marker data are used to scale the 

musculoskeletal model to best match the dimensions of the subject. In the second step, 

an inverse kinematics (IK) problem is solved to find the model joint angles that best 

reproduce the experimental kinematic data. Subsequently, the residual reduction 

algorithm (RRA) is implemented to refine the model kinematics so that they are more 

dynamically consistent with the experimental reaction forces and moments. Lastly, the 

computed muscle control (CMC) algorithm is applied to find a set of muscle excitations. 

As an input, those muscle excitations can be further imported into the same scaled 

musculoskeletal model to generate a forward dynamic simulation that closely tracks and 

reproduces the subject motion. 

 

 

Figure 2. 19 Processes of generating a patient-specific muscle-driven simulation of  motion 

using OpenSim 84 
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As an example, in the same paper 84, dynamic simulations of individuals with 

pathological gait were performed to examine the causes of their abnormal walking 

pattern and explore the biomechanical effects of treatment of botulinum toxin injection 

and Rectus femoris transfer. 

 

Sherman et al. 88 presented the advantages of OpenSim over other mechanical software. 

They pointed out that the analogy between engineering mechanical systems and evolved 

biomechanical systems was imprecise, and the multibody mechanics tools designed for 

engineered systems could be difficult to be applied to the dynamics studies of complex 

biological structures. For example, biomechanical joints typically do not perform simple 

rotations about fixed axes and may comprise several moving parts; contact between soft 

deformable biomaterials may involve significant deformation; redundant actuation of 

joints is common; data needed for parameterisation are not directly measurable; and 

available measurements tend to contain large errors and inconsistencies. In the context 

of whole-body musculoskeletal mechanics, segment mass properties and muscle path 

geometry are hard to measure, while body segment kinematics (i.e., joint angles) 

estimated from surface markers are inconsistent with accelerations determined from 

external force measurements (i.e., ground reaction forces). Because of these issues, 

concepts that are simple to apply to engineered systems, such as “generalized coordinate” 

or “moment arm”, become difficult to define precisely in a biomechanical context.  

 

OpenSim is conceived primarily as a reliable tool for use in biomedical research, rather 

than as a vehicle for multibody dynamics research.88 Its muscle-actuated dynamic 

simulations can complement experimental and physical approaches allowing us to 

establish important variables or identify cause-and-effect relationships and then give 

insights into muscle function and its contributions to movement.  

 

In recent years, OpenSim has been widely used in hundreds of biomechanics laboratories 

around the world to study movement due to its free and widely accessible resources. 

Besides, the OpenSim online community (simtk.org) allows developers to access or 

contribute new features or tools which were developed in previous studies. The wide 

range of studies with OpenSim includes the analysis of walking dynamics, studies of 

sports performance, simulations of surgical procedures, analysis of joint loads, 

https://en.wikipedia.org/wiki/Bipedalism#Biomechanics
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evaluation of medical devices, and animation of animal movement.  

 

Reinbolt et al. 89 utilized the computed muscle control, one functional module tool of 

OpenSim, to identify new movements as an athletic training tool to reduce injury risk, 

and establish relationships among posture, muscle forces, and ground reaction forces. 

 

Mansouri and Misagh 90 combined the OpenSim with  the MATLAB/Simulink . By 

taking the advantage of OpenSim in the cost-effective dynamic musculoskeletal 

simulation, and MATLAB/Simulink in the rapid model-based design control systems 

and powerful numerical method, a new interface was developed between the two 

software tools to successfully simulate the pole balancing on an upper extremity model 

hand.  

 

Gerus et al. 66 established four different OpenSim models combining generic and healthy 

subject-specific knee joint geometries and kinematics. A conclusion was drawn that 

using the subject-specific knee geometry could improve the accuracy of predicted medial 

contact forces on the knee joint. 

 

 

Figure 2. 20 Musculoskeletal model of the human legs and torso 91  

 

DeMers et al. 91 developed a subject-specific musculoskeletal model simulating the 

subject walking with an instrumented knee implant to study the effect of varied muscle 

coordination on the tibiofemoral contact forces. An optimisation framework was 

developed to calculate individual muscle forces and tibiofemoral forces for each trial. 

The coordination of muscles was varied to determine its influence on tibiofemoral force. 

They found that peak tibiofemoral forces during late stance could be reduced by 

increasing the activation of the gluteus medius, uniarticular hip flexors, and soleus, and 
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decreasing the activation of the gastrocnemius and rectus femoris. These results 

validated that the tibiofemoral forces were sensitive to activations of some lower limb 

muscles such as gluteus medius, gastrocnemius, and rectus femoris. In his model, the 

ligaments were all neglected, and the quadriceps forces were transmitted through the 

patella to the tibia bone without defining patellofemoral or tibiofemoral contact pairs. 

 

Steele et al. 92 used OpenSim to examine the relationship between muscle forces and 

compressive tibiofemoral force with the increasing change of knee flexion in the crouch 

gait among three unimpaired children and nine children with cerebral palsy who walked 

with varying degrees of knee flexion. Their research found mild crouch gait (minimum 

knee flexion 20–35 degree) did not produce too much different peak compressive 

tibiofemoral forces between two groups, while severe crouch gait (minimum knee 

flexion > 50 degree) increased the peak force to greater than 6 times body-weight, more 

than double the load experienced during the unimpaired gait. It was explained that that 

increase in compressive tibiofemoral force was primarily due to increases in quadriceps 

force during crouch gait, which increased quadratically with average stance phase knee 

flexion. Therefore, it was concluded that the increased quadriceps force contributed to 

larger tibiofemoral and patellofemoral loading which might contribute to knee pain in 

individuals with crouch gait. 

 

Kim et al. 93 predicted knee muscle forces during walking movement by comparing 

computed tibiofemoral contact forces with the in-vivo measurements obtained from an 

instrumented knee implant. Subsequently, the predicted knee muscle forces were input 

into a 3D knee implant contact model to calculate tibial contact forces. The calculation 

results of the model medial, lateral, and total tibial contact forces were found to be in 

close agreement with experimental measurements for walking at slow, normal, and fast 

speeds. Additionally, the muscle coordination predicted by the model was well 

consistent with EMG measurements reported for normal walking. 

 

Fregly et al. 94 designed a modified gait motion for a specific patient with knee 

osteoarthritis. A dynamic optimisation of a patient-specific, full-body gait model was 

used. Through the optimization, a “medial thrust” gait pattern was predicted, which 

could reduce the first adduction torque peak between 32% and 54% and the second peak 

between 34% and 56%. The magnitude of the first adduction torque peak in particular 
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was strongly associated with knee osteoarthritis progression. At the same time, the new 

motion could also help slightly increase leg flexion and pelvis axial rotation, and 

decrease pelvis obliquity.  

 

Schache et al. 95 studied the effect of five reference frames on the interpretation of how 

gait modification altered the external knee adduction moment. The research found that 

both gait modification and selected reference frame could influence the calculated knee 

adduction moment. Furthermore, these two effects were interactive.  The magnitude of 

the changes in the knee adduction moment was produced by toe out and medial thrust 

gait which highly depended on the selected reference frame. 

 

Walter et al. 96 studied whether reducing knee adduction moment could accurately 

predict corresponding decreases in medial contact force. The simulation was based on 

the in-vivo gait data collected from a specific subject with an instrumented knee implant. 

The external knee adduction moment has been identified as a surrogate measure for 

medial contact force during gait. An abnormally large peak value is linked to the 

increased pain and rate of disease progression. It was found that reductions in the second 

peak and angular impulse of the knee adduction moment corresponded to reductions in 

the second peak and impulse of medial contact force. Calculated reductions in both knee 

adduction moment peaks were highly sensitive to rotation of the shank reference frame 

about the superior-inferior axis of the shank. 

 

All these three papers 94–96 showed that the patient-specific gait modification is effective 

in reducing peak frontal plane knee moment and also indicated that different motion 

pattern could affect or determine the internal loads in the joints and vice versa. 

 

2.11 Conclusion 

 

The customised total knee implant has been reported to enable patient to have a larger 

range of motion than the traditional design. However, the current customised design still 

cannot fully restore kinematics of patient’s knee joint. Therefore, a new customised 

design that is closer to the natural anatomy of knee joint will be attempted and simulated 

for investigating the possibility of fully restoring knee kinematics. 
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To assess the total knee implant, the commonly used knee simulators usually simplified 

the effect of muscle forces by merely applying an experimental quadriceps muscle force 

in order to meet the prescribed hip joint flexion angles. The effects of body weight and 

inertial motion of the lower limb were also ignored. Because many other muscle forces 

and practical ground reaction forces were neglected in those knee simulators, the hip and 

ankle joint were usually applied with smaller reaction forces than the physiological ones. 

 

OpenSim is a widely-used biomechanical simulation software which allows researchers 

to analyse muscle forces and joint reaction forces under particular movement scenarios 

by using the captured motion of a subject.  Therefore, OpenSim will be used to obtain 

lower limb muscle forces and ankle joint reaction forces that are closer-to-physiological 

than the previously applied counterparts. Lastly, those muscle forces and ankle joint 

loads will be considered for their effect on the kinematics and kinetics of total knee 

implants, which will hopefully make the simulation much closer to the physiological and 

physical circumstance. 
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Chapter 3 

Design of customised total knee implants using ANSYS Mechanical 

APDL 

 

3.1 Introduction 

 

Total knee replacement (TKR) or total knee arthroplasty (TKA) has been implemented 

with various implants of different designs for several decades. Most knee implants were 

standardised with limited size types and two parallel arc-shaped condylar surfaces. The 

condylar guidance tracks in sagittal plane were normally simplified with single, dual or 

gradually changing multi-radii arcs. Due to the limitation of available standardised TKR 

types and sizes, the retained bone of patients’ knee joints could not completely match 

the TKR implants. When the femoral component overhang exceeds 3 mm over the 

femoral bone, it will double the odds of clinically important knee residual pain two years 

after TKR surgery.8 It was reported in studies 4, 6, 94, 95 that the residual pain was one of 

the two leading reasons for patients’ dissatisfaction after treatments. Another reason was 

the functional limitation which might be caused by the geometric shapes of traditional 

implants. Reviewing the functionality of total knee implants which were traditionally 

designed, Bonnefoy-Mazure et al. 99 and Rahman et al. 100 studied the knee kinematics 

after 3 and 12 months of TKR respectively and concluded that the knee function was not 

fully restored in terms of knee range of motions despite some improvements. The same 

conclusions were drawn by other researchers 101–103.  

 

Comparing to traditional knee implants, designs of customised total knee implants 

(CTKIs) were much less studied, though extensive literature demonstrated the 

asymmetric nature of knee morphology, stability and motion.10 Walker et al. 64   

measured the motions of four posterior-stabilised (PS) designs and one experimental 

asymmetric PS design by using a desktop knee machine, and concluded that asymmetric 

design was able to produce the asymmetries in the motion of the anatomic knee. Patil et 

al. 12 compared a CTKI designed by the joint implant company ConforMIS with a 

standard off-the-shelf cruciate-retaining (CR) design by DePuy based on Oxford knee 

rig and found that patient-specific designed knee implant could produce kinematics that 

is much closer to normal knee kinematics than the standard off-the-shelf implants.  
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Considering the potential advantage of the customised asymmetric knee implants and 

the lack of detailed design method for customised implants in current studies, in this 

chapter, a design method for the customised TKR was proposed using ANSYS 

Mechanical APDL (ANSYS Programming Design Language). It could reduce the sizing 

compromise and address the component overhang issue 8 , and on the other hand, we 

hypothesized that mimicking the natural shape of knee could help a patient move more 

naturally. 

 

Three-dimensional (3D) knee joint model was firstly built from computed tomography 

(CT) images of the subject model JW (mass: 66.7 kg, height 1.68 m)  which was made 

available for the 4th Grand Challenge Competition to Predict In Vivo Knee Loads 13, 14. 

The 3D modelling was performed using 3D Slicer 104 (available from 

http://www.slicer.org) which is an open source software platform for medical image 

processing and 3D visualization. After smoothening, surface simplifying and solidifying 

the model using MeshLab 105 (ISTI - CNR, Italy), a customised TKR that is analogous 

to natural geometric knee joint was created through methods such as key feature point 

recognitions, least-squares curve fitting algorithms and surface regeneration in ANSYS 

Mechanical APDL 18.2 (ANSYS, Inc., Pennsylvania, USA). 

 

3.2 Building 3D models from CT images 

 

A number of 3D geometric models (femur cortical bone, femur cancellous bone, tibia 

cortical bone, tibia cancellous bone and patella bone) were built from a set of accessible 

CT images by using 3D Slicer shown in Figure 3. 1. However, some problems occurred 

during further model processing. Firstly, these models can only be saved in the STL file 

format which describes only the surface geometry of an object. Secondly, many small 

surface elements were produced, which may cause problems when geometric Boolean 

operation is required on the solid models, for example, cutting femur and tibia bones for 

fitting the corresponding implants. Thirdly, some surfaces might either intersect with or 

separate from other ones as shown in Figure 3. 2. The areas in the red ellipses show the 

open gaps caused by the error of filling voids in each layer of CT images, and those gaps 

are not appropriate for the conversion into a solid body. Therefore, surface remeshing, 

simplification and reconstruction need to be done before conversion into the solid body. 

https://en.wikipedia.org/wiki/ISTI
https://en.wikipedia.org/wiki/Consiglio_Nazionale_delle_Ricerche
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Figure 3. 1 Graphical user interface of 3D Slicer 

(a) the superior-inferior CT section; (b) 3D model built from a series of CT images in the rest 

of windows; (c) the medial-lateral CT section; (d) the anterior-posterior CT section; different 

colours in the CT images denote different segments (e.g. femur and tibia) or types (e.g. 

cancellous and cortical) of bones 

 

 

Figure 3. 2 Gaps in the 3D Slicer femur model in the (a) anterior view and (b) posterior view 

of knee joint 
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3.3 Repairing 3D Slicer model  
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Figure 3. 3 Reconstruction and simplification of 3D Slicer femur model in MeshLab 

 

The 3D mesh processing software MeshLab 105 (ISTI - CNR, Italy) was used to make 

body surface smooth, surface closed and simplified. Among various remeshing, 

simplification and reconstruction methods, the Poisson surface reconstruction (PSR) was 

used for smoothening the original slicer models, while the quadric edge collapse 

decimation (QECD) helped to reduce the amount of surface elements allowing for finite 

element meshes and calculations (see Figure 3. 3). Subsequently, a solid 3D model with 

several segments was obtained and saved in IGES file format using the open source 

software FreeCAD 106 (available from https://www.freecadweb.org/).  

 

 

3.4  Creating a customised knee implant 
 

3.4.1 Creating the femoral component 
 

Based on the fact that normally the patients’ knee condyle surfaces have been worn out, 

and the natural condylar surfaces lack easy-to-recognize characteristics but consist of 

many random irregular and rough small surfaces as shown in the post-processed femur 

model in Figure 3. 3, several steps have been performed to acquire smooth-surfaced, 

close-to-anatomy TKR components. As can be seen in Figure 3. 4, the cortical bones of 

the femur and tibia were imported into ANSYS for implant design. The ANSYS 

Mechanical APDL component was used to facilitate the parametric identification and 

articulation reconstruction. 

https://en.wikipedia.org/wiki/ISTI
https://en.wikipedia.org/wiki/Consiglio_Nazionale_delle_Ricerche
https://www.freecadweb.org/
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Figure 3. 4 Three-dimensional solid model of the femur and tibia bones 

45 degree
135 degree

 
Figure 3. 5 Resection surfaces for removing unwanted bones 

 

Step 1 

The resection surfaces were defined in Figure 3. 5 to remove unwanted parts on the distal 

femur that required replacement. 

 

Step 2 

Surface meshing was applied on the surfaces of the removed distal femoral bone. The 

purpose of surface meshing is to facilitate the identification and selection of the 

geometric information of the condyles and the patellar groove which are essential for 

the customised design of implant. Through the node cloud which was produced by the 
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surface mesh tool and displayed in Figure 3. 6, the coordinates of each node could be 

easily extracted to create geometric features of interest. 

 
Figure 3. 6 Node cloud of resected femoral distal bone 

 

Step 3 
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Figure 3. 7 Sequence of layer scanning 

a, d, e, f and h: translational scanning; b, c and g: rotational scanning 

 

Layer scanning was adopted to capture the features of two condyles and one patellar 

groove. It was performed in the sequence shown in Figure 3. 7. The scanning layer was 

always perpendicular to the edges at the two ends of the resection surfaces in Figure 3. 5. 

For the posterior part of the condyles, the layer scanning started horizontally from the 

location near the tip of the condyles down to the first corner of the resection edges. Then 

the scanning layer rotated 90 degrees around the two end points on this corner to the 

vertical position. Similarly, a rotation motion was performed from the starting layer on 

the top to the vertical position which is coincident with the component installation surface. 

Subsequently the cross sections in the scanning segment d were vertically scanned to the 

next corner point, then continue to the point where two separated condyles meet the 
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trochlear groove. Five layers were selected in the first segment, three in the following two 

rotation transition segments (b and c), and five in the last two segments respectively. Two 

boundary nodes, one peak node and two mid-nodes between the peak and the boundary 

nodes were selected in each scanned layer of each condyle and then these nodes’ 

coordinates were further used to create key points (KPs) which are the most fundamental 

entity for building lines, areas and volumes in ANSYS mechanical APDL.  The same 

method was applied to the remaining part of the distal femur with two boundary nodes, 

two peak nodes, one trough node and four mid-nodes in each layer. 

 

Step 4 

As can be seen in Figure 3. 7, the created KPs had been connected in the transverse (purple 

line, scanning layer) and longitudinal (yellow curve, scanning motion) directions with the 

method of cubic spline interpolation to ensure the continuity and smoothness of curves. 

However, the changing rate of surface curvatures of the two adjacent areas was not 

continuous, which resulted in rough surfaces. Therefore, a least-squares method of curve 

fittings was used to address the issue of irregular changing of curvatures of longitudinal 

curves (the ones in the longitudinal direction in Figure 3. 7). 
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Figure 3. 8 Changing trend of two condyles in both natural distal femur and femoral implant 
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Since the changing pattern of each condyle which can be seen in Figure 3. 8 is different 

in the Posterior-to-Anterior View and the Inferior-to-Superior View, it is difficult to fit 

each column of KPs in the longitudinal direction into one plane. Then, the curve fitting 

was applied to each segment in each condyle respectively. For the continuity and smooth 

transition between two segments, the tangential direction at end KP of the first fitted 

curve segment (the part in the Posterior-to-Anterior View) was calculated and used for 

the next curve fitting function. 

     
Several fitting curves (circle, sphere, quadratic curve, cubic curve) have been explored, 

but the ellipse curve fitting 107 was found to be the best to envelop the nodes on a 

particular cross section of the condyle in the longitudinal direction. The nodes were those 

produced by the previous surface meshing on the natural distal femur in Step 2. The 

least-squares equation is given in Eq. 3-1 to solve the expression function of a certain 

ellipse shape, and then input the two coordinates of each KP into the function to get the 

precise particular location on the fitted ellipse curve. The reason why the rest of the KP 

coordinate values (𝑧𝑖) were not taken into account in Eq. 3-1 is that those KPs were first 

projected onto a fitted plane which was determined by three points averaged from the 

segmented KPs.  

 

ℇ =∑(𝑥𝑖
2 + B𝑥𝑖𝑦𝑖 + 𝐶𝑦𝑖

2 + 𝐷𝑥𝑖 + 𝐸𝑦𝑖 + 𝐹)
2

𝑛

𝑖=0

 (3-1) 

ℇ is the sum of the squares of the distance error from the point (xi, yi ) to the curve: x2 +

Bxy + Cy2 + Dx + Ey + F = 0 in a plane which is determined by the KPs that need 

curve fitting in the longitudinal direction. In order to make ℇ the least, based on the 

extremum principle, the condition Eq. 3-5 needs to be satisfied. Then a system of linear 

algebraic equations can be obtained. Combining the boundary conditions and the 

Gaussian elimination method, the unknown parameter vector (B C D E F) can be solved 

and simultaneously, the expression function of the fitted ellipse can be determined as 

well. 

