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Abstract

The first stars formed in the early universe and shortly after assembled into the first

galaxies. Since then, galaxies have been subject to a variety of processes, both internal

and external, that affect their ability to form stars. At low redshift, environment plays a

large role in inhibiting star formation, however it is less clear what effect it has at high

redshift. This is predominantly due to the difficulty of determining the nature of the high

redshift environment from uncertain redshift measurements, and the small coverage of

high redshift surveys leading to poor sampling of the cosmic variance.

In this thesis I use a variety of numerical approaches to various aspects of this problem.

In the first section I use a semi-analytic model to study the relationship between observed

galaxy surface overdensity and the probability of coinciding with a protocluster, the

pre-collapse progenitors of galaxy clusters, and make recommendations for optimum

measurement apertures for their identification. In the second section I use a suite of

hydrodynamic simulations of galaxy clusters, across a range of descendant halo masses, to

study the galaxy evolution in their protocluster progenitors in detail. I characterise the

star-forming sequence, studying it’s difference in protocluster and field environments, as

well as within dense groups in the collapsing protocluster.

In the final section I use a novel approach to estimate the star formation history of

galaxies. Rather than studying the high redshift environment directly, I estimate when the

stars in a low redshift galaxy were formed using population synthesis techniques. In this

work I couple this with hydrodynamical simulations in order to provide more informative

priors on the shape of the star formation history, which typically imposes strong biases on

inferred properties, such as the total stellar mass, in more traditional approaches.
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1 Introduction

In this thesis I explore the history of star formation in galaxies and its environmental

dependence at high redshift. Below I set out the main scientific themes of each chapter,

and a summary of the results.

In Chapter 3 I use a Semi-Analytic model to explore methods of identifying and

characterising galaxy protoclusters more robustly. I find that a significant fraction of all

galaxies reside in protoclusters at z > 2, particularly the most massive, motivating their

detailed study in this thesis. I pay particular attention to their spatial distribution, testing

for the best aperture to measure the galaxy overdensity in to obtain a good correlation

between the measured overdensity and the descendant mass (a useful protocluster

diagnostic), maximising the completeness and purity of the galaxy population, and

find indirect evidence for the emergence of a passive sequence in protoclusters at z ∼ 2.

I also present the first characterisation of protocluster shapes as traced by their galaxy

populations, showing that they tend to be aspherical with a prolate distribution. The

relationship between AGN and protoclusters is also investigated. Finally, I present a

new procedure for estimating the probability that a given overdensity represents a true

protocluster, and provide relations to estimate the descendant cluster mass.

In Chapter 4 I study the properties of protocluster galaxies in greater detail, utilising

detailed hydrodynamic zoom simulations from the C-Eagle project. In particular I

study the star-forming sequence in both protoclusters and the field to determine whether

protocluster environment has any effect, at fixed stellar mass, on a galaxies SFR at high

redshift. I also explore the scatter in the star forming sequence, which contains information

on short timescale fluctuations in the star formation history, and compare to a number

of recent observational constraints at high redshift. Finally, I study the passive galaxy

population, and show how the passive fraction appears to be environmentally independent

in the C-Eagle model, but shows significant environmental dependence in protocluster

observations at z ∼ 2.

Finally, in Chapter 3 I investigate an alternative way of studying the history of star

formation, by analysing the integrated spectral energy distribution (SED) of individual,

present day galaxies (z ∼ 0). I present a new approach, combining the outputs of
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cosmological simulations, coupled with detailed spectral energy distribution modelling, to

train a supervised regression machine learning method. This provides a means of using

the self-consistent information from the simulation on the SFH and its interdependence

with the observed SED to extract better priors on the SFH from observations.
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2 Background

2.1 Cosmological Background

The standard cosmological model, known as the Lambda Cold Dark Matter (ΛCDM)

model, predicts the formation and evolution of structure in the Universe (Peebles, 1984).

Its main components are baryonic matter, cold dark matter (CDM) and dark energy (Λ),

the latter being responsible for the accelerating expansion of the universe (Peebles, 1993).

In this model, during a period of inflation which began approximately 10−36 seconds after

the Big Bang, the universe expanded by a factor of 1026 and structure was seeded by

quantum fluctuations, which were blown up during inflation and evolved over time into

inhomogeneities on a range of scales (Guth, 1981; Liddle & Lyth, 2000). Over the next

∼ 20 minutes of cosmic time after the Big Bang, primordial nucleosynthesis determined

the abundances of the light primordial elements (4He, D, 3He and 7Li, Coc & Vangioni,

2017).

Approximately 370 000 years later, neutral atoms began to form from the ionised plasma.

This episode of ‘recombination’ led to decoupling of photons from the rest of the baryonic

matter, increasing their mean free path until they travelled essentially uninhibited to the

present day; due to cosmological redshift they are now observed at millimetre wavelengths

as the CMB (Penzias & Wilson, 1965; Planck Collaboration et al., 2014). In the absence

of photon pressure the baryonic matter could collapse into the potential wells already

formed by the non-interacting CDM, and continue to collapse through radiative processes,

whereas the dark matter, without such cooling channels, remained in an extended, diffuse

halo. The Universe remained neutral for the next half a billion years, a period known

as the ‘cosmic dark ages’, until the first stars and galaxies formed in the collapsed halos.

These first objects not only lit up the universe after the dark ages, but also released UV

photons that began the process of cosmic reionisation. It is this ‘stelliferous’ period of the

Universe’s history with which this thesis is concerned.

The combination of measurements of the CMB at z ∼ 1100 as well as of the large scale

structure traced by galaxies in the lower redshift universe, provide stringent constraints

on the ΛCDM parameters (Tegmark et al., 2004; Planck Collaboration et al., 2014).
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Unless otherwise stated, I assume a Planck 2013 cosmology throughout this thesis (Planck

Collaboration et al., 2014), with the following parameters: Ωm = 0.30, ΩΛ = 0.69,

Ωb = 0.048, and h = 0.68. Here, Ωm describes the total matter fraction, ΩΛ the dark

energy fraction, Ωb the baryonic matter fraction, and h the hubble parameter, assuming

the Universe is close to the critical density, Ω = 1.

2.2 Astrophysical Background

2.2.1 Formation of the First Stars and Galaxies

Structure in ΛCDM forms hierarchically through the merger of dark matter halos, forming

progressively more massive structures with decreasing redshift. The first stars are thought

to have formed between 30 > z > 20 in dark matter ‘minihalos’ with mass ∼ 106M�

(Bromm & Yoshida, 2011; Greif, 2014). The primordial abundance of the gas involved

in the formation of the first stars is the source of the name ‘Population III’, leading on

from the Population I and II stars in the local universe defined by their (relative) metal

richness or metal deficiency, respectively (Bromm & Larson, 2004; Glover, 2013). Early

studies suggested that the Initial Mass Function (IMF) of Pop.III stars was ‘top-heavy’,

with greater relative numbers of very high-mass stars, due to the absence of metals or

dust (Larson, 1998; Greif et al., 2011; Bromm, 2013). This left H2 as the only cooling

channel; with a temperature floor of ∼ 300 K, this gives a characteristic Jeans mass of

∼ 103 M� (Benson, 2010).

At the ends of their lives some fraction of the Pop.III stars (dependent on the assumed

IMF) are expected to go supernovae (SNe). These SNe distributed the heavier chemical

elements formed within, known as ‘metals’ in Astronomy phraseology, into the pristine

primordial Inter-Galactic Medium (IGM). This metal-enriched IGM enabled more efficient

subsequent cooling channels for the gas (Rees & Ostriker, 1977; Silk & Wyse, 1993),

leading to a rapid acceleration of subsequent star formation (Population II) and the build

up of the first galaxies. The first generation of stars also produced dust, which provided

new channels for H2 formation, enabling more cooling.

The collapse of the first stars led to the first stellar black holes (as distinct from Primordial

Black Holes, Carr & Hawking, 1974). These are one potential source for observed high-z
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supermassive black holes (SMBHs). These high-z SMBHs are problematic, since they

require either very massive seeds, or prolonged super-Eddington accretion in order to

reach their observed masses at z ∼ 7− 6. Other formation mechanisms for these high-z

SMBHs are Direct Collapse Black Holes (DCBHs) formed from the monolithic collapse of

primordial gas in atomic cooling halos (Smith & Bromm, 2019).

2.2.2 Reionisation

The formation of the first stars and galaxies released UV photons into the IGM, ionising

the neutral hydrogen and kick-starting the Epoch of Reionisation (EoR). At the highest

redshifts the ionisation was limited to the immediate surroundings of these collapsed

objects, creating a ‘swiss-cheese’ topology of ionised bubbles and neutral regions between

them (Zaroubi, 2012). Not until a sufficiently large number of galaxies formed throughout

the cosmic web did the volume filling fraction of ionised hydrogen reach significant levels,

until at some point the majority of the Universe was ionised, signalling the end of the

EoR.

The timing of the EoR has been constrained by a number of measurements. The Gunn-

Peterson trough in Quasar spectra (Gunn & Peterson, 1965) suggests an increasingly

neutral IGM at z > 6 (Becker et al., 2001), placing a lower limit on the end of the EoR.

Another constraint is provided by the optical depth to Thomson scattering of the CMB,

which gives an instantaneous reionisation redshift of z = 7.68 in the latest Planck results

(Collaboration et al., 2018). In future, the Square Kilometre Array (SKA) will map the

topology of reionisation by observing the redshifted 21-cm emission from neutral hydrogen,

distinguishing the bubbles of ionised material and their spatial evolution throughout the

EoR (Mellema et al., 2013; Datta et al., 2016; Trombetti & Burigana, 2018).

The sources of the ionising photons are still unknown, though the currently favoured

candidates are star-forming low-mass galaxies; observations with the Hubble Space

Telescope (HST) suggest a steep low-mass end of the UV Luminosity Function (UVLF),

providing sufficiently large numbers of ionising photons (Bouwens et al., 2012; Ellis et al.,

2013). Low-mass galaxies are also expected to have a higher escape fraction of ionising

photons, fesc, since strong stellar feedback can create channels in the ISM through which

ionising photons can escape (Wise et al., 2014). However, the inclusion of additional
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physics, such as the effect of binary interactions, could increase fesc for high-mass galaxies

(Ma et al., 2016). Active Galactic Nuclei will also emit ionising radiation, and have been

touted as a potentially significant contributor to the ionising photon budget (Madau &

Haardt, 2015), though this has recently been considered less likely due to their low number

densities at z > 6 (Hassan et al., 2017; Parsa et al., 2017).

The history of reionisation inferred from the UVLF now matches that inferred from CMB

measurements (Robertson et al., 2015). Recent studies have suggested using the topology

of reionisation itself to infer the shape of the UV Luminosity Function at high-z, assuming

some mapping between the sources and their ionised bubbles (Zackrisson et al., 2019).

2.2.3 Stellar Populations

2.2.3.1 Star Formation

Star formation occurs in dense regions of a galaxy’s Interstellar Medium (ISM) where

molecular hydrogen (H2) can form. When the internal gravitational potential energy of

the cloud is greater than the outward pressure of the thermal kinetic energy it collapses;

the mass at which this criterion is satisfied is known as the Jeans Mass (MJ) after Sir

James Jeans (b.1877), and is parametrised as

MJ =

(
5kbT

Gm

)3/2(
3

4πρ

)1/2

, (2.1)

where m is the mean particle mass, T is the average temperature, kb is the Boltzmann

constant, and G is the gravitational constant. MJ ∝ ρ−1/2, which leads to an interesting

property: as the cloud collapses and the density increases, the jeans mass decreases, which

causes hierarchical fragmentation of the cloud. Collapse can also be triggered by external

events, such as shockwaves from nearby supernovae or collisions of clouds. Once the

fragments reach sufficiently high densities and temperatures, nuclear fusion is initiated

and the protostar joins the main sequence.

Stars form predominantly in binary or higher multiple systems, with a wide range of

separation, eccentricity and mass ratio (Eldridge et al., 2017).
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2.2.3.2 Initial Mass Function

The distribution of masses in a forming stellar cluster is known as the Initial Mass Function

(IMF),

dn

dM
= φIMF(M) . (2.2)

Whilst not directly observable, the IMF can be empirically derived from observations of

stellar clusters at later stage of their lifetimes, by counting the relative number of stars

of different masses, and hence differing lifetimes. Local measurements in the Milky Way

suggest a near universal form that is independent of star-forming conditions (Hopkins,

2018). It was first parametrised by Salpeter (1955) as a single power law,

φ(M) = βM α (2.3)

where β gives the normalisation, and the exponent α = −2.35. This form predicts

very high numbers of sub-solar mass stars that are hard to reconcile with most recent

measurements of the stellar luminosity function. Later authors have implemented a broken

power law form, with a shallower slope below ∼ 1M� (Miller & Scalo, 1979; Kroupa,

2001; Chabrier, 2003).

Extragalactic measurements tentatively suggest a variable IMF, possibly proportional to

the galaxies Star Formation Rate (SFR) (Lee et al., 2009; Gunawardhana et al., 2011;

Zhang et al., 2018).

The lower mass limit of the IMF, at which the clump size is insufficient to achieve the

high density and pressure to initiate fusion, is ∼ 0.08M�. Lower-mass objects can collapse

below this threshold, known as Brown Dwarfs, but their contribution to the total cluster

mass is assumed to be low due to the steep turnover of the low-mass IMF (Kroupa et al.,

2013).

2.2.3.3 Stellar Evolution

Stars spend the majority of their lives on the main sequence, regardless of their mass.

The length of this phase is determined by the amount of core hydrogen and its rate
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of consumption in the fusion process. Whilst high-mass stars have greater amounts of

hydrogen fuel the rate of consumption is higher, so the main sequence lifetime is inversely

proportional to the stellar mass.

The final stages of a star’s lifetime is also highly mass sensitive. For intermediate age stars

this proceeds through a red giant phase, with significant mass loss from the outer layers,

leaving an inert core supported by electron degeneracy pressure, known as a white dwarf.

More massive stars (M� > 40M�) exceed the Chandrasekhar limit (Chandrasekhar, 1931)

and are unable to support their core through electron degeneracy pressure, leading to

collapse down to a neutron star held up by neutron degeneracy pressure. This process

involves significant energy release through a core collapse supernovae (CCSN); these events

produce the majority of elements heavier than Iron, injecting them, as well as significant

energy, into the ISM.

Even more massive objects will exceed the limit of neutron degeneracy pressure, and

collapse to a stellar mass black hole.

2.2.4 Galaxy Demographics and their Evolution

Galaxies exhibit an incredible diversity among a number of key properties, both directly

observed and intrinsic properties inferred through Spectral Energy Distribution (SED)

fitting. A key aim of the field of galaxy evolution is to determine the cause of this diversity,

and to reproduce it in models, both in individual objects and the relative abundances

statistically.

A common approach is to derive intrinsic properties of observed galaxies through SED

fitting and perform comparisons to models in this physical parameter space. The alternative

is to forward model the simulations to produce observed distribution functions of e.g.

UV luminosity, or emission line distribution functions. Each approach requires differing

modelling techniques reliant on differing assumptions and biases. Using a combination of

approaches helps to elucidate these biases.

The two galaxy distribution functions studied in detail in this thesis are the stellar mass

function and the stellar mass-star formation rate distribution, also known as the main

sequence or star-forming sequence. Below I describe each one, and the proposed physical

mechanisms that shape them.
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2.2.4.1 The Galaxy Stellar Mass Function

The Galaxy Stellar Mass Function (GSMF) describes the number of galaxies per unit

volume per unit stellar mass interval dM ,

φ(M) = N /Mpc−3 dex−1 , (2.4)

and is commonly described using a Schechter function (Schechter, 1976),

φ(M)dM = φ∗

(
M

M∗

)α
exp

(
−M
M∗

)
dM

M∗
, (2.5)

which describes the high- and low-mass behaviour with an exponential and a power

law dependence on stellar mass, respectively. Recent studies have found that a double

Schechter function can better fit the full distribution (e.g. the GAMA survey, Baldry

et al., 2008).

In the first cosmological models of galaxy evolution the stellar mass function was poorly

reproduced at the high- and low-mass end, until the inclusion of two feedback mechanisms:

stellar and AGN feedback. This behaviour can also be seen in the stellar to halo mass

relation (SHMR), which links the stellar and halo mass functions. The SHMR has a peak

at a halo mass of ∼ 1012M� and declines for low- and high-mass galaxies either side of

the peak, with scatter of ∼ 0.2 dex around this relation. At low stellar masses, energetic

stellar feedback efficiently ejects gas from the halo, lowering the SFR (Kauffmann et al.,

1993), and reducing the number density of low-mass galaxies. At the high-mass end,

very high-mass SMBHs have been indirectly observed (the correlation between halo mass

and SMBH mass is known as the Magorrian relation; Magorrian et al., 1998), that can

maintain high accretion rates. This leads to efficient AGN feedback, which ejects gas from

the central regions of massive galaxies, leading to a reduction in number density of high

stellar mass galaxies (White & Rees, 1978). Modern Semi-Analytic Models are now able

to reproduce the low- and high-mass behaviour of the GSMF with the inclusion of these

two principal feedback processes (see Section 2.3.3).

Figure 2.1 shows the GSMF in the fiducial Eagle simulation (described in detail in

Section 2.3.4.2) along with a number of observational constraints up to high redshift.
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Figure 2.1: The evolution of the GSMF in the fiducial (Ref) and recalibrated (Recal)
Eagle simulations. Observational constraints are shown from Ilbert et al. (2013); Muzzin
et al. (2013); Tomczak et al. (2014); Moustakas et al. (2013); Duncan et al. (2014);
Gonzalez-Perez et al. (2014). Reproduced from Furlong et al. (2015).
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2.2.4.2 The star-forming sequence

Observations suggest a close relationship between the star formation rate (SFR) and

stellar mass of galaxies, at both high and low redshifts, which I will refer to as the

star-forming sequence (SFS), though it is also commonly referred to as the ‘main sequence’

(Brinchmann et al., 2004; Noeske et al., 2007; Speagle et al., 2014). The SFS is typically

parametrised as a linear relation,

log10(SFR) = α log10(M∗ /M�) + β , (2.6)

where the slope α remains relatively constant with increasing redshift, but the normalisation

β increases (Daddi et al., 2007; Santini et al., 2009; Salmon et al., 2015). There have

also been suggestions of a turnover in the SFS at high stellar masses (Lee et al., 2015;

Tasca et al., 2015), though the turnover becomes less evident with increasing redshift.

This behaviour has been seen in both low redshift (Lee et al., 2015) and high redshift

(Tasca et al., 2015; Santini et al., 2017) observations, but is absent from some models (e.g.

Illustris, Sparre et al., 2015). The turnover may be evidence for a change in the dominant

channel of stellar mass growth from smooth gas accretion to merger driven growth. A

high-mass SFS turnover is also necessary to explain the galaxy stellar mass function at

lower stellar masses; a single power law slope would lead to too many massive galaxies

being formed (Leja et al., 2015).

2.2.5 Galaxy Star Formation Histories

The instantaneous SFR of a galaxy at different times throughout its history is known

as its Star Formation History (SFH). By definition, the integral of the SFH up to the

observation time gives the total stellar mass at that time,

M∗(tobs) /M� =

∫ tobs

0

(SFR(t) /M� yr−1)R(tobs − t) dt , (2.7)

where R is the recycling fraction for a stellar population born at time t, which accounts for

the fact that stars return mass to the ISM at the end of their lives through e.g. supernovae,

and this increases with time as a greater fraction of stars reach the end of their lives.
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Figure 2.2: The observed cosmic star formation rate density as a function of redshift,
assuming a Salpeter IMF (Salpeter, 1955), from both UV and IR tracers. The solid black
curve shows the best fit to the observations. Reproduced from Madau & Dickinson (2014).

The SFH of all galaxies normalised by volume is known as the Cosmic Star Formation

Rate Density (CSFRD), which shows a characteristic shape, rising from early times

before peaking at cosmic noon (z ∼ 2), then falling again towards the present day (see

Figure 2.2). However, individual galaxy histories are diverse, showing bursting and

quenching behaviour, as well as stochasticity on short timescales.

When fitting the Spectral Energy Distribution (SED) of a galaxy one typically assumes a

parametric form for the SFH, that is then used to derive the total stellar mass and current

SFR (Carnall et al., 2019). Common parametrisations of the SFH include exponentially

declining, lognormal and double power law forms; Figure 2.3 shows a number of these

compared to a ‘true’ SFH taken from a Semi-Analytic Model, fit to the same noisified

SED (Somerville et al., 2008). Composite SFHs can also be described that combine

many evolutionary features of galaxies seen in observations, such as rising, burst-like

or quenching histories (Iyer & Gawiser, 2017). It has been shown that the choice of

parametrisation can lead to significant biases in inferred properties (Acquaviva et al.,

2011; Iyer & Gawiser, 2017; Carnall et al., 2019).

As well as parametric approaches, a number of non-parametric approaches have been

proposed to account for a range of SFH behaviours (e.g. MOPED & VESPA, Heavens

et al., 2000; Tojeiro et al., 2007, 2009). However, such approaches are highly sensitive to
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Figure 2.3: Common parametric forms for the Star Formation History (SFH). The black
dashed line shows a SFH taken from a Semi-Analytic Model (Somerville et al., 2008), and
each coloured line shows the best fit SFH to reproduce the noisified SED. Reproduced
from Iyer & Gawiser (2017).

the chosen prior distribution (Leja et al., 2019). I will show in Chapter 5 how cosmological

simulations can be used to provide an informative prior.

2.3 Cosmological Simulations

As we have seen so far, the physics of galaxy formation is a complex mix of processes

operating over orders of magnitude in scale and energy. It is therefore a challenge to

model these processes self-consistently, particularly over the large cosmological volumes

required to obtain a large, representative sample of galaxies (Somerville & Davé, 2015).

As a result, a number of approaches have been developed that model these processes with

varying levels of sophistication, and resulting differences in computational complexity

and cost. Below I describe the N -body method used for simulating collisionless fluids,

such as CDM, and two methods used in this thesis for modelling the baryonic content,

Semi-Analytic models (SAMs) and Hydrodynamic simulations. I also discuss common

structure finding algorithms for both dark-matter only and hydro simulations.

2.3.1 N-body simulations

Cold Dark Matter (CDM) dominates the mass budget of the Universe in ΛCDM, which

is fortunate since it can be modelled relatively simply as a collisionless fluid that only
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interacts through gravity. As a result, large volumes (of order ∼ 1 Gpc3) can be simulated

at high resolution reasonably cheaply with current computational capabilities.

The basic approach is to divide the mass within some comoving volume, using periodic

boundaries, up into particles of equal mass that interact through Newtonian gravity (GR

corrections are negligible and typically ignored). The size evolution of the box is then

found using Friedmann’s equation (Friedman, 1922). Calculating the force between all N

particles is an O(N2) operation, so to reduce this cost simplifying approaches are used.

The tree code uses a hierarchical octree algorithm, that essentially divides the volume

into a hierarchy of cubic cells, allowing the calculation of long range forces to groups of

particles to be done simultaneously, whilst still calculating individual interactions with

nearby particles (Barnes & Hut, 1986). An alternative is the particle-mesh (PM) approach,

which discretises space and calculates the potential on this grid using a Fourier transform

of the sampled density field (Hockney & Eastwood, 1988). Both scale as O(N logN),

though PM has the advantage of being able to account for periodic volumes by default,

whilst tree codes must use additional techniques such as Ewald summation (Hernquist

et al., 1991).

All of the simulations used in this thesis use a hybrid tree-PM approach (e.g. Gadget-2,

Springel et al., 2005), which combines the tree code for short range forces, and the PM

approach for long range and periodic forces.

It is not feasible to output the full particle information at every time step.1 In the

Millennium simulation 64 snapshots were outputted from z = 127 to z = 0 spaced

approximately linearly with the expansion factor (Springel et al., 2005).

2.3.2 Structure finding

Self-gravitating dark matter in an expanding universe proceeds to form a hierarchy of

structures. The primary unit of structure is the virialised dark matter halo. Sheets,

filaments and voids also make up a significant fraction of the total cosmic volume,2

however it is in the collapsed, virialised halos that the majority of the mass resides; these

1A single snapshot from the fiducial Eagle simulation (full hydro, box length 100 Mpc) occupies
approximately 0.5 terabytes.

2Algorithmic approaches for identifying these structures in simulations have been developed, such as
the Delaunay Tesselation (see Sousbie, 2011).



2.3 Cosmological Simulations 15

are the primary unit of structure in N -body simulations. I use a redshift independent

definition of halo mass, given as the mass enclosed within a sphere with average density

equal to 200 times the critical density of the universe.

To identify halos in dark matter simulations a number of different structure finders have

been developed. The most conceptually simple and computationally cheap approach is

Friends-Of-Friends (FOF, Davis et al., 1985; Efstathiou et al., 1985), which has been used

to find structure in both observed galaxy distributions as well as numerical simulations

(e.g. Farrens et al., 2011). A FOF halo is defined as a group of particles where the

maximum separation of a given particle with all others is less than the linking length, l,

where the value of l determines the size of structure found; hierarchies of structure can be

defined using multiple linking lengths.

One drawback of the FOF approach is that it can link together disparate structures

connected by a single link at the edge, which can be a drawback for finding unique

collapsed structures. To overcome this other post-processing methods have been developed

in order to identify a hierarchy of structures. The simulations used in this thesis all use

the Subfind algorithm (Springel et al., 2001; Dolag et al., 2009). Subfind starts by

using the FOF outputs; in hydro simulations this is done on the dark matter only, and

gas and star particles are then associated with the nearest dark matter particle. It then

calculates the local density at each particle position using an adaptive kernel estimation,

assuming some number of neighbours for smoothing. In simulations with multiple particle

species (e.g. hydro) this step is done on each species individually, and the total density is

then the sum of the densities for each species. Subfind then defines peaks in the density

as individual structures, which extend out to where the density reaches a saddle point

with a neighbouring peak. Finally, a gravitational unbinding procedure is carried out to

leave only the self-bound part remaining.

Halo catalogues at multiple different output times can be linked together to build merger

trees, which describe the merger history of halos in simulations. These are typically built

by finding common particles between halos in subsequent snapshots, and then linking

these together to form a tree structure, where a halo can have multiple ‘parent’ halos in a

previous snapshot. In some pathological cases halos can pass through each other without

merging (e.g. the bullet cluster, Markevitch et al., 2004), which can lead to mis-classified
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merger events. One means of avoiding this is to use 6D structure finders, that utilise not

only the spatial but the velocity information of particles to identify bound structures in

phase space (e.g. ROCKSTAR & VELOCIraptor, Behroozi et al., 2013a; Elahi et al.,

2019). The choice of halo finder has only a small effect on individual halo properties and

the cumulative halo and stellar mass function at z = 0 (Knebe et al., 2011, 2013), though

there have been suggestions that high redshift structures, due to their clumpiness, are

more dependent on the halo finder chosen (Klypin et al., 2011).

Each simulation used in this thesis uses a different code for constructing merger trees,

which can lead to differences in the final trees (Srisawat et al., 2013). The fiducial EAGLE

simulation uses the D-Trees code (Jiang et al., 2014; Qu et al., 2016), whereas the

more recent Spiderweb algorithm has been applied to the C-Eagle simulations (Bahé

et al., 2019). The Illustris simulation uses the Sublink algorithm (Rodriguez-Gomez

et al., 2015), which has some modifications to the merger tree code described (but not

explicitly named) in Springel et al. (2005), which has also been applied to the Millennium

simulation, and used to construct the merger tree for the L-Galaxies SAM.

2.3.3 Semi-analytic models

SAMs are built on the outputs of dark matter only simulations, and use the merger

trees coupled with differential equations describing the evolution of baryons in host halos

(Baugh, 2006). A number of SAMs have been developed to model galaxy evolution at

both low- and high-redshift (White & Frenk, 1991; Cole et al., 2000; Somerville et al.,

2008; Gonzalez-Perez et al., 2014; Croton et al., 2016; Poole et al., 2016; Yung et al., 2018;

Lagos et al., 2018). In this thesis I use L-galaxies, or the Munich SAM, described below.

2.3.3.1 The L-Galaxies Model

The latest version of L-Galaxies is an update to that presented in Guo et al. (2011)

that uses the Planck 2013 cosmological parameters (Planck Collaboration et al., 2014),

and better predicts the abundance of low-mass galaxies at z ≥ 1 (Henriques et al., 2015).

Using the abundance and passive fractions of galaxies at z 6 3 the SAM model parameters

are constrained using a Markov Chain Monte Carlo (MCMC) approach (Henriques et al.,

2009; Lu et al., 2011; Henriques et al., 2009), which reproduces key observables during
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this epoch such as the galaxy stellar mass function and optical luminosity functions.

Despite being tuned to low redshift observables, the model also shows good agreement

with high redshift galaxy properties, such as the stellar mass and luminosity function, out

to z = 7 (Clay et al., 2015). A full description of the model is provided in the appendix

to Henriques et al. (2015).

The growth of supermassive black holes is modelled in L-Galaxies through two

mechanisms (Croton et al., 2006; Henriques et al., 2015). The first, labelled quasar

mode growth, is triggered by a galaxy merger. The black holes merge instantaneously, and

are then fed cold gas driven toward the nuclear region of the galaxy by turbulent motions

induced by the merger. The second mechanism, labelled radio mode growth, is fed by

hot gas from the halo, and leads to the formation of hot bubbles and jets. The quasar

mode is the most effective mechanism by which black holes grow in the model, though

the accretion is not explicitly associated with any feedback, except through supernovae

feedback associated with the post-merger starburst in the case of a gas rich merger. In

contrast, radio mode feedback leads to negligible black hole growth but produces efficient

feedback that prevents the infall of cold gas in the largest halos.

2.3.4 Hydrodynamic Simulations

Hydrodynamic simulations differ from N -body simulations in that they explicitly and

self-consistently model the evolution of gas and stars as well as dark matter. This allows

the investigation of the spatial and kinematic distribution of these components, as well

as their hydrodynamic and thermal interaction. A limitation to this approach is the

resolution that can be simulated computationally efficiently, with ‘subgrid’ models required

below the resolution limit. These subgrid models are analogous to the Semi-Analytic

approach, but applied to much smaller scales, and require similar tuning of free parameters,

though the computational cost of this tuning procedure is significantly greater. A number

of hydro sims have been developed, including the MUFASA & SIMBA simulations (Davé

et al., 2016, 2019), as well as models dedicated to studying the high redshift universe such

as the Bluetides simulation, which simulates a large volume (400 Mpc box length) run

down to z = 8 only (Feng et al., 2015a,b). Below I describe the hydrodynamic solvers

and subgrid models used in the two hydrodynamic simulations used in this thesis: Eagle

(Schaye et al., 2014; Crain et al., 2015) and Illustris (Vogelsberger et al., 2014; Genel et al.,
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2014).

2.3.4.1 Hydrodynamic solvers

Smoothed Particle Hydrodynamics (SPH) is the most popular Lagrangian method. It

models the mass distribution as discrete particles, with a kernel weighting determining

the distribution of their physical properties (Springel, 2010a). The value of some field

or quantity F at some arbitrary position is then given by the sum over the contribution

from all neighbouring particles within some smoothing length, h,

Xi =
∑
j

mj

ρj
FjW (|ri − rj| , h) ,

where m is the particle mass, ρ its density, and W is some spherical kernel. One of the

advantages of SPH is that it explicitly tracks the mass, which can be particularly useful in

galaxy evolution codes for tracking the transfer of matter in outflows and inflows. However,

SPH has traditionally suffered from artificial pressure boundaries, though modern codes

are capable of mitigating this problem (for more details see Somerville & Davé, 2015).

Another approach is to take an Eulerian formalism and model the mass distribution on

discrete cells, computing the advection of properties and forces across the boundaries

of cells. Where the mass is high these can be refined to arbitrarily high resolution, an

approach known as Adaptive Mesh Refinement (AMR), which leads to good adaptivity.

