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PrOSPECTS IN CLASSICAL AND QUANTUM GRAVITY
- FroM THEORY TO PHENOMENOLOGY

PhD Thesis Abstract

Sonali Mohapatra

General Relativity (GR) is a highly successful theory whose predictions are still being confirmed a hundred
years later. However, despite its significant success, there still remain questions beyond the realm of its
validity. The reconciliation of Standard Model (SM) and GR or Quantum Mechanics (QM) and GR point
towards the need for a potential modification of GR or a consistent theory of quantum gravity (QG). The
purpose of this thesis is to explore classical and quantum gravity in order to improve our understanding of
different aspects of gravity, such as black holes (BHs), exotic compact objects (ECOs) like Boson Stars (BS)
and gravitational waves (GW). We follow recent advancements in the field of Effective Quantum Gravity
(EQG) by noticing that gravity naturally lends itself to an effective framework. The cut off of this effective
theory is set to be the Planck mass since this is where UV effects are expected to take over. We focus on
finding low energy quantum corrections to General Relativity by using the effective 1PI action and the
modified gravity propagator. These include predictions of two new gravitational wave modes in addition to
the usual classical GW mode predicted by GR. We investigate and make comments on whether these modes
could have been produced by the events observed by LIGO and the energy scales in which these could be
possibly produced. In the next project, we investigated whether there exists a correction to the quadrupole
moment formula in GR to calculate the energy carried away by gravitational radiation. We apply the
corrected formula to calculate the gravitational radiation produced in a binary black hole system in the
effective quantum gravity formalism. We make comments regarding its regime of validity. While working in
the field of gravitational waves, an interesting aside was modelling of Exotic Compact Objects such as Boson
Stars which could also potentially act as black hole mimickers. We calculated analytically the gravitational
radiation background produced by binary BS systems. We also commented on and put constraints on their
possible detectability by LISA. Last but not the least, an important area in QG is the study of black hole
thermodynamics. Corrections to the Bekenstein-Hawking area theorem have been calculated in various
quantum gravity approaches and have been found to have a logarithmic form. In the last paper of this thesis,
combining insights from Effective Quantum Gravity and Black Hole Thermodynamics, we motivate a
generalised Area-Entropy law for black holes building upon the idea of an adiabatic invariant. This allows us
to find interesting constraints on the number of fields in a consistent theory of quantum gravity. This work is
particularly interesting because of its potential consequences in finding minimal extensions to the standard

model and combining the standard model with a consistent theory of gravity.
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Chapter 1

Introduction

It’s hard to imagine a more
fundamental and ubiquitous
aspect of life on the Earth than
gravity, but what if it’s all an
illusion, a sort of cosmic frill, or
a side effect of something else
going on at deeper levels of

reality?

Erik Verlinde

1.1 Prelude

History teaches us many things. And without looking back, it is easy to make
the same mistakes again and again. A look at the history of physics makes us
realize that it has had a long history of contradictions between empirically successful
theories. But these contradictions are not necessarily a comedy of errors, they can
often be placeholders for terrific opportunities for advancement of our knowledge.
Reviewing the history of physics, we find several of the major jumps ahead are the
results of efforts to resolve precisely such contradictions, for example, the discovery
of universal gravitation by Newton by combining Galileo’s parabolas with Kepler’s
ellipses. The discovery of special relativity by Einstein to reconcile the contradiction
between mechanics and electrodynamics. Furthermore, the discovery that spacetime

is curved, just 10 years later, again by Einstein in an effort to reconcile Newtonian



gravitation with special relativity.

It might also be said that, today, we are standing at a very important juncture in
the evolution of physics in the world. After the recent discovery of the Higgs boson
[1, 2] and the more recent confirmation of gravitational waves [3], today, there is
a clear demarcation between what we know about the world and what we do not

know. What we know is encapsulated into three major theories:

- Quantum Mechanics, which is the general theoretical framework for describing

dynamics.

- The SU(3) x SU(2) x U(1) standard model of particle physics, which describes

all matter we have so far observed directly
- General Relativity (GR), which describes gravity, space and time.

The success of these theories and the story of their many trials and tribulations
is indeed “romanchak” as we say in India. In this thesis we will concentrate on
the theory of general relativity. The theory of general relativity has completely
changed our understanding of space and time. From being an esoteric theory which
took people by surprise to becoming a theory whose myriad predictions have been
accurately experimentally tested and proven over the past hundred years, the story
of GR is one of the greatest success stories of modern physics. Some of its successes

are as follows [4]:

e The anomalous precession of the perihelion of Mercury,

e The angle of deflection of light for a gravitational field,

e Gravitational redshift,

e Post-Newtonian tests,

e Gravitational lensing, (which also allowed us to conjecture the existence of
dark matter),

e Shapiro time delay,

e Tests of the equivalence principle,

e Strong field tests,

e Cosmological tests,

e (Gravitational waves.
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Not only that, but the usage of GR has become ubiquitous in our day to day lives
due to the usage of satellite data and GPS systems which have applications in
various other fields. However, GR, among all its successes, points towards its own
shortcomings. One of the most glaring instances of this is in the prediction of black
holes: GR breaks down at the singularity. More everyday examples include 1) the
discrepancy between the predicted and the observed galaxy rotation curves which
necessitates dark matter models [5], [6] 2) dark energy, which has been conjectured
as the reason behind the current acceleration of the universe, [7] 3) the cosmological
constant problem [7] and 4) reconciliation of quantum mechanics and gravity which
leads us to the problem of quantum gravity [8], which is perhaps the most challenging
problem in theoretical physics today. Thus, some of the main things we do not know

about the world can be summarized as:

dark matter,

dark energy

unification,

modification of gravity or quantum gravity.

In fact, physics today stands on the brink of another apparent contradiction. General
Relativity predicts that space-time is curved and the world is deterministic and pre-
dictive, however quantum field theory [9] and the standard model of particle physics
talk about how the world is formed by discrete quanta jumping over a flat space-
time, governed by global (Poincare) and local symmetries. The question however
remains, why, given the continuous nature of our world, there isn’t yet a framework
for unifying quantum mechanics and GR. Or in other words, what does the appar-
ent contradiction of the Standard Model of particle physics with General Relativity
teach us? Some of the contenders of quantum gravity in today’s world are string
theory [10], loop quantum gravity [I1], and causal dynamical triangulations [12].
However, most of these theories pre-suppose a fundamental nature of space-time in
the UV in an ad-hoc manner. Without a way to connect these with experiments,
progress seems to be halted!

Developments in physics have always gone hand in hand with developments

in mathematics. Thus we must celebrate that today, we have new mathematical
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tools at our disposal like never before. Notably, powerful techniques of effective field
theories [13] [14] have been developed and we are slowly understanding that all of our
theories can be understood better in this effective framework. Thus, an interesting
question to ask is whether we can push the frontiers of GR without making ad-hoc
assumptions about the nature of reality in the UV but rather build upon available
hints to go forward. Or in other words, can the effective field theory technique be
applied to gravity to make important and “true” quantum predictions in the low
energy regime?

Another landmark which led to a major development in the 1960s was the con-
tradiction between the ideas that black holes could absorb energy and still remain in
zero temperature equilibrium (as was thought at the time). This was the reason for
the birth of “black hole thermodynamics”. Surprising parallels between the second
law of thermodynamics and the horizon area of a black hole were discovered [15].
This led to the understanding that black holes have entropy and this entropy can
be written in terms of the horizon area, which in turn led to the discovery that
the area spectrum of a black hole is discrete. Black holes saturate the high energy
regime of gravity and thus, are a laboratory between the UV and IR. Thus, black
hole thermodynamics today allows us a tantalizing dream of yet another possible

path to get better hints of quantum gravity.

I consider that all of the above are parts of a huge jigsaw puzzle which are
slowly being revealed to us when we manage to ask the right questions. In the
following chapters, I will review basic concepts of general relativity, solutions of
general relativity, gravitational waves and effective quantum gravity to build up
essential background for the published papers included in this thesis which explore

some of these questions. The original contributions start at Chapter [6]

1.2 Summary and Outline

General Relativity (GR) is a highly successful theory whose predictions are still
being confirmed a hundred years later. However, despite its significant success,

there still remain questions beyond the realm of its validity. The apparent irre-

concilability between Standard Model (SM) and GR or Quantum Mechanics (QM)
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and GR point towards the need for a potential modification of GR or a consistent
theory of quantum gravity (QG). The purpose of this thesis is to explore classical
and quantum gravity in order to improve our understanding of different aspects
of gravity, such as black holes (BHs), exotic compact objects (ECOs) like Boson
Stars (BS) and gravitational waves (GW). In Chapters to (B]), we review the
basic concepts in GR, discussing solutions such as black holes and exotic compact
objects. We then proceed to discuss gravitational waves followed by a review of the
effective field theory formalism of quantum gravity. This is followed by a review of

the formulation and importance of the concept of black hole entropy.

In Chapter @, based on [16], which is the first paper of the thesis, we follow
recent advancements in the field of Effective Quantum Gravity (EQG) by noticing
that gravity naturally lends itself to an effective framework. The cut off of this
effective theory is set to be the Planck mass since this is where UV effects are
expected to take over. We focus on finding low energy quantum corrections to GR
by using the effective 1PI action and the modified gravity propagator. These include
predictions of two new gravitational wave modes in addition to the usual classical
GW mode predicted by GR. We investigate and make comments on whether these
modes could have been produced by the events observed by LIGO and the energy

scales in which these could be possibly produced.

In the next paper, Chapter , based on [I7], we investigated whether there
exists a correction to the quadrupole moment formula in GR to calculate the energy
carried away by gravitational radiation. We apply the corrected formula to calculate
the gravitational radiation produced in a binary black hole system in the effective

quantum gravity formalism. We make comments regarding its regime of validity.

While working in the field of gravitational waves and black holes, an interesting
aside was modelling of Exotic Compact Objects such as Boson Stars which could also
potentially act as black hole mimickers. In Chapter , based on [18], we calculated
analytically the gravitational radiation background produced by binary BS systems.

We also commented on and put constraints on their possible detectability by LISA.

Last but not the least, an important area in QG is the study of black hole
thermodynamics. Corrections to the Bekenstein-Hawking area theorem have been

calculated in various quantum gravity approaches and have been found to have a



6

logarithmic form. In the last paper of this thesis, Chapter @, combining insights
from Effective Quantum Gravity and Black Hole Thermodynamics, we motivate a
generalised Area-Entropy law for black holes building upon the idea of an adiabatic
invariant. This allows us to find interesting constraints on the number of fields in a
consistent theory of quantum gravity. This work is particularly interesting because
of its potential consequences in finding minimal extensions to the standard model
and combining the standard model with a consistent theory of gravity.

We draw conclusions and discuss future directions in Chapter (10). A few of
the important calculations which could not be included in chapters directly without
causing a rift in the space-time continuum, have been placed in the Appendices ,

and [C). All paper acknowledgements are placed in Appendix (D).



Chapter 2

General Relativity: A Brief

Review

Macroscopic objects, as we see
them all around us, are
governed by a variety of forces,
derived from a variety of
approximations to a variety of
physical theories. In contrast,
the only elements in the
construction of black holes are
our basic concepts of space and
time. They are, thus, almost by
definition, the most perfect
macroscopic objects there are in

the universe.

Subrahmanyan Chandrasekhar

General Relativity, which is Einstein’s theory of space, time and gravity, is un-
doubtedly one of the most beautiful physical theories in existence. However, the
skills required to understand the complicated mathematics might make many un-
dergraduates frustrated. Even though the importance and relevance of aesthetics in
physics is controversial and is up for debate, it cannot be denied that beautiful and
exciting solutions of GR such as stars and black holes draw in students and keep

them excited with the promise of understanding these fantastical objects one day.
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There is an unbridled joy in finally coming to the end of a course of GR or working
on the mathematical nature of these objects during one’s PhD and finally knowing
how to derive them. Such is the joy I have felt for the last four years and in this
section, we review the geometrical formulation of the general theory of relativity.
The basic idea of GR is simple. While most forces of nature are fields defined
on space-time, gravity ¢s the geometry of space-time. It is based on the prin-
ciple of general covariance which means that physical laws are unchangeable under
general coordinate transformations. Here, spacetime is a four-dimensional Pseudo-
Riemannian manifold (M, g,,,) composed of a differentiable manifold M and a met-
ric g,,. The two together define our space-time. Points p € M are dubbed events.
Anything which has mass or energy (which are equivalent) curves this space-time.
Test particles, being free from external forces, free fall on the spacetime along these
curves. Their trajectories are the shortest distance on this curved space going from

one point to the other given by geodesics:

d? dz? dxP
I ——— =0 2.1
ds? Y ds ds ’ (2.1)
where
9" (09,6 agau 8guu
e =9 - 2.2
w2 (83:“ * Oxzv  Ox° (22)

are the Christoffel symbols of the Levi-Civita connection V. Massive particles follow
time-like geodesics, while massless particles such as photons follow null geodesics.
In principle, we can also define space-like geodesics, and particles which follow such
geodesics could propagate at speeds which are superluminal but such particles (ta-
chyons) would be unphysical. We might wonder what happens to field theory re-
quirements such as scalar products on such a curved space, this can be understood
by studying the motion (parallel transport) of scalars, vectors and tensors under

general covariance. This is given by a covariant derivative:
DAY = 0,A" + T A" (2.3)

The above is the action on a contravariant vector field, this can be generalised
to tensors of any rank. An important idea to touch upon here is the equivalence
principle. Note that the geodesic Equation is independent of the particle’s
mass. This demonstrates the equivalence principle: all particles undergo the same

acceleration in the presence of a gravitational field, independently of their masses.
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To understand gravity is to understand “curvature”. The Riemann curvature

tensor is given by
R, =07, — 0,17, + 17,7, =17 T . (2.4)

The Ricci tensor can be derived from the Reimann by “contracting” the first and
third indices Ry, = g”* R, Contracting the remaining indices of the Ricci tensor,
leads to the Ricci scalar or the curvature scalar: R = ¢"“R,,. These curvature
measures define the transformation of vectors, volume elements and so on as they
are parallel transported along a curved manifold. For an exhaustive review of the
physical interpretations of these various curvatures, see [19]. In the Lagrangian

formalism, we can write the Einstein-Hilbert action as

1

S = /d4m\/—_gm (R—A)+ S, (2.5)

which is the most general action containing up to two derivatives of the metric,
guaranteeing that the field equation is second order in the metric and A is the cos-
mological constant. Just like any other field theory, the terms in the action must
follow the symmetry group of GR which is the group of diffeomorphisms. Two
different descriptions which are connected by a diffeomorphism describe the same
physical reality. Thus, each term must be diffeomorphism invariant. Many alternat-
ive theories of GR, or higher derivative gravity theories rely on adding various other
higher order diffeomorphism invariant terms to the action Equation ({2.5]).

Varying this action, Equation ({2.5)), with respect to the metric, (setting A = 0

for simplicity) we find the Einstein’s field equations
1
R, — §ng, = 81GT),, (2.6)

which govern how the metric g,, responds to energy and momentum by using 7,,,
the stress-energy or energy-momentum tensor. All throughout this thesis, we are
using units such that the speed of light is ¢ = 1. Solutions to Equation lead to
predictions of general relativity. Often, we are interested in solutions of Equation

(2.6 in the vacuum where the energy-meomentum tensor vanishes, in that case, we

see that Equation (12.6)) reduces to:

R, =0. (2.7)
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Let us note here, that the Christophel symbol or the affine connection, Equation
, involves one derivative acting on the metric; the Ricci scalar, Ricci tensor and
the Riemann tensor on the other hand, involve two. This will come in handy later
when we write down the EFT of gravity in Chapter [} As a sanity check, it can
be seen that we recover Newtonian gravity as the weak-field limit of GR as can be
found in any standard textbook. In the following sections, we will focus on exploring
different vacuum and non-vacuum solutions to Equations and which are

relevant for this thesis.

2.1 Vacuum Solutions

Einstein’s equations are a system of coupled non-linear differential equations and
in general constructing solutions of such systems is hard unless we make certain as-
sumptions. Luckily, we can make certain assumptions in order to find exact solutions
which can closely approximate what we want to describe. In the following section,
we will explore stationary vacuum solutions to GR since making these assumptions
simplify our problem. Some of these solutions include the Schwarzschild space-time,

the de-Sitter space-time, the Minkowski space-time, the Kerr vacuum and so on.

2.2 The Schwarzschild Solution

The curiosity to know the secrets of what is out there in the night sky has motiv-
ated philosophers for a long time. With the advent of the “Renaissance” period, the
efforts to apply logic, rationality and observation to build up the scientific enterprise
took this inquiry further and probably led to the creation of the first astronomers
and cosmologists who studied the mysteries of stars and planets. The theory of
gravity developed hand in hand with these investigations and the evolution of our
collective knowledge tracking the shoulders of giants such as Descartes, Copernicus,
Galileo, Newton, Hilbert, Riemann, Noether and Einstein. Most celestial objects
can be mathematically approximated to spherically symmetric gravitational fields.
Thus, the next relevant question is: What does GR predict regarding the gravita-
tional field around spherically symmetric objects such as stars and planets? This

will describe the geometry of the space-time in the exterior of such objects.
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We will assume a vacuum space-time:

R =0 (2.8)

outside the star or spherical object. We will assume the source to be unrotating
and unevolving, thus, we will investigate a static and stationary solution. Such a

solution is called the Schwarzschild metric and is given by:

r

R, RN\
ds® = — (1 — —) dt* + (1 — T) dr® + r?dQ? (2.9)
where df2 is the metric on a unit two-sphere,
dQ* = df? + sin? §d¢°. (2.10)

The constant R is called the Schwarzschild radius. By calculating the weak field
limit, we find that

gt = — (1 - 2GM) (2.11)

r
The Schwarzchild metric should reduce to the weak-field limit when r > 2G M and
thus,

R, = 2GM (2.12)

which also allows us to identify the parameter M as the Newtonian mass of the grav-
itating object (though some care must be taken in this). Thus, the full Schwarzschild
metric can be written explicitly as:

2GM 2GM\
d52:_(1_ G )dt2+<1— G ) dr® + r*dQ>. (2.13)
T r

2.2.1 Singularities

From the form of Equation (2.13)), we can see that the metric diverges both at
r =0 and r = 2GM. However, we must take care to understand which are “real”
infinities as opposed to a breakdown of the coordinate system. Since scalars are
coordinate independent, if they go to infinity, it signals a true singularity of the

curvature. The Ricci scalar is the simplest such scalar but there are higher order
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ones as well. One of such scalars that we can calculate is the Kretschmann invariant,

which is given by
48G? M?

