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ABSTRACT 

Scientists, investors and policy makers have become aware of the importance of providing near 

accurate prediction of renewable energy. This is why current studies show improvements in 

methodologies to provide more precise energy predictions. Wind energy is tied to variabilities 

of weather patterns, especially wind speeds, which are irregular in climates with erratic weather 

conditions.  To predict wind power output, model technologies like autoregressive integrated 

moving average (ARIMA), variants of ARIMA, hybrid models involving ARIMA and artificial 

neural networks (ANN), Kalman filters and support vector regressions (SVR) have been 

applied for wind speed involving short, ultra-short, medium and long terms kind of predictions. 

ARIMA ensemble with ANN has shown better performance for short and ultra-short terms of 

two to three hours ahead. On the other hand, SVR, Kalman filters and ensemble of both has 

recorded good performance for medium-term kinds of wind speed predictions. Recently, neural 

networks in particular recurrent neural networks (RNN) have reported immense achievement 

in time series predictions particularly for medium and long-term. This is largely due to its 

retentive memory-mapping capabilities in fitting sequence in series.  These capabilities are 

short-lived; when the sequence grows over time, the RNN tend to lose correlated information 

on back-propagation operations. This can lead to errors in the predicted potentials. Therefore, 

RNNs are exploited for enhanced wind-farm power output prediction. The main contribution 

of this research is the study of a model involving a combination of RNN regularisation methods 

using dropout and long short-term memory (LSTM) for wind-power output predictions. In this 

research, the regularisation method modifies and adapts to the stochastic nature of the wind 

and is optimised for the wind-farm power output (WFPO) prediction for up to 12-hours ahead 

– 72-timesteps. This algorithm implements a dropout method to suit the non-deterministic wind 

speed by applying LSTM to prevent RNN from overfitting. A demonstration for accuracy using 

the proposed method is performed on a 14-turbine wind farm with up to ten thousand wind 

samples for model training and five hundred for model validation and testing. The model out 

performs the ARIMA model with up to 90% accuracy and is expected to be applied to erratic 

weather condition, especially those observed in an off-shore wind farms. 
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Chapter 1. 

 

1.1. Introduction. 
 

The intermittency of wind speed introduces challenges to the prediction of wind power 

operation during energy integration. This result in challenges associated to planning and 

regulation capabilities associated with sudden wind speed variations, which impacts on the 

reliability of power system predictions. Wind-power generation and reliability planning relies 

on fast and strong wind speed prediction and response to system dynamics for better wind 

power prediction [1]. The global energy report shows that power generation from the wind 

rose to 54.6 gigawatts (GW) of installed capacity in 2018. China and the USA are leading 

with installed capacity. Countries like Germany and India are showing a strong appetite for 

wind energy generation due to effective wind speed prediction capability [2]. 

Recent literature shows a large variety of time series forecasting methodologies introduced 

for effective prediction of wind-speed in a time series and sequenced format. Wind data is 

stochastic; it is a very complex task to forecast the velocity of wind using linear approaches 

[3]. In addition, the length of the forecasting horizon has a correlation with the accuracy of 

forecasting methods. This correlation is negative with respect to the forecasting horizon. 

These horizons are of the ultra-short-term, short-term, medium and long-term time scale. 

Ultra-short-term wind forecasting refers to wind data prediction in the range of a few minutes 

to one hour ahead [4]. Prediction techniques are mainly utilised during electricity market 

clearing, regulation actions, and real-time grid operations. The short-term prediction horizon 

of wind speed are for a period starting from one hour to several hours ahead. This is generally 

for unit commitment and operational security in the electricity market. Medium-term and 

long-term forecasting refers to longer time horizons [5]. Prediction of wind depends from 
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several atmospheric factors like direction of the wind, temperature, humidity, turbulence, 

wind shear, and so on. In addition, these atmospheric factors affect wind energy penetration. 

Thus, effective prediction of wind energy affects not only the wind energy penetration but 

also the real power balance – load balancing and load demand matching. In wind renewable 

energy however, the stochastic nature of wind speed affects the excess stored energy process 

and dissipation during high demand periods.    

The method of predicting real power balance from wind energy are classified into four main 

categories in the technical literature: a) Persistence model, which has a naïve smoothness 

assumption on the target function.  In this approach, the future wind speed is equivalent to the 

wind speed in the forecasting time [6].  This method is the most economical and the simplest 

wind forecasting approach and is therefore widely employed by electrical utilities. The 

drawback however is the rapid degradation of performance model on an extended forecasting 

time horizon; hence, it is only reliable for ultra-short-term purposes.   b) Physical methods. 

This approach relies on numerical weather prediction (NWP), which considers other complex 

atmospheric parameters such as temperature, pressure and turbulence wind shear for prediction 

of wind speed [7, 8]. NWP outputs accurate estimations for long-term predictions mainly 

utilized for large-scale areas. The major drawback of numerical weather prediction models is 

the memory demands and high time consumption in producing results; hence, it is not reliable 

for short forecasting horizons. c) Statistical methods find the mathematical relationship 

between wind-speed time series data. Statistical models include auto regressive (AR), auto 

regressive integrated moving average (ARIMA), and Bayesian approaches. Reference [9] 

studied a simple statistical model approach for wind speed prediction using a K-nearest 

neighbour (KNN) regression model for short-term wind speed forecasting. This approach has 

high computational complexity and can suffer dimensionality problem, as the number of 

parameters grow exponentially with the growth in input size. It is important to note that [10] 
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presents a hybrid ARIMA-Kalman filter to predict wind speed. Although this model applied a 

statistical linear model for multi-step ahead prediction, it cannot give accurate estimations for 

longer time horizons due to the nonlinear assumptions in wind data patterns. Other methods 

seen in [11] introduces Bayesian forecasting based on a truncated model approach, which can 

incorporate domain knowledge about wind data. The model is applied for ultra-short-term wind 

speed prediction. The linear characteristics of the presented structural break method restricts 

the ability of this model to address more challenging prediction problems with longer 

forecasting time horizons. d) Artificial intelligence (AI) techniques including artificial neural 

networks (ANNs) [5, 12-16], support vector regression (SVR) [17, 18], and recurrent neural 

methods [6, 19-21], which led to novel methodologies for wind prediction. ANNs can capture 

the relationships between the input data and the predicted wind speed values, hence, it is 

utilized for time series prediction of different weather variables on various time scales and 

yields satisfactory predicted results. ANNs have various structural configurations. The Feed-

forward ANN [6, 10], recurrent ANN [20, 21], radial basis function (RBF) ANN [14] and 

adaptive wavelet ANN [22] were proposed recently for wind power and wind speed prediction. 

RNN-based approaches have been widely applied in the time-series prediction domain due to 

their capability to co-adapt complex non-linear relationships between the input and output 

time-sequence variables. Moreover, RNN implicitly learns features in a high dimensional space 

applying its popular cell state strategy; hence, it suffers from vanishing gradient problems. This 

problem is the inability of RNN to learn long-range dependencies, the interaction between wind 

speed sequences at different horizons and time steps apart – the long-term horizon. To tackle 

this drawback, the presented model [23] extracts error prone-engineered features caused by the 

vanishing gradient problem to control gradient growth in a type of RNN ANN called long 

short-term memory (LSTM). Although LSTM [24, 25] controls these growths by mitigating 

vanishing gradients, LSTM suffers overfitting (perfect learning) problems especially in time 
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series models, hence, it requires further modifications. The approach in the literature is to use 

regularisation.  

Regularisation is a method of controlling model complexities and numerical stability in neural 

network model systems [23]. To obtain regularisation in a neural network, an additive penalty 

term is introduced to the cost function in the form of fake noise. These fake noises can be in 

the form of dropout, L1, L2 and L1L2 and so on; to favour simpler models over complex ones 

as [26]. From the literature, during application of regularisation, L1 sums the weight 

coefficients while L2 sums the squared weight coefficients. Hence, [27] demonstrates the 

economic approximation of applying both L1L2 by combining large numbers of neural 

subnetworks and further comparing both results with other methods like the dropout. The 

author further reports that dropout is an efficient data driven regulariser with weight decay 

effects on outgoing weights, meaning dropout is a better model for regularisation than L1, L2 

and L1L2.  

In terms of network structure and issues of backpropagation, [28] reports that the structural 

implementation of LSTM threatens memorisation ability, which results to poor performance in 

comparison to network models that applied dropout on LSTM. However, [29] described 

dropout implementation on predicting a time-series protein sequence as having better 

prediction, confirming that [30] experienced shorter training time due to structural 

implementations associated with dropout on LSTM.  

In terms of network architecture and assembling of LSTM with other regularisation methods 

in conjunction with the nature of time series data, in LSTM and dropout network 

implementation for time series predictions, the structural arrays expects input sequences to be 

of samples, time steps and features. This allows a smooth implementation of dropout 

regularisation on LSTM, hence, hybrid regularisation on RNN or eLSTM. Therefore, 
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configuring dropout and L1L2 can be either in the input or in hidden layers. In the research by 

[32], however, dropout did not only improve memorisation ability and reduce training time but 

enhanced predictive performance on a long sequence of about four hours ahead. 

This research is therefore inspired [28, 31-33], where the idea of sequential modelling is 

introduced for time series sequences applying dropout on LSTM to forecast sequence 

generation over speech recognition, handwriting recognition and machine translation. Thus, 

the concept of leveraging mid-level RNN representation in LSTM [27] inferred in image label 

annotation is also exploited. Predicting energy consumption and wind power for households 

using LSTM as reported by [23, 34] was investigated.  Reference [23] recorded no 

improvement on LSTM, however, effective learning of measured energy consumption profile 

was observed. In a typical time series scenario similar to wind power prediction as described 

by [29], dropout was implemented to improve LSTM to forecast the risk of a student leaving 

an online course platform. In view of the above, the main contribution and thesis motivation 

are as described in the section below. 

1.2. Research Motivation 
 

In this research, an integration involving combinations of regularisation methods on RNN for 

wind speed prediction is proposed. This new regularisation involves long short-term memory 

(LSTM) and a dropout regularisation (LSTM-Dropout) model for learning nonlinear temporal 

features from the time series wind data in order to address the stipulated issues. Our LSTM-

Dropout model is proposed [28, 33] to capture interval-unsupervised features from the 

underlying input time series. The cell state in RNN learns the decreasing energy function while 

increasing the learning pattern in the observed input vectors of wind series dataset. The method 

suffers from the vanishing gradient problem as RNN maps input and output wind data. This 

mapping results in a huge influence to a given input of a hidden layer. As the wind time steps 
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increase relative to wind power, the network connection grows resulting in connection decay, 

exponential bursts and a sharp diminishing weight coefficient gradient. Conversely, due to the 

nature of the time-series data size, LSTM suffers overfitting of the unsupervised features, as it 

requires a huge training set unlike what is obtainable in time series systems. This overfitting is 

because of poor generalisation of the unsupervised features during model testing. In order to 

tune the parameter, a dropout method involving conditional probability of the visible and 

hidden LSTM layers results in accurate control of overfitting. These layers can easily 

decompose to simple factors to learn the recurrent parameters in an LSTM-Dropout fashion. 

The proposed deep learning research has contributed the following to knowledge:  

 A new recurrent network-learning model (RNLM), presented based on hybrid 

regularisation of long short-term memory and dropout architectures for the robust supervised 

feature extraction of wind time series. The proposed RNLM is an energy-based generative 

method proved to capture the co-adaptation of input variables of wind speed. Moreover, the 

inference and learning algorithms of the devised undirected graphical model are presented. To 

the best of our knowledge, RNLM is the first recurrent deep learning model capable of 

capturing interval knowledge from wind data.   

 The approach can extract meaningful features from wind speed data input in an 

unsupervised manner. Thus, unlike other artificial intelligence methodologies including ANNs 

[5, 12-16], RNN [20, 21] , and dropout regularisation systems [27, 29], which are based on the 

supervised regression methods, no prior knowledge about the wind data is needed for the 

feature extraction.  

 In contrast to previous deep learning research including [35] and [25] that implement 

Auto-encoding and classical DBN, in this research, real-valued input units are implemented as 

designed for the wind domain. The classic deep approaches applied in the domain of time series 
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prediction assume a probability distribution on the input variables, which is not suitable for the 

real-world applications that work with real input tensors.  

The contributions of the proposed thesis research above is sub-divided into two areas: a) 

Machine Learning: The development of an integral long short-term supervised learning system 

with the incorporation of the dropout tuning regularisation model to extract robust highly 

nonlinear features from the wind speed input data. b) Wind farm Power output Prediction: The 

application of an unsupervised feature extraction model (rather than the superficial features 

applied in previous methodologies), in nonlinear manifold learning from windfarm data for 

supervised target function of future wind values prediction.   

 

1.3. Machine learning for Wind Speed Prediction. 

 

Electricity generation relies on the curve of power production over time to show imbalance of 

time between peak renewable energy production and demand. In the wind energy market, peak 

demand occurs after wind troughs and sunset – when low or no wind is experienced. Machine 

learning techniques coupled with microelectronic sensor devices in the wind can help flatten 

the curve to prevent the generator fluctuation to maintain the voltage profile instead of relying 

on batteries or flywheels, which are cost effective.  

Machine learning from [36] is defined as “ a computer program that is said to learn from 

experience E with respect to some class of task T and performance measure P, if its 

performance at task in T as measured by P improves experience E”.  Author [23] defines 

machine learning (ML) as a field of study that gives computers the ability to learn without 

being programmed explicitly. The definition from [8] made machine learning easy to 

understand. Each of the facets E, T, P pose different challenges to different disciplines with 

different kinds of dataset, although the link in all of the components is the approach or 

algorithm implemented for specific applications.  
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Algorithms like ARIMA, SVR, RNN, CNN, etc. have seen frequent implementation in 

sequence predictive modelling, such as wind power balance. Hence, from our area of interest 

– time series (sequence) prediction of wind speed ensures the performance improvement is key 

to effective predictions. Hence, machine learning (ML) is subdivided into three major sections 

to address time series wind horizon. These sections are: 

 Supervised learning. 

 Unsupervised learning 

 Reinforcement learning. 

Supervised learning: This is a machine-learning program where the algorithm is provided with 

input features processed to have highly correlated relationship with the target or label features 

to map underlying data patterns for prediction and other purposes. As depicted in Figure 5.24 

of section 5.24, here a value in the time domain is equivalent to a predicted target value of wind 

velocity, in the frequency domain. This algorithm can be of linear and non-linear types. Linear 

algorithms sequentially searches or checks for a target value within a pool of data. Examples 

of these algorithms are the ordinary least squares (OLS), Linear regression etc.  Non-linear 

algorithms are the focus of this research. These are the recurrent neural networks, support 

vector machines (regressions), Kalman filters, Autoregressive Integrated Moving Averages 

(ARIMA) models, etc that can be used in the search for a more complex sequential and 

correlated searches. In literal terms, supervised learning algorithms learn the associations 

between the inputs and outputs having shown the list of datasets. This type of learning are of 

the classification and regression problems. In regression, the variable to be predicted is in the 

continuous valued domain unlike the classification, which is in discrete-valued domain. This 

research however, is of a typical supervised regression machine learning. Furthermore, the 

question that leads research to other types of machine learning is ‘what if the data lies in an 

infinite space?’ this is where the unsupervised learning plays a role.  
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In this type of learning, the why and how the ML works is discussed. The application of which 

type of algorithm to apply to which type of dataset is discussed as elaborated in section 4.1. in 

addition, the data collection approaches – whether research requires more samples and so on, 

the selection of training data samples, the validation and testing samples are also discussed in 

learning models. 

Unsupervised learning on the other hand, ensures the effective predictable outputs; hence, the 

right answer to a given problem without being provided with prior knowledge of the input 

samples. This type of learning however is not the discussion of this thesis. The unsupervised 

type of learning does more by determining the structural pattern of the data [37] by either 

partitioning the data into classes in the form of clustering or understanding by grouping data 

structure in the form of segmentation. For example in image processing, computer vision where 

pixel values are determined and grouped to build models in 3-dimension, 4-diemension, etc. 

Other areas of application of unsupervised learning are, astronomical data analysis to 

understand galaxy formations, social (media) network analysis, segmentations, and so on. 

Reinforcement learning: in this type of learning, one-time decision-making is not achievable 

unlike the supervised and unsupervised type of learning; hence not used in this thesis. Here, 

algorithms make sequence of decisions over time, which may have a direct implication to the 

subject of study. Self-driving vehicles uses this type of learning. In addition, what to learn is 

paramount to the learning outcome. In view of the above, the rest of the thesis is organised as 

shown below. 

1.4. Organisation of Thesis 

 

Chapter 2 presents and discusses the theoretical and the physical systems used in this research. 

The discussion however is in terms of the process of wind data acquisition, processing and 

storage from anemometer sensors, modelling methods and the supervisory control and data 
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acquisition (SCADA) systems seen in a typical wind farm. In addition, the basic wind turbine 

operational structures and controls. 

Chapter 3 provides literature review in terms of wind speed predictions, the modelling method 

associated to the regularisation of long short-term memory type of recurrent neural network 

and dropout method. In addition, the fundamental principles and characteristics required for 

wind speed data generation, performance measurement while applying and training wind 

models in time series schemes. Furthermore, the chapter illustrates the fundamental theory 

required to understand and make full use of recurrent neural networks within the proposed 

prediction horizons, full description and theoretical analysis of many existing schemes. Finally, 

a brief description of some different regularisation procedures and the performance measures 

applied to measure the accuracy of these models. 

In chapter 4, the method described in the literature concerning wind speed prediction and data 

analysis of a wind farm as implemented in this research is presented. The presentation relates 

to Weibull distributions, derivations of cummulative and probability density functions for 

Weibull distributions, wind power density and power curve description. In the second part of 

the chapter, the theoretical concept of then machine-learning regularisation method involving 

LSTM and dropout on RNN is discussed. The basic steps seen in a practical achievable training, 

validation and testing ML models, using the RMSE, MSE and MAPE performance measure 

considerations. This leads to statements about the problems associated with vanishing gradients 

on RNN. To solve this problem, a method of regularisation for the univariate time series called 

enhanced LSTM (eLSTM) is derived and a simple robust method applied for obtaining a 

multivariate set of predicted data structures, which present regularisation along with their 

corresponding co-adaptation system structures. In the final part, some further topics related to 

data analysis and the concept of data merging are discussed.  
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A case study based on wind-farm power output generation from a 14-turbine unit within the 

farm is presented in chapter 5. The chapter is divided into two parts. The first part presents 

simulation results for the proposed power output models. Simulation of the power generation 

output from the farm, described in chapter 4, is performed; discussion of the results are 

presented as they are generated. Secondly, simulated real-time training, testing and validation 

with RMSE, MSE and MAPE results comparing various regularisation methods as discussed 

in chapter 4, are presented for different prediction horizons. This section discusses the 

comparison of simulated results generated by comparing the novel approach with other 

regularisation schemes. In addition, there is a comparison with other sophisticated predictive 

algorithms in the area of research: Autoregressive Moving Average (ARIMA) in particular.  

Finally, a general discussion, future work and conclusions are presented in chapter 6. This 

chapter reviews the main achievement reported in the thesis, makes some suggestions for 

further research to extend the proposed methods and introduces a completly new logical and 

mathematically rich approach. While the main results are presented in the body of the thesis, 

the appendices give important supporting material, derivations and extensive proofs. These 

include appendix A and B. 
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Chapter 2 

 

Components for Wind Measurements. 
 

The observation and recording of wind information are classified into two aspects, the wind 

direction and wind speed. The wind direction indicates the direction in which wind blows and 

flows. This flow is usually dependent on location, hence, the cardinal points – east (E), west 

(W), north (N) and south (S) or a combination of the two as shown in Figure 2.1. From the 

figure however, the dominant direction of wind is in the SW direction. The velocity and force 

over a unit area of a location in which this wind flows is referred to as wind speed. The wind 

speed and direction are measured in meters per seconds (m/s). Therefore, the wind rose of 

Figure 2.1 has the highest wind speed of around 18 – 20 m/s. 

 

Figure 2. 1: Wind Rose Diagram of 0.125o at 3-hour Interval 

Source: European Centre for Medium-Range Weather Forecasts https://www.ecmwf.int/ 1 

 

To obtain accurate measurement, the Met Office of the United Kingdom, the United States of 

America and other research institutes suggests that where possible the measuring device is to 

                                                           
1 Website accessed 4th October, 2018 

https://www.ecmwf.int/
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be situated (mounted) on a tower in a large open area to avoid possible interference such as 

trees, and buildings [102] especially for offshore wind measurements. In addition, measuring 

sensors, such as anemometers and wind vanes are expected2 to be 33 feet (10 meters) above 

the ground. However, for better accuracy, the sensors are to be at least ten times the height of 

any obstruction. 

2.1. Wind Measurement and Anemometers Sensor Technology. 

 

In meteorology and wind science, measuring wind speed is achieved with a sensor called an 

anemometer. The wind speed sensor has many types and design specifications, the design by 

Dr. John Robinsons’ has been used to measure wind speed since 1846. John Patterson, the 

standard for wind resource assessment, in 1926, developed other sensors such as the 3-cup 

anemometer as shown in Figure 2.2. The anemometers have a linear measurement range of 0.3 

to 75 m/s with a measurement uncertainty of less than 1%. The 1940 physicist Leon Battista 

Alberti was the first to describe this device. Over the years, this device has evolved through 

different types with similar underlying principles, to measure force over a certain area of wind 

in a given location. This device however has many types, namely: the Hot-wire, Laser, Doppler, 

Ultrasonic, Acoustic resonance, Plate, Tube, Cup anemometers and so on [103].   

                                                           
2 The renewable research community: https://www.metoffice.gov.uk/guide/weather/observations-guide/how-we-

measure-wind, http://www.noaa.gov/weather, https://www.weather.gov/, etc.  

Date accessed 15th October, 2018 

https://www.metoffice.gov.uk/guide/weather/observations-guide/how-we-measure-wind
https://www.metoffice.gov.uk/guide/weather/observations-guide/how-we-measure-wind
http://www.noaa.gov/weather
https://www.weather.gov/
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Figure 2. 2: Typical 3-cup Anemometer. 

Cup anemometers appears to be the simplest to understand and the most widely used for wind 

speed measurements and hence are used for this research.  

 2.1.1. Working Principle of Cup Anemometer. 

 

Cup anemometers records wind speed from wind in a given location using the revolution or 

the number of times it spins in a given period. This period is recorded every hour, minutes or 

seconds depending on the design. The diameter of this instrument as shown in Figure 2.3 is 

used to calculate the circumference or area around the circle of the cup anemometer in Eq. 

(2.1); 

C = d*π                                     (2.1) 

 

 

Figure 2. 3: Cup Anemometer for Wind Speed Measurement.  

Generator  
Revolving cups  
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From the figure, assuming the diameter is 7.4 inches, to calculate the circumference, Eq. (2.2) 

shows how far wind travels every time it spins 

23.24

1
∗

1 foot

12 inches
= 1.94feet                                                                                                   (2.2) 

To model the distance it is traveling, we used an arbitrary number of counts in revolutions, 

which is equivalent to 179, hence, 

1.94

1
∗  

179 revolutions

1
= 346.60feet/minutes                                                                        (2.3) 

To achieve the value per hour,  

346.60

1 minute
∗  

60 minutes

1 hour
= 20,796 feet/hour                                                                            (2.4) 

Achieving this value in terms of miles per hour, we have 

20796 feet

1 hour
∗  

1 mile

5280 feet 
= 3.9miles/hour                                                                           (2.5) 

This is the working principle behind wind speed measurements. As discussed in chapter 3, the 

data we are using is recorded in 10 minutes intervals. Errors such as inertia and rust experienced 

in cup anemometers [104] are not discussed in this thesis. However, the process of acquiring, 

processing and storing of wind data from a typical wind farm for prediction of power output is 

described.  

2.2 Data Acquisition System. 

 

In the recent systems, acquisition of wind data for wind power prediction are generally 

categorized into; 

 Wind mast. This records the measurement of wind speed, wind direction, temperature, 

humidity and pressure. In addition, the mast temporarily logs these generated data into 

loggers, which is periodically sent to analyzers through GPRS enabled connections.  
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 The SCADA systems. This system enables the operators to export data for processing. 

Further data files, for example turbine status, wind speed and other meteorological 

measurements are logged to the system as shown in Figure 2.4. 

 The global forecast systems (GFS) and European center for medium-range weather 

forecast (ECMWF) systems are downloaded to the SCADA periodically. Other models 

such as the numerical weather prediction models are downloaded to the center in an 

automated manner [105]. 

 

Figure 2. 4: A Simple SCADA Architecture for WFPO Prediction. 

Source: Researchgate  3 

 

2.2.1 Data Storage and Processing. 

 

Wind power prediction and monitoring center comprises of servers as shown in the Figure 2.4 

above, which satisfy the overall storage and processing requirements systems. These servers 

comprise of database servers, for example, Oracle, MySQL, Microsoft-SQL, PostgreSQL, and 

                                                           
3 https://lh3.googleusercontent.com/ 
Date Accessed: 15th October, 2018 

https://lh3.googleusercontent.com/
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so on, installed to create database instances. Projects and application web pages are hosted in 

a Web Server. The data processing server hosts the data modelling and processing – 

normalization, up sampling, down sampling, conversions, model performance, and so on are 

also hosted in the prediction application server for periodic runs. 

2.3. Wind Turbine Operations  
 

The thing with wind turbines is that structurally, it is a strange structure installed by human 

beings.  From the technical literature, wind turbine operation relies on site selection, and 

elevation level for its performance. However, wind turbine function is better in a low elevation 

range of hills surrounded by higher mountains. At this elevation, the flow of wind is facing 

incoming winds thereby squeezing air downwards for an increased wind speed, which in turn 

increases wind energy yield. 

2.3.1. Wind turbine Component Functionalities. 

 

Wind turbines converts mechanical energy gained from the rotation of the rotor through the 

blades to electrical energy by spinning round a set of coils to create electricity.  From Figure 

2.5, the electricity is brought from the wind turbine into the ground through cables, from which, 

it goes into a transformer and is finally sent over a sub-station or switchyard to serve 

consumers.  
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Figure 2. 5: Typical Wind Turbine operation. 

Source: Researchgate4 

 

Wind turbines are of different sizes in terms of electricity generation. A one megawatt turbine 

is assumed to produce up to a megawatt of electricity, which typically powers about 750 homes 

[106]. In the past wind turbines produces alternating currents (AC) which is directly as used in 

homes. Because of this direct home usage, the turbine is expected to spin at a reasonably precise 

speed, which is narrow in terms of power productions such that wind could synchronise the 

electricity frequency to that used in homes. However nowadays, with the use of micro-

electronic control systems, wind energy is produced as direct currents (DC), which allows the 

turbines to spin at a wider range of wind speeds to pull more energy out of the air for all weather 

conditions. 

Wind turbine designs are based on frequency ratings; older wind turbines produced around the 

1970s are rated from about 60 kilowatts to roughly 34 Megawatts. Their height ranges from 

about 30 feet to about 150 or 200 feet. These turbines operates to about 14 – 18% efficiency 

and are not very efficient compared to what is in existence now.  Recent technology has helped 

                                                           
4 https://ars.els-cdn.com/content/image.jpg 
Date accessed. 4th June 2017 

https://ars.els-cdn.com/content/image.jpg
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the repowering of wind turbines such that they are not only more efficient in terms of electrical 

power output and therefore economics but better in terms of environmental impact due to 

reduced maintenance requirements. 

2.3.1.1. Basic Components of Wind Turbines. 

 The rotor, which is approximately 20% of the wind turbine cost, includes the blades for 

converting wind energy to low speed rotational energy. 

 The generator, which is approximately 34% of the wind turbine cost, includes the electrical 

generator, the control electronics, and the gearbox. The gearbox is planetary with an 

adjustable-speed drive or continuously variable transmission component for converting the 

low-speed incoming rotation to high-speed rotation suitable for generating electricity. 

 The surrounding structure, which is approximately 15% of the wind turbine cost, includes 

the tower and rotor yaw mechanism. 

A typical 1.5 MW wind turbine with an 80 meter tower has the rotor assembly as follows: 

blades and hub weight of 22,000 kilograms. The nacelle, which contains the generator, weighs 

52,000 kilograms. The concrete base for the tower is constructed using 26,000 kilograms of 

reinforcing steel and contains 190 cubic meters of concrete. The base is 15 meters in diameter 

and 2.4 meters thick near the centre. The interconnection of several wind turbines for a unified 

power output forms a wind farm. This interconnection has many variants, which are not 

discussed in this thesis. Although chapter 4 highlights the architecture for power output 

predictions. 

2.4. Types of Wind Farm. 
 

Wind farm is of two types, the on-land and offshore wind farms. The offshore wind farms are 

those sited on the bodies of water usually the ocean to extract wind energy for electricity 

generation.  

https://en.wikipedia.org/wiki/Electrical_generator
https://en.wikipedia.org/wiki/Electrical_generator
https://en.wikipedia.org/wiki/Gear_box
https://en.wikipedia.org/wiki/Adjustable-speed_drive
https://en.wikipedia.org/wiki/Megawatt
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Figure 2. 6: A Typical Offshore Wind Farm 

Source: Wikipeadia5  

 

These wind farms generate more wind energy per amount of capacity installed since high wind 

speeds are available offshore compared to on-land, as shown in Figure 2.6.  The on-land wind 

sites as depicted in Figure 2.7 are the wind farms sites on the earth’s surface. They have greater 

hub-heights due to high wind speed in higher atmospheric boundary layers.  

