
   

 

A University of Sussex PhD thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



Numerical and optimal control methods for partial

differential equations arising in computational finance

Mathematics PhD

James Arthur George Miles

University of Sussex

September 2018



1

Acknowledgements

I consider the eventual completion of this work to be the result of the unique combination

of academic and emotional support I was fortunate enough to receive from my supervisor,

family and friends. I thank my loving wife, Zlata, whose patience over the five year

period ultimately outlasted my own. I could not have asked any more of you as you gave

everything. I thank my supervisor, Dr Bertram Düring, for your generous enthusiasm,
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 Abstract

The chosen title for my PhD thesis is ”Numerical and optimal control meth-
ods for partial differential equations arising in computational finance”. The 
body of my research is divided into two parts. The first part is devoted to 
the application of an alternating direction implicit numerical method for solv-
ing stochastic volatility option pricing models. The second part focuses on a 
partial-integro differential equation constrained optimal control approach to pa-
rameter estimation for the forward jump-diffusion option pricing model. The 
body of the thesis is preceded by an extensive introduction, which seeks to con-
textualize my work with respect to the field of computational finance, this is 
followed by a brief conclusion. Finally, the thesis is completed by a list of refer-
ences.

The first project proposes a new high-order alternating direction implicit (ADI) 
finite difference scheme for the solution of initial-boundary value problems of 
convection-diffusion type with mixed derivatives and non-constant coefficients, 
as they arise from stochastic volatility models in option pricing. The approach 
combines different high-order spatial discretisations with Hundsdorfer and Ver-
wer’s ADI time-stepping method, to obtain an efficient method which is fourth-
order accurate in space and second-order accurate in time. Numerical experi-
ments for the European put option pricing problem using Heston’s stochastic 
volatility model confirm the high-order convergence.

The second project proposes to solve a parameter calibration problem for the for-
ward jump-diffusion option pricing model proposed by Andersen and Andreasen. 
A distributed optimal control approach is employed, with a partial-integro dif-
ferential equation as our state equation. By approaching the problem from a 
functional analysis perspective, I investigate the necessary regularity conditions 
for our parameters of interest. Following this, the existence of optimal solu-
tions is proven under certain analytical conditions. Furthermore, the first-order 
necessary conditions for optimality are also established. Finally, a projected-
gradient optimization method is applied numerically to empirical market data 
and results are given.
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Chapter 1

Introduction

1.1 Financial derivatives overview

A financial derivative is a contract between two parties extending over some finite period

which derives its value from some underlying financial asset. The writer of the contract

is responsible for setting the terms of the contract and honouring them, while the buyer

pays a premium at the outset of the contract for the privilege of entering a potentially

profitable scenario. The way in which the financial derivative derives its value from the

underlying financial asset is the fundamental characteristic that distinguishes different

types of derivative from one another. The relationship between the value of entering such

a contract, or holding an existing contract, and the perceived behaviour of the underlying

asset can be quite complex from a mathematical standpoint, thus the field of financial

derivatives has become a rich trove of mathematical research.

In practice, financial derivatives are frequently used to hedge or offset the gains and

losses incurred through the ownership of particular financial assets and give market par-

ticipants the opportunity to profit from speculating over the value of particular financial

assets without the responsibilities and duties associated with ownership. A prevalent fi-

nancial derivative known as an option takes the form of a contract, guaranteeing the buyer

the right to purchase a certain volume of a particular financial asset at a price which will

be determined by the difference between an agreed strike price and the future price of

the asset at the contracts time of expiry. Financial derivatives magnify potential returns

by drastically reducing the initial outlay for speculators. They are available in various

forms that provide buyers with the opportunity to profit from rises or falls in the value

of the financial asset. Establishing the value of entering such a contract guaranteeing the

“right to buy at a later date” is a fairly non-trivial problem. The seller of the contract

must quantify the stochastic behaviour of the underlying financial asset and price the

derivative according to the corresponding mathematical model that satisfies a no arbi-

trage constraint. A classic example is the celebrated Black-Scholes option pricing model

[5].

In the Black-Scholes model, it is assumed that the future price of the underlying

asset (equity, commodity or currency etc) follows a geometric Brownian motion, while the
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future returns of the asset are log-normally distributed. The volatility parameter for this

stochastic process (measured as the standard deviation of the log returns on the asset) is

taken to be some constant value, prescribed by the writer (seller) of the option:

dS(t)

S(t−)
= µdt+ σdW (t), (1.1)

where S(t) ∈ R+ is the value of some financial asset at time t ∈ R+, µ ∈ R+
0 is the expected

rate of return of the financial asset, σ ∈ R+
0 is the standard deviation of the return of the

financial asset and W (t) is a stochastic variable that follows a Brownian motion. (1.1) is

short hand notation for the integral equation:

S(t)− S(0) =

∫ t

0
µS(t)ds+

∫ t

0
σdW (t), (1.2)

where the second integral is a stochastic Ito integral. If we assume that this stochastic

equation accurately models the behaviour of the underlying financial asset, then we can

use Ito’s lemma to model the stochastic behaviour of some arbitrary function, V (S, t), of

S(t) and t, as follows:

dV = (µS
∂V

∂S
+
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
)dt+ σS

∂V

∂S
dW. (1.3)

In order to satisfy no-arbitrage assumptions, we consider the value of some portfolio

P (t) over some time period dt = [t, t+∆t] consisting of one short option V (S, t) (increases

in value for decreasing value of asset S(t)) and an amount of the financial asset, S(t),

specified by the value ∂V (S,t)
∂S(t) :

P (t) = −V (S, t) +
∂V

∂S
S(t). (1.4)

As the portfolio should be risk-free, the above change in value must be equal to an

increase in portfolio value at the riskless rate of interest r(t) ∈ R+:

∆P = −∆V +
∂V

∂S
∆S = r(t)P (t)dt. (1.5)

Substituting equations 1.1 and 1.3 into 1.5 and rearranging yields the Black Scholes

PDE:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (1.6)

This equation holds for S > 0 for the extent of the contract t ∈ [0, T ) with a prescribed

final payoff at the expiry of the contract t = T and boundary conditions dependent on the

type of contract. European (or vanilla) options are simply priced and commonly traded. A

European Put option prices the payoff at expiry as V (S, T ) = max(K−S, 0), where K > 0

is some predetermined strike price. The corresponding boundary conditions for V (S, t)

in space for such a contract are given as V (0, t) = Ke−r(T−t) and limS→∞ V (S, t) = 0.

Such a contract gains in value when the value of the underlying financial asset drops over

time. A European Call option behaves symmetrically in that it gains in value for increases
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in the value of the underlying financial asset over the extent of the contract. The final

condition prices the payoff at expiry as V (S, T ) = max(S − K, 0) where K > 0 is some

pre-agreed strike price. The corresponding boundary conditions for V (S, t) in space for

such a contract are given as V (0, t) = 0 and limS→∞ V (S, t) = S.

1.2 Option Pricing

If we determine that the underlying financial asset follows Black-Scholes’ assumed stochas-

tic behaviour, then the value of either European option V (S, t) for any t ∈ [0, T ) and

S ∈ [0,∞) can be determined by solving equation (1.6). A closed form solution exists

for the Black-Scholes PDE, thus pricing options via Black-Scholes is a computationally

trivial task. Despite this, the model is flawed from both an analytical perspective and an

empirical one.

The assumption that volatility is an independent parameter, is contradicted by em-

pirical market data. By calculating the implied volatility from many Calls or Puts for

the same underlying financial asset, we observe higher volatility values for more extreme

strike values. The Black-Scholes model fails to take into account the non-negligible risk

of extreme movements and systemic risk in markets through its normally distributed re-

turns, therefore it would appear that writers of options are prescribing higher volatility

values for extreme strike values, resulting in higher option prices to hedge against extreme

movements in the underlying financial asset. Another issue stemming from accurate pa-

rameterization of volatility is that the value of volatility is not necessarily constant. The

adoption of a stationary stochastic model (in that its parameters are constant in time) is a

serious oversimplification of the behaviour of some financial assets. It is possible that the

stochastic behaviour of the underlying financial asset could be drastically altered during

some intermediate period of the contract, thus the prior prescription of a constant value

for volatility based on past behaviour would fail to reflect the new reality of the financial

asset’s dynamics.

For the above reasons, alternative pricing models have been proposed and adopted

over the years. Many of these models follow a similar derivation process, with the key

distinctions being made in the assumed stochastic behaviour of the underlying financial

asset. These models do not typically admit closed form solutions. As a result, it is quite

common for a model’s associated partial differential equations, along with their boundary

and final conditions, to be solved numerically. In order to price options robustly according

to these models, we must be able to solve the corresponding equations efficiently and

with sufficient accuracy. This requirement has led to an expansion in the development

and implementation of numerical methods specifically aimed at solving option pricing

problems accurately while attempting to minimize computational effort.

In financial option pricing, stochastic volatility models such as the Heston model [32]

have become one of the standard approaches. The underlying asset is modelled by the

following processes, where asset price 0 ≤ S(t) < ∞ and volatility 0 ≤ σ(t) < ∞ for
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t ∈ [0, T ]:

dS(t) = µ̄S(t)dt+
√
σ(t)S(t)dW (1)(t), (1.7)

dσ(t) = κ(θ − σ(t))dt+ v
√
σ(t)dW (2)(t), (1.8)

where dW (1)(t) and dW (2)(t) are correlated Brownian motions with constant correlation

parameter dW (1)(t)dW (2)(t) = ρdt. The mean return of the asset is given by µ̄ ∈ R, κ ≥ 0

and θ ≥ 0 are the mean reversion speed of σ(t) and the long run mean of σ(t), respectively

and v ≥ 0 is the volatility of volatility. Unlike the classical Black-Scholes model [5] the

volatility of the option’s underlying asset is not assumed to be constant, but is modelled as

a second, correlated stochastic diffusive process and therefore the option price is modelled

as a function of asset price, volatility and time. This additional source of randomness

allows us to model option prices more accurately and to fit higher moments of the asset

return distribution. Using Ito’s lemma and standard arbitrage arguments, a partial differ-

ential equation of convection-diffusion type with mixed second-order derivatives is derived

for pricing options, solved by V (S, t) ≥ 0:

Vt +
S2σ

2
VSS + ρvσSVSσ +

v2σ

2
Vσσ + rSVs + [κ(θ − σ)− λ0σ]Vσ − rV = 0, (1.9)

where λ0σ(t) is the market price of volatility risk and λ0 ∈ R. For some stochastic volatility

models and under additional restrictions, closed-form solutions can be obtained by Fourier

methods (e.g. [32], [22]). Another approach is to derive approximate analytic expressions,

see e.g. [4] and the literature cited therein. In general, however, —even in the Heston

model [32] when the parameters in it are non constant— the partial differential equations

arising from stochastic volatility models have to be solved numerically. Moreover, many

(so-called American) options feature an additional early exercise right. Then one has to

solve a free boundary problem which consists of the partial differential equation and an

early exercise constraint for the option price. Also for this problem one typically has to

resort to numerical approximations.

In the mathematical literature, there are many papers on numerical methods for op-

tion pricing, mostly addressing the one-dimensional case of a single risk factor and using

standard, second order finite difference methods (see, e.g., [59] and the references therein).

More recently, high-order finite difference schemes (fourth order in space) were proposed

[28, 52, 57] that use a compact stencil (three points in space). In the option pricing

context, see e.g. [20, 19, 47].

There are less works considering numerical methods for option pricing in stochastic

volatility models, i.e., for two spatial dimensions. Finite difference approaches that are

used are often standard, second order methods, e.g. in [38] where different efficient meth-

ods for solving the American option pricing problem for the Heston model are proposed.

Other approaches include finite element-finite volume [63], multigrid [10], sparse wavelet

[33], or spectral methods [62].

The classical alternating direction implicit (ADI) method, introduced by Peaceman

and Rachford [51], Douglas [15, 16], Fairweather and Mitchell [50], is a very powerful
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method that is especially useful for solving parabolic equations (without mixed deriva-

tive terms) on rectangular domains. Beam and Warming [3], however, have shown that

no simple ADI scheme involving only discrete solutions at time levels n and n + 1 can

be second-order accurate in time in the presence of mixed derivatives. To overcome this

limitation and construct an unconditionally stable ADI scheme of second order in time,

a number of results have been given by Hundsdorfer and Verwer [36, 37] and more re-

cently by in’t Hout and Welfert [35]. These schemes are second-order accurate in time

and space. In [34] different second-order ADI schemes of this type are applied to the

Heston model. In [24] this approach was combined with different high-order discretisa-

tions in space, using high-order compact schemes for two-dimensional convection-diffusion

problems with mixed derivatives and constant coefficients. In [31] this approach was com-

bined with sparse grids and applied to a multi-dimensional Black-Scholes equation, again

with constant coefficients. A high order compact computational stencil in space combined

with a Crank Nicolson time stepping method is considered for solving stochastic volatility

option pricing models in [23], achieving fourth-order accuracy in space and second-order

accuracy in time. [25] extends the application of a high order compact computational

stencil in space for solving stochastic volatility option pricing models by implementing a

Rannacher smoothed finite difference method in time for non-uniform meshes. In both

cases we observe that, in general, the resulting linear systems cannot be solved with high

efficiency due to the implicit time-stepping methods employed.

In the second chapter of this thesis I have contributed a high-order ADI method for

option pricing in stochastic volatility models, combining and extending the ideas presented

in [23, 24, 25]. This involves two-dimensional convection-diffusion equations with mixed

derivative terms and space-dependent coefficients which adds substantial algebraic com-

plexity in the derivation of the scheme. The new scheme is second-order accurate in time

and fourth-order accurate in space.

1.3 Calibrating Parameters to market data

Due to the public availability of option prices over a wide variety of strikes and expiries, it

is possible to calibrate the parameters of a given option pricing model to the market data.

Parameter estimation and model inversion has existed and developed as a topic within

financial mathematics for over forty years, with the first noted case given by [45]. In this

paper, the authors seek to estimate the volatility parameter of the Black-Scholes model

using market prices and directly observable information by employing a simple numerical

search method to minimize the difference between the price generated by Black-Scholes’

model and an empirical European Call price. Over time, the Newton-Raphson iterative

numerical method, as shown by [48], has remained a popular choice among practitioners

due to its quadratic convergence. The Brent Dekker [7] algorithm has also been employed

successfully due to its unconditional convergence. Alternatively, closed form approxima-

tions provide practitioners with speed of computation but lack accuracy. A combined
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approach, choosing some closed-form approximation as a starting point for an iterative

method, is also common in practice.

Due to the observed dependence of volatility on option strike and expiry, it would be

desirable to imply a volatility surface as a function of these strikes and expiriess from a

collection of option prices on a particular financial asset. Dupire [18] presented a forward

diffusion equation, satisfied by the option price as a function of strike, 0 ≤ K ≤ Kmax,

and expiry, 0 ≤ T ≤ Tmax, while keeping the underlying assets value and time fixed to the

present:

∂V

∂T
=

1

2
σ2(K,T )K2 ∂

2V

∂K2
− rK ∂V

∂K
, (1.10)

where the initial condition and boundary conditions are analogous to their Black-Scholes

counterparts and correspond to whether the option is a put or call. In this model, the

volatility parameter for asset returns is modelled as a deterministic ’local volatility’ surface

as a function of the option’s strike price and expiry. Much work has been done in this

sphere for implying such a volatility surface using various methods. While it is possible

to invert the model for an explicit expression for the volatility surface, the scarcity and

noisiness of market data prevents us from evaluating this expression directly. Approaches

to treating this issue include residual minimization with interpolation of market data or

interpolation of discrete implied volatilities [6, 55], and minimum relative entropy meth-

ods which treat the volatility surface probabilistically [2]. Another solution is to apply

Tikhonov regularization to stabilize the otherwise ill-posed inverse problem of residual

minimization. Minimizing a regularized cost functional, where the gradient of the local

volatility is a contributing element, controls the smoothness of the calibrated result. An

introduction to Tikhonov regularization methods for solving generalized inverse problems

is given by Tikhonov et. al. in [60, 69], while a survey of the modern theory of regular-

ized inverse problems, in general, is given in [73]. In [43], Lagnado and Osher adopt a

Tikhonov regularized approach to identify the volatility parameter from Dupire’s forward

equation via gradient descent method. The computation of the directional derivative of

the cost functional with respect to a change in the volatility surface requires numerically

solving a PDE at every point on the discrete domain of the volatility surface for every

iteration of the gradient descent procedure. [64] supplies convergence and stability results

from the theory of Tikhonov regularization for the same problem and conducts conver-

gence rate analysis under restrictive assumptions. In [21], the authors have produced a

thorough analysis of an adjoint based regularized optimal control approach for implying

the volatility surface, providing results for first and second order conditions of optimal-

ity. Alternatively, [68] chooses a spline representation for the implied volatility surface,

thus restricting the calibrated local volatility surface to smooth representations, where the

weights of the spline are optimized to minimize a Tikhonov regularized cost functional.

In [66, 67], Achdou et. al. extend the use of Tikhonov regularization to calibrate local

volatility to the case of American vanilla options.
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We have adopted the adjoint-based gradient descent method for minimizing a regular-

ized cost functional in the third chapter for calibrating a different option pricing model:

the jump-diffusion model initially introduced by Merton [49]. The jump-diffusion model

includes the modelling of possible jumps via a Poisson process with a jump-size modelled

by either a log-normal distribution or double exponential distribution, as suggested by [39].

This jump term intends to take account of the suddenly discontinuous behaviour that we

expect to observe in markets over long periods of time. A primer on jump-diffusion models

is provided by [58]. From these dynamics Andersen and Andreasen [1] extended the work

of Dupires approach by deriving a forward partial integro-differential equation based on

the original jump-diffusion pricing model. This models the option price and corresponding

parameters as functions of strike and expiry, while the underlying asset value and time is

fixed at their present values.

As in Dupire’s work, the advantage of calibrating parameters, for a domain of strikes and

expiries, to the forward variant of the jump-diffusion model is that we repeatedly solve a

single PIDE over the required domain. Attempting to calibrate to the traditional pricing

model would require us to repeatedly solve a PIDE for every point in our domain, a much

more computationally expensive task. [30] considers a discrete approach to calibrating a

local volatility surface to the forward jump-diffusion model. [8] considers the transforma-

tion of the jump-diffusion model and the calibration of model parameters through closed

form approximations followed by interpolation of results. R. Cont et. al. explore the

application of relative-entropy methods for jump-diffusion parameter calibration and cal-

ibrate an exponential Lévy model which minimizes a regularized price residual, where the

relative entropy with respect to some prior model performs the necessary regularization

in [12, 11]. [54] outlines an optimal control approach involving an adjoint equation for

the computation of the gradient for calibrating the volatility surface, Poisson parameter

and the jump size distribution parameters to market prices, although the adjoint equa-

tion itself is not specified. We have aimed to approximate the local volatility function

and the jump term’s Poisson parameter simultaneously by reformulating the problem as a

distributed optimal control problem, treating the forward PIDE as our state equation and

applying box constraints on the controls. We have produced a result for the existence of a

solution to the forward jump-diffusion equation, via a Galerkin approximation. We have

thoroughly investigated the necessary regularity conditions for our parameters of interest.

We also prove the existence of unique optimal solutions under certain analytic conditions.

Furthermore, we have established the first-order necessary conditions for optimality and

explicitly derived the adjoint equation.

We have applied a projected gradient descent technique to alternately update the volatil-

ity surface or expiry dependent Poisson parameter at the end of each iteration. In order

to calculate the gradient of the cost functional with respect to the controls, a particu-

larly efficient approach is the adjoint state method. This method requires us to derive

a Lagrangian functional. The Lagrangian multipliers themselves are are solutions to the
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adjoint equation, which closely resembles the state equation. To calculate the direction of

steepest descent for the regularized cost functional, we must numerically solve the state

PIDE and the adjoint PIDE as a coupled system. Alternately, one of our parameters is

updated at the end of each iteration of the gradient descent algorithm.