K= RuvaﬂRumﬁ - r6

(2.14)

for the Schwarzschild metric. We can see that r = 0 is a true curvature singularity

whereas r = 2G' M is just the event horizon.

2.2.2 The Schwarzschild Black Hole

The Schwarzschild solution describes the space-time around any spherically sym-
metric object such as stars, planets and satellites or even the observable universe.
However, in the case of stars, the Schwarzschild radius is much smaller than the ra-
dius of the star, for example, the Schwarzschild radius of the Sun is approximately
3.0 km, whereas Earth’s is only about 9 mm (0.35 in) and the Moon’s is about 0.1
mm. The observable universe’s mass has a Schwarzschild radius of approximately
13.7 billion light-years. Thus, these objects are static in the exterior but they do
not have any singularities or horizons.

However, there are certain objects in the sky whose Schwarzschild radius is equal
or greater than their radius. These objects seem to rip a “hole” in the space-time
continuum due to a huge curvature and do not allow even light to escape out of
the event horizon, thus looking black. Hence the name: black holes. A black hole
is described by the Schwarzschild metric in its totality. However, the Schwarzschild
solution is an idealized solution (without any energy-momentum anywhere in the
universe), real black holes would of course, be approximations. There are various
other static black hole solutions to the Einstein’s equations, such as the Kerr, Kerr-
Newman and the Reissner-Nordstrom metric.

There can be various stationary vacuum solutions to the Einstein’s Equations
such as this, but keeping in mind their relevance for this thesis, let us proceed to

study a bit regarding a few non-vacuum solutions of GR.

2.3 Non-Vacuum Solutions

As seen above, the Schwarzschild metric is one of the simplest vacuum station-

ary static solutions to Einstein’s equations. One of the simplest exact non-vacuum
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cosmological solutions to GR is the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric which describes a homogeneous, isotropic, expanding (or otherwise, contract-
ing) universe. However, apart from black holes and cosmological solutions, GR can
be used to describe many other compact objects such as normal stars, white dwarfs,
quasars, pulsars, binary star systems, galaxies, neutron stars (NS) so on. In real life,
stars are not static. They evolve, and they might not necessarily be stationary solu-
tions as well. The full solutions often need the full power of Numerical Relativity to
compute. The discovery of Gravitational Waves by LIGO [20] has revived interest
in such compact objects once again [21-23].

However, they have also opened up the possibility of searching for other “exotic”

compact objects in the sky.

2.4 Exotic Compact Objects

Some physicistsﬂ consider Exotic Compact Objects (ECOs) to be “just a catchy
name for several models that have been proposed as alternative to black holes”. This
is because unlike classical Black Holes, which have a horizon as well as singularity
which makes them incompatible with quantum theory as well as difficult to model,
these ECOs are huge massive bodies which bend light around them similar to black
holes without having a horizon.

What makes ECOs, especially some models of Boson Stars, attractive is that
they can be self gravitating, without any other signatures other than gravitational
waves, with a radius very close to the Schwarzchild radius, which makes them “black
hole mimickers”. Other models are motivated by the search for dark matter. With
the discovery of the Higgs Boson, theoreticians predict other “dark” scalars which
might be present in the universe and making up the bulk of its mass in the form
of dark matter. Under certain conditions, these scalars could also coalesce to form
“Dark Stars” which would then have gravitational wave signatures.

The advent of gravitational wave cosmology has opened up the possibility of
searching for these kind of stars. For an exhaustive review of the different types of

ECOs and their possible signatures, refer to [24].

1Source: the  Gravity Room  (http://thegravityroom.blogspot.com/2017/03/

can-exotic-compact-objects-exist.html)


http://thegravityroom.blogspot.com/2017/03/can-exotic-compact-objects-exist.html
http://thegravityroom.blogspot.com/2017/03/can-exotic-compact-objects-exist.html
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2.4.1 Boson Stars

Boson Stars (BS) are one of the simplest kind of exotic compact objects that can
be hypothesized to be found in our universe. As is evident from their name, they
are composed of elementary particles, bosons.

With the success of the inflationary cosmology [25] and the discovery of the
Higgs boson [I] [2] as a fundamental scalar in our universe, there has been a recent
flurry of activity on whether there could be other scalars in the universe which are
self-interacting. Some of these scalars may be the constituent of dark matter in
the universe and be present in dark matter clusters. If the density of these clusters
attains a certain minimum level, these bosons could form a Bose-Einstein condensate
to form compact stars.

In the simplest case scenario, we can imagine stars formed out of one dark scalar,
which does not have any SM interaction and thus, would not have any other radiation
channel other than GW. These are known as mini boson stars. In the absence of
Pauli’s exclusion principle (which applies only to fermions), which prevents neutron
stars from collapsing, such a system would have to be supported against gravitational
collapse by a repulsive self interaction. The star is formed purely by gravitational
interactions between the scalars. The Lagrangian for such a Einstein-Klein-Gordon

system is given by:

L= =5 100 ~ m?6* ~ JNol*| (2.15)

where ¢ is a complex scalar field carrying a global U(1) charge. This is the case we
consider in Chapter . Of course, this scenario can be extended to include more
complex interactions and multiple (real or complex) scalars or even a mixture of
different species of particles. For an exhaustive review of such stars, the reader is

directed towards [24].
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Chapter 3

Gravitational Waves

It will give us ears to the
Universe where before we’ve

only had eyes.

Karsten Danzmann, LIGO

Gravitational waves, in short, are tiny perturbations of the metric that propag-
ate in spacetime, stretching it and causing observable effects on test particles. They
remain one of the major predictions of general relativity 100 years after their discov-
ery. With the recent first ever direct gravitational wave detection by LIGO [3] from
the merger of two inspiralling black holes and many more events after that, the field
of gravitational wave astronomy has burst wide open. In this thesis, in Chapter ,
we use the basic recipe of calculating gravitational modes in GR and extend it to
the effective field theory formalism to find two new GW modes. In Chapter , we
calculate the correction to the quadrupole moment formalism in the effective field
theory framework and the correction to the total radiation carried away by those two
extra modes. We make comments on their possible detectability. In Chapter ({g)),
we calculate the total gravitational background radiation due to inspiralling binary
Boson Star mergers in the sky, if they exist, and put bounds on the parameters
based on their possible detectability by LISA. To that end, in this chapter, we will
review the basic mathematics behind gravitational wave calculations. (see e.g. [20]

for an extensive review on the subject).

As a starting point, let us split the space-time metric into a background metric
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and fluctuations as follows:
Guv = N + h,uzu |h;w| <<1 (31)

In the above, h,, are considered as the gravitational wave degrees of freedom which
propagate as fluctuations on the background metric. The resulting theory is known
as the linearised theory. To keep this review simple, we start with the flat background

case and use the Minkowski metric as the background. Plugging Equation (3.1]) into
Equation ({2.6]) leads to

DRy + 0070 hyy — 070, b, — 0P0,hy, = 167G T, (3.2)

to first order in h. In the above, we have made the following field redefinition:
i_z,w = Dy — %nw,h, where h = n*"h,,,. Using the invariance under diffeomorphisms,
which is the assumed underlying symmetry in GR, one can choose the harmonic
gauge

0"h,, = 0. (3.3)
With this choice of gauge, (3.2) reduces to a wave equation:
Ohyw = 167GT,. (3.4)

Thus, we can conclude that h,, behaves as a wave. Note that, from (3.3)) and (3.4),

one finds the conservation of the energy-momentum tensor
0"T,, = 0. (3.5)

To calculate the vacuum solution far away from any source, the propagation of
gravitational waves or the interaction of the gravitational waves with detectors, we
are interested in the region away from the source and thus, we put 7},, = 0 and then

we have a wave equation given by:
Uh,, =0, (3.6)

Outside the source, it can be shown that Equation (3.3) does not fix the gauge
completely. In particular we can greatly simplify the above equation by fixing a
gauge which leads to vanishing trace: h = 0. More explicitly, this leads us to fix

another set of constraints:

R = 0; hi = 0; and d’h;; =0 |. (3.7)




17

It can be shown that h% is the static part of the gravitational wave, and since h*
vanishes, this leaves us only with the spatial part which is the time-dependant part
and which determines the propagation of the wave. This defines the fixing of the
“transverse-traceless” (TT) gauge. Note that this is not valid inside the source since

Oh,,, # 0. In the TT gauge, the solution is
T

and the solution hg;-T can be expanded in the plane wave basis. For any given

symmetric tensor,S;;, its transverse-traceless part is defined as:

SZZ;T = Nij 1Sk (3.9)
and thus we can construct

hii' = Nijrihu, (3.10)

where A;; 1 is a projector operator known as the Lambda tensor defined as
. 1
Nigw() = PP = 5 PP, (3.11)

and the tensor

is symmetric, transverse (i.e n'Py; (7 = 0), is a projector (i.e PyPy; = P;;) and its
trace is P; = 2. In the next section, working in the T'T gauge, we will investigate
how to calculate the power carried in gravitational waves which reaches the earth

by using the quadrupole formula.

3.1 Gravitational Radiation

A lot can be learnt about gravitational radiation by studying electromagnetic
(EM) radiation from accelerating charges. The only difference is that unlike EM
radiation, gravitational radiation expansion starts from the quadrupole moment
rather than the dipole moment. For an exhaustive review on gravitational radiation,
see [26] or a brief primer of gravitational radiation in gravitational waves used by

LIGO, see [27]. The starting point in linearised theory is Equation ([3.4))

Ohyw = 167GT,. (3.13)
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Because this is linear in A, this can be solved using the method of green’s functions.

If G(z — 2’) is a solution of the equation
0.G(z —2') = §*(x — 2'), (3.14)

then, inserting cs back, the solution to Equation (3.4) becomes,

B 167G

Blﬂ/ (:E) 04

/d%'G(x — 2T, (2") (3.15)

Using the retarded green’s function as the appropriate solution for a radiation prob-

lem, we find that Equation (3.15)) becomes:

- 4 1 —a
Folt,z) = 1€ / &Pr'——T,,(t - lr =2 (3.16)

ct rT—x c
Since outside the source, we will operate in the T'T gauge we can project the above
in the T'T gauge. In the low velocity regime, v << ¢ or wsd << ¢, where w; is the
typical velocity of the radiation, we performing the multipole expansion and find
that the traceless transverse part of the gravitational strain, hiTjT can be written as

follows: -
2
rr_ 2 G,
K Adp dt?

where dy, is the luminosity distance from the source and Qz;T is the traceless mass

(3.17)

quadrupole moment. From now on, we will drop the superscript TT and use the

normal tensor notation to mean traceless transverse. Here,

. 1 ...
= Qij = M"Y — §5”Mkk

ij =
= /d‘g:vp(t,x)(xzx] - 51”25”), (3.18)

where to lowest order in v/¢, p becomes the mass density. Now, we can find the rate

at which energy is carried away by these gravitational waves in terms of the above

dEgw 3 -y 1G S~ BQ,; Q)
= h°dS = —— * * 1
dt 167G / S 5¢° & ‘ a3 dt3 '’ (3.19)

©J=

as:

where|h|2 = Zijzl dZZj dZtij

the integral is over a sphere at radius d; (contributing a factor 4wd? ), and the
quantity on the right-hand side must be averaged over (say) one orbit. Depending

on the system, we can introduce a mass distribution through the quadrupole moment
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and then integrate over it. The above energy rate is the rate of energy drain from

the orbital energy, so equating

dEorb o _dEGVV
dt dt

(3.20)

would allow us to find the expression for the frequency of the gravitational waves
emitted. As an example, let us examine the system of binary mass system rotating

around each other where we will assume that both masses are equal.

3.1.1 Example

In this example, we will investigate a binary system of two masses as shown in
Fig. rotating around each other and calculate the amount of gravitational
radiation emitted by the system due to the loss of energy from its orbital motion.
To consider the simplest picture, let us consider the example in [27] where the
masses of the two point objects are given by m; and ms and for simplicity, we set

mip = mo =m. r =1r; + ry is the distance between the two objects.
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The quadrupole moment of the mass distribution is
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Figure 3.1: A two-body system, m; and msy orbiting the x-y plane around their

center of mass. This image was reproduced following the example in [27].

Qij = /d3IP($) (Jh‘xj - %Tzfsij) (3.21)

0% — YA TAYA 0
= > ma Taya  Fyhi—szrh 0 (3.22)
Ae{1,2}
0 0 —37%

where x4 and y4 are the projections on the x andy axis respectively for r,4 where
A € 1,2 and for each object,

2
mar
z‘A}'(t) =75 AT (3.23)
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where I, = cos (2wt) + 3, I, = 5 — cos (2wt), Iy = Iy, = sin (2wt) and 1., = —2.

Combining all of this we will get,

Qult) = 5’ (3.24)

where p is the reduced mass of the system. This allows us to calculate the gravita-

tional wave luminosity as:

d 32G
EEGW = gg,ﬂr‘*wﬁ. (3.25)

Using Equation (3.20)), plugging in Eop, = —GMp/2r and using Kepler’s third law,

1 = GM/w? and the derivative 7 = —2r&/w, we can obtain:
. 96 w'!

and we can now see the evolution of the inspiral. In Chapter , we will use the
same approach to calculate the modified quadrupole moment formula for a system

of binary black holes in the effective field theory formalism.
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Chapter 4

Effective Quantum Gravity

The bedrock nature of space
and time and the unification of
cosmos and quantum are surely
among science’s great ‘open
frontiers’. These are parts of the
intellectual map where we’re
still groping for the truth -
where, in the fashion of ancient
cartographers, we must still

inscribe ‘here be dragons’.

Martin Rees

4.1 Finding the Effective Action

With the development of Quantum Field Theory (QFT) techniques, there were
efforts to quantize gravity. These efforts can be traced back to 1930 to Rosenfeld
[28] and [29]. A concise review of early efforts to quantize gravitation can be found
here [30]. To general disappointment, it was found that GR is non-renormalizable.
In particular, GR without matter is non-renormalizable at the second loop level
[31], while with matter fields it cannot be renormalized at the one-loop level [32].
Using the path integral formalism in GR, it was shown that even a simple model
describing a real massless scalar field ¢ interacting with GR is non-renormalizable

[33]. Another attempt to renormalize gravity was taken by Stelle [34], where he
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studied an action with curvature squared terms such as:
2
Sstelle = - /d4ﬂ? |:_2R + ClR2 + CZR}%V (41)
K

where x = v/327G. He found that even though this is formally renormalizable, it is
plagued by a spin-2 ghost. Thus, this led us to interpret that the quantum theory of
gravity was non-renormalizable. In general, efforts to write gravity as a field theory
which can be renormalized have led physicists to encounter a number of problems.
Due to the dimensionful coupling constant of gravity, the renormalization procedure
generates an infinite number of counter terms in the gravitational action. Thus, there
are an infinite number of coefficients associated with these counter terms which must
be fixed empirically. This is impossible and makes quantum gravity non-predictive
and non-falsifiable.

Although, quantum gravity has proven to be much more difficult to pin down
than theoreticians might have hoped for, recent advancements in the regime of
Effective Field Theories [I3 14] have been hopeful. While we know very little
regarding the nature of gravity in the ultraviolet regime, we can safely assume
that gravity can be treated as an EFT because nature, in general, allows for a
decoupling of scales. This is the same reason why we can describe the macroscopic
flow of water using the Navier-Stokes equations without having to always rely on the
microscopic theory describing the behavior of the molecules. Starting with Weinberg
n [35], the developments in effective field theory techniques helped us to revamp
our understanding of renormalization: If a theory is an effective field theory and
is non-renormalizable, then it is not fundamentally different from a renormalizable
theory. All it means is that the theory is not sensitive to more microscopic scales
which have been integrated out. The success of effective field theory techniques in
the standard model have been tested extensively [36, [37]. This hints towards the fact
that we can use the EFT procedure in gravity as well to decouple the low energy IR
effects from the UV physics, especially since the UV theory is safely hidden behind
such a high cut-off, namely, the Planck scale.

The lesson of EFT for gravity is that even though a renormalizable theory of
the metric tensor that is invariant under general coordinate transformation is not
possible, we must not despair of applying quantum field theory to gravity in order

to probe long-range, low-energy IR effects. It might be well that in an effective
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field theory of matter and gravitation, the standard model and GR are the lowest
order terms. Various efforts to consider specific terms and different effective actions
have been taken in 38, 89]. However, the application of this point of view to long
range properties of gravitation has been most thoroughly developed by Donoghue,
El-Menoufi and their collaborators in recent years [40H42].