Hybrid codes, that combine the advantages of Lagrangian and Eulerian approaches, have

recently become popular in cosmological hydrodynamic applications (Somerville & Davé,

2015). AREPO is an example of a Largrangian-Eulerian method, that uses a Voronoi

Tesselation to subdivide the volume around particles into space-filling polyhedra (Springel,

2010b). Properties are then advected along the face of each cell boundary.

2.3.4.2 The Eagle simulations

Eagle is a recent hydrodynamic simulation from the Virgo consortium, that uses the

SPH approach; the numerical methods are collectively called the ‘Anarchy’ suite, described

in more detail in Schaller et al. (2015). The subgrid recipes are based on the OWLS suite

used in GIMIC (Crain et al., 2009). Full details are provided in Schaye et al. (2014) and
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Figure 2.4: Top panels: the gas distribution at redshift z = 0 centred on a massive
cluster (M200 /M� = 1015.38) from the C-Eagle simulations, in a 60× 60× 15 physical
Mpc slice. Gas surface density is represented by brightness, and temperature by the colour
(see HSV map in the bottom-right corner). Top-left panels: zoom in towards an individual
galaxy; a synthetic gri image of the stellar content of the galaxy is shown in the bottom
panel. Bottom panels: redshift evolution of the gas distribution. The diffuse web of
filaments connecting dense nodes in the high-redshift (z > 1.5) protocluster environment
is clearly visible. Reproduced from Bahé et al. (2017).
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Crain et al. (2015); below I summarise the main components:

• Element-by-element radiative cooling recipes and photoheating following Wiersma

et al. (2009a).

• A spatially-uniform ionizing UV background (UVB) turned on at z = 11.5 that then

follows the time-dependent model of Haardt & Madau (2012).

• The pressure dependent star formation rate from Schaye & Dalla Vecchia (2008)

with a metallicity dependent threshold from Schaye (2004).

• Stellar mass loss based on Wiersma et al. (2009b), whereby metals (and the associated

transfer of momentum and energy) are distributed to neighbouring gas particles

within the SPH kernel, the fraction depending on their relative distance (assuming

star particles represent simple stellar populations with a Chabrier IMF; Chabrier,

2003).

• Stochastic thermal feedback from stars, following Dalla Vecchia & Schaye (2012),

with metallicity and density dependent thermal losses.

• Black hole (BH) seeding in FOF halos with mass > 1010 M� / h that do not already

contain a BH (as in Springel et al., 2005), replacing the highest density gas particle.

• BH accretion, dependent on the BH mass, its relative velocity, and the local density,

temperature and angular momentum of the surrounding gas.

• Thermal, stochastic AGN feedback proportional to the BH accretion rate (see below

for details).

• Single-mode thermal AGN feedback with fixed efficiency (analogous to ‘quasar mode’

feedback in L-Galaxies) as in Booth & Schaye (2009).

These subgrid models were tuned to the following key distribution functions at z = 0: the

GSMF, the SHMR, and the black hole-stellar mass relation, as well as galaxy sizes.

In detail, the BH accretion is given by the minimum of the Eddington and Bondi-Hoyle

rates (Bondi & Hoyle, 1944), times some efficiency factor,

ṁBH = (1− εr) min(ṁEdd, ṁBondi × A) (2.8)
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where

ṁEdd =
4πGmBHmp

εrσtc
(2.9)

ṁBondi =
4πG2m2

BHρ

(c2
s + v2)3/2

(2.10)

A = min(C−1
visc(cs/Vφ)3, 1) , (2.11)

and mBH is the black hole mass, mp is the proton mass, εr = 0.1 is the accretion disk

radiative efficiency, σT is the Thomson cross section, ρ is the surrounding gas density, cs

is the sound speed, v is the relative velocity of the BH to the surrounding gas, and the

other parameters have their usual meanings. Vφ is the rotation velocity of the gas around

the black hole (Rosas-Guevara et al., 2015), and Cvisc parametrises the viscosity of the

accretion disc in the subgrid regime.

The fiducial Eagle simulation was a (100 Mpc)3 periodic volume using the Reference

(Ref) parameter set. This volume was sufficiently large to contain four cluster-mass halos

at z = 0, allowing the investigation of galaxy evolution in a wide variety of environments.

This was combined with a number of smaller, periodic volumes using different parameters.

The AGNdT9 model, which is more sensitive to the gas viscosity in the surroundings of

the SMBH, and injects energy less frequently in more energetic bursts, was run in a (50

Mpc)3 volume, and showed better agreement with the observed gas mass-fraction and

X-ray luminosity temperature of group mass objects (M500 /M� ∼ 1013.5). The parameter

differences between Ref and AGNdT9 are shown in Table 2.1.

Prefix Cvisc ∆TAGN (K)

Ref 2π 108.5

AGNdT9 2π × 102 109

Table 2.1: Subgrid parameter differences between the two Eagle models used in this
thesis, the fiducial Reference model (Ref) and AGNdT9. Cvisc controls the sensitivits
of the black hole accretion rate to the angular momentum of the surrounding gas (see
equation 2.11). and ∆TAGN is the value of gas temperature increase during an episode of
AGN feedback.

Periodic volume simulations necessarily simulate a mean-density patch of the universe. In

order to capture extremes of the overdensity distribution large volumes must be simulated

to capture the largest modes in the power spectrum, which are currently computationally
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unfeasible with high resolution hydrodynamics. An alternative is to carry out ‘zoom’

simulations, which re-simulate a patch of a large, low resolution simulation at high

resolution, typically with added physics such as hydrodynamics (Katz & White, 1993;

Tormen et al., 1997). The surrounding region is then represented by low resolution dark

matter only particles that interact only gravitationally, but preserve the large scale power.

Figure 2.5 shows a cartoon demonstration of this approach. This was the approach used

in the C-Eagle simulation suite, which re-simulated 30 clusters of a range of descendant

halo masses with the full Eagle hydrodynamic model, at fiducial resolution with the

AGNdT9 model parameters. The Clusters were selected from a (3.2 Gpc)3 dark matter

only simulation (Barnes et al., 2017a), with particle resolutionmDM /M� = 5.43×1010 h−1.

The high resolution region was re-simulated using the same gas and dark matter particle

masses as in the fiducial Eagle AGNdT9 simulation to facilitate comparison. C-Eagle

shows good agreement with central black hole and total stellar mass estimates, but some

discrepancies in the gas and Brightest Cluster Galaxy (BCG) masses at z = 0; full details

are provided in Barnes et al. (2017b); Bahé et al. (2017).

2.3.4.3 The Illustris simulations

The Illustris simulation uses the hybrid Arepo hydro scheme (Springel, 2010b), with a

maximum resolution at z = 0 of 48 pc. The subgrid models are described in detail in

Vogelsberger et al. (2013); below I summarise its main components:

• A spatially uniform time-dependent UV background from Faucher-Giguère et al.

(2009).

• Metal line cooling using Cloudy tables (Ferland et al., 2013), analogous to Wiersma

et al. (2009a) using identical elements (H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe).

• An on-the-fly self-shielding prescription from the UVB based on Rahmati et al.

(2013).

• Kinetic, stochastic stellar-feedback decoupled from the hydro scheme, as in Springel

& Hernquist (2003); Oppenheimer & Davé (2008).

• A density dependent star formation rate from Springel & Hernquist (2003) with an

upper temperature ceiling, assuming a Chabrier IMF (Chabrier, 2003).
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Figure 2.5: A cartoon showing the selection of an overdense region from the low resolution
dark-matter only simulation, and its re-simulation at high resolution in a zoom simulation.
In this example the selection is made at high redshift (z = 4.687), whereas in C-Eagle
clusters are selected at z = 0. The selection is re-centred in the box, and a hierarchy of
low resolution dark matter only particles form a ‘glass’ around the high resolution region.
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• A stellar mass loss recipe similar to Wiersma et al. (2009b), where instead of

neighbouring particles, neighbouring Voronoi cells are enriched over a tophat kernel.

• Black hole seeding in FOF halos with mass > 5× 1010M� / h, replacing the highest

density gas cell.

• Bondi-Hoyle-Lyttleton Eddington-limited SMBH accretion (see Edgar, 2004).

• Two-mode AGN feedback, consisting of a thermal (‘quasar’) and mechanical (‘radio’)

mode from Sijacki et al. (2007) as well as an additional electromagnetic feedback

component; the mode is determined by the accretion rate.

The Illustris subgrid model was tuned to two observed relations: the SHMR at z = 0, and

the CSFRD. The fiducial Illustris simulation was run on a (106.5 Mpc)3 periodic volume.

Illustris-TNG is a recent update to the Illustris model that implements, among other

updates and improvements, the effects of magnetic fields (magneto-hydrodynamics)

(Pillepich et al., 2017; Donnari et al., 2019).

2.4 Spectral Energy Distribution Modelling

Further post-processing is required to link the intrinsic properties of galaxies to observables

in cosmological simulations. The main components of the SED modelling pipeline are the

emission from stars, attenuation by dust, the attenuation and emission from nebular regions,

and the contribution from AGN (Conroy, 2013). There are a number of approaches for

modelling each component, of varying complexity. Here I will describe the basic principles,

the dust-screen approach used in this thesis, as well as more advanced approaches for

future investigation.

2.4.1 Population Synthesis

The emission from a single star can be written

fλ(m, t, Z) ,

where m is the initial mass, Z its metallicity, t its age, and fλ its flux at wavelength λ.

The presence of a binary companion can also significantly affect the resulting emission,
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discussed below.

Star elements in Eagle and Illustris represent of the order of 106M� of stars, much larger

than average individual star clusters. It is therefore necessary to model their emission

as if they represent Single Stellar Populations (SSP) with uniform age and metallicity,

integrated over the IMF,

fSSP
λ =

∫ Mmax

Mmin

φIMF(M)fλ(M, t, Z)dM ,

where φ is the assumed IMF, and Mmax & Mmin are the upper and lower IMF mass limits.

The details of fSSP
λ are modelled using Stellar Population Synthesis (SPS) models. A

number of SPS codes have been developed, including PEGASE (Fioc & Rocca-Volmerange,

1997, 1999, 2019), BC03 (Bruzual & Charlot, 2003), M05 (Maraston, 2005) and FSPS

(Conroy et al., 2009; Conroy & Gunn, 2010).

Recently, the contribution from binary stellar populations was included in the BPASS

models (Stanway et al., 2016; Eldridge & Stanway, 2016; Eldridge et al., 2017; Stanway &

Eldridge, 2018). This has a significant impact on the ionising emission, with important

repercussions for the Epoch of Reionisation (EoR) (Wilkins et al., 2013b). A consequence of

including binaries is a dramatic increase in the parameter space of the SPS model, in order

to take account of the impact of, for example, their separation, mass ratio, multiplicity,

etc., and how these are distributed for a given SSP. The impact of certain phases of a stars

evolution are also theoretically uncertain, such as the Thermally Pulsating-Asymptotic

Giant Branch (TP-AGB) phase, which, when omitted or modelled incorrectly in SPS

models can result in systematic differences in the resulting emission, and hence the derived

physical parameters (Conroy et al., 2009).

Figure 2.6 shows the predicted spectral energy distribution from the UV to the NIR for

five different SPS models at a given age and metallicity. Figure 2.7 shows the effect of

varying the age and metallicity for the FSPS model.

It is computationally unfeasible to calculate the exact SPS emission from each SSP, so

grids of age and metallicity are pre-calculated, and the emission from a given SSP is

estimated through 2D interpolation. The total stellar emission from a galaxy is then
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Figure 2.6: Spectral energy distribution for a simple stellar population with age 300
Myr and metallicity Z = 0.02, for five different SPS models, in linear- (left) and log-space
(right).

Figure 2.7: Spectral energy distribution from FSPS with varying parameters. Left:
Varying age, with a fixed metallicity of Z = 0.02. Right: Varying metallicity, with a fixed
age of 794 Myr.



2.4 Spectral Energy Distribution Modelling 27

Figure 2.8: Mean SED from the fiducial Eagle simulation at z = 8. Top: the light grey
shows the intrinsic distribution, the darker grey includes the nebular component. The
response in the JWST NIRCam filters is shown by the coloured lines (solid for intrinsic,
dotted including nebular). Bottom: the ratio of flux in the JWST NIRCam filters to the
intrinsic flux for different modelling assumptions.
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obtained by combining the emission from each stellar element in the simulation to give the

composite stellar spectrum, which given the grids is a simple matrix multiplication and

addition operation. Figure 2.8 shows the average SED from the fiducial Eagle simulation

at z = 8.

2.4.2 Dust attenuation

Dust grains are tiny solid particles, approximately 0.1µm across, consisting of a variety

of elements present in the ISM. Despite making up only 1% of the ISM mass, dust is

responsible for reprocessing around 30% of all photons in the universe (Bernstein et al.,

2002), scattering and absorbing it at wavelengths below its size, which increases the dust

temperature, then re-emitting that radiation at mid- and far-infrared wavelengths. Dust

is produced and destroyed through a complex network of physical processes in the ISM,

leading to a non-trivial dependence on the galaxies SFH and ISM evolution (Vijayan et al.,

2019).

A simple model for the dust attenuation is a ‘slab’ in front of the stellar source populations

that attenuates as

fobs(λ) = fint(λ) 100.4Aλ ,

where fint & fobs are the intrinsic and observed flux, respectively, and Aλ is a linear scaling

parameter, given by

Aλ = k(λ)E(B − V ) =
k(λ)AV
RV

,

where k(λ) is the reddening curve, E(B − V ) traditionally refers to the extinction between

the B and V photometric bands, and RV = AV /E(B − V ). In practice, AV and RV are

simply parameters of the dust extinction model, describing the normalisation and shape,

respectively (Barbary, 2016a). Some popular parametrisations of k(λ) include those by

O’Donnell (1994); Fitzpatrick (1999); Calzetti et al. (2000), shown in Figure 2.9.

In cosmological simulations, the magnitude of the attenuation can be linked to the physical

parameters of the galaxy. The mass of metals in the ISM is closely linked to the mass

of dust; this is often used as a proxy, by taking the total metallicity of all gas elements

multiplied by their mass, times some constant (Trayford et al., 2015; Narayanan et al.,

2017). Many screen dust models include a second component that additionally attenuates
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Figure 2.9: Left: dust extinction curve parametrisations from O’Donnell (1994);
Fitzpatrick (1999); Calzetti et al. (2000). Right: the affect of changing RV on the
extinction curve (using O’Donnell, 1994).

young stellar populations < 10 Myr in age (Trayford et al., 2015). This is physically

motivated by the excess of dust in nebular systems. Similar screen models have been

implemented in a number of SAMs (Vijayan et al., 2019).

A more advanced approach is to calculate the line-of-sight (LOS) attenuation to each star

particle. In SPH simulations this is typically done by integrating the kernel for each gas

particle within some impact parameter (e.g. LOSER, Davé et al., 2017). The gas density

can then be linked to the metallicity, and hence the dust attenuation, as above (Wilkins

et al., 2016). This more physical approach takes into account the spatial distribution of

the dust with respective to the stars.

Further details on the dust screen model used in this thesis are described in Chapter 5.

2.4.3 Nebular Contribution

Massive stars in young stellar populations emit abundant Lyman continuum photons,

which ionise their surrounding gas to produce nebular line and continuum emission, as

well as nebular attenuation. The emission and attenuation in these regions is typically

modelled using spectral synthesis codes utilising photo-dissociation models, such as
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Figure 2.10: Spectral energy distribution for a simple stellar population with age 21
Myr and metallicity Z = 0.0126 from FSPS (Conroy et al., 2009; Conroy & Gunn, 2010),
both with and without nebular attenuation according to the prescription in Byler et al.
(2017).

Cloudy (Ferland et al., 2017).3 FSPS (Conroy et al., 2009; Conroy & Gunn, 2010)

now includes a self-consistent nebular component (Byler et al., 2017) that links the

ionising radiation from the SSP to the ionisation rate of the surrounding cloud using the

dimensionless ionisation parameter U ,

U =
QH

4πR2 nH c
, (2.12)

where R is the radius of the ionized region, nH is the hydrogen number density, and QH is

the ionising emissivity,

QH =
1

hc

∫ λ0

0

λ fλ dλ (2.13)

where λ0 = 921Å is the Lyman limit. This parametrisation folds in both the geometry

and hardness of the ionising spectrum, reducing the dimensionality, and hence the size of

the grid of models needed.

2.4.4 Radiative Transfer Approaches

There are also more complex approaches for estimating the effect of dust that not only take

into account the spatial distribution of dust in the galaxy and its affect on attenuation,

3https://www.nublado.org



2.5 Galaxy Protoclusters 31

but also scattering and re-emission. These radiative transfer approaches explicitly model

the release of photons from source stellar populations and their interaction with gas and

dust in the ISM in a full 3D geometry. SKIRT is one example of a radiative transfer

code, and has been applied to the EAGLE simulation to self-consistently predict the

Far-Infrared (FIR) emission of galaxies (Trayford et al., 2017; Camps et al., 2016).

However, these approaches are still applied in the post-processing phase to individual

snapshots. Cosmological models typically do not model radiative processes self-consistently,

instead using subgrid models to describe the effects of e.g. photoionisation of gas by

young stars. A more self-consistent approach applies radiative transfer during running

of the simulation. These radiative transfer cosmological models are computationally

expensive, prohibitively so for large cosmological volumes at sufficient resolution to resolve

the properties of galaxies self-consistently, but have been successfully applied to zoom

simulations of the EoR (Iliev et al., 2006, 2009).

2.5 Galaxy Protoclusters

Galaxy clusters are rare collections of hundreds, sometimes thousands of galaxies embedded

within a massive (> 1014 M�), virialised, dark-matter halo. They are observable through

extended X-ray emission from a hot intracluster medium, but can also be identified from

the red colours and elliptical morphologies of their constitituent galaxies compared to

non-cluster (field) galaxies (Dressler, 1980; Vikhlinin et al., 2014). Protoclusters are the

pre-collapse progenitors of clusters, commonly defined as the ensemble of objects that will

collapse into the cluster by z = 0 (Overzier, 2016). They manifest as matter overdensities

with respect to the field extended over large comoving volumes (up to 40 comoving Mpc

across at z ∼ 3; Muldrew et al., 2015), which are observable through surface overdensities

of galaxies (Chiang et al., 2013; Lovell et al., 2018).

2.5.1 Identifying Protoclusters

Observational searches for protoclusters tend to adopt one of two approaches: ‘blind’

searches for surface overdensities of galaxies, and focused observations around biased

tracers. The former typically work by identification of surface overdensities in wide

field photometric surveys of Lyman break galaxies (LBGs) and narrow band imaging of
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emission line galaxies (Shimasaku et al., 2003; Adams et al., 2011; Spitler et al., 2012;

Chiang et al., 2014; Shimakawa et al., 2017a), which are often followed up and confirmed

spectroscopically (Toshikawa et al., 2012; Diener et al., 2015; Toshikawa et al., 2016). The

VIMOS Ultra Deep Survey, the largest purely spectroscopic search, recently announced

the discovery of a massive candidate at z ∼ 4.57 (VUDS, Fèvre et al., 2015; Lemaux

et al., 2017).

The second method takes advantage of objects thought to represent biased tracers of the

underlying matter distribution, such as dusty star forming galaxies (Capak et al., 2011;

Casey et al., 2014), Ly-α emitting blobs or extended Ly-α absorbers (Hennawi et al., 2015;

Cai et al., 2016), High-redshift Radio Galaxies (HzRGs) and quasars. Using biased tracers

to search for protoclusters is cheaper than performing wide, deep surveys. However, the

uncertainty in their correlation could arguably make them unreliable: they may not probe

a significant fraction of protoclusters (Orsi et al., 2016), or produce an unrepresentative

sample of the population.

Given a galaxy overdensity measured with one of the above approaches, we wish to know

the probability that it represents a protocluster, and an estimate of its descendant cluster

mass, a useful property on which many other protocluster properties (size, maturity)

depend. They can be estimated analytically (Steidel et al., 1998, e.g.), or from cosmological

simulations (Suwa et al., 2006): protocluster probability is typically estimated by taking

the ratio of regions with a given overdensity that evolve into protoclusters to those that

do not (Chiang et al., 2013, 2014), and estimates of descendant mass have been inferred

empirically from the typical descendant mass of a protocluster with similar overdensity

(Orsi et al., 2016). Approaches such as these have been used in the construction of some

of the first protocluster catalogues (Franck & McGaugh, 2016a,b; Higuchi et al., 2018).

Measures of overdensity are typically carried out with apertures or nearest neighbour

approaches, the former showing greater correspondence with the actual 3D overdensity

(Shattow et al., 2013), though orientation, aperture size and redshift uncertainty can have

a significant effect on the quantitative overdensity value (Chiang et al., 2013; Monaco et al.,

2005), which can in turn affect probability and mass estimates. In particular, redshift

uncertainty acts to effectively elongate the measurement aperture, which lowers the

measured overdensity by including more field volume. It also complicates the definition of
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a protocluster in simulations - when does a randomly selected irregular aperture represent

a protocluster or not? Prior to virialisation, protoclusters are an integral part of the

high redshift cosmic web, tracing the nodes and filaments of the large scale structure

(Overzier, 2016; Shimakawa et al., 2017a), which also complicates their identification and

discrimination from the field, particularly so when using elongated apertures due to the

risk of alignment.

2.5.1.1 Protoclusters traced by Active-Galactic Nuclei

A significant number of protoclusters have been found targeting HzRGs (Fèvre et al.,

1996; Miley et al., 2006; Venemans et al., 2007; Galametz et al., 2010; Hatch et al., 2011a;

Koyama et al., 2012; Wylezalek et al., 2013; Shimakawa et al., 2014; Cooke et al., 2014).

Both Ramos Almeida et al. (2013) and Hatch et al. (2014) propose that the large-scale

overdense environment may be causally connected to the presence of a radio-loud AGN,

which may not necessarily reside at the peak of the overdensity. Searches surrounding

quasars, on the other hand, have turned up a less conclusive picture; whilst many luminous

quasars are clearly located in overdensities (Husband et al., 2013; Adams et al., 2015;

Hennawi et al., 2015; Morselli et al., 2014; Mazzucchelli et al., 2017; Miller et al., 2016),

many reside in average overdensity environments (Willott et al., 2005; Uchiyama et al.,

2017).

2.5.2 Star Formation in Protocluster Environments

The SFS shows a strong dependence on environment at low redshift, with a clear red-

sequence observed in local clusters, however Peng et al. (2010) find a more moderate

overdensity dependence outside collapsed clusters. There are few comprehensive

observational studies of protoclusters due to their rarity, large angular sizes and the

difficulty of identifying their constituent galaxies from uncertain redshift estimates.

However, a small number of protoclusters between 1.5 < z < 2.5 have been studied in

detail, with spectroscopic redshifts of star forming galaxies allowing accurate determination

of their protocluster membership. These observations suggest a very small environmental

dependence on the SFS (Koyama et al., 2013; Cooke et al., 2014; Duivenvoorden et al.,

2016). For passive galaxies, determining the protocluster membership is more difficult, as

they are typically only seen in photometry, which incurs large redshift uncertainties.
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Where stellar mass and SFR estimates of the constituent galaxies have been derived, a

similar trend to that at low redshift is emerging (Koyama et al., 2012, 2013; Shimakawa

et al., 2018, 2017a); protoclusters contain a higher density of star forming galaxies, but

the star formation rate for a galaxy at a given stellar mass is very similar to that seen in

the field (Shimakawa et al., 2017a, 2018; Smith et al., 2019). However, the passive fraction

of galaxies does exhibit a strong environmental dependence up to z ∼ 2.5 (Lee-Brown

et al., 2017; Cooke et al., 2016; Newman et al., 2014).

2.5.3 Numerical Studies of Protoclusters

Simulations allow us to explicitly follow the evolution of overdense environments, and link

the properties of their descendant clusters to their high redshift progenitors. Due to the

rarity of clusters, large volumes are needed to obtain a large sample, which necessitates

either semi-analytic approaches or ‘zoom’ simulations of individual objects. Chiang et al.

(2013) used a Semi-Analytic Model (SAM) to study the spatial distribution of protoclusters,

and derived relationships between high redshift overdensities and the descendant cluster

mass, a useful protocluster diagnostic. Contini et al. (2016) studied the properties of

protoclusters in resimulations using a SAM, and found good agreement with observations

of the star formation rate as a function of radius from the most massive galaxy. In

Chapter 3 I extend the analysis of Chiang et al. (2013), finding an optimal aperture within

which to measure galaxy overdensities in order to best identify and characterise them.

Simulations have found that the majority of the z = 0 cluster stellar mass is formed at

z > 3, particularly the stellar content of the central brightest cluster galaxy (BCG), and

then assembled at lower redshifts (Lucia & Blaizot, 2007; Ragone-Figueroa et al., 2018).

Despite their rarity, protoclusters occupy an increasing fraction of the cosmic volume

with redshift (up to 5% by z = 7) and contribute significantly to both the cosmic star

formation rate and stellar mass density at high redshift (15% and 40% at z = 2 and

z = 7, respectively; Chiang et al., 2017; Muldrew et al., 2018). It is therefore crucial to

model these overdense environments at high redshift correctly in order to predict both

high redshift observables and the low redshift properties of their collapsed descendants.

In Chapter 4 I use the high-redshift outputs of the Cluster-Eagle (C-Eagle) simulations

(Barnes et al., 2017b; Bahé et al., 2017), 30 zoom simulations of galaxy clusters using the
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EAGLE model, to study protocluster environments across a range of descendant cluster

masses. I use the Spiderweb merger trees (Bahé et al., 2019) to identify protocluster

galaxies, and treat the large sample of galaxies outside protoclusters as a comparison field

region. I also utilise two periodic box simulations (Schaye et al., 2014; Crain et al., 2015)

as additional comparison field regions, extracting any protoclusters contained in them.

Together these simulations allow the study of the dependence of the SFS on protocluster

environment.

2.6 Machine Learning Methods

Machine Learning (ML) methods have become increasingly popular in Astronomy in the

last 20 years (Ball & Brunner, 2010; Baron, 2019), and can be divided into two main

approaches: supervised and unsupervised learning. In this thesis I use both supervised

and unsupervised approaches, described in detail in Chapter 5.

Supervised ML approaches use existing data to train a machine to predict on unseen data;

this can take the form of a regression or classification problem. Compared to traditional

model fitting approaches, ML methods do not require a parametrised model defined up

front, instead building a flexible model directly from the input data. The input data are

known as features, and the output data you wish to predict a relationship with are known

as predictors. Where the predictors are continuous this is a regression problem; where

they are discrete it is a classification problem. The features and predictors are split into

training and testing sets, typically 80-20%, respectively. The training set is used to train

and tune any hyperparameters of the model; the test set is held out, not involved in any

of the training, and used at the end of the analysis to evaluate the model.

Unsupervised learning algorithms learn from data without being given known relationships

between variables, and are typically used for clustering analysis, dimensionality reduction,

outlier detection and visualisation.

Machine learning methods can have large numbers of free parameters. For Artificial Neural

Networks (ANNs) one can think of the weights and biases of each ‘neuron’ as an individual

parameter, which means large ANNs have tens of thousands of free parameters to tune

and choose. The ‘hyperparameters’ are then considered the higher-level parameters of the

model, such as the number of layers, or the chosen activation function. These parameters
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are often chosen algorithmically through brute-force approaches on the training data,

however rather than using the test set for evaluation, hyperparameter optimisation is

carried out on a subset of the training data called the validation set, typically 10% of the

training data.

It is often necessary to normalise the features to a common scale. This is necessary where

there are multiple features with different dynamic ranges, or for certain ML approaches

such as neural networks where the activation function is insensitive to features outside

some given range (typically mean zero and variance one, for regression problems).

For supervised approaches the model is evaluated using some loss function, which evaluates

the distance between the prediction and the true predictors. Typical loss functions for

regression problems include the Mean Absolute Percentage Error (MAPE) and the Mean

Squared Error (MSE). In Chapter 5 I present an alternative loss function, Symmetric

Mean Absolute Percentage Error, which has particular advantages over other loss functions

in the evaluation of step-wise SFHs, where the SFR is strictly > 0.
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3.1 Introduction

In this chapter we present a study of the characteristics of galaxy protoclusters using

the latest L-galaxies semi-analytic model (Lovell et al., 2018), including an improved

procedure for generating descriptive statistics of protoclusters that models the shape of the

measurement aperture, and a robust protocluster definition for generating probabilities.

We also investigate the spatial characteristics of protoclusters in order to determine

whether the simplifying assumption of spherical symmetry is accurate, and how best to

discriminate protoclusters from the field.

We describe our definitions, selection criteria and the L-galaxies model in Section 3.2,

the galaxy population in protoclusters as a whole (Section 3.3.1), then characterise

protoclusters in terms of their shapes (Section 3.3.2) and sizes (Section 3.3.3). We

investigate the relationship between protoclusters and AGN in Section 3.3.5, and finally in

Section 3.3.4 outline a procedure for generating improved statistics on galaxy overdensities,

and apply the procedure to candidates from the literature (Section 3.4). Where we state

comoving lengths, as opposed to physical , we precede the units with a lower case c, e.g.

cMpc represents comoving mega parsecs.

41Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton, BN1
9QH, UK
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3.2 Models and Methods

3.2.1 Simulation

We use the Millennium dark matter N -body simulation (Springel et al., 2005), which

evolves 21603 particles (with mass 1.43× 109M�) from z = 127 to z = 0, in a comoving

box with side length 480.3 h−1 cMpc. The original simulation was run using WMAP1

cosmological parameters (Spergel et al., 2003), however in this paper we use the halo

properties rescaled to the Planck1 cosmology using the method described in Angulo &

White (2010).

L-galaxies, or the Munich SAM, is a Semi-Analytic Model of galaxy evolution, described

in greater detail in Chapter 2.

The AGN model in L-galaxies is a relatively simple phenomenological representation

of the physical processes that lead to observable quasar and radio activity. It does not,

for example, provide spin information, necessary for a complete description of the radio

jet power (Fanidakis et al., 2011). As such, it does not match quantitative observational

constraints on the accretion rate and black hole mass at high redshift. However, in

this study we are primarily interested in the number density and spatial distribution

of AGN and their hosts with regards to protoclusters; since AGN activity in the model

depends explicitly on host halo mass, and implicitly on environment, a simple accretion

cut should allow us to evaluate their coincidence with overdensities at high-z. A detailed

description of AGN number densities, host halo masses and selection criteria is described

in Section 3.3.5.

3.2.2 Definitions

We define as a cluster any Friends-of-Friends (FoF) halo at z = 0 with M200/M� > 1014.

Using this definition we identify 3825 clusters. We treat everything within R200 of the

halo centre as a cluster member, and anything outside a cluster is labelled part of the

field.

Throughout the paper, we use the following definition of a protocluster: that it is the

ensemble of all objects that eventually end up in a present day cluster. Specifically, a
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protocluster member is any halo or galaxy whose descendant at z = 0 lies within R200 of

a cluster. To identify the protoclusters at a given epoch we follow the merger tree rooted

on each subhalo in the cluster at z = 0, including the central subhalo, back in time to

identify all progenitor halos and their galaxies.

3.2.3 Galaxy selection

We apply four galaxy selection criteria, identical to those employed in Chiang et al.

(2013), with an additional high star formation rate selection, at snapshots corresponding

approximately to z = [2, 3, 4, 5, 6, 7, 8, 9.5]:

SMAS9 : log10(M∗/M�) > 9 (3.1)

SMAS10 : log10(M∗/M�) > 10 (3.2)

SSFR1 : SFR/(M� yr−1) > 1 (3.3)

SSFR5 : SFR/(M� yr−1) > 5 . (3.4)

The star formation rate selections (SSFR1 and SSFR5) most closely resemble the selection

of line emission galaxies using narrow-band filters (e.g. Cooke et al., 2014).

