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Abstract

In response to a global requirement for improved cancer treatments a number of 

promising novel targeted cancer therapies are being developed that exploit 

vulnerabilities in cancer cells that are not present in healthy cells.  In this thesis I explore 

different ways of identifying the vulnerabilities of cancer cells, with the ultimate aim of 

providing personalised therapies to cancer patients on an individual basis.

I first investigate approaches that utilise the concept of synthetic lethality.  Therapies that

exploit synthetic lethality are suitable where a specific tumour suppressor has been 

inactivated by a cancer and an identified synthetic lethal (SSL) pair for that gene may be 

therapeutically targeted.

Mainly due to the constraints of the experimental procedures, relatively few human SSL 

interactions have been identified. Here I describe computational systems approaches for

predicting human SSL interactions by identifying and exploiting conserved patterns in 

protein-protein interaction (PPI) network topology both within and across model species. 

I report that my classifiers out-perform previous attempts to classify human SSL 

interactions. Experimental validation of my predictions suggest they may provide useful 

guidance for future SSL screenings and ultimately aid targeted cancer therapy 

development.

All predictions from this study have been made available via a new online database that 

I designed, built and published.

As an extension to this approach I used similar network features to predict gene 

dependencies, otherwise known as acquired essential genes, in specific cancer cell 
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lines.  Genetic alterations found in each individual cell line were modelled using the 

novel approach of removing protein nodes to reflect loss of function mutations and 

changing the weights of edges in each protein-protein interaction network to reflect gain 

of function mutations and gene expression changes.

I report that base PPI networks can be used to successfully classify human cell line 

specific gene dependencies within individual cell lines, between cell lines and even 

across tissue types. Furthermore, my personalised PPI network models further improve 

prediction power and show improved sensitivity to rarer gene dependencies, an 

improvement which offers opportunities for personalised therapy. In a therapeutic context

these essential genes would be suitable as individual drug targets for each specific 

patient.

Finally, I analyse copy number variance and ploidy in a set of cancers from kidney 

patients.  Using clustering algorithms I investigate patterns in cancer cell line arm-wise 

ploidy and identify factors that may be driving this genomic instability.
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1 - Introduction

1.1 Overview

Cancer represents a major and rising global health burden, with over 12 million newly

diagnosed cases per annum, and is responsible for more than 15% of the world’s annual

deaths. The development of new improved cancer therapies is frequently cited as an

urgent unmet medical need (Varmus and Kumar, 2013). 

Traditional treatments such as chemotherapy often exhibit a low therapeutic index (TI)

due  to  the  challenges  presented  by  selectively  targeting  cancer  cells  whilst  sparing

normal cells  (Muller and Milton, 2012). As such off-target damage of healthy cells is a

common side effect of these therapies  (Coates et al.,  1983). Additionally,  due to the

homozygosity of cancer colonies and the cancer cell’s accelerated mutation rate, drugs

that appear effective at the outset of therapy can fail if even a small number of genes,

and their resulting daughters, harbour a resistance to that compound  (Holohan et al.,

2013).

In response to these challenges cancer drug discovery now increasingly  focuses on

identifying and developing targeted therapies that promise both improved efficacy and

therapeutic  selectivity  (Yap  and  Workman,  2012).These  therapies  effectively  target

specific  genes,  or  their  protein  products,  allowing  for  much  higher  specificity  when

targeting  cancers  with  known  genetic  vulnerabilities  (Schrank  et  al.,  2018) Despite

progress in this field targetted therapies are still unavailable many cancer patients and
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challenges such as resistance remain (Esplin et al., 2014)

1.2 Cancer

Cancer  is  a  disease  driven  by  the  deregulated  development  and  proliferation  of

otherwise normal cells. In the event that genetic alterations in a cell’s DNA disrupt the

processes that usually carefully regulate cell growth and maintenance they can result in

the  uncontrolled  proliferation  of  the  abnormal  cell-line  and  ultimately  lead  to  the

metastasis of a cancer (Douglas Hanahan, 2000; Hanahan and Weinberg, 2011).

The development  of  cancer  is  generally  progressive  with  affected tissues commonly

transitioning through a number of steps, driven by genetic alterations, before they reach

malignancy. The first  steps in cancer progression are generally hyperplasia, where a

tissues contain an excessive number of cells, or metaplasia, where a tissue’s normal

cells are partially replaced by cells that usually belong in other tissue types  (Giroux and

Rustgi, 2017). Tissues that that exhibit these properties are commonly termed benign.

As these abnormalities develop cells may start to display dysplasia, changes in shape

and size and the loss of differentiation as they lose the features and functionality usually

found in cells that constitute their parent tissue (Zaini et al., 2018). Cells with dysplasia

are often termed pre-malignant.  The final steps toward full  malignancy are neoplasm

where the abnormal cells are able to create new growth outside of their predesignated

tissue and invasion where these neoplasms enter blood or lymph vessels and colonise

distant sites (Douglas Hanahan, 2000; Klein, 2008).

20



1.2.1 Alterations  in  driver  genes  are  key  to  cancer

progression

As  cancer  cells  lose  differentiation  they  generally  exhibit  a  higher  rate  of  genetic

alterations than healthy cells due to the deactivation of various damage response and

repair mechanisms (Pearl et al., 2015). The majority of these alterations, even those that

effect  coding regions of  DNA,  do not  confer  the cell  with  a selective  advantage for

growth. These alterations are generally known as passenger mutations (Pon and Marra,

2015). Conversely, genetic alterations that can be directly associated with tumorigenesis

and cancer progression are commonly described as driver mutations. The genes that

these driver mutations occur in are termed driver genes  (Bailey et al.,  2018). These

driver genes can in turn be categorised as either oncogenes or tumour suppressors.

1.2.1.1 Oncogenes

Oncogenes, genes that are often involved in cell  regulation, division and growth, can

lead to tumorigenesis and cancer growth through gain of function mutations  (Croce,

2008),  genetic fusions,  such as the BRC-ABL fusion  (Advani and Pendergast,  2002;

Weisberg et al., 2007), deregulation of gene expression (Sharma et al., 2009) or copy

number variations  (Sismani  et  al.,  2015). These alterations may lead to uncontrolled

expression of a usually carefully controlled protein that up-regulates the cell growth cycle

(Anderson et al., 1992; Lynch, 1987). Oncogenes are generally said to be dominant as

only one allele needs to be mutated to result in a selective advantage for the cancer cell

(Pon and Marra, 2015).
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RAS  (Pylayeva-Gupta  et  al.,  2011) and  MYC  (Dang,  2012),  both  examples  of

oncogenes, are commonly over expressed and exhibit gain of function mutations in the

pathways associated with the hallmarks of cancer as discussed below.

1.2.1.2 Tumour suppressors 

Tumour suppressors are associated with the loss of function. Tumour suppressors are

genes that usually play a role of controlling cell replication, DNA damage response or

programmed cell death, apoptosis  (Gamudi and Blundell, 2010). Generally when both

copies of a tumour suppressor are damaged the loss of function can lead to unregulated

cell growth and tumorigenesis. Tumour suppressor mutations are said to be recessive as

both alleles of a tumour suppressor gene must be inactivated to fully disable the gene

and confer selective advantage (Yarbro, 1992).

BRCA1  and  BRCA2,  examples  of  tumour  suppressors,   commonly  exhibit  loss  of

function  mutations  in  cancers  and  again  both  affect  pathways  associated  with  the

hallmarks of cancer  (Hansen, 2006; Miki et al., 1994).

1.2.1.3 Genetic mutations are permanent changes to DNA

The genetic alterations that drive cancers can broadly be split into mutations, where a

cell’s  DNA is  permanently  changed  via  base  substitutions,  insertions  or  deletions

(Greenman et al., 2007; Martincorena and Campbell, 2015), and structural variants such

as copy number variants (CNVs); where the amount of DNA in a cell is changed either

through loss or gain of genetic material (Beroukhim et al., 2010; Valsesia et al., 2013).

Changes in gene or protein expression and epigenetic factors are also important factors

in the development of a cancer  (Rodríguez-Paredes and Esteller, 2011; Sharma et al.,
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2009) .

Genetic  mutations are events where the sequence of  an organism’s original  genetic

material, DNA, is changed. This can occur in the germ-line, where the mutation occurs in

the gametes of an organism or as somatic mutations where the mutation occur in the

cells of a developed individual  (Martincorena and Campbell, 2015). Genetic mutations

take many forms, from single nucleotide polymorphisms (SNPs) where a single base of

DNA is changed to another base (Batra et al., 2014), insertion and deletions of bases,

collectively known as indels (Sehn, 2014)  and translocations where sequences of DNA

are removed from their origin and situated elsewhere else in the genome (Bunting and

Nussenzweig, 2013; Nambiar et al., 2008).

Silent mutations change the DNA in such a way that the resulting amino acids remain

functionally  unchanged.  Silent  mutations  generally  cause  no  damage.  Missense

mutations result in the original amino acid being substituted by another and may cause

some change in function of the resulting protein  (Adzhubei et al.,  2010; Vaser et al.,

2016). Nonsense mutations result  in a stop codon and ultimately a truncated protein

product.  These  usually  result  in  a  complete  loss  of  protein  product  as  a  result  of

nonsense mediated decay (Asiful Islam et al., 2017; Wen and Brogna, 2008).

Insertions and deletions (indels) add or remove a small number of bases to or from the

original DNA sequence (Sehn, 2014). While some indels, those with a length divisible by

three,  lead to the gain or loss of amino acids in the resulting protein product more often

indels lead to a frameshift. A frameshift is where the reading frame, read in groups of

three bases, is shifted by either one or two bases leading to the alteration of all codons

subsequent to the mutation. Frameshifts often result in nonsense mediated decay which

leads to degradation of the transcribed mRNA of the altered gene  (Streisinger et al.,
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1966).

1.2.1.4 Mutations are caused by a wide range of factors

Mutations are generally caused either by damage from exogenous factors, known as

carcinogens  (Ames et al.,  1973), or endogenous factors such as tissue inflammation

(Ames and Gold, 1991).

There  are  a  range  of  external  factors  that  may  lead  to  mutations  in  a  cell’s  DNA.

Common examples of  carcinogens include various carcinogenic  chemicals from food

(Goldman and Shields, 2003) or environmental particles in smoke  (DeMarini, 2004) or

dust (Huang et al., 2011; Rekhadevi et al., 2009) as well as exposure to certain types of

radiation  (Behjati  et  al.,  2016),  by-products  of  tissue  inflammation  and  hormone

imbalances.  Certain viruses have also been implicated in tumorigenesis  (Mesri et al.,

2014).

Tobacco  smoke  contains  a  number  of  chemicals  including  Arsenic,  Benzene  and

Formaldehyde all of which have been proven to be carcinogenic and commonly lead to

cancers such as lung adenocarcinoma (Lehman et al., 1991; Yarbro, 1992).  Many foods

also  contain  chemicals  known  to  be  carcinogenic  such  as  heterocyclic  amines  and

polycyclic aromatic hydrocarbons found in cooked meats and acrylamide in burnt toast

(Goldman and Shields, 2003).

Ultraviolet radiation (UV), present in sunlight, is known to cause DNA damage which,

when paired with mistakes in  DNA repair  mechanisms can lead to disrupted cellular

processes and potential tumorigenesis (Fitzpatrick and Sober, 1985).  Ionizing radiation

such as X- and Gamma-radiation which arise from radioactive decay and which are
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commonly used in medical imaging are also mutagenic (Behjati et al., 2016).

More generally a range of lifestyle factors are associated with an increase an individual’s

chances of developing cancers such as diets that are high in fat or salt and those low in

fibre (Kushi and Giovannucci, 2002; Tsugane, 2005). Alcohol consumption, especially in

conjunction with tobacco, has also been associated with increased cancer risk (Blot et

al., 1988). For a review of the association between lifestyle and cancer see Nagahashi et

al. (Nagahashi et al., 2018). Finally age is a significant factor in the onset of cancer due

to a life-time’s accumulation of mutations.

Many of the above factors promote inflammation and either directly cause mutations in

the host’s DNA or otherwise disrupt cell function leading to further mistakes in cellular

maintenance such as improper DNA repair or duplication.

1.2.1.5 Copy number variance is the loss or gain of genetic material

Copy number variation, a form of structural variation, is where sections of an individual’s

DNA occur more or less often than would be expected in healthy cells.   In humans,

where DNA is naturally diploid, a copy number variation may include sections of DNA

that only occur once or those that occur three or more times  (Hastings et al.,  2009).

Copy number  variations  commonly  occur  as  a  result  of  mistakes in  mitosis  or  non-

homologous end joining which lead to genome instability (Sismani et al., 2015).

CNVs  may  play  a  role  in  tumorigenesis  by  either  disrupting  or  altering  dosage  of

oncogenes or tumour suppressors that are contained in the CNV  (Shlien and Malkin,

2009). Approximately 40% of known cancer genes are disrupted by CNVs  (Almal and
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Padh, 2012) and it is estimated that of all known CNVs 40% contain genes implicated in

cell growth and metabolism (Conrad et al., 2010).

Aneuploidy, where entire copies of chromosomes are gained or lost, can lead to multiple

copies  of  an  oncogene  in  the  case  of  a  gain  of  chromosomes  or  a  loss  of

heterozygousity of a tumour suppressor in the case of a lost chromosome (Gordon et al.,

2012; Orr et al., 2015; Rajagopalan and Lengauer, 2004).

1.2.1.6 Gene expression is commonly deregulated in cancers

Tightly controlled gene expression is an important aspect in the regulation of a healthy

cell.  Long  term gene  silencing is  provided  via  epigenetic  changes,  these  epigenetic

modifications are mitotically heritable and so form a stable part of genetic information

that  distinguishes  fully  differentiated  cells.  Other  regulation  varies  depending  on  the

circumstances of  the cell  such as cell  cycle phases and exogenic factors  (Riley and

Anderson, 2011; Sharma et al., 2009).

Commonly the expression of a gene is physically regulated via histone modifications and

methylation  of  CpG  nucleotides  in promoter  regions  and  other  control  regions  that

enhance or insulate transcription (Conrad et al., 2010). These modifications can lead to

the inhibition of transcription though a range of mechanisms, for example they may block

DNA polymerase from binding to promoter sites and they may promote the formation of

inactive  chromatin  sites.  There  are  also  likely  other  mechanisms  that  are  not  well

understood (Weiderpass, 2010).

The deregulation of gene expression and methylation plays a direct role in tumorigenesis

and cancer progression. Three mechanisms of gene expression deregulation commonly

found  in  cancer  cells.  These  include  the  direct  silencing  of  tumour-suppressors  via
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hyper-methylation, for example TGFBI,  SPARC,  RBP1,  GPX3 are often found silenced

in multiple myeloma (Jones, 2012) and the widespread hypomethylation of DNA  which

leads  to  genomic  instability  (Gokul  and  Khosla,  2013).  Finally  the  wide-spread

deregulation of  gene expression caused by changes in the methylation of regulatory

regions within miRNA coding genes leads to changes in the transcription of miRNA and

consequently the transcription of genes normally regulated by the miRNA. This may lead

to the knock-out of tumour suppressors or increased expression of oncogenes (Kaiser et

al., 2013). 

1.2.2 The hallmarks of cancer

In their seminal papers ‘The Hallmarks of cancer’ and ‘The Hallmarks of cancer: the next

generation’  (Douglas  Hanahan,  2000;  Hanahan  &  Weinberg,  2011) Weinberg  and

Hanahan describe the changes required in a cell for it to develop into a fully invasive

cancer cell  (Figure 1.1).  As a tumour incrementally acquires these traits through the

genetic alterations discussed above it moves closer to developing into a fully invasive

cancer.
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Figure 1.1: The 10 hallmarks of cancer.  Weinberg and Hanahan describe the changes required

in a cell  for it  to develop into fully invasive cancer; sustaining proliferative signalling, evading

growth  suppressors,  avoiding  immune  destruction,  enabling  replicative  immortality,  tumour-

promoting  inflammation,  activating  invasion  and  metastasis,  inducing  angiogenesis,  genome

instability and mutation, resisting cell death and deregulating cellular energetics. Figure sourced

via (Hanahan and Weinberg, 2011).