 𝑥0
2 + B𝑥0𝑦0 + 𝐶𝑦0

2 + 𝐷𝑥0 + 𝐸𝑦0 + 𝐹 = 0 (3-2) 

 2𝑥0 + B(𝑦0 + 𝑥0𝑦0
′) + 2𝐶𝑦0𝑦0

′ + 𝐷 + 𝐸𝑦0
′ = 0 (3-3) 

 𝑥 𝑛
2 + B𝑥𝑛𝑦𝑛 + 𝐶𝑦𝑛

2 + 𝐷𝑥𝑛 + 𝐸𝑦𝑛 + 𝐹 = 0 (3-4) 

 ∂ℇ ∂B⁄ = ∂ℇ ∂C⁄ = ∂ℇ ∂D⁄ = ∂ℇ ∂E⁄ = ∂ℇ ∂F⁄ = 0 (3-5) 
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Eqs. 3-2  ̴  3-4 are the boundary conditions. (x0, y0 ) is the coordinate of the start KP in 

the fitted plane created by the KPs in the first segment, (xn, yn ) is the coordinate of the 

end KP in the same fitted plane. y0
′  is the slope of the start KP in the newly fitted curve. 

Depending on the boundary condition, the three equations can be combined in two 

different ways. For the KP set in the first segment to be calculated, the boundary 

conditions on two end KPs, Eq. 3-2 and Eq. 3-4 will be incorporated into the linear 

algebraic equations. For the second segment, besides Eq.  3-2 and Eq. 3-4, Eq. 3-3 will 

also be substituted into the linear algebraic equations for the continuous and smooth 

connection between two fitted curves. Due to the number of boundary condition 

equations being different, the number reduction of the unknown parameters in the vector 

would be different. For the first segment being fitted, the two boundary condition 

equations mean that two random unknown parameters can be expressed by other three 

unknown parameters. An example below was given on the second segment. Three 

random parameters (e.g. D, E and F) were chosen and could be expressed by other two 

parameters (B and C in this case), written in Matrix as below: 

 

 

(

𝑥0 𝑦0 1

1 𝑦0
′ 0

𝑥1 𝑦1 1
)(

𝐷
𝐸
𝐹
)=(

−𝑥0
2 − B𝑥0𝑦0 − 𝐶𝑦0

2

−2𝑥0 − B(𝑦0 + 𝑥0𝑦0
′) − 2𝐶𝑦0𝑦0

′

−𝑥𝑛
2 − B𝑥𝑛𝑦𝑛 − 𝐶𝑦𝑛

2

) (3-6) 

 

Through the Gaussian elimination method, (D E F) ′  could be substituted into the ℇ 

function. Solving the extremum conditions could then help calculate the results 

of (D E F) ′. Once the three parameters were obtained, the other two parameters B and 

C could also be easily obtained through solving the boundary condition equations. Figure 

3. 9 is the fitting result of the first column of curves in the longitudinal direction from 

the medial side of knee joint. 

           

With the same method being applied on each longitudinal curve, new KPs were created 

through projecting the KPs on each irregular longitudinal curve into the corresponding 

ellipse fitting curve which was optimized from these KPs. Since the KPs were obtained, 

the cubic spline was applied to connect each KP in each row or the transverse direction 

(see Figure 3. 7). Subsequently, the surfaces and the volumes were generated in turn 

until the final model of the femoral implant component was created. In Figure 3. 10, the 

femoral implant component is shown in different views with an assembly of the femoral 
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implant component and the retained femur bone. 
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Figure 3. 9 Least squares elliptic fitting 

a: the start point of the first segment curve that needs to be fitted; b: the end point of the first 

segment curve / the start point of the second segment curve; c: the end point of the second 

segment curve 

 

 
Figure 3. 10 Femoral component in different views and its assembly  

 

Additionally, an off-the-shelf DePuy femoral component 108 is also shown in Figure 3. 

11 for dynamic performance comparisons in Chapters 6 and 7. It is a standard size and 

not made specially to fit a specific patient bone. It has two symmetric arc-shaped 

condyles with dual femoral radii in the sagittal plane. According to the study of Dai et 

al. 109, it was installed by aligning the component AP dimension with that of the patient’s 
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distal femur. Meanwhile, the component revolute centre was placed coincident with the 

femur distal centre which was determined by selecting the middle point between two 

epicondyle points. 

 

(a) (b)  

Figure 3. 11 Comparison between (a) the customised femoral component and (b) the femoral 

component of the DePuy PFC Sigma system 108 

 

3.4.2 Creating the tibia component 

 

In human’s natural tibia plateau, there are two crescent-shaped cartilages: medial 

meniscus and lateral meniscus, being connected to the tibia bone. The detailed shapes 

are shown in Figure 2. 2 and Figure 2. 3 in Chapter 2. One of their major functions is to 

transfer the load from the upper leg to the lower leg and stabilize the knee during the 

movements of flexion-extension (F-E) rotation, internal-external (I-E) rotation and 

adduction-abduction (A-A) rotation.110 However, for our design of tibial replacement, 

due to the lack of cartilage imaging in CT scans, the tibial bearing surfaces were initially 

assumed to have two different concave surfaces. Their radii of curvatures were designed 

to be larger than those of the femoral component, which could enable the femoral 

component to move smoothly in relation to the tibial counterpart.  The relative motions 

of tibiofemoral joint consist of the F-E rotation, A-A rotation, I-E rotation, superior-

inferior (S-I) translation, medial-lateral (M-L) translation and anterior-posterior (A-P) 

translation between femur and tibia.  

 

When the femoral implant is built, the shapes of its two are utilized to create tibial 

bearing surfaces. Before that, a block is first used to cut subject’s tibia plateau, and then 
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the edge contour of retained bone is selected to build the circumferential profile of the 

initial tibial implant component so that the bottom of the implant could best match the 

after-resection tibia bone. 
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Figure 3. 12 Tibial implant component and tibia 
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Figure 3. 13 Cutting guidance curve for building tibial bearing surface 

 

Subsequently, for each condyle of the femoral implant, the maximum KPs on the 

transverse condylar contours were re-selected to determine the orientation of the cutting 
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guidance curves for building two tibial bearing surfaces. The least squares elliptical 

curve fitting was applied on these KPs to obtain the long and short axes radii for each 

condyle. Among these selected maximum KPs, the one located in the most distal in the 

vertical direction of each condyle would be defined as a constant point which is shown 

in Figure 3. 12. It is also the lowest point in Figure 3. 13. It acts as an extreme point 

where both cutting guide curve and profile curve intersect. Via adjusting the long axis 

radius of each fitted ellipse, different curvature of tibial bearing surface in its sagittal 

plane could be created. Meanwhile, the newly adjusted ellipse is definitely tangential to 

the fitted one in the constant point.  

 

The lowest point on each condyle is always located on the middle contour curve of each 

condylar in the longitudinal direction. The middle contour curve is also the longest 

contour curve in each condyle of the femoral component in Figure 3. 10. Because the 

aforementioned condylar curve consisted of several spline curves with discrete KPs on 

two oblique planes in Figure 3. 9, only the KPs on the posterior and distal condyles were 

selected to be projected onto a fitting plane. This plane was determined by three average 

points of those selected KPs. Lastly, a least squares elliptical fitting equation in Eq. 3-7 

was used to obtain an ellipse which would be the closest to those projected KPs shown 

in Figure 3. 13. 

  
ℇ =∑(𝑥𝑖

2 + B𝑦𝑖
2 + 𝐶𝑥𝑖 + 𝐷𝑦𝑖 + 𝐸)

2

𝑛

𝑖=0

 
(3-7) 

Since the boundary conditions  𝑥0 = 𝑦0 = 𝑦0
′ = 0 are known, they are substituted into 

Eq. 3-7 and its corresponding derivative equations shown in Eq. 3-8: 

 
{
2𝑥0 + 2B𝑦0𝑦0

′ + 𝐶 + 𝐷𝑦0
′ = 0

𝑥0
2 + B𝑦0

2 + 𝐶𝑥0 + 𝐷𝑦0 + 𝐸 = 0
 (3-8) 

 𝐶 = 𝐸 = 0 was then obtained. The Eq. 3-7 is transformed: 

 
ℇ =∑(𝑥𝑖

2 + B𝑦𝑖
2 + 𝐶𝑥𝑖 +𝐷𝑦𝑖 + 𝐸)

2

𝑛

𝑖=1

=∑(𝑥𝑖
2 + B𝑦𝑖

2 + 𝐷𝑦𝑖)
2

𝑛

𝑖=1

 (3-9) 

 
∂ℇ ∂B⁄ = 2∑(𝑥𝑖

2 + B𝑦𝑖
2 + 𝐷𝑦𝑖) · 𝑦𝑖

2

𝑛

𝑖=1

= 0 (3-10) 

 
∂ℇ ∂D⁄ = 2∑(𝑥𝑖

2 + B𝑦𝑖
2 + 𝐷𝑦𝑖) ·

𝑛

𝑖=1

𝑦𝑖 = 0 (3-11) 
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Once the coefficients B and D were solved through the Eq. 3-10 and Eq. 3-11 with 

substituting the coefficient C and E, the fitting elliptical equation could be obtained as 

Eq. 3-12: 

 
𝑥2 (𝐷2 4𝐵⁄ )⁄ + (𝑦 + 𝐷 2𝐵⁄ )2 (𝐷2 4𝐵2⁄ )⁄ = 1 (3-12)    

 

Its long axis radius of elliptical curve is 𝑎𝑒𝑙𝑙𝑖𝑝𝑠𝑒 = √𝐷2 4𝐵⁄ . While keeping the short axis 

radius constant, increasing 𝑎𝑒𝑙𝑙𝑖𝑝𝑠𝑒  to a new value 𝑎𝑒𝑙𝑙𝑖𝑝𝑠𝑒_𝑛𝑒𝑤 would increase the radius of 

curvature of the ellipse, it would make the cutting guidance track and its counterpart 

tibial bearing flatter. In the following chapter of dynamic analysis, the relation of 

𝑎𝑒𝑙𝑙𝑖𝑝𝑠𝑒_𝑛𝑒𝑤 = 4 · 𝑎𝑒𝑙𝑙𝑖𝑝𝑠𝑒 was assumed. 
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Figure 3. 14 Transverse contour for building tibial bearing 

 

In terms of defining the profile shape of each tibial bearing in the transverse direction, 

which is shown in Figure 3. 14, the least squares quadratic fittings were implemented on 

the points that were located on the cross-section curve perpendicular to the plane of 

cutting guidance curve for each condyle. The cross-section curve also simultaneously 

passed through the constant point in Figure 3. 12 or the lowest point in Figure 3. 13.  

 

Since the curvatures of each condyle on the medial and lateral sides are quite different, 

the transverse condylar curve is divided into two segments in Figure 3. 14. Medial and 

lateral KPs on the condylar curve were selected along with the lowest KP for the least 

squares quadratic fittings on two sides respectively. The fitted curves are indicated in 

the red dash curve in Figure 3. 14. The tangent values of two fitting curves at the lowest 

KP have to be zero in order to guarantee the tangential continuity of two curves. Through 

adjusting the quadratic coefficients, two quadratic curves with larger radius of curvature 
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can be created and are indicated in the blue solid curves in Figure 3. 14. The KP in the 

origin of working plane also coincides with the lowest KP on the femur condyle. 

Through controlling the quadratic coefficients, the quadratic curves could determine the 

width and contour shape of the tibial bearing surface in the transverse direction. 

Consequently, each tibial bearing surface could be created using two quadratic curves 

as the transverse contour and one elliptical curve as the cutting guidance track, as shown 

in the Figure 3. 12. In the following chapter of dynamic analysis, the relations of medial 

quadratic coefficients: 𝑎1_𝑛𝑒𝑤 = 𝑎1 4⁄ ,  lateral: 𝑎2_𝑛𝑒𝑤 = 𝑎2 6⁄ ,  were assumed in both 

condyles. 

 

 

Figure 3. 15 (a) Tibial insert model of CTKI and the tibial tray of 3 mm thickness 108 (red); (b) 

DePuy PFC Sigma system tibial implant 108 

 

In contrast with the asymmetric structure of customised tibial implant in the Figure 3. 

15(a), the traditional tibial implant is usually designed with two symmetric arc-shaped 

bearing surfaces, which can be seen in the Figure 3. 15(b). Although the simple and 

regular shapes provide good conformity between the traditional femoral and tibial 

component, which is beneficial for reducing contact stresses and material wear, the 

symmetric structure could also restrain the function of the tibial I-E rotation and other 

DOF motions. This makes the patients’ knee function difficult to be restored to the 

normal even after TKR surgeries. Its detailed dynamic performances will be assessed 

under the same computer simulation conditions as applied on the CTKI model for 

comparisons in Chapters 6 and 7. 
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3.5 Conclusion 

 

A method of creating a customised femoral component has been proposed based on the 

geometric shape of patient specific distal femur. The 3D distal femur is created by using 

3D Slicer and surface-repaired by using MeshLab. Because it is not initially smooth due 

to the natural knee anatomic shape, the femur model is then imported into ANSYS 

mechanical APDL for creating surface-smoothened implant through the proposed 

methods such as the key feature points identification, least squares elliptical curve fitting 

and surface regeneration. In terms of the tibial implant modelling, because the 

information about this patient’s menisci is neither available nor usable due to cartilage 

wear, the tibial bearing surface is created based on the shapes of femoral component 

condyles by defining an elliptical cutting guidance track in the longitudinal direction and 

two quadratic curves in the transverse direction on each condyle. The curvatures of these 

curves are smaller than those of the femoral component contour, so the femoral implant 

can move in relation to the tibial counterpart in all six DOFs with certain ranges.  

 

The CTKI can effectively solve the problem of femoral component overhang/underhang 

over the femur bone, and further alleviate the residual pain on the knee joint. But whether 

the knee function could be restored or not by placing the CTKI on the patient’s knee is 

still unknown. It has to be validated through the dynamic simulations in the following 

chapters. 

 

Developed in ANSYS Mechanical APDL which is a built-in programming language for 

parametric design, the CTKI can be easily and quickly modelled and modified under 

different parameters, for instance, the tibial bearing surface curvatures in both 

longitudinal and transverse directions. Besides, ANSYS Mechanical APDL itself is a 

very powerful finite element (FE) simulation software. The established CTKI model can 

be directly applied different boundary conditions for the contact stress/force calculations 

and motion analysis without being exported into another FE software. 
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Chapter 4 

OpenSim subject-specific musculoskeletal modelling 

 

4.1 Introduction 

 

To test the total knee replacement (TKR) or cadaveric knee joint specimens, loads that 

the human knee is subjected were usually applied in the experimental rigs or simulation 

models. Depending on the test mechanism, some applied loads or motions on the jigs 

that directly held the knee implants, while some applied them on the motion rods which 

accommodated the TKR and acted as the lower extremity. For instance, the Stanmore 

knee simulator was used for the wear test of TKR. Its input loads are standard data for 

testing, and it only recruited the loads applied on the femoral and tibial components but 

excluded the effect of patella and ligaments around the joint. In other knee test rigs or 

simulators such as the Oxford knee rig (OKR) and the Kansas knee simulator (KKS), 

loads were applied on the virtual hip and ankle joints and quadriceps muscles, but those 

loads were only experimentally combined to duplicate the desired tibiofemoral 

compressive force, which in reality is dependent on all of the muscles across the knee 

joint as well as the moving upper body mass. Therefore, before testing the performance 

of customised TKR design, a patient-specific musculoskeletal model needed to be built 

for acquiring closer-to-physiological muscle and joint reaction forces that a specific 

subject could produce during a daily activity. 

 

Human biomechanical models are complex and comprised of skeletal models, joint 

structures, soft tissues such as muscles and ligaments and a contact mechanics model. In 

order to build such complicated systematic model, OpenSim was developed by the 

national centre for simulation in rehabilitation research at Stanford University. It is a 

freely available musculoskeletal modelling software that enables users to develop 

models of musculoskeletal structures and create dynamic simulations of movement 

based on subject-specific experiment data such as motion trajectories and ground 

reaction forces.84 Additionally, a muscle model 111 that acts more physiologically is 

included in the musculoskeletal model by considering an active actuator element and a 

passive spring element. The active muscle actuator is controlled by optimization 

algorithm that minimizing the sum of squared muscle activations, while the passive 

https://en.wikipedia.org/wiki/Stanford_University


54 
Chapter 4 OpenSim subject-specific musculoskeletal modelling 

 

spring element is a nonlinear spring with a function of force-length deflection.  

 

The main tools in the OpenSim include the model scaling tool, for fitting generic models 

to subject-specific data; inverse kinematics (IK), for resolving internal coordinates from 

available spatial marker positions corresponding to known landmarks on rigid segments; 

inverse dynamics (ID) for determining the set of generalized forces necessary to match 

estimated accelerations; residual reduction algorithm (RRA) for minimizing the effects 

of modelling and marker data processing errors that aggregate and lead to large 

nonphysical compensatory forces called residuals 112,113; static optimization (SO) for 

decomposing net generalized forces amongst redundant actuators (muscles); forward 

dynamics (FD) for generating trajectories of states by integrating system dynamical 

equations in response to input controls and external forces; and computed muscle control 

(CMC) for calculating muscle forces and activations by using motion feedback control 

algorithm based on SO and FD 114,115. 

 

It is worth noting that the FD tool enables users to calculate the joint forces by inputting 

calculated or measured muscle forces. However, since the natural knee articulation shape 

of the subject has been changed through the TKR surgery by being replaced with a 

traditional design implant or a customised one, the relative motions between femoral and 

tibial component would be different from that before the surgery. If applying mesh 

geometries (obj. file) of implant components in the FD analysis, the analysis would 

diverge due to the over-interpenetration between two contact surfaces. Decided by the 

elastic foundation contact algorithm 88 used in OpenSim, this over-interpenetration depth 

will produce extra-large contact forces that other forces such as joint loads and muscle 

forces cannot balance against. If applying mesh geometries from the beginning of the IK 

analysis to the SO or CMC muscle analysis, the knee joint reaction forces and muscle 

forces will become exaggeratedly high, because these analyses are performed by 

tracking the patient-specific joint motion trajectories generated by IK 116. In other words, 

incorporating detailed joint geometry and its effect on the contact forces into the 

musculoskeletal model is only applicable for the inverse analyses, motion dependent 

force analyses where the motions are known beforehand. Although in the CMC 114, a FD 

analysis is built inside in order to calculate the joint motions for feedback controls, the 

joint motions produced by IK are still the objective that this optimisation algorithm 

tracks. Importing mesh geometries of implant components can also make the simulation 
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fail with divergence. 