The numerical experiments consist of two parts. First, we apply the adjoint-state gradi-

ent descent method by calibrating our parameters to self-produced, model-abiding option

prices. The de-noised option prices are generated by prescribing a volatility surface and a

Poisson parameter to the forward jump-diffusion model and numerically solving this model

over the domain of some finite time-space cylinder. Second, we calibrate our parameters

to historical European Call option prices over various strikes and expiries for a FTSE 100

index equity. The rate and magnitude of reductions in the residual sufficiently demon-

strate that our theorized optimal control approach is successful in implying the volatility

surface and Poisson parameter to an acceptable degree of accuracy. Finally, we discuss the

possibility of extending the scheme to include calibrating to price data for an additional

class of option.

1.4 Thesis overview

The second chapter presents my work in implementing a high order compact alternating

direction implicit numerical method for solving stochastic volatility option pricing models.

By combining a high order compact computational stencil with Hundsdorfer’s alternat-

ing direction implicit numerical method, I have produced a new efficient solving method

for stochastic volatility option pricing models with an accuracy that is of fourth order

convergence in space and of second order convergence in time. The results of numerical

experiments for solving Heston’s option pricing model show strong evidence for this. The

third chapter presents my work in implying a volatility surface and Poisson parameter for

the forward jump-diffusion option pricing model, presented in [1], using an optimal control

approach with a gradient descent method. The existence of a solution, under specific regu-

larity constraints, has been provided for the forward jump-diffusion option pricing model.

By employing a Tikhonov regularized cost functional, I have proven that an optimal set

of controls exist and derived first-order necessary conditions of optimality, under specific

regularity constraints. Through the application of a gradient descent method, numerical

experiments demonstrate the methodology for calibrating a transformed local volatility

and expiry dependent Poisson parameter to artificial and empirical price data.



Chapter 2

High order compact alternating

direction implicit finite difference

method for option pricing in

stochastic volatility models

We propose a new high-order alternating direction implicit (ADI) finite difference scheme

for the solution of initial-boundary value problems of convection-diffusion type with mixed

derivatives and non-constant coefficients, as they arise from stochastic volatility models

in option pricing. The approach combines different high-order spatial discretizations with

Hundsdorfer and Verwer’s ADI time-stepping method, to obtain an efficient method which

is fourth-order accurate in space and second-order accurate in time. In section 2.1, we

introduce stochastic volatility models for option pricing and the related pricing partial

differential equation. In Section 2.2 we recall the Hundsdorfer-Verwer ADI splitting in

time. For the spatial discretization, we introduce different high-order methods, in 2.3 for

the implicit steps, and in 2.4 for the explicit steps. The solution of the resulting scheme and

numerical boundary conditions are discussed in 2.5 and 2.6. Finally, numerical convergence

and stability results are presented in 2.7.

2.1 Stochastic volatility models

Consider the following class of stochastic volatility models: asume that asset spot price

0 ≤ S(t) < ∞ and variance 0 ≤ σ(t) < ∞ follow two stochastic diffusive processes for

t ∈ [0, T ],

dS(t) = µ̄S(t)dt+
√
σ(t)S(t)dW (1)(t), (2.1a)

dσ(t) = κ(σ(t))α(θ − σ(t))dt+ v(σ(t))βdW (2)(t), (2.1b)

which are characterised by two Brownian motions, dW (1)(t) and dW (2)(t), with constant

correlation parameter dW (1)(t)dW (2)(t) = ρdt. The drift coefficient for stochastic asset

11
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returns is given by the mean return of the asset where µ̄ ∈ R and the diffusion coefficient

is given by
√
σ(t)S(t).

The drift coefficient of the asset variance is given by κ(σ(t))α(θ̃−σ(t)), where constants

κ ≥ 0 and θ ≥ 0 are the mean reversion speed of σ(t) and the long run mean of σ(t),

respectively. The diffusion coefficient is given by v(σ(t))β where constant v ≥ 0 is the

volatility of volatility. The constant riskless interest rate is denoted by r ≥ 0. The constants

α, β determine the stochastic volatility model used.

The class of stochastic volatility models (2.1) includes a number of known stochastic

volatility models: The most prominent stochastic volatility model, the Heston model [32]

(also called square root (SQR) model) specifies the variance by

dσ(t) = κ (θ − σ(t)) dt+ v
√
σ(t)dW (2)(t).

Other known stochastic volatility models include the GARCH (or VAR model) model, see

[17], where the stochastic variance is modelled by

dσ(t) = κ (θ − σ(t)) dt+ vσ(t)dW (2)(t),

and the 3/2 model [46] in which the variance follows the process

dσ(t) = κ (θ − σ(t)) dt+ vσ
3
2 (t)dW (2)(t).

All of the three stochastic volatility models mentioned above use a linear mean-reverting

drift for the stochastic process of the variance v(t), but there are also models, in which

the drift is mean reverting in a non-linear fashion. Following [9], we denote these models

with an additional “N”: in the SQRN model the stochastic variance follows

dσ(t) = κσ(t) (θ − σ(t)) dt+ v
√
σ(t)dW (2)(t),

in the VARN model

dσ(t) = κσ(t) (θ − σ(t)) dt+ vσ(t)dW (2)(t),

and in the 3/2-N model

dσ(t) = κσ(t) (θ − σ(t)) dt+ vσ
3
2 (t)dW (2)(t),

see [9].

Applying standards arbitrage arguments and Ito’s lemma to the class of stochastic

volatility models (2.1), we can derive the following second order partial differential equation

for any financial derivative V (S, σ, t), to be solved backwards in time with 0 < S < ∞,

0 < σ <∞, t ∈ [0, T ):

Vt +
S2σ

2
VSS + ρvσβ+ 1

2SVSσ +
v2σ2β

2
Vσσ + rSVs + [κσα(θ− σ)− λ0σ]Vσ − rV = 0. (2.2)

Here, λ0σ(t) is the market price of volatility risk, where λ0 ∈ R, which is usually assumed

to be proportional to the variance. In the following we assume λ0 = 0 for streamlining
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the presentation. The generalisation to the case λ0 6= 0 is straightforward by consistently

adding in the additional term in the coefficient of Vσ. The boundary conditions and final

condition are determined by the type of financial derivative V (S, σ, t) we are solving for.

The boundary conditions of any European option will depend on a prescribed exercise

price, denoted here by E > 0. For example, in the case of the European Put Option:

V (S, σ, T ) = max(E − S, 0), 0 <S <∞, 0 < σ <∞,

lim
S→∞

V (S, σ, t) = 0, 0 <σ <∞, 0 < t < T,

V (0, σ, t) = E exp(−r(T − t)), 0 <σ <∞, 0 < t < T,

lim
σ→∞

Vσ(S, σ, t) = 0, 0 <S <∞, 0 < t < T,

The remaining boundary condition at σ = 0 can be obtained by looking at the formal

limit σ → 0 in (2.2), i.e.,

Vt + rSVS + κθVσ − rV = 0, T > t ≥ 0, S > 0, as σ → 0. (2.3)

This boundary condition is used frequently, e.g. in [38, 63]. Alternatively, one can use a

homogeneous Neumann condition [10], i.e.,

Vσ(S, 0, t) = 0, 0 < S <∞, 0 < t < T. (2.4)

By using a change of variables:

x = ln
S

E
, y =

σ

v
, τ = T − t, u = exp(rτ)

V

E

we transform the partial differential equation to an convection-diffusion equation in two

spatial dimensions with a mixed derivative term. The transformed partial differential

equation and boundary/initial conditions are now satisfied by u(x, y, τ), where x ∈ R,

y > 0, τ ∈ (0, T ]:

uτ =
vy

2
uxx +

(vy)2β

2
uyy + ρ(vy)β+ 1

2uxy +
(
r − vy

2

)
ux +

(
κ (vy)α

θ − vy
v

)
uy, (2.5)

u(x, y, 0) = max(1− exp(x), 0), −∞ <x <∞, 0 < y <∞, (2.6a)

lim
x→∞

u(x, y, τ) = 0, 0 <y <∞, 0 ≤ τ < T, (2.6b)

lim
x→−∞

u(x, y, τ) = 1, 0 <y <∞, 0 ≤ τ < T, (2.6c)

lim
y→∞

uy(x, y, τ) = 0, −∞ <x <∞, 0 < τ ≤ T, (2.6d)

lim
y→0

uy(x, y, τ) = 0, −∞ <x <∞, 0 < τ ≤ T. (2.6e)

In order to discretise the problem and solve numerically, we truncate our spatial boundaries

to finite values. Take L1 ≤ x ≤ K1, where L1 < K1, and L2 ≤ y ≤ K2, where 0 < L2 < K2,
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so that the spatial domain forms a closed rectangle in R2 of M ×N points with uniform

spacing of ∆x in the x-direction and ∆y in the y-direction:

xi = L1 + (i− 1)∆x, i = 1, 2, . . . ,M, yj = L2 + (j − 1)∆y, j = 1, 2, . . . , N.

The lower y-boundary is truncated to L2 > 0 to ensure non-degeneracy of the partial

differential equation for all values of y. We assume moderate cell aspect ratios, often

we choose a square mesh with h = ∆x = ∆y in our numerical experiments. We also

take a uniform partition of τ ∈ [0, T ] into P points such that τk = (k − 1)∆τ , where

k = 1, 2, . . . , P . We denote the discrete approximation of u((i−1)∆x, (j−1)∆y, (k−1)∆τ )

by uki,j and Un = (uni,j)i,j .

2.2 Hundsdorfer-Verwer ADI splitting scheme

We consider the Alternating Direction Implicit (ADI) time-stepping numerical method

proposed by Hundsdorfer and Verwer [36, 37]. Our partial differential equation (2.5) takes

the form uτ = F (u). We employ the splitting F (u) = F0(u) + F1(u) + F2(u) where

unidirectional and mixed derivative differential operators are given by:

F0(u) = ρ(vy)β+ 1
2uxy, (2.7a)

F1(u) =
vy

2
uxx +

(
r − vy

2

)
ux, (2.7b)

F2(u) =
(vy)2β

2
uyy +

(
κ (vy)α

θ − vy
v

)
uy. (2.7c)

We consider (2.5) with the splitting (2.7) and look for a semi-discrete approximation

Un ≈ u(τn) at time n∆τ . Given an approximation Un−1we can calculate an approximation

for Un at time n∆τ using the differential operators from (2.7):

Y0 = Un−1 + ∆tF (Un−1), (2.8a)

Y1 = Y0 + φ∆t(F1(Y1)− F1(Un−1)), (2.8b)

Y2 = Y1 + φ∆t(F2(Y2)− F2(Un−1)), (2.8c)

Ỹ0 = Y0 + ψ∆t(F (Y2)− F (Un−1)), (2.8d)

Ỹ1 = Ỹ0 + φ∆t(F1(Ỹ1)− F1(Y2)), (2.8e)

Ỹ2 = Ỹ1 + φ∆t(F2(Ỹ2)− F2(Y2)), (2.8f)

Un = Ỹ2. (2.8g)

The parameter ψ is taken to be ψ = 1/2 to ensure second-order accuracy in time. The

choice of φ is discussed in [36]. Typically it is fixed to φ = 1/2. Larger values give stronger

damping of the implicit terms while lower values return better accuracy. We investigate

the role of φ further numerically in Section 2.7.

The first and fourth step in (2.8) can be solved explicitly, while the remaining steps are

solved implicitly. Our aim is to derive high-order spatial discretisations of the differential
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operators. Following [24] we combine high-order compact finite difference methods for the

implicit steps with a (classical, non-compact) high-order stencil for the explicit steps.

The benefit of using compact stencils for the implicit steps is that the computational

cost is significantly reduced when compared with the use of standard fourth-order ap-

proximations. To elaborate, the use of compact stencils yields a tri-diagonal matrix and

a block tri-diagonal matrix (composed of diagonal sub-matrices) for the implicit steps

solved for the x and y directions, respectively, of the ADI scheme. Inverting these rela-

tively sparse matrices, each comprised of no more than three non-zero diagonals, can be

accomplished far more efficiently than inverting the denser coefficient matrices yielded by

standard fourth-order central difference approximations in space.

We are not concerned about resorting to standard fourth-order central difference ap-

proximations in space for the explicit steps of the ADI scheme, as the increased density

of the coefficient matrix does not add significant computational complexity to solving the

linear system explicitly.

2.3 High-order compact scheme for implicit steps

For F1(u), consider

F1(u) =
vy

2
uxx +

(
r − vy

2

)
ux = g (2.9)

with arbitrary right hand side g. We wish to derive a fourth-order accurate in space

approximation for (2.9) which can be used to solve the implicit second and fifth step in

(2.8). Using standard second-order central difference operators and Taylor’s expansion,

we have:

ux(xi, yj) = δx0ui,j −
∆2
x

6
uxxx(xi, yj) +O(∆4

x) (2.10)

uxx(xi, yj) = δ2
xui,j −

∆2
x

12
uxxxx(xi, yj) +O(∆4

x) (2.11)

where

δx0ui,j =
ui+1,j − ui−1,j

2∆x
and δ2

xui,j =
ui+1,j − 2ui,j + ui−1,j

∆2
x

.

If we can find second-order accurate expressions for uxxx and uxxxx using only information

on the compact stencil, then it will be possible to approximate ux and uxx with fourth

order accuracy on the compact stencil. By differentiating (2.9) once and twice with respect

to x, respectively, it is possible to express uxxx and uxxxx in terms of first- and second-order

derivatives of u and g with respect to x:

uxxx =
2

vy
gx +

(
1− 2r

vy

)
uxx, (2.12)

uxxxx =
2

vy
gxx +

(
1− 2r

vy

)[ 2

vy
gx +

(
1− 2r

vy

)
uxx

]
. (2.13)

By substituting standard second-order central difference operators into (2.12) and
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(2.13) we obtain second-order accurate in space approximations for uxxx and uxxxx:

uxxx(xi, yj) =
2

vyj
δx0gi,j +

(
1− 2r

vyj

)
δ2
xui,j +O(∆2

x), (2.14)

uxxxx(xi, yj) =
2

vyj
δ2
xgi,j +

(
1− 2r

vyj

)[ 2

vyj
δx0gi,j +

(
1− 2r

vyj

)
δ2
xui,j

]
+O(∆2

x). (2.15)

Substituting (2.14) and (2.15) into (2.10) and (2.11), respectively, yields:

ux(xi, yj) = δx0ui,j −
∆2
x

6

[ 2

vyj
δx0gi,j +

(
1− 2r

vyj

)
δ2
xui,j

]
+O(∆4

x), (2.16)

uxx(xi, yj) = δ2
xui,j −

∆2
x

12

[
2

vyj
δ2
xgi,j +

(
1− 2r

vyj

)[ 2

vyj
δx0gi,j +

(
1− 2r

vyj

)
δ2
xui,j

]]
+O(∆4

x).

(2.17)

Substituting these fourth-order approximations for ux and uxx into (2.9) and rearranging

the equation such that all derivatives of u with respect to x are on the left hand side and

all derivatives of g with respect to x are on the right hand side we obtain a fourth-order

compact scheme for (2.9):

vyj
2

(
1− ∆2

x

12

(
2r

vyj
− 1

)2
)
δ2
xui,j +

(
r − vyj

2

)
δx0ui,j

= gi,j +
∆2
x

12

(
2r

vyj
− 1

)
δx0gi,j +

∆2
x

12
δ2
xgi,j . (2.18)

Finally, substituting the expressions for the difference operators δx0, δ2
x into (2.18) and

separating the terms into values of u and g at the three horizontally adjacent nodal points

in space, we get:

v2y2
j∆

2
x − 4rvyj∆

2
x − 6v2y2

j∆x + 4r2∆2
x + 12rvyj∆x + 12v2y2

j

24vyj∆2
x

ui+1 ,j

−
v2y2

j∆
2
x − 4rvyj∆

2
x + 4r2∆2

x + 12v2y2
j

12vyj∆2
x

ui ,j

+
v2y2

j∆
2
x − 4rvyj∆

2
x + 6v2y2

j δx + 4r2∆2
x − 12rvyj∆x + 12v2y2

j

24vyj∆2
x

ui−1 ,j

=
−vyj∆x + 2r∆x + 2vyj

24vyj
gi+1 ,j +

5

6
gi ,j −

−vyj∆x + 2r∆x − 2vyj
24vyj

gi−1 ,j (2.19)

The above derivation can be presented systematically also in the following concise form.

Considering the convection diffusion equation

uxx + c1ux = c2g (2.20)

with constants c1 and c2, the necessary relations derived explicitly above can be concisely

written in matrix form
1 0 1

6 0

0 1 0 1
12

0 c1∆2
x 1 0

0 0 c1 1

 ·


ux

uxx

∆2
xuxxx

∆2
xuxxxx

 =


δx0ui,j

δ2
xui,j

c2∆2
xgx

c2∆2
xgxx

+O(∆4
x)


1

1

0

0

 =


δx0ui,j

δ2
xui,j

c2∆2
xδx0gi,j

c2∆2
xδ

2
xgi,j

+O(∆4
x),
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where the first two lines of the system correspond to (2.10) and (2.11), while the third

and fourth are obtained from the repeated differentiation of (2.20). This also shows that

only second-order approximations for ux, uxx, gx and gxx are needed. We are grateful to

an anonymous referee for drawing our attention to this form of presenting the derivation

of the scheme. Equation (2.19) defines a fourth-order compact approximation for (2.9).

In other words, we have a system of equations which defines a fourth-order accurate

approximation for (2.9) at any point on the inner grid of the spatial domain (all points of

the spatial domain except those that lie on the x and y boundaries). To approximate (2.9)

at points along the x boundaries of the inner grid of the spatial domain, we will require

a contribution from the Dirichlet values at the x-boundaries of the spatial domain. We

collect these separately in a vector d. Details on the boundary conditions are given in

Section 2.6. The linear system to be solved can be written in matrix form:

Axu = Bxg + d,

where u = (u2,2, u2,3, . . . , uM−1,N−1), g = (g2,2, g2,3, . . . , gM−1,N−1). The coefficient matri-

ces Ax and Bx are block diagonal matrices, with the following structure:

Ax =


A1,1
x 0 0 0

0 A2,2
x 0 0

0 0
. . . 0

0 0 0 AN−2,N−2
x

 , Bx =


B1,1
x 0 0 0

0 B2,2
x 0 0

0 0
. . . 0

0 0 0 BN−2,N−2
x

 ,

where each Aj,jx = diag[aj,j−1, a
j,j
0 , aj,j1 ] and Bj,j

x = diag[bj,j−1, b
j,j
0 , bj,j1 ] are tri-diagonal matri-

ces.

Let us consider now the case of F2:

F2(u) =
(vy)2β

2
uyy +

(
κ (vy)α

θ − vy
v

)
uy = g. (2.21)

Due to the appearance of y terms in the coefficients of F2(u), the algebraic complexity in

deriving a fourth-order accurate scheme in space is much greater. By Taylor’s expansions

we obtain:

uy (xi, yj) = δy0ui,j −
∆y

2

6
uyyy (xi, yj) +O(∆4

y), (2.22)

uyy (xi, yj) = δ2
yui,j −

∆y
2

12
uyyyy (xi, yj) +O(∆4

y). (2.23)

We wish to find second order accurate approximations for uyyy and uyyyy on the compact

stencil in order to find fourth-order accurate expressions for uy and uyy. Re-arranging

(2.21), we get:

uyy =
2

(vy)2β

(
−
(
κ (vy)α

θ − vy
v

)
uy + g

)
.