1.2.2.1 Resisting cell death  (Evading Apoptosis)
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Mutational events are common in somatic cells and so, in order to ensure healthy tissue

and avoid potential  tumorigenesis,  there exist  a number of  molecular  processes that

check for damage, cell stress or changes in function and which force the damaged cell

to enter programmed cell death, also known as apoptosis, when a cell is beyond repair

(Elmore, 2007).

DNA damage is a prerequisite to tumorigenesis and all  of the traits of cancers listed

here. The disruption of either the pathways that sense DNA damage or those that act on

the  signals  to  further  drive  apoptos  is  a  key  step  in  the  progression  of  cancer

(Hengartner, 2000).

A range  of  genes  are  complicit  in  the  pathways  that  drive  damaged  cells  towards

apoptosis.   A well-studied protein  involved in  apoptotic  pathways;  p53 is  the  protein

product of TP53, a gene commonly knocked-out in cancer tissues (Fridman and Lowe,

2003).

1.2.2.2 Sustaining proliferative signalling  (Self-sufficiency in growth 

signals)

The propagation of healthy cells is a tightly controlled process driven via intracellular and

extracellular signals. 

In order for cancer to progress it must bypass the requirement for extra-cellular growth

signals. Tumours achieve this by subverting a number of different pathways to either

create their own growth signals, heterotypic signalling, or to greatly reduce the need for

exogenous growth signals (Slamon et al., 1987; Witsch et al., 2010; Yarden and Ullrich,

1988).
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1.2.2.3 Insensitivity to anti-growth signals (Evading growth suppressors)

Normal  cells  are  subject  to  a  number  of  anti-proliferative  signals  used  to  restrict

proliferation in the case of unsuitable extracellular conditions such as overcrowding or

the detection of errors in the cell cycle. This is generally achieved by forcing cells into G0

phase and into quiescence until the issue is resolved. In cases where differentiation is

detected cells are ultimately forced into a post-mitotic state where a cell is no longer able

to proliferate. (Datto et al., 1997; Hannon and Beach, 1994).

1.2.2.4 Sustained angiogenesis (Inducing angiogenesis)

As a prerequisite to continued growth a tumour must increase the amount of nutrients

and oxygen delivered,  as well  as the means of  removing waste products,  via  blood

vessels. 

In normal tissues the arrangement of blood vessels is carefully regulated and immutable

by  neighbouring  cells  due  to  angiogenesis  inhibitors.  Cancer  cells  must  develop

sustained angiogenic ability by removing angiogenesis inhibitors and  through the up-

regulation  of  angiogenesis  promoting  proteins  (Bouck  et  al.,  1996;  Hanahan  and

Folkman, 1996).

1.2.2.5 Limitless replicative potential (Enabling replicative immortality)

As well  as the active signalling that promotes or represses proliferation most normal

mammalian cells also exhibit hard limits on replicative potential, typically around 60-70

duplications. This limit is a result of the progressive, the natural shortening of telomeres

the sections of DNA at the end of chromosomes that provide protection from end-to-end
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chromosomal fusions. The majority of cancer cell lines mitigate this limit by up-regulating

the expression of the telomerase enzyme,  the proteins that maintain telomere length

(Bryan and Cech, 1999; Shay and Bacchetti, 1997).  

1.2.2.6 Tissue invasion and metastasis (Activating invasion and metastasis)

For a tumour to be defined as an invasive cancer it must first start to grow daughter cells

that are able to migrate out of the original tissue. These cells will then traverse blood or

lymph systems and eventually create separate colonies in new areas of the patient’s

body.

To metastasise a tumorous cell must first break the bonds of the extracellular matrix and

have a means of traversing barriers such as epithelial walls (Jiang et al., 2015). 

1.2.2.7 Genome instability and mutation

Genetic aberrations are very common in all cells due to issues such as mistakes in cell

duplication, genomic instability and exogenous factors. Fortunately healthy cells have a

suite of DNA damage detection and repair mechanisms which are usually able to identify

and fix issues before they can cause serious problems.

As discussed previously cancer is a genetic disease in that it is driven by aberrations

and  cancer  cells  that  tolerate  mutations  and  genetic  instability  have  a  selective

advantage over cells that do not.  As such mutations and instabilities are common in

most cancers and the rate of these aberrations is further accelerated in tumorous cells

through  disruptions  in  the  cell’s  DNA damage  response  and  repair  functionality  as

discussed above  (Jackson and Bartek, 2009; Lord and Ashworth, 2012; Negrini et al.,
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2010; Tlsty et al., 1995).

1.2.2.8 Reprogramming energy metabolism (Deregulating cellular 

energetics)

To maintain an accelerated rate of proliferation many cancer cells switch from aerobic

respiration to the less efficient but significantly faster  anaerobic respiration to produce

ATP to fuel metabolic reactions.

While  cancer  cells  using  anaerobic  respiration  effectively  require  20  times  as  much

glucose to run these reactions the result is that these cells can produce ATP at a rate

almost  a hundred times faster  than a normal  cell.  Additionally,  anaerobic  respiration

produces other by-products that further fuel accelerated proliferation  (Lunt and Vander

Heiden, 2011)

1.2.2.9 Avoiding immune destruction

The immune system is an important factor in an organism’s defence against cancer. In

most cases an abnormal cell will flag itself as such via antigens and will be targeted for

controlled destruction via T cells, natural killer cells or macrophages. In many cancers

proteins associated with antigens can be under-expressed leading to a disruption in

antigen  presentation  and  abnormal  cells  that  are  harder  to  identify  for  destruction

(Rouas-Freiss et al., 2003).

1.2.2.10 Tumour promoting inflammation
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As  well  as  avoiding  destruction  by  the  immune  system  some  tumorous  cells  use

mechanisms  of  the  immune  response,  most  commonly  inflammation,  to  further

accelerate growth. 

Inflammation  is  often  exploited  in  cancers  to  accelerate  proliferation,  and  indirectly

promote  angiogenesis  to  provide  immunosuppressive  support  and  to  degrade  the

surrounding extra cellular matrix, ultimately aiding metastasis .

1.2.3 Cancer therapy

By  necessity  cancer  therapies  must  attack  the  aberrant  cells  once  a  tumour  is

discovered.  Traditional  chemotherapy regimes commonly  employ  cytotoxic  agents  to

cause damage or structural  changes to DNA that  fast replicating cells are unable to

repair before completing a cell cycle. This unrepaired damage results in the cells inability

to replicate DNA interfering mitosis indirectly leading to DNA damage response and the

activation of apoptotic pathways  (Hennequart et al.,  2017; Woods and Turchi,  2013).

These therapies are designed based on the logic that cancer cells divide faster than

most  healthy  cells  which  affords  some  target  specificity   (DeNardo  et  al.,  2010;

Grivennikov et al., 2010; Karnoub and Weinberg, 2016; Qian and Pollard, 2010).

Unfortunately, these therapies also affect other “healthy” but rapidly dividing cells leading

to significant damage in unintended targets. This off-target damage commonly results in

the trademark side-effects of cancer therapy such as gastrointestinal upset and hairloss

(Coates et al., 1983)

A therapeutic index (TI) is the ratio of the dose of a therapeutic agent that causes toxicity

(that is a lethal dose in 50% of subjects,  LD50) to the amount that causes the desired
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therapeutic effect  (Effective dose in 50% of  subjects,  ED50).  As such a drug with a

larger TI is favourable to drug with a low TI. 

Standard  chemotherapies  often  have  a  low  TI  due  to  the  challenge  presented  by

selectively targeting cancer cells whilst sparing normal cells  (Muller and Milton, 2012).

Furthermore, due to cancer cells’ predisposition to acquire mutations, a drug that seems

effective at the outset of therapy may well be rendered ineffective if even a single cell,

and its resulting daughters, gain resistance to that compound (Holohan et al., 2013). In

response to these challenges a number of targeted therapies designed to increase TI

are in development or have in some cases been approved  (Santos et al., 2016).

As of 2016, 85 of the available 154 cancer drugs licensed by the FDA, were targeted

therapies designed to target the genes that directly drive cancer  (Santos et al., 2016).

Many  targeted  anti-cancer  drugs  work  by  directly  inhibiting  activated  oncogenes,

particularly  proteins  that  are  nuclear  receptors  or  those  that  contain  protein  kinase

domains  (Iorio  et  al.,  2016;  Nguyen et  al.,  2017;  Shawver  et  al.,  2002).  Dabrafenib,

which  has  been  approved  for  the  treatment  of  late-stage  melanoma,  target  the

constitutively  activated  kinase  oncogene BRAF V600E.  Whilst  gefitinib  and erlotinib,

licensed for the treatment of lung cancer, targets the EGFR tyrosine kinase (Lindeman et

al.,  2013;  Shepherd et  al.,  2005;  Stinchcombe and  Socinski,  2008;  Thatcher  et  al.,

2005).

A substantively different approach is needed to provide therapies aimed at controlling

the damage done by inactivated tumour suppressor genes. It is not usually feasible to

repair  the  protein  products  of  these  genes  particularly  if  they  are  inactivated  by

truncation, although there are on-going attempts to reactivate or restore function to a

small subset of p53 missense mutant proteins (Burgess et al., 2016; Hoe et al., 2014).
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To exploit genetic interactions therapeutically, the genetic defects in an affected pathway

must be combined with a pharmacologically induced defect in a compensating pathway.

Synthetic  lethality  (SSL),  discussed in  more detail  below,  is  well  suited for  targeting

deactivated tumour  suppressors  (Hartwell  et  al.,  1997).  SSL causes cell  death  as a

result of one gene being genetically inactivated by mutation (loss of function (LOF), the

tumour  suppressor)  and  another  being inactivated by  a  drug  target.  While  synthetic

dosage lethal  interaction can be used for  targeting cancer  cells  with over-expressed

oncogenes (Megchelenbrink et al., 2015). SDL causes cell death as a result of one gene

being genetically activated (gain of function (GOF), the oncogene) and another being

inactivated (LOF, the drug target).

Targeted therapies that  exploit  these genetic  interactions  may provide a  significantly

improved therapeutic  index compared to standard chemotherapies  (McLornan et  al.,

2014).

1.2.3.1 Resistance to cancer drugs

Natural selection drives cancer in that cells that are able to out-compete their neighbours

are effectively selected for continued growth and replication. While cancer therapies are

often  very  effective  against  the  majority  of  target  cancer  cells  occasionally  a  small

number of those cells will have acquired a mutation that renders them tolerant or fully

resistant to the intervention. In these cases the surviving cells many continue to grow

into a fully resistant colony without the competition from the cells affected by the therapy

(Holohan et al., 2013).

Cancer  cells  can  achieve  drug  resistance  in  a  number  of  ways  including  releasing

proteins that modify or degrade the drug in vivo, altering the drug’s molecular target,
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reprogramming the DDR to repair drug damage and inhibiting cell death.

Drug resistance is one of the primary challenges in cancer medicine. The exploitation of

genetic interactions and synthetic lethality may offer opportunities to develop therapies

less prone to resistance (Porcelli et al., 2012).

1.3 Genetic interactions and synthetic 

lethality

Genetic interactions and, specifically synthetic lethal interactions, feature heavily in the

proceeding chapters due to the therapeutic  opportunities that  they present.  Here we

provide an overview while Chapter 2 provides a full review of genetic interactions, their

role in cancer therapeutics and attempts to identify them in different organisms.

Genetic interactions are a combination of genes where a change in the regulation of

both  genes  concurrently  results  in  a  more  extreme phenotype than  what  we  would

expect from the independent change of two unrelated genes  (Costanzo et al.,  2010).

Genetic  interactions  are  often  categorised  as  either  negative  or  positive  genetic.

Negative genetic interactions are where a combination of genetic alterations, such as

mutations, result in a less viable phenotype than expected based on the sum of the two

individual alterations. Positive genetic interactions are where the resulting phenotype of

two concurrent gene alterations is less severe than expected.

Synthetic  lethal  interactions,  a  class  of  negative  genetic  interaction,  are  where  two

concurrent  deleterious  gene  alterations  cause  cell  death  or  a  notably  detrimental
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phenotype while individual mutations in either gene alone leave the cell viable. Synthetic

dosage interactions (SDL), another class of negative genetic interaction, is where the

up-regulation of one cell combined with a deleterious alteration of the other results in cell

death or reduced viability (Figure 1.2) (Nijman, 2011).
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Figure 1.2 A schematic of negative genetic interaction types. In the example depicting SSL a cell

remains  viable  when  either  gene  in  the  interacting  pair  is  deleteriously  altered  individually,

however when both genes are altered the cell loses viability. In the case of SDL the cell loses

viability when one gene is deleteriously altered at the same time that the other is up regulated.

1.3.1 Synthetic lethality in the clinic

Negative  genetic  interactions and more specifically  SSL interactions present  a  novel

opportunity  to  target  genes  that  are  not  currently  directly  druggable.  Tumour

suppressors, for example, rarely make suitable therapeutic targets as the majority of

drugs are not suited to restoring gene functionality.

As an alternative to directly targetting these genes, synthetic lethal interactions may be

exploited in cases where a tumour suppressor is mutated in a tumour and that mutated

tumour  suppressor  shares  a  synthetic  lethal  interaction  with  a  gene  that  may  be

therapeutically targeted.

Therapies that exploit synthetic lethal interactions are already in use in the clinic. One of

the more successful of these being the PARP inhibitor Olaparib which is used for certain

breast  and ovarian cancer  patients.  This  PARP inhibitor  exploits  the  synthetic  lethal

interaction  between  the  BRCA  genes  and  PARP1.  The  BRCA  genes  are  both

fundamental in DNA damage repair pathways, most notably homologous recombination,

and  both  commonly  mutated  in  cancers.  PARP1,  is  also  implicated  in  DNA repair

pathways involving single-strand breaks and base excision repair. When both a BRCA

gene and PARP1 are concurrently suppressed unrepaired DNA damage accumulates

leading to genetic instability and cell death (Figure 1.3)  (Bryant et al., 2005; Lord and

Ashworth, 2017).
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Figure 1.3 A schematic of how Olaparib, a PARP1 inhibitor, exploits the SSL interaction between 

BRCA1 and PARP1. In this case BRCA1 is mutated by a cancer. BRCA1 shares an SSL 

interaction with PARP1 which is therapeutically targetted leading to SSL and cell death.

1.3.2 Experimental validation of SSL

Synthetic  Lethality  was  first  described  in  1922  by  Calvin  Bridges  following  a  study

crossing Drosophila melanogaster.  Contemporary SSL studies have classically focused

on crossing eukaryotic model organisms with increasing sophisticated techniques that

allow researchers to develop hybrid genomes and to screen them using gene silencing

techniques such as RNA interference (RNAi). More recently high throughput approaches

to finding genetic interactions in model organisms have been developed based broadly

around  three  distinct  platforms;  synthetic  genetic  array  (SGA)  (Tong  et  al.,  2001b),

diploid based synthetic analysis on microarrays (dSLAM) (Pan et al., 2007) and epistatic
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mini-array profiles (E-MAP) (Collins et al., 2010). These methods are further discussed

in Chapter 2.

Although it was at one time hypothesised that SSL pairs would be conserved across

species in orthologous genes (Wu et al., 2014), it has since been found that often SSL

interactions are not conserved between lower eukaryotes and their human orthologous

equivalents  (Boucher  and  Jenna,  2013).  As  a  result,  although  SSL data  for  model

organisms can teach us a lot about gene function and pathway interaction, we cannot

rely on previous work on model organisms to inform us of SSL relationships in human

cell lines.

Classically  SSL  discovery  in  humans  has  been  a  ‘hypothesis  driven’  process  of

predicting  SSL interactions  based  on  proven  associations,  often  related  to  loss  of

particular  cell  cycle  checkpoints  or  pathways  related  to  those  of  known  tumour

suppressors, and subsequent clinical trials. However, with the increasing availability of

genetically modified human cell lines and high throughput genetic screening methods

that  combine RNAi  screens with  libraries  of  small  molecule  inhibitors,  an increasing

number of human SSLs are being identified (Barbie et al., 2009; Berns et al., 2004; Luo

et al., 2009a; Scholl et al., 2009; Turner et al., 2008).