 

Accordingly, in this chapter, a patient-specific musculoskeletal model is built from the 

generic model 2392 (23 DOFs and 92 muscles) to calculate the left lower limb muscle 

forces and joint loads without consideration of the effect of knee contact forces. By using 

the patient-specific test data such as marker trajectories through motion captures, and 

the ground reaction forces (from 4th  Grand Challenge Competition to Predict In Vivo 

Knee Loads 117) through the force plate measurements, the patient-specific loads such as 

muscle forces and joint reaction forces can be calculated by using the tools of SO and 

the joint reaction analysis respectively. In Figure 4. 1, the process for calculating the 

patient-specific loads during a squatting motion is presented. The reason why the 

squatting motion is studied is because of its large range of knee flexion compared to 

other daily activities such as walking, stair-ascending and descending. Additionally, due 

to the limitations of OpenSim aforementioned, the patient-specific loads such as muscle 

forces and angular displacement of hip flexion will be exported into the next stage 

multibody dynamic analysis for evaluating the biomechanical performances of the total 

knee implants.   
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Figure 4. 1 Process of patient-specific loads calculation for a squatting motion 

 

4.2 Model scaling 

 

A generic model (Gait2392_Simbody) from the Examples and Tutorials of OpenSim 

documentation 118 is used to create a subject-specific musculoskeletal model in 

conjunction with the experimental marker data in the static standing pose. The Gait2392 

model is a 23-degree-of-freedom computer model of the human musculoskeletal system 

with 92 musculotendon actuators, and represents a subject of 1.8 m height and 75.16 kg 
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weight. By inputting a weight of 66.7 kg and a height of 1.68 m of a specific subject JW 

14, and the marker data of the static standing pose, the JW musculoskeletal model was 

created and shown in Figure 4. 2. The information of femur and tibia’s masses and mass 

centres is shown in Table 4. 1. The reason of only the subject’s left leg masses being 

listed is because the implant components were built based on the CT medical images of 

that subject’s left knee joint, and the dynamic simulations on the left leg needed to be 

conducted. 

 

Table 4. 1 Subject-specific left leg masses and mass centres scaled from the generic model 

 Mass 

(Kg) 

Mass centre 

(m) 

Inertia xx 

(kg·m2) 

Inertia yy 

(kg·m2) 

Inertia zz 

(kg·m2) 

Femur 8.25 (0 -0.173507 0) in Hip 

joint coordinate system 

0.1237 0.0324 0.1305 

Tibia 3.29 (0 -0.188756 0) in Knee 

joint coordinate system 

0.0457 0.0046 0.0463 

 

 
Figure 4. 2 Subject-specific musculoskeletal model scaled from the generic model, pink sphere 

represents motion capture marker and blue lines represent muscles  
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The hip joints and lumbar joint were defined as ball joints that have three DOFs, flexion-

extension (F-E) rotation, adduction-abduction (A-A) rotation, and internal-external (IE) 

rotation. The knee joint was only allowed to have F-E movement as a pin joint. The 

ankle joint was also a pin joint which only allowed the foot to have dorsiflexion and 

plantar flexion.  

 

4.3 Inverse kinematics analysis 

 

By inputting the motion capture data (marker trajectories) in the module of IK, joint 

angles (see Figure 4. 3) were obtained by best matching experimental markers attached 

to the specific subject with the virtual markers defined in the musculoskeletal model. 

The algorithm of inverse kinematics (IK) utilised here is the weighted least squares 

equation solution which aims to minimize both marker and coordinate errors. The 

marker weights and coordinate weights are specified respectively. The kinematic result 

of subject left leg was shown for the next stage dynamic test on the CTKI which was 

built from the subject left leg. The results of the right leg, pelvis and torso were also 

obtained. Those segments are indispensable in the musculoskeletal model simulation for 

considering the dynamic balance of body weight with the ground reaction force in the 

following ID analysis. 

 

 
Figure 4. 3 Kinematics results of the hip, knee and ankle joints of the subject’s left leg  
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4.4 Inverse dynamics analysis 

 

In the ID analysis, the ground reaction forces and torques were applied to two feet 

(calcaneus bones) respectively. By solving Newton second law equations, each joint’s 

generalized forces could be obtained. In Figure 4. 4, the joint loads of the subject’s left 

leg were plotted. These values can be used to estimate the joint actuator values in the 

next RRA analysis. 

 

Figure 4. 4  Dynamic moment results of the hip, knee and ankle joints of the subject’s left leg 

 

4.5 Residual reduction algorithm analysis 

 

The purpose of using this tool is to minimize nonphysical compensatory forces called 

residuals which are applied on the mass centre of pelvis in order to make joint kinematics 

more dynamically consistent with the ground reaction force data. Different from the 

former two inverse simulation analyses, the residual reduction algorithm (RRA) is a 

form of forward dynamics simulation that use tracking controller to follow the model 

kinematics results from the IK. The joint controllers or actuators rather than muscle 

forces are used to drive joints of the model to move from one configuration (generalized 

coordinates) to the desired one in the next time step. The actuator forces and their 

corresponding activations are computed by minimizing an objective function in Eq. 4-1 

which is the sum of squared actuator controls (𝑥𝑖) plus the weighted sum of desired 
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acceleration (𝑞̈𝑗
∗) errors. 

 

 

(4-1) 

The first summation minimizes and distributes loads across actuators and the second 

drives the model accelerations (𝑞̈𝑗) toward the desired accelerations (𝑞̈𝑗
∗).  

 

Each actuator controls each DOF of joint. Instead of applying residuals applied on pelvis 

mass centre arbitrarily large, they are also controlled by actuators: point actuators for 

translational DOFs and torque actuators for rotational DOFs. By this way, the motion is 

ensured to be predominately generated by the internal joint moments rather than the 

unrealistic supplementary loads which, on one hand, are necessary to satisfy the 

Newton’s Second Law, but on the other hand, would inevitably alter the model’s motion 

from the IK analysis. 

 

  
Figure 4. 5 Residual forces (FX, FY and FZ) and moments (MX, MY and MZ) applied on the 

pelvis mass centre 

 

The pelvis residual forces and moments which are nonphysical compensatory loads are 

shown in Figure 4. 5, representing the simulation loading error for making the measured 

ground reaction forces dynamically consistent with the inverse kinematic result obtained 

through the motion capture markers (pink spheres) in Figure 4. 2. To verify that the 

simulation errors are small enough, both the maximum and root mean square of residual 
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loads are required to be within the ranges of evaluation thresholds in Table 4. 2. The 

residual results in this study are found to be within those ranges. 

  

Table 4. 2 Threshold values for evaluating RRA results 119 

 

 

  
Figure 4. 6 Kinematics results of pelvis vertical translation and hip flexion rotation from SO 

 

The motion of model has been changed due to the application of residual loads. In order 

to apply customised forces such as muscle and joint reaction forces calculated from 

OpenSim onto the FE simulation in the following chapters, the forces or displacement 

loads need to be expressed in the same range of time. In Figure 4. 6, both pelvis 

translation in vertical direction and hip joint flexion rotation are plotted. The vertical 

movement of pelvis indicates the process of subject squatting from the standing posture 

to the maximum knee flexion posture that the subject JW could perform.  The motion 

results in the time range between 4.61 seconds and 6.384 seconds are extracted, which 

represents the motion from the upright standing posture to the lowest posture that the 

subject could squat to. But at 6.384 seconds, which is the ending time we choose for 

dynamic analysis, it does not necessarily mean the maximum flexion angle that this 

subject hip joint has to reach. In fact, as can be seen from the blue curve, the hip joint 
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has already extended to some angles, while the upper body just reaches its lowest posture 

in this cycle of motion. Because much more muscle forces are needed for resisting 

gravity and inertial effects so as to push up the upper body, maximum knee contact force 

is expected to occur at this selected ending point of time.  

 

 
Figure 4. 7 Normalized femur flexion angles 

The hip flexion rotation in Figure 4. 7 will be imported into the FE dynamic analysis 

with its time normalized to the range from 0 to 1.774 seconds. Besides, the muscle forces 

which will be calculated in SO and the joint reaction forces calculated in the following 

will all be extracted in the time range between 4.61 seconds and 6.384 seconds and re-

expressed in the time from 0 to 1.774 seconds. 

4.6 Static optimization analysis 

 

The SO analysis was performed by tracking the motion angles calculated through the IK 

analysis. The muscle forces were solved by minimizing the sum of squared muscle 

activations through the OpenSim inbuilt solver. The active muscle force was modelled 

in relation to muscle length and its contraction velocity, while the passive element of 

muscle was in tension only with its force dependent on muscle length 85–87. In Figure 4. 

8, the muscles across the knee and ankle joints were plotted and will be imported into 

the dynamic FE model in the following chapters. The reason why muscles across hip 

joint were excluded for FE dynamic analysis was to save computational cost and 

meanwhile, and the effect of these muscles could be substituted by the function of hip 

flexion angles versus time which was calculated through the RRA. The adduction-

abduction (A-A) effect of hip joint muscles was also neglected by leaving the A-A DOF 
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of hip joint free adjusting itself to the forces and moments produced by the two 

tibiofemoral condyles in contact.  

 

 

Figure 4. 8 Forces of muscles across knee and ankle joint of the subject left leg in both time and 

percentage of one squat from extension to flexion, (a) quadriceps muscle bundles and tibialis 

anterior; (b) remaining left leg muscles 
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Table 4. 3 Representations of line results in Figure 4. 8 and Figure 4. 9 

Line in Figure 4. 8 Abbreviation Full name of muscle 

 rect fem rectus femoris 

 vas med vastus medialis 

 vas int vastus intermedius 

 vas lat vastus lateralis 

 tib ant tibialis anterior 

 semimem semimembranosus 

 semiten semitendinosus 

 bifemlh biceps femoris long head 

 bifemsh biceps femoris short head 

 sar sartorius 

 tfl tensor fasciae latae 

 grac gracilis 

 med gas medial gastrocnemius 

 lat gas lateral gastrocnemius 

 soleous soleous 

 tib post tibialis posterior 

 flex dig flexor digitorum 

 flex hal flexor hallucis 

 per brev peroneus brevis 

 per long peroneus longus 

 per tert peroneus tertius 

 ext dig extensor digitorum 

 ext hal extensor hallucis 

 

As the primary movers during squat motion, quadriceps provided much larger forces 

than any other muscles across the hip and ankle joints shown in Figure 4. 8. The rectus 

femoris (RF) force increased from 200 N to 400 N in the beginning 0.5 seconds of 

normalized squatting time, when hip joint began to flex and upper body began to move 

downward. Subsequently, the force remained relatively constant for the whole squatting 

motion. However, different from the changing pattern of rectus femoris force, the other 

three bundles showed similar patterns but different magnitudes. The vastus lateralis (VL) 

produced much larger forces than the other two bundles. The maximum force of VL 

could reach about 1600 N, equivalent to 2.35 times BW. All of these three bundle forces 

remained small in the beginning of hip flexion and then sharply increased to their 

maximum values at about 1.7 seconds which corresponded to the lowest posture of upper 

body in the SO motion result in Figure 4. 6. It is consistent with the study of Escamilla 

83 that vasti muscles showed significantly higher activity than the rectus femoris, and 

peak quadriceps activity occurred at 80-90 degrees of a squat, with no further increases 

with greater knee flexion. 
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Figure 4. 9  Activations of muscles across knee and ankle joint of the subject left leg in both 

time and percentage of one squat from extension to flexion, (a) quadriceps muscle bundles and 

tibialis anterior; (b) remaining left leg muscles 

 

The muscle activations were also calculated as independent variables in the SO analysis. 

As can be seen in Figure 4. 9, quadriceps activities were much higher than the hamstrings 

and calf muscles, which was in good agreement with the study of Marchetti et al. 120. 

Besides, the tibialis anterior (TA) was also highly activated with the knee flexion, while 
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the gastrocnemius, sartorius, biceps femoris and tensor fasciae latae (TFL) became less 

active during the process. 

 

 

 

Figure 4. 10 comparison between the simulated SO muscle activations in blue lines and the 

referenced EMGs 14,117 in red dash lines, black and cyan circle lines represent the experiment 

results measured by Slater et al. 121   

Through the processes of removing DC offsets, band pass filtering, rectification and low 

pass filtering, the experimental results 14,117 of electromyography (EMG) were used to 

compare with simulation results in Figure 4. 10. EMG is an electrodiagnostic 

medicine technique for evaluating and recording the electrical activity, activation level 

produced by skeletal muscles. In this study, closer-to-physiological muscle forces are 

expected to obtain in a reasonable numerical range and then applied on the next-stage 

https://en.wikipedia.org/wiki/Electrodiagnostic_medicine
https://en.wikipedia.org/wiki/Electrodiagnostic_medicine
https://en.wikipedia.org/wiki/Skeletal_muscles
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dynamic TKI FE models. However, the exact muscle force values are very difficult to 

measure or validate in reality. Therefore, the experimentally measured EMG signals are 

used to compare with the simulated muscle activations in order to ensure the simulated 

muscle activities generally consistent with realistic muscle physiology.  

 

It is noticeable that only some parts of the simulated muscles in this study responded 

like the EMG counterparts. In Figure 4. 10, the activations of vastus medialis (VM), RF, 

sartorius (SAR), TFL were much larger than EMG values, while that of 

semimembranosus (SMM) and soleus (SOL) were smaller than EMG values. Especially 

for SMM, both estimated activation and EMG were smaller than 4 × 10−3 , which 

indicated that it was inactive. In addition to SMM, small activations were also observed 

in the biceps femoris (BF) that also comprises the hamstring muscles, so it can be 

concluded that the hamstring muscles did not contribute significantly to the squat motion 

as the quadriceps. This is mainly because during the knee flexed, the hip joint also flexed 

resulting in minimal change to the hamstring length. 

 

For the quadriceps, both simulated VL and VM muscles were in good agreement with 

the experimental results conducted by Slater et al. 121 but different from the EMG results 

provided by Fregly 14 in terms of magnitude and trend. Although the simulated RF did 

not increase as the result presented by Slater et al. 121, it was consistent with the result 

collected by McCaw et al. 122, which also showed relative constant activation during the 

descent phase of squat motion. 

 

In order to compare the trend of the simulated muscle activations with the EMGs, all of 

them were normalized by their respective maximum magnitudes. In Figure 4. 11, the TA 

and TFL showed good agreement with their corresponding EMG results. However, both 

gastrocnemius muscles (MGAS and LGAS) were only activated in the first twenty 

percent of simulated motion for providing stability to the knee joint, while the EMG 

showed gradually decreasing trends of activation. In contrast, the corresponding EMG 

results got by Slater showed slight increase in the lateral bundle and relative constant in 

the medial bundle. This can be explained that the length of GAS shortened during the 

knee flexion due to the reducing distance between two muscle insertions or less muscle 

wrapping in the musculoskeletal model. The muscle wrapping effect decides the 

changing rate of muscle length between two muscle insertion points. The more muscle 
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tissues are wrapped around the posterior femoral condyles, the slower the muscle length 

will shorten and the longer the muscle will stay in activation state. Additionally, the 

activation of GAS also depends on how much the foot toes point forward or heel lift off 

the ground.121 As can be seen in Figure 4. 10 and Figure 4. 11, the BF and GAS measured 

by Slater et al. 121 were more active during the anteroposterior mal-aligned squat than 

that during the control group squat where the heels were kept on the floor and knees in 

line with feet. 

 

 

 

Figure 4. 11 Comparison between normalized SO muscle activations in blue lines and the 

referenced EMGs 14,117 in red dash lines, black and cyan circle lines represent the experiment 

results measured by Slater et al. 121   
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Although the comparisons in Figure 4. 10 and Figure 4. 11 are not completely consistent, 

it is worth noting that differences between simulated activations and EMGs were also 

presented by Wibawa et al. 123, Navacchia et al. 124, Thelen et al. 125, Zheng et al. 126 and 

Adouni et al. 127. The disparity between experimental results of EMG and simulated 

muscle activations might be attributed to the muscle model error, attached-on-skin EMG 

measurement error and the uncertainty of muscle synergic excitement mechanism. Apart 

from the above reasons, the errors due to the algorithm would be another important factor 

for the differences between simulation and EMG or between two simulations. Trinler et 

al. 128 compared estimated muscle activations of the SO and the CMC with recorded 

EMG of lower limb muscles in healthy participants walking at different speeds. Neither 

the SO nor the CMC results were found consistent with the EMGs. 

 

It is still a limitation or challenge to build proper muscle model that could help get 

sufficient agreement between recorded muscles EMG and estimated values. Although 

the muscle properties such as pennation angle, maximum isometric force, tendon slack 

length and optimal fibre length were scaled with the skeleton through the scaling tool, 

the agreement between patient-specific and scaled ones is still not known so far. 

Customised muscle properties might help much more accurate results of forces and 

activations, but in terms of measurement of those parameters it is still challenging and 

time-consuming, especially for clinical applications. 

 

4.7 Joint reaction analysis 

 

To reduce the computational cost in the next stage of dynamic FE simulations, instead 

of building the whole lower limb along with applying ground reaction forces on the foot, 

obtaining the joint reaction loads on the hip and ankle joints from OpenSim are more of 

our concerns. Therefore, a joint reaction analysis provided by OpenSim was performed 

by tracking the motion result from the RRA under the effects of muscle forces and 

controls from the SO. In this study, three translational (S-I, M-L, and A-P) forces and 

two rotational (dorsi-planar flexion and I-E) torques on the ankle joint are extracted for 

the dynamic FE simulations and will be applied on the tibia bone. The results of these 

loads are expressed in the ankle joint CS and shown in Figure 4. 12. The A-A torque 

will not be included in the following dynamic FE simulations, because it will increase 

the convergence difficulty in keeping both medial and lateral tibiofemoral condyles in 
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contact during the squat motion simulations. It will also increase the computational cost, 

since the adductor muscles across the hips joints will have to be added with the 

functionality to actively control and balance the adduction-abduction moment on the 

knee joint.  

 

 
Figure 4. 12 Loads applied on tibia in ankle joint CS (superior-inferior force, medial-lateral 

force, anterior-posterior force, flexion-extension moment and internal-external moment) 

 

4.8 Discussions and conclusion 

 

In this chapter, the muscle forces of the patient-specific lower limb were obtained 

through the simulations of the patient-specific musculoskeletal model. Although the 

accuracy of these muscle forces is still challenging to validate in an experimental way, 

the muscle activation patterns for performing a daily activity can be compared with the 

EMG measurement results. This can help find out the approximate contributions or 

involvements of muscle bundles into the desired activities. Considering the magnitudes 

and patterns of major muscle activations in this study are generally consistent with either 

their corresponding EMGs 14,117 or those referenced from literature 121, the muscle forces 

will be applied on the next-stage dynamic FE analysis in the following chapters as 

closer-to-physiological internal forces for driving the squatting motion of the lower limb 

of subject JW.  

 

Neither patellar ligament nor collateral ligaments were considered in the 

musculoskeletal model, because ligament structure is regarded as an external element in 
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OpenSim. Its passive stretching during the motion could result in larger calculated joint 

reaction forces and muscle forces. In order to avoid introducing too many variables and 

in the context of lack of patient-specific muscle parameters, the generic musculoskeletal 

model 2392 with default muscle parameter setting was used for scaling. This would 

inevitably produce a certain amount of error. Therefore, the pattern of muscle forces we 

calculated are only one of numerous possible solutions rather than absolute result that 

the subject muscles can produce. Compared to the simplified quadriceps loads and 

constant hamstring load used in the previous studies 43, 50, 52 of knee simulators, the 

muscle forces calculated in this study are apparently more patient-specific to investigate 

the direct dynamic responses of CTKI in much closer-to-physiological condition. 

 

Apart from the patient-specific muscle forces, the patient-specific ankle joint loads were 

also calculated and will be imported into the FE dynamic model for simulating patient-

specific loads rather than the standardised loads commonly used for wear tests 53, 54, 103. 

The joint reaction forces are dependent on the lower limb lengths, locations of joint 

centres and body weight of each individual. Therefore, the patient-specific joint reaction 

forces rather than standardised experimental loads should be applied to test the dynamic 

responses of patient-specific TKR implants. 

 

The OpenSim musculoskeletal model could help quickly calculate a set of muscle forces 

and joint reaction loads which could be further used to investigate their effect on the 

human natural or implanted joints. Incorporating the effect of active muscles into the 

performance evaluation of TKR implants could help make simulations or experimental 

tests much closer to the realistic physical and physiological environment, and assist with 

the design of TKR implants for further improving the functionality of patient knee joints. 

Only by taking into account the influence of patient-specific lower limb muscles and 

joint reaction forces could a customised TKR implant be tested to help recover a specific 

patient knee to its normal mobility and functions, in the meantime, the reliability and 

longevity of the artificial components could be guaranteed for alleviating the pain after 

the TKR surgeries or reducing the need for the revision surgeries. 