Let us now review the quantization procedure in order to investigate the treat-
ment of gravity as an EFT. In order to write the effective Lagrangian for gravity,
we start with the most general Lagrangian which includes all terms including higher
order terms which retain the symmetry of the theory, which in this case is diffeo-

morphism invariance. Thus, the action becomes:

1
S = / d'zy/—g [m}% — A+ 1 R? + oRy R™ + 3Ry po R*™P7 + ... . (4.2)

The Einstein-Hilbert term is the least suppressed term in the action. We see, in the
above, divergences appearing at one-loop order, for example, are proportional to
R?, R, R* | Ry pe R*P7. As usual in an EFT framework, these can be renormalized
by the inclusion of counterterms to the Lagrangian [32]. Thus our renormalized

lagrangian to one-loop order can be written as

1
S = / d'zy/=g {@R — A+ R? + &R R™ + 3R, R | . (4.3)

The coefficients ¢; are chosen so that divergences at one-loop order turn out to be
finite. Note that they are bare constants rather than observables now. We can

further simplify this action by invoking the Gauss-Bonet theorem in 4-dimensions:
§ / d*zv/=g (Rupe R*™*7 — 4R, R" + R?) = 0. (4.4)

where the left side of the above equation is a topological invariant. We can use the
above to eliminate R,,,,R""*’ and absorbing it in the values of ¢, and ¢;. Thus,
the last term in Equation can be ignored and we can proceed to quantize the
action using the background field method [43]. Whatever be our background metric,

Ju, We can perturb g, around it
G = Guv + Khy (4.5)

where h,, are quantum fluctuations over the background metric. The raising and

lowering of the indices is done using the background metric, so we can expand the
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contravariant metric tensor in orders of G (k = V327 G) as follows:
9" = 35" gop = g — KW + KPRER 4 . (4.6)
Similarly, we can expand the integration measure for the action as follows:
1 K2 o
vV—g=1+ §I€h — Zhaﬁp ’ hwj, (47)

where h = h‘lj and

R e (4.8)

Thus, the EFT action Equation (4.3)) can be seen as a conventional expansion in
orders of the reduced Planck mass, Mp = 1/ V871G or inverse orders of k. In the
low-energy regime, the terms which scale as one power of curvature scale as p? since
they have two derivatives acting on the metric where p is some momentum scale,
p < Mp. The curvature squared terms in Equation scale as p*, these would
always be dominated by the p? terms in the low energy scale. Using this Stelle found
tiny effects associated with the R term which led us to find extremely poor bounds
on ¢ 9 < 10™ [34]. As we have discussed before, the source of gravity in the Einstein
Hilbert Action, Equation , is the stress energy tensor, 7, on the right hand

side, which is how we can couple matter with gravity. In the simplest case,

uv 2
Smatter = /d4$\/§ (%8I/¢all¢ - m?QSQ - fRF(QS)) ) (49)

where, F(¢) is a function of the scalar field ¢ and we can set the non-minimal

coupling ¢ to zero for the minimal case. In the above,

-2 0
T, v = —_ﬁma er:
Y=g 09

The Feynman path integral formalism gives us a recipe to write the quantum version

(4.10)

of a theory using the following functional:
Z(gw) = /D(gmvity)D@ei(S““e[g]*S’"[q’D. (4.11)

The Planck scale is where it is widely believed that GR breaks down. Thus, if we
integrate out the quantum fluctuations h,, from Equation (4.11]) above the Planck

scale, we find

i _ /thpq) ¢~ (SenlgHhl+5m[2]) (4.12)
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where S, is the action of the matter sector and ® represents a set of arbitrary matter
fields (not necessarily scalar fields). T, in the above is the quantum effective action
which describes quantum gravitational phenomena. We can use this to investigate
the phenomenology of quantum gravity at low energies (below the Planck scale). As
expected, the general result is quite cumbersome even at leading order, containing
several terms that contribute equally [44]. However, in this thesis, we will only
consider the limit of massless or very light fields in the minimal coupling limit. The
outcome is neat enough in this limit and defining the renormalization scale, u, the

effective action reads [40, [43], 45], [46):

R
— 4. /—
F—/dx g<167rG

O 0 , 0 oo
—aRIn (—E> R — ﬁRw/ In (—E> R* — ’)/Rw/pg In <—E) RHP )

(4.13)

— A+ e (p)R? + ca(p) Ry R

where ¢;s are the Wilson coefficients and «, 3,y are the predictions of the EFT.

4.2 Non-Local Effective Quantum Gravity

In the massless or very light limit, non-localities are expected to show up as
massless fields mediating long-range interactions. In fact, the quantum action in

this case is given by Equation (4.13) and can be written as
I =Ty +Dni, (4.14)

where the local part reads

R
FL = /d4x\/—g (W - A _'_ Cl(,u)R2 + CQ(M)RHVR'L“/) 9 (415)

and the non-local part reads
4 O O v
—I'np = | &'zy/—g|aRIn — R+ SR, In 2 R* (4.16)

U
F Ry (=) 70| (4.17)

The non-local terms appear in the action due to resummation of matter loops in the

graviton propagator:
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Here k is the external momentum and C),,s is the Weyl tensor. We can sum an

infinite series of matter loops in the large N limit, where N = N+ 3Ny + 12Ny (N
is the number of scalar fields, Ny is the number of Dirac fermions, Ny is the number
of vector fields). The same resummation can also be performed at the level of a
virtual graviton exchange. Therefore scattering amplitudes a,b — a’,b’ generate
non-local interaction terms that should be taken into account at the level of an

effective action:

~a_
Y ((‘,/

S

7
+ \ ,l + A
A /il\

X

The log operator is defined as

- o 1
log— = [ 4 —Glr , 418
o5z = [as (it - Gle i) (4.18)

where G(z,2';4/s) is the Green’s function of

(=0 + k)G (z, 2" k) = 0*(x — o) (4.19)

with proper boundary conditions. The non-local action represents the infrared part
of quantum gravity. The coefficients «, 3,7, are determined completely by the ef-
fective field theory by integrating out the matter fields ® and specifying the number
of light fields in the theory with their respective spins as shown in Table [A.1], as op-
posed to the Wilson coefficients ¢; in the local action which need to be determined
empirically. The total contribution to each coefficient is given by simply summing
the contribution from each matter species. For example, for Ny minimally coupled

scalars and Ny fermions, we have

5 )

- % N -—2 N, 4.20
¢ 1152072 1152072/ (4.20)

In the table, the results are shown for a scalar whose coupling is E R¢?, i.e F'(¢) = ¢*.
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real scalar  5(6¢ — 1)2/(1152072)  —2/(1152072) 2/(1152072)

Dirac spinor —5/(1152072) 8/(115207?) 7/(1152072)
vector —50/(1152072) 176/(115207%)  —26/(115207)
graviton 430/(1152072) —1444/(1152072)  424/(115207?%)

Table 4.1: Values of the coefficients «, 5, for each spin taken from [40]. Results
are shown for a scalar whose coupling is ¢ R¢?. Each value must be multiplied by
the number of fields of its category. The total value of each coefficient is given by

adding up all contributions. See Equation (4.20]) for an example.

For minimally coupled scalars, ¢ = 0. And so, we can see that the non-local part is
highly interesting, since it is completely independent of the UV completion and yet
the coefficients «, 3,7 are true quantum predictions.

The local action, on the other hand, as known, represents the high energy por-
tion of quantum gravity. The Wilson coefficients, ¢;, are renomalised parameters
which contain information about the UV and can only be determined empirically.
They depend on the renormalization scale g in such a way that they cancel the
p-dependence of the non-local logarithm operator. Thus, the total effective action

I' is independent of p. The renormalization group equation is

d
i = M Ci, 4.21
fi=nge (4.21)
where 1 = —2a, B, = —20 and so on are the beta functions, thus the running

of ¢; can also be obtained straightforwardly from Table [£.1 The relation between
the beta functions of ¢; and the coefficients «, 3,y is expected because the resultant
action I" must be independent of i as explained above.

To conclude, while a consistent full theory of quantum gravity or experimental
proof is still elusive, we can definitely use standard techniques which were not avail-
able before, to now quantize general relativity as an effective field theory. This

is a conservative approach which leads to consistent quantum gravity phenomeno-



29

logy without having to invoke ad-hoc assumptions regarding the nature of the UV.
The basic results of such an implementation of EFT techniques, namely, quantum
corrections to the Newton’s potential and scattering amplitudes have been well
studied [47H49]. However most of the results were obtained for an effective model
without nonlocal terms. Moreover, most applications of EFT techniques are lim-
ited to particle systems, while the effective action should also provide an adequate
description of astrophysical phenomena such as gravitational wave production. In
Chapters @ and , we calculate the gravitational wave spectrum for the effective
action as well as the gravitational wave radiation by a binary rotating mass system

respectively as an effort towards advancing quantum gravity phenomenology.
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Chapter 5

Entropy of Black Holes

Think of the universe as a box
of scrabble letters. There is only
one way to have the letters
arranged to spell out the
Gettysburg Address, but an
astronomical number of ways to
have them spell nonsense. Shake
the box and it will tend toward
nonsense, disorder will increase
and information will be lost as
the letters shuffle toward their
most probable configurations.

Could this be gravity?

Elwood Smith,

A Scientist Takes on Gravity

The second law of thermodynamics states that “changes to a closed thermody-
namic system is always in the direction of increasing entropy”. Before the 1960s, it
was a consensus that black holes are not thermodynamical objects since they were
supposed to be zero temperature objects always in equilibrium. The following is a
conversation by Wheeler in a famous tea session with Jacob Bekenstein as mentioned

in his 1998 book “Geons, Black Holes and Quantum Foams: A life in Physics” [50]:

“The idea that a black hole has no entropy troubled me, but I didn’t see any escape
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from this conclusion. In a joking mood one day in my office, I remarked to Jacob
Bekenstein that I always feel like a criminal when I put a cup of hot tea next to a
glass of iced tea and then let the two come to a common temperature. My crime, I
said to Jacob, echoes down to the end of time, for there is no way to erase or undo
it. But let a black hole swim by and let me drop the hot tea and the cold tea into it.
Then is not all evidence of my crime erased forever? This remark was all that

Jacob needed. He took it seriously and went away to think about it.”

The fact that black holes were thermodynamic systems as well was realized in
the early 60s. Penrose, along with Floyd later [51], [52] showed that energy can be
extracted from black holes by the Penrose process. Christodoulou, 1970 [53] proved
that in any process, the irreducible mass of a black hole (which is proportional to the
surface area) cannot decrease. Hawking, in 1971 [54], independently proved a general
theorem that the horizon area can only ever increase. This is definitely reminiscent
of the second law of thermodynamics and especially, entropy. In this chapter, we
will review the basics of black hole thermodynamics based on Bekenstein’s earliest
works [55], 56] and arrive towards a precise definition of black hole entropy. We
recommend [57] and [56] as a good review for anyone starting off in the field of black
hole thermodynamics.

To start with, let us reflect on the meaning of entropy and whether it makes
sense to associate entropy with black holes. So, what does entropy really mean?
In information theoretic terms, entropy is the sense of inaccessibility of information
about the internal configuration of a certain system. Thus, it is also a measurement
of the ambiguity or the multiplicity of the many possible internal configurations
of a system which gives rise to a particular macro-state. The stipulation that the
entropy of a system can only ever increase, selects a preferred direction of time. If
a system has g, number of microstates, then the entropy of a system is related to it
by:

Gn = €XpS. (5.1)
Let us now investigate the analogies between black hole physics and thermody-

namic/entropic systems.

e Firstly, just as a thermodynamic system in equilibrium can be completely

described macroscopically by a few thermodynamic parameters, so a bare black
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hole system in equilibrium can be described by only three parameters: mass,

charge and angular momentum.

e Secondly, black holes are mysterious due to the apparent loss of information.
Any object, be it light or matter that goes into a black hole, loses all the
information associated with it, in so far as an exterior observer is concerned.
In short, information is lost. Entropy is the measure of missing information,
thus, it makes sense to describe the loss of information into black holes by an

associated entropy.

e Thirdly, we have already touched upon the increase of surface area of a black
hole which is analogous to the increase of thermodynamic entropy of a system.
Additionally, Hawking [54] also showed that when two black holes merge, the

final surface area cannot be less than the sum of the individual surface areas.

5.1 The Area Entropy Law

The analogy between entropy and black hole horizon area led Bekenstein [55] to
propose that the entropy of a black hole (Sy;) must be a monotonically increasing

function of its horizon area, A:

There are various ways of thinking about black hole entropy. One way looking at
it is the uncertainty of the internal configuration of a black hole which might have
been formed by various initial conditions. But as the black hole evolves, the effects
of the initial conditions are being washed out. For example, consider three black
holes which have the same mass, charge and angular momentum (at equilibrium
or late times). One of them might have been formed by the collapse of a normal
star, the second by the collapse of a neutron star and the third by the collapse of
a geon [58]. The measure of entropy for all three would be the same which would
encapsulate the same uncertainty. This loss of information by the slow washing out
of initial conditions would be reflected as a gradual increase in the entropy of each

black hole.
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But entropy is dimensionless (in natural units), so it was necessary to divide the
horizon area by a universal constant with dimensions of area, and for this only one
candidate presented itself: the (tiny) squared Planck length, G /c®, which is equal
to about (107%3cm?). Bekenstein remarked that the appearance of % in the entropy
“is not totally unexpected”, since “the underlying states of any system are always

quantum in nature”, and he proposed the black hole entropy formula

_lnk‘A

Sbh = UA/(ﬁG/CS) = Tm,
P

(5.3)
where k and « are natural numbers and 7 is a dimensionless proportionality constant.
According to Bekenstein, when a black hole absorbs one particle, at least one bit of
information is lost regarding the existence of the particle. This bit of information
must be at least equal to In2. Thus, there must a minimal increase of the horizon
area which might allow us to calculate the exact value of . We will explore this
and the ramifications of a minimal area increase for the quantization of the horizon

area in the next section.

5.2 Adiabatic Invariant

The similarity of a black hole horizon area to the concept of an adiabatic invariant
in mechanics has been central to the development of black hole thermodynamics.

Thus, what is an adiabatic invariant?

Let us assume that there is a system which is governed by a Hamiltonian,
H(p,q,\) which depends on a time dependant parameter A(t). Let us assume that
T is the longest timescale of all of the internal motions of this system. Any quantity
A(p,q) which changes very little during the time 7" when H accumulates a non-
negligible significant total change is said to be an adiabatic invariant. Ehrenfest [59]
showed that for any quasiperiodic system, all Jacobi action integrals of the form
A = ¢ pdq are adiabatic invariants. He further generalized his insight as follows:
“any classical adiabatic invariant (action integral or not) corresponds to a quantum

entity with discrete spectrum.”
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5.3 Black Hole Area Quantization

For classical extremal Kerr-Newman black holes, the constraint equation is given
by:
M? = Q*+G* + J*/M? (5.4)

Assuming that the black hole is parametrised only by a few quantum numbers: mass
M, spin angular momentum J, magnetic monopole GG and charge () and promoting
these quantities to mutually commuting operators in the quantization process, we

see that we can readily obtain the quantum mass spectrum:

1/2
Myg; = Mp |¢°¢* /2 + ¢* 1 [8¢° + \/(q*e2/2 + ¢*h2/8¢2)2 + j(j + 1)| . (5.5)

For non-extremal classical black holes, the quantization process was not so straight-
forward. It was based on the insight that the horizon area was an adiabatic invariant
[56].

Christodoulou and Ruffini [60], asked the question “Can the assimilation of a
point particle by a Kerr black hole be made reversibly in the sense that all changes of
the black hole are undone by the absorption of a suitable second particle?” This was
a good question, because it was known by then that the area of a black hole cannot
decrease, thus, any process which increased it, must be irreversible. A reversible
process has to keep the area unchanged. They found that when a classical point
particle is absorbed by the black hole from the turning point in its trajectory around
the black hole, it leaves the horizon area unchanged, i.e. AA = 0. Thus, this must
be a slow, adiabatic and reversible process. The fact that the horizon area was found
to be an adiabatic invariant points to the fact that in the quantum theory, A must
have a discrete spectrum by virture of Ehrenfest’s theorem. In order to show that,
Bekenstein [56] replaced this classical point particle by a quantum particle (with its
center of mass following a classical trajectory) with mass m,, and incorporated the
uncertainty principle to give the particle a radius of b. He showed that this leads to

a minimal increase in horizon area of the black hole:
AA i = 8mmyb (5.6)

By plugging in b = th/m, using quantum theory (¢ is a number of order unity), we
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derive a universal minimal area increase of the horizon of the black hole as:
AApi, = 8mih = al? (5.7)

Thus, we see that as soon as one allows quantum nuance to the problem, we end up
with a minimal increase in area. This might suggest that this (AA)mp, corresponds
to the spacing between eigenvalues of A in the quantum theory. And so, it was
straightforwardly conjectured that the area spectrum of a non-extremal black hole
would look like:

an =alp(n+mn),n>-1,n=1,273... (5.8)

where the condition on 7 excludes non-positive area eigenvalues.

5.4 The value of «

According to how Bekenstein thought, the quantization of horizon area in equal
steps brings to mind a horizon formed by patches of equal area al? which get added
one at a time. In quantum theory degrees of freedom independently manifest distinct
states. He used an argument calculating the total number of area states to come to
the expression Equation , to calculate that a« = 4Ink.

However, Mukhanov’s alternate route [61] might be easier to understand. He
started off with the accepted formula for the black hole area entropy relation. In
the spirit of the Boltzmann-Einstein formula, he views exp (Spy) as the degener-
acy of the particular area eigenvalue because exp (Spy) quantifies the number of
microstates of the black hole that correspond to a particular external macrostate.
Since black hole entropy is determined by thermodynamic arguments only up to an

additive constant, one writes, in this approach,
Spr = A/4l% + const. (5.9)

Substitution of the area eigenvalues from Equation (5.8) gives the degeneracy cor-
responding to the nth area eigenvalue as,

Gn = €xp (ZTZ) + const. (5.10)
P

which allows us to see that if g, € N for every n, which it should be, then

a=4In{2,3,4....}. (5.11)
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Here, o = 4In2, corresponding to g; = 2 or a doubly degenerate ground state,
seems to be the most obvious choice in order to get rid of all “ugly” constants in the
area-entropy relation as can be seen from [56]. Recent papers by Kleban and Foit
[62] have proposed gravitational wave experiments in order to test for the value of

Q.