Despite the potential therapeutic opportunities the exhaustive experimental identification

of human SSL interactions is not currently tenable due primarily to the sheer number of

gene pair screens required (You et al., 2010).

Instead we turn to computational approaches in order to predict potential SSL pairs that

may be used to guide future screening.
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1.3.3 Predicting synthetic lethal interactions

1.3.3.1 Computational identification of genetic interactions

A systematic approach to inferring genetic interactions has become increasingly popular

in the past decade. The ever-growing amount of screening data available has paved the

way for more sophisticated computational techniques employing statistical and machine

learning.  These  in  silico  models  have  proved  significantly  cheaper  and  faster  to

implement  compared  to  traditional  screening  methods  and  have  demonstrated

impressive levels of accuracy when predicting genetic interactions (Jacunski et al., 2015;

Madhukar  et  al.,  2015a;  Paladugu  et  al.,  2008;  Wong  et  al.,  2004a;  Zhong  and

Sternberg, 2006).

The most prevalent models used to predict genetic interactions use biological network

data,  gene  ontology,  expression  level  data,  and  orthology  or  evolutionary  data.

Historically  these  studies  have  generally  focused  on  model  organisms,  due  to  the

availability of the data for these more easily studied organisms. However, more recently

systems biology data for humans is becoming more widely available and more complete

(Lehne and Schlitt, 2009).

For a full review of SSL and contemporary computational studies see Chapter 2.

1.3.3.2 Synthetic lethal databases

Considering the excellent opportunities that genetic interactions, and more specifically

synthetic  lethality,  present  in  cancer  drug  discovery,  relatively  few  publicly  available

databases exist to share experimentally validated or computationally predicted human
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synthetic lethal pairs.

Two  prominent  databases  exist  for  yeast  genetic  interaction  data  including  cellmap

(Dallago et al.,  2018; Usaj et al.,  2017)  and the  Saccharomyces Genome Database

(Cherry et al., 1998).

For human genetic interactions data BioGRID (Stark, 2006) is a well curated source for

experimentally validated genetic interactions including SSL and SDL interactions for a

range of organisms. The majority of the SSL data used in the following studies use SSL

data generated through synthetic genetic array (SGA) screens (Tong et al., 2001a) via

BioGRID.

SynlethDB  (Guo et al., 2015) previously published a range of validated and predicted

genetic interactions for a number of organisms including humans but the database not

currently maintained.

1.4 Machine learning and classification

Machine learning encompass a range of techniques that enable computer programs to

improve  their  performance  at  a  given  task  given  experience.  Commonly  machine

learning is used to learn from observed data (experience) in order to improve prediction

or  classification  (performance)  of  future  observations  (task)  without  explicit

programming.  This  kind  of  machine  learning  has  become  an  essential  tool  in  the

analysis of bio-medical data  (Angermueller et al., 2016; Tarca et al., 2007; Zhang and

Rajapakse, 2008).
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The recent growth in the availability, quantity and complexity of genomic, proteomic and

interaction data due to increasingly sophisticated sequencing and screening protocols

has demanded equally sophisticated approaches for analysis. As datasets continue to

grow larger than might be realistically managed and analysed using traditional statistical

techniques,  machine learning is proving a versatile alternative for extracting valuable

insight from raw experimental observations (Zhang and Rajapakse, 2008).

Machine  learning  can  broadly  be  divided  into  two  sub-disciplines,  supervised  and

unsupervised  learning.  Supervised  learning  can  be  further  subdivided  into  either

regression or classification models.

1.4.1 Supervised learning

During  supervised  learning  a  model  will  learn  from  training  data  that  includes  both

features, X and observed outcomes or labels, Y (Kotsiantis, 2007).

While  there are many different  supervised learning algorithms the studies presented

here have focused on decision trees and, more specifically, random forest classifiers, as

they encode conditionality which suits biological data (Qi, 2012).

1.4.1.1 Decision trees and Random Forest classifiers

A decision tree is a model of decisions and their respective consequences in the form of

a branching graph (Figure 1.4).  Decision trees are generally easily interpretable and

encode conditionality making them a suitable model for a range of biological processes.

A random  forest  classifier  is  an  ensemble  machine  learning  method  that  takes  a

consensus from a number of individual decision trees built using random subsets of the
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original feature space (Yamaoka, 2012).

Figure 1.4 A decision tree with branching probabilities

Decision trees are grown using a simple algorithm:

1. Choose best attribute for root node A

2. For each possible value of A create a new child node

3. For each child node, stop if node is pure (if the observations defined by that node

are all of one class) or, otherwise, recursively split into further child nodes

To create the most efficient decision tree we must choose the best attribute to split at

each branch.  To  do this  we must  measure the purity  of  the  labelled  classes  in  the

resultant child nodes for each potential split. One way to measure purity across multiple

classes by taking a measurement of the uncertainty of a class in a subset of examples.

This measurement is known as entropy.

Equation 1.1.

H (S)=−p( positive) log2 p( positive)−p(negative ) log2 p (negative)
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Where S is the subset of examples and positive and negative can either be classes in a

binary feature or binarised values created by applying thresholds to continuous features.

In a random forest classifier a given number of trees are grown using a random sample

of roughly two thirds of the available training data and with m features (m is commonly

set to be the square root of the total number of available features) which are selected at

random from the full feature set. The remaining one third of data is set aside to act as

out  of  bag  (OOB)  data  for  validation.  The  holdout  data  is  used  to  calculate  the

misclassification or OOB error rate and the overall OOB error rate for the classifier is

calculated by taking the aggregate error across all  trees  (Oshiro et al.,  2012; Segal,

2004).

At classification each tree in the random forest is queried based on a given observation’s

feature values and each tree’s resulting output acts as a ‘vote’ for the predicted class.

The random forest classifier selects the class that receives the most votes in this way. If

for example class 1 receives votes from 150 trees and class 2 receives votes from 50

trees the random forest classifier will classify class 1 with a 0.75 probability (Strobl et al.,

2007; Yamaoka, 2012).

1.4.2 Unsupervised learning

Unsupervised learning clusters observations into classes using feature data X only. As

such an unsupervised model does not need labelled data Y to learn (Francis, 2014)

The unsupervised learning techniques presented in the chapters below have focused on

non-negative matrix factorisation, made popular in biological contexts by Nik-Zainal et al.

(Nik-Zainal et al., 2012; Stark, 2006)
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1.4.2.1 Non-negative matrix factorisation 

Non-negative matrix factorisation (NMF) is a multivariate analysis tool used in a range of

fields for easily interpretable decomposition, dimensionality reduction to a given number

of components and clustering (Lazar et al., 2009).

Essentially NMF decomposes a feature matrix V into two descriptive matrices, a basis,

W, which describes the feature composition of  each component  and a coefficient,  H

which describes the component composition of each sample in the original matrix .

If we take the matrix, V, our initial data, to be the product of matrices W and H as such: 

V = WH

We can optimise W and H by minimising the error function:

Equation 1.2

Err (W ,H)=min(W ,H ∥V −WH ∥ )

Where V is the original matrix of data, W is the basis matrix and  and H is the coefficient

matrix as described above.

In  the  following  studies  we  approximate  W  and  H  using  the  Kullback–Leibler  (KL)

divergence algorithm. To optimise W and H,  KL divergence calculates how well  WH

approximates V by measuring the resultant cross entropy minus the entropy between the

two matrices as an error:

Equation 1.3

∑
ij

(V ij log (
V ij
WH ij

)−V ij+WH ij)
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with W and H updated over a number of iterations to minimise this error  (Guo et al.,

2015; Lee and Seung, 2001).

1.4.3 Machine learning best practices

1.4.3.1 Generalisation and validation

The primary challenge of machine learning is to train a model that not only successfully

fits  the  given  training  data  but  also  generalises  well  to  new,  previously  unseen

observations.  A model  that  performs well  on the training set  but  performs poorly  on

unseen data is said to be biased or over-fitted (Brownlee, 2016; D1Etterich, 1995)

To measure this generalisation we generally hold aside a subset of our labelled data to

be used as a final test of our model (Martin, 2016).

Additionally, in order to tune our models, we must further divide our remaining training

data  into  training and  validation  sets.  This  validation  data  can be used to  measure

predictive  power  across  different  models  and  associated  hyper-parameters.  Where

dataset are relatively small this training / validation split can result in diminished sample

sizes which can impact the generalisation of a model. In these cases we can use cross-

validation. Cross validation is where a training set is split in to x segments, validation is

performed x times with each segment taking a turn to act as the validation data while the

other x-1 segments are used as training data. This approach enables the full use of the

remaining training data  (Bengio and Grandvalet, 2004; Park and Kim, 2012).
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Ideally holdout test data should only be used once to evaluate model performance to

avoid bias leaking back into the model via posthoc amendments  (Martin, 2016). 

1.4.3.2 Feature importance

Measuring  the  importance  of  features  in  a  trained  model  can  provide  insight  into

underlying mechanisms that contribute to an observed class. The models in the studies

presented  here  are  used  to  calculate  feature  importance  by  measuring  the  mean

decrease in accuracy at validation with each feature systematically withheld across all

tree permutations in a random forest  (Iguyon and Elisseeff, 2003; Saeys et al., 2007)

(Menze et al., 2009; Strobl et al., 2007).

1.4.3.3 Feature scaling

Feature scaling is important in a number of classifiers that learn by ascribing weights to

features  such  as  linear  regression,  neural  networks  and  support  vector  machines.

Without scaling these models tend to be biased towards features with large values and

as such features are often normalised so that feature values are on the same scale

(Jacunski et al., 2015). 

Generally feature scaling is not a major concern when using random forest classifiers as

features  are  not  weighted  in  the  same way.  However  in  the  projects  presented  the

random forest classifiers are used to predict on data across datasets, i.e.  we train a

model using human biological data and use that model to predict classes in yeast data.

In this case feature scaling is particularly beneficial to predictive success (Jacunski et al.,

2015; Nik-Zainal et al., 2012). 
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1.5 Protein – protein interaction data

Also known as physical interaction data or the interactome, protein - protein interaction

(PPI)  data is a map of how an organism’s proteins are functionally associated. In the

studies presented here we use experimentally validated PPI data sourced via STRING

(von Mering et al.,  2005).  STRING itself  features experimentally validated PPI pairs

extracted  from  a  range  of  primary  databases  including  BIND  (Bader  and  Hogue,

2003)DIP (Xenarios, 2000), GRID (Breitkreutz et al., 2002), HPRD (Peri, 2004), IntAct

(Hermjakob, 2004), MINT (Peri, 2004), and PID (Schaefer et al., 2009).

1.5.1 Experimental identification of PPI data

The  primary  PPI  databases  listed  above  include  evidence  from  many  different

experimental methods all  with different levels of reliability.  The most reliable of these

methods included x-ray crystallography  (Bunaciu et al., 2015; Huxford, 2013), Nuclear

Magnetic Resonance Spectroscopy (NMR) (Kalbitzer, 1999; Pochapsky and Pochapsky,

2013) and Electron microscopy  (Russell et al., 2004). Each of these methods employ

atomic observation providing detail at  the level of the protein residues involved in the

interaction. 

Two hybrid experiments provide less reliability but are more suited for high-throughput

screening  (Fields  and  Sternglanz,  1994).   Two  hybrid  methods  involve  tagging  one

potential protein pair with the DNA-binding domain of a fragmented transcription factor

and the other with the activation domain. If these proteins are close in proximity they will

bring the DNA-binding and activation domains close enough to result  in  a functional
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transcription unit.  As such this method allows us to directly  infer  protein interactions

between two protein partners. Two hybrid methods are one of the more commonly used

for protein interaction evidence in STRING’s database (von Mering et al., 2005).

Finally,  multi-protein  complexes  are  commonly  detected  using  methods  such  as

immunoprecipitation. Co-immunoprecipitation   is used to experimentally infer suspected

associations by isolating an individual protein using a suitable antibody and identifying

any proteins that bind to it as  an interactive partner. This type of experiment does not

provide detail of the interaction at a chemical level or reveal which proteins are in direct

contact . They do however give information as to which proteins are found in a complex

at a given time and are suitable for high-throughput screens.

There  are  a  number  of  additional  physical  interaction  screening  methods  used  as

evidence  in  the  primary  sources  used  in  STRING's  database  including  Bimolecular

fluorescence complementation, Affinity electrophoresis  (Schou and Heegaard, 2006) ,

Phage  display  (Sidhu  et  al.,  2003) and  Proximity  ligation  assays  (Söderberg  et  al.,

2008).

1.5.2 Challenges associated with PPI data

Despite this range of methods and the continued work on the human PPI network there

are still improvements to be made that might in turn improve models that use this data.

The primary issue with PPI data is its incompleteness (Mosca et al., 2013; Rolland et al.,

2014).  It  is  estimated  that  the  human  interactome  hosts  somewhere  near  20,000

proteins  that  in  turn  share  approximately  650,000  interactions  (Amaral,  2008).

Theofilatos  et  al.  (Theofilatos  et  al.,  2014) counted  210,000  catalogued  protein
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interactions  of  various  confidence and other  studies  of  the  time suggested that  just

30,000 interactions of high confidence levels were publicly available, a small fraction of

the estimated number of real interactions (De Las Rivas and Fontanillo, 2010; Rolland et

al., 2014). In the studies presented here we use ~60,000 high confidence interactions.

As well as this incompleteness current protein-protein interaction data is generally non-

directional  so  we  do  not  know  which  protein  in  a  pair  is  driving  the  interaction.

Furthermore each interaction is generally weighted with just a confidence score and so

we do not have information on the magnitude of an interaction or whether the interaction

is inhibitory or excitatory in nature.

1.6 Network analysis

In the studies presented here we make use of physical interaction data and genetic

interaction data to build graphical models and visualise our results  (Jonsson and Bates,

2006; Manco et al., 2019).. 

In these models each node represents a protein (interchangeable with the associated

gene) and each edge represents an interaction between two nodes (Pavlopoulos et al.,

2011). As discussed above the interactions in these PPI network representations do not

have an intrinsic directionality nor do they have any weighting other than a confidence

score which is not used in our models.

1.6.1 Topological features
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A number of features can be extracted azfrom a network model of a biological system

(Figure 1.5) (Almaas, 2007). We have broadly categorised these features as either pair-

wise  or  node-wise  depending  on  whether  the  feature  is  calculated  based  on  the

relationship between two nodes or associated with just a single node and its relationship

to the rest of the network. 

Commonly used examples of pair-wise topological features include: 

Shortest path; which counts the minimal number of connected vertices that create a

path between the source and target node.

Adjacency;  A  logical  feature  that  states  whether  a  source  and  target  node  are

connected via an edge.

Mutual neighbours; A count of how many first neighbours a target and source node

share.

Adhesion; The minimum number of edges that would have to be severed to result in

two separate sub-graphs separating the source and target nodes.

Some examples of node-wise features include:

Degree; The number of edges coming in to or out of the node.

Betweenness; The number of shortest paths in the entire graph that pass through the

node.

Closeness; The number of  steps required to reach all other nodes from a given node.

Eccentricity; The shortest path distance from the node farthest from the given node.
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Figure 1.5 Examples of topology features including degree, shortest path, adhesion and 

betweeness. The numbers in parentheses are the feature values as shown in the example, for 

example the pink node in the first graph example has a degree of three.

Many  other  topological  features  are  introduced  in  the  following  studies  as  well  as

network features derived from random-walk simulations on the network and additional

data sets such as gene ontology data.
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1.7 Project Aims

In the following work I explore range of methods developed to identify vulnerabilities in

cancer cells, with the ultimate aim of guiding the discovery of targeted and personalised

cancer therapies. I  describe computational systems approaches for predicting human

synthetic lethal interactions by identifying and exploiting conserved patterns in protein-

protein interaction network topology and the online database designed to publish the

predictions from these classifiers.

I  used  similar  network  features  to  predict  gene  dependencies,  otherwise  known  as

acquired essential genes, in specific cancer cell  lines by applying novel PPI network

modelling and I analyse copy number variance and ploidy in kidney cancers to identify

factors that may be driving this genomic instability.