3.2.4 Overdensity

Measures of protocluster overdensity using fixed volume apertures lead to greater

consistency with redshift and better correspondence with the true 3D overdensity as

compared to nearest neighbour approaches (Muldrew et al., 2012; Shattow et al., 2013).

We define overdensity as

δg(x, V, z) ≡ ng(x, V, z)

〈ng(V, z)〉
− 1 ,

where δg(x, V, z) is the overdensity within a volume V centred on position x at redshift

z. The volume can be spherical, V = 4
3
π R3, or cylindrical, V = π R2D, where R is

the radius on the plane of the sky and D is the depth in the line-of-sight direction; we

make clear in the relevant sections which volume is being used. ng(x, V, z) is the number

of selected galaxies within the chosen volume centred on x, and 〈ng(V, z)〉 is the mean

number of selected galaxies in a volume of this size averaged over the entire simulation.
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Where we wish to compare measured overdensities as closely as possible to observations, we

must take into account peculiar motions along the Line-of-Sight (LoS). High velocities along

the LoS could move a galaxy into or out of a protocluster region, boosting or diminishing

the measured overdensity, respectively. To account for this effect, we transform the LoS

coordinate as follows:

d′ = d+
v los

a(z) H(z)
. (3.5)

Here d is the original comoving coordinate value, d′ is the transformed coordinate, vlos is

the peculiar galaxy velocity in the LoS direction, a is the expansion factor and H(z) is

the Hubble parameter at redshift z. This is derived as follows. The comoving distance, dc,

(assuming a homogeneous universe with a smooth expansion) is defined as

dc =
c

a

∫ ẑ

0

dz

H(z)
(3.6)

where ẑ is the cosmological redshift, and H(z) is the Hubble parameter. If a galaxy has

a peculiar velocity component vpec it will have an apparent distance measured from it’s

redshift dp 6= dc. This will be the result of the redshift due to the hubble flow, and the

apparent redshift caused by the peculair velocity along the line of sight,

v = v̂ + vpec (3.7)

z =
v

c
(3.8)

z ≈ ẑ + zpec (3.9)

So we can rewrite the comoving distance as
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dc =
c

a

[∫ ẑ

0

dz

H(z)
+

∫ ẑ+zpec

ẑ

dz

H(z)

]
(3.10)

= d̂+
c

a

∫ ẑ+zpec

ẑ

dz

H(z)
(3.11)

= d̂+
c

aHz

(zpec) (3.12)

= d̂+
vpec

aH(z)
(3.13)

This equation applies in the comoving (fixed time hypersurface) frame. To correct observed

peculiar motions one must use the proper distance, which leads to a multiple of the scale

factor a in the distance equation,

dp = c

∫ ẑ

0

dz

H(z)
(3.14)

which, when including peculiar velocities, gives the same equation for the apparent distance,

minus the scale factor,

dp = d̂p +
vpec
H(z)

. (3.15)

3.3 Results

3.3.1 The Protocluster Galaxy Population

We begin by looking at the evolution of the galaxy population as a whole from 2 ≤ z ≤ 9

divided into protocluster and field designations. Figure 3.1 shows the Galaxy Stellar Mass

Function (GSMF) for each selection criteria at each redshift, along with the biased GSMF

for those galaxies that reside in protoclusters. The most massive galaxies are more likely

to reside in protoclusters, and there is a dearth of low mass galaxies in protoclusters

compared to the field, similar to trends seen in protocluster observations (Steidel et al.,

2005; Strazzullo et al., 2013; Cooke et al., 2014). The normalisation is significantly lower at

the intermediate to low mass range, similar to that seen in the z < 1 cluster environment
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Figure 3.1: GSMF for all selections. The vertical dotted lines delimit the SMAS9

and SMAS10 selections. Solid lines show the full galaxy population, dashed lines show
galaxies in protoclusters. The highest mass galaxies preferentially appear in protocluster
environments, and there is a dearth of low mass galaxies evidenced by the flat low mass
slope, as seen in Muldrew et al. (2015) for a previous version of the model. SSFR1 extends
to lower stellar masses, but has little effect on the high mass end. SSFR5 truncates the
selection of low mass galaxies, though the shape of the high mass slope is again unaffected.
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Figure 3.2: Top: Number of galaxies over time, for all galaxies (solid), protocluster
galaxies (dashed) and field galaxies (dotted), for each selection. Middle: The fraction of
galaxies in each selection that reside in protoclusters. Bottom: The fraction of protoclusters
that contain at least one galaxy in the given selection.
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(Vulcani et al., 2011).

The top panel of Figure 3.2 shows the number of galaxies over cosmic time, split into

field and protocluster populations. The number of star forming (SSFR1 & SSFR5) galaxies

in protoclusters plateaus at z ∼ 5, whilst similarly star forming galaxies continue to

increase in number in the field. The middle panel shows the fraction of all galaxies from

each selection that reside in protoclusters; at z = 2 a minority (10-20 %) of galaxies lie

in protoclusters, rising to 1
4
, 1

3
, 1

2
and 1 at z > 9 for SSFR1, SSFR5, SMAS9 and SMAS10,

respectively. Conversely, the bottom panel of Figure 3.2 shows the fraction of protoclusters

that contain at least one galaxy from each selection; all protoclusters contain at least

a SMAS9 mass galaxy up to the most extreme redshifts, whereas SSFR5 galaxies are only

observed in a majority of protoclusters at z < 5.

For SMAS10 galaxies at z > 6 there is a > 50% chance they reside in a protocluster, and

> 50% of all protoclusters contain at least one SMAS10 galaxy up to extreme redshifts; such

galaxies can act as beacons of protocluster regions solely by virtue of their existence.

3.3.2 Triaxial Modelling

We have seen that protocluster galaxy membership evolves significantly with redshift and

depends critically on the selection. We now look at the distribution of galaxies within

protoclusters, and present the first model of protocluster shapes, a simple triaxial model

of the galaxy spatial distribution at high redshift, in order to determine the extent to

which they differ from the simplifying assumption of spherical symmetry. We acknowledge

that such a simple model cannot probe collapsed structure such as groups and filaments

within the protocluster, but it is capable of tracing the most prominent structure (if it

exists), and provides insight into the global spatial asphericity, important for overdensity

measurements.

The length and direction of each semi-axis in the triaxial model can be derived from the

eigenvalues and eigenvectors, respectively, of the inertia tensor of the galaxy distribution.

The components of the inertia tensor are given by

Iij =

Ng∑
n=1

(r 2
n δij − rn,irn,j) ,



3.3 Results 45

Figure 3.3: s ratio (a measure of sphericity) and T parameter (a measure of the
form of apshericity) distributions. Each panel shows the 2D (for SSFR1) and marginal
(selection labelled) distributions at a given redshift. Values of s close to 1 indicate
spherical distributions, values close to 0 aspherical. Values of T close to 1 indicate prolate
distributions, values close to 0 oblate; if the s distribution suggests a spherical distribution
then the nature of the asphericity is unimportant. Protoclusters tend to be aspherical,
with a prolate distribution, and this asphericity is pronounced at high redshift. The z = 0
distributions (for SMAS9, since there are an insufficient number of galaxies with high star
formation rates at high-z) are shown in grey for comparison.
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where Ng is the number of galaxies in the protocluster, rn is the position vector of the

n th galaxy, and i and j are the tensor indices (i, j ∈ 1, 2, 3). We ignore the full matter

distribution and focus on observable tracers, setting all galaxies to have equal mass, and

also ignore redshift space distortions, so that any asphericity is randomly orientated. The

moments of inertia of I are given by its eigenvalues, λ1 > λ2 > λ3, which can be translated

into the relative axis lengths (a > b > c):

a =

√
5

2Ng

(λ1 + λ2 − λ3) (3.16)

b =

√
5

2Ng

(λ1 + λ3 − λ2) (3.17)

c =

√
5

2Ng

(λ2 + λ3 − λ1) , (3.18)

Using these axis lengths we introduce three axis ratios,

s ≡ c

a
, q ≡ b

a
, p ≡ c

b
. (3.19)

Of these, s is of particular value as a measure of sphericity: where s = 1, the distribution

is spherical, and where s ∼ 0, the distribution is highly aspherical. The q and p ratios can

be used together to deduce the form of the asphericity: where q ∼ 1(0) the distribution is

oblate (prolate), and where p = 1(0) the distribution is prolate (oblate). An alternative

measure of the form of the asphericity is the Triaxiality parameter (Franx et al., 1991),

T =
a2 − b2

a2 − c2
(3.20)

which measures whether an ellipsoid is prolate (T = 1) or oblate (T = 0), but does not

measure the degree of asphericity.

Similar shape analysis has been applied to a range of astrophysical objects, including

the profiles of cluster dark matter halos (Thomas et al., 1998; Wu et al., 2013). In

such cases the reduced inertia tensor, which weights particles near the centre of the halo

more highly, is often used (Schneider et al., 2012). Since protocluster profiles are less

centrally concentrated than clusters (it is often difficult to unambiguously identify the

protocluster centre), and are more likely to contain multiple filamentary structures, we
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use the unweighted inertia tensor to characterise the entire shape. Bett et al. (2007) also

note that particle discreteness can affect the determination of shape parameters using the

inertia tensor; to mitigate this effect we ignore those selections where the average number

of tracer galaxies in a protocluster drops below 20 at a given redshift.

Figure 3.3 shows the combined and marginal distributions of the s ratio and T parameter

at different redshifts5. At z = 0 (shown in grey) the majority of clusters, as traced by their

galaxies, are mildly aspherical with a prolate configuration.6 Protoclusters, in comparison,

are more aspherical, and the majority are prolate7.

The SMAS9 and SMAS10 selections (shown in the marginal distributions of Figure 3.3)

exhibit greater asphericity than those selected by star formation rate: those tracer galaxies

that make the selection cut tend to be arranged along a single axis, leading to lower values

of s. This suggests that care must be taken when using highly biased selections so as not

to miss galaxies apherically distributed around the protocluster outskirts.

We see evidence in the evolution of s and T for the emergence of a red sequence. Between

z = 8.93 and z = 3.95, s̄ rises steadily from 0.36 to 0.49, then falls to 0.45 by z = 2.07.

There is no dramatic collapse in spatial extent over this period which could explain the

fall in s (Muldrew et al., 2015); most of the collapse to form current-day clusters occurs

at z < 2. Instead, we attribute it to a decrease by a factor of 2 in the number of SSFR1

galaxies between z = 2 and 3, with the decrease predominantly toward the center of each

protocluster (for which we see evidence in Figure 3.5): those galaxies that do make the

SSFR1 cut are distributed irregularly outside the protocluster centre, leading to aspherical

distributions.

3.3.3 Spherical Profiles

Galaxy overdensities are typically measured within cylindrical apertures along the line of

sight (Franck & McGaugh, 2016a). Section 3.3.2 shows that protocluster galaxies tend to

5There is significant evolution in the number of galaxies in protoclusters selected by stellar mass or
star formation rate throughout cosmic time, necessitating comparison between selections where there are
insufficient galaxies to make a robust shape measurement: for example, galaxies at z = 0 are selected
using the SMAS9 criteria, since there are not enough galaxies with high star formation rates at late times,
and at z ≥ 2 only SSFR1 is shown for the combined distribution, as it is the most populous selection.

6At z = 0, s̄ = 0.61, σs = 0.10, T̄ = 0.61, σT = 0.20. This asphericity is greater than that measured
using the full dark matter particle information (Schneider et al., 2012).

7At z = 3, s̄ = 0.50, σs = 0.12, T̄ = 0.65 and σT = 0.20.
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Figure 3.4: Average spherical profiles of protocluster galaxy properties in comoving
coordinates. Top panel: Theoretical completeness (dashed) and purity (solid) profiles for
a model ellipse and sphere with δg + 1 = 1 and δg + 1 = 5. Second panel: Mean purity
and completeness profiles of the protocluster galaxy population at z = 3.95 for the SSFR1

selection. Intrinsic (black) and redshift space distorted (green) curves are shown, along
with their 16th-84th percentile range. Third panel: The same redshift space distorted
profile as in the second panel, split into three descendant cluster mass bins. Bottom:
stacked galaxy overdensity profiles (including redshift space distortions), split into three
descendant cluster mass bins.
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Figure 3.5: Mean completeness (dashed) and purity (solid) profiles for the protocluster
population at a range of redshifts (labelled in the top panel). Panels top to bottom show
the SSFR1, SSFR5, SMAS9 and SMAS10 selections, respectively. Vertical dashed lines show
the approximate aperture sizes used in Figure 3.6.
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be aspherically distributed with a prolate configuration, so such measurements could be

biased by the introduction of many field galaxies, or by missing extended protocluster

structure not contained within the aperture. To investigate we measure the properties of

protoclusters as a function of radius from their centre (defined as the median coordinates

of the selected protocluster galaxies), starting with the completeness and purity profiles

of the galaxy population, before moving on to overdensity profiles.

3.3.3.1 Protocluster Galaxy Completeness and Purity Profiles

We begin by looking at the evolution in the completeness and purity of the protocluster

galaxy population as a function of radius for a toy model ellipse. The volume of the ellipse

represents the protocluster galaxy distribution, and outside represents the field. The

shape of the model ellipse is based on the mean measured protocluster axis lengths for

the SSFR1 selection at z = 3.95,8, and initially assume the galaxy distribution is identical

in both protocluster and field.

The purity and completeness as a function of radius can then be derived from the volume

ratios, as shown in the top panel of Figure 3.4. The model ellipsoid is labelled ‘Ellipse’

and shown in blue, and a spherical model with the same volume is labelled ‘Sphere’ and

shown in light pink. Close to the centre the completeness is low and the purity high, as

expected; as the sphere is grown the completeness increases until it encapsulates all of the

ellipse, whilst the purity begins to fall as more field volume is included. The curves cross

at high values of both completeness and purity.

The second panel of figure 3.4 shows the mean completeness and purity curves for the

protocluster galaxy population in L-galaxies at z = 3.95. We define the centre of the

protocluster as the median of the protocluster galaxy coordinates, the completeness as the

fraction of all protocluster galaxies within the aperture, and the purity as the fraction of

galaxies within the aperture that are members of the protocluster. Both intrinsic (black)

and redshift space distorted (green) coordinates are shown. The 16th-84th percentile

range is shown as a shaded region; the majority of protoclusters exhibit similar profiles,

and cross over at high values within a tight range of radii.

The purity and completeness curves both show gradual evolution toward the edge of the

8a = 11.00, b = 7.56 and c = 5.36 (cMpc)
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protocluster, rather than the sudden change seen in our toy model, and the purity curve

drops off much more gradually, which we attribute to our naive assumption of a uniform

density of galaxies in our toy model – in reality, protoclusters have a higher overdensity

than the surrounding field. To model this, we increase the number of samples in the

ellipse by a factor of 5, simulating a galaxy overdensity of δ + 1 ∼ 5. The completeness

and purity curves for this model are shown in the top panel of Figure 3.4 in dark blue,

labelled ‘Overdense Ellipse’; the purity curve falls much more gradually, as seen in the

SAM. Importantly for measurements of galaxy overdensity, the lower number density

of galaxies in the field acts to reduce the effect of asphericity on the measured galaxy

population, lowering the contamination on the protocluster outskirts and maintaining

relatively high purity out to large radii. It is not unreasonable then, when producing

descriptive statistics on the protocluster population, to adopt spherical symmetry above

some minimum radius.

The inclusion of redshift space distortions has two effects. The coherent motions of galaxies

as they fall toward the centre of the forming cluster leads to an apparent flattening in their

appearance, known as the Kaiser effect (Kaiser, 1987), and we see evidence for it in the

steeper completeness curve; galaxies appear closer to the centre, which can be explained if

they are, on average, infalling, (Contini et al., 2016), and this acts to marginally boost the

overdensity measurement. The purity curve drops at lower radii, which suggests greater

apparent contamination from field galaxies; these galaxies are gravitationally disturbed

by the forming protocluster, but do not enter the virial radius by z = 0. The two curves

still cross at high values (> 80%).

The third panel of Figure 3.4 shows the mean completeness and purity curves for

protoclusters at z = 3.95 split by descendant cluster mass. There is a positive correlation

between cluster size and crossover radius: protoclusters with the most massive descendants

trace larger volumes than those that will form lower mass clusters. In order to capture

the majority of the galaxies in the most massive protoclusters a much larger field of view

is required. However, the majority of protoclusters can be captured in their entirety using

a much smaller aperture, and even the largest protoclusters contain a significant fraction

of their tracer galaxies within a smaller aperture (> 50% at R = 10 cMpc). The crossover

values remain high (> 80%) for all mass bins.
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Figure 3.5 shows the mean completeness and purity for each selection criteria with redshift.

For the most stringent selections at the highest redshifts the completeness curves start

at non-zero values, since some protoclusters may be represented by only a single galaxy,

boosting the mean. Similarly, the purity curves also remain high, since where galaxies

are rare in protoclusters, they also tend to be rare in the field; where they exist, they are

highly clustered and located in protoclusters (see Figure 3.2). The purity curve falls at

lower radii with decreasing redshift for all selections, caused by the protocluster collapse

and central concentration, and the higher relative density of field galaxies with decreasing

redshift (see Figure 3.2).

The exception to this evolution is seen at low redshift (z 6 3) for both SSFR1 and SSFR5:

the purity falls significantly at much lower R, and the completeness curve is also steeper.

Figure 3.2 shows that the number of SSFR1 protocluster galaxies decreases below z = 3.10,

which can be explained by the emergence of a red sequence; since there are fewer star

forming galaxies at the centre of protoclusters relative to the outskirts, the completeness

curve rises more rapidly with radius. We see further evidence for the emergence of a red

sequence in the asphericity distribution between z = 3 and 2 (see Section 3.3.2).

The crossover between purity and completeness remains high, > 80%, and is relatively

insensitive to changes in redshift or selection criteria. The cross over radii also all fall

within a narrow range of values, which suggests a characteristic scale can be chosen,

RC ∼ 10 cMpc , (3.21)

that maximises the completeness and purity regardless of selection criteria or redshift.

This corresponds approximately to an angular scale (2RC) of 10 arcmin on the sky at

z = 2, falling to 6 arcmin by z = 9, not much larger than typical focused searches around

biased tracers such as AGN.

3.3.3.2 Protocluster Galaxy Overdensity Profiles

The bottom panel of Figure 3.4 shows the differential stacked overdensity profiles,

measured using all galaxies (protocluster+field) within a spherical aperture centred

on the protocluster, and split by descendant mass. We find similar centrally peaked

profiles to the surface overdensities measured in Overzier et al. (2009) & Chiang et al.
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(2013). The slope of the overdensity profile at small-intermediate radii is shallower for

higher mass protoclusters – they are less centrally concentrated and more extended – and

for lower mass protoclusters they are more sharply peaked toward the centre. This may

be as a result of our protocluster centre definition: lower mass protoclusters typically

have only a single dominant group, so the centre will be defined within this group, leading

to a peaked profile at low R. Conversely, in larger protoclusters with multiple similarly

sized subgroups the median coordinates may lie in an intergroup region, lowering the

measured overdensity on small scales. However, measuring the overdensity centred on

a single subgroup will not be representative of the entire protocluster, and may lead

to lower purity and completeness at larger radii. We therefore emphasise the need to

make descendant mass estimates from overdensity measurements over sufficiently large

apertures (R > 7 cMpc), which we demonstrate in Section 3.3.4.2. The variation in slope

of the overdensity profile with mass suggests that measuring overdensity on multiple

scales could lead to a more accurate descendant mass estimate, however we found that

the improvement in the fit is not substantial.

3.3.4 Galaxy Overdensity Statistics

Protoclusters have irregular shapes, but this has a small effect on the completeness and

purity of their galaxy populations when measured in a sufficiently large aperture. However,

the size and shape of the aperture used to measure the overdensity can have a significant

effect on the qualitative value of the overdensity (see the bottom panel of Figure 3.4, and

Shattow et al. (2013)), on which further properties, such as protocluster probabilities

and descendant masses, are based. We propose an improved procedure for deriving

overdensities that takes into account irregular apertures.

3.3.4.1 Identifying Protoclusters in Galaxy Overdensities

We select 100 000 random regions, with surface area, π R2, and depth, D ≡ ∆d′, in the

Millennium volume. We call each of these regions a candidate. For each galaxy in the

candidate we find its descendant halo mass. If no galaxies in the candidate have cluster

descendants, the candidate is labelled a field region. If there are cluster progenitors in the

candidate, the completeness, C, and purity, P , of the galaxy population in this candidate

with respect to each descendant cluster is calculated. Each region can then be classified as
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Table 3.1: Candidate region labelling conditions. C is completeness, P purity, and C lim

and P lim are limiting values of each that differentiate each classification.

.

Label Condition Description
Proto C ≥C lim and P ≥P lim Protocluster

region.
ProtoField C ≥C lim and P <P lim Region traces

the
combination of a
proto-
cluster and field
region.

PartProto C <C lim and P ≥P lim Region traces a
part
of a protocluster.

Field C <C lim and P <P lim Field region.

Figure 3.6: Top: Fractional probability distribution of candidate being Proto, PartProto,
ProtoField or Field (SSFR1, z = 3.95). Where the distribution is hatched represents those
candidates that trace high mass (M200/M� ≥ 5× 1014) protoclusters. Each panel shows
a different aperture size, labelled at the top. We choose C lim and P lim values equal to
the 5th percentile of the completeness and purity of the protocluster population (for this
aperture and selection). Bottom: Normalised probability density distributions for each
classification, split into low and high mass descendants.
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Figure 3.7: Colour map showing the Bhattacharrya distance (DB) between the combined
Proto+PartProto and Field distributions for the SSFR1 SSFR5 and SMAS9 selections, over
a range of redshifts (z) and aperture sizes (R = D/2, cMpc). The SMAS10 selection, and
some redshifts, are not shown since there are insufficient galaxies to produce a reasonable
statistic. DB is maximised at R = 6 for all selections at almost all redshifts, and decreases
as the selection region is increased in volume.

Proto: ‘protocluster’, ProtoField: ‘protocluster+field’, PartProto: ‘part of a protocluster’,

or Field: ‘field’ according to the conditions detailed in Table 3.1. In the rare case where

there are multiple cluster descendants, the cluster with the highest value of the purity

and completeness added in quadrature is chosen.

Importantly, the values of C lim and P lim are chosen based on the 5th percentile of the

completeness and purity of the protocluster population given the chosen selection criteria

and aperture. This allows a more accurate characterisation of candidate regions that takes

into account the actual galaxy membership of protoclusters. For example, one would not

expect to have high purity in a large aperture due to contamination from field galaxies on

the outskirts, but would demand high completeness since the majority of a protoclusters

galaxies should be captured. We demonstrate the effect of changing C lim and P lim whilst

maintaining a fixed aperture in Appendix 3.6.1.

Once all candidates are labelled, we can calculate the fractional probability that a measured

overdensity represents one of our 4 labels, further split by the mass of the descendant

cluster. Figure 3.6 shows an example; the upper panel shows the fractional probability

distribution, the lower panel the probability density distribution. The default parameters
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are R = D/2 = 10 cMpc and z = 3.95, using the SSFR1 selection, and we choose C lim and

P lim values equal to the 5th percentile of the completeness and purity of the protocluster

population with this aperture and selection. As expected, higher galaxy overdensities

are more likely to evolve into clusters, and the highest overdensities are more likely to

form more massive protoclusters. At intermediate to high overdensities, a considerable

fraction of candidates trace PartProto regions. All of these PartProto candidates trace

high mass protoclusters; lower mass protoclusters cannot satisfy C lim whilst simultaneously

satisfying P lim as they are not large enough. At intermediate overdensities there is a small

probability that a candidate is probing a ProtoField region, and these are all for smaller,

lower mass protoclusters.

The approach is similar to that demonstrated in Chiang et al. (2013), though the criterion

for classifying a random region as a protocluster is different: they require that the center of

the random region lies within half a box length of a protocluster centre, so that the window

covers, on average, > 50% of the protocluster mass.9 Our analysis in Section 3.3.2 and

Section 3.3.3 suggests that the assumption of spherical symmetry is violated, particularly

at high-z, so this definition may identify regions with significant field galaxy populations.

Despite these differences (including the use of an updated version of L-Galaxies and

the Planck cosmology) we achieve consistent results: the protocluster fractions of SSFR1

galaxies at z ∼ 4 match the combined Proto and PartProto distribution in the right panel

of Figure 3.6, with a slight shift in quantitative overdensity to lower values (possibly

due to using a slightly larger volume). The probability density distribution for low mass

protoclusters appears to show less distinction from the field distribution as seen in Figure

6 in Chiang et al. (2013), which may be attributed to the updated protocluster definition,

or to the change in cosmology.10 Whilst consistent, we note that our approach explicitly

distinguishes protoclusters identified partially or in whole, and can handle irregularly

shaped apertures.

The probability density distributions at the bottom of each panel can be used to evaluate

the separation in overdensity space of protocluster and field regions. We determine the

Bhattacharyya distance (Bhattacharyya, 1946), a measure of the dissimilarity between

9private correspondence
10The Planck cosmology used in Henriques et al. (2015) leads to an increased dark matter particle

mass, an increased box size, and the z = 0.12 output of the original WMAP1 simulation becomes the new
z = 0; the latter two effects would lead to a diluted quantitative overdensity measurement
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Table 3.2: Protocluster mass estimate fit parameters for Equation 3.23, for the SSFR1,
SSFR5 and SMAS9 selections, with error estimates.

Selection a b c C R2

SSFR1 0.146 -1.077 2.628 1.752 0.547
SSFR5 0.658 -1.317 1.859 0.117 0.549
SMAS9 2.883 -1.681 1.452 -0.235 0.507

two probability distributions, defined as

DB = − lnBC, where BC(p, q) =
∑
δ∈Γ

√
p(δ)q(δ) (3.22)

and p and q are the probability distributions over the galaxy overdensity domain Γ. DB,

calculated between the Field and combined Proto and PartProto distributions for a range

of redshifts, aperture sizes and selections, is shown in Figure 3.7. At lower redshifts the

distinction is greatest on small scales (R = 6 cMpc) for all selections, though the distinction

on the characteristic scale (R = RC = 10 cMpc) is still relatively high compared to larger

scales. At higher redshifts the distinction is greatest at RC. This seems to suggest that,

in order to best separate protoclusters from the field, one should use a smaller aperture

at lower redshifts and a slightly larger one at higher redshifts. However, the overdensity

profiles shown in Figure 3.4 show that a larger aperture allows the greatest discrimination

of protocluster descendant mass, and in Section 3.3.5 we find that, in searches surrounding

AGN, DB is maximised at RC due to the non-central location of the AGN within the

protocluster. We therefore still recommend making overdensity measurement on a scale

of RC for all redshifts and selections.

3.3.4.2 Protocluster Mass from Galaxy Overdensity

We now explore the relationship between high redshift overdensity and descendant cluster

mass by fitting an empirical relation between the two. We fit to all halos at z = 0 with

masses M200/M� > 1013 in order to fully assess the spread in descendant masses for a

given overdensity, calculating the overdensity measured in a single cylindrical aperture

with radius and depth equal to the characteristic scale, RC = 10 cMpc; on smaller scales

descendant mass cannot easily be distinguished through galaxy overdensity (see Figure 3.4,

bottom panel).
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Figure 3.8: Top panels: Galaxy overdensity (SSFR1) against descendant halo mass for
all halos with log10(M200 /M�) > 13. The fit at each redshift is shown in orange. Those
objects used in the fit are shown in blue, those below the overdensity threshold in grey.
Our cluster mass definition (log10(M200 /M�) > 14) is delimited by the horizontal dashed
black line. Bottom panels: Ratio of the estimated and measured masses.
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The relationship between overdensity and descendant mass is parameterised as follows:

M200/(1014M�) = a (1 + z)b (1 + δ)c + C . (3.23)

where M200 is the descendant mass, and δ is the measured galaxy overdensity. We fit

the SSFR1, SSFR5 and SMAS9 distributions between z = 2 − 7 using the curve_fit least

squares minimisation method provided by scipy (Jones et al., 2001). The fit is illustrated

in Figure 3.8 for the SSFR1 selection, with residuals shown at the bottom of each panel.

We ignore both the SMAS10 selection and z > 7 due to a lack of galaxies. A striking feature

of Figure 3.8 is the spread in descendant halo masses for δgal < 4.5. We cannot make any

meaningful descendant mass prediction below this overdensity limit, so we limit our fit to

above this range; whilst there is a chance that such regions do trace protoclusters, the

vast majority of them do not. The exact choice of threshold overdensity depends on many

factors that affect the overdensity distribution (aperture size, selection, etc.). For this

aperture, the distribution conveniently turns over at descendant masses of ∼ 1014M�,

which makes distinguishing high mass protoclusters by overdensity somewhat easier; lower

mass protoclusters are harder to distinguish from the field.

A non-linear relationship provides a marginally better fit for the very highest descendant

masses. In Section 3.3.3 we noted that the shape of protocluster overdensity profiles

was dependent on their descendant mass, but including overdensity measured on two

scales leads to no appreciable improvement in the fit, which we attribute to the scatter in

overdensity profiles.

Chiang et al. (2013) derive a similar relation between overdensity and descendant mass,

ignoring redshift space distortions, but taking into account the aperture size, whilst the

coefficients of our empirical model must be rederived for differing apertures. We note

that they only apply it to overdensities surrounding protoclusters, which underestimates

the scatter in descendant halo mass at intermediate overdensities (see Figure 3.8), and in

their Figure 12 showing the residuals they ignore objects with descendant masses below

the protocluster mass threshold.
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Figure 3.9: Number density evolution of HzRGs (blue) and quasars (solid orange) subject
to the accretion cuts stated in Section 3.3.5. The quasar mode accretion cut was selected
in order to match the number density evolution as measured by Hopkins et al. (2007)
(dotted orange).

3.3.5 AGN as Protocluster Tracers

Both quasars and High Redshift Radio Galaxies (HzRGs) are expected to act as tracers

of protocluster regions. In order to test this assumption we select a sample of quasars and

HzRGs whose number densities match observations at high-z (Section 3.3.5.1), find their

surrounding galaxy overdensities (Section 3.3.5.2) and investigate their coincidence with

protoclusters (Section 3.3.5.3).

3.3.5.1 AGN selection

We choose our quasar mode accretion cut in order to match the integrated number

densities from Hopkins et al. (2007) between z = 2− 5 (assuming a lower luminosity limit

of 1044 Lbol / erg s−1):

Ṁ•(quasar)/(M� yr−1) > 0.0036 . (3.24)

This gives a reasonably good fit to the normalisation and redshift evolution (see Figure 3.9).

The accretion rate can be translated into a bolometric luminosity through the following

prescription,

Lbol = εṀ•c
2 (3.25)
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where Ṁ• is the accretion rate and ε = 0.1. For the quasar accretion mode this gives a

lower limit of Lbol > 2×1043 ergs s−1, somewhat lower than typical intermediate-luminosity

quasars, which suggests an underprediction of the black hole accretion rate at high-z.

Figure 3.9 shows a similar decline in number density of HzRGs in the model from z ∼ 2.

There is still significant uncertainty about the position and luminosity dependence of a

high redshift cutoff in observations (Jarvis et al., 2001; Venemans et al., 2007; Rigby et al.,

2011); we therefore choose a radio mode accretion threshold in order to approximately

match the number densities measured by Dunlop & Peacock (1990) for the most powerful

radio galaxies over the redshift range z = 2− 5:

Ṁ•(radio)/(M� yr−1) > 0.001 . (3.26)

We also adopt more conservative accretion cuts in order to test any dependence on the

chosen cut-off (see Section 3.3.5.2).