71 
Chapter 5 ANSYS dynamic finite element modelling for assessing the dynamic performance of the total knee implants 

 

Chapter 5 

ANSYS dynamic finite element modelling for assessing the dynamic 

performance of the total knee implants 

 

5.1 Introduction 

 

For evaluating or predicting the performance of total knee implant of various designs, 

many simulations and in-vitro experiments have been conducted. Shi 108 used quasi-

static method to test implants under different knee flexion angles, Godest 57 and 

Fitzpatrick 59 analysed the dynamic responses of  knee implant components by applying 

lower extremity kinematics on the local axes of FE models. In the above studies, the 

flexion-extension (F-E) axis that tibial implant rotates around femur could be easily 

determined before motion analysis or performance evaluation, since the traditional off-

the-shelf designs of femoral implant 65, 124–126 are usually accompanied with two parallel 

regular-shaped femoral condyles, and either single distal femoral radius or multiple 

gradually changing femoral radii in the sagittal plane. However, normally the actual F-

E axis of knee joint could not be consistent with the rotation axis set on the artificial 

components. Many researchers 132–137 have studied the transepicondylar axis and 

cylindrical axis or compared them as the surrogates of the knee F-E axis based on the 

magnetic resonance imaging (MRI) technology. Neither transepicondylar axis nor 

cylindrical axis were found to be in line with the instant flexion-extension axis. Since 

there is no fixed rotation axis or known kinematic data to help correctly locate tibia 

relative to femur at each time interval of motion, a knee simulator considering hip and 

ankle joints needs to be built in order to test the dynamic performance of customised 

knee implants, which were designed in anatomical way in this study.  

 

Among the knee simulators, the Oxford knee rig (OKI) 41, 42 was used and further 

improved for not only testing various knee arthroplasties but also cadaveric knee joint. 

Derived from it, several test rigs 43, 133, 134 with different loadings, boundary conditions 

were proposed and designed. Verstraete et al. 55 proposed an improved knee simulator 

which allowed the ankle joint to move vertically and horizontally. A servomotor was 

used to apply a time-varying quadriceps force on a knee joint, while a hamstring force 

was represented by attaching a constant mass to a pulley system. Based on the Purdue 
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Knee 140, Maletsky and Hillberry 45, 46 designed a five-axis simulator named Purdue Knee 

Simulator: Mark II, from which the Kansas knee simulator (KKS) 47–51, 136 was built for 

studying the biomechanical performance of knee implants. Baldwin et al. 53 used 

ABAQUS/Explicit to build a FE model of KKS that considered not only the specimen-

specific bone and implanted components but also the quadriceps tendon and ligaments 

around the knee. 

 

In this study, different from loading conditions of any other knee simulators, three 

translational and two rotational loads that were calculated based on the squatting ground 

reaction forces were applied on the ankle joint with all six DOFs, meanwhile, a function 

of angular displacement versus time was applied on hip joint. The ankle joint was 

specified to have all six DOFs, while the hip joint was only allowed two rotational DOFs. 

The translational DOFs of hip joint were fixed to the ground as that in the knee simulator 

developed by Verstraete et al. 55, but it is different from both OKI 46 and KKS 53 where 

a constant vertical hip load was applied. In reality, the hamstrings muscle forces vary 

with time as quadriceps muscle forces do during daily activities instead of being 

simplified as a constant force 55. Accordingly, the effect of not only quadriceps forces 

but also time-varying hamstrings and tibial muscle forces were taken into account in this 

study. Apart from that, the effect of muscle wrapping when knee flexes to a certain angle, 

nonlinear mechanical property of ligaments, gravitational and inertial effect were all 

included in this model. 

 

5.2 Creation of joint coordinate systems in ANSYS FE knee simulation model 

 

Because only the CT images near the subject knee joint are available from the online 

source 14, 117 for building the 3D knee model, the lower limb model in Figure 5. 1 that is 

from OpenSim musculoskeletal model in Chapter 4 is used to display the coordinate 

systems (CSs) of lower limb joints. Those CSs will be correspondingly created in the 

dynamic FE knee simulation model in this chapter for building muscle insertion points 

and applying joint reaction loads.  
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Figure 5. 1 Schematic diagram of coordinate systems of joints in the OpenSim lower limb 

model that will be created in the ANSYS FE knee simulation model 

 

Those joint CSs in Figure 5. 1 were determined according to the bony landmarks. Firstly, 

epicondylar points were selected from the medial and lateral prominences of the distal 

femur. Then, the centre of femur distal could be determined by locating it between 

medial and lateral epicondylar points. The connecting line between these two points was 

the X-axis along which the femoral component could move mediolaterally in relation to 

the tibial component. The hip joint centre point in ANSYS was determined from the 

relative location between the femur central point and hip joint centre in the femoral CS 

of the patient-specific musculoskeletal model (14, 117, subject JW, mass: 66.7 kg, height 

1.68m) in OpenSim. Connecting the hip joint centre with the femur centre point was the 

Z-axis for the femur mechanical axis along which was also the superior-inferior view of 

femoral component. The Y-axis of femoral component is perpendicular to the X-axis 

and Z-axis and pointed to the posterior side of femoral component. The X-axis of hip 

joint which was located in the femur head centre was parallel to the X-axis of femoral 

implant component. The axis perpendicular to the X-axis and Z-axis was the Y-axis 

along which the femoral component could move posteriorly in relation to the tibial 

counterpart. The origin and local coordinate axes for the tibial component were built in 

coincidence with the ones for the femoral counterpart. In ANSYS FE model, the femoral 
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origin and points for reference axes were rigidly connected with four points on the 

femoral component as massless rigid links, which allowed the local frame to move 

simultaneously with femoral component without any deflection. The connection method 

was also applied for the tibial local frame. The local CS of ankle joint was also 

determined from the relative positions between knee and ankle joints in the 

musculoskeletal model. Its Z-axis was pointed from the ankle joint centre to the knee 

counterpart. 

 

5.3 Joint definitions and boundary conditions in ANSYS FE knee simulation model 

 

 
Figure 5. 2 Joints and boundary conditions in the dynamic FE knee simulation model 

 

ANSYS MPC184 Joint elements were used to create hip and ankle joint of the subject 

lower limb. In Figure 5. 2, the hip joint was specified to have two rotational DOFs which 

allowed flexion-extension (F-E) and abduction-adduction (A-A) motions, while the 

ankle joint was created as a ball joint that allowed the tibial F-E, A-A and internal-

external (I-E) rotations around the talus bone. All six DOFs of Knee joint were set 

unconstrained but restricted by the implant geometries and the effect of ligaments, 

musculotendons and the patella. As shown in Figure 5. 3, apart from the flexion rotation, 

the tibiofemoral joint has other five motion DOFs which consist of A-A rotation, I-E 

rotation, medial-lateral (M-L) translation, anterior-posterior (A-P) translation and 

superior-inferior (S-I) translation. 
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Figure 5. 3 Schematic diagram of tibiofemoral relative motions by using OpenSim model 

 

The hip flexion rotation was controlled by a function of rotation angles versus time 

obtained from the OpenSim patient-specific musculoskeletal model in Chapter 4, while 

the ankle joint was applied with three translational forces and two torques which were 

also calculated from the OpenSim model. The A-A torques on both hip and ankle joints 

were neglected in case of the system imbalance in the frontal plane. Due to lack of 

muscle control mechanism in this dynamic FE model, applying A-A torques on both hip 

and ankle joints could cause single-side-condylar lift-off from contact during the 

simulation processes. 

 

5.4 Ligament and musculotendon models 

 

To provide stability in the knee joint motions, several knee joint ligaments were created 

based on knee anatomy, such as patellofemoral ligament in Figure 5. 4(a), retinaculum 

and patellar ligament in Figure 5. 4(b). Two collateral ligaments (CLLs) in Figure 5. 4(c) 

and (d): lateral collateral ligament (LCL) and medial collateral ligament (MCL) and two 

cruciate ligaments (CLs) in Figure 5. 5: anterior cruciate (ACL) and posterior cruciate 

(PCL) were built as nonlinear springs with insertion points on the femur and tibia 

respectively, while the patellar ligament (PL) was regarded as three linear springs due 

to the lack of relevant literatures. Based on the stiffness of PL of 210±66 N/mm in 

literature 142, the PL was split into three bundles with the same stiffness of 70 N/mm. 

The ligaments except PL in this model were modelled as nonlinear springs with preloads 



76 
Chapter 5 ANSYS dynamic finite element modelling for assessing the dynamic performance of the total knee implants 

 

as reported in literature 54, 80, 82. The force-displacement curve for the ligaments was 

described by Eq. 5-1 and Eq. 5-2. The variable ε is the ligament spring strain. The 

parameter 𝑘 is the stiffness parameter, 𝑙0  is the zero-load length and 𝜀𝑙  is the spring 

parameter assumed to be 0.03 143. In order to ensure the model stability in initial state, 

the preloads or initial strains were added with specific spring stiffness parameters as 

shown in Table 5. 1. In Chapter 6, three different treatment scenarios of CL including 

retaining CLs, removing ACL and removing both CLs during surgery were simulated 

from the knee extension posture to the maximum knee flexion angle during a squat. 

Forces and elongations of all the ligaments were extracted for analysis.  
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Figure 5. 4 Musculotendons and ligaments in dynamic FE model: (a) top view; (b) front view; 

(c) lateral side view; (d) medial side view 
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Figure 5. 5 Cruciate ligaments (without corresponding design features such as fenestration in 

the tibial insert to let cruciate ligaments through) in dynamic FE model: (a) lateral side view; 

(b) posterior view 

 

 
 

𝐹 = {

1

4
𝑘𝜀2/𝜀𝑙            0 ≤ 𝜀 ≤ 2𝜀𝑙  

𝑘(𝜀 − 𝜀𝑙)         𝜀 > 2𝜀𝑙           
0                      𝜀 < 0        

 (5-1) 

 
𝜀 =

𝑙 − 𝑙0
𝑙0

 (5-2) 

 

Table 5. 1 Collateral ligament stiffness parameters and reference strains 80,82 

Ligament bundle aLCL mLCL pLCL aMCL mMCL 

Ligament stiffness parameter 

(N) 
2000 2000 2000 2750 2750 

Reference strain/ initial spring 

strain 
-0.25 -0.05 0.08 0.04 0.04 

Ligament bundle pMCL aPCL pPCL aACL pACL 

Ligament stiffness parameter 

(N) 
2750 9000 9000 5000 5000 

Reference strain/ initial spring 

strain 
0.03 -0.24 -0.03 0.06 0.1 

 

 

Both the patellofemoral collateral ligaments (PFCLs) and the retinaculum ligaments 

(RLs) shown in Figure 5. 4(a) and (b) were modelled as nonlinear springs of the same 
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expression of force-displacement curve as those of the knee collateral ligaments. Their 

stiffness parameters and initial spring strains are shown in Table 5. 2. In this table, 

mPFCL, lPFCL denote the medial and lateral side bundles of PFCLs; mRLs, lRLs mean 

the superior bundles on medial and lateral side of RLs; mRLm, lRLm are the middle 

bundles in medial and lateral side of RLs; mRLi, lRLi represent the inferior bundles in 

medial and lateral side of RLs. All these values are assumed due to lack of literature on 

them. Smaller values of initial spring strains of PFCLs will be simulated in Chapter 8 to 

investigate the effect of ligament laxities on the kinematics and kinetics of 

patellofemoral joint. 

 

Table 5. 2 Stiffness parameters and pre-strains of patellar collateral ligaments and retinaculum 

ligaments  

Ligament bundle mPFCL lPFCL mRLs mRLm 

Ligament stiffness parameter (N) 2000 2000 2000 2000 

Reference strain/ initial spring 

strain 
0.1 0.1 0.005 0.01 

Ligament bundle mRLi lRLs lRLm lRLi 

Ligament stiffness parameter (N) 2000 2000 2000 2000 

Reference strain/ initial spring 

strain 
0.01 0.02 0.01 0.01 
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Figure 5. 6 Bundles of Quadriceps and lumped mass of femur bone   
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Figure 5. 7 Schematic representation of connection definitions 

 

As shown in Figure 5. 6, the quadriceps muscles were split into four bundles with three 

muscle insertion points on the femur and one on pelvis. Because only some segments of 

femur and tibia could be built from the accessible CT data, the locations of the four 

muscle insertion points on either femur bone or pelvis bone could only be determined 

from the OpenSim musculoskeletal model (14, subject JW, mass: 66.7 kg, height 1.68m) 

in the local coordinate system of hip joint. All the muscle insertion points on femur bone 

are rigidly connected to the point in the hip joint origin that acts as pilot node through 

the multipoint constraint (MPC) technology (see Figure 5. 7), while other all muscle 

insertion points on tibia bone are connected to the pilot node in ankle joint origin. 

Because some muscles around the knee joint are attached to pelvis or calcaneus which 

is not built in this FE model, the insertion points on pelvis or calcaneus were built as a 

translational joint with an ability to rotate around a spherical joint (see Figure 5. 7). This 

allows the time-varying muscle force to be only loaded on the knee joint components 

and adjust its spatial vector direction by its own, and at the meantime, go through the 

insertion points on pelvis or calcaneus without producing extra loads on the hip or ankle 

joint. Each spherical joint node that is in the location of each muscle insertion point and 

meanwhile connected with the translational joint is rigidly connected to the pilot node 
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in either hip joint or ankle joint thorough weld joint (see Figure 5. 7).   

 

For the three quadriceps muscle bundles (vastus medialis (VM), vastus lateralis (VL) 

and vastus intermedius (VI)) that connect femur bone and patella, in order to make the 

knee joint under compression state, the patella should be pulled along the direction of 

quadriceps muscle bundles while the muscle bundles are activated. Therefore, an 

actuator element in Figure 5. 7, Link11, was applied to the above three quadriceps 

muscle bundles. This element supports the import of force-time function and applies 

time-varying load on the axial direction of muscle bundle. On two ends of each actuator 

are each muscle bundle and spherical joint node. The femur and tibia bones were deleted 

before the dynamic analysis for the purpose of reducing the computational cost. 

 

Since ANSYS Mechanical APDL 18.2 does not support preload on the nonlinear spring 

element Combin39 at the moment, the first load step is applied, where the motion of 

femur and tibia are temporarily constrained, and the ligament could move in a length of 

deflection depending on the ligament spring initial strain. Notably, when the Combin39 

element is in compression state, it is set to be zero force produced. For the mechanism 

of ligament translation motion, a translation joint rotating around a spherical joint is also 

applied as can be seen in Figure 5. 7. Through defining the node-to-node contact pair 

with element Conta178, once the moving end node of spring reach the location of one 

spherical joint node, these two nodes will be attached without separation in the following 

load steps. Another node of the spherical joint is rigidly connected to the hip joint node 

which is the pilot node and will control the former node to rotate with it. 

 

Due to the limited functionality in ANSYS, control loop or feedback was not used to 

control or adjust either muscle forces or joint loads in the dynamic FE simulations of 

this whole thesis. 

 

5.5 Muscle wrapping effect 

 

When it comes to deep knee flexion, the quadriceps muscle should normally wrap 

around the distal femur. In ANSYS, if without any setting, the elements which represent 

musculotendon will pass through the femur bone dragging the patella upward to the hip 

joint direction. Hence, the node-to-surface contact (element Conta175) is adopted to 
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simulate the muscle wrapping effect with considering the effect of friction coefficient in 

Table 5. 3 in Section 5.7. The muscle attachment points on the femur and pelvis are 

known and referenced from the OpenSim model (4th grand competition to predict knee 

joint load). Since the quadriceps muscle is split into four bundles, namely rectus femoris, 

vastus lateralis, vastus medialis and vastus intermedius, each bundle can be linearly 

divided into N segments with each spring stiffness (element Combin14) equivalent to 

Ks*N (Ks: the stiffness of one bundle before discretization). Here we set the spring 

stiffness of each string of the quadriceps muscle to be 15 N/mm (15-24N/mm for the 

stiffness of quadriceps in literature 142). 
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Figure 5. 8 Discretization of quadriceps muscles for contact with femoral component 

 

Since one single muscle string (e.g. rectus femoris) was discretized into (N+1) elastic 

springs, there would be one node produced on each end of pre-discretized spring and 

other N node points in between. For instance, in Figure 5. 8, the two objects are assumed 

to be one tibia with its bone tuberosity fully fixed and one femur moving from position 

A to position B. Each spring element node is built in its local reference frame. In each 

local frame, its Y axis is set toward the axial direction of each spring element while X 

axis perpendicular to it. Z axis is pointed outside from the X-Y plane. Once the spring 
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node contacts a surface (e.g. femoral component in Figure 5. 8) during its moving course, 

each spring element could only deflect in the X-Y plane in case nodes of one single 

muscle string randomly vibrate in Z direction. Therefore, a set of coupling equations are 

used to constrain those nodes’ DOFs in Y and Z directions in Eq. 5-3. 

 

 
{
∆𝑁𝑌𝑖= ∆𝑁𝑌𝑖−1= 𝑁𝑌(𝑖 + 1) − 𝑁𝑌(𝑖) = 𝑁𝑌(𝑖) − 𝑁𝑌(𝑖 − 1)

∆𝑁𝑍𝑖= ∆𝑁𝑍𝑖−1= 𝑁𝑍(𝑖 + 1) − 𝑁𝑍(𝑖) = 𝑁𝑍(𝑖) − 𝑁𝑍(𝑖 − 1)
, 𝑖=1,2~𝑛 (5-3) 

Transformed into the form in Eq. 5-4: 

 
{
𝑁𝑌(𝑖 + 1) − 2𝑁𝑌(𝑖) + 𝑁𝑌(𝑖 − 1) = 0

𝑁𝑍(𝑖 + 1) − 2𝑁𝑍(𝑖) + 𝑁𝑍(𝑖 − 1) = 0
, 𝑖=1,2~𝑛 (5-4) 

As shown in Figure 5. 9, with the relative motion between femur and tibia bones that 

were replaced with ANSYS MPC184 rigid connection element, the bundles of 

quadriceps muscle came into contact with the femoral component from low knee flexion 

angle to a high knee flexion angle. The muscle bundles can be seen wrapping around the 

external curve surface of femoral component. It is more precise for describing the 

scenario of muscle wrapping bone than other methods such as cylindrical envelope 

surface in some OpenSim models. The latter method only considers single DOF of 

flexion rotation of patellofemoral joint, which cannot comprehensively describe equally 

complicated patellofemoral motions as the tibiofemoral motions. 
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(a) 

 

 
(b) 

Figure 5. 9 Effect of quadriceps wrapping around femoral component from (a) the low knee 

flexion to (b) the high knee flexion  
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5.6 Measurement of two relative moving objects  
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Figure 5. 10 Coordinate systems of (a) femoral component and (b) tibial insert 

 

A rotation matrix 144 was applied to calculate the relative rotations or Euler angles 

between femoral and tibial local coordinate systems (CS). As shown in Figure 5. 10, 

each CS was built through creating four nodes and then connecting them with five nodes 

on the implant installation surface via massless rigid link elements. Relative rigid 
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translations could be calculated through the distances between femoral and tibial CS 

origins. Both rotations and translations were expressed in tibial CS as well as two 

condylar compressive forces in the vertical direction of tibial CS. 