Chapter 2 - Computational Approaches to Identify Genetic Interactions for Cancer

Therapeutics

In this chapter I present a review of genetic interactions and SSL. The development of

improved cancer therapies is frequently cited as an urgent unmet medical need. Here I

discuss  some  of  the  shortcomings  of  traditional  cancer  therapies  and  how  genetic

interactions are being therapeutically exploited to identify novel targeted treatments for

cancer that mitigate some of these shortcomings. I discuss the current methodologies

that  use ‘big  data’ to  identify  genetic  interactions,  in  particular  focusing on synthetic

sickness lethality (SSL) and synthetic dosage lethality (SDL). I describe the experimental
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and computational  approaches undertaken both in  humans and model  organisms to

identify these interactions. Finally I discuss some of the licensed drugs, the inhibitors in

clinical trials and compounds under development, that are targeting SSLs and SDLs for

the  treatment  of  cancer.  This  chapter  provided  an  in-depth  literature  review  and

background for the proceeding chapters.

Chapter 3 - Predicting synthetic lethal interactions using conserved patterns in

protein interaction networks

In response to a need for improved treatments, a number of promising novel targeted

cancer therapies are being developed that exploit human synthetic lethal interactions.

This is facilitating personalised medicine strategies in cancers where specific tumour

suppressors have become inactivated. Mainly due to the constraints of the experimental

procedures, relatively few human synthetic lethal interactions have been identified.  In

this  chapter  I  describe  SLant  (Synthetic  Lethal  analysis  via  network  topology),  a

computational systems approach to predicting human synthetic lethal interactions that

works by identifying  and exploiting  conserved patterns in  protein interaction  network

topology  both  within  and  across  species.  SLant  out-performs  previous  attempts  to

classify human SSL interactions and experimental validation of the  models predictions

suggests it may provide useful guidance for future SSL screenings and ultimately aid

targeted cancer therapy development.

Chapter  4  -   Slorth:   Validated  and  predicted  synthetic  lethal  gene pairs  with

associated drug, disease and orthology data

Chapter 4 presents Slorth (Synthetic Lethality and ORTHology), a database that enables

the identification and analysis of synthetically lethal interactions (SSL) both in humans
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and in model organisms.  The database documents 331,308 experimentally determined

genetic interactions and 852,609 high quality synthetic lethal predictions obtained using

the  SLant  algorithm.   Powerful  browsing  and  search  functionality  enables  easy

identification  of  putative  SSL  gene  pairs  which  are  integrated  with   cancer,  drug,

pathways  and  orthologue  information highlighting  those  interactions  that  could  be

exploited  therapeutically.  Clear  visualisation  tools  enable  exploration  of  the  wider

network around the genetic interactions.  

Chapter 5 - Biological network topology features predict gene dependencies in

cancer cell lines 

In Chapter 5 I investigate computational approaches that enable users to identify genes 

that have become essential in individual cancer cell lines.  Using recently published 

experimental cancer cell line gene essentiality data, human protein-protein interaction 

(PPI) network data and individual cell-line genomic alteration data I build a range of 

machine learning classification models to predict cell line specific acquired essential 

genes. Genetic alterations found in each individual cell line were modelled by removing 

protein nodes to reflect loss of function mutations and changing the weights of edges in 

each PPI to reflect gain of function mutations and gene expression changes.

I found that PPI networks can be used to successfully classify human cell line specific 

acquired essential genes within individual cell lines and between cell lines, even across 

tissue types with AUC ROC scores of between 0.75 and 0.85.  My novel perturbed PPI 

network models further improved prediction power compared to the base PPI model and 

are shown to be more sensitive to genes on which the cell becomes dependent as a result 
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of other changes. These improvements offer opportunities for personalised therapy with 

each individual’s cancer cell dependencies presenting a potential tailored drug target.

The overriding motivation for predicting cancer cell line specific acquired essential genes

is to provide a low-cost approach to identifying personalised cancer drug targets without

the cost of exhaustive loss of function screening.

Chapter  6  -  Defining  signatures  of  arm-wise  copy  number  change  and  their

associated drivers in kidney cancers

In  Chapter  6,  using  pan-cancer  data  from  The  Cancer  Genome  Atlas  (TCGA),  I

investigate how patterns in copy number alterations in cancer cells vary both by tissue

type and as a function of genetic alteration. I find that patterns in both chromosomal

ploidy and individual arm copy number are dependent on tumour type. I highlight for

example, the significant losses in chromosome arm 3p and the gain of ploidy in 5q in

kidney clear cell renal cell carcinoma tissue samples.  Using signatures derived from

non-negative factorisation I also find gene mutations that are associated with particular

patterns of ploidy change. 

Finally,  utilising  a  set  of  machine  learning  classifiers  I  successfully  predicted  the

presence  of  mutated  genes  in  a  sample  using  arm-wise  copy  number  patterns  as

features.  This demonstrates that mutations in specific genes are correlated and may

lead to specific patterns of ploidy loss and gain across chromosome arms. Using these

same classifiers, I highlight which arms are most predictive of commonly mutated genes

in kidney renal clear cell carcinoma (KIRC).

Chapter 7 -  Discussion
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In this chapter I discuss how the work presented in this thesis has achieved the goal of

furthering the field of personalised cancer treatment and new target discovery. I highlight

the novel  aspects of  the work  that  have led to valuable  new methods,  insights  and

predictions and I discuss some of the challenges faced and limitations that have been

experienced.
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2 - Computational Approaches to 

Identify Genetic Interactions for 

Cancer Therapeutics

2.1 Introduction

Cancer is a genetic disease that develops as a result of a number of mutational events

caused by endogenous and exogenous processes. The resulting mutations enable a

cancer  cell  to  gain  a  selective  advantage  over  healthy  cells,  often  resulting  in

uncontrolled  proliferation  and  ultimately  metastasis  of  a  cancer  (Douglas  Hanahan,

2000; Hanahan and Weinberg, 2011). Cancer therapies must by necessity attack the

aberrant  cells  once  a  tumour  is  discovered.  However,  established  chemotherapy

regimes often affect targets shared by normal and cancer cells and often kill “healthy”

but rapidly dividing cells. This leads to significant damage in unintended targets resulting

in  the  trademark  side-effects  of  cancer  therapy;  gastrointestinal  upset  and  hair-loss

(Coates et al., 1983) .

The therapeutic index (TI) is a comparison of the amount of a therapeutic agent that

causes  the  therapeutic  effect  to  the  amount  that  causes  toxicity.  Standard
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chemotherapies  often  have  a  low  TI  due  to  the  challenge  presented  by  selectively

targeting cancer cells whilst sparing normal cells (Muller and Milton, 2012). Furthermore,

due to cancer cells’ predisposition to acquire mutations, a drug that seems effective at

the outset  of  therapy may well  be rendered ineffective  if  even a single cell,  and its

resulting daughters, gain resistance to that compound (Holohan et al., 2013).

2.2 Targeted therapies

Of the 154 cancer drugs that are licensed by the FDA, 85 are new, targeted therapies

often targeting the genes that directly drive cancer  (Santos et al., 2016). These driver

genes  can  be  broadly  classified  as  oncogenes  or  as  tumour  suppressors.  When

mutated, the protein products of oncogenes show an increase in activity, or a gain or

change  of  function  (GOF)  that  result  in  tumorigenesis.  Conversely  in  tumour

suppressors, mutations (or epigenetic silencing) result in the loss of function (LOF) of the

protein product.

Many  targeted  anticancer  drugs  work  by  directly  inhibiting  activated  oncogenes,

particularly  proteins  that  are  nuclear  receptors  or  those  that  contain  protein  kinase

domains  (Iorio  et  al.,  2016;  Nguyen et  al.,  2017;  Shawver  et  al.,  2002).  Dabrafenib,

which  has  been  approved  for  the  treatment  of  late-stage  melanoma,  targets  the

constitutively  activated  kinase  oncogene  BRAF V600E.  Whilst  gefitinib  and  erlotinib

licensed for the treatment of lung cancer targets the EGFR tyrosine kinase (Lindeman et

al.,  2013;  Shepherd et  al.,  2005;  Stinchcombe and  Socinski,  2008;  Thatcher  et  al.,

2005).  A substantively  different  approach  is  needed  to  provide  therapies  aimed  at

controlling the damage done by inactivated tumour suppressor genes. It is not usually
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feasible to repair the protein products of these genes particularly if they are inactivated

by truncation, although there are on going attempts to reactivate or restore function to a

small  subset  of  p53 missense mutant  proteins.  These attempts to  develop drugs to

reactivate TP53 have led way to another class of therapy, anti-inhibition. Inhibitors of

MDM2, a negative regulator of p53, have shown some promise in restoring function in

the P53 pathway including apoptosis which can lead to tumour regression. A number of

compounds related to nutlin-3a, a class of small molecule MDM2 inhibitors, are currently

in phase I or II trials (Burgess et al., 2016; Hoe et al., 2014).

2.3 Genetic interactions    

Genetic interactions are when mutations in two genes (or alternatively the loss of two

genes) produces a phenotype that is enhanced in comparison to each mutation’s (or

gene  loss)  individual  impact.  This  phenomenon  can  reveal  functional  relationships

between genes and pathways (Krause and Gray, 2009). Two types of genetic interaction

are of particular interest in the field of cancer drug development; synthetic lethality (SSL)

sometimes  termed  “synthetic  sick  lethality,  and  synthetic  dosage  lethality  (SDL)

(described below). Here we describe how the identification of these genetic interactions

is being used to guide therapeutic strategies for the treatment of cancer.

A natural redundancy of function in our cells allows for a number of otherwise essential

pathways to be disrupted by mutations whilst allowing the cell to remain viable. In some

cases these disruptions can lead to impaired function of important cell maintenance or

regulatory  pathways  leading  to  an  increased  occurrence  of  mutations  or  increased
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proliferation.  These mutations  are  often found in  tumour  samples  as  they  can often

confer an increased fitness over normal cells.

Figure 2.1: Schematic illustration of synthetic sickness lethality and synthetic dosage lethality. In

the case of SSL gene pair the cell remains viable when either gene is individually deleteriously

altered, when both genes are altered concurrently the cell loses viability. In the case of SDL the

cell loses viability when one gene is deleteriously altered while the other is up-regulated.

This redundancy gives rise to the possibility of SSL, where individuals in a pair (or more)

of genes can be disrupted without affecting cell viability whilst disruptions in both genes

causes  cell  sickness  or  death.  Two  genes  are  said  to  be  synthetic  lethal  when  a

concurrent deleterious mutations or complete deletion of both leads to the death of the

host cell whilst a mutation or deletion in either alone leaves the cell viable (Hartwell et

al.,  1997).  SSL is occasionally termed ‘synthetic sensitive lethality’’ or ‘synthetic sick

lethality’, these terms are commonly used interchangeably in the literature.
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Synthetic dosage lethality (SDL) interactions occur when over-expression of gene A is

lethal when gene B has a loss of function (Figure 2.1). 

2.4 Using genetic interactions as a 

therapeutic strategy

To exploit genetic interactions therapeutically, the genetic defects in an affected pathway

must be combined with a pharmacologically induced defect in a compensating pathway.

Synthetic  lethality  is  well  suited  for  targeting  deactivated  tumour  suppressors

(Megchelenbrink et  al.,  2015). SSL causes cell  death as a result  of  one gene being

genetically  inactivated  by  mutation  (LOF,  the tumour  suppressor)  and  another  being

inactivated by a drug target. While synthetic dosage lethal interaction can be used for

targeting cancer  cells  with over-expressed oncogenes  (Megchelenbrink et  al.,  2015).

SDL causes cell death as a result of one gene being genetically activated (GOF, the

oncogene) and another being inactivated (LOF, the drug target).

Exploiting SSL/SDL pairs as drug targets may provide significantly improved therapeutic

indices of our drugs compared to standard chemotherapies by selecting exclusively for

cancer cells harbouring mutations in pathways that make part of a synthetic lethal pair

(McLornan et al., 2014).

To compound the problem some mutations that occur later in the evolution of cancer

may  be  tolerated  due  to  earlier  mutations.  This  network  of  interactions  may  prove

extremely  complicated  though  we may find  that  pathways  activated  early  in  tumour

progression are likely to make better targets for analysis (Kaelin Jr and Kaelin, 2005).
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2.4.1 Methods that identify genetic interactions

Although there are some insights into where SSL interactions are likely to occur,  for

example Matteo et al.  (D’Antonio et al., 2013) found an enrichment of SSL interactions

between  recessive  cancer  genes  and  their  functional  paralogues,  identifying  SSL

interactions is a hard problem. Due to experimental limitations not many SSL interactions

in humans have been published, but more is known about those in model organisms.

Approximately 20% of genes in  Saccharomyces cerevisiae (S.cerevisiae) are essential

(Tong  et  al.,  2004) which  leaves  the  others  to  have  the potential  to  exhibit  genetic

interactions.  Systematic  double-knockout  screens  on  large  subsets  of  genes  is  S.

cerevisiae and Caenorhabditis elegans (C. elegans) suggest that, on average, 0.5% of

tested gene pairs are synthetic sick or synthetic lethal, and that many SSL interactions

involve more than two genes. The result is a combinatorial problem for the traditional

screening  of  all  possible  interactions.  This  and  our  limited  data  on  these  molecular

networks prevents easy, reliable systematic prediction of SSL interactions (Chipman and

Singh, 2009).

2.4.1.1 Experimental approaches to identify genetic interactions 

Synthetic Lethality was first  described in 1922 by Calvin Bridges in a study crossing

Drosophila melanogaster and later named by Theodore Dobzhansky, this time crossing

Drosophila pseudoobscura, in 1946 (Nijman, 2011). Similar to these early experiments

contemporary  SSL  studies  have  classically  focused  on  crossing  eukaryotic  model
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organisms with increasing sophisticated techniques allowing researchers to mutate and

mate  hybrid  genomes  and  screen  using  gene  silencing  techniques  such  as  RNA

interference (RNAi).

More  recently  high  throughput  approaches  to  finding  genetic  interactions  in  model

organisms have been developed based broadly around three distinct platforms; synthetic

genetic array (SGA) (Tong et al., 2004), diploid based synthetic analysis on microarrays

(dSLAM) (Pan et al., 2007) and epistatic miniarray profiles (E-MAP) (Collins et al., 2010).

Tong et al.’s SGA assay in S. cerevisiae uses a yeast strain with a single disabled gene

and mates it with an array of yeast strains each with an individual deletion resulting in

approximately 4,700 mutation pairs with varying viability. These techniques were further

refined in Ooi et al.’s  SLAM  (Ooi et al.,  2003) and again in Pan et al.’s  (Pan et al.,

2007) dSLAM. SLAM generates ordered arrays of double yeast knockout mutant sets

(YKO) where the query mutation is introduced by integrative transformation rather than

mating, and a microarray readout is used to produce a ranked list of candidate genetic

interaction genes. In dSLAM, a pool of all heterozygous deletion diploids is transformed

en masse with a single query gene disruption construct after which single- and double-

mutant  haploid  pools  are  derived  by  sporulation  and  differential  selection.  These

techniques  have  been  extended  from  S.  cerevisiae  to  Saccharomyces  pombe  (S.

pombe), C. elegans and Escherichia coli (E. coli) significantly increasing the quantity and

quality of genetic data available. Collins et al.’s  (Collins et al., 2010) E-MAP performs

SGA on a subset of genes selected specifically from a pathway or functional grouping.

Although it  was at one time hypothesised that SSL pairs could be conserved across

species if both species shared orthologues for those respective genes (Wu et al., 2013),

it has since been found that in many cases these SSL interactions are not conserved
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between lower eukaryotes and their human orthologous equivalents. As such, though

SSL data for  model organisms can teach us a lot  about  gene function and pathway

interaction,  our  search  has  been  extended  to  human  cell  lines  and  those  of

phylogenetically similar organisms.

Classically  SSL  discovery  in  humans  has  been  a  ‘hypothesis  driven’  process  of

predicting  SSL interactions  based  on  proven  associations,  often  related  to  loss  of

particular  cell  cycle  checkpoints  or  pathways  related  to  those  of  known  tumour

suppressors, and subsequent clinical trials. However, with the increasing availability of

genetically modified human cell lines and high throughput genetic screening methods

that  combine RNAi  screens with  libraries  of  small  molecule  inhibitors,  an increasing

number of human SSLs are being identified (Barbie et al., 2009; Berns et al., 2004; Iorns

et al., 2007; Luo et al., 2009a; Scholl et al., 2009) .

