

A University of Sussex PhD thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

UNIVERSITY OF SUSSEX

DOCTORAL THESIS

On Implicit Program Constructs

Author:
Alexander Paul JEFFERY

Supervisor:
Dr. Martin BERGER

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

in the group

Foundations of Software Systems
School of Engineering and Informatics

September 2019

https://www.sussex.ac.uk/
http://www.johnsmith.com
http://www.jamessmith.com
https://www.sussex.ac.uk/foss/
https://www.sussex.ac.uk/ei/

i

Declaration of Authorship
I, Alexander Paul JEFFERY, declare that this thesis titled, “On Implicit Program Con-
structs” and the work presented in it are my own. I confirm that:

• This thesis has not been and will no be, submitted in whole or in part to another
University for the award of any other degree.

• Sources of information have been clearly stated or referenced in the bibliography.
Any content that is joint work with others is clearly stated as such and all contribu-
tors are named.

This thesis contains content adapted from papers authored by myself, and in some cases
co-authored by my supervisor, Dr. Martin BERGER. All portions of this work adapted
from other works are clearly indicated as such, and those portions of this work that are
joint work are clearly indicated in the headings of the chapters in which they appear, and
the degree of collaboration is indicated.

Signed:

Date:

ii

“Blessed is the one who finds wisdom,
and the one who gets understanding,

for the gain from her is better than gain from silver
and her profit better than gold.”

Proverbs 3:13–14, Holy Bible (ESV)

iii

Abstract
On Implicit Program Constructs

Session types are a well-established approach to ensuring protocol conformance and the
absence of communication errors such as deadlocks in message passing systems.

Implicit parameters, introduced by Haskell and popularised in Scala, are a mecha-
nism to improve program readability and conciseness by allowing the programmer to
omit function call arguments, and have the compiler insert them in a principled manner
at compile-time. Scala recently gave implicit types first-class status (implicit functions),
yielding an expressive tool for handling context dependency in a type-safe manner.

DOT (Dependent Object Types) is an object calculus with path-dependent types and
abstract type members, developed to serve as a theoretical foundation for the Scala pro-
gramming language. As yet, DOT does not model all of Scala’s features, but a small
subset. Among those features of Scala not yet modelled by DOT are implicit functions.

We ask: can type-safe implicit functions be generalised from Scala’s sequential set-
ting to message passing computation, to improve readability and conciseness of message
passing programs? We answer this question in the affirmative by generalising the con-
cept of an implicit function to an implicit message, its concurrent analogue, a programming
language construct for session-typed concurrent computation.

We explore new applications for implicit program constructs by integrating them into
four novel calculi, each demonstrating a new use case or theoretical result for implicits.

Firstly, we integrate implicit functions and messages into the concurrent functional
language LAST, Gay and Vasconcelos’s calculus of linear types for asynchronous ses-
sions. We demonstrate their utility by example, and explore use cases for both implicit
functions and implicit messages.

We integrate implicit messages into two pi calculi, further demonstrating the robust-
ness of our approach to extending calculi with implicits. We show that implicit messages
are possible in the absence of lambda calculus, in languages with concurrency primitives
only, and that they are sound not only in binary session-typed computation, but also in
multi-party context.

Finally we extend DOT to include implicit functions. We show type safety of the
resulting calculus by translation to DOT, lending a higher degree of confidence to the
correctness of implicit functions in Scala. We demonstrate that typical use cases for im-
plicit functions in Scala are typably expressible in DOT when extended with implicit
functions.

iv

Acknowledgements
I would like to thank my supervisor, Dr Martin Berger, for his patience, support and
expertise throughout my research. I am confident that less patient and understanding
supervisors would not have tolerated me. Thanks also to my thesis committee, Dr Ian
Mackie and Dr Bernhard Reus for their helpful comments and advice.

I would like to thank my family for their encouragement and support throughout my
PhD – my parents Paul and Amy Jeffery, my wife Sheila Jeffery, and my Grandmother
Susan Haydon-Knowell, who have been there to help and listen whether things were
going well or badly.

I would like to thank my colleagues in the PhD office for their friendship, and for
making the office a fun and interesting place to come and work.

I would like to thank D. Castro, S. Gay, A. Scalas, V. Vasconcelos, M. Odersky, N.
Amin, P. Giarrusso, J. Vitek, F. Křikava, M. Madsen, M. Rapoport, P. Schrammel, D. Or-
chard, and the anonymous reviewers of [Jeffery and Berger, 2018; Jeffery and Berger,
2019; Jeffery, 2019], who read my work and made it better by their comments.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Thesis outline . 2
1.2 Background . 2

1.2.1 Implicits . 2
Implicit parameters . 3
Implicit function types . 3
Implicit conversions . 4

1.2.2 Concurrency . 5
Pi calculus . 5
Session types . 5
Implicit messages . 5

1.2.3 Scala . 6
Dependent Object Types (DOT) . 6
DOT with Implicit Functions (DIF) 7

1.2.4 Linearity . 7
1.3 Contributions . 7

2 Literature Review 9
2.1 Introduction . 9
2.2 Type Systems . 9

2.2.1 Motivation . 10
2.2.2 Types of Type System . 10

Polymorphic . 11
Dependent . 13
Behavioural . 14

2.3 Lambda Calculus . 14

vi

2.3.1 Untyped Lambda Calculus . 14
2.3.2 Simply Typed Lambda Calculus . 16
2.3.3 Hindley-Damas-Milner Polymorphism 18
2.3.4 Type Classes . 20
2.3.5 Implicit Parameters and Implicit Function Types 22

Coherence . 23
2.3.6 Type Classes via Implicits . 24
2.3.7 Linearity . 26

2.4 Concurrency . 28
2.4.1 Terminology . 29
2.4.2 Forms of Concurrency . 29

Message Passing . 30
Shared Memory . 30

2.4.3 Theoretical Models of Concurrency 30
2.4.4 Calculus of Communicating Systems (CCS) 30
2.4.5 Pi Calculus . 33

Recursion . 34
Mobility . 35

2.4.6 Equality in models of computation 36
2.4.7 Implementing the Pi Calculus . 36

Nondeterminsim . 38
Encoding the Lambda Calculus in the Pi Calculus 40

2.4.8 Types for Concurrency . 41
Polymorphic channel types for Pi Calculus 42
Linear types for Pi Calculus . 43
Session Types . 46
LAST . 48
Linearity, session types and the Pi Calculus 50
Multiparty Session Types . 51

2.5 Scala and DOT . 52
2.5.1 Dependent Object Types (DOT) . 52

2.6 Summary . 55

3 Asynchronous Sessions with Implicit Functions and Messages 56
3.1 Introduction . 56

3.1.1 Outline . 57
3.2 IM - Examples . 57

3.2.1 Elimination of repeated rebinding 57
3.2.2 Session type classes . 60

vii

3.2.3 Context and dependency injection 61
3.3 The language IM . 63

3.3.1 Syntax . 64
3.3.2 Semantics . 65

3.4 Types for IM . 66
Type schemas for constants . 67
Session type duality . 67
Session type bounds . 69

3.5 Translation from IM to LAST . 70
Typing environments and implicit scope 70
Typing and translation of expressions 70
Typing and translation of buffer contents 72
Typing and translation of configurations 72

3.5.1 Sources of ambiguity . 73
3.6 Runtime safety of IM . 74
3.7 Conclusion . 94

4 Pi Calculus with Implicit Messages 95
4.1 Introduction . 95

4.1.1 Outline . 95
4.2 PIIM - An Example . 95
4.3 The language PIIM . 97

4.3.1 Syntax . 97
4.3.2 Semantics . 97

4.4 Typing for PIIM . 98
4.4.1 Types . 98
4.4.2 Typing rules . 99
4.4.3 Ambiguity . 101

4.5 Type safety of PIIM . 101
4.6 Conclusion . 106

5 Multiparty Asynchronous Sessions with Implicit Messages 108
5.1 Introduction . 108
5.2 MPIM - An Example . 109
5.3 The language MPIM . 109

5.3.1 Syntax . 109
5.3.2 Semantics . 110

5.4 Types for MPIM . 111
5.4.1 Duality . 112

viii

5.4.2 Global Type Projection . 112
5.4.3 Partial Type Projection . 112

5.5 Translation from MPIM to MPST . 113
5.5.1 Translation of types . 115

5.6 Runtime safety of MPIM . 115
5.7 Conclusion . 123

6 Dependent Object Types with Implicit Functions 126
6.1 Introduction . 126
6.2 The Language DIF . 128

6.2.1 Abbreviations . 128
6.2.2 Semantics . 129

6.3 Typing for DIF . 130
6.3.1 Translation of Types . 130
6.3.2 Type substitution . 130
6.3.3 The functions depth and spec . 131
6.3.4 Typing rules . 131

6.4 Type safety of DIF . 134
6.5 Conclusion . 145

7 Conclusion 146
7.1 Further work . 147

7.1.1 Connection between implicit functions and implicit messages . . . 147
7.1.2 Notions of correctness for implicits 148
7.1.3 Ambiguity resolution and coherence 148
7.1.4 Empirical study of implicit messages 148
7.1.5 Type classes and implicits . 149
7.1.6 Type inference . 149
7.1.7 Implicits and concurrency . 150
7.1.8 Extending DOT to model more of Scala 150
7.1.9 Implicits and linearity . 150
7.1.10 Automatic conversion of explicit parameters to implicit paramters 150

7.2 Related Work . 151
7.2.1 Session types . 151
7.2.2 Implicits . 151
7.2.3 Scala and DOT . 152

Bibliography 154

ix

List of Figures

2.1 Syntax of Lambda Calculus . 14
2.2 Call-by-Value Semantics of Lambda Calculus 15
2.3 Call-by-Name Semantics of Lambda Calculus 15
2.4 Grammar of types for Simply Typed Lambda Calculus 16
2.5 Typing rules for Simply Typed Lambda Calculus 17
2.6 Example typing proof using STLC typing rules 17
2.7 Grammar of HDMP . 19
2.8 Type schemas for HDMP constants . 19
2.9 Typing rules for HDMP . 19
2.10 Syntax of Linear Lambda Calculus . 27
2.11 Context Splitting Rules for Linear Lambda Calculus 28
2.12 Typing Rules for Linear Lambda Calculus 28
2.13 Syntax of CCS . 32
2.14 Semantics of CCS . 32
2.15 Syntax of Pi Calculus . 33
2.16 Structural congruence rules for Pi Calculus 34
2.17 Semantics of Pi Calculus . 34
2.18 Abstract Machine for Pi Calculus . 38
2.19 Encodings of the Lambda Calculus in the Pi Calculus 40
2.20 Syntax of polymorphic pi calculus . 42
2.21 Typing rules for polymorphic pi calculus 43
2.22 Syntax of linear pi calculus . 44
2.23 Typing rules for linear pi calculus . 45
2.24 Type combination for linear pi calculus . 45

3.1 Grammar of IM expressions . 64
3.2 Grammar of IM configurations . 65
3.3 Semantics of LAST expressions . 65
3.4 Semantics of LAST configurations . 65
3.5 Structural congruence for LAST . 66
3.6 Grammar of IM types . 66
3.7 Type schemas for IM constants . 67

x

3.8 Duality for IM session types . 67
3.9 Subtyping for IM types . 68
3.10 The mat relation for IM . 69
3.11 The postfix operator for IM . 69
3.12 The bds operator for IM . 69
3.13 The 7→ operator for IM . 70
3.14 Typing and translation rules for IM expressions 71
3.15 Typing and translation rules for IM buffer contents 72
3.16 Typing and translation rules for IM configurations 73
3.17 Translation of IM session types . 75
3.18 Translation of IM buffer types . 75

4.1 Grammar of PIIM . 97
4.2 Grammar of types in PIIM . 98
4.3 Type duality in PIIM . 98
4.4 Type splitting rules . 100
4.5 Typing system for PIIM . 107

5.1 Grammar of MPIM terms . 110
5.2 Runtime syntax for MPST . 111
5.3 Semantics of MPST terms . 112
5.4 Structural congruence for MPST terms . 113
5.5 Grammar of MPIM types . 114
5.6 Duality for MPIM session types . 114
5.7 Global MPIM Type Projection . 115
5.8 Partial MPIM Type Projection . 116
5.9 Typing and translation rules for MPIM expressions 116
5.10 Typing and translation rules for MPIM processes 124
5.11 Translation of MPIM types . 125

6.1 Grammar of DIF . 128
6.2 Semantics of DOT . 130
6.3 Translation from DIF types to DOT types 130
6.4 The depth function . 131
6.5 The spec function . 131
6.6 Binding rules for DIF terms . 131
6.7 Typing and translation rules for DIF terms 132
6.8 Typing and translation rules for DIF definitions 133
6.9 Subtyping rules for DIF . 133

xi

7.1 The relationship between pi and lambda calculi and their extensions with
implicit messages . 147

xii

List of Abbreviations

STLC Simply Typed Lambda Calculus
LLC Linear Lambda Calculus
HDMP Lambda Calculus with Hindley-Damas-Milner Polymorphism
CCS Calculus of Communicating Systems
LAST Lambda Calculus with Asynchronous Session Types
IM LAST with Implicit Messages
PLST Pi calculus with Linear channel types and Session Types
PIIM PLST with Implicit Messages
MPST MultiParty Session Types
MPIM MPST with Implicit Messages
DOT Dependent Object Types
DIF DOT with Implicit Functions

xiii

To Dad

1

Chapter 1

Introduction

Computers process information in the form of bits, or binary digits – ones and zeroes
– and therefore must be given instructions in a language of bits, usually called binary.
Binary is extremely hard for human beings to read, and it is very hard for humans to
write or modify computer programs written in binary. Programming languages were
invented to mitigate this difficulty. Programming languages allow humans to express
instructions to a computer in a human-readable form, and then translate their human-
readable program code into binary so that a computer can execute it. The translation from
human-readable code (source code) into binary is called compilation, and is performed by
a program called a compiler. The first compiler had to be written in binary by an intrepid
human programmer!

Programming languages have now existed for around 75 years [Knuth and Pardo,
1980]. Over that time, they have become increasingly sophisticated, allowing computer
programmers to express more complex and detailed instructions to a computer with less
source code. This greatly increases the speed at which complex programs with many
features can be developed. Due to the complexity and difficulty of computer program-
ming, even when using sophisticated programming languages, compilers have been aug-
mented with error detection mechanisms that can detect some kinds of error in the pro-
grammer’s source code before the code is translated into binary or executed by the com-
puter.

A well-known category of errors in source code programs are type errors, where an
operation intended to manipulate data is applied to data of the wrong type, for example,
arithmetic operations on strings of text. To mitigate this kind of error, modern program-
ming languages assign types to programs or program parts, that describe the behaviour
of those programs or program parts. Compilers then use sets of rules, often called type
systems, that describe the ways in which programs of certain types can be combined, on
the (sometimes justified) assumption that if these rules are not violated, then type er-
rors cannot occur. These type systems are often proved mathematically to be correct.
These proofs are known as type soundness proofs, and usually relate to idealised versions
of real programming languages known as programming language calculi, because real

Chapter 1. Introduction 2

programming languages are generally too complex, with too many features, which make
type soundness proofs extremely difficult or impossible.

This thesis concerns a class of programming language feature known as implicits,
which are designed to simplify the task of computer programming by leveraging com-
pilers to analyse source code, using types to ‘fill in’ missing parts of the source program,
reducing the workload of the programmer and improving the readability of source code.
The process of the compiler filling in implicit parts of the program (making them explicit)
is often called implicit resolution.

1.1 Thesis outline

The remainder of this chapter outlines background work relating to the research content
of this thesis (section 1.2), the main topics covered are the aforementioned programming
language constructs called implicits; session types, a type system that helps prevent errors
in programming languages that allow concurrent execution of programs that communi-
cate with each other; and the popular programming language Scala and its theoretical
foundations (the calculus DOT). We then introduce our work in brief, summarising our
contribution to the research field of programming languages (section 1.3).

Chapter 2 introduces in greater detail the context and background to the research con-
tent in this thesis. Chapters 3, 4 and 5 introduce theoretical foundations for programming
languages with a novel implicit program construct called implicit messages, a feature for
concurrent programming languages with session types. Chapter 6 lays down more solid
theoretical foundations for the programming language Scala by integrating implicit func-
tions, an implicit program construct popularised by Scala, into the calculus DOT, which
is a programming language calculus designed to serve as a theoretical foundation for
Scala, but that previously did not provide a foundation for Scala’s implicit functions. The
calculi introduced in chapters 3, 4, 5 and 6 are all accompanied by type soundness proofs.
Chapter 7 concludes with some critical analysis of the research, discussing possible future
work and key related work.

1.2 Background

1.2.1 Implicits

Implicits are a class of semi-related programming language constructs, in which the pro-
grammer can omit parts of a program that are otherwise essential, and the compiler infers
those parts of the program automatically. There are three major types of implicits: implicit

Chapter 1. Introduction 3

parameters and implicit conversions which have found success in the programming lan-
guage Scala; and the novel implicit messages [Jeffery and Berger, 2018; Jeffery and Berger,
2019], which are the main topic of this thesis.

Implicit parameters

Implicit parameters [Lewis et al., 2000; Oliveira et al., 2012; Odersky et al., 2018] are
the most widespread and well known kind of implicit program construct. They are a di-
rect generalisation of default parameters, in which function definitions can provide default
values for their arguments. If the programmer then decides to omit those arguments at
call-sites, the compiler will fill in the missing parameters with the defaults provided at
the definition. Implicit parameters are similar – instead of providing a default value at
the definition site, the programmer simply marks some arguments as implicit at the defi-
nition site, which communicates to the compiler that it may need to fill in that parameter
at call sites, without saying what it should fill it in with. The language also provides a
way to mark variables as implicit. When the compiler finds a call-site with a missing im-
plicit parameter, it looks for a nearby variable of the appropriate type marked as implicit,
and writes that variable in as the missing parameter.

Implicit function types

Implicit parameters as thus far introduced have not affected the types of functions that
have implicit parameters. If we take a function and make one of its explicit parameters
implicit, its type does not change1. Implicit function types [Odersky et al., 2018] are a
generalisation of implicit parameters that lift implicits to the level of the function’s type,
breaking the property that the implicitness or explicitness of parameters do not affect
types. With implicit function types, the type of a function communicates which of its
parameters are implicit. This generalisation allows for greater flexibility, giving more
of the programmer’s work to the compiler. Implicit parameter names can be omitted
entirely, as the function’s type already communicates that the compiler should find an
implicit parameter. A new operation known as implicit query (or simply query) is added
to the language. The compiler replaces the query operations with the passed implicit
parameters. Scala’s query operation is written implicitly[T] where the type T is the
type of the implicit parameter to be inserted in place of the query. The example Scala
code below illustrates the difference between implicit parameters and implicit function
types.

1Note that this holds for Scala, but not Haskell. This introduction focuses on implicits à la Scala.

Chapter 1. Introduction 4

// Standard implicit parameter

def f(x: A, y: B, implicit z: C): D = f(x, g(y, z))

// Implicit function type and query

def f(x: A, y: B): implicit C => D = f(x, g(y, implicitly[C]))

Implicit parameters and implicit function types can form a foundation for generic
programming. Functions that take a generic parameter can implicitly take an extra pa-
rameter that describes how the generic parameter can be used.

Implicit conversions

Implicit conversions have appeared in several well-known programming languages such
as C++, C#, Javascript and Scala under different names. They are a type-level feature in
which unary functions are marked as implicit. If a type mismatch occurs in the program,
the compiler tries to fix the type mismatch by finding an implicit conversion from the
type of the mismatched value to a type that would match, and wrapping the mismatching
value in a call to the implicit conversion. For example, if a function expects an integer
as an argument, but receives a boolean, it will look for an implicit conversion (a unary
function marked as implicit) from booleans to integers, and insert a call to that conversion
between the function and the argument. The described example is shown below as Scala
code.

// The implicit conversion

implicit def boolToInt(b: Boolean): Int = if (b) 1 else 0

// A function expecting an Int

def addTen(x: Int): Int = x + 10

// An erroneous call

addTen(true)

// The erroneous call after the compiler carries out

// implicit conversion

addTen(boolToInt(true))

Implicit conversions are perhaps responsible for the reputation that implicit program
constructs have of making programs hard to understand. Implicit conversions in C++
and Javascript can easily obscure the meaning of programs due to the fact that they are
global in scope, and enabled by default. In contrast, Scala’s implicits are scoped and
disabled by default.

Implicit conversions are not closely related to other kinds of implicit program con-
struct and are not a primary topic of this thesis.

Chapter 1. Introduction 5

1.2.2 Concurrency

Pi calculus

Pi calculus [Milner, Robin and Parrow, Joachim and Walker, David, 1992] is a theoreti-
cal model of programming languages with first class message-passing concurrency, i.e.
programming languages with built-in syntax for exchanging messages between concur-
rently executing threads or programs. The pi calculus reduces computation to three main
behaviours, which can be executed in parallel and repeated ad infinitum: sending of
messages; receiving of messages; and generation of communication channels. Pi calculus
programs may experience faults such as deadlock, protocol mismatch, or errors due to a
sender sending a message of a type that the receiver does not expect.

Session types

Session types [Honda, Vasconcelos, and Kubo, 1998; Honda, Yoshida, and Carbone, 2008]
are a type system for message-passing concurrent programming languages like pi calcu-
lus, or concurrent lambda calculus. Session types ensure that every send operation is
matched with a corresponding receive operation, where both sides expect the same type
of message to be exchanged. Session types guarantee freedom from the classes of error
mentioned in the previous paragraph. Session types were first formulated in the context
of binary communication, typing protocols with two participants, but can be extended:
multi-party session types can type protocols involving multiple parties. The safety guar-
antees provided by binary session types to two-party protocols hold for many partici-
pants with multi-party session types.

Implicit messages

Implicit messages [Jeffery and Berger, 2018; Jeffery and Berger, 2019], a contribution of
this thesis, are an implicit program construct for message-passing concurrent program-
ming languages with session types. Implicit messages allow the receiver of a message
in a session-typed protocol to specify that the message is received implicitly, meaning
that the sender of the message may omit the sending of the message, and the compiler
deduces from the sender’s session type that it should insert the corresponding send oper-
ation at the correct point in the protocol. The chosen message payload is a value marked
implicit in the scope of the sender.

Implicit messages follow a similar logic to implicit function types – with implicit func-
tion types, two things are marked as implicit: the function definition and the implicit
variable; and one thing is omitted (and later inserted): the implicit variable at the call
site. With implicit messages, two things are marked implicit: a receive operation and the

Chapter 1. Introduction 6

implicit variable; and one thing is omitted (and later inserted): the corresponding send
operation (sending the implicit variable).

The two-party protocol below shows a simple example of an implicit message, in a
Scala-like syntax. The compiler can either use a session type given by the programmer
to insert the missing message, or in a type-inference style situation, deduce the missing
message by comparison to the receiver.

// Party 1

val x = 10; implicit receive y; send x + y

// Party 2

implicit val y = 10; receive z; print z

// Party 1, post-resolution

val x = 10; receive y; send x + y

// Party 2, post-resolution

val y = 10; send y; receive z; print z

In this thesis, we show that implicit messages can support generic programming and
dependency injection in a concurrent context, just as implicit parameters and implicit
function types support generic programming and dependency injection in a sequential
context. Where information on how a generic parameter can be used, or contextual in-
formation, can be implicitly passed in a function call, such information can be passed
with an implicit message in a concurrent setting. Implicit messages can be formulated in
binary or multi-party session typed setting.

1.2.3 Scala

Scala is a general-purpose multi-paradigm programming language that facilitates func-
tional and object-oriented styles of programming. It is perhaps best known for popularis-
ing implicit parameters/implicit function types and implicit conversions. While there is
some well-founded criticism that Scala’s implicits make programs hard to understand or
modify, the frequency with which they appear in Scala programs suggest that program-
mers find these features useful nonetheless [Křikava, Vitek, and Miller, 2019].

Dependent Object Types (DOT)

DOT is a programming language calculus intended to be a theoretical model of Scala.
DOT models a small subset of Scala’s features, proving correctness properties for those
features. The main features of Scala that DOT has covered with correctness guaran-
tees are fully path-dependent types [Rapoport and Lhoták, 2019] and abstract type members
[Amin, Moors, and Odersky, 2012].

Chapter 1. Introduction 7

DOT with Implicit Functions (DIF)

A key feature of Scala that DOT did not model until recently is implicit functions. DIF
(DOT with Implicit Functions) [Jeffery, 2019] is a calculus that extends DOT with implicit
functions, with correctness guarantees.

1.2.4 Linearity

Linearity is a property of some type systems that enforces a rule that variables must be
used exactly once [Walker, 2005]. The enforcement of this property allows the guarantee
of certain useful properties, such as the inability to use a file that has been closed, or
to free unneeded memory more than once (both of these properties prevent common
programming errors).

A drawback to linear languages is that any variable that is needed multiple times
must be rebound after every use if it is needed again. This means that all functions that
use the variable must return a reference to it so that it can be reassigned to a new variable
after the call returns. This adds syntactic noise to programs and inhibits their readability.
There are several solutions to this rebinding problem that programming languages can
employ. One such solution, and a contribution of this thesis, is to use implicit parameters
to hide rebinding.

1.3 Contributions

This thesis makes the following research contributions:

• We introduce the concept of implicit messages, and develop the first three program-
ming language calculi that support them, namely:

– IM (chapter 3, [Jeffery and Berger, 2018]), a concurrent, session-typed lambda
calculus that also includes implicit functions, based on a concurrent lambda
calculus known as LAST.

– PIIM (chapter 4), a binary session-typed pi calculus.

– MPIM (chapter 5, [Jeffery and Berger, 2019]), a multi-party session-typed pi
calculus.

• We introduce the session type class pattern, a form of generic programming, and
the concurrent dependency injection pattern, a form of dependency injection. Both
patterns are for session-typed concurrency and enabled by implicit messages (see
chapter 3).

• We add implicit functions to two calculi: LAST, resulting in the calculus IM; and
DOT, resulting in the calculus DIF (chapter 6, [Jeffery, 2019]), which:

Chapter 1. Introduction 8

– In IM allows us to demonstrate a novel solution to the well-known rebinding
problem of linear languages (chapter 3).

– In DIF, provides a stronger theoretical foundation for Scala, by extending the
feature set of Scala that DOT models. It is shown that common Scala patterns
involving implicits can be modelled by DOT when it is extended with implicit
function types.

9

Chapter 2

Literature Review1

2.1 Introduction

In this chapter we review in detail existing literature on topics related to this thesis. We
begin with an overview of type systems, and proceed to look at specific programming
languages and calculi that lay foundations for the novel calculi presented in this the-
sis. Calculi studied in this chapter include lambda calculi (section 2.3) and calculi for
concurrency (section 2.4), especially pi calculi, which together lay foundations for the
concurrent lambda calculus LAST that serves as a basis for our novel language IM (in-
troduced in chapter 3), pi calculi also serving as a basis for the variants of IM, namely
PIIM (introduced in chapter 4) and MPIM (introduced in chapter 5). Studied calculi also
include the object calculus DOT (relevant for chapter 6), the foundation for the popular
programming language Scala. We look at various features and type systems that can ex-
tend these calculi, especially type classes and implicits. Where appropriate we discuss
real systems that implement those type systems and features.

2.2 Type Systems

Types are mathematical descriptions of computer programs or computer program frag-
ments. They can express a plethora of properties that programs can exhibit, which may
be useful to the program’s developer or user, such as the nature of values dealt with by
the program, e.g. dates, numbers and text, whether the program makes use of a net-
work connection, and if so, what kind of information is exchanged with the network,
or whether the program terminates or loops indefinitely. A type system is any formal-
ism, theoretical or actual, that assigns types to programs. Type systems for classification
of sequential programs are an integral part of modern programming languages used in
industry, and have been a topic of academic research for, arguably, at least a century

1Small portions of this chapter are adapted from [Jeffery and Berger, 2018] and [Jeffery and Berger, 2019],
published works co-authored with my supervisor, Dr. Martin BERGER, and [Jeffery, 2019], which is pub-
lished original work. I estimate that 95% of this chapter is completely my own work, with the last 5% being
co-written.

Chapter 2. Literature Review 10

[Russell and Whitehead, 1910–13]. Type systems for concurrent, parallel and distributed
computing, often referred to generally as behavioural type systems, are a more recent and
contemporary research area.

2.2.1 Motivation

Type systems are such a critical aspect of the modern software industry, and a huge re-
search area, because they can be used to identify programs that exhibit properties of
interest. They can be a useful tool in determining if a program behaves as its writer in-
tended it to, or if it behaves in a manner that might make it liable to produce an erroneous
result. Given the ubiquity of software in modern society, the investigation of type sys-
tems should then be of great value. Programs that perform ill-defined operations, fail to
terminate, function insecurely2, can more easily be identified with the aid of type sys-
tems. Any given type system must be associated with a specific programming language,
and the nature of the type system is fundamentally linked to its language. The kinds of
errors a program can exhibit are determined by the nature of the language the program
is written in and therefore influenced by the programming language’s type system. A
problem with a program may be addressed by thinking about a programming language
and type system that identify programs that exhibit the problem.

While there is debate as to when best to use type systems to analyse programs (pri-
marily between proponents of analysis during the development phase (static typing) ver-
sus those of analysis during the testing phase (dynamic typing) of the software develop-
ment process), and indeed there are large shortcomings in the capabilities of type analysis
- for example, it is impossible to tell, in the most general case, if a program will terminate
or loop indefinitely - few or none argue against the use of type systems in the software
development process.

2.2.2 Types of Type System

Type systems are often named in relation to the program properties they guarantee, or,
conversely, the class of errors that they prevent. We will now look at several kinds of type
system, and will see that they relate to classes of errors that might occur in programs.

A type system generally makes two additions to the specification of a programming
language: (1) a grammar of types, which describe the types of values that functions accept
as arguments and return; and (2) a formal system based on logical judgements, usually
written Γ ` M : T or similar, that express the type T of a program M under assumptions
Γ regarding the types of the free variables in M. They are true or false statements about
the validity of assigning the type T to the program M, and are judged true of false by

2[Church, 1940], [Martin-Löf, 1975], and [Schneider, Morrisett, and Harper, 2001] discuss type systems
that address these properties respectively.

Chapter 2. Literature Review 11

an accompanying set of inference rules that allow judgements about complex programs
to be built from simpler ones. We now look briefly at some well known types of type
system.

Polymorphic

Polymorphic type systems are those that allow programs or program parts to have mul-
tiple types, or facilitate reuse of code by allowing code parameterisation by values of
multiple types. Parametric polymorphism achieves this by allowing a single piece of code
to truly be executed over parameters of different types. In contrast, ad-hoc polymorphism,
often called overloading, allows the programmer to specify different but synonymous be-
haviours for values of different types. These kinds of polymorphism were first identi-
fied in 1967 in [Strachey, 2000]. Another well-known type of polymorphism is Subtype
polymorphism, which allows the programmer to construct a hierarchy of related types.
Subtype polymorphism first appeared in the programming language Simula.

Parametric. Parametrically polymorphic code truly accepts arguments of different types.
The simplest parametrically polymorphic program is the identity function, shown below
in Haskell (left) and Java (right).

id :: a -> a

id x = x
<A> A id(A x) { return x; }

Parametric polymorphism is ideally suited to developing generic collection libraries.
Functions can be written that work, for example, for all lists, regardless of what types
are contained in the list. Prototypical examples of such functions are: head, which re-
turns the first element of a list; tail, which returns all elements in a given list except the
first; append, which, given an element and a list, returns a new list containing the ele-
ments from the given list followed by the element; and concat, which, given two lists,
returns a new list containing all elements from the first list followed by all elements from
the second list. Shown below are example implementations of these functions in Haskell.

head :: [a] -> a

head l = case l of { [] -> undefined ; (h:t) -> h }

tail :: [a] -> [a]

tail l = case l of { [] -> undefined ; (h:t) -> t }

append :: a -> [a] -> [a]

append e l = case l of { [] -> [e] ; (h:t) -> h:(append e t) }

concat :: [a] -> [a] -> [a]

concat l1 l2 = case l2 of { [] -> l1 ; (h:t) -> concat (append h l1) t }

Chapter 2. Literature Review 12

A consequence of parametric polymorphism is that since code must work for all types,
it necessarily cannot interact with its polymorphic parameters in non-trivial ways. For
example, a parametrically polymorphic function may not add two parameters together,
since, while the function may work for integers and floating point numbers, it would fail
when given arguments of types for which there is not a notion of addition.

Ad-hoc. Languages with Ad-hoc polymorphism allow the user to define multiple func-
tions of the same name, which vary in the type (and sometimes the number) of argu-
ments (sometimes called overloading). Calls to such functions are disambiguated either
at compile-time, in the case of statically typed languages, or at runtime with dynamic
languages. In Haskell, ad-hoc polymorphism is mediated by type classes, which constrain
the types of overloaded functions using a class definition. These allow the types of over-
loaded functions to vary in a single type parameter. An example class definition is show
below:

class Add n where

add :: n -> n -> n

This definition states that the function add can be overloaded by providing an instanti-
ation of the type variable n using an instance definition. Two examples are shown below,
one for Peano-style natural numbers and one for integers:

instance Add Nat where

add Zero x = x

add (Succ x) y = add x (Succ y)

instance Add Int where

add x y = x + y

A function application add e1 e2 is resolved at compile time with either Nat or Int’s
version of add, depending on the types of e1 and e2.

Other languages allow the types of overloaded functions to vary more freely. For
example in Java, we may use arbitrary types in functions of the same name3:

int convert(String s) { return Integer.parseInt(s); }

String convert(int x) { return "" + x ; }

Subtype. Subtype polymorphism concerns hierarchical relationships between types de-
fined by the programmer. For example, they might define a type Vehicle, and types
Car and Aeroplane, such that Car and Aeroplane are subtypes of Vehicle, allow-
ing Cars and Aeroplanes to support all operations that Vehicles support, with the
reverse not being the case - Cars would have their own unique operations, as would
Aeroplanes, but they would have all Vehicle operations in common. The example

3This example can also be expressed in Haskell using type families.

Chapter 2. Literature Review 13

below illustrates subtype polymorphism, with allowable and erroneous operations indi-
cated by // comments.

class Vehicle { abstract def speed(): Int }

class Car extends Vehicle { def speed = 30; def drive(): Unit = ... }

class Aeroplane extends Vehicle { def speed = 250; def fly(): Unit = ... }

print(Car.speed() + Aeroplane.speed()) // ok, prints 280

Aeroplane.fly() // ok

Car.fly() // error

Car.drive() // ok

Dependent

Dependent type systems are those that allow for the presence of values in types. Thus
far, there has been a clear separation between type and value, but with dependent types,
this line blurs. For example, a type for lists may be augmented to also contain the length
of the list as part of the type. An example is shown below in the dependently typed
language Agda [Norell, 2008]:

data List(A: Set): Nat → Set where

[] : List A 0

:: : ∀{n} → A → List A n → List A (1 + n)

concat : ∀{A m n} → List A m → List A n → List A (m + n)

concat [] l = l

concat (e :: l1) l2 = e :: concat l1 l2

The data definition defines a new data type called List, which takes a type parameter
A and a value parameter of type Nat. The constructor [] builds an empty list, with type
List A 0 - note the value 0 in the type expression. The constructor _::_ builds a list
from an element and a list, the element having type A, and the argument list type List
A n. The resulting list differs in type to the input list, in that the value n is one greater,
capturing the increase in length caused by the addition of a new element. The function
concat shows similar behaviour for combining two lists - the length value in the type of
the output list is the sum of those for the input lists.

Dependent type systems allow the compiler to determine at compile-time that no out-
of-bounds list accesses occur, without the need for runtime bounds checks. They also
allow for the expression of more complex properties in types, such as types for sorted
lists. These type systems typically force termination and are therefore not Turing-complete,
meaning that they cannot express all computations expressible by a Turing machine, in
this case specifically with regards to termination. The use cases of dependently typed
programming languages are generally in verified programming and theorem proving,
and in such cases guaranteed termination is desirable.

Chapter 2. Literature Review 14

Behavioural

Behavioral types are those that constrain not only the values that are passed around a
program, but also the control-flow of the program itself. The best-known variant of be-
havioural type systems are session types [Honda, Vasconcelos, and Kubo, 1998]. Session
types are types for message-passing concurrency, which constrain the sequence of mes-
sages that can be exchanged between communication partners in order to prevent com-
munication errors. For example, a client is prevented from sending a string to a server
at such a time as the server expects to receive an integer from the client. We will look at
session types in more detail in section 2.4.

2.3 Lambda Calculus

The lambda calculus was conceived in the 1930’s as a foundational calculus for logic, by
Alonzo Church [Church, 1932]. It proved unsuccessful in this regard, but was nonethe-
less adopted as a foundational calculus for functional programming languages, and due
to its Turing-completeness, is suitable as such. Widely used, modern programming lan-
guages such as Haskell, ML, Racket and Clojure are based on the lambda calculus. It
serves as a base for theoretical models of programming languages, allowing for proofs of
programming language correctness. It can be extended with type systems, allowing for
the identification of programs with particular properties of interest. We now look at the
lambda calculus in detail, and study some of its applications relevant to the topic of this
thesis.

2.3.1 Untyped Lambda Calculus

The untyped lambda calculus is extremely simple, with only three kinds of terms. Ab-
stractions λx.M represent a function whose argument name is x and body is M. Appli-
cations M N represent the application of the function M to the argument N. Variables
x refer to the argument applied to the abstraction that binds them. We specify formally
the context-free grammar (sometimes referred to simply as the grammar or the syntax) of
lambda calculus, which specifies recursively the structure of lambda calculus terms (pro-
grams) in figure 2.1.

M, N ::= λx.M (ABSTRACTION)
| M N (APPLICATION)
| x (VARIABLE)

x ::= (variable names)

FIGURE 2.1: Syntax of Lambda Calculus

Chapter 2. Literature Review 15

Figure 2.2 gives the call-by-value semantics of the lambda calculus. Semantics specify how
to evaluate terms. Evaluating a term corresponds to executing a program. We consider
the term left over after evaluating a term to be the result of evaluating it (the output of the
program), in the same way that the result of evaluating the term 1 + 2 is the term 3. With
call-by-value semantics, we may only substitute an argument into a function when it has
been reduced to a value (sometimes called normal form). The rule [β-RED] captures this,
and performs capture avoiding substitution, replacing occurrences of the bound variable
x in the function body M with the function argument λy.N. This is called β-reduction.
β-reduction is permitted only when the argument is reduced to an abstraction, which is
the essence of call-by-value. The rules [APPL] and [APPR] allow reduction of function
and argument expressions respectively in application.

Substitution notation [M/x] denotes a function that replaces all free occurrences of the
variable x in its argument by the term M in a capture avoiding manner. Capture occurs
when we substitute a term M with free variables into another term N, such that a lambda
expression within N binds a name matching one of the free variables in M, such that the
lambda in N will then appear to bind one of the previously free variables in M. Capture
avoiding substitution renames bound variables and their binders in the argument term
N such that capture does not occur, and the meanings of terms are preserved – that is,
the typing and semantics of the terms are not changed. All references to the operation of
substitution in this thesis can be assumed to refer to capture avoiding substitution, unless
otherwise stated.

M→ M′

M N → M′ N
[APPL] N → N′

M N → M N′
[APPR]

(λx.M)N → M[N/x] if N = λy.N′ or y [β-RED]

FIGURE 2.2: Call-by-Value Semantics of Lambda Calculus

Call-by-name semantics are similar to call-by-value semantics, but we disallow reduc-
ing arguments in application expressions prior to substitution, but β-reduction for terms
whose arguments are not in normal form is permitted. The call-by-name semantics of
lambda calculus are given in figure 2.3.

M→ M′

M N → M′ N
[APPL] (λx.M)N → M[N/x] [β-RED]

FIGURE 2.3: Call-by-Name Semantics of Lambda Calculus

Most programming languages’ semantics are closer to call-by-value than to call-by-name,
although some are closer to call-by-name, most notably Haskell. Call-by-value is thought
to be more efficient for typical styles of programming, but fails to terminate for a larger set

Chapter 2. Literature Review 16

of programs than call-by-name. Languages with call-by-name therefore more naturally
express infinite data structures such as streams.

Below is an example of a lambda calculus term that fails to terminate with both call-
by-name and call-by-value semantics. We see that after a single β-reduction, we obtain a
term identical to the original term, and the reduction is therefore nonterminating.

(λx.x x)(λx.x x)→ (λx.x x)[(λx.x x)/x] ≡ (λx.x x)(λx.x x)

A problem with the untyped lambda calculus is that it can express programs that do not
terminate, or reach a state in which they are not in normal form, yet no reduction rule
applies. We will see in the next subsection how this problem can be mitigated.

2.3.2 Simply Typed Lambda Calculus

The simply typed lambda calculus (STLC) [Church, 1940] imposes a simple type system
on lambda calculus, preventing the aforementioned problems, yet it is arguably a less
practical programming language due to the property of strong normalisation and there-
fore lost Turing universality. Strong normalisation is the property that all terms reduce to
a single normal form. A strongly normalising language cannot express arbitrary compu-
tations.

STLC’s additions to the grammar of lambda calculus are shown in figure 2.4. These
additions are types T, which are either functions T → T, or base types B, e.g. unit,
booleans, integers. Depending on the base types, we also extend the grammar of terms
with constants C to inhabit base types. In the simplest case, we have B ::= Unit and
C ::= unit.