 

5.6.1 Relative rotations of two moving objects 

 

Since the two local reference frames move with two corresponding implants, the relative 

rigid body rotations can be obtained via solving the Euler angles between two CSs in 

Eqs. 5-5 and 5-55-55-6. In Figure 5. 11, 𝑒𝑡𝑖, 𝑒𝑓𝑗 (i, j=x, y, z) are the unit vectors in the 

tibial and femoral local frames respectively. The tibial CS is regarded as the fixed CS, 

while the femoral CS is rotating in relation with the tibial CS. The matrix in Eq. 5-5 is 

the transformation matrix made of direction cosines 145. 
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Figure 5. 11 rotation between two coordinate systems 

 

 

(

𝑒𝑓𝑥
𝑒𝑓𝑦
𝑒𝑓𝑧
) = {

𝑄𝑥𝑥 𝑄𝑦𝑥 𝑄𝑧𝑥
𝑄𝑥𝑦 𝑄𝑦𝑦 𝑄𝑧𝑦
𝑄𝑥𝑧 𝑄𝑦𝑧 𝑄𝑧𝑧

}(

𝑒𝑡𝑥
𝑒𝑡𝑦
𝑒𝑡𝑧
) , 𝑄𝑖𝑗 = cos(𝑒𝑡𝑖, 𝑒𝑓𝑗) = 𝑒𝑡𝑖 ·  𝑒𝑓𝑗  

(5-5) 

 

{
 
 

 
 
𝜃𝑥 = tan

−1(𝑄𝑧𝑦 𝑄𝑧𝑧⁄ )

𝜃𝑦 = tan
−1 (−𝑄𝑧𝑥 √𝑄𝑧𝑦

2 + 𝑄𝑧𝑧
2⁄ )

𝜃𝑧 = tan−1(𝑄𝑦𝑥 𝑄𝑥𝑥⁄ )

 

   (5-6) 

 

Through solving the Eq. 5-6 which was referenced from the literature 144, (𝜃𝑥, 𝜃𝑦, 𝜃𝑧) 

are obtained and sequentially present the rotation angle around the tibial x axis that 

corresponds the knee flexion-extension rotation angle, the rotation angle around the 

tibial y axis that corresponds the knee abduction-adduction rotation angle and the 

rotation angle around the tibial z axis that corresponds the knee internal-external rotation 

angle. 
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5.6.2 Relative rigid translations of two moving objects 

 

The relative rigid displacements between femoral and tibial components can be obtained 

from a simple triangulation calculation. In Figure 5. 12, 𝑉⃗ 𝑡𝑓  is the distance vector 

between the tibial and femoral origins. As shown in Figure 5. 12, 𝛼  is the angle 

between 𝑉⃗ 𝑡𝑓 and 𝑒𝑡𝑥; β is the angle between 𝑉⃗ 𝑡𝑓 and 𝑒𝑡𝑦; γ is the angle between 𝑉⃗ 𝑡𝑓 and 

𝑒𝑡𝑧. 
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Figure 5. 12 Translation between two coordinate systems 

 

 

{

𝐷𝑥 = |𝑉⃗ 𝑡𝑓| · cos𝛼 = 𝑉⃗ 𝑡𝑓 · 𝑒 𝑡𝑥 |𝑒 𝑡𝑥|⁄

𝐷𝑦 = |𝑉⃗ 𝑡𝑓| · cos𝛽 = 𝑉⃗ 𝑡𝑓 · 𝑒 𝑡𝑦 |𝑒 𝑡𝑦|⁄

𝐷𝑧 = |𝑉⃗ 𝑡𝑓| · cos 𝛾 = 𝑉⃗ 𝑡𝑓 · 𝑒 𝑡𝑧 |𝑒 𝑡𝑧|⁄

 

(5-7) 

 

(𝐷𝑥, 𝐷𝑦, 𝐷𝑧) are medial-lateral translation, posterior-anterior translation and superior-

inferior translation respectively. 

 

5.7 Materials and solution convergence  

 

In the solution of this chapter, all material properties of total knee implant components 

were set linear. As shown in Table 5. 3, the ultra-high molecular weight polyethylene 

(UHMWPE) is a common material for tibial inserts. The femoral implant is made of 

Cobalt-Chrome alloy. A titanium alloy is used for modelling the tibial tray of 3 mm 

thickness 108 in the simulations. No relative motion was assumed between the tibial insert 

and tibial tray. The patellar bone was assumed as cortical bone with constant elastic 

modulus.  
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Table 5. 3 Material property of total knee implant components 108 

 Elasticity 

modulus 

(MPa) 

Poisson’s ratio Coefficient 

of friction 

Density (kg/m3) 

UHMWPE 1016 0.46 0.04 0.945×103  

Cobalt-

Chrome alloy 

193000 0.29 0.05 8.5×103  

Titanium alloy 110000 0.33  4.4×103  

Cortical bone 17580 0.3 0.8 1.85×103 

 

In order to apply the initial strains or pretension forces of knee ligaments and make 

system reach an initial balance, three load steps were used in the simulations. In the first 

load step, the external-internal rotation of ankle joint was locked, and the patella was 

only allowed to F-E rotate, M-L tilt and S-I translate in relation to the femoral implant 

component. Three translational forces and the F-E moment calculated in the 

musculoskeletal model in Chapter 3 were applied on the ankle joint. The hip joint was 

applied with the function of flexion angle versus time obtained from the musculoskeletal 

model in Chapter 3 as well. Meanwhile, the pretension forces were also applied on 

ligament bundles. When the initial contact stresses were produced on the tibiofemoral 

and patellofemoral contact pairs and the pretension forces were applied on the knee 

joints at the simulation time of 0.02 seconds, those constraints on the patella were 

removed. At 0.04 seconds, a time-dependant function of external-internal torque from 

the OpenSim simulation in Chapter 4 section 4.7 was applied on the ankle joint. 

 

In terms of the control load steps in the ANSYS iteration solver for the implicit dynamic 

problem, the maximum time-step was set to be 0.01 seconds and the minimum was 0.001 

seconds. The automatic time stepping was also activated. These settings ensured that all 

the modes and responses of interest would be predicted. 

 

The SOLID185 element was used to mesh the TKI models and patella. The element size 

of the contact surfaces of the tibiofemoral and patellofemoral joints was 2 mm. The 

element size for volume mesh was 4 mm. Mesh sensitivity was studied; further mesh 

refinement resulted in less than 5% change in the predicted peak contact pressures. 
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5.8 Conclusion 

 

In this Chapter, a transient dynamic model was created based on the squatting 

mechanism of the OKR and the KKS. The hip joint was specified to only have the DOFs 

of flexion-extension, abduction-adduction rotations, while the ankle joint was allowed 

to move in all DOFs. The hip flexion angles were controlled by the rotation displacement 

result obtained from the OpenSim patient-specific musculoskeletal model, while the 

ankle joint was applied with three translational forces and two torques which were also 

calculated from the OpenSim model. It is worth noting that the adduction-abduction 

loadings on both hip and ankle joints were neglected in case the dynamic simulation 

loses balance in the frontal plane. Due to lack of muscle force self-adjustment in this 

dynamic finite element model, the dislocation of tibial component from the femoral 

counterpart would occur with only one side of condyles of knee joint in contact during 

the simulation processes. 

 

Twenty-three muscles left lower limb were recruited with the referenced muscle 

insertion points from the OpenSim musculoskeletal model. The muscles on the upper 

leg were ignored for saving the computation cost. To provide dynamic balance, knee 

joint ligaments such as collateral ligaments and cruciate ligaments were also included in 

this model with their nonlinear spring stiffness and pre-strains referenced from the 

literatures. Actuator element in ANSYS Mechanical APDL was used to apply time-

varying muscle forces to the quadriceps bundles connecting patella and femur, while a 

rotating-slider mechanism was to apply muscle forces to those muscles that are, only in 

one end, attached to either femur or tibia. The wrapping effect of the quadriceps bundles 

around the femoral component was created by discretizing the springs into several even 

segments of springs with several nodes. And then node-to-surface contact element was 

used to realize the wrapping effect when the knee joint flexes to a certain degree. Euler 

angles and rotation matrix were applied to track and record the relative motions between 

femur and tibia and between femur and patella. The material properties of the femoral 

component, tibial insert and tibial tray were set as linear for the consideration of 

computational cost and convergence difficulty. 
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Chapter 6 

Dynamic simulation of knee joint during a subject-specific squatting 

motion 

 

6.1   Introduction 

 

In order to understand the relationship between knee joint motions and joint loads, many 

methods including experiments and simulations have been applied. Zhao et al. 146 

collected the in-vivo medial and lateral tibial forces of subjects during motions of gait 

and step through the instrumented tibial tray. Mündermann et al. 147 calculated the 

maximum compressive loads and maximum medial-lateral load ratios based on in-vivo 

experimental tibial tray data. Taylor et al. 148 used motion capture markers and 

instrumented tibial tray to obtain not only the knee joint reaction forces but also the 

relative motions between femoral and tibial components under the motion trials such as 

squatting, level walking etc.. Bergman et al. 149 and Kutzner et al. 150 also measured the 

loads of total knee implants during different daily activities. Bersini et al. 62 built a 

multibody dynamic model by using a commercially available software (Working Model 

3D, MSC) and calculated the forces between natural knee articulations, and the forces 

and lengths of knee joint ligaments. Stylianou et al. 151 used ADAMS and LifeMOD to 

perform the dynamic simulations of squatting motion and obtained the tibiofemoral 

forces and torques. 

 

In addition to knee joint force measurements and calculations, the relative motion of 

total knee implants is also one of the concerns of many researchers. Wilson et al. 152 built 

an experiment rig to measure the relative tibiofemoral motions of cadaveric knees under 

passive knee flexion and coupled all tibiofemoral motions to the flexion rotations. 

Schmitz et al. 153 used OpenSim and discrete element knee model to conduct passive 

knee flexion and obtained the relative tibiofemoral motions.  Murakami et al. 154 applied 

fluoroscopy and image-matching techniques to obtain the motion relationships between 

tibia and femur of healthy people during the motions of squat and golf swing. Later in 

2018, Murakami et al. 7 used the same method to measure and compare the relative 

motions between healthy subjects and control subjects with bi-cruciate stabilized design 

which is with a traditional tibiofemoral contact surface. Tamaki et al. 155 used computer-
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assisted design models to reproduce the spatial positions of femoral and tibial 

components from single-view fluoroscopic images and analysed an in-vivo kinematic 

pattern of a weight-bearing, deep-bending activity with a high-flexion, posterior 

stabilised, mobile bearing knee prosthesis. Bloemker et al. 54 built a 3D experiment rig 

of Kansas knee simulator by using Adams and calculated the relative motions of natural 

knee for gait analysis. 

 

In this chapter, the dynamic knee simulation FE model created in Chapter 5 is used with 

applying patient-specific muscle forces and ankle joint reaction loads that were 

calculated during a squatting motion in Chapter 4. The tibiofemoral compressive forces 

and relative motions of both the CTKI and the STKI designs are calculated. For 

validation of the model, those results are compared with existing published research 

results. The forces and elongations of cruciate and collateral ligaments are also plotted 

and analysed under different ligament laxities. 

 

6.2   Results 

 

The relative motions between the femoral and tibial components are presented in Figure 

6. 1. It is worth noting that, in Figure 6. 1(a), the results of femoral external rotation in 

relation to the tibia were in good agreement with that of five healthy males in-vivo 

measured by Murakami et al. 154 through fluoroscopic study. However, for the 

anteroposterior translation in Figure 6. 1(b), only the motion of CTKI with both CLs 

retained was close to that of healthy knees.  

 

The STKI model simulated under the same conditions as the CTKI also showed constant 

femoral rotation but with a smaller ROM and paradoxical internal rotation. For its 

posterior translational motion, the femoral component slid 5 mm anteriorly on the tibial 

component until 30 knee flexion, and then moved posteriorly by 7 mm until the 

maximum knee flexion angle.  
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Figure 6. 1 Tibiofemoral relative motions: (a) and (b) comparisons of simulated 

external rotation and anterior translation with reported five healthy male knees which 

are shown in cyan triangle lines and implanted knees with bi-cruciate stabilized (BCS) 

design in black dot line. (c)~(e) medial-lateral translation, adduction-abduction rotation 

and superior-inferior translation. Shaded areas in red, green and blue are simulated 

results under different pre-strains of collateral ligaments: -50%, -20%, -10%, 10%, 20%, 

50% of the reference strain in Table 5.1. 

 

As for the rest of the DOFs of the knee joint, the CTKI model did not show significant 

differences in the adduction-abduction rotation and superior-inferior translation among 

the three CL treatment scenarios. However, for the medial-lateral translation, the model 

with both CLs retained showed larger medial but smaller lateral translations. The 

femoral medial-lateral translation in the STKI in Figure 6. 1(c) remained constant. In 

Figure 6. 1(d), the STKI model resulted in a different trend for femoral adduction 

rotation to that of the CTKI. In Figure 6. 1(e), the femoral superior translation in STKI 

model was smaller than that of the CTKI.  
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Figure 6. 2 Tibiofemoral (TF) compressive forces: (a) total condylar compressive 

forces including comparisons with other research findings; (b) medial and (c) lateral 

tibiofemoral contact forces. Shaded areas in red, green and blue were calculated and 

plotted under different pre-strains of collateral ligaments: -50%, -20%, -10%, 10%, 

20%, 50% relative to the reference strain in Table 5. 1. 

 

In Figure 6. 2(a), there are few differences of total tibiofemoral compressive force among 

the three CL treatment scenarios, though the joint forces of the model with retained CLs 

were slightly larger than those of the other two scenarios because the ACL tension force 

was applied to the tibiofemoral articular surface. The simulated knee forces in this paper 

were quite close to the experimental results (cyan dash lines) obtained by Stylianou et 

al. 151 until 60 knee flexion.  Above that flexion level, the results tended to be much 

closer to experimental data (black dash lines) reported by Taylor et al. 148. The results in 

this paper were also generally consistent with the results calculated by Bersini et al. 62. 

The results for the STKI are shown as black dotted lines in Figure 6. 2. After 50 knee 

flexion, the STKI resulted in smaller tibiofemoral compressive forces than the CTKI. 

After 58 knee flexion, the compressive force for the STKI started to reduce till 75 knee 

flexion.  

 

As for the compressive forces on medial and lateral condyles in Figure 6. 2(b) and (c), 
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the medial condylar force in the CTKI model was larger than that in the STKI model, 

while the lateral condylar force in the CTKI model was smaller than that in the STKI 

model. With the increase of knee flexion angle, the medial condyle in the CTKI model 

was subjected to larger load than the lateral condyle. For the STKI model, although the 

medial condylar force was also larger than the lateral side in the late knee flexion 

(beyond around 40 knee flexion for the STKI model), its medial and lateral loads were 

more evenly distributed than those of the CTKI. 

 

The results for ligament forces in the CTKI model are shown in Figure 6. 3. The MCLs 

were subjected to larger loads and longer elongations compared to the LCLs due to the 

larger initial strains in the MCLs. Both aLCL and mLCL were relaxed for most of time 

until 50 knee flexion for mLCL and 60 for aLCL. In Figure 6. 3(g) and (h), the ACLs 

were extended until 3 knee flexion for the pACL and 48 for the aACL and then 

shortened till 50 and 76 flexion angles respectively. In Figure 6. 3(e) and (f), the 

patellar ligaments were not susceptible to the different cruciate ligament scenarios. In 

Figure 6. 3(i) and (j), because of the negative initial strains of the PCL and femoral 

posterior translation, the PCL bundles were always slack without tensile forces. 

Compared with the CTKI, the STKI model showed much smaller CLL forces. The 

patellar ligaments were also less stretched with smaller forces produced. The ACL was 

only in tension before 10 knee flexion. 
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Figure 6. 3 Tensile forces of (a) medial collateral ligaments (MCLs), (c) lateral collateral 

ligaments (LCLs), (e) patellar ligaments (PLs), (g) anterior cruciate ligaments (ACLs), (i) 

posterior cruciate ligaments (PCLs) and the elongations of (b) MCL, (d) LCL, (f) PL, (h) ACL, 

(j) PCL under three scenarios: retained ACL and PCL, removed ACL and PCL and only 

removed ACL for the CTKI, and one scenario of retained cruciate ligaments for the STKI 
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6.3   Discussion  

 

This study aimed to simulate the CTKI using a dynamic FE model and considering the 

close-to-physiological muscle and ankle joint forces. The femoral external rotation and 

posterior translation of the CTKI with both CLs retained were in good agreement with 

that of healthy knee measured by Murakami et al. 154 and other tibiofemoral motion 

ranges and patterns were also consistent with previous results from the literature 25,26.  

 

In contrast, the STKI in this study showed limited femoral external rotation during 

squatting, which was generally consistent with the results of another referenced STKI 

design 7 shown in Figure 6. 1(a). Few variations in the medial-lateral direction in the 

results from the STKI design in Figure 6. 1(c) were due to its symmetric structure. Its 

exponential increase in adduction rotation in Figure 6. 1(d) may show smaller CLL 

elongations and forces in the model, which consequently induced much smaller 

tibiofemoral compressive forces (Figure 6. 2). Smaller femoral superior translation in 

the STKI model (Figure 6. 1(e)) was mainly due to the revolute radius of the posterior 

condyles in the STKI being smaller than those of the CTKI whose profile is an ellipse 

in the sagittal plane. 

 

The STKI resulted in smaller forces than the CTKI after 58 knee flexion. This was 

mainly due to smaller CLL forces and shorter elongations as shown in Figure 6. 3. It 

also indicates the significance of designing femoral posterior condyles with appropriate 

radii. Since a large volume of the posterior condylar bone is removed and replaced with 

the STKI which has posterior condyles of smaller radius, the distance between the 

femoral rotational axis and the tibial plateau becomes shorter. This could further 

decrease the elongation and tensile forces of the CLLs, finally reducing the tibiofemoral 

contact forces. For the CTKI preliminary design in this study, because the femoral 

implant geometry was based on patient specific bone anatomy, only the shape or 

placement of the tibial component could be adjusted to create laxity in the knee joint.  

 

Apart from the tibiofemoral forces, ligaments also affected the tibiofemoral motion of 

the CTKI model. As shown in Figure 6. 1(b), due to the tensile effect of the ACL, the 

femoral component could only gradually slide backwards in relation to the tibial 
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counterpart, in the meantime, interacting with the tibial bearing surface in the medial-

lateral direction. However, for the ACL deficient models, the femoral component rapidly 

moved backwards by 10 mm in the first 5 knee flexion. The ACL is significant for the 

CTKI for maintaining knee stability during squatting in this study. The elongation 

variation of ACL in the CTKI was generally consistent with the results of literature 156–

158,62. Although the PCL does not contribute to the knee squat motion due to its negative 

initial pre-strain, it is still important for other activities such as walking and stair-

climbing in leg sway phase. In terms of the STKI design, ACL bundles were only in 

tensile in the beginning 15 knee flexion due to the setting of positive pre-strain. 

Therefore, the CLs might not be necessary for the STKI considering that both CLs were 

not effective in the remaining motion of knee flexion. 

 

The fluctuations in the simulated results in this paper were probably caused by the lack 

of adduction-abduction moments in ankle and hip joints. The adduction-abduction 

moments could be applied on FE models in the future when the control algorithm is 

developed for balancing muscle forces with hip and ankle joint loads. 

 

The measured knee load data in the 4th Grand Challenge Competition to Predict In Vivo 

Knee Loads 14 were not used for comparing and validating the simulated tibiofemoral 

compressive forces, because the equations for converting measured data to tibiofemoral 

compressive forces have been validated only for gait motion.146 The instrumented 

implant articulation that was installed on the right knee does not match that of TKI 

models either.  