5.5 Black Hole Area Spectrum in Quantum Grav-
ity

These physical intuition based results have been translated into robust calcu-
lations in various different quantum gravity schemes. Since the proposal of the
uniform area spectrum in 1975, many string theoretic calculations starting from
Kogan (1986) [63], followed by Maggiore [64] and Lousto [65] have recovered this
form. Many other canonical quantum gravity treatments of a shell or ball collapsing
into a dust, for example, by Dolgov and Khriplovich [66] obtain results which cor-
respond to a discrete yet non-uniform spacing, in the case of Berezin [67], the levels
are infinitely degenerate, while Schiffer and Peleg [68] recover the uniform area spec-
trum. Loop Quantum Gravity treatment by Barreira, Carfora and Rovelli [69] and
by Krasnov [70] leads to a discrete spectrum of complex form and highly non-uniform
spacing for the black hole area.

Thus, we see that this particular area is rife with contradictory conclusions. Even
in theories which recover a uniform area spectrum, there is generally no consensus
on the spacing between the levels. This might hint towards the fact that either 1)
none of the existing formal schemes of quantum gravity is as yet a quantum theory
of gravity or 2) we do not yet have a general enough result for the black hole area
spectrum or 3) both of the above. In Chapter @ of this thesis, we will explore the
correction to the black hole area-entropy law as calculated by El-Menoufi [71] using
the effective quantum gravity formalism and use this to give interesting constraints

on the number of light fields in a consistent theory of quantum gravity.
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Chapter 6

Gravitational Waves in Effective

Quantum Gravity

The Planck satellite may detect
the imprint of the gravitational
waves predicted by inflation.

This would be quantum gravity

written across the sky.

Stephen Hawking

Xavier Calmet, Iberé Kuntz and Sonali Mohapatra

Physics & Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, United

Kingdom

In this short paper, we investigate quantum gravitational effects on Einstein’s equa-
tions using effective field theory techniques. We consider the leading order quantum
gravitational correction to the wave equation. Besides the usual massless mode, we
find a pair of modes with complex masses. These massive particles have a width and
could thus lead to a damping of gravitational waves if excited in violent astrophysical
processes producing gravitational waves such as e.g. black hole mergers. We discuss
the consequences for gravitational wave events such as GW 150914 recently observed

by the Advanced LIGO collaboration.
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6.1 Introduction

The recent discovery of gravitational waves by the Advanced LIGO collaboration
[3] marks the beginning of a new era in astronomy which could shed some new light
on our universe revealing its darkest elements that do not interact with electromag-
netic radiations. This discovery could also lead to some new insights in theoretical
physics. In this short paper, we study the leading effect of quantum gravity on
gravitational waves using effective field theory techniques. While the discovery of
a theory of quantum gravity might still be far away, it is possible to use effective
field theory techniques to make actual predictions in quantum gravity. Assuming
that diffeomorphism invariance is the correct symmetry of quantum gravity at the
Planck scale and assuming that we know the field content below the Planck scale,
we can write down an effective action for any theory of quantum gravity. This ef-
fective theory, dubbed Effective Quantum Gravity, is valid up to energies close to
the Planck mass. It is obtained by linearizing general relativity around a chosen
background. The massless graviton is described by a massless spin 2 tensor which is
quantized using the standard quantum field theoretical procedure. It is well known
that this theory is non-renormalizable, but divergences can be absorbed into the
Wilson coefficients of higher dimensional operators compatible with diffeomorphism
invariance. The difference with a standard renormalizable theory resides in the fact
that an infinite number of measurements are necessary to determine the action to
all orders. Nevertheless, Effective Quantum Gravity enables some predictions which
are model independent and which therefore represent true tests of quantum gravity,
whatever the underlying theory might be.

We will first investigate quantum gravitational corrections to linearized Ein-
stein’s equations. Solving these equations, we show that besides the usual solution
that corresponds to the propagation of the massless graviton, there are solutions
corresponding to massive degrees of freedom. If these massive degrees of freedom
are excited during violent astrophysical processes a sizable fraction of the energy
released by such processes could be emitted into this modes. We shall show that the
corresponding gravitational wave is damped and that the energy of the wave could
thus dissipate. We then study whether the recent discovery of gravitational waves

by the Advanced LIGO collaboration [3] could lead to a test of quantum gravity.
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6.2 The Modified Propagator

Given a matter Lagrangian coupled to general relativity with N scalar degrees
of freedom, Ny fermions and Ny vectors one can calculate the graviton vacuum
polarization in the large N = Ny + 3Ny + 12Ny limit with keeping NGy, where
G is Newton’s constant, small. Since we are interested in energies below M, which
is the energy scale at which the effective theory breaks down, we do not need to
consider the graviton self-interactions which are suppressed by powers of 1/N in
comparison to the matter loops. Note that M, is a dynamical quantity and does
not necessarily corresponds to the usual reduced Planck mass of order 10'® GeV
(see e.g. [125]). The divergence in this diagram can be isolated using dimensional
regularization and absorbed in the coefficient of R? and R, R*. An infinite series
of vacuum polarization diagrams contributing to the graviton propagator can be
resummed in the large N limit. This procedure leads to a resummed graviton
propagator given by [120]

DO () — i (LomLPY + Lov LAk — LB L) (6.1)
2q¢? <1 — %ﬁ‘flog (—Z—i))

with L (q) = n* — ¢"q"/q* and where p is the renormalization scale. This re-

summed propagator is the source of interesting acausal and non-local effects which
have just started to be investigated [40, 126-130]. Here we shall focus on how these

quantum gravity effects affect gravitational waves.

6.3 Gravitational Waves in QG

From the resummed graviton propagator in momentum space, we can directly

read off the classical field equation for the spin 2 gravitational wave in momentum

NGNQ2 q2
2¢° (1 — ] - )] =o. 2
¢ (1- S og (-1 (62)

This equation has three solutions [129]:

space

g =0, (6.3)
PO B
2 - 9
GnN —1207
N ()

G = (@),
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where W is the Lambert function. The complex pole corresponds to a new massive
degree of freedom with a complex mass (i.e. they have a width [129]). The general

wave solution is thus of the form
" (z) = al” exp(—iqiax®) + ab” exp(—igaax®) + ab” exp(—igs,x®). (6.4)

We therefore have three degrees of freedom which can be excited in gravitational
processes leading to the emission of gravitational waves. Note that our solution is
linear, non-linearities in gravitational waves (see e.g. [131]) have been investigated
and are as expected very small.

The position of the complex pole depends on the number of fields in the model.
In the standard model of particle physics, one has Ng = 4, Ny = 45, and Ny = 12.
We thus find N = 283 and the pair of complex poles at (7 — 3i) x 101® GeV and
(7 + 3i) x 10'® GeV. Note that the pole g3 corresponds to a particle which has
an incorrect sign between the squared mass and the width term. We shall not
investigate this Lee-Wick pole further and assume that this potential problem is
cured by strong gravitational interactions. The renormalization scale needs to be
adjusted to match the number of particles included in the model. Indeed, to a good

approximation the real part of the complex pole is of the order of

1207
NGy

[Re ga| ~ (6.5)

which corresponds to the energy scale M, at which the effective theory breaks down.
Indeed, the complex pole will lead to acausal effects and it is thus a signal of strong
quantum gravitational effects which cannot be described within the realm of the

effective theory. We should thus pick our renormalization scale p of the order of

M, ~ |Re ¢2|. We have

1 1207 1207
2 +— 7 ~F(0.1740.71 i) —— 6.6

and we thus find the mass of the complex pole:

ma = (0.53 — 0.67 i)/ ém;. (6.7)
N

As emphasized before, the mass of this object depends on the number of fields in
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the theory. The corresponding wave has a frequency:

, 120
1 1207 \ 2 1207 \ 2 1207
— 4| = 7.0y 4+ 0.17 0.71 TGy +0.17
V2 \/<q2 C GNN> +( GNN) TRt NEIN

1 1207 \ 2 1207 \ 2 1207
P o0y + 0.17 0.71 — Gy.Gp — 0.17
‘H\/E\l \/(Q2 q2 + GNN) + ( GNN) G2-q2 OGN

6.4 Bounds on the Mass

The imaginary part of the complex pole will lead to a damping of the compon-
ent of the gravitational wave corresponding to that mode. The complex poles are
gravitationally coupled to matter, we must thus assume that the massive modes
are produced at the same rate as the usual massless graviton mode if this is allowed
kinematically. During an astrophysical event leading to gravitational waves, some of
the energy will be emitted into these massive modes which will decay rather quickly
because of their large decay width. The possible damping of the gravitational wave
implies that care should be taken when relating the energy of the gravitational wave
observed on earth to that of the astrophysical event as some of this energy could
have been dissipated away as the wave travels towards earth.

The idea that gravitational waves could experience some damping has been con-
sidered before [132], however it is well known that the graviton cannot split into
many gravitons, even at the quantum level [133], if there was such an effect it would
have to be at the non-perturbative level [134]. In our case, the massless mode is not
damped, there is thus no contradiction with the work of [133]. Also, as emphasized
before the dispersion relation of the massless mode of the gravitational wave is not
affected, we do not violate any essential symmetry such as Lorentz invariance. This

is in contrast to the model presented in [I35].

6.5 Production of the Massive Modes

Since the complex poles couple with the same coupling to matter as the usual

massless graviton, we can think of them as a massive graviton although strictly
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speaking these objects have two polarizations only in contrast to massive gravitons
that have five. This idea has been applied in the context of F(R) gravity [130]
(see also [137, [138] for earlier works on gravitational waves in F(R) gravity). We
shall assume that these massive modes can be excited during the merger of two
black holes. As a rough approximation, we shall assume that all the energy released
during the merger is emitted into these modes. Given this assumption, we can use
the limit derived by the LIGO collaboration on a graviton mass. We know that

my < 1.2 x 10722 eV and we can thus get a limit:

1 120
Re T | <12x102ev (6.9)
GyN W <71207rMP>
uEN

we thus obtain a lower bound on N: N > 4 x 102 if all the energy of the merger
was carried away by massive modes. Clearly, this is not realistic as the massless
mode will be excited. However, it implies that if the massive modes are produced,
they will only arrive on earth if their masses are smaller than 1.2 x 10722 eV. Waves
corresponding to more massive poles will be damped before reaching earth. We shall
see that there are tighter bounds on the mass of these objects coming from E&tvos
type pendulum experiments.

At this stage, we need to discuss which modes can be produced during the two
black holes merger that led to the gravitational wave observed by the LIGO collab-
oration. The LIGO collaboration estimates that the gravitational wave GW150914
is produced by the coalescence of two black holes: the black holes follow an inspiral
orbit before merging and subsequently going through a final black hole ringdown.
Over 0.2 s, the signal increases in frequency and amplitude in about 8 cycles from 35
to 150 Hz, where the amplitude reaches a maximum [3]. The typical energy of the
gravitational wave is of the order of 150 Hz or 6 x 107!* eV. In other words, if the
gravitational wave had been emitted in the massive mode, they could not have been
heavier than 6 x 10722 GeV. However, this shows that it is perfectly conceivable that
a sizable number of massive gravitons with m, < 1.2 x 1072 eV could have been
produced.

Let us now revisit the bound on the number of fields N and thus the new com-
plex pole using Eotvos type pendulum experiments looking for deviations of the

Newtonian 1/r potential. The resummed graviton propagator discussed above can
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be represented by the effective operator

N U
23047T2R10g <E> R (6.10)

where R is the Ricci scalar. As explained above the log term will be a contribution
of order 1, this operator is thus very similar to the more familiar cR? term studied
by Stelle long ago. The current bound on the Wilson coefficient of ¢ is ¢ < 10%
[34, 139, 140]. We can translate this bound into a bound on N: N < 2 x 10%. This
implies that the mass of the complex pole must be larger than 5 x 1073GeV. This
bound, although very weak, is more constraining than the one we have obtained

from the graviton mass by 37 orders of magnitude.

6.6 Conclusions

In this short paper we have investigated quantum gravitational effects in gravita-
tional waves using conservative effective theory methods which are model independ-
ent. We found that quantum gravity leads to new poles in the propagator of the
graviton besides the usual massless pole. These new states are massive and couple
gravitationally to matter. If kinematically allowed, they would thus be produced
in roughly the same amount as the usual massless mode in energetic astrophysical
events. A sizable amount of the energy produced in astrophysical events could thus
be carried away by massive modes which would decay and lead to a damping of
this component of the gravitational wave. While our back-of-the-envelope calcula-
tion indicates that the energy released in the merger recently observed by LIGO
was unlikely to be high enough to produce such modes, one should be careful in
extrapolating the amount of energy of astrophysical events from the energy of the
gravitational wave observed on earth. This effect could be particularly important
for primordial gravitational waves if the scale of inflation is in the region of 106

GeV, i.e. within a few orders of magnitude of the Planck scale.
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Chapter 7

Gravitational Radiation in

Quantum Gravity

Energy is liberated matter,
matter is energy waiting to

happen.

Bill Bryson

Xavier Calmet*®, Basem Kamal El-Menoufi#, Boris Latosh*¢ and

Sonali Mohapatra~

®Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH,
United Kingdom
®PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics,
Johannes Gutenberg University, 55099 Mainz, Germany
¢Dubna State University, Universitetskaya str. 19, Dubna 141982, Russia

The effective field theory of quantum gravity generically predicts non-locality to be
present in the effective action, which results from the low-energy propagation of
gravitons and massless matter. Working to second order in gravitational curvature,
we reconsider the effects of quantum gravity on the gravitational radiation emitted
from a binary system. In particular, we calculate for the first time the leading order
quantum gravitational correction to the classical quadrupole radiation formula which

appears at second order in Newton’s constant.
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7.1 Introduction

The aim of this work is to extend the study of quantum gravitational corrections
to gravitational radiation initiated in [72, [73] using effective theory techniques to
treat quantum gravity in a model independent way. In previous papers [72} [73] the
authors focused on the production of new massive modes present in the effective
action [129]. We expand on the previous analyses and calculate for the first time
the genuine quantum gravitational correction to the quadrupole radiation formula
first developed by Einstein. While the effect is way too small to be observable by
the current gravitational wave observatories and thus has no impact for the recent
gravitational wave observations [3| [74], our work offers a proof of principle that
genuine calculations within quantum gravity at energies below the Planck mass are
possible, even though we do not yet have a fully satisfactory ultra-violet complete
theory of quantum gravity.

We follow the approach introduced by Weinberg [75] in the 70’s and further de-
veloped by others [47, [76, [77]. The main benefit of the effective theory approach
is its ability to separate out low-energy dynamics from the unknown ultra-violet
physics associated with the completion of quantum gravity. Quantum general re-
lativity has indeed a poor ultra-violet behavior, i.e. it is non-renormalizable, yet
the unknown physics is solely encoded in the Wilson coefficients of the most general
diffeomorphism invariant local Lagrangian. When the Wilson coefficients are meas-
ured, any observable computed in the effective theory is completely determined to
any desired accuracy in the effective field theory expansion. More interesting are
the contributions induced by long-distance propagation of massless (light) degrees of
freedom. The latter comprise reliable and parameter-free, and thus model independ-
ent, predictions of quantum gravity since, by the very nature of the effective field
theory, any ultra-violet completion must reproduce these results at low energies.

In this paper we revisit the long-distance limit of quantum gravity and the sig-
natures thereof on the gravitational radiation emitted from binary systems. As we
shall describe below, quantum corrections are encoded in a covariant effective ac-
tion organized as an expansion in gravitational curvatures. Moreover, low-energy
quantum effects manifest in the effective action via a covariant set of non-local

operators. The three phases of the binary evolution will be affected by quantum
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corrections. Thanks to advances in infrared quantum gravity [40, 45, 46l [7T6H78],
we could in principle determine the modified fate of each phase since the effective
action retains the non-linear structure of the field equations. Nevertheless, to obtain
analytic insight we only focus on the leading quantum corrections to the quadrupole
radiation of general relativity. It is important to keep in mind that the initial stage

of a coalescence process is the only part one can study with analytical tools.

We shall define two schemes to treat quantum corrections. The first is non-
perturbative, in the sense that higher-derivative terms in the equations of motion
are considered on the same footing as those of general relativity. We focus on
the massive spin-2 sector and show that the propagator has a multi-sheet complex
structure [79], which arises due to the logarithmic non-analyticity in the equations
of motion. The imaginary part of the complex poles causes the massive spin-2 field
to exhibit a Yukawa suppression in the far-field region. The second treatment is
perturbative and aligns naturally with the power-counting of the effective theory.
Namely, we look for small corrections to the lowest-order general relativity result,
i.e. quadrupole radiation, and solve the equations of motion by iteration. This is the
genuine quantum gravitational correction discussed early and the main new result
of this paper. In the latter scheme, the correction to the spin-2 sector is a traveling

wave at the speed of light, but the amplitude falls off faster than 1/r.

Before we proceed, it is crucial to describe the physical content of our results. All
our analysis is performed on the linear weak-field level, but general relativity and
the associated quantum corrections are inherently non-linear. This distinction is
crucial when one deviates from pure general relativity. Indeed, it was shown in [80]
that an eternal Schwarzschild black hole is a solution to the full non-linear quantum
corrected theory. On the contrary and due to the breakdown of Birkhoff’s theorem,
the gravitational field around a non-vacuum source such as a star receives a genuine
quantum correction [80]. Hence, all our results will only pertain to the inspiraling
phase of mergers where the gravitational radiation is sourced by horizonless ob-
jects such as neutron stars or black holes if we think of them as objects which are
not vacuum solutions but rather astrophysical objects which are still experiencing

gravitational collapse [81].

The paper is organized as follows. In Section we start with a brief review of
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the effective theory and write down the non-local corrections we shall investigate.
Section is devoted to a quick survey of the radiation problem in local quadratic
gravity. Section and treat the non-local corrections in the two different
schemes described above. We conclude in Section [Z.6l A careful derivation of the

non-local kernel used in Section [7.5]is laid out in an appendix.