2.4.2 Computational techniques used to predict genetic 

interactions 

A systematic approach to inferring genetic interactions has become increasingly popular

in the past decade. The ever-growing amount of screening data available has paved the

way for more sophisticated computational techniques employing statistical and machine

learning (Table 2.1). 
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Data Type Database URL Reference

Protein

interactions

STRING http://string-db.org/ (von  Mering  et  al.,

2005)

Gene expression Expression

Atlas

https://www.ebi.ac.uk/gxa/home (Petryszak  et  al.,

2016)

Gene

Expression

Omnibus

https://www.ncbi.nlm.nih.gov/

geo/

(Edgar, 2002)

Gene

coexpression

CoxpresDB http://coxpresdb.jp/ (Okamura  et  al.,

2015)

Gene  ontology

data

Gene

Ontology

Consortium

http://www.geneontology.org/ (Ashburner  et  al.,

2000)

Somatic mutations Cosmic http://cancer.sanger.ac.uk/

cosmic

(Bamford  et  al.,

2004)

Homology Ensembl  -

comparative

genomics

http://www.ensembl.org/info/

genome/compara/index.html

(Herrero et al., 2016)

Cellular

phosphorylation

Networkin http://networkin.info/ (Linding et al., 2008)

Integrative  –

multiplatform data

The  Cancer

Genome  Atlas

(TCGA)

cancergenome.nih.gov (Tomczak  et  al.,

2015)

The

International

icgc.org (Zhang et al., 2011)
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Cancer

Genome

Consortium

(ICGC)

cBioPortal www.cbioportal.org (Cerami et al., 2012)

MOKCa strubiol.icr.ac.uk/extra/mokca (Richardson  et  al.,

2009)

Table 2.1. List of data sources that have been used to extract predictive features used for genetic

interaction classification

These  in  silico  models  have  proved  significantly  cheaper  and  faster  to  implement

compared  to  traditional  screening  methods  and  have  demonstrated  high  levels  of

accuracy when predicting genetic interactions as discussed below.

These studies can be broadly classed by the type of parameter, or feature in the context

of  machine learning,  used to train their  model.  The most  prevalent  parameter  types

include biological network data, gene ontology and expression level data, and orthology

or evolutionary data though a number of studies use a combination of these data. Whilst

this review has more emphasis on human SSL interactions we do discuss a number of

studies focused on model organisms as much work on human genetic interactions has

foundations in early work on lower eukaryotes.

Table 2.2 summarises the SSL training datas sources commonly used in the studies

below.
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Source Species Number

of  SSL

pairs

URL Reference

Biogrid H. sapiens 503 https://thebiogrid.org (Stark, 2006)

S. cerevisiae 92,738

D. melanogaster 3

C. elegans 1,237

S. pombe 36,353

SynLethDB H. sapiens 19,952 http://

histone.sce.ntu.edu.sg/

SynLethDB

(Guo et al., 2015)

S. cerevisiae 13,421

D. melanogaster 423

M. musculus 366

C. elegans 107
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The

Cellmap

S. cerevisiae 1,198 http://thecellmap.org (Dallago  et  al.,

2018)

Flybase D. melanogaster 9,661 http://flybase.org/ (Gelbart  et  al.,

1996)

Other

studies

S. cerevisiae 100 (Collins  et  al.,

2007)

C. elegans 1,246 (Byrne  et  al.,

2007)

Table 2.2. A summary of the SSL training datas sources commonly used in the studies below.

2.4.2.1 Biological network data approaches

A number of studies have employed a systems approach to predict  SSL interactions

using  network  parameters  extracted  from  biological  network  data.  These  biological

networks include data such as physical interactions and co-expression (Figure 2.2).
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Figure 2.2: An example of biological network data -  A genetic interaction network of S. cerevisiae

DDR genes coloured by GO terms. Genetic interaction data collected from BioGRID and filtered

for orthologues of known human DDR genes. GO terms sourced from Gene Ontology Consortium

and filtered for functional terms only, the most popular overall GO term was chosen for genes with

multiple annotations.
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Early  attempts  to  predict  genetic  interactions  such  as  Wong  et  al.  (Wong  et  al.,

2004b) utilised decision tree classifiers trained on biological networks data including a

number of topological network features from protein to protein interaction graphs, gene

co-occurrence  data  and  mRNA co-expression  data.  This  study  predicted  740  SSL

interactions in 2,356 possible pairs in  S. cerevisiae with a success rate of 0.31, a vast

improvement on the 0.0056 success rates achieved by previous unguided approaches.

This approach was extended by Zhong et al.  (Zhong and Sternberg, 2006) to predict

interactions in C. elegans, an organism with relatively less available genetic interaction

data,  through orthology.  By training a model  using features from the relatively  large

datasets from yeast and fly models this study was able to predict interactions across

species using logistic regression. Further attempts to predict genetic interactions in  S.

cerevisiae using  biological  networks  followed  as  Paladugu  et  al.  (Paladugu  et  al.,

2008) extracted multiple features from protein–protein interaction networks, which were

applied to a  SVM classifier  to  predict  new SSL interactions with sensitivity  and and

specificity exceeding 85%.

By  employing  random  walks  and  decision  tree  classifiers  on  biological  networks

including  protein-protein  interactions,  GO  interactions  and  existing  known  genetic

interaction  data  Chipman  et  al.  (Chipman  and  Singh,  2009) were  able  to  predict

synthetic lethal interactions at a true positive rate of 95 percent against a false positive

rate of 10 percent in S. cerevisiae. And a true positive rate of 95 against a false positive

rate of 7 percent in C. elegans. They noted that including experimentally validated non-

interactions into training data significantly improved results for both organisms.
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While the majority of preceding studies focused on supervised learning You et al. (You et

al.,  2010) performed semi-supervised learning on both the functional and topological

properties of a functional gene network, this network was a result of the integration of

protein to protein interaction data along with protein complex and gene expression data

and resulted in a maximum accuracy of true positive rate of 92% against a false positive

rate of 9%.

Attempts  to  predict  SSL  interactions  using  expression  data  as  a  primary  training

parameter led to Bandyopadhyay et al.’s  (Bandyopadhyay et al., 2011) SSLPred used

regression on training data that  mapped expression levels between gene with single

deletion mutations to their corresponding SGA entries to predict SSL interactions. Again

using  expression  level  data  but  this  time  to  predict  SSL in  the  context  of  somatic

mutations in TP53, Wang et al.  (Wang and Simon, 2013) selected a number of genes

which encoded kinases that  exhibited significantly  higher  expression in  tumours with

functional p53 somatic mutations than in tumours without. These pairs were treated as

potentially druggable synthetic lethal pairings for TP53 and many were confirmed via

previous RNAi screenings.

To further improve results through an ensemble machine learning model Zheng et al.

(Wu et al., 2014) developed MetaSL, a model boasting 17 features (11 similarity based

features  and  6  lethality  based  features)  which  was  applied  to  8  classifiers;  random

forest,  J48 (a type of  decision tree),  Bayesian logistic  regression,  Bayesian network,

PART  (a  rule-based  classifier),  RBFNetwork,  bagging  (bootstrap  aggregating),  and

classification  via  regression.  The  predictions  from these  classifiers  were  aggregated

yielding ROC AUC scores of 87.1% on yeast data. In another novel approach Zhang et

al. (Zhang et al., 2016) modelled influence propagation in signalling pathways employing
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values of phosphorylation levels between signalling proteins in a similar way to that of

studies modelling influence across social media platforms. A number of reliable, novel

SSL pairs were predicted along with known interactions using this method.

Building on Zhong et al.‘s attempt to predict SSL interactions using training data across

species  Jacunski  et  al.  (Jacunski  et  al.,  2015) developed  SINaTRA  (Species-

Independent  TRAnslation) to  compare orthologous gene pairs  between S.  cerevisiae

and S. pombe along with their respective physical interaction data (including 4 pairwise

parameters  and  20  ontological  features)  to  calculate  what  was  termed  connectivity

homology to improve prediction of orthologous interactions. This approach achieved a

reported ROC AUC score of  0.86 when predicting SSL interactions between the two

studied yeast species. The model trained on yeast data was applied to predict 1,309

human SSL pairs with a reported false positive rate of 0.36%

2.4.2.2 Evolutionary approaches

Although genetic interactions are not reliably conserved between species, with as little

as ~23% of the interactions conserved between S. cerevisiae and S. pombe  (Wang and

Simon,  2013),  and  even less  conservation  between  lower  and higher  eukaryotes,  a

number of research groups have managed to use orthological and evolutionary data to

infer SSL interactions in humans.

By integrating phylogenetic analysis and data including interactions from BioGRID for

interactions, homology from Ensembl and NCBI and GO attributes from Gene Ontology,

Conde-Pueyo et al. (Conde-Pueyo et al., 2009) reconstructed a phylogenetically-inferred

SSL gene network for humans. The culmination of this study was to identify a number of

genes related to cancer cells (ATM, NF1, FBXW7, MSH2,  BUB1, ERCC2, BLM and
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MSH6) likely to be in therapeutically viable SSL interactions.

In a set of related studies researchers attempted to describe the mechanics of genetic

interactions as a function of evolution and how these mechanics are conserved across

species.  VanderSluis  et  al.  (VanderSluis  et  al.,  2010) attempted  to  elucidate  the

evolutionary  trajectories  of  duplicate  genes  through  genetic  interaction  data  and,  as

expected, found significant enrichment of genetic interactions between duplicate genes.

Koch et al.  (Koch et al.,  2012) went on to describe how the rules governing genetic

interactions  are  conserved  across  species.  Using  S.  cerevisiae  as  a  model  they

predicted the genetic interaction degree (i.e. how well connected a gene is in a genetic

interaction network,  or  how many other genes a particular  gene interacts with)  for a

number of S. pombe genes with high accuracy. Conserved features used to predict this

degree  of  interaction  included  a  quantitative  measurement  of  single  mutant  fitness

defects of the gene, multi-functionality, degree in a protein to protein interaction network

and expression variation of the gene.

Lu et al. (Lu et al., 2013) also inferred human SSL pairs in human protein complexes by

exploiting  the  evolutionary  history  of  genes  in  parallel  converging  pathways  in

metabolism. This approach predicted around 250 novel SSL interactions 36 of which had

a least one cancer related gene.

2.4.2.3 Integrative data approaches

As  well  as  network  base  systems  biology  approaches  and  evolutionary  methods  a

number of studies have also utilised the wealth of functional data such as mutation and

copy number profiles, co-expression and functional relationships such as pathway data

to predict synthetic lethal interactions.
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In an early attempt to use a branch of natural language processing alongside biological

data Pesquita et al.  (Pesquita et al.,  2009) focused on the semantic similarity of GO

terms,  codes used as a  proxy  for  functional  pathways,  to  successfully  compare the

functionality of two genes. This technique was later used by Kamath et al.  (Kamath et

al.,  2003) as  a  method  for  predicting  genetic  interactions  in  a  number  of  model

organisms.  In  2011  Li  et  al.  (Lu  et  al.,  2013) attempted  to  use  an  expectation-

maximization algorithm on domain genetic interaction data to predict SSL interactions. It

was reported that  this  approach was able  to  predict  17 novel  SSL interaction  in  S.

cerevisiae with probability > 0.9. Including the MYO4 – DYN1 pair with a probability of

0.9895.  These  interactions  were  further  used  to  predict  a  number  of  compensatory

pathways.

A number of algorithms have also been introduced that predict pairs of genes that would

potentially  exhibit  genetic  interactions  using  cancer  data  directly  by  identifying  and

scoring of sets of genetic alterations where the mutations are mutually exclusive, I.e. if

gene 1 and gene 2 are synthetically lethal there should be no samples where both these

genes are switched off. Initially these models used scoring regimes to prioritise mutual

exclusivity with no basis  in  statistics.  However,  the approaches have gradually  been

refined to improve statistical scoring of the results and to integrate different methods of

identifying  whether  or  not  a  gene  has  essentially  been  switched  off.  These  include

Recurrent Mutually Exclusive aberrations (RME) (Miller et al., 2011) that uses mutation

and copy number variation (CNV) data from 145 glioblastoma samples from The Cancer

Genome Atlas (TCGA) (Tomczak et al., 2015), and CoMet (Leiserson et al., 2015) that

used mutation and CNV data from five TCGA studies. The more sophisticated of these,

CoMet,  looks  at  small  groups  of  mutually  exclusive  genes,  using  a  hypergeometric
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distribution to work out the probability of getting at least as unexpected a result as that

seen.  Using  similar  methods  Srihari  et  al.  (Srihari  et  al.,  2015) analysed  mutual

exclusivity in copy number and gene expression data from four cancers to identify 718

genes that potentially share a SSL interaction with at least 1 of 6 DDR genes related to

those cancers.

Another approach is the DAISY workflow (Ryan et al., 2014) which uses three inference

procedures to identify both SSL and SDL pairs using data from cell lines as well as from

clinical  samples;  somatic copy number variation and mutation profiles,  shRNA-based

functional examination and pairwise gene co-expression. DAISY was applied to VHL,

PARP1, MHS2 and KRAS and achieved an AUC score of 0.779 demonstrating a strong

propensity (p-value < 1x104) for predicting SSL pairs.

2.4.3 Cancer therapies that exploit genetic interactions

Many studies screening for genetic interactions have naturally focused on known cancer

driver  genes,  specifically  tumour  suppressors,  as  promising  targets  for  developing

cancer therapies. Genetic interactions have been found in a wide range of cell pathways

including cell cycle progression and apoptosis pathways.

Tumour  suppressors  that  make  part  of  DNA damage response  pathways  are  prime

candidates for synthetic lethal drug targets (Pearl et al., 2015). BRCA1 and BRCA2, both

important in repair of double strand breaks, have been shown to share a synthetic lethal

relationship  with  PARP (poly(ADP-ribose)  polymerase),  an  important  gene  in  single

strand break repair. Cells deficient in either BRCA gene are extremely sensitive to PARP

inhibitors  presenting  therapeutic  opportunities  (Bryant  et  al.,  2005).  Further  studies
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systematically screening genes for sensitivity to PARP inhibitors identified a number of

kinases whose inhibition strongly sensitised the host  cell  to PARP inhibitor,  including

cyclin-dependent kinase 5 (CDK5), MAPK12, PLK3, PNKP, STK22c and STK3 (Turner

et al., 2008). There are number of PARP inhibitors at different phases of trials, a notable

example being olaparib (Lynparza™, Astrazeneca) which has already been approved by

both  the  European  commission  and  the  US  food  and  drug  administration  for  the

treatment of patients with advanced ovarian cancer paired with BRCA mutations (Liu et

al., 2014; Tangutoori et al.,  2015). As well as a treatment for ovarian cancer patients

Mateo et al. (Mateo et al., 2015) conducted trials for olaparib as a potential therapy for

prostate  cancer  patients  identified  as  having  homozygous  deletions,  deleterious

mutations or  both in  DNA-repair  genes including BRCA1 or BRCA2, ATM, Fanconi’s

anemia genes, and CHEK2. Of the patients available for evaluation 88% responded to

olaparib including all patients with BRCA loss leading to the conclusion that the drug led

to a high response rate in prostate cancer patients with DNA- repair defects who were

no longer responding to standard treatments. Recent PARP inhibitor based therapies

include rucaparib  which has also  received FDA approval  for  patients  with advanced

ovarian cancer who suffer germline or somatic BRCA1 or BRCA2 mutations  (Shirley,

2019; Syed, 2017) and Talazoparib which is showing promise in early trials for early-

stage breast cancer patients with BRCA mutations even before any chemotherapy or

surgery with all patients exhibiting a reduction in tumor size after 2 months (Litton et al.,

2017).

Although PARP inhibition has enjoyed a lot of attention in drug discovery research into

other other genetic interactions has also resulted in some potential therapies that target

other  pathways.  MTH1 inhibition  for  example  has  been  validated  as  an  anti-cancer
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target.  Although  MTH1,  a  protein  which  sanitizes  oxidized  dNTP  pools  to  avoid

incorporation of damaged bases during DNA replication, is non-essential in normal cells,

cancer  cells  require  MTH1  activity.  Without  MTH1 cancer  cells  risk  incorporation  of

oxidized dNTPs which leads to DNA damage and cell death. Gad et al. Describe two

small molecules, TH287 and TH588, in the nudix hydrolase family that selectively inhibit

MTH1 protein in cells (Gad et al., 2014).