Each panel of Figure 3.10 shows the distribution of black hole accretion rates as a function

of host halo mass, for a range of redshifts, along with the marginal distribution of halo

masses for the total AGN population and our selection. Each accretion mode is distinct:

HzRG tend to populate higher mass halos, with a median mass log10(M /M�) ∼ 12.5, as

expected since it is only the most massive halos that have a sufficient reservoir of hot gas

to power this accretion mode. Quasars populate a much wider range of halo masses with a

lower median mass of log10(M /M�) ∼ 11.5 at all redshifts considered. The quasar mode

accretion rate is proportional to the product of the ratio of the masses of the merging

galaxies and their combined cold gas mass, Ṁ•(quasar) ∝ Msat /Mcen ×Mcold. Whilst

major mergers of high mass halos are rare, high quasar mode accretion rates can still be

achieved in massive halos through minor mergers where the primary halo has a large gas

reservoir.

3.3.5.2 Galaxy Overdensities Surrounding AGN

Given our AGN selection criteria from Section 3.3.5.1, figures 3.11 and 3.12 show the

galaxy overdensity (SMAS9) in the vicinity of each quasar and HzRG (respectively) against

its descendant halo mass for a range of redshifts and aperture sizes.11 Each coloured

11for brevity we use regular apertures, R = D/2.
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Figure 3.10: Distribution of AGN luminosity against host halo mass, for a range of
redshifts. Bottom panels: 2D distribution of bolometric luminosity for the combined radio
& quasar accretion modes against host halo mass. White dashed and dash-dot lines show
the independent median of the relationship for the quasar and radio accretion modes,
respectively. Horizontal red and blue dashed lines delimit the accretion cuts stated in
Section 3.3.5. Top panels: Marginal distribution of host halo masses for the whole AGN
population as filled histograms, and as step histograms for the accretion cuts stated in
Section 3.3.5.
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Figure 3.11: Top: Galaxy overdensity (SMAS9) in the vicinity of quasars (selected
according to the criteria in Section 3.3.5) against descendant halo mass. Solid lines show
the binned mean, and the shaded region shows the 16th-84th percentile range for the z = 2
selection. Where there are less than 20 quasars in a bin, individual objects are plotted.
The fit from Section 3.3.4.2 is shown as the dashed line in the central panel. Bottom:
Probability density functions (PDF) for those quasars that evolve into clusters, and those
that do not. Inset: Bhattacharrya distance, DB, between the PDF for quasars that evolve
into clusters and those that do not, as a function of aperture size. The peak indicates the
aperture size at which AGN embedded in protoclusters are best discriminated from the
field.

Figure 3.12: As for Figure 3.11, but for the HzRG selection.
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line shows the binned mean for all AGN at each redshift, and 16th − 84th percentiles

are shaded for the z = 2 selection. These figures can be used to read off the estimated

descendant halo mass of an AGN given its surrounding galaxy overdensity.

The bottom of each panel shows the normalised probability density distribution for those

AGN that end up in clusters and those that do not, in solid and dotted lines respectively,

which can be used to calculate the Bhattacharrya distance (introduced in Section 3.3.4.1)

to evaluate their level of separation in overdensity space. DB is shown as a function of R

in the inset figure in the third panel of each figure; it peaks between 5 − 10 cMpc for both

selection, but slightly higher for quasars. This is also higher than that seen for random

regions of the same size in Section 3.3.4.1; this can be explained by the non-central location

of AGN within protoclusters. For protoclusters containing quasars, the median distance

of the quasar from the centre is ∼ 5.05 cMpc at z = 3.95; apertures of size ∼ 10 cMpc

capture the greatest proportion of the overdense protocluster whilst minimising field

contamination, boosting the overdensity associated with that AGN, whereas smaller

apertures sample the low overdensity tail. For HzRGs we see a similar trend with radius,

but DB peaks at lower radii, which can be attributed to the fact that the median distance

of HzRGs from the centre of their host protocluster is lower (3.04 cMpc at z = 3.95).

Hatch et al. (2014) find that radio loud AGN appear to reside in average overdensities on

scales of 0.5Mpc, but overdense environments on larger scales, in agreement with this

interpretation.

The location of each AGN type within protoclusters can be explained by their differing

treatment in the model. HzRGs preferentially appear in higher mass halos; during cluster

assembly a dominant subhalo, with mass M/M� ∼ 1012 emerges at intermediate redshifts

(Chiang et al., 2013), typical of HzRG hosting halos, and will either already be at the

center of the protocluster region or will migrate towards it. In contrast, high luminosity

quasars can be triggered by both major and minor merger activity; whilst there will be

many minor mergers with massive halos in the dominant subhalo, there will also be a large

number of major mergers between intermediate mass halos elsewhere in the protocluster,

so that the average quasar location is further from the protocluster centre.

The mass predictions from Section 3.3.4.2 are shown as dashed lines in the centre panel.

Puzzlingly, the predicted descendant mass for a given overdensity is lower for AGN



3.3 Results 65

Figure 3.13: The completeness (dashed), and purity (solid) of AGN as protocluster
tracers, for both HzRGs (blue) and quasars (green), and for both accretion thresholds
(see Section 3.3.5.1 and Section 3.3.5.3).

than protoclusters: one would expect, for a given protocluster, the centrally measured

overdensity to be larger than from the non-central AGN. We attribute this to a selection

effect; not all protoclusters contain AGN at these redshifts, so the selection does not

necessarily have the same descendant mass distribution.

3.3.5.3 The Coincidence of AGN & Protoclusters

Figure 3.13 shows the completeness and purity of AGN as biased tracers of protoclusters,

where completeness in this context refers to the fraction of all protoclusters traced by

AGN, and purity to the ratio of protoclusters to field regions traced. In order to assess the

effect of our accretion cut choice, we also show the following more conservative accretion

cuts:

Ṁ•(radio)/(M� yr−1) > 0.004 (3.27)

Ṁ•(quasar)/(M� yr−1) > 0.018 . (3.28)
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For both selections, at low redshifts the completeness tends to be high and purity low,

whilst at high redshift the completeness is low and purity high. Only at a few intermediate

redshifts are the completeness and purity simultaneously high, and this cross over is highly

dependent on the adopted accretion threshold.

These trends can be explained by the average host halo mass of quasars and HzRGs.

The massive halos that host HzRGs are the very peaks of the matter distribution at

z > 3.5, tracing those regions that are most likely to form clusters (see Section 3.3.4.2),

hence the high purity of the selection. By z ∼ 2 halos of mass log10(M /M�) ∼ 12.5 are

more numerous and do not necessarily coincide with protocluster regions, so the purity

decreases, but the completeness rises sharply. We see no clear evidence for environmental

triggering of HzRGs, as suggested by Hatch et al. (2014); instead, HzRGs occur within a

narrow range of host halo masses, coincident with forming protocluster cores or groups

(Chiang et al., 2017).

Similarly, at z > 5 the majority of high stellar mass (SMAS10) galaxies reside in protoclusters

(see Figure 3.2), so major mergers between such galaxies, triggers of quasar mode accretion,

will predominantly occur in protocluster environments, hence the high purity of quasar

tracers. This is true of both accretion cuts; the most luminous quasars at z ∼ 6 do indeed

reside in protoclusters, but there are far too few of them to trace an appreciable number of

protoclusters. At later times there is also a population of massive galaxies in the field that

may merge, reducing the purity. There are also less frequent mergers between massive

galaxies in protoclusters once a dominant subhalo has formed at the core, which could be

responsible for the plateau in completeness at low redshifts.

Orsi et al. (2016) find similar trends in their model; they observe that half of all HzRGs

at z = 2.2 have cluster descendants, whereas in our model the fraction is approximately

between a third and a half, depending on the accretion threshold. They also find 19% of

quasars have cluster descendants, similar to our value of ∼ 21% for the standard accretion

threshold, but slightly lower than the conservative cut. Observationally, Venemans et al.

(2007) find that 75% of powerful HzRGs in the redshift range 2 6 z 6 5 reside in

protoclusters, which agrees approximately with the mean AGN fraction in this range for

both accretion thresholds. They use a ∼ 3× 3 Mpc aperture, much smaller than RC; the

analysis in Section 3.3.5.2 suggests that measuring overdensity around HzRGs on this scale
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will be biased lower, which makes their high measured protocluster fraction somewhat

surprising, however they do adopt a more lenient protocluster definition (a factor of 2-5

overdense compared to the field; Figure 3.12 suggests an overdensity > 8 is required) and

observe very powerful HzRGs which may be biased toward high mass protoclusters with

higher probabilities. The Clusters Around Radio-Loud AGN (CARLA) survey (Wylezalek

et al., 2013) found 66% of HzRGs reside in overdense regions at z ∼ 2.4 (Hatch et al.,

2014), approximately equal to the conservative accretion threshold, and Wylezalek et al.

(2013) find 55% of HzRGs are overdense by 2σ, and 10% by > 5σ (for 1.2 < z < 3.2),

which, if we assume that the lower overdensity limit corresponds to true protoclusters,

matches our conservative accretion threshold, and the results of Orsi et al. (2016).

How effective are AGN as biased tracers of protoclusters? Our model suggests that it

depends strongly on redshift. At high redshift, HzRGs act as reliable tracers of protocluster

regions but will not reveal the presence of all protoclusters, whereas quasars reside in a

more diverse range of environments. At lower redshifts almost all protoclusters have at

least one AGN, but most AGN do not reside in protoclusters. At extremely high redshifts,

Figure 3.2 suggests that using masssive galaxies as tracers will lead to the identification of

a much more complete sample of protoclusters compared to using AGN, though it should

be noted that such galaxies will typically exhibit observable AGN activity too. We leave

the investigation of whether AGN-hosting protoclusters are a distinguishable population

for future work.

3.4 Discussion

In Section 3.3.4.1 we presented an improved procedure for predicting the fate of observed

galaxy overdensities. To demonstrate, we apply the technique to a number of observational

candidates in the literature. Table 3.3 lists estimated protocluster probabilities and

descendant masses for 13 protocluster candidates from the literature, each of which have

been studied in Chiang et al. (2013). We also apply the technique to the first 12 candidates

presented in the Candidate Cluster and Protocluster Catalogue (CCPC) compiled in

Franck & McGaugh (2016a), shown in Table 3.4; this catalogue, whilst heterogenously

selected, uses smaller, regular (2R ∼ DC) apertures to measure overdensity, and provides

predictions for the protocluster probability and decendant mass derived from Chiang
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Table 3.3: Estimated protocluster probabilities for candidates from the literature. All
candidate estimates use the SSFR selection, and combine the Proto and PartProto selections
in the protocluster definition. Descendant mass estimates are omitted where protocluster
probabilities are low.
Notes: (a) Redshift. (b) Full width redshift uncertainty. (c) Aperture length
corresponding to redshift uncertainty. (d) Observation window area in square arc minutes.
(e) Aperture radius giving equal area to the observation window. (f) Measured galaxy
overdensity within the specified aperture. (g,h) Mean completeness and purity for each
selection, and 5th − 95th percentile range. We use the lower percentile as our value for
Clim and Plim. (i) Derived protocluster probability. (j) Descendant masses estimated using
our fitting procedure.
References: (1) Venemans et al. (2007) (2) Steidel et al. (2005) (3) Hatch et al. (2011b)
(4) Tanaka et al. (2011) (5) Venemans et al. (2005) (6) Matsuda et al. (2005) (7) Steidel
et al. (2000) (8) Yamada et al. (2012) (9) Venemans et al. (2002) (10) Venemans et al.
(2004) (11) Ouchi et al. (2005) (12) Toshikawa et al. (2012)

Name z a ∆ z b D c Window d R e δ f
g C g

lim P h
lim PC(SSFR1) i log10(Mz=0/M�) j

cMpc arcmin2 cMpc
PKS 1138-2621 2.16 0.053 72.6 49 6.36 3+2

−2 0.921.0
0.60 0.280.50

0.15 50% 14.530

HS1700-FLD2 2.3 0.03 38.7 64 7.52 6.9+2.1
−2.1 0.981.0

0.72 0.340.59
0.18 100% 15.089

4C 10.483 2.35 0.046 58.0 6.25 2.37 11+2
−2 0.30.6

0.08 0.560.86
0.26 1.0% -

4C 23.564 2.48 0.035 41.8 28 5.16 4.3+5.3
−2.6 0.80.97

0.44 0.470.72
0.26 55% 14.557

MRC 0052-2411,5 2.86 0.054 55.6 49 7.32 2+0.5
−0.4 0.941.0

0.62 0.340.59
0.18 55% 14.497

MRC 0943-2421,5 2.92 0.056 56.4 49 7.39 2.2+0.9
−0.7 0.941.0

0.63 0.340.58
0.18 55% 14.430

SSA22-FLD6,7,8 3.09 0.066 62.5 81 9.74 5+2
−2 1.01.0

0.83 0.210.44
0.11 29% -

MRC 0316-2571,5 3.13 0.049 45.8 49 7.62 2.3+0.5
−0.4 0.951.0

0.65 0.370.62
0.20 59% 14.486

TN J2009-30401,5 3.16 0.049 45.3 49 7.65 0.7+0.8
−0.6 0.951.0

0.65 0.370.62
0.20 2.4% -

TN J1338-19421,5,9 4.11 0.049 33.5 49 8.52 3.7+1.0
−0.8 0.971.0

0.70 0.430.70
0.23 71% 14.729

TN J0924-220110 5.19 0.073 37.6 49 9.25 1.5+1.6
−1.0 0.981.0

0.73 0.400.68
0.21 30% -

SXDF-Object ‘A’11 5.7 0.099 45.3 36 8.18 3.3+0.9
−0.9 0.941.0

0.63 0.440.72
0.23 79% 14.651

SDF-123 6.01 0.05 21.4 36 8.31 16+7
−7 0.951.0

0.64 0.620.87
0.36 100% > 15.3
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Figure 3.14: Top panels: Probability distributions for each candidate from Table 3.3
(labelled) for 100 000 random regions with the same dimensions as the given candidate.
Probabilities are labelled identically to Figure 3.6. The observationally measured
overdensity is shown as a vertical dotted red line; where the overdensity exceeds the
maximum overdensity from the random sampling, we show white space. Bottom panels:
Descendant mass against overdensity measured in the candidate aperture for all halos
with M/M� > 1013. The cluster mass threshold is shown as the horizontal black dashed
line. Uncertainties in the observationally measured overdensity are shaded in red.
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Table 3.4: Estimated protocluster probabilities for the 12 strongest candidates from the
CCPC catalogue (Franck & McGaugh, 2016a).
Notes: (a) Redshift. (b) Measured galaxy overdensity within a cylindrical aperture with
radius R = 10cMpc, and depth 2σz = D. (c) Full width redshift uncertainty. (d) Aperture
length corresponding to redshift uncertainty. (e,f) Mean completeness and purity for each
selection, and 5th − 95th percentile range. We use the lower percentile as our value for
Clim and Plim. (g) Protocluster probabilites from Franck & McGaugh (2016a), calculated
using Figure 8 from Chiang et al. (2013) using the same selection (SS10) (h) Derived
protocluster probabilities, combining the Proto and PartProto selections. (i) Descendant
masses estimated using our fitting procedure. (j) Coefficient of determination.
References: (1) Venemans et al. (2007) (2) Møller & Fynbo (2001) (3) Steidel et al.
(1998) (4) Ellison et al. (2001)

Name z a δg
b σz

c D (cMpc) d Clim
e Plim

f PC (F&M) g PC(SS10) h log10(Mz=0/M�) i R2 j

CCPC-z27-002 2.772 11.02± 6.9 0.007 14.9 1.01.0
0.8 0.891.0

0.54 100% 75% 14.47 0.63

CCPC-z29-001 2.918 11.21± 4.76 0.005 10.08 1.01.0
0.67 1.01.0

0.64 100% 46% 14.28 0.63

CCPC-z29-0021 2.919 12.91± 4.55 0.009 18.12 1.01.0
0.82 0.861.0

0.5 100% 83% 14.67 0.61

CCPC-z30-0012 3.035 18.78± 10.14 0.005 9.64 1.01.0
0.67 1.01.0

0.67 100% 74% 14.61 0.61

CCPC-z30-0033 3.096 12.28± 2.42 0.008 15.10 1.01.0
0.8 0.891.0

0.55 100% 74% 14.55 0.63

CCPC-z31-0031 3.133 9.80± 2.77 0.008 14.92 1.01.0
0.8 0.891.0

0.55 100% 48% 14.39 0.63

CCPC-z31-004 3.146 7.59± 4.65 0.006 11.14 1.01.0
0.71 1.01.0

0.62 85% 14% 14.09 0.63

CCPC-z31-0051 3.152 17.77± 9.19 0.007 12.96 1.01.0
0.75 0.921.0

0.58 100% 86% 14.72 0.64

CCPC-z32-002 3.234 13.11± 8.63 0.003 5.40 0.81.0
0.3 1.01.0

0.67 100% 24% 14.11 0.49

CCPC-z33-0024 3.372 7.44± 4.47 0.008 13.74 1.01.0
0.78 0.911.0

0.57 85% 42% 14.17 0.63

CCPC-z35-001 3.597 10.18± 8.05 0.003 4.80 0.61.0
0.22 1.01.0

0.67 100% 1% 13.80 0.32

CCPC-z36-001 3.644 23.50± 14.39 0.003 4.72 0.61.0
0.2 1.01.0

0.67 100% 72% 14.12 0.31

Figure 3.15: As for Figure 3.14, but for the first 12 candidates from the Candidate Cluster
and Protocluster Catalogue (CCPC) (Franck & McGaugh, 2016a) listed in Table 3.4 and
discussed in Section 3.4.
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et al. (2013) that facilitate a direct comparison with our method. In both cases we use an

aperture with the same dimensions as the observations.12 For the candidates in Table 3.3

we use the SSFR1 selection, since all of these candidate overdensities are measured with star

forming galaxies, whereas for Table 3.4 we use the SMAS10 selection identical to that used

in Franck & McGaugh (2016a); they acknowledge that this selection does not correspond

exactly with the selection used to identify their candidates, but represents a conservative

lower estimate (if the selection does include lower mass galaxies this would boost the

overdensity measurement, and therefore the corresponding probabilities) Each candidate is

classified according to the 5th percentile of the completeness and purity of the protocluster

population.

Many of the candidates in Table 3.3 are measured with large apertures (> (30 cMpc)3),

which has a significant effect on derived descendant properties. The bottom panels of

Figure 3.14 show the relationship between overdensity and descendant mass for all halos

with M/M� > 1013 in our model for the same aperture as each of these candidates; it

is clear that for many it is very difficult to distinguish the protocluster population from

the field in overdensity space. 4C10.48 is measured within a particularly pathological

aperture (R � DC) that leads to almost no distinction between the populations. This

effect can also be seen in the probability distributions in the top panels of Figure 3.14.

Above intermediate overdensities the Proto probability actually decreases relative to the

PartProto probability; if a large aperture happens to capture parts of two protoclusters,

the overdensity will be boosted by both overdensities but the probabilities will be affected

by the low completeness of each protocluster.

The measured overdensity for 4C10.48 is much larger than that seen in randomly

sampled regions or surrounding protoclusters, and we see similarly high overdensities

for HS1700− FLD, SSA22− FLD− Lyα and SDF− 12. We attribute these high

overdensities to two primary effects. First, each of these candidates is measured within a

large aperture, which can be susceptible to aperture effects; our approach cannot distinguish

the capture of two protoclusters within an aperture, or the chance alignment along a

filamentary structure that is not destined to fall within the virial radius of the cluster

at z = 0. Second, the selection criteria is not identical to that used for each candidate;

a more conservative selection criteria could lead to a substantial boost in overdensity
12where rectangular apertures are used, we approximate with a cylinder of equal volume
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measurement (Chiang et al., 2013). Chiang et al. (2013) note that TN J2009− 3040 is

most likely a large group or low mass protocluster, and we come to a similar conclusion;

Figure 3.14 shows that, whilst a number of protoclusters have a similar overdensity, a large

number of groups also exhibit similar overdensities, which is reflected in the protocluster

probability.

Figure 3.15 shows the probability and descendant mass distributions for the CCPC

candidate apertures, listed in Table 3.4 with probabilities and descendant mass estimates.

These candidates are typically measured with smaller apertures, which leads to greater

distinction between protoclusters and the field, and high protocluster probabilities for

sufficiently high overdensities; the majority are confirmed as protoclusters with high

confidence. CCPC-z32-002 is assigned a lower protocluster probability since it lies close

to the overdensity threshold below which protoclusters are difficult to distinguish, and

CCPC-z35-001 is ruled out with high confidence; whilst there are protoclusters with the

same overdensity, the vast majority of objects with this overdensity have relatively low

halo masses.

All of our results are simulation dependent, though we note that the pipeline is not, so it

can be run again using catalogues from other simulations. We also include protocluster

regions in our calculation of the average field overdensity, so the field overdensity is an

overestimate. However, typical observable measures of field overdensity use the region in

the foreground and background of the protocluster as a proxy for the ‘field’ (Franck &

McGaugh, 2016a,b); since protoclusters have no sharp edge (see Figure 3.4), this approach

may inadvertantly sample the protocluster overdensity tail, boosting the ‘field’ overdensity.

It’s unclear to what degree these two effects cancel out.

3.5 Summary

We have used L-Galaxies to investigate the characteristics of galaxy protoclusters. Our

findings are as follows:

• The completeness and purity of the protocluster galaxy population are maximised

(> 85 %) at a radius of RC ≈ 10± 2 cMpc. This scale is insensitive to redshift and

galaxy selections. Galaxy overdensities measured on RC provide high discrimination

between protoclusters and the field, particularly at high redshift, and overdensities
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surrounding quasars and HzRGs are also best measured at RC since AGN are not

centrally located within protoclusters.

• Protocluster galaxies exhibit aspherical, prolate distributions, though this has little

effect on their completeness and purity as measured within RC due to the lower

density of galaxies in the field on their outskirts. Redshift space distortions slightly

boost the measured overdensity, since protocluster galaxies tend to be infalling due

to the Kaiser effect.

• Using AGN as tracers at z & 5 is accurate but highly incomplete. The most luminous

quasars at z ∼ 6 are correlated with protocluster regions, but there are too few of

them to act as tracers.

• The most massive galaxies at all epochs preferentially appear in protocluster

environments, and we see indirect evidence for the emergence of a red sequence in

protoclusters through their greater asphericity and steeper completeness curves at

z 6 3.

• We have demonstrated a procedure for generating protocluster probabilities based

on their measured galaxy overdensity that can be applied to irregular apertures. We

apply it to a range of redshifts and selection criteria, and provide fits between

overdensity and descendant cluster mass. Low mass protoclusters cannot be

discriminated due to overlap in overdensity space with field regions.

We make all of the code used in this paper public, at https://github.com/christopherlovell/

goa. It can be used to run the pipeline outlined in Section 3.3.4; we hope it will be of use

to observers wishing to identify and characterise high-z galaxy overdensities.

3.6 Appendix

3.6.1 Overdensity Statistics

Figure 3.16 shows the effect of adjusting our free parameters, C lim and P lim, whilst keeping

a fixed aperture volume (R = D/2 = 10 cMpc). Changing C lim principally affects the
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Figure 3.16: Fractional probability distributions for different choices of C lim and P lim

(See Figure 3.6 for legend). In general, the higher the purity constraint, the more regions
are classified as ProtoField, and the higher the completeness constraint, the more regions
are classified as PartProto. Higher P lim can also lead to higher Field probabilities.
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ratio of probability of PartProto to Proto, and P lim lowers the Proto probability for a

given overdensity, and increases the ProtoField probability. A liberal choice of both

P lim and C lim leads to high protocluster probabilities, but the probability of probing a

field region at low overdensity is still high. Choosing both P lim and C lim conservatively

leads to PartProto probabilities dominating. We recommend choosing values of P lim and

C lim motivated by the completeness and purity of the protocluster population, given the

aperture choice and selection.
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4 Galaxy Protoclusters in the Cluster-Eagle

project: evolution of the star-forming

sequence

Christopher C. Lovell,1 Peter A. Thomas,1 David J. Barnes,2 Yannick M. Bahé,3 Stephen

M. Wilkins1 Scott T. Kay,4

4.1 Introduction

In this chapter we present a study of the star-forming sequence in galaxy protoclusters

with the C-Eagle simulations.

Galaxy protoclusters, the high-redshift progenitors of galaxy clusters, contain some of the

most massive, highly star-forming galaxies at z > 2. However, it is unclear whether, at a

fixed stellar mass, protocluster galaxies have differing star formation rates than those in

the field, and how this evolves with redshift. We present an investigation of the stellar

mass-star formation rate relation, or star-forming sequence, in protoclusters simulated

with full hydrodynamics. We utilise periodic box simulations from the Eagle project,

and zoom simulations from the Cluster-Eagle project. Cluster-Eagle is comprised of 30

clusters with a range of z = 0 descendant masses, providing a large number of galaxies in

both field and protocluster environments. Together these simulations allow us to study

the dependence of the SFS on protocluster environment.

We also compare to a number of observational studies in both field and protocluster

environments. Protocluster observations are notoriously difficult due to the difficulty of

determining protocluster membership, particularly for quiescent objects. We therefore

make tentative comparisons to a number of observed protocluster relations for the SFS, and

1Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton, BN1
9QH, UK
2Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of
Technology,
Cambridge, MA 02139, USA
3Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
4Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester,
Manchester M13 9PL, UK
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Figure 4.1: Galaxy distribution in a high descendant mass (> 1015M�) protocluster
at z = 3.5 from three orthogonal perspectives. Points are scaled by the galaxy stellar
mass. Protocluster galaxies are shown in orange, surrounding field galaxies in blue, and
proto-BCG galaxies in green. The red circle indicates the most massive galaxy in the
protocluster, the red cross the protocluster centre of mass, and the red star the proto-BCG
centre of mass.

indicate where possible the systematic uncertainties and their effect on our conclusions.

The study is arranged as follows. In Section 4.2 we describe the C-Eagle simulations

and relevant definitions. We then discuss the main sequence in protoclusters (Section 4.3),

comparing with detailed observational studies of well known protoclusters in Section 4.3.5,

and investigate the scatter around the SFS in Section 4.3.6. In Section 4.4 we study the

passive fraction, and compare to well studied protoclusters. Finally, in Section 4.5 we

discuss our results, and state our conclusions in Section 4.6.

4.2 Methods

4.2.1 The Simulations

The Cluster-Eagle project applies the Eagle model, described in detail in (Schaye et al.,

2014; Crain et al., 2015), to cluster environments using the ‘zoom’ re-simulation technique

(Katz & White, 1993; Tormen et al., 1997). Clusters, defined as objects with halo mass

M200 /M� > 1014, are selected at z = 0 from the parent volume described in Barnes et al.

(2017a), a (3.2 Gpc)3 dark-matter-only simulation using the Planck Collaboration et al.

(2014) cosmology. It uses an identical resolution to the fiducial Eagle simulation, with

gas particle mass mg = 1.8× 106 M�, and a physical softening length of 0.7 kpc. We limit

our analysis to galaxies sampled by at least 100 star particles, e.g. log10(M∗ /M�) > 8.25.
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C-Eagle uses the AGNdT9 calibration of the Eagle model, which, compared to the

Reference (Ref) model, uses a higher value for Cvisc, which controls the sensitivity of the

BH accretion rate to the angular momentum of the gas, and a higher gas temperature

increase from AGN feedback, ∆T . A larger ∆T leads to fewer, more energetic feedback

events, whereas a lower ∆T leads to more continual heating.

Furlong et al. (2015) showed that high redshift galaxy properties in Eagle, such as the

stellar density and galaxy stellar mass functions, are within observational bounds up to at

least z ∼ 6. The slope of the specific star formation rate relation matches observations,

but the normalisation is lower by 0.5 dex at z = 2. This offset, first identified by Daddi

et al. (2007), is present in other hydrodynamic simulations; we discuss the implications

and possible resolutions in further detail in Section 4.5. The stellar mass content of z = 0

clusters in the C-Eagle simulations is in line with observations, though there is an offset

of +0.3 dex in the stellar mass of the brightest cluster galaxy by z = 0 (Bahé et al., 2017).

We dicuss the implications of this offset in the context of the results presented here in

Section 4.5.

4.2.2 Definitions

Merger trees in C-Eagle are constructed using the Spiderweb tracing algorithm,

described in detail in the Appendix of Bahé et al. (2019), which consistently tracks the

baryonic component of galaxies through disruption and stripping events. We use these to

make the following definitions for different galaxy populations throughout the rest of the

paper:

• Protocluster galaxies are defined as the progenitors of all galaxies that lie within

Rcrit
200 of a cluster at z = 0 in the C-Eagle simulations.

• Proto-BCG galaxies are defined as all progenitors of the central galaxy in the

cluster, ignoring satellites.

Field galaxies are strictly defined as all galaxies that will not end up within the virial

radius of the cluster at z = 0. However, protoclusters at high redshift are aspherical, with

a prolate distribution, and there is often mixing of field and protocluster galaxies at the

edge (Lovell et al., 2018). In order to select a cleaner sample of field galaxies we therefore

define them as follows:
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• C-Eagle field galaxies are defined as any galaxies that lie outside a bounding

sphere centred on the median of the protocluster galaxy coordinates, with radius

equal to the maximum protocluster galaxy distance, plus 1 cMpc.

Bahé et al. (2017) found that galaxies in the outskirts of clusters had elevated stellar-mass

fractions and dark-matter concentrations compared to the field. We therefore also use the

50 Mpc periodic simulation using the AGNdT9 physics as an unbiased field comparison

region. This volume contains a single cluster mass halo at z = 0, which we remove

following the same bounding-sphere condition as above.

• Periodic field galaxies are defined as all galaxies in the 50 Mpc periodic simulation

that lie outside the bounding-sphere of the single protocluster present in the volume.

The periodic simulations have output snapshots at slightly different times to the C-Eagle

simulations; we match to the nearest snapshot where available.

The 100 Mpc Reference simulation has a larger volume, but uses different model parameters.

The spatial distribution of galaxies in a high descendant-mass protocluster is shown in

Figure 4.1.

4.3 The Star-Forming Sequence

We now use our galaxy samples to study the dependence of the SFS on protocluster

environment. To remove quiescent galaxies we impose a specific-star formation rate (sSFR)

cut that excludes those galaxies whose current star formation is insufficient to double the

mass of the galaxy within twice the current age of the universe,

sSFR >
1

2× tage

,

which leads to an evolving threshold for quiescence with redshift, shown in Figure 4.2.

We tested using different thresholds (mass multiples of ×3
2
and ×3) and found that all

our results are insensitive to the multiple of mass chosen except for the passive fraction,

discussed in greater detail in Section 4.4. Observations typically use UVJ colour to

discriminate quiescent objects (e.g. Whitaker et al., 2011); at z ∼ 2, this leads to a similar

threshold for quiescence as a sSFR cut (Fang et al., 2018).



80 4.3 The Star-Forming Sequence

Figure 4.2: Our evolving sSFR threshold for quiescence. Shown is the threshold for
different fractions of the current age of the universe. We use the mass doubling time
throughout the rest of the paper, but note that our results are insensitive to the chosen
ratio. The thresholds used in Matthee et al. (2017) & Katsianis et al. (2019) are shown
for comparison.

Figure 4.3 shows the SFS from z = 1.5 up to z = 7, for protoclusters and both field

regions. The normalisation is higher at z ∼ 7, and decreases over cosmic time. Both

field region selections show similar behaviour at all redshifts, but the periodic simulation

does not extend to high stellar masses due to the smaller box size (lower by an order of

magnitude). It is apparent that there is some similarity between the protocluster and

field SFS; we discuss this in further detail throughout the rest of this section.

Figure 4.3 also shows comparisons with recent observational relations at high redshift. Each

of these observations does not represent a dedicated field or protocluster environment, so

should not be compared with either simulated environment explicitly; they should instead

be interpreted as an indication of the combined SFS behaviour across all environments.

We see an offset in the normalisation between the simulations and the observations at

z ∼ 2 of ∼ +0.3 dex, first noted for the periodic simulations by Furlong et al. (2015).