 

Figure 2. 7: A Typical On-land Wind Farm. 

Source: Mudgeon Files6 

                                                           
5 https://upload.wikimedia.org/wikipedia/ 

Date accessed 10th August 2018. 
6 https://thenoisecurmudgeon.files.wordpress.com/2013/09/turbine2.jpg 

Date accessed 10th August 2018. 

https://upload.wikimedia.org/wikipedia/
https://thenoisecurmudgeon.files.wordpress.com/2013/09/turbine2.jpg
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This is because the closer they are to the ground, the higher the roughness is increased as shown 

in Figure 2.8. For sites with higher terrain roughness, higher–towered turbines appear to be 

ideal to combat energy loss as turbulence occurs below the blades and does not affect yield.  

 

Figure 2. 8: Turbulence seen in on-land turbines. 
Source: Mudgeon7 

 

Wind turbine maintenance is a big topic in the renewable energy industry, although not 

discussed in this thesis. Friction reduces energy flow as the blades rotate. Uncontrollable 

friction results in damage to the turbine. The lesser the bearing points, the less likely to 

experience turbine disintegration. Reduction in mechanical stress increases service life of the 

turbine, which in turn increases turbine efficiency. This led to the installation of the 

microelectronics devices in the cabin such that individual use cases are designed in a modular 

manner for specific project applications. 

 

 

 

 

                                                           
7 https://thenoisecurmudgeon.files.wordpress.com/turbine.jpg 

Date accessed 16th June 2018. 

https://thenoisecurmudgeon.files.wordpress.com/turbine.jpg
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Chapter 3. 

 

 Literature Review 
 

A broad area of work on the review and theoretical design of wind power prediction is 

discussed in this chapter; particularly by addressing the wind speed prediction survey and 

characteristics and; the use of long short-term memory of recurrent dropout regularisation 

strategy to combat overfitting. In addition, the detection of error dynamics using performance 

measures are reviewed, which in turn depicts the knowledge acquired in modelling predictive 

schemes – resulting in model improvements and accuracies.  

To use the dropout method, it is necessary to understand the nature of these systems, at a basic 

level and successfully apply them for wind renewable energy system predictions. In section 

3.1, renewable energy wind data, which is associated with modelling, is discussed with respect 

to the algorithms used in modelling various wind systems. Wind power models are discussed 

in section 3.3. These models are the recurrent neural network with application to wind power 

modelling. The section however further discusses neural network training in relation to 

recurrent neural network (RNN) and long short-term memory (LSTM); demonstrating certain 

training case studies. Section 3.4 studies the improvements in recurrent neural networks in the 

form of regularisation methods applied to improve RNN’s gradient vanishing problems. Model 

performance results are used for acceptance of a given algorithm. Furthermore, performance 

methods used in time series sequence systems associated with RNN and the LSTM are as 

discussed in section 3.5. This section however studied the basic theory of performance methods 

used in the research. Some necessary properties and basic ideas of recurrent neural networks 

and long short-term memory are introduced in section (3.2) alongside a brief description of 

their underlying properties.  
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A simple system, which is supposed to be used to simulate these schemes as suggested in 

chapter 4, is also introduced in this section. However, the required properties and nature of 

alternative systems are also discussed. 

3.1. Renewables and Wind Data. 
 

Wind is the flow and movement of gases and air molecules in the atmosphere. This movement 

or flow exerts a certain amount of force through the collective weight of gas molecules acting 

on a specified area; this is typically described as air pressure. This pressure, in turn, varies from 

location to location, time of the day, weather, landforms and height above land surfaces. 

Understanding wind characteristics help research in optimizing wind turbine design, wind site 

selection, measuring techniques and wind power generation from various interconnected 

turbines within a wind farm. 

3.1.1. Air pressure, Temperature and Wind Speed Data. 

 

 

One of the most critical characteristics of wind renewable power generation is wind speed, 

measured in meters per second. Wind speed changes dynamically in both space and time, and 

is determined by many factors such as weather and geographical conditions. Measuring wind 

speed is one of the complex aspects of power generation from wind, although statistical 

methods help in realizing a given wind speed for use in renewable energy generation. In 

addition, wind speed measurement is described by its diurnal variations, which in turn is 

theoretically synthesized by sine waves.   

From a global perspective, the variations of wind have been analysed in conjunction with 

temperature of a given location, sun intensity during the day or a given period and relative 

pattern within a given geographical region. For example, the description by [38] analysed wind 

speed data over a period between 1970 – 2003 using data from 65 onshore sites across the 
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United Kingdom to conclude that the monthly average wind speed is inversely proportional to 

the average monthly temperature. This is because; from the research, wind speed is lower in 

the summer and higher in the winter, which results in minimum wind speed reports in August 

and maximum in January. 

Describing month-to-month wind speed variations over a fourteen year period, between 1970 

– 1984, [39] reported that in Saudi Arabia, at Dhahran, yearly low-temperature variations in a 

wavy pattern shows no-clear connection between temperatures and wind speed. The wavy 

pattern at the same location, however, was further reported to experience higher wind speed at 

daytime at around 3 PM, maximum wind speed is seen in Dhahran, indicating that sunlight is 

proportional to daytime wind speed. On the other hand, [40] demonstrated that diurnal wind 

pattern at five different locations in Texas – USA follows a pattern similar to the ones reported 

in Jos, Nigeria [41] wind speed appears to be constant in the night time while having a 

curvilinear pattern during the daytime. 

 Yearly variations of mean wind speed across several locations as described by [42] shows 

there is no common location in terms of predictive abilities. This is because, in the research by 

[28, 42-44], similar attributes are reported at which annual wind speed decreases exponentially 

with time within a thirteen-year, 1970 - 1983 period at Dhahram. In the UK [38] reported a 

more variable display with the similar year but a longer period of thirty-three years, 1970 – 

2003. However, the European Union Energy Association [45] reported similar variation 

significance of an annual wind speed over 20 years having maximum and minimum wind 

values ranging from 9.2m/s to 7.8m/s respectively.  

In the same review, [46] reported long-term wind data in a 29-year period, 1978 to 2007 

obtained from an automated synoptic observatory. Studying their results, it is worthy of note 

that wind speed within the location (Dhahram and UK) experiences slightly low fluctuation 
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around Jeju Island having other sites with randomly depicted trends. In addition, the yearly 

wind speed variations require statistical analysis for variation decomposition. 

Understanding wind speed across these locations is typical of its distribution derivatives, hence, 

this helps energy and wind power derivations from wind. This is due to waveform sampling 

derived over time, thus the illustration of the wave-like structure as seen in the literature for 

wind data series. These distributive derivatives results in effective predictive model building 

which requires in-depth knowledge.   

3.1.2. Modelling Wind Speed. 

 

From the survey, wind speed variations at any location are best described using various 

statistics. The most used, Weibull probability distribution [47] depicts the illustration of the 

probability at variable mean wind speed, reported to have occured at  different time periods 

Variable wind speeds are recorded from a given sensor within a certain frequency of occurrence 

and resolution of time either every 30 minutes, hourly, daily, or weekly. In this research 

however, the wind distribution is reported every 10 minutes. One of the most popular statistical 

distributions, Rayleigh in [48] used for the probability density function for wind speed 

description is described in section 4.7. 

3.1.2.1. Wind turbulence. 

 

Theoretically, turbulence is the fluctuation of wind speed over certain time scale usually for 

the horizontal velocity component. From Eq. (3.1), the wind speed u(t) at any instant of time t 

is considered as having two components; the instantaneous speed fluctuation u’(t) and mean 

wind speed (ū). 

  u(t) = u’(t) + ū(t)                                              (3.1) 



 
 

26 | P a g e  
 

The power output of a wind turbine depends strongly on wind turbulence. This results in 

dynamic fatigue loads in the turbine blades for heavy turbulence, which in turn reduces turbine 

lifetime or results in failure. In addition, wind farm selection requires the knowledge of wind 

turbulence intensity as described in [38, 42, 45] for optimum energy generation. 

3.1.2.2 Wind Direction. 

 

This is one of the major characteristics of wind speed, although mainly required for wind farm 

selection at a location within a specific time (day, week, month, year, season, etc.) To analyse 

and understand winds in terms of its direction, the wind rose diagram is one of the most useful 

tools used. The wind direction of the field data used in this research is depicted in Figure 3.1. 

In the figure, there are sixteen radial lines which are 22.50 apart from each other. The length of 

each one is proportional to wind magnitude for that direction. 

 

Figure 3. 1: Direction of flow – blowing from South. 

 

However, from our dataset, the direction of flow shows that wind is flowing from Southern 

Texas to the North as shown in Figure 3.2. Near calm or calm air is described by the frequency 

of a given number in the cycle. Information of wind speeds is contained in the wind rose tool, 

the figure describes wind direction as used in the thesis. 



 
 

27 | P a g e  
 

 

Figure 3. 2: Direction of flow – blowing to North. 

 

3.1.2.3. Wind Shear. 

 

This meteorological phenomenon describes the increase in speed as a function of height above 

the earth’s surface and roughness. In addition, the effect on wind speed, which is estimated 

using traditional equations popularly known as the Hellmann power equations (see chapter 4, 

section 4.2). From the equation, Z0 is the reference height at which wind speed is known while 

Z is the height above earth surface and a is the shear coefficient. 

Other types of wind characteristics not discussed in the thesis are the wind gust, seasonal, and 

annual patterns. Although wind gust like wind intensity and wind speed changes in cases of 

turbulent blasts, the wind gust ensures the maintenance of power output from turbines and 

reduces rotor imbalances.  

Building a predictive model for wind power, is the aim of the research and it involves historical 

recorded data for wind speed, temperature, air pressure, precipitation, and so on since they are 

the major characteristics required for wind energy predictions. This, however, requires 

modification of the RNN architecture, the long short-term memory RNN, statistical models 

like least square regressions, etc. for wind speed predictions. 
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3.2. Survey on Wind Speed and Power Predictions. 
 

Comparing the amount of research work and number of research publications related to wind 

speed, power prediction in general, and artificial neural network. The research effort focused 

on the development of a hybrid algorithm to enhance existing algorithms related to recurrent 

neural networks – long short-term memory and dropout regularisations. The most relevant 

work that could be cited is those related to sequence prediction by [25, 31] and time series by 

[42, 48]. These researchers rely on features commonly applied in tasks similar to this work. 

Different research groups use different features hence; the underlying characteristics are 

usually the same. The sequence behavioural pattern that exists in a time series system keeps 

track of samples, time steps and features for LSTM implementations. Therefore, inspirations 

on this research are routed in research carried out by [28, 31-33] where the idea of employing 

sequential modelling is introduced for time series sequence applying dropout on LSTM to 

forecast sequence generation for speech recognition, handwriting recognition and machine 

translation. The concept of leveraging mid-level RNN representation in LSTM [27] described 

in image label annotation is also exploited. Although time series wind data are of sequence-

generated data, the characteristics in terms of size are usually not as described above. Hence, 

have different features and require modifications prior to model applications. 

Predicting energy consumption and wind power for households using LSTM as reported [23, 

34] and further investigated.  Although in [23], no improvement on LSTM is experienced, 

hence, effective learning of measured energy consumption profile was reported. However, in a 

typical time series scenario similar to wind speed prediction [29], use a dropout implementation 

to improve LSTM to forecast times series sequence events of possible churn for an online 

course platform. Author recognized that time series sequential models require a data model 

implementing statistical analysis for effective prediction.  
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Multi-step forecasting of wind speed was conducted by [4] using an ensemble or combination 

of two models – the empirical mode decomposition (EMD) and feedforward neural network 

(FFNN). For each of the models, the nonlinear wind speed is decomposed into small chunks. 

The residual series of the counterpart EMD enhanced insights on the data structures involving 

monthly mean wind speed data over three years. In order to measure the performance of these 

models, MSE, MAPE and MAE metrics measured several trials independently. In addition, 

different experimental sets were conducted with mostly good predictors where the resultant 

error signature was then used to train two supervised learning models. The regression 

performance of the trained model when presented in testing data found an improved 12% 

reduced error over training FFNN on the average of the metrics.  

The author in [34] investigated the hidden features (rules) of wind speed pattern based on a 

deep belief neural network (DBN) having just three hidden units. In the proposed system, the 

transient wind speed samples on independent layers reported as an error window, which is as 

shown in the three hidden layers. With a five-second resolution, up-sampled data points of up 

to 150 points where 90 points were inputs to the training model while the rest are used for 

testing the supervised deep network. The MSE and MAE metrics reported model performance. 

The derived results from this work show that a regression performance of about 11% predictive 

error was reported as an improvement over other compared neural network models.  

In a bid to demonstrate the need for regularizing the recurrent neural network such as LSTM, 

[23] developed a probabilistic approach of a second order system in training a wind model 

recursively8. Authors’ implemented the Levermberge-Marquardt algorithm (LMA) to update 

the weight of the network during training at 1000 time-steps-long samples and modelled 

                                                           
8 Model training in a repeated fashion.  
In this case, model training was repeated 15 times and compared side-by-side among the performance 
metrics.  
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Bayesian RNN as a regularisation method, adding white-noise of 0.05 standard deviation. 

During model verifications, 250 samples were used for model testing. Normalized mean 

squared error (nMSE) metrics measured the performance model as they further compared their 

model with training a Kalman filter, feedforward multilayer perceptron and LMA (MLP-LMA) 

and support vector regression (SVR). To make sure random weight adaptation takes place 

during training, 8 days of data were fed into the RNN9. The nMSE result demonstrated that the 

Bayesian RNN has up to 7.5% improved performance over other algorithms including an SVR.  

The previous work cited above is related to this research in a predictive sense, having 

regularisation with the dropout method. However, the proposed scheme of wind speed 

prediction in this thesis relies upon pattern identification of wind signatures in a wind data by 

a supervised neural network-based decision module. It is important to review some of the 

previous work related to ANN based wind speed prediction using machine learning and 

statistical data modelling.  

To compare and implement a simpler non-linear model over complex ones like ANN and 

adaptive fuzzy inference system (ANFIS), [49] applied a polynomial autoregressive (PAR) 

model over ANFIS and an ANN10. A 2-month recorded hourly wind speed data, fed into the 

model using 80% of the samples for training and 20% for testing. The author reported however 

that PAR recorded better performance over ANN and ANFIS due to its linear-in-the-parameter 

property11. The simulation used normalized mean absolute percentage error (nMAPE) 

alongside normalized root mean squared error (nRMSE) performance metrics to measure the 

                                                           
9 The process of avoiding weight adaptation is known as priming, it improves regression model performance 
though it is not trust worthy as it could fail over a long sequence.  
10 The artificial neural network described here is a recursive feed forward neural network designed by the 
authors. 
11 This parameter depicts a typical linear regression design. Performs better on a small sample data. 
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performance of all the models. The result shows that on average, PAR performed better than 

both ANN and ANFIS with up to 9% accuracy over a 24-hour ahead prediction.  

Furthermore, in sequence regularisation methods, long short-term memory (LSTM) and its 

corresponding dropout method, which the thesis relies on has recorded better performance over 

techniques like hidden Markov models (HMM), learning vector quantization (LVQ), support 

vector machines (SVM), convolution deep belief network (CDBN), and so on. Hence, in 

language modelling and handwritten tasks, LSTM comes with different kinds of flavours as 

described in section 2.4. However, authors in  [32] worked on a particular type of LSTM called 

multi-dimensional long short-term memory (MDLSTM) for handwritten recognition tasks.  

Their work, however, describes the effect of applying dropout regularisation in both the input, 

output and hidden LSTM layers. In addition, their results experienced overfitting and poor 

generalization using lonely LSTM model. To address overfitting on the training data, authors 

applied the dropout technique involving 50 percent on hidden neurons. They carried out this 

research based on a well-known IFN/ENIT12 database. The experiment applied MSE 

performance metrics and ADAGRAD optimization methods on all the layers. Unlike the 

traditional time series, the datasets possess similar sequential structures although, the data is 

presented in a pixel-like manner of up to 100, 200, 300 pixels respectively. An error rate 

improvement of 8.6% is reported while training MDLSTM over 8.5% of CDBN and others as 

tested. This result is due to the dropout model application during model training. 

To buttress the need to enhance long short-term memory recurrent neural network (LSTM-

RNN) for cases applied to this thesis, [50, 51] extracts error prone engineered features to 

capture the vanishing gradient problem experienced on LSTM for language modelling tasks.  

Their work, however, describes the effect of applying dropout regularisation in the hidden 

                                                           
12 A popular public database for training and testing Arabic handwritten text recognition systems. 
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LSTM layer. The author reports overfitting using only the LSTM model. To address this 

problem and poor generalization on the training data, authors applied the dropout technique 

involving 50 percent of hidden neurons. They carried out this research based on a well-known 

IFN/ENIT13 database. The experiment applied MSE performance metrics and the RMSprop 

optimization method on the layers. The datasets again, possess similar sequential structures; 

the data is presented in a bit-like manner. An error rate improvement of 5.6% is reported while 

training LSTM over 6.4% of CNN and others as tested. This result is due to the dropout model 

application during model training. 

In order to use weight regularisation for a multistep sequence forecasting, [20] applied dropout 

on LSTM for time series monitoring and prediction of critical temperature on permanent 

magnet of a synchronous motor. Authors applied principal component analysis (PCA) for 

training and testing data, using a 15 Particle Swarm approach for hyper-parameter optimisation. 

It is deduced that the RNN-LSTM-dropout approach significantly outperformed the traditional 

lumped-parameter thermal networks (LPTNs) approach. 

In order to ascertain the best part of the neural layer to apply dropout in an LSTM architecture, 

[28] performed a sequence prediction for a handwritten recognition problem. Authors, 

however, show that better improvement can be reported by implementing dropout differently 

especially on different layers (units). In addition, MDLSTM-type of LSTM was implemented 

in this research and further compared with HMM, CDBN14.  The available data is Rimes15 

training set in French, which is up to 1,500 paragraphs, manually extracted from the images, 

and an evaluation set of 100 paragraphs. They held out the last 149 paragraphs (approximately 

10%) of the training set as a validation set and trained the systems on the remaining 1,391 

                                                           
13 A popular public database for training and testing Arabic handwritten text recognition systems. 
14 This is synonymous to a typical multivariate sequence prediction. The variables are complex and cost 
effective in terms of structuring the neurons unlike the univariate systems. 
15 Rimes is a popular data management company responsible for benchmark data services for research and 
development. 



 
 

33 | P a g e  
 

paragraphs. For the recognition dataset, handwritten pages that correspond to English text with 

747 images for training and 116 for validation using 336 for evaluation. The last dataset was 

the handwritten notes from British philosopher Jeremy Bentham that is comprised of 350 pages 

used for training, 50 images for validation and 33 pages for testing the algorithm. The 

performance metrics applied were a simple character and word error rate (CER and WER) 

baseline model with no dropout, traditional LSTM with dropout applied before and after 

modelling without dropout.  Authors finally report that dropout is best applied to the inputs and 

outputs layers of the network respectively. 

3.3. Description of Typical Models 
 

In engineering system specifications, component selections, modifications and assembly, 

design and analysis rely on theoretical understanding of best performance. Data science and 

other related fields, especially predictive analytics follows these trends in ensuring best practice 

in building predictive models for research implementations. Modern technology over the years 

has relied on traditional systems like statistics and mathematics using logical algorithm 

programming to improve understanding of how data informs decisions and how insights are 

gained from data. This method is described by the term, modelling. This aspect has seen authors 

of different disciplines define modelling to suit their respective areas of discipline. 

3.3.1. Recurrent Neural Network and Machine Learning Modeling. 

 

Recurrent neural network (RNN) is a type of neural network used in modelling complex 

systems like wind speed for forecasting. Wind speed is stochastic in nature with an irregular 

sequence that requires complex models like autoregressive integrated moving average 

(ARIMA), support vector regression (SVR), and RNN to model. Due to the vanishing 

gradients, issues of computational expensiveness and representational power, research has 

come up with different architectural approaches, namely; LSTM, gated recurrent units (GRUs), 
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and Stacking16 as discussed in section 4.3. Although, RNNs are derivations from inabilities of 

feedforward neural networks as shown Figure 3.3, RNNs perform better in real-life 

applications. 

 

 

 

 

 

 

Figure 3. 3: Simple feed-forward neural network. 

 

Discussing RNN requires a review of feedforward neural networks as shown in the figure 

above. It is important to understand that each unit does relatively straightforward computations 

using Eq. (3.1). This is done by taking the input 𝑋𝑗 and multiplying it by weight 𝑊𝑖𝑗 and adding 

bias-term 𝑏𝑖 to performs a sum and then pass them through an activation function g to yield the 

output 𝑌𝑡.  

Using vector notation,𝑊1,𝑊2,…,𝑊𝑛 forms a matrix representing the connection between 

layers, which in turn, yields 𝑌𝑘 = 𝑔(𝑊𝑦𝑘−1 + 𝑏) 

𝑌𝑖 = 𝑔(∑ 𝑥𝑗𝑗 𝑊𝑖𝑗 + 𝑏𝑖)                     (3.1)                                                                                                

Another interesting aspect of neural networks (NN) is training. Training a NN is a process 

where a cost function is derived with respect to a derivative of the weights, followed by an 

application of a mathematical chain rule to move the derivative through the nested layers of 

                                                           
16 This is a practice in neural network that involves ensemble of LSTMs or algorithms to form single LSTM or 
algorithm. Usually applied in multivariate or complex systems.  
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computations. In the form described by Eq. (3.1). Applying the chain rule with respect to Eq. 

(3.1) forms Eq. (3.2). This systematic unfolding is as shown in Figure 3.4. 

                                                                                                                    (3.2) 

 

 

 

Figure 3. 4: Unfolding feed-forward neural network. 

 

On the other hand, the feed-forward neural network (FFNN) [52-54] is robust but has 

limitations. One of the limitations is the concept of fixed length where the size of the input 

layer is fixed. For example, the image size is usually of a fixed length of 32 X 32 pixels 

whereas, in time series sequence, the length of the input varies from example to example [53, 

54] up to an order of magnitude. However, in a more formal manner, given a set of sequences 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), RNN updates its recurrent hidden state ℎ𝑡 by Eq. (3.3)  

 

ht =  {
0,                           t = 0

β(ht−1, xt),    otherwise  
                                      (3.3) 

 
where β is a nonlinear function representing logistic sigmoid of an affine transformation. This 

recurrent hidden state is updated as implemented in Eq. (3.4) to form Figure 3.5. 

 

 

 

 

 

 

 

 

Figure 3. 5: Simple recurrent neural network. 
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Another reason is the issue of independence; this is because different training examples are 

independent of each other. Hence, other data structures like sentences, voice, which has short 

and long-term dependencies deal with different training examples in an order of sequence. This, 

however, led to an RNN that not only learns the short and long-term dependencies but also 

accommodates input sequences of variable length. 

A simple recurrent neuron is as shown in Figure 3.5, which forms Eq. (3.4), from the equation, 

the difference between Eq. (3.3) and (3.4) is the ϴɸ (ℎ𝑖−1) term that depends on the previous 

time step, multiplied by the weight matrix Yt. This however, informs the basics of recurrent 

unit as 𝑔𝑦(𝑊𝑦ℎ𝑡 + 𝑏𝑦) , which in turn forms many of the recurrent units around the study area. 

 

                                                                         (3.4) 

 

3.3.1.1 Basics in Training Neural Networks 

 

The question that usually arises is how such a complicated network is trained. This is done by 

simply unrolling the complicated network with time to turn the complications into an FFNN 

form as shown in Figure 3.6. From the figure, the activity of ℎ𝑡+1 not only depends on 𝑥𝑡 but 

also the units of activities at the previous time steps as shown in 𝛳𝑖 of Figure four. 

 

 

 

 

 

 

 

 

Figure 3. 6: Unfolding Simple RNN 
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The only difference in unfolding RNN and a typical FFNN is that this unit  𝛳𝑖 , depends on the 

activity of the previous time step. This is one of the reasons RNN applications perform better 

in sequential systems since the given inputs are shifted forward in time in a sense using 

conditional probability models. This probability predicts the sequence of events at time t given 

a history of activities before t as in 𝑃(𝐻𝑡|{𝐻𝑡−1, 𝐻𝑡−2,𝐻𝑡−3, … , 𝐻0}) Conversely, RNN is 

applied in sentiment analysis to classify an event as positive or negative using the similar 

method. 

The network can be unrolled in time to mimic FFNN as shown in Figure 3.3, training RNN is 

different [55]. In FFNN, the weight matrix is shared across the network whereas, in RNN, the 

weight matrix has a comparison in mind while unrolling the network. This comparison is 

against every time step of the network. Therefore, for ease of interpretation, these comparisons 

are combined to obtain a gradient update for the weight matrix 𝛳𝑅, which is derived from Eq. 

(3.5); this process of computation is known as the chain rule. It is used to back-propagate the 

nested layer through a set of propagations.  

∂C

∂ϴR 
 = ∑

∂Ct

∂ϴR t  

∂C2

∂ϴR
 = ∑

∂C2

∂y2

∂y2

∂h2

∂h2

∂ϴk

∂hk

∂ϴR

t
k=1                                    (3.5) 

 

However, unlike in Eq. (3.4) where  𝑊𝑅 ( 𝑜𝑟 𝛳𝑅) is commonly shared, the summation is back 

propagated across each time step as in  𝑎 = (𝑊1 𝑥2 +  𝑊𝑅 ℎ1 +   𝑏𝑛) where  ℎ1 depends on  𝑊𝑅 

over long term dependencies. This dependence introduces an issue addressed as exploding or 

vanishing gradients of Eq. (3.6), hence, discovered by [56]. Imagine a recurrent neural network 

is unfolded on a 100 different time steps and expects the derivative to be computed at an initial 
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state or a 0 time step. To do that, a multiplication or backpropagation must be done all the way 

back from 100 to 0 as in Eq. (3.6) such that the appropriate weight matrix is captured. 

∂ht

∂ϴk
= ∏

∂hi

∂ϴi−1
=   ∏ ϴTt

i=k+1  t
i=k+1 diag[ɸ′(hi−1)]                                                            (3.6) 

where 𝛳𝑇 came from taking the derivative of ℎ𝑡 with respect to ℎ𝑡−1  

 

Then the magnitude 𝛳𝑇 is scaled across the steps alongside the size of weight matrices, which 

further compounded in many times, hence, incorrect steps are inevitable. This however is the 

vanishing gradient issue experienced on training RNN especially on large samples of data. At 

first, research tried to resolve vanishing gradients with activation functions and realized its 

effect is minimal especially as data grows to high magnitude. 

3.3.1.2 Advantages of Activation Functions. 

 

The importance of activation functions as shown in Figure (3.7a) for tanh and (3.7b) for ReLu 

detects input from negative infinity to positive infinity and then squashes it from -1 to +1; 0 in 

the case of sigmoid or 0 to 1 as in ReLu. This process helps in clipping the output to prevent 

the exploding gradients but those processes do not do much, rather it helps the network to 

improve the magnitude of weights as in the description seen in [53, 55, 57, 58]. 

   

(a) Sigmoid/Tanh transfer function        (b) ReLU Transfer Function 

 
Figure 3. 7: Activation functions implemented in RNN 
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To diagnose and solve these issues especially of exploding gradients, methods by [57] and [59] 

are proposed. The method uses normalization of the gradient vector and uses an optimization 

algorithm with a second-order derivative such as RMSprop to adjust the learning rate such that 

the cost can be controlled. These methods require gradient clippings at certain threshold prior 

to explosions. In addition, [19, 58] discovered that the method is predominantly data sample 

dependent and as such implemented in speech recognition or cases of machine translation of 

adaptive learning rate algorithm to adjust the vanishing gradients, which proved insufficient on 

other sequence problems as reported by [60].  

Another aspect of explosive or vanishing gradient control requires truncating and back 

propagating certain chunks of time steps at a given rate. This method appears to be a smart 

approach but suffers temporal context beyond the level at which the backpropagation is 

truncated. This process is termed truncated backpropagation through time (BPTT) from where 

error propagation is recursively computed as in Eq. (3.7) below. 

𝜕𝐶𝑡

𝜕𝛳𝑘
 𝛼 |𝛳𝑅|𝑇 |

𝜕𝑔

𝜕𝑎
|

𝑇

                     (3.7) 

Other methods that have proven realistic in clipping RNN gradient is using rectifiers that have 

no zero gradient units [57]. These rectifiers are for example the rectified linear units (ReLU) 

of Figure 3.7b, which have a derivative of one on a positive output. This means, no 

multiplication for activities that are larger or smaller than one. Hence, [25] explore RMSProp 

to control exploding gradients, where diminishing gradients can also adaptively adjust learning 

rates, which in turn depends on the size of the gradients17, thereby making the system 

uncontrollable.  