M, N ::= ... | C (CONSTANTS)
T ::= T → T (FUNCTIONS)

| B (BASE TYPES)

FIGURE 2.4: Grammar of types for Simply Typed Lambda Calculus

In untyped lambda calculus, there are terms that are not in normal form but cannot
be evaluated, such as x y. However in the correct context, these terms can be evaluated
- consider the term (λx.x y)(λx.x) containing the previous example as a subterm. The
operational semantics of STLC are identical to that of untyped lambda calculus (when
we consider constants C to be terms in normal form). There are terms expressible in the
grammar of STLC that are not in normal form and cannot be evaluated in any context (be-
cause no reduction rule applies to them), for example unit unit. In the untyped lambda
calculus, we were not concerned with such errors, but in STLC we seek to prevent them.
Such terms are said to be stuck. It is desirable to identify the set of STLC terms that are

Chapter 2. Literature Review 17

not stuck and do not get stuck after some evaluation. To this end STLC introduces typing
rules. These are logical rules that determine whether or not a term gets stuck. If, by using
these rules, we can derive the statement Γ ` M : T, then the term M does not get stuck
in a context where its free variables are bound to values whose types are given by Γ, but
is guaranteed to evaluate to a value of type T. We give typing rules for STLC in figure
2.5. Figure 2.6 shows how these rules are applied in an example proof for the typing of a
simple term.

Γ ` M : T → U Γ ` N : T
Γ ` M N : U

[APP]
Γ, x : T ` M : U

Γ ` λx.M : T → U
[ABS]

x : T ∈ Γ
Γ ` x : T

[VAR]
−

Γ ` unit : Unit
[CONST]

FIGURE 2.5: Typing rules for Simply Typed Lambda Calculus

y : T ∈ {x : T, y : T}
[VAR]

x : T, y : T ` y : T
[ABS]

x : T ` λy.y : T → T
x : T ∈ {x : T}

[VAR]
x : T ` x : T

[APP]
x : T ` (λy.y) x : T

FIGURE 2.6: Example typing proof using STLC typing rules

In order to have certainty that typable terms do not get stuck, we need a type soundness
proof. This is a formal proof of the theorem Γ ` M : T ⇒ M →∗ v, where v is a term
in normal form. It tells us that the typing rules function as intended. Such proofs are
generally achieved by induction on typing rules, and are required for any programming
language and type system pair in order to have guarantees about the correctness of the
type system, and therefore that typable programs exhibit the desired properties. The
exact nature of the theorem depends on what properties the type system is intended to
guarantee. In the case of languages that can perform I/O, we may want to guarantee that
all I/O interactions are safe, in the sense that any sent data is in the format that the receiver
expects, or other properties. These can be reflected in the type soundness theorem and
justified in the type soundness proof. We will see examples of these in later chapters of
this thesis.

A shortcoming of typing systems such as that of STLC is that while they disallow all
terms that get stuck, they do not permit all terms that do not get stuck. For example
the term (λx.y)(unit unit), is not typable, but evaluates safely to y. Such a limitation is a
consequence of Rice’s Theorem [Rice, 1953] – if we had a type system that allowed exactly
those terms that do not get stuck for a Turing-complete language, we could decide the
halting problem, and such a type system is therefore impossible.

Chapter 2. Literature Review 18

2.3.3 Hindley-Damas-Milner Polymorphism

A shortcoming of STLC is the lack of polymorphism which leads to duplication of code.
In order to work with typed lists, it is necessary to add types List Bool, List Int, List(Int→ Int),
etc. The problem is that it then becomes necessary to implement similar (or even identi-
cal) list functions once for each type that is used inside a list. For example, to implement
an indexing function that retrieves the element at a given index from a given list, we
would need to implement this function once for every type that we want to use within lists,
which is extremely repetitive and laborious, and makes code difficult to modify. This is a
consequence of STLC’s typing system which enforces that if we use a function on a value
of a given type, the function can only be reused on values of that type.

Hindley-Damas-Milner Polymorphism [Hindley, 1969; Damas and Milner, 1982] gives
us a solution to the code duplication problem of STLC by adding type variables, and type
schemas, which are essentially binders for type variables (in the same way that lambdas
are binders for variables at the term level). Type variables and type schemas allow us
to keep a type within some code abstract, and instantiate the abstracted type in a sin-
gle piece of code with different types at different points in the program. This is a form
of parametric polymorphism. As a result, lambda calculus with Hindley-Damas-Milner
Polymorphism (HDMP) is much more usable than STLC for non-trivial programs. In-
deed it forms the basis for many industrial strength programming languages such as
ML.

We extend the grammar of STLC types to include type variables. We also add type
schemas, which are binders for type variables, and are not mixed freely with types, but
always at the ‘outermost level’ of a type, so, for example, ∀x.(Bool → x) is allowed, but
Bool → ∀x.x is not. Although not strictly required for HDMP, we introduce a list type
(and corresponding constants) to our presentation, to better illustrate the applications of
HDMP. The syntax additions of HDMP over STLC are given in figure 2.7 and the type
schemas for constants are given in figure 2.8.

The typing system for HDMP adds rules for the key new constructs. The rule [LET]
types let-bindings by checking that the use of the bound expression M is used sensibly in
the body expression N. The rule [GEN] allows typing an expression M as though it had
type S when the name α bound in the scheme ∀α.S is irrelevant. The rule [INST] allows
using a more general type in place of a more specific one, wherein the judgement S > S′

reflects that S can be obtained from S′ by substituting concrete types for some of the type
variables bound by S′ and is therefore a more specific version of S. An example of this
would be using List Bool where ∀α. List α is expected. New typing rules for HDMP are
given in figure 2.9 – STLC rules in figure 2.5 also apply.

The for-all types of HDMP allow for highly reusable code. We can write generic
functions over collections e.g. lists, that can be used (and reused) on lists containing

Chapter 2. Literature Review 19

M, N ::= ... | C (CONSTANTS)
| let x = M in N (LET-BINDING)

T ::= ... | α (TYPE VARIABLES)
| List T (LISTS)

S ::= ∀α.S (TYPE QUANTIFIERS)
| T (UNQUANTIFIED TYPES)

C ::= nil | null | cons | hd | tl (LIST CONSTANTS)
| true | false (BOOLEAN CONSTANTS)

FIGURE 2.7: Grammar of HDMP

nil : ∀α. List α
null : ∀α. List α→ Bool

cons : ∀α. α→ List α→ List α
hd : ∀α. List α→ α

tl : ∀α. List α→ List α
true : Bool

false : Bool

FIGURE 2.8: Type schemas for HDMP constants

Γ ` M : S
Γ ` M : ∀α.S

(α /∈ f v(Γ)) [GEN]

Γ ` M : S
Γ ` M : S′

(S > S′) [INST]
Γ, x : T′ ` M : T′ Γ, x : T′ ` N : T

Γ ` let x = M in N : T
[LET]

FIGURE 2.9: Typing rules for HDMP

elements of any one type. For example, if we assume standard integers and conditionals,
we can use the list constants to build a function that will index into a list returning the
nth element:

let index = λl. λn. if n == 0 then hd l else index l (n - 1)

We can write index (cons 2 (cons 3 (cons 5 nil))) 2 and index (cons true

(cons false (cons false nil))) 1 in the same program without the type checker
rejecting the program. This is because the type of index is ∀x. List x → Int → x,
which can be instantiated via the rule [INST] to both List Int → Int → Int and
List Bool→ Int→ Bool.

We can further make use of this polymorphism to create a generic sorting function.
We achieve this by parameterising our function by a comparator function which captures
the ordering of elements.

Chapter 2. Literature Review 20

let isort = λl. λf.

let insert = λx. λl. λf.

if null l then cons x nil

else if f x (hd l) then cons x l

else cons (hd l) (insert x (tl l) f)

in if null l then nil else insert (hd l) (isort (tl l) f) f

HDMP is, like STLC, strongly normalising, making it impractical for real-world pro-
gramming. HDMP and STLC force termination (i.e. are strongly normalising) because
they do not allow to type recursive functions. There are many ways to allow arbitrary
computation in HDMP and STLC, and perhaps the simplest would be to add a fixed-
point combinator to its syntax (not encoding it in other constructs, which is untypable).

HDMP restricts type schemas such that they may only appear at the ‘outermost level’
of a type, and cannot occur within a type expression, which, for example, forbids the
type List(∀α.T). If we do away with this restriction, we obtain a system called fully
polymorphic lambda calculus [Hindley, 1969; Girard, 1972], sometimes called ’System F’
or ’second-order lambda calculus’.

2.3.4 Type Classes

Type classes [Kaes, 1988; Wadler and Blott, 1989] are a mechanism to allow ad-hoc poly-
morphism in languages with parametric polymorphism. Parametrically polymorphic
type variables may be constrained, such that they can only be instantiated by types over
which a user-defined set of functions exist. Further functions can then be defined over
all types for which the set of functions are defined. A typical example of a type class is
Haskell’s Show. In a program, we might want to use a function print to print values
over many different types, for example we might want to write print 1, print True

and print [1, 2] in the same program. To achieve this with type classes, we give
print the following signature, shown in Haskell-style syntax:

print :: Show a => a -> IO ()

This signature tells us that where a is a type in the Show type class, print takes an a

and returns IO () (in Haskell, () is the unit type and types of the form IO T represent
values of type T obtained as a result of performing I/O). The definition of the Show type
class itself is given below:

class Show a where

show :: a -> String

We call this a class definition. It tells us that a type a is in the Show type class when there
exists a function show of type a -> String. We can then define this function for a
given type, for example Bool, as below, with an instance definition:

instance Show Bool where

Chapter 2. Literature Review 21

show b = if b then "True" else "False"

And for Int, assuming a function intToString :: Int -> String that converts
an Int to its String representation:

instance Show Int where

show i = intToString i

We can also declare type constructors to be in a type class when their argument types are
also in the type class. For example, we can declare that tuples of type (a, b) for all a, b
are in Show when a and b are in Show thusly:

instance (Show a, Show b) => Show (a, b) where

show (a, b) = "(" ++ show a ++ ", " ++

show b ++ ")"

With these instance definitions at hand, we can give a definition for print, which will
satisfy the type checker for arguments of any type in the Show type class, as above. The
definition is as follows:

print a = putStrLn (show a)

Type classes are usually implemented via a technique known as dictionary passing
[Kiselyov, 2014]. Function definitions whose type contains a type class constrained type
variable are adapted to take an additional parameter for each such type variable. That
additional parameter is known as a dictionary, and is a tuple containing the type class
function implementations for the type that instantiates the type class constrained type
variable. When a type class declares just a single function, such as with Show, the dictio-
nary is just a single function rather than a tuple of functions. Call sites for those function
definitions are augmented to pass the dictionary of appropriate type - the compiler de-
cides what the appropriate type is based on the parameter passed at the call site.

In the case of the Show type class above, we would expect the Bool instance definition
to be translated into the following dictionary:

showBoolDict :: Bool -> String

showBoolDict = show where

show b = if b then "True" else "False"

The print function is then translated to the following:

print :: (a -> String) -> a -> IO ()

print dict a = putStrLn (dict a)

Call sites print bwhere b is of type Bool are then rewritten as print showBoolDict

b. This rewriting of terms and insertion of dictionary parameters means that type classes
can be thought of as a kind of implicit program construct.

Chapter 2. Literature Review 22

2.3.5 Implicit Parameters and Implicit Function Types

Modularity, a core concept in software engineering, is greatly aided by parameterisation
of programs. Parameterisation has dual facets: supplying and consuming a parameter.
A key tension in large-scale software engineering is between explicit (e.g. pure functional
programming), and implicit parameterisation (e.g. global state). The former enables local
reasoning but can lead to repetitive supply of parameters. Here is a simple example of
the problem, in Scala-style syntax:

def compare(x: Int, y: Int)(comparator:

Int => Int => Boolean): Boolean =

comparator(x)(y)

...

compare(3, 4)(<=)

...

compare(17, 12)(<=)

...

Repeatedly passing functions like <= which are unlikely to change frequently, is tedious,
and impedes readability of large code bases. Default parameters are an early proposal
for mediating this tension in a type-safe way. The key idea is to annotate function argu-
ments with their default value, to be used whenever an invocation does not supply an
argument:

def compare(x: Int, y: Int)(comparator:

Int => Int => Boolean = <=): Boolean =

comparator(x)(y)

...

compare(3, 4)

...

compare(17, 12)

...

The compiler synthesises compare(3, 4)(<=) from compare(3, 4), and
compare(17, 12)(<=) from compare(17, 12). The missing argument indicates to
the compiler that the default <= should be used. Default parameters have a key disad-
vantage: the default value is hard-coded at the callee, and cannot be context dependent.
Implicit arguments separate the callee’s declaration that an argument can be elided, from
the caller’s choice of elided values, allowing the latter to be context dependent. The exam-
ple below shows two calls to compare in different contexts, where the implicit compari-
son operator varies.

Chapter 2. Literature Review 23

def compare(x: Int, y: Int)(implicit comparator:

Int => Int => Boolean): Boolean =

comparator(x)(y)

...

implicit val cmp = <=

compare(3, 4)

...

implicit val cmp = >

compare(17, 12)

...

In this example compare(3, 4) is rewritten as above, but compare(17, 12) becomes
compare(17, 12)(>), i.e. a different implicit argument is synthesised. The disam-
biguation between several providers of implicit arguments happens at compile-time us-
ing type and scope information. Programs where elided arguments cannot be disam-
biguated at compile-time are rejected as ill-formed. Hence type-safety is not compro-
mised.

Implicit arguments are a strict generalisation of default parameters. They were pio-
neered in Haskell [Lewis et al., 2000], and refined in [Oliveira et al., 2012]. They were
popularised as well as further refined in Scala [Odersky et al., 2018], being lifted to the
type level. In Scala’s new Dotty compiler [Odersky, 2017], in addition to standard func-
tion types, there is an implicit function type, a type for functions whose argument is pro-
vided implicitly. This lifting to the type level allows for improved abstraction and reuse
over implicit functions (Note: we often refer to functions whose arguments are implicit
as implicit functions).

Coherence

The concept of coherence for languages with implicit program constructs is introduced
in [Schrijvers, Oliveira, and Wadler, 2017]. Such a language is said to be coherent when
there exists exactly one possible choice of translation for implicit resolution, the process of
‘translating out’ the implicits from a program, as described above. In previous examples,
there is always a single obvious choice of value to insert as an implicit parameter or type
class dictionary, but this is not necessarily the case. In the simplest incoherent case, we
might have two implicit values in scope, e.g.:

implicit val a = 1

implicit val b = 2

def printInt(implicit toPrint: Int): Unit = print(toPrint)

printInt

We could reasonably expect printInt to print either 1 or 2. Scala avoids much inco-
herence with precedence rules for choice of implicit value. More deeply nested implicit
definitions are preferred over less deeply nested ones, and more specific types (e.g. Int

Chapter 2. Literature Review 24

=> Int) are preferred over more general ones (e.g. α => α). Scala does exhibit some,
more subtle cases of incoherence, however4.

Haskell’s type classes are coherent, in contrast to Scala’s implicit functions. Haskell
prevents the definition of overlapping instance definitions, e.g. one cannot write instance
A (a -> a) and instance A (Int -> Int) in the same program as Int -> Int

is an instance of the more generic type a -> a and the instances therefore overlap. This
restriction can be inconvenient, and so there is an option to disable this check in the com-
piler, but this breaks coherence guarantees. Haskell’s ImplicitParams extension is
coherent – its implicit parameters are resolved purely based on names, rather than select-
ing from all implicit values of the appropriate type. Therefore there is only ever a single
candidate for insertion.

2.3.6 Type Classes via Implicits

Languages with implicit functions can leverage their implicit functions to mimic the be-
haviour of type classes [Oliveira, Moors, and Odersky, 2010]. Type classes are imple-
mented via the insertion by the compiler of a dictionary argument to functions that take
parameters whose types are constrained by type classes. Values akin to these dictionar-
ies can be passed via implicit functions in languages that have implicit functions but lack
type classes. This is best understood by example.

Consider a Haskell-style type class for collections:

class Collection c where

add :: a -> c a -> c a

singleton :: a -> c a

remove :: c a -> Maybe (c a, a)

We could instantiate such a type class for both lists and sets5 thusly:

instance Collection List where

add a l = a : l

singleton a = [a]

remove l = if l == [] then Nothing else Just (tail l, head l)

instance Collection Set where

add a s = insert a s

singleton a = insert a empty

remove s = if s == empty then Nothing else Just (deleteFindMin s)

With these instances at hand, we can write code over all Collections. And example
function over Collections might be:

4This is the case at least as recently as Scala version 2.11.
5Note that Haskell’s Data.Set type introduces an Ord type class dependency, so, for example, Set.add

has type Ord a => a -> Set a -> Set a - we assume a similar Set API without this dependency, so
would have the simpler type a -> Set a -> Set a for Set.add.

Chapter 2. Literature Review 25

getTwo :: Collection c => c a -> Maybe (c a, a, a)

getTwo c = do (c’ , a) <- remove c

(c’’, a’) <- remove c’

return (c’’, a, a’)

At compile-time, the class definition is translated into a dictionary type - essentially a
tuple containing functions whose types match those declared above:

type CollectionDict c a =

(a -> c a -> c a

, a -> c a

, c a -> Maybe (c a, a)

)

Instantiations of the type class are then converted into dictionaries, whose types match
collectionDict c a, where the instance type replaces the parameter c.

collectionListDict :: CollectionDict List a

collectionListDict =

(\a l -> a : l

, \a -> [a]

, \l -> if l == [] then Nothing else Just (tail l, head l)

)

collectionSetDict :: CollectionDict Set a

collectionSetDict =

(\a s -> insert a s

, \a -> insert a empty

, \s -> if s == empty then Nothing else Just (deleteFindMin s)

)

Functions whose argument types are constrained by type classes are then modified to
take an additional dictionary argument, and references to type class functions are re-
placed with indexes into the dictionary:

getTwo :: CollectionDict c a -> c a -> Maybe (c a, a, a)

getTwo dict c = do (c’ , a) <- ((\(_, _, r) -> r) dict) c

(c’’, a’) <- ((\(_, _, r) -> r) dict) c’

return (c’’, a, a’)

This adds additional boilerplate of inserting the correct dictionary into each call to getTwo.
With implicit functions, we can remove this boilerplate by making the dictionary param-
eter implicit, resulting in call sites being unchanged vs languages with type classes. We
can also define functions that index into the dictionary as implicit functions, allowing us
to use the original type class function names. We show this in the syntax of Haskell’s
ImplicitParams language extension [Lewis et al., 2000]:

Chapter 2. Literature Review 26

add :: (?dict :: CollectionDict c a) => a -> c a -> c a

add = (\(a, _, _) -> a) ?dict

singleton :: (?dict :: CollectionDict c a) => a -> c a

singleton = (\(_, s, _) -> s) ?dict

remove :: (?dict :: CollectionDict c a) => c a -> Maybe (c a, a)

remove = (\(_, _, r) -> r) ?dict

Implicits are conceptually simpler than type classes, and therefore easier to imple-
ment, however they do require slightly more boilerplate code compared to type classes
in order to achieve ad-hoc polymorphism. There is an argument to be made, however,
that the minimal boilerplate reduction of type classes over implicits does not justify the
additional complexity in the compiler.

It was recently announced [Odersky, 2019] that Scala 3 will include a new feature
called delegates, which are essentially type classes, and are implemented reusing the pre-
existing implicit resolution logic in the Scala compiler. Similarly, Haskell’s
ImplicitParams extension leverages the compiler’s type class resolution logic to im-
plement implicit parameters. These two facts testify to the relatedness of the two con-
cepts.

2.3.7 Linearity

The Linear Lambda Calculus (LLC), inspired by ideas in linear logic [Girard, 1987], is a
substructurally typed lambda calculus that places restrictions on the usage of variables.
In LLC, each variable must be used exactly once. This property allows LLC to ascertain
useful properties of programs with the type system, such as whether all opened files
are closed, whether memory is double-deallocated or whether it is not deallocated at
all. LLC introduces linear function types T (T′ to represent functions whose bound
variable is linear, i.e. used exactly once. More precisely, for linear functions λx.M, the
body M must contain exactly one occurrence of x. Formulations of LLC often include
standard, or unrestricted functions T → T′ alongside linear ones, distinguishing them at
the term level with qualifiers lin and un, i.e. lin λx.M for linear functions and un λx.M
for unrestricted ones. This improves their usability by allowing the expression of typical
(nonlinear) programs whilst allowing linearity guarantees where desirable6.

Control of aforementioned properties such as file closure is achieved in LLC using lin-
ear restriction of file variables. We might expect a file API to have the following function
types [Walker, 2005]:

6Girard’s linear logic [Girard, 1987] originally used modalities for this.

Chapter 2. Literature Review 27

openFile :: String (File

readLine :: File ((File, un String)

closeFile :: File (()

openFile takes a String file name and returns a linear File (note types are linear
unless marked with un). Since the File is linear, we would expect to only be able to use
it once, which would be problematic - we could only read a single line from it, leaving it
open after execution completes, or close it immediately without reading from it. Instead,
the readLine function returns a pair containing another File, which will reference
the same file, but as a fresh linear variable that can be used again (once), along with an
unrestricted String containing the read line. In this manner, each time we read a line,
we get another linear reference to the File to read from again or close, but when we close
the File with the function closeFile, no File reference is returned, and therefore the
File cannot be used any further. Any attempts to use old references to the File will
cause the type check to fail as this would result in the usage of a linear variable more
than once. If we fail to close the file, at some point there must have been an unused linear
variable, which LLC does not allow.

Figure 2.10 gives the syntax of LLC [Walker, 2005]. Qualifiers q allow the restriction
of functions, tuples and types.

M, N ::= q λx.M (ABSTRACTION)
| M N (APPLICATION)
| x (VARIABLE)
| q (M, N) (TUPLE)
| let x = M in N (LET-BINDING)
| let x, y = M in N (TUPLE BINDING)

x ::= (variable names)
q ::= lin | un (QUALIFIERS)
T ::= q P (QUALIFIED PRETYPE)
P ::= T → T (FUNCTION)

| T(T (LINEAR FUNCTION)
| (T, T) (TUPLE)

FIGURE 2.10: Syntax of Linear Lambda Calculus

Semantics are unchanged from STLC after erasure of qualifiers q. Standard typing
rules for systems such as STLC can freely copy contexts, for example when typing an
application, the same context can be used to type the function expression and the ar-
gument expression. With linear systems, freely allowing copying would break linearity
constraints, as we could freely use a linear variable in both the function expression and
the argument expression. For this reason we have context splitting rules which allow us

Chapter 2. Literature Review 28

to split contexts Γ. The context splitting rules allow us to freely copy unrestricted vari-
ables (see [UNSPLIT]), but do not allow us to copy linear variables - when we split a
context, each linear variable may occur in only one of the obtained contexts, being usable
in typing only the argument expression and not the function expression, or vice-versa
(see [LINSPLITL, LINSPLITR]). Context splitting rules for LLC are given in figure 2.11
and typing rules in figure 2.12.

−
∅ = ∅ ◦∅

[EMPTY]
Γ = Γ1 ◦ Γ2

Γ, x : lin P = (Γ1, x : lin P) ◦ Γ2
[LINSPLITL]

Γ = Γ1 ◦ Γ2

Γ, x : lin P = Γ1 ◦ (Γ2, x : lin P)
[LINSPLITR]

Γ = Γ1 ◦ Γ2

Γ, x : un P = (Γ1, x : un P) ◦ (Γ2, x : un P)
[UNSPLIT]

FIGURE 2.11: Context Splitting Rules for Linear Lambda Calculus

Γ1 ` M : q T → U Γ2 ` N : T
Γ1 ◦ Γ2 ` M N : U

[APP]
q(Γ) Γ, x : T ` M : U
Γ ` q λx.M : q T → U

[ABS]

un(Γ1) un(Γ2)

Γ1, x : T, Γ2 ` x : T
[VAR]

q(T) q(U) Γ1 ` M : T Γ2 ` N : U
Γ1 ◦ Γ2 ` q (M, N) : q (T, U)

[TUPLE]

Γ1 ` M : q T Γ2, x : T ` N : U
Γ1 ◦ Γ2 ` let x = M in N : U

[LET]

Γ1 ` M : q (T, U) Γ2, x : T, y : U ` N : V
Γ1 ◦ Γ2 ` let x, y = M in N : V

[LETTUP]

FIGURE 2.12: Typing Rules for Linear Lambda Calculus

The typing rules [APP] and [LET] type application and let-binding respectively in the
usual way, with the addition that the context is split as described to prevent violation
of linearity constraints. For the same reason, the rule [VAR] must check that the context
not consumed is unrestricted. The rules [TUP] and [LETTUP] type tuple introduction and
elimination respectively in the standard way, again with context splitting.

2.4 Concurrency

We now leave the world of sequential computation to introduce the field of concurrent
computation. So far all the languages we’ve seen carry out a single operation at a time,

Chapter 2. Literature Review 29

in a fixed sequence. Concurrency concerns forms of computation in which the order
of operations are not restricted to a fixed sequence, but progress of operations may be
interleaved or simultaneous. We will look at early models of concurrency such as CCS,
and more modern developments such as Pi Calculus and Session Types.

2.4.1 Terminology

The term ’concurrency’ is used to describe kinds of computational phenomena that can
be thought of as having many things happen simultaneously. The term is often used in-
terchangeably with the terms ‘parallel’ and ‘distributed’, although they are not synonyms.
Concurrency is the most general of these three terms, implying the least about the com-
putation or process(es) it describes. The term ’parallel’ is usually understood as referring
to processes that actually progress simultaneously, whereas ‘concurrency’ can describe
a system where processes are ‘interleaved’, each making progress before the other fin-
ishes but never actually progressing simultaneously, such as in a multitasking operating
system on a single-processor computer. The term ’distributed’ refers to those parallel
phenomena in which processes are in some sense disparate, such as two computers com-
municating over the internet.

With this in mind, we might say that all distributed phenomena are parallel, and all
parallel phenomena are concurrent, but not all concurrent phenomena are parallel, and
not all parallel phenomena are distributed.

Communication is generally thought of as a fundamental part of the concepts of con-
currency, parallelism and distribution. Two processes may not necessarily be thought of
as concurrent unless they have some form of interaction with one another, such as ex-
changing messages, or observing one another’s behaviour. Where two processes exhibit
no kind of communication, we might not describe them as concurrent, but as entirely
separate processes that happen to be temporally collocated.

2.4.2 Forms of Concurrency

Concurrency is everywhere - 8 planets concurrently orbit the sun, and simultaneously
exert gravitational forces on one another. Bus services operate concurrently with train
services, within which separate buses drive around concurrently. Computers, networks
of computers and networks of networks of computers communicate concurrently in or-
der to form the internet.

In computing, concurrency also occurs at many different levels. Multitasking operat-
ing systems manage many concurrently running processes. Networks of computers send
messages to one another concurrently. In general, concurrency is implemented in one of
two ways: Message Passing or Shared Memory.

Chapter 2. Literature Review 30

Message Passing

In a message passing system, concurrent processes communicate with each other via the
exchange of messages. A message passing system may have a notion of sender and re-
ceiver, such that one message sends, and another receives, a single message. A given
process may be a sender at one point in time, and later change its behaviour and become
a receiver. Such a system might also contain the notion of broadcast messages, where a
single message can have multiple receivers. There also exists a notion of message chan-
nels, whereby each message is sent over a specific channel. Senders must send on the
same channel on which a receiver listens, in order to communicate.

Shared Memory

In a shared memory system, processes communicate by reading to, and writing from, a
region of shared memory. In this scheme, the notion of sender and receiver breaks down
somewhat. Processes may read from and write to regions of memory, whilst others do the
same. Communication is generally achieved by the use of a pre-agreed scheme, where,
for example, process A reads from, and process B writes to memory region X, and A
writes to, and B reads from Y.

Implementations of shared memory schemes are often complicated by synchronisation
problems. Such problems are elegantly illustrated by the well-known dining philosophers
scenario, described in [Hoare, 1985, p. 75].

2.4.3 Theoretical Models of Concurrency

There exist many theoretical models of concurrency. These theoretical models are ide-
alised mathematical descriptions of concurrent computation, as lambda calculi are theo-
retical models of sequential computation. Theoretical models of concurrency are useful in
allowing us to study concurrent phenomena in the abstract. Thus we need not deal with
problems that only exist in real-world implementations, such as computers in a network
going off-line. There exist many theoretical models of concurrent computation, such as
CSP [Hoare, 1985], CCS [Milner, 1989], the actor model [Agha, 1986] and the pi calculus
[Milner, 1999]. We will now look at two of these notions in detail.

2.4.4 Calculus of Communicating Systems (CCS)

One of the more interesting models of concurrent computation is CCS. CCS is a message
passing model of concurrent computation. It has primitives that express the following
behaviours:

Chapter 2. Literature Review 31

• message passing – x̄(e).P denotes a process that sends a message e over the channel
x, and then executes the process P. x(y).P denotes a process that receives a message
y on the channel x and then executes P, and free occurrences of y in P are bound to
the received message

• parallel composition P | Q – the process P executes in parallel with the process Q

• nondeterministic choice P + Q, which denotes a process that can behave either as P
or as Q

• name restriction P \ L, which represents the process P restricted to external commu-
nication over channels not in the set L

• relabelling P[f], which allows for communication over restricted channels by renam-
ing them with the function f

• recursive definitions X def
= P, which defines the process variable X as representing the

process P, allowing for recursion (e.g. X def
= x(y).X) and reuse of processes.

The language has a notion of channel names and co-names. Names represent the chan-
nels for communication. Where a process receiving on the channel α is composed in
parallel with a process sending on the channel ᾱ (ᾱ is the co-name of α), communication
can occur.

The syntax of CCS is given in figure 2.13 [Milner, 1989, p. 43]). Expressions e represent
a simple expression language with variables and constants such as integers and addition
- the precise details of the expression language is unimportant, except that they contain
variables that can refer to received messages.

A concurrent system is modelled in CCS as a non-empty, finite list of recursive def-
initions, given by the D production. Labelled transition semantics for CCS are given in
figure 2.14. [Milner, 1989, p. 46]:

The version of CCS presented here is referred to as value-passing CCS. In value-passing
CCS, messages contain some sort of contents. The nature of these contents are somewhat
arbitrary. We might define our message content language to be a language of arithmetic
expressions, or the lambda calculus, for example.

In the presented version of CCS, message output actions send a message in the mes-
sage content language, over a particular channel. The message content is evaluated
within whatever message content language is being used, and the resulting expression
parameterises a corresponding variable in the receiver of the message. For example, we
might define the agent ADDER, that performs addition:

ADDER def
= a(x).a(y).ā(x + y).ADDER

Chapter 2. Literature Review 32

D ::= X def
= P (RECURSIVE DEFINITION)

P, Q ::= P | Q (PARALLEL COMPOSITION)
| P + Q (NONDETERMINISTIC CHOICE)
| P[f] (RELABELLING)
| P \ L (RESTRICTION)
| X (RECURSIVE CALL)
| x(v).P (MESSAGE INPUT)
| x̄(e).P (MESSAGE OUTPUT)

X ::= (definition names)
[f] ::= (list of unary functions over the set

of channel names and co-names)
x ::= (channel names)
x̄ ::= (channel co-names)
e ::= (expressions)
v ::= (expression variables)

FIGURE 2.13: Syntax of CCS

α(v).P
ᾱ(e)→ P[e/v]

[ACTIN]

ᾱ(e).P
ᾱ(e)→ P

[ACTOUT]

P
ᾱ(e)→ P′

P + Q
ᾱ(e)→ P′

[SUML]
Q

ᾱ(e)→ Q′

P + Q
ᾱ(e)→ Q′

[SUMR]

P
ᾱ(e)→ P′

X
ᾱ(e)→ P′

(X def
= P) [DEF] P

ᾱ(e)→ P′

P | Q
ᾱ(e)→ P′ | Q

[COM1]

Q
ᾱ(e)→ Q′

P | Q
ᾱ(e)→ P | Q′

[COM2]
P

ᾱ(e)→ P′ Q
ᾱ(e)→ Q′

P | Q τ→ P′ | Q′
[COM3]

P
ᾱ(e)→ P′

P \ L
ᾱ(e)→ P′ \ L

(α, ᾱ /∈ L) [RES] P
ᾱ(e)→ P′

P[f]
f (ᾱ(e))→ P′[f]

[REL]

FIGURE 2.14: Semantics of CCS

When composed with an agent that makes use of ADDER, we see the how value passing
works:

Chapter 2. Literature Review 33

ā(1).ā(2).a(x).b̄(x) | ADDER

by [DEF] ā(1).ā(2).a(x).b̄(x) | a(x).a(y).ā(x + y).ADDER

by [COM3] ā(2).a(x).b̄(x) | a(y).ā(1 + y).ADDER

by [COM3] a(x).b̄(x) | ā(1 + 2).ADDER

by [COM3] b̄(3) | ADDER

We can see that our agent sends messages 1 and 2 over a, to the ADDER agent. The
ADDER agent then replies with their sum, 3.

We might also consider a version of CCS where we omit message content from agents
altogether. Agents simply synchronise or handshake over channels, rather than pass mes-
sages.

A silent action, denoted above with τ, is an action that occurs inside a process. The
simplest case of a silent action is an internal communication. Consider the process P | Q,
such that: P def

= a(v).P′, and: Q def
= ā(e).Q′, then P and Q will communicate over channel

a, and become P′ and Q′[e/v]. If we consider P and Q individually, rule [COM1] applies
to P and [COM2] applies to Q. When considering the process as a whole, for example in
relation to a separate process, this action is captured by [COM3]. The outside observer
sees the transition P | Q τ→ P′ | Q′[e/v]. Here τ denotes the message exchanged
between P and Q. The channel name a and content e are not seen.

2.4.5 Pi Calculus

Another useful model of concurrent computation is Milner’s pi calculus [Milner, 1999].
The pi calculus has features similar to CCS, but with a key addition: mobility. In the pi
calculus, the names given to channels are themselves the content of messages, as opposed
to a separate expression language. This allows agents to dynamically change which other
agents they communicate with. It also allows for the dynamic introduction of new agents.

The syntax of the pi calculus is given in figure 2.15 [Milner, 1999, p. 87].

P, Q ::= P | Q (PARALLEL COMPOSITION)
| a(x).P (MESSAGE INPUT)
| āx.P (MESSAGE OUTPUT)
| !P (RECURSION)
| 0 (EMPTY PROCESS)
| (νx)P (RESTRICTION)

a, x ::= (channel names)
ā, x̄ ::= (channel co-names)

FIGURE 2.15: Syntax of Pi Calculus

Chapter 2. Literature Review 34

We cannot give the semantics of the pi calculus without first defining the notion of
structural congruence. Structural congruence rules are laws that express behavioural iden-
tities between processes that are syntactically distinct. The structural congruence rules
for the pi calculus are given in figure 2.16.

P | 0 ≡ P P | (Q | R) ≡ (P | Q) | R
P | Q ≡ Q | P (νx)(P | Q) ≡ ((νx)P) | Q if x /∈ f n(P)
(νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P

!P ≡ P | !P

FIGURE 2.16: Structural congruence rules for Pi Calculus

In the structural congruence rules above, a reference is made to the free names function,
f n. This function computes the set of free names within a process. The function is defined
as follows:

f n(P | Q) = f n(P) ∪ f n(Q) f n(0) = {}
f n(a(x).P) = f n(P)− x f n(āx.P) = f n(P) ∪ {x}

f n(!P) = f n(P) f n((νx)P) = f n(P)− x

We have defined the syntax and structural congruence rules of the pi calculus, and
also defined free names in the pi calculus. We can now give the semantics for the pi
calculus. They are given in figure 2.17 as reduction semantics.

a(y).P | āx.Q → P[x/y] | Q
[REACT] P→ P′

P | Q→ P′ | Q
[PAR]

P→ P′

(νx)P→ (νx)P′
[RES] P→ P′

Q→ Q′
(P ≡ Q, P′ ≡ Q′) [STRUCT]

FIGURE 2.17: Semantics of Pi Calculus

Recursion

The pi calculus achieves recursion differently to CCS. The pi calculus uses a recursion
combinator as opposed to recursive definitions. The recursion combinator !, applied to a
process P, denotes in some sense the repetition of the process P. For example, consider a

Chapter 2. Literature Review 35

process that repeatedly sends a message x on channel a. In CCS we have:

A where A def
= ā(x).A

In the pi calculus we would have:
!āx.0

The pi calculus version of this process does behave in a subtly different way to the CCS
- due to the structural congruence !P ≡ P | !P, multiple processes can make use of the
process !āx.0 simultaneously. Consider the example:

a(y).τ.P | a(z).τ.Q | !āx.0

Due to the congruence !P ≡ P | !P, this behaves as:

a(y).τ.P | a(z).τ.Q | āx.0 | !āx.0

Which can behave as:

a(y).τ.P | a(z).τ.Q | āx.0 | āx.0 | !āx.0

Which allows the receiving processes to concurrently react with the separate copies of
āx.0, where in CCS the first receiving process would have to complete its communication
with the recursive process before the second receiving process could communicate with
the recursive process. In the pi calculus, we could have the reduction sequence:

(τ.P)[x/y] | a(z).τ.Q | āx.0 | !āx.0

(τ.P)[x/y] | (τ.Q)[x/z] | !āx.0

P[x/y] | (τ.Q)[x/z] | !āx.0

P[x/y] | Q[x/z] | !āx.0

With recursive definitions, the reaction of the first receiver must complete, yielding P[x/y],
before the process a(y).τ.Q can begin its reaction with the repeating sender. Thus, the be-
haviour in the above example is not (trivially) possible in CCS.

Mobility

As discussed, mobility is the term used to refer to the property of the pi calculus that
allows dynamic reconfiguration of communication networks. The pi calculus makes mo-
bility possible by allowing the sending of message channel names. An agent might re-
ceive a channel name as a message, and proceed to send a message over that channel. In

Chapter 2. Literature Review 36

this way, agents dynamically change the other agents they can communicate with. Such
behaviour is not possible in CCS.

2.4.6 Equality in models of computation

It is often important to define a notion of equality between programs, within a given
model of computation. This is because a notion of program equality is required in order
to have a notion of compiler correctness. Consider a compiler C, from language A to
language B, and two programs in language A, a1 and a2. We say that such a compiler C
is sound if whenever two compiled programs that are equal in language B (b1 ≡B b2), it
follows that their source programs were also equal (a1 ≡A a2). So for all programs a1 and
a2, if b1 ≡B C(a1), b2 ≡B C(a2) and b1 ≡B b2, imply that a1 ≡A a2, then the compiler C is
sound.

Soundness is often phrased differently (but equivalently): A compiler from A to B is
sound if a property P holding for a target program b, i.e. P(b) implies that it must have
held for the source program a, i.e. P(a), so P(b)⇒ P(a).

Without a formal notion of program equality, we cannot formalise a notion of com-
piler correctness (soundness). Thus, if we are to show that a compiler for the pi calculus
is correct, we must have a formal definition of process equality for the pi calculus, and a
definition for whatever language we compile it from or to.

There are other notions of compiler correctness such as completeness and full abstraction
(soundness and completeness). Completeness is the dual of soundness: b1 ≡B C(a1) ∧
b2 ≡B C(a2) ∧ a1 ≡A a2 ⇒ b1 ≡B b2 or equivalently P(a) ⇒ P(b). Notions other than
soundness are, however, not generally required for practical programming languages,
except in the cases where security is of utmost concern.

Notions of equality for concurrent programming languages are often more compli-
cated than for sequential ones, since concurrency allows programs to observe other pro-
grams as they execute. Sequential programs may only compare inputs and outputs. It
is not always clear what an appropriate notion of equality is for a given concurrent lan-
guage. This problem must be solved before soundness can be shown.

2.4.7 Implementing the Pi Calculus

The pi calculus can be implemented via an abstract machine [Turner, 1995, p. 99]. This
machine uses two data structures: a queue of runnable processes (here referred to as the
run queue), and a mapping from channel names to queues of processes that wait to com-
municate on the channel that maps to them (here referred to as the wait map). Specifically,
each channel in the wait map maps to a single queue, containing either only processes
waiting to send or only processes waiting to receive. This queue does not mix senders
or receivers (it need not, since if there are processes waiting to send on a given channel,

Chapter 2. Literature Review 37

and processes waiting to receive on that channel, they may communicate and need not
be waiting at all).

We define update rules which modify the state of the abstract machine, thereby exe-
cuting the process. Each update rule advances the state of the abstract machine by one
step. The update rules are repeatedly applied until execution finishes.

To run a pi calculus term on the abstract machine, we initialise the wait map to be
empty, and the run queue to contain only the term we want to run, and then update the
machine according to the update rules, until the run queue is empty. The processes left
in the wait map once the run queue is empty are those that cannot be reduced, and can
be seen as the result of the execution.

To simplify the abstract machine, we use a simplified pi calculus, where instead of
having general process replication, replication is restricted to receiving processes. We
use a calculus with the grammar:

P, Q ::= P |Q | (νx)P | x(a).P | x!(a).P | x̄a.P | 0

where x!(a).P denotes a replicated receiving process, that behaves as the process !x(a).P
in the full calculus. We do not lose expressive power by making this simplification, since
full pi calculus processes can be compiled into the simplified calculus, with the function
transRR, defined below. This function takes a full pi calculus term and maps it to a
simplified pi calculus term with the same behaviour.

transRR(x̄a.P) = x̄a.transRR(P)

transRR(x(a).P) = x(a).transRR(P)

transRR((νx)P) = (νx)transRR(P)

transRR(P | Q) = transRR(P) | transRR(Q)

transRR(0) = 0

transRR(!x(a).P) = x!(a).transRR(P)

transRR(!P) = (νx)(νy)(x!(y).x̄y.transRR(P) | x̄y.0) where x, y /∈ f n(P)

The reduction rules for the abstract machine are defined as a function, step, given in
figure 2.18. Each rule takes the current run queue and wait map (denoted rq and wm
respectively), and returns an updated run queue and wait map. The step function serves
as an interpreter if executed repeatedly until rq = • (the empty list).