This discrepancy is not unique to Eagle (Davé, 2008; Sparre et al., 2015; Donnari et al.,

2019), and is remarkably consist across different simulations, both semi-analytic and

hydrodynamic, employing very different subgrid physics recipes (Katsianis et al., 2016).

We discuss this offset and its implications in further detail in Section 4.5.

Converted to a Chabrier IMF according to the offsets taken from Zahid et al. (2012).
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Figure 4.3: Upper panels: the star-forming sequence (SFS) for centrals over the redshift
range 1.5 6 z 6 7. The grey 2D histogram shows the distribution of protocluster galaxies
on the SFS; the sSFR cut is shown as the grey dashed line, and individual quiescent
galaxies below it as the grey scattered points. The black line shows the piecewise-fit
to the protocluster relation, and black points show binned medians, with error bars
giving the 10th-90th percentile spread. The yellow and gold points show the median
relation for the field taken from the periodic AGNdT9 simulation, and the outskirts of the
C-Eagle re-simulations, respectively. Bins containing fewer than 10 objects are shown
with non-filled points. Observational relations from Whitaker et al. (2014) (diamonds),
Schreiber et al. (2015) (solid line), Salmon et al. (2015) (squares) and Santini et al. (2017)
(pentagons) are shown in green. Lower panels: The log-ratio of the median relation in
each field population to the protocluster relation. Bins containing fewer than 10 galaxies
are shown with dashed lines.
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At z > 3 the normalisation at the turnover mass is in good agreement with the observational

constraints, however the Schreiber et al. (2015) results are in tension at the high mass

end, with both the normalisation and the slope. The Whitaker et al. (2014) results also

have a shallower low mass slope at these redshifts. There are currently no mass-complete

observational constraints of the SFS at z > 6.5; we choose to show the z = 6 results from

Salmon et al. (2015), which are in good agreement, but with a slightly lower normalisation

which may be due to the redshift offset. This situation will change in the coming years

with the launch of the James Webb Space Telescope, which will provide unprecedented

infrared sensitivity to allow the characterisation of stellar masses and SFRs for the large

number of protocluster candidates discovered recently at these redshifts (Higuchi et al.,

2018).

4.3.1 Fit to the star-forming sequence

To investigate in detail the apparent similarity on the SFS between protocluster and field

galaxies we first fit their distributions. Both the field and protocluster main sequence

show evidence for a turnover at high masses (∼> 109.5M�). To account for this we fit a

two-part piecewise linear relation to the distribution, for stellar mass re-normalised at

109.7M�,

log10(SFR) = α1 log10(M∗ / 109.7M�) + β1 M∗ 6M∗,0 (4.1)

log10(SFR) = α2 log10(M∗ / 109.7M�) + β2 M∗ ≥M∗,0 , (4.2)

where α1 is the low-mass slope, α2 is the high-mass slope, and M∗,0 is the turnover mass

in log-solar masses. The normalisation at the turnover, β0, is then given by

β0 = β2 + α2M∗,0 (4.3)

= β1 + α1M∗,0 . (4.4)

We use the scipy implementation of non-linear least squares to perform the fit, combined

with a non-parametric bootstrap approach for estimating parameter uncertainties. The

bootstrap is implemented as follows: we select, with replacement, 500 times from the
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Figure 4.4: Parameters of the star-forming sequence (SFS) fit for protoclusters (black),
periodic field regions (red), C-Eagle field regions (orange), split into centrals only (solid)
and including satellites (dashed). Errors on the parameters are derived from a non-
parametric bootstrap analysis, computed as the 1σ spread in the bootstrap distributions.
Left, top: the SFS turnover mass, x0 + 9.7, in log solar masses. Left, bottom: the SFS
normalisation, β0. Right: the SFS low- and high-mass slopes, α1 and α2, respectively.
We show these together for easier comparison with the range of observational constraints
(dark green); where a piecewise relation has been used instead of a single linear relation
in the observations, the high mass slope and turnover are shown with non-filled markers.
Results from other recent simulations are shown in light green. Further details on each
individual study are provided in Section 4.3.1.

original data, each resample being the same size as the original data. We then fit each

sample independently; parameter estimates are given by the median of the resampled fit

distributions, and uncertainties are given as the 1σ spread in the distributions (unless

otherwise stated). The fit for protoclusters is shown in Figure 4.3 as the solid black line;

the two part relation does a good job of fitting the low- and high-mass behaviour at all

redshifts.

Figure 4.4 shows the evolution of the following fit parameters: turnover mass (M∗,0 + 9.7),

normalisation (β), low mass slope (α1) and high mass slope (α2). Where there are too few

galaxies in a simulation at a given redshift to provide a good fit we omit the result (e.g.

the periodic AGNdT9 box at z > 3.5). Both field and protocluster environments show

similar evolution in their fit parameters, however there are notable differences, particularly

when including satellite galaxies. For example, in both environments the normalisation

and low-mass slope fall with decreasing redshift. However, when including satellites, both

parameters are significantly (outside of the bootstrap errors) lower in protoclusters at



84 4.3 The Star-Forming Sequence

Figure 4.5: The specific star-formation rate-stellar mass relation for protocluster galaxies
shown as a 2D histogram. All bins populated with at least a single object are shown. The
colour shows the mean in that bin of the ratio of the black hole mass to the halo mass.
The horizontal dashed line shows the sSFR cut for quiescence. The vertical dashed line
shows the turnover mass for the protocluster star-forming sequence. Above the turnover
mass there is a clear gradient in black-hole to halo mass ratio, at fixed stellar mass.

z < 3 compared to the field. We interpret this as additional environmental quenching of

satellite galaxies in protocluster environments.

The turnover mass increases with decreasing redshift in both environments. There is a

slight negative offset in the turnover mass measured in the periodic field region compared

to C-Eagle, however this is within the bootstrap errors. It has been suggested that the

turnover in the periodic Eagle volumes at lower redshift (z < 2) is due to the onset of

AGN feedback (Matthee et al., 2017). To investigate whether this is also causing the

turnover in the protocluster environment, Figure 4.5 shows the distribution of central

protocluster galaxies on the stellar mass - specific star formation rate plane, coloured

by central black hole mass. There is a clear gradient with black hole mass above the

turnover mass, which suggests a similar origin for the turnover behaviour. The redshift

evolution in the turnover can then be understood in terms of the evolving mass at which

AGN feedback becomes dominant. (Matthee & Schaye, 2019) propose that the evolving

stellar-halo mass relation is responsible for the evolving mass at which AGN ’switch on’,

as galaxies at fixed stellar mass reside in more massive halos at z = 2 compared to z = 0.

In both environments we see a fall in the high-mass slope, from α2 ∼ 0.8 at z > 6, to

α2 ∼ 0.65 at z < 2. At z > 4 both environments high-mass slopes are within the bootstrap

errors, however below this redshift they are significantly discrepant, with the protocluster

high-mass slope tending to be greater than that in the field. This suggests that, given

the near-identical normalisation at the turnover mass, high-mass galaxies in protoclusters
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have higher SFR than those in the field.

We also show a number of observed fits to the SFS (Behroozi et al., 2013b; Whitaker et al.,

2014; Tasca et al., 2015; Shivaei et al., 2015; Salmon et al., 2015; Schreiber et al., 2015;

Santini et al., 2017), including the compilation of pre-2014 measurements from Speagle

et al. (2014). As in Figure 4.3, these do not represent dedicated field or protocluster

observations, but a combination of environments. They are a combination of single-

and double-power law measurements; the former we show as filled points, the latter we

show the low mass slope as filled points and the high mass slope as non-filled. For all

observations we quote the approximate lower mass completeness limit for the whole fit in

the legend. We do not quote the mass range of each measurement in the Speagle et al.

(2014) results, but show the slope and normalisation of each study to give a qualitative

indication of the intra-study distribution.

The observed slope shows considerable scatter spanning the range ∼ 0.4 − 1.2. The

majority of these relations quote a single power law relation, except Whitaker et al. (2014)

(crosses) who quote a piecewise relation which shows reasonably good agreement with our

low- and high-mass slopes up to z ∼ 2.5. For the single power law relations the slope

seems to be correlated with the lower mass limit of the survey. Where the lower mass

completeness limit evolves with redshift this manifests as a decrease in the measured slope

with redshift (e.g. Santini et al., 2017; Behroozi et al., 2013b; Salmon et al., 2015). Where

the mass completeness lower limit is high (e.g. Shivaei et al., 2015) the slope tends to be

shallower, in line with our measured high mass-slope.

This is illustrated more explicitly in Figure 4.6, which shows a negative correlation between

the estimated lower-mass limit of the given observational survey and the value of the

measured slope for a single power law. This suggests that many high redshift surveys,

where the mass completeness does not extend to very low masses, are only probing the

SFS at stellar masses above the turnover, and the measured slopes do not represent a

universal relation for all masses.

For the turnover mass there are scarce observational constraints at z > 3, but a few studies

have found and constrained the turnover at z ∼ 2 (Tasca et al., 2015; Whitaker et al.,

For the (Whitaker et al., 2014) piecewise relation we plot the turnover mass as the lower mass limit
for the high-mass power law
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Figure 4.6: Estimated low-mass cut off against slope α for the observations plotted
in Figure 4.4 (green). A linear fit to all the observations combined is shown with the
solid line, and has a significant negative correlation (-0.43). The measured relation in
the simulated protocluster sample for a linear fit with varying low mass slope is shown,
coloured by redshift, and shows a similar relation.

2014). These studies suggest that the turnover mass increases with increasing redshift.

This positive correlation has been explained as due to the downsizing paradigm, where

more massive galaxies form their stars earlier (Neistein et al., 2006). We, suprisingly, see

the opposite trend with redshift. As we have already discussed, the turnover evolution

in Eagle appears to be linked to the evolving stellar - halo mass relation. Another

possible explanation is that, as galaxies become larger and less compact over time, AGN

feedback is less efficient at curtailing star formation in low mass galaxies. It is unclear what

observational effects could lead to the evolution seen in Tasca et al. (2015) & Whitaker

et al. (2014).

The normalisation β shows reasonably good agreement with the observations at z > 4, but

is offset around cosmic noon, as discussed at the start of this section. Figure 4.4 also shows

results from Illustris-TNG; Donnari et al. (2019) fit a single power law, and find a slope

between our high- and low-mass measurements, as expected since their mass completeness

limit straddles the turnover mass. The normalisation is in very good agreement with our

results, showing a similar tension with observations at cosmic noon.
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Figure 4.7: The star-forming sequence fit at z = 2.35 for each protocluster individually,
coloured by descendant mass virial mass (M z=0

200 ). Inset: The high- (grey) and low-mass
(black) slope against descendant mass, with bootstrap 1σ errors. At low protocluster
masses the uncertainties on the high-mass slope are large; mass-binned fits are shown in
colour and show the mass-dependent trends clearer. There is no clear dependence of the
fit on descendant mass.
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4.3.2 The star-forming sequence of individual protoclusters

So far we have studied the galaxy population in all protoclusters combined. We now

look at the differences in the SFS between individual protoclusters, with a range of

descendant cluster masses. Figure 4.7 shows the piecewise fits to the SFS in each of our

30 protoclusters at z = 2.35, coloured by descendant virial mass. Below the turnover

mass the behaviour of the SFS is very similar, but above this there is considerable variety

in the high-mass slope between different protoclusters. The inset of Figure 4.7 shows

the high- and low-mass slopes against descendant mass. The low-mass slopes show no

dependence on descendant mass. It is difficult to see any trend in the high-mass slopes,

due to the much larger errors at low descendant masses from the lack of high-mass galaxies.

To better show the trends with mass we also show fits to protoclusters in three bins of

descendant mass, (log10(M z=0
200 /M�) = [14-14.4],[14.4-14.8],[14.8-]). The binned fits show

no significant dependence of the high-mass slope on descendant mass.

What is striking in Figure 4.7 is the large scatter (∼ 0.4 dex) in normalisation at the

turnover mass. This suggests that protoclusters have varying evolutionary states at

z = 2.35 regardless of their z = 0 descendant mass. We will see in Section 4.3.5 that this

is partly due to the presence of dense groups within each protocluster. In particular, halo

CE-27, with a descendant mass of log10(M200 /M�) = 15.15, has a normalisation below

the turnover 0.2 dex lower than any other protocluster; we will discuss this particular

object, and its uniquely early-evolved galaxy population, in greater detail in future work.

4.3.3 Group-intergroup decomposition

Our analysis up to this point has shown that, whilst the protocluster and field SFS are

similar in their general form and evolution, there are significant differences in their fits,

particularly around cosmic noon (1.5 < z < 3) We also find a diversity of high-mass SFS

behaviour for individual protoclusters that is not dependent on the descendant cluster

mass. Protoclusters are web-like distributions at high redshift, composed of dense groups

connected by filaments; it is therefore of interest to evaluate how the SFS depends on the

presence and maturity of dense groups, and whether these denser environments promote

or inhibit star formation at fixed stellar mass.
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Figure 4.8: Galaxy distribution in a high descendant mass (> 1015M�) protocluster at
z = 2.8 from three orthogonal perspectives, showing all galaxies (white), protoclusters
galaxies (orange) and group galaxies (pink).

We use the full 3D information to measure the N th nearest neighbour overdensity,

characterised by the distance to the N th nearest neighbour, rN . This has been shown in

numerical simulations to be reasonably correlated with the 2D surface overdensity for

N > 10 (Shattow et al., 2013), and works sufficiently well on intra-halo scales (Muldrew

et al., 2012), though aperture based approaches are better on large scales. We use N = 30

with a limiting scale of rN < 1.5 cMpc, which corresponds to the 5th percentile of rN for

the protocluster galaxy population at z = 2.3. Obviously, our group selection is sensitive

to the chosen value of N and rN ; we chose a length that extended beyond the virial

radius of the most massive halos at these redshifts to ensure we were not just identifying

collapsed structures, but dense agglomerations of multiple halos.

Figure 4.8 shows the galaxy distribution in a high descendant-mass protocluster at z = 2.8

with the group galaxies highlighted. The algorithm identifies groups outside of the

protocluster, which may collapse to form group-mass objects at z = 0, however we ignore

these objects for now. Not all protoclusters contain groups at all redshifts, and the group

fraction is lower in lower descendant mass protoclusters. The top panel of Figure 4.10

shows the fraction of group galaxies in the total protocluster galaxy population, as a

function of redshift. Since we use a fixed group definition the group fraction increases

with redshift, due to the increasing density of halos in the collapsing cluster.

Figure 4.9 shows the SFS at z = 2.8 for all protoclusters decomposed into group and

intergroup populations, where a group has been identified. The points show the binned

We use a nearest neighbour approach for consistency with Shimakawa et al. (2017b)
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Figure 4.9: Left panel: the protocluster star-forming sequence at z = 2.8 decomposed
into dense groups (pink) and intergroup (purple) populations (see criteria in Section 4.3.3).
Points show the binned means with 1σ scatter; non-filled points are shown where there
are few than ten galaxies in a bin. The fit relation is shown for centrals (solid lines)
and centrals + satellites (dotted lines). Observational results for USS 1558 from the
MAHALO survey (Shimakawa et al., 2017a) are shown by the dashed lines, for a fixed
gradient m = 0.62. Right panel: high- and low-mass gradient for the group and intergroup
regions. Also shown are individual protocluster fits in grey and black (high- and low-mass
respectively) and observational results estimates from Shimakawa et al. (2018, 2017a);
Tanaka et al. (2011); Smith et al. (2019). In the simulations, galaxies in dense groups
above the turnover mass exhibit higher star formation rate than those in the intergroup
population, showing a similar offset to that seen in the observations.
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Figure 4.10: Top: the fraction of protocluster galaxies in groups against redshift. Bottom:
the group (pink) and intergroup (purple) high- and low-mass slope against redshift.

distributions, which appear to show similar behaviour between the group and intergroup

populations. The group galaxy relation extends to higher masses than the intergroup,

which reflects the enhanced clustering around high mass halos. We fit the group and

intergroup distributions as in Section 4.3.1, and evaluate the uncertainties with a non-

parametric bootstrap analysis. The right panel of Figure 4.9 shows the fit for the high-

and low-mass slope at z = 2.8. The low mass slope is similar in both environments

(α1 ∼ 1.0), but above the turnover mass group galaxies exhibit a significantly steeper

SFS (αgroup
2 ∼ 0.75; αintergroup

2 ∼ 0.58), which translates to higher star formation rates.

This qualitatively matches the behaviour seen in USS1558 by Shimakawa et al. (2017a),

where they see an offset in the normalisation of ∼ 0.15 dex between group and intergroup

populations, though their measured slope is shallower.

In Figure 4.10 we show the redshift evolution of the fit parameters in the group and

intergroup populations. The group high-mass slope remains significantly (outside the

bootstrap uncertainties) above the intergroup at all redshifts (αgroup
2 ∼ 0.7; αintergroup

2 ∼

0.55), both including and excluding satellites.



92 4.3 The Star-Forming Sequence

The low-mass slopes show more similarity between the group and intergroup populations,

except for the group relation including satellites. This has a lower slope at all redshifts,

and the offset gets marginally larger with redshift (∆α2 = 0.06 at z = 3.5; ∆α2 = 0.1 at

z = 1.5). This shows that the offset in the centrals+satellite relation for the low-mass

slope (shown in Figure 4.4) is predominantly due to the group satellite population.

4.3.4 Differences between the protocluster & field SFS

Our results so far paint a picture of subtle but significant differences between the SFS in

protoclusters and the field, as well as diversity between protoclusters in the high-stellar

mass regime. We have also seen the influence of dense groups within protoclusters, which

promote star formation in high-mass centrals, whilst inhibiting star formation in low-mass

satellites.

To formally evaluate these differences we apply the Kolmogorov-Smirnov test to the stellar

mass, SFR and sSFR cumulative distribution functions, for star-forming centrals. We

perform the test between the protocluster and field populations, the group and intergroup

populations, and finally the intergroup and field populations. We bootstrap the test and

take the median statistic to prevent bias as well as sensitivity to high-mass outliers. We

also perform the test independently on the high- and low-mass regimes, split using the fit

turnover mass, to reveal any mass-dependent trends. Tables 4.1, 4.2 and 4.3 summarise

the p-values returned for each test.

The protocluster and field stellar mass and SFR distributions are significantly discrepant

(p � 0.05) at all redshifts. However, for the sSFR distribution there is no significant

discrepancy (p > 0.05) except at z = 6.7. This suggests that, except at the highest

redshifts, protocluster galaxies have higher stellar masses and star formation rates on

average than those in the field, but do not have higher SFR at fixed stellar mass. Breaking

this down in to high- and low- mass regimes, we see that the sSFR distribution is not

discrepant in the low-mass regime, but does show a significant discrepancy in the high-mass

regime at all redshifts except z = 4.61. These results support the significantly different

fits to the high-mass slope between protoclusters and the field, shown in Figure 4.4.

How much do the groups within protoclusters drive this discrepancy? The intergroup

sSFR distributions show no significant discrepancy with the field, except at z = 6.7.



Protocluster - Field Group - Intergroup Intergroup - Field
z total M∗ < M∗,0 M∗ > M∗,0 total M∗ < M∗,0 M∗ > M∗,0 total M∗ < M∗,0 M∗ > M∗,0

1.49 0.466 0.466 0.0 0.010 0.219 0.0 0.370 0.370 0.031
1.99 0.433 0.252 0.0 0.003 0.134 0.0 0.301 0.200 0.013
2.35 0.466 0.370 0.0 0.181 0.466 0.0 0.466 0.370 0.005
2.83 0.433 0.370 0.003 0.005 0.121 0.0 0.401 0.341 0.097
3.51 0.097 0.069 0.022 0.008 0.121 0.0 0.073 0.062 0.055
4.61 0.069 0.087 0.164 0.0 0.008 0.0 0.058 0.078 0.200
6.77 0.020 0.048 0.033 0.0 0.0 0.0 0.015 0.055 0.020

Table 4.1: Kolmogorov-Smirnov test p-value results for the cumulative sSFR distributions. Results are shown between protocluster and
field, group and intergroup and field and intergroup populations. The p-values are computed from the median of the KS-statistic from a
bootstrap analysis on each population.

Protocluster - Field Group - Intergroup Intergroup - Field
z total M∗ < M∗,0 M∗ > M∗,0 total M∗ < M∗,0 M∗ > M∗,0 total M∗ < M∗,0 M∗ > M∗,0

1.49 0.006 0.114 0.0 0.006 0.156 0.0 0.055 0.190 0.219
1.99 0.001 0.048 0.0 0.0 0.370 0.0 0.008 0.048 0.370
2.35 0.001 0.038 0.0 0.0 0.341 0.0 0.003 0.048 0.048
2.83 0.0 0.013 0.0 0.0 0.263 0.0 0.0 0.010 0.011
3.51 0.0 0.001 0.0 0.0 0.108 0.0 0.0 0.001 0.0
4.61 0.0 0.002 0.0 0.0 0.0 0.0 0.0 0.001 0.001
6.77 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.001 0.0

Table 4.2: As for Table 4.1, but showing results for the SFR distributions.
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Protocluster - Field Group - Intergroup Intergroup - Field
z total M∗ < M∗,0 M∗ > M∗,0 total M∗ < M∗,0 M∗ > M∗,0 total M∗ < M∗,0 M∗ > M∗,0

1.49 0.005 0.078 0.0 0.002 0.087 0.0 0.038 0.148 0.026
1.99 0.002 0.062 0.0 0.0 0.433 0.0 0.010 0.078 0.004
2.35 0.001 0.026 0.0 0.0 0.341 0.0 0.001 0.033 0.0
2.83 0.0 0.007 0.0 0.0 0.288 0.0 0.0 0.006 0.0
3.51 0.0 0.002 0.0 0.0 0.087 0.0 0.0 0.002 0.0
4.61 0.0 0.002 0.0 0.0 0.000 0.0 0.0 0.002 0.0
6.77 0.0 0.0 0.0 0.0 0.000 0.0 0.0 0.0 0.0

Table 4.3: As for Table 4.1, but showing results for the M∗ distributions.
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In contrast, the group and intergroup distributions do show significant discrepancies at

almost all redshift. Breaking down in to the two mass regimes, we see that it is groups

that drive the majority of the discrepancy in the high-mass regime.

In summary, dense groups within protoclusters not only extend the SFS to higher masses

and SFRs, but also promote higher SFR at fixed stellar mass, particularly at the high

mass end.

4.3.5 The observed protocluster star-forming sequence

So far we have limited our comparison with the observed SFS to field measurements.

Unfortunately, there are few comprehensive studies of the SFS in protocluster environments.

This is due to a number of factors, principally their rarity and large volume, which makes

identifying and surveying them in their entirety observationally expensive. It is also difficult

to distinguish true protocluster galaxies from nearby field contaminants, particularly in

the absence of spectroscopic confirmation, which is often the case for low-SFR galaxies;

for studying the star-forming sequence this is less of an issue, since line emission from

star forming regions provides ample targets for narrowband or spectroscopic observations.

Finally, those studies that do claim to study protocluster candidates often probe very

different scales, from dense subgroups on ∼ 100 kpc scales, up to the whole protocluster

on ∼ 10 cMpc scales.

Despite these difficulties, a few protocluster candidates have recently been studied in

detail. Figure 4.11 shows galaxies on the SFS from four well studied protoclusters between

1.5 < z < 2.5 (clockwise from top left): USS 1558 (Shimakawa et al., 2017a), PKS-1138

(Shimakawa et al., 2018); 4C 23.56 (Tanaka et al., 2011); and Cl J1449 (Smith et al.,

2019).

4.3.5.1 PKS 1138 and USS 1558

Using narrowband imaging, the MAHALO survey selected Hα-emitters (HAEs) in USS-

1558 (Shimakawa et al., 2017a). The dense substructure covers an area ∼ 8 cMpc

in diameter, which leads to high completeness and purity of the protocluster galaxy

population in numerical studies (i.e. little contamination from neighbouring field galaxies,

Lovell et al., 2018). The slope from a linear fit above the mass completeness limit is
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Figure 4.11: The star-forming sequence in observed protoclusters (coloured points)
compared to the C-Eagle relation for all protocluster combined (black line) and each
individually (grey lines) at the nearest redshift. Clockwise from top left: USS 1558
(Shimakawa et al., 2017a), PKS-1138 (Shimakawa et al., 2018); 4C 23.56 (Tanaka et al.,
2011) (red, pink and dark red points show the Hα intrinsic, Hα dust corrected and Spitzer
MIPS-based SFR estimates); and Cl J1449 (Smith et al., 2019). The dashed lines shows
the approximate survey stellar mass and SFR completeness limits, where provided.
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shallow (α = 0.44), but within the range probed by our protocluster sample. However, the

normalisation at the turnover mass is significantly higher than in C-Eagle, greater than

the discrepancy seen in the field. This may be due to the Kennicutt (1998) prescription for

the Hα-SFR calibration used; Hayashi et al. (2016) suggest that SFR derived from Hα may

be overestimated if metallicities are lower than typically assumed from the mass-metallicity

relation. The contribution of binaries may also lead to biases in the assumed calibration;

using binary population synthesis could ameliorate the discrepancy (e.g. BPASS, see

Wilkins et al., 2019; Stanway & Eldridge, 2018). Interestingly, Shimakawa et al. (2017a)

highlight star-bursting behaviour in intermediate mass galaxies as a possible cause; in

Section 4.3.6 we show that the scatter around the SFS for galaxies at the turnover mass

is significantly higher in protoclusters, so this may be a contributing factor.

The same MAHALO survey also studied PKS-1138, also known as the ‘spiderweb galaxy’

(Shimakawa et al., 2018), and found similar behaviour to USS 1558: a shallow slope

(α = 0.41) and positive offset in normalisation at the turnover. Shimakawa et al. (2018)

note that E(B−V )stellar = E(B−V )nebular is assumed, which may not be the case for the

most highly star-forming galaxies at z ∼ 2 (Price et al., 2014; Reddy et al., 2015); this

would lead to underestimated SFRs for these galaxies, giving a steeper measured slope

from both studies, and increasing the discrepancy with our simulations.

4.3.5.2 Cl J1449+0856

Smith et al. (2019) measured the dust-obscured star formation in Cl J1449+0856, a well

studied protocluster at z = 2 (Coogan et al., 2018; Strazzullo et al., 2018). They use

SCUBA-2 and Herschel observations combined with optical ancillary data to perform

SED fitting with CIGALE, and derive star formation rates and stellar masses. The

normalisation of the observations is higher as seen before, but the slope of the relation is

steeper compared to the MAHALO results, and in better agreement with the high-mass

slope. In fact, the slope is very similar to that derived in the dense groups within the

protocluster (see Figure 4.9, discussed in Section 4.3.3).

4.3.5.3 4C 23.56

Tanaka et al. (2011) present SFR and stellar mass estimates of Hα selected galaxies in 4C

using BC03 models assuming a Chabrier IMF
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23.56, though only 4 candidates are spectroscopically confirmed. The aperture on the sky

is ∼ 4.1 cMpc, however the redshift uncertainty for the unconfirmed candidates means

that the probability of field contamination along the line of sight could be high. Both the

original and dust-corrected SFR estimates have similar, shallow slopes (α = 0.42 and 0.54,

respectively), though the latter has a higher normalisation, as already discussed. Tanaka

et al. (2011) suggest that PKS-1138 is in a more evolved state than 4C 23.56, since the

latter is still vigorously forming stars. This may be due to the high gas density measured

in 4C 23.56 (Lee et al., 2017).

4.3.5.4 Discussion

Together, these observations paint a picture of significant diversity in the slope and

normalisation of the protocluster SFS between 1.5 < z < 2.5 that qualitatively matches

the diversity seen in our simulated protocluster population. The lack of dependence on

descendant mass suggests a different source for this diversity than the total mass and

volume, and the observations suggest this may be due to smaller scale group environments

within the overall web-like structure of the protocluster. In Section 4.3.3 we investigate

this by decomposing our simulated protoclusters into group and intergroup populations.

4.3.5.5 Proto-BCG galaxies

The high mass, high SFR galaxies at the top right of the star-forming sequence, such as

the spiderweb galaxy itself in PKS 1138-262, are often assumed to be proto-BCGs. In

C-Eagle we find a high fraction of proto-BCG objects in this region of the parameter

space, 80% of objects at z ∼ 2.3 (where M∗ /M� > 1011.5 and log10(SFR/M� yr−1) > 2,

shown by the yellow square in each panel of Figure 4.11). Whilst this fraction is high, it

highlights a non-negligible population of massive, star-forming galaxies in protoclusters

that do not have a BCG descendant.

4.3.6 Scatter in the Star-Forming Sequence

The scatter in the star-forming sequence contains information on the variability in the

recent star formation history of galaxies at a given mass (Matthee et al., 2017; Katsianis

et al., 2019). A tight relation implies smooth, accretion driven growth at high redshift,

whereas greater scatter would suggest less coherent, bursty stellar mass growth across the
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Figure 4.12: 1σ scatter around the star-forming sequence for central galaxies in
protoclusters (black), the field (red) and the C-Eagle field region (orange) between
redshifts z = 1.5 − 7. The scatter is measured around the best-fit piecewise relation
measured in Section 4.3.1 for each population. The combined, mass- and redshift-
independent intrinsic scatter from Speagle et al. (2014) is shown (bold green, 0.2 dex), as
well as individual measurements from this study at their respective redshift and stellar
mass ranges in each panel (dashed green). We also show results from Schreiber et al.
(2015) (green filled region) Shivaei et al. (2015) (green dotted) and Salmon et al. (2015)
(green squares).
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Figure 4.13: As for Figure 4.12, but including centrals and satellites (dashed). The
centrals only protocluster relation is shown for comparison (black, solid). Note that the
y-axis limits have been changed from Figure 4.12 for clarity.

galaxy population, possibly through mergers. Underestimating the scatter would suggest

that the conversion of accreted gas into stars in the model is too smooth, whereas an

overestimate in the scatter could be the result of feedback processes being too strong or

stochastic. The scatter is obviously sensitive to the timescale of the SFR indicator; here

we use the instantaneous SFR taken from the dense star-forming gas, but using a longer

timescale SFR indicator would smooth out shorter episodes of variation.

4.3.6.1 The scatter in the centrals-only relation

We measure the 1σ scatter around the best fit two-part piecewise relation measured in

Section 4.3.1 in bins of stellar mass, after implementing the sSFR cut for passive galaxies.

Figure 4.12 shows the evolution of the stellar-mass dependent scatter in the star-forming

sequence for centrals only. The general trend, for all models, environments and redshifts,

is that the scatter tends to decrease from log10(M∗ /M�) = 8.5 to some characteristic

mass ∼ 9.5. Above this it increases dramatically and plateaus. This mass at which the

scatter increases is similar to the turnover mass in each model and environment, shown

(for the protocluster fit) as the vertical dotted lines in each panel. As the turnover mass

evolves to lower masses with increasing redshift, so does the mass at which the scatter

increases.
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The higher scatter for very low mass galaxies (log10(M∗ /M�) < 9) can be explained by a

scenario where feedback from star formation, which dominates in this mass regime, is more

effective at expelling gas from lower mass galaxies due to the shallower potential. Higher

mass galaxies tend to be able to retain their gas reservoirs despite energetic supernovae

feedback. The increase in the scatter around the turnover mass has been attributed to

the onset of AGN feedback (Matthee et al., 2017), visible in the field region at z < 3.5

and in the protocluster regions at even higher redshifts due to the greater number of high

mass galaxies.

Recently, Katsianis et al. (2019) studied the scatter in the SFS as a function of stellar mass

in the periodic Eagle simulations up to z = 4. They use a similar sSFR cut to Matthee

et al. (2017), and found similar behaviour to what we find in the protocluster environment:

an increase in the scatter at high stellar masses attributable to AGN feedback, and an

increase at lower masses attributed to efficient stellar feedback. We are able to extend the

relation to higher stellar masses due to the large galaxy sample from the protoclusters,

and find that the scatter remains high at M∗ /M� > 1011.5 for z > 2, but falls above this

mass at z 6 2. This may be due to reduced AGN feedback during this phase of collapse;

Figure 4.5 shows that the ratio of black hole mass to halo mass is lower for the most

massive galaxies at z = 2 compared to higher redshifts.