                                                           
17 The growth experienced in the gradient curses uncontrollable explosion. 
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However, for effective control of these vanishing gradients; one of the most reliable approaches 

results in applying sophisticated architectures, designed specifically to combat vanishing 

gradient issues in RNN. These architectures lead to the concepts of long short temporal memory 

(LSTM) and the gated recurrent units (GRU) 

3.3.2. Long Short-Term Memory (LSTM). 

 

Reference [61], propose the long short-term memory (LSTM) recurrent neural architecture. 

This architecture is very simple, at the core with a memory cell Ċ that has a recurrent weight 

to itself. The architecture when modified solved the issues of vanishing gradients problems 

especially as the sequence is moved forward in time, the activity of the memory cell inherits 

the activity of the previous time step – in that case, this unfolds the gradient as in Figure 3.8. It 

is imperative to note that studies from the noted literature states that the vanishing gradient is 

not achieved, completely, since the architecture also depends on the gradient data size. 

 

 

 

 

 

 

 

 

 

 

Figure 3. 8: Long Short-Term Memory (LSTM) architecture. 

 

Dealing with this situation involves taking the memory cell and adding operations by 

simultaneously flushing the memory such that samples are added and retrieved from a state at 

the same time in a manner like a conveyor belt that keeps the memory intact from one time 

Cell 

(ℎ𝑡−1, 𝑋𝑡) 

(ℎ𝑡−1, 𝑋𝑡) 

(ℎ𝑡−1, 𝑋𝑡) 

(ℎ𝑡−1, 𝑋𝑡) 

Input Gate 
Output Gate 

Forget Gate 

𝑖𝑡  

𝑔𝑡 𝐶𝑡 

𝑂𝑡  

ℎ𝑡 
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step to another [24, 25, 31]. This process is repeated such that the memory learns the process 

in time, but the issues of gradient explosion remain. To solve this, the idea of gating is 

introduced (see forget gate in Figure 3.8). Here, the size of the memory cell is modified in order 

to retrieve the output. From the figure, the transfer function (sigmoid, tanh, ReLU) ensures that 

the output from forget-gate is between 0 and 1 – leading to gain properties described by [24, 

25, 62] that ensure further retrieval from the forget layer. In addition, this process results in Eq. 

(3.8) where ʘ represents element-wise multiplication and ℎ𝑡 becomes the output from the 

memory cell. 

ft = σg(ϴxfxt + ϴhfht−1 + bf)                                                         

it =  σg(ϴxixt + ϴhi + bi)  

οt = σg(ϴxοxt + ϴhοht−1 + bο) 

gt = Tanh (ϴxgxt + ϴhght−1 + bg) 

ct = ft ʘ ct−1 +  it ʘ gt 

ht =  οt ʘ Tanh (ct)                                                                                                                          (3.8)  
                                                                                                                       
The retrieval process, however, ensures best state-step movement from the memory cells. In 

Figure (3.8) the squashing function further ensures a 0 and 1 output of each gate –  𝑓𝑡,𝑖𝑡 

, 𝑜𝑡 , and ℎ𝑡 (see the nomenclature page) for the meaning of each gating parameter. It is worthy 

noting that at this point the process experiences vanishing gradients until a similar approach is 

repeated for a forgetting process although with a different weight matrix 𝑤𝑓 , which yields 

another output between 0 and 1. In the output, the multiplication is repeated on the present 

memory cell to another until the cell becomes zeros where the memory is flushed completely. 

Otherwise, the memory cell is retained for another time step 𝑓𝑡. The process is incomplete since 

data is written to the components in a recurrent fashion, which in turn generates a new proposed 

input into the memory cell as in  𝑔𝑡 of Eq. (3.8).  

The cell state in the structure modulates the proposed input and then writes it into the memory 

cell. Studying the final stage of the structure, however it is interesting to note that the generated 

Eq. (3.8) is equivalent to how much the network intends to forget the proposed input multiplied 
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by how much that is to accept the new proposed input. This process, however, forms the core 

of an LSTM network.  

It is important to note that the vectors – output gate, input gate, and the forget gate, each share 

element-wise multiplication between 0 and 1 which makes the manipulation easy to perform a 

task in a one-hot encoding scenario.  

3.3.3. Gated Recurrent Unit (GRU) 

 

This model is relatively popular for its simplicity. However, [60, 63] proposed the gated 

recurrent unit (GRU). The model tends to deal with the vanishing gradient problem by making 

each recurrent unit capture adaptive dependencies at different time scales.  

In addition, compressing the different gate to an updated gate as depicted in Figure 3.9. From 

the model, it is seen that the input model  ℎ𝑡 proposes with an output gate z to obtain a 

representation of the next time step. 𝑍𝑡 is a gate with a 0 and 1 element. The remember gate 

remembers how much the previous time step representation impacts newly proposed input.  

 

Figure 3. 9: Gated Recurrent Unit 

Source: safari online books18 

 

In order for ℎ𝑡 to be proposed, the weight matrix is multiplied by the input at 𝑥𝑡 remembering 

the activity at a previous time step xt-1, which is further multiplied by how much it is to be 

                                                           
18 https://www.safaribooksonline.com/library/view/deep-learning 

Date Accessed: 10 August 2017 

https://www.safaribooksonline.com/library/view/deep-learning
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remembered from that time step 𝑟𝑡. A new update for the next time step ℎ𝑡 is obtained as ℎ𝑡−1 

plus the proposed new input ℎ𝑡 modulated by the updated gate 𝑧𝑡. Like LSTM but much more 

simplified. However, in terms of performance, LSTM performs better due to the regularisation 

acceptance especially over a long sequence and that is why it is considered in this research. 

3.4. Recurrent Neural Network Feature Description. 
 

The recurrent neural network has experienced major improvements in areas of language 

modelling, text, speech recognition and sequence-to-sequence or time series modelling. 

Research work in [24, 27, 31]  has the LSTM improvement using the dropout technique to 

model speech and recorded major improvement of RMSE of 13% over the traditional Hidden 

Markov models. RNN does this by a simple analogy depicted in Figure 3.10, having a 

representation, coloured in green, which represents different time steps while the grey 

counterpart represents different inputs.  

Imagine a scenario having alphabets of different letters fed into a network. At first, the letter 

‘l’ is input into the network; the network is required to predict what the following character 

would be. In our example, the network emits a four-long vector for each element in the alphabet 

that sums up to one. 

 

 

 

 

 

 

 

 

Figure 3. 10: Scenario synthesis (case study 1) 
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A probability of a zero being a certain character given a character it has seen before; the model 

would output an ‘a’. Inputting more characters in the model obtains the model's prediction as 

shown in the Figure 3.10. The nature of the process is that characters that are being introduced 

are the input ‘l, a, y, e, r’ and the model outputs the same input but shifted in time. However, 

the advantage is that it is shifted forward in time such that at zero time step, it is seen n, 

expecting the next character ‘a’ given the history of characters that are before 

it, 𝑎𝑠 𝑖𝑛 𝑃(𝑙𝑡|{𝑙𝑡−1, 𝑙𝑡−2, … , 𝑙0}). This example however is a typical language model.  

 

 

 

 

 

 

 

 

 

Figure 3. 11: Scenario synthesis (case study 2) 

The model can be extended to use not just words but models like wind speed, medical data and 

so on such that a first input of brain, would expect the model to predict the most likely next 

word scan of Figure 3.11 to have an output – ‘brain scan with no tumour’. These words being 

predicted in Figure 3.10 and 3.11 are typically defined in neural networks as features.  

Features commonly applied in tasks similar to this thesis were reviewed in chapter one. It is a 

common practice that different research groups use different examples to represent features; 

hence, the underlying characteristic is usually the same. RNN time series models keep track of 

sequence patterns in the form of samples, time steps and features for LSTM hidden layer 

implementation. The inspiration as discussed in chapter one [28, 31-33] has sequential 
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modelling introduced to mimic time series sequences applying dropout on LSTM to forecast 

sequence generation in wind speed, which is similar to speech recognition, handwriting 

recognition and machine translation. Furthermore, the thesis exploits the concept of leveraging 

mid-level RNN representation in LSTM [27] inferred in image label annotation. 

In a similar vein, the review of wind speed prediction for energy consumption for wind power 

in the household using LSTM as reported by [23, 34] was further investigated.  Although as 

seen in chapter one [23] with no improvement on LSTM, effective learning of measured energy 

consumption profile was reported. However, in a typical time series scenario similar to wind 

speed prediction [29], dropout is implemented to improve LSTM to forecast the risk of student 

dropout in a massive online course platform. Time series sequential models require effective 

regularisation for best forecast especially in multivariate cases to combat the collinearity 

experience, common in multi-level regression problems. 

3.5. RNN Regularisation Modelling Methods. 

 

This is the process of controlling perfect learning experience observed in long short-term 

memory architecture for model performance. Regularisation is vital since flexibility makes the 

LSTM component prone to overfitting. As described in chapter one, LSTM regularisation has 

seen early stopping using activation functions, the thesis relies on weight noise addition in the 

form of jitter during training. A different approach that is not discussed in this thesis has a 

different scenario of application with the underlying similarity in adding jitter once per training 

sequence. This process reduces the amount of information required to transfer parameters for 

generalization control. For better understanding about regularisation, let’s assume fitting an RNN 

that overfitting with a cost function J(ϴ) as in Eq. 3.9 

 𝐽(𝜔[𝑖], 𝑏[𝑖]) =  
1

𝑚
∑  loss(Ў[𝑖], 𝑦[𝑖])𝑚

𝑙=𝑚 +
ʎ

2𝑚
∑ ‖𝜔[𝑙]‖

𝐹

2𝑙
𝑙=1                 (3.9)
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The extra term 
ʎ

2𝑚
∑ ‖𝜔[𝑙]‖

𝐹

2𝑙
𝑙=1  penalises the weight term 𝜔[𝑙] from being too large. The ʎ term sets the 

weight matrices 𝜔[𝑖] to be close to 0 while 𝐹 the fabiniouse norm. This scenario makes the neural 

network more simplified. On the other hand, this method takes overfitting towards the high bias. 

Another method of regularisation seen in recurrent neural network (RNN) called gradient clipping, 

discussed in section 1.2 utilizes clipping of gradient to prevent overfitting as shown in Figure 3.12, 

described by Equation 3.10. 

𝑔(𝑧) = tanh (𝑧)                  (3.10) 

 

 

 

 

 

Figure 3.12: Clipping Gradient Regularisation Method 

This method states that as far as z is within a small range of parameter as depicted in the Figure…, 

regularisation model uses a linear regression regime of tanh (𝑧) to replace 
ʎ

2𝑚
∑ ‖𝜔[𝑙]‖

𝐹

2𝑙
𝑙=1   in Eq. 3.10 

therefore, if ʎ is large, the 𝜔[𝑙] will be relatively small because they are penalised in the J(ϴ) looking at 

Eq. 3.11 

𝑧𝐿 = 𝜔[𝐿] ∗ 𝑎[𝐿−𝑖) + 𝑏𝐿                  (3.11) 

This analogy infers that even a deep network would appear to be linear and overfitting is likely to be 

prevented since it would form a straight line in the function. The downside of the method is data size. 

 

z 
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3.5.1. L1L2 Regularisation 

 

In the sequence prediction discussed in the literature, one of the methods used in improving 

LSTM performance is weight regularisation. This method is simply the application of L1L2 

(see section 1.3.2 for L1, L1 explanation) constraints on weights within LSTM nodes – input, 

hidden and output layer, to reduce overfitting. Research in [24] mathematically resolves the 

idea in Eq. (3.12 – 3.18) below,                                                                                     

Recall that in logistic regression, the cost function J(ϴ) is expected to be minimized as shown in Eq. 

3.12 

𝐽(𝜔, 𝑏) =  
1

𝑚
∑ loss (Ў[𝑖], 𝑦[𝑖])𝑚

𝑙=𝑚 +
ʎ

2𝑚
∑ ‖𝜔‖2

2𝑙
𝑙=1                  (3.12) 

Here, ʎ is the regularization parameter and  

‖𝜔‖2
2 =  ∑ 𝜔𝑗

2 =  𝜔𝑇𝜔𝑛𝑥
𝑗=1                    (3.13) 

where Eq. 3.13 is the Euclidean Norm of the parameter vector and is called the L2 regularisation on 

logistic regressions. 

L1 is similar to L2 but the difference is in 
ʎ

𝑚
∑ |𝜔|𝑛𝑥

𝑙=1  term, which is equal, to 
ʎ

𝑚
‖𝜔‖1 which made the 

𝜔 in L1 to be sparse, in order words, having more zeros in the model that helps in model compression. 

In neural network however, regularisation implementation is different since it considers element-wise 

multiplication in its activation functions as described in Eq. (3.14). 

𝐽(𝜔[𝑖], 𝑏[𝑖], … , 𝜔[𝑙], 𝑏[𝑙]) =  
1

𝑚
∑  loss(Ў[𝑖], 𝑦[𝑖])𝑚

𝑖=𝑚 +
ʎ

2𝑚
∑ ‖𝜔[𝑙]‖

𝐹

2𝑙
𝑙=1              (3.14) 

were, ‖𝜔[𝑙]‖
𝐹

2
= ∑ .𝑛[𝑛−1]

𝑖=1 ∑ (𝜔𝑖𝑗
[𝑙]

)2𝑛[𝑙]

𝑗=1  and 𝑙 − 1 𝑎𝑛𝑑 𝑙 are the number of hidden units in layer 𝑛 − 𝑙. 

The matric norm is the Frobenius norm of the matrices. 

During training of this neural network, on back propagation and to implement optimisation,  
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∂ω[l] = [from backprop] +
ʎ

m
+ ω[l]                                     (3.15) 

Where  

ω[l] ∶= ω[l] − δ ∂ω[l]                             (3.16) 

 𝛿 is the learning rate and Eq. (3.16) is the L2 regularisation to the neural network, which is called 

weight decay. 

Plugging Eq. 3.15 into Eq. (3.16), we have  

ω[l] ∶= ω[l] − δ[from back prop] +
ʎ

m
ω[l]                (3.17) 

Which is equivalent to Eq. 3.18 

ω[l] ∶= ω[l] − δ
ʎ

m
ω[l] − δ[from back prop]                (3.18) 

Therefore, the 𝜔[𝑙] − 𝛿
ʎ

𝑚
𝜔[𝑙] term shows that whatever 𝜔[𝑙] is, the regularisation makes the model 

small since the matric 𝜔[𝑙] is multiplied by 1 − 𝛿
ʎ

𝑚
𝜔[𝑙] hence reducing model complexity in neural 

networks. 

3.5.2 Dropout Regularisation.  

 

The proposed method [64] for correcting weight values due to over-adaptation that causes 

diminishing accuracy on new samples while training artificial neural networks (ANN) is 

described. Researchers in various deep learning areas especially image and visual recognitions 

[65-67] have applied the technique to solve various complex learning challenges in relation to 

overfitting and under-fitting.  To achieve this concept, a mathematical relationship described 

in Eq. (3.13) [68] applied Bernoulli random variable 𝛿𝑖 to randomly remove neuron from a 

neural  network using description of Eq. (3.19). Here, the probability 𝑃(𝛿𝑖  =  0)  =  𝑞𝑖 is 

assumed to be independent from each other, however, if  𝑃 (𝛿𝑖 =  1)  =  1 −  𝑞𝑖  =  𝑝𝑖 This 
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however, forms linearity property that is applied to the expectation of the output of the neuron 

such that, at Eq. (3.19) modified to 14, sums the derivative of Eq. (3.20):  

E[y(i)] =  ∑ wkʘxk
(i)

E[n
k=1 δk] < bE[δk]                                    (3.19) 

               =  ∑ wkʘxk
(i)

pk < bpb
n
k=1                                                                          (3.20) 

where 𝑤𝑘 is the weight-vector and 𝑥𝑘
(𝑖)

 is the neural shape parameter. At IID, the q becomes 

associated to the random number generator that ensures the shape of the network is kept even at 

every iteration while p is the probability of keeping a neuron at random. Therefore, during training 

Eq. (3.13) is applied to train individual nodes of a RNN. However, simplifying Eq. (3.19) results 

in dropout Eq. (3.21). During training, the backpropagation is associated to 𝑝𝑖 which is element 

wise multiplied (ʘ) by the weight parameters 𝑤𝑘 of the reduced node to present a zero-out neuron 

by reducing co-adaptation among the neurons. This scenario results in an LSTM network that is 

insensitive to specific neuron weights at the nodes, thereby influencing better generalization with 

relatively less likelihood for overfitting training data. To address the issues at low testing time, the 

scale factor is inverted in a form as  
1

1−𝑝
=

1

𝑞
 , subject to Eq. 3.21. 

E[y(i)] =
1

q
 . [∑ wkʘxk

(i)
q < bn

k=1 ]                                                  (3.21) 

The equation above results in the concept of inverted dropout that further results in the test time 

being untouched, while effectively reducing training time but improves generalization irrespective 

of the LSTM neural configuration. The Python code implementation of inverted dropout is further 

discussed in the Appendix A (xiii). From Eq. (3.14), 𝑥𝑘
(𝑖)

 will be reduced by 50% (ie if the p = 

0.5), meaning 50% of 𝑥𝑘
(𝑖)

 will be zeroed out. However, in order not to reduce the expected value 

of the network 𝐸[𝑦(𝑖), 𝑥𝑘
(𝑖)

 is divide by 𝑞 such that the remaining 𝑥𝑘
(𝑖)

 would be bumped back up 

by the required 50% thereby not influencing the generalisation of expected value as in Eq. 3.19. 
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Another advantage of the inverted dropout is that no matter the value 𝑞 is set, 𝑥𝑘
(𝑖)

 remains 

unchanged.  

3.6. Performance in Wind Power Predictions.  

In regression problems, one of the major processes is a measure of algorithm performance when 

fitted to a model, in other words, training. This measure is with respect to error reduction during 

the training process. This implies that the increase in error reduces algorithm adaptability on data 

samples, which in turn reduces performance on unseen (test) data, after training. In addition, the 

measure is scale dependent and has the ability to compare forecasting errors of different models 

over a particular data sample, hence not between datasets.   

3.6.1 Root Mean Square Error. 

In sequence prediction, the value of the predicted model is measured by how it performs in 

understanding or training sample data. Research reported by [4, 18, 53, 69, 70]  measures the 

performance of an ARIMA model over several training samples using RMSE as shown in Eq. 

(3.17); MSE, MAE performance measures metrics for a univariate system. In a bid to compute 

the performance of different algorithms – SVR, ARIMA, PAR and EDM over a sample set of 650 

samples, [53] employed RMSE, MSE, nRMSE to measure the independent performance of the 

algorithms. On the other hand, [70] presented RMSE as the best metrics and further reported that 

SVR is the best algorithm that learns the behaviour and pattern of the samples.  

RMSE =  √∑ (Pt−yt)2T
t−t

n
                          (3.22) 

Depending on datasets and problems, RMSE and MSE appear to be the most used metrics in for 

time series and sequence prediction. This is due to the effect on unseen data as RMSE in 

proportional to the size of the squared error. This means that larger variations of errors have a 

disproportionately large effect on the square root of the error. However, the consequence of 

squaring this error is the sensitivity to outliers.  
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In a regression problem shown in Figure 3.13 RMSE is calculated as Eq. (3.23), which means that 

for a predicted value 𝑦𝑡 of a time sequence t of dependent regression variable 𝑃𝑡 observed over T 

times and computed in a T-variable. 

 

 

 

 

 

 

 

Figure 3. 12: Sample of error measurement. 

 

In a cross-sectional sequence of data, t is described as i. While T is seen as n. RMSE is simply used 

to compare differences between two variables in some discipline. In an unbiased estimator, the 

RMSE is also described as the square root of the variance, which in turn is known as the standard 

deviation. RMSE is of different variants in terms of use. Other performance metrics for time series 

and sequence forecasting are the nRMSE, MAE, MSE and Mean absolute percentage error (MAPE) 

as discussed below. 

3.6.2. Normalized RMSE (nRMSE) 

 

This is applied when data is of different scales, although in the literature, research has not recorded 

consistent means of normalization. This means that the mean and range of RMSE becomes a 

common choice for normalizing root mean squared error. The equation of nRMSE shown in Eq. 

(3.23) is expressed as a percentage metric having a high value that indicates high residual variance. 

The metrics are dependent on sample size for better comparison.  

nRMSE = 
𝑅𝑀𝑆𝐸

(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)
                                (3.23) 
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where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the maximum value and minimum value of the sample data respectively. 

3.6.3. Mean Absolute Error (MAE)  

 

This is described as the absolute average difference between two variables having the X and Y as 

in Figure 3.12 fundamentally, MAE is easier to understand than RMSE due to its interpretability. 

From Figure 3.12, MAE shown in Eq. (3.24) is the average vertical distance between each point, 

in order words; the average is in the form 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑥𝑖| 𝑛

𝑖=1

𝑛
                              (3.24) 

 where 𝑦𝑖 is the predicted variable and 𝑥𝑖  is the actual variable.  

3.6.4. Mean Absolute Percentage Error (MAPE) 

 

This metric, represented by Eq. (3.25) is similar to RMSE; MAPE has the absolute value summed 

for every forecasted point in time divided by the number of fitted points, n. the factor multiplied 

by 100 made it a percentage error. 

𝑀𝐴𝑃𝐸 =  
100

𝑛
∑ |

𝐴𝑡− 𝐻𝑡

𝐻𝑡
|𝑛

𝑡=1                             (3.25) 

From the Eq. (3.20) above, 𝐴𝑡 represents the actual value, while 𝐻𝑡 is the predicted value. The 

difference between 𝐴𝑡 and 𝐻𝑡 is however divided by actual value 𝐻𝑡. Research employing MAPE 

experiences drawbacks; it suffers poor generalisations on zero values or missing values. In 

addition, MAPE performs poorly on predictions that cannot exceed 100% for forecasts that are 

too low and fails forecasts, which are too high. In order words, no upper limit to percentage error. 

Hence, the reasons why MAPE is not statistically accurate when compared to other metrics such 

as RMSE, MAE, nRMSE, etc. 
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3.6.5. Mean Square Error (MSE) 

 

This metric measures the average of squares of errors and is often, addressed as a risk function, 

which corresponds to the expected value of the quadratic loss. The difference occurs because 

of randomness and is controlled by the square root term as in RMSE. Furthermore, in MSE 

metrics, values closer to zero are better estimators as shown in Eq. (3.26) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑃𝑖 − 𝑦𝑖)

2𝑛
𝑖=1                            (3.26) 
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Chapter 4. 

 

Wind-Farm Power Prediction Methodology 

 

This Chapter presents various models and steps to achieve the research objective. It studies the 

mathematical literature underlying the principles of wind speed prediction for generated wind 

power outputs and its logical relationships to artificial neural network (ANN) especially for 

wind-farm data analysis and prediction. New models formulated where necessary. Data 

collection and statistical models for wind data analysis, which involves the utilization of 

empirical correlations and standard probability distributions to estimate the parameters 

necessary to develop the output wind-power operation process.  

One of the major focuses of wind research is to understand the relationship between wind 

power statistical distributions and atmospheric variables. These variables are turbulence, wind 

speed (see section 3.1.2) that is dependent on a broad range of temporal and spatial scales in a 

geographic area as shown in Figure 4.1. The distributions on the other hand are the Weibull, 

Rayleigh, and the wind power density. Verification of numerical models by fieldwork and 

statistical analysis enhance understanding of atmospheric variables both in horizontal and  

vertical landmasses above earth or sea surfaces. Operators and wind developers however rely 

on high-resolution remote sensing computer simulation to provide useful prediction, which in 

turn enables them to select and operate, wind farm sites efficiently. The high resolution 

computer simulation are built on sophisticated models such as recurrent neural networks 

(RNNs), convolutional neural networks (CNNs), hidden Markov models, (HMM) [71-73] and 

so on, to understand wind complexities and atmospheric instabilities. Therefore, understanding 

wind dynamics by improving accuracy of wind prediction is critical to grid operators to balance 
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power generation by decreasing or increasing production from other sources – biomass, 

geothermal, hydroelectricity, natural gases (coal), etc.  

4.1. Wind Farm Power Output Prediction. 

 

The atmospheric instability especially on wind speed and turbulence affects the amount of 

power extraction in wind turbines and turbines’ lifespan components. Remote sensing 

instruments such as Lidar and sonar has been used to provide vertical wind profiles – wind 

speed, wind direction and turbulence in the lower layer of the atmosphere. These data are 

collected in the location as described by [74]. Sonia Wharton, an atmospheric scientist 

explained in Figure 4.1 that wind turbines operates in the first 150 meters of the 1-kilometer-

high atmospheric boundary layer which is adjacent to ground surfaces [75].  

 

Figure 4. 1: Wind-power generation dynamics 

Source: Lawrence Livermore National Laboratory.19 

 

These layers in addition experiences significant heat exchange during daytime (see section 

3.1.2) between the atmosphere and the surface, which in turn induces turbulence. Turbulence 

                                                           
19 Accessed 26 February 2018 
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in turn induces friction from moving wind through trees, hills and buildings. Wind farms over 

the years has improved with trade-off in turbine hub height – distance from the ground to blade 

rotor, blade diameter and power generating capacity.  

 

 

 

 

 

 

 

Figure 4. 2: Typical Wind Farm. Power Output  

 

Wharton’s findings indicates that taller turbines encounters high wind speeds to generate a 

greater amount of energy, with trade-off on complex airflows, which is driven by turbulent 

mixing that affects turbine components.  Power output, depicted in Figure 4.2 on the other hand 

depend on average wind speed and blade swept area. Conversely, wind power from Eq. (4.1) 

is proportional to the cube of wind speed. Therefore effective prediction of wind speed, 

enhance better power output estimation from a wind farm.  

4.2. Wind-farm Power Output Predictions Parameters. 

 

Wind power modelling over the years has relied on the traditional power curves of Figure 4.3 

to model wind power. These curves models wind power as a function of wind speed at hub 

height of various turbines, hence, adjusted for air density. In the literature, the intuitive 
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algorithm used for calculating the induction factors, which can be used to obtain the load on 

the turbine, which are the force 𝑑𝐹𝑁 and torque 𝑑𝑄 using Eq. (4.1) and (4.2) respectively [76] 

used to define wind power as the conversion of atmospheric forecasts into power output from 

many turbines or a single turbine. 

dFN = B ∗
1

2
∗ ρUrel

2 cdr(Clcosθ +  Cdsinθ)                              (4.1) 

dQ = BrdFT =  B ∗
1

2
∗ ρUrel

2 crdr(Clcosθ − Cdsinθ)                (4.2) 

From the equation, 𝑈 is the relative wind and its angle, 𝜃 as it approaches the turbine blade. 

Once torque is computed, the power generation from the wind becomes the torque multiplied 

by angular velocity. The rotor disk generates power by the summation of each wind in the 

blades.  

 

 

 

 

 

 

 

 

 

Figure 4. 3: Wind Turbine Power Curve. 
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Therefore, in any given conditions, the power output from the rotor, is further computed by 

plotting the generated power output from each turbine in the farm as a function of free-stream 

wind – 𝑃𝑤𝑖𝑛𝑑 whereas turbine manufacturers issue wind power, 𝑃𝑇. It is different from the 

computed wind power from a given site, extracted using the BEM theory. The difference in 

both wind powers can be small in both region I and III. In region I, the turbine is not generating 

any power hence the cut in wind speed. Here, either the blade is not rotating or it is rotating 

without producing any power, estimated to be around 3 – 4 meter per second (m/s) for a 

conventional large turbine. The rated wind speed (𝑊𝑅𝑎𝑡𝑒𝑑) is when the power output of the 

generator in the turbine reaches its maximum capacity. At this point, the generated power does 

not increase with wind speed anymore; this is mainly to protect the turbine and estimated to be 

about 11 – 15 (m/s). At the cut-out wind speed, which is around 25 m/s, for a typical large 

turbine, the entire turbine system is shut down to protect the mechanical structure of the turbine. 

This is because; at such high wind speed, the mechanical stress on the turbine is high, and could 

damage the turbine. 

4.2.1. Power Curve and Wind Speed Histogram 

 

The power curve is purely a characteristic of the wind turbine; it cannot show energy generation 

from the turbines per year, known as annual energy production (AEP). To compute AEP, the 

characteristics of the wind is required. These approaches are used to obtain the characteristics 

of wind in a wind farm and predict power output from the farm. First is using wind speed data 

collected at the farm, secondly; by using statistical estimation – predefined probability 

distributions and thirdly, by using velocity duration curve. In the first, anemometer sensors 

collect wind speed (see section 5.1, Figure 5.2 through 5.3). The Figure depicts the variation 

of wind as a function of time. Each data point is the wind speed averaged within certain time 

interval – minutes, hours, days, weekly, etc. The wind speed is however, further subdivided 

into bins such that the data point that fall within each bin is counted to form Figure 4.4 called 
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the wind speed histogram. In the histogram, each data point is associated to an average wind 

speed within a certain time interval to obtain the total amount of time during which wind is 

blowing at a speed associated to the bin. Using this approach, the AEP or wind speed over a 

certain period can be obtained for prediction of wind power. 

 

Figure 4. 4: Typical Wind Speed histogram 

Source: The Met Office, UK20 

 

The second approach, which requires a statistical method, shows that the Weibull distribution 

can provide a good fit to the wind speed histogram. It has been widely used to approximate 

wind speed histograms [47, 77]. The probability density function (PDF) has two parameters 

that allow users to adjust the shape of wind power within the wind farm, as shown in Eq. (4.5). 