Via repeated applications of the chain rule, second-order accurate approximations for
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uyyy(xi, yj) and uyyyy(xi, yj) are given by:

uyyy(xi, yj) =
(2 (vyj)

α ακvyj − 2 (vyj)
α θακ+ 2 (vyj)

α κvyj)

(vyj)
2β vyj

δy0ui,j

+
(2 (vyj)

α κvyj
2 − 2 (vyj)

2β βv − 2 (vyj)
α θκyj)

(vyj)
2β vyj

δ2
yui,j +

2

(vyj)
2β
δy0gi,j +O(∆2

y), (2.24)

uyyyy(xi, yj) =

(
2(2 (vyj)

α κvyj
2 − 2 (vyj)

2β βv − 2 (vyj)
α θκyj)

(vyj)
4β vyj

− 4β

(vyj)
2β yj

)
δy0gi,j

+

(
1

(vyj)
2β vyj

(2 (vyj)
α α2κv + 4 (vyj)

α ακv − 2 (vyj)
α α2θκ

yj
+ 2 (vyj)

α κv)

− 2β (2 (vyj)
α ακvyj − 2 (vyj)

α θακ+ 2 (vyj)
α κvyj)

(vyj)
2β vyj2

− 2 (vyj)
α ακvyj − 2 (vyj)

α θακ+ 2 (vyj)
α κvyj

(vyj)
2β vyj2

+
(2 (vyj)

α κvyj
2 − 2 (vyj)

2β βv − 2 (vyj)
α θκyj)

((vyj)
4β v2yj2)

1
2

(2 (vyj)
α ακvyj − 2 (vyj)

α θακ+ 2 (vyj)
α κvyj)

((vyj)
4β v2yj2)

1
2

)
δy0ui,j

+

(
2 (vyj)

α ακvyj − 2 (vyj)
α θακ+ 2 (vyj)

α κvyj

(vyj)
2β vyj

+
1

(vyj)
2β vyj

(2 (vyj)
α ακvyj + 4 (vyj)

α κvyj − 4
(vyj)

2β β2v

yj
− 2 (vyj)

α θακ

− 2 (vyj)
α θκ)− 2β(2 (vyj)

α κvyj
2 − 2 (vyj)

2β βv − 2 (vyj)
α θκyj)

(vyj)
2β vyj2

− 2 (vyj)
α κvyj

2 − 2 (vyj)
2β βv − 2 (vyj)

α θκyj

(vyj)
2β vyj2

+
(2 (vyj)

α κvyj
2 − 2 (vyj)

2β βv − 2 (vyj)
α θκyj)

2

(vyj)
4β v2yj2

)
δ2
yui,j

+
2

(vyj)
2β
δ2
ygi,j +O(∆2

y). (2.25)

where δy0 and δ2
y denote the standard second-order central difference operators.

Substituting (2.24) and (2.25) into (2.22) and (2.23), respectively, yields fourth-order

accurate approximations (not given here) for uy(xi, yj) and uyy(xi, yj) on the compact

stencil. By substituting these fourth-order accurate approximations into (2.21) and sep-

arating the u and g terms onto the left and right hand sides, respectively, we obtain a

linear system which can be represented in matrix form:

Ayu = Byg

where u = (u2,2, u2,3, . . . , uM−1,N−1), g = (g2,2, g2,3, . . . , gM−1,N−1). We do not impose any

boundary conditions in y-direction, but discretise the boundary grid points with the same
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scheme, and handle resulting ghost points via extrapolation; details on the boundary

conditions are given in Section 2.6. The coefficient matrices Ay and By are block tri-

diagonal matrices with the following structures:

Ay =



A1,1
y A1,2

y 0 0 0

A2,1
y A2,2

y A2,3
y 0 0

0
. . .

. . .
. . . 0

0 0 AN−3,N−4
y AN−3,N−3

y AN−3,N−2
y

0 0 0 AN−2,N−3
y AN−2,N−2

y


,

By =



B1,1
y B1,2

y 0 0 0

B2,1
y B2,2

y B2,3
y 0 0

0
. . .

. . .
. . . 0

0 0 BN−3,N−4
y BN−3,N−3

y BN−3,N−2
y

0 0 0 BN−2,N−3
y BN−2,N−2

y


,

where each Aj,jy = diag[ai,j ] and Bj,j
y = diag[bi,j ] are diagonal matrices, with values on

these diagonals given as follows:

ai,j±1 =
1

2∆y
2 (vyj)

2β − 1

12(vyj)2βv2yj2

(
− 2(vyj)

2ακ2v2yj
4 + 2(vyj)

2β+αακv2yj
2

− 2(vyj)
2β+αβκv2yj

2 + 4(vyj)
2αθk2vyj

3 + 2(vyj)
4ββ2v2 − 2(vyj)

2β+αθακvyj

+ 2(vyj)
2β+αθβκvyj + 2(vyj)

2β+ακv2yj
2 − 2(vyj)

2αθ2κ2yj
2 + (vyj)

4ββv2
)

±
(
−(vyj)

ακvyj + (vyj)
αθκ

2v∆y
− 1

24∆yβ2(vyj)4

(
− 2(vyj)

2αακ2v2yj
3∆y

2

+ (vyj)
2β(vyj)

αα2κv2yj∆y
2 − 4(vyj)

2β+ααβκv2yj∆y
2 + 4(vyj)

2αθακ2vyj
2∆y

2

− 2(vyj)
2ακ2v2yj

3∆y
2 − (vyj)

2β+αθα2κv∆y
2 + 4(vyj)

2β+αθαβκv∆y
2

+ (vyj)
2β+αακv2yj∆y

2 − 4(vyj)
2β+αβκv2yj∆y

2 − 2(vyj)
2αθ2ακ2yj∆y

2

+ 2(vyj)
2αθκ2vyj

2∆y
2 + (vyj)

2β+αθακv∆y
2
))

, (2.26)

ai,j =
1

6(vyj)2β+2

(
− 2(vyj)

2αk2v2yj
4 + 2(vyj)

2β+ααkv2yj
2 + 2(vyj)

4ββ2v2

− 2(vyj)
2β+αβkv2yj

2 + 4(vyj)
2αθk2vyj

3 − 2(vyj)
2β+αθαkvyj + (vyj)

4ββv2

+ 2(vyj)
2β+αθβkvyj + 2(vyj)

2β+αkv2yj
2 − 2(vyj)

2αθ2k2yj
2 − 6(vyj)

4β+2
)
, (2.27)

bi,j±1 = ±−2(vyj)
αkv2yj

3∆y
2 − 4(vyj)

2ββv2yj∆y
2 + 2(vyj)

αθkvyj
2∆y

2

24(vyj)2β+2∆y
+

1

12
, bi,j =

5

6
.

(2.28)

For F2 the derivation can be presented in a concise form, similar as in Remark 2.3 for

F1. Considering the convection diffusion equation

uyy + c1uy = c2g (2.29)
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with c1 = c1(y) and c2 = c2(y), the necessary relations can be concisely written in matrix

form
1 0 1

6 0

0 1 0 1
12

c′1∆2
y c1∆2

y 1 0

c′′1∆2
y 2c′1∆2

y c1 1

 ·


uy

uyy

∆2
yuyyy

∆2
yuyyyy

 =


δy0ui,j

δ2
yui,j

∆2
y(δy0c2,jgi,j + c2,jδy0gi,j)

∆2
y(δ

2
yc2,jgi,j + 2δy0c2,jδy0gi,j + c2,jδ

2
ygi,j)


+O(∆4

y), (2.30)

where the first two lines of the system correspond to (2.22) and (2.23), while the third

and fourth are obtained from the repeated differentiation of (2.29).

2.4 High-order scheme for explicit steps

The first and fourth steps of the ADI scheme (2.8) operate only on previous approximations

to explicitly calculate an updated approximation. The differential operator in these steps

takes the form of the right hand side of (2.5). For the mixed derivative term it seems

not to be possible to exploit the structure of the differential operator to obtain a fourth-

order approximation on a compact computational stencil. Hence, in order to maintain

fourth-order accuracy of the scheme in the explicit steps of (2.8), the derivatives in each

differential operator F0, F1 and F2 are approximated using classical, fourth-order central

difference operators which operate on a larger 5 × 5-stencil in the spatial domain. Here

we use the shift operator defined by:

sx = e∆xδx where (sxu)i,j = ui+1,j , sy = e∆yδy where (syu)i,j = ui,j+1.

For F1(u) = vy
2 uxx − (vy2 − r)ux, we have the following scheme:[vy

2
uxx +

(
r − vy

2

)
ux

]
i,j

=
vyj
2

(
−s−2

x + 16s−1
x − 30 + 16sx − s2

x

12∆2
x

)
ui,j

+
(
r − vyj

2

)(s−2
x − 8s−1

x + 8sx − s2
x

12∆x

)
ui,j +O(∆4

x).

For F2(u) = (vy)2β

2 uyy + κ(vy)α(θ−vy)
v uy, we have:

[(vy)2β

2
uyy +

κ(vy)α(θ − vy)

v
uy

]
i,j

=
(vyj)

2β

2

(
−s−2

y + 16s−1
y − 30 + 16sy − s2

y

12∆2
y

)
ui,j

+
κ(vyj)

α(θ − vyj)
v

(
s−2
y − 8s−1

y + 8sy − s2
y

12∆y

)
ui,j +O(∆4

y).

Finally, for the mixed derivative term F0 = ρ(vy)β+ 1
2uxy, the following computational

stencil is used:[
ρ(vy)β+ 1

2uxy

]
i,j

= ρ(vyj)
β+ 1

2

(
s−2
x − 8s−1

x + 8sx − s2
x

12∆x

)(
s−2
y − 8s−1

y + 8sy − s2
y

12∆y

)
ui,j

+O(∆4
x∆4

y) +O(∆4
x) +O(∆4

y).
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• u4,1 u4,2 u4,3 u4,4

• u3,1 u3,2 u3,3 u3,4

• u2,1 u2,2 u2,3 u2,4

• u1,1 u1,2 u1,3 u1,4

� ◦ ◦ ◦ ◦

Figure 2.1: Example: evaluation of F (u2,2) using the 5× 5-point computational stencil in

the lower left corner of the computational domain; ghost points outside the computational

domain at which values are extrapolated from the interior of the domain are marked by

bullets (•,◦,�), grid points on the boundary are set in Roman.

Using these fourth-order approximations, the first and fourth step in (2.8) can be com-

puted directly. The values at the spatial boundaries for each solution of the ADI scheme

are determined by the boundary conditions, the computational stencil is required for all re-

maining points in the spatial domain. For the explicit steps, the 5×5-point computational

stencil exceeds the spatial boundary when we wish to approximate differential operator

F (u) at any point along the boundary of the spatial domain’s inner grid. For example if we

wish to evaluate F (u2,2), we will require contributions from ghost points which fall outside

the spatial domain, as marked by bullet points in Figure 2.1. We extrapolate information

from grid points u(xi, yj), where i = 1, . . . ,M − 1, j = 1, . . . , N − 1 to establish values at

these ghost points for the purpose of evaluating the differential operator F (u) at any point

along the boundary of the inner grid of the spatial domain. To calculate the values at

these ghost points, we use the following five-point extrapolation formulae for three cases:

x = L1 boundary (•) : ui,0 = 5ui,1 − 10ui,2 + 10ui,3 − 5ui,4 + ui,5 +O(∆5
x),

y = L2 boundary (◦) : u0,j = 5u1,j − 10u2,j + 10u3,j − 5u4,j + u5,j +O(∆5
y),

x = L1, y = L2 corner (�) : u0,0 = 5u1,1 − 10u2,2 + 10u3,3 − 5u4,4 + u5,5 +O(∆5
x)

+O(∆4
x∆y) +O(∆3

x∆2
y) +O(∆2

x∆3
y) +O(∆x∆4

y)

+O(∆5
y).

The extrapolation at the x = K1 and y = K2 boundaries and the remaining three corners

is handled analogously.

2.5 Solving the high-order ADI scheme

Starting from a given Un−1, the ADI scheme (2.8) involves six approximation steps to

obtain Un, the solution at the next time level. The first approximation Y0 can be solved

for explicitly using the 5×5-point computational stencil derived in Section 2.4. The second

approximation for our solution, denoted by Y1, has to be solved for implicitly:

Y1 =Y0 + φ∆t(F1(Y1)− F1(Un−1)) ⇐⇒ F1(Y1 − Un−1) =
1

φ∆t
(Y1 − Y0). (2.31)
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We apply the fourth-order compact scheme established in Section 2.3 to solve (2.31). In

matrix form we obtain

Ax(Y1 − Un−1) = Bx

( 1

φ∆t
(Y1 − Y0)

)
+ d.

Collecting unknown Y1 terms on the left hand side and known terms Y0, Un−1 and d on

the right hand side we get

(Bx − φ∆tAx)Y1 = BxY0 − φ∆tAxU
n−1 − φ∆td.

To solve, we invert the tri-diagonal matrix (Bx − φ∆tAx). For the third step of the ADI

scheme, we proceed analogously, and use the the high-order compact scheme presented in

Section 2.3 to solve for Y2 implicitly. The fourth, fifth and sixth step of the ADI scheme

are performed analogously as the first, second and third steps, respectively.

Note that the matrix (Bx − φ∆tAx) appears twice in the scheme (2.8), in the second

and fifth step. Similarly, (By − φ∆tAy) appears in the third and the sixth step. Hence,

using LU-factorisation, only two matrix inversions are necessary in each time step of

scheme (2.8). Moreover, since the coefficients in the partial differential equation (2.5) do

not depend on time, and the matrices are therefore constant, they can be LU-factorised

before iterating in time to obtain a highly efficient algorithm.

The combination of the fourth-order spatial discretisation presented in Section 2.3 and

2.4 with the second-order time splitting (2.8) yields a high-order ADI scheme with order

of consistency two in time and four in space.

2.6 Boundary conditions

For the case of the Dirichlet conditions at x = L1 and x = K1 we impose

u(L1, yj , τk) = 1− erτ+L1 , j = 1, 2, . . . , N, k = 1, 2, . . . ,

u(K1, yj , τk) = 0, j = 1, 2, . . . , N, k = 1, 2, . . . .

Using the homogeneous Neumann conditions (2.6d) and (2.6e) which are correct in the

limit y → ∞ and y → 0, respectively, at the (finite) boundaries y = L2 > 0 and y = K2

would result in a dominant error along these boundaries. Hence, we do not impose any

boundary condition at these two boundaries but discretise the partial differential equation

using the computational stencil from the interior. The values of the unknown on the

boundaries are set by extrapolation from values in the interior. This introduces a numerical

error, and it needs to be considered that the order of extrapolation should be high enough

not to affect the overall order of accuracy. We refer to Gustafsson [29] to discuss the

influence of the order of the approximation on the global convergence rate. We use the

following extrapolation formulae:

uki,1 = 5uki,2 − 10uki,3 + 10uki,4 − 5uki,5 + uki,6 +O(∆6
y),

uki,N = 5uki,N−1 − 10uki,N−2 + 10uki,N−3 − 5uki,N−4 + uki,N−5 +O(∆6
y).
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2.7 Numerical experiments

In this section the results of numerical experiments are discussed. The numerical con-

vergence order of the high-order ADI scheme is covered as well as additional experiments

aimed at validating its stability as well as investigating the role of the parameter φ.

Numerical convergence

This section of results covers the numerical study to compute the order of convergence of

the high-order ADI scheme. For convenience, an equally sized space step h = ∆x = ∆y,

has been chosen, creating an evenly-spaced mesh both horizontally and vertically. The

parameter-value φ = 0.5 in (2.8) is chosen for the numerical experiments unless mentioned

otherwise.

Since the initial condition for the option pricing problem, the payoff function V (S, σ, T ),

is non-smooth at S = E, we cannot in general expect to observe high-order convergence

[40]. Some form of smoothing has to be applied to the initial condition.

A practical approach would be to carefully choose a mesh where no node coincides with

the point in the domain where the non-smooth point exists, [41] investigates the effect of

non-smooth payoffs in option pricing and empirically studies the approach of shifting

the mesh to preserve the order of convergence of second order implicit finite difference

schemes. Employing this method requires constructing the mesh such that the distance

between the non-smooth point in the payoff function and the nearest adjacent nodes on

the mesh should be equal. This placement of the mesh serves to artificially smooth the

payoff, thus significantly reducing the associated error around this point. The advantage

of this approach is the ease with which it can be implemented for any given mesh. The

disadvantage of this approach is that for various refinements of the mesh, the mesh should

be re-aligned such that the distance between the point on the domain where there is a

non-smooth point in the payoff, and the two adjacent nodes should be equal. This lack of

flexibility means that we are unable to price options consistently at given points on the

mesh at various refinements without additional interpolation.

An alternative approach, which allows us to choose our mesh with a greater flexibility,

is proposed in [40] where suitable smoothing operators are identified in Fourier space.

Since the order of convergence of our high-order compact scheme is four, we could use the

smoothing operator Φ4 as in [26], given by its Fourier transformation

Φ̂4(ω) =

(
sin
(
ω
2

)
ω
2

)4 [
1 +

2

3
sin2

(ω
2

)]
.

This leads to the smooth initial condition determined by

ũ0 (x, y) =

3h∫
−3h

3h∫
−3h

Φ4

(
x̃

h

)
Φ4

(
ỹ

h

)
u0 (x− x̃, y − ỹ) dx̃ dỹ

for any stepsize h > 0, where u0 is the original initial condition and Φ4(x) denotes the

Fourier inverse of Φ̂4(ω), see [40]. As h→ 0, the smooth initial condition ũ0 tends towards
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the original initial condition u0 and the approximation of the smoothed problem tends

towards the true solution. We have chosen to adopt this smoothing operator for our

numerical experiments.

In order to investigate the numerical convergence of the scheme, we fix the parabolic

mesh ratio to γ = ∆t/h
2, which is a natural value for parabolic partial differential equa-

tions such as (2.5). Given that we have chosen a parabolic mesh ratio where the time step

is of the same order as the square of the space step, we might have considered an imple-

mentation of Euler’s second-order in space explicit finite difference method for solving the

PDE. The stringent stability constraint of the explicit scheme requires the time step to

be of the order of the square of the spatial step or less. While an explicit method would

be simpler to implement and less computationally expensive, the ADI scheme we have

employed is unconditionally stable by comparison and achieves a higher order of accuracy

in time. Implementing a stable explicit scheme with the same degree of accuracy would

requires us to solve the PDE over a significantly finer mesh.

Figure 2.2 shows the numerical solution for the European option price at time T = 0.5

using the parameters from Table 2.1. In order to evaluate the high order of convergence

50
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Figure 2.2: Numerical solution for price of European Put Option for default parameters.

in space for the accuracy of the scheme, we compute the l2-norm and the l∞ norm of the

relative error for consecutive approximations for the option price at a given expiry over

refined spatial meshes. To elaborate, we compute a reference solution, C0(x0i , y0j ), over a

uniform 385× 385 spatial mesh defined by:

x0i = −1 +
i− 1

384
, y0j =

1

2
+
j − 1

384
, i, j ∈ {1, 2, . . . , 384, 385}. (2.33)

The discretization in time is determined by the parabolic mesh ratio, and the final
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Parameter Value

Strike price E = 100

Time to maturity T = 0.5

Interest rate r = 0.05

Volatility of volatility v = 0.1

Mean reversion speed κ = 2

Long run mean of volatility θ = 0.1

Correlation ρ = −0.5

Parabolic mesh ratio γ = 0.5

Stochastic volatility drift parameter α = 0

Stochastic volatility diffusion parameter β = 0.5

x-range ([L1 −K1]) x ∈ [−1, 1]

y-range ([L2 −K2]) y ∈ [0.5, 2.5]

Table 2.1: Default input parameters for numerical experiments.

time step should be adapted such that we are able to evaluate the solution at the desired

expiry (T = 1 in our case). Once this result is computed, we generate a refined spatial

mesh for computing the next numerical approximation, C1(x1i , y1j ), by removing every

other point from the spatial mesh of the previous approximation:

x1i = x02i−1 , y1j = y02j−1 i, j ∈ {1, 2, . . . , 195}. (2.35)

We compute the l2 and l∞ norms of the relative error for the two approximations as

follows:

l2(C0, C1) = h(
195∑
i=1

195∑
j=1

(C0(x02i−1 , y02j−1)− C1(x1i , y1j ))
2)

1
2 , (2.36)

l∞(C0, C1) = max
i,j∈{1,...,195}

|C0(x02i−1 , y02j−1)− C1(x1i , y1j )|, (2.37)

where h = ∆x = ∆y is the uniform mesh spacing for the coarser discretization in space.