Interestingly, Katsianis et al. (2019) find no dependence of the scatter on recent mergers.

We expect this to be more common in the dense protocluster environment, but also see no

environmental difference for centrals. However, mergers are not the only environmental

effect in dense environments: the large number of high mass galaxies and overall volume

density of galaxies means that there are a large number of satellites of a range of masses.

In the next section we study the scatter including satellites in protoclusters and the field.

4.3.6.2 The satellite-induced scatter

Figure 4.13 shows the scatter in the star-forming sequence including both centrals and

satellites. In all regions, the scatter is similar above the turnover mass when including

satellites, but below the turnover mass there is significant environmental dependence.

Low mass satellites in protoclusters lead to a flattening of the scatter as function of

stellar mass by z = 1.5 (+0.07 dex at M∗ /M� = 109.5), wherease in the C-Eagle
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field region the increase is less dramatic (+0.03 dex). This is expected in the dense

protocluster environment due to the effects of interactions and mergers on the short-

timescale star formation rate. Perhaps more surprising is that the increased low-mass

scatter in protoclusters is present up to z ∼ 4.5, which suggests the environmental effect

on the star formation histories of satellites is present at very early times.

4.3.6.3 The observed intrinsic scatter

The observational scatter is the product of the intrinsic scatter convolved with the evolution

of the star-forming sequence in the measurement redshift bin (Noeske et al., 2007), as

well as being sensitive to uncertainties in redshift, stellar mass and star formation rate

measurements (Speagle et al., 2014; Katsianis et al., 2019). Eddington bias can also

affect the measure of scatter, since low-mass galaxies with, on average, lower SFR will be

up-scattered into higher mass bins (Speagle et al., 2014). The SFS scatter is also sensitive

to the threshold for quiescence used; including more quiescent objects will increase the

scatter significantly, as expected (Katsianis et al., 2019). However, we note that at

low redshift, where these effects are smaller and the experimental contribution better

constrained, the intrinsic scatter in the model matches observational constraints (Matthee

& Schaye, 2019).

A number of observational studies have attempted to derive the intrinsic scatter at high

redshift; we show a selection in Figure 4.12. Speagle et al. (2014) combine a number of

observational studies, measuring a stellar-mass independent intrinsic scatter of 0.2 dex at

all redshifts, shown as the bold green line in each panel. Figure 4.12 also shows a number

of the individual relations from Speagle et al. (2014) as the dashed green lines, at their

respective redshift and mass ranges. We also show a number of more recent measurements

of the intrinsic scatter (Schreiber et al., 2015; Shivaei et al., 2015; Salmon et al., 2015).

It is clear from the observations that at high redshift there is considerable inter-study

scatter, and that our simulation results lie within this scatter.

It is interesting to note the apparent bimodality of the observations, with some studies

predicting intrinsic scatter between 0.2-0.35 dex, and others predicting much lower intrinsic

scatter, around 0.05-0.15 dex. This may be due to some observations probing the post-

turnover scatter, whilst others find more galaxies at the turnover, where the scatter is at
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Figure 4.14: Evolution of the passive fraction from 1.5 < z < 4.6 for protoclusters
(black), field (red) and C-Eagle field (orange) regions. Passive galaxies are defined as
those whose SFR is lower than the sSFR cut at a given redshift. The relation is shown
where there are > 10 objects per bin. Solid lines show the relations for centrals only,
dashed lines when including satellites. The effect of using a higher- and lower-sSFR cut
on the protocluster passive fraction is shown by the shaded grey region. Observed field
relations from Davidzon et al. (2017), Muzzin et al. (2013) & Ilbert et al. (2013) are shown
in green; where the redshift range of the simulation lies between the observations both
the upper and lower redshift observational constraints are plotted.

a minimum. However, the observations do not show a strong dependence on stellar mass

range for whether they lie in the high- or low-scatter regime. When including satellites,

the stellar-mass dependence disappears at z ∼ 2 in protocluster environments. This may

explain the stellar-mass invariance in some observational studies that are large enough

to include such overdense environments. Further observational results, that are capable

of constraining the true intrinsic scatter, are required to determine if the scatter about

the star-forming sequence is indeed stellar-mass dependent, and the effect of satellites in

overdense environments.

In summary, we find that the scatter about the SFS is highly stellar mass dependent

in both field and protocluster environments, showing an increase at the turnover mass

associated with the onset of AGN feedback, and a large increase at lower masses in

protocluster environments when including satellites (for z 6 4.5).

4.4 Passive fractions

In the previous sections we have characterised the behaviour of the star-forming galaxy

population in protoclusters. We now investigate the passive galaxy population, and

whether it shows any environmental dependence.

Figure 4.14 shows the evolution in the passive fraction, defined as all galaxies whose SFR
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Figure 4.15: Passive fraction in protoclusters split into group (pink) and intergroup
(purple) populations, along with the relation in the periodic field regions (red) and the
C-Eagle field regions (orange), split in to centrals only (solid) and centrals + satellites
(dashed). The relations are plotted where there are greater than 10 galaxies in a given bin.

lies below the sSFR cut at that given redshift (shown as the grey points in Figure 4.3).

The general trend across all environments is for the passive fraction to decrease toward the

turnover mass, as stellar feedback becomes less effective, then increase above this where

AGN feedback dominates. Considering centrals only, there is no significant environmental

dependence up to z = 1.5. At z = 1.5 the protocluster passive fraction is higher than the

field by ∼ 0.1 dex in both the low- and high-mass regimes. This suggests environmental

quenching of high and low-mass centrals becomes effective in the latter collapse stage of

the cluster, but not at higher redshifts.

Figure 4.14 also shows observational constraints from Davidzon et al. (2017), Muzzin

et al. (2013) & Ilbert et al. (2013), derived by comparing Schechter fits to the stellar mass

function for active and quiescent populations. The agreement above the turnover mass of

the simulations and the observations is reasonably good, though Davidzon et al. (2017)

predict higher passive fractions than the other two studies.

Including satellites leads to a more dramatic dependence on protocluster environment.

The low-mass normalisation is higher than the field at all redshifts, from 0.05 dex at

z = 4.6 to 0.25 dex by z = 1.5. To test whether this is dependent on dense groups within

the protocluster, we once again study protocluster galaxies split into group and intergroup

populations according to the algorithm detailed in Section 4.3.3. Figure 4.15 shows the

passive fractions in groups and intergroup from z = 1.5 − 2.8. Below the turnover mass

it is clear that it is the dense group environments that dominate the passive satellite
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fraction. The intergroup passive fraction including satellites is only marginally higher

than the centrals only (< 0.05 dex at all redshifts). Satellites in dense groups are more

efficiently quenched, most likely through interactions with the central and other satellites

in the congested group environment.

Interestingly, at z 6 2, the passive fraction at the high-mass end in the intergroup region

is higher than in both the group and field regions, for both centrals only and when

including satellites. This suggests that intergroup galaxies, despite showing no significant

discrepancy with field galaxies in their sSFR distributions along the SFS at these redshifts

(see Section 4.3.4), have higher quenched fractions than their field and group counterparts

at the same mass. A possible explanation could be that the intergroup environment

is still denser than the field when normalised by volume, and so interactions are more

likely, which could lead to quiescence. Another explanation is that massive intergroup

galaxies experience a kind of ‘strangulation’, whereby accretion of cold gas is disrupted by

proximity to dense groups. Whilst such interactions are equally, if not more likely, in the

groups, the positive effect of abundant cold gas in the groups could end up overriding the

detrimental effect of interaction, promoting star formation rather than inhibiting it.

It is difficult to distinguish passive populations in protoclusters, since their redshifts are

primarily determined photometrically, which incurs large uncertainties, making it difficult

to confirm their protocluster membership. Despite this, their are some constraints on the

passive fraction in a number of z ∼ 2 protocluster candidates (Lee-Brown et al., 2017;

Cooke et al., 2016; Newman et al., 2014). Figure 4.16 shows the passive fraction in these

protoclusters, alongside field constraints published in these studies, and also the dedicated

field constraints from Davidzon et al. (2017), Muzzin et al. (2013) & Ilbert et al. (2013).

The observed protocluster passive fraction is higher than in the field at all measured

masses, and rises to unity by M∗ /M� ∼ 1010.5 in all three observed protoclusters.

We caution that such measurements are notoriously difficult; Shimakawa et al. (2018)

found a passive fraction in PKS-1138 of ∼ 36%, though they note that the uncertainties

are very large, making any inferences difficult. With this in mind, we tentatively conclude

that, even for the most lenient sSFR cut, we do not predict protocluster passive fractions

within a factor of 2 of those observed. We also see a decrease in the passive fraction for the

most massive (M∗ /M� > 1011.5) galaxies that is not seen in the observed protoclusters,
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Figure 4.16: Protocluster passive fraction at z = 1.5 (black) and z = 2 (grey) for centrals
(solid) and centrals + satellites (dashed). Observed protocluster passive fractions from
Lee-Brown et al. (2017), Cooke et al. (2016) & Newman et al. (2014) are shown (blue
points), along with any comparison field measurements where available (green points).
The field relations from Davidzon et al. (2017), Ilbert et al. (2013) & Muzzin et al. (2013)
are also plotted (green lines). The passive fraction in observed protoclusters is higher
than the field at M∗ /M� > 1010, reaching unity at M∗ /M� ∼ 1011, an environmental
dependence we don’t see in the simulations.
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but is tentatively suggested by field measurements It is interesting to note that these

high passive fractions are similar to those in the protocluster intergroup regions, which

suggests the observed passive galaxies may reside in between the dense groups.

4.5 Discussion

4.5.1 The offset in normalisation of the star-forming sequence at

cosmic noon

The star-forming sequence at z ∼ 2 measured in the simulations has a normalisation

∼ +0.3 dex lower than that measured in observations. This was noted in Furlong et al.

(2015) as an offset in the sSFR-stellar mass relation, and attributed to a lack of bursty

star formation, which would lead to higher specific star formation rates without affecting

the global average stellar density evolution. However, this discrepancy is not unique to

Eagle, and has been noted by a number of authors (Davé, 2008; Sparre et al., 2015; Davé

et al., 2019). What is remarkable is the consistency with which different simulations, both

semi-analytic and hydrodynamic, employing very different subgrid physics recipes, predict

a similar offset (Katsianis et al., 2016). The observations, in contrast, show contradictory

behaviour, particularly between different observational tracers (Katsianis et al., 2017).

There are a number of possible remedies to this discrepancy. A factor could be that

stellar populations in high-z galaxies emit harder ionising radiation, however this is also

expected to be the case at redshifts above z ∼ 2 where we do not see a strong discrepancy.

As discussed in Section 4.3.5 the Hα-SFR calibration may be affected by the inclusion

of binary stellar populations; using a more conservative calibration would reduce the

estimated SFR, reducing the tension between Hα measures of the star-forming sequence

at z ∼ 2 (Wilkins et al., 2019; Stanway & Eldridge, 2018). Observational results for the

stellar mass density and cosmic star formation rate density are also in tension during

this key epoch of peak star formation rate density (Wilkins et al., 2008; Yu & Wang,

2016), an offset that has been attributed either to an evolving IMF at high redshift, or

over/under-predictions of the observational SFR or stellar mass, respectively, both of

which would also address the discrepancy in the star-forming sequence fit. Using modern

SED fitting approaches, Leja et al. (2018) found a simultaneous increase in the estimated
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stellar mass as well as a drop in estimated SFR, leading to a 0.3 dex reduction in the

sSFR, which would address the discrepancy seen here and in other models. It remains to

be seen whether a similar approach at z > 2.5 will preserve the good agreement with the

simulations.

4.5.2 The effect of the protocluster environment on the star-

forming sequence

The C-Eagle simulations show great diversity in the form of the star-forming sequence in

protoclusters, that is dependent not on the descendant cluster mass, but on the presence of

dense groups within the overall protocluster superstructure. This predominantly affects the

slope and normalisation at the high-mass end. The high normalisation of the star-forming

sequence in USS-1558 has been tentatively attributed to starbursts in intermediate mass

galaxies (Shimakawa et al., 2017a). Cibinel et al. (2019) find a higher merger fraction for

starburst galaxies above the star-forming sequence, which begs the interesting question

of whether these starbursting objects are more common in the protocluster environment.

We leave a detailed investigation of merger fractions and their impact on the star-forming

sequence to future work.

The protocluster environment also has a significant impact on the satellite galaxy

population. This is evidenced by the 0.3 dex higher scatter in the SFS for satellites

below the turnover mass, and the higher passive fractions of satellites below and around

the turnover mass. There are a number of physical processes in dense environments that

could be responsible for this behaviour. The probability of mergers and interactions is

higher, however this is also the case for centrals, where there is little difference with the

field population up to z ∼ 2. The large gas mass in the IGM in protoclusters available for

accretion could lead to both higher SFRs and higher accretion on to the central SMBH.

The latter could lead to more energetic feedback events and quenching.

4.5.3 Brightest Cluster Galaxy masses

Bahé et al. (2017) found that the z = 0 stellar mass of BCGs in C-Eagle is higher than the

observed relations, a discrepancy that is positively correlated with cluster mass. However,

the total stellar mass in the clusters is in agreement with observational constraints. The



4.5 Discussion 109

question is, why is BCG assembly so efficient in C-Eagle; are too many stars formed

in-situ, or are too many stars assembled through mergers? We do not attempt to answer

this question explicitly in this paper, however we can compare the proto-BCG evolution

along the SFS at high-z to provide some clues. The majority of these high mass, high SFR

galaxies are BCG progenitors (see Section 4.3.5.5), so we can think of the most massive

as being the main-branch progenitor, and host to in-situ star formation, whereas star

formation in other progenitors is then ex-situ.

The most massive, highly star forming objects in the simulated protoclusters are of

comparable mass and SFR to those in PKS 1138, USS 1558, 4C 23.56 and Cl J1449

(Shimakawa et al., 2017a, 2018; Tanaka et al., 2011; Smith et al., 2019). This on its own

suggests that the assembly of stellar mass into the BCG progenitor main branch is not

too efficient up to z ∼ 2, at least compared to this heterogeneous observational sample.

Bahé et al. (2017) found that only ∼ 10% of the BCG stellar mass was formed at z < 1,

which suggests that there is either significant star formation in BCG main progenitors

between 1.0 < z < 1.5, or too many stars are formed outside the main branch of the BCG

progenitor merger tree, that are then accreted later. We will investigate the formation

and assembly of stellar mass in clusters and their BCGs explicitly in future work.

4.5.4 Selection biases and future surveys

Galaxy protoclusters have been identified through a range of different techniques and

tracers, leading to a heterogeneous sample of candidates. This can lead to a number of

biases, both in the selection of the protocluster sample as well as the characterisation of

the galaxy population used to measure the SFS.

AGN have been proposed as potential tracers of overdense environments, since these

overdense environments will contain both supermassive black holes as well as abundant

gas for accretion. The Clusters Around Radio-Loud AGN (CARLA) survey discovered a

number of clusters and protoclusters between 1.3 < z < 3.2 using HzRGs (Wylezalek et al.,

2013; Cooke et al., 2015). Both PKS 1138 and USS 1558 were first identified from targeted

follow up of their central radio galaxies (Pentericci et al., 2000; Kajisawa et al., 2006),

However, protoclusters identified through such objects may represent a biased sample

compared to the total protocluster population. Cosmological models have also revealed a
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complex relationship between AGN and galaxy overdensities (Orsi et al., 2016; Habouzit

et al., 2018). We will investigate the coincidence of AGN and protocluster environments

in the C-Eagle sample in future work.

A number of ongoing surveys have discovered large numbers of protocluster candidates,

that open up the possibility of follow up with future observatories to characterise the SFS.

The Subaru/Hyper Suprime-Cam (HSC) has been a workhorse for protocluster studies

over recent years: the SILVERRUSH program has discovered large numbers of protocluster

candidates up to redshifts of z ∼ 7 though wide field surveys of Lyman-α emitters (Higuchi

et al., 2018; Harikane et al., 2019); and the GOLDRUSH program has discovered a number

of z ∼ 4 protoclusters through the dropout technique. The MAMMOTH (MApping the

Most Massive Overdensity Through Hydrogen) survey (Cai et al. 2016, Cai et al. 2017) is

a novel method of identifying protocluster candidates through absorption mapping along

quasar sightlines. Compilation of previous heterogenous surveys is also another promising

avenue for protocluster identification and chracterisation; the Candidate Cluster and

Protocluster Catalogue (CCPC) was one of the first such compilations, using a consistent

surface-density criterion Franck & McGaugh (2016a,b). However, as with AGN, the exact

relationship of the chosen tracer to the underlying overdensity can affect the magnitude

of the measured overdensity, as well as its shape and position relative to the underlying

matter overdensity (see Shi et al., 2019).

There are a number of future observatories and surveys planned that will provide improved

protocluster samples, as well as follow up of known protocluster candidates to characterise

the SFS and passive population in detail. Future NIR surveys from Keck/MOSFIRE

and the NIRSpec instrument on JWST will be able to distinguish passive galaxies with

high completeness and accurate redshifts, increasing the passive sample in protocluster

environments.

4.6 Conclusions

We study the star-forming sequence in high-redshift protoclusters and the field in the

Eagle simulation. Our results are as follows:

• The star-forming sequence in protoclusters and the field show similar overall

behaviour, rising in normalisation with redshift, and exhibiting a turnover at a stellar
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mass coincident with the onset of AGN feedback. The slope and normalisation are

in good agreement with observational constraints, except at cosmic noon (z ∼ 2)

as seen in other numerical studies. The spread in measured observational slopes is

shown to be due to the low-mass incompleteness, in many cases, of high redshift

surveys, which can only constrain the shallower high-mass slope.

• Exploring the SFS fits in detail reveals significant differences between the protocluster

and field environments. In the high mass-regime protoclusters have a diversity of

slopes and normalisations driven by the presence of dense groups, which promote

star-formation. In the low-mass regime, satellites in groups experience greater

environmental harassment, reducing their star-formation.

• The turnover mass evolves to higher stellar mass with decreasing redshift, in

contradiction with recent observational results. We argue that its evolution is

the result of the increased efficacy of AGN feedback in lower stellar mass galaxies at

high-z, which may be due to their compact morphologies and higher relative halo

masses.

• We compare the star-forming sequence to a number of well studied protoclusters

at z ∼ 1 − 2.5. We find a range of high mass slopes, which may be due to both

different observational tracers as well as a diversity in evolutionary stages. In the

simulated protoclusters we see a similar diversity in high mass slope that has no

correlation with descendant mass.

• The scatter in the star-forming sequence is σ ∼ 0.2 dex at all redshifts, but shows

significant dependence on stellar mass due to the competing influence of stellar- and

AGN-feedback. There is no environmental dependence of the scatter for centrals,

but including satellites leads to greater scatter in low mass protocluster galaxies up

to z ∼ 5, and above the turnover mass by z ∼ 2.

• The Eagle model matches the passive fraction of galaxies in field environments

reasonably well, but underestimates this fraction for high mass galaxies in

protocluster environments by a factor of 2.
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5 Learning the Relationship between Galaxies

Spectra and their Star Formation Histories

using Convolutional Neural Networks and

Cosmological Simulations

Christopher C. Lovell,1 Viviana Acquaviva,2 Peter A. Thomas,1 Kartheik G. Iyer,3 Eric

Gawiser,3,4 Stephen M. Wilkins1 17

5.1 Introduction

We present a new method for inferring galaxy star formation histories (SFH) using

machine learning methods coupled with two cosmological hydrodynamic simulations.

We train Convolutional Neural Networks to learn the relationship between synthetic

galaxy spectra and high resolution SFHs from the EAGLE and Illustris models. To

evaluate our SFH reconstruction we use Symmetric Mean Absolute Percentage Error

(SMAPE), which acts as a true percentage error in the low-error regime. We also make

estimates for the observational and modelling errors. To further evaluate the generalisation

properties we apply models trained on one simulation to spectra from the other. Finally,

we apply each trained model to SDSS DR7 spectra, and find smoother histories than

in the VESPA catalogue. This new approach complements the results of existing SED

fitting techniques, providing star formation histories directly motivated by the results of

the latest cosmological simulations.

A galaxy’s integrated Spectral Energy Distribution (SED) contains information about

countless physical properties, such as the stellar population age, mass, dust content,

redshift, metallicity and star formation history (SFH). Different physical processes leave

their imprint in different parts of the spectrum; the wider and more finely sampled the
171Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton, BN1
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3Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen
Road, Piscataway,
NJ 08854-8019 USA
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wavelength coverage, the more robust the interpretation of the various features of the

SED is in terms of galaxy properties. One fundamental tool to determine the physical

properties of a galaxy starting from photometric and/or spectroscopic observations is

SED fitting, the procedure of iteratively comparing models to the observed galaxy SEDs

(e.g. Walcher et al. 2011; Conroy 2013). Since the physical properties of the models are

known, those of the data can be derived by maximizing the resemblance between data and

models. The success and reliability of this method depends on the quality of the available

template spectra, and the robustness of the fitting algorithm.

The field of SED fitting has seen enormous progress in the last decade (Conroy, 2013).

Methods such as Markov Chain Monte Carlo have been used to efficiently explore the

degeneracies associated with the large parameter space (e.g. Sajina et al. 2006; Acquaviva

et al. 2011; Pirzkal et al. 2012; Acquaviva et al. 2012; Leja et al. 2017). However, one issue

that has consistently emerged from these efforts is the difficulty of characterizing and

constraining the star formation histories of galaxies. The spectral signatures of multiple

non-coeval generations of stars can be mimicked by other physical effects, such as varying

stellar metallicity, and older stellar populations with high mass-to-light ratios are easily

hidden in observed spectra, an effect sometimes referred to as “outshining" (Maraston

et al., 2010). It would be helpful, in Bayesian parameter estimation, to use priors to guide

our exploration of very large and degenerate parameter spaces, but these are not readily

available.

A wrongly reconstructed star formation history introduces significant biases in many

parameters that are usually estimated through Spectral Energy Distribution fitting, such

as stellar masses, stellar age indicators, dust content, and redshift (e.g. Mobasher et al.

2015; Pacifici et al. 2014; Iyer & Gawiser 2017; Leja et al. 2017). Acquaviva et al. (2015)

evaluated the impact of different sources of non-algorithmic systematics on the recovered

SED fitting parameters and concluded that a wrong star formation history is the most

detrimental. Similarly, Iyer & Gawiser (2017) found that fitting the SFH using single

stellar populations and simple functional forms (e.g. exponentially declining or constant

models) leads to a bias of up to 70% in the recovered total stellar mass. Carnall et al.

(2019) further demonstrated that simple parametric star formation histories impose strong

priors on implied physical parameters. These introduce strong correlated biases that are
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propagated through pipelines of results and used to infer key distribution functions and

relations, such as the stellar mass function and the cosmic star formation rate density

(Ciesla et al., 2017; Leja et al., 2019), critical for answering crucial questions in the study

of galaxy formation and evolution.

One possible approach to solving this problem has been to introduce new parametrisations

for the SFH that are less subject to the outshining bias (Behroozi et al., 2013b; Simha

et al., 2014), or to develop parameter-free descriptions of the SFH (Tojeiro et al., 2007;

Iyer & Gawiser, 2017; Iyer et al., 2019; Leja et al., 2019). Here we propose an alternative

approach, using supervised machine learning algorithms to ‘learn’ the relationship between

the SFH and the SEDs of galaxies. In contrast with SED fitting, where the SFH is built

from some ensemble of simple stellar populations to maximise the resemblance in SED

space, machine learning directly learns the relationship between the spectra and the entire

SFH. We expect that this method will carry systematic uncertainties that are independent

of those from SED fitting, so that our results will complement and strengthen the results

of these approaches. Another strength of a machine learning-based approach is that the

algorithm learns from the population ensemble, learning not only the correspondence

between individual spectra and star formation histories, but also which star formation

histories are common and which are unlikely, something that would be analogous in

Bayesian parameter estimation to learning the SFH prior.

A number of recent studies have explored the effect of priors on derived SFHs in SED fitting

approaches. Carnall et al. (2019) showed that parametric approaches implicitly impose a

strong prior on the SFH that can lead to unrealistically tight posterior constraints on the

SFR, and Leja et al. (2019) showed that even non-parametric fits are sensitive to the prior

SFH distribution, particularly where the data are poor. Pacifici et al. (2013) proposed

using SFHs from a semi-analytic model to generate a library of SEDs to be used in an SED

fitting algorithm, and found that these simulation-motivated templates prefer symmetric

or rising SFHs at intermediate redshifts (0.2 < z < 1.4), compared to the exponentially

declining forms predicted using simple stellar populations. Finally, Wilkins et al. (2013a)

show that using simulation-motivated enrichment and star-formation histories leads to

more accurate stellar mass estimates from colour information only. These studies highlight

the importance of the explicitly or implicitly assumed prior distribution of SFHs.
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Machine learning methods are becoming an increasingly popular tool for Astronomers

(Ball & Brunner, 2010; Baron, 2019). This is particularly the case where there is abundant

low quality data for which expensive, higher quality data can be obtained and used for

supervised training. However, a supervised machine learning algorithm is only as good

as its learning sample. The main challenges to applying these techniques to measure

properties such as star formation histories have been the following: assembling a sample

of galaxies for which the “true” star formation history is known; and making sure that

properties of the ensemble (the distribution of properties and their relationship to one

another) are a fair snapshot of the real Universe. However, there has been significant

recent progress from multiple independent teams on high-resolution cosmological models of

galaxy evolution, which has for the first time provided the potential to test this technique

(e.g. Simet et al., 2019).

Hydrodynamic cosmological simulations in particular are able to resolve stellar populations,

producing realistic, high resolution SFHs by taking into account a number of effects, such

as environmental interactions, mergers, and stellar and AGN feedback (Somerville &

Davé, 2015). EAGLE (Schaye et al., 2014) and Illustris (Genel et al., 2014) are two recent

hydrodynamic simulations that reproduce a number of key galaxy distribution functions.

Both are necessarily tuned to a small number of observational constraints due to their

limited resolution, which requires subgrid models to model physical processes below the

simulation scale. Despite this, a number of observables not included in the tuning are

simultaneously reproduced. Of interest for this study are the distributions of colours and

photometric magnitudes, which are well reproduced in both models (Trayford et al., 2015;

Torrey et al., 2015). The recent convergence of such detailed models with the observations,

and within sufficiently large simulated volumes, has finally enabled them to be used as

training sets for machine learning models.

In Section 5.2 we describe the method in detail, including an overview of the machine

learning techniques (5.2.1), the simulations used (5.2.3) and our method for generating

synthetic spectra (5.2.4) with spectacle, a stand-alone python module for generating

spectra from cosmological simulations (5.2.4).18. Our results when trained and tested

on the simulations are presented in Section 5.3. Section 5.4 details our modelling of

the uncertainty contribution from the observational and modelling sources. We then
18https://github.com/christopherlovell/spectacle
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apply our trained models to SDSS observations: Section 5.5.1 details the selection of our

observational sample, Section 5.5.2 describes the VESPA SFH catalogue, and Section 5.5.3

details our predictions. Finally, in Section 5.6 we discuss our results and avenues for

future research, then summarise our conclusions in Section 5.7. We make all of our code

for downloading the simulation and observational data, as well as training the CNNs,

available online in the form of Jupyter notebooks.19 Throughout we assume a Planck 2013

cosmology with the following parameters: Ωm = 0.30, ΩΛ = 0.69, Ωb = 0.048, h = 0.68,

σ8 = 0.83 and ns = 0.96.

5.2 Methodology

Supervised machine learning methods use training data to learn the relationship between

input features and output predictors. The trained model can then be used to predict

values for unseen data. Our features in this work are galaxy SEDs, and our predictors

are SFHs. We describe the SFHs as a piece-wise constant curve in bins logarithmically

spaced in look-back time:

0 < t /Myr < 32 (5.1)

32 < t /Myr < 68

68 < t /Myr < 147

147 < t /Myr < 316

316 < t /Myr < 681

0.681 < t /Gyr < 1.47

1.47 < t /Gyr < 3.16

3.16 < t /Gyr < 12.46 ,

where t is the lookback time from z = 0.1. This choice ensures that the epochs of recent

star formation, which leave more significant imprints on the spectrum, are sampled more

finely, while older stellar populations that evolve more slowly are grouped in wider bins.

The final bin is defined even wider by construction; we tested using higher resolution

bins for older populations and found that the machine could not accurately distinguish

19https://github.com/christopherlovell/learning_sfhs
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Figure 5.1: The CNN architecture, described in detail in Section 5.2.1.1.

between different aged populations above ∼ 3 Gyr.

Before training any of our machine learning methods we first split the data in to training

(72%), validation (8%) and test (20%) sets. We take care to perform any optimisation, be

that normalisation of the features or hyperparameter optimisation, solely on the training

(+ validation) data.

5.2.1 Machine Learning Methods

We implement two different learning algorithms: Extremely Randomised Trees (ERT)

and Convolutional Neural Networks (CNN). Using two different methods provides an

additional means of evaluating the performance through comparison.

5.2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs)20 are growing in popularity in many areas of

Astronomy, typically as a means of analysing 2D image data (e.g. Tuccillo et al. 2017;

Petrillo et al. 2017), and have been shown to perform remarkably well, with prediction

accuracies in classification tasks approaching human level (Flamary, 2016; Fabbro et al.,

2018).

Our CNN architecture was inspired by the work of Fabbro et al. (2018), who use the python

20For further background see Gu et al. (2018); Kiranyaz et al. (2019); Fan et al. (2019)
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version of Keras (Chollet et al., 2015) to apply the technique to 1D stellar spectra. We

make a number of modifications, as well as a systematic hyperparameter search given our

training features. The basic structure (shown in Figure 5.1) uses two convolutional layers,

the first applied directly to the one dimensional input spectral features, the latter applied

to the outputs of the first layer. The convolution operation essentially shares information

between neighbouring pixels, allowing the network to identify spatial correlations in feature

space, such as gradients and emission / absorption lines; tiered convolutional layers allow

the model to learn higher order relationships. The output of the second convolutional

layer is then fed in to a max-pooling layer, which takes the maximum from each feature

map generated from the convolutional layers, significantly reducing the dimensionality

(from 1×4601×55 to 1×55); this leads to faster training and reduced overfitting. Finally,

the output of the pooling layer is fed in to a traditional fully-connected neural network,

where each neuron in a given layer is connected to every neuron in the subsequent layer.

We tested different configurations, from shallow and wide (few layers, many neurons in

each layer) to deep and narrow (many layers, few neurons in each layer), and settled on

the former. The convolution and pooling layers together can be thought of as the feature

extraction part of the network, and the fully-connected layers perform regression on these

features.

The network weights are initially set randomly, then updated through iterations of forward

and back propagation utilising the Adam optimizer (Kingma & Ba, 2014). We minimise

Symmetric Mean Absolute Percentage Error (SMAPE; see Section 5.2.2) as the target

loss function. The network is trained in epochs; during each epoch the training data are

fed in batches (the batch size being a free parameter), and once all training galaxies have

been used the trained model is evaluated on the validation set. This gives a validation

score, that is used to decide when the training has converged, and to prevent overfitting.

During training we monitor the validation loss after each epoch and reduce the learning

rate if it has plateaued, or stop training altogether if the improvement is below some

threshold after a given number of epochs (early stopping), to prevent overfitting.