 

6.4 Conclusion 

 

The dynamic FE model was successfully created to compare a proposed anatomic CTKI 

with an off-the-shelf STKI. Different from the traditional knee simulator rig, the 

dynamic FE model in this study was incorporated close-to-physiological muscle and 

ankle joint forces, which could make the computer simulations much closer to the actual 

physical and physiological environment. The CTKI design with both CLs retained was 

simulated to enable patients’ knee to move more naturally. However, improvement is 

needed on reducing its larger tibiofemoral compressive force than that of the STKI 
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design after 50 knee flexion, which was caused by the larger knee collateral ligaments 

in the CTKI model for the larger tibiofemoral relative motions. 
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Chapter 7 

Influence of tibial curvatures on the motions and loads of the 

customised total knee implant 

 

7.1 Introduction 

 

Customised total knee implant (CTKI) has been shown to restore the kinematics of knee 

joints by comparing the CTKI of ConforMIS with traditional symmetric total knee 

implant (STKI) using either in-vivo kinematics study 5 or experiment of the Oxford knee 

rig 12. However, the influence of the CTKI design parameters on both kinetic and 

kinematic responses of the knee joint have never been studied under patient-specific 

muscle forces and joint reaction forces. 

 

Geometric shapes of knee articulation surfaces differs from person to person. It plays a 

major role in the knee joint motions during daily activities. Since the natural shape of 

patient’s menisci is severely damaged due to wear problem, the curvature of tibial 

bearing surface needs to be carefully reconstructed to maximally restore the functionality 

of a patient’s knee joint. 

 

Both tibial longitudinal and transverse radii are normally designed larger than those of 

the femoral counterpart for the mobility of tibiofemoral joint. Different designs have 

different parametric values of the tibiofemoral radius such as distal femoral radius and 

posterior tibial radius, and different knee joint dynamic responses under same boundary 

conditions.64 However, there has not yet a definite conclusion or guidance on the best 

tibiofemoral articulating surface design so far.   

 

Willing et al. 159 used the sequential quadratic programming numerical optimization 

algorithm to design both tibial and femoral implant components. The knee joint anterior-

posterior and internal-external constraint data, and maximum flexion range of motion 

were used as variables for optimization. However, the true optimum design was not 

guaranteed due to the limitation of design space, and the boundary conditions for 

dynamic flexion motions did not include the effect of muscle forces and patella. 

Ardestani et al. 160 also studied the effect of geometric design parameters of both femoral 
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and tibial implants on their dynamic performances based on the Stanmore knee simulator. 

They concluded that the frontal and sagittal radii of the femoral and tibial components 

had impact on not only the contact pressure but also their relative motions. Uvehammer 

et al. 161 applied the radiostereometric method to compare the design of flat tibial bearing 

surface with the design of a concave bearing surface. They found that the concave design 

resulted in increased anterior-posterior translations compared with normal knees. 

However, the internal tibial rotations of both designs were observed to be less than 

normal knees. Ignoring the design parameters of the tibial component, Clary 68 studied 

different designs of the femoral implant with different femoral sagittal radii, and 

demonstrated the sensitivity of motion changes to the subtle differences between implant 

designs. 

 

In this chapter, the influence of the curvatures of tibial bearing surfaces on the motions 

and loads of the knee joint during a squatting motion is investigated. The dynamic 

simulations are conducted based on the Oxford knee rig with the effect of muscles and 

ligaments. The tibiofemoral compressive forces, relative motions, knee joint ligaments 

forces and contact stresses of the tibiofemoral and patellofemoral joints of both CTKIs 

and STKI models were extracted from the simulations and compared. 

 

7.2 Changing radius of curvature of tibial bearing surfaces 

 

As explained in Figure 3. 13 in Chapter 3, in the modelling of the tibial bearing surfaces, 

the longitudinal curves for cutting the tibial plate were two ellipses. The long axis radii 

(a_ellipse_new) of these two ellipses, were a number ( 𝑖 = 2,3,4⋯𝑛 ) times their 

counterparts (a_ellipse) of the fitting ellipses respectively. In the modelling of the 

transverse curves of the tibial bearing surfaces, two quadratic curves were used to fit the 

cross-section curves of each femoral condyle through the method of least squares fitting. 

The medial and lateral transverse curves of each tibial bearing surface were created 

through adjusting the coefficients 𝑎1  and 𝑎2  of the fitting quadratic curves into the 

𝑎1_new and 𝑎2_new respectively shown in Figure 3. 14. In this chapter, three different 

longitudinal curves and six sets of different medial and lateral transverse quadratic 

curves listed in Table 7. 1 were implemented to investigate their effect on the 

tibiofemoral and patellofemoral dynamic behaviours during the squat motion. In Table 

7. 1, the med.: lat. means the quadratic coefficient of medial side versus that of the lateral 
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side of each condyle. The medial sides of two condyles are the sides that two condyles 

adjoin each other. Both longitudinal cutting curves were hypothesized to have the same 

coefficients 𝑖  on their long axis radii. Similarly, the medial and lateral quadratic 

coefficients for the medial tibial bearing surface were consistent with those of the lateral 

counterpart.  

 

Table 7. 1 Coefficients of the longitudinal elliptical long axis radius and quadratic curves of 

each tibial bearing surface 

𝑖 med.: lat. med.: lat. med.: lat. med.: lat. med.: lat. med.: lat. 

2 𝒂𝟏/2:𝒂𝟐/3 𝒂𝟏/3:𝒂𝟐/2 𝒂𝟏/4:𝒂𝟐/6 𝒂𝟏/6:𝒂𝟐/4 𝒂𝟏/6:𝒂𝟐/8 𝒂𝟏/8:𝒂𝟐/6 

4 𝒂𝟏/2:𝒂𝟐/3 𝒂𝟏/3:𝒂𝟐/2 𝒂𝟏/4:𝒂𝟐/6 𝒂𝟏/6:𝒂𝟐/4 𝒂𝟏/6:𝒂𝟐/8 𝒂𝟏/8:𝒂𝟐/6 

6 𝒂𝟏/2:𝒂𝟐/3 𝒂𝟏/3:𝒂𝟐/2 𝒂𝟏/4:𝒂𝟐/6 𝒂𝟏/6:𝒂𝟐/4 𝒂𝟏/6:𝒂𝟐/8 𝒂𝟏/8:𝒂𝟐/6 

 

7.3 Materials   

 

The collateral ligaments were modelled as nonlinear springs with consideration of 

pretension, which is the same as that in Chapter 3. In order to simulate the nonlinear 

material property of tibial insert material ultra-high molecular weight polyethylene 

(UHMWPE), its material property was varied from linear (Elasticity modulus E = 1016 

MPa, Poisson’s ratio  = 0.46) in the former chapter to nonlinear elastic-plastic (initial 

E = 550 MPa,  = 0.46) 108 with its stress-strain relationship shown in Figure 7. 1. The 

dynamic simulation with the previous collateral ligament pre-strain setting resulted in a 

single-side-condylar lift-off due to the insufficient pretensions between the femur and 

the tibia. Therefore, all the pre-strains were re-set to be 0.1. The spring stiffness of the 

patellar ligaments was also changed from linear (K=70 N/mm) into nonlinear properties 

plotted in Figure 7. 2. The nonlinear spring stiffness was plotted based on the patellar 

ligament force-elongation relationships for men which were experimentally measured 

by O’Brien et al. 162. The patellar ligament force was calculated from the measured joint 

moment during a ramped voluntary isometric knee extension contraction, the antagonist 

knee extensor muscle co-activation quantified from its EMG activity, and the patellar 

ligament moment arm measured from magnetic resonance image. The tendon elongation 

was imaged using the sagittal-plane ultra sound scans throughout the contraction.162 
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Figure 7. 1 Nonlinear true stress versus true strain for UHMWPE material model 108,163 

 

 

Figure 7. 2 Patellar ligament force-elongation relationships for men 162 

 

7.4 Boundary conditions and initial conditions for dynamic simulations 

 

The boundary conditions were kept the same as in Chapter 5 except the ankle joint 

reaction loads which were curve-fitted for saving computational cost and facilitating the 

contact convergence while introducing the nonlinear material property of UHMWPE. 

The sum of sine functions  ∑ 𝑎𝑖 sin(𝑏𝑖 ∙ 𝑥 + 𝑐𝑖)
𝑖=8
𝑖=1  in the curve fitting tool of MATLAB 

(R2017a) was used to fit the original OpenSim joint reaction results. The fitted results 

of the ankle joint reaction loads are shown in Figure 7. 3. 
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Figure 7. 3 Original OpenSim results of ankle joint loads and fitted ones through MATLAB 

curve fitting tool box 

 

Because the finite element model was not balanced initially in the ANSYS transient 

dynamic FE analyses under many time-varying loads, some boundaries needed to be 

constrained to make the whole system easily reach a balanced and converged state. In 

this chapter, the degree of freedom of the tibial internal-external rotation was fixed in 

the first 0.04 seconds. After 0.04 seconds, those constraints would be removed to allow 

the tibial component to move freely, however, they would be still under the restraint of 

the knee collateral ligaments, patellar collateral ligaments and retinaculum ligaments. 

For the pretension of ligament spring models, since in ANSYS Mechanical APDL it is 

not allowed to directly set pretension or initial force on the non-linear spring element 

COMBIN39, the pretension load was converted into displacement load on those springs 

in the first 0.01 seconds. After 0.01 seconds, the moving end of the spring would be 

bonded to the ligament insertion point through the node-to-node contact setting for the 

rest of simulations. The constraints on the mediolateral translation of patella bone were 

applied in the beginning and would be removed at 0.01 seconds. 
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7.5 Results and discussion 

 

7.5.1 Tibiofemoral compressive forces of the CTKIs and the STKI 

 

2aellipse

Longitudinal 

direction

Transverse 

direction

4aellipse 6aellipse

(a)

(b) (c)  
Figure 7. 4 Tibiofemoral compressive forces of the CTKIs and the STKI: (a) total forces; (b) 

medial forces; (c) lateral forces 

 

There were not significant differences in the tibiofemoral compressive forces among the 

tibial inserts with different longitudinal and transverse curvatures in Figure 7. 4. 

However, the tibiofemoral compressive forces of the CTKIs were larger than that 

produced by the scaled symmetric DePuy model, STKI after 50 knee flexion. Apart 

from that, it is worth noting that there was big difference in tibiofemoral load 

distributions between the CTKIs and the STKI. From 30 knee flexion, the medial side 

of the CTKIs was subjected to larger load than the counterpart of the STKI, while from 

50 knee flexion, the STKI showed larger compressive forces on the lateral condyle than 

the CTKIs. Consequently, the two designs presented different results of the medial-

lateral load ratio with an average of 2.4 in the CTKI and 0.6 in the STKI model during 

the last 30 knee flexion.  

 

Comparing with the published results of other researchers 59, 141, 144 on the total 

tibiofemoral compressive forces in Figure 7. 4(a), both the CTKIs and the STKI showed 
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good agreement with either experimental or simulation results in the first 45 of knee 

flexion. However, in the following knee flexion, the total tibiofemoral compressive 

forces of the CTKIs tended to be larger than the published results, while those of the 

STKI was still in the range of the published results. 

 

7.5.2 Tibiofemoral relative motions of the CTKIs and the STKI 
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Figure 7. 5 Relative motions of the tibiofemoral joints of eighteen CTKIs (three 

longitudinal elliptical long axis radii and six transverse curvature sets) and the STKI 

model with cruciate ligaments retained 

 

Apart from the comparisons of tibiofemoral compressive forces between the CTKIs and 

the STKI, the relative motions of these two designs were also compared in Figure 7. 5 

to investigate how different their motions were and how closely their motions resembled 

the motion produced by healthy knees (cyan shade). Regarding the femoral external 
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rotations shown in Figure 7. 5(a), the CTKIs behaved consistently with the healthy male 

knees measured by Murakami et al. 154 by using the fluoroscopy method. However, the 

limited ranges of rotational motion were observed not only in the STKI which was 

simulated in the same conditions as the CTKIs, but also in another STKI model (bi-

cruciate stabilized (BCS) TKA) that was in-vivo measured on 22 subjects by Murakami 

et al. 7. The femoral external rotation trend of the scaled DePuy STKI model simulated 

in this study showed good agreement with that of BCS TKR used by Murakami et al. 7. 

The femoral external rotational range of both STKI designs were around 3 for the whole 

squatting motions, while the femoral external rotation ranges of CTKIs were over 10.  

 

With regard to the femoral anterior-posterior translations shown in Figure 7. 5(b), the 

CTKIs also showed much greater range of motion (ROM) than both STKIs. From 30 

knee flexion onward, the femoral components of the CTKIs slid back more than the 

measured results of healthy knees. It might be because there was no soft tissue or 

muscles such as gastrocnemius wrapping around the posterior condyles in these 

simulations, which could provide further restrictions on the tibiofemoral motions. 

 

Regarding the mediolateral motion of tibiofemoral joints shown in Figure 7. 5(c), a 

nearly constant motion pattern was observed in the STKI model, which was caused by 

the good congruency between the femoral and tibial components in the mediolateral 

direction. In contrast, small amount of mediolateral movements between -1.5 mm and 4 

mm was shown in the CTKIs. Since the tibial inserts of the CTKIs in this study were 

designed as asymmetric structure with less conforming surfaces between the tibial and 

femoral components, it allowed the CTKIs to self-adjust positions according to the 

changing muscles and joint loads. However, due to the wedge shape between the two 

tibial bearing surfaces, these mediolateral translations are not completely unrestrained. 

Although there was no big difference among the CTKI models in the three long axis 

radii of the longitudinal elliptical curve of tibial bearing surfaces, the differences can be 

observed among models with different transverse curvatures in each longitudinal 

curvature. The smaller the radius of transverse curvature of the tibial bearing surface 

was, the smaller range the tibiofemoral joint was allowed to move in the mediolateral 

direction. 
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For the comparisons of the adduction rotations shown in Figure 7. 5(d), the STKI design 

showed a linear increase in the adduction rotational angles with the increase of knee 

flexion angle, while the adduction rotational angles of the CTKIs only increased to 

2~2.5 until 30 knee flexion. After that, the knee joints of the CTKIs abducted about 

0.5~1. It is worth noting that the CTKIs showed good agreement on this motion pattern 

with the descriptions in literature 25, 55. It can also be observed in the results of the CTKIs 

that the maximum adduction rotational angle of the femoral component was influenced 

by the longitudinal curvatures of the tibial bearing surface. The maximum adduction 

angle is about 2.5° for the tibial implant with the long axis radius of 2aellipse in the 

longitudinal direction, while 2.2° for the tibial implant with the long axis radius of 

4aellipse and 6aellipse. 

 

Lastly, the superior translation of the STKI design shown in Figure 7. 5(e), was 8 mm 

smaller than that of the CTKIs, which was caused by the geometry differences between 

the two designs. The CTKIs are designed based on patient’s own distal femur geometry, 

while the STKI is off-the-shelf, manufactured in batches. It is inevitable that excessive 

healthy bone would be cut off for installing the implant component. In this case, the 

distal femoral geometry is dramatically changed especially in the posterior condyles. 

Because of the smaller radius of posterior condyles, the ROM of the STKI model in the 

superior direction was significantly smaller than that of the CTKIs. However, the range 

of superior translation of the CTKIs was also found to be consistent with the descriptions 

in the literature 25,58 as well as that of the lateral and posterior translations. 

 

7.5.3 Knee joint ligament forces and elongations of the CTKIs and the STKI 

 

In Figure 7. 6, the knee collateral and patellar ligament forces and the elongations 

in the CTKIs with the longitudinal elliptical long axis radius of 4aellipse and the STKI 

during the squatting motion were shown. Under the same pre-strains (0.1) of the 

collateral ligament bundles, the MCLs of CTKIs showed larger tension forces and 

elongations than those of the STKI, while the LCLs of the CTKIs presented opposite 

responses. As regard to the PLs, the medial and inner bundles of the CTKIs had 

larger tension forces and elongations than those of the STKI design did, while the 

tension forces and elongations of the lateral bundle of the CTKIs were smaller than 

those of the STKI design. 
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(a) (b)

(c) (d)

(e) (f)  

 Figure 7. 6 Ligament forces of (a) MCLs; (c) LCLs; (e) PLs and ligament elongations of (b) MCLs; (d) 

LCLs; (f) PLs of the CTKIs with the longitudinal elliptical long axis radius of 4aellipse and the STKI 

 

The knee cruciate ligament forces and elongations in the CTKIs and STKI during 

the squatting motion can be seen in Figure 7. 7. The anterior ACL (aACL) of the 

CTKIs was pulled till about 50° knee flexion angle, then became relaxed with the 

increase of the knee flexion, while the posterior ACL (pACL) of the CTKIs was 

quickly stretched by 7mm at 2° knee flexion and gradually shortened to its zero-load 

length at 70°~80° knee flexion. In contrast, both bundles of ACL of the STKI model 

became slack in the earlier flexion angles than the CTKIs. Both PCL bundles were 

in slack condition during the squatting motion in both designs due to the ligament 

pre-strain setting. 

 



108 
Chapter 7 Influence of tibial curvatures on the dynamic characteristics of the customised total knee implant 

 

(a) (b)

(c) (d)  

Figure 7. 7 Ligament forces of (a) ACLs; (c) PCLs and ligament elongations of (b) ACLs; (d) 

PCLs of the CTKIs with the longitudinal elliptical long axis radius of 4aellipse and the STKI 

 

7.5.4 Contact stress of tibiofemoral and patellofemoral joints 

 

Since there were not big differences among the eighteen tibial insert designs in the 

tibiofemoral compressive forces and relative motions, the contact stresses of only 

one CTKI design were shown with medial side curve coefficients of a1/4, lateral side 

curve coefficients of a2/6 and longitudinal elliptical long axis radius of 4aellipse, and 

compared with those of the STKI design.  

 

As can be seen in Figure 7. 8, the tibiofemoral contact stress of the CTKI at the 

flexion angle of 1° was much higher than that of the STKI. Then the two designs 

showed comparable stresses at 30 °  and 45 °  knee flexion. Subsequently, the 

tibiofemoral contact stress of the CTKI increased to 68MPa at 80° knee flexion, 

while the tibiofemoral contact stress of the STKI increased to 50 MPa at 60° knee 

flexion and then decreased to 25 MPa at its maximum flexion angle. It might be 

because the ACL bundles were not subjected to loads after 45° knee flexion in the 

STKI design shown in Figure 7. 7. But in the CTKI designs, the aACL tensile force 

kept increasing till 400 N at 50° knee flexion and then decreased to 150 N at the 

maximum knee flexion angle of 80°. 
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Figure 7. 8 Tibiofemoral normal contact stresses of the CTKI and the STKI  
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Figure 7. 9 Patellofemoral normal contact stresses of the CTKI and the STKI 
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Regarding the patellofemoral contact stresses shown in Figure 7. 9, the stress 

magnitudes in both designs at the corresponding knee flexion angles were almost 

the same except at the maximum flexion angle where stress concentration occurred 

in the STKI model when the patellar button slid to the fringe of femoral 

intercondylar groove. The medial translation of patella of the CTKI was much larger 

than that of the STKI. It is because the CTKI model resulted in a larger internal 

rotation of tibia on which the patellar ligament bundles were attached. 

 

Almost all the contact stresses of both tibiofemoral and patellofemoral joints in the 

two designs exceeded the yield strength (27 MPa) of the UHMWPE 164. Carr and 

Goswami 165 also reported high tibiofemoral contact stresses around 50~80 MPa due 

to the varus tilt of the femoral component and 40~52 MPa due to the medial 

translation of the femoral component. Simpson et al. 166 built FE models of 

unicompartmental knee replacements (UKR) for studying the effect of bearing 

congruency on the stresses of UKR bearings. In-vivo kinematics data and the 

measured load data from an instrumented implant for a step-up motion were applied 

on the FE models. They found that only the contact stresses of fully-congruent UKR 

were below the polyethylene lower fatigue limit (17 MPa) 167, while the partially-

congruent UKR with a concave bearing surface and non-congruent UKR with a flat 

bearing surface experienced high contact stresses of 40~50 MPa. Although the fully-

congruent UKR was less likely to fail from fatigue, it was susceptible to different 

failures such as bearing dislocation.  