Other  published  SSL with  possible  therapeutic  potential  include  the  SSL interaction

between TP53 and the PI5P4K gene family where the PI5P4K kinases are essential for

growth in the absence of p53 (Emerling et al., 2014), ARID1A, a chromatin remodeller

with a high mutation rate across many cancer types shared a SSL interaction with the

EZH2 methyltransferase in ARID1A-mutated ovarian cancer cells (Bitler et al., 2015) and

ENO2 which selectively inhibits viability of ENO1-deleted glioblastoma cells  (Muller et

al., 2012). PTEN, a gene associated with genomic stability, and APE1, important in DNA

base excision repair, have been shown to share a SSL relationship with treatment of

APE1 inhibitors in PTEN-deficient cells resulting in the induction of apoptosis (Abbotts et

al., 2014). ATR, an important DNA damage response gene has also been identified as

potential synthetic lethal pair of ARID1A and a number of ATR inhibitors are in phase I

trials  as  a  potential  therapy  for  ARID1A deficient  tumors  (Karnitz  and  Zou,  2015;

Williamson et al., 2016).

While much work on genetic interactions as therapy targets has traditionally focused on

SSL interactions research has also been conducted into the SDL interactions of several

potent oncogenes such as MYC and KRAS  (Workman et al.,  2013). Members of the

RAS superfamily are some of the most commonly activated cancer drivers  (Pylayeva-

Gupta et al.,  2011) and showed some promise in early SDL research. These studies
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described a number of potential SDL pairs including an interaction between K-RAS and

CDK4  which  offers  potential  opportunities  in  non-small  cell  lung  carcinoma  therapy

(Puyol et al., 2010). Another systematic study of the RAS superfamily found a number of

interactions with genes related to the cells mitotic functions including PLK1 (Luo et al.,

2009a). Despite this early promise other therapies related to RAS such as the direct

targeting  of  the  RAS  protein  and  immune  checkpoint  blockade  have  proved  more

effective and no promising new therapeutic approaches related to SDL interactions have

been  discovered  to  date  (Downward,  2015;  Pylayeva-Gupta  et  al.,  2011).  Improved

screening through CRISPR-cas9-based techniques may provide further potential SDL

interactors for mutant RAS genes in future studies (Papke and Der, 2017).

Other genes with potential SDL interactions with KRAS include CDK1, part of the Cyclin-

dependent  kinase family  with  CDK4 which is  mentioned above  (Costa-Cabral  et  al.,

2016), TBK1, a serine / threonine kinase important in regulating inflammatory response

(Barbie  et  al.,  2009) and  GATA2,  essential  in  regulating  transcription  (Kumar  et  al.,

2012).

2.5 Discussion

The performance of contemporary models used to predict SSL interactions is difficult to

assess due to a lack of a gold standard source of human SSL pairs. This difficulty is

compounded by the lack of a single extensive, curated repository of known human SSL

pairs. Furthermore the actual number of potential human SSL pairs is so far unavailable

proving another challenge when attempting to assess progress in the field.
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In studies employing a CRISPR-Cas9-based screen of 18,166 human genes only 1,878

were essential, resulting in 16,288 non-essential genes (or as much as 90.8% of the

whole genome) each potentially part  of  at  least  one genetic interaction.  Despite this

large number of potential synthetic lethal interactions only 503 human gene pairs are

classed as synthetic lethal or negative genetic in the BioGRID, a current primary source

for curated validated human SSL pairs. There are many more predicted synthetic lethal

pairs documented in sources such as SynLethDB which collates 19,952 predicted pairs

sourced from in-silico predictions from tools such as Daisy (which counts 5,824 SSL

pairs), shRNA screening experiments and literature via text-mining though the reliability

of many of these observations is very hard to quantify.

Of course the goal of listing and validating all possible synthetic lethal interactions may

be  neither  possible  or  even  valuable  in  the  context  of  therapeutics,  the  majority  of

synthetic lethal pairs will likely not pertain to cancer genes or perhaps even genes with

any therapeutic value. The majority of research has been focused around cancer related

genes with many of the studies outlined above focus on a small subset of interactions

focused around notable cancer drivers such as BLM (Conde-Pueyo et al., 2009), TP53

(Wang and Simon, 2013), VHL, PARP1 and MHS2 (Jerby-Arnon et al., 2014) amongst

others. So far no meta-analysis has been completed on these disparate studies though

this might be a good first step towards making SSL interaction data more coherent.

The majority of standard chemotherapies exhibit a very low therapeutic index (TI). In

these therapies the level of treatment that is likely to cause toxicity in a patient is not

significantly  higher  than  the  level  that  offers  a  therapeutic  effect.  To  improve  this

therapeutic index and, a result, the quality of life and prognosis of cancer patients our
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goal must be to discover targets that can be drugged to selectively affect cancer cells

whilst  leaving  normal  cells  unharmed.  By  exploring  and  exploiting  vulnerabilities

presented by genetic interactions (GI) and, more specifically, synthetic sensitive lethality

(SSL) interactions in human cancer cells we may find ways to provide personalised care

with both an increased therapeutic index and ultimately an improved prognosis for the

cancer patient. While SSL interactions may present a unique opportunity in the fields of

drug  discovery  and  personalised  cancer  medicine  the  genome-wide  identification  of

human  SSL interactions  comes  with  its  own  significant  challenges.  As  well  as  the

difficulty of propagating human cell lines for in-vitro screening the combinatorial nature of

the problem means that around 200 million pairwise tests would be required to identify

all possible pairs, an all but insurmountable experimental burden.

In response to these difficulties studies focussing on model organisms with far fewer

genes and no ethical implications have resulted in the identification of a large quantity of

SSL interactions. Unfortunately, based on these studies, it  has been shown that SSL

interactions are often not well conserved between species and even less so between

higher and lower eukaryotes such as humans and yeast.

Though  a  number  of  unique  human  SSL  interactions  have  been  inferred  using

orthologous interactions many remain undiscovered and the search for SSL interactions

opens  to  ever  increasing  quantities  of  multi-platform  genomic  data  to  develop  a

systematic approach for predicting potential SSL interactions utilising in-silico models.

Ultimately this work will utilise the wealth of genomic, proteomic data available to explore

the networks of both the humans interactome and those of our model organisms. From

this we hope to understand how interactions are conserved and how we might better

predict human SSL interactions given publicly available resources.
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3 - Predicting synthetic lethal interactions

using conserved patterns in protein 

interaction networks

3.1 Introduction

Despite sustained global efforts to develop effective therapies, cancer is now responsible

for  more  than  15% of  the  world’s  annual  deaths.  There  are  over  12  million  newly

diagnosed cases per annum and this number continues to grow  (Varmus and Kumar,

2013).   Standard chemotherapy involves non-selective, cytotoxic agents that often have

limited  effectiveness  and  strong  side-effects.  Consequently,  the  current  focus  in

oncology drug discovery has moved towards identifying targeted therapies that promise

both improved efficacy and therapeutic selectivity (Yap and Workman, 2012). 

The development of multi-platform genomic technologies has enabled the identification

of many of  the genes that drive cancer  (Tomczak et  al.,  2015). These cancer driver

genes can be broadly classified either as oncogenes or tumour suppressors. The protein

product of an oncogene shows an increase in activity, or a change or gain of function

when mutated, whereas mutations or epigenetic silencing in tumor suppressors result in

an inactivation or loss of function (LOF) of the protein product (Baeissa et al., 2017a).  
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Targeted therapies that act on oncogenes often work by directly inhibiting the activated

protein product.   This  strategy has been particularly  successful  for  targeting nuclear

receptor proteins or those that contain protein kinase domains (Iorio et al., 2016; Nguyen

et  al.,  2017;  Shawver  et  al.,  2002).  Unfortunately,  it  is  not  usually  feasible  to repair

tumour suppressor genes or their protein products, particularly if they are inactivated by

a  truncation  (Hoe  et  al.,  2014).  Instead  an  emerging  strategy  is  to  target  tumour

suppressors indirectly by exploiting synthetic lethal interactions.

Synthetic lethality (SSL) is a phenomenon whereby individual genes in a pair can be

knocked-out without affecting cell viability, whilst disruptions in both genes concurrently

cause  cell  death  (Hartwell  et  al.,  1997).  Synthetic  sensitive  and  synthetic  sickness

interactions are extensions of this concept where concurrent genetic interactions impair

cellular fitness without necessarily killing the cell. Conversely, synthetic dosage lethality

(SDL) interactions occur when over-expression of one gene, in combination with loss of

function  in  another  gene  results  in  cell  death.  SSL and  SDL interactions  are  both

examples  of  negative  genetic  interactions.  Negative  genetic  interactions  are  events

where a deviation from the expected phenotype is observed when genetic mutations

occur in more than one gene (Michaut and Bader, 2012).

To  exploit  SSL  interactions  therapeutically  one  gene,  the  tumour  suppressor,  is

genetically inactivated by mutation while the protein product of the other is targeted and

inactivated pharmacologically  (Megchelenbrink et  al.,  2015).   Synthetic dosage lethal

interactions can be used for  targeting cancer cells with over-expressed, undruggable

oncogenes (Megchelenbrink et al., 2015). SDL causes cell death as a result of one gene

being genetically activated (GOF, the oncogene) and another being inactivated (LOF, the

drug target). 
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PARP inhibitors  are the most  developed therapies that  exploit  SSL interactions.  The

PARP  inhibitor  Olaparib  (Lynparza™,  Astrazeneca),  has  been  approved  for  the

treatment  of  patients  with  recurrent,  platinum-sensitive,  high-grade  serous  ovarian

cancer  with  BRCA1 or  BRCA2 mutations  (Liu  et  al.,  2014;  Tangutoori  et  al.,  2015).

PARP1 (poly(ADP-ribose) polymerase) is an important component in DNA single strand

break repair  and  has been shown to  share  a  synthetic  lethal  relationship  with  both

BRCA1 and  BRCA2  (Aguilar-Quesada  et  al.,  2007;  Farmer  et  al.,  2005),  which  are

themselves both key in DNA double strand break repair. Complete loss of function of the

protein product of either BRCA gene leaves cells extremely sensitive to PARP inhibitors

presenting this therapeutic opportunity (Bryant et al., 2005; Fong et al., 2009) .

Other studies have highlighted a range of SSL interactions that may provide suitable

targets for therapy (Bitler et al., 2015; Karnitz and Zou, 2015; Williamson et al., 2016).

For  example,  PI5P4K kinases are  essential  in  the  absence of  p53  (Emerling  et  al.,

2014), inhibition of ENO2 inhibits viability in ENO1 deficient glioblastoma cells (Muller et

al.,  2012) and  APE1  inhibitors  in  PTEN  deficient  cells  results  in  the  induction  of

apoptosis (Abbotts et al., 2014). 

Currently,  mainly  due  to  experimental  limitations  (You  et  al.,  2010) exhaustive

experimental  identification of human SSL interactions is not tenable.  While here are

many studies focused on screening for genetic interactions in model organisms (Stark,

2006) unfortunately,  genetic  interactions  are  not  highly  conserved  between  lower

eukaryotes and their human orthologue equivalents (Wu et al., 2013).  Instead, in order

to identify novel human SSL interactions, we are left  to infer and predict  these pairs

indirectly from existing human and model organism data through the use of models and

other computational techniques (Benstead-Hume et al., 2017a).
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Several  classifiers  have been developed to predict  genetic  interactions within model

organisms.  Wong  et  al.  (Wong  et  al.,  2004b) predicted  genetic  interactions  in  S.

cerevisiae using decision tree classifiers with multiple data types and network topology.

Paladugu et  al.  (Paladugu et  al.,  2008) focused on S.  cerevisiae data;  by extracting

multiple  features  from  protein  interaction  networks  they  achieved  sensitivity  and

specificity  exceeding  85%  using  support  vector  machine  (SVM)  classifiers.  Later,

Chipman et al. (Chipman and Singh, 2009) employed random walks and decision tree

classifiers  on  protein  interaction  and  gene  ontology  (GO)  data  to  classify  both  S.

cerevisiae and C. elegans negative genetic interactions.

Several classifiers have been developed to predict genetic interactions between species.

Zhong  and  Sternberg  (Zhong  and  Sternberg,  2006) classified  C.  elegans negative

genetic interactions based on orthologous gene pairs in  S. cerevisiae and Drosophila

melanogaster.  Jacunski et al.  (Jacunski et al.,  2015) developed SINaTRA  (Species-

INdependent  TRAnslation)  to  classify  S.  cerevisiae SSL pairs  based  on  S.  pombe

training data and vice versa, using features extracted from physical interaction data. The

model trained on S. cerevisiae data was applied to predict 1,309 human SSL pairs with a

reported false positive rate of 0.36.   Similarly Wu et al.  (Wu et al., 2014) developed

MetaSL, an ensemble machine learning mode which applied eight different classifiers on

S. cerevisiae data and applied it to predict human SSL pairs. 

Using an alternative approach, the DAISY workflow predicted human SSL interactions

directly from human cancer and cell–line data  (Jerby-Arnon et al., 2014). The authors

used somatic copy number variation and mutation profiles to achieve a ROC AUC score

of 0.779 demonstrating a strong propensity (p-value < 1*10-4) for predicting SSL pairs in

H. sapiens. 
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There are a number of additional recent studies that use biological networks to predict

genetic interactions.  Mashup  (Cho et al.,  2016) reported an average area under the

precision curve (AUPR) of 0.59 for SSL and 0.51 for SDL pair prediction in a real human

dataset.   Others have utilised gene ontology terms to predict  SSLs.   These include

Ontotype  (Yu et al.,  2016), where the authors predict  the growth outcome on double

knock-out of gene pairs. Their prediction set of gene pairs related to DNA repair and

nuclear lumen correlated with Costanzo et al’s  (Costanzo et al.,  2016) validated SSL

dataset with a coefficient of r = 0.61. The authors of Dcell (Ma et al., 2018) constructed a

visible  neural  network  embedded  in  the  hierarchical  structure  of  2526  subsystems

describing the eukaryotic cell and used this to  predict negative genetic interactions in S.

cerevisiae.

In this  study we introduce SLant  (Synthetic  Lethal analysis  via Network topology),  a

random forest classifier trained on features extracted from the protein-protein interaction

(PPI) networks of five species. These features comprise both node-wise distance and

pairwise topological PPI network parameters and gene ontology data.  Using SLant we

provide in-species, cross-species and consensus classification for synthetic lethal pairs

in all five organisms including human. We subsequently experimentally validated three of

the predicted human SSLs in a human cell-line. Finally we identify a large cohort of

candidate  human  synthetic  lethal  pairs  which  are  available  with  the  consensus

predictions  for  all  the  model  organisms  in  the  Slorth  database

(http://slorth.biochem.sussex.ac.uk). 
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3.2 Materials and methods

3.2.1 Data Acquisition and pre-processing

Gene  and  orthology  data  were  downloaded  from  Ensembl  (Hubbard  et  al.,  2002),

Genetic  interaction  data  were  obtained  from  BioGRID  (version  3.4.156)  (Stark,

2006) with  supplementary  D.  melanogaster data  downloaded  from Flybase  (version

6.13) (Gelbart et al., 1996). Each gene was labelled with gene ontology (GO) data from

the gene ontology consortium (Ashburner et al., 2000).  Protein-protein interaction  (PPI)

data were obtained from the STRING database (version 10) (von Mering et al., 2005). To

ensure reliability only experimentally derived and curated pathway data with a reliability

cut-off of 80 were utilised (Supplementary Table 3.6).  The Ensembl ENSP protein IDs in

the PPI data sets were converted to their respective Ensembl ENSG gene IDs. This

enabled us to relate the physical interaction data to the genetic interaction data and label

each physical interaction gene pair as SSL (if present in the BioGRID data) or non-SSL

(if the pair was not present in the BioGRID data).