Optimising the network architecture is notoriously difficult due to the flexibility available

in the network configuration. However, once the general architecture has been decided,

there are further optimisations that can be made to higher level hyperparameters that
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can lead to significant improvements. We use hyperas21 to optimise a subset of these

parameters: the number of filters and size of the kernel in each convolutional layer, and the

number of neurons in the fully connected layers. Hyperas utilises Tree-structured Parzen

Estimators (TPE), which, after an initial random search, sequentially approximates the

performance of hyperparameters based on previous measurements, building a likelihood

based model (Bergstra et al., 2011).

5.2.1.2 Extremely Randomised Trees

Ensemble decision tree algorithms aggregate the results of multiple trained decision

trees in order to produce a single prediction, and can be applied to both classification

or regression tasks. Since decision trees are computationally inexpensive to train, the

training of ensembles does not lead to a significant performance penalty, and can be simply

parallelised. Extremely Randomised Trees (ERT; Geurts et al., 2006) is one such ensemble

approach that has been successfully used in a wide range of Astronomy domains (e.g.

Kamdar et al. 2016; Cohn 2018). It is similar to the popular Random Forest (RF): during

training of a RF, a subset of K features is randomly chosen during each split, which

reduces the correlation between trees where there are features with a strong correlation

with the predictors. ERT also perform this same feature space sampling, but add a further

level of randomness by making non-deterministic split choices

We use the implementation of ERT provided in scikit-learn (Pedregosa et al., 2011), with

grid search cross validation to optimise the following hyperparameters: minimum samples

in a split, minimum samples in a leaf, and maximum nodes in a leaf. This optimisation is

done solely on the training set during each training procedure. For ERT, the full training

set (training + validation) is used during training and optimisation.

5.2.2 Loss Functions

During model training and evaluation, the fit is assessed through a particular loss function.

Typical loss functions include the mean absolute percentage error (MAPE) and the mean

squared error (MSE), with the mean taken over all of the output predictors. Both of

these loss functions are inappropriate when applied to star formation histories sampled

21https://github.com/maxpumperla/hyperas
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from a reasonably wide range of final stellar masses. For example, the MSE leads to large

penalties for histories with high SFH normalisation, whilst lower mass galaxies with a

lower SFH normalisation are not penalised to the same degree despite similar percentage

errors in their predictions. On the other hand, it is not possible to calculate percentage

errors for zero valued bins.

We would ideally like a loss function that acts as a percentage error, in order not to

penalise high mass galaxies, but returns reasonable results for zero valued bins. We use a

variation of Symmetric Mean Absolute Percentage Error (SMAPE),

SMAPE =

[
2× Σb |Ytrue

b − Ypred
b |

Σb (Ytrue
b + Ypred

b )

]
× 100% ,

where Yb is the star formation rate in bin b. The value of SMAPE is bounded between

0% < SMAPE < 200%, but acts as a true percentage error in the low error regime. This

point statistic can be used as both a reasonably unbiased loss function within the CNN,

and as an evaluation of the fit.

5.2.3 Cosmological Simulations

We use two cosmological hydrodynamic simulations, EAGLE (Schaye et al., 2014; Crain

et al., 2015) and Illustris22 (Vogelsberger et al., 2014; Genel et al., 2014), which have both

been run on large comoving volumes, tens of megaparsecs on a side, producing tens of

thousands of galaxies at z = 0. EAGLE23 uses a modified version of the Smoothed Particle

Hydrodynamics (SPH) code GADGET 3 (Springel et al., 2005), whereas Illustris uses

the moving-mesh code AREPO (Springel, 2010b). The typical gas element mass in each

simulation is ∼ 106M�; below this mass scale physical processes cannot be modelled

self consistently, so subgrid prescriptions are used to handle processes such as radiative

cooling, star formation, stellar evolution, star formation feedback, black hole seeding, and

AGN feedback. Each hydrodynamic solver handles shocks and instabilities differently, but

on the whole the choice of solver does not have a large effect on global galaxy properties;

it is in the subgrid models that significant differences between the simulations are most

22Galaxy and particle information for Illustris were obtained from the online API, http://www.
illustris-project.org/data/

23Galaxy and particle information for EAGLE were obtained from the public database, http://icc.dur.
ac.uk/Eagle/database.php (McAlpine et al., 2016; The EAGLE team, 2017)
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Figure 5.2: The M∗ - SFR relation, or star-forming sequence, at z = 0.1 for the selected
Illustris and EAGLE galaxies. The scatter shows individual objects, and the median
relation with 1σ spread is over-plotted. SFR is calculated using the integrated mass of
stars formed in the last 100 Myr within a 30 pkpc aperture. Galaxies with zero recent SFR
are plotted at 10−2.3 M� yr−1 for clarity. The histograms at the top and right of the plot
show the normalised number counts as a function of stellar mass and SFR, respectively.
EAGLE and Illustris predict contrasting behaviour on this parameter plane.

apparent (Somerville & Davé, 2015).

By using two different simulations we are able to evaluate how our algorithms generalize,

by training them on a single simulation then testing its performance on another. We can

then assess whether we are learning the intrinsic relationship between galaxy SEDs and

their SFHs, rather than learning about the relationship in a particular simulation.

Both EAGLE and Illustris have been shown to agree reasonably well with observed

stellar mass and star formation rate distribution functions at low redshift, though there

are still discrepancies both between the simulations and with the observations. For

example, EAGLE fits the low mass end of the Galaxy Stellar Mass Function (GSMF), but

underestimates the normalisation at intermediate masses around the knee of the GSMF

(∼ 5× 1010M�), whereas Illustris overestimates both the low mass and high mass number

densities, but shows good agreement around the knee (Schaye et al., 2014; Genel et al.,

2014). Even greater discrepancies between the simulations can be seen in the distribution

of specific Star Formation Rate (sSFR = SFR /M∗) as a function of stellar mass, which in

EAGLE shows a relatively flat relation up to M∗ /M� ∼ 1010, which then falls by ∼ 0.8
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dex; this agrees with the observations, but the normalisation is ∼ 0.3 dex lower at all

but the highest stellar masses (Schaye et al., 2014). In contrast, Illustris remains flat out

to M∗ /M� ∼ 1011 (Sparre et al., 2015); Illustris galaxies with Milky Way-like masses

exhibit higher SFRs compared to EAGLE.

Such differences are to be expected due to the complexity of physical processes to be

modelled at a large range of scales, and their resolution is a key goal of research in the

field. However, confusingly, the photometric colour distributions in both simulations have

been shown to be in relatively good agreement with observations at low redshift over the

same mass range (Trayford et al., 2015; Vogelsberger et al., 2014). This inconsistency,

between the intrinsic physical properties and the predicted photometric distributions, is

due to differences in the choice of SED modelling assumptions, particularly the magnitude

of the dust correction.

Both simulations assume a Chabrier IMF, but adopt different cosmological parameters;

Illustris assumes WMAP9 (Hinshaw et al., 2013), EAGLE Planck13 (Planck Collaboration

et al., 2014), however these differences are expected to have negligible impact on the

resulting galaxy distribution functions.

5.2.3.1 Measurement Aperture

A significant proportion of the stars in massive galaxies are located within an extended

halo surrounding the central stellar concentration. These stars tend to be older, are often

accreted from other systems through interactions, and therefore have a different SFH

from those in the centre, which leads to spatial gradients in physical and observed stellar

properties. Both the integrated luminosity and the colour of a galaxy are therefore sensitive

to the measurement aperture, and in order to facilitate comparison with observations

similar apertures should be used when generating synthetic SEDs. Unfortunately, this

relies on the simulations having realistic spatially resolved star formation histories, which

has not been extensively tested, and is also subject to resolution issues for small apertures.

We use a spherical 30 kpc aperture centred on the gravitational potential minimum,

which has been shown to yield similar masses to a Petrosian aperture typically used in

photometric observational studies (Schaye et al., 2014). All quoted stellar properties (M∗,

SFR, SFH, etc.) are taken from the star particles within this aperture, and synthetic
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spectra are generated using only these star particles (see Section 5.2.4); this must be taken

in to account when comparing to observational studies (see Section 5.5.1).

5.2.3.2 Galaxy Selection

We select all galaxies from each simulation at z = 0.1 with stellar masses M∗ /M� > 1010,

which gives 3687 and 6473 galaxies for EAGLE and Illustris, respectively. The large

offset is an unfortunate result of the difference in the GSMF normalisation between the

simulations at the high mass end. Figure 5.2 shows the distribution of our selections on

the M∗ − SFR plane. The normalised histogram at the top shows the distribution of

stellar masses; the steepness of the GSMF in both simulations means that their are many

more low mass galaxies than high. Since these low mass galaxies dominate our training

sample, we expect to see a degree of overfitting to such galaxies with respect to their less

numerous high mass counterparts. We explore this in more detail in Section 5.3.

Illustris shows a steeper star-forming sequence relation than EAGLE and a higher

normalisation between 10 < log10(M∗ /M�) < 11, but above this Illustris galaxies have

lower SFRs. Such significant differences in training and test data present a unique challenge

for machine learning methods, where the accuracy on unseen data is usually poor, and as

such represents a robust test of our method.

5.2.4 Synthetic Spectra

The composite spectrum of a galaxy in each simulation is dependent upon the physical

properties and spatial distribution of the stars, gas and black holes. We ignore the AGN

contribution, which we do not expect to have a great effect on the optical emission.

The pipeline for generating spectra detailed in this section is contained within the

spectacle module, available at https://github.com/christopherlovell/spectacle.

5.2.4.1 Intrinsic Spectra

We generate intrinsic spectra by treating each star particle as a simple stellar population

(SSP). We then generate an SED for each SSP using the Python implementation of the

Flexible Stellar Population Synthesis (FSPS) code (Conroy et al., 2009; Conroy & Gunn,

2010; Foreman-Mackey et al., 2014). The SED of each SSP is dependent on its age and
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Figure 5.3: g − r colour distribution for the EAGLE and Illustris simulation selections.
Dashed lines show the intrinsic distributions (including the nebular contribution); solid
lines show the dust-attenuated distributions. The dust model leads to a significant
reddening of the blue population in both simulations.

Figure 5.4: Intrinsic (green) and dust-obscured (red) spectrum for an example galaxy
from the Illustris simulation. The g and r filter curve responses are shown at the top of
the plot.
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metallicity, normalised by its initial stellar mass. Each stellar particle in the simulations

is approximately two orders of magnitude more massive than typical star forming regions;

a single young star particle can therefore significantly affect the predicted colours of a

galaxy. In order to mitigate this artificial Poisson scatter we resample the recent star

formation using a similar technique to that used in Trayford et al. (2015). We take each

star particle younger than 100 Myr and split it into ten thousand new particles with

ages sampled uniformly within this interval, and the mass of the original particle equally

distributed between the resampled particles.

Young stellar populations ionise their surrounding gas, leading to nebular line and

continuum emission. This emission can dominate photometric fluxes, as well as being

responsible for the majority of optical emission lines (Anders & Fritze-v. Alvensleben, 2003;

Reines et al., 2010; Wilkins et al., 2013b). Byler et al. (2017) use the photoionization code

Cloudy to model the expected nebular emission from young FSPS SSPs self-consistently;

these templates are provided in python-FSPS. They assume a covering fraction of unity

for stellar populations with age t < tesc, where tesc = 107 years.

We define the ‘intrinsic’ emission as including the nebular contribution. Figure 5.3

shows the intrinsic g − r colour distribution for EAGLE and Illustris. Figure 5.4 shows

the example intrinsic emission for an Illustris galaxy; strong nebular line emission and

absorption are clearly visible.

5.2.4.2 Dust Attenuated Spectra

We use information from the models on the mass and metallicity of star forming gas to

provide a self-consistent, physically motivated prescription for the dust attenuation. Our

model assumes a simple screen, ignoring the dust distribution geometry. The transmission

T at a wavelength λ for a particle of age t is given by

T (λ, t) = exp

[
−τ(t)

(
λ

λν

)−1
]

, (5.2)

where τ is the optical depth at wavelength λν . The optical depth is dependent on the age

of the stellar particle; all particles are subject to a constant screen due to dust in the ISM,

but young particles, which still reside within their birth clouds, are subject to a further
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Figure 5.5: The star-forming sequence for the Illustris sample, coloured by the average
attenuation over the whole galaxy (< τ >= −log(F dust

λ /F int
λ )[λ = 5500 Å]). Gas-rich,

star-forming galaxies experience greater attenuation than gas-poor galaxies at the same
stellar mass.

transient attenuation component,

t ≤ tdisp : τ = γ τ cloud + γ τ ISM

t > tdisp : τ = γ τ ISM .

Both τ ISM and τ cloud can be fixed constants (γ = 1), or linked to other properties of the

galaxy. We link the optical depth to the metallicity and mass of cold, star forming gas:

γ =
Z SF

ZZ14

(
MSF

M∗

1

β

)
, (5.3)

where Z SF is the mass-weighted star forming gas phase metallicity, and the mass

dependence is encapsulated in the ratio of MSF, the total mass of star forming gas,

to M∗, the stellar mass. These are both normalised to the respective Milky Way values:

ZZ14 = 0.035 24, and β = 0.1. We use τ cloud = 0.67, τ ISM = 0.33, tdisp = 10 Myr and

λν = 5500Å, as used in both EAGLE and Illustris studies (Trayford et al., 2015; Genel

et al., 2014). This approach produces a physically motivated attenuation, where gas rich

spirals are subject to higher attenuation than gas poor ellipticals with identical stellar

24This is taken from the M∗ −Z relation expression in Zahid et al. (2014) evaluated at the Milky Way
stellar mass, and converted to relative solar metallicities assuming 12+log10(O/H)� = 8.69 (Allende Prieto
et al., 2001).
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mass. This can be seen in Figure 5.5, which shows the star-forming sequence for the

Illustris selection, coloured by the mean attenuation.

Figure 5.4 shows the dust-obscured spectrum for an example Illustris galaxy. The high

relative gas mass and star-forming gas phase metallicity leads to significant attenuation.

Figure 5.3 shows the distribution of g − r colour for the dust attenuated spectra. Dust

leads to a reddening of the blue population, shifting the peak by ∆(g − r) ∼ +0.2 in both

simulations, but the location and normalisation of the red population in both cases is

generally unaffected; this is expected since these intrinsically red systems are generally

gas poor, and experience lower attenuation.

5.2.4.3 Artificial Noise

In order to further increase the realism of our synthetic spectra we add artificial noise at

a given signal to noise (SN) level. We use a fiducial value of SN = 50, and test the effect

of increased SN on our predictions in Section 5.3.1.

For each spectrum we can take multiple realisations of the noise. This can be useful in two

ways: it can increase our training set, and it can prevent the model from overfitting to a

single noisy realisation by providing multiple noise-added spectra for a given SFH. We

explore the effect of using multiple noisy realisations on our model training in Section 5.3.1.

5.2.4.4 Wavelength Grid

We restrict the wavelength coverage to that approximately covered by the SDSS DR7

release (see Section 5.5.1), and resample (flux preserving; Carnall, 2017) on a fixed

logarithmically-sampled wavelength grid. This gives a final fixed input wavelength grid,

3572 6 λ /Å 6 8173, with resolution λ /∆λ = 5570 (λ = 4500Å).

5.3 Results

We first train both Extremely Randomised Trees (ERT) and Convolutional Neural Network

(CNN) models on our EAGLE and Illustris training samples (80% of the data). All plots

in this section show predictions when applied to galaxies in the respective test sets (20%

of the data).
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Figure 5.6: Learning curves, showing the SMAPE as a function of input training data
size, from CNN trained on dust attenuated spectra from both Illustris and EAGLE.
Multiple samples without replacement are drawn from the full training set, and the
median SMAPE on the training and test sets are shown as the dashed and solid lines,
respectively. The shaded region showing the 1σ spread in the test SMAPE.

5.3.1 Training & Testing

5.3.1.1 Learning Curves

Learning curves show the improvement in test score as a function of training set size,

which provides information on the convergence of the model. Decreasing scores suggest

that a larger training set would lead to a better fit, whereas a plateau suggests that

the training has converged and no further improvement can be obtained from additional

training data. A large gap between the training error and the test error would indicate

overfitting, or poor generalisation properties. Figure 5.6 shows learning curves for dust

attenuated spectra from Illustris and EAGLE. We perform 6-fold cross validation to

estimate the scores and present their median. The EAGLE learning curve is still falling

at 3500 samples, which suggests that the model is yet to converge. The Illustris learning

curve, in comparison, appears to have plateaued at ∼ 5500 samples, though a larger

training set is needed to confirm this. As a result, we concentrate on the converged

Illustris model for the time being (we will return to the EAGLE training set later, both

in conjunction with the Illustris training data, and as an independent test set for the

Illustris trained model). The gap between the training and test errors in both EAGLE
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and Illustris is small, which suggest negligible overfitting. The EAGLE model has slightly

higher SMAPE at fixed N than Illustris, but it is unclear what specific differences in the

simulation modelling lead to this; a possible explanation is the higher gas-phase metallicity

in EAGLE at fixed stellar mass compared to Illustris, which will contribute to greater

dust attenuation, obscuring the underlying relationship between the SFH and the spectra

more in EAGLE than Illustris.

5.3.1.2 Method comparison

Returning to the Illustris data in isolation, the top panel of Figure 5.7 shows the distribution

of SMAPE scores, for both ERT and CNN and for dust obscured and intrinsic spectra,

evaluated over the entire Illustris test set. The median SMAPE for the CNN is significantly

lower than for ERT for both intrinsic and dust obscured features. This is due to the

CNN’s ability to share local information between neighbouring pixels, whereas ERT treats

each pixel as an isolated feature. We also find that the median SMAPE for dust obscured

spectra with ERT is significantly higher than that for intrinsic spectra, however for the

CNN this difference is negligible. Dust introduces additional degeneracies between the

spectral features and the underlying SFH, so it interesting that the CNN is capable of

overcoming these.

We choose to focus on the CNN performance in the rest of the paper.

5.3.1.3 Model Results with Noise

As mentioned in Section 5.2.4.3 we add noise to our simulated spectra with a fiducial value

of SN=50. The middle panel of Figure 5.7 shows the SMAPE distribution for a model

trained with this added noise, and as expected the noise leads to an increase in the median

SMAPE of 2%. However, we can re-sample the noise for each synthetic spectrum multiple

times. Using a multi-resampled training set leads to a reduction in the SMAPE; we tested

different numbers of resamples, and found that the improvement in SMAPE plateaus at 4.

The SMAPE distribution using this 4 times resampled feature set is shown in the middle

panel of Figure 5.7; the median SMAPE is much lower than for the single noise-realisation

feature set (10.9%). This suggests that the negative effect of the noise, that obscures the

relationship between the spectra and the SFH, is overcome by the positive impact of the

larger, more generalisable training set.
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Figure 5.7: SMAPE distributions for the Illustris simulation, with different learning
algorithms and spectral modelling. The median of each distribution is shown by the
arrows, and quoted in the legend. Top: ERT (dashed) and CNN (solid) models trained
on intrinsic (green) and dust-obscured (red) spectra. Middle: CNN model trained on
dust-obscured spectra (dashed), with added noise (solid, yellow), and with noise resampled
× 4 (solid, green). Bottom: CNN model trained on dust-obscured spectra with added
noise at SN=50 (dashed, purple), SN=20 (solid, purple), and with noise resampled × 4 at
SN=20 (solid, pink).
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Figure 5.8: Six example SFHs from the Illustris test set (blue), alongside fits to the
dust-obscured spectra (red). The examples are selected with a range of SMAPE scores,
0.8-55.6%, from top left to bottom right. Errors are a combination of observational and
modelling errors, see Section 5.4. Each panel shows the galaxy index and the approximate
SMAPE score percentile in the bottom right, as well as the z = 0 stellar mass, star-forming
gas mass and star-forming gas metallicity.
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We expect the prediction accuracy to decrease as the noise level is increased. To test this,

we used a SN = 20, shown in the bottom panel of Figure 5.7. This leads to an increase in

the SMAPE of 2.9% compared to the fiducial SN = 50. However, as in the lower noise

case, resampling the noise 4 × leads to an improvement of 1.9% in the median SMAPE

over the single-realisation model. We quote results using the SN=50, 4 × resampled

spectra in the rest of this section, unless otherwise noted.

5.3.1.4 Example Fits

In order to illustrate the SFH fits we show six examples from the Illustris test set in

Figure 5.8. We show predictions for a range of SMAPE scores as evaluated on the dust

attenuated SEDs. The top left panel shows one of the best fits, the next four panels

show fits around the 20th, 40th, 60th and 80th percentiles of the SMAPE distribution,

and finally the bottom right panel shows one of the worst fits. The errors on the fit in

each bin are taken from the observational and model errors combined in quadrature (see

Section 5.4).

5.3.1.5 Parameter Correlations

As mentioned in Section 5.2.3.2, we preferentially select low mass galaxies due to the

steepness of the GSMF. It is therefore important to investigate any correlation of the

quality of fit with stellar mass, to evaluate any overfitting to low mass galaxies. The top

panel of Figure 5.9 shows the distribution of Illustris test galaxies on the stellar mass

- SFR plane, coloured by SMAPE on the predicted histories from the dust-attenuated

model. In order to quantify any trend of SMAPE with our galaxy parameters we calculate

the Pearson’s correlation coefficient,

ρ =
cov(P, SMAPE)

σPσSMAPE

,

where P is the given parameter, cov is the covariance between the parameter and SMAPE,

and σ is the standard deviation of the respective quantity. There is no significant

correlation between stellar mass and SMAPE (ρ = −0.14), nor between specific-SFR and

SMAPE (ρ = 0.11).
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Figure 5.9: Parameter correlations with SMAPE for the predictions on the Illustris
test set, using the intrinsic spectra. The pearson’s correlation coefficient between each
parameter and SMAPE is shown in the top right. The grey histograms above and to the
right of each axis show the distribution of the given parameter. Top: stellar mass - SFR
relation. SFR is calculated as the integrated mass in stars formed in the last 100 Myr.
Bottom: stellar mass - stellar metallicity relation.
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Figure 5.10: The normalised SMAPE distribution for the inter-sim (solid) and within-
sim (dashed) test sets, for dust-attenuated spectra. The median of the distribution is
shown by the arrow on the x-axis, and quoted in the legend. Despite being trained on
very different data, the SMAPE is low in both inter-sim cases.

The well known age-metallicity degeneracy in the optical can also obscure the underlying

SFH (Worthey, 1994). The bottom panel of Figure 5.9 shows the stellar mass - metallicity

distribution, for the Illustris test galaxies, coloured by SMAPE on the intrinsic model.

There is no significant correlation between stellar metallicity and SMAPE (ρ = −0.05).

This may be due to the relatively low resolution of the SFHs, reducing the confusion

between bins.

5.3.2 Testing Across Simulations

Further uncertainty is introduced by our choice of modelling assumptions, such as the

training simulation, SPS model, intrinsic SED pipeline and dust model. Of these we

expect the choice of training simulation to lead to the greatest bias. To estimate the

uncertainty introduced we test a model trained assuming some simulation training data

on another model trained assuming different simulation training data. This procedure

demonstrates how well each model generalises.

Figure 5.10 shows the SMAPE error when our CNN is trained and tested on different

simulations, using dust-obscured spectra with 4 × resampled noise. Since the latter

testing simulation is not included in any of the training, the full galaxy sample can be

used for testing; we plot the normalised distributions to aid comparison. For models
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Figure 5.11: The predicted star-forming sequence for the intersim results. We estimate
the present day SFR from the normalisation in the latest SFH bin, corresponding to a
timescale of approximately 30 Myr, and the total mass from the SFH combined with an
age-dependent recycling fraction. Each model prediction, shown with the square points
and solid lines, recovers the original star-forming sequence, shown by the circular points
and dashed lines, despite being trained on SFHs corresponding to a different SFR-M∗
relationship.
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trained on both EAGLE and Illustris the median SMAPE for the intra-sim results is

higher than within-sim. The errors are still reasonably good in all intra-sim cases, despite

the significant differences in the simulations used for the training and testing data.

Another way of testing whether the model is overfitting is to plot the predicted distribution

of galaxies on the stellar mass-star formation rate plane. We have already seen in Figure 5.2

that both simulations exhibit very different behaviour in this space, and might expect

a model that has overfit to a particular simulation to recover the distribution from its

training data. Figure 5.11 shows that this is not the case: each model recovers the

star-forming sequence of the new input data.

Whilst these integrated and point-in-time properties are recovered accurately, the shape

of the SFH, and the distribution of SFHs, may still be incorrectly predicted. To test this

we show in Figure 5.12 the median and 16th − 84th percentile spread in each bin for the

input data and the predictions. The distribution of predicted SFHs is remarkably similar

for both simulations throughout cosmic time.

5.4 Error Estimates

Our SFH predictions are subject to two main sources of uncertainty: those from errors

in the spectra, which we refer to as observational errors, and those from errors in the

CNN fit, which we refer to as modelling errors. In this section we make estimates for the

impact of these two sources of error, and combine them to give a total estimated error in

each bin.

5.4.1 Observational Errors

Errors in the observed SED will lead to uncertainty in the predicted histories. The

propagated error can be estimated in two ways: sample a number of noisy SEDs, predict

the SFHs for each noise-added spectrum, and calculate the covariance matrix of the

output, as in Tojeiro et al. (2009), or treat the model as a vector valued function and

evaluate the dot product of the Jacobian and the error spectrum, as demonstrated in

Fabbro et al. (2018). Errors calculated with both procedures should give similar results

since they are essentially evaluating the same input dependence; the former does this

through Monte Carlo sampling, whereas the latter explicitly calculates the gradient of the
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Figure 5.12: The median SFH and 16th − 84th percentile spread in each bin for the
input data (green) and the intersim prediction (orange for the EAGLE mode, blue for the
Illustris model). The distribution of predicted SFHs is recovered well in both cases.
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predictors with respect to the features.

We implement the former approach, using the noise model described in Section 5.2.4.3. For

each spectrum we add N random realisations of each error spectrum to the input spectrum,

and propagate each noise-added spectrum through our model to obtain a distribution of

predicted histories. From these the covariance matrix can be calculated,

Cij = 〈(xi − x̂i)(xj − x̂j)〉 ,

where xi is the SFR in bin i for a given realisation, and x̂i is the mean SFR in that bin

for all realisations. The uncertainty in each bin is then σi =
√
Cii. We can also use C

to find the correlation matrix; we describe this in more detail, alongside examples, in

Appendix 5.8.1.

Figure 5.13 shows the observational error in each bin as a function of SFR, for intrinsic

and dust-obscured spectra. The error is positively correlated with the quantitative value

of the SFR. In all but the oldest bin, the errors on dust attenuated spectra are larger than

in the intrinsic case. We fit second order polynomials to the σ − log10(SFR) relation

for each bin, which allows us to predict the observational error for arbitrary histories (fit

parameters are quoted in Appendix 5.8.2).

5.4.2 Modelling Uncertainties

There are a number of free parameters in our model pipeline, from the synthetic SED

generation to the parametrisation of the dust model, to the free parameters of the CNN.

It is impractical to estimate the uncertainty on each parameter, however we can obtain an

estimate of the propagated model uncertainty directly from the scatter of the residuals in

predicted SFH. The magnitude of the residual is SFR dependent in all bins; we account

for this by dividing by the absolute predicted SFR in the bin to give the fractional residual.

This single statistic can be used to estimate the model error for each galaxy, bin-by-bin,

by multiplying by the predicted SFR.

Figure 5.14 shows the fractional residuals between the predicted and the true SFR in each

lookback-age bin as a function of the true SFR within that bin, along with normal fits to

the marginalised distributions.
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Figure 5.13: Observational errors (1σ) as a function of SFR in each bin, for intrinsic
(green) and dust-obscured (red) spectra. Second order polynomial fits are shown as dashed
lines. Observational errors are strongly dependent on the quantitative SFR, and are larger
for dust-obscured spectra in recent bins.
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Figure 5.14: Fractional residuals between the true SFH and the predicted SFH for
intrinsic (green) and dust attenuated (red) spectra from Illustris. The residuals are plotted
as a function of the logarithm of the absolute star formation. The right panels show a one
dimensional histogram of the distribuion of fractional residuals, with mean and 1σ spread
from a normal fit quoted in each panel.

5.4.3 Total Error

We combine the observational and modelling errors to obtain the total error by adding

them in quadrature. Since the error is dependent on the quantitative SFH in each bin

we do not quote it, but provide fits to the observational error and fractional residual

distributions in Appendix 5.8.2. The modelling errors dominate the error budget for all

bins, for an observational error SN = 50; we have tested up to SN = 20, and this remains

the case. Figure 5.8 shows the total uncertainties calculated using this method, for each

example.

5.5 Observational Predictions

We apply the model to the SDSS DR7 Main Galaxy Sample (MGS)25 (Strauss et al., 2002;

Abazajian et al., 2009), which allows us to compare with Vespa (Tojeiro et al., 2007,

2009), an SED fitting code for predicting SFHs that has been applied to this catalogue.

Vespa uses similar binned star formation histories to our method, allowing a like-for-like

comparison between the two methods. The level of agreement in predicted SFHs, or lack

25obtained from the Data Archive Server, das.sdss.org
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Figure 5.15: g′ and r′ magnitude distributions in EAGLE, Illustris, all SDSS galaxies,
and our final magnitude- and mass-limited selection (left to right). The red dashed line in
all panels shows the SDSS DR7 target magnitude limit r′lim at z = 0.1. The red shaded
region shows the extent of r′lim for 0.09 6 z 6 0.11. Top panels: the number density. Scale
is not consistent between panels. Bottom panels: the stellar mass distribution. For the
simulations this is the intrinsic stellar mass within the aperture. For SDSS this is the
VESPA stellar mass estimates.

thereof, does not imply that either technique is more robust, but simply allows us to

highlight the differences between our approach and an SED fitting approach.

5.5.1 SDSS Selection

We first selected all MGS galaxies in the redshift range 0.09 < z < 0.11 where the

redshift confidence was higher than 95%, which gave 76812 objects. We then removed

those galaxies whose rest-frame wavelength coverage, with bad pixels removed, did not

cover our fixed wavelength grid (see Section 5.2.4.4), yielding 66245 galaxies. Given our

fixed wavelength grid we interpolated each spectrum (flux preserving; Carnall, 2017),

de-redshifted and corrected for galactic extinction (Barbary, 2016b) using the Schlegel

et al. (1998) galactic dust maps for each SDSS plate combined with the O’Donnell (1994)

extinction curves (RV = 3.2, where RV = AV /E(B − V )).

5.5.1.1 Aperture Correction

SDSS spectra are taken through a 3 arcsecond diameter fibre, which corresponds to 6 pkpc

at z = 0.1. In order to apply our model, trained on galaxy spectra generated using a 30
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pkpc aperture intended to mimic a petrosian aperture, we chose to scale up the observed

fluxes by the mean of the difference between the fiber and petrosian magnitudes in the

observer frame g and r bands (henceforth g′ and r′),

S = 10
0.2× ([Mfiber

g′ −Mpetro

g′ ]+[Mfiber
r′ −Mpetro

r′ ])
,

where S is the flux scaling factor. After these corrections, the magnitude distribution

on the g − r plane of the selection at this stage can be seen in the top panel, third from

left, of Figure 5.15. An alternative to scaling up the observational fluxes would have been

to generate spectra from the simulations using a mock fibre aperture. Unfortunately, as

discussed in Section 5.2.3.1, on these small scales resolution effects become important.

5.5.1.2 Colour Selection

We then used rest frame g and r magnitudes to perform a 2D selection on g and r

band magnitude simultaneously (without replacement), in order to match the same 2D

distribution from the combined Illustris and EAGLE samples (see the first two panels

of Figure 5.15). SDSS spectra have a target apparent magnitude limit26 of r′ < 17.77,

which corresponds to an absolute magnitude of -20.61 at z = 0.1; a large proportion of our

simulated galaxies lie below this threshold, so we are limited to matching the distribution

above this constraint (as shown by the red dotted line in all panels of Figure 5.15).