7.2 The non-local quantum corrections

The effective field theory treatment of quantum gravity is by now very well un-
derstood. The initial incarnation of the effective field theory was designed mainly to
compute scattering amplitudes in flat space. For example, graviton-graviton scatter-
ing can be obtained to any desired accuracy in the counting parameter of the effective
theory, i.e. (GE?)" where E is the center-of-mass energy of the process. At lowest-
order O(GE?), one extracts vertices from the Einstein-Hilbert action and computes
tree-level diagrams. At order O(GFE?)? one-loop diagrams appear and the ultra-
violet divergences renormalize the Wilson coefficients of the quadratic curvature
action. The framework is readily extended to include matter fields. In summary,

the action of the effective theory, accurate to order (GE?)?, readsﬂ

R v
SEFT = /M (167TG + 1 R? + R R™ + Em) : (7.1)

To complete the effective field theory program, a measurement of the Wilson coef-
ficients is required as per usual with any ultra-violet-sensitive quantity in quantum
field theory. Unfortunately, such experimental input is not available in our case and
one might question if the effective field theory is able to make any predictions. It
was the point of view developed in [47] where it is shown that there exist a class of
quantum corrections that comprise reliable signatures of quantum gravity. The lat-
ter appear as finite non-analytic functions in loop processes and arise directly from
the low-energy propagation of virtual massless quanta. As such, these corrections

are purely of infra-red origin modifying the long-distance dynamics of gravitation. A

!Notice that in writing this action we have employed the Gauss-Bonnet identity to get rid of
the Riemann squared invariant. We also dropped a total derivative, LJR, that does not provide a
non-trivial Feynman rule. Also note that the power counting in £,, depends on the mass of the

matter field.
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prime example is the correction to the non-relativistic Newtonian potential energy

182]

Gmlmg

Va(r) = — 22 (1 +

r

(7.2)

3G(my + my) N 41 @)
r 1072 r2
Moving ahead of scattering amplitudes, one inquires about the structure of long-
distance quantum effects in the effective action. A substantial body of work has been
devoted to construct the effective action of quantum gravity that encapsulates such
quantum corrections. We refer the interested reader to the following articles and
references therein [40), 45, 46], [7T6H78]. Here, we merely quote the leading operators

in the non-local curvature expansion

U O 0
Fl(\?ﬁ = _/ {OCRIH <—2) R+ BR,, In (—2) R"™ 4+ vR, a8 1n <_2) Rwaﬂ} :
M H ,u L

(7.3)

where [0 := ¢"V,V,. The precise values of the coefficients depend on the spin of
the massless particle that runs in the loop and are listed in table . Non-local
effective actions open the door to (re)-examine plenty of questions in gravitational
physics. In this paper, we shall focus on the effect of Eq. on the production of

gravitational radiation from binary systems.

7.3 Production of gravitational waves: local the-

ory

As explained in |72}, [73], quantum gravity contains two massive wave solutions on
top of the usual massless mode of general relativity. We review the results presented
in 72, [73] in preparation for calculation of the leading order quantum gravitational
correction to the classical quadrupole formula. To streamline the discussion, we
shall focus in this section on the local quadratic theory, i.e. Eq. (7.1). Analyzing
the latter, albeit simple in nature, aids in drawing interesting parallels and contrasts
when we discuss non-locality in the next section. We only consider a simple system
where the two masses move in a perfectly circular orbit.

The equations of motion are easily obtained by linearizing the field equations of
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Scalar | 5(66 —1)* | —2 2

Fermion -5 8 7
Vector —50 176 | —26
Graviton 250 —244 | 424

Table 7.1: Coefficients for different fields. Note that these coefficients have been
derived by many different authors, see e.g. [40, 47, [76], [77, 83-R7]. All numbers
should be divided by 1152072, Here, £ denotes the value of the non-minimal coupling
for a scalar theory. All these coefficients including those for the graviton are gauge
invariant. It is well known that one needs to be careful with the graviton self-
interaction diagrams and that the coefficients a and  can be gauge dependent, see
[88], if the effective action is defined in a naive way. For example, the numbers
a = 430/(115207?) and 8 = —1444/(1152072) for the graviton quoted in [40] are
obtained using the Feynman gauge. However, there is a well-established procedure
to derive a unique effective action which leads to gauge independent results [76), [77].
Here we are quoting the values of a and 8 for the graviton obtained using this

formalism as it guaranties the gauge independence of observables.
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Eq. (7.1)

DEW - HQD[ <01 + 62—2 + 03> 8“8,,5 — <01 + %2 + 03> mWDB + (%2 + 203) DBW] = —167GT},

(7.4)
where BW = hy — %n,wh is the trace-reduced tensor, x? = 327G and we employed
the harmonic gauge. It is more convenient to perform our calculation using the
trace-reduced tensor, and only at the end obtain h,, by subtracting off the trace.
Since the pioneering work of Stelle [34], it became quite common to dispense with
the higher-derivative structure of the theory by introducing massive modes in the
equations of motion. These extra modes decouple from the massless spin-2 mode.

Working in momentum-space, we get

0,7 hap(k) = —167GT,,, (k) (7.5)
where
_ k2
0,0 = —5 (58] +030) (7.6)

C C ]{74
2 [(cl + 52 + 03> (K2kukn®® — k*n,,n®P) + (52 + 263) ?(5355 + 0000

Revealing the massive modes requires that we project out the spin-2 and spin-0

parts of the symmetric operator

1 1
PB = — (0900 + 6207 — geweaﬁ , PWs = g 08 (7.7)

1
2 w 3

where 6, = 1, — k,k,/k*. In harmonic gauge, we have k:“fz,w =0 and so Eq. (7.6
is easily rewritten as

O 0P = |2 (1 + K2 (% + 203> k2> PP _ 2 (14 12 (=3¢ — ¢ — ¢3) k) PO

uv

(7.8)
Inverting the operator yields the propagator in momentum-space
) (P27 +PR)  pees pes

D, =— + A+ 2E (7.9)

m k2 k? —m3  k*—m}
where we have used partial fractions to identify the masses of the spin-2 and spin-0

sectors

M? M?
2 _ P 2 _ P
M2 = 2(—62 — 463)7 Mo 4(3C1 + Co + 03)

(7.10)
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We stress again that Eq. (7.9) is the propagator for f_LW. For completeness, we

can easily obtain the appropriate propagator for h,, by subtracting the trace of

Eq. (7.9)

_ 1 _
aB _ af A af
D/u/ - D;,LV - 577/1”777 D’y)\

a for «@ 2)a 0)o
_ SO0 ™ PR P (7.11)
2k2 k2 —m3  2(k?—md) '

which is the known result derived by Stelle [34]. As emphasized, the extension of
general relativity including the terms quadratic in curvature contains three mass
eigentstates: a massless mode with spin-2 and two massive modes with respectively
spin 2 and 0. The massive spin-2 mode is formally a ghost while the massive spin-0
mode is healthy. However, as already explained in details in [73] [89], the massive
spin-2, although it is formally a ghost, does not lead to any pathology. The effective
action contains only classical fields, as the fluctuations of the graviton have been
integrated out. The massive field with spin-2 can simply be seen as a field that
couples with minus the Planck scale to the stress-energy tensor. It is a nothing but
a repulsive force. Notice also here that either (or both) of mg and my could be
tachyonic depending on the exact values of the Wilson coefficients. In this section,
we proceed under the assumption that the masses are real.

Given the manifest decoupling of the modes, the solution to Eq. is the
direct sum of the three sectors. One can switch back to position-space and write
down the solution for the trace-reduced metric perturbations, making sure to define

the propagators with retarded boundary conditions
B = 167TG/d4£L‘/ G (z —2';0)T,,(2") (7.12)
—167G / d*a’ G (x — 2, mQ)Pﬁ)O‘BTaﬁ(x’)
—167G / d*a’ G*(x — 2/, mo)PlS?,)O‘BTag(x').
Note that the general relativity solution is given by
BSVR = 167?G/d4x/ G (x — 2';0)T,,(2") (7.13)

It is important to realize that the two new terms are of the same order in GG as the

usual solution from general relativity. These are not corrections to general relativity
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solutions. There are simply additional classical modes present in the action. We
stress that each of these terms is a solution to their partial differential equations
which are fully decoupled. We write them as a direct sum for convenience, but the
reader should not get confused.

We consider our source to be a simple binary system and set the origin of the

coordinates to coincide with the center-of-mass of the system
2
T = M, 6 (9? - X’Z-(T)) (7.14)
i=1

where a dot denotes a derivative with respect to proper time, 7, and X, is the tra-
jectory of the mass. In the slow-velocity limit, proper time coincides with coordinate
time to lowest order in velocity. We notice first that the spin-0 mode couples to the
trace of the energy-momentum tensor, which is time-independent for a binary sys-
tem in circular orbit. Focusing on the massive spin-2 sector, we are interested in
the leading behavior in the far-zone (|# — 7’| & |Z] := r). It suffices to solve for the

spatial components, i.e. h;;, the other metric perturbations are determined using

IRl
the harmonic gauge condition. With this set-up, Eq. (7.12)) becomesf]

L . k2dkd Q) eiki
h;; = hGR — 1 dwe ™. 1

where

d(w + 2ws) + 0(w — 2ws) —i(d(w + 2ws) — 0(w — 2ws)) O

lij(w) = —%u(dws)Q —i(0(w + 2ws) — 6w — 2ws))  —6(w + 2ws) — 6w — 2ws) 0

0 0 0
(7.16)

In the above, i is the reduced mass of the binary, d is the orbital separation and wy
is the orbital frequency. In Eq. , notice most importantly the ie prescription
is due to the retarded boundary conditions. The angular integrals in Eq. are
readily done, and the final integral over the spatial momentum depends crucially on

the size of the mass compared to the orbital frequency. In the complex k-plane, the

ki = +4/w? —m3 +sgn(w)ie . (7.17)

2In writing Eq. (7.15) we ignored all terms proportional to the trace of the energy-momentum

poles are situated at

tensor, which is time independent for a binary in circular orbit.
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One notices two features of the above expression. First, the poles are real (imagin-
ary) if the mass is smaller (greater) than the frequency. Second, if the poles are
real then the sign of the frequency is important in moving the poles off the real
axis, which is paramount in obtaining a proper propagating wave. After a careful
computation we find

(dws)?

Bij(t, 7") = BSR 4G/1/ ,

[0mz = 2,)e™ V8 Qu(2,0,0) 4 02, — ma)Qy (1,7 m)|
(7.18)

where we defined

cos <2ws (t —/1- (m/2ws)2r>> sin (2ws (t — /11— (m/2ws)2'r)> 0

Qij(t,rsm?) = | gip (Zws (t — /11— (m/2ws)2r>> — cos <2ws (t — /1 - (m/2ws)2'r)> 0

0 0 0
(7.19)

The remaining integrals can now easily be performed. We find

hij(t,7) = hGR — 4G“<d7°f8) [0ma — 2w)e™ VM Qu(1,050) + 02w, — ma)Qis(t 73 m3)|
(7.20)
in the far zone, where
KGR _4G”( )" Qi;(t,7,0) . (7.21)

The explicit calculations are shown in Appendix [A]

Comments about the above result are in place:

e The second term has the opposite sign in comparison to that of general re-
lativity, which signifies the repulsive nature of the massive spin-2 sector. This
mode is classically healthy because it carries positive-definite energy. To com-
pute the radiated power, one simply has to construct the energy-momentum
tensor from the Lagrangian of the theory. Since the different modes are de-
coupled [34], the total energy-momentum tensor is likewise decoupled. The
latter is quadratic in the field variables and so obviously the negative sign in

the massive spin-2 solution does not affect the positivity of the energy.

e Eq. (7.18) contains two parts. If the mass is large compared to the character-

istic frequency of the system, the result is a standing wave due to the Yukawa
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suppression. Hence, formally no energy is transmitted to infinity. The travel-
ing wave portion has outgoing spherical wave-fronts and is viable only if the

frequency is large enough to excite the massive mode.

e The z¢ prescription is crucial to obtain a solution that represents a traveling
wave: the position of the poles changes when the frequency flips from w = 2w
to w = —2w,. This takes place consistently such that all exponential factors
arrange correctly and yield sinusoidal functions propagating at the correct

speed appropriate for a massive wave.

e The wave is sub-luminal and has a group velocity vy(w) = /1 — (m2/w)?,
which is readily identified from the dispersion relation k(w) = wy/1 — (m/w)?.

This is precisely the relativistic velocity of a free massive particle.

e For completeness, we can easily compute the total emitted power. We use
the fact that the total energy-momentum tensor is the direct sum of the three
modes and notice that the energy-momentum tensor of a massive spin-2 theory
is identical to that of general relativityf’] To lowest order in the mass, we have

the rate of energy loss

dEGW . 32G,u2d4w§ mo
= - (14 02w, —my)) + O o

where, as explained in [73] where this equation was first derived, the first term

(7.22)

is the power lost in the massless gravitational mode while the second term

represents the power lost in the massive spin-2 mode.

7.4 Quantum non-locality: Non-perturbative treat-
ment

We now include the non-local higher curvature corrections in the equations of

motion. Adding the non-local corrections, we find (in harmonic gauge)

T~ w20 (160 + 24+ a00)) @0, = 0= (@45 +7) £(E
+ (a + g + 7> nuw0L(R) + <62§“) + 2cs(u)> Oy — (g + 27> Ds(i’zw)} = —167GT,

(7.23)

3Notice that this is true in general, i.e. not necessarily requiring the Pauli-Fierz tuning.
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where

£(f) = /d4x'£(x —2) f(2), Lx—-2)= / (3471;6““(“9”/) In <_—kj)

7
(7.24)

The non-local function, £(z — 2’), must be supplemented by a boundary condition
to be well-defined. We impose retarded boundary conditions by sending £ — k°+ie
inside the logarithm; see the discussion in the appendix. The exact form of £(z— ')
is derived in Appendix (?7?), nevertheless, we will not need such an expression in
this section. In fact, we wish to treat the higher-derivative terms along the same
lines of the last section. We refer to this treatment as non-perturbative, and so we

transform Eq. (7.23]) to momentum-space and obtain the non-analytic operator

A o 2 2 ca(p) 2 2 (B 2 —k? 2o
0,2 =~k (1+ﬁ <2+2CS(H)>J< — K (2-1—27)19 1n<M2 PHes

2.2
0 (14 (3 0) = alf) = cau) R = (=30 5 =) 21 (- ) ) PIS

(7.25)
whose propagator is readily constructed
(2)ap
@HVQB = PHV
g2 (1 + K2 (% n 203(u)) k2 — k2(8/2 +27) k2In (—k2/u2))
. P’
—k* (14 K2 (=3c1(p) — ca(p) — es(p)) k? = K2 (=3 — B —9) K2 In (=k?/pi?))
(7.26)

We decompose the trace-reduced metric perturbations (in harmonic gauge) as fol-

lowdd

hw = hE) + 1), 1) =P hes, B = POhas (7.27)

v

We focus on the spin-2 sector and separate out the general relativity piece by re-
writing the denominator in Eq.
1
k2 (1 + K2 (025“) + 203(u)> k2 — k2 (8/2 + 27) kK2 1n (—k:Q//ﬂ))
. i (2 4 2c5(p) ) — K2(B/2 4 27) In (k2 /1)

e (1 2 (22 4 265(1) ) K2 = 12 (8/2+ 29) K2 In (—k2/p2)) (72%)

“Note that the sum P2 +P(©) = 1 when it acts on symmetric tensors satisfying the harmonic

gauge.
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This way the spin-2 sector reads

R (w, @) = B (W, 7) + B (w, ), (7.29)

v

where the massive spin-2 piece is now transparent. Working in the far-zone, we

have
R w, &) = —(16nGR)I;(w) (7.30)
/ K2dkdQy (% + 26300) — (B/2+2y)In (=k*/1?)
(2m)? (14 52 (242 + 2e3() ) K2 = 52 (8/2 + 29) K2 In (—k2/p2) )

where I;;(w) is given in Eq. and we work temporarily in a mixed frequency-
position representation. Compared to Eq. , we observe that the non-analyticity
has turned the denominator into a transcendental function which is infinitely-valued.
A careful investigation of the latter is essential to understand the physical content

of the result. The angular integrals in Eq. (7.30]) are readily performed

Bg)m(w,:fc’) = (167GK*)I;j(w) < ! > X

72
d /oo " (e emibr) [ (242 4 2e5(0)) = (8/2 + 29) In (K2 - w?)/12%)]
ArJco (14 12 (24 4 2c3(1) ) (@2 = K2) = K2 (B/2 4 27) (w2 — K2) In (K2 = w?)/p))

(7.31)

where it is understood that w — w-ie in the integrand to enforce retarded boundary
conditions. Similar to the previous section, we evaluate the above integral in the
complex plane. The situation here is rather complicated because the logarithm is
infinitely-valued. This causes the integrand in Eq. to possess infinitely many
poles that appear on the various Riemann sheets of the logarithm. The values of

the poles are compactly encoded in the Lambert-W function [89] [129]
1

exp [ =2 —4c3 (1)
/{2(5/2+27)W<—2 G >)

K2 p2 (B+4y)

w? — k> =mj =

(7.32)

This reproduces the result obtained in [73]. We see from table that the
combination (8/2 + 27) is positive-definite for all massless particles, and thus the
argument of the Lambert-W function in Eq. is negative-definite.