For  each  organism an  equal  number  of  non-SSL pairs  were  assigned  randomly  to

constitute  the negative  training set.  When assigning a non-SSL pair,  we checked to

makes sure that its orthologues had not been assigned as having an SSL as, although it

is not prescriptive, there is an enrichment of SSL pairs in orthologous genes. 

Similar  methods  were  used  to  build  the  training  set  used  for  our  SDL interaction

classifiers but we instead extracted BioGRID pairs annotated as synthetic dosage lethal

as our positive class data.

89



3.2.2 Feature processing

The R (version 3.4.0) igraph package (version 1.1.2)  (Csárdi and Nepusz, 2006) was

used to generate a network representation of the PPI data for each of our 5 organisms

and to calculate network features (Table 3.1). Whilst we extracted network features for

just a subset of all possible gene pairs the entire network of protein interactions was

used in each calculation.
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Name Class Description

Betweenness Node-wise The number of shortest paths in the entire graph that pass through the

node.

Constraint Node-wise Related to ego networks. A measure of how much a node’s connections

are focused on single cluster of neighbours.

Closeness Node-wise The number of  steps required to reach all other nodes from a given node.

Coreness Node-wise Whether a node is part of the k-core of the full graph, the k-core being a

maximal sub-graph in which each node has at least degree k.

Degree Node-wise The number of edges coming in to or out of the node.

Eccentricity Node-wise The shortest path distance from the node farthest from the given node.

Eigen centrality Node-wise A measure  of  how  well  connected  a  given  node  is  to  other  well-

connected nodes. 

Hub score Node-wise Related  to  the  concepts  of  hubs  and  authorities  the  hub  score  is   a

measure of how many well linked hubs the  nodes is linked to. 

Neighbourhood n size Node-wise The number of nodes within n steps of a given node for n of 1, 2, 5 and 6

Adhesion Pairwise The minimum number of edges that would have to be severed to result in

two separate sub-graphs separating the source and target nodes.

Cohesion Pairwise The minimum number of nodes that would have to be removed to result

in two separate sub-graphs separating the source and target nodes.

91



Adjacent Pairwise Whether a source and target node are connected via an edge.

Mutual neighbours Pairwise How many first neighbours a target and source node share.

Shortest path Pairwise The minimal number of connected vertices that create a path between the

source and target node.

Between community Pairwise A logical feature stating whether the source and target nodes inhabit the

same community produced by the spin glass random walk.

Cross community Pairwise A logical feature stating whether the source and target nodes connect two

communities as produced by the spin glass random walk.

Shared  GO  count  –

Biological process

Go term The number of biological process GO annotations shared between the

source and target node.

Shared  GO  count  –

Molecular function

Go term The number of molecular function GO annotations shared between the

source and target node.

Shared  GO  count  –

Cellular compartment

Go term The number of cellular compartment GO annotations shared between the

source and target node.

Table 3.1. Names and descriptions of the node-wise and pairwise network parameters and GO 

term features used in Slant.
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The  features  generated  for  our  models  were  broadly  categorised  as  node-wise  or

pairwise features as listed in Table 3.1. In general node-wise features, such as degree,

were  calculated  by  extracting  network  parameters  for  single  nodes  and  finding  the

averaged  distance  between  them  as  a  pairwise  feature.  Pairwise  features  such  as

shortest path were calculated by igraph on each pair. To calculate shared GO terms,

classed as a pairwise feature, we took a count of overlapping GO terms between the

genes in each pair.

To generate our community features we applied a spin-glass random walk using the R

igraph communities module to assign genes to 20 distinct communities separated by

choke points across the graph.  The final  count of communities,  20,  was chosen by

measuring  the  predictive  performance  of  our  community  features  with  a  community

count incrementing in steps of 5. After 20 communities we saw no further improvement. 

The entire feature generation pipeline for the full  complement of available gene pairs

proved computationally intense, especially the generation of pairwise features such as

cohesion, and run-time took up to 120 hours for each organism on an 8x Intel Xeon

3.50GHz processor with 16Gb RAM.

3.2.3 Training and test sets

Before analysis all features in each dataset were normalised so that all feature values

fell  between 0 and 1.  The resulting feature sets were divided into training,  test  and

unlabelled sets.  For each organism the feature set was under sampled to provide a

balanced training set with an equal number of SSL and non-SSL pairs.  The training set

was further partitioned 80:20 to create a test set. The non-SSL pairs removed from the
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training data as part of under sampling were set aside as unlabelled data to be used in

the prediction section of this study .

3.2.4 Creating balanced training and test pair sets with

distinct gene components

Some genes are highly represented in our available SSL training data whilst some only

occur once, so generating two sets with balanced classes and a requisite number of

observations  posed  a  challenge.  To  create  balanced  training  and  test  datasets  with

enough observations to perform validation we first created a list of genes ranked by the

number of pairs they were found in. Next we divided this list adding the first to our list of

genes available in our training data, the second to our test data and so on so that both

data sets had a similar distribution of gene representation. Finally we used these two

gene lists  to  filter  our  feature data  into two subsets with no overlapping genes and

balanced class.

3.2.5 Analysis and modelling

We used the “ranger” e1071 random forest classifier, part of the R caret library, to model

and classify SSL and non-SSL interactions in our training set. 5-fold cross validation was

applied to each organism's training set to tune the model's hyper-parameters and the

best model was used to assess predictive performance within each species.  These

optimised  models  were  then  used  to  predict  SSL pairs  across  species,  both  in  H.

sapiens and across all other model organisms. These predictions were outputted as the
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probability of each class and were validated against the test data set.

3.2.6 Calculating cross species consensus

In an attempt to further improve accuracy, as well as pairwise cross-species predictions,

a consensus was taken from the predictions on the test set from all other species. This

consensus was calculated by running a second classifier, a boosted Generalized Linear

Model (GLM) that was trained on the previous classifiers outputs.  To allow for validation

this consensus dataset was segmented into a train and test set (both 0.5 the size of the

original due to the smaller overall size).  Finally we used this consensus model to predict

SSL pairs in the unlabelled data set.

All  of  the  R  source  code  for  Slant  is  available  publicly  at

https://bitbucket.org/mrgraeme/slant. All data used is available via public sources.

3.2.7 Validation using clonogenic survival assays

A subset of potential SSL interacting pairs featuring PBRM1 (BAF180) complemented

with genes with a known inhibitor were chosen from our predictions for experimental

validation (Supplementary Table 3.5).

3.2.7.1 Cell culture

U2OS-derived  control  and  PBRM1-deficient  cell  lines  (Hopkins  and  Groom,  2002;

Hopkins et al., 2016) were cultured in Dulbecco DMEM supplemented with 10% FBS,

glutamine and Penicilin/Streptomycin.
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3.2.7.2 Clonogenic survival assays

Cells were seeded and allowed to adhere prior to drug treatment.  Cells were exposed to

the indicated amount of drug in triplicate, and incubated for 14 days at 37C with 5% CO2

prior to staining with methylene blue ((0.4%).  Cell colonies were manually counted and

presented as the surviving fraction relative to the untreated cells.

3.3 Results

A genome-wide protein-protein interaction (PPI) network was constructed for H. sapiens

and each of our model organisms  (S. cerevisiae, D. melanogaster,  C. elegans, and S.

pombe) using PPI data from the STRING database (von Mering et al., 2005).  In this

network,  each  node  represents  a  protein  and  each  edge  represents  a  physical

interaction between two proteins. For each pair of proteins 12 node-wise and 7 pairwise

features were extracted from the PPI network using the R igraph library (Csárdi and

Nepusz, 2006). Each protein in the network was labelled with its respective Ensembl

gene  identifier  so  that  this  physical  interaction  data  could  be  matched  with  gene

interaction  data.  For  each  gene  pair  3  additional  GO  term  related  features  were

generated using Gene ontology (GO) data (Ashburner et al., 2000).
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Figure 3.1. A schematic visualising how SLant’s source data is collated from STRING and the 

Gene Ontology Consortium, preprocessed so that this source data can be directed joined with 

BioGRID data for labeling and processed to create the final training set. Feature generation was 

completed using R, the R igraph library and GoSemSim, a Bioconductor package.

For  each PPI  network,  pairs  of  proteins  whose respective  genes were identified  as

having a negative genetic interaction in BioGRID (Stark, 2006) were labelled as having
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an SSL interaction (Figure 3.1).  Equal numbers of SSL and non-SSL gene pairs were

selected independently for the training sets for each species (see methods). Similarly we

created training sets for SDL and non-SDL gene pairs in H. sapiens and S. cerevisiae,

the only two species where there is enough data for prediction purposes.

3.3.1 Network parameter distributions in humans

The features used for  classification in the SLant  algorithm were broadly  divided into

node-wise, pairwise or  GO-term related categories. Node-wise features were derived

from an individual node's network parameter, such as degree or centrality. These node-

wise features were converted to pairwise features by taking the average distance for that

feature between the nodes in each pair.  Pairwise features were defined as those that

apply to a pair of nodes such as shortest path or cohesion. The spin glass random walk

features discussed below were included in our pairwise category. GO related features

were  derived  from  shared  annotations  between  pairs  of  genes  (Ashburner  et  al.,

2000) (for a full list of features see Table 3.1).  
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Figure 3.2. A set of violin plots illustrating the value distributions for each feature in our human 

training set grouped into SSL and non-SSL classes.  The features were derived from 411 SSL 

and 411 non-SSL gene pairs (see Supplementary Table 3.6). Feature distributions that show 

greater variance between SSL and non-SSL gene pair classes, for example the shortest path 

feature, often provide improved predictive power in classifiers. 

Figure 3.2 shows the distribution of these features in SSL and non-SSL gene pairs in

humans.  In general pairwise parameters showed a greater variance between SSL and
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non-SSL classes  than  our  node-wise  parameters  suggesting  they  may  prove  better

predictors in our models.  Of these pairwise parameters the most notable differences

were observed in the parameters labelled: cohesion - the minimum number of nodes that

would have to be removed to result in two separate sub-graphs separating the source

and target nodes, shortest path - the minimum number of nodes that must be traversed

in a path between the source and target gene, and mutual neighbours - the number of

nodes that are shared as neighbours between the source and target gene. 

The higher values exhibited by gene pairs in the SSL class for the cohesion feature

(paired t-test; p = 2.2*10-16 in  H. sapiens) suggest that SSL pairs are generally more

densely connected in a physical interaction graph than non-SSL pairs (Supplementary

Figure 3.1a).  

We also note that the shortest path between gene pairs is shorter on average for SSL

gene pairs compared to non-SSL gene pairs (paired t-test; p = 4.589*10 -11 in H. sapiens)

(Supplementary Figure 3.1b) and, related to the shortest path parameter, SSL genes

more often share a large number of mutual neighbours (paired t-test; p = 4.058*10 -11 in

H. sapiens) (Supplementary Figure 3.1c).

In terms of node-wise features it is of some interest to note that the difference between

neighbourhood sizes of two genes in an SSL pair often differ more than those in a non-

SSL pair. 

3.3.2 Random walk community generation suggests that

most SSL interactions occur between rather than

within clusters of genes
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In  an  attempt  to  ascertain  whether  synthetic  lethal  interactions  occurred  within  or

between local clusters of genes in our physical interaction network we applied a spin-

glass  random walk  to  assign  genes to  20  distinct  communities  separated  by  choke

points  across  the  graph  (Figure  3.3a).  Analysis  showed  that  the  majority  of  SSL

interactions occurred between these communities rather than within (Figure 3.3b).  In

addition pairwise topological analysis suggests that  SSL pairs of genes have shorter

paths between them than non-SSL pairs and a higher occurrence of adjacency. Together

these analyses suggest that SSL pairs are often at the peripheries of these communities,

connecting their respective clusters.
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Figure 3.3. a. Human protein-protein interaction network with clustered communities generated by

a spin glass random walk.  Nodes and edges are coloured by their source community cluster as 

per the legend provided in Figure 3.3 b. Figure 3.3 b. Community cluster connection graph where 

the weight of each connection corresponds to how many SSL interacting pairs begin and end at 

each community. We observe the largest count of SSL interactions occurring between cluster 9, 
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notably associated with transcription regulation and DNA damage response GO terms and cluster

15, associated with MAPK cascade, cell proliferation and gene expression GO terms.

Based  on these observations  we  were able  to  create  two additional  features  which

provide further  predictive  power  for  classifying  SSL pairs;   whether  nodes shared a

community and whether the pair connected two communities.

3.3.3 SSL pairs shared more GO annotations than non-

SSL pairs

The count of shared GO terms, that is the number of GO annotations that two genes in a

pair share with each other, also varies between SSL and non-SSL observations.  SSL

pairs  generally  share,  on  average,  less  biological  process  GO  annotations

(Supplementary  Table  3.1)  than  non-SSL  pairs  (p  <  2.2*10-16 in  H.  sapiens)  and

proportionately more molecular function and cellular component GO annotations (p <

2.2*10-16 in H. sapiens for both biological process and cellular compartment terms). This

supports  the  view that  that  SSL protein  product  pairs  are  often found in  similar  but

distinct  pathways  rather  than  within  a  single  pathway  (Kelley  and  Ideker,  2005).

Damaging two complementary functional pathways is likely cause more stress to the cell

than damaging one pathway twice and leaving the complementary pathway functional.

Although  the  GO annotation  based  features  above  provide  predictive  power  in  our

models as discussed below, due to the hierarchical nature of GO annotation, comparing

the absolute count of shared GO terms does present some issues. As such GoSemSim

(Yu et al., 2010) was used to further measure the semantic similarity between SSL and
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non-SSL pairs.  We found that  in  H. sapiens SSL pairs showed a significantly higher

semantic similarity score (mean = 0.65) that non-SSL pairs (mean = 0.57) (Welch two

sample t-test p=4.6*10-7).

Analysis  of  GO terms present  in  paired  SSL genes  found  that  the  most  commonly

shared molecular  functional GO annotation related to protein binding (Supplementary

Figure  3.2).  Other  molecular  function  GO  annotations  commonly  found  associated

between SSL pairs  include protein  complex  binding,  GTP binding,  DNA binding and

GTPase activity. At the level of biological process GO annotation for SSL gene pairs we

also noted associations with terms related to positive regulation of cell proliferation and

negative regulation of apoptotic process as well as those labelled with positive regulation

of  gene  expression  and  positive  regulation  of  transcription  from RNA polymerase  II

promoter.

In an attempt to further quantify the GO annotation driving the variation between genes

found in SSL pairs and those not found in SSL pairs we employed a GO enrichment

analysis  using  the  on-line  GOrrila  tool  (Eden  et  al.,  2009).   We  found  significant

enrichment  in  a  number  of  GO  annotations  including  negative  regulation  of  cell

differentiation (p = 9.15*10-3), positive regulation of transcription by RNA polymerase II (p

= 9.53*10-3) and regulation of Notch signalling pathway  (p = 8.85*10-3) in the biological

process  ontology  but  no  further  enrichment  in  the  molecular  function  or  cellular

compartments ontologies.  All p-values have been are corrected for false positives using

the Benjamini Hochberg method

3.3.4 SSL interactions in essential genes
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Comprehensive  studies  of  S.  cerevisiae genetic  interactions  by  Costanzo  et  al.

(Costanzo et al., 2010, 2016) have found that essential genes that share an edge on the

PPI network are enriched for genetic interactions and that is consistent with previous

observations  (Kelley and Ideker,  2005). As our classifiers in part  use the distance of

gene pairs as a predictive feature we performed analysis to ensure our predictions were

not simply picking out gene pairs enriched for essential genes.

We first noted that the range of shortest path values between SSL pairs on the protein-

protein interaction (PPI) network runs from 1 to 7 with a mean of 2.43 and a standard

deviation of 0.78 affirming that our training set features many SSL pairs that are not

adjacent in the PPI network.

Using a set of essential human genes defined by Wang et al.  (Wang et al., 2015), we

found that  11% of the genes in our SSL training set were defined as essential,  where as

for non-SSL genes it only 0.7%.  For human gene pairs ~1.7% of SSL pairs and ~1.4%

of non-SSL pairs are comprised of two essential genes. We also found that  29% of SSL

pairs and 22% of non-SSL pairs included at least one essential gene.