Selecting galaxies above this threshold with matched magnitudes gives us a sample of

10 000 galaxies. It is clear from Figure 5.15 that the g against r distribution for SDSS

galaxies deviates from 1:1 more so than the simulations, motivating the 2D selection. The

selection based on the simulation broadband magnitudes is to ensure that, when used as

features for the model, the spectra remain ‘in-bounds’ to some extent, i.e. are not outside

the range of input training data. It is true that we a priori select observed galaxies with

good spectral agreement with our simulations in a broad-band sense, however the details

of the higher resolution spectra can still differ substantially. We have tested that our

models do not fail dramatically on out-of-bounds SDSS data, however a more thorough

test with simulated out-of-bounds performance is left for future work.

26https://classic.sdss.org/dr7/
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In Appendix 5.8.3 we show how t-SNE can be used to evaluate the synthetic gap between

the synthetic and observed spectra.

5.5.2 VESPA Star Formation Histories

The Vespa SFH catalogue predicts star formation histories with varying resolution

depending on the quality and completeness of the input data, with a maximum resolution

of 16 bins, though a resampled SFH at this higher resolution is also provided. We use this

resampled SFH throughout the comparison, though caution that this does not necessarily

represent the best fitting history. Vespa also provides predictions using the SPS models

of both Bruzual & Charlot (2003) and Maraston (2005). The choice of model leads to

significant differences in the predicted SFH, which highlights the effect of modelling choices

on the inferred SFH. We use the Vespa results that use BC03 models assuming a Chabrier

IMF, whilst noting that these will not necessarily lead to consistent predictions compared

to the more recent FSPS models used in our model training, and do not include nebular

emission. Using the more recent FSPS model is justified since the improved spectral

modelling will lead to galaxies with more comparable intrinsic properties, such as the

SFH, particularly since our selection is magnitude-matched to the SDSS sample. We leave

a comparison of the effect of SPS model choice to future work.

SDSS DR7 spectra are measured within fiber apertures of 3” diameter. Vespa SFHs are

corrected for this by scaling the entire normalisation (i.e. the mass in each bin) by the

offset between the fiber and petrosian z-band magnitudes (Tojeiro et al., 2009),

M∗,fiber =
M∗,total

100.4(zf−zp)
.

where zf and zp are the fibre and petrosian z-band magnitudes, respectively27.

5.5.3 SDSS Predictions

Figure 5.16 shows SFH predictions fromVespa and our Illustris and EAGLE models

(trained on dust-obscured spectra, with noise resampled × 3) for four example SDSS

galaxies. We emphasise that neither our model nor the Vespa predicted histories represent

27In Tojeiro et al. (2009) the equation for the stellar mass correction contains an error; it is reproduced
here correctly
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Figure 5.16: Four example SFHs from Vespa, alongside predictions for the same SDSS
galaxies from the EAGLE and Illustris models (trained on dust-obscured spectra with
noise, resampled × 3). We show histories with total predicted masses from the Illustris
model closest to the estimated Vespa total masses. Uncertainties are estimated from
the observational and modelling errors, described in Section 5.4. Our models trained
with EAGLE and Illustris predict similar shaped histories, with smoother evolution than
Vespa.
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Figure 5.17: Mean predicted SFH for the SDSS selection from Vespa, and our Illustris
and EAGLE models (including dust and noise, resampled × 3).

the ‘true’ SFH, but are shown simply to highlight the differences. Our model SFHs are

much smoother than those predicted from Vespa, which predicts more stochastic, bursty

histories.

Our observational selection is neither mass nor volume complete, so it is not possible to

make a fair evaluation of the population SFH or cosmic star formation rate density as a

function of time. However, we can plot the median SFH from each model for this selected

sample to better understand the ensemble prediction, shown in Figure 5.17. Vespa

predicts two large peaks in the SFR distribution at ∼ 20 0 Myr and ∼ 1 Gyr, whereas our

model predictions for Illustris and EAGLE have smoother, decreasing behaviour, peaked

in the earliest bin.

Figure 5.17 also shows the median input SFH from the simulation for a sample magnitude-

matched to the observations, which can be thought of as the effective ‘prior’ on the SFH

distribution. The predicted distributions are similar, though not identical, to the training

distributions, which suggests that the prior is highly informative, as expected, but does

not dominate.

We also estimate the final stellar mass of each galaxy from the SFH by assuming an

age dependent recycling fraction (estimated using python-FSPS; Foreman-Mackey et al.,

2014). Figure 5.18 shows our estimates obtained from the EAGLE and Illustris models

compared to the VESPA estimates. Both models return similar stellar masses to Vespa,
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Figure 5.18: Estimated final stellar masses from the predicted SFH in the Illustris (top,
blue) and EAGLE (bottom, orange) models, assuming an age dependent recycling fraction,
compared to those published in the VESPA catalogue. The black dashed line shows the
one-to-one relation, and the dotted black lines show ±0.25 dex offset. The white points
show the binned median and 1σ scatter. The histograms at right show the marginal
distributions of estimated stellar masses; the histogram for the VESPA distribution (green)
is shown at top, and at right for comparison. The mass estimates are very similar to those
obtained from Vespa down to log10(M∗ /M�) ∼ 10.5, with little scatter.
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within ∼ 0.25 dex for the majority of galaxies, and there are no mass dependent trends

down to log10(M∗ /M�) ∼ 10.5; there is a floor to the predicted masses, due to the lack

of simulated galaxies with such low masses in the magnitude-selected sample.

Finally, Figure 5.19 shows the median predicted SFH from each model, binned by total

predicted mass (from the Vespa model). For EAGLE, all four bins show very similar

behaviour, in both the median and the 16th-84th percentile spread around it, except in

the earliest bin, which has higher SFR for more massive galaxies. Illustris, in contrast,

predicts a peak in the SFH at intermediate ages for lower mass galaxies, giving younger

average stellar ages.

5.6 Discussion

We have demonstrated a new approach to estimating star formation histories using

cosmological simulations, combined with detailed synthetic spectral modelling, to train

a convolutional neural network. This approach is subject to different systematics and

modelling assumptions compared to traditional SED fitting, which we discuss in greater

detail here, as well as possible extensions in future work.

5.6.1 Cosmological Simulations

One of the obvious limitations to using cosmological simulations as a training set is that

our understanding of galaxy formation is incomplete, and as such cosmological simulations

are not truly representative of actual galaxies, neither individually or in ensemble, which

can impact the predicted SFHs. More realistic modelling is an obvious remedy, though

this is already a fundamental aim of galaxy evolution studies.

One way of evaluating the predicted population SFH distribution is to look at the evolution

of the cosmic star formation rate density (CSFRD), which in hydrodynamic simulations

has been shown to be consistently in tension with observational constraints at cosmic noon

(z ∼ 2) (Somerville & Davé, 2015). Key distribution functions in EAGLE and Illustris of

point-in-time properties, such as stellar mass and star formation rate, are also in tension

with both observations and each other at high redshift. Semi-analytic models are able to

match these distribution functions better at a range of redshifts (e.g. Henriques et al.,

2015; Clay et al., 2015), but do not resolve the stellar populations.
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Figure 5.19: SDSS predictions from EAGLE and Illustris split by VESPA predicted
total mass. The lines show the median, and the shaded region the 16th-84th percentiles.
EAGLE and Illustris SFH predictions for low mass galaxies are significantly different,
with Illustris predicting a younger average population.
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Incorrectly predicted galaxy properties also impact spectral modelling where it is physically

motivated. One physical property that has a large impact on our dust model is the central

cold gas mass; both EAGLE and Illustris have been shown to underestimate this mass,

to differing extents (Crain et al., 2015; Genel et al., 2014). We find that the average

star forming gas mass in Illustris is higher than in EAGLE for our selected galaxies; in

EAGLE there are a significant number of galaxies with zero star-forming gas, which gives

zero attenuation in our dust model (γ = 0). This leads to higher average attenuation

for Illustris galaxies, however this is cancelled out to some degree by the higher median

SFR in Illustris over our mass range (see Figure 5.2), which leads to higher intrinsic

luminosities. This could possibly explain the good agreement in optical colours with

observations presented in Trayford et al. (2015) and Genel et al. (2014), despite the

differing star-forming sequence behaviour between the simulations.

Trayford et al. (2015) find that, using a very similar dust model to that used in this

work, EAGLE galaxies over the stellar mass range 1010.5 < M∗ /M� < 1010.8 exhibit

a stronger bimodal colour distribution than that seen in observations from the GAMA

survey (Taylor et al., 2015), with higher fractions of blue galaxies. This strong bimodal

behaviour remains when the authors use an orientation dependent dust model. The colour

distribution may be related to the lower passive fractions (∼ 20%) seen in this mass range

compared to observations (Schaye et al., 2014). Such trends will affect predictions from the

EAGLE-trained model, since its ‘prior’ for the SFR distribution will be skewed towards

more star forming objects that may not be representative of the true SFR distribution

of galaxies. Similar arguments can be made for the Illustris predictions, where the SFR

distribution has a higher normalisation for intermediate masses. We do not find that

the model stellar mass estimates for SDSS galaxies show significant biases compared

to VESPA, but the mass is dominated by the wide early bin. We could of course have

selected SDSS galaxies with similar stellar masses, but these may have been out-of-bounds

in spectral space. We conclude that improved physical and spectral modelling in the

simulations to match the magnitude - stellar mass relations would improve our predictions.

5.6.2 Spectral modelling

The difference between synthetic spectra and observed spectra, known as the synthetic

gap, can lead to significant biases in predicted histories. More sophisticated approaches
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to modelling the dust could reduce this gap. Dust models that take in to account the

geometry of the gas and stars within the system show better agreement with observed

colour distributions (Trayford et al., 2015; Davé et al., 2017). The most sophisticated

approach employs 3D Monte-Carlo radiative transfer (RT), which treats absorption and

anisotropic scattering by dust, as well as thermal re-emission and dust heating, in a

self-consistent way. This approach has been applied to the EAGLE simulations using the

SKIRT code, to calculate the FIR and dust properties of the galaxy population (Camps

et al., 2016; Trayford et al., 2017); they find a better match to observed local colour

distributions compared to screen models. Introducing such line of sight dependence on

the attenuation is expected to reduce the correspondence between the simulated spectra

and the underlying SFH, equivalent to reducing the information content of the spectra

for learning our target property, the SFH. This may lead to greater uncertainties in the

derived SFHs; we will explore the effect of this in future work.

In Appendix 5.8.3 we briefly explore the use of t-distributed Stochastic Neighbour

Embedding (t-SNE) to evaluate the similarity of our synthetic spectra to the observations.

Whilst the results are good for visualisation purposes, this method is particularly sensitive

to the choice of hyperparameters, such as learning rate and complexity. Masters et al.

(2015) demonstrate how self-organised maps can be used as an alternative means of

addressing similarity in multi-dimensional feature spaces, whilst requiring fewer free

parameters. We plan to use this in future work as an alternative, potentially more robust

way of assessing the synthetic gap.

5.6.3 Machine learning approach

We use a simple cut in stellar mass to select our training sample, which we found

does not lead to overfitting of low mass galaxies despite the steepness of the GSMF

(see Section 5.3.1.5). It is unclear whether the lack of overfitting to low mass objects

would extend to lower stellar masses, however the results presented here are promising.

Predictions for rare objects could also be improved by using larger volume simulations

and/or ‘zoom’ resimulations of biased regions, to increase the sampling of extreme objects,

though this would negate the advantage gained from using a representative sample.

We rely on cosmological simulations for training data due to the small number of galaxies
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(∼20) for which resolved, reasonably confident measurements of the true SFH are known.

Such objects are also mostly in the local universe, restricting any predictions to this

period. However, with ever increasing samples locally, including from from integral field

unit (IFU) spectrographs (Bundy et al., 2015; González Delgado et al., 2017), it may soon

be possible to train a machine on high resolution observational data in order to predict

the SFH of galaxies with only unresolved data on a larger number of objects.

Our approach relies on a fixed grid of input features. Where observational data do not

cover this wavelength range we currently ignore them. An alternative to this would be to

impute missing features, for example through interpolation.

5.6.4 Future Extensions

A unique aspect to our approach is that it can take advantage of the detailed modelling

of complex, non-linear processes in the simulations to infer more physically motivated

SFHs. This could also be extended to other quantities self-consistently predicted in the

simulations, but not directly responsible for the optical emission. For example, halo mass

could be used as a predictor, and the results compared to abundance matching approaches.

We will explore this in future work.

A powerful complement to using spectroscopic features would be to use multi-wavelength

photometry, such as that available in the CANDELS fields. However, convolution across

this smaller, heterogeneous feature set would be inappropriate; using a tree based or

fully connected network would lead to better performance, both computationally and

predictively. We could then compare our results to those obtained via SED fitting

on photometry, using different codes such as SpeedyMC (Acquaviva et al., 2015) and

other alternatives such as Prospector (Leja et al., 2017) and BEAGLE (Chevallard &

Charlot, 2016). This will clarify how the biases and projected uncertainties of the two

techniques compare, and help us make a final recommendation on improved star formation

histories from multiple methods. Tree based methods also provide information on feature

importance, by equating importance with depth of features in the tree. Deep learning

based approaches necessarily obscure the relationship between the predictors and the

features through the complexity of the built network, which makes it difficult to extract

feature importance.
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5.7 Conclusions

We have used convolutional neural networks (CNN) to learn the relationship between

galaxies spectra and their star formation histories (SFH), using synthetic spectra generated

from two cosmological hydrodynamic simulations, EAGLE and Illustris, as our training

data. Our findings are as follows:

• The CNN is capable of recovering the SFH of test galaxies to high accuracy (SMAPE

= 10.9%), despite the presence of dust and noise, and with no significant bias with

stellar mass, SFR or stellar-metallicity.

• We estimate the uncertainty in our predictions from observational errors and

modelling errors, and use these in combination to provide a realistic error budget

on unseen data. Modelling errors dominate for both dust-obscured and intrinsic

spectra.

• We demonstrate the good generalisation properties of the technique by applying

a model trained on one simulation to simulated data from another, obtaining

good accuracy (SMAPE = 14.4% for the dust-attenuated Illustris model applied

to EAGLE data) even on these unseen spectra. The model also recovers the star-

forming sequence of the input data, which suggests it is not overfitting to a particular

simulation.

• We apply our models to a magnitude matched sample of SDSS DR7 spectra and

compare to the SFHs from the Vespa catalogue. The model predicts smoother

SFHs, influenced by the ‘prior’ distributions from the simulations, whilst recovering

consistent total stellar mass predictions.

• When applied to our SDSS selection, the Illustris-trained model predicts younger

average stellar ages for low mass galaxies (∼ 1010M∗ /M�) than the EAGLE-trained

model. For higher mass galaxies (∼ 1010M∗ /M�) both models predict similar SFH

(and hence age) distributions.
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Table 5.1: Fitted parameters for the observational and modelling errors. The first two
columns state the bin edges in log-lookback time. m2, m1 and c give the second order
polynomial fit parameters to the observational error. σmodel gives the 1σ spread in a
normal fit to the fractional residual distribution.

Bins [log10(tL)] m2 m1 c σmodel

0.00 7.50 0.31 0.17 0.00 0.22
7.50 7.83 0.36 0.10 0.01 0.19
7.83 8.17 0.39 -0.02 0.02 0.17
8.17 8.50 0.32 0.03 0.02 0.16
8.50 8.83 0.39 0.01 0.03 0.21
8.83 9.17 0.58 -0.15 0.06 0.21
9.17 9.50 0.63 -0.12 0.09 0.24
9.50 10.10 0.63 -0.47 0.16 0.09

5.8 Appendix

5.8.1 Correlation matrices

The correlation matrix can be inferred from the covariance matrix of the spectral errors,

and shows the interdependence of each bin as a result of changes to the input spectra. It

is given by

rij =
Cij
σiσj

,

where rij ∈ [−1, 1]. Figure 5.20 shows the correlation matrix for each galaxy shown in

Figure 5.8; the corresponding indexes are quoted in the top right of each panel. In general,

adjacent bins show the highest correlation, as expected since they are constrained by

similar spectral features. More distant bins tend to show anti-correlation, which may be

due to the stellar mass constraint; where SFR increases in one bin, it is reduced in others

so that the total stellar mass is reproduced.

5.8.2 Error Tables

In Section 5.4 we describe our method for estimating the uncertainty in the SFH predictions

from observational and modelling errors. In Section 5.4.1 we fit second-order polynomials

to the mean observational error distribution in each bin, for dust-obscured spectra,

eexp = m2x
2 +m1x+ c .
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Figure 5.20: Correlation matrix from spectral errors, for the six galaxies shown in
Figure 5.8 (the corresponding indices are printed in the top right corner of each panel).
The colour scale varies through yellow, black and green, which show positive, neutral and
negative correlation, respectively.
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Figure 5.21: t-SNE plot applied to spectra from the SDSS selection (left panels) and the
Illustris (middle panels) and EAGLE (right panels) selections. Each point represents a
single galaxy spectrum. Nearby points in this 2D space have high spectral similarity. Each
distribution is coloured by g − r colour. The SDSS selection is shown in the background
in light grey for the middle and right panels for comparison.

The fit parameters are shown in Table 5.1. In Section 5.4.2 we fit the fractional residual

distribution with a normal; the 1σ spread is quoted in Table 5.1. To obtain the 1σ

modelling error simply multiply the predicted SFR in each bin by σ. To estimate the

total error in each bin, add the observational and modelling errors in quadrature. The

distribution of fractional residuals is slightly non-symmetric, resulting in an over-estimate

of the average error; we have tested the effect of this by measuring the fraction of the

true SFH that lies within the errors, and found that this is the case for approximately

70% of cases, close to the 1σ definition.

5.8.3 t-distributed Stochastic Neighbour Embedding

In order to generate robust predictions using a supervised machine learning model, one

needs confidence that data used to train the model are representative of the data to

which it is to be applied.28 Synthetic spectra will always exhibit a bias compared to

observational spectra, known as the synthetic gap; where it is large it can limit the

applicability of learning algorithms trained on synthetic data to observations. To evaluate

the synthetic gap we use t-distributed stochastic neighbour embedding (t-SNE) (Maaten

& Hinton, 2008), a technique for reducing high dimensional data down to a lower number

of dimensions whilst preserving the multi-dimensional distance, for visualisation purposes

(Wattenberg et al., 2016).
28One approach, proposed by Cohn & Battaglia (2019) in the context of galaxy cluster mass estimation,

is to compare inferred correlations between observables in the simulations to those in actual observables.
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Figure 5.21 shows the result of running t-SNE on the observationally matched sample

of synthetic spectra, and the observations themselves. The EAGLE and Illustris spectra

are clustered in very similar regions of the two dimensional space, which suggests they

exhibit very similar spectra. We emphasise that t-SNE evaluates the synthetic gap

across the whole of the feature space; close correspondence in this space suggests very

close spectral similarity. The observational results overlap with the simulations well,

though there are certain regions, particularly at the edges of the 2D distribution, where

they cluster separately from the simulation distributions, suggestive of a synthetic gap.

Figure 5.21 shows each distribution coloured by g − r colour; where the simulations and

the observational spectra do not overlap in this distribution tends to be in the extremes

of the colour distribution. This may be due to the limited volume of the simulations

used for training (∼ 106 Mpc3), which will sample fewer extreme objects, such as those

in dense cluster environments. More sophisticated approaches to spectra generation (e.g.

full radiative transfer) will enhance the physical realism of the synthetic spectra, and may

also reduce this synthetic gap (see Section 5.6).
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6 Conclusions

In this thesis I have used numerical and machine learning approaches to study star

formation in galaxies throughout cosmic time, and its environmental dependence. In

chapters 3 and 4 I focused on galaxy protoclusters, the high redshift progenitors of galaxy

clusters. Protoclusters are rare and extended, which makes it difficult for both simulators

and observers: simulators must use large volumes to capture enough protoclusters for

a statistically significant sample, and observers require similarly large sky coverage, as

well as good redshift estimates to constrain the galaxies to the protocluster. I used

both semi-analytic and hydrodynamic simulations; combining these different numerical

techniques is necessary, to understand protoclusters in detail individually, and to study

a large enough population to do statistics, respectively. In the final chapter I present a

novel method for inferring the star formation history (SFH) of a galaxy, using machine

learning methods coupled with state-of-the-art numerical simulations. This method uses

an alternative way of looking at star formation at high redshift, utilising the abundance of

good quality data available for nearby galaxies to infer the star forming-activity of their

progenitors.

Chapter 3 focuses on the identification of protoclusters, and their characterisation in

terms of descendant halo mass, using the L-Galaxies Semi-Analytic Model. I present

the first measurement of protocluster shapes as revealed by different galaxy tracers.

I also use the concepts of completeness and purity throughout this chapter to better

understand the relation between observed and true protoclusters. First, I derive an

optimum search aperture for protoclusters, and find that R ∼ 10 cMpc maximises both

completeness and purity of the galaxy population, irrespective of selection and redshift,

for 2 6 z 6 10. This aperture also best identifies overdensities surrounding AGN, since

typically these are not located centrally within the protocluster. Finally, I combine these

results into a single, comprehensive criterion for identifying protoclusters from galaxy

overdensities. The procedure returns the probability that a given measured overdensity is

one of four different classifications: field, protocluster, part-protocluster, or protocluster-

field. This approach does not assume that a given measured overdensity is centred on

the protocluster, nor that it has captured all of the protocluster galaxies, and so gives

more realistic protocluster probabilities and descendant masses. Applying the method to
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historical candidate protoclusters from the literature, I conclude that many are not as

highly significant as first thought.

In Chapter 4 I use the full hydrodynamic simulation C-Eagle, a series of zoom simulations

of cluster environments with a range of descendant halo masses. These simulations follow

the evolution of baryons and dark matter in galaxies self-consistently, and allow us to

study the history of star formation in galaxy clusters in detail. I present a study of the

star-forming sequence (SFS) in protoclusters, which describes the average star formation

rate at a given stellar mass. At low redshift the SFS shows a clear dependence on

environment, but it is unclear what this environmental dependence is at high redshift, and

whether it has a positive or negative effect on galaxy star formation. I find that the SFS

has a very similar form in protocluster environments to the field, but with some notable

differences. At z > 3 the specific-star formation rate (sSFR) is significantly discrepant

from the field, as evidenced by a Kolmogorov-Smirnov test, with a higher normalisation

that is particularly evident at z ∼ 6. The sSFR distribution is similarly discrepant at

z ∼ 1.5, where the collapse of the most massive clusters is well underway.

Passive galaxies are ubiquitous in nearby galaxy clusters, but their presence at high

redshift, and any environmental dependence of the quenching mechanism, is still uncertain.

In Chapter 4 I study the passive fraction in C-Eagle protoclusters. I find that the

fraction of galaxies in protoclusters is similar to the field in the model, in tension with

observational constraints at z ∼ 2 which show higher passive fractions in protoclusters. In

the simulations I find that the dense group environments have lower passive fractions than

the intergroup, a surprising result that suggests groups have a positive impact on SFR at

z ∼ 2. Even more surprising is that the intergroup galaxies have higher passive fractions

than the field, which suggests these regions, whilst not within the highest overdensities in

the protocluster, are still (negatively) affected by the large scale overdense environment.

It has typically been assumed that protoclusters would preferentially host galaxies with

active galactic nuclei (AGN). However, the presence of this relationship, and its physical

cause, is still uncertain. In Chapter 3, using the L-Galaxies two-component AGN

model, I conclude that AGN are complicated tracers of protoclusters; using the concepts

of completeness and purity again, at high redshift AGN have low completeness and high

purity, but at lower redshifts the opposite is true; AGN are highly complete tracers, but
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with low purity. I do not study the AGN-protocluster relation in C-Eagle explicitly in

Chapter 4, however the SFS exhibits a clear turnover, which can be attributed to the onset

of AGN feedback. This turnover mass show no difference between protoclusters and the

field, which suggests the stellar mass at which AGN feedback kicks in, and any associated

physical cause e.g. higher gas mass for accretion, is not environmentally dependent.

The turnover in the SFS in C-Eagle evolves to lower stellar mass with increasing redshift,

which is in tension with recent observational results which show the opposite redshift

dependence, at least up to z ∼ 3. However, I note that the form of the SFS measured is

sensitive to the lower mass limit - many observational studies that fit a single power law

quote a shallow slope, which I suggest is due to the fact that they are only probing the

high-mass end of a two-part relation. I also measure the scatter around the SFS, and find

that satellites in protoclusters show increased scatter compared to the field. The scatter

in the centrals relation, however, shows no significant environmental dependence, which

suggests the effect of environment is limited to interactions on small, inter-halo scales,

rather than intra-group scales.

Finally, in Chapter 5 I present a novel way of predicting galaxy SFHs. I use the outputs

of two cosmological simulations, Eagle and Illustris, with detailed modelling of their

SEDs, to learn the relationship between a galaxies SFH and its spectra. This is essentially

a supervised regression problem, and I demonstrate good performance on test sets from

each simulation. I also show the good generalisation properties of the method by testing

models trained on a given simulation to spectra and SFHs from another simulation, and

provide estimates of the experimental and modelling errors.

The cosmological simulations can provide more realistic and informative priors for the SFH

that self-consistently take into account the cosmological evolution of all components that

contribute to the galaxies SED, such as the evolution of stellar and gas-phase metallicity,

gas mass, and morphology. The cosmological simulations also provide information on the

most common SFH for a given SED by default, something that in traditional SED fitting

is not readily available. Our non-parametric form for the SFH also avoids many of the

biases present when using simple parametric forms. Obviously, if the training simulation

is not representative of the true universe you will achieve biased results, however this

model dependent bias can be evaluated by using many different simulations, to predict on
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a given observational dataset and to evaluate their generalisation properties.

I provide a practical demonstration of the method by applying it to spectra from SDSS

DR7 (Abazajian et al., 2009), and compare to the Vespa catalogue (Tojeiro et al.,

2007, 2009), finding much smoother histories, as well as consistent stellar mass estimates.

This smoothness better fits measurements of the cosmic star formation rate density,

whereas Vespa is biased to certain high-information simple stellar populations, leading

to a more stochastic SFH. Interestingly, the Illustris trained model predicts younger

stellar populations on average for lower mass galaxies, translated from the higher SFS

normalisation in the original simulation.

6.1 Future Work

An obvious extension on the work in Chapter 3 would be to use an SED motivated

selection function in the L-Galaxies model. Modelling Lyman-α emitters and Lyman-

break galaxies explicitly would allow us to make clearer comparisons with observational

studies, such as SILVERRUSH and GOLDRUSH (Toshikawa et al., 2017; Higuchi et al.,

2018). Another valuable extension would be to test the sensitivity of our results to the

chosen cosmology, semi-analytic model and merger tree code. SHARK (Lagos et al., 2018)

is an open source, modular SAM that runs on the merger trees from the phase space

structure finder VELOCIraptor; running this on the Millennium simulation and comparing

to our results would be a good test of the robustness and model dependence. Running

new, large dark matter simulations would also be of interest, and is now computationally

cheap thanks to new state-of-the-art numerical codes such as SWIFT (Borrow et al., 2018).

Using a box size of order (∼ 1Gpc)3 would produce a much larger sample of high-mass

clusters for study and comparison with observations.

The C-Eagle simulations represent a rich resource for future protocluster studies. Possible

future avenues for research include investigating the AGN-protocluster connection in

the Eagle AGNdT9 model, and the spatial distribution of AGN in protoclusters.

Parametrising the galaxy stellar mass function and star formation rate distribution

function in protoclusters as a function of descendant mass would also be a valuable

extension, allowing observers to directly compare their measured mass functions with the

simulations. Together with collaborators I have developed a Bayesian fitting procedure for
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these distribution functions that allows us to provide full posteriors on the fit parameters,

that can be propagated through subsequent analyses. Additionally, I already mention in

Chapter 4 that the formation and assembly of the brightest cluster galaxy in C-Eagle is

an interesting avenue for exploration due to the offset seen in Bahé et al. (2017), and a

challenging new high-stellar mass frontier for testing the Eagle physics model, particularly

feedback in massive progenitor galaxies at high-z. Figure 6.1 shows early exploration work

on this subject, displaying the formation and assembly times of the stellar mass in BCG

progenitors. There is significant diversity between different descendant mass protoclusters.

The high-z universe presents a new frontier for both observers and theorists. Whilst

the protocluster environment is of interest to study because of its descendant relation,

the impact of environment at high redshift is not limited to these large-scale overdense

environments. Indeed, I have shown in Chapter 4 that it is within and surrounding dense

groups within protoclusters that environment plays the biggest role, and these groups can

also exist in average density environments at high redshift. A more comprehensive study

of the environmental impact is therefore warranted, and I have begun an investigation of

this with collaborators. We use the same procedure as C-Eagle to select zoom regions,

but rather than selecting low redshift clusters we select a range of different overdensities

at high redshift (z ∼ 4.5). We can then combine these regions together with a similar

procedure to the GIMIC simulations (Crain et al., 2009) in order to produce distribution

functions with much larger dynamic range. Figure 6.2 shows the predicted UV luminosity

function (generated using the detailed SED modelling developed in Chapter 5) using

this procedure, along with the predicted depth and coverage of a number of upcoming

space-based observatories. We are able to probe a much larger dynamic range than typical

hydrodynamic periodic box simulations.

In Chapter 4 I suggest that the Hα-SFR correction in Kennicutt Jr & Evans II (2012)

may be biased by ignoring the contribution from binary stars, as well as the effect of

low metallicities at high redshift. With collaborators I am currently working on a new

correction using the BPASS models, incorporating the evolution of the average galaxy

metallicity from numerical models such as Eagle. We plan to apply this to the MAHALO

protoclusters (Shimakawa et al., 2017a, 2018) and derive new SFS relations that may be

in reduced tension with the SFS from simulations.
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Figure 6.1: Evolution of the stellar mass of the BCG progenitors in the C-Eagle sample.
Top: total stellar mass formation time. Middle: fractional formation time. Bottom: stellar
mass assembly time in the main branch progenitor.
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Figure 6.2: The UV lumimosity function at z = 8, with current observational constraints
from Finkelstein et al. (2015); Bouwens et al. (2015), and forecasts for coverage from
upcoming observatories. Current constraints from the fiducial and high-resolution Eagle
simulations are shown in purple and brown, respectively. Predictions from the combined
high-redshift sample are shown with empty purple points; the resimulations extend the
dynamic range of the UVLF considerably over the periodic volumes.
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The machine learning method presented in Chapter 5 opens up a number of opportunities

for future extensions. The simplest involve using the latest simulations, such as the

Illustris-TNG model and the new Simba simulations. Other avenues include using more

sophisticated SED modelling approaches, such as full radiative transfer, extending to

higher redshift, and using photometric data rather than sull SEDs. Since photometric data

does not represent a continuous feature set, convolution across this heterogeneous feature

set would be inappropriate; tree based approaches would be a more suitable learning

algorithm.

I also plan to use the method of Iyer et al. (2019) to construct smooth SFHs through

gaussian processes, and use ML to predict the fractional formation times, rather than

the SFR in fixed bins. This will not only remove the need to specify a bin configuration

up-front, but also allow greater flexibility in the time resolution of the SFH, allowing for

the accommodation of bursts or quiescent periods on arbitrary timescales.

Since the Machine essentially learns a ‘prior’ of the SFH shape from the simulation, one

can use it to learn priors from different simulations, and use these in bayesian SED fitting

approaches. One way of extracting priors would be to use increasingly noisy photometry,

and show the predictions in the limit of low signal-to-noise.

Another interesting future extension would be to build a model to predict resolved SFHs.

This could then be applied to the publicly available SDSS-IV MaNGA catalogues (Goddard

et al., 2017). This would rely on simulations having well resolved spatial properties, which

is not clearly the case for Eagle and Illustris; this would then necessitate using higher

resolution simulations, which would in turn limit the size of the training set. Future and

ongoing simulations, such as the 50 Mpc high resolution Illustris-TNG run, provide a

good trade-off between resolution and volume.
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