Other implementations of the pi calculus are possible. For example, [Turner, 1995, p.
125] presents an implementation of the pi calculus via compilation to C.

Chapter 2. Literature Review 38

step(wm, •) = wm, rq
step(wm, T :: rq) = case T of

0→ wm, rq

P | Q→ wm, P :: rq :: Q

(νx)P→
let c = f reshname() in
wm :: (c→ •), P[c/x] :: rq

c(x).P if lookup(wm, c) = c̄y.Q :: moresends→
wm :: (c→ moresends), P[y/x] :: rq :: Q

c(x).P if lookup(wm, c) = morerecs→
wm :: (c→ morerecs :: c(x).P), rq

c̄x.P if lookup(wm, c) = c(y).Q :: morerecs→
wm :: (c→ morerecs), P :: rq :: Q[x/y]

c̄x.P if lookup(wm, c) = c!(y).Q :: morerecs→
wm :: (c→ morerecs :: c!(y).Q), P :: rq :: Q[x/y]

c̄x.P if lookup(wm, c) = moresends→
wm :: (c→ moresends :: c̄x.P), rq

c!(x).P if lookup(wm, c) = c̄y.Q :: moresends→
wm :: (c→ moresends), c!(x).P :: rq :: P[y/x] :: Q

c!(x).P if lookup(wm, c) = morerecs→
wm :: (c→ morerecs :: c!(x).P), rq

FIGURE 2.18: Abstract Machine for Pi Calculus

Nondeterminsim

A typical property of process calculi is that they tend to contain aspects of nondetermin-
istic behaviour. In the case of CCS, we even have a nondeterministic choice operator
P + Q. The grammar and semantics of the pi calculus are often extended to include such
an operator. Not only is nondeterministic behaviour captured by nondeterministic choice
operators, but also in the very nature of message passing. We do not impose any time or
order constraints on the flow of messages. Consider the following pi calculus term:

Chapter 2. Literature Review 39

a(w).P | a(x).Q | āy.R | āz.S

Below are all four terms that can be reached from this term in a single reduction step:

P[y/w] | a(x).Q | R | āz.S

a(w).P | Q[y/x] | R | āz.S

P[z/w] | a(x).Q | āy.R | S

a(w).P | Q[z/x] | āy.R | S

There are two possible terms once all possible reactions have occurred (assuming P, Q,
R, S do not react):

P[y/w] | Q[z/x] | R | S

P[z/w] | Q[y/x] | R | S

So not only can we take multiple execution paths to reach a single reduced form, but mul-
tiple reduced forms are possible. This is therefore nondeterministic behaviour. In fact,
we can use the nondeterministic message passing to simulate nondeterministic choice.
We demonstrate this with a translation function transND, from a pi calculus with a non-
deterministic choice operator, into the basic pi calculus presented earlier. The translation
resembles those given in [Nestmann and Pierce, 1996]. Our calculus with a nondetermin-
istic choice operator has the grammar:

P, Q ::= P|Q | (νx)P | x(a).P | x!(a).P | x̄a.P | 0 | P + Q

We define transND as follows:

transND(x̄a.P) = x̄a.transND(P)

transND(x(a).P) = x(a).transND(P)

transND((νx)P) = (νx)transND(P)

transND(P | Q) = transND(P) | transND(Q)

transND(0) = 0

transND(!P) = !transND(P)

transND(P + Q) = (νx)(νy)(x̄y.P | x̄y.Q | x(y).0) where x, y /∈ f n(P) ∪ f n(Q)

Chapter 2. Literature Review 40

The function transND demonstrates that adding a nondeterministic choice operator
to the pi calculus adds no expressive power.

Any implementation of the pi calculus must implement nondeterminism. True non-
determinism is not strictly possible in a real implementation and must be emulated. This
is because modern computing devices do not exhibit any nondeterministic behaviour.
The abstract machine resolves nondeterminism by choosing which processes react based
on the order in which they appear. There are other ways of implementing nondetermin-
ism, such as with probabilistic random choice. All possible reactions between processes
can be computed, and one selected probabilistically. It stands to reason that such an im-
plementation must in some sense be fair to all possible reactions, in the way that it assigns
probabilities to possibilities. If it does not do so, there is a risk of processes being starved
if they have a comparatively low probability of execution. It should be noted that proba-
bilistic choice is not the same as nondeterminism - probabilistic choice assigns probabil-
ities to all possibilities, whereas nondeterminism is a more abstract concept, specifying
only what is possible, and does not specify what is probable. The pi calculus is not prob-
abilistic, and so any probabilistic implementation must make its own choice about how
reactions are selected.

Encoding the Lambda Calculus in the Pi Calculus

An approach to demonstrating the Turing-universality of pi calculus is to find an encod-
ing of a Turing-universal model of computation in pi calculus. This was first achieved
in [Milner, 1992] for lambda calculus. Encodings of both call-by-name and call-by-value
lambda calculus are possible, and have been shown to be sound. The encodings are given
in figure 2.19.

CALL-BY-NAME

Jλx.MKu
def
= u(x).u(v).JMKv

JxKu
def
= xu

JM NKu
def
= (νv)(JMKv|(νx)vx.vu.!x(w).JNKw) (x /∈ f n(N))

CALL-BY-VALUE

Jλx.MKu
def
= (νy)uy.!y(w).w(x).w(u).JMKu (y /∈ f n(λx.M))

JxKu
def
= (νy)uy.!y(w).xw

JM NKu
def
= (νq)(νr)(q(y).(νv)yv.r(z).vz.vu|JMKq|JNKr)

FIGURE 2.19: Encodings of the Lambda Calculus in the Pi Calculus

These translations are parameterised by a channel u. This channel is the means by which
a process can interact with a translated lambda term when parallel-composed with it.

Chapter 2. Literature Review 41

When stating that the translations are sound, we mean that for a notion of equality
for pi terms ≡π, for a lambda term l, if l → l′, then JlKu → p such that p ≡π Jl′Ku.
For these translations, our notion of equality for pi terms is essentially structural con-
gruence with additional intuitive equivalence axioms, such as the law that captures the
fact that processes such as (νx)xy.P and (νx)x(y).P can never interact with any process,
so parallel-composing another process with such a process is identity, so, for example,
Q|(νx)x(y).P is equivalent to Q.

We can demonstrate intuitively the soundness of the translations by example. We
start with the lambda term (λx.x)y, which we expect to reduce to just y. Soundness then
dictates that J(λx.x)yKu is equivalent to JyKu. We now verify this, using the call-by-name
translation:

• J(λx.x)yKu gives (νv)(v(x).v(t).xt|(νz)vz.vu.!z(w).yw).

• We use structural congruence to bring the (νz) outwards, which is allowed since z
is not free in v(x).v(t).xt. We obtain (νv)(νz)(v(x).v(t).xt|vz.vu.!z(w).yw).

• This reacts over v, forming (νv)(νz)(v(t).zt|vu.!z(w).yw).

• This reacts over v again, forming (νv)(νz)(zu|!z(w).yw)

• This reacts over z, forming (νv)(νz)(!z(w).yw|yu)

• We can now drop the (νv) since v does not occur in the body and therefore the (νv)
cannot affect the term’s behaviour. We obtain (νz)(!z(w).yw|yu).

• We use structural congruence to bring the yu outside the (νz), which is allowed
since z is not free in yu. We obtain (νz)!z(w).yw|yu.

• We can now drop the (νz)!z(w).yw, since the (νz) guard prevents the body from
interacting in any way. We obtain yu.

• We can now see that the obtained process, yu, is what would be obtained from the
translation JyKu, satisfying soundness as described above.

It is clear from the above that with this translation, what is a single reduction step in
the lambda calculus becomes several steps in the pi calculus. Type systems can be used
with both the pi and lambda calculi to mitigate this discrepancy, and even to allow for a
converse translation from pi to lambda [Toninho and Yoshida, 2017].

2.4.8 Types for Concurrency

Just as type systems find many applications in functional programming, with typed
lambda calculi as their theoretical bases, many useful type systems also exist for con-
current programming languages, with typed pi calculi as their theoretical bases. Type

Chapter 2. Literature Review 42

systems for concurrency can guarantee domain-relevant properties such as agreement
between communication participants about the format of data being sent, agreed pat-
terns of communication and deadlock freedom. We now look at some well-known typed
concurrent programming languages.

Polymorphic channel types for Pi Calculus

A useful notion of types for pi calculus, drawing from polymorphic function types in the
sequential world, are polymorphic channel types [Turner, 1995]. Polymorphic channel
types impose strict typing on channels - each channel may carry values of a single type
only.

P ::= P | P (PARALLEL COMPOSITION)
| (νx : δ)P (RESTRICTION)
| x?[α; y : δ].P (INPUT)
| x![α; y].P (OUTPUT)
| ∗P (REPLICATION)
| 0 (INACTION)

δ ::= ↑[α; δ] (POLYMORPHIC CHANNELS)
| α (TYPE VARIABLES)

FIGURE 2.20: Syntax of polymorphic pi calculus

The syntax of polymorphic pi calculus is given in figure 2.20. Here we denote replication
with ∗ as opposed to !, and use ! to represent output, with ? denoting input, rather than
using overline to distinguish input and output. We instead use overline to denote vectors.
We annotate restriction with the type of values that will be exchanged over the restricted
channel, and annotate input value binders with types also.

Channel types ↑ [α; δ] represent channels along which values of types given in the
vector δ are sent, and those types δ may contain type variables found in the vector α.
Typing rules for polymorphic pi calculus are given in figure 2.21. Rules [INACT], [PAR]
and [REPL] are straightforward. The rule [RES] behaves similarly to rules for abstraction
in lambda calculi, but instead of introducing a new variable, a new channel is introduced
into the scope P - its type is added to the environment accordingly. The rules [INPUT]
and [OUTPUT] type their namesake’s communication operation. In the case of input,
the bound variables types are checked to match the types declared for the channel in
the environment. For output, the sent values are required to match in the same way.
In this way it is enforced that channels only ever carry values of a single (parametrically
polymorphic) type. If we add lists to the grammar of messages, and corresponding types,

Chapter 2. Literature Review 43

−
∆ ` 0

[INACT]
∆ ` P ∆ ` Q

∆ ` P | Q
[PAR]

∆ ` P
∆ ` ∗P [REPL]

∆, x :↑[α; δ] ` P

∆ ` (νx :↑[α; δ])P
[RES]

α1, ..., αm /∈ f tv(∆)
∆(c) =↑[α1, ..., αm; δ1, ..., δm] ∆, x1 : δ1, ..., xn : δn ` P

∆ ` c?[α1, ..., αm; x1 : δ1, ..., xn : δn].P
[INPUT]

∆(c) =↑[α1, ..., αm; γ1, ..., γm]
∆(ai) = [δ1,...,δm/α1,...,αm]γi 1 ≤ i ≤ n ∆ ` P

∆ ` c![α1, ..., αm; a1, ..., an].P
[OUTPUT]

FIGURE 2.21: Typing rules for polymorphic pi calculus

we can implement generic processes much like the generic functions over lists that are
enabled by parametric polymorphism in HDMP.

Semantics for the polymorphic pi calculus match that of untyped polyadic pi calculus
upon erasure of types. The usual structural congruences hold.

Polymorphic pi calculus corresponds to polymorphic lambda calculus (System F)
[Reynolds, 1974; Girard, 1972]. A sound translation from the former to the latter is given
in [Turner, 1995].

Linear types for Pi Calculus

Linear types are applicable and useful in the context of pi calculus as well as lambda
calculus. In addition guaranteeing patterns of variable usage as in lambda calculus, lin-
ear types for pi calculus provide additional benefits such as optimisation of function-like
communication patterns, and refinements to notions of process equivalence [Kobayashi,
Pierce, and Turner, 1999]. Channels are controlled linearly in the linear pi calculus, mean-
ing that communication on any one channel occurs exactly once. Therefore each channel
variable must occur twice, rather than once as with LLC, since both the sender and re-
ceiver of a communication must refer to the channel for communication to occur.

Consider the process below:

plustwo? ∗ [j, s].(νr1)(νr2)(plusone![j, r1] | r1?[k].plusone![k, r2] | r2?[l].s![l])

plustwo is a function-like process, that when sent a value j and return channel s, delivers
the result j + 2 to the caller on the return channel s, much like the function λj.j + 2. A
problem with this process is that while the channel plustwo is used by the example to

Chapter 2. Literature Review 44

provide a service, without linear channels, nothing prevents another process from also
reading from the channel plustwo, but providing a different service, such as addition of 3.
A type system that can prevent such a process from offering another service on plustwo
is clearly desirable. The type system of linear pi calculus can prevent this.

Figure 2.22 gives the syntax of linear pi calculus. This presentation uses asynchronous
output, where there is no process continuation after an output. Processes with contin-
uations following an output such as x?[].y![].z?[].0 are instead written x?[].(y![]|z?[].0),
meaning that the input on z can proceed immediately after the input on x, without wait-
ing for a receiver to match the output on y. Channel types are annotated with polarities
p and qualifiers q. Qualifiers q have the same meaning as with LLC (§2.3.7) - in LLC a
variable can be used once if its type is qualified with lin, and any number of times with
un. The same holds for channel usage in linear pi calculus. Polarities p indicate how a
channel is communicated over, i.e. what kind of endpoint it is. l indicates that a channel
can be used for both input and output, ? indicates input only, ! indicates output only and
| indicates that the channel may not be communicated over. Polarities can be thought
of as sets of capabilities. Where i denotes input and o denotes output, l denotes the set
{i, o}, ? the set {i}, ! the set {o} and | the set {}. We take set operations on polarities p, q
to be operations on these denoted sets.

The above example could be typed with the channel plustwo having the type
?lin[int, !lin[int]]. Since the input capability ? is consumed by the example, it cannot ty-
pably be placed in parallel with another process that also reads from the plustwo channel,
and thus the described error is prevented.

TERMS

P ::= P | P (PARALLEL COMPOSITION)
| x![y] (ASYNCHRONOUS OUTPUT)
| x?[y].P (INPUT)
| x? ∗ [y].P (REPLICATED INPUT)
| (νx : δ)P (RESTRICTION)
| if x then P else P (CONDITIONAL)
| 0 (INACTION)

TYPES

δ ::= pq[δ] (CHANNEL TYPES)
| Bool (BOOLEANS)

QUALIFIERS

q ::= lin | un

POLARITIES

p ::= l (INPUT AND OUTPUT)
| ? (INPUT ONLY)
| ! (OUTPUT ONLY)
| | (NONE)

FIGURE 2.22: Syntax of linear pi calculus

Figure 2.24 gives the type combination rules for linear pi calculus. These fulfil the

Chapter 2. Literature Review 45

un(∆)
∆ ` 0

[INACT]
un(∆)

∆ + x :!q[δ] + y : δ ` x![y]
[OUTPUT]

∆1 ` P ∆2 ` Q
∆1 + ∆2 ` P | Q

[PAR]
∆, z : δ ` P

∆ + x :?q[δ] ` x?[z].P
[INPUT]

∆, z : δ ` P un(∆)

∆ + x :?un[δ] ` x? ∗ [z].P
[REPINPUT]

∆, x : pq[δ] ` P p ∈ {|, l}
∆ ` (νx : pq[δ])P

[RES]

∆ ` P1 ∆ ` P2

∆ + b : Bool ` if b then P1 else P2
[IF]

FIGURE 2.23: Typing rules for linear pi calculus

Bool+ Bool = Bool

pun[δ] + qun[δ] = (p ∪ q)un[δ]
plin[δ] + qlin[δ] = (p ∪ q)lin[δ] if p ∩ q = ∅

(∆1 + ∆2)(x) =

∆1(x) + ∆2(x) if x ∈ dom(∆1) ∩ dom(∆2)

∆1(x) if x ∈ dom(∆1) and x /∈ dom(∆2)

∆2(x) if x ∈ dom(∆2) and x /∈ dom(∆1)

FIGURE 2.24: Type combination for linear pi calculus

same function as the context addition rules for LLC. Unrestricted types are freely com-
bined with like types, and in the case of channels this results in the union of their po-
larities. For linear channels, combination is possible only when the intersection of the
argument’s capability sets is empty, meaning that capabilities for one channel can never
be common to multiple parties. This guarantees that for any linear channel, there is only
ever one input endpoint and one output endpoint, and thus is used exactly once. Com-
bination is extended to environments in a linearity-preserving manner as with LLC.

Figure 2.23 gives the typing rules for linear pi calculus. [INACT] types a syntax tree
leaf as does [VAR] in LLC, and therefore the environment for typing must be unrestricted
for the same reason. [PAR] types parallel composition but combines environments for
each side of the composition like [TUP] for LLC. [INPUT] and [OUTPUT] are linearity-
preserving and otherwise standard. [REPINPUT] allows for unrestricted channels only,
since replication by definition allows many uses of the replicated process. [IF] preserves
linearity by ensuring that both branches consume all linear channels, which appeases
linearity since only one branch is executed. [RES] is only allowed on channels with polar-
ity l or |, since restricting a channel that can only input or only output will prevent any
communication and therefore violate linearity.

Chapter 2. Literature Review 46

Semantics for the linear pi calculus are somewhat complicated over standard pi cal-
culus due to linearity. The semantic rules require a context ∆ with type information, as
with typing. We do not show the full rules here, but the essence of the difference be-
tween them and standard labelled semantics is that we must check that we do not allow
multiple reactions over linear channels - equally that a reaction over a linear channel x
results in the polarity of x becoming |, and such a channel may not facilitate reaction. The
calculus enjoys typical soundness properties such as type preservation under reduction
and barbed congruence.

Session Types

Session types, first introduced in [Honda, 1993; Takeuchi, Honda, and Kubo, 1994], are
an important example of a behavioural type system for message passing concurrency.
Session types classify message passing behaviour at given channels: e.g. if process P first
sends an integer on channel x, then receives a boolean on x, and finally sends a boolean
on x, then this behaviour could be summarised by the session type

P : !Int.?Bool.!Bool.end

Here ?T represents input of a value of type T, !T means sending a value that has type T,
while end denotes the termination of the interaction.

A key notion in session types is that of duality, originating in linear logic: processes P
and Q can be composed in parallel only when throughout the course of the computation
each output of P’s is matched by a suitable input of Q’s, and vice versa. In this case we
say that P and Q are dual. Session types ensure that only dual processes are composed
in parallel. Hence typability guarantees the absence of communication errors such as
mismatched communication and deadlocks. A process Q, dual to P above, would have
the session type

Q : ?Int.!Bool.?Bool.end

Notice that for each action in P’s type, we have the dual action in Q’s type, e.g. an output
of type !Int can be received by an input of type ?Int.

Session types can be viewed as finite state automata, with edges classifying message
send/receive actions, and constraining causality between message exchange. For exam-
ple, the behaviour of the process P above corresponds to the following FSA:

x!Int x?Bool x!Bool

Chapter 2. Literature Review 47

Unlike traditional automata, session types are built up compositionally from program
syntax.

Recursive types, a key component of session types, allow for the description of pro-
tocols containing looping and repetition. Consider P′, a variant of P above, that now
instead of just sending an integer, receiving a boolean and sending a boolean, now per-
forms those same three actions repeatedly. We denote such a session type:

P′ : µX.!Int.?Bool.!Bool.X

or, alternatively:

P′ : let X = !Int.?Bool.!Bool.X in X

A corresponding finite state automaton for P′ is shown below:

x!Int x?Bool

x!Bool

Further important components of session types are the dual notions of internal and
external choice. Consider now our previous example P, further augmented thusly: in-
stead of sending a boolean as the final action, the process now makes an external choice,
where a selection is offered of either (1) sending a boolean as before, or (2) sending an
integer. The dual process may select either option in an internal choice. We express this
new behaviour with the session type P′′:

P′′ : !Int.?Bool.&〈sendB:!Bool.end, sendI:!Int.end〉

The tag sendB represents the boolean option, whereas sendI represents the integer op-
tion. This session type can be visualised by the following automaton:

x!Int x?Bool
x&sendB

x&sendI

x!Bool

x!Int

This external choice type represents a selection of services offered by a server P′′. The
dual process Q′′ is therefore allowed to make an internal choice, whereby it selects from
the services on offer. The process P′′ must have a matching external choice of type S for
every internal choice of type T that Q can make, such that S and T are dual. Note that the

Chapter 2. Literature Review 48

converse does not always hold - while it is clear that we must never allow Q′′ to select a
service that P′′ does not offer, we might allow P′′ to offer a choice that Q′′ never selects.

In the above case, we obtain the following dual type Q′′:

Q′′ : ?Int.!Bool.⊕〈sendB:?Bool.end, sentI:?Int.end〉

This dual type corresponds to the following automaton:

x?Int x!Bool
x⊕sendB

x⊕sendI

x?Bool

x?Int

LAST

Gay and Vasconcelos’s calculus LAST(Lambda calculus with Asynchronous Session Types)
[Gay and Vasconcelos, 2010] is a concurrent functional programming language, the first
coherent integration of session types with lambda calculus. Processes (essentially func-
tional programs) can be composed in parallel along with message buffers. Processes
send messages that are placed in the message buffers, from where they are later asyn-
chronously retrieved by other processes. Channels are held by processes and are used
to specify which buffers receive which messages. Binary session types are imposed on
the channels to ensure that communication patterns between these processes are always
dual. Message exchange is achieved via send and receive combinators, which have
the following types:

send :: T → !T.S → S

receive :: ?T.S → T ⊗ S

These types follow standard intuition about the behaviour of the respective con-
structs. The send combinator takes two arguments - a message of type T, and a channel
which expects to perform communication of type !T.S. The send combinator delivers
the message of type T along the channel, which we see from the channels type that it
expects. The value returned is a channel of type S - the behaviour that we expect from
the channel after the send operation. The receive combinator takes just one argument
of type ?T.S - the channel on which the process expects to receive a message - and re-
turns a pair T ⊗ S - the received message and a channel on which communication can
continue.

In LAST, session types are imposed via linearity constraints on channel names: each
channel is used exactly once, and the interaction subsequently continues on a channel
returned by the previous interaction. If linear channel usage was not enforced, processes

Chapter 2. Literature Review 49

could violate their session types in a number of ways, for example, by attempting to
receive a single message twice, which would cause the receiver to wait indefinitely, or by
neglecting to send a message required by the session type.

The usage pattern of performing an interaction on a channel, and then rebinding the
returned channel for the next interaction is forced upon us by linear typing of channels.
This results in LASTprograms containing many let constructs, since every interaction
requires the binding of a new channel. This creates syntactic noise in programs, which
is arguably undesirable. In chapter 3, we show how implicit functions can provide a
solution to this problem.

Shown below is an example LASTprogram, in which two communication partners
initiate a session (via the accept and request operations). Each communication part-
ner is a process, which consists of an expression enclosed in 〈 angular brackets 〉. These
processes are separated by the parallel composition operator | , which indicates that the
processes run concurrently, and can communicate if they each have one of the two dual
endpoints of a communication channel. One process sends the integer to the other, and
the other replies with the incremented received integer.

〈 let c = request x in

let c = send 10 c in

let m, c = receive c in m 〉 |
〈 let d = accept x in

let n, d = receive d in

let d = send (n + 1) d in unit 〉

The session type for the first process is ?Int.!Int.end and the type for the second is
!Int.?Int.end. The first reduction is the session initiation, which creates two buffers
(one for each direction) that the processes use for communication. The dual endpoints c
and d to a shared communication channel are created, which can be used by each process
to access these buffers. In general, a buffer a → (b, q) stores messages in a queue q sent
on the channel b, that are to be received on the channel a. Messages are appended to
the right of q when sent, and removed from the left when received. Session initiation also
creates a restriction over the names c and d to prevent interference in the session by other
processes. The session initiation yields:

(νcd)(

〈 let c = send 10 c in

let m, c = receive c in m 〉 |
〈 let n, d = receive d in

let d = send (n + 1) d in unit 〉 |
c → (d, ε) | d → (c, ε))

Subsequently the second process performs the operation send 10 c, placing the value
10 in the buffer for the channel d:

Chapter 2. Literature Review 50

(νcd)(

〈 let m, c = receive c in m 〉 |
〈 let n, d = receive d in

let d = send (n + 1) d in unit 〉 |
c → (d, ε) | d → (c, 10))

In the next reduction step, the second process retrieves the value 10 from its buffer, and
it is substituted for n:

(νcd)(

〈 let m, c = receive c in m 〉 |
〈 let d = send (10 + 1) d in unit 〉 |
c → (d, ε) | d → (c, ε))

At this point, the subexpression (10 + 1) reduces to 11 (we omit this step for brevity).
Following this, the first process deposits the result in the buffer for channel c:

(νcd)(

〈 let m, c = receive c in m 〉 |
〈 unit 〉 |
c → (d, 11) | d → (c, ε))

Finally the second process retrieves the value 11 from the buffer.

(νcd)(〈 11 〉 | 〈 unit 〉 | c → (d, ε) | d → (c, ε))

Linearity, session types and the Pi Calculus

[Giunti and Vasconcelos, 2013] introduces Pi calculus with Linear channel types and
Session Types (PLST). PLST can type interesting processes not typable in other session-
typed pi calculi, whilst retaining standard properties for session types such as deadlock-
freedom and data race-freedom for linear resources. In particular, PLST allows for linear-
to-unrestricted channel type evolution, meaning that a channel can have linearity con-
straints for a portion of a session, and evolve to become unrestricted later. This property
is key for the following example, from the paper [Giunti and Vasconcelos, 2013].

Consider the following protocol P for a service provider for an online petition service:
when a user wants to create an online petition, the petition service provider sends them a
channel p, on which the creator sends the service provider the title, description and due
date of the petition. The creator then sends their signature, after which they can distribute
the channel p to potential signatories on the channels ai. The process P describes the
behaviour of the petition creator.

P = onlinePetition(p).p〈title〉.p〈description〉.p〈dueDate〉
.p〈signature〉.(a1〈p〉 | ... | an〈p〉)

Chapter 2. Literature Review 51

The process Q describes the protocol from the petition service’s point-of-view. Q’s input
of signatures is replicated to allow for all signatories to deliver their signatures to the pe-
tition service. The process ProcessSignatures handles received signatures appropriately.

Q = !(νp)onlinePetition〈p〉.p(title).p(description).p(duedate)
.!p(signature).ProcessSignatures

We obtain the following types T1 and T2 for p, T1 representing Q’s interaction with p, and
T2 representing the interaction of P and other signatories.

T1 = lin?string.lin?string.lin?date.un?string.end
T2 = lin!string.lin!string.lin!date.un!string.end

Crucially, we see that the types begin with linear interaction, and after the transmission
of date, accept arbitrary signatures.

The type system of PLST makes use of concepts seen in other calculi described in this
literature review, such as a predicate un(δ) that is true when a type delta is unrestricted,
context splitting rules, and standard session type duality with the property that !T.S is
dual to ?T.S′ when S is dual to S′.

Multiparty Session Types

The session types we have seen thus far have been binary session types, in which there are
exactly two participants whose actions are dual to one another. It is possible to generalise
this binary form of session to an arbitrary number of participants, a so-called multiparty
session. Consider the following protocol with three participants, with participant numbers
1, 2 and 3:

• First, participant 1 sends an integer to participant 2.

• Then, participant 2 sends a boolean to participant 3.

• Finally, participant 3 sends a string to participant 1.

Instead of looking at this protocol from two dual points of view, we describe it with a
type that takes a global view of all communication. We describe the above protocol with
the following global type G:

1→2:〈Int〉.2→3:〈Bool〉.3→1:〈String〉.end

In the above, our communication types are of the form p → q : 〈T〉, which tells us a
message is sent by p, received by q, and that the message content is of type T.

It is possible to view this protocol from the point of view of any of the three partic-
ipants, or in other words, to project the global type G onto a participant p (1 ≤ p ≤ 3),
obtaining a local session type. We denote this projection G � p. In this case, G � 1 yields:

Chapter 2. Literature Review 52

!〈2,Int〉.?〈3,String〉.end

G � 2 yields:

?〈1,Int〉.!〈3,Bool〉.end

G � 3 yields:

?〈2,Bool〉.!〈1,String〉.end

In the local view we need only write a single participant number, since the participation
of the local participant is implied. We write ! or ? to indicate whether the local participant
does the sending or the receiving.

We can further project local session types onto another participant q, to obtain a
type that describes only the communication between p and q. The syntax of such types
matches the syntax of binary session types. Projecting a second participant number onto
the above protocol leads to the following types:

G � 1 � 2 = !Int.end

G � 2 � 1 = ?Int.end

G � 2 � 3 = !Bool.end

G � 1 � 3 = ?String.end

G � 3 � 1 = !String.end

G � 3 � 2 = ?Bool.end

Now that we have recovered binary session types by two projections, observe that for
all participants p, q in G, G � p � q is dual to G � q � p. This property holds for the above
example, and is a condition of typability for all multiparty session-typed programs.

2.5 Scala and DOT

2.5.1 Dependent Object Types (DOT)

Dependent Object Types (DOT) is a programming language calculus first introduced in
[Amin, Moors, and Odersky, 2012] in an unsound form. It was later refined, working to-
wards a sound formation in [Amin, Rompf, and Odersky, 2014; Amin et al., 2016; Rompf
and Amin, 2016]. DOT is a foundational calculus intended as a step towards a theoretical
foundation for the programming language Scala and its type system.

Scala’s main goal is scalability, and claims to achieve this by unifying the concepts of
objects and module systems. DOT follows Scala in this regard, and can be thought of as
an object calculus similar to [Abadi and Cardelli, 1994]. DOT models a restricted subset
of Scala – the base-calculus includes Scala’s key features from a type theory perspective,
such as path-dependency, abstract type members and a subtyping hierarchy with max-
imal type > and minimal type ⊥. Omitted are features of Scala such as traits, classes
and inheritance. The table below (from [Rompf and Amin, 2016]) shows adaptations of
modelled Scala constructs into DOT.

Chapter 2. Literature Review 53

Scala DOT

{ type T = Elem } T : Elem..Elem

{ type T>:S<:U } T : S..U
{ def m(x:T) = t } m(x) = t
A & B, A | B A ∧ B, A ∨ B

Dot objects consist of lists of definitions d, with self-references bound by a variable.
We write {z ⇒ d}, where d has self-references z. Definitions d are type members A =

S..U or method members m(x) = t where S, U are types, m and A are method and type
labels respectively, x are variable names and t are terms. Terms t are then variables x,
objects {z⇒ d} or method invocations t.m(t).

Abstract Type Members. Abstract type members are a feature of Scala and DOT that
allow for generic programming. In Scala, a trait, class or object may declare an abstract
type member. The trait, class or object may then declare or define methods over that
type. Below is a trait A with an abstract type member B. The trait also contains a method
member consumeB that consumes a value of type B.

trait A {

type B

def consumeB(b: B): String

}

Any object may then declare itself a subtype of A, and provide a concrete type in place
of the abstract type member. Such an object may implement method members over that
type:

object C extends A {

type B = Int

def consumeB(b: Int): String =

b.toString

}

The above pattern is possible in DOT as well as Scala. We write {A : S..S′} to denote an
object with a type member A, whose lower bound is S and upper bound is S′. Scala’s
syntax type T = U is then equivalent to DOT’s {T : U..U} - we let U be the upper
and lower bound. In DOT we can define a completely abstract type member (equivalent
to just type T in Scala) by using ⊥ and > as lower and upper bounds respectively.
Conversely we can define a fully specified type member by using a single specified type
as both the lower and upper bound. The above example is therefore translated into DOT
as follows:

Chapter 2. Literature Review 54

{ z ⇒
A = { B: ⊥..>; consumeB(b) = b.toString() }

C = A ∧ { B: Int..Int; consumeB(b) = b.toString() }

}

We enclose the declarations in an object with self-variable z as is required by DOT’s syn-
tax.

Path-dependent Types. Path-dependent types are in some sense the dual feature of ab-
stract type members – they allow the referencing of an object’s type members from other
locations. Path-dependent types are also a restricted form of dependent types [Amin et
al., 2016]. Instead of allowing arbitrary computations over values in types, objects with
type members are the only values allowed, and selection of type members is the only
permitted operation on those objects.

Path-dependent types with function arrows can be used to recover Hindley-Damas-
Milner polymorphism despite the absence of type variables, via the passing of an object
with a type member [Amin et al., 2016]. Consider the function id in a Haskell-like lan-
guage:

id :: a → a

id x = x

We can rewrite this in DOT, with an additional parameter used to pass the type of the
parameter x. The object {A : ⊥..>} stands in for a type variable. The object’s member A
is a label given to an unspecified type, i.e. a type whose lower and upper bounds are ⊥
and > respectively. The encoding of a polymorphic id in DOT is given below:

{ z ⇒
id(u: {A: ⊥..>})(x: u.A): u.A

id(u)(x) = x

}

As a further example we show the sorting function from section 2.3.3 adapted to DOT.
Again path-dependency is used to stand in for the type variables of Hindley-Damas-
Milner polymorphism. The type parameter x is passed to the isort function and is not
used (except in being passed to recursive calls) as its sole purpose is to make the pro-
gram type-check. The parameter x in insert, however, functions as both a type and value
parameter. The example is given below:

Chapter 2. Literature Review 55

{ z ⇒
insert(x: {A: ⊥..>})(l: List ∧ {T = x.A})

(f: Comparator ∧ {T = x.A}): List ∧ {T = x.A}

insert(x)(l)(f) = if (l.isEmpty) then x :: l

else if f(x)(l.hd) then x :: l

else l.hd :: z.insert(x)(l.tl)(f)

isort(x: {A: ⊥..>})(l: List ∧ {T = x.A})

(f: Comparator ∧ {T = x.A}): List

isort(x)(l)(f) = if (l.isEmpty) then List.empty

else z.insert(l.hd)(z.isort(x)(l.tl)(f))(f)

}

2.6 Summary

In this literature review, we have studied the topic of type systems, and seen their appli-
cations in lambda, pi and other calcului. We have explored how logical inference rules
(typing rules) are used to determine which programs are well-behaved and which are
not, based on semantics. We have seen various models of concurrency, and how seen
how types can be used not just to enforce that values are passed sensibly, but to enforce
that the patterns of passing are themselves sensible. Finally we introduced the calculus
DOT, which serves as a theoretical foundation for the popular programming language
Scala.

In the next chapter, we build on these foundations by introducing a novel program-
ming language feature inspired by implicit functions and based on session types: implicit
messages.

56

Chapter 3

Asynchronous Sessions with Implicit
Functions and Messages1

3.1 Introduction

This chapter introduces the calculus IM, a concurrent lambda calculus based on LAST, in-
tegrating implicit functions, and a novel implicit program construct: implicit messages.
Implicit messages are a generalisation of implicit functions to concurrent computation.
Implicit functions can be summarised: a function parameter is marked as implicit in the
function’s type, the implicit parameter is then used in its body, and callers may omit the
parameter, the compiler filling it in later. Implicit messages are analogously summarised:
a message in a session is marked as implicit in the session type, the implicit message is
then used in the receiver’s body, and senders may omit the parameter, the compiler fill-
ing it in later. Implicit messages allow us to translate use cases for implicit functions into
concurrent analogues, such as dependency injection and ad-hoc polymorphism. Implicit
functions allow dependency injection by inserting implicit context variables into function
calls that require context; implicit messages allow dependency injection by inserting im-
plicit context variables into client-to-server messages where the server requires context.
Implicit functions achieve ad-hoc polymorphism (type classes) by passing a dictionary
of functions that implement behaviours for a specific type; implicit messages achieve ad-
hoc polymorphism (session type classes) by passing a reference to services that implement
behaviours for a specific type.

IM’s semantics are derived from a translation to LAST, in which implicit functions
and messages are made explicit. We prove IM type-safe via this translation, showing that
it preserves types.

1This chapter is adapted from [Jeffery and Berger, 2018] and [Jeffery and Berger, 2019], published works
co-authored with my supervisor, Dr. Martin BERGER. All proofs and figures are my own work. I estimate
that 90% of the prose in this chapter is completely my own work, with the last 10% being co-written.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 57

3.1.1 Outline

Section 3.2 of this chapter introduces IM by example, showing use cases for implicit func-
tions and messages in a LAST-like language. Section 3.3 introduces IM’s term syntax,
section 3.4 introduces IM’s types, section 3.5 introduces the translation from IM to LAST,
and section 3.6 deals with type safety.

3.2 IM - Examples

3.2.1 Elimination of repeated rebinding

A well-known problem with the integration of session types and sequential languages
is the seeming necessity of repeated rebinding of channel names. The problem is that
send takes a channel of type !T.S as its second argument, and returns a linear channel of
type S. In order for linearity to be respected that channel must be rebound. Consider the
process below, typical of LAST programs. Note that the select combinator corresponds
to the type⊕〈...l:S, ...〉 introduced in section 2.4.8, and the process below selects from the
paths label1 or label2 offered by its dual, based on the result of pred(m).

miscService :: 〈S〉a → end

miscService ap =

let c = accept ap in

let m, c = receive c in

let n, c = receive c in

if pred(m) then

let c = select label1 c in

let c = send f(m, n) c in

let c = send g(m, n, n) c in c

else

let c = select label2 c in

let o, c = receive c in

let c = send f(n, m) c in

let c = send g(m, n, o) c in c

This redundancy makes programs hard to read. The issue can be addressed in other
ways, for example using parameterised monads [Atkey, 2009], see also [Gay and Vascon-
celos, 2010, Chapter 7]. Implicit functions and message passing enable a principled and
canonical two-step solution: (1) make the channel argument implicit and let the compiler
synthesise the missing channel name for rebinding; (2) include in the language two spe-
cial constructs: leto, which unpacks a pair of form (value, channel), such that the left hand
value is bound to a given name, and the right hand channel is bound to the implicit vari-
able; and ;o, which binds a single channel variable, resultant on the left, to the implicit
scope of the computation on the right. This solution is sufficient for languages that are
not known to admit monads, and requires only implicit functions.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 58

The send primitive has type T →!T.S → S. We can use implicit function types to
define a new output primitive sendo, with type T →!T.S o→ S, explained below. The
annotation o in !T.S o→ S makes the channel argument implicit - the message will be sent
on a channel in the implicit scope with the appropriate session type.

sendo :: T → !T.S o→ S

sendo m = send m o

We can do something similar for select and receive.

selecto :: Label l → ⊕〈...l:S, ...〉 o→ S

selecto l = select l o

receiveo :: ?T.S o→ T ⊗ S

receiveo = receive o

We define leto and ;o as follows:

leto x = e1 in e2
def
= let x, o = e1 in e2

e1 ;
o e2

def
= let o = e1 in e2

We can rewrite miscService above with our new primitives. The resulting code is less
repetitive and more terse, hence readable.

miscService :: 〈S〉a o→ end

miscService =

let o = accept o in
let m = receiveo in

let n = receiveo in

if pred(m) then

selecto label1 ;o

sendo f(m, n) ;o

sendo g(m, n, n)

else

selecto label2 ;o

let o = receiveo in

sendo f(n, m) ;o

sendo g(m, n, o)

We believe that it is possible to omit the superscript o annotations, using type infer-
ence to distinguish ordinary let constructs from our new leto constructs. ;o constructs
could likely be omitted and programs appropriately augmented in a similar way. An
implementation could conceivably try to type check the program with normal let and ;

constructs, and replace them with implicit ones if they cause the type check to fail. Scala’s
implicit conversions are implemented with such a heuristic [Sobral and Braun, 2011], and
such a technique is likely applicable here.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 59

Our solution to the rebinding problem is robust, and applicable to linear types gen-
erally. [Bernardy et al., 2017] presents a linear typing system for Haskell, and demon-
strates the use of linear functions in Haskell. A prototypical use case of linear functions
in Haskell is to prevent common file errors, such as writing to a closed file or double
closure. Linear Haskell provides a set of functions that take as a linear parameter a file,
which is then returned and rebound. Some examples of such functions and their types
are given next:

openFile :: FilePath → IOL 1 File

readLine :: File (IOL 1 (File, Unrestricted Bytestring)

closeFile :: File (IOL ω ()

Here IOL is a type constructor that represents types obtained by doing IO, and the
multiplicities 1 or ω denote whether or not the type is linear - 1 for linear, ω for unre-
stricted. A typical usage example of these functions might be:

do f <- openFile "myFile.txt"

line, f <- readLine f

if somePredicate line then

line2, f <- readLine f

closeFile f

return (line ++ line2)

else

return line

Rewriting the functions openFile, readLine and closeFile in a similar manner to
above yields the following types:

openFileo :: FilePath o → IOL 1 File

openFileo = openFile o

readLineo :: File o(IOL 1 (File, Unrestricted Bytestring)

readLineo = readLine o

closeFileo :: File o(IOL ω ()

closeFileo = closeFile o

We reuse our definition of ;o, and define a special assignment operator <-o similarly to
leto, as follows:

x <-o e def
= o, x <- e

With these components we can rewrite the above to the following:

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 60

do openFileo "myFile.txt" ;o

line <-o readLineo

if somePredicate line then

line2 <-o readLineo

closeFileo ;o

return (line ++ line2)

else

return line

3.2.2 Session type classes

Type classes [Kaes, 1988; Wadler and Blott, 1989] provide type-safe ad-hoc polymorphism
by means of constraints on parametrically polymorphic types. They allow the program-
mer to define a fixed set of functions over multiple datatypes, where each datatype has a
bespoke implementation of each function in the set. We call these sets of functions type
classes. They are usually implemented by dictionary passing [Wadler and Blott, 1989]. That
means that at compile time an additional argument (the dictionary) and suitable access
to this argument are synthesised for all code depending on type classes. With implicit
arguments we can make dictionary passing implicit, and type classes become a special
case of implicit arguments. This is a common Scala idiom [Oliveira, Moors, and Odersky,
2010].