We will comment on the pole structure of Eq. as we proceed, but for
now it suffices to pick a Riemann sheet in order to evaluate the integral. On each

sheet, there is a single complex pole given any choice of the ultra-violet data, i.e.
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the Wilson coefficients and the renormalization scale [79]. Let us treat in detail
the integral involving the positive exponential in Eq. , where our choice of
the branch cut and integration contour is shown in Fig. . Clearly, a generally
complex solution to Eq. introduces two poles which are mirror images of each

other. Let us define two quantities
Q:=w?—Rm2, (:=3m?—esgn(w) . (7.33)

Notice that the sign of both € and ( is not fixed at this stage. A direct computation
yields

k /302 + )2+ 10 Fisgn(Oy 32+ )2 — 10, 0> 0
i p—

/402 + ()2 — 10 Fisgn(Q)y/LHO2+ 2+ L0] Q<0
(7.34)

Compared to Eq. , we notice the important difference that the retarded
ie-prescription does not play role in placing the poles because Sm3 is non-zero. For
definiteness, let us focus on the case when (2 is positive. Since we close the contour
in the upper-half-plane (cf. Fig. ), we only pick poles with positive imaginary
part, and hence the contribution to the metric perturbations is Yukawa-suppressed.

—ikr

The same conclusion applies to the integral involving e as we close the contour

in the lower-half-plane. The discontinuity across the branch cut cancel out in the

final result and we are left with only the contribution from the residues.

(dwg® 2 4 2es(pr) — (B/2+27) In (~m}/u?)
roel o 9cy(p) — (B/2+29)In (—m3/u2) + (B/2+2v)

exp <—\/ O RNOIEE ;Q) exp (— sgn(@“M S22 4 §Q> x

Qi;(t,0;0) (7.35)

7(2)m — H
hi; (7)) = —4G

where , := (2w,)? — ®m3. We immediately observe a problem with the above
result, namely that the solution does not represent a propagating wave although
2 > 0. Looking back at the local theory, we immediately realize that the reason
for this is that the placement of the poles is not controlled by the sign of w because

Im2 is non-zero. Moreover, the limit to the local theory (¢ — 0) does not exist

given the structure of Eq. ((7.35)).
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In order to remedy this situation, we devise a new prescription for the poles in
lieu of Eq. . We first observe that the solutions to Eq. come in conjugate
pairs which appear on the mirror-symmetric Riemann sheets of the logarithm [79].
Since one is free to pick a Riemann sheet on which to carry the contour integral,
we demand the choice of the sheet to follow from the sign of the frequency. More
precisely, let us say we picked a particular sheet and carried the integral for w = 2w,
then the integral with w = —2w; is to be evaluated on the mirror-symmetric sheet.

We can summarize this prescription by staying on a single sheet but modifying

equation Eq. (7.34) to read

K /32 )2 + 40 Fisgn(w) @2+ ) — 4, Q>0
:t =

/192 + ()12 = 40 Fisgn() /5@ + 12+ L0, Q<0
(7.36)

This prescription elegantly yields the desired behavior we are after. Let us also
take the limit that the Wilson coefficients are large compared to (S, 7)E|, hence we

arrive at the radiation field

2
l_u(?)m(t,f) = —4GM exp (—T\/é(ﬂg + ()12 — %QS> Qi (t.rimeg)
T
(7.37)

where the effective mass of the wave is

1 1
m2s = (2ws)? — 5(Qz + ()2 - 5% (7.38)

Egs. (7.37) and (7.38) furnish the main results of our analysis in this section. Al-
though we obtained Eq. (7.37)) for 25 > 0, the corresponding result for 2, < 0 could
readily be obtained using Eq. (7.36)). Thanks to our new prescription in Eq. ((7.36)),

the limit to the local theory (3m3 — 0) exists and is manifest in our final result.
As expected, Eq. represents a massive spherical wave albeit the amplitude
is Yukawa suppressed due to the unavoidable imaginary part of the poles. Most
importantly, the effective mass in Eq. determines the speed of propagation

of the wave. Finally, it is important to note that we did not place any restrictions

5This limit gets rid of the prefactor appearing on the first line of Eq. ((7.35)). Therefore, strictly
speaking Eq. |) is correct up to corrections O ((8 + 4v)/(ca + 4c3)).
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regarding the signs and values of ®m2 and Sm3. From a phenomenological stand-
point, it is crucial that the wave is sub-luminal, i.e. a positive-definite m?2;, which

requires

Vi@ e+,

2w,

0 < Rm3 < (2wy)?, <1 . (7.39)

The calculation of the emitted power is complicated by the fact that the mass
of the massive spin-2 field is now complex due to the non-local part of the action.
A complex mass implies that this field has a width [129] and a width cannot be
implemented in a simple way in the Lagrangian. The calculation of the energy-
momentum tensor 7}, required to calculate the emitted power of a binary system
into that mode is thus more complicated than in the local theory case. A standard
way to introduce a width in a Lagrangian consists in including the interactions
between the particle under consideration and its decaying product. It is clear that
in the case, it will be an high order effect since we are working at second order in
curvature and we can thus ignore the imaginary part of the mass. We thus recover

the energy loss calculated in the previous section

dEqw 32G 2 d*ws
dt 5

R
(14 0Q2ws —Rmy)) + O < m2> : (7.40)
Ws
where as before the first term is the power lost in the massless gravitational mode
while the second term represents the power lost in the massive spin-2 mode [73].

This result was derived in [73].

7.5 Quantum non-locality: perturbative treatment

While in the previous sections we studied effects at order G, i.e., the effects
of the same strength as that of the standard general relativity gravitational wave
solution, we now turn our attention to genuine quantum gravitational corrections
to the general relativity wave solution which appear at order G?. These corrections
are the analogue of the long-distance corrections to the Newtonian potential, i.e.
Eq. (7.2), that have been derived in [82, [90]. To this aim, we look for a solution to
Eq. perturbatively close to general relativity

BMV - BS,/R + buy (741)
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S{k}

®)

]
R{k}

Figure 7.1: This figure shows our choice of integration contour in the complex k-
plane, which is relevant for the integral involving the positive exponential factor in
Eq. (7.31]). The horizontal line denotes the branch-cut in the upper-half-plane. The

cross (dot) denotes the relevant pole if sgn(() is positive (negative).

where b, comprises a long-distance correction to general relativity. Plugging this

ansatz back in the equations of motion yields

c2(p) - g 7
O, — K> (T — 203(,u)) PhGR + K2 <§ + 27) Pe(hi™)y =0,  (7.42)
where we have used the leading-order equation DBS‘E{ = —167GT),. In our current

approach the local pieces drop out, i.e. the middle term in Eq. (7.42)), because away
from the source we have that DBS,? = 0. For the general relativity solution, we use
the quadrupole formula

fi(dws)?
r

hitt = 4G Qij(t,r;0) . (7.43)

We can simplify Eq. (7.42) if we commute one factor of the d’Alembertian past the
logarithm in Eq. (7.42). The homogenous solution of b, is set to zero and so we
end up with

4

by = % (B + 47) p(dw,)? (6@ (2)Qys(t, 7 0)) . (7.44)

At this point, the exact expression of £(x — ') derived in Eq. (C.7)) is employed.
The integral is quite involved, but we find it instructive to show some details that
help illuminate the properties of the non-local distribution. Let us focus on a single

component of the correction, say b,,. The delta function allows us to integrate freely
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over spatial coordinates

: i fe—t)e(t—-t) —r?) oe—t)e(t—t)*—r?) .
) [ﬂ ( (=02 2482 (-t — 12— id)? >] cos(2uwet).

Now the remaining integral is readily performed in the complex plane. Writing the
cosine function in terms of complex exponentials, we close the contour appropriately.
The step function O(t —t') picks up the causal pole and one ends up with manifestly

real solutions

Drz = —Byy = 5 (5 +;7::2M(dw5)2 (2005 sin(2wst,) — %cos(2wstr)) , (7.46)
Doy = bya = —K4 (8 +;7322M(dw5)2 (% sin(2wst,) + 2ws cos(QwStT)) . (7.47)

where t, := ¢t — r is the retarded time. As we advertised, the above result repres-
ents a traveling massless wave, but with the far-field falling faster than the typical
1/r behavior of general relativity. A final comment is in place: the corrections in
Eq. do not affect the radiated power since the field falls off faster than 1/r.
Since we are working perturbatively in G, the rate of energy loss is to be computed
using the same expression in general relativity. Clearly as the power is obtained by
averaging the energy flux over a sphere situated at infinity, any component in the
wave solution that decays faster than 1/r does not contribute to the emitted power.
This is not surprising, as here, the only degree of freedom involved that can carry
energy is the massless spin-2 mode of general relativity. While the emitted power
into massless gravitational waves is not corrected by quantum gravity at order G2,

the strain which is given by
h(t) = D*"h,,, = D" LG + D, (7.48)

where D" is the detector tensor, receives a quantum gravitational correction at this

order.

7.6 Conclusions

In this paper we worked within the effective theory approach to quantum gravity

which enables model independent calculations at energies below the Planck mass.
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The long-distance limit of quantum gravity is well described by the effective field
theory framework. The advances in infrared quantum gravity opens the door to
investigate a wide variety of gravitational observables. Using these now well estab-
lished techniques, we reconsidered the question of quantum gravitational corrections
to the emission of gravitational waves by a astrophysical binary system.

In this work we focused on the gravitational waveform emitted by a binary system
during the inspiral phase. For completeness, we first revisited the production of
massive spin-2 modes predicted by quantum gravity. We have then calculated the
leading order quantum gravitational correction to the classical quadrupole radiation
formula which appears at second order in Newton’s constant. This is a genuine
quantum gravitational prediction which is model independent. Clearly this is a
small effect which is unlikely to be relevant for any foreseeable gravitational wave
experiment. However, this result is important as it demonstrates that quantum
gravitational calculations are possible when using well established effective field
theoretical techniques. This prediction of quantum gravity is model independent.
As expected, the emitted power into massless gravitational waves is not corrected
by quantum gravity at order G2. However, we have found that the strain receives a

quantum gravitational correction at order G2.
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Chapter 8

Gravitational Radiation
Background from Boson Star

Binaries

Every time you accelerate - say
by jumping up and down -
you're generating gravitational

waves.

Rainer Weiss

Djuna Croon®, Marcelo Gleiser?, , Sonali Mohapatra® and Chen Sun®

®Department of Physics and Astronomy, University of Sussex,
Falmer, Brighton, BN1 9QH, U.K.
®Dartmouth College, Hannover, USA

We calculate the gravitational radiation background generated from boson star bin-
aries formed in locally dense clusters with formation rate tracked by the reqular star
formation rate. We compute how the the frequency window in gravitational waves is
affected by the boson field mass and repulsive self-coupling, anticipating constraints
from EPTA and LISA. We also comment on the possible detectability of these bin-

aries.
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8.1 Introduction

The recent detection of gravitational waves (GW) by LIGO and VIRGO have
opened up a new window for our understanding of the physical properties of the
universe [3]. Probing the energy density of the stochastic Gravitational Wave Back-
ground (GRB) formed by the superposition of a large number of individual grav-
itational wave merger events is a long term goal of the next generation of GW
detectors. It is thus of great interest to investigate different potential sources of
GRBs and how to distinguish between their potential observational signatures. In
this letter, we compute the GRB of an important class of hypothetical objects, mer-
ging binaries of Exotic Compact Objects (ECOs) composed of self-interacting scalar
field configurations known as boson stars (BSs). Such objects were first proposed in
the late 1960s [92] and further studied in the 1980s and 1990s [21}, 93H95], but are
now experiencing a revival due to their potential role as dark matter candidates [24]
and as remnants of early universe physics [96]. The gravitational wave production
from individual events of the merger of two boson stars has been studied in [97] and
[22], for example. A preliminary estimate of the GRB in boson-star binary mergers
was given in [9§].

The success of inflationary cosmology [25] and the discovery of the Higgs Bo-
son [I] [2] have opened up the possibility that different self-interacting scalar fields
might exist in nature. The presence of such fundamental scalar fields in the early
universe, maybe in dark matter clusters, could have led to their condensation into
self-gravitating compact objects [99HIOT]. It is quite remarkable that for a re-
pulsive self-interaction A|¢|* and a scalar field mass m, such objects have masses
Mgs ~ VAM3Z,/m?, which, for m/\* ~ m,, where m, is the proton mass, are
parametrically equivalent to the Chandrasekhar mass [102].

Indeed, even a free, massive scalar field can generate a self-gravitating object,
supported against gravitational collapse solely by quantum uncertainty [92]. This
distinguishes them from fermionic compact objects such as neutron stars (NS) and
white dwarfs, which are prevented from collapse due to degeneracy pressure [103].
Another key difference, important observationally to distinguish the two classes of
compact objects, is that the simplest BSs do not radiate electromagnetically.

Given the uncertainty in the details of BS formation, and to provide a more
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general analysis, we assume here that BSs were formed at a rate that tracks the
regular star formation rate, in locally-dense dark matter clusters. We will thus
adopt this initial range of redshifts as a benchmark for our analysis. Our results can
be extended to arbitrarily large redshifts.

As with their fermionic counterparts, BSs have a critical maximum mass against
central density beyond which they are unstable to gravitational collapse into black
holes (BHs) [93], [106]. In this paper, we treat the two stars in the binary BS system
as having the same maximum mass and radius, which leads to the two objects having
the same compactness, defined as C = GyM/R. The GRB is typically characterized
by the dimensionless quantity Qqw(f), the contribution in gravitational radiation in
units of the critical density in a frequency window f and f+ 4 f to the total energy-
density of the universe in a Hubble time. By studying their gravitational imprints,
we hope to gain insight on the properties of these exotic objects, expanding the

results of [98] and bringing them closer to current and planned observations.

8.2 Boson Star properties

8.2.1 Isolated Boson Stars

Very light bosons could form a Bose-Einstein condensate (BEC) in the early or
late universe through various mechanisms [99-I01]. Such objects are macroscopic
quantum states that are prevented from collapsing gravitationally by the Heisenberg
uncertainty principle in the non-interacting [92] and attractive self-interaction case
[99], or, in another possibility, through a repulsive self-interaction that could balance
gravity’s attraction [102]. In this Letter, we study an Einstein-Klein-Gordon system

with the following Lagrangian,

£=v=3 |[@6) — m?lol? ~ Mol (51)

where ¢ is a complex scalar field carrying a global U(1). Real scalar fields can also
form gravitationally-bound states, but these are time-dependent and have differ-
ent properties [107]. Colpi et al showed that the maximum mass of a spherically-

symmetric BS with repulsive self-interaction is given by [102]

0.22 M2a*?  0.06vVAM?

m m2

MM , (8.2)



66

where the rescaled coupling o is defined as o = A M} /(4w m?). For a boson star

with a repulsive self-interaction, the radius can be estimated to be
(8.3)

The compactness of boson stars is discussed in many references such as [24], [T08]. We
note that the compactness and mass of the stars are especially relevant for binary
GW events. Different formation mechanisms have been discussed in Refs. [99-I0T].
However, since we are focussing here on the gravitational radiation background, we
need not worry about specific formation mechanisms that lead to highly compact
BSs. We will assume they exist and compute their contribution to the GRB. We
also note that if one assumes the complex scalar ¢ to be responsible for the dark
matter in the Bullet Cluster, Ref. [I09] shows that the constraint on the dark matter
cross section [I10HI12] can be translated into a bound on the boson’s self-coupling,
because the relative velocity of the Bullet Cluster is higher than the sound speed of
the condensate. The translated bound on the self-interaction strength is
m > 3/2

A< 1071 (_v

- (8.4)

A modest lower bound on the self-interaction can be found from the gravitational
wave speed as it propagates through the DM halo, as given by [113].

We note in passing that Ref. [L09] shows that BEC requires light scalars m < 1eV.
However, the bound is based on the inter-particle spacing estimated from the average
density of dark matter in the Universe. Since in the absence of a fundamental theory
the exact formation process of boson stars remain unclear, we consider the possibility
of their formation due to a large local density fluctuation. Therefore, we do not worry
about the bound on the scalar mass. In what follows, we saturate the Bullet Cluster

bound and parametrize the boson star mass effectively as

v /4
M, = aM™® = 3.1 x 10" 2 (e—> M., (8.5)

m

where z is the fraction between boson star mass and the maximum stable mass, and

the radius will be given by,

VvV (eV>5/4
R.=y———=11x10"y | — R, 8.6
y\/aNm2 Yy m © ( )
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where y is the fraction or multiple of the star radius from Eq. (8.3). From Eqgs.

and [8.6] we obtain the compactness of these boson stars as

. GNM* . X
C, = o= 0.06 x (y) : (8.7)

8.2.2 Boson Star Binaries

We briefly describe the properties of boson star binaries that are relevant for the
calculation of gravitational radiation. In what follows, we assume a conservative
model for the estimation of the binary formation rate, which tracks the star form-
ation rate (SFR) of luminous stars. Empirically, the luminous star-formation rate
can be parametrized as a function of redshift z and stellar mass M [114], in units of

yr~'Mpc™? as

(8.8)

M a eb(z—zm)
SFR(Z, M) = SFRO (M®> a—b + bea(z—zm) ’

The parameters SFRy, z,,, a, and b are all determined by fitting to observations such
as gamma-ray burst rates and the galaxy luminosity function. We adopt the fit from
gamma-ray bursts from [I15]. We further parameterize the efficiency of the binary
boson star formation as a fraction of SFR(z, M), denoted as fgps < 1. We stress
that this effective parametrization does not assume a specific boson star formation
mechanism nor a similarity between that and luminous star formation. The boson

star binary formation rate is, for a boson star of mass M, and formation redshift zy,
RBBS(Zf, M*) = fBBS X SFR(Zf, M*) (89)

Since we do not need all of the binaries to survive today to leave their gravitational
radiation imprint, we calculate the merger rate at redshift z, which is mainly determ-
ined by the binary formation rate at redshift zy. On the other hand, the larger the
binary separation at formation, the less likely they would have successfully merged,
due to gravitational perturbations from other sources. Following Ref. [20], we use an
appropriately normalized weight function p(At) to account for the merger efficiency,
where At is the time delay from formation of the binary to coalescence,
Atmaz

Rm(t, M*, fBBS) = / RBBS(t — At, M*) p(At) dAt (810)

Atm,in
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Here, At,,;, is the minimum time between formation and coalescence, and At,,q, is
determined by the maximum initial separation which allows for binary formation.
As we will see below, the result is not sensitive to the precise choice of At,,q,. We
will comment on a suitable At,,;, for this integral in the following section. We relate

redshift to cosmic time with the approximate formula from Ref. [116],

_ 2/H,
14 (2 + 1)

t(z) (8.11)

where H, is the Hubble constant today. Next, let us estimate p(At). For a pair of
stars A and B, their initial separation a defines a sphere inside which the number
of stars is N(a) = pma®/6. Assuming that the chance of any pair of stars forming
a binary is roughly the same inside the sphere, the probability that stars A and B

are bounded is
—1

pla) = = oca " (8.12)

This simple model captures the sharp decrease in the binary population as the pair
separation increases. We note that the difficulty for binaries with initial large sep-
aration to form is not from perturbations that rip the two stars apart. Instead, the
many ‘inbetweeners’ are likely to form binaries with each of the two stars separately.
Since gravitational radiation is the only channel for energy release, and since most of
the initial binding and inspiraling process can be described by Newtonian dynamics,

we use the merging time as in Ref. [117],
At ~ a’. (8.13)

This gives a weight function p(At) ~ 1/A#*2. |'| This weight function also implies
that the result is not sensitive to At,,.. and the precise determination of the initial
separation. The boson star formation rate and merger rate are shown in Fig. 8.1}
As one can see, the merger rate is not very sensitive to At,,;,. The magnitude of
the merger rate is controlled by fgps, which will be constrained together with their

mass and radius.