From the equation, c is the scale factor while k is the shape factor. The shape factor controls 

the location and peak of the distribution, while the width of the function is controlled by the 

scale factor c, often selected at average wind speed. In addition, the shape factor can be 

obtained from a nearby wind farm or the scientific community. Once these factors are known 

the wind speed histogram can be approximated.  

                                                           
20 Date Accessed: 20th May 2018 
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4.2.2. Average Energy Production (AEP). 

 

To estimate the AEP using the statistical approach, Eq. (4.3) and (4.4) are used 

AEP = 8760 ∫ Pw(U)pPDF(u)dU
∞

0
                  (4.3) 

          = 8760 ∫ Pw(U)dFCDF(u)dU
∞

0
                            (4.4) 

where 𝑝𝑃𝐷𝐹(𝑢) is the PDF that gives the proportion of velocities that occur, that is the number 

of times per year, 8760 is the number of hours per year and 𝑝𝑃𝐷𝐹(𝑢) =  𝑑𝐹𝐶𝐷𝐹(𝑢) . Using the 

integral to replace the summation over the number of bins (NB), the Weibull cumulative 

distribution is rearranged to obtain AEP using Eq. (3.5) 

AEP =  ∑ {exp [−(
Ui−1

c
)k] − exp [− (

Ui

c
)

k

]}NB
i=1 Pw(

Ui−1+Ui

2
)              (4.5) 

From the equation above, 𝑈𝑖−1 becomes 𝐹𝐶𝐷𝐹 at the left boundary of the bin while 𝑈𝑖 is 𝐹𝐶𝐷𝐹 

at the right boundary of the bin. 𝑃𝑤(𝑈) is the power of the turbine which can be obtained from 

the power curve. The quantity 𝑃𝑤(
𝑈𝑖−1+𝑈𝑖

2
) represents the power curve at the centre of the bin. 

The third and a slightly different approach for computing AEP is the velocity duration curve 

of Figure 4.5. At each point, the duration in terms of hours for the wind to have a speed at or 

exceeding a velocity at the point is computed using Eq. (4.6). 

Velocity Duration Curve = 8760 * [1 - FCDF(U)]               (4.6) 

 Since the power curve of the wind is proportional to the cube of wind speed, the velocity axis 

can be converted to the power axis of Figure 4.6. 
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Figure 4. 5: Velocity Duration Curve. 

Source: The Met Office, UK21 

 

At this point, the power curve of the wind turbine is incorporated such that the velocity in 

Figure 4.5 is mapped to a power value of individual turbine power curves as depicted in Figure 

4.6 where AEP is the area under the power duration curve. 

 

Figure 4. 6: Turbine Power Duration Curve. 

Source: The Met Office, UK22 

 

4.2.3. Wind Power Density. 

 

This is an indicator, which shows wind resource capacity in a specific site or farm, usually 

expressed in Watts per square meter (W/m2) and calculated based on available power in the 

                                                           
21 Date accessed, 15th May 2018. 
22 Date accessed, 17th may 2018. 
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wind farm applying the Weibull parameters method of Eq. (4.7). This method is adapted from 

[78]. From the literature, wind power density is generally considered a better indicator of the 

wind resource than wind speed [47].  

P

A
=  ∫

1

2
ρU3f(V)dV

∞

0
=  

1

2
ρc3ɼ(

k+3

k
)                              (4.7) 

The average wind-power density in terms of wind speed is calculated using Eq. (4.8). This is 

because wind power is proportional to the cube of wind speed, hence, the root mean cube (rmc) 

of wind speed, which analytically results in Eq. (4.9) 

 WPD =  
∑ 0.5ρUi

3N
i=1

N
                   (4.8) 

Urmc = √
1

N
∑ Ui

3N
i=1

3
                              (4.9) 

N is 14, equivalent to the number of Turbines in the Wind Farm. 

4.3. Wind Farm Power Output (WFPO) Modelling. 

 

Wind farm power output is not complete without an effective wind speed prediction. The 

system requires an efficient prediction of wind speed such that the power generation is 

integrated to the grid for supply and load distributions. Wind farms are generally designed 

having certain layouts and components in place. These components are the shape, shade, wake, 

heights and spacing, distance from one turbine to another. The shape determines the structure 

of the farm. Description of the shapes [79] can be rectangular or triangular and work with the 

direction of the wind, mainly in a downward or up-ward direction to the turbine. The wake on 

the other hand describes the wind flow from one turbine to another. Effective wind-farm power 

output yield is expected to have shade in either the upwind or the downwind direction, wake 

behind turbines, which is dependent on the height and spacing of turbines within the farm. The 
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velocity of probability distribution, costs, and revenue generation are also important factors 

considered in wind farm design. 

The aerodynamic interactions within the turbines in a wind farm [80] directly affects wind farm 

power output prediction. These interactions caused by the wake effect as the incoming wind to 

the turbine has more energy content than the out-going wind, leading to casting of a wind 

shadow in downward direction.  

To demonstrate wind farm power output prediction from a wind farm, a 14-turbine wind farm 

is considered in this research, which adapts the design of [81], although it does not consider 

the wake effect, hence, other configurations are described by [82]. From the layout of Figure 

4.7, an 𝛂, ƴ layout of 14 turbines, separated by δ (m) and 𝓛 (m) spacing equivalent to 120 and 

300 meters respectively is assumed to provide an Npv of $12.5mil and Ir of 16.7%.   

 

 

 

 

 

 

 

 

 

Figure 4. 7:  Location of turbine 𝛂, ƴ in a rectangular grid layout of 𝛂 X ƴ turbines. 
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From the figure, wind blows in a direction ɸ with a nominal velocity V (ɸ), having effective 

wind velocity in front of turbine at 𝛂, ƴ position. Here, the aerodynamic interactions between 

turbines are 𝑉𝛼,ƴ(ɸ, δ). Therefore, the electrical power generated by turbine 𝛂, ƴ is as shown in 

Eq. (4.10), hence, 

ePα,ƴ(ɸ, δ, 𝓛)[Kwh] = 
1

2
ρVα,ƴ(ɸ, δ, ℒ)3βCpNm             (4.10) 

where β is the swept rotor area (𝑚2), 𝜌 is the air density, 𝑉𝛼,ƴ is the wind velocity of the site, 

𝐶𝑝 is the rotor coefficient of efficiency or capacity factor, which we assume to be 85%, 𝑁𝑚 is 

the efficiency of converting the rotor mechanical power into electricity; assumed to be 85%. 

The prediction of wind speed as mentioned above, results in better prediction using either 

machine learning or statistical approaches. 

4.4. Machine Learning Model for WPO Prediction. 

 

The discussion above informs the formulation of correct wind data profiles in a wind farm 

considering the learning strategy of LSTM to enhance accurate prediction of wind speed. 

Although LSTM is an improvement to RNN, LSTM from section 5.5 (Figure suffers from 

overfitting or perfect learning as shown in Figure 5.26 that results in poor generalisation at test 

time. This effect may slow convergence of the network and increase error. Suggestions from 

[83] ensures clipping gradients of hidden neurons, which results in local minima problems or 

instability of the model. To maintain stability and accuracy, dropout is ensemble with LSTM 

to ensure suitable prediction of WPO. The assembling of these methods is as described in 

chapter five. 

The RMSProp optimisation and mean square error (MSE) performance model is implemented 

during training the RNN to ensure minimum error is gained from the resulting learning process 

of wind speed prediction. This criterion is as discussed in Eq. (4.15). However, neural network 
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training as discussed theoretically in section 2.4, which results in practical modelling use-cases 

as shown below. 

4.4.1 Training and Validation Modelling. 

 

Although section 3.5 discussed NN modelling, one of the purposes of neural network trainings 

is to minimize the output error. The process of training a neural network involves tuning the 

values of the weights and biases of the network to optimize network performance, as defined 

by the network performance function. The default performance function for feed-forward 

networks is the mean square error (MSE), which typically averaged the squared error between 

the network outputs and the target outputs.  

4.4.2. Network Validation Modelling. 

 

When the training is complete, the network performance is checked to determine if any changes 

need to be made to the training process, the network architecture or the data sets. The first thing 

to do is to check the training record. The next step in validating the network is to create a 

regression plot, which shows the relationship between the outputs of the network and the 

targets. If the training were perfect, the network outputs and the targets would be exactly equal, 

but the relationship is rarely perfect in practice. 

4.4.3. Training Algorithm Model. 

 

The back-propagation algorithm proved very good for this work, and is used extensively in 

neural network applications. The network learns a predefined set of input-output sample pairs 

using a two-phase propagation-adaption cycle as a gradient-based optimization procedure. The 

training begins with random weights and biases that are adjusted by the chosen algorithm for 

minimizing errors. Each unit in the hidden layer receives only a portion of the total error signal, 

based roughly on the relative contribution to the unit made to the original output. This process 
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repeats layer by layer until each node in the network has received an error signal, which 

describes its relative contribution to the error. Consequently, each unit causes the network to 

converge toward a state, which allows all the training set be prearranged before updating 

connection weights. Different nodes learn how to recognize different features within the input 

space after training. The usual strategy is to experiment with several algorithms and locate the 

most suitable one for the given application. Other algorithms are as shown in Table 4.1 below. 

Table 4. 1: Neural Network Training Algorithms Table.  

Function Algorithm 

Traincgp Polak-Ribiére Conjugate Gradient 

Trainoss One Step Secant 

Traingdx Variable Learning Rate Gradient Descent 

Traingdm Gradient Descent with Momentum 

Traingd Gradient Descent 

Traincgb Conjugate Gradient with Powell/BealeRestarts 

Traincgf Fletcher-Powell Conjugate Gradient 

Trainlm Levenberg-Marquardt 

Trainbr Bayesian Regularisation 

Trainbfg BFGS Quasi-Newton 

Trainrp Resilient Backpropagation 

Trainscg Scaled Conjugate Gradient 

Source: [86] 
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4.4.4 Basic Back-Propagation Modelling. 

 

The three-layer network of Figure 4.8 and 4.9 are employed to aid the understanding of the 

mathematical expressions as described by [84].  

 

 

 

 

 

 

 

 

 
Figure 4. 8: Three-Layer Network  

Source: [86] 

 

The same three-layer network can be represented using Figure 4.4b 

 

Figure 4. 9: Three-Layer Network (Abbreviated Notation) 

The models that describe the operation of the multilayer network shown in Figure 4.4 is 

mathematically depicted in Eq. (4.11)  

𝑎𝑚+1 = 𝑓𝑚+1(𝑤𝑚+1𝑎𝑚 + 𝑏𝑚+1) for 𝑚 = 0, 1, ⋯ , 𝑚 − 1.             (4.11) 
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where 𝑚 is the number of layers in the network. However, the first layer neurons receive 

external inputs and the outputs of the neurons in the last layer are termed external outputs. This 

is shown in Eq. (4.12) and (4.13) respectively.  

𝑎𝑜 = 𝑃                  (4.12) 

𝑎 = 𝑎𝑚                   (4.13) 

The algorithm is provided with a set of examples of proper network behaviour 

 

{𝑝1, 𝑡1}{𝑝2, 𝑡2}, … , {𝑝𝑞 , 𝑡𝑞}                                                                                                              (4.14) 

where 𝑝𝑞 is an input to the network and 𝑡𝑞 is the corresponding output. As each input is applied 

to the network, the network output is compared to the target. The algorithm adjusts the network 

parameters in order to minimize the performance index, which is the mean square error, defined 

by Hagan using Eq. (4.15)  

𝐹(𝑿) = 𝐸[𝑒2] = 𝐸[(𝑡 − 𝑎)2]                (4.15) 

Here 𝑿 becomes the vector of network weights and biases. 𝑡  is the target value and 𝑎  is the 

output value and 𝑒  is the error between the target and the output. Therefore, Eq. (4.16) is 

applied for multiple layer networks 

F(𝐗) = E[𝐞𝐓𝐞] = E[(𝐭 − 𝐚)T(t − a)]                 (4.16)  

 

4.4.5 Performance Index. 

 

The performance index of a back propagation artificial neural network is the mean square error 

given by Eq. (4.17): 

F̂(𝐗) = (t(k) − a(k))T(t(k) − a(k)) = eT(k)e(k)                         (4.17) 



 
 

69 | P a g e  
 

However, in Eq. (4.18), the sensitivities are propagated backward through the network from 

the last layer to the first layer in time, that is; 

Sm → Sm−1 → ⋯ → S2 → S1                                                                                              (4.18) 

where the starting point 𝑆𝑀 is obtained at the final layer for network convergence.  

4.4.5.1 Convergence 

One of the major problems with the back-propagation algorithm has been the long training 

times. It can take several weeks to train a neural network. This has spurred considerable 

research on methods to accelerate the convergence of the algorithm. Consequently, some 

heuristic techniques are now available which include such ideas as varying the learning rate. 

There are also existing numerical optimization techniques, for example, gradient descent, the 

conjugate gradient algorithm, the Levenberg-Marquardt (LM) algorithm and RMSprop 

algorithm, a variation of Newton’s method that provides fast convergence in training neural 

networks such as multilayer recurrent perceptron or RNN. A combination of these algorithms 

may be necessary to achieve a particular purpose. While the basic concept of some convergence 

criteria are given in this work, the mathematical expressions underlying each of them can be 

found in [84] 

4.4.5.1.1 Gradient Descent Optimization Description. 

 

Gradient descent is probably the most popular and widely used out of all optimizers. It is a 

simple and effective method to find the optimum values for the neural network. The objective 

of all optimizers is to reach the global minima as shown in Figure 4.10 where the cost function 

attains the least possible value. 
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Figure 4.10: Gradient Descent Optimisation Procedures. 

Source: Author, Gradient Descent Intuition23 

 

Each time we find the gradient and update the values of weights and biases, we move closer to 

the optimum value. However, prior to the start of neural network training, the cost would be 

high, which is represented by the point A. Through each iteration of training the neural network 

– finding gradients and updating the weights and biases, the cost reduces and moves closer to 

the global minimum value, which is represented, by the point B. The algorithm is as 

demonstrated below  

Stochastic Gradient Descent - Algorithm 

For each example in the data 

    - find the value predicted by the recurrent neural network  

    - calculate the loss from the loss function  

    - find partial derivatives of the loss function, these partial 

derivatives produce gradients 

    - use the gradients to update the values of weights and biases. 

 

4.4.5.1.2 Description of Learning Rate 

 

Learning rate is probably the most important aspect of training neural network. Learning rate 

restricts oscillation and guides optimizers in understanding weights at every epochs during 

                                                           
23 https://miro.medium.com/max/ 
Date accessed, 18th August 2018 

https://miro.medium.com/max/
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neural network training. The analogy depicted in Figure 4.11 explains learning rate. Imagine the 

cost function as a pit, optimizer will be starting from the top and the objective is to get to the 

bottom of the pit. Think of learning rate as the steps taken to reach the bottom (global minima) 

of the pit. If large values were to be chosen, a drastic change to the weights and bias values 

would result to reaching the bottom. There is also a huge probability of overshooting the global 

minima (bottom) and end up on the other side of the pit instead of the bottom.  

 

Figure 4.11: Learning Rate Description. 

Source: Author, The Gradient Descent Intuision24  

 

Hence, with a large learning rate, convergence to the global minima is fast but will always 

wander around the global minima. On the other hand, if a small value of learning rate is chosen, 

the optimizer would lose the risk of overshooting the minima but will take longer time to 

converge, that is, takes shorter steps hence, would have to be trained for a longer period of time. 

If the cost function is non-convex, the optimizer might easily be trapped in local minima and be 

unable to get out and converge to the global minima. Therefore, there is no generic right value 

for learning rate. It comes down to experimentation and intuition.  

4.4.5.1.3 Root Mean Square Propagation (RMSprop) Convergence.  

 

                                                           
24 https://fromthegenesis.com/wp-content/uploads/2018/06/GDS_3.png 
Date accessed, 10th June, 2018 

https://fromthegenesis.com/wp-content/uploads/2018/06/GDS_3.png


 
 

72 | P a g e  
 

This is one of the robust convergence algorithm used in neural network especially recurrent 

neural networks. RMSprop follows the central idea behind stochastic gradient descent, which 

works efficiently on low learning rate by averaging gradients over mini-batches. The 

convergence algorithm keeps the moving average of the squared gradients for each weight and 

then divide the gradient by the mean-square square root. This scenario works well on large 

dataset, hence used in this research. The convergence criteria uses Eq. 4.21.1 for its update 

rule. 

            (4.22.1) 

From the Eq. 4.21.1, E[g]  is the moving average of squared gradients. 
𝛿𝐶

𝛿𝑤
  is the  gradient of the 

cost function with respect to the weights while ƞ  is learning rate.  β is the  moving average 

parameter. 

4.4.5.2 Back-propagation with Momentum (BPM) 

 

The BPM is a modification based on the observation that improves convergence if a low pass 

filter is used to smooth out the oscillations in the network trajectory. This modification is 

achieved using Eq. (4.19) and the modified version of Eq. (4.20) 

∆𝐖𝐦(k) = 𝛄∆𝐖𝐦(k − 1) − (1 − 𝛄)𝛂S𝐦(𝐚𝐦−𝟏)T                              (4.19) 

∆𝐛𝐦(k) = 𝛄∆𝐛𝐦(k − 1) − (1 − 𝛄)𝛂S𝐦               (4.20) 

where 
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𝐖(𝐤), is the input to the filter. 𝛄(𝐤), is the output of the filter and 𝛄25 is the Momentum 

coefficient that must satisfy 0 ≤ 𝛄 < 1. 

4.4.5.3 Variable Learning Rate Back-Propagation (VLRBP). 

 

In this method, if the squared error over the entire training set increases by more than some set 

percentage, say 𝜁, (typically one to five percent) after a weight update as per Eq. (4.20), then 

the weight update is discarded, the learning rate is multiplied by some factor Ρ < 1, and the 

momentum coefficient 𝜸 (if it is used) is set to zero. 

4.4.5.4 Conjugate Gradient Back-Propagation (CGBP). 

 

The CGBP has the quadratic convergence character. It converges to the minimum of a quadratic 

function in a minimum number of iterations. It involves interval location and reduction 

processes. The interval location step helps to find some initial interval that contains a local 

minimum, while the interval reduction step reduces the size of the initial interval until the 

minimum is located to the desired error goal – accuracy. 

4.4.5.5  Levenberg-Marquardt Back-Propagation (LMBP) 

 

The LMBP algorithm is designed for maximizing functions that are sums of squares of other 

nonlinear functions. The performance index in neural network training is the mean square error. 

However, from Eq. (4.21), the mean squared error is proportional to the sum of squared errors 

over the Q targets in the training set. 

F(𝐗) = ∑ (tq − aq)
T

(tq − aq)Q
q=1                (4.21) 

The algorithm is assumed to have converged when the sum of the squares have been reduced 

to some error goal. 

                                                           
25 Gamma is used here for notation purposes. 
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4.4.2 Stopping Criteria. 

 

The back-propagation algorithm is a first order approximation of the steepest-descent technique 

in the sense that it depends on the gradient of the instantaneous error surface in weight space 

[85]. Consequently, weight adjustments terminate under certain circumstances. According to 

the work of [86], the back-propagation algorithm is deemed to have converged if: 

 The Euclidean norm of the gradient vector reaches a sufficiently small gradient 

threshold. 

 The absolute rate of change in the average squared error per epoch is sufficiently small. 

 The generalization performance is adequate, or when it is apparent that the 

generalization performance has peaked. 

 

4.4.2.1 General Network Optimization Criterion. 

 

Artificial neural networks are optimized for simulation of the physical behaviour of the system. 

For a better optimisation, the features of the network requires rigorous manipulation. For 

instance, selection of training algorithm, number of hidden neurons and weight estimation. An 

unsatisfactory performance is relative to inadequacy of the selected network configurations. In 

designing network configuration, the main concern is the number of hidden layers and neurons 

in each layer. Unfortunately, there is no rule defining this feature and its estimations.   

While starting with a small number of neurons and hidden layers, monitoring the performance 

may help to resolve this problem efficiently. Trial and error procedure is adopted in this 

research. The optimal training procedure is achieved by using randomly initialized weights and 

inversion of the training algorithm. This is because many algorithms are subject to trapping in 

local minima where they are stuck unless certain design criteria are modified in the form of 

dropout. The existence of local minima is because the error function is the superposition of 
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nonlinear activation functions that may have minima at various points, which sometimes result 

in a non-convex error function.  

4.5 Data Handling 

 

Data preparation is a very important consideration in developing a neural network; it lays the 

success of any neural network model. Pre-processing steps are considered before feeding a set 

of raw data to the network to improve the efficiency of the training. This is also useful in 

analysing the response of the trained network. Thereafter, the data needs to be, divided into 

subsets – training, testing and validation or training and testing depending on required criterion. 

Finally, a post-processing step transforms the output of the trained network to its original 

format to make interpretation of the result possible. 

4.5.1 Data Pre-Processing (Normalization) and Post-Processing (De-normalization) 

 

It is standard practice to normalize the inputs before applying them to neural network. Several 

pre-processing routines are available in the literature. For example, [87] presented a 

normalization model of Eq. (4.22) where a value (p) of the data having the minimum value (p 

min) and maximum value (p max) is converted into a normalized value (𝑝𝑛). The normalized 

values lie between -1 and +1. 

𝑝𝑛 =
2(𝑝−𝑝𝑚𝑖𝑛)

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
− 1                 (4.22) 

Common normalization processes are provided automatically when the network is created and 

they become part of the network object, so that whenever the network is used, the data coming 

into the network is pre-processed in the same way [88]. It is easiest to think of the neural 

network as having a pre-processing block that appears between the input and the first layer of 

the network and a Post-processing block that appears between the last layer of the network and 

the output, as shown in Figure 4.12. 
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Figure 4. 10: Data Processing Steps. 

 

4.5.2 Data Partitioning 

 

Partitioning happens after preparing the data. The general practice is to first, divide the data 

into three sets: training set – used for computing the gradient and updating the network weights 

and biases. The validation set used to ensure generalization of the developed network during 

the training phase and finally the test set used to examine the final performance of the network. 

The most important consideration here is to ensure that: (1) the training set contains enough 

data, and suitable data distribution to cover the entire range of data adequately and (2) there is 

no inadequacy in similarity between data in different data sets. 

 Various authors have suggested different partitioning ratios. For instance, [89] presented 75 

percent of available data to the ANN as training and validation set and 25 percent as test set. 

[16] suggested a ratio of 4:1:1.  [90] divided all of the data into two data groups; the first data 

group (70% of all the data) was used for training the network and the second data group 

(remaining data) was utilized for verification of the ANN models. Hence, the partitioning 

choice is governed by the ratio that yields the best training and test results. 

4.6. Model Output Variables 

 

This is where the output variables of the wind power model, which include prediction of 6-

hour, three-hour or 72-hour ahead as the case may be, are presented for performance measure 

comparison especially with other algorithms.  

 

  

Pre-Processing Neural Network Post-Processing 
Sets of inputs 

Sets of Outputs 
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4.6.1 Descriptive Statistics 

 

To identify or eliminate a candidate distribution, descriptive statistics are applied. For instance, 

the sample mean and median times will be close for a symmetrical or nearly symmetrical 

distribution, such as the normal or Weibull with a shape parameter between 3 and 4. If the 

mean is considerably larger than the median, then the exponential or lognormal distribution 

will provide a better fit. 

The mean, 𝜇 or wind variability, Median, 𝑡𝑚𝑒𝑑 , Mode,𝑡𝑚𝑜𝑑𝑒, and variance,  𝜎2, of the 

lognormal distribution are discussed in [62], hence, realisation of Eq. (4.23) 

μ = tmedexp
1

2
𝜎2                  (4.23) 

The mean of the wind speed data over the wind farm 𝜇′ is described in terms of 𝑡𝑚𝑒𝑑, and 𝜎 

is given by Eq. (4.24) 

μ′ = ln(tmed) −
1

2
ln (

σ2

tmed
+ 1)                (4.24) 

Furthermore, the median of this distribution is given by Eq. (4.25): 

tmed = eμ′
                  (4.25) 

The mode is estimated using Eq. (4.26) while the standard deviation is obtained using Eq. 

(4.27): 

tmode =
tmed

exp(S2)
                  (4.26) 

σ2 = tmed
2 exp(S2)[exp(S2) − 1]               (4.27) 

 

4.6.2 Probability Plots 

 

A probability plot is utilized to provide a better visual test of a distribution than comparison of 

a histogram with a probability density function. Initial estimates of the parameters of the 



 
 

78 | P a g e  
 

distribution fitted are made possible with probability plots, such as exponential, normal 

distributions, and lognormal plots. 

4.6.2.1 Exponential Plots 

 

The cumulative distribution function plot for the exponential distribution is expressed by the 

computation of Eq. (4.28) 

F(t) = 1 − e−λt                                                                                                                (4.28) 

Taking the natural logarithm of both sides 

ln[1 − F(t)] = −λt  

− ln[1 − F(t)] = ln [
1

1−F(t)
] = λt  

An accurate fit to the observed times data may be obtained by performing a least-squares fit 

of Eq. (4.29) 

λ̂ = b =
∑ xiyi

n
i=1

∑ xi
2n

i=1

                                                                                                            (4.29) 

where 

yi = ln
1

[1−F(t)]
   and xi = ti 

The estimate for wind power from adjacent turbines is expressed by  =
1

𝑏
    

4.6.2.2 Normal Distribution Plots 

 

For the normal distribution, which represents random wind speed variable selection from 

different turbines is estimated with Eq. (4.30) to form the tradition bell-shaped graph shown in 

Figure 5.7. 

F(t) = ϕ (
t−μ

σ
) = ϕ(z)                                                                                                        (4.30) 

The inverse function is rewritten as Eq. (4.31), which is linear in time 𝑡.  

zi = ϕ−1[F(t)] =
ti−μ

σ
                                                                                                         (4.31) 
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The points (ti, ℱ̂(ti)) are plotted with appropriate transformation of the vertical scale. A least 

squares fit is obtained by setting  

𝑥𝑖 = 𝑡𝑖 and 𝑦𝑖 = 𝑧𝑖                                                                                                                (4.32) 

The values of 𝑧𝑖 are obtained from a Table of standardized normal probabilities, based on the 

corresponding values of ℱ̂(𝑡𝑖). From the least-squares fit and Eq. (4.33), 

𝜎̂ =
1

𝑏
 and 𝜇̂ = −𝑎𝜎̂ = −

𝑎

𝑏
                                                                                                    (4.33) 

4.6.2.3 Lognormal Plots. 

 

The lognormal plot is made with the relationship of the distribution with the normal 

distribution. 

Since F(t) = ϕ (
1

S
ln

t

tmed
) = ϕ(z) and Z = ϕ−1[F(t)] =

1

S
lnt −

1

S
lntmed, The points (𝑙𝑛𝑡𝑖, 𝑍𝑖) 

are plotted. For the least squares fit, Eq. (4.35) is presented, where;  

xi = lnti and yi = Zi                                                                                                          (4.35) 

 The shape parameter 𝑆 is the reciprocal of the slope of the plotted line and 𝑡𝑚𝑒𝑑, the median,is 

obtained from the intercept of the fitted line. That is 

Ŝ =
1

b
 and tmed = e−Ŝa                                                                                                        (4.36) 

4.6.2.4 Parameter Estimation 

 

Probability plots and least squares data fitting only provides estimates of the distribution 

parameters and does not provide best results. For this reason, a maximum likelihood 

estimator (MLE) 𝑃 is defined in Eq. (4.37). 

P̂ =
n

n+∑ (xi−1)n
i=1

=
n

∑ xi
n
i=1

                                                                                                    (4.37) 
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If the probability of a failure remains a constant 𝑃 and each trial is independent, then 

Pr{X = x} = f(x) = (1 − P)x−1P   x = 1,2, …                                                                (4.38) 

Where 𝑋 is the variable representing the number of trials necessary to obtain the first failure 

and 𝑥 represents the sample size, f(x) is the likelihood function and represents the probability 

of obtaining the observed sample. 

4.6.3 Stationarity Test.  

 

Prior to building predictive models for training time series algorithms, a stationarity test is one 

of the required steps. The research employed the Dickey-Fuller Test (DFT) to study stationarity 

considering daily wind variations within five days of historical data. From the test, the series 

is not stationary as in Figure3. The non-stationarity is attributed to trend and issues of normal 

distribution.  

To obtain stationarity, the first level DFT is computed (d = 1) where d = differencing which is 

the difference between current series (𝛾𝑡) and previous series (γt−1) as in Δγt =  γt −  γt−1.  

From our differenced data, Figure 3.6 is generated. This figure implies that maximum wind 

speed is experienced from 4AM to noontime leaving the afternoon time with low wind speeds.  

The insight gained in the figure led to data split; 06-14-2003 to 06-17-2003, equivalent to 80% 

of the data for training while the rest in 6-17-2003 to 06-18-2003 equivalent to 20%, within the 

high wind time is set for testing the regularised models. 