We utilize the same mesh refinement technique to approximate additional solutions over

coarser spatial meshes, and compute the above norms for each consecutive pair of solutions.

This process can be repeated up until it yields a 6× 6 spatial discretization, producing a

total of six values each for the error norms, which sufficiently allows us to approximate

the order of the scheme in space.

Asymptotically, we expect these norms to converge as ε = Chm for some m and C rep-

resenting constants. This implies ln(ε) = ln(C) + m ln(h). Hence, the double-logarithmic

plot ε against h should be asymptotic to a straight line with slope m. This gives a method

for experimentally determining the order of the scheme. The expected numerical conver-

gence rate is approximately order O(h4) in space. For comparison, additional experiments
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Figure 2.3: l∞-error comparison of the high-order ADI scheme with standard second-order

in space ADI scheme for ρ = −0.5. We observed similar results for ρ = −0.2 and ρ = 0.1.

have been conducted using a standard, second-order ADI scheme based on (2.8) combined

with a second-order central difference discretisation in space. Figure 2.3 shows the double

logarithmic plot of l∞-error versus space step h. The observed numerical convergence

order here is sufficiently close to the theoretical fourth-order accuracy of the scheme in

space. The high-order ADI scheme significantly outperforms the standard second-order

ADI scheme in almost all cases for a given mesh width h. In other words, to realise a

chosen level of accuracy one could use a coarser grid for the high-order ADI scheme than

the standard second-order scheme which translates into solving smaller linear systems,

which is more computationally efficient.

Numerical stability analysis

In this section we investigate whether there are any stability restrictions on the choice of

the time-step ∆t for the high-order ADI scheme. Unlike for standard second-order schemes,

the algebraic complexity of the numerical stability analysis of high-order compact schemes

is very high since the established stability notions imply formidable algebraic problems

for high-order compact schemes. As a result, there are only few stability results for high-

order compact schemes in the literature [26, 23, 27]. This is even more pronounced in

higher spatial dimensions, as most of the existing studies with analytical stability results

for high-order compact schemes are limited to a one-dimensional setting.

For diffusion equations (without convection) with mixed derivative terms and constant

coefficients, a stability analysis of the ADI method (2.8) with standard second-order dis-

cretisation in space [35] revealed it to be unconditionally stable. The analysis in [35] is

based on studying the stability for a simplified, linear test equation which implies the



27

0.05 0.1 0.15 0.2 0.25 0.3

h

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

10
-3

0.05 0.1 0.15 0.2 0.25 0.3

h

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

10
-3

Figure 2.4: Contour plots of the l2-error for ρ = 0 (left) and ρ = −0.5 (right) against

parabolic mesh ratio γ = ∆τ/h
2 and mesh width h

assumption that all involved discretisation matrices are normal and commuting. The

discretisation matrices of high-order compact schemes generally do not fulfil these as-

sumptions and, hence, in the present case with non-constant coefficients, the situation is

much more involved. A thorough stability analysis is therefore beyond the scope of the

present paper. Instead, to validate the stability of the scheme, we perform additional

numerical stability tests. Stable behaviour has been consistently observed throughout

numerical experiments. I have computed numerical solutions for varying values of the

parabolic mesh ratio γ = ∆t/h
2 and the mesh width h. Plotting the associated l2-norm

errors in the plane should allow us to detect stability restrictions, this approach for a

numerical stability study was also used in [23, 25].

Results for the European Put option using the parameters from Table 2.1 are provided

here. For the stability plots I have used γ = k/10 with k = 2, . . . , 10, as well as γ =

1.5, 2.0, 3.0, 5.0 and a descending sequence of spatial grid points, where h = 1
192 ,

1
96 , . . . ,

1
3 .

Figure 2.4 shows the stability plots for the correlation parameter ρ = 0 and ρ = −0.5. The

influence of the parabolic mesh ratio γ on the l2-error is only marginal and the relative

error does not exceed 5.5× 10−3 as a value for both stability plots. For increasing values

of h the error grows gradually, and no oscillations in the numerical solutions occur.

These observations are confirmed by additional numerical convergence tests for varying

parabolic mesh ratio γ. The other parameters are set to the default values given in

Table 2.2. The numerical convergence orders reported in Table 2.2 show that the numerical

convergence order for the high-order scheme, measured both in the l2-norm and l∞-norm

is sufficiently close to four, and does not depend on the parabolic mesh ratio γ.

Choice of the parameter φ

In this section additional numerical experiments, conducted to investigate the influence

of the parameter φ on our high-order ADI scheme in a convection dominated regime,

are discussed (although we note that for practical parameter ranges the problem (2.5) is

usually quite diffusive).
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γ = ∆t/h
2 0.2 0.4 0.6 0.8 1.0 1.5 3.0 5.0

HO-ADI l2-error 3.94 3.94 3.94 3.94 3.94 3.94 3.93 3.95

Standard ADI l2-error 2.21 2.22 2.22 2.22 2.23 2.24 2.24 2.24

HO-ADI l∞-error 3.61 3.61 3.61 3.61 3.61 3.61 3.62 3.63

Standard ADI l∞-error 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91

Table 2.2: Numerical convergence order in space for varying parabolic mesh ratio γ =

∆t/h
2

The typical choice for this parameter is φ = 0.5 in the ADI splitting (2.8). In the

literature larger values are sometimes found to be necessary to ensure stability for con-

vection dominated problems, e.g. in [44] the condition φ ≥ 1/2 +
√

3/6 for a second-order

discretisation for two-dimensional convection diffusion equations without mixed derivative

is given. While a full stability analysis, which takes into account the interplay of ADI split-

ting and the high-order spatial discretisation would be beyond the scope of this work, some

numerical investigation of the role of the parameter φ for this particular method seems

in order. In order to facilitate a convection dominated problem (for pratical parameter

ranges the problem is usually quite diffusive), we take the volatility of volatility parameter

v to be ever closer to zero. We compare numerical convergence rates for the scheme using

l2- and l∞-errors for the scheme for values φ = 1/2 and φ > 1/2. The results are report

in Tables 2.3 and 2.4. In general, for increasingly convection dominated problems, there

γ = ∆t/h
2 0.2 0.4 0.6 0.8 1.0 1.5 3.0 5.0

φ = 1
2 , l2-error 3.87 3.91 3.90 3.90 3.91 3.90 3.90 3.88

φ = 1
2 , l∞-error 3.47 3.64 3.64 3.64 3.64 3.64 3.64 3.69

φ = 1
2 +

√
3

6 , l2-error 3.88 3.91 3.91 3.89 3.90 3.90 3.90 3.90

φ = 1
2 +

√
3

6 , l∞-error 3.64 3.64 3.64 3.54 3.64 3.64 3.64 3.66

Table 2.3: Numerical convergence order in space for the high-order ADI scheme for dif-

ferent parameters φ and v = 0.04 for increasing parabolic mesh ratios γ = ∆t/h
2; other

parameters are set to the default values shown in Table 2.1.

γ = ∆t/h
2 0.2 0.4 0.6 0.8 1.0 1.5 3.0 5.0

φ = 1
2 , l2-error 1.34 1.74 2.02 2.79 1.93 2.24 3.00 3.10

φ = 1
2 , l∞-error 3.91 1.22 1.50 3.70 3.81 1.78 3.83 4.15

φ = 1
2 +

√
3

6 , l2-error 1.59 2.48 1.84 2.62 2.11 2.27 2.83 3.29

φ = 1
2 +

√
3

6 , l∞-error 3.85 1.97 1.32 2.12 3.86 1.70 2.29 4.14

Table 2.4: Numerical convergence order in space for the high-order ADI scheme for dif-

ferent parameters φ and v = 0.025 for increasing parabolic mesh ratios γ = ∆t/h
2; other

parameters are set to the default values shown in Table 2.1.
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is no observed advantage for the alternative choice of the parameter φ. For v = 0.04 the

method is stable for both choices of φ over a wide range of parabolic mesh ratios, while

there is negligible difference in the numerical convergence rates for both values of φ. For

v = 0.025 the problem looses more and more its parabolic character and a loss of stability

is reflected by the sporadic convergence order in space for various parabolic mesh ratios,

with no apparent advantage for the alternative choice of φ.



Chapter 3

Calibrating forward jump diffusion

option pricing model parameters

to market prices

We propose to solve a parameter calibration problem for the forward jump-diffusion option

pricing model. A distributed optimal control approach is employed, with a partial-integro

differential equation as our state equation. With an emphasis on the analysis of the optimal

control approach, we investigate the necessary regularity conditions for our parameters of

interest. Following this, the existence of optimal solutions is proven under certain analyt-

ical conditions. Furthermore, the first-order necessary conditions for optimality are also

established. In section 3.1, we introduce the jump diffusion option pricing model and the

corresponding forward jump-diffusion model, which is the state equation for our optimal

control approach. We formally specify the optimal control problem in 3.2 and construct

a Lagrangian. In 3.3, we consider the existence of a solution to the state equation. In 3.4

we prove the existence of optimal solutions under particular regularity constraints, then in

3.5 we derive first-order necessary conditions of optimality under the same constraints and

derive the adjoint equation from the Lagrangian. Finally, in 3.6 we calculate the gradients

for both controls, make practical considerations for the numerical implementation of our

method and give results.

3.1 State equation

The jump-diffusion option pricing model, as proposed by [49], assumes that the returns

of some arbitrary financial asset with value S(t) > 0, where t > 0, follows the stochastic

behaviour as specified by (3.1).

dS(t)

S(t−)
= (r(t)− q(t)− λ(t)m(t))dt+ σ(t, S(t−))dW (t) + (J(t)− 1)dπ(t). (3.1)

The riskless interest rate and dividend yield are given by r(t) ≥ 0 and q(t) ≥ 0,

respectively. Furthermore, the uncertainty of the returns is modelled by a diffusion process

30
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and a Poisson process. The diffusion process is modelled as a Wiener process, given

by W (t), while the diffusion coefficient is modelled by a deterministic volatility surface

σ(S, t). The Poisson process is given by π(t) ∈ {0, 1} and is parameterized by some

deterministic event rate λ(t) > 0. As part of the random event coefficient, J(t) is randomly

sampled from some stochastic process η(t, .), where the distribution parameters of η(t, .)

are time dependent at most. The expectation of the magnitude of the jump is given by

m(T ) = E[J(t)−1]. Traditionally, η(t, .) is a log-normal distribution, as proposed by [49],

or a double exponential distribution, as proposed by [39].

The following backward partial integro-differential equation is derived from (3.1) using

Ito’s lemma and the equivalent for the Poisson term, as both detailed in [42]:

Ct + (r(t)− q(t)− λ(t)m(t))SCS +
1

2
σ2(S, t)S2CSS

+ λ(t)

∫ ∞
0

C(Sz, t)η(z, t)dz = (r(t) + λ(t))C. (3.2)

If, for example, (3.2) is used to model a European call option with exercise price E > 0

and expiry T > 0, then the boundary and initial conditions are given as follows:

C(0, t) = 0, (3.3)

lim
S→∞

C(S, t) = S, (3.4)

C(S, T ) = max(S − E, 0). (3.5)

The forward jump-diffusion option pricing model proposed by [1] is solved by the option

price C̃(x, T ), where x = ln(K) is the natural log of the strike price for K > 0 and T > 0

is the expiry. The value of the underlying asset, S > 0, is fixed at whatever the current

asset value is.

C̃T + (λ(T )(1 +m(T )) + q(T ))C̃ + (r(T )− q(T )− λ(T )m(T ) +
1

2
σ̃2(x, T ))C̃x

− 1

2
σ̃2(x, T )C̃xx − λ(T )

∫ ∞
−∞

C̃(x− y, T )e2yη(ey, T )dy = 0. (3.6)

This option pricing model is particularly well-suited for parameter calibration. Market

price data is available over a range of expiries and strikes, therefore we may calibrate model

parameters to the forward jump-diffusion option pricing model by solving a single coupled

system over such a domain for fixed S > 0 and t = 0. Otherwise, calibrating model

parameters to non-forward option pricing models, such as (3.2), over a range of expiries

and strikes requires us to solve a coupled system for every point (K,T ) at which market

price data is available. If we model European call options for a particular underlying asset,

for example, using this forward PIDE, then the boundary and initial conditions are given

as follows:
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lim
x→−∞

C̃(T, x) = Se−rT , (3.7)

lim
x→∞

C̃(T, xmax) = 0, (3.8)

C̃(0, x) = C̃0(x) = max(S − ex, 0). (3.9)

We choose to specify the model over some truncated domain: Q = Ω× [0, Tmax], where

Ω = [xmin, xmax]. We also revert back to a simpler notation for ease of viewing, such

that C̃ = C. For ease of future derivations we choose to parameterize the volatility of the

underlying asset by setting v(x, T ) = σ̃2(x,T )
2 . Then our model becomes

CT + (λ(T )(1 +m(T )) + q(T ))C + (r(T )− q(T )− λ(T )m(T ) + v(x, T ))Cx − v(x, T )Cxx

− λ(T )

∫ x−xmin

x−xmax
C(x− y, T )e2yη(ey, T )dy = 0, (3.10)

while the initial and boundary conditions are given as follows:

C(T, xmin) = CD(T ) = (S − exmin)e−rT , (3.11)

C(0, x) = C0(x) = max(S − ex, 0),

C(T, xmax) = 0.

This system, as specified by (3.10) and (3.11), is known as the ”state equation”. It

governs the relationship between the controls we wish to imply using our optimal control

approach and the solution to the state equation over a domain Q. In this case the option

price is the solution to the state equation, and is therefore referred to as the ”state”.

The controls that we seek to optimize and calibrate to market prices, are the Poisson

parameter λ(T ) and the parameter v(x, T ). The state equation must hold at all times of

the optimization process. As part of our gradient descent method, we are required to solve

this state equation for every time we update our control parameters. The well-posedness

of the state equation is therefore of interest to us.

3.2 Constructing the optimal control problem

State constraints

In order to formulate the optimal control problem, we must specify our state equation as

a mapping from the function spaces of our controls and state from which they originate,

to the dual space of the Lagrangian multiplier functions that we shall employ later as

part of our optimal control strategy. We must specify appropriate function spaces for

our state, volatility surface and lambda curve that are as nonrestrictive as possible but

still guarantee the existence of a unique optimal solution and satisfy first-order necessary

conditions of optimality. These spaces, as we shall show later, are W (0, Tmax), H2,1(Q)

and H1(0, Tmax), respectively. In particular, we define:
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W (0, Tmax) = {f(x, T ) : f ∈ L2(0, Tmax;H1(Ω)) : ft ∈ L2(0, Tmax;H1(Ω)′)}, (3.12)

H2,1(Q) = H1(0, Tmax;L2(Ω)) ∪ L2(0, Tmax;H2(Ω)), (3.13)

Our chosen function spaces for our Lagrangian multiplier functions are determined to

be the least restrictive such that the first order conditions of optimality are met. These

spaces, as shown later, are L2(0, Tmax;H1
0 (Ω)),L2(0, Tmax) and L2(Ω). In particular, we

define:

L2(0, Tmax;H1
0 (Ω)) = {f(x, T ) : f ∈ L2(0, Tmax;H1(Ω)), where f(∂Ω, T ) = 0}. (3.14)

We impose ”box constraints” for our chosen controls. In other words, we impose some

arbitrary upper and lower bounds on our controls in addition to the restrictions imposed

by their respective function spaces. The bounds must satisfy 0 < va < vb and 0 < λa < λb.

We refer to these spaces as being the ”admissible sets” of our controls and appropriately

label these sets accordingly:

v(x, T ) ∈ Vad = {H2,1(Q) : va < v(x, T ) < vb ∀(x, T ) ∈ Q}, (3.15)

λ(T ) ∈ λad = {H1(0, T ) : λa < λ(T ) < λb ∀T ∈ [0, Tmax]}. (3.16)

These spaces are chosen as the least restrictive such that we may guarantee the ex-

istence of a unique optimal solution. This unique optimal solution is simply the unique

combination of state and controls which minimize our chosen cost functional.

We define a multilinear mapping from the composite function space defined by our

state and controls’ function spaces to the dual of the composite function space defined

by our Lagrangian multipliers’ function spaces. For brevity, we label our integral term as

F (C):

e(C, v, λ) : W (0, Tmax)× Vad × λad → (L2(0, Tmax;H1
0 (Ω)))′ × L2(Ω)× L2(0, Tmax),

e1(ω) = CT + (λ(1 +m) + q)C + (r − q − λm+ v)Cx − vCxx − λF (C),

e2(ω) = C(·, xmin)− CD(T ),

e3(ω) = C(0, x)− C0(x).

This representation of the state constraints is directly transferable to our Lagrangian.

Cost functional

The implementation of a Lagrangian for an optimal control problem must also include

a cost functional that we are seeking to minimize. Our cost functional should serve to

minimize the distance over some metric between the prices generated by our model and
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empirical market prices. The inclusion of Tikhonov regularization terms, for v and λ,

addresses the ill-posedness of the calibration of these parameters. The level of desired

smoothness for these parameters is controlled via a pair of regularization coefficients.

In order to guarantee the well-posedness of the optimal control problem and first-order

necessary conditions while choosing the least restrictive function spaces, our regularized

cost functional is constructed as follows:

J(C, v, λ) =
1

2
||C(Tmax)−Cobs||2L2(Ω)+

α

2
||v−vinit||2H2,1(Q)+

β

2
||λ−λinit||2H1(0,Tmax), (3.17)

where Cobs is our empirical market data, vinit ∈ Vad and λinit ∈ λad are our initial guesses

for our controls and α > 0, β > 0 are chosen as regularization parameters. The exclusion

of prior estimates for our controls from the cost functional would result in the undesirable

penalization of non-zero values for our calibrated controls, hence the inclusion of fixed

vinit and λinit. The regularization parameters may be tuned to the preference of the

practitioner, larger values favoured by those who require smoother controls and smaller

values for those who require a higher rate of residual convergence. In practice, we will have

to compute this cost function using l2 counterparts for these norms and central difference

operators for the controls’ partial derivatives. For the case of calibrating to market data

for n additional expiries, 0 < Ti < Tmax for i = 1, . . . , n, our cost will become:

J(C, v, λ) =
1

2
||C(Tmax)− Cobs(Tmax)||2L2(Ω) +

1

2

n∑
i=1

||C(Ti)− Cobs(Ti)||

+
α

2
||v − vinit||2H2,1(Q) +

β

2
||λ− λinit||2H1(0,Tmax). (3.18)

Without loss of generality, we limit the remaining analysis of the optimal control

problem to the case of a single expiry.

Lagrangian

Together, the state constraints and the cost functional form the Lagrangian. A Lagrangian

multiplier function is assigned to each component of the multilinear mapping e(C, v, λ).

These are associated with the PIDE constraint, the boundary condition and the initial con-

dition, respectively, and are specified in (3.19) as p ∈ L2(0, Tmax;H1
0 (Ω)), µ ∈ L2(0, Tmax)

and υ ∈ L2(Ω). We will later formulate an adjoint equation composed of these Lagrangian

multiplier functions which can be solved to help us determine how we should update our

controls most effectively for each iteration of our method:
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L(ω, χ) =
1

2
||C(Tmax)− Cobs||2L2(Ω) +

α

2
||v − vinit||2H2,1(Q) +

β

2
||λ− λinit||2H1(0,Tmax)

+

∫
Ω

(C(x, 0)− C0)υdx+

∫ Tmax

0
(C(T, xmin)− CD)µdT +

∫ Tmax

0

(
< CT , p >V ∗,V

+ (λ(T )(1 +m(T )) + q(T ))

∫
Ω
Cpdx+

∫
Ω

(r(T )− q(T )− λ(T )m(T )

+v(x, T ))Cxpdx−
∫

Ω
v(x, T )pCxxdx−λ(T )

∫
Ω

∫ x−xmin

x−xmax
C(T, x−y)e2yη(ey, T )dypdx

)
dT.