Implicit messages suggest a natural generalisation of type classes: pass access to dic-
tionaries by implicit messages! We illustrate this idea with a simple example. In Haskell,
Show is a type class that converts values to their string representation. We generalise
this to IM: instead of a conversion function, IM has a conversion server. We show two
example implementations intShow and boolShow (we omit the details of the former).
Additional function servers can be written against this code over types that define a Show
type class server. The type Show itself should be interpreted as a type schema, much like
the types of the send and receive combinators.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 61

type Show = ?a.?o〈?a.!String.end〉a.!String.end

show :: 〈Show〉a → end

show c =

let c = accept c in

let a , c = receive c in

let aShow , c = implicit receive c in

let d = request aShow in

let d = send a d in

let as , d = receive d in

send as c

implicit boolShow :: 〈?Bool.!String.end〉a → end

boolShow c =

let c = accept c in

let b , c = receive c in

send (if b then "true" else "false") c

implicit intShow :: 〈?Int.!String.end〉a → end

intShow = ...

showUser :: 〈Show〉r → end

showUser ap =

let c = request ap in

let c = send 10 c in

let s, c = receive c in

printf(s) ;

c

Clients communicating with the show server such as showUser do not need explic-
itly to send their show implementation, but send one implicitly.

It would be possible to make this example even more terse by eliminating repeated
rebinding with implicit functions, however for clarity we exhibit just one application of
implicits at a time.

3.2.3 Context and dependency injection

Implicit functions are commonly used in Scala to pass contextual information to a large
set of methods. If many methods require the same contextual information, explicitly
passing this context to each method call as a parameter becomes laborious, and eliding
this contextual information becomes desirable. It is a common Scala idiom to use implicit
functions to elide this repetitious context passing.

This pattern can now easily be generalised to concurrency by eliding contextual infor-
mation passing in client/server interaction. The following example is an implementation
of a simple web server, that receives a request from a client and dispatches each kind of

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 62

request to an appropriate handler. Some contextual information is passed to each handler
at the handler’s dispatch time - this information might typically be a network configu-
ration or database reference. An implementation without implicit messages requires the
context to be passed to each handler each time one is spawned. This creates syntactic
noise that the programmer might prefer to elide. It also introduces repetition which can
lead to programmer error. Implicit messages allow us to omit this context passing by
passing the context as an implicit message, decreasing repetition and thereby reducing
the cognitive burden on the programmer.

Each handler eventually sends a response to the manager, with the result of its com-
putation. The result can also be passed implicitly, further reducing the syntactic noise.

We show an implementation without implicit messages on the left, and an implemen-
tation with implicit messages on the right.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 63

type Manager = &{

service1: H1

...

serviceN: Hn

}

manager :: 〈Manager〉 → Ctx → end

manager c ctx = case c of {

service1:

let d = request handler1 in

let d = send ctx d in

...

let res, d = receive d in

manager ctx

...

serviceN:

let d = request handlerN in

let d = send ctx d in

...

let res, d = receive d in

manager ctx

}

handler1Impl :: H1

handler1Impl =

let d = accept handler1 in

let ctx, d = receive d in

...

let res = ... in

let d = send res d in

...

handlerNImpl :: Hn

handlerNImpl =

let d = accept handlerN in

let ctx, d = receive d in

...

let res = ... in

let d = send res d in

type Manager = &{

service1: H1

...

serviceN: Hn

}

manager :: 〈Manager〉 → Ctx o→ end

manager c = case c of {

service1:

let d = request handler1 in

...

let res, d = implicit receive d in

manager

...

serviceN:

let d = request handlerN in

...

let res, d = implicit receive d in

manager

}

handler1Impl :: H1

handler1Impl =

let d = accept handler1 in

let o, d = implicit receive d in

...

let o = ... in d

...

handlerNImpl :: Hn

handlerNImpl =

let d = accept handlerN in

let o, d = implicit receive d in

...

let o = ... in d

3.3 The language IM

This section presents the syntax of our language IM of implicit message passing. IM is a
superset of LAST. LAST is a medium through which the idea of implicit message passing
can be expressed. Its integration of functions and processes enables us to provide both:
implicit functions and implicit messages.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 64

As the compiler synthesises the missing arguments at compile-time from type infor-
mation, calculi for implicit arguments might be best understood not as programming
languages, but as meta-programming systems that generate code in a base language L
from input programs in L with implicits. Indeed, SI [Odersky et al., 2018], an extension
of System F, Scala’s foundations for implicits, does not have a self-contained operational
semantics, and is instead compiled to System F. We use the same approach, and translate
IM to LAST.

3.3.1 Syntax

In the presentation of IM’s syntax, let v range over values and e over expressions. We
assume that x ranges over a countable set of term variables, c over a countable set of
channel endpoints, n over N∪ {∞}, l over labels and I over finite subsets of N. In order
to make the presentation easily accessible, we highlight the extensions IM adds to LAST.
The grammar of IM expressions is given in figure 3.1.

v ::= λx.e || (v, v) || unit || fix || fork
|| request n || accept n || send
|| receive || implicit receive

e ::= v || e e || (e, e) || let x, x = e in e
|| select l e || case e of {li : ei}i∈I
|| o || let x, o = e in e

FIGURE 3.1: Grammar of IM expressions

Here implicit receive is the implicit analog of receive. Unlike receive, it is not
matched by a corresponding send, but a corresponding send is inserted during transla-
tion, while implicit receive is translated into a normal receive. o denotes a query
to the implicit scope. o is removed at translation time, and is replaced by a nondeter-
ministically chosen name in the implicit scope. This nondeterminism can be resolved via
relatively simple heuristics, some of which are discussed in section 3.5.1. The construct
let x, o = ... allows us to add variables to the implicit scope, and as with the lone
o, we also replace o within let by a variable name during translation. Note that we often
write let o = e in e’. This is a convenience and can be thought of as syntactic sugar
for let _, o = (_, e) in e’ where _ is an unused variable or expression.

The parameter n following accept n and request n gives a bound for session com-
munication. This will be explained in later sections. Note that we omit the bound param-
eter for brevity where not relevant.

An IM program is a configuration of expressions in parallel, running as separate
threads and typed in a suitable environment. We define the syntax of configurations,
ranged over by C, in figure 3.2.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 65

b ::= v || l

C ::= C ‖ C || c 7→ (c, n,~b) || (νcc)C || 〈e〉

FIGURE 3.2: Grammar of IM configurations

3.3.2 Semantics

We derive semantics for IM by translating IM programs into LAST, and leverage LAST’s
semantics, which are given in figures 3.3 (expressions) and 3.4 (configurations). Figure
3.5 defines structural congruence for LAST, on which depend the semantics. Contexts E,
E′, ... are LAST expressions with a single hole, and E[e] denotes filling the hole in the
context E with the expression e.

(λx.e) v −→v e[v/x] [R-APP] fix (λx.e) −→v e[(fix (λx.e))/x] [R-FIX]

let x, y = (v, u) in e −→v e[v/x][u/y] [R-SPLIT]

FIGURE 3.3: Semantics of LAST expressions

e −→v e′

〈E[e]〉 −→ 〈E[e′]〉
[R-THREAD] C −→ C′

C ‖ C′′ −→ C′ ‖ C′′
[R-PAR]

〈E[fork e]〉 −→ 〈e〉 ‖ 〈E[unit]〉 [R-FORK]

C −→ C′

(νcd)C −→ (νcd)C′
[R-NEW]

C ≡ C′ C′ −→ C′′ C′′ ≡ C′′′

C −→ C′′′
[R-STRUCT]

〈E[request n x]〉 ‖ 〈E′[accept n′ x]〉 −→
(νcd)(c 7→ (d, n, ε) ‖ d 7→ (c, n′, ε) ‖〈E[c]〉 ‖ 〈E′[d]〉) [R-INIT]

c 7→ (d, n′,~b′) ‖ d 7→ (c, n,~b) ‖ 〈E[send v c]〉 −→
c 7→ (d, n′,~b′) ‖ d 7→ (c, n,~bv) ‖〈E[c]〉 if |~b| < n

[R-SEND]

c 7→ (d, n′,~b′) ‖ d 7→ (c, n,~b) ‖ 〈E[select l c]〉 −→
c 7→ (d, n′,~b′) ‖ d 7→ (c, n,~bl) ‖〈E[c]〉 if |~b| < n

[R-SELECT]

c 7→ (d, n, v~b) ‖ 〈E[receive c]〉 −→ c 7→ (d, n,~b) ‖ 〈E[(v, c)]〉 [R-RECEIVE]

c 7→ (d, n, lj~b′) ‖ 〈E[case c of {li : ei}i∈I]〉 −→
c 7→ (d, n,~b) ‖〈E[ej c]〉 if j ∈ I

[R-BRANCH]

FIGURE 3.4: Semantics of LAST configurations

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 66

C1 ‖ C2 ≡ C2 ‖ C1 [E-COMM] C1 ‖ (C2 ‖ C3) ≡ (C1 ‖ C2) ‖ C3 [E-ASSOC]

C1 ‖ (νcd)C2 ≡ (νcd)C1 ‖ C2 if c, d /∈ f c(C1) [E-SCOPE]

FIGURE 3.5: Structural congruence for LAST

3.4 Types for IM

Just as SI is given meaning by type-guided translation to System F in [Odersky et al.,
2018], we give such a translation of IM into LAST. This section prepares the translation
by extending LAST’s typing system with types for implicit message passing and implicit
functions. Types for IM are given by the following grammar. Here T ranges over types
for the lambda calculus part of IM, S over session types, and B over buffer types.

T ::= Unit || S || T ⊗ T || T → T || T(T
|| 〈S〉r || 〈S〉a || 〈S, S′〉 || T o→ T
|| T o(T

S ::= end || ?T.S || !T.S || &〈li : Si〉i∈I
|| ⊕〈li : Si〉i∈I || X || µX.S || ?oT.S
|| !oT.S

B ::= T || l

FIGURE 3.6: Grammar of IM types

Note that we consider only tail-recursive session types, rejecting those whose form is, for
example, µS.!S.S, where a recursion variable is used as message contents, as reasonable
definitions of duality for such session types are unclear [Lindley and Morris, 2016].

The type T o→ T is the type of implicit functions. It is written ?→ in [Odersky et al.,
2018] but we replace ? by o to avoid confusion with the input session type ?T.S. The type
T o(T is the linear equivalent of T o→ T. As with [Odersky et al., 2018], we do not
have syntax for implicit abstraction and application - these are inferred during implicit
resolution in Section 3.5.

The types !oT.S and ?oT.S are the types of implicit message input and output respec-
tively. They are the dual of one another as with explicit output and input. Implicit output
types cannot be deduced from a process’s syntax (since they are implicit) and must be
inferred by inspecting the process that contains the corresponding implicit input. This
happens during implicit resolution.

Buffer content types ~B are composed of vectors of entries B. Each entry is either a
type T, representing the type of a value that is to be sent and stored in the buffer, or a
label l representing the selection of such an option l by a process communicating using

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 67

the buffer. Buffer content types ~B are assigned to buffers~b such that for each v in~b there
exists a type T in the corresponding buffer content type ~B such that v : T. This notion is
made precise in Section 3.5.

Type schemas for constants

Given in figure 3.7 are the type schemas for the constants k. They are the same as LAST’s,
and can be instantiated for any appropriate type.

fix : (T → T)→ T
send : T →!T.S(S
send : T →!T.S→ S if un(T)
fork : T → Unit if un(T)
receive : ?T.S→ T ⊗ S
request n : 〈S〉r → S if bound(S) ≤ n
accept n : 〈S〉a → S if bound(S) ≤ n
unit : Unit

FIGURE 3.7: Type schemas for IM constants

Note that we omit a type schema for implicit receive. This is because it cannot be
translated by the rule [T-CONST] in Figure 3.14, but needs a bespoke typing rule as unlike
the other constants its translation is not identity.

Session type duality

We give the session type duality function for our calculus in figure 3.8. If a session type S
and S′ are dual, written S = S′, then a pair of terms of types S and S′ can interact without
communication errors. Such processes match in the sense that every action that one takes
is matched by the other. If one outputs, the other inputs. If one offers a choice, the other
makes a choice. We extend duality function of LAST to include the two forms of implicit
communication.

?T.S = !T.S !T.S = ?T.S

?oT.S = !oT.S !oT.S = ?oT.S

µX.S = µX.S X = X

⊕〈li : Si〉i∈I = &〈li : Si〉i∈I end = end

&〈li : Si〉i∈I = ⊕〈li : Si〉i∈I

FIGURE 3.8: Duality for IM session types

We define the subtyping for IM coinductively by extension of the definition for LAST.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 68

DEFINITION 1. A type T is contractive if it does not have subexpressions of the form
µX1...µXn.Xi where 0 < i ≤ n.

Let S denote the set of contractive, closed session types, and let T denote the set of
types in which all session types are contractive and closed. We define the function F(·)
on binary relations over T in figure 3.9.

F(R) = {(end, end)}
∪ {(?T.S, ?T′.S′)|(T, T′), (S, S′) ∈ R}
∪ {(!T.S, !T′.S′)|(T′, T), (S, S′) ∈ R}
∪ {(?oT.S, ?oT′.S′)|(T, T′), (S, S′) ∈ R}
∪ {(!oT.S, !oT′.S′)|(T′, T), (S, S′) ∈ R}
∪ {(&〈li : Si〉i∈I , &〈lj : S′j〉j∈J)

|I ⊆ J, (Si, S′i) ∈ R, ∀i ∈ I}
∪ {(⊕〈li : Si〉i∈I ,⊕〈lj : S′j〉j∈J)

|J ⊆ I, (Si, S′i) ∈ R, ∀i ∈ J}
∪ {(〈S, S′〉, 〈S〉a)|S, S′ ∈ S }
∪ {(〈S, S′〉, 〈S′〉r)|S, S′ ∈ S }
∪ {(〈S〉a, 〈S′〉a)|(S, S′) ∈ R}
∪ {(〈S〉r, 〈S′〉r)|(S, S′) ∈ R}
∪ {(〈S1, S′1〉, 〈S2, S′2〉)|(S1, S2), (S′1, S′2) ∈ R}
∪ {(T → T′, T(T′)|T, T′ ∈ T }
∪ {(T1 → T′1, T2 → T′2)|(T2, T1), (T′1, T′2) ∈ R}
∪ {(T1 (T′1, T2 (T′2)|(T2, T1), (T′1, T′2) ∈ R}
∪ {(µX.S, S′)|(S[µX.S/X], S′) ∈ R}
∪ {(S, µX.S′)|(S, S′[µX.S′/X]) ∈ R}
∪ {(T1 o→ T′1, T2 o→ T′2)|(T2, T1), (T′1, T′2) ∈ R}
∪ {(T1 o(T′1, T2 o(T′2)|(T2, T1), (T′1, T′2) ∈ R}
∪ {(T o→ T′, T o(T′)|T, T′ ∈ T }
∪ {(T → T′, T o→ T′)|T, T′ ∈ T }
∪ {(T(T′, T o(T′)|T, T′ ∈ T }
∪ {(!T.S, !oT.S)|T ∈ T , S ∈ S }

FIGURE 3.9: Subtyping for IM types

Contractivity ensures that F is monotone. We write T <: U if the pair (T, U) is in the
greatest fixpoint of F. The last three lines in the definition of F(·) allow us to type the use
of an explicit function in place of an implicit one, and the sending of explicit messages

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 69

to implicit inputs. Such behaviour is allowed in Scala - the user may pass an explicit
argument to an implicit function. We allow the same behaviour with implicit functions,
and the analogous behaviour in the case of implicit messages.

The matches relation determines whether a given buffer type ~B agrees with a session
type S. We write ~B mat S when the types in ~B match a prefix of those in S. We formalise
this notion with the rules in figure 3.10.

~B mat S U <: T
U~B mat ?oT.S

[M-OUTI]
~B mat S U <: T

U~B mat?T.S
[M-OUT]

ε mat S
[M-EMPTY]

~B mat S
l~B mat &〈..., l : S, ...〉

[M-CASE]

FIGURE 3.10: The mat relation for IM

For some S and ~B such that ~B mat S, S/~B gives the session behaviours remaining as
a postfix of S after performing those behaviours that correspond with ~B. We define the
postfix operator in figure 3.11.

S/ε = S ?T.S/U~B = S/~B

?oT.S/U~B = S/~B &〈..., l : S, ...〉/l~B = S/~B

FIGURE 3.11: The postfix operator for IM

Session type bounds

We define bound(S), which gives the bound of a session type, an upper bound on the
runtime size of the buffer required to hold the values received on a channel with session
type S. We start with the auxiliary operator bds ∈ (S → N∞) → S → N∞, defined in
3.12.

bds(f)(S) =

1 + f (S′) S ∈ {?T.S′, ?oT.S′}
1 + max{ f (Si)}i∈I S = &〈li : Si〉i∈I

f (S[µX.S′/X]) S = µX.S′

0 otherwise

FIGURE 3.12: The bds operator for IM

We define the relation S 7→ S′, which computes an advanced session type S′ given a
session type S in figure 3.13.

Finally we define bound(S) = max{µ(S′)|S 7→∗ S′} where µ is the least fixed point of
bds.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 70

?T.S 7→ S !T.S 7→ S

?oT.S 7→ S !oT.S 7→ S
&〈..., l : S, ...〉 7→ S ⊕ 〈..., l : S, ...〉 7→ S

µX.S 7→ S′ if S{µX.S/X} 7→ S′

FIGURE 3.13: The 7→ operator for IM

3.5 Translation from IM to LAST

This section presents implicit resolution, the type-directed translation of IM programs to
LAST. We proceed in three steps, translation of expressions, translation of buffers and
translation of configurations. Following [Odersky et al., 2018], the translation is type-
directed in that we give typing rules for IM, instrumented with translations to LAST. By
forgetting the instrumentation, we obtain a typing system for IM.

Typing environments and implicit scope

Implicit resolution removes queries o and inserts explicit functions and messages in place
of implicit ones. This happens by choosing arguments from the implicit scope. We define
the implicit scope thusly: The typing environment Γ is divided into two parts: the implicit
and explicit scopes. That is to say, some of the bindings in Γ refer to implicit variables
and some to explicit variables. In our typing rules we range over implicit variables with y
and explicit variables with x. Variables enter the implicit scope in several ways: (1) when
received as an implicit message; (2) when given as an argument to an implicit function;
and (3) when bound by a let construct with o on the left-hand side of the =.

Typing and translation of expressions

Typing judgements for expressions are of the form Γ ` e : T ê. This can be read
as: “under assumptions Γ, the IM expression e has type T and is translated to the LAST
expression ê”. Our typing and translation rules can be found in Figure 3.14. With the
exception of the new syntactic forms of expressions, the translations are homomorphic,
yielding rules similar in structure to those found in [Gay and Vasconcelos, 2010]. The
rules for our new syntactic forms are more interesting. The rules [T-SPLITI], [T-APPI],
[T-ABSI] and [T-QUERY] follow a similar structure to those in [Odersky et al., 2018]. Note
that with [T-QUERY], the variable chosen to replace o must satisfy linearity constraints, a
restriction not present in [Odersky et al., 2018]. [T-ABSLI] is a linear version of the rule
for implicit functions and is effectively a combination of the rules [T-ABSI] and [T-ABSL].
The rule [T-INI] translates implicit receive into receive and otherwise behaves in

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 71

Γ ` e : T ê T <: U
Γ ` e : U ê

[T-SUB]
un(Γ) k : T
Γ ` k : T k

[T-CONST]

Γ1 ` e1 : T ⊗U ê1 Γ2, x1 : T, x2 : U ` e2 : V ê2

Γ1 + Γ2 ` let x1, x2 = e1 in e2 : V let x1, x2 = ê1 in ê2
[T-SPLIT]

Γ1 ` e1 : T ê1 Γ2 ` e2 : U ê2

Γ1 + Γ2 ` (e1, e2) : T ⊗U (ê1, ê2)
[T-PAIR]

Γ, x : T ` e : U ê un(Γ)
Γ ` λx.e : T → U λx.ê

[T-ABS]
un(Γ)

Γ, α : T ` α : T α
[T-ID]

Γ1 ` e1 : T(U ê1 Γ2 ` e2 : T ê2

Γ1 + Γ2 ` e1 e2 : U ê1 ê2
[T-APP]

Γ1 ` e : &〈li : Ti〉i∈I ê ∀i∈I(Γ2 ` ei : Ti (T êi)

Γ1 + Γ2 ` case e of {li : ei}i∈I : T case ê of {li : êi}i∈I
[T-CASE]

Γ, x : T ` e : U ê
Γ ` λx.e : T(U λx.ê

[T-ABSL]
un(Γ)

Γ, y : T ` o : T y
[T-QUERY]

Γ ` e : ⊕〈li : Ti〉i∈I ê j ∈ I
Γ ` select lj e : Tj select lj ê

[T-SELECT]

Γ1 ` e : T o(U ê Γ2 ` o : T y
Γ1 + Γ2 ` e : U ê y

[T-APPI]

Γ, y : T ` e : U ê y fresh un(Γ)
Γ ` e : T o→ U λy.ê

[T-ABSI]

Γ1 ` e1 : T ⊗U ê1 Γ2, x : T, y : U ` e2 : V ê2 y fresh
Γ1 + Γ2 ` let x, o = e1 in e2 : V let x, y = ê1 in ê2

[T-SPLITI]

un(Γ)

Γ ` implicit receive : ?oT.S→ T ⊗ S receive
[T-INI]

Γ1 ` o : T y Γ2 ` e : !oT.S ê
Γ1 + Γ2 ` e : S send y ê

[T-OUTI]

Γ, y : T ` e : U ê y fresh
Γ ` e : T o(U λy.ê

[T-ABSLI]

FIGURE 3.14: Typing and translation rules for IM expressions

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 72

Γ `~b : ~B ~̂b

Γ ` l~b : l~B l~̂b
[T-SEQL]

un(Γ)
Γ ` ε : ε ε

[T-EMPTY]

Γ1 ` v : T v̂ Γ2 `~b : ~B ~̂b

Γ1 + Γ2 ` v~b : T~B v̂~̂b
[T-SEQV]

FIGURE 3.15: Typing and translation rules for IM buffer contents

the same way as [T-CONST]. [T-OUTI] translates implicit outputs by inserting a send ac-
tion into the process. The argument for the send is a variable from the implicit scope,
which we get from the first premise by translating o with (a subset of) the input environ-
ment. This yields an implicit variable with the appropriate type whilst also satisfying
any linearity constraints. Note that [T-OUTI] is the only rule adding outputs directly.

Typing and translation of buffer contents

Typing judgements for buffers follow the same form as typing judgements for expres-

sions. We write Γ ` ~b : ~B ~̂b in this case. The translation of buffers can be found in
figure 3.15.

Typing and translation of configurations

Typing judgements for configurations (Figure 3.16) follow a slightly different form to
those for buffer contents and expressions. We write Γ ` CB ∆ Ĉ. This can be read as
“under assumptions Γ, the configuration C yields buffer types ∆ and is translated as Ĉ”.
We define buffer type maps ∆ below in Definition 2. The rules [T-THREAD], [T-BUFFER]
and [T-NEW] are as in [Gay and Vasconcelos, 2010], augmented with homomorphic trans-
lations. The rule [T-PAR] 2 is also similar to its equivalent rule in [Gay and Vasconcelos,
2010], but also contains two new premises. The first computes the buffer types in the
configuration C1 ‖ C2, which are used in the second premise to perform implicit resolu-
tion. The judgements used in these premises are explained below.

DEFINITION 2. Buffer types are triples of the form (d, n,~B). We let ∆ range over partial fi-
nite maps from channel names to buffer types in C. Writing ∆+∆′ means that the domains
of ∆ and ∆′ are disjoint.

2Note that the rule [T-PAR] of [Gay and Vasconcelos, 2010] uses a compatibility relation S � S′, which
holds exactly when S <: S′. In this presentation we opt simply to write S <: S′.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 73

Γ ` e : T ê un(T)
Γ ` 〈e〉B∅ 〈ê〉

[T-THREAD]

Γ `~b : ~B ~̂b |~b| ≤ n

Γ ` c 7→ (d, n,~b)B c : (d, n,~B) c 7→ (d, n,~̂b)
[T-BUFFER]

Γ′ = Γ′1 + Γ′2 Γ′1 ` C1B ∆1 Ĉ1 Γ′2 ` C2B ∆2 Ĉ2 ∆′ = ∆1 + ∆2

∀c ∈ dom(Γ′) ∩ dom(∆′).(∆′(c) = (d, n,~B)⇒ (~B mat Γ′(c) and bound(Γ′(c)) ≤ n))
∀c, d ∈ dom(Γ′) ∩ dom(∆′).(∆′(c) = (d, n,~B) and ∆′(d) = (c, n′,~B′)⇒ Γ′(c)/~B <: Γ′(d)/~B′)

Γ ` C1 ‖ C2B ∆′ Ĉ1 ‖ Ĉ2
[T-PAR]

Γ + c1 : S1 + c2 : S2 ` CB ∆ + c1 : (c2, n1,~B1) + c2 : (c1, n2,~B2) Ĉ

Γ ` (νc1c2)CB ∆ (νc1c2)Ĉ
[T-NEW]

FIGURE 3.16: Typing and translation rules for IM configurations

DEFINITION 3. We define a partial operation of addition on environments:

Γ + x : T =

Γ, x : T x /∈ dom(Γ)

Γ Γ(x) = T, un(Γ)

undefined otherwise

We extend this to Γ + Γ′ inductively from the base case.

3.5.1 Sources of ambiguity

There are two sources of ambiguity in implicit resolution. The first is in the selection of
the implicit variable chosen by the rule [T-QUERY]. We do not specify which variable
in the implicit scope should replace a o. A possible way to resolve this is to use nesting.
Such a solution would select the innermost implicit variable of the appropriate type as
the translation for o. The Scala compiler uses a more complex version of this strategy,
augmented with other selection criteria [Odersky et al., 2018].

The second source of ambiguity results from the insertion of output actions when
resolving implicit messages. When a pair of composed processes are resolved, we do not
specify which is resolved first. As a result, adjacent implicit inputs can be resolved in
multiple ways. Consider the processes:

〈 let p =

let o = ...

let c = accept x in

let n, o = implicit receive in c

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 74

in p 〉 ‖ 〈 let q =

let o = ...

let d = request x in

let n, o = implicit receive in d

in q 〉

Implicit resolution should insert two output actions here, one in p and the other in q. If
we resolve p before q, we obtain the processes:

〈 let p =

let y = ...

let c = accept x in

send y c

let n, c = receive in c

in p 〉 ‖ 〈 let q =

let y = ...

let d = request x in

let n, d = receive in d

send y d

in q 〉

We could also resolve q first and obtain the processes:

〈 let p =

let y = ...

let c = accept x in

let n, c = receive in c

send y c

in p 〉 ‖ 〈 let q =

let y = ...

let d = request x in

send y d

let n, d = receive in d

in q 〉

We term this situation the adjacent implicit messages problem.
As with ambiguity caused by resolution of o, an implementation could use a simple

heuristic such as to resolve the left hand side of parallel composition before the right. In
the absence of a proof, it is unclear whether such a heuristic could work in all possible
cases of adjacent implicit messages. We leave these as future work.

3.6 Runtime safety of IM

We prove safety of IM’s translation into LAST: we show that if we can derive Γ ` CB∆
Ĉ in IM, then Ĉ can be typed suitably in LAST. In order to make this precise, we define a
function (·)∗, that translates IM’s types to standard LAST types. This translation simply
erases occurrences of o, yielding non-implicit analogues of implicit types.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 75

DEFINITION 4 (Translation of types). The definition of (·)∗ for session types is given in
figure 3.17.

(T o→ T′)∗ = T∗ → T′∗ Unit∗ = Unit

(T o(T′)∗ = T∗(T′∗ end∗ = end

(T → T′)∗ = T∗ → T′∗ (?T.S)∗ = ?T∗.S∗

(T(T′)∗ = T∗(T′∗ (!T.S)∗ = !T∗.S∗

&〈li : Si〉∗i∈I = &〈li : S∗i 〉i∈I (〈S〉r)∗ = 〈S∗〉r

⊕〈li : Si〉∗i∈I = ⊕〈li : S∗i 〉i∈I (〈S〉a)∗ = 〈S∗〉a

〈S, S′〉∗ = 〈S∗, S′∗〉 (?oT.S)∗ = ?T∗.S∗

(T ⊗ T′)∗ = T∗ ⊗ T′∗ (!oT.S)∗ = !T∗.S∗

(µX.S)∗ = µX.S∗ X∗ = X

FIGURE 3.17: Translation of IM session types

We extend the definition of (·)∗ to buffer types and environments:

DEFINITION 5 (Translation of buffer types and environments). The definition of (·)∗ for
buffer types is given in figure 3.18. This is lifted pointwise to environments (i.e. (Γ, x :
T)∗ = Γ∗, x : T∗).

ε∗ = ε (T~B)∗ = T∗~B∗

(l~B)∗ = l~B∗ (c, n,~B)∗ = (c, n,~B∗)

FIGURE 3.18: Translation of IM buffer types

We call a configuration fully buffered if whenever it contains c 7→ (c′, n,~b) then it also
contains c′ 7→ (c, n′,~b′). We recall the following theorem from [Gay and Vasconcelos,
2010], defining and proving LAST’s runtime safety.

THEOREM (Runtime safety of LAST). Let Γ `LAST C B ∆ be a fully buffered LAST con-
figuration, and assume that C −→∗ C′. If C′′ is a blocked thread in C′, then one if the
following applies:

• C′′ is 〈v〉 or 〈send v〉 or 〈request n v〉 or 〈accept n v〉;

• C′′ is 〈E[receive c]〉 and c 7→ (_, _, ε) ∈ C′;

• C′′ is 〈E[case c of {li : ei}i∈I]〉 and c 7→ (_, _, ε) ∈ C′.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 76

This result was established in [Gay and Vasconcelos, 2010]. We now state our main result.

THEOREM 1 (Runtime safety of IM). If Γ ` CB ∆ Ĉ is a fully buffered IM configura-
tion, then Γ∗ `LAST ĈB ∆∗ is a runtime-safe LAST configuration.

Proof. Immediately for Theorem 4.

We now proceed to prove supporting lemmas and theorems, and theorem 4 itself.

LEMMA 1 (Preservation of membership with (·)∗ on environments). dom(Γ) ⊆ dom(Γ∗)

Proof. Trivially by induction on Definition 5.

LEMMA 2 (Distributivity of (·)∗ over + on environments). If Γ1 + Γ2 is defined, then
Γ∗1 + Γ∗2 = (Γ1 + Γ2)∗

Proof. By induction on the definition of +.
There are two cases where Γ + α : T is defined:

• if α /∈ dom(Γ), then Γ + α : T = Γ, α : T

– Starting with (Γ, α : T)∗, by the Definition 5, we get Γ∗, α : T∗

– Starting with Γ∗ + (α : T)∗, by the Definition 5, we get Γ∗ + α : T∗

– Then, by the definition of +, we get Γ∗, α : T∗

• if α : T ∈ Γ and un(Γ), then Γ + α : T = Γ

– Starting with (Γ + α : T)∗, we get Γ∗ by the definition of +.

– Starting with Γ∗ + (α : T)∗,

– By Definition 5, Γ∗ + α : T∗

– Then by Lemma 1, Γ∗.

Addition is extended inductively to a partial binary operation on environments, and dis-
tributivity therefore holds by the induction hypothesis.

LEMMA 3 (Preservation of contractivity and closure of types under translation). If T ∈ T ,
then T∗ ∈ TLAST. Equally, if S ∈ S , then S∗ ∈ SLAST.

Proof. From Definition 4 we see that none of the translations change the number or posi-
tion of type constructors in a type, and therefore contractivity is preserved. We also see
that the names in µ-binders and of type variables are not modified by translation and
thus closure is preserved. These can be shown formally by a routine induction on T,
S.

LEMMA 4 (Preservation of subtyping with (·)∗ on types). If T <: U, then T∗ <:LAST U∗

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 77

Proof. We define R = {(T∗, T′∗) | (T, T′) ∈ νF} and show that R is a pre-fixpoint of
FLAST, the monotone function [Gay and Vasconcelos, 2010] uses to define <:LAST. In
other words, we show thatR ⊆ FLAST(R). We proceed by induction on (T, T′) ∈ νF.

• Case (end, end)

– To show: (end∗, end∗) ∈ νFLAST

– Or by Definition 4, (end, end) ∈ νFLAST

– The goal follows immediately from the definition of FLAST.

• Case (?T.S, ?T′.S′)

– To show: ((?T.S)∗, (?T′.S′)∗) ∈ νFLAST

– Or by Definition 4, (?T∗.S∗, ?T′∗.S′∗) ∈ νFLAST

– By the definition of F, (T, T′), (S, S′) ∈ νF

– Then by the induction hypothesis, (T∗, T′∗), (S∗, S′∗) ∈ νFLAST

– The goal then follows from the definition of FLAST.

• Case (!T.S, !T′.S′)

– To show: ((!T.S)∗, (!T′.S′)∗) ∈ νFLAST

– Or by Definition 4, (!T∗.S∗, !T′∗.S′∗) ∈ νFLAST

– By the definition of F, (T, T′), (S, S′) ∈ νF

– Then by the induction hypothesis, (T∗, T′∗), (S∗, S′∗) ∈ νFLAST

– The goal then follows from the definition of FLAST.

• Case (?oT.S, ?oT′.S′)

– To show: ((?oT.S)∗, (?oT′.S′)∗) ∈ νFLAST

– Or by Definition 4, (?T∗.S∗, ?T′∗.S′∗) ∈ νFLAST

– By the definition of F, (T, T′), (S, S′) ∈ νF

– Then by the induction hypothesis, (T∗, T′∗), (S∗, S′∗) ∈ νFLAST

– The goal then follows from the definition of FLAST.

• Case (!oT.S, !oT′.S′)

– To show: ((!oT.S)∗, (!oT′.S′)∗) ∈ νFLAST

– Or by Definition 4, (!T∗.S∗, !T′∗.S′∗) ∈ νFLAST

– By the definition of F, (T, T′), (S, S′) ∈ νF

– Then by the induction hypothesis, (T∗, T′∗), (S∗, S′∗) ∈ νFLAST

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 78

– The goal then follows from the definition of FLAST.

• Case (&〈li : Si〉i∈I , &〈lj : S′j〉j∈J)

– To show: ((&〈li : Si〉i∈I)
∗, (&〈lj : S′j〉j∈J)

∗) ∈ νFLAST

– Or by Definition 4, (&〈li : S∗i 〉i∈I , &〈lj : S′∗j 〉j∈J) ∈ νFLAST

– By the definition of F, I ⊆ J, (Si, S′i) ∈ νF, ∀i ∈ I.

– Then by the induction hypothesis, (S∗i , S′∗i) ∈ νFLAST, ∀i ∈ I.

– The goal then follows from the definition of FLAST.

• Case (⊕〈li : Si〉i∈I ,⊕〈lj : S′j〉j∈J)

– To show: ((⊕〈li : Si〉i∈I)
∗, (⊕〈lj : S′j〉j∈J)

∗) ∈ νFLAST

– Or by Definition 4, (⊕〈li : S∗i 〉i∈I ,⊕〈lj : S′∗j 〉j∈J) ∈ νFLAST

– By the definition of F, I ⊆ J, (Si, S′i) ∈ νF, ∀i ∈ I.

– Then by the induction hypothesis, (S∗i , S′∗i) ∈ νFLAST, ∀i ∈ I.

– The goal then follows from the definition of FLAST.

• Case (〈S, S′〉, 〈S〉a)

– To show: (〈S, S′〉∗, (〈S〉a)∗) ∈ νFLAST

– Or by Definition 4, (〈S∗, S′∗〉, 〈S∗〉a) ∈ νFLAST

– By the definition of F, S, S′ ∈ S .

– Then by Lemma 3, S∗, S′∗ ∈ SLAST.

– The goal then follows from the definition of FLAST.

• Case (〈S, S′〉, 〈S′〉r)

– To show: (〈S, S′〉∗, (〈S′〉r)∗) ∈ νFLAST

– Or by Definition 4, (〈S∗, S′∗〉, 〈S′∗〉r) ∈ νFLAST

– By the definition of F, S, S′ ∈ S .

– Then by Lemma 3, S∗, S′∗ ∈ SLAST.

– The goal then follows from the definition of FLAST.

• Case (〈S〉a, 〈S′〉a)

– To show: ((〈S〉a)∗, (〈S′〉a)∗) ∈ νFLAST

– Or by Definition 4, (〈S∗〉a, 〈S′∗〉a) ∈ νFLAST

– By the definition of F, (S, S′) ∈ νF.

– Then by the induction hypothesis, (S∗, S′∗) ∈ νFLAST.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 79

– The goal then follows from the definition of FLAST.

• Case (〈S〉r, 〈S′〉r)

– To show: ((〈S〉r)∗, (〈S′〉r)∗) ∈ νFLAST

– Or by Definition 4, (〈S∗〉r, 〈S′∗〉r) ∈ νFLAST

– By the definition of F, (S, S′) ∈ νF.

– Then by the induction hypothesis, (S∗, S′∗) ∈ νFLAST.

– The goal then follows from the definition of FLAST.

• Case (〈S1, S′1〉, 〈S2, S′2〉)

– To show: (〈S1, S′1〉∗, 〈S2, S′2〉∗) ∈ νFLAST

– Or by Definition 4, (〈S∗1 , S′∗1 〉, 〈S∗2 , S′∗2 〉) ∈ νFLAST

– By the definition of F, (S1, S′1), (S2, S′2) ∈ νF.

– Then by the induction hypothesis, (S∗1 , S′∗1), (S
∗
2 , S′∗2) ∈ νFLAST.

– The goal then follows from the definition of FLAST.

• Case (T → T′, T(T′)

– To show: ((T → T′)∗, (T(T′)∗) ∈ νFLAST

– Or by Definition 4, (T∗ → T′∗, T∗(T′∗) ∈ νFLAST

– By the definition of F, T, T′ ∈ T .

– Then by Lemma 3, T∗, T′∗ ∈ TLAST.

– The goal then follows from the definition of FLAST.

• Case (T1 → T′1, T2 → T′2)

– To show: ((T1 → T′1)
∗, (T2 → T′2)

∗) ∈ νFLAST

– Or by Definition 4, (T∗1 → T′∗1 , T∗2 → T′∗2) ∈ νFLAST

– By the definition of F, (T1, T′1), (T2, T′2) ∈ νF.

– Then by the induction hypothesis, (T∗1 , T′∗1), (T∗2 , T′∗2) ∈ νFLAST.

– The goal then follows from the definition of FLAST.

• Case (T1 (T′1, T2 (T′2)

– To show: ((T1 (T′1)
∗, (T2 (T′2)

∗) ∈ νFLAST

– Or by Definition 4, (T∗1 (T′∗1 , T∗2 (T′∗2) ∈ νFLAST

– By the definition of F, (T1, T′1), (T2, T′2) ∈ νF.

– Then by the induction hypothesis, (T∗1 , T′∗1), (T∗2 , T′∗2) ∈ νFLAST.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 80

– The goal then follows from the definition of FLAST.

• Case (µX.S, S′)

– To show: ((µX.S)∗, S′∗) ∈ νFLAST

– Or by Definition 4, (µX.S∗, S′∗) ∈ νFLAST

– By the definition of F, (S[µX.S/X], S′) ∈ νF.

– Then by the induction hypothesis, (S∗[µX.S∗/X], S′∗) ∈ νFLAST.

– The goal then follows from the definition of FLAST.

• Case (S, µX.S′)

– To show: (S∗, (µX.S′)∗) ∈ νFLAST

– Or by Definition 4, (S∗, µX.S′∗) ∈ νFLAST

– By the definition of F, (S, S′[µX.S′/X]) ∈ νF.

– Then by the induction hypothesis, (S∗, S′∗[µX.S′∗/X]) ∈ νFLAST.

– The goal then follows from the definition of FLAST.

• Case (T1 o→ T′1, T2 o→ T′2)

– To show: ((T1 o→ T′1)
∗, (T2 o→ T′2)

∗) ∈ νFLAST

– Or by Definition 4, (T∗1 → T′∗1 , T∗2 → T′∗2) ∈ νFLAST

– By the definition of F, (T1, T′1), (T2, T′2) ∈ νF.

– Then by the induction hypothesis, (T∗1 , T′∗1), (T∗2 , T′∗2) ∈ νFLAST.

– The goal then follows from the definition of FLAST.

• Case (T1 o(T′1, T2 o(T′2)

– To show: ((T1 o(T′1)
∗, (T2 o(T′2)

∗) ∈ νFLAST

– Or by Definition 4, (T∗1 (T′∗1 , T∗2 (T′∗2) ∈ νFLAST

– By the definition of F, (T1, T′1), (T2, T′2) ∈ νF.

– Then by the induction hypothesis, (T∗1 , T′∗1), (T∗2 , T′∗2) ∈ νFLAST.

– The goal then follows from the definition of FLAST.

• Case (T o→ T′, T o(T′)

– To show: ((T o→ T′)∗, (T o(T′)∗) ∈ νFLAST

– Or by Definition 4, (T∗ → T′∗, T∗(T′∗) ∈ νFLAST

– By the definition of F, T, T′ ∈ T .