The non-linear nature of RNN and improvements in LSTM as demonstrated by [70, 91] shows 

the dynamic nature of wind in relation to geography, climate, landforms, seasonality can be 

addressed although in [34], statistical wind power transform appears strenuous. 
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4.7. LSTM and Dropout Learning Rules  

 

This is a procedure for modifying the weights and biases of a network. It is also referred to as 

the training algorithm. The LSTM hybridization by dropout is as presented below for learning 

the proposed wind-farm power output prediction based on wind speed. 

4.7.1. The Hybrid Long Short-Term Memory and Dropout Modelling. 

 

In neural network technology, there is no existing and specific methodology in neural selection 

especially the hidden neurons although as stated in [75, 83] new methods of designing hidden 

neurons is based on data structure and the nature of the predictive horizon employed. However, 

the author in reference [75] tried to fix the hidden neuron selection problem using a 

mathematical foundation of convergence theorem. Here, during the training process, each 

criterion that satisfies the convergence is tested optimally for error reductions. Therefore, the 

flowchart of Figure 4.13 demonstrates the combination or hybridisation of our learning model. 

Mathematically, however, this model is as described in section 5.3.  

 

 

 

 

 

 

 

 

Figure 4. 11: Wind Power Simulation Model. 
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In addition, this research however adopts the method by averaging the output of the 

independent input layers for wind speed prediction, since the method enhances the stability of 

the network after many trials. The network is as shown in Figure 4.8, which depicts the LSTM 

dropout connection of the network. However, the design is categorised into four modules as 

follows: 

4.7.1.1.  LSTM and Dropout Modelling Modules  

 

Module 1. The Improved long short-term memory (LSTM) is the model with the supervised 

learning approaches in mind and there exists a nonlinear activation function. The logistic 

sigmoidal function is used in the input layers while the ReLu is used in the hidden layers of the 

network. The input Layer has six input layers with sigmoid functions with 20 hidden layers of 

the network. In addition, this hidden layer neuron is fixed as the proposed criterion. The hidden 

neurons enable the cell state of the LSTM network to activate for both the input gate, forget 

gate and the output gate considering highly complex tasks like wind speed forecasting. Each 

of the LSTM layers is connected as shown in Figure 4.14 (a generic RNN) within them by 

synaptic weights - 𝜎1,1𝑛,2𝑛,3𝑛,𝑒𝑡𝑐,                     

  

 

 

 

 

 

 

 

 

Figure 4. 12: Fully Connected LSTM network for wind power prediction26 

                                                           
26 This is not the generic neural network used in the model. The Figure is simply for illustration purposes. 
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Module 2. During the dropout of certain neurons as shown in Figure 4.15, single LSTM 

combine, so that the output from certain LSTM becomes the input for a few others; then the 

network becomes multi-layer recurrent linear neuron. In the dropout processing, the 

initialization experiences first, the weights between the input and the hidden units generating 

small positive random values. The considered input is as presented in the figure and based on 

the weighted interconnections; the network input is computed for both the hidden units. To 

obtain the activation of the outputs, hidden units are then applied. However, with suitable 

weighted interconnections, the hidden output acts as input to the output layer and the net input 

and output of the output layer are computed. The element wise comparison ensures that the 

target and suitable weight updates are performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 13: Dropout connected LSTM layers27. 

 

                                                           
27 The Figure is simply for illustration purposes. 
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Module 3. During back propagation (BPN) in time, the neural network module as shown in 

the Figure 4.15 ensures that the input layer connects to the hidden layer and the hidden layer 

in turn connects to the output layer by means of interconnected weights – in a chain form. 

Whereas, in the training phase, the signals are sent in the reverse direction. The increase in the 

number of hidden layers results in the computational complexity of the network and hence a 

randomly selected hidden layer is dropped-out, in order words 20% of it. The proposed 

criterion is incorporated into the training algorithm to fix the number of hidden neurons in the 

single hidden layer. In BPN processing, the bias is provided for both the hidden and the output 

layer to act upon, hence, the net input to be calculated.  

Module 4. These set of inputs are multiplied by a set of weights (𝑤𝛳𝑖), which are further 

processed by individual deep units, that are of 11-hidden layers, as (see section 4.6). Finally 

the output ϴ unit as in Eq. (4.39) through 4.41. 

yϴ(t) =  P(f(eLSTMϴ(t), ARIMAp,d,q) |{wst−1, , … }).                (4.39) 

where 

eLSTMϴ(t) =  
1

p
. [g(∑ wϴiXi(t). qϴ

i=1 + b)]                                                                                            (4.40) 

ARIMAp,d,q =  ∑ Xi(t)ϴ
i=1                                                                                                                              (4.41) 

 

In our model, t represents a 10-minutes interval of wind data recorded, while our model 

represents sigmoid function implemented as non-linear output. The p is the probability of 

keeping an LSTM neuron.  

f(x) =  
1

1+ e−x                                                                                                                         (4.42) 

Modelling 3-hours ahead is as proposed in Eq. (4.43), where N is the number of hours 

considered in the dataset. However, for each node and hour, our formulation using the 
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generated data, discussed in chapter 4 for prediction at the succeeding 180 minutes ahead 

results in the formulation of Eq. (4.43) 

𝙽d
nod = {𝒩s

nod[th + min], 𝒩t,w,t,h
nod [th + min]) | min = 1, 2, …., 180}                                (4.43) 

Here, h = 1,2, 3 and nod Є {position of wind Turbine}, which is not disclosed in our dataset. 

𝒩t,w,t,h
nod  and 𝒩s

nod denotes the turbine’s node prediction of wind power respectively at time 

t =  th + min given temperature, humidity, wind shear, turbulence.  

All the proposed four modules that comprise the ensemble model initiate its training process 

by learning from the normalized data. The training process is carried out until the error 

(performance metric) reaches a negligible value. The average value of the dropout LSTM 

corresponding to the minimal error gives the final output of the proposed neural network. The 

proposed training algorithm of the neural network is given in nine basic steps as follows: 

 

4.7.1.2. Basic Steps in LSTM Modelling   

 

 Step 1. Initialize the necessary parameters of the individual LSTM, and dropout-LSTM.  

 Step 2. Introduce the proposed criterion to fix the number of hidden neurons into each 

of the training algorithms of individual neural network models.  

 Step 3. Present the input and target vector pair to the individual neural network models. 

The input-target vector pair corresponds to training datasets when the training process 

is initiated and for testing the trained network, testing datasets are employed.  

 Step 4. Compute the net input of the individual networks and obtain their corresponding 

outputs by applying activation over the calculated network input. The outputs computed 

for each of the individual networks are given by 𝑌LSTM, 𝑌Dropout-LSTM, and the 

individual networks are denoted as 𝐻LSTM, 𝐻Dropout-LSTM.  
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 Step 5. Develop the neural network as the aggregation of the individual neural network 

models and determine the final predicted wind power: 

 Step 6. Train each of the individual ensemble networks and compute the error value 

 Step 7. Select the appropriate hidden neurons to be placed in the hidden layer of each 

of the ensembles based on the minimum error performance.  

 Step 8. Output the selected criterion and the minimum MSE value.  

 Step 9. Test for stopping condition (the stopping condition is the reaching point of 

minimum MSE or specified number of epochs).  

 

4.8. Modelling ARIMA model. 

 

Machine learning is mushrooming in time series systems due to the integration of traditional 

statistical approaches. As described in chapter three, unlike the language model, speech 

recognition and computer vision where models are applied directly to the data [65, 92, 93], 

time series requires efficient modelling due to outliers inherited from the data.  

In section 4.4, data is differenced to improve performance, the core approach of the Box-

Jenkins time series model [94] which is the d component of the ARIMA model. The p and q 

parameters as modelled in [95, 96] can either be generated using machine learning tools28 or 

the traditional autocorrelation function (ACF) and partial autocorrelation functions (PACF) as 

described below. 

4.8.1 Autocorrelation functions (ACF) 

 

For wind speed and wind power of a given series, selection of the decomposition level remains 

one of the most important decisions. However, to the best of the author’s knowledge; there is 

                                                           
28 Using the traditional ML technique to deduce the p, d, q components on Sklearn-metrics ARIMA model 

selection. 
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no theoretical criterion for the selection of theoretical decomposition level. Scikitlearn 

packages in python results in the use of machine learning algorithm developed by Python 

developers to solve issues of decomposition, traditional ACF has over the years, employed 

decomposition to solve the seasonality of the wind series data. However, the motivation of the 

ACF usage as described by [97] is the ability to characterize ‘’periodicity or self-similarity’’ 

which invariably is the scale invariance property of time series systems (see Appendix A (i)).  

 

 

 

 

 

Figure 4. 14: Autocorrelation plot of the wind series. 

 

Furthermore, time series components relies on ACF to verify whether observations such as 

wind speed has trend and or seasonality as observed in Figure 4.14, then report the extent or 

sufficiency level in relation to the wind decomposition. Conversely, when the trend and 

seasonality component seen in Figure 4.15 of the wind speed series is similar to the ACF, we 

can reasonably conclude that the decomposition of moving average (MA) or auto-regression 

(AR) provides sufficient accuracy. 

Autocorrelation values are statistically obtained by the use of [98, 99] for the associations 

between data in time series separable at different lags of times. In other words, time series y 

with Z data points at index lag of τ is estimated with Eq. (4.44) where y is the average of time 

series, shown in Figure 4.14. 



 
 

88 | P a g e  
 

ρ(τ) =  
∑ [y(m+τ)−ӱ][y(z)− ӱ]Z−τ

z

∑ [y(z)−ӱ]2Z−τ
m=1

                                                                                              (4.44) 

4.8.2 Partial autocorrelation function (PACF). 

 

Like the decomposition discussed above, the partial autocorrelation function is used to 

measures the correlation between observations of the wind series that are separated by t time 

units –  𝑦𝑡and 𝑦𝑡−1, after adjusting for the presence of all the other terms of shorter lag 

yt−1, yt−2, , … . , yt−t−1 as shown in Eq. (4.36) of  [100] gave a detailed description of PACF. 

 

Figure 4. 15: PACF of the wind series. 

 

Furthermore, in terms of the ARIMA model, the relationship with PACF is related to the p 

component of the ARIMA component. From the test, the component is as shown in Table 4.2 

below. 

Research over the recent years has developed algorithms and systems that can derive these 

ARIMA components programmatically without differencing, correlating and partially 

correlating the signals, this result in the machine learning aspect of component derivation. 
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4.8.3 Machine learning ARIMA Derivation. 

 

The grid search technique29 is the machine learning approach to calculate the best ARIMA(𝑝,𝑑,𝑞) 

components. Applying grid search hyper-parameter for the p, d, q components to the training 

and test sets is ideal for optimum performance due to the model building across each 

component.  

The approach in this process is iteration through parameter combinations for each possible 

model combination [101]. The grid search method depends on data size and is expensive 

computationally, it relies on the performance of the system processor and RAM in use. In 

addition, grid searching can be used to tune for performance measures, like the AIC, AUC 

criteria and so on. The model tuning result is a measure of the RMSE statistical quantity for 

error search accuracy. In our case, about 90% evaluated RMSE error on each of the trials – 

Table 4.2 were reported meaning that the search has the best (p, d, q) components. However, 

the code utilised in grid searching the data is presented in Appendix a (ii). 

Table 4. 2: Comparing the p, d, q component of ARIMA and ML derivation. 

Sample wind data ARIMA (P,D,Q) ML-ARIMA (P,D,Q) 

720 (0.1, 1.2, 2.3) (0,1,2) 

1440 (2.4, 1.2, 2.6) (2,1,1) 

2160 (1.3, 0.3, 1.6) (1,0,2) 

2880 (3.3, 0.3, 0.4) (2,1,2) 

3600 (4.3, 1.2, 3.2) (1,1,2) 

4230 (0.3, 1.0, 3.2) (1,2,5) 

5040 (2.3, 1.2, 0.2) (0,1,4) 

5760 (3.2, 4.2, 3.2) (2,2,3) 

6480 (0.3, 1.0, 2.2) (3,1,2) 

7200 (2.3, 4.2, 2.2) (2,3,2) 

 

 

4.8.4 Time Series Residual Component. 

This is the difference between an observed value (y) and its corresponding fitted value (ŷ). For 

example, the scatterplot of Figure 3.12 (chapter 3) that plots men's weight against their height, 

                                                           
29 Grid searching is the process of scanning data for optimal parameter configurations 
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the regression line plots the fitted values of weight for each observed value of height. Suppose 

a man is 6 feet tall and the fitted value of his weight is 190 lbs. If his actual weight is 200, the 

residual is 10.  If his actual weight is 175, the residual is -15. Residual values are especially 

useful in regression and ANOVA procedures because they indicate the extent to which a model 

accounts for the variation in the observed data.  
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Chapter 5. 

 

5.1. Field Data Description. 

 

The wind site data used for this research is from the prognostic and health management (PHM) 

society. PHM30 conducts annual Data challenge for conferences and possible journal 

publications on sensor management. The 2011 Data challenge is for wind farm management 

based on sensor failure detection. Therefore, this research leveraged on the data to model 

power-output prediction from the farm. The location of the wind farm is not disclosed due to 

security reasons, hence, the k factor of the Weibull distribution is assumed for the research 

purposes. Cup anemometers (see chapter 2) and wind vanes were the major sensors used by 

PHM to record the wind farm dataset. The accuracy of these sensors is, in part, due to the health 

of the bearings supporting the cup shaft. The data is captured as depicted in Figures 5.1 and 

consists of a 5-day measurement period with 420 wind data samples similar to 420 turbines in 

a wind farm, which includes: 

 Mean, standard deviation, minimum and maximum wind speed at height 10, 39, 49 

and 59 meters respectively. 

 Mean, standard deviation, minimum and maximum wind direction at height 39, 49 

and 69 meters respectively. 

 Date in Month/Day/Year and time in hours: minutes: seconds. 

In this research, data from fourteen turbines are independently considered and no assumptions 

on topography of the wind farm is made. These are data from wind turbine 8 (WT8), wind 

turbine 21 (WT21), WT61, WT93, WT120, WT171, WT190, WT208, WT230, WT274, 

WT263, WT291, WT310 AND WT330 respectively.  

                                                           
30 The PHM data is selected for this research because they have reliable wind farm data that comprise of wind 

speed from different turbines. 
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Figure 5. 1: 60m tower with three-sensor attachments. 

Source: [28] 

 

The sample dataset are as shown in Table 5.1, 5.2 and 5.3 representing the wind data from 

WT8, WT21 and WT61 respectively. These data are used for the plots of Figure 5.2, 5.3 and 

5.4 respectively to demonstrate the variations within the wind farm. 

 

 

Figure 5. 2: Wind Series from four wind turbines. 
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Figure 5. 3: Wind Series from four wind turbines. 

 

 

 

Figure 5. 4: Wind Series from four wind turbines. 
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Table 5. 1: Sample Wind Data of Wind Turbine 8 (WT8)                                           

Mean49 Max49 Min49 MeanWD SDWD MaxWD MeanTemp MaxTemp MinTemp Date Time 

6.15 7.24 4.56 163.21 7.28 175.39 11.96 12.09 11.83 10/11/2007 00:00:00 

5.69 7.61 3.8 164.51 7.28 173.97 12.23 12.36 12.09 10/11/2007 00:10:00 

5.42 6.85 4.17 171.39 7.28 173.03 12.09 12.09 11.83 10/11/2007 00:20:00 

5.48 6.85 3.8 174.02 7.94 184.64 11.89 12.09 11.56 10/11/2007 00:30:00 

5.13 6.85 3.8 169.7 8.66 162.14 11.83 12.09 11.56 10/11/2007 00:40:00 

5.28 6.85 3.8 163.1 8.29 161.27 12.29 12.36 11.83 10/11/2007 00:50:00 

6.7 8.37 5.32 171.28 9.44 195.45 12.56 12.9 12.36 10/11/2007 01:00:00 

6.5 8.77 4.94 167.58 9.86 176.34 12.56 12.9 12.36 10/11/2007 01:10:00 

6.17 7.24 5.32 163.21 7.61 157.81 12.23 12.36 11.83 10/11/2007 01:20:00 

6.78 7.61 6.09 168.36 6.68 172.56 12.03 12.09 11.83 10/11/2007 01:30:00 

6.51 7.24 5.71 164.84 6.97 159.53 11.7 11.83 11.3 10/11/2007 01:40:00 

6.58 6.85 6.09 164.62 6.12 149.49 11.36 11.56 11.3 10/11/2007 01:50:00 

6.73 7.61 6.09 158.65 3.97 155.27 11.1 11.3 10.77 10/11/2007 02:00:00 

6.33 7.24 5.32 164.51 5.86 154.43 10.9 11.03 10.77 10/11/2007 02:10:00 

6.21 6.85 5.71 163.64 5.38 162.14 10.84 11.03 10.77 10/11/2007 02:20:00 

6.07 6.85 5.32 163.97 5.86 168.41 10.77 11.03 10.51 10/11/2007 02:30:00 

5.64 6.47 4.17 164.08 7.61 175.39 10.44 10.77 10.25 10/11/2007 02:40:00 

5.69 6.85 4.94 154.21 4.93 167.5 10.44 10.77 10.25 10/11/2007 02:50:00 

4.81 6.47 4.17 166.59 7.61 167.95 10.57 10.77 10.25 10/11/2007 03:00:00 

5.38 6.85 4.56 164.84 5.15 171.16 10.38 10.51 10.25 10/11/2007 03:10:00 

7.07 7.61 6.47 169.59 6.12 171.63 9.92 10.25 9.72 10/11/2007 03:30:00 

6.65 7.24 5.71 173.67 6.12 171.16 9.59 9.98 9.46 10/11/2007 03:40:00 

5.25 6.47 4.17 160.12 6.97 154.85 9.46 9.72 9.2 10/11/2007 03:50:00 

4.28 5.71 2.65 138.79 11.23 149.9 9.72 9.98 9.46 10/11/2007 04:00:00 

. 
 

. . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

720 4.56 2.26 185.55 10.3 184.15 9.46 10.25 8.95 10/12/2007 04:40:00 
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Table 5. 2: Sample Wind Data of Wind Turbine 21 (WT21) 

Mean49 Max49 Min49 Mean39 Max39 MeanWD SDWD MaxWD MeanTemp MaxTemp MinTemp Date Time 

13.17 15.27 10.29 11.25 13.34 184.7 6.97 180.2 15.21 15.35 15.35 10/12/2007 01:00:00 

13.97 15.63 11.45 12.05 14.52 183.36 7.94 195.45 15.21 15.35 15.35 10/12/2007 01:10:00 

14.11 15.63 12.2 12.15 14.14 183.11 6.97 181.18 15.14 15.35 15.07 10/12/2007 01:20:00 

13.58 16.05 11.45 11.53 13.34 183.96 7.28 189.2 15.07 15.35 15.07 10/12/2007 01:30:00 

12.52 14.52 10.29 10.66 13.34 184.33 7.61 182.16 14.93 15.07 14.8 10/12/2007 01:40:00 

11.49 14.14 9.54 9.87 12.2 186.29 7.28 184.15 14.66 15.07 14.8 10/12/2007 01:50:00 

11.57 13.73 9.15 9.71 11.45 187.16 6.97 184.15 14.59 14.8 14.52 10/12/2007 02:00:00 

11.82 14.14 9.92 9.86 11.82 187.53 6.97 182.16 14.52 14.8 14.52 10/12/2007 02:10:00 

12.13 14.14 9.92 10.29 12.2 190.03 6.12 192.82 14.52 14.8 14.52 10/12/2007 02:20:00 

11.82 13.34 9.54 10.16 12.59 191.04 6.12 187.16 14.52 14.8 14.52 10/12/2007 02:30:00 

11.52 13.34 8.37 9.85 11.82 191.3 6.4 195.98 14.59 14.8 14.52 10/12/2007 02:40:00 

11.54 13.34 8.77 10.27 12.59 193.98 6.12 201.36 14.8 15.07 14.8 10/12/2007 02:50:00 

10.83 12.96 8.77 9.62 12.59 197.22 4.72 196.51 14.93 15.35 14.8 10/12/2007 03:00:00 

9.19 12.2 6.47 8.06 10.67 202.12 3.8 202.45 14.73 15.07 14.8 10/12/2007 03:10:00 

8.82 10.67 6.09 7.64 10.29 205.64 4.93 203 14.52 14.8 14.52 10/12/2007 03:20:00 

8.11 9.92 6.47 7.08 9.54 210.33 4.72 213.71 14.52 14.8 14.52 10/12/2007 03:30:00 

7.36 8.77 6.09 6.58 8.37 211.59 4.93 205.77 14.59 14.8 14.52 10/12/2007 03:40:00 

7.9 9.54 6.47 7.3 8.77 216 3.8 218.39 14.39 14.52 14.25 10/12/2007 03:50:00 

6.84 7.99 5.71 6.37 7.61 214.28 3.64 220.18 14.25 14.52 14.25 10/12/2007 04:00:00 

6.55 7.61 5.32 6.07 7.24 214.42 3.64 211.99 14.05 14.25 13.98 10/12/2007 04:10:00 

6.27 7.61 4.56 5.37 6.47 212.16 4.52 209.7 13.71 13.98 13.71 10/12/2007 04:20:00 

4.92 6.09 3.41 4.39 5.71 235.03 15.88 218.39 13.5 13.71 13.44 10/12/2007 04:30:00 

4.86 6.47 3.41 4.46 6.09 260.24 13.36 261.83 12.63 13.44 12.09 10/12/2007 04:40:00 

6.08 7.24 4.94 5.67 6.47 253.22 11.73 252.1 12.09 12.36 11.83 10/12/2007 04:50:00 

6.85 8.37 5.71 5.78 6.47 254.41 1.34 253.46 11.89 12.09 11.56 10/12/2007 05:00:00 

9.35 10.67 7.99 6.89 7.61 257.48 2.57 259.01 11.5 11.83 11.3 10/12/2007 05:10:00 

9.44 10.29 8.37 7.02 9.54 262.15 3.06 262.54 11.17 11.3 11.03 10/12/2007 05:20:00 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

720 11.45 8.37 7.71 9.54 261.8 3.8 265.4 11.36 11.83 10.77 10/12/2007 06:40:00 
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Table 5. 3: Sample Wind Data of Wind Turbine 61 (WT61) 

Mean49 Max49 Min49 Mean39 Max39 MeanWD SDWD MaxWD MeanTemp MaxTemp MinTemp Date Time 

5.34 7.61 2.26 5.61 8.37 332.94 10.76 331.38 15.62 15.62 15.35 10/15/2007 15:20:00 

4.94 6.85 2.65 5.27 7.24 326.54 15.88 348.88 15.62 16.18 15.35 10/15/2007 15:30:00 

5.35 6.85 3.03 5.56 7.24 330.94 9.44 346.05 15.62 16.18 15.35 10/15/2007 15:40:00 

4.88 6.85 2.26 5 7.24 329.4 8.29 326.04 15.55 15.62 15.35 10/15/2007 15:50:00 

4.21 6.47 1.88 4.5 6.47 320.06 10.76 313.07 15.69 16.18 15.35 10/15/2007 16:00:00 

3.74 5.71 1.88 4.11 6.47 327.42 15.88 324.28 15.48 16.18 15.35 10/15/2007 16:10:00 

3.63 4.94 2.26 4 5.71 333.83 19.73 325.16 15.35 15.9 15.07 10/15/2007 16:20:00 

3.08 4.56 1.88 3.41 4.94 308.72 9.86 319.06 14.93 15.35 14.8 10/15/2007 16:30:00 

2.48 3.03 1.5 2.84 3.8 303 6.4 304.7 14.66 15.07 14.52 10/15/2007 16:40:00 

2.69 3.41 1.88 2.88 3.41 328.08 4.52 336.81 13.98 14.52 13.71 10/15/2007 16:50:00 

2.62 3.03 1.88 2.91 3.41 336.07 3.64 331.38 13.03 13.71 12.63 10/15/2007 17:00:00 

2.46 3.03 1.88 2.73 3.03 345.19 0.5 347.93 12.03 12.63 11.56 10/15/2007 17:10:00 

2.16 2.65 1.5 2.59 3.03 344.72 2.36 346.05 11.43 11.56 11.3 10/15/2007 17:20:00 

1.88 2.26 1.12 2.34 2.65 353.36 2.69 351.72 11.43 11.56 11.3 10/15/2007 17:30:00 

1.45 1.88 0.73 1.37 2.26 0 0 0 11.5 11.83 11.03 10/15/2007 17:40:00 

0.51 1.12 0.35 0.4 0.73 0 0 0 11.5 11.83 11.3 10/15/2007 17:50:00 

1.15 1.5 0.35 0.75 1.12 7.91 3.8 0 11.36 11.56 11.3 10/15/2007 18:00:00 

0.54 1.12 0.35 0.42 0.73 11.5 0 7.73 11.03 11.3 10.51 10/15/2007 18:10:00 

0.64 1.12 0.35 0.98 1.5 128.87 29.13 120.7 9.85 10.77 8.69 10/15/2007 18:20:00 

0.35 0.35 0.35 0.35 0.35 148.52 0.06 0 9.33 10.51 8.43 10/15/2007 18:30:00 

1.02 1.88 0.35 1.2 2.26 149.9 3.06 151.53 10.44 10.77 9.98 10/15/2007 18:40:00 

1.66 3.41 0.73 1.91 3.41 96.89 22.46 64.23 10.05 10.51 9.98 10/15/2007 18:50:00 

2.29 3.03 1.88 2.54 3.41 82.64 15.21 64.93 9.27 10.77 8.43 10/15/2007 19:00:00 

2.07 2.65 1.5 2.13 2.65 105.3 1.34 105.99 8.3 8.69 7.92 10/15/2007 19:10:00 

2.66 3.41 2.26 2.7 3.41 128.11 10.3 124.69 8.11 8.43 7.92 10/15/2007 19:20:00 

3.2 3.41 2.65 3 3.41 128.44 3.2 124.69 8.5 8.69 8.18 10/15/2007 19:30:00 

2.9 3.41 2.65 3.23 3.8 141.93 9.44 150.3 8.56 8.95 8.18 10/15/2007 19:40:00 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

720 5.32 4.56 3.99 4.94 155.13 5.15 142.38 7.47 7.66 7.41 10/12/2007 06:40:00 
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5.1.1. Results and Observations. 

 

From the plots of Figure 5.2 above, it is clear that these wind turbines experiences wind 

differently within the Wind Farm. This is because wind is stochastic and experiences problems 

during predictions, hence, the purpose of the research. The Tables 5.1, 5.2, and 5.3 on the other 

hand depicts a typical wind data set from a wind farm. The data captures all the wind 

information from a Turbine as enumerated in Figure 5.1. Understanding the wind speed in the 

farm is crucial for the research, hence, the wind-speed histogram computations. 

5.2. Wind Speed Histogram Computation.  

 

The integral of probability density function (PDF) as discussed in section 4.2, Eq. (4.4) is the 

cumulative distribution function 𝐹(𝑢)𝐶𝐷𝐹, which gives the probability of wind speed at or 

below speed, 𝑈. From the data, we assumed a k of about 1.798 and obtained the c from the 

average wind speed of the data. Another assumption made in the research is that the turbine 

sizes and types are unknown. However, at individual plots of the histogram of Figure 5.5, 

different turbines within the site experience power differently at their blades.  
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Figure 5. 5: Histogram of Wind Speed from 14 Turbines 

 

Thus, in the absence of wind histogram, wind power can be approximated using the using the 

cube root of wind speed and Weibull parameters for wind power density (WPDs) estimations. 
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5.2.1. Weibull Distributions from the Individual Turbines. 
 

The statistical distribution of wind power estimation as discussed in section 4.3, applying 

Weibull distribution of Eq. (4.5) results in Figure 5.6. 

 

Figure 5. 6: Weibull Distribution from 14-Turbines 

 

From the figure, the research studies the distribution from each turbine to estimate the possible 

AEP from the farm using wind power density (WPD) estimations of Eq. (4.5 and 4.9) which 

results to Figure 5.7. 
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5.2.2. Wind Power Density Estimations within the Farm. 

 

The power in the wind, which is equivalent to the energy potential of the wind, varies as the 

cube of the wind speed and in proportion to the air density. The distribution of wind energy at 

different wind speed for different turbines is then computed from the Weibull plot of Figure 

5.6 using Eq. (4.7) for WPDs in the wind farm that results in Figure 5.7 below. 

 

Figure 5. 7: Wind Power Densities for different Turbines. 

 

Other estimations like the wind power capacity, which is WPD *31 Wind Turbine Surface Area 

* Efficiency of the Turbine are not considered in this research due to lack of adequate data. 

However, estimated power generation output from the wind is computed, which is WPD 
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measured with the Weibull parameters is tabulated in Table 5.4 alongside the power from the 

turbine.  

Table 5. 4: Wind-Farm Power Generation  

 

From the table, results of average wind speed and average velocity (u_bar) are estimated. The 

u_bar is a function of the Weibull parameters from the individual turbines. It demonstrates the 

actual converted wind energy reaching the blades of the turbines into electricity; hence, it is 

compared to wind speed as shown in Figure 5.8. 

   

Figure 5. 8: Average Wind Speed and Velocity Comparison. 