 

Too much compressive forces are detrimental to the durability and longevity of the 

CTKI, especially to the tibial insert which is made of UHMWPE. Too much 

compressive forces would induce large stresses and further cause the wear failure of 

component. Therefore, increasing the contact areas between the tibiofemoral 

components will be investigated in the future study. One potential way to increase 

the contact areas is to create regular geometric shapes for the femoral and tibial 

components, in other words, simplified contact surfaces but still based on the 

patient-specific knee joint characteristics. Another way is to combine the design 

method for the CTKI in this paper with the design method proposed by Walker 131. 

That means the femoral component is created through the methods of key feature 
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point recognition and least-squares elliptical curve fitting, while the tibial 

component is created using drape function over the lower surface of multiple 

rotating positions of the femoral component. 

 

7.6 Conclusion 

 

Changing the transverse and longitudinal curvatures of the tibial bearing surface of 

the CTKI did not result in significant differences in the tibiofemoral compressive 

forces, and relative motions, however, the femoral mediolateral translation showed 

a difference of 2mm which was mainly caused by the transverse curvatures of the 

tibial bearing surface. The slight difference of 0.3 °~0.5°  between the femoral 

adduction angles was influenced by the longitudinal curvatures of the tibial bearing 

of the CTKI. The differences between the femoral external rotations in the CTKIs 

were less than 2°. Good agreement was shown in the femoral external rotation 

between the CTKIs and healthy knees. Other motions of CTKIs are generally 

consistent with the published data. 

 

In contrast, the STKI simulated in the same condition as the CTKIs showed 

relatively constant femoral external rotation, posterior translation and mediolateral 

translation. It is due to the symmetric structure of the femoral and tibial components 

and congruency of the tibiofemoral contact surfaces. The design concept of the STKI 

is mainly to alleviate patient’s knee pain and meanwhile help patient’s knee to move 

in a certain range of motion. Apparently, the STKI design cannot fulfil the patients’ 

desire to move naturally and normally. 

 

Based on the simulated kinematic results of the CTKIs, it can be concluded that the 

CTKI does have the potential to enable patient’s knee to move naturally. However, 

the CTKI doesn’t show comparable or even smaller tibiofemoral compressive forces 

than that of the STKI above 50° knee flexion. It is mainly due to the less restricted 

CTKIs designed with the less conforming geometric shapes between the femoral 

and tibial components.  
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Chapter 8 

Influence of resurfaced and unresurfaced patellae on the 

patellofemoral joint 

 

8.1 Introduction 

 

Resurfacing of patella during total knee arthroplasty (TKA) still remains controversial. 

It is usually performed on the presence of anterior knee pain, inflammatory arthritis, 

patellar mal-tracking and damaged articular cartilage. Many surgeons would resurface 

patella to avoid developing postoperative anterior knee pain and the need of revision 

surgery.168 The influence of resurfaced and unresurfaced patellae on the traditional TKA 

implant have been studied either through experiments based on the Oxford knee rig or 

using computer simulations, however, their influence on the customised femoral 

component has not been studied yet with kinematic and kinetic computer simulations. 

Previous TKA simulations and tests seldom considered the effect of comprehensive 

muscle and joint forces during a patient-specific squatting motion. The ankle joint loads 

in those published literatures were either ignored or too small in human squatting 

motions. 

 

Matsuda et al. 169 used cadaver tests to study the effect of dome-shaped, conforming, and 

unresurfaced patellar on the patellofemoral contact stresses and areas after total knee 

replacement surgery. Both the resurfaced patellar designs were reported to have 

markedly higher contact stresses but smaller contact areas than those of the unresurfaced 

one. The stresses of both dome-shaped and conforming components exceed the yield 

limit of polyethylene even at low test loads. Fitzpatrick and Rullkoetter 69 studied the 

patellofemoral joint motions and contact stresses of three different commercial implants 

through finite element models. Compressive strain in the patellar bone in the 

unresurfaced condition was found substantially higher than in the resurfaced conditions 

in the large knee flexions. Mason et al. 170 reported discrepancies in the patella forces 

during squat motion through different methods, either using the in-vivo kinematic 

measurement or the experiments based on the Oxford knee rig. Browne et al. 129 tested 

central dome-shaped and medialized patellar implants on two different femoral 

components placed in six human cadaver knees based on the Oxford knee rig. No 
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significant differences in the patellofemoral compressive and shear forces were observed 

in both patellar implant designs. But the knee implant with longer extensor moment arm 

was found to be able to reduce the quadriceps forces and then further reduce the 

patellofemoral compressive forces. Trepczynski et al. 171 calculated in-vivo 

patellofemoral and tibiofemoral forces using a musculoskeletal model during different 

daily activities. The in-vivo peak tibiofemoral forces of 2.9–3.4 bodyweight (BW) varied 

little across activities, while the peak patellofemoral forces showed significant 

variability, ranging from less than 1 BW during walking to more than 3 BW during high 

flexion (over 90°) activities. The peak patellofemoral forces during those high flexion 

activities were also reported to exceed the peak tibiofemoral forces. Besides, Fekete et 

al. 172 used analytical method to calculate the patellofemoral forces with consideration 

of the changing positions of the trunk’s centre of gravity and reported a patellofemoral 

compression force of  3.3 BW at 80° knee flexion. 

 

In this study, the influence of unresurfaced and resurfaced patellae on the patellofemoral 

joint forces and relative motions of the customised total knee implant (CTKI) was 

investigated through applying the patient-specific muscle forces and joint reaction forces 

which were calculated using OpenSim. The pre-strains of patellofemoral collateral 

ligaments (PFCLs) between the unresurfaced patellofemoral joint were varied to 

investigate the influence of laxity of PFCLs on the results. The size and shape of the 

dome-shaped patellar button were changed to investigate their effects on the dynamic 

responses of the patellofemoral joint and its contact stresses. The simulated 

patellofemoral joint forces and relative motions were compared with the published 

results from either experimental measurements or simulations. 

 

8.2 Geometries of the unresurfaced and resurfaced patella 

  

The unresurfaced patella model was created based on the CT images of the patella of 

subject JW. The articulation surface of the unresurfaced patellar was removed for 

installing the patellar implant. The dome-shaped/button component is shown in Figure 

8. 1. It is created with reference to the literature 108 without any changes and regarded as 

an extreme condition. The bottom radius of the dome is 15 mm and the depth is 8 mm. 

In order to cover the patellar bone after resection, the button component was then 

modified to create two more models. One was only modified to have a larger radius of 
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28 mm, therefore it looked much flatter in the side view. Another was scaled up from 

the referenced dome-shaped component by 1.87 times. 

 

 

 

Figure 8. 1 Modelling of the unresurfaced patella and three different patellar buttons: the 

dome-shaped button referenced from Shi 108; the flat button which kept the implant depth 

unchanged but increased the radius of dome bottom; and the scaled button which is 1.87 times 

the referenced button model. 

 

8.3 Material and boundary conditions 

The materials of the patellar implant and tibial insert are UHMWPE with nonlinear 

elastic-plastic (E = 550 MPa,  = 0.46) property. Its stress-strain relationship is shown 

in Figure 7. 1. The pre-strains of all collateral ligament bundles were set 0.1. The patellar 

ligaments were also assigned nonlinear property but with the force-deflection 

relationship referenced from the literature 162. The patellar bone was assumed as cortical 

bone with a constant elastic modulus. 

 

The boundary conditions were set the same as those in Chapter 7 such as applying the 

Unresurfaced patella

Dome-shaped/button 

patella

Flat button patella

Scaled button patella

Lateral side Medial side

1.87 times the size of 

Dome-shaped implant
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smoothened ankle joint loads, restrained patella with only flexion and superior-inferior 

motions in the first 0.04 seconds, and time-varying muscle forces.  

 

In the unresurfaced patella model, the PFCLs pre-strain values of 0.1, 0.05, 0.01 and 

0.001 were simulated respectively for different laxity scenarios with the ligament 

stiffness of 2000 N/m.  

 

8.4 Results and discussion 

 

8.4.1 Contact forces and motions of the unresurfaced and resurfaced patella 

models 

 

As can be seen in Figure 8. 2, the patellofemoral contact forces of both resurfaced and 

unresurfaced models were in good agreement with the referenced research results 

except at the early knee flexion and the last 20 of knee flexion in this study. The 

differences in the early knee flexion were mainly due to the laxities of the patellar 

collateral ligaments. The smaller the spring pre-strain was, the smaller reaction force 

was produced between the femoral component and patella or patellar implant. At the 

last 20 of knee flexion, the patellofemoral contact forces of both resurfaced and 

unresurfaced patella models were smaller than the results published by Komistek et 

al. 173 and Sharma et al. 174. It might be caused by the contact between quadriceps 

muscles and femoral component while the quadriceps wrapped around the distal 

femur. But in general, the trend of the simulated patellofemoral forces agreed well 

with the published research results. 

 

Figure 8. 2 Patellofemoral contact forces under different laxities of patellofemoral collateral 

ligament (PFCL) 
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(a) (b)

(c) (d)

(e) (f)  

Figure 8. 3 Relative motions of patella over femoral component: (a) flexion-extension rotation; 

(b) external-internal rotation; (c) medial-lateral rotation; (d) medial-lateral translation; (e) 

posterior-anterior translation; (f) inferior-superior translation 

 

The relative motions between the patella and femoral component are presented in Figure 

8. 3. The values of the relative motions were solved through the rotational matrix and 

Euler angles. In Figure 8. 3(a), the flexions of patella in the resurfaced and unresurfaced 

models were consistent with the results obtained from simulation conducted by 

Fitzpatrick et al. 69 and the results measured by Dagneaux et al. 175. However, the 

external-internal rotations of all simulated patella models shown in Figure 8. 3 did not 

match the result trends from Fitzpatrick et al. 69 and Dagneaux et al. 175. The resurfaced 

patella firstly rotated towards the lateral side of the knee joint till the knee flexed to 20, 

and then it internally rotated, which is similar to the results obtained by Fitzpatrick et al. 

69. It was due to the PFCL pre-strains with assumed values rather than measured from 

the subject JW. Once the lateral side PFCLs produced larger tensile forces than the 
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medial side, the patella would inevitably rotate externally. In contrast, the unresurfaced 

patella under the different PFCL pre-strains only rotated linearly towards the medial side 

of the knee joint. It might be caused by the non-conforming shapes between the patellar 

bone and femoral component. At a certain angle of knee flexion, the contact area of the 

patellofemoral joint would shift superiorly to the top of the patella, which could reduce 

the contact area between the patella and femoral component, and further cause difficulty 

in reducing the patellar internal rotation.   

 

The trends and magnitudes of the unresurfaced patella in medial tilt rotation are shown 

in Figure 8. 3(c) and the medial translation in Figure 8. 3(d). They matched well with 

the measured results from Dagneaux et al. 175, except that the sharp increases at 4 knee 

flexion were observed in the two patellar motions when the pre-strain of PFCLs was less 

than 0.01. The same situation occurred in the patellar external rotation as well. It was 

mainly due to the pretension forces of PFCLs that were too small to resist the medial 

patellofemoral force, which caused the patella to suddenly slide towards the medial side 

of the knee joint. In contrast, the resurfaced patella experienced smaller medial tilt from 

20 knee flexion and larger medial translation from 50 knee flexion. 

 

The patellar posterior translation shown in Figure 8. 3(e) was almost linearly 

proportional to the knee flexion angle, however, there was a slight posterior translation 

in the Dagneaux’s results 175. It is probably due to the smaller load on the ankle joint of 

Dagneaux’s subject, and the differences in geometric shapes of the femoral grooves and 

the initial position of the patella. Different shaped trochlear groove would guide the 

patella to slide on it and affect its motion trajectory. In Figure 8. 3(f), the inferior 

translations of the resurfaced and unresurfaced patellae were in good agreement with 

Dagneaux’s results 175 in the first 30 of knee flexion. After that, patellar inferior 

translations in this study gradually reached 31 mm at 55 knee flexion. The curve of the 

simulated results in  Figure 8. 3(f) also showed that the patella slid from its initial 

location to almost the end of trochlear groove. 
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8.4.2 Contact forces and motions of three different resurfaced patellar buttons  

 

The size and shape of the patellar button can affect its motion trajectory and loads on the 

trochlear groove of the femoral component. Therefore, the CTKI models with different 

patellar button sizes and surface curvatures, were simulated to reveal differences in 

kinetic and kinematic characteristics as shown in Figure 8. 4. 

 

(a)

(b) (c)  

Figure 8. 4 Patellofemoral contact forces of three different patellar buttons: (a) total 

patellofemoral contact forces and results from other studies in black lines; (b) patellofemoral 

contact forces on the patellar buttons; (c) patellofemoral contact forces on the patellar bones 

 

The patellofemoral joint contact forces were extracted and plotted in Figure 8. 4. The 

total patellofemoral contact force on each of the three patellar buttons was generally 

consistent with the results presented by Komistek et al. 173, Sharma et al. 174, Churchill 

et al. 176 and Cohen et al. 177 during the squatting motion. These forces increased sharply 

in the beginning, but increased slowly after 50 knee flexion. The sharp load increase in 

the initial knee flexion was caused by releasing the constraints on the two sides of the 

patella. Because the patellofemoral and tibiofemoral joints were initially unstable under 

the ligament forces, musculotendons and joint reaction forces, only the flexion-extension 

rotation and superior-inferior translation of the patella were allowed in order to make 

the simulation easily converge. Meanwhile, the internal-external rotation of the ankle 
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joint was also locked. At 0.04 seconds of the squatting simulation, the constraints on the 

patella and ankle joint were removed for the simulation model to reach a new balanced 

state through the contact pair self-adjustment. However, the initial constraints could 

have resulted in extra loads such as the internal-external moment on the ankle joint and 

imbalance forces between the medial and lateral PFCLs before the constraints were 

removed. Therefore, the sharp load increases on the patellofemoral joint occurred in the 

initial knee flexion of the simulation. 

 

As shown in Figure 8. 4(b), the scaled-up patellar button resulted in larger load than both 

the small and the flat buttons due to the increased moment arm to the patellofemoral 

joint centre. There were larger load fluctuations in the scaled-up patellar button than 

other two models. It is mainly due to the larger radius of the button surface comparing 

to the femoral trochlear groove, which would result in two contact areas on the scaled-

up button implant and further lead to jumping forces between two contact locations. 

 

The contact forces between the patellar bone and femoral component were shown in 

Figure 8. 4(c). Since the scaled-up patellar button from the original smaller one was 

intended to cover the resected bone surface of the patella, there was no contact occurred 

between the patellar bone and the femoral implant during the squatting motion. Although 

the flat button was also scaled from the original one for the same purpose, there was still 

some bone uncovered in the proximal areas of the patella. The uncovered patella bone 

came into contact with the femoral component at 40 knee flexion, while, in the original 

patella implant model, it occurred at 15 knee flexion. 

 

The patellofemoral relative motions are shown in Figure 8. 5. Larger motion fluctuations 

occurred in the CTKI model with scaled-up patellar implant, which had the least 

mediolateral range of motion (ROM) among the three patellar buttons as shown in Figure 

8. 5(d). In Figure 8. 5(f), the scaled-up patella translated inferiorly and sharply to 30 mm 

in the early 5 knee flexion, and subsequently translated superiorly to 10 mm at about 

13 knee flexion. The ROMs of the scaled-up patellar implant in both inferior-superior 

translation and internal-external rotation were larger than those of the other two buttons. 

There were few differences in the patellar flexion rotation, medial tilt and posterior 

translation. Since the radius of the trochlear groove of the customised femoral implant 
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is gradually decreasing like a normal knee joint, when the radius of the scaled patellar 

implant surface is larger than the radius of the trochlear groove, the two sides of patellar 

button would contact the femoral component, while there was no contact in the middle. 

 

(a) (b)

(c) (d)

(e) (f)  

Figure 8. 5 Relative motions of the patella over the femoral component: (a) flexion-extension 

rotation; (b) external-internal rotation; (c) medial-lateral rotation; (d) medial-lateral translation; 

(e) anterior-posterior translation; (f) inferior-superior translation 
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8.4.3 Contact stresses of the patellofemoral joint 

CTKI resurfaced patella

Knee flexion

angle 1°

Knee flexion

angle 30°

Knee flexion

angle 45°

Knee flexion

angle 60°

Knee flexion

angle 80°

0

CTKI unresurfaced patella

 
Figure 8. 6 Patellofemoral normal contact stresses of CTKIs with resurfaced and unresurfaced patellae 
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Figure 8. 7 Patellofemoral normal contact stresses of CTKIs with scaled and flat patellae 



124 
Chapter 8 Influence of resurfaced and unresurfaced patellae on the patellofemoral joint 

 

The patellofemoral contact stresses of CTKIs at the flexion angles of 0°, 30°, 45°, 60° 

and 80° were presented in Figure 8. 6 for the resurfaced and unresurfaced patellae. The 

contact locations on the resurfaced patella shifted from the centre of the patellar button 

to the superior right area along with the medial translation of the patella button, while 

the contact locations on the unresurfaced patella changed from its centre to the superior 

side due to the restraint of the saddle-shaped articular surface of the patella. The 

excessive high contact stresses were observed on the unresurfaced patella due to the 

incongruent surfaces of the patellofemoral joint and the unsmooth patellar articular 

surface, which was built from the CT images using 3D Slicer and consisted of several 

discontinuous small surfaces. The localised high stresses were then resulted. 

 

The contact stresses on both scaled-up patellar buttons are shown in Figure 8. 7. The 

initial contact stress on the flat button was much smaller than that on the scaled patella 

due to the dual contact areas on the flat button. The contact area on the scaled-up button 

changed from a single contact area at the flexion angles of 0° and 30° to dual contact 

areas at the flexion angles of 45°, 60° and 80°. In contrast, the flat button changed from 

dual contact areas to a single contact area at around 60° knee flexion, however, as shown 

in Figure 8. 4, one of the contact areas on the flat button shifted from the button implant 

to the patellar bone at 40° knee flexion. Although the magnitudes of the contact stresses 

on both scaled patellar implant were very close, both exceeded the yield stress of the 

patellar implant material UHMWPE.  

 

In order to reduce the contact stresses on the patellofemoral joint, one of the potential 

solutions would be the saddle-shaped patellar button, which is designed according to the 

shape of femoral trochlear groove. However, it is challenging to find a conforming shape 

of the patellar button due to the irregular shapes of femoral trochlear groove.  

 

8.4.4 Further discussion  

 

The laxity of PFCLs is important in the dynamic simulations of knee joint. If the initial 

strain of PFCLs is too small to provide enough pretensions on the patellofemoral joint, 

it would occur malposition or separation of patella from the femoral component during 

the dynamic simulations. In this study, due to the lack of relevant data about the 

mechanical properties of PFCLs, the ligament stiffness and initial strain of PFCLs were 
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assumed based on the knee collateral ligaments. The results of the patellofemoral and 

tibiofemoral joints could only show a trend of their responses to the design parameters 

through the nonlinear dynamic model. On the other hand, because of the complexity of 

human joint, it was very difficult to build a computer simulation model that could include 

too many joint details. It is necessary to find and identify the most important structures 

or elements in the future musculoskeletal models. 

  

There were differences in the motions of patella internal rotation and medial tilt between 

the resurfaced and unresurfaced patellae. It is mainly caused by the different bearing 

surfaces between the button-shaped patellar implant and saddle-shaped natural patella. 

The patellar internal rotations in the resurfaced and unresurfaced patellae are different 

from the test results measured by Dagneaux et al. 175. It might be due to the differences 

in boundary conditions and shapes of the femoral trochlear groove. 

 

The size and shape of patellar button are important to the performance of patellofemoral 

joint. If the patellar button is too small to cover the exposed patella bone, the patella 

bone will contact the femoral component during the deep knee bend motion, which will 

cause the discomfort or pain on the knee joint. If the patellar button is large enough to 

cover the resection area of patella, the patellar medial translation is then reduced, 

however, the patellofemoral joint contact force become much fluctuating due to less 

conformity of the contact surfaces of the patellar button and femoral component. 