– Then by Lemma 3, T∗, T′∗ ∈ TLAST.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 81

– The goal then follows from the definition of FLAST.

• Case (T → T′, T o→ T′)

– To show: ((T → T′)∗, (T o→ T′)∗) ∈ νFLAST

– Or by Definition 4, (T∗ → T′∗, T∗ → T′∗) ∈ νFLAST

– The goal holds immediately by reflexivity of subtyping in LAST [Gay and Vas-
concelos, 2010].

• Case (T(T′, T o(T′)

– To show: ((T(T′)∗, (T o(T′)∗) ∈ νFLAST

– Or by Definition 4, (T∗(T′∗, T∗(T′∗) ∈ νFLAST

– The goal holds immediately by reflexivity of subtyping in LAST [Gay and Vas-
concelos, 2010].

• Case (!T.S, !oT.S)

– To show: ((!T.S)∗, (!oT.S)∗) ∈ νFLAST

– Or by Definition 4, (!T∗.S∗, !T∗.S∗) ∈ νFLAST

– The goal holds immediately by reflexivity of subtyping in LAST [Gay and Vas-
concelos, 2010].

LEMMA 5 (Preservation of linearity and nonlinearity with (·)∗ on types). Let T′ = T∗.

• un(T) ⇐⇒ un(T′).

• lin(T) ⇐⇒ lin(T′).

Proof. Trivially by induction on Definition 4. All linear types translate to linear types,
and all unlimited types translate to unlimited types.

LEMMA 6 (Preservation of linearity and nonlinearity with (·)∗ on environments). Let
Γ′ = Γ∗.

• un(Γ) ⇐⇒ un(Γ′).

• lin(Γ) ⇐⇒ lin(Γ′).

Proof. Trivially by induction on Definition 5 and Lemma 5.

LEMMA 7 (Type-preserving translation of type schemes for constants). For each constant
type scheme k : T, there is a type scheme in LAST of the form k : T∗.

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 82

Proof. Follows immediately from Definition 4.

THEOREM 2 (Type-preserving translation of expressions). Let e be an expression with
implicits, let Γ be an environment that may contain implicit types, and let T be a type
that may contain implicit types. If Γ ` e : T ê, then Γ∗ `LAST ê : T∗.

Proof. By induction on Γ ` e : T ê

• Case Γ1 + Γ2 ` (e1, e2) : T ⊗U (ê1, ê2)

– To show: (Γ1 + Γ2)∗ `LAST (ê1, ê2) : (T ⊗U)∗

– or by Lemma 2, Γ∗1 + Γ∗2 `LAST (ê1, ê2) : (T ⊗U)∗

– or by Definition 4, Γ∗1 + Γ∗2 `LAST (ê1, ê2) : T∗ ⊗U∗

– By inversion of T-Pair:

– Γ1 ` e1 : T ê1

– Γ2 ` e2 : U ê2

– By the induction hypothesis:

– Γ∗1 `LAST ê1 : T∗

– Γ∗2 `LAST ê2 : U∗

– By T-PairGV , Γ∗1 + Γ∗2 `LAST (ê1, ê2) : T∗ ⊗U∗

• Case Γ1 + Γ2 ` e1 e2 : U ê1 ê2

– To show: (Γ1 + Γ2)∗ `LAST ê1 ê2 : U∗

– or by Lemma 2, Γ∗1 + Γ∗2 `LAST ê1 ê2 : U∗

– By inversion of T-App,

– Γ2 ` e2 : T ê2

– Γ1 ` e1 : T(U ê1

– By the induction hypothesis:

– Γ∗2 `LAST ê2 : T∗

– Γ∗1 `LAST ê1 : (T(U)∗

– then by Definition 4, Γ∗1 `LAST ê1 : T∗(U∗

– By T-AppGV , Γ∗1 + Γ∗2 `LAST ê1 ê2 : U∗

• Case Γ ` λx.e : T → U λx.ê

– To show: Γ∗ `LAST λx.ê : (T → U)∗

– or by Definition 4, Γ∗ `LAST λx.ê : T∗ → U∗

– By inversion of T-Abs:

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 83

– un(Γ)

– and by Lemma 6, un(Γ∗)

– Γ, x : T ` e : U ê

– and by the induction hypothesis, (Γ, x : T)∗ `LAST ê : U∗

– then by Definition 5, Γ∗, x : T∗ `LAST ê : U∗

– By T-AbsGV , Γ∗ `LAST λx.ê : T∗ → U∗

• Case Γ ` λx.e : T(U λx.ê

– To show: Γ∗ `LAST λx.ê : (T(U)∗

– or by Definition 4, Γ∗ `LAST λx.ê : T∗(U∗

– By inversion of T-AbsL:

– Γ, x : T ` e : U ê

– and by the induction hypothesis, (Γ, x : T)∗ `LAST ê : U∗

– then by Definition 5, Γ∗, x : T∗ `LAST ê : U∗

– By T-AbsLGV , Γ∗ `LAST λx.ê : T∗(U∗

• Case Γ, α : T ` α : T α

– To show: (Γ, α : T)∗ `LAST α : T∗

– or by Definition 5, Γ∗, α : T∗ `LAST α : T∗

– By inversion of T-ID, un(Γ)

– and by Lemma 6, un(Γ∗)

– By T-IDGV , Γ∗, α : T∗ `LAST α : T∗

• Case Γ ` k : T k

– To show: Γ∗ `LAST k : T∗

– By inversion of T-Const, we have:

– un(Γ)

– and by Lemma 6, un(Γ∗)

– k : T

– and by Lemma 7, k : T∗

– By T-IDGV , Γ∗ `LAST k : T∗

• Case Γ1 + Γ2 ` let x, y = e1 in e2 : V let x, y = ê1 in ê2

– To show: (Γ1 + Γ2)∗ `LAST let x, y = ê1 in ê2 : V∗

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 84

– Or by Lemma 2, Γ∗1 + Γ∗2 `LAST let x, y = ê1 in ê2 : V∗

– By inversion of T-Split, we have:

– Γ1 ` e1 : T ⊗U ê1

– and by the induction hypothesis, Γ∗1 `LAST ê1 : (T ⊗U)∗

– then by Definition 4, Γ∗1 `LAST ê1 : T∗ ⊗U∗

– Γ2, x : T, y : U ` e2 : V ê2

– and by the induction hypothesis, (Γ2, x : T, y : U)∗ `LAST ê2 : V∗

– then by Definition 5, Γ∗2 , x : T∗, y : U∗ `LAST ê2 : V∗

– By T-SplitGV , Γ∗1 + Γ∗2 `LAST let x, y = ê1 in ê2 : V∗

• Case Γ ` select lj e : Tj select lj ê

– To show: Γ∗ `LAST select lj ê : T∗j
– By inversion of T-Select, we have:

– Γ ` e : ⊕〈li : Ti〉i∈I ê

– and by the induction hypothesis, Γ∗ `LAST ê : ⊕〈li : Ti〉∗i∈I

– then by Definition 4, Γ∗ `LAST ê : ⊕〈li : T∗i 〉i∈I

– j ∈ I

– By T-SelectGV , Γ∗ `LAST select lj ê : T∗j

• Case Γ1 + Γ2 ` case e of {li : ei}i∈I : T case ê of {li : êi}i∈I

– To show: (Γ1 + Γ2)∗ `LAST case ê of {li : êi}i∈I : T∗

– Or by Lemma 2, Γ∗1 + Γ∗2 `LAST case ê of {li : êi}i∈I : T∗

– By inversion of T-Case, we have:

– Γ1 ` e : &〈li : Ti〉i∈I ê

– and by the induction hypothesis, Γ∗1 `LAST ê : &〈li : Ti〉∗i∈I

– then by Definition 4, Γ∗1 `LAST ê : &〈li : T∗i 〉i∈I

– ∀i ∈ I. Γ2 ` ei : Ti (T êi

– and by the induction hypothesis, ∀i ∈ I. Γ∗2 `LAST êi : (Ti (T)∗

– then by Definition 4, ∀i ∈ I. Γ∗2 `LAST êi : T∗i (T∗

– By T-CaseGV , Γ∗1 + Γ∗2 `LAST case ê of {li : êi}i∈I : T∗

• Case Γ ` e : T ê

– To show: Γ∗ `LAST ê : T∗

– By inversion of T-Sub, we have:

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 85

– Γ ` e : U ê

– and by the induction hypothesis, Γ∗ `LAST ê : U∗

– T <: U

– and by Lemma 4, T∗ <: U∗

– Then by T-SubGV , Γ∗ `LAST ê : T∗

• Case Γ, y : T ` o : T y

– To show: (Γ, y : T)∗ `LAST y : T∗

– or by Definition 5, Γ∗, y : T∗ `LAST y : T∗

– By inversion of T-Query, un(Γ)

– and by Lemma 6, un(Γ∗)

– By T-IDGV , Γ∗, y : T∗ `LAST y : T∗

• Case Γ1 + Γ2 ` let x, o = e1 in e2 : V let x, y = ê1 in ê2

– To show: (Γ1 + Γ2)∗ `LAST let x, y = ê1 in ê2 : V∗

– Or by Lemma 2, Γ∗1 + Γ∗2 `LAST let x, y = ê1 in ê2 : V∗

– By inversion of T-SplitI, we have:

– y f resh

– Γ1 ` e1 : T ⊗U ê1

– and by the induction hypothesis, Γ∗1 `LAST ê1 : (T ⊗U)∗

– then by Definition 4, Γ∗1 `LAST ê1 : T∗ ⊗U∗

– Γ2, x : T, y : U ` e2 : V ê2

– and by the induction hypothesis, (Γ2, x : T, y : U)∗ `LAST ê2 : V∗

– then by Definition 5, Γ∗2 , x : T∗, y : U∗ `LAST ê2 : V∗

– By T-SplitGV , Γ∗1 + Γ∗2 `LAST let x, y = ê1 in ê2 : V∗

• Case Γ1 + Γ2 ` e : U ê y

– To show: (Γ1 + Γ2)∗ `LAST ê y : U∗

– or by Lemma 2, Γ∗1 + Γ∗2 `LAST ê y : U∗

– By inversion of T-AppI,

– Γ1 ` e : T o(U ê

– By the induction hypothesis, Γ∗1 `LAST ê : (T o(U)∗

– then by Definition 4, Γ∗1 `LAST ê : T∗(U∗

– Γ2 ` o : T y

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 86

– By the induction hypothesis, Γ∗2 `LAST y : T∗

– By T-AppGV , Γ∗1 + Γ∗2 `LAST ê y : U∗

• Case Γ ` e : T o→ U λy.ê

– To show: Γ∗ `LAST λy.ê : (T o→ U)∗

– or by Definition 4, Γ∗ `LAST λy.ê : T∗ → U∗

– By inversion of T-AbsI:

– y f resh

– un(Γ)

– and by Lemma 6, un(Γ∗)

– Γ, y : T ` e : U ê

– and by the induction hypothesis, (Γ, y : T)∗ `LAST ê : U∗

– then by Definition 5, Γ∗, y : T∗ `LAST ê : U∗

– By T-AbsGV , Γ∗ `LAST λy.ê : T∗ → U∗

• Case Γ ` e : T o(U λy.ê

– To show: Γ∗ `LAST λy.ê : (T o(U)∗

– or by Definition 4, Γ∗ `LAST λy.ê : T∗(U∗

– By inversion of T-AbsI:

– y f resh

– Γ, y : T ` e : U ê

– and by the induction hypothesis, (Γ, y : T)∗ `LAST ê : U∗

– then by Definition 5, Γ∗, y : T∗ `LAST ê : U∗

– By T-AbsLGV , Γ∗ `LAST λy.ê : T∗(U∗

• Case Γ ` implicit receive :?oT.S→ T ⊗ S receive

– To show: Γ∗ ` receive : (?oT.S→ T ⊗ S)∗

– or, by Definition 4, Γ∗ ` receive :?T∗.S∗ → T∗ ⊗ S∗

– By inversion of T-InI, un(Γ)

– and by Lemma 6, un(Γ∗)

– Result follows immediately from the type schema for receive and T-ConstGV .

• Case Γ1 + Γ2 ` e : S send y ê

– To show: (Γ1 + Γ2)∗ ` send y ê : S∗

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 87

– By inversion of T-OutI,

– Γ1 ` o : T y

– and by the induction hypothesis, Γ∗1 ` y : T∗

– Γ2 ` e :!oT.S ê

– and by the induction hypothesis, Γ∗2 ` ê : (!oT.S)∗

– Then by Definition 4, Γ∗2 ` ê :!T∗.S∗

– Case un(T):

– By T-AppGV :

– Γ∗1 + ` send y :!T∗.S∗ → S∗

– and by Definition 5, Γ∗1 ` send y :!T∗.S∗ → S∗

– Again T-AppGV :

– Γ∗1 + Γ∗2 ` send y ê : S∗

– Then by Lemma 2, (Γ1 + Γ2)∗ ` send y ê : S∗

– Case not un(T):

– By T-AppGV :

– Γ∗1 + ` send y :!T∗.S∗(S∗

– and by Definition 5, Γ∗1 ` send y :!T∗.S∗(S∗

– Again T-AppGV :

– Γ∗1 + Γ∗2 ` send y ê : S∗

– Then by Lemma 2, (Γ1 + Γ2)∗ ` send y ê : S∗

THEOREM 3 (Type and size-preserving translation of buffer contents). Let~b be a buffer
with implicits, let Γ be an environment that may contain implicit types, and let ~B be a

type vector that may contain implicit types. If Γ ` ~b : ~B ~̂b, then Γ∗ `LAST
~̂b : ~B∗ and

|~b| = |~̂b|.

Proof. By induction on Γ `~b : ~B ~̂b

• Case Γ ` ε : ε ε

– To show: Γ∗ `LAST ε : ε∗

– or by Definition 5, Γ∗ `LAST ε : ε

– By inversion of T-Empty, un(Γ)

– and by Lemma 5, un(Γ∗)

– By T-EmptyGV , Γ∗ `LAST ε : ε

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 88

– Trivially |ε| = |ε|

• Case Γ1 + Γ2 ` v~b : T~B v̂~̂b

– To show: (Γ1 + Γ2)∗ `LAST v̂~̂b : (T~B)∗

– or by Definition 5, (Γ1 + Γ2)∗ `LAST v̂~̂b : T∗~B∗

– or by Lemma 2, Γ∗1 + Γ∗2 `LAST v̂~̂b : T∗~B∗

– By inversion of T-SeqV,

– Γ1 ` v : T v̂

– and by Theorem 2, Γ∗1 `LAST v̂ : T∗

– Γ2 `~b : ~B ~̂b

– and by the induction hypothesis, Γ∗2 `LAST
~̂b : ~B∗ and |~b| = |~̂b|

– By T-SeqVGV , Γ∗1 + Γ∗2 `LAST v̂~̂b : T∗~B∗

– Since |~b| = |~̂b|, |v| = 1 and |v̂| = 1, then |v~b| = |v̂~̂b|

• Case Γ ` l~b : l~B l~̂b

– To show: Γ∗ `LAST l~̂b : (l~B)∗

– or by Definition 5, Γ∗ `LAST l~̂b : l~B∗

– By inversion of T-SeqL, Γ `~b : ~B ~̂b

– and by the induction hypothesis, Γ∗ `LAST
~̂b : ~B∗ and |~b| = |~̂b|

– By T-SeqLGV , Γ∗ `LAST l~̂b : l~B∗

– Since |~b| = |~̂b| and |l| = 1, then |l~b| = |l~̂b|

LEMMA 8 (Preservation of matching under translation). If ~B mat S then ~B∗ mat S∗

Proof. By induction on ~B mat S.

• Case ε mat S

– To show: ε mat S∗

– Immediate from M-Empty

• Case U~B mat?T.S

– To show: (U~B)∗ mat (?T.S)∗

– or by Definition 5, U∗~B∗ mat (?T.S)∗

– or by Definition 4, U∗~B∗ mat ?T∗.S∗

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 89

– By inversion of M-Out,

– ~B mat S

– and by the induction hypothesis, ~B∗ mat S∗

– U <: T

– and by Lemma 4, U∗ <: T∗

– By M-Out, U∗~B∗ mat ?T∗.S∗

• Case U~B mat?oT.S

– To show: (U~B)∗ mat (?oT.S)∗

– or by Definition 5, U∗~B∗ mat (?oT.S)∗

– or by Definition 4, U∗~B∗ mat ?T∗.S∗

– By inversion of M-Out,

– ~B mat S

– and by the induction hypothesis, ~B∗ mat S∗

– U <: T

– and by Lemma 4, U∗ <: T∗

– By M-Out, U∗~B∗ mat ?T∗.S∗

• Case l~B mat &〈..., l : S, ...〉

– To show: (l~B)∗ mat &〈..., l : S, ...〉∗

– or by Definition 5, l~B∗ mat &〈..., l : S, ...〉∗

– or by Definition 4, l~B∗ mat &〈..., l : S∗, ...〉

– By inversion of M-Case, ~B mat S

– and by the induction hypothesis, ~B∗ mat S∗

– By M-Case, l~B∗ mat &〈..., l : S∗, ...〉

LEMMA 9 (Preservation of session type bounds under translation). bound(S) = bound(S∗)

Proof. Immediate from the definitions of bound(·) and boundLAST(·) in [Gay and Vascon-
celos, 2010].

LEMMA 10 (Preservation of duality under translation). For all sessions S, (S)∗ = S∗.

Proof. By induction on S.

• Case ?T.S

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 90

– To show: (?T.S)∗ = (?T.S)∗

– By Definition 4, (?T.S)∗ = ?T∗.S∗

– By the definition of duality, (!T.S)∗ =!T∗.S∗

– By Definition 4, !T∗.S∗ =!T∗.S∗

– By the induction hypothesis, !T∗.S∗ =!T∗.S∗

• Case !T.S

– To show: (!T.S)∗ = (!T.S)∗

– By Definition 4, (!T.S)∗ = !T∗.S∗

– By the definition of duality, (?T.S)∗ =?T∗.S∗

– By Definition 4, ?T∗.S∗ =?T∗.S∗

– By the induction hypothesis, ?T∗.S∗ =?T∗.S∗

• Case ?oT.S

– To show: (?oT.S)∗ = (?oT.S)∗

– By Definition 4, (?oT.S)∗ = ?T∗.S∗

– By the definition of duality, (!oT.S)∗ =!T∗.S∗

– By Definition 4, !T∗.S∗ =!T∗.S∗

– By the induction hypothesis, !T∗.S∗ =!T∗.S∗

• Case !oT.S

– To show: (!oT.S)∗ = (!oT.S)∗

– By Definition 4, (!oT.S)∗ = !T∗.S∗

– By the definition of duality, (?oT.S)∗ =?T∗.S∗

– By Definition 4, ?T∗.S∗ =?T∗.S∗

– By the induction hypothesis, ?T∗.S∗ =?T∗.S∗

• Case ⊕〈li : Si〉i∈I

– To show: ⊕〈li : Si〉i∈I
∗
= ⊕〈li : Si〉∗i∈I

– By Definition 4, ⊕〈li : Si〉i∈I
∗
= ⊕〈li : S∗i 〉i∈I

– By the definition of duality, &〈li : Si〉∗i∈I = &〈li : S∗i〉i∈I

– By Definition 4, &〈li : S∗i 〉i∈I = &〈li : S∗i〉i∈I

– For all i ∈ I by the induction hypothesis, &〈li : S∗i〉i∈I = &〈li : S∗i〉i∈I

• Case &〈li : Si〉i∈I

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 91

– To show: &〈li : Si〉i∈I
∗
= &〈li : Si〉∗i∈I

– By Definition 4, &〈li : Si〉i∈I
∗
= &〈li : S∗i 〉i∈I

– By the definition of duality, ⊕〈li : Si〉∗i∈I = ⊕〈li : S∗i〉i∈I

– By Definition 4, ⊕〈li : S∗i 〉i∈I = ⊕〈li : S∗i〉i∈I

– For all i ∈ I by the induction hypothesis, ⊕〈li : S∗i〉i∈I = ⊕〈li : S∗i〉i∈I

• Case end

– To show: (end)∗ = end∗

– By Definition 4, (end)∗ = end

– By the definition of duality, end∗ = end

– By Definition 4, end = end

• Case X

– To show: X∗ = X∗

– By Definition 4, X∗ = X

– By the definition of duality, X∗ = X

– By Definition 4, X = X

• Case µX.S

– To show: (µX.S)∗ = (µX.S)∗

– By Definition 4, (µX.S)∗ = µX.S∗

– By the definition of duality, (µX.S)∗ = µX.S∗

– By Definition 4, µX.S∗ = µX.S∗

– By the induction hypothesis, µX.S∗ = µX.S∗

LEMMA 11 (Preservation of postfix under translation). For all sessions and buffers S, ~B,
(S/~B)∗ = S∗/~B∗

Proof. By induction on S, ~B.

• Case S, ε:

– To show: (S/ε)∗ = S∗/ε∗

– By the definition of postfixes, S∗ = S∗/ε∗

– By Definition 5, S∗ = S∗/ε

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 92

– By the definition of postfixes, S∗ = S∗

• Case ?T.S, U~B:

– To show: (?T.S/U~B)∗ = (?T.S)∗/(U~B)∗

– By the definition of postfixes, (S/~B)∗ = (?T.S)∗/(U~B)∗

– By Definition 5, (S/~B)∗ = (?T.S)∗/U∗~B∗

– By Definition 4, (S/~B)∗ =?T∗.S∗/U∗~B∗

– By the definition of postfixes, (S/~B)∗ = S∗/~B∗

– By the induction hypothesis, (S/~B)∗ = (S/~B)∗

• Case ?oT.S, U~B:

– To show: (?oT.S/U~B)∗ = (?oT.S)∗/(U~B)∗

– By the definition of postfixes, (S/~B)∗ = (?oT.S)∗/(U~B)∗

– By Definition 5, (S/~B)∗ = (?oT.S)∗/U∗~B∗

– By Definition 4, (S/~B)∗ =?T∗.S∗/U∗~B∗

– By the definition of postfixes, (S/~B)∗ = S∗/~B∗

– By the induction hypothesis, (S/~B)∗ = (S/~B)∗

• Case &〈..., l : S, ...〉, l~B:

– To show: (&〈..., l : S, ...〉/l~B)∗ = (&〈..., l : S, ...〉)∗/(l~B)∗

– By the definition of postfixes, (S/~B)∗ = (&〈..., l : S, ...〉)∗/(l~B)∗

– By Definition 5, (S/~B)∗ = (&〈..., l : S, ...〉)∗/l~B∗

– By Definition 4, (S/~B)∗ = &〈..., l : S∗, ...〉/l~B∗

– By the definition of postfixes, (S/~B)∗ = S∗/~B∗

– By the induction hypothesis, (S/~B)∗ = (S/~B)∗

THEOREM 4 (Type-preserving translation of configurations). Let C be an configuration
with implicits, and let Γ and ∆ be environments that may contain implicit types. If Γ `
CB ∆ Ĉ, then Γ∗ `LAST ĈB ∆∗.

Proof. By induction on Γ ` CB ∆ Ĉ

• Case Γ ` 〈e〉B∅ 〈ê〉

– To show: Γ∗ `LAST 〈ê〉B ∗

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 93

– By inversion of T-Thread,

– Γ ` e : T ê

– and by the induction hypothesis, Γ∗ `LAST ê : T∗

– un(T)

– and by Lemma 5, un(T∗)

– By T-ThreadGV , Γ∗ `LAST 〈ê〉B ∗

• Case Γ ` c 7→ (d, n,~b)B c : (d, n,~B) c 7→ (d, n,~̂b)

– To show: Γ∗ `LAST c 7→ (d, n,~̂b)B (c : (d, n,~B))∗

– or by Definition 5, Γ∗ `LAST c 7→ (d, n,~̂b)B c : (d, n,~B∗)

– By inversion of T-Buffer, Γ `~b : ~B ~̂b and |~b| ≤ n

– By Theorem 3, Γ∗ `LAST
~̂b : ~B∗ and |~b| = |~̂b|

– and since |~b| ≤ n and |~b| = |~̂b|, |~̂b| ≤ n

– By Theorem 2, Γ∗ ` ~̂b : ~B∗

– By T-BufferGV , Γ∗ `LAST c 7→ (d, n,~̂b)B c : (d, n,~B∗)

• Case Γ ` C1 ‖ C2B ∆ Ĉ1 ‖ Ĉ2

– To show: Γ∗ `LAST Ĉ1 ‖ Ĉ2B ∆∗

– By inversion of T-Par,

– Γ′ = Γ′1 + Γ′2
– ∆′ = ∆1 + ∆2

– Γ′1 ` C1B ∆1 Ĉ1

– Γ′2 ` C2B ∆2 Ĉ2

– ∀c ∈ dom(Γ′)∩ dom(∆′).(∆′(c) = (d, n,~B)⇒ (~B mat Γ′(c) and bound(Γ′(c)) ≤
n))

– ∀c, d ∈ dom(Γ′) ∩ dom(∆′).(∆′(c) = (d, n,~B) and ∆′(d) = (c, n′,~B′) ⇒
Γ′(c)/~B <: Γ′(d)/~B′)

– By the induction hypothesis,

– Γ′∗1 `LAST Ĉ1B ∆∗1
– Γ′∗2 `LAST Ĉ2B ∆∗2

– By Lemma 2,

– Γ′∗ = (Γ′1 + Γ′2)
∗ = Γ′∗1 + Γ′∗2

– Trivially we have ∆′∗ = (∆′1 + ∆′2)
∗ = ∆′∗1 + ∆′∗2

– By Definitions 5 and 4,

Chapter 3. Asynchronous Sessions with Implicit Functions and Messages 94

– c ∈ dom(Γ′) ∩ dom(∆′) and ∆′(c) = (d, n,~B)⇒
c ∈ dom(Γ′∗) ∩ dom(∆′∗) and ∆′∗(c) = (d, n,~B∗)

– then by Lemmas 8 and 9,
∀c ∈ dom(Γ′∗) ∩ dom(∆′∗).(∆′∗(c) = (d, n,~B∗)⇒
(~B∗ mat Γ′(c)∗ and bound(Γ′(c)∗) ≤ n))

– From the definitions.

– ∀c, d ∈ dom(Γ′∗) ∩ dom(∆′∗).
(∆′∗(c) = (d, n,~B∗) and
∆′∗(d) = (c, n′,~B′∗)⇒ Γ′∗(c)/~B∗ � Γ′∗(d)/~B′∗)

– From the definitions.

• Case Γ ` (νc1c2)CB ∆ (νc1c2)Ĉ

– To show: Γ∗ `LAST (νc1c2)ĈB ∆∗

– By inversion of T-New,
Γ + c1 : S1 + c2 : S2 ` CB ∆ + c1 : (c2, n1,~B1) + c2 : (c1, n2,~B2) Ĉ

– By the induction hypothesis,
(Γ + c1 : S1 + c2 : S2)∗ ` ĈB (∆ + c1 : (c2, n1,~B1) + c2 : (c1, n2,~B2))∗

– By Definition 5,
Γ∗ + c1 : S∗1 + c2 : S∗2 ` ĈB ∆∗ + c1 : (c2, n1,~B1)

∗ + c2 : (c1, n2,~B2)∗

– By Definition 5,
Γ∗ + c1 : S∗1 + c2 : S∗2 ` ĈB ∆∗ + c1 : (c2, n1,~B∗1) + c2 : (c1, n2,~B∗2)

– By T-NewGV , Γ∗ `LAST (νc1c2)ĈB ∆∗

3.7 Conclusion

In this chapter we introduced IM, the first programming language with implicit mes-
sages. We have seen that implicit messages facilitate concurrent versions of the typical
usage patterns of implicit functions in sequential languages. We have also presented a
novel solution to the repeated rebinding problem of linear languages that leverages im-
plicit functions.

IM demonstrates implicit functions and messages in the context of the concurrent
functional language LAST, showing the benefits that implicit program constructs offer
concurrent programming languages. LAST includes features not necessary for implicit
messages, such as lambda abstraction and subtyping. In the next chapter we will study
implicit messages in a simpler context: pi calculus. This simpler setting affords a clearer
presentation of the idea of implicit messages.

95

Chapter 4

Pi Calculus with Implicit Messages

4.1 Introduction

This chapter introduces the calculus PIIM, a calculus that adds implicit messages to PLST
[Giunti and Vasconcelos, 2013]. This formulation shows that implicit messages are pos-
sible without implicit functions, and that implicit messages are possible in pi calculi as
well as concurrent lambda calculi. PLST (introduced in this thesis in section 2.4.8) is, like
LAST, typed with binary session types, and therefore so is PIIM. Like IM, PIIM uses ses-
sion type information to identify source locations where an implicit message is required
to uphold duality between communicating processes. As with IM to LAST, PIIM derives
its semantics by translation to PLST, in which implicit messages are converted to standard
message exchanges. PIIM is proved type-safe via this translation.

4.1.1 Outline

Section 4.2 introduces PIIM with an example, section 4.3 introduces the syntax of PIIM,
section 4.4 discusses typing and translation of PIIM to PLST, and section 4.5 covers our
proof of the type safety of PIIM.

4.2 PIIM - An Example

Below is a PLST program akin to the example given in section 3.2.3, showing dependency
injection for concurrent processes. The process Manager handles requests, e.g. http re-
quests, on the channel manager, receiving first a private channel s over which communi-
cation with a single client can proceed. The client then delivers contextual information
(bound to the variable ctx) over s to the manager, and based on that contextual informa-
tion, the manager decides if it will handle the request in one of two ways - by delegating
the handling of the request to either Handler1 or Handler2. It decides which handler to
call based on some predicate pred : CtxT → bool, whose details are unimportant. In
either case, the manager creates a new channel (h1 or h2) to communicate with one of the

Chapter 4. Pi Calculus with Implicit Messages 96

handlers, and sends the chosen handler a request, passing the new channel to the han-
dler for private communication between the manager and the handler. The manager then
passes the context to the handler, this being the dependency injection part of the proto-
col. After some computation abstracted by the action doHandling1 or doHandling2, the
handler sends the result back to the manager on h1 or h2, which the manager forwards
on to its client over s.

Manager = !manager(s).s(ctx).if pred(ctx)
then (νh1)handler1〈h1〉.h1〈ctx〉.h1(result).s〈result〉
else (νh2)handler2〈h2〉.h2〈ctx〉.h2(result).s〈result〉

Handler1 = !handler1(h1).h1(ctx).doHandling1.h1〈result〉
Handler2 = !handler2(h2).h2(ctx).doHandling2.h2〈result〉

The session type for the handler channels h1 and h2 are shown below, where CtxT is the
type of the passed contextual information, and ResultT the type of the result computed
by the handler:

h1, h2 : lin?CtxT.lin!ResultT.end

We can use implicit messages to handle the passing of context. The next example is a new
version of the previous example, rewritten to use implicit messages to pass the context
from the manager to the handlers. The handler’s input operation for the context pass is
annotated with the symbol o, indicating implicit input. The corresponding output in the
manager is omitted.

Manager = !manager(s).s(ctx).if pred(ctx)
then (νh1)handler1〈h1〉.h1(result).s〈result〉
else (νh2)handler2〈h2〉.h2(result).s〈result〉

Handler1 = !handler1(h1).h1(ctx)o.doHandling1.h1〈result〉
Handler2 = !handler2(h2).h2(ctx)o.doHandling2.h2〈result〉

The new types of h1 and h2, shown below, are modified only in that their input of type
CtxT is now implicit.

h1, h2 : lin?oCtxT.lin!ResultT.end

PIIM’s type system is able to use this type information to rectify the apparent mismatch
between the protocols on the manager’s side and on the handler’s side - the implicit
receive operation communicates that a corresponding send operation must be inserted
into the partner’s protocol. When implicits are translated away, we are left with the
original example.

Chapter 4. Pi Calculus with Implicit Messages 97

4.3 The language PIIM

4.3.1 Syntax

As PIIM is an extension of PLST, it has very similar abstract syntax, differing only in the
addition of implicit input d(d)o.P. PIIM differs from PLST in the treatment of names -
there are three base sets of names: explicit names, ranged over with x, x′, ..., which are
standard variable names used for non-implicit variables; implicit names ranged over with
y, y′, ..., which are variable names that replace implicit queries o, not appearing in source
programs, but only in their translations (PLST programs); and finally the singleton set
containing the implicit query o, which refers to all implicitly bound values. We then
range over the union of the sets of implicit and explicit names, not including the implicit
query, with z, z′, ..., and we range over all names including implicit query with d, d′. We
range over processes with P, Q, ... and values with v, v′,

The grammar of PIIM terms is given in figure 4.1. In this and following figures in this
chapter, we highlight PIIM’s additions to PLST in red.

Our precise treatment of variable names allows us to express many different be-
haviours involving implicit variables with a minimal grammar. Using d, d′, ... for the
variable in restriction allows a fresh channel to be an implicitly bound value, and as the
binder in implicit input, it allows a received channel to be bound implicitly. Naturally
message contents are allowed to be implicitly bound values and so are also ranged over
with d, d′,

P, Q ::= P | Q Parallel composition∣∣ d(d).P Input∣∣ dv.P Output∣∣ (νd)P Restriction∣∣ if v then P else Q Conditional∣∣ 0 Inaction∣∣ d(d)o.P Implicit input
v ::= true

∣∣ false Boolean constants∣∣ x Names∣∣ o Implicit query

FIGURE 4.1: Grammar of PIIM

4.3.2 Semantics

The semantics of PIIM, like IM to LAST, are given by first translating into PLST. Semantics
of PLST are standard pi calculus semantics, which are given in figure 2.17, and extended

Chapter 4. Pi Calculus with Implicit Messages 98

with standard rules for booleans: if b then P else Q reduces to P when b is true, and
otherwise to Q.

4.4 Typing for PIIM

4.4.1 Types

As with PIIM’s term syntax, we add very little to PLST’s type syntax. We add only two
new session types, ?oT.S for implicit input and !oT.S for implicit output.

Figure 4.2 shows the grammar of types in PIIM. Note that as with IM, we consider
only tail-recursive session types.

End point types:
S ::= q p Qualified end point∣∣ end Used end point∣∣ a Type variable∣∣ µa.S Recursive end point

Pre-end point types:
p ::= !T.S Output∣∣ ?T.S Input∣∣ !oT.S Implicit output∣∣ ?oT.S Implicit input

Types:
T ::= bool Boolean∣∣ (S, S) Channel

Qualifiers:
q ::= lin Linear∣∣ un Unrestricted

Contexts:
Γ ::= Empty context∣∣ Γ, z : T Variable binding

FIGURE 4.2: Grammar of types in PIIM

We extend PLST’s notion of a session type’s dual, here written written S, the type of
a term that can safely interact with a term of type S. We define duality inductively on
the syntax of types, extending PLST’s definition to include implicit input and implicit
output, which are each other’s dual. The full definition is given in figure 4.3.

!S.α = ?S.α
?S.α = !S.α

!oS.α = ?oS.α
?oS.α = !oS.α

µt.α = µt.α
t = t

end = end

FIGURE 4.3: Type duality in PIIM

We define the unrestricted predicate un over types, end point types, and contexts. A
type T or S is unrestricted, written un(T) or un(S), if the variable inhabiting it is used

Chapter 4. Pi Calculus with Implicit Messages 99

more than once - that is to say that it is not linear. This concept comes from LLC and
PLST, introduced in sections 2.3.7 and 2.4.8.

End point types are unrestricted if they are end, or if they are declared unlimited, i.e.
unp. Booleans are unlimited, as are channel types again if declared as such. The full
definition of un for PIIM is given below:

DEFINITION 6 (The un predicate). For end point types S, un(S) holds in the cases:

un(end) un(un p) un(µa.S) if un(S)

For types T, un(T) holds in the cases:

un(bool) un((S, S)) if un(S), un(S)

We extend the definition of un pointwise to environments Γ.

Again, PLST imports a concept from linear lambda calculus - type splitting (see section
2.3.7). Type splitting rules ensure that only unrestricted variables are copied arbitrarily
in typing contexts. Copying linear variables is not allowed and thus it is ensured that the
use of a single linear variable twice is not typable. The splitting rules for PIIM types, end
points and contexts are given in figure 4.4.

The split of a session type S is S ◦ end or end ◦ S, meaning that if a channel variable
appears in two contexts, in one of those contexts it will have type end and therefore not
be usable, but in the other will have type S and be usable according to its session type,
thus protocol violations are prevented. Unrestricted session types are copied arbitrarily,
as are booleans. Dual session type pairs are split inductively, as are contexts.

We define the addition + on two contexts:

DEFINITION 7 (The + operation on contexts). We define the partial operation + as fol-
lows:

(Γ, z : T1) + (z : T2) = Γ, z : T1 ◦ T2

4.4.2 Typing rules

Typing judgements in PIIM come in three forms, one for values v, one for processes P,
and binding judgements, explained below. Judgements for values are of the form Γ ` v :
T v̂, meaning that under assumptions Γ, the value v has type T and is translated to the
PLST term v̂. Judgements for processes are of the form Γ ` P P̂, meaning that under
assumptions Γ, the process P is well-typed and is translated to the PLST term P̂.

The typing rules for PIIM are given in figure 4.5. Rules [T-TRUE], [T-FALSE], [T-
EXVAR], [T-INACT], [T-PAR], [T-REPL], [T-IF], [T-PAR] and [T-RES] are standard, all

Chapter 4. Pi Calculus with Implicit Messages 100

End point type splitting rules

S = S ◦ end S = end ◦ S un p = un p ◦ un p

Type splitting rules

bool = bool◦bool R = R1 ◦ R2 S = S1 ◦ S2

(R, S) = (R1, S1) ◦ (R2, S2)

Context splitting rules

∅ = ∅ ◦∅
Γ = Γ1 ◦ Γ2 T = T1 ◦ T2

Γ, z : T = (Γ1, z : T1) ◦ (Γ2, z : T2)

Γ = Γ1 ◦ Γ2 T = T2 ◦ T1

Γ, z : T = (Γ1, z : T1) ◦ (Γ2, z : T2)

FIGURE 4.4: Type splitting rules

translations being simple homomorphisms. The rule [T-IMVAR] is equivalent to IM’s
rule [T-QUERY], checking the linearity constraints on Γ and choosing from Γ an implicit
variable y to replace the implicit query o.

Binding judgements are two-place judgements of the form d z. Every time a binder
is encountered in the typing system, a binding rule will decide if that binder should be
replaced with a fresh variable name (in the case that the binder is the implicit query o) or
left unchanged. We allow use of o as a binder in several places, for example in binding
an input action d(o).P. PIIM has two binding rules - [T-IMBIND] generates a fresh name
in such a case, and occurrences of the implicit query to be resolved to the variable there
bound are replaced with the variable generated by the binding rule. The rule [T-EXBIND]
leaves explicit variable bindings unchanged.

The final 8 rules whose names are given by the regular expression
[T-(IM|EX)(IN|OUT)(L|R)] type communication actions for both implicit and explicit
communication, and input and output, and come in left- and right-hand pairs. Rules for
input ([T-EXINL], [T-EXINR], [T-IMINL], [T-IMINR]) split the conclusion context to type
the communication channel and continuation process separately. The typing of the con-
tinuation adds the new binding, which in the implicit versions is accompanied a binding
judgement to choose a new name for the binder should it be o. The output rules ([T-
EXOUTL], [T-EXOUTR], [T-IMOUTL], [T-IMOUTR]) are similar, except that the conclu-
sion context is split into three, to type the communication channel, continuation process
and message contents. If the message content is a linear channel end point, the type
splitting rules ensure that in the typing of the continuation process, the channel has type
end and therefore cannot be communicated over, as it will have been delegated to the

Chapter 4. Pi Calculus with Implicit Messages 101

communication partner.

4.4.3 Ambiguity

Like IM, PIIM implicit resolution has two sources of ambiguity: the choice of implicit
variable, and the sequencing of multiple adjacent implicit communication actions, illus-
trated by the example in section 3.5.1. The same heuristics for resolving this ambiguity
in IM are applicable to PIIM.

4.5 Type safety of PIIM

As with IM and LAST, we show type safety of PIIM by translation into PLST. We begin
with a translation of PIIM types into PLST, written T∗, S∗. We then show that if a term
is typable in PIIM, i.e. if Γ ` P P̂, then the translation of the term is typable in PLST
with types translated, which we write Γ∗ `./ P̂. We prove some intermediate lemmas to
support this theorem. Note that where we refer to PLST typing rules, we use a subscript
./, e.g. [T-INACT]./. PIIM typing rules are not annotated, so [T-INACT] refers to PIIM’s
rule.

DEFINITION 8 (Translation of types). We define the function (•)∗, which translates PIIM
types into PLST types by erasing occurrences of o.

bool∗ = bool

(S1, S2)
∗ = (S∗1 , S∗2)

end∗ = end

a∗ = a

(µa.S)∗ = µa.S∗

(q?T.S)∗ = q?T∗.S∗

(q!T.S)∗ = q!T∗.S∗

(q?oT.S)∗ = q?T∗.S∗

(q!oT.S)∗ = q!T∗.S∗

We extend the definition of (•)∗ pointwise to environments Γ.

LEMMA 12 (Preservation of un under translation). If un(T), then un(T∗). Likewise, if
un(S), then un(S∗). Finally, if un(Γ), then un(Γ∗).

Proof. Trivially by inductions on un(T) and un(S) applying definition 8. The result holds
for un(Γ) by pointwise extension.