Wind Turbines AVGWPD(m/s^2)Lambda@AVGws u_bar Power@Wind (W/m^3) WPD@Wind

WT8 895.8627779 10.44830556 9.264612 487.0659179 953.9141

WT21 457.9821697 7.582375 6.723364 186.1512363 364.8042

WT61 500.343325 8.196708333 7.268099 235.1627833 460.8524

WT93 468.792354 7.340097222 6.508534 168.8711977 330.9402

WT120 1219.255404 10.32066667 9.151433 469.4327678 919.4984

WT171 362.7787935 6.862263889 6.084834 137.9915177 270.4247

WT190 706.4223795 9.042652778 8.018206 315.745894 618.7567

WT208 148.2032846 5.261458333 4.665385 62.19687333 121.8885

WT230 7589.375903 21.47227778 19.03967 4227.508574 5083.089

WT247 323.789077 7.362625 6.528509 170.4308422 333.9967

WT263 228.6459775 6.21 5.506466 102.2645113 200.4098

WT291 316.9938616 6.786930556 6.018036 133.4966486 261.616

WT310 319.3036394 6.7775 6.009673 132.9409339 260.527

WT330 423.2603788 7.91925 7.022074 212.0812656 415.6196

Total 13961.00933 121.5831111 107.8089 7041.340963 10596.34
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To understand the average WPD at each wind turbine and the percentage of time at each wind 

velocity (bin), Figure 5.9 is used  

  

Figure 5. 9: WPD Comparison. 

 

The power delivered to each of the wind turbines, computed from Table 5.2 is shown in Figure 

5.10. 

 

Figure 5. 10: Power Generated by the Wind farm. 
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5.2.3. Wind Power Output Estimations. 

 

The area under each curve of Figure 4.9 informs the amount of electrical wind power that can 

be converted theoretically to mechanical power according to Betz law, which is 16/27 of total 

power in the wind at individual turbines. The power curve generated from the computed wind 

power density estimated from the Weibull parameters is as shown in Figure 5.11. From the 

figure, individual power densities from each turbine are combined to show the plot of the wind 

power curve.  

 

  

Figure 5. 11: Generated WPD from the Wind farm.32 

 

Assumptions are made in generation of Figure 5.11 above. These assumptions are (i) the air 

density from the wind farm is 1kg/m3. (ii) Fourteen standard 1.2WM Turbines with blade 

swept areas of 1m2 each are applied to the power curve of Eq. 4.10. (iii) Average wind speed 

                                                           
32 This figure is generated based on assumptions, simply to depict typical wind farm power output. 
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of 5m/s. Comparing Figure 5.11 and Figure 4.3, the later considers wind turbines of different 

sizes with different blades swept areas in wind farm while the former is as assumed.  

5.2.4. Results. 

 

It is observed from the individual plots that WT230 experiences outliers in the generated data 

from the sensor, hence, the abnormalities shown in Figure 5.10. However, the actual wind 

reaching the turbine blades from Figure 5.9 is as expected in the sense that the literature 

deduces low tip wind speed as seen in Figure 4.10 where the actual wind density is higher than 

computed WPD from Weibull parameters. The typical power output from the wind is as shown 

in Figure 5.10. Understanding the power output of the wind farm under study using Figure 5.11 

is crucial. However, in the farm, the average cut in wind speed is around 8.5 m/s while the rated 

power is around 25 m/s. at 35 m/s, the wind farm is expected to shut down to avoid damaging 

the wind farm. The farm loses power at this area. 

 To understand the data from the farm at individual turbines, descriptive statistics demonstrates 

pattern relationships within the data and measures of wind speed variability within the farm.   

5.3. Wind Farm Data Descriptive Statistics 

 

The descriptive statistics are determined using Microsoft Excel Software (MExS). Similar 

values are as obtained with Eq. (4.13) through (4.17). The results are as presented in Table 5.5. 
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Table 5. 5: Descriptive Statistics on the Individual Turbine data 

 

From the Table above, the sum and kurtosis of the wind speed data demonstrates the sum of 

individual wind turbines within the site assuming a flat surface.  

 5.3.1. Observations on Other Generated Wind Data. 

 

The generated wind power has wind speed as the major variable contributor. Although 

individual data samples – temperature, wind shear and turbulence contributes to the power 

generation, the blade and generator efficiencies contribute significantly to the wind power 

generation. The sample mean and median of the wind speed are not close. The mean is 

considerably larger than the median, making Lognormal or Weibull distribution the best 

candidate distribution. The mean and standard deviation are close. This suggests that the 

prediction process could be exponential. 

Furthermore, there is a close relationship of the Lognormal, Exponential and Weibull 

distributions from the generated wind power data. This necessitates taking a step further in 

pinpointing the distribution. The least square fit to the distributions estimates a high index of 

fit. In addition, the relationship within the generated turbulence and wind shear on the wind 

speed data as observed conforms to the literature on the farm. Hence, shown in Figure 5.12 and 

5.13 respectively.  
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Figure 5. 12: Turbulence and Wind shear effect on wind speed 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 13: Wind power, wind speed and direction relationship. 

 

5.3.2. Least Squares Fitting. 

 

A better accurate fit to the data is obtained by performing a least squares fit of  the tested 

distributions using Eq. (4.18) through (4.28) for the weibull distribution and Eq. (4.19) for the 

exponential distribution. Eq. (4.22) and (4.24) demonstrates the normal and lognormal 
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distributions respectively. Table 5.6 shows the plotting positions for the distributions. 

However, Figure 5.14 through 5.17 shows the least square plots for the various distributions 

considering a sample of the maximum generated wind power within the farm.  

Table 5. 6: Least Square Plotting Positions of Various Distributions of wind speed 

𝑖 Wind 

speed 

(WS) 

LnWS F(t)= i-

0.3/n+0.4 

1/[1-F(t)] Ln[1/1-F(t)] Lnln[1/1-F(t)] Zi 

1 2.800 1.030 0.023026 1.023569 0.023296 -3.75949 0.509185 

2 2.290 0.829 0.055921 1.059233 0.057545 -2.85518 0.522298 

3 2.640 0.971 0.088816 1.097473 0.09301 -2.37505 0.535386 

4 2.710 0.997 0.121711 1.138577 0.129779 -2.04192 0.548436 

5 3.140 1.144 0.154605 1.182879 0.167952 -1.78408 0.561434 

6 1.980 0.683 0.1875 1.230769 0.207639 -1.57195 0.574366 

7 3.170 1.154 0.220395 1.2827 0.248968 -1.39043 0.587218 

8 2.330 0.846 0.253289 1.339207 0.292078 -1.23074 0.599978 

9 2.370 0.863 0.286184 1.400922 0.33713 -1.08729 0.612631 

10 2.800 1.030 0.319079 1.468599 0.384309 -0.95631 0.625167 

11 2.610 0.959 0.351974 1.543147 0.433824 -0.83512 0.637571 

12 3.810 1.338 0.384868 1.625668 0.485919 -0.72171 0.649833 

13 3.950 1.374 0.417763 1.717514 0.540878 -0.61456 0.66194 

14 3.270 1.185 0.450658 1.820359 0.599034 -0.51244 1.0 

 

 

 

 

Figure 5. 14: Weibull Least Square Plot of wind speed 
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Figure 5. 15: Exponential Least Square Plot of wind speed 

 

 

Figure 5. 16: Normal Least Square Plot of wind speed 

 

 

Figure 5. 17: Lognormal Least Square Plot of wind speed 
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5.3.3 Coefficient of Determination. 

 

The coefficient of determination (R-Squared), compares estimated and actual y-values, and 

ranges in value from 0 to 1. If it is 1, there is a perfect correlation depicted in Table 5.7 of the 

generated wind sample — there is no difference between the estimated y-value and the actual 

y-value. At the other extreme, if the coefficient of determination is 0, the regression becomes 

unhelpful in predicting a y-value. 

Table 5.7: Correlation of Wind Data Samples. 

 

The resultstant R-squared statistics of each distribution is shown in Table 5.8. 

Table 5.8: Least-Square Fitting Results for Wind Speed 

 

 

 

 

 

 

 

 

 S/N Distribution R-Square value 

1 Weibull 0.9459 

2 Exponential 0.9395 

3 Lognormal 0.8379 

4 Normal 0.6905 
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5.3.4. Maximum Likelihood Estimation 

 

The MLE for the parameters, 𝛽 and 𝜃 are determined using Eq. (4.29) through (4.31). 

Where 𝑡𝑠 = 1, 𝑛 = 𝑟 = 14. Applying Newton Raphson’s numerical method, which requires 

solving for 𝒴 iteratively, gives:  

𝒴̂𝑗+1 = 𝒴̂𝑗 −
𝑔(𝒴𝑗)

𝑔′(𝒴𝑗)
  (5.3) 

where  

𝑔′(𝒴̂) =
𝑑

𝑑𝛽̂
[

∑ 𝑡𝑖
𝒴̂𝑟

𝑖=1 𝑙𝑛𝑡𝑖+(𝑛−𝑟)𝑡𝑠
𝒴̂

𝑙𝑛𝑡𝑠

∑ 𝑡
𝑖
𝒴̂𝑟

𝑖=1 +(𝑛−𝑟)𝑡𝑠
𝒴̂

] −
𝑑

𝑑𝛽̂
(

1

𝛽̂
) −

𝑑

𝑑𝛽̂
[

1

𝑟
∑ 𝑙𝑛𝑡𝑖

𝑟
𝑖=1 ]  

=
[∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 +(𝑛−𝑟)𝑡𝑠

𝒴
𝑡𝑠]

𝑑

𝑑𝛽̂
[∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 𝑙𝑛𝑡𝑖+(𝑛−𝑟)𝑡𝑠

𝒴̂
𝑙𝑛𝑡𝑠]−[∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 𝑙𝑛𝑡𝑖+(𝑛−𝑟)𝑡𝑠

𝒴̂
𝑙𝑛𝑡𝑠]

𝑑

𝑑𝛽̂
[∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 +(𝑛−𝑟)𝑡𝑠

𝒴̂
𝑡𝑠]

[∑ 𝑡
𝑖
𝒴̂𝑟

𝑖=1 +(𝑛−𝑟)𝑡𝑠
𝒴̂

]
2  +

1

𝒴̂2 = 0  

ℊ′(𝒴̂) =

[∑ 𝑡𝑖
𝒴̂𝑟

𝑖=1 +(𝑛−𝑟)𝑡𝑠
𝒴̂

𝑡𝑠]{∑ 𝑡𝑖
𝒴̂𝑟

𝑖=1 (𝑙𝑛𝑡𝑖)2+(𝑛−𝑟)𝑡𝑠
𝒴̂(𝑙𝑛𝑡𝑠)2}−[∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 𝑙𝑛𝑡𝑖+(𝑛−𝑟)𝑡𝑠

𝒴̂
𝑙𝑛𝑡𝑠]{∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 𝑙𝑛𝑡𝑖+(𝑛−𝑟)𝑡𝑠

𝒴̂
𝑙𝑛𝑡𝑠}

[∑ 𝑡
𝑖
𝒴̂𝑟

𝑖=1 +(𝑛−𝑟)𝑡𝑠
𝒴̂

]
2   

+
1

𝒴̂2 = 0  

ℊ′(𝒴̂) =
[∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 +(𝑛−𝑟)𝑡𝑠

𝒴̂
𝑡𝑠]{∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 (𝑙𝑛𝑡𝑖)2+(𝑛−𝑟)𝑡𝑠

𝒴̂(𝑙𝑛𝑡𝑠)2}−[∑ 𝑡𝑖
𝒴̂𝑟

𝑖=1 𝑙𝑛𝑡𝑖+(𝑛−𝑟)𝑡𝑠
𝒴̂

𝑙𝑛𝑡𝑠]
2

[∑ 𝑡
𝑖
𝒴̂𝑟

𝑖=1 +(𝑛−𝑟)𝑡𝑠
𝒴̂

]
2   + 

1

𝛽̂2 = 0  

 (5.4) 

For incomplete or censored data, Eq. (5.4) holds. But for complete data like the data used in 

this study, 𝑛 = 𝑟. Hence, Eq. (5.4) reduces to: 

ℊ′(𝒴̂) =
[∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 ]{∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 (𝑙𝑛𝑡𝑖)2}−[∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 𝑙𝑛𝑡𝑖]

2

[∑ 𝑡
𝑖
𝒴̂𝑟

𝑖=1 ]
2   + 

1

𝒴̂2 = 0                                                       (5.4a) 

ℊ′(𝒴̂) =
[∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 ]

2
(𝑙𝑛𝑡𝑖)2−[∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 ]

2
(𝑙𝑛𝑡𝑖)2

[∑ 𝑡
𝑖
𝒴̂𝑟

𝑖=1 ]
2   + 

1

𝒴̂2 = 0                                                                (5.5) 
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ℊ′(𝒴̂) =   
1

𝛽̂2                                                                                                                        (5.5a) 

The initial estimate for 𝒴̂ (0.9786) was obtained from least squares fit. See Table 5.8 for an 

improved value of 𝒴̂ obtained through Newton Raphson numerical method. 

𝒴̂ = 0.9459  Remembering that 𝑛 = 𝑟, Eq. (4.30) reduces to 

𝜃 = {
1

𝑟
[∑ 𝑡𝑖

𝒴̂𝑟
𝑖=1 ]}

1

𝒴
  (5.6) 

Hence,  

𝜃 = 1229.298  

 

5.3.5. MANN’S Test. 

 

The confirmation of Weibull distributions for ease of predictions results in the use of Eq. (4.43) 

through (4.44) as the final test that the data of wind farm (WF) came from the Weibull 

distribution and is merge-able for wind speed prediction. The value of α is set at 0.05. The null 

hypothesis is: 

𝐻0: wind series are Weibull with 𝒴 = 0.92459 and 𝜃 = 1229.298 

𝐻1: wind series are not Weibull with 𝒴 = 0.92459 and 𝜃 = 1229.298 

Table 5.9 provides the computed parameters of Eq. (4.43) and (4.44), from the table, 

𝑀 =
𝐾1 ∑ [(𝒍𝒏𝑾𝒊𝒏𝒅𝑭𝒂𝒓𝒎𝒊+𝟏−𝒍𝒏𝑾𝒊𝒏𝒅𝑭𝒂𝒓𝒎𝒊)/𝑴𝒊]29

𝑖=16

𝐾2 ∑ [(𝒍𝒏𝑾𝒊𝒏𝒅𝑭𝒂𝒓𝒎𝒊+𝟏−𝒍𝒏𝑾𝒊𝒏𝒅𝑭𝒂𝒓𝒎𝒊)/𝑴𝒊]15
𝑖=1

                                                                      (5.6a) 

where  

𝐾1 = ⌊
𝑟

2
⌋ = 14,   𝐾2 = ⌊

𝑟−1

2
⌋ = 14,                                                                                   (5.6b) 

Numerator =  −428.11, Denominator =  −236.28,  `𝑀 = 1.579 with 28 degrees of freedom 

for both the numerator and the denominator.  Since 𝑀 = 1.579 <  𝐹𝑐𝑟𝑖𝑡,0.05,28,28 = 1.868, 𝐻0 
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is accepted. Therefore 𝒴 = 0.924 and 𝜃 = 122.20. Values of F critical are obtained from 

critical values for the F-distribution.  

Table 5. 7:  Determination of Mann’s Test for Wind Power (WP) data  

 

𝒊 𝑾𝑻𝟏 𝒍𝒏𝑾𝑻 𝒊 − 𝟎. 𝟓

𝒏 + 𝟎. 𝟐𝟓
 

𝒁𝒊 𝑴𝒊 𝒍𝒏𝑾𝑻𝒊+𝟏 − 

𝒍𝒏𝑾𝑻𝒊=H 

𝑯

𝑴𝒊
 

1 2.800 1.030 0.016529 -4.09432 1.115612 1.034469 0.927266 

2 2.290 0.829 0.049587 -2.97871 0.528324 0.819956 1.551993 

3 2.640 0.971 0.082645 -2.45039 0.354503 -1.31733 -3.716 

4 2.710 0.997 0.115702 -2.09588 0.269914 -2.10815 -7.81046 

5 3.140 1.144 0.14876 -1.82597 0.219879 -2.99936 -13.641 

6 1.980 0.683 0.181818 -1.60609 0.186916 -1.01729 -5.44249 

7 3.170 1.154 0.214876 -1.41917 0.163666 -4.04191 -24.696 

8 2.330 0.846 0.247934 -1.25551 0.146489 -1.88158 -12.8445 

9 2.370 0.863 0.280992 -1.10902 0.133376 -1.54695 -11.5984 

10 2.800 1.030 0.31405 -0.97564 0.123131 -1.34726 -10.9417 

11 2.610 0.959 0.347107 -0.85251 0.115 -2.55855 -22.2483 

12 3.810 1.338 0.380165 -0.73751 0.108486 -2.62843 -24.2283 

13 3.950 1.374 0.413223 -0.62903 0.103253 -3.84004 -37.1907 

14 3.270 1.185 0.446281 -0.52577 0.099068 -2.42461 -24.4741 

 

 

 

 

5.3.6. Confidence Intervals. 

 

In order to ascertain that the result obtained from the research maybe be ascribed to chance, a 

confidence interval is applied. More than 90 percent confidence intervals for the estimated 

parameters are computed directly from Eq. (4.32) and (4.31) to result in Eq. (5.6c) and (5.6d) 
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0.92459exp (
−0.78Zα/2

√30
) ≤ β ≤ 0.92459exp (

0.78Zα/2

√30
)                                                    (5.6c) 

0.73149 ≤ 𝓨 ≤ 1.16866  

Also, 

1229.298exp (
−1.05Zα/2

0.92459√30
) ≤ θ ≤ 1229.298exp (

1.05Zα/2

0.92459√30
)                                          (5.6d) 

874.041 ≤ 𝛉 ≤ 1728.938  

Where 

Z0.1/2 = 1.645 is the standardized normal deviation obtained from statistical Table of critical 

t values with v degrees of freedom. 

5.3.7. Stationary Modeling of Wind Farm Data. 

 

The statistical method described in section 4.4 is used in the research. It ensures that wind 

speed from all the 14 turbines are combined to form Figure 5.18. Then the data as modelled for 

prediction using the proposed LSTM, eLSTM and ARIMA model. 
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Figure 5. 18: Standardised data of a wind speed data 

 

The normal distribution of the wind farm data, computed using Eq. (4.31) is as depicted as 

shown in Figure 5.19. 

  

Figure 5. 19: Normal distribution of the Wind Farm. 

 

5.3.8 Results. 

 

The maximum likelihood estimation and MANNs test suggested that the individually generated 

wind speed data is suitable for merging and combined for power output predictions. The CDF 

and PDF on the other hand ensures the continuousness of the merged data, hence it is available 

for normalisation and model fitting. Looking at the wind literature, the power output 
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estimations from the wind farm are estimated using Figure 5.19. This Figure is derived from 

the cumulative Weibull distribution of Eq. (4.5) of section 4.2.1. 

5.4. Data Preparation for machine Learning Model. 

 

After due statistical processes to confirm the emergence of the wind data from different 

turbines using the Mann Test, PDF and CDF on Weibull distribution, it is observed that the 

data is set for merging such that algorithm models can be applied for predictions. Conversely, 

the wind data is transformed such that our model can fit to it. Hence, the research employed 

these three basic steps to achieve this: 

 Transform series data to be stationary. In order words, have a lag = 1 using the Dickey 

Fuller statistical method – Figure 4 was realised. We computed the first level (d = 1) 

differencing using the difference between current series (𝛾𝑡) and previous series (𝛾𝑡−1) 

as in 𝛥𝛾𝑡 =  𝛾𝑡 −  𝛾𝑡−1.  

 Transform our series into a supervised learning problem. Here the author specifically 

used feature engineering to have data in an input/output pattern such that at prior steps, 

observations are used as input to predict observation at current time step. The window 

method is applied.  

 Transform our observation to have a specific scale – that between -1 and 1. These 

transforms were then reverted after the prediction to return them into their original scale 

before errors are calculated and scored. 

5.4.1. Preparation (Normalization) of Data of Input Parameters 

 

The PHM society’s data, the wind-power-generated data of Eq. (4.1) cannot be used in its 

present form to develop an RNN-LSTM model. In accordance with sections 4.2 and 4.2.1, the 

input data of the wind farm is rank-ordered and normalized using Eq. (4.12). The results of the 



 
 

118 | P a g e  
 

normalized data as presented in Table 5.8 are used to develop the RNN-LSTM model for the 

research. 

𝑝𝑛 =
2(𝑝−𝑝𝑚𝑖𝑛)

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
− 1               (5.7) 

 

The output data of the wind power data (table 5.14c) is rank-ordered and normalized using Eq. 

(4.12). The results presented in Table 5.8 (normalized data) were used to develop the RNN-

LSTM model for the unit. For example, from Table 4.14c, 𝑅(𝑡1 = 𝑝 = 0.780375) was 

normalized to -0.70752 in Table 5.8 using Eq. (4.12) as follows:  

𝑝𝑛 = [
2(0.780375−0.044982)

0.867−0.044982
] − 1 =  −0.70752               (5.8) 

 

5.4.2. Network Architecture. 

 

Generally, ANN architectures are decided based on trial and error, depending on the one that 

provides the fastest convergence for the given problem. The long short-term memory back-

propagation neural networks were configured for the research after several trials of some 

architectures. The output was calculated directly from the input through recurrent to feed-

forward connections. The Python platform is employed for network training, validating and 

testing all the trained RNN-LSTM developed in this research. Each set of data of the wind farm 

model contains eight input parameters and one system output parameter as shown in Table 

5.10. 

5.4.3. Data Partitioning. 

 

The choice of a partitioning ratio is governed by the ratio that yields the best training and testing 

results. Following the ratio of 3:1:1, which apart from giving the best results, also provided 

enough data to validate the results, all the available data sets for the unit were divided into 
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three- 60 per cent of the data was used for training, 20 per cent for testing and the other 20 per 

cent for validation.  

5.4.4. Training and Testing on LSTM and eLSTM Network. 

  

The Python programming language is used in carrying out all the RNN-LSTM training and 

validation exercises in this research. The default performance function for feed-forward Back 

Propagation networks used in the work is the mean square error (MSE) - the average squared 

error between the network outputs and the target outputs. Table 5.10 shows the architecture of 

the neural network for the model. The architecture was developed by first using eight neurons 

in the input layer, thirty neurons in the hidden layer, and one neuron in the output layer. The 

mean square error during training, validation and testing were 7.35 × 10−4,  4.13 × 10−3 and 

7.90 × 10−4 respectively. However, at these points, the coefficients of regression were 0.9351, 

0.9031 and 0.9014 respectively. Several other configurations were tried some of which are 

shown in Table 5.10a. Conversely, a similar model was produced using a 20% dropout method 

and further 50% as shown in Table 5.10. 

The best configuration is represented by the sixth trial in Table 5.10. The R- value between the 

target (T) and the actual output (A) of the LSTM neural network was 0.996144 at the sixth 

trial, that is; when trained with eight neurons in the input layer, forty neurons in the hidden 

layer (twenty neurons apiece in the two hidden layers) and one neuron in the output layer Figure 

5.12.  The corresponding values during validation and testing with six sets of data were 

0.898120 and 0.892096 respectively. The MSE at these points were 6.441 × 10−3, 3.528 ×

10−3and 8.684 × 10−3 respectively, for training, validation and testing. This implies excellent 

generalization of Figure 5.20. The root mean square error between the desired and actual output 

of the network during validation is 1.876 × 10−8 while a zero error goal is as shown in Figure 

5.21. 
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The training algorithm for the Long short-term memory Back-Propagation (LSTM-BP) and the 

transfer function are namely hyperbolic tangent function (Tansig) for neurons in the input and 

hidden layers and the rectified linear unit function (RELu) for the output layer leads to quicker 

convergence during training and validation. Convergence, achieved at the one hundredth 

epoch. Despite the trial and error procedure used for selecting the training algorithm and the 

transfer functions. Although as discussed above, [61] had established that the above 

combination of transfer functions approximates any given function arbitrarily well. 

               

Figure 5. 20: eLSTM (50% dropout) and LSTM Model at 18 timestep 

 

 

            

Figure 5. 21: eLSTM (20% dropout) and LSTM Model at 12 timestep 
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Figure 5. 22: eLSTM (20% dropout)  and LSTM Model at 6 timesteps. 

 

In this study, a regression plot was created at the end of the network training. This shows the 

relationship between the outputs of the network and the targets. If the training were perfect, for 

example, the network output and the target would be equal. However, the deterioration 

observed in Figure 5.22 in increasing time steps from 6 to 12 steps is associated to model 

generalisation as the model fails to capture underlying data pattern. This can be associated to 

model overfitting or data size. This in turn is as discussed in the literature in section 1.1. 

Overfitting is resolved in Figure 5.20 where eLSTM resolves the over-fitted model by 

increasing Dropout from 20% to 50%. After training, the neural network is tested on the six 

sets of validation data (see Appendix (iv and vi)). Data size on the other hand can be increased. 

In this research, it was not. This is because the model trains better as the time step increases. 

Other trials carried-out are by varying the number of neurons in the hidden layers as shown in 

Table 5.11. The sixth trial gave the best values of MSE and regression as further trials did not 

improve the results further. Thus, the arrangement in the sixth trial is selected as the best RNN 

architecture for wind speed prediction, which is; eight neurons in the input layer, thirty neurons 

in the hidden layer and one neuron in the output layer.  
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Table 5. 8: eLSTM/LSTM Training and Validation on Different Network Configurations.  

 

 

Table 5. 9:RMSE for Different Trials.  

 

 

5.4.5. ARIMA Model Configurations. 

 

In modelling ARIMA for the wind speed prediction and for comparison with eLSTM and 

LSTM RNN. The following p, d, q parameters equivalent to 0, 1, 1 and 0, 0, 0 respectively are 

the best grid searches obtained. In the model, xt is a linear function of the values of x at the 

previous time steps. However, the concept of psi-weights where the model can be converted to 

S/N Architecture Training Validation Testing 

MSE Regression MSE Regression MSE Regression 

1 8 – 10-15 (0.2) – 1 8.35612
× 10−4 

0.935187 4.13226 ×
10−3  

0.903126 7.90146 ×
10−4  

0.901432 

2 8 – 15-8 (0.2)  - 1  4.30941
× 10−4 

0.942896 4.64213
× 10−3 

0.921358 6.12147 ×
10−4  

0.941082 

2 8 – 10-15 (0.2)  - 

1  
7.73952
× 10−3 

0.933449 3.74323
× 10−4 

0.949325 7.24583
× 10−3 

0.941233 

4 8 –20-8 - 1 3.01395
× 10−4 

0.982135 3.47316
× 10−3 

0.934773 8.67277
× 10−3 

0.952375 

5 8 –10-20 - 1 5.74986
× 10−3 

0.91876 3.55236
× 10−4 

0.956124 3.76315
× 10−3 

0.988641 

6 8-15-15 (0.2) -1 6.44124 ×
10−3  

0.996144 3.52837
× 10−3 

0.998120 8.68488
× 10−3 

0.992096 

7 8 – 20-15 (0.2)  -1 4.31996
× 10−3 

0.971895 3.79497
× 10−3 

0.921242 6.87332
× 10−4 

0.950123 

 
 

eLSTM MSE (%) 

 

Dropout MSE (%) 

 

L1L2 MSE (%) 

 

LSTM MSE (%) 

Exp. 2 73.20 72.40 68.90 71.02 

Exp. 4 73.12 72.31 69.01 71.06 

Exp. 6 73.08 72.24 69.00 70.12 

Exp. 8 73.03 72.05 70.01 70.10 

Exp. 10 73.02 72.01 70.40 70.06 
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a finite order of moving averages.  The root mean square error estimation of these algorithm 

are as shown in Table 5.12 below. 

Table 5. 10: ARIMA and eLSTM RMSE comparison. 
 

RMSE-ARIMA (%) RMSE-eLSTM (%) 

@ 20%  73.417 78.283 

@30% 74.315 78.952 

 

 

 

5.4.6. Overall Model Evaluation. 

 

The research employed the rolling forecast method; meaning, each test dataset will be walked 

a step at a time after which our model ARIMA/Dropout is used to make a forecast for six time 

steps.  

 After which, the expected value from the test set is made available to the model 

for the next step forecast. 

 We further collect all the test dataset and calculate error scores to check our model 

skills. 

 Because RMSE punishes large errors and results in a score that is the same as the 

forecast data, we used it to check how our model has performed. 

Furthermore, to understand model performance, on the training, test and validation sets, the 

algorithms are compared in terms of their mean deviations during model evaluations as shown 

in Figure 5.23. The result show the median range of each model before performance is 

measured by MSE.  

The generated wind speed data on a single turbine and the overall fourteen turbines is used to 

demonstrate visually what happens during training, testing and validation as shown in Figure 

5.24 and 5.25. From the figures, a good model is expected to follow the data pattern during 
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training and testing such that during prediction, the algorithm would be able to deliver a good 

judgment, following the data pattern – the concept of a rolling forecast.   

 

Figure 5. 23: Algorithm comparison. 

 

 

 

 

 

 

 

 

 

Figure 5. 24: Training-test pattern on raw data from a wind turbine. 

For further discussions, the codes used in studying Figure 5.24 is explained in Appendix A 

(x) 
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Figure 5. 25: Training-test pattern on raw data from a wind farm. 

See Appendix A (viii)) for codes used in generating Figure 5.25 and subsequent discussions. 