(3.19)

3.3 Solution to the state equation

A priori estimate

The following a priori estimate for the uniform boundedness of the solution is a standard

result, the proof follows a similar path to a related problem in [70] .

Theorem 1 Let C be a generalized solution to our state PIDE. Then there exists a con-

stant B∗ > 0 such that C < B∗, where B∗ = max0<τ≤Tmax Bτ

Proof 1 For any fixed τ ∈ (0, Tmax], φ(C) = C(x, T ) − B(τ), over time-space do-

main defined by Qτ = Ω × (0, τ ]. Consider the test function φ(C)+ = max(0, φ(C)) ∈
L2(0, τ ;H1

0 (Ω)). Taking a weak formulation of our PIDE with this test function yields:

1

2

∫
Ω

(φ(C(τ))+2 − φ(C(0))+2)dx+

∫
Qτ

(λ(1 +m) + q)φ(C)+2dxdT

+

∫
Qτ

(r − q − λm+ v)φ(C)+
x φ(C)+dxdT −

∫
Qτ

vφ(C)+
xxφ(C)+dxdT

−
∫
Qτ

λφ(C)+

∫ x−xmin

x−xmax
φ(C(x− y))+e2yη(ey, T )dydxdT = 0.

The term
∫
Qτ

(λ(1 + m) + q)φ(C)+2dxdT ≥ 0. By dropping this term, we have the

inequality:

1

2

∫
Ω

(φ(C(τ))+2 − φ(C(0))+2)dx+

∫
Qτ

(r − q − λm+ v)φ(C)+
x φ(C)+dxdT

−
∫
Qτ

vφ(C)+
xxφ(C)+dxdT −

∫
Qτ

λφ(C)+

∫ x−xmin

x−xmax
φ(C(x− y))+e2yη(ey, T )dydxdT ≤ 0.

Given that r, q, λ,m, v are all bounded, we have for some c ∈ R:∫
Qτ

(r − q − λm+ v)φ(C)+
x φ(C)+dxdT ≥ c

∫
Qτ

φ(C)+
x φ(C)+dxdT. (3.20)

Due to the compact support of φ(C)+ at the spatial boundaries, integrating by parts

yields the following:
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∫
Qτ

φ(C)+
x φ(C)+dxdT = −

∫
Qτ

φ(C)+φ(C)+
x dxdT →

∫
Qτ

φ(C)+
x φ(C)+dxdT = 0. (3.21)

Dropping this term from our inequality yields:

1

2

∫
Ω

(φ(C(τ))+2 − φ(C(0))+2)dx−
∫
Qτ

vφ(C)+
xxφ(C)+dxdT

−
∫
Qτ

λφ(C)+

∫ x−xmin

x−xmax
φ(C(x− y))+e2yη(ey, T )dydxdT ≤ 0.

Seeing as v is bounded, there exists some c > 0 such that:

−
∫
Qτ

vφ(C)+
xxφ(C)+dxdT ≥ −c

∫
Qτ

φ(C)+
xxφ(C)+dxdT. (3.22)

Integrating by parts gives us:

− c
∫
Qτ

φ(C)+
xxφ(C)+dxdT = c

∫
Qτ

φ(C)+
x

2dxdT. (3.23)

This term is positive, therefore we drop it from our inequality. This yields:

1

2

∫
Ω

(φ(C(τ))+2 − φ(C(0))+2)dx

≤
∫
Qτ

λφ(C)+

∫ x−xmin

x−xmax
φ(C(x− y))+e2yη(ey, T )dydxdT.

Given that lambda is bounded, there exists some c > 0 such that:

1

2

∫
Ω

(φ(C(τ))+2 − φ(C(0))+2)dx

≤ c
∫
Qτ

φ(C)+

∫ x−xmin

x−xmax
φ(C(x− y))+e2yη(ey, T )dydxdT.

We know that e2yη(ey) is bounded for y ∈ [xmin−xmax, xmax−xmin]. Therefore there

exists some cη > 0 :

c

∫
Qτ

φ(C)+

∫ x−xmin

x−xmax
φ(C(x− y))+e2yη(ey, T )dydxdT

≤ c
∫
Qτ

φ(C)+

∫ x−xmin

x−xmax
φ(C(y))+cηdydxdT. (3.24)

We absorb cη into the positive constant c. Simplifying this term:

c

∫
Qτ

φ(C)+

∫ x−xmin

x−xmax
φ(C(x− y))+dydxdT = c

∫
Qτ

φ(C)+

∫ xmax

xmin

φ(C(y))+dydxdT.

(3.25)
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Applying Cauchy-Schwarz to the inner integral term:

c

∫
Qτ

φ(C)+

∫ xmax

xmin

φ(C(y))+dydxdT ≤ c
∫
Qτ

φ(C)+||φ(C)+||L2(Ω)||1||L2(Ω)dxdT. (3.26)

Absorbing ||1||L2(Ω) into the positive constant c and then applying Cauchy-Schwarz to

the remaining integral term:

c

∫ τ

0
||φ(C)+||L2(Ω)

∫
Ω
φ(C)+dxdT ≤ c

∫ τ

0
||φ(C)+||2L2(Ω)||1||L2(Ω)dT. (3.27)

Absorbing ||1||L2(Ω) into the postive constant c again yields:

c

∫ τ

0
||φ(C)+||2L2(Ω)dT = c

∫
Qτ

φ(C)+2dT. (3.28)

Substituting this result into our inequality yields:

1

2

∫
Ω

(φ(C(τ))+2 − φ(C(0))+2)dx ≤ c
∫
Qτ

φ(C)+2dT. (3.29)

Choosing Bτ = max(C0(x), CD(T )) for x ∈ Ω and T ∈ (0, τ ], we have φ(C)+(0) = 0.

Therefore:

1

2

∫
Ω
φ(C(τ))+2dx ≤ c

∫
Qτ

φ(C)+2dT. (3.30)

Applying Grönwall’s Lemma to this inequality for fixed τ ∈ (0, Tmax] gives us C(τ) <

Bτ . Therefore, for all T ∈ (0, Tmax], we have C < B∗, where B∗ = max0<τ≤Tmax Bτ .

Existence of weak solution

The existence of weak solutions to the state equation’s type is classical, our proof fol-

lows a standard Galerkin approach as given in [61] for a class of similar parabolic PDEs.

A definitive collection of such classical results for modern PDE theory is given in [71].

Alternatively, [72] outlines a generalized application of C0 semigroup theory to obtain a

weak existence result for a group of parabolic PDEs which are closely related to our state

equation.

Theorem 2 There exists a weak solution C(x, T ) to our state equation (3.10) with initial

condition and boundary conditions (3.11), such that C ∈W (0, Tmax).

Assumptions: λ, r, q,m ∈ L∞(0, Tmax] and v ∈ L∞(0, Tmax;L∞(Ω)), initial condition

C0(x) ∈ L2(Ω) and boundary condition CD(T ) ∈ L2(0, Tmax].

Proof 2 The steps of the proof are to construct a sequence of Galerkin approximations

for our solution, derive some estimates for these approximations, determine a weakly

converging subsequence, prove the existence of this weak limit in a particular function

space and finally extend this result to the function space W (0, Tmax).
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Part 1: Galerkin approximation

H1
0 (Ω) is a subspace of a separable Hilbert space, therefore it is also a separable Hilbert

space and we may choose a countable dense set of linearly independent elements {zi}∞i=1 ∈
H1

0 (Ω) as an orthonormal system inH1
0 (Ω) which is also complete inH1(Ω). It is important

to note that H1
0 (Ω) is, in general, dense in H1(Ω), and is also continuously embedded in

H1(Ω). Therefore any results we obtain for a weak solution in H1
0 (Ω) shall hold for H1(Ω)

and our PIDE with non-zero boundary conditions. For some fixed n ∈ N, we approximate

solution Cn = Cn(x, T ) through the ansatz

Cn(x, T ) =
n∑
i=1

uni (T )zi(x). (3.31)

where uni : (0, Tmax]→ R for i = 1, . . . , n are unknown functions which are considered

to be coefficient functions in the time domain. We define for any fixed T ∈ (0, Tmax]

the following bilinear form, where, for brevity, we have taken F (C) =
∫ x−xmin
x−xmax C(x −

y, T )e2yη(ey, T )dy:

a[T ;C, z] =

∫
Ω

(λ(T )(1 +m(T )) + q(T ))C(x, T )z(x) + (r(T )− q(T )− λ(T )m(T )

+ v(x, T ))Cx(x, T )z(x)− v(x, T )Cxx(x, T )z(x)− λ(T )F (C(x, T )))zjdx. (3.32)

Taking the inner product of zj ∈ H1
0 (Ω) with our the PIDE in L2(Ω), we have the

weak form of our PIDE:

(
d

dt
Cn(T ), zj) + a(T ;Cn, zj) = 0, ∀zj . (3.33)

At the lower boundary of expiries (Cn(., 0), zj)L2(Ω) = (C0, z)L2(Ω) for all zj ∈ H1
0 (Ω) for

any j ∈ 1, . . . , n, for any n ∈ N. If Cn =
∑n

j=1 u
n
j zj , then due to the orthonormality of zj

we have:

d

dt
unj (T ) +

n∑
i=1

ui(T )a[t; zi, zj ] = 0, (3.34)

unj (0) = (C0, zj). (3.35)

for any j = 1, . . . , n. According to Caratheodory’s theorem, this initial value problem

for n linear ordinary differential equations on [0, Tmax] for un = (un1 , . . . , u
n
n) has a unique

absolutely continuous solution un ∈ (H1(0, T ))n. If we multiply equation (3.33) by uj(T )

and sum the equations from j = 1 to j = n, then for almost every T ∈ (0, Tmax]:

(
d

dt
Cn(T ), Cn(T )) + a[T,Cn(T ), Cn(T )] = 0. (3.36)

The function Cn : [0, Tmax] → L2(Ω) is also almost everywhere differentiable with

respect to T ∈ (0, Tmax].



39

Part 2: Estimates for Cn

Choosing any fixed τ ∈ (0, Tmax], we have∫ τ

0
(
d

dt
Cn(T ), Cn(T ))L2(Ω)dT =

1

2

∫ τ

0

d

dt
||Cn(T )||2L2(Ω)dT

=
1

2
||Cn(τ)||2L2(Ω) −

1

2
||Cn(0)||2L2(Ω). (3.37)

Integration of equation (3.36) over [0, τ ] yields

1

2
||Cn(τ)||2L2(Ω) +

∫ τ

0
a[T ;Cn(T ), Cn(T )]dT =

1

2
||Cn(0)||2L2(Ω). (3.38)

If we expand the operator a, we have

1

2
||Cn(τ)||2L2(Ω) +

∫ τ

0
((1 +m)λ+ q)(Cn, Cn)L2(Ω) + (r − q − λm)((Cnx, Cn)L2(Ω)

+ (vCnx, Cn)L2(Ω) − (vCnxx, Cn)L2(Ω) − λ(F (Cn), Cn)L2(Ω)dT =
1

2
||Cn(0)||2L2(Ω). (3.39)

The coefficient ((1 +m)λ+ q) > 0, therefore we may take c1 = inf ((1 +m)λ+ q) such

that:

((1 +m)λ+ q)(Cn, Cn)L2(Ω) ≥ c1||Cn||2L2(Ω). (3.40)

Substituting this into our weak formulation:

1

2
||Cn(τ)||2L2(Ω) +

∫ τ

0
c1||Cn||2L2(Ω) + (r − q − λm)(Cnx, Cn)L2(Ω) + (vCnx, Cn)L2(Ω)

− (vCnxx, Cn)L2(Ω) − λ(F (Cn), Cn)L2(Ω)dT ≤
1

2
||Cn(0)||2L2(Ω). (3.41)

We integrate the next term
∫ τ

0 ((r − q − λm)((Cxn, Cn)L2(Ω)dT by parts as follows:

(r−q−λm)(Cnx, Cn)L2(Ω) = −(r−q−λm)(Cn, Cnx)L2(Ω) +[(r−q−λm)C2
n]xmaxxmin . (3.42)

Given that Cn =
∑n

i=1 u
n
j z

n
j , and znj ∈ H1

0 (Ω), we know that the value of Cn is equal

to 0 at the boundaries xmin and xmax. Therefore the whole term is equivalent to 0:

(r − q − λm)(Cnx, Cn)L2(Ω) = 0. (3.43)

Our weak formulation simplifies to the following:

1

2
||Cn(τ)||2L2(Ω) +

∫ τ

0
c1||Cn||2L2(Ω) + (vCnx, Cn)L2(Ω) − (vCnxx, Cn)L2(Ω)

− λ(F (Cn), Cn)L2(Ω)dT ≤
1

2
||Cn(0)||2L2(Ω). (3.44)

Given that our control parameters v and λ are bounded, we infer the existence of

constants c2 > 0 and c3 > 0 such that:
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1

2
||Cn(τ)||2L2(Ω) +

∫ τ

0
c1||Cn||2L2(Ω) + c2(Cnx, Cn)L2(Ω) − c2(Cnxx, Cn)L2(Ω)

− c3(F (Cn), Cn)L2(Ω)dT ≤
1

2
||Cn(0)||2L2(Ω). (3.45)

For the next term, (Cnx, Cn)L2(Ω), we can integrate by parts as follows:∫ xmax

xmin

CnCnxdx = −
∫ xmax

xmin

CnxCndx+ [C2
n]xmaxxmin . (3.46)

Therefore this term is also equivalent to 0:∫ xmax

xmin

CnCnxdx = 0. (3.47)

Our weak formulation then becomes:

1

2
||Cn(τ)||2L2(Ω) +

∫ τ

0
c1||Cn||2L2(Ω) − c2((Cnxx, Cn)L2(Ω)

− c3(F (Cn), Cn)L2(Ω)dT ≤
1

2
||Cn(0)||2L2(Ω). (3.48)

The next term −(Cnxx, Cn)L2(Ω) can be integrated by parts as follows:

−
∫ xmax

xmin

CnCnxxdx =

∫ xmax

xmin

C2
nxdx− [CnCnx]xmaxxmin = ||Cnx||2L2(Ω). (3.49)

Then our weak formulation becomes:

1

2
||Cn(τ)||2 +

∫ τ

0
c1||Cn||2L2(Ω) + c2||Cnx||2L2(Ω) − c3(F (Cn), Cn)L2(Ω)dT ≤

1

2
||Cn(0)||2L2(Ω).

(3.50)

Now we consider the integral term F (Cn). Referring to the a priori estimate, we have

already shown that any Cn satisfying the state PIDE is bounded above by some B∗ > 0.

Therefore, for some cη,Ω,B∗ > 0:

(F (Cn), Cn)L2(Ω) =

∫ xmax

xmin

Cn(x, T )

∫ x−xmin

x−xmax
Cn(x− y, T )e2yη(ey, T )dydx < cη,Ω,B∗ .

(3.51)

By taking the integral term over to the right hand side and using this estimate, we

have:

1

2
||Cn(τ)||2 +

∫ τ

0
c1||Cn||2L2(Ω) + c2||Cnx||2L2(Ω)dT ≤

1

2
||Cn(0)||2L2(Ω) + cη,Ω,B∗ . (3.52)

Choosing τ = Tmax, for some K∗ > 0, we have:

||Cn(T )||2C(0,T ;L2(Ω)) + ||Cn||2W 1,0
2 (Q)

≤ K∗. (3.53)
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Therefore, there exists a constant K > 0 such that:

||Cn(T )||C(0,T ;L2(Ω)) + ||Cn||W 1,0
2 (Q)

≤ K ∀n ∈ N. (3.54)

By virtue of the continuity of Cn with respect to the domain of expiries,

n∑
i=1

|uni (T )|2 ≤ K2 ∀ T ∈ (0, Tmax], ∀n ∈ N.

Part 3: Weak convergence of Cn

Due to the uniform boundedness of unj (T ) for all t, j and n, the sequence of functions

for any fixed j ∈ N forms an equicontinuous set in C[0, Tmax] and the Arzela-Ascoli

theorem can be applied to any such sequence. Through a diagonal selection procedure

of subsequences, we may construct a subsequence of indices {nk}∞k=1 through which the

corresponding sequence of functions converge strongly for each j ∈ N:

lim
k→∞

unkj = uj strongly in C[0, Tmax] ∀ j ∈ N. (3.56)

With the limit functions uj constructed for each j ∈ N, we define the function:

C(x, T ) =
∞∑
i=1

ui(T )vi(x), (x, T ) ∈ Q. (3.57)

If the sequence is ||Cn(T )||C(0,T ;L2(Ω)) bounded for all n ∈ N then there must exist

some sub-sequence {Cnk(., T )} that converges weakly in L2(Ω) to C(., T ), uniformly with

respect to T ∈ [0, Tmax]. The norm for C(0, Tmax;L2(Ω)) is weakly lower sequential

semicontinuous and we can conclude that ||C(T )||L2(Ω) ≤ K for almost all T . Therefore

C ∈ L∞(0, Tmax;L2(Ω)). Additionally Cnk(0) converges strongly in L2(Ω) to C0, as

k →∞

Part 4: C is a weak solution in W 1,0
2 (Q)

Due to the result of (3.54), we infer that {Cnk}∞k=1 converges weakly in W 1,0
2 (Q) to C. We

seek to construct a weak formulation for the PIDE in the weakly convergent subsequence

of Cnk with a test function w(x, T ) given by

w(x, T ) =
∞∑
j=1

αj(T )zj(x), (3.58)

where αj ∈ C1[0, Tmax] for j ∈ N. It then follows that a weak formulation of our PIDE

in Cnk with w is given by:

d

dt
(Cnk(T ), w(T ))L2(Ω) + a[T ;Cnk(T ), w(T )] = 0. (3.59)

If we integrate this weak formulation over our domain of expiries:
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−
∫ Tmax

0
(Cnk(T ),

d

dt
w(T ))dT +

∫ Tmax

0
a[T ;Cnk(T ), w(T )]dT = 0. (3.60)

If Cnk → C weakly in W 1,0
2 (Q) and Cnk(0)→ C0 strongly in L2(Ω), then as k →∞:

−
∫ Tmax

0
(C(T ),

d

dt
w(T ))dT +

∫ Tmax

0
a[T ;C(T ), w(T )]dT = 0. (3.61)

Therefore, we have that C ∈ W 1,0
2 (Q) ∩ L∞(0, Tmax;L2(Ω)) satisfies the weak formu-

lation and that it is a weak solution.