THEOREM 5 (Type-preserving translation of values). Let Γ be a PIIM environment, v a
PIIM value and T a PIIM type. If Γ ` v : T v̂ then Γ∗ `./ v̂ : T∗

Proof. By induction on typing derivations Γ ` v : T v̂.

Chapter 4. Pi Calculus with Implicit Messages 102

• Case Γ ` true : bool true

– We need to show Γ∗ `./ true : bool∗, or by definition 8, Γ∗ `./ true : bool

– By inversion of [T-TRUE] we have un(Γ), and then by lemma 12, un(Γ∗)

– Finally by [T-TRUE]./, the goal Γ∗ `./ true : bool holds.

• Case Γ ` false : bool false – as above.

• Case Γ, x : T ` x : T x

– We need to show (Γ, x : T)∗ `./ x : T∗, or by definition 8, Γ∗, x : T∗ `./ x : T∗

– By inversion of [T-EXVAR] we have un(Γ), and then by lemma 12, un(Γ∗)

– Finally by [T-VAR]./, the goal Γ∗, x : T∗ `./ x : T∗ holds.

• Case Γ, y : T ` o : T y

– We need to show (Γ, y : T)∗ `./ y : T∗, or by definition 8, Γ∗, y : T∗ `./ y : T∗

– By inversion of [T-IMVAR] we have un(Γ), and then by lemma 12, un(Γ∗)

– Finally by [T-VAR]./, the goal Γ∗, y : T∗ `./ y : T∗ holds.

LEMMA 13 (Preservation of type splitting under translation). For types T1 and T2, (T1 ◦
T2)∗ = T∗1 ◦ T∗2 . Likewise for endpoints S1 and S2, (S1 ◦ S2)∗ = S∗1 ◦ S∗2 . Finally for
environments Γ1 and Γ2, (Γ1 ◦ Γ2)∗ = Γ∗1 ◦ Γ∗2 .

Proof. By induction on derivations of the form S = S1 ◦ S2, T = T1 ◦ T2 and Γ = Γ1 ◦ Γ2

• Case S = S ◦ end

– The rule S = S ◦ end implies S∗ = S∗ ◦ end. By definition 8, end∗ = end.
Therefore S∗ = S∗ ◦ end∗ = (S ◦ end)∗.

• Case S = end ◦ S

– Similar to the above case.

• Case un p = un p ◦ un p

– By definition 8, (un p)∗ = un p∗. Therefore the rule un p = un p ◦ un p implies
un p∗ = un p∗ ◦ un p∗ = (un p ◦ un p)∗

• Case bool = bool ◦ bool

– By definition 8, bool∗ = bool. Therefore the rule bool = bool ◦ bool implies
bool∗ = bool∗ ◦ bool∗ = (bool ◦ bool)∗

Chapter 4. Pi Calculus with Implicit Messages 103

• Case (R, S) = (R1, S1) ◦ (R2, S2)

– By inversion, R = R1 ◦ R2 and S = S1 ◦ S2, and by induction, R∗ = R∗1 ◦
R∗2 and S∗ = S∗1 ◦ S∗2 . The rule for channel type splitting implies (R∗, S∗) =

(R∗1 , S∗1) ◦ (R∗2 , S∗2), and finally by definition 8, (R, S)∗ = (R1, S1)
∗ ◦ (R2, S2)∗ =

((R1, S1) ◦ (R2, S2))∗.

• Case = ◦

– By definition 8, ∗ = . Therefore the rule = ◦ implies ∗ = ∗ ◦ ∗ = (◦)∗

• Case Γ, x : T = (Γ1, x : T1) ◦ (Γ2, x : T2)

– By inversion, Γ = Γ1 ◦ Γ2, and either T = T1 ◦ T2 or T = T2 ◦ T1. By induction,
Γ∗ = Γ∗1 ◦ Γ∗2 , and either T∗ = T∗1 ◦ T∗2 or T∗ = T∗2 ◦ T∗1 . Then by either context
splitting rule (depending on the split of T), Γ∗, x : T∗ = (Γ∗1 , x : T∗1) ◦ (Γ∗2 , x :
T∗2). Finally by definition 8, (Γ, x : T)∗ = (Γ1, x : T1)

∗ ◦ (Γ2, x : T2)∗ = ((Γ1, x :
T1) ◦ (Γ2, x : T2))∗.

LEMMA 14 (Preservation of context addition under translation). If Γ = Γ1 + Γ2 then
Γ∗ = Γ∗1 + Γ∗2 .

Proof. Follows from definition 7 and lemma 13.

LEMMA 15 (Preservation of duality under translation). If S = S′ then S∗ = S′∗

Proof. A routine induction on S∗ = (S′)∗ shows that reducing (•)∗ yields dual types in
all cases.

THEOREM 6 (Type-preserving translation of processes). Let Γ be a PIIM environment and
P a PIIM process. If Γ ` P P̂ then Γ∗ `./ P̂

Proof. By induction on typing derivations Γ ` P P̂.

• Case Γ ` 0 0

– We need to show Γ∗ `./ 0

– By inversion of [T-INACT] we have un(Γ), and then by lemma 12, un(Γ∗)

– Finally by [T-INACT]./, the goal Γ∗ `./ 0 holds.

• Case Γ1 ◦ Γ2 ` P | Q P̂ | Q̂

– We need to show (Γ1 ◦ Γ2)∗ `./ P̂ | Q̂, or by lemma 13, Γ∗1 ◦ Γ∗2 `./ P̂ | Q̂

– By inversion of [T-PAR], we have Γ1 ` P P̂ and Γ2 ` Q Q̂

Chapter 4. Pi Calculus with Implicit Messages 104

– By the induction hypothesis, Γ∗1 `./ P̂ and Γ∗2 `./ Q̂

– Finally by [T-PAR]./, the goal Γ∗1 ◦ Γ∗2 `./ P̂ | Q̂ holds.

• Case Γ `!P !P̂

– We need to show Γ∗ `./!P̂

– By inversion of [T-REPL], we have:

– Γ ` P P̂, and then by the induction hypothesis, Γ∗ `./ P̂

– un(Γ), and then by lemma 12, un(Γ∗)

– Finally by [T-REPL]./, the goal Γ∗ `./!P̂ holds.

• Case Γ1 ◦ Γ2 ` if v then P else Q if v̂ then P̂ else Q̂

– We need to show (Γ1 ◦ Γ2)∗ `./ if ê then P̂ else Q̂, or by lemma 13, Γ∗1 ◦ Γ∗2 `./
if ê then P̂ else Q̂

– By inversion of [T-IF], we have:

– Γ1 ` v : bool v̂, and by theorem 5, Γ∗1 `./ v̂ : bool∗, and then by
definition 8, Γ∗1 `./ v̂ : bool

– Γ2 ` P P̂, and by the induction hypothesis, Γ∗2 `./ P̂

– Γ2 ` Q Q̂, and by the induction hypothesis, Γ∗2 `./ Q̂

– Finally by [T-IF]./, the goal Γ∗1 ◦ Γ∗2 `./ if ê then P̂ else Q̂ holds.

• Case Γ ` (νd)P (νz)P̂

– We need to show Γ∗ `./ (νz)P̂

– By inversion of [T-RES], we have:

– d z

– Γ, z : (S, S) ` P P̂, and by the induction hypothesis, (Γ, z : (S, S))∗ `./
P̂

– By definition 8 and lemma 15, Γ∗, z : (S∗, S∗) `./ P̂

– Finally by [T-RES]./, the goal Γ∗ `./ (νz)P̂ holds.

• Case Γ1 ◦ Γ2 ` d(d′).P z(z′).P̂

– We need to show (Γ1 ◦ Γ2)∗ `./ z(z′).P̂, or by lemma 13, Γ∗1 ◦ Γ∗2 `./ z(z′).P̂

– By inversion of [T-EXINL] (we could also apply inversion on [T-EXINR], and
the resulting case is similar):

– Γ1 ` d : (q?T.S, S′) z

– By theorem 5, Γ∗1 `./ z : (q?T.S, S′)∗

Chapter 4. Pi Calculus with Implicit Messages 105

– By definition 8, Γ∗1 `./ z : (q?T∗.S∗, S′∗)

– (Γ2 + z : (S, S′)), z′ : T ` P P̂

– By the induction hypothesis, ((Γ2 + z : (S, S′)), z′ : T)∗ `./ P̂

– By definition 8 and lemma 14, (Γ∗2 + z : (S∗, S′∗)), z′ : T∗ `./ P̂

– d′ z′

– q = un⇒ q?T.S = S

– Finally by [T-INL]./, the goal Γ∗1 ◦ Γ∗2 `./ z(z′).P̂ holds.

• Case Γ1 ◦ Γ2 ◦ Γ3 ` dv.P zv̂.P̂

– We need to show (Γ1 ◦ Γ2 ◦ Γ3)∗ `./ zv̂.P̂, or by lemma 13, Γ∗1 ◦ Γ∗2 ◦ Γ∗3 `./ zv̂.P̂

– By inversion of [T-EXOUTL] (we could also apply inversion on [T-EXOUTR],
and the resulting case is similar):

– Γ1 ` d : (q!T.S, S′) z

– By lemma 5, Γ∗1 `./ z : (q!T.S, S′)∗

– By definition 8, Γ∗1 `./ z : (q!T∗.S∗, S′∗)

– Γ2 ` v : T v̂

– By lemma 5, Γ∗2 `./ v̂ : T∗

– Γ3 + d : (S, S′) ` P P̂

– By the induction hypothesis, (Γ3 + d : (S, S′))∗ `./ P̂

– By definition 8 and lemma 14, Γ∗3 + d : (S∗, S′∗) `./ P̂

– q = un⇒ q!T.S = S

– Finally by [T-OUTL]./, the goal Γ∗1 ◦ Γ∗2 ◦ Γ∗3 `./ zv̂.P̂ holds.

• Case Γ1 ◦ Γ2 ` d(d′)o.P z(z′).P̂

– We need to show (Γ1 ◦ Γ2)∗ `./ z(z′).P̂, or by lemma 13, Γ∗1 ◦ Γ∗2 `./ z(z′).P̂

– By inversion of [T-IMINL] (we could also apply inversion on [T-IMINR], and
the resulting case is similar):

– Γ1 ` d : (q?oT.S, S′) z

– By theorem 5, Γ∗1 `./ z : (q?oT.S, S′)∗

– By definition 8, Γ∗1 `./ z : (q?T∗.S∗, S′∗)

– (Γ2 + z : (S, S′)), z′ : T ` P P̂

– By the induction hypothesis, ((Γ2 + z : (S, S′)), z′ : T)∗ `./ P̂

– By definition 8 and lemma 14, (Γ∗2 + z : (S∗, S′∗)), z′ : T∗ `./ P̂

– d′ z′

– q = un⇒ q?oT.S = S

Chapter 4. Pi Calculus with Implicit Messages 106

– By definition 8, q?oT.S = S⇒ (q?oT.S)∗ = q?T∗.S∗ = S∗

– Therefore q = un⇒ q?T∗.S∗ = S∗

– Finally by [T-INL]./, the goal Γ∗1 ◦ Γ∗2 `./ z(z′).P̂ holds.

• Case Γ1 ◦ Γ2 ◦ Γ3 ` P zy.P̂

– We need to show (Γ1 ◦ Γ2 ◦ Γ3)∗ `./ zy.P̂, or by definition 8 and lemma 13,
Γ∗1 ◦ Γ∗2 ◦ Γ∗3 `./ zy.P̂

– By inversion of [T-IMOUTL] (we could also apply inversion on [T-IMOUTR],
and the resulting case is similar):

– Γ1 ` d : (q!oT.S, S′) z

– By lemma 5, Γ∗1 `./ z : (q!oT.S, S′)∗

– By definition 8, Γ∗1 `./ z : (q!oT∗.S∗, S′∗)

– Γ2 ` o : T y

– By lemma 5, Γ∗2 `./ y : T∗

– Γ3 + z : (S, S′) ` P P̂

– By the induction hypothesis, (Γ3 + z : (S, S′))∗ `./ P̂

– By definition 8 and lemma 14, Γ∗3 + z : (S∗, S′∗) `./ P̂

– q = un⇒ q!oT.S = S

– By definition 8, q!oT.S = S⇒ (q!oT.S)∗ = q!T∗.S∗ = S∗

– Therefore q = un⇒ q!T∗.S∗ = S∗

– Finally by [T-OUTL]./, the goal Γ∗1 ◦ Γ∗2 ◦ Γ∗3 `./ zy.P̂ holds.

4.6 Conclusion

PIIM offers an opportunity to focus on our novel programming language construct, im-
plicit messages, in a reduced setting, without mixing in other constructs that already exist
in other languages, such as implicit functions. PIIM is an ideal calculus for those wishing
to study theoretical aspects of implicit messages, without being bothered by unrelated
concepts such as lambda calculus - IM is a more realistic programming language, a basis
for an implementation. The soundness result for PIIM, following the same approach as
IM, shows the robustness of IM’s translation based approach.

In the next chapter, we demonstrate that implicit messages are not limited to commu-
nication between two partners, but can be integrated into the multi-party conversations
of multi-party session types.

Chapter 4. Pi Calculus with Implicit Messages 107

un(Γ)
Γ ` true : bool true

[T-TRUE]
un(Γ)

Γ ` false : bool false
[T-FALSE]

un(Γ)
Γ, x : T ` x : T x

[T-EXVAR]
un(Γ)

Γ, y : T ` o : T y
[T-IMVAR]

x x [T-EXBIND]
y fresh
o y

[T-IMBIND]

un(Γ)
Γ ` 0 0

[T-INACT]
Γ1 ` P P̂ Γ2 ` Q Q̂

Γ1 ◦ Γ2 ` P | Q P̂ | Q̂
[T-PAR]

Γ ` P P̂ un(Γ)

Γ `!P !P̂
[T-REPL]

Γ1 ` v : bool v̂ Γ2 ` P P̂ Γ2 ` Q Q̂

Γ1 ◦ Γ2 ` if v then P else Q if v̂ then P̂ else Q̂
[T-IF]

Γ, z : (S, S) ` P P̂ d z

Γ ` (νd)P (νz)P̂
[T-RES]

Γ1 ` d : (q?T.S, S′) z d′ z′

(Γ2 + z : (S, S′)), z′ : T ` P P̂ q = un⇒ q?T.S = S

Γ1 ◦ Γ2 ` d(d′).P z(z′).P̂
[T-EXINL]

Γ1 ` d : (S′, q?T.S) z d′ z′

(Γ2 + z : (S′, S)), z′ : T ` P P̂ q = un⇒ q?T.S = S

Γ1 ◦ Γ2 ` d(d′).P z(z′).P̂
[T-EXINR]

Γ1 ` d : (q!T.S, S′) z
Γ2 ` v : T v̂ Γ3 + d : (S, S′) ` P P̂ q = un⇒ q!T.S = S

Γ1 ◦ Γ2 ◦ Γ3 ` dv.P zv̂.P̂
[T-EXOUTL]

Γ1 ` d : (S′, q!T.S) z
Γ2 ` v : T v̂ Γ3 + d : (S′, S) ` P P̂ q = un⇒ q!T.S = S

Γ1 ◦ Γ2 ◦ Γ3 ` dv.P zv̂.P̂
[T-EXOUTR]

Γ1 ` d : (q?oT.S, S′) z d′ z′

(Γ2 + z : (S, S′)), z′ : T ` P P̂ q = un⇒ q?oT.S = S

Γ1 ◦ Γ2 ` d(d′)o.P z(z′).P̂
[T-IMINL]

Γ1 ` d : (S′, q?oT.S) z d′ z′

(Γ2 + z : (S′, S)), z′ : T ` P P̂ q = un⇒ q?oT.S = S

Γ1 ◦ Γ2 ` d(d′)o.P z(z′).P̂
[T-IMINR]

Γ1 ` d : (q!oT.S, S′) z
Γ2 ` o : T y Γ3 + z : (S, S′) ` P P̂ q = un⇒ q!oT.S = S

Γ1 ◦ Γ2 ◦ Γ3 ` P zy.P̂
[T-IMOUTL]

Γ1 ` d : (S′, q!oT.S) z
Γ2 ` o : T y Γ3 + z : (S′, S) ` P P̂ q = un⇒ q!oT.S = S

Γ1 ◦ Γ2 ◦ Γ3 ` P zy.P̂
[T-IMOUTR]

FIGURE 4.5: Typing system for PIIM

108

Chapter 5

Multiparty Asynchronous Sessions
with Implicit Messages1

5.1 Introduction

In this chapter we introduce a multiparty session-typed pi calculus with implicit mes-
sages. We call the language MultiParty Implicit Messages (MPIM). As with IM and PIIM,
we give meaning to MPIM programs by a type-directed translation to a base calculus.
Our base calculus for MPIM is the multiparty session-typed pi calculus of [Coppo et al.,
2015]. We term this base calculus MPST. We make one minor simplification to MPST
in our usage of it as the base calculus here: we disallow multicast output. Disallowing
multicast output allows us to make several inconsequential syntactic simplifications that
aid in brevity. Since the resulting calculus with this simplification is a subset of the full
calculus with multicast output, all the soundness results that we depend on still hold.

Multiparty session-typed pi calculus is a model of computation based purely on mes-
sage passing, unlike LAST which is based on the lambda calculus. As such, the following
formulation includes only implicit messages, and, like PIIM, omits implicit functions,
which are not applicable in a language without lambda abstractions.

This formulation of implicit messages in a third setting further demonstrates the
broad applicability of implicit messages to message-passing forms of computation, and
further shows the robustness of the translation-based approach.

The example uses of implicit messages sketched in section 3.2 are applicable in MPIM
as well as IM. MPIM allows for more flexibility in the use of implicit messages – for
example, a process can interleave communication with a type class server and a third
participant, which is not possible in IM (without sacrificing deadlock freedom).

1This chapter is adapted from and [Jeffery and Berger, 2019], a published paper co-authored with my
supervisor, Dr. Martin BERGER. The sections of the paper that this chapter draws from are entirely original
work.

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 109

5.2 MPIM - An Example

We now show an example MPIM protocol. In this simple protocol are four participants
- participant 4 initiates the session and sends a message x of type α to participant 1.
Participant 1 then implicitly passes x onto 2, who then implicitly passes it onto 3, who
then passes it onto 4 explicitly. This protocol is captured by the global session type:

4→ 1 : 〈α〉.1→ 2 :o〈α〉.2→ 3 :o〈α〉.3→ 4 : 〈α〉.end

Note the o annotations on the implicit communication operations. An implementation of
this protocol is shown below. Note that there are missing output operations in partici-
pants 1 and 2 – they are omitted since they are implicit. All communication occurs over
the channel a bound with the same name in each participant process.

pingpong[1](a).a?(4, o).0 |

pingpong[2](a).a?o(1, o).0 |

pingpong[3](a).a?o(2, o).a!〈4, o〉.0 |

pingpong[4](a).a!〈2, x〉.a?(3, x).0

The above implementation is translated to the following. The implicit outputs have been
made explicit, and the implicit queries have been resolved to normal variables.

pingpong[1](a).a?(4, y).a!〈2, y〉.0 |

pingpong[2](a).a?(1, y)a!〈3, y〉.0 |

pingpong[3](a).a?(2, y).a!〈4, y〉.0 |

pingpong[4](a).a!〈2, x〉.a?(3, x).0

The translated type for the above is given below – it matches the previous type except
that the implicit annotations are removed.

4→ 1 : 〈α〉.1→ 2 : 〈α〉.2→ 3 : 〈α〉.3→ 4 : 〈α〉.end

5.3 The language MPIM

5.3.1 Syntax

The grammar of MPIM is given in Figure 5.1. Note that x, y in P can also be o. We extend
MPST with four new syntactic constructs. The first, implicit value reception, written
c?o(p, x).P, can be read “on channel c, implicitly receive a value from participant p, and
bind it to the name x, then perform actions P”. The second, implicit channel reception,

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 110

written c?o((q, x)).P is similar, except that a channel is received as opposed to a value.
The third, implicit channel hiding, written (νo)P, creates a fresh channel whose scope
is P, accessible via an implicit query o. Finally, to the grammar of expressions, we add
the implicit query o, whose behaviour is the same as in the languages IM and PIIM. As
previously, we highlight MPIM’s additions to MPST in red.

P ::= c?o(p, x).P Implicit Value Reception
| c?o((p, x)).P Implicit Channel Reception
| (νo)P Implicit Channel Hiding
| c?(p, x).P Value Reception
| c?((q, x)).P Channel Reception
| (νa)P Channel Hiding
| c!〈p, x〉.P Value Sending
| c!〈〈p, c′〉〉.P Channel Sending
| c⊕ 〈p, l〉.P Selection
| c&(p, {li : Pi}i∈I) Branching
| P | Q Parallel composition
| if e then P else Q Conditional
| u[p](y).P Multicast request
| u[p](y).P Accept
| def D in P Recursion
| X〈e, c〉 Process call
| 0 Inaction

D ::= X(x, y) = P Declaration

e ::= x | y Variable
| true | false Boolean expression
| e and e′

| not e

x, y ::= o Implicit variable
| a Explicit variable

FIGURE 5.1: Grammar of MPIM terms

5.3.2 Semantics

Unlike LAST, which has a single syntax definition, MPST has notions of programmer syn-
tax and runtime syntax. The programmer syntax is intended to provide all constructs a
programmer would need to write programs in MPST, and the runtime syntax, a super-
set of the programmer syntax, adds constructs like communication buffers needed only
for program execution, that a programmer would not need, but are necessary to define

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 111

sensible asynchronous semantics. We define the runtime syntax (which is an extension
of the syntax defined in figure 5.1 minus the additions of MPIM to MPST) in figure 5.2. 2

As we derive semantics for IM by translation to LAST, we derive semantics for MPIM
by translation to MPST, leveraging MPST’s semantics, which are given in figure 5.3. Fig-
ure 5.4 defines structural congruence for MPST, on which depend the semantics. Note
that the semantics are given with respect to the runtime syntax of MPST, and that we
omit semantic rules for MPST that handle multicast output, since we do not allow mul-
ticast output in MPIM, and also give special cases of MPST’s semantic rules for unicast
output only, rather than the more general rules given in [Coppo et al., 2015].

P ::= ...
| (νs)P Session hiding
| s : h Message queue

E ::= [•] | P | (νa : G)E Evaluation context
| (νs)E | def D in E
| E | E

c ::= y | s[p] Channel

h ::= h ·m | ∅ Message queue

m ::= (q, p, v) Value message
| (q, p, s[p′]) Channel message
| (q, p, l) Selection message

FIGURE 5.2: Runtime syntax for MPST

5.4 Types for MPIM

Figure 5.5 shows the grammar of types in MPIM. Note that as with IM and PIIM, we
consider only tail-recursive session types.

We introduce two new session types. These are the dual types of implicit input and
output, written ?o(p, U).T and !o〈p, U〉.T respectively, where the other participant’s par-
ticipant number is given by p, the type of the exchanged value is U and the session type
of the continuation is T. We also introduce one new global session type – implicit ex-
change p → q :o〈U〉.G, representing implicit input and output at the global level, where
the sender and receiver’s participant numbers are given by p and q respectively, the type
of the exchanged value is U and the global session type of the continuation is G.

2Note that it would have been possible to redefine LAST as having separate programmer and runtime
syntax, and then define IM purely with respect to the programmer syntax of LAST, somewhat simplifying
the definition of IM. We decided instead to match LAST as closely as possible for the sake of clarity, and so
IM is defined with respect to the entire LAST language unlike MPIM and MPST.

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 112

a[1](y).P1 | ... | a[n− 1](y).Pn−1 | a[n](y).Pn −→
(νs)(P1[s[1]/y] | ... | Pn−1[s[n−1]/y] | Pn[s[n]/y] | s : ∅)

[INIT]

s[p]!〈q, e〉.P | s : h −→ P | s : h · (p, q, v) where e ↓ v [SEND]

s[p]!〈〈q, s′[p′]〉〉.P | s : h −→ P | s : h · (p, q, s′[p′]) [DELEG]

s[p]⊕ 〈q, l〉.P | s : h −→ P | s : h · (p, q, l) [SEL]

s[p]?(q, x).P | s : (q, p, v) · h −→ P[v/x] | s : h [RCV]

s[p]?((q, y)).P | s : (q, p, s′[p′]) · h −→ P[s′[p′]/y] | s : h [SRCV]

s[p]&(q, {li : Pi}i∈I) | s : (q, p, lj) · h −→ Pj | s : h where j ∈ I [BRANCH]

if e then P else Q −→ P where e ↓ true [IF-T]

if e then P else Q −→ Q where e ↓ false [IF-F]

def X(x, y) = P in (X〈e, s[p]〉 | Q) −→
def X(x, y) = P in (P[v/x][s[p]/y] | Q) where e ↓ v

[PROCCALL]

P −→ P′ ⇒ E [P] −→ E [P′] [CTXT]

P ≡ P′ and P′ −→ Q′ and Q ≡ Q′ ⇒ P −→ Q [STR]

FIGURE 5.3: Semantics of MPST terms

5.4.1 Duality

As with previous calculi, MPIM uses the notion of the dual of a session type S, here writ-
ten S, to mean session type that can safely interact with S. We define duality inductively
on the syntax of types. The definition is given in Figure 5.6. We extend the definition of
duality of MPST to include the new implicit exchange types.

5.4.2 Global Type Projection

Figure 5.7 shows the global projection of the generalised type G onto q, written G � q. We
extend MPST’s global projection to include our new global session type p→ q :o〈U〉.G

5.4.3 Partial Type Projection

Figure 5.8 shows the partial projection of the generalised type τ onto q, denoted by τ � q.
We extend MPST’s partial projection to include our new session types ?o(p, U).T and

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 113

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

P | (νr)Q ≡ (νr)(P | Q) if r /∈ fn(Q)

(νr)(νr′)P ≡ (νr′)(νr)P (νa : G)0 ≡ 0 (νs)(s : ∅) ≡ 0
where r ::= a : G | s

def D in 0 ≡ 0 def D in (νr)P ≡ (νr)def D in P if r /∈ fn(D)

(def D in P) | Q ≡ def D in (P | Q) if dpv(D) ∩ dpv(Q) = ∅

def D in (def D′ in P) ≡ def D′ in (def D in P)
if (dpv(D) ∪ fpv(D)) ∩ dpv(D′) = dpv(D) ∩ (dpv(D′) ∪ fpv(D′)) = ∅

s : h · (q, p, ζ) · (q′, p′, ζ ′) · h′ ≡ s : h · (q′, p′, ζ ′) · (q, p, ζ) · h′ if p 6= p′ or q 6= q′

where ζ ::= v | s[p] | l

P ≡ P′ ⇒ E [P] ≡ E [P′]

FIGURE 5.4: Structural congruence for MPST terms

!op.U.T.

5.5 Translation from MPIM to MPST

The typing and translation rules for MPIM expressions are given in Figure 5.9, and the
rules for processes in Figure 5.10.

Our type system utilises two binding rules [IMBIND, EXBIND] which use a two place
judgement of the form x a. Since the binders in MPIM are allowed to be o, binding a
received message to the implicit scope in the case of input, and binding a fresh channel to
the implicit scope in the case of restriction, we must convert o binders to standard names
in the results of translation to MPST. Our binding rules handle the two possible cases:
[EXBIND], when the binder is a normal name, leaves the binder unchanged. [IMBIND],
which handles o, gives us a fresh standard name to replace o in the translation. We add the
fresh name to the typing environment, which allows us to replace o with standard names
in the components of the syntactic construct we are typing. Including binding premises
in our typing rules for syntactic constructs with binders allows us to avoid duplicating
typing rules. We avoid having separate rules for each construct with a binder, one for
standard binders and one for implicit binders o.

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 114

S ::= bool | ... | G Sorts

U ::= S | T Exchange types

T ::= ?o(p, U).T Implicit Input
| !o〈p, U〉.T Implicit Output
| ?(p, U).T Explicit Input
| !〈p, U〉.T Explicit Output
| ⊕〈p, {li : Ti}i∈I〉 Selection
| &(p, {li : Ti}i∈I) Branching
| µt.T | t Recursion
| end Inaction

G ::= p→ q :o〈U〉.G Implicit Exchange
| p→ q : 〈U〉.G Explicit Exchange
| p→ q : {li : Gi}i∈I Branching
| µt.G | t Recursion
| end Inaction

FIGURE 5.5: Grammar of MPIM types

end ./ end t ./ t T ./ T′ =⇒ µt.T ./ µt.T′

T ./ T′ =⇒!U.T ./?U.T′ T ./ T′ =⇒?U.T ./!U.T′

T ./ T′ =⇒!oU.T ./?oU.T′ T ./ T′ =⇒?oU.T ./!oU.T′

∀i ∈ I.Ti ./ T′i =⇒ ⊕{li : Ti}i∈I ./ &{li : T′i}i∈I

∃i ∈ I.l = li ∧ T ./ Ti =⇒ ⊕l;T ./ &{li : Ti}i∈I

FIGURE 5.6: Duality for MPIM session types

The rules [IMRCV] and [IMSRCV] type implicit value and channel input respectively.
The premises x a, y a replace implicit binders o with fresh names where necessary.

The rule [IMNAME] functions similarly to IM’s rule [T-QUERY], choosing a type-
appropriate value to insert in place of an implicit query.

The rules [IMSEND] and [IMDELEG] synthesise outputs of values and channels re-
spectively, where they are guided to do so by the appropriate process types. The premise
Γ ` o : S y in [IMSEND] chooses an implicit value of the appropriate type to be send.
[IMDELEG] has no such premise and instead chooses an unconsumed channel c from the
session environment for delegation.

The rules [MCAST] and [MACC] type session request and acceptance respectively,

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 115

(p→ p′ : 〈U〉.G) � q =

!〈p′, U〉.(G � q) if q = p

?(p, U).(G � q) if q = p′

G � q otherwise

(p→ p′ : {li : Gi}i∈I) � q =

⊕〈p′, {li : (Gi � q)}i∈I〉 if q = p

&(p, {li : (Gi � q)}i∈I) if q = p′

Gi0 if q 6= p, q 6= p′, i0 ∈ I
and ∀i, j ∈ I.Gi � q = Gj � q

(µt.G) � q =

{
µt.(G � q) if G � q 6= t
end otherwise

t � q = t end � q = end

(p→ p′ :o〈U〉.G) � q =

!op′.U.(G � q) if q = p

?o(p, U).(G � q) if q = p′

G � q otherwise

FIGURE 5.7: Global MPIM Type Projection

and are very similar to their counterpart rules in MPST, with the exception that the judge-
ments are extended with translations to MPST terms.

The rule [NRES] handles channel restriction/creation. Again a binding premise re-
places o with standard names where necessary.

5.5.1 Translation of types

As with IM to LAST, we include a function to translate from MPIM types to MPST types.
We use this function in §5.6 as part of our soundness theorem. Our translation for session
types is similar to the translation for IM’s session types, but we also extend the translation
to global types.

DEFINITION 9 (Translation of types). We define the translation of an MPIM type to a stan-
dard MPST type, written dSe, in figure 5.11. We extend the definition of d•e pointwise to
standard environments Γ and session environments ∆.

5.6 Runtime safety of MPIM

In demonstrating the runtime safety of MPIM, our approach is similar to that used in
demonstrating the runtime safety of IM: We show that if we can derive Γ ` PB ∆ P̂,
then P̂ can be typed suitably in MPST, according to the typing rules in [Coppo et al., 2015].

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 116

(!〈p, U〉.T) � q =

{
!U.T � q if q = p

T � q otherwise
(?(p, U).T) � q =

{
?U.T � q if q = p

T � q otherwise

(⊕〈p, {li : Ti}i∈I〉) � q =

{
⊕{li : Ti � q}i∈I if q = p

T1 � q if q 6= p and ∀i, j ∈ I. Ti � q = Tj � q

(&(p, {li : Ti}i∈I)) � q =

{
&{li : Ti � q}i∈I if q = p

T1 � q if q 6= p and ∀i, j ∈ I. Ti � q = Tj � q

(µt.T) � q =

{
µt.(T � q) if T � q 6= t
end otherwise

t � q = t end � q = end

(!op.U.T) � q =

{
!oU.T � q if q = p

T � q otherwise
(?o(p, U).T) � q =

{
?oU.T � q if p = q

T � q otherwise

FIGURE 5.8: Partial MPIM Type Projection

x x [EXBIND] x fresh
o x

[IMBIND]

Γ, y : S ` o : S y
[IMNAME]

Γ, x : S ` x : S x
[EXNAME]

Γ ` true : bool true
[TRUE]

Γ ` false : bool false
[FALSE]

Γ ` e : bool ê Γ ` e′ : bool ê′

Γ ` e and e′ : bool ê and ê′
[AND]

FIGURE 5.9: Typing and translation rules for MPIM expressions

Again we make this precise using a translation function d·e, which translates MPIM’s
types to standard MPST types, defined in section 5.5.1.

THEOREM 7 (Type-preserving translation of expressions). If Γ ` e : S ê then dΓe `MPST

ê : dSe.

Proof. By induction on typing judgements for expressions Γ ` e : S ê. We omit judge-
ments for syntax present in standard MPST as these cases are homomorphic.

• Case Γ, y : S ` o : S y

– To show: dΓ, y : Se `MPST y : dSe

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 117

– Or by Definition 9: dΓe, y : dSe `MPST y : dSe

– The goal follows immediately from [NAME]MPST.

• Case Γ, x : S ` x : S x

– To show: dΓ, x : Se `MPST x : dSe

– Or by Definition 9: dΓe, x : dSe `MPST x : dSe

– The goal follows immediately from [NAME]MPST.

• Case Γ ` true : bool true

– To show: dΓe `MPST true : dboole

– Or by Definition 9: dΓe `MPST true : bool

– The goal follows immediately from [BOOL]MPST.

• Case Γ ` false : bool false

– To show: dΓe `MPST false : dboole

– Or by Definition 9: dΓe `MPST false : bool

– The goal follows immediately from [BOOL]MPST.

• Case Γ ` e and e′ : bool ê and ê′

– To show: dΓe `MPST ê and ê′ : dboole

– Or by Definition 9: dΓe `MPST ê and ê′ : bool

– By inversion of [AND]:

– Γ ` e : bool ê

– By the induction hypothesis: dΓe `MPST ê : dboole
– By Definition 9: dΓe `MPST ê : bool

– Γ ` e′ : bool ê′

– By the induction hypothesis: dΓe `MPST ê′ : dboole
– By Definition 9: dΓe `MPST ê′ : bool

– The goal then follows from [AND]MPST.

LEMMA 16 (Preservation of participant numbers). If p = mp(G) then p = mp(dGe). If
p < mp(G) then p < mp(dGe).

Proof. Directly from the definition of dGe.

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 118

THEOREM 8 (Type-preserving translation of pure processes). If Γ ` P B ∆ P̂ then
dΓe `MPST P̂B d∆e.

Proof. By induction on typing judgements for pure processes Γ ` P : ∆ P̂. We omit
judgements for syntax present in standard MPST as these cases are homomorphic.

• Case Γ ` c?o(q, x).PB ∆, c :?o(q, S).T c?(q, a).P̂

– To show: dΓe `MPST c?(q, x).P̂B d∆, c :?o(q, S).Te

– Or by Definition 9: dΓe `MPST c?(q, x).P̂B d∆e, c :?(q, dSe).dTe

– By inversion of [IMRCV]:

– Γ, a : S ` PB ∆, c : T P̂

– And by the induction hypothesis: dΓ, a : Se `MPST P̂B d∆, c : Te
– By Definition 9: dΓe, a : dSe `MPST P̂B d∆e, c : dTe
– By [RCV]MPST: dΓe `MPST c?(q, a).P̂B d∆e, c :?(q, dSe).dTe

– x a, and then a 6= o and either:

– a = x, and the goal holds by [RCV]MPST with c?(q, a).P̂ = c?(q, x).P̂

– a fresh, and the goal holds by [RCV]MPST with c?(q, a).P̂ ≡α c?(q, x).P̂

• Case Γ ` c?o((q, y)).PB ∆, c :?o(q, T).T c?((q, a)).P̂

– To show: dΓe `MPST c?((q, a)).P̂B d∆, c :?o(q, T).Te

– Or by Definition 9: dΓe `MPST c?((q, a)).P̂B d∆e, c :?(q, dT e).dTe

– By inversion of [IMSRCV]:

– Γ ` PB ∆, c : T, y : T P̂

– By the induction hypothesis: dΓe `MPST P̂B d∆, c : T, y : T e
– By Definition 9: dΓe `MPST P̂B d∆e, c : dTe, y : dT e
– By [SRCV]MPST: dΓe `MPST c?((q, y)).P̂B d∆e, c :?(q, dT e).dTe

– y a, and then a 6= o and either...

– a = y, and the goal holds by [SRCV]MPST with c?((q, a)).P̂ = c?((q, y)).P̂

– a fresh, and the goal holds by [SRCV]MPST with c?((q, a)).P̂ ≡α c?((q, y)).P̂

• Case Γ ` PB ∆, c :!o〈p, S〉.T c!〈p, y〉.P̂

– To show: dΓe `MPST c!〈p, y〉.P̂B d∆, c :!o〈p, S〉.Te

– Or by Definition 9: dΓe `MPST c!〈p, y〉.P̂B d∆e, c :!o〈p, dSe〉.dTe

– By inversion of [IMSEND]:

– Γ ` o : S y

– By Theorem 7: dΓe `MPST y : dSe

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 119

– Γ ` PB ∆, c : T P̂

– By the induction hypothesis: dΓe `MPST P̂B d∆, c : Te
– By Definition 9: dΓe `MPST P̂B d∆e, c : dTe

– The goal then holds by [SEND]MPST.

• Case Γ ` PB ∆, c :!o〈p, T 〉.T, i : T c!〈〈p, i〉〉.P

– To show dΓe `MPST c!〈〈p, i〉〉.P̂B d∆, c :!o〈p, T 〉.T, i : T e

– Or by Definition 9: dΓe `MPST c!〈〈p, i〉〉.P̂B d∆e, c :!〈p, dT e〉.dTe, i : dT e

– By inversion of [IMDELEG]: Γ ` PB ∆, c : T P̂

– By the induction hypothesis: dΓe `MPST P̂B d∆, c : Te
– By Definition 9: dΓe `MPST P̂B d∆e, c : dTe

– The goal then holds by [DELEG]MPST.

• Case Γ ` c?(q, x).PB ∆, c :?(q, S).T c?(q, a).P̂

– To show: dΓe `MPST c?(q, a).P̂B d∆, c :?(q, S).Te

– Or by Definition 9:dΓe `MPST c?(q, a).P̂B d∆e, c :?(q, dSe).dTe

– By inversion of [RCV]:

– Γ, a : S ` PB ∆, c : T P̂

– And by the induction hypothesis: dΓ, a : Se `MPST P̂B d∆, c : Te
– And by Definition 9: dΓe, a : dSe `MPST P̂B d∆e, c : dTe

– x a, and then a 6= o and either...

– a = x, and the goal holds by [RCV]MPST with c?(q, a).P̂ = c?(q, x).P̂

– a fresh, and the goal holds by [RCV]MPST with c?(q, a).P̂ ≡α c?(q, x).P̂

• Case Γ ` c?((q, y)).PB ∆, c :?(q, T).T c?((q, a)).P̂

– To show: dΓe `MPST c?((q, a)).P̂B d∆, c :?(q, T).Te

– Or by Definition 9: dΓe `MPST c?((q, a)).P̂B d∆e, c :?(q, dT e).dTe

– By inversion of [SRCV]:

– Γ ` PB ∆, c : T, y : T P̂

– Then by the induction hypothesis: dΓe `MPST P̂B d∆, c : T, y : T e
– Then by Definition 9: dΓe `MPST P̂B d∆e, c : dTe, y : dT e

– y a, and then a 6= o and either...

– a = y, and the goal holds by [SRCV]MPST with c?((q, a)).P̂ = c?((q, y)).P̂

– a fresh, and the goal holds by [SRCV]MPST with c?((q, a)).P̂ ≡α c?((q, y)).P̂

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 120

• Case Γ ` c!〈p, e〉.PB ∆, c :!〈p, S〉.T c!〈p, ê〉.P̂

– To show: dΓe `MPST c!〈p, ê〉.P̂B d∆, c :!〈p, S〉.Te

– Or by Definition 9: dΓe `MPST c!〈p, ê〉.P̂B d∆e, c :!〈p, dSe〉.dTe

– By inversion of [SEND]:

– Γ ` e : S ê

– Then by Theorem 7: dΓe `MPST ê : dSe
– Γ ` PB ∆, c : T P̂

– Then by the induction hypothesis: dΓe `MPST P̂B d∆, c : Te
– Then by Definition 9: dΓe `MPST P̂B d∆e, c : dTe

– The goal then holds by [SEND]MPST.

• Case Γ ` c!〈〈p, c′〉〉.PB ∆, c :!〈p, T 〉.T, c′ : T c!〈〈p, c′〉〉.P̂

– To show: dΓe `MPST c!〈〈p, c′〉〉.P̂B d∆, c :!〈p, T 〉.T, c′ : T e

– Or by Definition 9: dΓe `MPST c!〈〈p, c′〉〉.P̂B d∆e, c :!〈p, dT e〉.dTe, c′ : dT e

– By inversion on [DELEG]: Γ ` PB ∆, c : T P̂

– Then by the induction hypothesis: dΓe `MPST P̂B d∆, c : Te
– Then by Definition 9: dΓe `MPST P̂B d∆e, c : dTe

– The goal then holds by [DELEG]MPST.