 

5.5. RNN Overfitting Demonstration. 
 

As discussed in section 1.3, overfitting is the major problem with a long short-term memory 

type of RNN. To demonstrate this setback, a sample of data from the wind farm as modelled 

with LSTM – Figure 5.25 and further passed through dropout shown in Figure 5.26. The 

summary statistics are as shown in Table 5.13. 

Table 5. 11: Applied Regularisation Methods on the Wind Farm Data 

 
No Dropout Dropout (20%) Dropout (50%) L1L2Regularisation 

count 5.0000 5.0000 5.0000 5.0000 

mean 1.3648 1.3577 1.3546 1.3443 

std 0.0180 0.0228 0.0243 0.0251 

min 1.3409 1.3303 1.3210 1.3232 

25% 1.3574 1.3375 1.3361 1.3267 

50% 1.3605 1.3665 1.3368 1.3355 

75% 1.3796 1.3703 1.3695 1.3512 

max 1.3858 1.3841 1.3779 1.3849 
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Figure 5. 26: Training sample without overfitting. 

 

 

 

 

 

 

Figure 5. 27: Training sample with overfitting. 

 

In the simulations, the research compared no-dropout (traditional LSTM), dropout at a rate of 

20%, dropout at same rate of 50% and L1L2 regularisation of the data on a baseline model of 

Figure 5.27 and experience some closeness in the training data. This closeness however, infers 

overfitting of the sample data while training. In addition, overfitting is seen by clear addition 

of bumps to the train and test RMSE traces – more pronounced on the test RMSE scores of 
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Figure 5.26. To illustrate the research point, we show a boxplot of Figure 5.27 that compared 

the distribution of results for each configuration.  

 

 

 

 

 

 

 

Figure 5. 28: Sample Plot of Over-fitted Data 

 

5.5.1 Result. 
 

The data preparation shows how the wind farm data is prepared prior for the machine-learning 

model fitting. The research tried to study the need for combining regularisation for RNN by 

training the models, LSTM and LSTM/dropout (eLSTM) at different time steps. It is evident 

that eLSTM experiences better generalization from Figure 5.22 through 5.20 especially for a 

long prediction horizon. However, in order to ensure the need for LSTM, overfitting is tested 

and the sluggish nature of over-fitted data is evident. The ARIMA model comparison shows 

that the performance of a complicated network that is simplified due to dropout being applied 

demonstrated that eLSTM is better at predicting wind sequences.   

5.6. Predicted Results. 

 

After the algorithm configurations, the model fit results are obtained for different ARIMA and 

eLSTM configurations. In this research, the prediction and confidence intervals on the wind 
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speed is as shown in Figure 5.28 through 5.31. The eSLTM configuration is at 50% dropout 

for Figure 5.30 and 20% for Figure 5.31. ARIMA models on the other hand are configured 

with p, d, q of 0, 1, 1 and 1, 1, 0 respectively as shown in Figure 5.28 and 5.30. the code used 

in getting these results are found in Appendix B. 

 

Figure 5. 29: ARIMA (0, 1, 1) Wind Speed Prediction. 

 

 

Figure 5. 30: eLSTM at 50% Dropout for Wind Speed Prediction. 

 

Figure 5. 31: ARIMA (1, 1, 0) Wind Speed Prediction. 
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Figure 5. 32: eLSTM at 20% Wind Speed Prediction. 

 

Furthermore, in Figure 5.33, the research tends to compare the models – ARIMA, LSTM and 

eLSTM on typical wind farm data. The results appears blurred.  

 

Figure 5. 33: Wind Speed Prediction Plots 

 

The confidence interval observed in Figure 5.29 to 5.32 describes the true mean of the wind 

speed within the predicted wind speed. It also describes the stability of eLSTM model as 

shown in yellow line of Figure 5.32. 
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Chapter 6 

 

6.1. General Discussions and Future Work. 

 

Renewable energy systems such as wind speed predictions are usually very complex in nature. 

This is due to the uncertainties in the wind. In addition, with the growth of experimental access, 

the common problem of the nature of time series data appear a concern in terms of near accurate 

predicted results. The rapid development of novel predictive methods further aggravates this 

problem. New logical, statistical and experimental methods are therefore required to make 

sense of the data and by doing so reproduce an improved understanding of wind interactions 

for predictions.   

In a wind farm, wind sensors and recording methods require adequate sequential recording of 

wind series data from different sources and ranges for less processing time and more reliable 

output power prediction from the farm. In this context, revealing the most appropriate and 

reliable mapping method for wind energy is a challenge. Applications such as statistical 

models, recurrent neural networks (RNN) and the likes have been very useful, successful and 

are increasingly common. However, as emphasized in the thesis, application of RNN may have 

resulted in misleading causal network structures due to the influence of exogenous inputs and 

latent variables. In this research, however, we have confronted the important problem by 

introducing a new definition of the regularisation method, which constitutes a hybrid long 

short-term memory (LSTM) and dropout method, which is robust against various wind 

perturbations, associated with data and common input sizes. 

The hybrid regularisation method is inspired by the definition of long short-term memory but 

the analogy is not exact. LSTM is capable of full reconnection of a previous sequence, in other 

words, learning long-term dependencies. Due to the nature of time series systems in general 

and the idea of restructuring for model fitting, LSTM faces the problem that hidden neurons 
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are not entirely useful and must be estimated in a fashion that requires probability drop-off of 

certain applied neurons. For this reason, LSTM alone cannot eliminate the influence of 

exogenous input series and latent variables in all cases. Full generalisation especially on time 

series is only possible if the hidden neurons have equal influence on the random variables. 

However, our theoretical analysis and numerical results shows that in a variety of cases, hybrid 

LSTM or eLSTM outperforms the conventional LSTMs as demonstrated in Figure 5.20 

through 5.21. Importantly, this includes cases in which physical methods such as ARIMA in 

Figure 5.29 and eLSTM of Figure 5.28 has a differing influence on the predicted variables. 

These findings support the notion that eLSTM is of substantial practical value for attempt to 

identify a causal network from time series data as demonstrated in Figure 5.32.  

In this research, eLSTM is considered mainly in the time domain. Research involving spectral 

decomposition [50, 51] expanded LSTM to the frequency domain and spectral process. This 

decomposition leads to a set of causality measures, which are of particular relevance to the 

spectral characteristic of wind farm models. In the future, the exploration of the spectral version 

of eLSTM is relevant. Fitting the data with an eLSTM model in the time domain, hence, 

accessing the statistical relationship between the input (X) and output (Y) variables becomes 

ideal for time series estimation especially in maintenance of wind farm equipment. Conversely, 

the advantage of eLSTM over the LSTM is in the application of quantitative measurements.  

Finally, another popular approach for regularisation of RNN elements is the use of the Bayesian 

method. However, a major difference between Bayesian and eLSTM on RNN is the difficulty 

of the incorporation of backpropagation interactions in the Bayesian approach, which in some 

cases is a limiting factor as demonstrated in [109]. 
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6.2. Future Work. 

 

This research has demonstrated recurrent neural network (RNN) can be regularised using a 

hybrid approach to improve model performance especially in complex time series type of 

models due to the stochastic nature of wind. Wind turbine components on the other hand 

requires reliable estimations for optimum preventive maintenance. Therefore, regularising 

RNN considering the approaches in this research and other methods such as GRU can be 

applied to improve wind farm power output for a better return on investment (ROI). Hence, in 

the future, research will consider the following;  

1. In terms of improving recurrent neural network, further research would benefit from 

leveraging a combination or hybridisation of other regularisation methods such as L1, 

L1 and L1L2 and further compare results with results obtained from LSTM, dropout 

for possible improvement in performance measure.   

2. In the future, research could leverage eLSTM to estimate the likelihood of bearing 

failures in the wind turbines to reduce gearbox damage as frequently reported in the 

wind renewable energy industry. 

3. With the adaptive nature of eLSTM in terms of its mapping – explanatory-to-response 

variable capabilities, winding damages experienced due to wind over-speed, which 

causes mechanical breakdown in the wind turbine can be controlled with an effective 

winding speed prediction system. 

4. Stress related failures such as Nacelle damages, axial stress and grid failures could be 

improved by building reliable predictive maintenance systems, considering variants of 

RNN to control things like yaw motor operation and other management events. This is 

due to the robust nature of RNN in learning and improving complex patterns. 
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6.2. Conclusions. 
 

In this thesis, we proposed a novel regularisation method, called enhanced long short-term 

memory (eLSTM) to determine the causal and mapping relationship between reconstructed 

input wind speeds and the output predicted wind speed for output wind-power prediction from 

a wind farm.  

Looking at the effect of dropout rate as shown in Figure 5.27, which is the probability of 

dropping a neuron between 0 and 1, it is evident to understand that regularizing recurrent neural 

networks (RNN) especially with the long short-term memory (LSTM) makes wind series 

prediction better.  

In the machine learning and statistical literature, bias variance remains an issue for predictive 

error minimization. Models with low bias in parameter estimation has higher variance of the 

parameter estimate across samples and vice versa. Conversely, models with high bias and low 

variance pays little attention to training data and causes under-fitting – models are unable to 

capture underlying data pattern, example Naïve Bayes. In this research, we have demonstrated 

and corrected overfitting as shown in Figure 5.23 and 5.24 where LSTM is used in modelling 

wind series shows low bias and high variance and captures noise along with underlying wind 

data patterns. This is however, corrected by introduction of dropout to LSTM (eLSTM) to 

maintain a good balance, which is low bias and low variance on the underlying data pattern 

and hence, improved predictive performance. Another topic of importance in wind power 

prediction is the issue of removing correlated data as shown in Table 5.7 from the historical 

wind-farm data model. 

Correlation affects model performance, however, it depends on the level of correlated data or 

the number of variables affected because of issues associated in merging the data from different 

turbines, in our case. Apart from making the learning algorithm faster by possible reduction of 
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dimensionality, it decreases harmful bias in the model. It is important to note that not all models 

are affected by correlation. Models like Naïve Bayes, ARIMA and its variants benefit from 

positively correlated data while models like Random Forest struggles with correlations, 

whether positively or negatively. On the other hand, recurrent neural network (RNN) models 

are affected by correlation since it relies on better dimensional features for model improvement 

in terms of speed. These issues of correlation goes hand-in-hand with data size and stationarity 

in feature engineering processes as discussed in chapter 4. Furthermore, another topic of 

discussion this research has been able to benefit from is the idea behind improved architectural 

design.  

In Figure 5.28 through to Figure 5.32, it is pertinent to observe model improvement based on 

architectural design by considering best approach as studied from Table 5.10. This study infers 

the relationship between batch size, weight, optimizer and epoch as seen in the literature and 

how they are related in the research. Weight, which defines the amount of neuron contribution 

are changed using an optimizer – in our case, RMSprop. Optimizer on the other hand reduces 

loss while a change in weight is known as epoch. In Figure 5.23 and 5.24, choosing RMSprop 

improves model performance by over 90% in terms of learning the stochastic wind data. Hence, 

the knowledge gained from these figures led to model building of Figure 5.29 and 5.31 

respectively. In terms of loss reduction, Figure 5.20 through 5.22 revealed that increase in 

predicted horizon increases loss. This observation in turn relates significantly to the nature of 

batch size applied in model configuration, 12 in our case. Hence, overfitting is addressed by 

imposing dropout on LSTM.   

Using the results obtained from the probability density function estimation, which is directly 

associated to the Weibull parameter estimation, prediction is affirmed by statistical means and 

hence, eLSTM is capable of eliminating the influence of uncorrelated data and under-fitting in 

LSTM and therefore ensures prediction of wind speed for wind-farm power output within a 
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wind farm. This demonstrated that eLSTM is more robust than LSTM and ARIMA especially 

on predictions involving a long sequence of predicted horizons – multiple steps ahead such as 

6-hours, which is equivalent to 72-time-steps ahead. In addition, eLSTM is found to be more 

robust in deriving causal relationships underlying a complex stochastic system compared to the 

traditional LSTM. In chapter 4, the performance of eLSTM is tested using RMSE on wind 

speed data. In the future research, we plan to apply the method on an operational wind farm to 

predict likely failure and improvements in rotor dynamics of a wind turbine.  
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Appendix Page 

 

Appendix A 
     

 

(i)        Autocorreltion Code 

         

from pandas import read_csv 

from pandas import datetime 

from matplotlib import pyplot 

from pandas.tools.plotting import autocorrelation_plot 

#Autocorrelation of the wind series 

series = read_csv('wind_data.csv', usecols=[2], engine='python', skipfooter=3) 

series = series.values 

autocorrelation_plot(series) 

pyplot.show() 

 

 

(ii)        Wind Speed ARIMA Code 

 

 

from pandas import read_csv 

from pandas import datetime 

from pandas import DataFrame 

from statsmodels.tsa.arima_model import ARIMA 

from matplotlib import pyplot 

series = read_csv('wind_data.csv', usecols=[2], engine='python', skipfooter=3) 

series = series.values 

# fit model 

model = ARIMA(series, order=(1,1,2)) 

model_fit = model.fit(disp=0) 

print(model_fit.summary()) 

# plot residual errors 

residuals = DataFrame(model_fit.resid) 

residuals.plot() 

pyplot.show() 

residuals.plot(kind='kde') 

pyplot.show() 

print(residuals.describe()) 
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(iii) ARIMA Model Results 

 

 

==================================================================

============ 

Dep. Variable:                      y   No. Observations:                 1437 

Model:                     ARMA(6, 0)   Log Likelihood               -1785.164 

Method:                       css-mle   S.D. of innovations              0.837 

Date:                Sun, 20 May 2018   AIC                           3586.329 

Time:                        22:09:21   BIC                           3628.491 

Sample:                             0   HQIC                          3602.070 

 

==================================================================

============ 

                 coef    std err          z      P>|z|      [0.025      0.975] 

------------------------------------------------------------------------------ 

const          5.0417      0.941      5.359      0.000       3.198       6.886 

ar.L1.y        0.7313      0.026     27.844      0.000       0.680       0.783 

ar.L2.y        0.0860      0.033      2.637      0.008       0.022       0.150 

ar.L3.y        0.0695      0.033      2.127      0.034       0.005       0.133 

ar.L4.y       -0.0129      0.033     -0.396      0.692      -0.077       0.051 

ar.L5.y        0.0142      0.033      0.436      0.663      -0.050       0.078 

ar.L6.y        0.0897      0.026      3.411      0.001       0.038       0.141 

                                    Roots 

==================================================================

=========== 

                 Real           Imaginary           Modulus         Frequency 

----------------------------------------------------------------------------- 

AR.1            1.0132           -0.0000j            1.0132           -0.0000 

AR.2            1.0120           -1.1623j            1.5411           -0.1360 

AR.3            1.0120           +1.1623j            1.5411            0.1360 

AR.4           -0.7109           -1.4519j            1.6166           -0.3225 

AR.5           -0.7109           +1.4519j            1.6166            0.3225 

AR.6           -1.7736           -0.0000j            1.7736           -0.5000 

----------------------------------------------------------------------------- 

 

 

 

(iv)    eLSTM Model Comparison Code of Figure 5.20, 5.21 and 5.22 

 

 

from math import sqrt 

from numpy import concatenate 

from matplotlib import pyplot 

from pandas import read_csv 

from pandas import DataFrame 

from pandas import concat 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.preprocessing import LabelEncoder 
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from sklearn.metrics import mean_squared_error 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM, Dropout 

# convert series to supervised learning 

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): 

 n_vars = 1 if type(data) is list else data.shape[1] 

 df = DataFrame(data) 

 cols, names = list(), list() 

 # input sequence (t-n, ... t-1) 

 for i in range(n_in, 0, -1): 

  cols.append(df.shift(i)) 

  names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] 

 # forecast sequence (t, t+1, ... t+n) 

 for i in range(0, n_out): 

  cols.append(df.shift(-i)) 

  if i == 0: 

   names += [('var%d(t)' % (j+1)) for j in range(n_vars)] 

  else: 

   names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] 

 # put it all together 

 agg = concat(cols, axis=1) 

 agg.columns = names 

 # drop rows with NaN values 

 if dropnan: 

  agg.dropna(inplace=True) 

 return agg 

 

# load dataset 

dataset = read_csv('wind_data.csv', header=0, index_col=0) 

values = dataset.values 

# integer encode direction 

encoder = LabelEncoder() 

values[:,4] = encoder.fit_transform(values[:,4]) 

# ensure all data is float 

values = values.astype('float32') 

# normalize features 

scaler = MinMaxScaler(feature_range=(0, 1)) 

scaled = scaler.fit_transform(values) 

# frame as supervised learning 

reframed = series_to_supervised(scaled, 1, 1) 

# drop columns we don't want to predict 

reframed.drop(reframed.columns[[9,10,11,12,13,14,15]], axis=1, inplace=True) 

print(reframed.head()) 

 

# split into train and test sets 

values = reframed.values 

n_train_hours = 365 * 24 

train = values[:n_train_hours, :] 

test = values[n_train_hours:, :] 
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# split into input and outputs 

train_X, train_y = train[:, :-1], train[:, -1] 

test_X, test_y = test[:, :-1], test[:, -1] 

# reshape input to be 3D [samples, timesteps, features] 

train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) 

test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) 

print(train_X.shape, train_y.shape, test_X.shape, test_y.shape) 

 

# design network 

model = Sequential() 

model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2]))) 

model.add(Dropout(50, input_shape=(train_X.shape[1], train_X.shape[2]))) 

model.add(Dense(1)) 

model.compile(loss='mse', optimizer='rmsprop') 

# fit network 

history = model.fit(train_X, train_y, epochs=50, batch_size=72, validation_data=(test_X, 

test_y), verbose=2, shuffle=False) 

# plot history 

pyplot.plot(history.history['loss'], label='eLSTM_ModelTrain') 

pyplot.plot(history.history['val_loss'], label='eLSTM_ModelTest') 

pyplot.legend() 

pyplot.show() 

 

# make a prediction 

yhat = model.predict(test_X) 

test_X = test_X.reshape((test_X.shape[0], test_X.shape[2])) 

# invert scaling for forecast 

inv_yhat = concatenate((yhat, test_X[:, 1:]), axis=1) 

inv_yhat = scaler.inverse_transform(inv_yhat) 

inv_yhat = inv_yhat[:,0] 

# invert scaling for actual 

test_y = test_y.reshape((len(test_y), 1)) 

inv_y = concatenate((test_y, test_X[:, 1:]), axis=1) 

inv_y = scaler.inverse_transform(inv_y) 

inv_y = inv_y[:,0] 

# calculate RMSE 

rmse = sqrt(mean_squared_error(inv_y, inv_yhat)) 

print('Test RMSE: %.3f' % rmse) 

 

 

(v)   Result Generated from (iv) 

 

 

var1(t-1)  var2(t-1)  var3(t-1)  var4(t-1)  var5(t-1)  var6(t-1)  \ 

1       0.13       0.35       0.25       0.53       0.67   2.29e-03 

2       0.15       0.37       0.25       0.53       0.67   3.81e-03 

3       0.16       0.43       0.23       0.55       0.67   5.33e-03 

4       0.18       0.49       0.23       0.56       0.67   8.39e-03 

5       0.14       0.49       0.23       0.56       0.67   9.91e-03 
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   var7(t-1)  var8(t-1)  var1(t) 

1       0.00        0.0     0.15 

2       0.00        0.0     0.16 

3       0.00        0.0     0.18 

4       0.04        0.0     0.14 

5       0.07        0.0     0.11 

(8760, 1, 8) (8760,) (35039, 1, 8) (35039,) 

Train on 8760 samples, validate on 35039 samples 

Epoch 1/50 

 - 3s - loss: 0.0567 - val_loss: 0.0526 

Epoch 2/50 

 - 2s - loss: 0.0412 - val_loss: 0.0528 

Epoch 3/50 

 - 2s - loss: 0.0254 - val_loss: 0.0434 

Epoch 4/50 

 - 1s - loss: 0.0172 - val_loss: 0.0365 

Epoch 5/50 

 - 2s - loss: 0.0156 - val_loss: 0.0236 

Epoch 6/50 

 - 2s - loss: 0.0149 - val_loss: 0.0180 

Epoch 7/50 

 - 2s - loss: 0.0147 - val_loss: 0.0166 

Epoch 8/50 

 - 2s - loss: 0.0146 - val_loss: 0.0158 

Epoch 9/50 

 - 2s - loss: 0.0146 - val_loss: 0.0150 

Epoch 10/50 

 - 2s - loss: 0.0146 - val_loss: 0.0144 

Epoch 11/50 

 - 2s - loss: 0.0145 - val_loss: 0.0142 

Epoch 12/50 

 - 2s - loss: 0.0146 - val_loss: 0.0142 

Epoch 13/50 

 - 1s - loss: 0.0145 - val_loss: 0.0140 

Epoch 14/50 

 - 2s - loss: 0.0145 - val_loss: 0.0139 

Epoch 15/50 

 - 2s - loss: 0.0145 - val_loss: 0.0139 

Epoch 16/50 

 - 2s - loss: 0.0145 - val_loss: 0.0138 

Epoch 17/50 

 - 2s - loss: 0.0145 - val_loss: 0.0138 

Epoch 18/50 

 - 2s - loss: 0.0145 - val_loss: 0.0139 

Epoch 19/50 

 - 2s - loss: 0.0145 - val_loss: 0.0140 

Epoch 20/50 

 - 2s - loss: 0.0144 - val_loss: 0.0139 

Epoch 21/50 

 - 2s - loss: 0.0145 - val_loss: 0.0139 
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Epoch 22/50 

 - 2s - loss: 0.0144 - val_loss: 0.0137 

Epoch 23/50 

 - 2s - loss: 0.0144 - val_loss: 0.0138 

Epoch 24/50 

 - 2s - loss: 0.0145 - val_loss: 0.0139 

Epoch 25/50 

 - 2s - loss: 0.0145 - val_loss: 0.0138 

Epoch 26/50 

 - 2s - loss: 0.0144 - val_loss: 0.0139 

Epoch 27/50 

 - 1s - loss: 0.0144 - val_loss: 0.0140 

Epoch 28/50 

 - 2s - loss: 0.0144 - val_loss: 0.0139 

Epoch 29/50 

 - 2s - loss: 0.0144 - val_loss: 0.0138 

Epoch 30/50 

 - 2s - loss: 0.0144 - val_loss: 0.0136 

Epoch 31/50 

 - 2s - loss: 0.0145 - val_loss: 0.0142 

Epoch 32/50 

 - 2s - loss: 0.0145 - val_loss: 0.0138 

Epoch 33/50 

 - 2s - loss: 0.0144 - val_loss: 0.0136 

Epoch 34/50 

 - 2s - loss: 0.0144 - val_loss: 0.0139 

Epoch 35/50 

 - 1s - loss: 0.0145 - val_loss: 0.0137 

Epoch 36/50 

 - 2s - loss: 0.0144 - val_loss: 0.0136 

Epoch 37/50 

 - 2s - loss: 0.0144 - val_loss: 0.0135 

Epoch 38/50 

 - 2s - loss: 0.0144 - val_loss: 0.0135 

Epoch 39/50 

 - 2s - loss: 0.0144 - val_loss: 0.0134 

Epoch 40/50 

 - 1s - loss: 0.0143 - val_loss: 0.0138 

Epoch 41/50 

 - 2s - loss: 0.0145 - val_loss: 0.0135 

Epoch 42/50 

 - 2s - loss: 0.0144 - val_loss: 0.0134 

Epoch 43/50 

 - 2s - loss: 0.0144 - val_loss: 0.0134 

Epoch 44/50 

 - 1s - loss: 0.0144 - val_loss: 0.0134 

Epoch 45/50 

 - 2s - loss: 0.0143 - val_loss: 0.0134 

Epoch 46/50 

 - 2s - loss: 0.0143 - val_loss: 0.0135 
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Epoch 47/50 

 - 2s - loss: 0.0144 - val_loss: 0.0134 

Epoch 48/50 

 - 2s - loss: 0.0143 - val_loss: 0.0134 

Epoch 49/50 

 - 2s - loss: 0.0143 - val_loss: 0.0134 

Epoch 50/50 

 - 2s - loss: 0.0143 - val_loss: 0.0134 

 

 

 

(vi)    LSTM Model Comparison Code of Figure 5.20, 5.21 and 5.22. 

 

 

from math import sqrt 

from numpy import concatenate 

from matplotlib import pyplot 

from pandas import read_csv 

from pandas import DataFrame 

from pandas import concat 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.preprocessing import LabelEncoder 

from sklearn.metrics import mean_squared_error 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

 

# convert series to supervised learning 

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): 

 n_vars = 1 if type(data) is list else data.shape[1] 

 df = DataFrame(data) 

 cols, names = list(), list() 

 # input sequence (t-n, ... t-1) 

 for i in range(n_in, 0, -1): 

  cols.append(df.shift(i)) 

  names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] 

 # forecast sequence (t, t+1, ... t+n) 

 for i in range(0, n_out): 

  cols.append(df.shift(-i)) 

  if i == 0: 

   names += [('var%d(t)' % (j+1)) for j in range(n_vars)] 

  else: 

   names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] 

 # put it all together 

 agg = concat(cols, axis=1) 

 agg.columns = names 

 # drop rows with NaN values 

 if dropnan: 

  agg.dropna(inplace=True) 

 return agg 
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# load dataset 

dataset = read_csv('wind_data.csv', header=0, index_col=0) 

values = dataset.values 

# integer encode direction 

encoder = LabelEncoder() 

values[:,1] = encoder.fit_transform(values[:,1]) 

# ensure all data is float 

values = values.astype('float32') 

# normalize features 

scaler = MinMaxScaler(feature_range=(0, 1)) 

scaled = scaler.fit_transform(values) 

# specify the number of lag hours 

n_hours = 3 

n_features = 5 

# frame as supervised learning 

reframed = series_to_supervised(scaled, n_hours, 1) 

print(reframed.shape) 

 

# split into train and test sets 

values = reframed.values 

n_train_hours = 365 * 24 

train = values[:n_train_hours, :] 

test = values[n_train_hours:, :] 

# split into input and outputs 

n_obs = n_hours * n_features 

train_X, train_y = train[:, :n_obs], train[:, -n_features] 

test_X, test_y = test[:, :n_obs], test[:, -n_features] 

print(train_X.shape, len(train_X), train_y.shape) 

# reshape input to be 3D [samples, timesteps, features] 

train_X = train_X.reshape((train_X.shape[0], n_hours, n_features)) 

test_X = test_X.reshape((test_X.shape[0], n_hours, n_features)) 

print(train_X.shape, train_y.shape, test_X.shape, test_y.shape) 

 

# design network 

model = Sequential() 

model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2]))) 

model.add(Dropout(50, input_shape=(train_X.shape[1], train_X.shape[2]))) 

model.add(Dense(1)) 

model.compile(loss='mse', optimizer='rmsprop') 

# fit network 

history = model.fit(train_X, train_y, epochs=50, batch_size=72, validation_data=(test_X, 

test_y), verbose=2, shuffle=False) 

# plot history 

pyplot.plot(history.history['loss'], label='LSTM_ModelTrain') 

pyplot.plot(history.history['val_loss'], label='LSTM_ModelTest') 

pyplot.legend() 

pyplot.show() 

 

# make a prediction 
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yhat = model.predict(test_X) 

test_X = test_X.reshape((test_X.shape[0], n_hours*n_features)) 

# invert scaling for forecast 

inv_yhat = concatenate((yhat, test_X[:, -4:]), axis=1) 

inv_yhat = scaler.inverse_transform(inv_yhat) 

inv_yhat = inv_yhat[:,0] 

# invert scaling for actual 

test_y = test_y.reshape((len(test_y), 1)) 

inv_y = concatenate((test_y, test_X[:, -4:]), axis=1) 

inv_y = scaler.inverse_transform(inv_y) 

inv_y = inv_y[:,0] 

# calculate RMSE 

rmse = sqrt(mean_squared_error(inv_y, inv_yhat)) 

print('Test RMSE: %.3f' % rmse) 

 

 

(vii)   Result Generated from (vi) 

 

 

(10076, 20) 

(8760, 15) 8760 (8760,) 

(8760, 3, 5) (8760,) (1316, 3, 5) (1316,) 

Train on 8760 samples, validate on 1316 samples 

Epoch 1/50 

 - 3s - loss: 0.0953 - val_loss: 0.0882 

Epoch 2/50 

 - 1s - loss: 0.0482 - val_loss: 0.0555 

Epoch 3/50 

 - 1s - loss: 0.0440 - val_loss: 0.0550 

Epoch 4/50 

 - 1s - loss: 0.0411 - val_loss: 0.0547 

Epoch 5/50 

 - 1s - loss: 0.0390 - val_loss: 0.0542 

Epoch 6/50 

 - 1s - loss: 0.0382 - val_loss: 0.0536 

Epoch 7/50 

 - 2s - loss: 0.0377 - val_loss: 0.0528 

Epoch 8/50 

 - 2s - loss: 0.0376 - val_loss: 0.0522 

Epoch 9/50 

 - 1s - loss: 0.0372 - val_loss: 0.0515 

Epoch 10/50 

 - 1s - loss: 0.0366 - val_loss: 0.0511 

Epoch 11/50 

 - 1s - loss: 0.0366 - val_loss: 0.0507 

Epoch 12/50 

 - 1s - loss: 0.0359 - val_loss: 0.0501 

Epoch 13/50 

 - 1s - loss: 0.0361 - val_loss: 0.0498 

Epoch 14/50 
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 - 1s - loss: 0.0353 - val_loss: 0.0492 