Note that this differs from Ref. [20, [118], where a fiducial model is used and the weight
function for NSs is chosen to be p(At) ~ 1/At. For a study of different delay models, please refer
to Refs. [IT9H122].
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Figure 8.1:  (Colored plot online.) We take the shape of the regular star formation
rate (dashed) from Ref. [115] using the gamma ray burst fit therein (v = 0.16, z,, =
1.9,a = 2.76,b = 2.56), and assume that the boson star formation tracks the regular
star formation with efficiency fggs. We compare it with the merger rate (solid)
calculated using Eq. . It is observed that At,,;,, the minimum delay between
formation and merging, has a small effect on the result as long as the delay is
comparable to NS mergers (20 Myr) [20] and BH mergers (50 Myr) [I18]. The
benchmarks in Fig. correspond to At,,;, ranging from 1072 Myt to 26 Myr.

8.3 Gravitational Waves from Boson Stars

8.3.1 Gravitational Waves from Single Binaries

In this section we consider the gravitational wave emission from a binary mer-
ger of two boson stars, focussing only on the gravitational interaction between the
stars. The most important contribution to the stochastic background comes from
the inspiral phase of the binary mergers. In this stage, the calculation can be done
analytically. The system can be approximated by a pair of purely self-gravitating
point masses emitting mostly gravitational quadrupole radiation. The radiation

power is

32
P = —Gyptwtrt. (8.14)
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Solving the dissipation equation P = —E gives us the characteristic f (t) ~ t=3/8

relation, and the radius as a function of ¢, with ¢ being the time before coalescence,

53/8
F(8) = == (Gnme) /3705,
8
256 14
r(t) = (?G?V(MA + MB)MAMB) /4, (8.15)
where m, is the chirp mass given by m, = MAMBY ey A, Mp being the

(Ma+Mp)t/5?

masses of the two stars. This approximation holds until the binary evolves beyond
its innermost stable circular orbit (ISCO). Inside the ISCO, tidal effects need to be
taken into account, and the post-Newtonian expansion breaks down. The frequency

of the ISCO is given by [24]

32
fisco = 3321 Gy (My + Ms)’

(8.16)

which is a function of the compactness of the stars defined in Eq. 8.7 For boson

stars with a fraction x of the maximum mass (8.2), and a fraction or multiple y of

the radius (8.3),

m?y/Gy z z \/T m\ 2
o VEN T 902 %1070 H 2/~ (—) . 8.17
fisco 6o\ 7P X 7 AV & ( )

If we saturate the Bullet Cluster bound as in Eq. , fisco scales as ~ m®/4.

T

fISCO ~ 6.4 x 10_10HZ ( —) (

m 5/4
y3 > '

W (8.18)

Of course, if we choose not to saturate the Bullet Cluster bound we have a much

broader window of models to probe, something that can be easily done.

We will estimate At,,;, in based on the following argument: if the boson
star binary is formed at an initial distance inside the ISCO, the binary will not
experience an inspiral phase. Therefore we choose At,,;, to correspond to t;sco,
the time between entering the ISCO and coalescence. In what follows, we sum up
the contributions from individual mergers to get the total gravitational radiation
energy density. When we do the summation, we use frsco as the cut off frequency

for each binary to guarantee the calculation based on quadrupole radiation is valid.
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8.3.2 Gravitational Radiation Energy Density

The energy spectrum of the gravitational radiation from boson stars is defined

as,

d
Qaw(f) = pi pdeW7

(8.19)

where pgw is the energy density of the gravitational wave in that frequency range
and p. is the critical energy density. Following [I1§], this can be written using
the merger rate per unit of comoving volume per source time R,,(z, M,), and the

differential energy emitted by a single source dE/dfs as,

Qaw(f, Mx, fBBs) =

f /zm(m Rm(va*vaBS) dE
0

peHo (14 2)/Qr(1+ 2)3 + Qp dfs
M, 2/3 7T2/3G2/3M5/3
= f*/* feps (M ) (1/3]\[6 (8.20)
® 24/°3p.Ho

/zmm Rm(za M@v 1)
0 (1+2)43/Qu (1 +2)3 + Qp

2/3 5/6
_ _6 2/3 f MeV
1.03 x 10 fBBS T <10_4 HZ) < m s

where we have used fs = (1 + z)f (explicitly shown in [B)) for the emitted (source)
frequency, and
dE 73

= TG?V/?’mi/i‘f;l/?’. (8.21)

fisco works as a cut-off at the high end of the spectrum, which is shown in Eq. (8.18).
The spectrum is shown in Figl8.2] for several benchmark scenarios. In this plot, the
fraction of the radius is taken as y = 1. It is seen that the signal may be within
reach of the next generation of gravitational wave interferometer experiments, and
pulsar timing arrays. Also, we observe that the high end of the frequency band,
determined by fisco, is proportional to m®*, if we saturate the Bullet Cluster
bound, which indicates that boson stars consisting of heavy scalars are more likely
to be probed by gravitational wave experiments. We show in Fig. the bound on
binary formation efficiency fgps, star mass, and star radius based on LISA for a few

benchmarks of scalar mass.
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Figure 8.2: (Colored plot online.) Plot of . Here the fraction of the maximum
boson star mass is taken conservatively to be # = 107!, and the fraction or
multiple of the radius is taken as y = 1. The self-coupling A has been chosen
to saturate the Bullet Cluster constraint (8.4). From (8.5), for m, ~ keV (MeV),
and x = 0.1, the mass of the star is M, ~ 105 M, (103My). The upper, lower,
and middle lines are chosen for fgps = 1/2, fgps = 1073, and their geometric mean,
respectively. Also shown are the EPTA [123] and the LISA [124] exclusion prospects,
and the expected backgrounds due to Binary BHs and NSs [20].

8.4 Discussion

As shown in Fig. [8.2] the gravitational signal from binaries of stars made of light
bosons fall within the reach of the next generation of gravitational wave detectors
and pulsar timing arrays. Failure to detect such spectra can be interpreted as a
bound on the boson star parameters, as illustrated in Fig. . Such a bound can
in turn be translated to bounds on the boson mass and self-coupling, once a specific

formation scenario is assumed.

The most important contribution to the boson star binary spectrum comes from
the inspiral phase, which peaks at fisco, the frequency corresponding to the inner-
most stable orbit. This peak frequency is a function of the compactness of
the boson stars, which depends on the scalar mass and self-coupling. This is to be
compared with objects of which the compactness is known [24]. The compactness

of a BH is 1/2, whereas realistic assumptions on the EOS for NSs would put them
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Figure 8.3: The bound on boson star parameters based on LISA. The gray region
can be constrained by LISA. We take three benchmarks, with m = 10 eV (the
darkest region), m = 10% eV (the both darker and the darkest region), m = 10° eV
(all colored area). The straight line is derived by setting frsco = 107° Hz, which is
the lower end of LISA’s sensitivity band. In this plot, LISA is not sensitive to the

region below the straight line.

in the range 0.13 < C' < 0.23. For the boson stars considered here, the compactness
saturates at C' < (.16, so close to the lower range of NSs and below that of BHs.

We also note that BS mergers are not accompanied by electromagnetic signatures.

In this paper we have only considered the gravitational interaction between boson
stars in a binary. Numerical studies of mini-boson stars [97] and solitonic boson stars
[22] suggest that the scalar contact interactions may play an important role in the
late evolution of the merger. We leave the study of such effects in our model

for future work.

It is important to distinguish the stochastic background from boson stars from
that due to more conventional binaries, such as BHs and NSs. Such a comparison
relies on three main features. The stochastic spectrum is characterized by the frac-
tional energy density Qqw(f) and the frequency band f. As is shown in equation
(8:20), Qaw(f) can be written as a function of the formation rate (parametrized by
feBs) and the mass of the boson stars (as a function of z and m). A fundamental
difference is that boson star masses can take on a wide range of values, from
that of NSs to that of supermassive BHs. Boson stars with a mass that falls out-

side the range typical for NSs and BHs are particularly interesting observationally.
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This corresponds to relatively heavy bosons, with m ~ 10°\/zeV. Also, a more
exotic formation scenario than the one considered here may distinguish the boson
star signal. For example, by considering redshifts different than the ones that track
ordinary star formation. We leave the analysis of how these parameters impact the

boson star stochastic background for future work.
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Chapter 9

What can Black Holes tell us
about the UV and IR?

What we observe as material
bodies and forces are nothing
but shapes and vibrations in the

structure of space.

Erwin Schrodinger
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Combining insights from both the effective field theory of quantum gravity and black
hole thermodynamics, we derive two novel consistency relations to be satisfied by
any quantum theory of gravity. First, we show that a particular combination of the
number of massless (light) fields in the theory must take integer values. Second,
we show that, once the massless spectrum is fized, the Wilson coefficient of the
Kretschmann scalar in the low-energy effective theory is fully determined by the

logarithm of a single natural number.
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9.1 Introduction

The link between black holes and their intrinsic thermodynamical behavior is
perhaps the key to a consistent theory of quantum gravity. The underlying quantum
degrees of freedom of a black hole must necessarily account for its entropy [163H166].
Although currently we are far from describing black hole “micro-states”, powerful
insights were revealed relying on effective field theory lore. Indeed, Hawking ra-
diation was discovered by considering the quantum dynamics of matter fields in a
fixed black hole geometry [167].

Donoghue [47, 48] demonstrated that quantum gravity, at distances large com-
pared to the Planck length, is well described by an effective field theory (EFT).
It is remarkable that gravity lends itself naturally to the EFT framework. All the
unknown physics coming from the ultraviolet (UV) is encoded solely in the Wilson
coefficients of the most general diffeomorphism-invariant action. Similar to any
UV-sensitive quantity in quantum field theory, the Wilson coefficients can only be
determined empirically. More importantly, long-distance quantum effects furnish a
set of reliable and parameter-free predictions of the EFT, as they emerge from the
low-energy portion of loops containing massless (light) degrees of freedom.

Recently, some work has been done to adapt and utilize the EFT framework to
study quantum aspects of black hole thermodynamics in the context of Euclidean
quantum gravity [141],[142]. In particular, it was shown that the long-distance contri-
bution to the partition function is captured by covariant non-local operators. This
is an interesting development which, in particular, allows us to quantify a set of
quantum corrections to the various thermodynamic relations governing black holes.
Notably, it was shown in [141] that the non-local operators are responsible for gener-
ating the logarithmic correction to the Bekenstein-Hawking entropy of Schwarzschild
black hole.

The advent of gravitational wave astronomy [3] has revived experimental efforts
in testing black hole thermodynamics [62, 168]. In this letter we aim to utilize
the structure of the logarithmic contribution to the entropy, obtained from the
effective theory, to derive two consistency relations that hold for any theory (model)
of quantum gravity. This is achieved by invoking Bekenstein’s conjecture [169] that

the area of Schwarzschild black hole has a discrete spectrum in any quantum theory
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of gravity. In essence, the universality of the EFT and black hole thermodynamics
are the two main motivations behind such relations.

The first relation sets a constraint on the number of massless (light) fields coupled
to gravity. This is indeed remarkable because to an effective field theorist, gravity
can generally couple to any number of massless fields. The second relation con-
strains the Wilson coefficient of the Kretschmann scalar, measured at an arbitrary
scale, to be determined in terms of a single natural number. This is striking given
that experimental bounds are exceedingly weak [I39] on the Wilson coefficients of
quadratic gravity. We will now briefly review the basic ingredients necessary for the

derivation of the consistency conditions which will follow.

9.2 Black Hole Area Quantization

The proposal that the area of a black hole is quantized relies on the observation
that the area behaves classically as an adiabatic invariant. The initial evidence
for this conjecture came from the work of Christodoulou and Ruffini [53] 170]. In
particular, they showed that the area of a non-extremal black hole does not change
in the process of absorbing a classical point particle if the capture takes place at the
turning point of the particle’s orbit. The implied reversibility of this process hints
towards the adiabatic invariance of the horizon area [56]. Ehrenfest’s hypothesis [50,
9] states that any quantity which, classically, is an adiabatic invariant is quantized
in the quantum theory. If one then accepts Bekenstein’s conjecture, it follows that
the area is quantized in any consistent theory of quantum gravity.

Now the natural question is, what does this quantized area spectrum look like?
Ascribing quantum mechanical uncertainty to the captured particle, it is straight-
forward to show that there exists a minimal increase in the horizon area [55] 56].

This motivates the following spectrum [56] [152],
_ 2 —
A =2ln, n=1,23.., (9.1)

where 7 is some number that will be discussed later. For some exhaustive reviews
on this topic, the reader is directed towards [56, [57]. The discrete nature of the
area spectrum has also been found in quantum gravity approaches such as string

theory [63], and loop quantum gravity [171) [172]. Nevertheless, there is no con-
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sensus regarding the uniformity of the spacing. In Loop Quantum Gravity [143], in
particular, the area shows a highly non-uniform spectrum. In this paper, remaining
agnostic to the spacing, we use a generalized quantization rule for the area as our
starting point [144]. This will allow us not to dwell on any particular model of

quantum gravity.

9.3 EFT and black hole Thermodynamics

Hawking and Gibbons pioneered a consistent approach to study the thermal
properties of black holes [I73]. For a gravitational system at finite temperature, the

partition function of the canonical ensemble reads

Z(B) = / DUDge =5 (9.2)

where U stands for all matter fields coupled to gravity, Sg is the Euclidean action
and Sy denotes the Hawking-Gibbons-York boundary action [174, [I75]. As is cus-
tomary from finite temperature field theory, the integral extends over (anti)-periodic
field configurations for bosons (fermions). For gravity the prescription is to sum over
positive-definite metrics with a fixed induced metric on the boundary. In the canon-
ical ensemble, the boundary geometry is flat space on S; x R? with the circumference

of the time circle given by /.

In a semi-classical evaluation of the partition function, the Euclidean section
of the black hole appears as a saddle point. In [I41], it was shown how to apply
the techniques of the EFT of quantum gravity to compute the partition function,
Eq. . As we alluded to in the introduction, the partition function contains non-
local operators which encapsulate the long distance dynamics. The result simplifies
if the background geometry is a Kerr-Schild spacetime [141], which is the case for
Schwarzschild black hole. At one loop, or more precisely at next-to-leading order
in the EFT expansion, the partition function of Schwarzschild black hole in 4D is
obtained by a Wick rotation of the effective action [142]

IHZ = Flocal[g] + F1n[§] — S@ s (93)
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where g denotes the background Kerr-Schild spacetime. First, we have

M2
Diocal[G; 1] = /d4ﬂ7 [TPRWL i (p) R?
+ CZ(N)RWRW +c3 (N)Ruvaﬁ Rive?

+E(W)AR + 0(33)} . (9.4)

In the above, p is the scale of dimensional regularization, A is the 4D flat Laplacian
on IR? x S', and let us note that the ¢} are renormalized Wilson coefficients. Second,

the non-local portion reads

A N
Iwlg] = —/d4x [aRln <7> R+ BR,, In (7> R
~A N
+ ’YRMVOLB In (7) Rul/ocﬁ + Oln (F) AR:| , (95)

where the coefficients are finite numbers born out of the calculation and depend
on the spin of the massless field [141]. The action in Eq. is expressed in
quasi-local form, and we truncated the partition function at second order in the
curvature expansion. The possible effects of the higher curvature operators on the
thermodynamics were thoroughly discussed in [142]. Of most importance to our
analysis is the invariance of the partition function under the renormalization group

flow. Explicitly, the beta function of the Kretchman scalar coefficient is
Bes = =27 . (9.6)

The logarithmic form factor in Eq. (9.5), In (—=A/u?) at first glance, is a very
complicated object. Indeed, the form factor is an integration kernel that must be

evaluated in position space and takes the form of a distribution [142]

L(Z—7)=——1Ilim [77 (ﬁ)

r—XT

+ 4m (In (pe) +vg — 1) 63(9?)] : (9.7)
where P stands for principal value. With the kernel in hand, a direct evaluation of
Eq. (9.5)) is possible [142]

52
167G

InZ(B) = + 6472y (1) + 25111(,116)} : (9.8)
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where f = 8tGM and = counts the number of light fields minimally coupled to
gravity

1 7
==—|[2N —Np — 26N 424 ) . )
180( s+2 r— 26Ny + ) (9.9)

In the above, Ng, Nrp and Ny are the number of scalars, Weyl-fermions and vectors
in our theory, and the number 424 is the contribution due to pure gravity. Using
the partition function one can immediately recover the logarithmic correction to
Bekenstein-Hawking entropy [141], [176HI87].