• Case Γ ` u[p](y).PB ∆ u[p](y).P̂

– To show: dΓe `MPST u[p](y).P̂B d∆e

– By inversion of [MCAST]:

– Γ ` u : G u

– By Theorem 7: dΓe `MPST u : dGe
– By Definition 9: dΓe `MPST u : dGe

– Γ ` PB ∆, y : G � p P̂

– By the induction hypothesis: dΓe `MPST P̂B d∆, y : G � pe
– By Definition 9: dΓe `MPST P̂B d∆e, y : dG � pe

– p = mp(G)

– by Lemma 16: p = mp(dGe)

– The goal then holds by [MCAST]MPST.

• Case Γ ` u[p](y).PB ∆ u[p](y).P̂

– To show: dΓe `MPST u[p](y).P̂B d∆e

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 121

– By inversion of [MACC]:

– Γ ` u : G u

– By Theorem 7: dΓe `MPST u : dGe
– By Definition 9: dΓe `MPST u : dGe

– Γ ` PB ∆, y : G � p P̂

– By the induction hypothesis: dΓe `MPST P̂B d∆, y : G � pe
– By Definition 9: dΓe `MPST P̂B d∆e, y : dG � pe

– p < mp(G)

– By Lemma 16: p < mp(dGe)

– The goal then holds by [MACC]MPST.

• Case Γ ` (νx)PB ∆ (νa)P̂

– To show: dΓe `MPST (νa)P̂B d∆e

– By inversion of [NRES]:

– Γ, a : G ` PB ∆ P̂

– By the induction hypothesis: dΓ, a : Ge `MPST P̂B d∆e
– By Definition 9: dΓe, a : dGe `MPST P̂B d∆e

– x a, and then a 6= o and either...

– a = x, and the goal holds by [NRES]MPST with (νa)P̂ = (νx)P̂

– a fresh, and the goal holds by [NRES]MPST with (νa)P̂ ≡α (νx)P̂

• Case Γ ` c⊕ 〈p, lj〉.PB ∆, c : ⊕〈p, {li : Ti}i∈I〉 c⊕ 〈p, lj〉.P̂

– To show: dΓe `MPST c⊕ 〈p, lj〉.P̂B d∆, c : ⊕〈p, {li : Ti}i∈I〉e

– Or by Definition 9: dΓe `MPST c⊕ 〈p, lj〉.P̂B d∆e, c : ⊕〈p, {li : dTei}i∈I〉

– By inversion of [SEL]:

– j ∈ I

– Γ ` PB ∆, c : Tj P̂

– By the induction hypothesis: dΓe `MPST P̂B d∆, c : Tje
– By Definition 9: dΓe `MPST P̂B d∆e, c : dTje

– The goal then holds by [SEL]MPST.

• Case Γ ` c&(p, {li : Pi}i∈I)B ∆, c : &(p, {li : Ti}i∈I) c&(p, {li : P̂i}i∈I)

– To show: dΓe `MPST c&(p, {li : P̂i}i∈I)B d∆, c : &(p, {li : Ti}i∈I)e

– Or by Definition 9: dΓe `MPST c&(p, {li : P̂i}i∈I)B d∆e, c : &(p, {li : dTei}i∈I)

– By inversion of [BRANCH]: ∀i ∈ I. Γ ` Pi B ∆, c : Ti P̂i

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 122

– By the induction hypothesis: ∀i ∈ I. dΓe `MPST P̂i B d∆, c : Tie
– By Definition 9: ∀i ∈ I. dΓe `MPST P̂i B d∆e, c : dTie

– The goal then follows from [BRANCH]MPST.

• Case Γ ` if e then P else P′ B ∆ if ê then P̂ else P̂′

– To show: dΓe `MPST if ê then P̂ else P̂′ B d∆e

– By inversion of [IF]:

– Γ ` e : bool ê

– By Theorem 7: dΓe `MPST ê : dboole
– By Definition 9: dΓe `MPST ê : bool

– Γ ` PB ∆ P̂

– By the induction hypothesis: dΓe `MPST P̂B d∆e
– Γ ` P′ B ∆ P̂′

– By the induction hypothesis: dΓe `MPST P̂′ B d∆e

– The goal then holds by [IF]MPST.

• Case Γ ` 0B ∆ 0

– To show: dΓe `MPST 0B d∆e

– By inversion of [INACT]: ∆ end only

– By Definition 9: d∆e end only

– The goal then holds by [INACT]MPST.

• Case Γ, X : S T ` X〈e, c〉B ∆, c : T X〈ê, c〉

– To show: dΓ, X : S Te `MPST X〈ê, c〉B d∆, c : Te

– Or by Definition 9: dΓe, X : dSe dTe `MPST X〈ê, c〉B d∆e, c : dTe

– By inversion of [VAR]:

– Γ ` e : S ê

– By Theorem 7, dΓe `MPST ê : dSe
– ∆ end only

– By Definition 9, d∆e end only

– The goal then follows from [VAR]MPST.

• Case Γ ` def X(x, y) = P in QB ∆ def X(a, b) = P̂ in Q̂

– To show: dΓe `MPST def X(a, b) = P̂ in Q̂B d∆e

– By inversion of [DEF]:

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 123

– Γ, X : S t, a : S ` PB b : T P̂

– And by the induction hypothesis: dΓ, X : S t, a : Se `MPST P̂B db : Te
– And by Definition 9: dΓe, X : dSe t, a : dSe `MPST P̂B b : dTe

– Γ, X : S µt.T ` QB ∆ Q̂

– And by the induction hypothesis: dΓ, X : S µt.Te `MPST Q̂B d∆e
– And by Definition 9: dΓe, X : dSe µt.dTe `MPST Q̂B d∆e

– x a, and then a 6= o and either a = x or a fresh

– y b, and then b 6= o and either b = x or b fresh

– The goal then holds by [DEF]MPST with def X(a, b) = P̂ in Q̂ being either equal
to, or α-equivalent to def X(x, y) = P̂ in Q̂.

5.7 Conclusion

In this chapter we have seen that implicit messages generalise from binary session-typed
communication to multi-party session-typed communication, in a sound manner. This
development allows for the incorporation of implicit messages into a much wider variety
of real-world concurrent systems.

In the next chapter we refocus our attention to implicit functions. We show that they
can be safely integrated into the object calculus DOT, the theoretical foundation for Scala,
allowing DOT to model some of Scala’s typical use cases for implicits.

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 124

Γ, a : S ` PB ∆, c : T P̂ x a
Γ ` c?o(q, x).PB ∆, c : ?o(q, S).T c?(q, a).P̂

[IMRCV]

Γ ` PB ∆, c : T, y : T P̂ y a

Γ ` c?o((q, y)).PB ∆, c : ?o(q, T).T c?((q, a)).P̂
[IMSRCV]

Γ ` o : S y Γ ` PB ∆, c : T P̂

Γ ` PB ∆, c : !o〈p, S〉.T c!〈p, y〉.P̂
[IMSEND]

Γ ` PB ∆, c : T P̂
Γ ` PB ∆, c : !o〈p, T 〉.T, i : T c!〈〈p, i〉〉.P̂

[IMDELEG]

Γ, a : S ` PB ∆, c : T P̂ x a
Γ ` c?(q, x).PB ∆, c :?(q, S).T c?(q, a).P̂

[RCV]

Γ ` PB ∆, c : T, y : T P̂ y a

Γ ` c?((q, y)).PB ∆, c :?(q, T).T c?((q, a)).P̂
[SRCV]

Γ ` e : S ê Γ ` PB ∆, c : T P̂
Γ ` c!〈p, e〉.PB ∆, c :!〈p, S〉.T c!〈p, ê〉.P̂

[SEND]

Γ ` PB ∆, c : T P̂
Γ ` c!〈〈p, c′〉〉.PB ∆, c :!〈p, T 〉.T, c′ : T c!〈〈p, c′〉〉.P̂

[DELEG]

Γ ` u : G u Γ ` PB ∆, y : G � p P̂ p = mp(G)

Γ ` u[p](y).PB ∆ u[p](y).P̂
[MCAST]

Γ ` u : G u Γ ` PB ∆, y : G � p P̂ p < mp(G)

Γ ` u[p](y).PB ∆ u[p](y).P̂
[MACC]

Γ, a : G ` PB ∆ P̂ x a
Γ ` (νx)PB ∆ (νa)P̂

[NRES]
∆ end only

Γ ` 0B ∆ 0
[INACT]

Γ ` e : bool ê Γ ` PB ∆ P̂ Γ ` P′ B ∆ P̂′

Γ ` if e then P else P′ B ∆ if ê then P̂ else P̂′
[IF]

Γ ` PB ∆, c : Tj P̂ j ∈ I

Γ ` c⊕ 〈p, lj〉.PB ∆, c : ⊕〈p, {li : Ti}i∈I〉 c⊕ 〈p, lj〉.P̂
[SEL]

∀i ∈ I. Γ ` Pi B ∆, c : Ti P̂i

Γ ` c&(p, {li : Pi}i∈I)B ∆, c : &(p, {li : Ti}i∈I) c&(p, {li : P̂i}i∈I)
[BRANCH]

Γ ` e : S ê ∆ end only
Γ, X : S T ` X〈e, c〉B ∆, c : T X〈ê, c〉

[VAR]

Γ, X : S t, a : S ` PB b : T P̂ Γ, X : S µt.T ` QB ∆ Q̂ x a y b

Γ ` def X(x, y) = P in QB ∆ def X(a, b) = P̂ in Q̂
[DEF]

FIGURE 5.10: Typing and translation rules for MPIM processes

Chapter 5. Multiparty Asynchronous Sessions with Implicit Messages 125

dSe =

dGemp(G) if S = G
dTe if S = T
S otherwise

dTe =

!p.dUe.dS′e if T =!p.U.S′ or !op.U.S′

?(p, dUe).dS′e if T =?(p, U).S′ or ?o(p, U).S′

⊕〈p, {li : dTei}i∈I〉 if T = ⊕〈p, {li : Ti}i∈I〉
&(p, {li : dTei}i∈I) if T = &(p, {li : Ti}i∈I)

µt.dT′e if T = µt.T′

T otherwise

dGe =

p→ q : 〈dUe〉.dGe if G = p→ q : 〈U〉.G or p→ q :o〈U〉.G
p→ q : {li : (dGe)i}i∈I if G = p→ q : {li : Gi}i∈I

µt.dGe if G = µt.G
G otherwise

FIGURE 5.11: Translation of MPIM types

126

Chapter 6

Dependent Object Types with
Implicit Functions1

6.1 Introduction

Implicits are widely used in Scala. They are valuable to programmers as a mechanism for
passing context without excessive verbosity. The Dotty Scala compiler [Odersky, 2017],
written in Scala, contains at more than 5000 occurrences of the implicit keyword. Akka
[Haller, 2012], a popular Scala library for Actor-based concurrency, uses implicits at the
core of its API. Therefore it is of importance to the Scala community to have a solid theo-
retical foundation for the correctness of Scala’s implicit program constructs. Indeed, the
safety of implicit functions in Scala has been evidenced by the type-safe integration of
implicit functions into lambda calculus [Odersky et al., 2018]. This evidence could be
further strengthened by their type-safe integration into DOT, the calculus on which the
Dotty compiler is based. In the remainder of this chapter, we present DIF, a type-safe in-
tegration of implicit functions into DOT. DIF is shown to be type-safe by translation into
the DOT calculus presented in [Amin et al., 2016]. We demonstrate that the type class
pattern [Oliveira, Moors, and Odersky, 2010], a typical use case of implicit functions in
Scala, can be translated typably into DIF.

Example. The type class pattern [Odersky et al., 2018] in DIF maps closely to the type
class pattern as used in Scala. The following example leverages DOT’s path-dependency,
which exhibits parametric polymorphism by passing objects with abstract type members.
The dictionary passing of languages with type classes can then be implemented with
implicit functions, achieving ad-hoc polymorphism. Example 1 shows the type class
pattern in Scala, and example 2 shows the type class pattern adapted for DIF. In example
1, lines 1–3 represent the class definition - we declare a type class Ord with a single
definition, compare, which compares two values of type A. Line 5 represents a type

1This chapter is adapted from [Jeffery, 2019], published original work.

Chapter 6. Dependent Object Types with Implicit Functions 127

class constrained polymorphic function definition, like print in our earlier example.
Lines 7-9 are is instance definition for Int, and line 11 shows an example call to a type
class constrained polymorphic function. Example 2 encodes the class declaration across
lines 1-5. In place of the type variable in the trait declaration, the DIF encoding includes
an abstract type member A. The encoding of the comp function includes an additional
argument over the Scala version. This additional argument is an object with an abstract
type member, which the subsequent arguments can use as their type, since DIF does not
have type variables. This additional argument is not to be confused with the dictionary
argument ev, which both encodings require. Example 2 encodes the instance declaration
across lines 9-13. We assign the instance to the implicit variable so that it can be passed
implicitly to calls to comp, and leverage intersection types to make it a subtype of Ord.
We specify that A is restricted to Int, and provide a definition of compare. Line 16
shows an example call.

1 trait Ord[A] {
2 def compare(x: A, y: A): Boolean
3 }
4
5 def comp[A](x: A, y: A)(implicit ev: Ord[A]): Boolean = ev.compare(x, y)
6
7 implicit def intOrd: Ord[Int] = new Ord[Int] {
8 def compare(x: Int, y: Int): Boolean = a < b
9 }

10 ...
11 comp(1, 2)
12 ...

Example 1. The type class pattern in Scala

1 let ord_package = ν(ord_p) {
2 Ord = µ(self: {
3 A
4 compare: ∀(x: self.A, y: self.A)Boolean
5 })
6 comp: ∀(ty: {A}, x: ty.A, y: ty.A)∀o(ev: ord_p.Ord∧{A})Boolean =
7 λ(ty: {A}, x: ty.A, y: ty.A)o.compare(x, y)
8 } in
9 let o: ord_package.Ord∧{A = Int} = ν(self: {

10 A = Int
11 compare: ∀(x: self.A, y: self.A)Boolean =
12 λ(x: self.A, y: self.A) x < y
13 })
14 in
15 ...
16 ord_package.comp({A}, 1, 2)
17 ...

Example 2. The type class pattern in DIF

Chapter 6. Dependent Object Types with Implicit Functions 128

6.2 The Language DIF

Figure 6.1 gives the syntax of DIF. The syntax of DIF is similar to that of DOT in [Amin
et al., 2016], with the addition of constructs related to implicit functions. We add a new
type ∀o(u : S)S′ which represents an implicit (path-dependent) function from S to S′. We
also add the implicit query o, the analogue to Scala’s implicitly[T]. Occurrences of o
are resolved into variables by our typing and translation rules. The variable that replaces a
given occurrence of o is chosen from candidate implicit variables, which are bound by let
constructs, where o is the variable name, i.e. let o = t in t′. Again, we highlight additions
DIF makes to DOT’s syntax in red in the figures in this chapter.

Note that we make a distinction between two sets of variable names. The first, ranged
over by x, y is the set of variable names with the implicit query. The second set, ranged
over by u, v is the set of variables where o is not allowed. At the term level, anywhere
we can write a variable name, we could also write an implicit query, so we use x in the
grammar of terms. At the type level, however, implicit queries are not allowed in names,
and we therefore use u for names in the grammar of types.

TERMS

t ::= x.a Selection
| x Variable
| x y Application
| let x = t in t′ Let-binding
| ν(x : S)d Object
| λ(x : S)t Abstraction

TYPES

S ::= {a : S} Field Declaration
| S ∧ S′ Intersection
| µ(u : S) Recursive type
| > Top
| ⊥ Bottom
| {A : S..S′} Type Declaration
| u.A Type Projection
| ∀(u : S)S′ Dependent Function
| ∀o(u : S)S′ Implicit Function

DEFINITIONS

d ::= {A = S} Type Definition
| {a = t} Field Definition
| d ∧ d′ Aggregate Definition

VARIABLES (WITH IMPLICIT QUERY)
x, y ::= p | i | o

VARIABLES

u, v ::= p | i

EXPLICIT VARIABLES p, q, ...

IMPLICIT VARIABLES i, j, ...

IMPLICIT QUERY o

TERM MEMBERS a, b, ...

TYPE MEMBERS A, B, ...

FIGURE 6.1: Grammar of DIF

6.2.1 Abbreviations

We employ the following abbreviations in examples:

Chapter 6. Dependent Object Types with Implicit Functions 129

– We encode multiple argument function (types) as multiple single function (types):

∀(y : T, z : U) ≡ ∀(y : T)∀(z : U)

λ(y : T, z : U) ≡ λ(y : T)λ(z : U)

– We group intersection contents together inside { curly brackets }, separating definitions
with a newline, additional whitespace or semicolon:

{d d′} ≡ {d} ∧ {d′}
{d ; d′} ≡ {d} ∧ {d′}

– We allow terms in application and selection by encoding them as let-bindings:

t t′ ≡ let x = t in x t′

x t ≡ let y = t in x y

t.a ≡ let x = t in x.a

– We abbreviate type bounds thusly:

A <: T ≡ A : ⊥..T A = T ≡ A : T..T

A >: T ≡ A : T..> A ≡ A : ⊥..>

– We encode type ascription as application:

t : T ≡ (λ(x : T)x)t

let x : T = t in t′ ≡ let x = t : T in t′

– Finally we omit types in new-bindings if the type of the definition is explicit, writing
ν(x : T)d as ν(x)d.

6.2.2 Semantics

We define the semantics of DIF by type-based translation from DIF programs to DOT
programs. The meaning of a DIF program is therefore given by its typed translation into
a DOT program. This translation is the topic of section 6.3. We give the semantics of DOT
in figure 6.2.

Chapter 6. Dependent Object Types with Implicit Functions 130

let x = v in e[x.a]→ let x = v in e[t] if v = ν(x : S)...{a = t}...
let x = v in e[x y]→ let x = v in e[[z := y]t] if v = λ(z : S)t

let x = y in t→ [x := y]t

let x = let y = t in u in v→ let y = t in let x = u in v if y /∈ fn(v)

e[t]→ e[u] if t→ u

FIGURE 6.2: Semantics of DOT

6.3 Typing for DIF

In this section we introduce the typing system for DIF programs. Typing judgements in
DIF are 4-place: Γ ` t : S t̂. This judgement can be read: under environment Γ, the
DIF term t has type S, and translated to the DOT term t̂.

6.3.1 Translation of Types

We define the function (•)∗, which translates DIF types into DOT types. DIF types dif-
fer from DOT types only in the inclusion of the type for implicit functions ∀o(u : S)S′.
The translation simply erases occurrences of o, translating implicit functions into explicit
functions.

DEFINITION 10 (Translation of types). Figure 6.3 defines translation from DIF types to
DOT types.

x∗ = x ⊥∗ = ⊥
{a : S}∗ = {a : S∗} {A : S..S′}∗ = {A : S∗..S′∗}
(S ∧ S′)∗ = S∗ ∧ S′∗ (u.A)∗ = u.A
µ(u : S)∗ = µ(u : S∗) (∀(u : S)S′)∗ = ∀(u : S∗)S′∗

>∗ = > (∀o(u : S)S′)∗ = ∀(u : S∗)S′∗

FIGURE 6.3: Translation from DIF types to DOT types

We extend the definition of (•)∗ pointwise to environments Γ.

6.3.2 Type substitution

DEFINITION 11 (Name substitution on types). We define capture-avoiding substitution
of names within types, written [u := v]S, in the usual way.

Chapter 6. Dependent Object Types with Implicit Functions 131

6.3.3 The functions depth and spec

The function depth(Γ, i, j) decides which variable is more deeply nested in the environ-
ment Γ, for purposes of disambiguation of implicit variable selection. It returns −1 if i
is more deeply nested, and 1 if j is more deeply nested. Its formal definition is given in
figure 6.4.

depth(Γ, i, j) =

−1 if Γ = Γ1, i : S1, Γ2, j : S2, Γ3

∧{i, j} ∩ dom(Γ1 ∪ Γ2 ∪ Γ3) 6= ∅
1 if Γ = Γ1, j : S1, Γ2, i : S2, Γ3

∧{i, j} ∩ dom(Γ1 ∪ Γ2 ∪ Γ3) 6= ∅
⊥ otherwise

FIGURE 6.4: The depth function

The function spec(Γ, i, j) decides which variable’s type is more specific in the envi-
ronment Γ, i.e. which type can be instantiated to the other by widening or polymorphic
parameter instantiation. It returns −1 if i is more specific, 1 if j is more specific, and if
they are equal (i.e. both a subtype and a supertype of each other), 0 is returned. Its formal
definition is given in figure 6.5.

spec(Γ, i, j) =

−1 if Γ ` i <: j ∧ ¬(Γ ` j <: i)
1 if ¬(Γ ` i <: j) ∧ Γ ` j <: i
0 if Γ ` i <: j ∧ Γ ` j <: i
⊥ otherwise

FIGURE 6.5: The spec function

6.3.4 Typing rules

Figure 6.6 gives the binding rules for DIF binders. DIF binding rules are of the form
x u, and function in the same way as PIIM’s binding rules. DIF’s rule [BIND-IM] cor-
responds to PIIM’s rule [T-IMBIND], and DIF’s rule [BIND-EX] to PIIM’s rule [T-EXBIND].

p p [BIND-EX] i fresh
o i

[BIND-IM]

FIGURE 6.6: Binding rules for DIF terms

Figure 6.7 gives the binding rules for DIF terms. Most rules are identical to their corre-
sponding rules in DOT (specifically in [Amin et al., 2016]), when ignoring the translation

Chapter 6. Dependent Object Types with Implicit Functions 132

part of typing judgements (t̂). The typing rules differ slightly from their DOT counter-
parts in that they have binding judgements in their premises. The rules [VAR-EX], [ALL-
EX-I] and [ALL-EX-E] are analogous to the rules [VAR]DOT, [ALL-I]DOT and [ALL-E]DOT

respectively. The rule [ALL-IM-I] types introduction of implicit functions, introducing
an (explicit) abstraction to the translation. The rule [ALL-IM-E] types implicit function
elimination, inserting an implicit variable of suitable type as an argument to the implicit
function. Finally [VAR-IM] types implicit query, replacing o with a chosen implicit vari-
able in the translation. This rule also performs disambiguation, whenever more than one
implicit variable is of suitable type. Disambiguation follows the same process as Scala (as
specified in [Odersky et al., 2018]). We prefer more deeply nested implicit variables over
less deeply nested ones, and implicit variables with more specific types over ones with
more general types. Where we have a choice between two variables, one of which is more
deeply nested and the other a more specific type, we reject the program as ambiguous.

i ∈ dom(Γ)
∀j ∈ dom(Γ), j 6= i.Γ ` o : S j⇒ depth(Γ, i, j) + spec(Γ, i, j) < 0

Γ ` o : S i
[VAR-IM]

Γ, p : S, Γ′ ` p : S p [VAR-EX] Γ ` t : S t̂ Γ ` S <: S′

Γ ` t : S′ t̂
[SUB]

Γ ` x : S x̂ Γ ` x : U x̂
Γ ` x : S ∧U x̂

[AND-I]

x u Γ, u : S ` t : U t̂ {x, u} ∩ fv(S) = ∅

Γ ` λ(x : S)t : ∀(u : S)U λ(u : S∗)t̂
[ALL-EX-I]

Γ ` x : ∀(u : S)U x̂ Γ ` y : S ŷ
Γ ` x y : [u := y]U x̂ ŷ

[ALL-EX-E]

x u Γ ` t : S t̂ Γ, u : S ` t′ : U t̂′ x /∈ fv(U)

Γ ` let x = t in t′ : U let u = t̂ in t̂′
[LET]

Γ ` x : S x̂
Γ ` x : µ(x̂ : S) x̂

[REC-I]

x u Γ, u : S ` d : S d̂

Γ ` ν(x : S)d : µ(u : S) ν(u : S∗)d̂
[{}-I]

Γ ` x : {a : S} x̂
Γ ` x.a : S x̂.a

[FLD-E]
Γ ` x : µ(x̂ : S) x̂

Γ ` x : S x̂
[REC-E]

u fresh Γ, u : S ` t : U t̂ u /∈ fv(S)

Γ ` t : ∀o(u : S)U λ(u : S∗)t̂
[ALL-IM-I]

Γ ` x : ∀o(u : S)U x̂ Γ ` o : S v
Γ ` x : [u := v]U x̂ v

[ALL-IM-E]

FIGURE 6.7: Typing and translation rules for DIF terms

Chapter 6. Dependent Object Types with Implicit Functions 133

Figure 6.8 gives the typing rules for DIF definitions. These are again very similar to
the typing rules for DOT defintions, and in each case the translations are homomorphic.

Γ ` {A = S} : {A : S..S} {A = S∗} [TYP-I]

Γ ` t : S t̂
Γ ` {a = t} : {a : S} {a = t̂}

[FLD-I]

Γ ` d1 : S1 d̂1 Γ ` d2 : S2 d̂2 dom(d1) ∩ dom(d2) = ∅

Γ ` d1 ∧ d2 : S1 ∧ S2 d̂1 ∧ d̂2
[ANDDEF-I]

FIGURE 6.8: Typing and translation rules for DIF definitions

Figure 6.9 gives the subtyping rules for DIF terms and definitions. These are yet again
very similar to the subtyping rules in DOT. The exception is the rule [ALL-<:-ALL-IM],
which makes explicit functions a subtype of implicit functions. This allows the passing
of arguments explicitly to an implicit function, which is an important aspect of implicit
functions in Scala, as it allows overriding as necessary any implicit variable the compiler
would otherwise insert.

Γ ` S <: > [TOP] Γ ` ⊥ <: S [BOT] Γ ` S <: S [REFL]

Γ ` S <: U Γ ` U <: R
Γ ` S <: R

[TRANS] Γ ` S <: U Γ ` S <: R
Γ ` S <: U ∧ R

[<:-AND]

Γ ` u : {A : S..U} u
Γ ` S <: u.A

[<:-SEL]
Γ ` u : {A : S..U} u

Γ ` u.A <: U
[SEL-<:]

Γ ` S2 <: S1 Γ, x : S2 ` U1 <: U2

Γ ` ∀(x : S1)U1 <: ∀(x : S2)U2
[ALL-<:-ALL-EX]

Γ ` S2 <: S1 Γ ` U1 <: U2

Γ ` {A : S1..U1} <: {A : S2..U2}
[TYP-<:-TYP]

Γ ` S ∧U <: S [AND1-<:] Γ ` S ∧U <: U [AND2-<:]

Γ ` S <: U
Γ ` {a : S} <: {a : U}

[FLD-<:-FLD]

Γ ` S2 <: S1 Γ, x : S2 ` U1 <: U2

Γ ` ∀o(x : S1)U1 <: ∀o(x : S2)U2
[ALL-<:-ALL-IM]

FIGURE 6.9: Subtyping rules for DIF

Chapter 6. Dependent Object Types with Implicit Functions 134

6.4 Type safety of DIF

As with previous calculi, we show the type safety of DIF by translation into its base
calculus, in this case DOT. Given an environment Γ, a DIF term t, a type S and a DOT
term t̂, we show that the judgement Γ ` t : S t̂ implies the judgement Γ∗ `DOT t̂ : S∗.
In other words, if a DIF term is typable under Γ with type S, and translates to t̂, then t̂ is
typable in DOT under the translation of Γ with the translation of the type S. The same
property also holds for definitions, i.e. Γ ` d : S d̂ ⇒ Γ∗ `DOT d̂ : S∗. This property is
called type preserving translation. The type safety of DIF depends upon the type safety
of DOT, via type preserving translation.

Theorems 9 and 10 show type preserving translation for terms and definitions re-
spectively. We also include some auxiliary lemmas, such as lemma 17, which shows that
subtyping is preserved by the translation from DIF types to DOT types.

We show that our translation is type-preserving, and therefore yields a typable DOT
term. When resolving variables, insertion of any variable of appropriate type in place of
implicit queries is enough to guarantee type-preservation. This means that our sound-
ness result does not address the correctness of our approach to variable selection. We
have attempted to design a system that will select the same variable that an analogous
Scala program would select, but do not verify this property, and indeed cannot, since
Scala’s rules about variable selection are not formalised.

LEMMA 17 (Preservation of subtyping under type translation). If Γ ` S <: U then
Γ∗ `DOT S∗ <: U∗.

Proof. By induction on subtyping derivations.

• Case [TOP]: Γ ` S <: >

– To show: Γ∗ `DOT S∗ <: >∗

– Or by definition 10: Γ∗ `DOT S∗ <: >

– The goal follows from [TOP]DOT.

• Case [BOT]: Γ ` ⊥ <: S

– To show: Γ∗ `DOT ⊥∗ <: S∗

– Or by definition 10: Γ∗ `DOT ⊥ <: S∗

– The goal follows from [BOT]DOT.

• Case [REFL]: Γ ` S <: S

– To show: Γ∗ `DOT S∗ <: S∗

– The goal is immediate from [REFL]DOT.

Chapter 6. Dependent Object Types with Implicit Functions 135

• Case [TRANS]: Γ ` S <: R

– To show: Γ∗ `DOT S∗ <: R∗

– By inversion of [TRANS]:

– Γ ` S <: U

– Then by induction: Γ∗ `DOT S∗ <: U∗

– Γ ` U <: R

– Then by induction: Γ∗ `DOT U∗ <: R∗

– The goal then follows from [TRANS]DOT.

• Case [<:-AND]: Γ ` S <: U ∧ R

– To show: Γ∗ `DOT S∗ <: (U ∧ R)∗

– Or by definition 10: Γ∗ `DOT S∗ <: U∗ ∧ R∗

– By inversion of [<:-AND]:

– Γ ` S <: U

– Then by induction: Γ∗ `DOT S∗ <: U∗

– Γ ` S <: R

– Then by induction: Γ∗ `DOT S∗ <: R∗

– The goal then holds by [<:-AND]DOT.

• Case [<:-SEL]: Γ ` S <: u.A

– To show: Γ∗ `DOT S∗ <: (u.A)∗

– Or by definition 10: Γ∗ `DOT S∗ <: u.A∗

– By inversion of [<:-SEL]: Γ ` u : {A : S..U} u

– Then by theorem 9: Γ∗ `DOT u : {A : S..U}∗

– Then by definition 10: Γ∗ `DOT u : {A : S∗..U∗}

– The goal then follows from [<:-SEL]DOT.

• Case [SEL-<:]: Γ ` u.A <: U

– To show: Γ∗ `DOT (u.A)∗ <: U∗

– Or by definition 10: Γ∗ `DOT u.A∗ <: U∗

– By inversion of [SEL-<:]: Γ ` u : {A : S..U} u

– Then by theorem 9: Γ∗ `DOT u : {A : S..U}∗

– Then by definition 10: Γ∗ `DOT u : {A : S∗..U∗}

– The goal then follows from [SEL-<:]DOT.

Chapter 6. Dependent Object Types with Implicit Functions 136

• Case [ALL-<:-ALL-EX]: Γ ` ∀(x : S1)U1 <: ∀(x : S2)U2

– To show: Γ∗ `DOT (∀(x : S1)U1)
∗ <: (∀(x : S2)U2)∗

– Or by definition 10: Γ∗ `DOT ∀(x : S∗1)U
∗
1 <: ∀(x : S∗2)U

∗
2

– By inversion of [ALL-<:-ALL-EX]:

– Γ ` S2 <: S1

– Then by induction: Γ∗ `DOT S∗2 <: S∗1
– Γ, x : S2 ` U1 <: U2

– Then by induction: (Γ, x : S2)∗ `DOT U∗1 <: U∗2
– And by definition 10: Γ∗, x : S∗2 `DOT U∗1 <: U∗2

– The goal then follows from [ALL-<:-ALL]DOT.

• Case [TYP-<:-TYP]: Γ ` {A : S1..U1} <: {A : S2..U2}

– To show: Γ∗ `DOT {A : S1..U1}∗ <: {A : S2..U2}∗

– Or by definition 10: Γ∗ `DOT {A : S∗1 ..U∗1} <: {A : S∗2 ..U∗2}

– By inversion of [TYP-<:-TYP]:

– Γ ` S2 <: S1

– Then by induction: Γ∗ `DOT S∗2 <: S∗1
– Γ ` U1 <: U2

– Then by induction: Γ∗ `DOT U∗1 <: U∗2

– The goal then follows from [TYP-<:-TYP]DOT.

• Case [AND1-<:]: Γ ` S ∧U <: S

– To show: Γ∗ `DOT (S ∧U)∗ <: S∗

– Or by definition 10: Γ∗ `DOT S∗ ∧U∗ <: S∗

– The goal follows from [AND1-<:]DOT.

• Case [AND2-<:]: Γ ` S ∧U <: U

– To show: Γ∗ `DOT (S ∧U)∗ <: U∗

– Or by definition 10: Γ∗ `DOT S∗ ∧U∗ <: U∗

– The goal follows from [AND2-<:]DOT.

• Case [FLD-<:-FLD]: Γ ` {a : S} <: {a : U}

– To show: Γ∗ `DOT {a : S}∗ <: {a : U}∗

– Or by definition 10: Γ∗ `DOT {a : S∗} <: {a : U∗}

Chapter 6. Dependent Object Types with Implicit Functions 137

– By inversion of [FLD-<:-FLD]: Γ ` S <: U

– Then by induction: Γ∗ `DOT S∗ <: U∗

– The goal follows from [FLD-<:-FLD]DOT.

• Case [ALL-<:-ALL-IM]: Γ ` ∀o(x : S1)U1 <: ∀o(x : S2)U2

– To show: Γ∗ `DOT (∀o(x : S1)U1)
∗ <: (∀o(x : S2)U2)∗

– Or by definition 10: Γ∗ `DOT ∀(x : S∗1)U
∗
1 <: ∀(x : S∗2)U

∗
2

– By inversion of [ALL-<:-ALL-IM]:

– Γ ` S2 <: S1

– Then by induction: Γ∗ ` S∗2 <: S∗1
– Γ, x : S2 ` U1 <: U2

– Then by induction: (Γ, x : S2)∗ ` U∗1 <: U∗2
– And by definition 10: Γ∗, x : S∗2 ` U∗1 <: U∗2

– The goal then follows from [ALL-<:-ALL]DOT.

LEMMA 18 (Preservation of free variables under type translation). For all S, fv(S) =

fv(S∗).

Proof. Immediate from definition 10.

LEMMA 19 (Commutativity of type translation and name substitution). For all S, u, v,
[u := v](S∗) = ([u := v]S)∗.

Proof. By induction on S.

• Case >

– To show: [u := v](>∗) = ([u := v]>)∗

– By definition 10 on LHS: [u := v]> = ([u := v]>)∗

– By definition 11 on LHS and RHS: > = >∗

– By definition 10 on RHS: > = >

• Case ⊥

– To show: [u := v](⊥∗) = ([u := v]⊥)∗

– By definition 10 on LHS: [u := v]⊥ = ([u := v]⊥)∗

– By definition 11 on LHS and RHS: ⊥ = ⊥∗

– By definition 10 on RHS: ⊥ = ⊥

Chapter 6. Dependent Object Types with Implicit Functions 138

• Case w

– To show: [u := v](w∗) = ([u := v]w)∗

– By definition 10 on LHS: [u := v]w = ([u := v]w)∗

– Case u = w

– By definition 11 on LHS and RHS: v = v∗

– By definition 10 on RHS: v = v

– Case u 6= w

– By definition 11 on LHS and RHS: w = w∗

– By definition 10 on RHS: w = w

• Case µ(u : S′)

– To show: [u := v](µ(w : S′)∗) = ([u := v]µ(w : S′))∗

– By definition 10 on LHS: [u := v]µ(w : S′∗) = ([u := v]µ(w : S′))∗

– Case u = w

– By definition 11 on LHS and RHS: µ(w : S′∗) = µ(w : S′)∗

– By definition 10 on RHS: µ(w : S′∗) = µ(w : S′∗)

– Case u 6= w

– By definition 11 on LHS and RHS: µ(w : [u := v](S′∗)) = (µ(w : [u :=
v]S′))∗

– By definition 10 on RHS: µ(w : [u := v](S′∗)) = µ(w : ([u := v]S′)∗)

– The goal then follows by induction.

• Case {A : S′..S′′}

– To show: [u := v]({A : S′..S′′}∗) = ([u := v]{A : S′..S′′})∗

– By definition 10 on LHS: [u := v]({A : S′∗..S′′∗}) = ([u := v]{A : S′..S′′})∗

– By definition 11 on LHS and RHS:
{A : ([u := v](S′∗))..([u := v](S′′∗))} = {A : [u := v]S′..[u := v]S′′}∗

– By definition 10 on RHS:
{A : ([u := v](S′∗))..([u := v](S′′∗))} = {A : ([u := v]S′)∗..([u := v]S′′)∗}

– The goal then follows by induction.

• Case {a : S′}

– To show: [u := v]({a : S′}∗) = ([u := v]{a : S′})∗

– By definition 10 on LHS: [u := v]{a : S′∗} = ([u := v]{a : S′})∗

Chapter 6. Dependent Object Types with Implicit Functions 139

– By definition 11 on LHS and RHS: {a : [u := v](S′∗)} = ({a : [u := v]S′})∗

– By definition 10 on RHS: {a : [u := v](S′∗)} = {a : ([u := v]S′)∗}

– The goal then follows by induction.

• Case u.A

– To show: [u := v]((w.A)∗) = ([u := v](w.A))∗

– By definition 10 on LHS: [u := v](w.A) = ([u := v](w.A))∗

– Case u = w

– By definition 11 on LHS and RHS: v.A = (v.A)∗

– By definition 10 on RHS: v.A = v.A

– Case u 6= w

– By definition 11 on LHS and RHS: w.A = (w.A)∗

– By definition 10 on RHS: w.A = w.A

• Case S′ ∧ S′′

– To show: [u := v]((S′ ∧ S′′)∗) = ([u := v](S′ ∧ S′′))∗

– By definition 10 on LHS: [u := v](S′∗ ∧ S′′∗) = ([u := v](S′ ∧ S′′))∗

– By definition 11 on LHS and RHS:
([u := v](S′∗)) ∧ ([u := v](S′′∗)) = (([u := v]S′) ∧ ([u := v]S′′))∗

– By definition 10 on RHS:
([u := v](S′∗)) ∧ ([u := v](S′′∗)) = ([u := v]S′)∗ ∧ ([u := v]S′′)∗

– The goal then follows by induction.

• Case ∀(w : S′)S′′

– To show: [u := v]((∀(w : S′)S′′)∗) = ([u := v](∀(w : S′)S′′))∗

– By definition 10 on LHS: [u := v](∀(w : S′∗)S′′∗) = ([u := v](∀(w : S′)S′′))∗

– Case u = w

– By definition 11 on LHS and RHS: ∀(w : S′∗)[u := v](S′′∗) = (∀(w :
S′)[u := v]S′′)∗

– By definition 10 on RHS:
∀(w : S′∗)[u := v](S′′∗) = ∀(w : S′∗)(([u := v]S′′)∗)

– The goal then follows by induction.

– Case u 6= w

– By definition 11 on LHS and RHS:
∀(w : [u := v](S′∗))[u := v](S′′∗) = (∀(w : [u := v]S′)[u := v]S′′)∗

Chapter 6. Dependent Object Types with Implicit Functions 140

– By definition 10 on RHS:
∀(w : [u := v](S′∗))[u := v](S′′∗) = ∀(w : ([u := v]S′)∗)(([u := v]S′′)∗)

– The goal then follows by induction.

• Case ∀o(u : S′)S′′

– To show: [u := v]((∀o(u : S′)S′′)∗) = ([u := v](∀o(u : S′)S′′))∗

– By definition 10 on LHS: [u := v](∀(w : S′∗)S′′∗) = ([u := v](∀o(w : S′)S′′))∗

– Case u = w

– By definition 11 on LHS and RHS: ∀(w : S′∗)[u := v](S′′∗) = (∀o(w :
S′)[u := v]S′′)∗

– By definition 10 on RHS:
∀(w : S′∗)[u := v](S′′∗) = ∀(w : S′∗)(([u := v]S′′)∗)

– The goal then follows by induction.

– Case u 6= w

– By definition 11 on LHS and RHS:
∀(w : [u := v](S′∗))[u := v](S′′∗) = (∀o(w : [u := v]S′)[u := v]S′′)∗

– By definition 10 on RHS:
∀(w : [u := v](S′∗))[u := v](S′′∗) = ∀(w : ([u := v]S′)∗)(([u := v]S′′)∗)

– The goal then follows by induction.

THEOREM 9 (Type-preserving translation of DIF terms). If Γ ` t : S t̂ then Γ∗ `DOT t̂ :
S∗.

Proof. By induction on typing derivations.

• Case [VAR-EX]: Γ, p : S, Γ′ ` p : S p

– To show: (Γ, p : S, Γ′)∗ `DOT p : S∗

– Or by definition 10, Γ∗, p : S∗, Γ′∗ `DOT p : S∗

– The goal follows immediately from [VAR]DOT.

• Case [VAR-IM]: Γ, i : S, Γ′ ` o : S i

– To show: (Γ, i : S, Γ′)∗ `DOT i : S∗

– Or by definition 10, Γ∗, i : S∗, Γ′∗ `DOT i : S∗

– The goal follows immediately from [VAR]DOT.

• Case [SUB]: Γ ` t : S′ t̂

Chapter 6. Dependent Object Types with Implicit Functions 141

– By inversion of [SUB]:

– Γ ` t : S t̂

– And by induction: Γ∗ `DOT t̂ : S∗

– Γ ` S <: S′

– And by lemma 17: Γ∗ `DOT S∗ <: S′∗

– The goal then follows from [SUB]DOT.