Part 5: C is a weak solution in W (0, Tmax)

Consider solution C ∈ W 1,0
2 (Q). We may take a weak formulation with w(x, T ) =

φ(T )z(x), where φ ∈ C∞0 (0, Tmax) such that φ(0) = φ(Tmax) = 0 and z ∈ H1
0 (Ω). The

weak formulation of the PIDE solved by C(x, T ), with test function w, is given by:

∫ Tmax

0
(CT (T )φ(T ), z)L2(Ω)dT =

∫ Tmax

0
(Cxx(T ), vz)L2(Ω)φ(T )dT

+

∫ Tmax

0
λ(T )φ(T )(F (C), z)L2(Ω)dT −

∫ Tmax

0
(r − q − λm)(Cx, z)L2(Ω)φ(T )dT

−
∫ Tmax

0
(vCx, z)L2(Ω)φ(T )dT −

∫ Tmax

0
((1 +m)λ+ q)(C, z)L2(Ω)φ(T )dT. (3.62)

Integrating the term (Cxx(T ), vz)L2(Ω) by parts gives us:

(Cxx(T ), vz)L2(Ω) = −(Cx(T ), vxz)L2(Ω) − (Cx(T ), vzx)L2(Ω). (3.63)

Substituting this into our weak formulation, we get:

∫ Tmax

0
(CT (T )φ(T ), z)L2(Ω)dT = −

∫ Tmax

0
(Cx(T ), vxz)L2(Ω)dT

−
∫ Tmax

0
(Cx(T ), vzx)L2(Ω)dT +

∫ Tmax

0
λ(T )φ(T )(F (C), z)L2(Ω)dT

−
∫ Tmax

0
(r − q − λm)(Cx, z)L2(Ω)φ(T )dT −

∫ Tmax

0
(vCx, z)L2(Ω)φ(T )dT

−
∫ Tmax

0
((1 +m)λ+ q)(C, z)L2(Ω)φ(T )dT. (3.64)

If we integrate the term
∫ Tmax

0 (CT (T )φ(T ), z)L2(Ω)dT by parts with respect to T , the

boundary terms dissapear due to the compact support of φ(T ):∫ Tmax

0
(CT (T )φ(T ), z)L2(Ω)dT = −

∫ Tmax

0
(C(T )φ′(T ), z)L2(Ω)dT. (3.65)

Substituting this into our weak formulation:
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−
∫ Tmax

0
(C(T )φ′(T ), z)L2(Ω)dT = −

∫ Tmax

0
(Cx(T )vx, z)L2(Ω)φ(T )dT

−
∫ Tmax

0
(Cx(T )v, zx)L2(Ω)φ(T )dT +

∫ Tmax

0
λ(T )φ(T )(F (C), z)L2(Ω)dT

−
∫ Tmax

0
(r − q − λm)(Cx, z)L2(Ω)φ(T )dT −

∫ Tmax

0
(vCx, z)L2(Ω)φ(T )dT

−
∫ Tmax

0
((1 +m)λ+ q)(C, z)L2(Ω)φ(T )dT. (3.66)

If we fix T ∈ (0, Tmax), then our solution must exist in L2(Ω) if C ∈ W 1,0
2 (Q).

Hence C(., T ) exists in L2(Ω) for every T ∈ (0, Tmax). Moreover Cx ∈ L2(Q) and

therefore Cx(., T ) ∈ L2(Ω) for any T ∈ (0, Tmax). Our boundary conditions also sat-

isfy C(xmin, T ) ∈ L2(0, Tmax] and C(xmax, T ) ∈ L2(0, Tmax].

For any fixed T , the expressions on the right hand side of (3.66) are separately iden-

tified as linear functionals Fi(T ) : H1
0 (Ω)→ R:

F1(T ) : z → (v(T )Cx(T ), zx)L2(Ω),

F2(T ) : z → (vx(T )Cx(T ), z)L2(Ω),

F3(T ) : z → (λ(T )F (C(T )), z)L2(Ω),

F4(T ) : z → ((r(T )− q(T )− λ(T )m(T ))Cx(T ), z)L2(Ω),

F5(T ) : z → (v(T )Cx(T ), z)L2(Ω),

F6(T ) : z → ((1 +m(T ))λ(T ) + q(T ))(C(T ), z)L2(Ω).

If we can show that these linear functionals Fi(T ) for 1 ≤ i ≤ 8 are bounded, then

they are continuous, linear functionals on H1
0 (Ω) for every T . We verify this feature for

each functional in order:

|F1(T )z| ≤
∫ xmax

xmin

v(T )Cx(T )zxdx ≤ ||v||L∞(Q)||C(T )||H1(Ω)||z||H1(Ω) ∀z ∈ H1(Ω).

(3.67)

The right hand side of the above inequality is finite for every T , therefore the linear

functional must be continuous for every T . We follow the same approach for the remaining

functionals.

|F2(T )z| =
∫ xmax

xmin

vx(T )Cx(T )zdx ≤ ||vx||L∞(Q)||C(T )||H1(Ω)||z||H1(Ω) ∀z ∈ H1(Ω).

(3.68)
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|F3(T )z| = |
∫ xmax

xmin

(λ(T )F (C(T )), z)L2(Ω)dx|

= |λ(T )

∫ xmax

xmin

z

∫ x−xmin

x−xmax
C(x− y, T )e2yη(ey, T )dydx|

≤ ||λ||L∞(0,Tmax)|
∫ xmax

xmin

z

∫ x−xmin

x−xmax
C(x− y, T )e2yη(ey, T )dydx|. (3.69)

The inner integral term itself is bounded for all x ∈ (xmin, xmax). This is due to the

fact that C(x, T ) is at least an L2(Ω) function. Therefore, C(x− y, T ) is an L2 integrable

function for y ∈ (x − xmin, x − xmax), where x ∈ (xmin, xmax). The fact that e2yη(ey, T )

is bounded for all y ∈ (xmin− xmax, xmax− xmin) and T ∈ (0, Tmax), means that it is also

L2 integrable. Therefore, applying Holder’s inequality to the inner integral term:

||λ||L∞(0,Tmax)|
∫ xmax

xmin

z

∫ x−xmin

x−xmax
C(x− y, T )e2yη(ey, T )dydx|

≤ ||λ||L∞(0,Tmax)|
∫ xmax

xmin

z||C(T )||L2(Ω)||e2yη(ey, T )||L2(Ωx)dx|

= ||λ||L∞(0,Tmax)(xmax − xmin)||C(T )||L2(Ω)|
∫ xmax

xmin

z||e2yη(ey, T )||L2(Ωx)dx|. (3.70)

Here we have taken Ωx to convey the domain (x−xmin, x−xmax) that is dependent on

x ∈ (xmin, xmax). For any choice of x ∈ (xmin, xmax), we have that ||e2yη(ey, T )||L2(Ωx) ≤
∞. Therefore ||e2yη(ey, T )||L2(Ωx) is an L∞(Ω) function. Therefore it must also be an

L2(Ω) function. We also have that z ∈ H1
0 (Ω) and is therefore also a member of L2(Ω).

Therefore we can apply Holder’s inequality such that:

||λ||L∞(0,Tmax)(xmax − xmin)||C(T )||L2(Ω)|
∫ xmax

xmin

z||e2yη(ey, T )||L2(Ωx)dx|

≤ ||λ||L∞(0,Tmax)(xmax − xmin)||C(T )||L2(Ω)||z||L2(Ω)||||e2yη(ey, T )||L2(Ωx)||L2(Ω) <∞

≤ ||λ||L∞(0,Tmax)(xmax − xmin)||C(T )||H1(Ω)||z||H1(Ω)||||e2yη(ey, T )||L2(Ωx)||L2(Ω). (3.71)

To show the boundedness of the remaining functionals is much simpler:

|F4(T )z| = |(r(T )− q(T )− λ(T )m(T ))(Cx(T ), z)L2(Ω)| ≤ cr,q,λ,m||C(T )||H1(Ω)||z||H1(Ω).

(3.72)

|F5(T )| = |(v(T )Cx(T ), z)L2(Ω)| ≤ ||v(T )||L∞(Q)||C(T )||H1(Ω)||z||H1(Ω). (3.73)

|F6(T )| = |((1 +m(T ))λ(T ) + q(T ))(C(T ), z)L2(Ω)| ≤ cm,λ,q||C(T )||H1(Ω)||z||H1(Ω). (3.74)
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We find that Fi(T ) ∈ H1
0 (Ω)∗ for i = 1, . . . , 6 and for every T . There is some constant

c > 0 such that:

6∑
i=1

||Fi(T )||H1(Ω)∗ ≤ c||C(T )||H1(Ω). (3.75)

Since the sum of expressions on the right hand side of our PIDE are therefore in

L2(0, Tmax), we may conclude that the term on the left hand side of our PIDE must also

belong to this space. If Fi ∈ L2(0, Tmax;H1
0 (Ω)∗) for 1 ≤ i ≤ 6, then we have that the

functional F =
∑6

i=1 Fi also belongs to L2(0, Tmax;H1
0 (Ω)∗. The variational formulation

of our PIDE for all z ∈ H1
0 (Ω) therefore satisfies:

−
∫ Tmax

0
(C(T )φ′(T ), z)L2(Ω)dT = (

∫ Tmax

0
F (T )φ(T )dT, z)H1(Ω)∗,H1(Ω). (3.76)

We observe that the weak derivative of C with respect to T satisfies C ′ = F in the

sense of vector-valued distributions:

−
∫ Tmax

0
C(T )φ′(T )dT =

∫ Tmax

0
F (T )φ(T )dT φ ∈ C∞0 (0, Tmax). (3.77)

hence C ′ ∈ L2(0, Tmax;H1
0 (Ω)∗). Therefore, we have C ′ ∈ L2(0, Tmax;H1(Ω)∗) In

conclusion, C ∈ W 1,0
2 (Ω), such that CT ∈ L2(0, Tmax;H1(Ω)∗). We shall refer to this

space as W (0, Tmax).

3.4 Existence of optimal solutions

Our objective can be summed up simply as trying to minimize the regularized cost func-

tional J(C, v, λ) such that our multi-linear operator satisfies e(C, v, λ) = 0, where v ∈ Vad
and λ ∈ λad. Here, we consider the existence of such an optimal solution. Our approach

follows [73], which serves as a reference text for the modern theory of regularized inverse

problems. A similar application of this theory to the case of implying local volatility for

Dupire’s forward equation can be found in [64, 21]. The extension of this application to the

case of Andersen and Andreasen’s forward jump-diffusion equation involves proving that

for our choice of admissible set of jump parameters, we are still able to pass to the limit in

the weak formulation of our state equation. While this approach does not introduce any

novel ideas, it has not yet been explicitly outlined for this particular inverse problem in the

literature. It is of interest nonetheless, as the admissible sets of our controls determine the

construction of the cost functional and thus, have a significant impact on our numerical

results.

Theorem 3 A local optimal solution, (C∗, v∗, λ∗) ∈ (W (0, Tmax)× Vad × λad exists such

that our cost functional is minimized.

Proof 3 As previously shown, there at least exists a non-empty set of triplets of state

and controls which satsify our state constraints and control constraints:
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A = {(C, v, λ) ∈ (W (0, Tmax)× Vad × λad) : e(C, v, λ) = 0}. (3.78)

We have ι = inf{J(C, v, λ) : (C, v, λ) ∈ A} ≥ 0, due to the positivity of J(C, v, λ). Assume

that a minimizing sequence (Cn, vn, λn)n∈N ∈ A exists such that:

lim
n→∞

J(Cn, vn, λn) = ι. (3.79)

Given that the sequence is bounded, in terms of the composite function space

(W (0, Tmax)×H2,1(Q)×H1(0, Tmax)), then we infer the existence of a weakly converging

subsequence (Cnk , vnk , λnk), where k ∈ N. As k →∞, we have:

Cnk ⇀ C∗ in W (0, T ), (3.80)

vnk ⇀ v∗ in H2,1(Q), (3.81)

λnk ⇀ λ∗ in H1(0, Tmax). (3.82)

Now, if vnk ∈ Vad for all k ∈ N, then we have:

vnk ∈ L
∞(0, Tmax;H2(Ω)) ∩H1(0, Tmax;L2(Ω)) (3.83)

which is compactly embedded in C(0, Tmax;H1(Ω)) according to Aubin’s Lemma, following

[56]. Thanks to the compact embedding, if this identity mapping is applied, then we can

achieve strong convergence, such that for k →∞ :

vnk → v∗ in C(0, Tmax;H1(Ω)). (3.84)

Similarly for λnk , we have that the space H1(0, Tmax) is compactly embedded in

L2(0, Tmax) such that:

λnk → λ∗ in L2(0, Tmax). (3.85)

By applying identity operators to the controls mapping from their originally chosen

spaces to the spaces in which they can be compactly embedded, we are now able to pass

to the limit in the weak formulation of the PIDE:

∫ Tmax

0

∫
Ω

(λnk(1 +m) + q)Cnkφ+ (r − q − λnkm+ vnk)Cnkxφ

+vnkxφCnkx + vnkφxCnkx − λnk
∫ x−xmin

x−xmax
Cnk(x− y, T )e2yη(ey, T )dydxdT

→
∫ Tmax

0

∫
Ω

(λ∗(1 +m) + q)C∗φ+ (r − q − λ∗m+ v∗)C∗xφ

+v∗xφC
∗
x + v∗φxC

∗
x − λ∗

∫ x−xmin

x−xmax
C∗(x− y, T )e2yη(ey, T )dydxdT,
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as k → ∞ for every test function φ ∈ L2(0, Tmax;H1
0 (Ω)). Therefore, for this weakly

convergent subsequence of controls and solution, our PIDE strongly converges as a member

of the dual space of our test function. That is to say that limk→∞ e1(Cnk , vnk , λnk) =

e1(C∗, v∗, λ∗) in the space (L2(0, Tmax;H1
0 (Ω)))′. Since our initial condition and boundary

conditions are independent of our state and controls, we also have e2(C∗, v∗, λ∗) = 0

and e3(C∗, v∗, λ∗) = 0. As our cost functional is weakly lower semicontinuous, we have

J(C∗, v∗λ∗) ≤ limk→∞ J(Cnk , vnk , λnk)) = ι. As the bounded spaces for our controls

Vad, λad are convex and closed in H2,1(Q) and H1(0, Tmax), respectively, and therefore

weakly closed, then the weak limits v∗, λ∗ exist in these spaces, respectively.

3.5 First-order necessary optimality conditions

First-order necesary conditions

The first order necessary conditions for an optimal solution (C∗, v∗, λ∗) along with as-

sociated Lagrangian multiplier functions (p∗, µ∗, υ∗) can be summed up in terms of the

Lagrangian:

LC(C∗, v∗, λ∗, p∗, µ∗, υ∗)δC = 0 ∀δC ∈W (0, T ), (3.86)

Lv(C∗, v∗, λ∗, p∗, µ∗, υ∗)δv ≥ 0 ∀δv ∈ Vad, (3.87)

Lλ(C∗, v∗, λ∗, p∗, µ∗, υ∗)δv ≥ 0 ∀δλ ∈ λad, (3.88)

Lp(C∗, v∗, λ∗, p∗, µ∗, υ∗)δp = 0 ∀δp ∈ L2(0, T ;L2(Ω)), (3.89)

Lυ(C∗, v∗, λ∗, p∗, µ∗, υ∗)δυ = 0 ∀δυ ∈ L2(Ω), (3.90)

Lµ(C∗, v∗, λ∗, p∗, µ∗, υ∗)δµ = 0 ∀δµ ∈ L2(0, T ). (3.91)

Equations (3.86), (3.89), (3.90) and (3.91) simply restate the adherence to the state

constraints. Equations (3.87) and (3.88) will be satisfied if the Lagrangian has reached a

local minimum. More specifically:

Lv(C∗, v∗, λ∗, p∗, µ∗, υ∗)δv > 0 if v(x, T ) = va or v(x, T ) = vb, (3.92)

Lv(C∗, v∗, λ∗, p∗, µ∗, υ∗)δv = 0 if v(x, T ) 6= va and v(x, T ) 6= vb, (3.93)

Lλ(C∗, v∗, λ∗, p∗, µ∗, υ∗)δλ > 0 if λ(T ) = λa or λ(x, T ) = λb, (3.94)

Lλ(C∗, v∗, λ∗, p∗, µ∗, υ∗)δλ = 0 if λ(T ) 6= λa or λ(x, T ) 6= λb. (3.95)

As we have chosen to adopt a gradient descent method for our optimization algorithm,

we must calculate the gradient of the Lagrangian with respect to each control in order

to determine how to update our controls. This will require us to explicitly compute

the Lagrangian multiplier functions at each iteration of our gradient descent numerical

method. For brevity, we adopt the notation ṽ = v− vinit, where vinit is our prior estimate

for v.
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Lv(C, v, λ, p, µ, υ)δv =

∫ Tmax

0

∫
Ω
α(ṽT δvT + ṽδv + ṽxδvx + ṽxxδvxx) + δvCxp

+(δvp)xCxdxdT =

∫ Tmax

0

∫
Ω
α(ṽT δvT + ṽδv + ṽxδvx + ṽxxδvxx)

+δv(Cxp− Cxxp)dxdT. (3.96)

The function (Cxp−Cxxp) can be identified with an element of the dual space (H2,1(Q))′.

We must map this function to a member of the space H2,1(Q) via the Riesz isomorphism

defined by R(F ) : (H2,1(Q))′ → (H2,1(Q))), solving for u:

uTT + F = uxx − uxxxx − u. (3.97)

but practically speaking, this is a computationally expensive problem to solve on top of

our coupled system. Therefore, in the numerical algorithm we simplify this by employing

the Riesz operator for a weaker space R(F ) : (H1(Ω))′ → H1(Ω), solving for u:

−uxx + u = F, (3.98)

ux(xmin, .) = ux(xmax, .) = 0. (3.99)

The solution to this stationary heat equation at every discrete point in time is taken

as uv and our directional derivative is taken to be:

Lv(C, v, λ, p, µ, υ)δv = 〈ṽ + uv, δv〉H2,1(Q). (3.100)

For the case of λ, we adopt the notation λ̃ = λ−λinit, where λinit is our prior estimate

for λ:

Lλ(C, σ, λ, p, µ, υ)δλ =

∫ Tmax

0
β(λ̃T δλT + λ̃δλ) + δλ(1 +m)

∫
Ω
Cpdx− δλm

∫
Ω
Cxpdx

−δλ
∫

Ω

∫ x−xmin

x−xmax
C(T, x− y)e2yη(ey, T )dypdxdT.

Similarly, we apply the Riesz isomorphism R(F ) : (H1(0, Tmax))
′ → H1(0, Tmax) to

the term F = (1 + m)Cp −mCxp − p
∫ x−xmin
x−xmax C(T, x − y)e2yη(ey, T )dy. The solution uλ

then forms part of the directional derivative, given by:

Lλ(C, v, λ, p, µ, υ)δλ = 〈λ̃+ uλ, δλ〉H1(0,Tmax). (3.101)

Beyond the regularizing effect of our cost functional, we observe that the gradients of

our controls are highly dependent on the Lagrangian multiplier function p. It is possible

to solve for this function at an intermediate stage between solving the state equation and

updating our controls. The process for computing p is solving an adjoint PIDE, which

forms a coupled system along with the state PIDE in this case. We derive this adjoint

equation in the next subsection.



49

Adjoint equation

Now we consider how to calculate the Lagrangian multipliers associated with any given

state and controls. We must solve an adjoint equation, which may be derived from our

Lagrangian as detailed in this section. In practice we use these Lagrangian multipliers to

determine the gradient vector used for updating our controls.

If we integrate −
∫

Ω
1
2v(T, x)pCxxdx by parts, we obtain the following expression for

the Lagrangian:

L(ω, χ) =
1

2
||C(Tmax, .)− Cobs||2L2(Ω) +

α

2
||v − vinit||2H2,1(Q) +

β

2
||λ− λinit||2H1(Λ)

+

∫
Ω

(C(0, .)− C0)υdx+

∫ Tmax

0
(C(., xmin)− CD)µdT +

∫ Tmax

0

(
〈CT , p〉V ∗,V

+(λ(1 +m) + q)

∫
Ω
Cpdx+

∫
Ω

(r − q − λm+ v)Cxpdx+ (pv)xCxdx

−λ
∫

Ω

∫ x−xmin

x−xmax
C(x− y, .)e2yη(ey, T )dypdx

)
dT.

We have previously shown that the contents of the Lagrangian are continuously dif-

ferentiable. Suppose that we have an optimal solution ω∗ ∈ X which solves the pa-

rameter identification problem. Then it is necessary for a unique Lagrange multiplier

χ∗ = (p∗, υ∗, µ∗) ∈ Y to satisfy the adjoint equation:

LC(ω∗, χ∗)δC = 0 ∀ δC ∈W (0, Tmax).