Spn = % + (647°ch(p) + Eln (12 A)) (9.10)

where A = 16m(GM)? is the horizon area of a Schwarzschild black hole. The above
structure reveals the power of the EFT, in particular, there is a clear separation
between the short distance and long-distance dynamics. All the unknown ultraviolet
physics is encoded in the renormalized Wilson coefficient, while the logarithm of the
area emerges from the infrared structure of the theory.

Furthermore, we can manifest the invariance of Eq. under the renormal-
ization group by using dimensional transmutation. The constant ¢§(u) is traded off

for a dimensionful quantity, Aqg, as follows

—_
—
—

c(p) = o2 (#*Aqa) (9.11)

and thus Eq. (9.10) becomes
.AQG

where Sgy = A/4G. We finally note that Aqg is intrinsically tied to the UV comple-
tion of quantum gravity. The constant cj, and thus Aqg, are in principle determined

either by matching onto the full theory at some scale or using experimental input.

9.4 Constraints on the UV and IR

Given area quantization, there are two quantities in Eq. (9.12)), namely = and
Aqa, that we can constrain. This is remarkable since they both have different

origins. On the one hand, from the low-energy standpoint, the unknown scale Aqq
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is UV-sensitive and can only be determined empirically. On the other hand, = only
knows about the IR as it enumerates the spectrum of light fields coupled to gravity.
We start by considering an adequate generalization to Bekenstien-Mukhanov

quantization as given in [144]
A, = (%n + 71’ + o lnn> B, n=123 ... (9.13)

where 9,791,792 and (0 > 0) are constants. Statistical mechanics tells us that the
total number of micro-states accessible to the system is simply the exponential of

the entropy
gn = exp (Spu(n)) - (9.14)
Plugging Eq. (9.12)) into Eq. (9.14) yields

Jn = exp (fT;) exp (E In ;(l:c) ) (9.15)
P

Demanding that g, is a natural number (N) for all n, we see that both exponentials

in the above expression must individually E| € N. Expanding A, as in Eq. (9.13)),

the first exponential imposes the following conditions on the constants
Yo =4Ilnk, v =4lnk;, v =4q¢ |, (9.16)
and
k,ki,6 e N/{1}, ¢ €N . (9.17)

Examining the second exponential, we find the condition

An \°
€ N. 9.18
(AQG> (918)
Using Eq. (9.13)) in the above, we find
) 1 2\ =
AQG

Looking at Eq. (9.15), it is true that one might take each exponential to be a natural num-
ber upto a multiplicative n-independent constant. More explicitly, exp (An /4112:,) = R; -z and
exp (ElnA,,/Aqc) = Ry - 1/x, where (R1, R2) € N. Nevertheless, the only consistent value of x

which satisfies these relations for every n is 1.
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First, it is impossible to satisfy the above condition, for each and every n, unless

~v2 = 0. Hence, Eq. (9.19)) simplifies to

()
Yo -AQG

Demanding that the above condition is satisfied for each and every n, we have

<1 + n51%> €N, Vn. (9.20)
0

1]

Mm="%xs se€Z’ (9.21)

in addition to a pair of remarkable constraints. First, the exponent Z must be a

natural number

1
Tag (2 + ;NF — 26Ny +424) =1, leN | (9.22)

Secondly, we have a constraint on the scale Aqq

AQG (0
2 mi

meN . (9.23)

It is not hard to saturate Eq. if we do not restrict ourselves to the standard
model massless spectrum. For example, we can minimally satisfy this relation with
Ng = 8§ Nrp = 0 and Ny = 10, which yields [ = 1. The apparent simplicity
of Egs. is quite striking and shows the power of the effective theory
framework. We stress that the validity of these constraints indeed relies on the

conjecture that the horizon area is quantized.

9.5 Dimensional Transmutation & Constraints on
C3

We can now use Eq. (9.23)) to derive a quantization rule for the Wilson coefficient,
%, which is practically our measurable quantity. Fixing the scale to p, in Eq. (9.11])

—_
—

) = =55 I (1iAqa) (9.24)
we obtain
. 1 1
cs(pe) = 612 Inm—1IIn~ —I{Iln (87T—]\4f2)>:| . (9.25)

The above relation is quite non-trivial, because it forces the value of the Wilson

coefficient at any scale to take on a very special value which must be expressible in
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terms of a single natural number m, once 79 and [ are fixed. This is, in essence, a
quantization rule for the coefficient of the Kretschmann scalar in the low-energy limit
of any UV model of quantum gravity. Although we can not make similar statements
about the other constants in the action, we conjecture that similar relations extends

to the rest of the constants in Eq. (9.4)).

9.6 Field Counting

Another interesting feature of Eq. is that the size of ¢ depends crucially
on IR data, given by the number of massless (light) fields in the theory. This direct
mixing between the UV and IR is unexpected from the EFT perspective; in other
words, black hole thermodynamics provides a portal linking the IR to the UV. But
this raises the question: What counts as a light field in the vicinity of a black hole?

To determine this, we note that there are two mass scales in our partition func-
tion: the Planck mass, Mp and the mass of the black hole, M,,. For a field, m, to

be considered light and enter =, the condition [41] is
1 17460
— / d*z\/gRuap V2R > 1. (9.26)

where V? = ¢""V,V,. For the Schwarzschild black hole this translates into

Mﬁp < —8@:\4}) (9.27)
Thus, the heavier the black hole, the lighter the field has to be. A quick back-of-the-
envelope calculation tells us that for a solar mass black hole, only strictly massless
particles would contribute to =, if we restrict ourselves to the standard model. Of

course, in this case Eq. (9.22)) hints at the presence of massless particles beyond the

standard model.

9.7 Outlook

Our results show good prospects, especially in two concrete respects. First,
on the formal level, the quantization rules, Eq. (9.22) and Eq. (9.25), present us
with low-energy theorems for models or theories of quantum gravity. It will be

very interesting to investigate which approaches in the market have the potential
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to satisfy these conditions. Second, the insights we revealed have phenomenolo-
gical consequences. For example, quantum corrections in the effective action leave

imprints in gravitational wave observations [17], which one hopes to use to better

constrain cj, given the special form of Eq. (9.25)).
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Chapter 10

Conclusions

Gravity is a habit that is hard
to shake off.

Terry Pratchet, Small Gods

In this thesis, we have studied classical and quantum extensions of general re-
lativity and its applications to gravitational waves, black holes and exotic compact
objects.

In Chapter, [2, we carefully introduced the reader to basic concepts of GR, in-
cluding some of its solutions. Vacuum solutions such as the Schwarzschild Solution
were discussed in detail while discussing its relevance to stars and especially, black
holes. We also gave a short introduction to the non-vacuum solutions of GR while
touching upon Exotic Compact Objects, especially, Boson Stars.

Chapter |3 reviewed the recipe of calculating gravitational waves from Einstein’s
equations around a flat background. We also discussed how to calculate the total
power carried away as gravitational radiation from collision events through an ex-
ample of a binary system of two massive bodies rotating around each other. This
would pave the way to many calculations in Chapter [6] and Chapter [7]

In Chapter 4] we introduced the reader to the basic concepts in the formulation of
an effective field theory of quantum gravity. In the limiting case of gravity coupled
to only massless or light fields, the effective action was presented. We saw that
the non-local part of the action is highly interesting. The coefficients of the non-
local terms, unlike the Wilson coefficients are true “quantum” predictions of the

theory and do not have to be empirically determined. Various phenomenological
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implications of such a framework were discussed.

In Chapter [f], we reviewed the birth of black hole thermodynamics historically
and in a pedagogical manner. The parallels between the second law of thermodynam-
ics and the black hole horizon area were examined. The relation between the entropy
of the black hole and its horizon area as calculated by Bekenstein were derived us-
ing fundamental arguments. We also discussed the quantization of the horizon area
using insights from Ehrenfest’s theorem and its significance in quantum gravity. Fi-
nally, we investigated the Area-Entropy law and discussed quantum corrections to
it as derived in various quantum gravity theories. This laid the groundwork for the

final paper included in the thesis.

In Chapter [0 steps were taken to calculate the gravitational wave modes starting
from the effective action laid out in Chapter [4f We followed the traditional recipe
as discussed in Chapter |3|to find that Effective Quantum Gravity predicts two addi-
tional massive gravitational wave modes in addition to the usual classical massless
mode in GR. These modes are complex conjugates of each other, which implies that
one of them has the wrong signature and thus, might be a ghost. However, this
could potentially be cured by strong gravity effects in the UV. The mode with the
right sign is a highly damped oscillator which dies down exponentially fast. Back-
of-the-envelope calculations helped us put bounds on the massive graviton mass.
However, we concluded that these modes could not have been produced in events
detected by LIGO till now. The energy of events in which these massive modes

could be produced approximate inflationary scales > 10" GeV.

In Chapter [7, we consider the effect of quantum gravity on the gravitational
radiation emitted by a binary black hole system. In particular, working to second
order in curvature, we calculate for the first time the leading order quantum gravit-
ational correction to the classical quadrupole formula which appears at second order
in Newton’s constant. Even though this is extremely small without any scope of
experimental detection in the near future, we see that model-independent quantum
predictions can be made using the EFT framework in gravity. At order G2, the

usual massless mode does not receive a correction, even though the strain does.

In Chapter [§] we calculate the total gravitational radiation background gener-

ated by binary boson star pairs that might be created in locally dense dark matter
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clusters. These bosons stars are formed of complex scalars having a repulsive self-
interaction which stabilizes them against gravity. We found that the gravitational
signal from binaries of stars made of light bosons fall within the reach of the next
generation of gravitational wave detectors and pulsar timing arrays. In case of no
detection by LISA, these can be translated into bounds on the mass and coupling
of the bosons in our model.

In Chapter [9] we motivate a generalized area spectrum for a black hole. Using
this area-spectrum, the Bekenstein-Hawking Area law and the demands from stat-
istical physics, we calculate the number of microstates of a black hole in an effective
quantum gravity framework. Interestingly, we find strict constraints on the number
of light fields that can be coupled to gravity in a consistent theory of quantum grav-
ity. Using dimensional transmutation, we also found an expression for the Wilson
coefficient ¢3 which can be completely fixed by a set of three natural numbers (or in
fact, one, since the other two can be fixed from other considerations)! This is an im-
portant result as it shows us hints of the UV quantization in the Wilson coefficients
and could also lead to tighter constraints on c3. This paper is also very interest-
ing because it proposes low energy theorems which a consistent quantum theory of
gravity must follow. It also hints at minimal extensions of the standard model.

In this thesis, we focused on effective field theories of gravity as they arise in
the low energy limit of a UV completion, thus allowing one to investigate gravita-
tional phenomena in a model-independent manner. This is highly important since,
currently we have no way of proving or falsifying one or more of the proposed UV
completions of gravity. It may well be that in order to understand the true quantum
nature of gravity, we might have to move beyond traditional ideas of space and time.
However, this thesis stresses that EF'T provides us a way to model-independently
push the frontiers of quantum gravity phenomenology without making ad-hoc as-
sumptions about the UV. This could very well pave the way forward by making

some essential contact with quantum gravity experiments.
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Appendix A

Quadrupole Moment Contour

Integrals

In this appendix, we explicitly show the derivation of Equation|7.20} Equation. (7.15)

was given by:

_ . k2dkdS etk &
o =hSR ] / ity / i Al
hij = BER — 167G [ dw e™™! ;5 (w) 2 T ier (A1)

where

d(w + 2ws) + 0(w — 2wy) —i(0(w + 2ws) — d(w — 2wy))

Lij(w) = —%u(dwsf —i(6(w 4 2ws) — 0w — 2w,))  —B(w 4 2w,) — 0w — 2w,)

(A.2)

As we pointed out before, in the above, y is the reduced mass of the binary, d is the
orbital separation and w; is the orbital frequency. In Equation ([7.15]), notice most
importantly the ie prescription is due to the retarded boundary conditions. In the

complex k-plane, the poles are situated at

ki = +4/w? —m3 + sgn(w) ie . (A.3)

One notices two features of the above expression. First, the poles are real (imagin-
ary) if the mass is smaller (greater) than the frequency. Second, if the poles are

real then the sign of the frequency is important in moving the poles off the real
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axis, which is paramount in obtaining a proper propagating wave. Let us now write,

Equation (A.1)) as:
]_lij = ]_lgR - 167rG/dw €_iwtlij(W)A (A4)

where

o /dedek ¢l e
27) (w+ie)? — k2 —

B / 2mk?dk sin 0d6 gikr cos 0
= 27]') (u_) —+ ZE) k2 _

/ / 27rk2dk;du gthru
. (w+i€)? — k2 — m?

/ 27T/€2dk‘ [ zkr _ e—ikzr]
o (2m)3kr (kK — ky(k — ky)

i © 1 kdk eikr_e—ikr

25/_00H r [(k—k)(k—m)}
R /°° kdked 1 /°° kdke
8w Joo (k—ky(k— ki) 8m2r J_oo (b — ky(k —ky)

= A+ As. (A.5)

where A; and A, are two contour integrals. In the first case, A, the poles are on
the real axis and in the second case, the poles are on the imaginary axis. There can

be two cases:

e Case I: w > my = Jw? —m3 € R,
e Case II: w < my = Jw? —m3 € [ = iy/m3 — w2

For Case I, taking the contour in the upper half plane and closing the contour in the

lower half plane in the second case and adding both as well as for both Sgn(w) = +

and Sgn(w) = — , we get
A= — (ky) — ——(—2 z’)Res(k )
b 87T g " B
eV Q) (20y — g )O(w) — L iy 3O (wy — ma)O(—w)
47r7’ 4mr
(A.6)
Similarly,

Ay, = vV m?—wir @(m2 — 2&)1) (A?)

47rr
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Adding both of the above and plugging in the expression for [A.2] we get the expres-
sion

dws)?

r

Eij(t, r) = BS’-R 4GM( 0(ma — 2ws)e” V mg*%gTQij(t,O; 0) + 0(2ws — ma)Q4j(t, r; m%)}

(A.8)
where we defined
cos <2ws (t —/1- (m/2ws)2r>> sin <2ws (t —/1- (m/2ws)2r)> 0
Qij(t,rsm?) = | g (20.;3 (t — /11— (m/2w3)27‘)> — cos <2ws (t —/1- (m/2ws)2r)> 0

0 0 0

(A.9)

The remaining integrals can now easily be performed. We find

dws)?
r

0(ma — 2wg)e VMR Qu (105 0) + 0(2ws — ma) Qi (t, 73 m%)} ,
(A.10)

hij(t,r) = KGR — 480

in the far zone, where

(dws)

hGR = 4G Q1 0) (A.11)
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Appendix B

Power Spectrum Calculation

In this appendix, we derive the power spectrum calculation explicitly to arrive at

the result, Equation (8.21}):

4B _ dE dt
df,  dt df,

_(dE " dfs -
S\ dt dt

N @

where r = (ﬁ—%)l/?) and w = fm and we have set ¢ = 1. fs = (1 + z)f for the
emitted (source) frequency, and dFE/dt is the energy radiated by a binary system of
two self gravitating point masses rotating around each other which we derived in

the example in Chapter (3)).
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Appendix C

Non-Local Distribution Function

In this appendix, we derive the distribution £(x — 2’) which formally reads

/ d* —ip-(z—2' —p’
S(x—:v):/<27£4e p@=2) og (M_]Z) : (C.1)

As it stands, the above integral is meaningless without specifying a boundary con-

dition. To ensure causality, we impose retarded boundary conditions by writing
p? — p® +ide. In fact, this is not an ad hoc prescription. It was explicitly shown
in [40] that using the in-in formalism to compute the effective action automatically
yields a causal non-local distribution. Although ref. [40] was concerned with the
time-dependent case, the conclusion is clear that in-in field theory guarantees the

causal behavior of the equations of motion. We start by expressing the logarithm

2 00
—p 9 1 1
1 — ) =— d - . C.2
og( u2> /0 m (—p2+m2 u2—i—m2> (C2)

Notice that each integral diverges separately in such a way that the sum is finite. We

as follows

have to introduce an explicit regulator, thus when we plug back in Equation (C.1))

0o 4 ] , —0+/P?+m?
£z —2') = lim [/0 dm? / ((217_‘_]))416_217'(1_% )( c —6W(z — ') ln(5,u)2]

30 PO+ ie)2 — 2 —m?

(C.3)

As per usual, the integral over p is readily performed and the poles are situated at

P’ = £\/P% + m? —ic (C4)
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which forces the integral to vanish if x and 2" are spacelike separated as one desires.
Hence,
d? ' At
So— ) = Ot = )0((r — ) iy [ dm? [ FRermEe sin(wpat)

(C.5)

where w,, := /p? + m? and At :=t —t'. Now the mass integral is easily done

! ! IN2Y 1 d3p i (F—7) eP(At+id)  o—ip(At—id)
Lz —a")=-0@—-1t)O((x — ) )};I_I%/We i (F—7 (At+i5 L I )

(C.6)

The rest of the integral is elementary and yields a distribution, which is both Lorentz-

invariant and retarded

o) — Him [i((( Ot —)0((x —a)?) Ot —1)6((x —')?) >

30 | w2 \((t =t +30) = (F—7))?  ((t—t' —i0)* — (T — 7)?)?
—6D(x — ') ln(§u)2] . (C.7)

As we can see, this function has support only on the past light cone, which is as
we expected. As a sanity check, this can also be seen to reduce to the cosmological

expression found in [40, 1] when we integrate over d>z.
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