• Case [ALL-EX-I]: Γ ` λ(x : S)t : ∀(u : S)U λ(u : S∗)t̂

– To show: Γ∗ `DOT λ(u : S∗)t̂ : (∀(u : S)U)∗

– Or by definition 10: Γ∗ `DOT λ(u : S∗)t̂ : ∀(u : S∗)U∗

– By inversion of [ALL-EX-I]:

– x u

– Then either x = u or u fresh

– Γ, u : S ` t : U t̂

– Then by induction: (Γ, u : S)∗ `DOT t̂ : U∗

– And by definition 10: Γ∗, u : S∗ `DOT t̂ : U∗

– {x, u} ∩ fv(S) = ∅

– Then by lemma 18, {x, u} ∩ fv(S∗) = ∅, and then u /∈ fv(S∗)

– The goal then follows from [ALL-I]DOT.

• Case [ALL-EX-E]: Γ ` x y : [u := y]U x̂ ŷ

– To show: Γ∗ `DOT x̂ ŷ : ([u := y]U)∗

– Or by lemma 19: Γ∗ `DOT x̂ ŷ : [u := y]U∗

– By inversion of [ALL-EX-E]:

– Γ ` x : ∀(u : S)U x̂

– Then by induction: Γ∗ `DOT x̂ : (∀(u : S)U)∗

– Then by definition 10: Γ∗ `DOT x̂ : ∀(u : S∗)U∗

– Γ ` y : S ŷ

– Then by induction: Γ∗ `DOT ŷ : S∗

– The goal then follows from [ALL-E]DOT.

• Case [LET]: Γ ` let x = t in t′ : U let u = t̂ in t̂′

– To show: Γ∗ `DOT let u = t̂ in t̂′ : U∗

– By inversion of [LET]:

Chapter 6. Dependent Object Types with Implicit Functions 142

– x u

– Γ ` t : S t̂

– Then by induction: Γ∗ `DOT t̂ : S∗

– Γ, u : S ` t′ : U t̂′

– Then by induction: (Γ, u : S)∗ `DOT t̂′ : U∗

– Then by definition 10: Γ∗, u : S∗ `DOT t̂′ : U∗

– x /∈ fv(U)

– Then by lemma 18: x /∈ fv(U∗)

– The goal then follows from [LET]DOT.

• Case [AND-I]: Γ ` x : S ∧U x̂

– To show: Γ∗ `DOT x̂ : (S ∧U)∗

– Or by definition 10: Γ∗ `DOT x̂ : S∗ ∧U∗

– By inversion of [AND-I]:

– Γ ` x : S x̂

– Then by induction: Γ∗ `DOT x̂ : S∗

– Γ ` x : U x̂

– Then by induction: Γ∗ `DOT x̂ : U∗

– The goal then follows from [AND-I]DOT.

• Case [{}-I]: Γ ` ν(x : S)d : µ(u : S) ν(u : S∗)d̂

– To show: Γ∗ `DOT ν(u : S∗)d̂ : (µ(u : S))∗

– Or by definition 10: Γ∗ `DOT ν(u : S∗)d̂ : µ(u : S∗)

– By inversion of [{}-I]:

– x u

– Γ, u : S ` d : S d̂

– Then by theorem 10: (Γ, u : S)∗ `DOT d̂ : S∗

– And by definition 10: Γ∗, u : S∗ `DOT d̂ : S∗

– The goal then follows from [{}-I]DOT.

• Case [FLD-E]: Γ ` x.a : S x̂.a

– To show: Γ∗ `DOT x̂.a : S∗

– By inversion of [FLD-E]: Γ ` x : {a : S} x̂

– Then by induction: Γ∗ `DOT x̂ : {a : S}∗

Chapter 6. Dependent Object Types with Implicit Functions 143

– And by definition 10: Γ∗ `DOT x̂ : {a : S∗}

– The goal then follows from [FLD-E]DOT.

• Case [REC-I]: Γ ` x : µ(x̂ : S) x̂

– To show: Γ∗ `DOT x̂ : µ(x̂ : S)∗

– Or by definition 10: Γ∗ `DOT x̂ : µ(x̂ : S∗)

– By inversion of [REC-I]: Γ ` x : S x̂

– Then by induction: Γ∗ `DOT x̂ : S∗

– The goal then follows from [REC-I]DOT.

• Case [REC-E]: Γ ` x : S x̂

– To show: Γ∗ `DOT x̂ : S∗

– By inversion of [REC-E]: Γ ` x : µ(x̂ : S) x̂

– Then by induction: Γ∗ `DOT x̂ : µ(x̂ : S)∗

– And by definition 10: Γ∗ `DOT x̂ : µ(x̂ : S∗)

– The goal then follows from [REC-E]DOT.

• Case [ALL-IM-I]: Γ ` t : ∀o(u : S)U λ(u : S∗)t̂

– To show: Γ∗ `DOT λ(u : S∗)t̂ : (∀o(u : S)U)∗

– Or by definition 10: Γ∗ `DOT λ(u : S∗)t̂ : ∀o(u : S∗)U∗

– By inversion of [ALL-IM-I]:

– u fresh

– Γ, u : S ` t : U t̂

– Then by induction: (Γ, u : S)∗ `DOT t̂ : U∗

– And by definition 10: Γ∗, u : S∗ `DOT t̂ : U∗

– u /∈ fv(S)

– Then by lemma 18: u /∈ fv(S∗)

– The goal then follows from [ALL-I]DOT.

• Case [ALL-IM-E]: Γ ` x : [u := v]U x̂ v

– To show: Γ∗ `DOT x̂ v : ([u := v]U)∗

– Or by lemma 19: Γ∗ `DOT x̂ v : [u := v]U∗

– By inversion of [ALL-IM-E]:

– Γ ` x : ∀o(u : S)U x̂

Chapter 6. Dependent Object Types with Implicit Functions 144

– Then by induction: Γ∗ `DOT x̂ : (∀o(u : S)U)∗

– And by definition 10: Γ∗ `DOT x̂ : ∀(u : S∗)U∗

– Γ ` o : S v

– Then by induction: Γ∗ `DOT v : S∗

– The goal then follows from [ALL-E]DOT.

THEOREM 10 (Type and domain-preserving translation of DIF definitions). If Γ ` d : S
d̂ then Γ∗ `DOT d̂ : S∗ and dom(d) = dom(d̂).

Proof. By induction on typing derivations.

• Case [TYP-I]: Γ ` {A = S} : {A : S..S} {A = S∗}

– To show for type preservation: Γ∗ `DOT {A = S∗} : ({A : S..S})∗

– Or by definition 10: Γ∗ `DOT {A = S∗} : {A : S∗..S∗}

– The goal for type preservation follows immediately from [TYP-I]DOT.

– Domain preservation is immediate from [TYP-I].

• Case [FLD-I]: Γ ` {a = t} : {a : S} {a = t̂}

– To show for type preservation: Γ∗ `DOT {a = t̂} : {a : S}∗

– Or by definition 10: Γ∗ `DOT {a = t̂} : {a : S∗}

– By inversion of [FLD-I]: Γ ` t : S t̂

– Then by theorem 9: Γ∗ `DOT t̂ : S∗

– The goal for type preservation then follows from [FLD-I]DOT.

– Domain preservation is immediate from [FLD-I].

• Case [ANDDEF-I]: Γ ` d1 ∧ d2 : S1 ∧ S2 d̂1 ∧ d̂2

– To show: Γ∗ `DOT d̂1 ∧ d̂2 : (S1 ∧ S2)∗

– Or by definition 10: Γ∗ `DOT d̂1 ∧ d̂2 : S∗1 ∧ S∗2

– By inversion of [ANDDEF-I]:

– Γ ` d1 : S1 d̂1

– Then by induction: Γ∗ `DOT d̂1 : S∗1 and dom(d1) = dom(d̂1)

– Γ ` d2 : S2 d̂2

– Then by induction: Γ∗ `DOT d̂2 : S∗2 and dom(d2) = dom(d̂2)

– dom(d1) ∩ dom(d2) = ∅

Chapter 6. Dependent Object Types with Implicit Functions 145

– Then dom(d̂1) ∩ dom(d̂2) = ∅ follows since dom(d1) = dom(d̂1) and
dom(d2) = dom(d̂2)

– The goal for type preservation then follows from [ANDDEF-I].

– Domain preservation holds by induction: if dom(d1) = dom(d̂1) and dom(d2) =

dom(d̂2) then it follows that dom(d1 ∧ d2) = dom(d̂1 ∧ d̂2).

6.5 Conclusion

In this chapter we have shown that implicit functions can be safely integrated into DOT.
DOT is a model for the correctness of Scala, and models only a subset of full Scala. We
have expanded DOT’s coverage of Scala, providing increased confidence that the com-
piler is bug-free, especially where it pertains to implicit functions. The ability of DIF to
express common usage patterns for implicits in Scala shows that our model is faithful to
Scala.

In the next and final chapter of this thesis we conclude by looking at our work on
implicits critically, considering related work and possibilites for the future study of im-
plicits.

146

Chapter 7

Conclusion1

We have generalised the concept of implicit functions from Scala’s sequential setting to
message passing concurrency, established the soundness of our proposal by translation,
showing its viability in three contexts (IM, PIIM and MPIM) and demonstrated the use-
fulness of implicit message passing by examples from the literature, including concur-
rent interpretations of dependency injection and the type class pattern. Our approach
to implicit messages in a binary setting generalises straightforwardly to multiparty com-
munication, demonstrating the generality of our approach.

We have shown that implicit functions provide a coherent solution to the repeated
rebinding problem of linearly typed languages.

Implicits are useful in sequential programming not just for dependency injection, but
also for generic programming [Oliveira et al., 2012]. Our encoding of type classes as
sessions leveraging implicits provides evidence that they provide an avenue for further
investigation into generic programming for message passing systems, as well as for se-
quential programming. Such a technology transfer from the domain of sequential to
concurrent computation would be aided by a better understanding of the relationship
between implicit functions and implicit messages.

The key aim of DOT is to provide a theoretical foundation for Scala. We extend the
existing foundation to include implicits, a feature widely used in Scala programming.

Scala’s lack of type classes mean that implicits must be leveraged to achieve such
behaviour. We have demonstrated the validity of this approach with a typable example
in a type-sound calculus.

1Portions of this chapter are adapted from [Jeffery and Berger, 2018] and [Jeffery and Berger, 2019], pub-
lished works co-authored with my supervisor, Dr. Martin BERGER, and [Jeffery, 2019], which is published
original work. I estimate that 90% of this chapter is completely my own work, with the last 10% being
co-written.

Chapter 7. Conclusion 147

Typed lambda
calculus

Typed lambda with
implicit functions

Session-typed
pi calculus

Session-typed pi with
implicit messages

3

4

1

2

FIGURE 7.1: The relationship between pi and lambda calculi and their ex-
tensions with implicit messages

7.1 Further work

7.1.1 Connection between implicit functions and implicit messages

Milner’s groundbreaking work on functions as processes [Milner, 1992] gave a deep un-
derstanding of lambda calculi as processes engaging only in well-structured interaction.
Can Milner’s approach clarify the exact correspondence between implicit functions and
implicit messages? Precise matches between studied calculi such as, for example, SI
[Odersky et al., 2018] and either IM or PIIM are unlikely, because in both cases the calculi
are too different: e.g. SI’s bidirectional and parametrically polymorphic typing system,
which both IM and PIIM lack. PIIM is perhaps closer to SI than IM – certainly it is closer
than IM to the simple pi calculus that Milner’s translation targets. Clearly choices such
as bidirectionality and polymorphism are largely orthogonal to implicits, and we conjec-
ture that full abstraction results between System F and binary session-typed pi calculus
[Berger, Honda, and Yoshida, 2005; Toninho and Yoshida, 2017; Giunti and Vasconcelos,
2013] remain stable when source and target calculi are extended with implicits. In order
even to be able to state full abstraction we need to generalise the existing equational the-
ories (as well as reasoning tools like typed bisimulations) to lambda and pi calculi with
implicits. The nature of any correspondence between a functional language like System
F and multiparty session-typed pi calculus is an open question, and thus it is less clear
whether such a correspondence could hold in the multiparty context when the source
and target calculus are extended with implicits.

Figure 7.1 summarises the conjectured relationship between lambda and pi calculi
extended with implicits – boxes labelled with calculi are connected with arrows that con-
nect them via a translation. [Odersky et al., 2018] establishes translation (1), [Toninho
and Yoshida, 2017] establishes translation (3), and [Jeffery and Berger, 2018] establishes
translation (4). We conjecture that translation (2) is possible, given appropriate lambda
and pi calculi. Such a result, completing the square, would lend weight to our claim that
implicit messages are the concurrent analogues of implicit functions.

Chapter 7. Conclusion 148

7.1.2 Notions of correctness for implicits

Implicits can be thought of as forms of compile-time metaprogramming. Studies of
program equality for compile-time metaprogramming systems have not yet found sat-
isfactory solutions. Notions of equality between metaprograms are required to have
strong guarantees about correctness of metaprogramming (soundness, full abstraction),
and the same holds for implicits. Indeed for strong correctness results for languages
with metaprogramming and implcits, equational theories for their base languages can be
leveraged in equational theories extended with metaprogramming and implicits. This is
future work.

7.1.3 Ambiguity resolution and coherence

Another open issue is the resolution of ambiguity for implicit message passing. [Odersky
et al., 2018] discusses this problem in the context of System F, but modern Scala is based
on DOT. DOT’s approach to ambiguity follows Scala’s as closely as possible, but since
there is no formal specification of ambiguity resolution in Scala, no correctness proof for
this aspect of DOT was possible. If such a specification is given, a proof becomes possible.

As discussed in section 2.3.5, [Schrijvers, Oliveira, and Wadler, 2017] introduce the
concept of coherence for implicit program constructs. Languages with implicit constructs
are said to be coherent if they only admit unambiguous programs, that is programs where
there is only a single typable choice of variable available for insertion by the compiler.
Since we leave implicit variable selection as a nondeterministic choice in IM, PIIM and
MPIM, they are clearly not coherent. DIF attempts to model Scala, which is not coherent,
so DIF inherits Scala’s incoherence. It is not entirely clear if coherence is a desirable
property for real programming languages, as such a property might inhibit flexibility
and reusability of code. That said, it remains an open question whether it is possible
to reformulate the aforementioned systems coherently. The question of coherence for
implicit messages is entirely unexplored, and it would be valuable to understand exactly
what conditions must be met in order for a program with implicit messages to be coherent
– the ambiguity introduced by adjacent implicit receive operations described in section
3.5.1 is clearly an obstacle to coherence and an investigation into mitigation of this is
warranted.

7.1.4 Empirical study of implicit messages

This dissertation advertised the utility of implicit messages, but as its argument had to
rely on moderately-sized examples, and the aesthetic appeal of smooth generalisation
from sequential to concurrent computation. A more substantial empirical evaluation is

Chapter 7. Conclusion 149

desirable. Unfortunately, the well-known difficulties with empirical evaluation of pro-
gramming languages (see [Kaijanaho, 2015] for an overview) are aggravated here by the
absence of mainstream programming language with session-typed message passing con-
currency and implicit messages. While [Křikava, Vitek, and Miller, 2019] performs a ro-
bust analysis of implicit parameters and conversions, we must leave empirical evaluation
of implicit messages as future work.

7.1.5 Type classes and implicits

The well-known correspondence between implicits and type classes [Oliveira, Moors,
and Odersky, 2010; Oliveira et al., 2012] would be interesting to establish formally – one
can envision a translation tc→i from type classes to implicits, and given the established
results of type classes to lambda calculus tc→l [Wadler and Blott, 1989] and implicits to
lambda calculus ti→l [Odersky et al., 2018], it seems that it should be possible to establish
tc→i · ti→l ≡ tc→l for some notion of ≡.

It has not been investigated whether implicits can be used to encode type classes. One
can envison another translation ti→c from implicits to type classes, and it should then be
expected that ti→c · tc→i ≡ tc→i · ti→c ≡ id, again for some ≡.

7.1.6 Type inference

Type inference for HDMP is known to be decidable [Damas and Milner, 1982], and is not
broken when extended with type classes [Wadler and Blott, 1989] (at least when heavy
handed decisions are made to resolve ambiguity, such as by making instance and class
definitions unique and global). Given that there is an apparent equivalence between im-
plicits and type classes, it is likely that type inference for HDMP remains decidable when
extended with implicit functions, thought this is yet to be shown, and of course a result
formally connecting implicits and type classes could shed light on this. It would likely
follow from such a result that the implicit functions in IM do not break decidability of
type inference. IM also contains implicit messages, and little is known about the decid-
ability of type inference for implicit messages. The adjacent implicit messages problem
would have to be addressed in any type inference algorithm for a language with implicit
messages. This means that decidability of type inference for IM, PIIM and MPST are open
questions.

It is known that type assignment and subtyping are undecidable for DOT [Rompf
and Amin, 2016] since DOT can encode system F<:. As DIF is a superset of DOT, these
properties hold for DIF transitively. DOT does, however, have a local type inference
procedure [Pierce and Turner, 2000]. It follows that such a procedure should also exist
for DIF, especially since local type inference is used to great effect in Scala, a language

Chapter 7. Conclusion 150

with implicits. DOT has no principal types, and it is therefore likely that DIF also lacks
principal types, although this remains to be shown.

7.1.7 Implicits and concurrency

While Scala concurrency libraries leverage implicits, it is unclear whether their usage
is orthogonal to concurrency, or whether there are deeper connections between the two
concepts that can be further studied in theory.

7.1.8 Extending DOT to model more of Scala

While our type soundness result for DIF lends plausibility to the correctness (or, the prov-
ability of correctness) of Scala’s implicits, DIF lacks many features of Scala. As more of
Scala’s features are modelled in DOT, it becomes possible to further extend DIF to match
new features, and show that the new features do not introduce bugs in the presence of
implicits 2.

7.1.9 Implicits and linearity

It is clear that linearity provides implicit resolution systems an additional criterion for
the choice of variable. Unused implicit linear variables are clear targets for compiler
insertion. Conversely, selection of implicits aids in satisfying linearity constraints. This is
the case in IM and PIIM. Further study of the connection between linearity and implicits
is warranted, and would be of interest to the Scala community, since the addition of
linearity to Scala would provide clear benefits. An integration of linear types into DIF
would provide a basis for this.

7.1.10 Automatic conversion of explicit parameters to implicit paramters

Implicits allow to hide repetitive argument passing. It is likely possible to identify algo-
rithmically, with the help of heuristics, when a program contains repetition that could be
hidden with implicits, and automate the process of adapting source code to make those
arguments implicit. A tool implementing this behaviour would likely make a useful ad-
dition to development environments for languages with implicit parameters.

2Indeed this is already possible as of July 2019 due to [Rapoport and Lhoták, 2019].

Chapter 7. Conclusion 151

7.2 Related Work

7.2.1 Session types

[Arslanagić, Pérez, and Voogd, 2019] introduce the concept of minimal session types,
which are session types that lack sequencing - instead of the general form S ::=!T.S|?T.S|end,
continuations are disallowed, and we have only S ::=!T.end|?T.end. They show that
Higher Order (HO) session types can be encoded in Minimal Higher Order (MHO) ses-
sion types, and provide a sound translation from the former to the latter. Where G trans-
lates types and environments, and B terms, they show that ∆ `HO P implies G(∆) `MHO

B(P). The idea of translating types and terms separately and analogously, and showing
that typability is preserved by the translation is the same idea used to show soundness
for our calculi with implicits.

7.2.2 Implicits

[Madsen and Lhoták, 2018] introduce the concepts of implicit attributes and implicified
predicates for logic programming. They develop a calculus ∆Dat, a minimal horn clause
based logic calculus similar to Datalog, with these implicit features. A translation is then
given from ∆Dat to a logic language that differs from ∆Dat only in that it lacks implicits.
It is argued with examples that implicit parameters are useful in logic programming.
Their approach is near identical to our approach with DIF, except that the base calculus
is a logic language rather than DOT. One limitation of this work are that they do not
consider polymorphism but only consider monomorphic types. Their calculus also lacks
type constructors.

[Madsen and Lhoták, 2018] also identify 4 criteria that they argue that any reason-
able design of implicit parameters should satisfy: Type safety; Consistency - resolution
of implicit parameters into explicit ones should be identity for programs with no implicit
parameters, and in the case that implicit parameters are always given explicitly at call
sites, resolution should simply erase implicit keywords; Determinism - this is the con-
cept of coherence seen in [Schrijvers, Oliveira, and Wadler, 2017]; and Predictability -
explicit parameters should not be modified by resolution of implicit ones. As discussed,
coherence for our calculi are open problems. We show type safety for all our calculi, but
determinism and predictability for them are also open questions.

[Křikava, Vitek, and Miller, 2019] perform the first empirical analysis of the use of im-
plicit parameters and conversions, analysing 6,500 Scala repositories on GitHub includ-
ing 7.9 million call-sites (almost 25% of all call sites) involving implicits and 900 thou-
sand implicit declarations across 18.5M lines of code. A simple calculation then yields
the value 8.7̄ for the number of calls to every implicit definition. Primarily addressed
are questions of pervasiveness, complexity and performance of implicits. 98.7% of code

Chapter 7. Conclusion 152

bases analysed contained at least one implicit call site, and 79.4% of code bases contained
an implicit definition, 14.2% of which occurred in tests and the rest in main code. The
type class pattern was found to be one of the main applications of implicit parameters.

[Norell, 2007] aims to make programming with dependent types more practical by
extending the dependently typed language Agda with pattern matching, modules, and,
most relevantly, metavariables, which easily allow extension of Agda with implicit param-
eters. Implicit parameters are resolved in a translation phase.

[Sozeau and Oury, 2008] leverages Agda’s implicit parameters to encode type classes
in a ‘first-class’ manner. This adds weight to the conjecture of a strong theoretical con-
nection between implicits and type classes.

[Brady, 2013] details the programming language Idris, a dependently typed language
with implicit parameters. Idris allows free type or value variables in type signatures to
have their binders and associated types inferred by the compiler. In languages without
dependent types, type variable binders can also be inferred, but Idris differs in that the
dependent types associated with those binders can also be inferred by the compiler.

[White, Bour, and Yallop, 2015] add modular implicits to OCaml, a widely-used, high-
level, strongly typed functional programming language. Their modular implicits are
modular in the sense that they operate at the module level - OCaml has typed mod-
ules, and implicit modules allow for ad-hoc overloading and other related properties
at the module level in the same way as implicit parameters allow ad-hoc overloading
and related properties at the term level. Their implicit modules resemble Scala’s implicit
classes.

[Turon, 2017] discusses the trade-offs of implicit program constructs. Implicits are
often dismissed for introducing bugs that are hard to track down due to subtle chains
of inference. This can indeed be a problem – implicits (and indeed language features
in general) should be designed in such a way as to elide repeated and obvious parts of
the code, whilst making everything relevant to understand a piece of code easy to see
or find. [Turon, 2017] argues that good implicit feature design trades off applicability –
where implicit constructs can be used; power – what information can be hidden and how
implicits change the code’s typing or behaviour; and context-dependence – how elided
details are filled in, and the ease with which one can learn or understand what is implicit
in a piece of code.

7.2.3 Scala and DOT

[Rapoport and Lhoták, 2019] expand the set of Scala’s features modelled by DOT to in-
clude Scala’s fully path-dependent types and singleton types. Previous formulations of
DOT allowed paths to types of length one only, of the form u.A, whereas full Scala allows
arbitrary paths, e.g. core.symbols.Symbol (an example from Scala’s Dotty compiler).

Chapter 7. Conclusion 153

These full paths are required to express type dependencies in the module system. Single-
ton types are those of the form p.type, which is a type equivalent to the type of P. More
concretely, the type obtained by the expression 1.type is Int. The paper introduces a
calculus pDOT that allows full paths and singleton types as in Scala, with a mechanised
soundness proof. It remains to be seen whether pDOT can also be extended with implicit
functions.

154

Bibliography

Abadi, Martin and Luca Cardelli (1994). “A Theory of Primitive Objects”. In: European
Symposium on Programming. Springer, pp. 1–25.

Agha, Gul (1986). “An Overview of Actor Languages”. In: Proceedings of the 1986 SIG-
PLAN Workshop on Object-oriented Programming. OOPWORK ’86. Yorktown Heights,
New York, USA: ACM, pp. 58–67. ISBN: 0-89791-205-5. DOI: 10.1145/323779.
323743. URL: http://doi.acm.org/10.1145/323779.323743.

Amin, Nada, Adriaan Moors, and Martin Odersky (2012). “Dependent Object Types”. In:
19th International Workshop on Foundations of Object-Oriented Languages. EPFL-CONF-
183030.

Amin, Nada, Tiark Rompf, and Martin Odersky (2014). “Foundations of path-dependent
types”. In: Acm Sigplan Notices. Vol. 49. 10. ACM, pp. 233–249.

Amin, Nada et al. (2016). “The Essence of Dependent Object Types”. In: A List of Successes
That Can Change the World. Springer, pp. 249–272.

Arslanagić, Alen, Jorge A Pérez, and Erik Voogd (2019). “Minimal Session Types (Ex-
tended Version)”. In: arXiv preprint arXiv:1906.03836.

Atkey, Robert (2009). “Parameterised Notions of Computation”. In: JFP 19.3-4, pp. 335–
376. ISSN: 0956-7968. DOI: 10.1017/S095679680900728X. URL: http://dx.doi.
org/10.1017/S095679680900728X.

Berger, Martin, Kohei Honda, and Nobuko Yoshida (2005). “Genericity and the π-Calculus”.
In: Acta Informatica.

Bernardy, Jean-Philippe et al. (Dec. 2017). “Linear Haskell: Practical Linearity in a Higher-
order Polymorphic Language”. In: Proc. ACM Program. Lang. 2.POPL, 5:1–5:29. ISSN:
2475-1421. URL: http://doi.acm.org/10.1145/3158093.

Brady, Edwin (2013). “Idris, a General-Purpose Dependently Typed Programming Lan-
guage: Design and Implementation”. In: Journal of functional programming 23.5, pp. 552–
593.

Church, Alonzo (1932). “A Set of Postulates for the Foundation of Logic”. In: Annals
of Mathematics, pp. 346–366. URL: https://www.jstor.org/stable/pdf/
1968337.pdf.

— (1940). “A Formulation of the Simple Theory of Types”. In: The Journal of Symbolic
Logic 5.2, pp. 56–68.

https://doi.org/10.1145/323779.323743
https://doi.org/10.1145/323779.323743
http://doi.acm.org/10.1145/323779.323743
https://doi.org/10.1017/S095679680900728X
http://dx.doi.org/10.1017/S095679680900728X
http://dx.doi.org/10.1017/S095679680900728X
http://doi.acm.org/10.1145/3158093
https://www.jstor.org/stable/pdf/1968337.pdf
https://www.jstor.org/stable/pdf/1968337.pdf

Bibliography 155

Coppo, Mario et al. (2015). “Global Progress in Dynamically Interleaved Multiparty Ses-
sions”. In: Mathematical Structures in Computer Science.

Damas, Luis and Robin Milner (1982). “Principal Type-Schemes for Functional Programs.”
In: POPL. Vol. 82, pp. 207–212.

Gay, Simon J. and Vasco T. Vasconcelos (2010). “Linear type theory for asynchronous
session types”. In: JFP 20.1, 19–50. DOI: 10.1017/S0956796809990268.

Girard, Jean-Yves (1972). “Interprétation fonctionelle et élimination des coupures de l’arithmétique
d’ordre supérieur”. PhD thesis. Université Paris VII.

— (Jan. 1987). “Linear Logic”. In: Theoretical Computer Science 50.1, pp. 1–102. ISSN: 0304-
3975. DOI: 10.1016/0304-3975(87)90045-4. URL: http://dx.doi.org/10.
1016/0304-3975(87)90045-4.

Giunti, Marco and Vasco Thudichum Vasconcelos (2013). Linearity, Session Types and the
Pi Calculus.

Haller, Philipp (2012). “On the Integration of the Actor Model in Mainstream Technolo-
gies: The Scala Perspective”. In: Proceedings of the 2nd edition on Programming systems,
languages and applications based on actors, agents, and decentralized control abstractions.
ACM, pp. 1–6.

Hindley, Roger (1969). “The Principal Type-Scheme of an Object in Combinatory Logic”.
In: Transactions of the American Mathematical Society 146, pp. 29–60.

Hoare, C.A.R. (1985). Communicatiing Sequential Processes. Prentice Hall.
Honda, Kohei (1993). “Types for Dyadic Interaction”. In: Proc. CONCUR.
Honda, Kohei, Vasco T. Vasconcelos, and Makoto Kubo (1998). “Language primitives and

type disciplines for structured communication-based programming”. In: Proc. ESOP.
Vol. 1381. LNCS, pp. 22–138.

Honda, Kohei, Nobuko Yoshida, and Mario Carbone (2008). “Multiparty Asynchronous
Session Types”. In: Proc. POPL, pp. 273–284.

Jeffery, Alex (2019). “Dependent Object Types with Implicit Functions”. In: Scala Sympo-
sium.

Jeffery, Alex and Martin Berger (2018). “Asynchronous Sessions with Implicit Functions
and Messages”. In: International Symposium on Theoretical Aspects of Software En-
gineering (TASE).

— (2019). “Asynchronous Sessions with Implicit Functions and Messages, Extended Ver-
sion”. In: Science of Computer Programming 180, pp. 36–70.

Kaes, Stefan (1988). “Parametric Overloading in Polymorphic Programming Languages”.
In: ESOP ’88. Ed. by H. Ganzinger. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 131–144.

Kaijanaho, Antti-Juhani (2015). “Evidence-based programming language design: a philo-
sophical and methodological exploration”. PhD thesis. University of Jyväskylä.

https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4

Bibliography 156

Kiselyov, Oleg (2014). Implementing, and Understanding Type Classes. https://web.
archive.org/web/20180910165920/http://okmij.org/ftp/Computation/

typeclass.html.
Knuth, Donald E and Luis Trabb Pardo (1980). “The Early Development of Programming

Languages”. In: A history of computing in the twentieth century. Elsevier, pp. 197–273.
Kobayashi, Naoki, Benjamin C Pierce, and David N Turner (1999). “Linearity and the

Pi-Calculus”. In: ACM Transactions on Programming Languages and Systems (TOPLAS)
21.5, pp. 914–947.

Křikava, Filip, Jan Vitek, and Heather Miller (2019). “Scala Implicits are Everywhere”. In:
Proc. OOPSLA.

Lewis, Jeffrey R. et al. (2000). “Implicit Parameters: Dynamic Scoping with Static Types”.
In: Proc. POPL.

Lindley, Sam and J Garrett Morris (2016). “Talking Bananas: Structural Recursion for Ses-
sion Types”. In: ACM SIGPLAN Notices. Vol. 51. 9. ACM, pp. 434–447.

Madsen, Magnus and Ondřej Lhoták (2018). “Implicit Parameters for Logic Program-
ming”. In: The 20th International Symposium on Principles and Practice of Declarative Pro-
gramming (PPDP ’18), September 3–5, 2018, Frankfurt am Main, Germany. ACM. DOI:
10.1145/3236950.3236953.

Martin-Löf, Per (1975). “An Intuitionistic Theory of Types: Predicative Part”. In: Studies
in Logic and the Foundations of Mathematics. Vol. 80. Elsevier, pp. 73–118.

Milner, Robin (1989). Communication and Concurrency. Prentice Hall.
— (1992). “Functions as Processes”. In: MSCS 2.2, pp. 119–141.
— (1999). Communicating and Mobile Systems: The π-Calculus. Cambridge University Press.
Milner, Robin and Parrow, Joachim and Walker, David (1992). “A Calculus of Mobile

Processes, I”. In: Information and Computation 100.1, pp. 1 –40. ISSN: 0890-5401. DOI:
https://doi.org/10.1016/0890-5401(92)90008-4. URL: http://www.
sciencedirect.com/science/article/pii/0890540192900084.

Nestmann, Uwe and Benjamin C Pierce (1996). “Decoding Choice Encodings”. In: Inter-
national Conference on Concurrency Theory. Springer, pp. 179–194.

Norell, Ulf (2007). Towards a practical programming language based on dependent type theory.
Vol. 32. Citeseer.

— (2008). “Dependently typed programming in Agda”. In: International School on Ad-
vanced Functional Programming. Springer, pp. 230–266.

Odersky, Martin (2019). A Tour of Scala 3. https://web.archive.org/web/20190908123007/
https://www.youtube.com/watch?v=_Rnrx2lo9cw.

Odersky, Martin et al. (2017). Dotty Compiler: A Next Generation Compiler for Scala. https:
//web.archive.org/web/20170325001401/http://dotty.epfl.ch/.

Odersky, Martin et al. (2018). “Simplicitly: Foundations and Applications of Implicit Func-
tion Types”. In: Proc. POPL.

https://web.archive.org/web/20180910165920/http://okmij.org/ftp/Computation/typeclass.html
https://web.archive.org/web/20180910165920/http://okmij.org/ftp/Computation/typeclass.html
https://web.archive.org/web/20180910165920/http://okmij.org/ftp/Computation/typeclass.html
https://doi.org/10.1145/3236950.3236953
https://doi.org/https://doi.org/10.1016/0890-5401(92)90008-4
http://www.sciencedirect.com/science/article/pii/0890540192900084
http://www.sciencedirect.com/science/article/pii/0890540192900084
https://web.archive.org/web/20190908123007/https://www.youtube.com/watch?v=_Rnrx2lo9cw
https://web.archive.org/web/20190908123007/https://www.youtube.com/watch?v=_Rnrx2lo9cw
https://web.archive.org/web/20170325001401/http://dotty.epfl.ch/
https://web.archive.org/web/20170325001401/http://dotty.epfl.ch/

Bibliography 157

Oliveira, Bruno C. d. S. et al. (2012). “The Implicit Calculus: A New Foundation for
Generic programming”. In: ACM SIGPLAN Notices. Vol. 47. 6. ACM, pp. 35–44.

Oliveira, Bruno C.d.S., Adriaan Moors, and Martin Odersky (2010). “Type Classes As
Objects and Implicits”. In: Proc. OOPSLA, pp. 341–360.

Pierce, Benjamin C. and David N. Turner (Jan. 2000). “Local Type Inference”. In: ACM
Trans. Program. Lang. Syst. 22.1, pp. 1–44. ISSN: 0164-0925. DOI: 10.1145/345099.
345100. URL: http://doi.acm.org/10.1145/345099.345100.

Rapoport, Marianna and Ondřej Lhoták (2019). “A Path To DOT: Formalizing Fully Path-
Dependent Types”. In: Proc. OOPSLA.

Reynolds, John C (1974). “Towards a theory of type structure”. In: Programming Sympo-
sium. Springer, pp. 408–425.

Rice, Henry Gordon (1953). “Classes of Recursively Enumerable Sets and their Decision
Problems”. In: Transactions of the American Mathematical Society 74.2, pp. 358–366.

Rompf, Tiark and Nada Amin (2016). “Type Soundness for Dependent Object Types
(DOT)”. In: ACM Sigplan Notices. Vol. 51. 10. ACM, pp. 624–641.

Russell, Bertrand and Alfred North Whitehead (1910–13). Principia Mathematica. URL:
https://web.archive.org/web/20181018104855/https://en.wikipedia.

org/wiki/Principia_Mathematica.
Schneider, Fred B, Greg Morrisett, and Robert Harper (2001). “A Language-Based Ap-

proach to Security”. In: Informatics. Springer, pp. 86–101.
Schrijvers, Tom, Bruno CdS Oliveira, and Philip Wadler (2017). “Cochis: Deterministic

and Coherent Implicits”. In: Report CW 705.
Sobral, Daniel C. and Matthias Braun (2011). Where does Scala look for implicits? https:

//web.archive.org/web/20181119203031/https://docs.scala-lang.

org/tutorials/FAQ/finding-implicits.html.
Sozeau, Matthieu and Nicolas Oury (2008). “First-Class Type Classes”. In: International

Conference on Theorem Proving in Higher Order Logics. Springer, pp. 278–293.
Strachey, Christopher (2000). “Fundamental Concepts in Programming Languages”. In:

Higher-order and symbolic computation 13.1-2, pp. 11–49.
Takeuchi, Kaku, Kohei Honda, and Makoto Kubo (1994). “An Interaction-based Lan-

guage and its Typing System”. In: Proc. PARLE.
Toninho, Bernardo and Nobuko Yoshida (2017). “On Polymorphic Sessions and Func-

tions: A Tale of Two (Fully Abstract) Encodings”. In: CoRR abs/1711.00878. arXiv:
1711.00878. URL: http://arxiv.org/abs/1711.00878.

Turner, David N. (1995). “The Polymorphic Pi-calculus: Theory and Implementation”.
PhD thesis. University of Edinburgh.

Turon, Aaron (2017). Rust’s language ergonomics initiative. https://web.archive.
org/web/20190824062128/https://blog.rust-lang.org/2017/03/02/

lang-ergonomics.html.

https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
http://doi.acm.org/10.1145/345099.345100
https://web.archive.org/web/20181018104855/https://en.wikipedia.org/wiki/Principia_Mathematica
https://web.archive.org/web/20181018104855/https://en.wikipedia.org/wiki/Principia_Mathematica
https://web.archive.org/web/20181119203031/https://docs.scala-lang.org/tutorials/FAQ/finding-implicits.html
https://web.archive.org/web/20181119203031/https://docs.scala-lang.org/tutorials/FAQ/finding-implicits.html
https://web.archive.org/web/20181119203031/https://docs.scala-lang.org/tutorials/FAQ/finding-implicits.html
https://arxiv.org/abs/1711.00878
http://arxiv.org/abs/1711.00878
https://web.archive.org/web/20190824062128/https://blog.rust-lang.org/2017/03/02/lang-ergonomics.html
https://web.archive.org/web/20190824062128/https://blog.rust-lang.org/2017/03/02/lang-ergonomics.html
https://web.archive.org/web/20190824062128/https://blog.rust-lang.org/2017/03/02/lang-ergonomics.html

Bibliography 158

Wadler, P. and S. Blott (1989). “How to Make Ad-hoc Polymorphism Less Ad Hoc”. In:
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’89. New York, NY, USA: ACM, pp. 60–76. DOI: 10.1145/75277.
75283. URL: http://doi.acm.org/10.1145/75277.75283.

Walker, David (2005). “Substructural type systems”. In: Advanced Topics in Types and Pro-
gramming Languages, pp. 3–44.

White, Leo, Frédéric Bour, and Jeremy Yallop (2015). “Modular implicits”. In: arXiv preprint
arXiv:1512.01895.

https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
http://doi.acm.org/10.1145/75277.75283

	PhD Coversheet
	PhD Coversheet

	Jeffery, Alexander Paul
	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Thesis outline
	Background
	Implicits
	Implicit parameters
	Implicit function types
	Implicit conversions

	Concurrency
	Pi calculus
	Session types
	Implicit messages

	Scala
	Dependent Object Types (DOT)
	DOT with Implicit Functions (DIF)

	Linearity

	Contributions

	Literature Review
	Introduction
	Type Systems
	Motivation
	Types of Type System
	Polymorphic
	Dependent
	Behavioural

	Lambda Calculus
	Untyped Lambda Calculus
	Simply Typed Lambda Calculus
	Hindley-Damas-Milner Polymorphism
	Type Classes
	Implicit Parameters and Implicit Function Types
	Coherence

	Type Classes via Implicits
	Linearity

	Concurrency
	Terminology
	Forms of Concurrency
	Message Passing
	Shared Memory

	Theoretical Models of Concurrency
	Calculus of Communicating Systems (CCS)
	Pi Calculus
	Recursion
	Mobility

	Equality in models of computation
	Implementing the Pi Calculus
	Nondeterminsim
	Encoding the Lambda Calculus in the Pi Calculus

	Types for Concurrency
	Polymorphic channel types for Pi Calculus
	Linear types for Pi Calculus
	Session Types
	LAST
	Linearity, session types and the Pi Calculus
	Multiparty Session Types

	Scala and DOT
	Dependent Object Types (DOT)

	Summary

	Asynchronous Sessions with Implicit Functions and Messages
	Introduction
	Outline

	IM - Examples
	Elimination of repeated rebinding
	Session type classes
	Context and dependency injection

	The language IM
	Syntax
	Semantics

	Types for IM
	Type schemas for constants
	Session type duality
	Session type bounds

	Translation from IM to LAST
	Typing environments and implicit scope
	Typing and translation of expressions
	Typing and translation of buffer contents
	Typing and translation of configurations

	Sources of ambiguity

	Runtime safety of IM
	Conclusion

	Pi Calculus with Implicit Messages
	Introduction
	Outline

	PIIM - An Example
	The language PIIM
	Syntax
	Semantics

	Typing for PIIM
	Types
	Typing rules
	Ambiguity

	Type safety of PIIM
	Conclusion

	Multiparty Asynchronous Sessions with Implicit Messages
	Introduction
	MPIM - An Example
	The language MPIM
	Syntax
	Semantics

	Types for MPIM
	Duality
	Global Type Projection
	Partial Type Projection

	Translation from MPIM to MPST
	Translation of types

	Runtime safety of MPIM
	Conclusion

	Dependent Object Types with Implicit Functions
	Introduction
	The Language DIF
	Abbreviations
	Semantics

	Typing for DIF
	Translation of Types
	Type substitution
	The functions depth and spec
	Typing rules

	Type safety of DIF
	Conclusion

	Conclusion
	Further work
	Connection between implicit functions and implicit messages
	Notions of correctness for implicits
	Ambiguity resolution and coherence
	Empirical study of implicit messages
	Type classes and implicits
	Type inference
	Implicits and concurrency
	Extending DOT to model more of Scala
	Implicits and linearity
	Automatic conversion of explicit parameters to implicit paramters

	Related Work
	Session types
	Implicits
	Scala and DOT

	Bibliography