The above is equivalent to:

∫
Ω

(C∗(T )− Cobs)δC(T )dx+

∫ Tmax

0
δC(., xmin)µ∗dT +

∫
Ω
δC(0, .)υ∗dx

+

∫ Tmax

0
〈δCT , p∗〉V ∗,V dT +

∫ Tmax

0

∫
Ω

((1 +m)λ∗ + q)δCp∗dxdT

+

∫ Tmax

0

∫
Ω

(r − q − λ∗m+ v∗)δCxp
∗dxdT +

∫ Tmax

0

∫
Ω

(v∗p∗)xδCxdxdT

−
∫ Tmax

0
λ

∫
Ω

∫ x−xmin

x−xmax
δC(x− y, .)e2yη(ey, T )dyp∗dxdT = 0. (3.102)

This will also hold for all δC(x, T ) = κ(x)θ(T ) where κ(x) ∈ H1
0 (Ω) and θ(T ) ∈ C1

0 (Λ).

This reduces the above formulation to:

∫ Tmax

0

∫
Ω
κθ′p∗dxdT +

∫ Tmax

0

∫
Ω

((1 +m)λ∗ + q)κθp∗dxdT

+

∫ Tmax

0

∫
Ω

(r − q − λ∗m+ v∗)κ′θp∗dxdT +

∫ Tmax

0

∫
Ω

(v∗p∗)xκ
′θdxdT

−
∫ Tmax

0
λ

∫
Ω

∫ x−xmin

x−xmax
κ(x− y)θe2yη(ey, T )dyp∗dxdT = 0. (3.103)
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Addressing the components of the above formulation one by one:

∫ Tmax

0

∫
Ω
κθ′p∗dxdT = −

∫ Tmax

0
〈κθ, p∗T 〉H−1,H1

0
dT = −〈

∫ Tmax

0
p∗T θdT, κ〉H−1,H1

0
,

∫ Tmax

0

∫
Ω

((1 +m)λ∗ + q)κθp∗dxdT = 〈
∫ Tmax

0
((1 +m)λ∗ + q)p∗θdT, κ〉H−1,H1

0
,∫ Tmax

0

∫
Ω

(r − q − λ∗m)κ′θp∗dxdT = −〈
∫ Tmax

0
(r − q − λ∗m)p∗xθ, κ〉H−1,H1

0
,∫ Tmax

0

∫
Ω
v∗p∗κ′θdxdT = −〈

∫ Tmax

0
(v∗p∗)xθ, κ〉H−1,H1

0
,

∫ Tmax

0

∫
Ω

(v∗p∗)xκ
′θdxdT = −〈

∫ Tmax

0
(v∗p∗)xxθdT, κ〉H−1,H1

0
,

∫ Tmax

0
λ∗
∫

Ω

∫ x−xmin

x−xmax
κ(x− y)θe2yη(T, ey)dyp∗dxdT

=

∫ Tmax

0
λ∗θ

∫
Ω

∫ x−xmin

x−xmax
κ(x− y)e2yη(T, ey)dyp∗dxdT.

We must use a change of variables z = x− y:∫ Tmax

0
λ∗θ(T )

∫
Ω

∫ x−xmin

x−xmax
κ(x− y)e2yη(T, ey)dyp∗dxdT

=

∫ Tmax

0
λ∗θ(T )

∫
Ω

∫ xmax

xmin

κ(z)e2x−2zη(T, ex−z)dzp∗dxdT.

We note that the end-points of integration of the inner-most integral are the boundary

of Ω. Applying Fubini:

∫ Tmax

0
λ∗θ

∫
Ω

∫
Ω
κ(z)e2x−2zη(T, ex−z)dzp∗dxdT

=

∫ Tmax

0
λ∗θ(T )

∫
Ω
κ(z)

∫
Ω
p∗e2x−2zη(T, ex−z)dxdzdT

= 〈
∫ Tmax

0
λ∗θ

∫
Ω
e2z−2xη(T, ez−x)p∗(z)dzdT, κ(x)〉H−1,H1

0
. (3.104)

Collecting these terms and substituting them into (3.103):

〈
∫ Tmax

0

(
− p∗T − (v∗p∗)xx + ((1 +m)λ∗ + q)p∗ − (r − q − λ∗m)p∗x − (v∗p∗)x

− λ∗
∫

Ω
e2z−2xη(T, ez−x)p∗(z)dz

)
θ(T )dT, κ(x)〉H−1,H1

0
= 0. (3.105)

Expanding the term (v∗p∗)xx yields:

− p∗T − (v∗xxp
∗ + 2v∗xp

∗
x + v∗p∗xx) + ((1 +m)λ∗ + q)p∗ − (r − q − λ∗m)p∗x

− (v∗p∗)x − λ∗
∫

Ω
e2z−2xη(T, ez−x)p∗(z)dz = 0. (3.106)
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Collecting terms by the partial derivatives of p∗ simplifies the previous equation:

− p∗T − v∗p∗xx + ((1 +m)λ∗ + q − v∗xx − v∗x)p∗ − (r − q − λ∗m+ 2v∗x + v∗)p∗x

− λ∗
∫

Ω
e2z−2xη(T, ez−x)p∗(z)dz = 0. (3.107)

If we substitute this relationship into (3.102) where δC ∈ W (0, T ) is arbitrarily chosen,

then we must introduce the boundary terms from the integration by parts:

〈(C∗(Tmax)−Cobs+p∗(Tmax)), δC(Tmax)〉L2(Ω) +〈µ∗−(v∗p∗)x(., xmin), δC(., xmin)〉L2(Λ)

+ 〈(υ∗ − p∗(0)), δC(0, .)〉L2(Ω) = 0. (3.108)

Therefore we determine the initial and boundary conditions along with identities:

p∗(Tmax) = −(C∗(Tmax)− Cobs), (3.109)

p∗(., xmin) = p∗(., xmax) = 0, (3.110)

µ∗ =
1

2
(σ2p∗)x(., xmin), (3.111)

υ∗ = p∗(0). (3.112)

For the case of calibrating to market data for n additional expiries, 0 < Ti < Tmax for

i = 1, . . . , n, the right hand side of (3.107) at T = {T1, . . . , Tn} is non-zero and is set to

−(C∗(Ti)− Cobs(Ti)).

3.6 Optimization method, numerical experiments, results

and extension of scheme

Gradient descent method

Here, we outline the optimization methodology. Clear definitions have been provided

for our state equation and adjoint equation. Now we must outline the optimal control

methodology for updating and calibrating our controls to the given option price data.

The process of updating and calibrating our controls is performed by a gradient descent

method. This requires us to calculate the gradient of our Lagrangian with respect to

a given control. This gradient vector describes the direction of steepest descent for the

cost functional which we are attempting to minimize. Therefore, the direction in which

we update our control is fully determined by this gradient vector. It is then necessary to

update the control by some given magnitude in this direction. This magnitude is described

as the step-size of the gradient descent. The step-sizes for each control are given by ∆v > 0

and ∆λ > 0, respectively such that:

vn+1 = vn −∆v∇vL, (3.113)

λn+1 = λn −∆λ∇λL,
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where ∇vL and ∇λL specify the vectors of directional derivatives of the Lagrangian with

respect to our controls, respectively. The equations for updating either control are given

in (3.113). We have taken vn+1 and λn+1 to indicate the updated controls, while the

previous estimate for the controls are given by vn and λn, respectively.

Two choices that must be decided upon for this chosen methodology is the order in

which we update these controls and the choice for the step-sizes. The choice of step-size

at any given stage of the optimal control problem is quite non-trivial. If it is too small

then we may not converge to the local minimum in sufficient time. If it is too large then

we risk overstepping the local minimum. We have therefore chosen to treat this parameter

dynamically for both controls, prescribing a heuristic step-size optimization method based

on maximizing the reduction of the cost functional. For the order of control updates, we

opt to update the controls in an alternating pattern.

Numerical implementation

Before discussing numerical experiments and results, a complete overview of the discretized

optimal control methodology is necessary. We refer back to many equations presented

earlier throughout this chapter here, although in this overview we are considering the

discrete counterpart of many of these equations. We propose the following algorithm for

a fixed pair of regularization parameters α > 0, β > 0:

1. Assign parameters, initialize matrices and vectors, and collect observed data Cobs.

2. Set a priori guess for controls, v = v0 and λ = λ0. Set n = 0 and number of iterations

to nmax

3. Solve state PIDE (3.6) for option price Cn(x, T ) using current control estimates vn,

λn using Euler’s implicit finite difference method, estimating integral term using a

trapezium method explicitly at previous time-step for simplicity.

4. Calculate cost functional J(Cn, vn, λn) from (3.18) and residual

m∑
i=1

||C(Ti)n − Cobs(Ti)||l2 .

(a) If n = nmax STOP.

5. Solve adjoint PIDE (3.107) for pn(x, T ) with boundary conditions and final con-

ditions specified in (3.110) and (3.109), respectively, using Euler’s implicit finite

difference method, estimating integral term using a trapezium method explicitly at

previous time-step for simplicity.

6. Update control. Choose control according to an alternating pattern:

(a) Approximate the gradient of the Lagrangian with respect to the chosen control.
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(b) Solve the state PIDE (3.6) using Euler’s implicit finite difference method using

updated controls for three different step sizes and compute cost functional for

each set of solution and controls: Jn,1,Jn,2, Jn,3

(c) Update the control according to whichever step-size has yielded the greatest

reduction in the cost functional ∆Jn = |Jn,i − Jn|. Increment n.

7. Go to step 4 (a)

The treatment of integral terms in both the state and the adjoint equations cases as

non-homogeneous right hand side terms, explicitly calculated at the previous time step,

makes the inversion of the sparse left hand side coefficient matrix far less computationally

expensive. This approach also makes the numerical implementation of such a scheme more

straightforward for the practitioner.
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Numerical experiments

In this section we supply results from separate numerical experiments where we have

calibrated to model generated price data and calibrated to empirical market data. The

model generated price data is produced by simply prescribing plausible values for the

parameters vpre and λpre, and generating option price data at every point over the time-

space cylinder of our discretized domain by taking the solution of our state PIDE. We

initialize the parameters to v0 6= vpre and λ0 6= λpre, and attempt to calibrate these

parameters to their respectively prescribed values via the proposed projected gradient

method. This method of calibrating the controls to pre-determined known values allows us

to test the quality of our methodology, thus removing any obfuscation caused by ”noisey”

market data. Once we are satisfied with the performance of our methodology for the

artificial price data, we may then consider empirical market data and gauge the practical

performance of our approach independently. In both cases we have tested a range of values

for the regularization parameters to determine their effect on the calibration. The results

in this section show that our method produces satisfactory reductions in the residual term

while exhibiting stable behaviour for a wide range of regularization parameters in both

sets of experiments.

Artficial data set

We set the current value of the underlying asset to S = 300 and uniformly discretize the

domain of transformed strikes and expiries; xi ∈ [log(10), log(500)] and Tj ∈ [0, 1], where

i = 1, . . . , 50 and j = 1, . . . , 25. Computing numerical approximations for the solutions

to the state equation, adjoint equation and the Riesz isomorphisms, as well as the imple-

mentation of a step-size decision making process involves solving many PDEs/PIDEs per

iteration. This is a computationally expensive task for non-specific hardware. Therefore,

for practical purposes, we consider using a relatively sparse mesh of uniformly discretized

points for our numerical experiments. Here we have chosen a 50 × 25 grid in x and T ,

respectively.

The distribution η which describes the size of the random jump scaled as a proportion

of the underlying asset value is taken to be log-normally distributed with mean µ = −0.85

and standard deviation σ = 0.45. This corresponds to a high likelihood of a significant loss

in value for the underlying asset in the occurrence of the Poisson event. The range of values

for step-sizes ∆v and ∆λ have been experimentally determined to ensure stable behaviour

while guaranteeing a significant reduction in the cost functional. Numerical experiments

have revealed that excessively large step-size values result in unstable behaviour, while

excessively small step-size values result in plateauing reductions in the cost functional at

a premature stage of the method.

For this numerical experiment, we generate observed data by approximating numerical

solutions to the state PIDE for a prescribed pair of parameters. The prescribed values for

surface v(x, T ) and the curve λ(T ) are given in figure 3.1. The function chosen for v(x, T )
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Parameter Value

Asset value S = 300

Interest rate r = 0.03

Dividend rate q = 0.01

Lognormal mean µ = −0.85

Lognormal standard deviation σ = 0.45

v update step-size ∆v ∈ {1.0e−3, 5e−4, 2.5e−4}
λ update step-size ∆λ ∈ {2e−4, 1e−4, 5e−3}
x-range ([xmin − xmax]) x ∈ [log(10), log(500)]

Final expiry Tmax = 1

Table 3.1: Input parameters for artificial data.
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Figure 3.1: Our prescribed lambda surface on the left is generated by λ(T ) = 0.05 −
(24T+1)0.5

300 , while the prescribed value for v is generated by v(x, T ) = 0.02− 0.7e1.6x

106
+ t1.5

375 .

Here we plot transformed V (exp(x), T ) = v(x, T ) plotted against K = exp(x) and T on

the right.
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reflects a typical volatility skew towards in the money strikes. In the case of a European

Call, this corresponds to a skew towards lower strike values, as is commonly observed in

markets. The curve for λ(T ) is skewed towards shorter expiries in this case, which yields

higher prices for shorter term options. We include results for this typical case, although

additional numerical experiments where λ(T ) has been skewed towards longer terms have

yielded equally satisfactory fitting in both parameters. The initial guesses for our controls,

vinit and λinit, are given in figure 3.2. We have ensured that these values are sufficiently

dissimilar from those used to generate the observed price data.
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Figure 3.2: Initial guesses for our controls are λ(T ) = 0.02, shown on the left, and v(x, T ) =

0.01. Again, we plot transformed V (exp(x), T ) = v(x, T ) plotted against K = exp(x) and

T on the right.

We generate price data by numerically solving the state PIDE over the entire domain

of transformed strikes xi, where i = 1, . . . , 50 for expiries T13 = 0.5 and T25 = 1. The

contrast between the relative densities of the price data with respect to expiries and

strikes is typical of market data, where prices are available for only a few expiries but for

many strikes. While the calibration is driven by the minimization of our regularized cost

functional, we assess the performance of our method by observing the reduction of the

following residual:

∆C = ||C(xi, 0.5)− Cobs(xi, 0.5)||l2(Ω) + ||C(xi, 1)− Cobs(xi, 1)||l2(Ω) (3.114)

For our experiments we fix the regularization parameters α, β > 0 and run the gradient

descent numerical method for a fixed number of iterations. We have chosen a fixed number

of iterations for our method in these experiments so that we may effectively measure the

effect of our choices of regularization parameters on the associated calibrated parameters.

In practice, one would likely enforce a stopping criteria based on the norms of successive

differences in the parameters, the ratio of consecutive reductions of the cost functional or

residual, or some absolute threshold of cost functional or residual.

In tables 3.2 and 3.3, we have recorded the evolution of the residual, ∆C , and the cost

functional, J(C, v, λ), respectively, after successive iterations for particular combinations

of α and β. We see that the rate of reduction of both of these metrics is highest at the start
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of the scheme and plateaus as the scheme continues. In every case we observe that the

sequences of residuals and cost functional evaluations are both monotonically decreasing as

the scheme iterates. The slopes of reductions, in both cases, are approximately replicated

across the range of choices for α and β. The results for the residual and cost functional

after 1000 iterations are given in figure 3.3 across the whole domain of regularization

parameters (α, β) ∈ {10, 1, 0.1, 0.01, 0.001} × {10, 1, 0.1, 0.01, 0.001}. The calibration was

stable for every combination of α and β and we reduced the residual to less than 4% by

the end of each run.

Iterations 0 25 50 100 200 300 500 1000

α = 10, β = 10 5.96 3.40 2.40 1.26 0.46 0.31 0.26 0.20

α = 0.1, β = 0.1 5.96 3.42 2.40 1.22 0.38 0.22 0.17 0.13

α = 0.001, β = 0.001 5.96 3.42 2.40 1.22 0.40 0.24 0.19 0.14

α = 10, β = 0.001 5.96 3.40 2.40 1.26 0.45 0.30 0.26 0.20

α = 0.001, β = 10 5.96 3.42 2.41 1.23 0.40 0.25 0.19 0.14

Table 3.2: This table tracks the evolution of the residual, ∆C , for successive iterations of

our methodology for various combinations of regularization parameters, α and β.

Iterations 0 25 50 100 200 300 500 1000

α = 10, β = 10 9.558 3.15 1.577 0.463 0.086 0.0507 0.039 0.029

α = 0.1, β = 0.1 9.558 3.423 2.402 1.223 0.385 0.221 0.169 0.135

α = 0.001, β = 0.001 9.558 3.424 2.404 1.224 0.397 0.243 0.185 0.138

α = 10, β = 0.001 9.558 3.403 2.396 1.258 0.451 0.305 0.256 0.199

α = 0.001, β = 10 9.558 3.424 2.405 1.228 0.402 0.246 0.186 0.138

Table 3.3: This table tracks the evolution of the cost functional, J(C, v, λ), for successive

iterations of our methodology for various combinations of regularization parameters, α

and β. The starting value is the same due to the fact that we have set v(x, T ) and λ to

constant values at the start of the scheme.

Predictably, the cost functional directly depends on α and β, as indicated in figure

3.3 on the right, while on the left the reduction in the residual depends greatly on our

choice of α, while it is far less dependent on our choice of β. This should be attributed

to higher price sensitivity with respect to small changes in v(x, T ) = 1
2σ

2(x, T ) than the

jump frequency λ(T ). We observed that the residual grows for α > 1 and that variation

in the residual for α ≤ 1 was negligible.

Extending the complete domain of strikes past the region of interest to include a ”buffer

zone” reduces the effect of the calibration inertia at the boundaries on the calibration closer

to the money at S = 300. On the other hand, the increase in the residual for large α can

be explained by the downward movement of v for lower strikes sufficiently far from the

lower boundary, where there is a higher density of points in our transformed domain. This
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Figure 3.3: The figure on the left plots the contours of the residual against log10 α and

log10 β, while the figure on the right plots the contours of the cost functional against log10 α

and log10 β. The plots account for 25 results in both cases where α ∈ {10, 1, 0.1, 0.01, 0.001}
and β ∈ {10, 1, 0.1, 0.01, 0.001}.

is shown in the top two graphs in figure 3.4. The dip forms part of an oscillating shape

which is a manifestation of a high regularization penalty. The results for smaller values

for α do not exhibit this behaviour, although they fail to capture the smoothness of the

prescribed parameter at the money. This can also be said for the case of λ(T ), shown in

figure 3.5. For calibrating to market prices, the parameters used in practice are unlikely

to resemble the smoothness of our idealized prescribed parameters here, thus we extend

our results to the case of empirical prices in the next set of results.
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Figure 3.4: Here, we have plotted results for V (exp(x), T ) = v(x, T ) against K = exp(x),

for T = 0.5 on the left and T = 1 on the right and for α = 10, β = 10 on top, α = 0.1,

β = 0.1 in the middle and α = 0.001, β = 0.001 below. The graphs plot the values used

to generate the prices as the solid curve, our initial guess as the flat dashed line and the

resulting calibrated curve after 1000 iterations as the dotted and dashed curve.
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Figure 3.5: Here, we have plotted results for λ(T ) where α = 10, β = 10 in the top graph,

α = 0.1, β = 0.1 in the middle graph and α = 0.001, β = 0.001 in the graph at the

bottom. The graphs plot the values used to generate the prices as the solid curve, our

initial guess as the flat dashed line and the resulting calibrated curve after 1000 iterations

as the dotted and dashed curve.
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Historical market data

The market data is taken from FTSE index call options on 11/02/2000 from [14]. The

prices are shown in table 3.5. The publicly known parameter values on this date for this

FTSE index value are the underlying asset value, S = 6219, the riskless interest rate,

r = 0.061451 and the dividend rate, q = 0. By calibrating exclusively to prices from a

single day over the available range of strikes and expiries, the results of the calibration

capture the dependence of the parameters on the strike price and the expiry according to

the markets at that given time. The obvious disadvantage of using prices from a single day

is that the market for option prices is incomplete over the domain of strikes and expiries

which we wish to calibrate our parameters to. Typically, prices are particularly sparse in

the domain of expiries. We could interpolate the price data to produce a more complete

set of prices to calibrate to but, in general, this does not produce stable solutions.