 

The scaled patellar buttons were found to have two contact areas on the patellofemoral 

joint, while the original one had only one contact area. It is because the curvature of the 

scaled patellar implant was smaller than the original one. The contact stress was reduced 

on the scaled implant comparing to the original one that has a single contact area during 

the squat motion. However, the contact stresses on all patellar buttons in this study were 

larger than the yield stress of the patellar implant material, UHMWPE, making the 

implant susceptible to early wear failure. 

 

There were limitations in the modelling of knee joint with the dynamic model. Firstly, 

the cartilage on the unresurfaced patella was not considered, which might affect the 

motions and loads of the patellofemoral joint. Secondly, the patellar articular surface 

was modelled as several small, irregular and unsmooth surfaces from the medical image 
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processing software, 3D Slicer, which resulted in the excessive patellofemoral contact 

stress. Thirdly, the initial location of the patellar button in relation to the femur was 

based on the CT images. The locations and the pre-strains of ligaments were referenced 

and assumed based on literature. However, despite these limitations, the dynamic FE 

model can predict a trend of patellofemoral joint motion and contact locations, and 

compare different designs of patellar button.  

 

8.5 Conclusion 

 

In this chapter, the influences of the unresurfaced patella and three patellar buttons on 

contact forces, relative motions and contact stresses of the patellofemoral joint were 

investigated. The dynamic FE simulations were driven by the patient-specific muscle 

and joint forces that were calculated through OpenSim for the squatting motion. 

Differences in the patellar internal rotation and medial tilt were found between the 

resurfaced and unresurfaced patellar buttons. The original patellar button resulted in 

contact between the patellar bone and the femoral component in addition to the contact 

between the patellar button and the femoral component. The scaled-up patellar button 

was able to avoid contact between patellar bone and femoral component and reduce the 

patellar medial translation. However, the scaled-up patellar button also resulted in larger 

patellofemoral force than other patellar buttons due to the increased moment arm. The 

patellofemoral forces on the scaled-up button were fluctuating due to the less conformity 

of the contact surfaces of patellar button and femoral component. The scaled-up patellar 

button implant was found to have two contact areas on the patellofemoral joint, while 

the original sized patellar button had only one contact area. In general, the computer 

models in this thesis can predict the trends of different designs of patellar button, though 

the FE model still needs to be improved. 
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Chapter 9 

Discussion and conclusions 

 

As a routine operation, total knee replacement (TKR) has been a very effective therapy 

to relieve knee pain and restore knee function for decades. However, the post-operative 

dissatisfactions have been widely reported. One of the two leading reasons are the 

residual pain caused by the overhang of total knee implants (TKIs) on bones, and another 

is the knee function limitation which might be attributed to the shapes of knee implants. 

Therefore, nowadays, improving TKI function and patient satisfaction, and restoring 

native anatomy and kinematics are becoming more important. 

 

This research mainly investigated the performance of a customised total knee implant 

(CTKI) based on the knee anatomy to restore the knee kinematics of a specific subject. 

Its dynamic responses were compared with those of a traditional off-the-shelf knee 

implant under the same boundary conditions during a squatting motion. Effects of laxity 

of knee collateral ligaments, curvatures of tibial bearing surfaces, sizes and shapes of 

patellar implant buttons have also been studied. 

  

9.1 Creating a CTKI model and its knee simulation model  

 

9.1.1 Modelling the CTKI 

 

In Chapter 3, a customised femoral component was created based on the shape of a 

patient’s distal femur through the methods such as key feature point recognition, least-

squares elliptical curve fitting and surface generation. The tibial bearing surface was 

created based on the geometry of femoral component condyles by defining an elliptical 

cutting guidance track in the longitudinal direction and two quadratic curves in the 

transverse direction for each condyle. The problem of femoral component 

overhang/underhang over the femur bone was solved by recognizing and obtaining the 

boundary key points on both femur and tibial resection surfaces. Through ANSYS 

Mechanical APDL modelling, the customised model can be modified by changing some 

parameters such as the long axis radius of longitudinal elliptical curve of tibial bearing 

surface and transverse quadratic coefficients. 
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9.1.2 Acquiring the patient-specific loading  

 

To test specific dynamic responses of customised total knee implant (CTKI) under close-

to-physiological muscles, a patient-specific musculoskeletal model was created in 

OpenSim in Chapter 4. Using the software tools such as inverse kinematics, residual 

reduction algorithm and static optimization, muscle forces of a patient-specific lower 

limb under a squatting motion were obtained.  

 

Because the accuracy of the muscle forces is still challenging to be validated 

experimentally, muscle activation patterns for performing a daily activity are commonly 

used to compare with EMG measurement data. This can help find out approximate 

contributions or involvements of muscle bundles into desired activities. It is worth noting 

that the muscle model in this study is still a simplified model with many muscle 

parameters that were scaled from a generic model rather than measured from the subject. 

It could also affect the accuracy of simulations. In reality, it is not easy to measure 

realistic muscle parameters such as pennation angle, maximum isometric force and 

tendon slack length. Therefore, the calculated pattern of muscle forces in this study is 

only a numerous possible solution for driving the dynamic knee simulations rather than 

the absolute result that the subject muscles can produce. Those muscle forces were used 

to compare performances between the CTKIs and STKI. Comparing to the simplified 

experimental quadriceps loads and constant hamstring load used in other studies without 

considering the practical ground reaction forces during squatting motions, the muscle 

forces that were calculated under the effect of the measured ground reaction forces in 

this study are closer-to-human-physiological to test the dynamic responses of the 

customised total knee implant. However, the effect of variations of muscle parameters 

on muscle forces and joint loads should be considered in the musculoskeletal model in 

the future in order to make the patient-specific simulations more accurate. 

 

OpenSim forward dynamic analysis with the detailed geometric shape of knee implant 

was attempted. However, the simulation trials failed due to the in-built simplified contact 

algorithm. The contact algorithm used in OpenSim is the elastic foundation which needs 

to know the approximate relative motions between two components. Contact forces are 

then calculated based on the interpenetration depths between two components in a self-
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defined contact stiffness. No penetration tolerance or internal force balance was 

considered in this algorithm to obtain a reasonable result of relative contact position. 

Since the relative motion of resurfaced tibiofemoral joint could not be adjusted under 

the muscle and joint reaction forces derived from the motion of pre-resurfaced knee joint, 

the excessive contact forces that could not balance the muscle forces and joint forces, 

resulted in the forward dynamic simulation in OpenSim to diverge with wrong joint 

angles. 

 

Therefore, instead of conducting dynamic performance assessments of CTKI in 

OpenSim directly, a knee simulation model was built in ANSYS Mechanical APDL to 

test contact responses of the knee implant components under the patient-specific muscle 

forces and ankle joint reaction loads that were obtained in OpenSim. The muscle 

insertion points in the OpenSim model were also used to help locate specific muscle 

bundles and direct the muscle forces in a closer-to-physiological way. 

 

9.1.3 Building the dynamic knee simulation model 

 

In Chapter 5, a transient dynamic model of CTKI was created based on the principles of 

Oxford knee rig and Kansas knee simulator. Twenty-three muscles in a left lower limb 

were recruited with the referenced muscle insertion points from the OpenSim 

musculoskeletal model. To provide dynamic balance, knee joint ligaments such as 

collateral ligaments and cruciate ligaments were also included in this model with their 

nonlinear spring stiffness and pre-strains referenced from literature. Actuator element in 

ANSYS Mechanical APDL was used to apply time-varying muscle forces to the 

quadriceps bundles that connect patella and femur, while a rotating-slider mechanism 

was used to apply muscle forces to those muscles that has only one end attached to either 

femur or tibia. The wrapping effect of the quadriceps bundles around the femoral 

component was created by discretizing the springs into several segments of springs with 

several nodes. Node-to-surface contact element was used to realize the wrapping effect 

when the knee joint flexes to a certain degree. Euler angles and rotation matrix were 

applied to track and record the relative motions between femur and tibia and between 

femur and patella. The material properties of the femoral component, tibial insert and 

tibial tray were set as linear for the consideration of computational cost and convergence 

difficulty. 
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This knee simulation model can provide a platform for assessing the dynamic responses 

of all kinds of TKIs by applying more recruited time-varying muscle forces and joint 

reaction loads during squatting motion. Both kinetic and kinematic results of 

tibiofemoral and patellofemoral joints can be obtained. Both the muscle insertion 

locations and the parameters of lower limb can be adjusted from person to person. 

 

Due to limited functionality in ANSYS software, control loop or feedback was not used 

in the dynamic FE simulations in this study. In the future study, active control of muscle 

and joint reaction forces should be included in the dynamic analysis of knee implants 

rather than just tracking the known motion or applying known muscle and joint reaction 

forces without motion tracking. Based on output feedbacks such as hip flexion angle, 

adjustments should be applied on the inputs of muscle, joint reaction forces and the lower 

limb motion acquired from the inverse kinematics analysis in each time step. 

 

9.2 Comparison between the CTKI and the traditional knee implant 

 

In Chapter 6, the dynamic responses of CTKI were simulated under three treatment 

scenarios of cruciate ligament (CL): both CLs retained, anterior cruciate ligament (ACL) 

removed and both CLs removed. An off-the-shelf symmetric total knee implant (STKI) 

was simulated only with both CLs retained for comparison analysis. The CTKI with both 

CLs retained showed larger ranges of femoral external rotation and posterior translation 

than the STKI did. These two motions of CTKI were also in good agreement with those 

of referenced healthy knees. Regarding the dynamic tibiofemoral compressive forces, 

there were little differences in the CTKI model under the three CL treatment scenarios. 

The trends and magnitudes were generally consistent with other experimental and 

simulation results. However, for the STKI model, smaller tibiofemoral compressive 

forces and more even medial-lateral load ratios above 50° knee flexion were shown 

during the squatting simulation due to a better articular conformity. Due to its restricted 

mobility, smaller collateral ligament forces and shorter elongations were also obtained. 

 

The installation of the STKI was considered with the alignment of femoral and tibial 

mechanical axes, while the alignment of mechanical axes in the CTKIs was neglected to 

keep the original knee joint angle of subject in the CT data and corresponding 
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musculoskeletal model that was scaled from the OpenSim generic model. It is probably 

one of the reasons why the medial-lateral load distributions presented in the CTKIs were 

larger than those of the STKI. In the future, the alignment of mechanical axes in CTKI 

designs will be varied to investigate how the dynamic responses of CTKIs will be 

affected. 

 

The fluctuations of simulated results in this study might be due to lack of adduction-

abduction torques in the ankle and hip joints. The adduction-abduction torques were 

usually neglected in the knee simulators or corresponding computer simulations. In the 

initial simulations of the dynamic FE model, the adduction-abduction torques were 

applied on the ankle and hip joints or one of these joints. But all of them failed with one 

side femoral condyle lift-off from the tibial bearing due to the load imbalance of system 

in the frontal/coronal plane. Therefore, a feedback control loop should be introduced in 

the dynamic FE simulations. The calculated muscle forces from other simulation 

software or other methods should be revised and updated according to instantaneously 

measured variables such as the knee or hip flexion angle. Through this method, it is 

possible to reduce the fluctuations of simulated tibiofemoral compressive forces and 

relative motions; and take into account the adduction-abduction torques into the hip and 

ankle joints to make the simulation more realistic.  

 

9.3 Influence of the tibial bearing curvatures of the CTKI 

 

In Chapter 7, influence of several tibial bearing curvatures of CTKI on the dynamic 

responses of knee joint was investigated. The transverse curvatures of the tibial bearing 

of the CTKI design had six combinations, while longitudinal curvature of the tibial 

bearing had three values. The material property of tibial insert was changed from linear 

to nonlinear for both CTKI and STKI designs. The spring stiffness of patellar ligament 

bundles was also nonlinear. Under the same longitudinal curvature, the CTKIs with 

relative flat tibial bearing showed 2 mm larger in the femoral mediolateral translation 

than the ones with curved tibial bearing surfaces. The differences of femoral external 

rotations were less than 2°. The longitudinal curvatures of tibial bearing were found to 

mainly affect the adduction-abduction rotation of femoral component in relation to the 

tibial counterpart.  
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Similar to the results of CTKI with the linear material property of tibial insert in Chapter 

6, the femoral external rotation of the CTKIs was in good agreement with the measured 

healthy knees. Although the femoral posterior translations of CTKIs were greater than 

the referenced range of healthy knees in this study, they were still in the range of normal 

knees presented in another published literature. In contrast, the STKI simulated under 

the same conditions experienced relatively constant femoral external rotation, posterior 

translation and mediolateral translation. 

 

In terms of forces, the CTKIs did not show comparable or even smaller tibiofemoral 

compressive forces than the STKI above 50° knee flexion. It was mainly due to the less 

conforming geometric shapes between the CTKI femoral and tibial components, which 

increased the involvements of CLLs and ACL in the tibiofemoral relative motions. In 

contrast, both ACL bundles of the STKI became relaxed quickly in the earlier flexion 

angles. 

 

The contact stresses of tibiofemoral joint of the CTKI design and the STKI were also 

compared. The contact stresses of the CTKI increased with the increasing knee flexion 

angle, and reached 68 MPa at the maximum flexion angle of 80°, while the tibiofemoral 

contact stress of the STKI increased to 50 MPa at 60° knee flexion and then decreased 

to 25 MPa at the maximum flexion angle. It might be due to the ACL bundles being not 

subjected to loads after 45° knee flexion in the STKI model.  

 

The tibiofemoral contact stresses of the CTKI in the initial knee flexion and late knee 

flexion angles were found to be larger than those of the STKI. The larger contact stresses 

of the CTKI in the early stage are mainly due to the less congruency between 

tibiofemoral components. Although decreasing the congruency between tibiofemoral 

components for mimicking the anatomic knee joint could help patient’s knee recover to 

its normal kinematics, larger contact stresses were also resulted on the articular surfaces 

due to the decreased contact areas. The larger contact stress of the CTKI than that of the 

STKI also occurred in the knee flexion angle above 60°. This is mainly caused by the 

elongated bundles of ACL in the CTKI models. They were produced by the wider range 

of motions of CTKIs such as the femoral external rotation and posterior translation that 

could lead to the larger elongations of collateral and cruciate ligaments. Therefore, it can 

be concluded that the congruency between femoral and tibial implants affect not only 
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the knee kinematics but also the knee forces. The congruency and mobility of TKIs are 

essentially contradictory. The better tibiofemoral joint congruency is, the smaller contact 

stresses and ligament forces of knee joint are produced. But meanwhile, the knee 

mobility is reduced making patient move unnaturally and uncomfortably. 

 

Although the STKI model resulted in smaller contact stresses than the CTKI, the contact 

stresses of both designs were larger than the yield stress of UHMWPE material during 

the squatting simulations. Large contact stresses could lead to early wear problem. The 

UHMWPE debris particles could further induce osteolytic reactions leading to the 

loosening and failure of implant. The larger contact stresses than the material’s yield 

strength were also reported in other published papers. Therefore, increasing the contact 

surface between tibiofemoral joint and keeping its asymmetric characteristic would be a 

research direction in the future. One way to potentially increase the contact areas is to 

create simple shapes of femoral and tibial components but still based on the patient-

specific knee joint characteristics. Another way is to combine the design method of 

CTKI in this study with the design method proposed by Peter S. Walker from the 

Department of Orthopaedic Surgery, New York University. The femoral component can 

be created through the methods of key feature point recognition and least squares 

elliptical curve fitting, while the tibial component can be created using drape function 

over the lower surface of multiple rotating positions of the femoral component. 

 

9.4 Influence of the patellar button component 

 

In Chapter 8, influences of an unresurfaced patella and resurfaced patellar buttons with 

different sizes and curvatures were investigated. Differences in the patellar internal 

rotation and medial tilt between the resurfaced and unresurfaced patellae were observed. 

They might be caused by the geometric difference between the button-shaped and the 

saddle-shaped patellar surfaces. The differences between this study results and other 

research results might be due to the different loading boundary conditions and geometric 

shapes of femoral trochlear groove. There was not much difference in the patellofemoral 

contact forces between two patella components. 

 

The laxity of patellofemoral collateral ligaments (PFCLs) was simulated in the 

unresurfaced patella model. When the initial strain of PFCLs was too small to provide 
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enough pretensions on the patellofemoral joint, the relative motions between the 

patellofemoral components would diverge during the dynamic simulations with either 

malposition or separating of patella from the femoral component. 

 

The sizes and shapes of patellar button component influenced the mechanical 

performances of patellofemoral joints. If the patellar button was too small to cover the 

exposed patella bone, the patella bone would be in contact with the femoral component 

during the deep knee bend motion, which could cause discomfort or pain on the knee 

joint. If the patellar button was large enough to cover the resection area of patella, the 

patellar medial translation could be effectively reduced, however, the patellofemoral 

joint contact force became more fluctuating due to the less congruency of contact 

surfaces between the patellar button and the femoral component. 

 

9.5 Limitation of the ligament pre-strains 

 

In Chapters 5 and 6, the UHMWPE material property of tibial insert was specified as 

linear elasticity modulus, the ligament pre-strains were referenced from the literature 

that was highly cited by other researchers. In Chapters 7 and 8, when the material 

property of tibial insert was changed from linear to nonlinear, applying the same pre-

strain values on the knee collateral ligaments resulted in single-side-condylar lift-off. In 

order to achieve the initial stability of knee joint, the pre-strains of all collateral ligament 

bundles were increased to 0.1. That is the reason why the tibiofemoral compressive 

forces calculated in the nonlinear tibial insert model were larger than that in the linear 

tibial insert models. Due to the lack of laxity tests of the patient-specific knee collateral 

ligaments and the large number of iterative solutions to find the ligament pre-strains and 

spring stiffnesses that could result in the required joint rotations and translations under 

certain experimental loads, therefore all the pre-strains of the knee joint ligaments were 

either based on values from literature or increased until the solution could converge.  

 

9.6 Conclusions 

 

Through the computer simulations, the CTKI has shown its great potential to help 

patient's knee to move closer to the healthy knee motion range and characteristics in 

comparison with one traditional STKI model under the same boundary conditions, even 
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though the larger tibiofemoral compressive forces and medial-lateral load ratio were 

produced in the CTKI models than STKI model above 50° knee flexion. The ANSYS 

dynamic FE knee simulation model developed in this study was able to predict the 

dynamic responses of different designs of total knee implants under the same boundary 

conditions and allow designers and patients to understand the differences of 

performances of various total knee implants. 
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Chapter 10 

Future work 

The angle between the two tibial bearing longitudinal guide curves could be investigated. 

The tibiofemoral relative motions, especially the femoral external rotation, might be 

affected by this angle. 

 

To reduce the contact stresses of tibiofemoral joint and prolong the longevity of the 

CTKIs, more regular articular shapes should be investigated. With reference to the 

ConforMIS design method, three J-shaped curves in the sagittal plane can be firstly 

determined through optimisation, then different profiles that could be swept along the J-

shaped curves can be investigated to find a compromising solution between the knee 

mobility and congruency for wear problem. 

 

Another possible solution for increasing the contact area of knee joint is to use the design 

method for the femoral component in this thesis, but to build the tibial bearing shapes 

by using the method of drape function, which is to envelope the lower surface of the 

rotating positions of femoral component. 

 

The alignment of tibiofemoral mechanical axes should be investigated in the design of 

CTKIs to reduce the uneven distribution of joint forces between the femoral and tibial 

components. 

 

The muscle forces should be controlled and adjusted at each numerical iteration step, 

and the knee flexion angles can be used as one of the objective functions. 

 

Muscle parameters, activations and forces should be studied and applied on the knee 

simulator. Future experiments should be set up with consideration of the effect of the 

active muscle forces. 

 

Other daily activities such as walking, running, and chair rising should be simulated for 

the design of CTKIs.   
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