Epoch 15/50 

 - 1s - loss: 0.0360 - val_loss: 0.0491 

Epoch 16/50 

 - 1s - loss: 0.0348 - val_loss: 0.0486 

Epoch 17/50 

 - 1s - loss: 0.0350 - val_loss: 0.0484 

Epoch 18/50 

 - 1s - loss: 0.0346 - val_loss: 0.0480 

Epoch 19/50 

 - 2s - loss: 0.0344 - val_loss: 0.0478 

Epoch 20/50 

 - 1s - loss: 0.0342 - val_loss: 0.0475 

Epoch 21/50 

 - 1s - loss: 0.0341 - val_loss: 0.0473 

Epoch 22/50 

 - 1s - loss: 0.0342 - val_loss: 0.0472 

Epoch 23/50 

 - 1s - loss: 0.0343 - val_loss: 0.0472 

Epoch 24/50 

 - 1s - loss: 0.0343 - val_loss: 0.0470 

Epoch 25/50 

 - 1s - loss: 0.0343 - val_loss: 0.0471 

Epoch 26/50 

 - 1s - loss: 0.0346 - val_loss: 0.0469 

Epoch 27/50 

 - 2s - loss: 0.0337 - val_loss: 0.0469 

Epoch 28/50 

 - 1s - loss: 0.0352 - val_loss: 0.0468 

Epoch 29/50 

 - 1s - loss: 0.0336 - val_loss: 0.0468 

Epoch 30/50 

 - 1s - loss: 0.0346 - val_loss: 0.0467 

Epoch 31/50 

 - 1s - loss: 0.0337 - val_loss: 0.0467 

Epoch 32/50 

 - 1s - loss: 0.0344 - val_loss: 0.0466 

Epoch 33/50 

 - 1s - loss: 0.0338 - val_loss: 0.0466 

Epoch 34/50 

 - 2s - loss: 0.0341 - val_loss: 0.0465 

Epoch 35/50 

 - 1s - loss: 0.0338 - val_loss: 0.0466 

Epoch 36/50 

 - 1s - loss: 0.0340 - val_loss: 0.0465 

Epoch 37/50 

 - 2s - loss: 0.0337 - val_loss: 0.0465 

Epoch 38/50 

 - 1s - loss: 0.0342 - val_loss: 0.0464 

Epoch 39/50 
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 - 1s - loss: 0.0337 - val_loss: 0.0464 

Epoch 40/50 

 - 2s - loss: 0.0340 - val_loss: 0.0464 

Epoch 41/50 

 - 1s - loss: 0.0336 - val_loss: 0.0464 

Epoch 42/50 

 - 1s - loss: 0.0339 - val_loss: 0.0464 

Epoch 43/50 

 - 1s - loss: 0.0335 - val_loss: 0.0464 

Epoch 44/50 

 - 1s - loss: 0.0339 - val_loss: 0.0465 

Epoch 45/50 

 - 1s - loss: 0.0339 - val_loss: 0.0463 

Epoch 46/50 

 - 1s - loss: 0.0333 - val_loss: 0.0464 

Epoch 47/50 

 - 1s - loss: 0.0340 - val_loss: 0.0463 

Epoch 48/50 

 - 1s - loss: 0.0334 - val_loss: 0.0464 

Epoch 49/50 

 - 1s - loss: 0.0338 - val_loss: 0.0465 

Epoch 50/50 

 - 1s - loss: 0.0336 - val_loss: 0.0463 

 

 

(viii)    Codes in Generating Figure 5.25 

 

 

import numpy 

import matplotlib.pyplot as plt 

from pandas import read_csv 

import math 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error 

# convert an array of values into a dataset matrix 

def create_dataset(dataset, look_back=1): 

 dataX, dataY = [], [] 

 for i in range(len(dataset)-look_back-1): 

  a = dataset[i:(i+look_back), 0] 

  dataX.append(a) 

  dataY.append(dataset[i + look_back, 0]) 

 return numpy.array(dataX), numpy.array(dataY) 

# fix random seed for reproducibility 

numpy.random.seed(7) 

# load the dataset 

#dataframe = read_csv('international-airline-passengers.csv', usecols=[1], engine='python', 

skipfooter=3) 
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dataframe = read_csv('wind_data.csv', usecols=[2], engine='python', skipfooter=3) 

dataset = dataframe.values 

dataset = dataset.astype('float32') 

# normalize the dataset 

scaler = MinMaxScaler(feature_range=(0, 1)) 

dataset = scaler.fit_transform(dataset) 

# split into train and test sets 

train_size = int(len(dataset) * 0.8) 

test_size = len(dataset) - train_size 

train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] 

# reshape into X=t and Y=t+1 

look_back = 6 

trainX, trainY = create_dataset(train, look_back) 

testX, testY = create_dataset(test, look_back) 

# reshape input to be [samples, time steps, features] 

trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) 

testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1])) 

# create and fit the LSTM network 

model = Sequential() 

model.add(LSTM(20, input_shape=(1, look_back))) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='rmsprop') 

model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2) 

model.summary() 

# make predictions 

trainPredict = model.predict(trainX) 

testPredict = model.predict(testX) 

# invert predictions 

trainPredict = scaler.inverse_transform(trainPredict) 

trainY = scaler.inverse_transform([trainY]) 

testPredict = scaler.inverse_transform(testPredict) 

testY = scaler.inverse_transform([testY]) 

# calculate root mean squared error 

trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) 

print('Train Score: %.2f RMSE' % (trainScore)) 

testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0])) 

print('Test Score: %.2f RMSE' % (testScore)) 

# shift train predictions for plotting 

trainPredictPlot = numpy.empty_like(dataset) 

trainPredictPlot[:, :] = numpy.nan 

trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict 

# shift test predictions for plotting 

testPredictPlot = numpy.empty_like(dataset) 

testPredictPlot[:, :] = numpy.nan 

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict 

# plot baseline and predictions 

plt.plot(scaler.inverse_transform(dataset)) 

plt.plot(trainPredictPlot) 

plt.plot(testPredictPlot) 

plt.show() 
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(ix)    Results generated from the Code 

 

 

Epoch 1/100 

 - 7s - loss: 0.0081 

Epoch 2/100 

 - 6s - loss: 0.0052 

Epoch 3/100 

 - 7s - loss: 0.0047 

Epoch 4/100 

 - 7s - loss: 0.0044 

Epoch 5/100 

 - 8s - loss: 0.0042 

Epoch 6/100 

 - 6s - loss: 0.0042 

Epoch 7/100 

 - 8s - loss: 0.0042 

Epoch 8/100 

 - 6s - loss: 0.0042 

Epoch 9/100 

 - 6s - loss: 0.0041 

Epoch 10/100 

 - 6s - loss: 0.0041 

Epoch 11/100 

 - 5s - loss: 0.0041 

Epoch 12/100 

 - 5s - loss: 0.0041 

Epoch 13/100 

 - 5s - loss: 0.0041 

Epoch 14/100 

 - 5s - loss: 0.0041 

Epoch 15/100 

 - 6s - loss: 0.0040 

Epoch 16/100 

 - 6s - loss: 0.0041 

Epoch 17/100 

 - 6s - loss: 0.0041 

Epoch 18/100 

 - 6s - loss: 0.0041 

Epoch 19/100 

 - 6s - loss: 0.0041 

Epoch 20/100 

 - 5s - loss: 0.0040 

Epoch 21/100 

 - 5s - loss: 0.0041 

Epoch 22/100 

 - 5s - loss: 0.0041 

Epoch 23/100 



 
 

154 | P a g e  
 

 - 6s - loss: 0.0040 

Epoch 24/100 

 - 5s - loss: 0.0041 

Epoch 25/100 

 - 5s - loss: 0.0040 

Epoch 26/100 

 - 6s - loss: 0.0040 

Epoch 27/100 

 - 6s - loss: 0.0040 

Epoch 28/100 

 - 6s - loss: 0.0040 

Epoch 29/100 

 - 6s - loss: 0.0040 

Epoch 30/100 

 - 6s - loss: 0.0040 

Epoch 31/100 

 - 6s - loss: 0.0040 

Epoch 32/100 

 - 7s - loss: 0.0040 

Epoch 33/100 

 - 6s - loss: 0.0040 

Epoch 34/100 

 - 6s - loss: 0.0040 

Epoch 35/100 

 - 5s - loss: 0.0041 

Epoch 36/100 

 - 6s - loss: 0.0040 

Epoch 37/100 

 - 6s - loss: 0.0040 

Epoch 38/100 

 - 7s - loss: 0.0039 

Epoch 39/100 

 - 7s - loss: 0.0040 

Epoch 40/100 

 - 6s - loss: 0.0040 

Epoch 41/100 

 - 6s - loss: 0.0040 

Epoch 42/100 

 - 7s - loss: 0.0040 

Epoch 43/100 

 - 6s - loss: 0.0040 

Epoch 44/100 

 - 6s - loss: 0.0040 

Epoch 45/100 

 - 6s - loss: 0.0040 

Epoch 46/100 

 - 6s - loss: 0.0040 

Epoch 47/100 

 - 7s - loss: 0.0040 

Epoch 48/100 



 
 

155 | P a g e  
 

 - 6s - loss: 0.0039 

Epoch 49/100 

 - 6s - loss: 0.0040 

Epoch 50/100 

 - 6s - loss: 0.0040 

Epoch 51/100 

 - 6s - loss: 0.0040 

Epoch 52/100 

 - 7s - loss: 0.0040 

Epoch 53/100 

 - 7s - loss: 0.0040 

Epoch 54/100 

 - 7s - loss: 0.0039 

Epoch 55/100 

 - 6s - loss: 0.0040 

Epoch 56/100 

 - 6s - loss: 0.0039 

Epoch 57/100 

 - 5s - loss: 0.0040 

Epoch 58/100 

 - 6s - loss: 0.0040 

Epoch 59/100 

 - 6s - loss: 0.0040 

Epoch 60/100 

 - 5s - loss: 0.0039 

Epoch 61/100 

 - 6s - loss: 0.0040 

Epoch 62/100 

 - 5s - loss: 0.0040 

Epoch 63/100 

 - 6s - loss: 0.0040 

Epoch 64/100 

 - 5s - loss: 0.0040 

Epoch 65/100 

 - 5s - loss: 0.0040 

Epoch 66/100 

 - 5s - loss: 0.0040 

Epoch 67/100 

 - 5s - loss: 0.0040 

Epoch 68/100 

 - 6s - loss: 0.0040 

Epoch 69/100 

 - 6s - loss: 0.0040 

Epoch 70/100 

 - 6s - loss: 0.0040 

Epoch 71/100 

 - 5s - loss: 0.0040 

Epoch 72/100 

 - 5s - loss: 0.0040 

Epoch 73/100 
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 - 6s - loss: 0.0039 

Epoch 74/100 

 - 6s - loss: 0.0040 

Epoch 75/100 

 - 6s - loss: 0.0040 

Epoch 76/100 

 - 6s - loss: 0.0040 

Epoch 77/100 

 - 5s - loss: 0.0040 

Epoch 78/100 

 - 6s - loss: 0.0040 

Epoch 79/100 

 - 6s - loss: 0.0040 

Epoch 80/100 

 - 5s - loss: 0.0040 

Epoch 81/100 

 - 6s - loss: 0.0040 

Epoch 82/100 

 - 6s - loss: 0.0040 

Epoch 83/100 

 - 6s - loss: 0.0039 

Epoch 84/100 

 - 5s - loss: 0.0039 

Epoch 85/100 

 - 6s - loss: 0.0040 

Epoch 86/100 

 - 6s - loss: 0.0040 

Epoch 87/100 

 - 6s - loss: 0.0040 

Epoch 88/100 

 - 6s - loss: 0.0040 

Epoch 89/100 

 - 6s - loss: 0.0040 

Epoch 90/100 

 - 5s - loss: 0.0040 

Epoch 91/100 

 - 5s - loss: 0.0040 

Epoch 92/100 

 - 5s - loss: 0.0040 

Epoch 93/100 

 - 6s - loss: 0.0040 

Epoch 94/100 

 - 5s - loss: 0.0040 

Epoch 95/100 

 - 6s - loss: 0.0040 

Epoch 96/100 

 - 6s - loss: 0.0040 

Epoch 97/100 

 - 6s - loss: 0.0039 

Epoch 98/100 
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 - 6s - loss: 0.0039 

Epoch 99/100 

 - 6s - loss: 0.0040 

Epoch 100/100 

 - 5s - loss: 0.0040 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param # 

================================================================= 

lstm_22 (LSTM)               (None, 20)                2160 

_________________________________________________________________ 

dense_20 (Dense)             (None, 1)                 21 

================================================================= 

Total params: 2,181 

Trainable params: 2,181 

Non-trainable params: 0 

_________________________________________________________________ 

Train Score: 0.99 RMSE 

Test Score: 0.76 RMSE 

 

 

 

 

(x)    Codes in generating Figure 5.24, Applying Dropout  

 

 

import matplotlib.pyplot as plt 

from pandas import read_csv 

import math 

from keras.constraints import maxnorm 

from keras.layers import Dropout 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error 

from keras import backend as K 

import numpy as np 

# convert an array of values into a dataset matrix 

def create_dataset(dataset, look_back=1): 

 dataX, dataY = [], [] 

 for i in range(len(dataset)-look_back-1): 

  a = dataset[i:(i+look_back), 0] 

  dataX.append(a) 

  dataY.append(dataset[i + look_back, 0]) 

 return numpy.array(dataX), numpy.array(dataY) 

# fix random seed for reproducibility 

numpy.random.seed(7) 

# load the dataset 

dataframe = read_csv('wind_data.csv', usecols=[2], engine='python', skipfooter=3) 

dataset = dataframe.values 
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dataset = dataset.astype('float32') 

# normalize the dataset 

scaler = MinMaxScaler(feature_range=(0, 1)) 

dataset = scaler.fit_transform(dataset) 

# split into train and test sets 

train_size = int(len(dataset) * 0.8) 

test_size = len(dataset) - train_size 

train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] 

# reshape into X=t and Y=t+1 

look_back = 1 

trainX, trainY = create_dataset(train, look_back) 

testX, testY = create_dataset(test, look_back) 

# reshape input to be [samples, time steps, features] 

trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) 

testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1])) 

model = Sequential() 

model.add(LSTM(32, input_shape=(1, look_back))) 

model.add(Dropout(0.5)) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 

# #################################### 

# layer_name = 'my_layer' 

# get_layer_output = K.function([model.layers[0].input], [model.layers[3].output]) 

# layer_output = get_layer_output([x][0]) 

# ##################################### 

model.fit(trainX, trainY, epochs=100, batch_size=32, verbose=2) 

model.summary() 

#make predictions 

trainPredict = model.predict(trainX) 

testPredict = model.predict(testX) 

# invert predictions 

trainPredict = scaler.inverse_transform(trainPredict) 

trainY = scaler.inverse_transform([trainY]) 

testPredict = scaler.inverse_transform(testPredict) 

testY = scaler.inverse_transform([testY]) 

# calculate root mean squared error 

trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) 

print('Train Score: %.2f RMSE' % (trainScore)) 

testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0])) 

print('Test Score: %.2f RMSE' % (testScore)) 

# shift train predictions for plotting 

trainPredictPlot = numpy.empty_like(dataset) 

trainPredictPlot[:, :] = numpy.nan 

trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict 

# shift test predictions for plotting 

testPredictPlot = numpy.empty_like(dataset) 

testPredictPlot[:, :] = numpy.nan 

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict 

print(dataset) 

plt.plot(scaler.inverse_transform(dataset)) 
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plt.plot(trainPredictPlot) 

plt.plot(testPredictPlot) 

plt.show() 

 

 

(xi)    Results generated from the Code, Applying Dropout 

 

 

Epoch 1/100 

 - 1s - loss: 0.1429 

Epoch 2/100 

 - 0s - loss: 0.0751 

Epoch 3/100 

 - 0s - loss: 0.0412 

Epoch 4/100 

 - 0s - loss: 0.0305 

Epoch 5/100 

 - 0s - loss: 0.0293 

Epoch 6/100 

 - 0s - loss: 0.0256 

Epoch 7/100 

 - 0s - loss: 0.0224 

Epoch 8/100 

 - 0s - loss: 0.0198 

Epoch 9/100 

 - 0s - loss: 0.0197 

Epoch 10/100 

 - 0s - loss: 0.0157 

Epoch 11/100 

 - 0s - loss: 0.0125 

Epoch 12/100 

 - 0s - loss: 0.0120 

Epoch 13/100 

 - 0s - loss: 0.0114 

Epoch 14/100 

 - 0s - loss: 0.0096 

Epoch 15/100 

 - 0s - loss: 0.0103 

Epoch 16/100 

 - 0s - loss: 0.0107 

Epoch 17/100 

 - 0s - loss: 0.0096 

Epoch 18/100 

 - 0s - loss: 0.0088 

Epoch 19/100 

 - 0s - loss: 0.0099 

Epoch 20/100 

 - 0s - loss: 0.0095 

Epoch 21/100 

 - 0s - loss: 0.0090 
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Epoch 22/100 

 - 0s - loss: 0.0086 

Epoch 23/100 

 - 0s - loss: 0.0089 

Epoch 24/100 

 - 0s - loss: 0.0079 

Epoch 25/100 

 - 0s - loss: 0.0080 

Epoch 26/100 

 - 0s - loss: 0.0089 

Epoch 27/100 

 - 0s - loss: 0.0080 

Epoch 28/100 

 - 0s - loss: 0.0089 

Epoch 29/100 

 - 0s - loss: 0.0080 

Epoch 30/100 

 - 0s - loss: 0.0079 

Epoch 31/100 

 - 0s - loss: 0.0081 

Epoch 32/100 

 - 0s - loss: 0.0080 

Epoch 33/100 

 - 0s - loss: 0.0080 

Epoch 34/100 

 - 0s - loss: 0.0082 

Epoch 35/100 

 - 0s - loss: 0.0074 

Epoch 36/100 

 - 0s - loss: 0.0077 

Epoch 37/100 

 - 0s - loss: 0.0078 

Epoch 38/100 

 - 0s - loss: 0.0074 

Epoch 39/100 

 - 0s - loss: 0.0075 

Epoch 40/100 

 - 0s - loss: 0.0075 

Epoch 41/100 

 - 0s - loss: 0.0075 

Epoch 42/100 

 - 0s - loss: 0.0073 

Epoch 43/100 

 - 0s - loss: 0.0070 

Epoch 44/100 

 - 0s - loss: 0.0073 

Epoch 45/100 

 - 0s - loss: 0.0075 

Epoch 46/100 

 - 0s - loss: 0.0070 
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Epoch 47/100 

 - 0s - loss: 0.0067 

Epoch 48/100 

 - 0s - loss: 0.0066 

Epoch 49/100 

 - 0s - loss: 0.0067 

Epoch 50/100 

 - 0s - loss: 0.0067 

Epoch 51/100 

 - 0s - loss: 0.0069 

Epoch 52/100 

 - 0s - loss: 0.0069 

Epoch 53/100 

 - 0s - loss: 0.0067 

Epoch 54/100 

 - 0s - loss: 0.0069 

Epoch 55/100 

 - 0s - loss: 0.0069 

Epoch 56/100 

 - 0s - loss: 0.0066 

Epoch 57/100 

 - 0s - loss: 0.0064 

Epoch 58/100 

 - 0s - loss: 0.0067 

Epoch 59/100 

 - 0s - loss: 0.0067 

Epoch 60/100 

 - 0s - loss: 0.0061 

Epoch 61/100 

 - 0s - loss: 0.0067 

Epoch 62/100 

 - 0s - loss: 0.0062 

Epoch 63/100 

 - 0s - loss: 0.0064 

Epoch 64/100 

 - 0s - loss: 0.0064 

Epoch 65/100 

 - 0s - loss: 0.0066 

Epoch 66/100 

 - 0s - loss: 0.0063 

Epoch 67/100 

 - 0s - loss: 0.0061 

Epoch 68/100 

 - 0s - loss: 0.0061 

Epoch 69/100 

 - 0s - loss: 0.0062 

Epoch 70/100 

 - 0s - loss: 0.0060 

Epoch 71/100 

 - 0s - loss: 0.0063 



 
 

162 | P a g e  
 

Epoch 72/100 

 - 0s - loss: 0.0057 

Epoch 73/100 

 - 0s - loss: 0.0058 

Epoch 74/100 

 - 0s - loss: 0.0057 

Epoch 75/100 

 - 0s - loss: 0.0059 

Epoch 76/100 

 - 0s - loss: 0.0060 

Epoch 77/100 

 - 0s - loss: 0.0061 

Epoch 78/100 

 - 0s - loss: 0.0057 

Epoch 79/100 

 - 0s - loss: 0.0057 

Epoch 80/100 

 - 0s - loss: 0.0058 

Epoch 81/100 

 - 0s - loss: 0.0059 

Epoch 82/100 

 - 0s - loss: 0.0061 

Epoch 83/100 

 - 0s - loss: 0.0061 

Epoch 84/100 

 - 0s - loss: 0.0062 

Epoch 85/100 

 - 0s - loss: 0.0061 

Epoch 86/100 

 - 0s - loss: 0.0055 

Epoch 87/100 

 - 0s - loss: 0.0058 

Epoch 88/100 

 - 0s - loss: 0.0059 

Epoch 89/100 

 - 0s - loss: 0.0057 

Epoch 90/100 

 - 0s - loss: 0.0059 

Epoch 91/100 

 - 0s - loss: 0.0055 

Epoch 92/100 

 - 0s - loss: 0.0057 

Epoch 93/100 

 - 0s - loss: 0.0059 

Epoch 94/100 

 - 0s - loss: 0.0061 

Epoch 95/100 

 - 0s - loss: 0.0060 

Epoch 96/100 

 - 0s - loss: 0.0056 
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Epoch 97/100 

 - 0s - loss: 0.0055 

Epoch 98/100 

 - 0s - loss: 0.0058 

Epoch 99/100 

 - 0s - loss: 0.0056 

Epoch 100/100 

 - 0s - loss: 0.0053 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param # 

================================================================= 

lstm_7 (LSTM)                (None, 32)                4352 

_________________________________________________________________ 

dropout_7 (Dropout)          (None, 32)                0 

_________________________________________________________________ 

dense_7 (Dense)              (None, 1)                 33 

================================================================= 

Total params: 4,385 

Trainable params: 4,385 

Non-trainable params: 0 

_________________________________________________________________ 

Train Score: 0.91 RMSE 

Test Score: 0.74 RMSE 

[[ 0.40508118] 

 [ 0.45871559] 

 [ 0.40508118] 

 ..., 

 [ 0.40508118] 

 [ 0.43189836] 

 [ 0.45871559]] 

 

 

(xii)    Sample Codes for creating lag features 

 

 

# create lag features 

from pandas import Series 

from pandas import DataFrame 

from pandas import concat 

series = Series.from_csv('wind_data.csv' , header=0) 

ws = DataFrame(series.values) 

dataframe = concat([ws.shift(5), ws.shift(4), ws.shift(3), ws.shift(2), ws.shift(1), ws], axis=1) 

dataframe.columns = ['t-4', 't-3','t-2', 't-1', 't', 't+1'] 

print(dataframe.head(10)) 

 

(xiii) Sample Results from (xii) 

   t-4   t-3   t-2   t-1     t   t+1 

0   NaN   NaN   NaN   NaN   NaN  6.09 

1   NaN   NaN   NaN   NaN  6.09  6.85 

2   NaN   NaN   NaN  6.09  6.85  6.09 
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3   NaN   NaN  6.09  6.85  6.09  5.71 

4   NaN  6.09  6.85  6.09  5.71  4.56 

5  6.09  6.85  6.09  5.71  4.56  3.80 

6  6.85  6.09  5.71  4.56  3.80  4.17 

7  6.09  5.71  4.56  3.80  4.17  3.80 

8  5.71  4.56  3.80  4.17  3.80  3.80 

9  4.56  3.80  4.17  3.80  3.80  4.94 

 

 

(xiii)    Python Implementation of Inverted Dropout method. 

 
p = 0.5 # probability of keeping a unit active. higher = less 

dropout 

def train_step(X): 

      # forward pass for example 3-layer neural network  
     H1 = np.maximum (0, np.dot(W1, X) + 11  

     U1 = (np.random.rand*H1. shape) <p) #/p first dropout mask.  

Notice /p!  

     H1 *= U1 # drop!  

     H2 = np.maximum , np.dot (W2, H1) + 52)  

     U2 = (np.random.rand (*H2. shape) <p) #/p second dropout mask. 

Notice /p.  

     H2 *= U2 # drop!  

     out = np.dot (W3, H2) + b3 

 
# backward pass: compute gradients... (not shown)  

# perform parameter update... (not shown) 

 

                    Test time is unchanged 

def predict(X): 
         # ensembled forward pass  

         H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary  

         H2 = np.maximum(, np.dot (W2, H1) + b2)  

         out = np.dot (W3, H2) + b3 

 

From the code, p = 0.5 which is the probability that a given hidden node would be kept. This 

means that there is a 50% chance of eliminating any hidden unit. The procedure generate a 

random metrics U1, meaning there is a 0.5 chance the corresponding U1 is 1 and 50% chance 

of being 0. At H2, every element that =0, has a 50% chance of being 0, thereby zeroing out the 

corresponding element U2. H1 will finally be divided up by 0.5 ie U2 /= 0.5 (p) 

The final step out is a 10 X 1 dimensional array. Therefore, if with 50% of keeping and 50% 

elimination, on average, there is an m unit shut-off.  

Note: in Python, U2 is a Boolean array of T or F rather than 0 or 1. 
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Appendix B 
 

     

(i)    Comparison Code of the Model 

 

 

import numpy 

import matplotlib.pyplot as plt 

from pandas import read_csv 

import math 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error 

from pandas import read_csv 

from pandas import datetime 

from pandas import DataFrame 

from statsmodels.tsa.arima_model import ARIMA 

# convert an array of values into a dataset matrix 

def create_dataset(dataset, look_back=1): 

 dataX, dataY = [], [] 

 for i in range(len(dataset)-look_back-1): 

  a = dataset[i:(i+look_back), 0] 

  dataX.append(a) 

  dataY.append(dataset[i + look_back, 0]) 

 return numpy.array(dataX), numpy.array(dataY) 

# fix random seed for reproducibility 

numpy.random.seed(7) 

# load the dataset 

dataframe = read_csv('wind_data.csv', usecols=[2], engine='python', skipfooter=3) 

dataset = dataframe.values 

dataset = dataset.astype('float32') 

# normalize the dataset 

scaler = MinMaxScaler(feature_range=(0, 1)) 

dataset = scaler.fit_transform(dataset) 

# split into train and test sets 

train_size = int(len(dataset) * 0.8) 

test_size = len(dataset) - train_size 

train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] 

# reshape into X=t and Y=t+1 

look_back = 1 

trainX, trainY = create_dataset(train, look_back) 

testX, testY = create_dataset(test, look_back) 

# reshape input to be [samples, time steps, features] 

trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) 

testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1])) 

#Create and fit ARIMA Model 

# fit model 

model = ARIMA(series, order=(1,1,2)) 
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model_fit = model.fit(disp=0) 

# create and fit the LSTM network 

model = Sequential() 

model.add(LSTM(50, input_shape=(1, look_back))) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='rmsprop') 

model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2) 

# create and fit the eLSTM network 

model = Sequential() 

model.add(LSTM(50, input_shape=(1, look_back))) 

model.add(Dropout(50, input_shape=(train_X.shape[1], train_X.shape[2]))) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='rmsprop') 

model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2) 

#Piping the Algorithm 

for models in models = []: 

    models.append(('ARIMA', ARIMARegression())) 

    models.append(('LSTM', LSTMRegression())) 

    models.append(('eLSTM', eLSTM())) 

# make predictions 

trainPredict = model.predict(trainX) 

testPredict = model.predict(testX) 

# invert predictions 

trainPredict = scaler.inverse_transform(trainPredict) 

trainY = scaler.inverse_transform([trainY]) 

testPredict = scaler.inverse_transform(testPredict) 

testY = scaler.inverse_transform([testY]) 

# calculate root mean squared error 

trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) 

print('Train Score: %.2f RMSE' % (trainScore)) 

testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0])) 

print('Test Score: %.2f RMSE' % (testScore)) 

# shift train predictions for plotting 

trainPredictPlot = numpy.empty_like(dataset) 

trainPredictPlot[:, :] = numpy.nan 

trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict 

# shift test predictions for plotting 

testPredictPlot = numpy.empty_like(dataset) 

testPredictPlot[:, :] = numpy.nan 

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict 

# plot baseline and predictions 

plt.plot(scaler.inverse_transform(dataset)) 

plt.plot(trainPredictPlot) 

plt.plot(testPredictPlot) 

print(model_fit.summary()) 

# plot residual errors 

residuals = DataFrame(model_fit.resid) 

residuals.plot() 

plt.show() 
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