One might also consider calibrating to today’s prices for a single expiry over a range

of strikes, as well as past prices for this fixed point in the future in order to expand

the relative range of expiries for which prices are available. While this inclusion of past

prices gives us a more complete domain of price data, the dynamics of an equity index

such as the FTSE 100 appear to vary significantly during boom periods, compared to

periods of recession or prolonged periods of uncertainty. Traders are likely to re-evaluate

volatility and jump-likelihood on a regular basis. The regularity of this refactoring is

arbitrary. Calibrating parameters to a mixture of past and present prices is therefore likely

to produce erroneous results, with respect to the current market. For regular calibration,

the adoption of previously calibrated parameters as prior guesses at the beginning of the

next calibration is not necessarily an advantage, for the same reason.

Despite the sparseness of prices, we can enforce an arbitrary degree of regularity on

our controls through our choices for regularization parameters, α > 0 and β > 0, for the

local volatility and jump-likelihood parameters, respectively.

K Cobs(T = 0.09589)

5825 469.5

6175 223.5

6225 195.5

6275 169

6325 144.5

6575 56.5

7225 0.5

K Cobs(T = 0.19178)

5725 631

6175 314.5

6225 284.5

6275 256.5

6325 229.5

6725 72.5

7025 24

Table 3.4: The set of observed data over various strikes at two expiries

Another caveat of our parameter calibration is updating the parameter v(x, T ) near

the boundaries of Ω, where the boundary conditions of the underlying state equation are

independent of v(x, T ). For accurate calibration of v to the empirical market data, we

must consider choosing Ω such that it constructs a buffer zone around the strikes for which
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Parameter Value

Asset value S = 6219

Interest rate r = 0.061451

Dividend rate q = 0

Lognormal mean µ = −0.85

Lognormal standard deviation σ = 0.45

v update step-size ∆v ∈ {1e−5, 5e−6, 2.5e−6}
λ update step-size ∆λ ∈ {2e−6, 1e−6, 5e−7}
x-range ([xmin − xmax]) x ∈ [log(4050), log(8000)]

Final expiry Tmax = 0.19178

Table 3.5: Input parameters for empirical market data.

we have empirical market data. Here we choose a domain for Ω that extends beyond the

bounds of our available market data; x ∈ ln(4050), ln(8000). To interpolate the available

market data over our chosen domain of strikes, our method is as follows:

1. Use a cubic spline method to interpolate the observed price data over the spatial

domain of discrete points that are bounded by the available data;

x ∈ [ln(5725), ln(7225)] for T = 0.191781 and T = 0.0959.

2. Use a Newton-Raphson method for finding the implied Black-Scholes volatility,

σBS(x, T ) at every interpolated price over the domain of x ∈ [ln(5725), ln(7225)]

and T ∈ {0.191781, 0.0959}.

3. Set σBS(x, T ) = σBS(ln(5725), T ) for x ∈ [ln(4050), ln(5725)) and σBS(x, T ) =

σBS(ln(7225), T ) for x ∈ (ln(7225), ln(8000)] at T = 0.191781 and T = 0.0959.

4. Solve Black-Scholes for a European Call with the same parameters as our price

data at every discrete point over x ∈ [ln(4050), ln(5725)) ∪ (ln(7225), ln(8000)] for

T = 0.191781 and T = 0.0959. These prices along with the interpolated price data

form a complete set of observed data, Cobs, for the domain of discrete points over

x ∈ [ln(4050), ln(8000)] and T = 0.191781 and T = 0.0959.

Our extension of the domain of strikes to include these buffer regions serve to minimize

the truncation of our boundary conditions for the state PIDE but this requires us to address

their effect on the calibration of our parameters. To resolve this, we simply set the values

of parameter v(x, T ) at each iteration to the newly calibrated values of v(ln(5725), T )

and v(ln(7225), T ) for x ∈ (xmin, ln(5725)) and x ∈ (ln(7225), xmax)}, respectively, thus

imposing ∂v
∂x = 0 over the buffer regions. We measure the cost functional and residual ∆C

only over the domain of interest where empirical price data is available. The initial guess,

λinit, for the lambda curve is set to λ(T ) = 0.02. Along with the choices of µ = −0.85

and σ = 0.45, this corresponds to a market crash every 50 years, which is plausible for
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an initial guess. The range of step-sizes has been experimentally determined to balance

stable behaviour with significant reductions in the residual and cost functional.

In tables 3.6 and 3.7, we have recorded the evolution of the residual, ∆C , and the

cost functional, J(C, v, λ) after successive iterations for particular combinations of α

and β. The results for the residual and cost functional after 1000 iterations are given

in figure 3.6 for every combination of α and β where (α, β) ∈ {10, 1, 0.1, 0.01, 0.001} ×
{10, 1, 0.1, 0.01, 0.001}.

Iterations 0 25 50 100 200 300 500 1000

α = 10, β = 10 6.91 4.48 3.20 1.86 1.32 1.50 1.57 1.78

α = 0.1, β = 0.1 6.91 3.81 2.41 1.22 1.05 0.98 0.74 0.68

α = 0.001, β = 0.001 6.91 3.81 2.42 1.23 1.04 0.97 0.69 0.52

α = 10, β = 0.001 6.91 4.48 3.20 1.86 1.32 1.50 1.57 1.79

α = 0.001, β = 10 6.91 3.81 2.42 1.23 1.04 0.97 0.69 0.51

Table 3.6: This table tracks the evolution of the residual, ∆C , for successive iterations of

our methodology for various combinations of regularization parameters, α and β.

Iterations 0 25 50 100 200 300 500 1000

α = 10, β = 10 15.42 6.58 3.74 1.94 1.48 1.37 1.29 1.54

α = 0.1, β = 0.1 14.17 4.23 1.62 0.43 0.32 0.27 0.17 0.17

α = 0.001, β = 0.001 14.16 4.21 1.60 0.40 0.30 0.24 0.12 0.07

α = 10, β = 0.001 15.42 6.58 3.74 1.94 1.46 1.34 1.25 1.48

α = 0.001, β = 10 14.16 4.21 1.60 0.41 0.31 0.26 0.16 0.12

Table 3.7: This table tracks the evolution of the cost functional, J(C, v, λ), for successive

iterations of our methodology for various combinations of regularization parameters, α

and β.

The calibration yielded stable parameters for every combination of α and β, although,

as table 3.6 reveals, the residual reaches a lower bound between 100 and 300 iterations

for the cases where α = 10. For later iterations, further reductions in the cost functional

are achieved through trading off reductions in the residual for regularity of the calibrated

volatility parameter. This can only be traded off due to the high contribution to the cost

functional made by the penalization of non-smooth v(x, T ) by a high value for α. As table

3.7 indicates, some time after 500 iterations, the scheme hits a local minimum for the cost

functional and we observe a significant increase in this value by the end of 1000 iterations.

In practice, a stopping criteria should be applied to prevent this increase, although for the

sake of comparison we have chosen to run our scheme for a fixed number of iterations. For

all other cases where α ≤ 1, we observe that the sequences of residuals and cost functional

evaluations are both monotonically decreasing as the iterations of the scheme continue.

Again, we observe a far greater dependence of the reduction of the residual on the value of
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Figure 3.6: The figure on the left plots the contours of the residual against log10 α and

log10 β, while the figure on the right plots the contours of the cost functional against log10 α

and log10 β. The plots account for 25 results in both cases where α ∈ {10, 1, 0.1, 0.01, 0.001}
and β ∈ {10, 1, 0.1, 0.01, 0.001}.

α than on β. The difference in the total reduction of the residual with respect to changes

in α was far greater than for the idealized model-generated prices.

Again, the cost functional directly depends on α and β, as indicated in figure 3.6 on

the right. The range of the final residual after 1000 iterations, as shown in the colour

bar on the left of figure 3.6, goes from approximately 1.8 at worst to almost 0.5 at best,

as α decreases. The vastly improved results for smaller α suggest that the market view

of volatility might be irregular and that over-penalizing non-smoothness with high values

for α may produce inaccurate results. One should be careful to balance this with the

awareness of noise in the market data. If one knowingly calibrates to price data with high

levels of noise, then high regularization values should be adopted to prevent over-fitting.

The effect of α on v(x, T ) is visualized clearly in the graphs on the right hand side of

figure 3.8. For increasing α, this has the desired effect of increasing the smoothness of the

calibrated surface. As mentioned previously, there is a trade-off between the regularity of

the controls and how well we can fit them to the market data in this case. Conversely, the

left hand side of figure 3.8 indicates that the calibration of β is almost independent of the

value of β. This is likely explained by the sparsity of price data in the expiry domain. We

calibrate by computing the gradient via the adjoint equation, which results in a relatively

smooth λ(T ) in cases where price data is so sparse in the expiry domain, independently

of our choice of β. For calibrating to price data for a larger number of expiries, we would

expect to be able to more effectively control the regularity of the resulting jump frequency

through our choice of β.
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Figure 3.7: These are the resulting calibrated controls after 1000 iterations of our method-

ology for α = 10, β = 10 on top, α = 0.1, β = 0.1 in the middle and α = 0.001, β = 0.001

below. The graphs on the left plot the calibrated value of λ(T ) against T , while the graphs

on the right plot the calibrated V (exp(x), T ) = v(x, T ) against K = exp(x) and T .

Extension to additional class of options

Given that our model of the underlying asset follows a jump-diffusion path, we now con-

sider the influence of the type of option which we take our price data from, on our results.

We should be concerned that the European Call prices do not necessarily factor a jump-

term into their chosen models. The sensitivity of various exotic option types with respect
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to the balance of volatility and jump frequency, will differ from European Calls signifi-

cantly. An improved scheme could leverage more than one option type in our calibration

to produce a more complete evaluation of the jump frequency of the underlying. By choos-

ing an additional class of option with a higher sensitivity to jumps in the underlying, this

should theoretically improve the credibility of the calibrated λ(T ).

Barrier options, for example, use barrier values to activate or terminate the existence

of the option depending on whether the value of the underlying falls above, below, inside

or outside of deterministic barrier values over the lifetime of the option. An introductory

exposure to barrier options is given in [74]. Including this class of options in the calibration

would provide the scheme with additional information about the jump term due to the

high sensitivity of the option value to jumps in the underlying.
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Figure 3.8: This is the payoff for a knock-out barrier call option with a single ”up-and-

out” time-dependent barrier BH(t), where BH(0) = 350 and strike K = 200. The term

”knock-out” is used to indicate that if S(t) > BH(t) for any t ∈ (0, T ] then the value of the

option goes to 0 and the contract expires instantly. The value of such an option is much

more sensitive to frequent jumps in the value of the underlying asset than its European

counterpart, making it an ideal additional class of option to calibrate λ(T ) to.

In order to extend our scheme, we require an additional forward equation to model the

barrier option price as a function of strike and expiry. A forward equation for knock-out

barrier options is proposed in [75], for example. If we want to calibrate to knock-out call

prices as well as european call prices on the same underlying, the cost functional should

be expanded to include the norm of the differences between the barrier call price data

Bobs(Tj) for j ∈ {1, . . . ,m}, where data is available over m > 0 expiries, and the solution

to the corresponding forward equation, B(K,Tj), over the domain of expiries Ω:
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J(C,B, v, λ) =
n∑
i=1

1

2
||C(Ti)− Cobs(Ti)||2L2(Ω) +

m∑
j=1

1

2
||B(Tj)−Bobs(Tj)||2L2(Ω)

+
α

2
||v − vinit||2H2,1(Q) +

β

2
||λ− λinit||2H1(0,Tmax).

The forward equation for B(K,T ), along with the lower boundary condition BD(T ) and

an initial condition B0(K), are treated as extra equality constraints in the optimization

problem. We expand our Lagrangian to include the weak formulations of these additional

constraints. ω̃ = (B, v, λ) form the triplet of the state for the barrier call model and

parameters we are calibrating. e1, e2 and e3 are the operators for each weak formulation of

the additional equality constraints, with their associated Largrangian multiplier functions,

{χi}3i=1:

L(ω, χ) =

n∑
i=1

1

2
||C(Ti)− Cobs(Ti)||2L2(Ω) +

m∑
j=1

1

2
||B(Tj)−Bobs(Tj)||2L2(Ω)

+
β

2
||λ− λinit||2H1(0,Tmax) +

∫
Ω

(C(x, 0)− C0)υdx+

∫ Tmax

0
(C(T, xmin)− CD)µdT

+

∫ Tmax

0

(
< CT , p >V ∗,V +(λ(T )(1+m(T ))+q(T ))

∫
Ω
Cpdx+

∫
Ω

(r(T )−q(T )−λ(T )m(T )

+ v(x, T ))Cxpdx−
∫

Ω
v(x, T )pCxxdx− λ(T )

∫
Ω

∫ x−xmin

x−xmax
C(T, x− y)e2yη(ey, T )dypdx

)
dT

+ e1(ω̃, χ̃1) + e2(ω̃, χ̃2) + e3(ω̃, χ̃3), (3.115)

where χ = (p, υ, µ, χ1, χ2, χ3) and ω = (C,B, v, λ). Naturally this would require the

derivation of an additional adjoint equation which must be solved separately at each iter-

ation in order to compute the direction of steepest descent for updating our parameters.

The derivation of this adjoint should follow the same approach as section 3.5. The numer-

ical implementation of this coupled system of state PIDEs and adjoint equations poses a

significant technical challenge, however theoretically speaking it is a simple extension of

our existing scheme. As such, we leave such an extension for possible future work.



Chapter 4

Summary and Conclusion

By combining fourth-order (compact and non-compact) finite difference schemes in space

with Hundsdorfer and Verwer’s second-order ADI time-stepping scheme, we have con-

structed a new numerical method for solving option pricing problems for stochastic volatil-

ity models. Numerical experiments for approximating the price of a European Put option

using Heston’s stochastic volatility model with generic parameters confirm the numerical

convergence of the scheme in space and time while the results for a wide range of parabolic

mesh ratios suggest good stability properties. A further consideration for the work com-

pleted in this sphere could be to extend this scheme to the pricing of American options, a

class of option pricing models which allows for an early exercise.

We have provided a result for the existence of a solution to the forward jump-diffusion

equation. We have outlined an optimal control methodology for simultaneously calibrat-

ing a transformed local volatility surface and a Poisson jump parameter to the forward

jump-diffusion option pricing model, with respect to observed option price data. We

have provided a Tikhonov regularized cost functional and proven the existence of locally

optimal parameters for minimizing this cost functional. We have established first-order

necessary conditions of optimality and derived a corresponding adjoint equation with a

strong emphasis on functional analysis. We have suggested and applied a gradient descent

method to solve the optimal control problem, where results from numerical experiments

for artificial data and historical market data support the method for practical use. A

deeper exploration of the optimal control approach to calibrating model parameters for

the forward jump-diffusion equation could investigate second order sufficient conditions

for locally optimal solutions and implement an efficient numerical method which leverages

these conditions. We also have discussed the possibility of extending the scheme to cali-

brate to an additional class of option which is more sensitive to jumps in the value of the

underlying.
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[13] S. Crépey. Calibration of the Local Volatility in a Generalized Black-Scholes Model

Using Tikhonov Regularization. SIAM J. Math. Anal., 34(5), 1183–1206, 2003.
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[27] M. Fournié and A. Rigal. High order compact schemes in projection methods for

incompressible viscous flows. Commun. Comput. Phys., 9(4), 994–1019, 2011.

[28] M.M. Gupta, R.P. Manohar and J.W. Stephenson. A single cell high-order scheme for

the convection-diffusion equation with variable coefficients. Int. J. Numer. Methods

Fluids, 4, 641–651, 1984.

[29] B. Gustafsson. The convergence rate for difference approximation to general mixed

initial-boundary value problems. SIAM J. Numer. Anal. 18(2), 179–190, 1981.

[30] C. He, J.S. Kennedy, T.F. Coleman, P.A. Forsyth, Y. Li and K.R. Vetzal. Calibration

and hedging under jump diffusion. Review of Derivatives Research, 9(1), 1—35. 2006.

[31] C. Hendricks, M. Ehrhardt and M. Günther. High-order-compact ADI schemes for

diffusion equations with mixed derivatives in the combination technique. J. Appl.

Num. Math., 101(3), 36–52, 2016.

[32] S.L. Heston. A closed-form solution for options with stochastic volatility with appli-

cations to bond and currency options. Review of Financial Studies 6(2), 327–343,

1993.

[33] N. Hilber, A. Matache and C. Schwab. Sparse wavelet methods for option pricing

under stochastic volatility. J. Comput. Financ., 8(4), 1–42, 2005.

[34] K.J. in’t Hout and S. Foulon. ADI finite difference schemes for option pricing in the

Heston model with correlation. Int. J. Numer. Anal. Mod. 7(2), 303–320, 2010.

[35] K.J. in’t Hout and B.D. Welfert. Stability of ADI schemes applied to convection-

diffusion equations with mixed derivative terms. Appl. Num. Math. 57(1), 19–35,

2007.

[36] W. Hundsdorfer. Accuracy and stability of splitting with stabilizing corrections. Appl.

Num. Math., 42, 213–233, 2002.

[37] W. Hundsdorfer and J.G Verwer. Numerical solution of time-dependent advection-

diffusion-reaction equations. Springer Series in Computational Mathematics, 33,

Springer-Verlag, Berlin, 2003.

[38] S. Ikonen and J. Toivanen. Efficient numerical methods for pricing American options

under stochastic volatility. Numer. Methods Partial Differential Equations 24(1),

104–126, 2008.

[39] S.G. Kou. A Jump-Diffusion Model for Option Pricing. Management Science, 48(8),

1086–1101, 2002.



72

[40] H.O. Kreiss, V. Thomée and O. Widlund. Smoothing of initial data and rates of

convergence for parabolic difference equations. Comm. Pure Appl. Math., 23, 241–

259, 1970.

[41] D.M. Pooley, K.R. Vetzal and P.A. Forsyth. Convergence remedies for non-smooth

payoffs in option pricing. J. Comp. Fin. , 6(4), 25–40, 2003.

[42] H. Kushner. Stochastic stability & control. Academic Press, 33(1), 12–22, 1967.

[43] R. Lagnado and S. Osher. A technique for calibrating derivative security pricing

models: numerical solution of the inverse problem. J. Comput. Finance, 1(1), 13-–25,

1997.

[44] D. Lanser, J, Blom and J. Verwer. Time integration of the shallow water equations

in spherical geometry. J. Comp. Phys. 171, 373–393, 2001.

[45] H.A. Latane and R.J. Rendleman, Jr. Standard deviations of stock price ratios implied

in option prices. J. Finance 31(2), 369–381, 1976.

[46] A.L. Lewis. Option valuation under stochastic volatility. Finance Press, Newport

Beach, CA, 2000.

[47] W. Liao and A.Q.M. Khaliq. High-order compact scheme for solving nonlinear Black-

Scholes equation with transaction cost. Int. J. Comput. Math., 86(6), 1009–1023,

2009.

[48] S. Manaster and G. Koehler. The calculation of implied variances from the black-

scholes model: a note. J. Finance, 37(1), 227–230, 1982.

[49] R. Merton. Option Pricing when Underlying Stock Returns are Discontinuous.

J. Fin. Econ. 3(1-2), 125—144, 1976.

[50] A. R. Mitchell and G. Fairweather. Improved forms of the alternating direction meth-

ods of Douglas, Peaceman, and Rachford for solving parabolic and elliptic equations.

Numer. Math. 6(1), 285–292, 1964.

[51] D.W. Peaceman and H.H. Rachford Jr. The numerical solution of parabolic and el-

liptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41, 1959.
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