Upon comparison we found that ~22.5% of our SSL predictions included at least one

essential gene and ~1.4% featured two essential genes, a ratio comparable with our

training data. This suggests that our predictions are not further enriched for essential

genes.

3.3.5 Models explaining patterns of genetic interactions 
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There are three models used to explain how genetic interactions occur (Hin et al., 2004;

Kelley and Ideker, 2005; Tong et al., 2001b). The “between pathway model” is where the

genetic  interaction  involves  genes  in  two  distinct  pathways  with  complementary

functions. A deletion of a gene in one pathway abrogates the function of that pathway

and the cell cannot survive with of both pathways are lost. The “within a pathway model”

is  where genetic interaction occurs between genes in the subunits of a single pathway.

Loss of one gene can be tolerated but the additive effects of the loss of several genes in

that  pathway  are  lethal.   Finally  ‘the  indirect  model’  is  where  the  phenotype  is  not

mediated by a localised mechanism.

Previous  computational  analyses  have  found  that  negative  genetic  interactions  are

enriched  both  between  biological  processes  (or  pathways)  and  within  biological

processes, giving credence to these models  (Costanzo et al., 2010, 2016; Kelley and

Ideker, 2005; Ulitsky and Shamir, 2007). SSL interactions occur primarily between local

clusters in the PPI network suggest that the between pathways interactions may still

involve pathways that are close in PPI space.  This may explain why the analysis of PPIs

is so effective in predicting SSL interactions.

3.3.6 Network parameter distributions in model 

organisms 

The distribution of network parameters across our four model organisms widely followed

similar trends with our human feature set. Again the pairwise features for each organism

appear to vary more between SSL and non-SSL classes than node-wise features. A few

dissimilarities were noticeable, for example while SSL gene pairs tend to exhibit a higher
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levels  of  adhesion and cohesion in  H.  sapiens,  S.  cerevisiae (Supplementary Figure

3.3a)  and  D.  melanogaster (Supplementary  Figure  3.3b)  the  distribution  for  these

features were notably inverted in C. elegans (Supplementary Figure 3.3c) and S. pombe

(Supplementary  Figure  3.3d)  so  that  non-SSL  pairs  showed  higher  adhesion  and

cohesion than SSL pairs.

3.3.7 Validating SSL gene pair classification

In this study we perform two classifications. First in-species classification, classifying and

validating SSL gene pairs using training and test data from the same organism. Then

cross-species classification where we use the models built  using the training data for

each organism to blindly predict SSL for each other species.  Within each species, the

feature data were normalised and segmented into training and test sets with 20% set

aside for validation. 
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Validation results

H.  
sapiens

S.  
cerevisiae

C.
elegans

D.
melanogaster

S.  
pombe

Model

H. sapiens 0.965 0.722 0.415 0.736 0.64

S. cerevisiae 0.736 0.835 0.754 0.728 0.58

C. elegans 0.525 0.716 0.682 0.759 0.47

D.
melanogaster

0.725 0.744 0.744 0.873 0.72

S. pombe 0.657 0.69 0.637 0.756 0.83

Consensus 0.985 0.853 0.360 0.883 0.66

Table 3.2. Cross validation ROC AUC scores for each organism from both in-species and cross

species SSL models. The best score for each species model is highlighted in green. Models are

displayed vertically in rows with the consensus model displayed at the bottom of the table and the

results for those models are displayed in columns with the consensus results highlighted in blue.

We  employed  5-fold  cross  validation  to  optimise  the  hyper-parameters  for  each

organism's random forest classifier and evaluated in-species classification performance

(Table 3.2). In this study our random forest classifiers utilised just one hyper-parameter,

mtry - the number of variables randomly sampled as candidates at each split for each

tree. The best classifier for each species was then used to predict the SSL gene pairs in

each of the other four species.  Table 3.2 shows the ROC AUC  scores for both the in-

species and cross-species predictions for all of our models.
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Although it is difficult to compare the performance of classifiers due to varied validation

sets, the ROC AUC score of 0.965 for H. sapiens SSL gene pair classification achieved

by the Slant  classifier  (using holdout  validation data) appears to out-perform Daisy’s

ROC AUC  score of 0.779.

Our  initial  in-species  classification  of  S.  cerevisiae  SSL  resulted  in  relatively  low

performance  (AUC 0.734)  compared  to  other  related  studies.  For  example  MetaSL,

which used a much smaller data set of just 7,347 SSL pairs compared to Slant’s 395,199

pairs, achieved ROC AUC scores of up to 0.871 (Wu et al., 2014).  In order to mitigate

any noise or error introduced in our large dataset we filtered out any SSL interactions

reported in BioGRID supported by less than 3 supporting publications for S. cerevisiae

and less than 2 papers for S. pombe. Our training data ultimately used 17,568 out of a

total 395,199 SSL pairs available for S. cerevisiae and 3,836 out of 35,391 SSL pairs for

S. pombe. These sample sizes should still be large enough to generalise well for out of

sample predictions as well as preforming well in classification and validation.  Filtering

our yeast data improved our scores from AUC ROC 0.734 to AUC ROC 0.883 for S.

cerevisiae and 0.728 to 0.889 for S. pombe which suggests that by removing pairs that

show fewer citations in the BioGRID data we are reducing variation in our training data

introduced by false positives. This may be due to the relatively high false-positive rate

found in large scale GI screenings, an observation supported by analysis performed by

Campbell & Ryan et al. Who estimated that large scale screenings can suffer a false

positive rate of up to ~10% (Campbell et al., 2016). Using this value we can calculate

that by removing GI pairs with less than 2 and 3 references respectively we may be

reducing false positive rates from 1/10 to 1/100 in S. pombe and from 1/10 to 1/1000 in

S. cerevisiae.
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Cross-species predictions of SSLs were quite variable in performance. Models from both

S. cerevisiae and D. melanogaster and C. elegans were successful in predicting human

SSLs with AUC ROC scores of 0.713, 0.727 and 0.769 respectively.

Although  the  C.  elegans classifier  performed  relatively  poorly  in  our  cross-species

validation for H. sapiens classification, this variation may help improve the generalisation

of our consensus model which is discussed below. To test this cross-species validation

was performed without the worm model. The removal of worm data from the classifier

resulted in a small but noticeable decrease in performance of the consensus classifier

for humans (decreasing from ~0.985 to ~0.92).

The result here suggest that the PPI patterns between SSL genes are similar both within

and  between  species  and  that  network  topology  features  used  in  our  classifiers

generalise well across organisms.  We identified the most predictive features for each

organism and found that the same features were most predictive in many of the species.

The shared GO count features were important in all organisms except S. pombe and the

pairwise features adhesion, cohesion, mutual neighbours and adjacency were important

in  all  organisms  except  C.  elegans.  Two  node-wise  features,  coreness  and

neighbourhood  size  are  also  listed  as  important  features  across  3  organisms

(Supplementary Table 2). 

3.3.8 Class balance changes do not significantly impact

classifier performance

As described below in methods each of these models use a balanced training set with a

ratio of 1:1 interacting and non-interacting pairs, however in reality the ratio between
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interacting and non-interacting pairs is likely more in the order of 1:50 based on global

yeast GI screens  (Costanzo et al., 2016). To ascertain that our class balance has not

unduly biased our prediction in any way we re-ran our classifiers using a randomised

training / validation set with approximately 1:10 and 1:50 class balance.  We found that

with a class balance of 1:10 our performance remained stable and with a class balance

of 1:50 we found just a small drop in performance (human AUC ROC ~0.87 compared to

the original ~0.965 and consensus AUC ROC ~0.90 compared to ~0.985).

3.3.9 Our models  are  robust  to  incompleteness  in  the

source PPI networks

It is known that our current PPI models are incomplete (Huttlin et al., 2017; Mosca et al.,

2013) and  suffer  from  ascertainment  bias.  That  is,  some  genes,  and  indeed  some

species, are better studied than others. To test our model’s robustness to the incomplete

nature of the protein-protein interaction networks, we re-ran our classifiers holding out

10% and 20% of the nodes, at random, from original PPI data in H. sapiens.  In the case

of the 90% ‘complete’ PPI network the performance of our in-species model validation

was not effected and our H. sapiens consensus showed just a small drop in performance

(from AUC ROC ~0.985 to ~0.922). With a 80%  ‘complete’ H. sapiens PPI network we

saw another fairly small incremental drop in  H. sapiens consensus performance (AUC

ROC  ~  0.85)  and  a  small  drop  in  H.  sapiens in-species  performance  (AUC  ROC

dropping from 0.965 to 0.911).  This suggests both that an increasingly complete PPI

network  may  incrementally  improve  our  predictive  performance  and  that  the  current

models are fairly resilient to the incomplete nature of the PPI network.
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3.3.10 Our  pair-wise  distance  features  are  the  most

predictive

In addition to the feature importance analysis performed in this study we also re-ran our

classifiers holding out our 12 node-wise distance features, 6 pair-wise features and 3

GO-term related features in turn. We found that the model holding out pair-wise features

saw the largest drop in performance in consensus with the H. sapiens consensus ROC

AUC dropping from ~0.985 to ~0.730 and the in-species H. sapiens ROC AUC dropping

from ~0.965 to ~0.82. In comparison to our models holding out node-wise features saw a

more notable  drop in  the  in-species  performance (H. sapiens consensus ROC AUC

dropping  from  ~0.985  to  ~0.85  and  in-species  H.sapiens from  ~0.965  to  ~0.823).

Similarly  holding  out  our  GO  term  features  resulted  in  a  decrease  in  predictive

performance (H.sapiens consensus ROC AUC dropping from ~0.985 to ~0.882 and in-

species H.sapiens from ~0.965 to ~0.890).

3.3.11 Our models are moderately robust to pair-input

bias

As discussed by Park et al. (Park and Marcotte, 2012) computational prediction methods

that utilise gene pair observations, such as the models in this study, can be subject to

positive bias in validation. They discovered that model validation performed significantly

better  when genes that  made up the pairs  in  the test  set  were also featured in  the

training set compared to those models where they were not.
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In order to evaluate how Slant’s validation was effected by pair-input bias we generated

a test set from our raw feature data in which none of the genes featured in the test pairs

were  present  in  any  of  the  pairs  featured in  the  training  set.  We refer  to  these  as

segregated datasets.

To make sure we could make a fair comparison we generated a further control training

and test set by randomly sampling the pairs created above from both segregated data

sets. This ensured that the pair count and the pairs themselves remained the same while

gene components could be shared between our control training and test sets.

Running our models again using these segregated training and test data we achieved a

AUC ROC of 0.789 for predicting human SSL pairs,  compared to 0.845 for our control

datasets  and  0.965  for  our  full  training  and  test  sets.  This  suggests  that  while  our

predictions may be somewhat biased towards genes that are featured in the training

data our models also appear to predict SSL pairs comprised of genes that are not in our

training data and,  more importantly,  potentially  genes that  have not  previously  been

associated with SSL interactions.

3.3.12 A consensus based on many cross-species 

predictions further improves performance

To further expand our model we took a consensus from the cross-species predictions for

each organism. This consensus was calculated by running a second classifier, a boosted

general linear model (GLM) that was trained on the previous cross-species classifier

output. This output took the form of confidence scores. For example, for any particular

pair of human genes the confidence scores given to that pair by every cross-species
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classifier  were  used  as  features.  The  probability  outputted  by  this  final  classifier  is

referred to as the consensus score.

114



Figure 3.4. Cross-species ROC AUC  scores for each models classification performance  on our

human SSL interaction validation set.  An additional  curve for  our consensus predictions was

added separately based on the performance of the consensus validation set.

To allow for validation this consensus dataset was segmented into a training and test set

(both 0.5 the size of the original due to the smaller overall size).  The ROC AUC  for our

consensus prediction validation was also plotted and achieved a score of up to 0.985

when predicting H. sapiens SSL pairs, a further improvement on our in-species human

validation ROC AUC score of 0.965 (Figure 3.4).

3.3.13 Predicting synthetic dosage lethal pairs

To  ascertain  whether  SSL  and  synthetic  dosage  lethality  (SDL)  interactions  share

topological  predictors  we  re-purposed  our  models  to  predict  SDL gene  pairs.   We

achieved an in-species AUC of 0.78 for H. sapiens pairs and 0.89 for S. cerevisiae pairs,

a significantly improved score compared to that achieved during S. cerevisiae SSL pair

classification.  Our consensus model, utilising just  H. sapiens and  S. cerevisiae data,

improved our  H.  sapiens predictions  slightly  (ROC AUC 0.80)  (Supplementary Table

3.3).

SDL and SSL pairs in H. sapiens exhibit broadly similar feature distribution and feature

importance for both classifiers.  Despite this only 7,531 pairs were predicted as both SDL

and SSL (of 41,103 SDL pair predictions and 59,475 SSL pair predictions).

In our human SDL models cohesion and shared cellular compartment GO terms featured

as  important  features  for  both  classifiers  though  molecular  functional  GO  term

annotation proved an important  feature for  SDL classification while  shared biological
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process GO term featured  well  for  SSL classification.  The  closeness  feature,  which

measures how many steps is  required to reach all  other  nodes from a given node,

performed well for SDL classification. On the other hand coreness, a measurement of

how well connected a node’s neighbours are compared to the graph overall provided

better predictive power for SSL classification.

We next  compared biological process GO terms present  in  SDL and SSL pairs.  We

found that DNA damage related processes were more frequently seen in SDL pair data

than in SSL pair data (~1.00% cellular response to DNA damage stimulus, ~0.70% DNA

repair in SDL pairs compared to ~0.53% and ~0.46% respectively in SSL pairs). MAPK

cascade and regulation of  cell  proliferation processes were well  represented in  both

groups.

3.3.13.1 Comparison to previous studies

As discussed in the introduction, a number of other studies have used similar methods to

predict genetic interactions. Most notably, this study shares a number of similarities with

SINaTRA  (Jacunski  et  al.,  2015).  However,  Slant  has  been  developed  for  a  wider

number of organisms,  including using human data directly, uses an enhanced feature

set, our predictions have been experimentally validated (see below) and all of our data

are available via the Slorth database (see below).

Algorithmically, the similarities between Slant and SINaTRA include some of the features

used and the treatment of normalisation to allow cross-species prediction. However the

PPI data used by Slant were sourced from STRING and were filtered for reliability, while

SINaTRA’s  PPI  data  were  sourced  from  BioGRID.  A  number  of  key  algorithmic

differences include Slant’s use of consensus models, for both SSL and SDL interactions,
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and the use of a large range of topological,  community and GO features. Slant also

treats  node-wise  features  differently  and  includes  the  averaged  difference  between

genes in a pair as well as the individual values for each gene. We show that the novel

features present in Slant improve the results in the feature holdout section (see Our pair-

wise distance features are the most predictive) and propose that the different data sets

appear to be providing a large impact on the results.  A comparison of the features used

in the two studies are available in Supplementary Table 3.7.

Unfortunately, the source code for SINaTRA is not available. However we were able to

assess  how  our  algorithm  performed  compared  to  SINaTRA,  by  testing  it  on  the

historical yeast SSL data from BioGrid 3.2.104 that had been used in the development of

the SINaTRA algorithm.  SINaTRA reports impressive AUC ROC values of 0.92 for in-

species  S. cerevisiae SSL predictions, 0.93 for in-species  S. pombe SSL predictions,

0.86 for S. cerevisiae to  S. pombe cross species validation and 0.74 for S. pombe to S.

cerevisiae cross species validation.  We obtained similar results using cross validation

(as reported by SINaTRA) with  AUC ROC values of 0.98 for in-species  S. cerevisiae

SSL predictions, 0.98 for in-species S. pombe SSL predictions, 0.88 for S. cerevisiae to

S. pombe cross species validation and 0.77 for S. pombe to S. cerevisiae cross species

validation (see Supplementary Table 3.8).

Next, we re-implemented SINaTRA by running Slant with a close approximation of the

features that SINaTRA used originally but using the current STRING PPI network and

current SSL data for training (see Supplementary Tables 3.9 and 3.10).  We found that

Slant outperformed SINaTRA in all tests apart from the  S. pombe to S. cerevisiae cross

species  validation  (AUC ROC  0.607  versus  0.609).  In  particular  Slant  considerably

outperforms SINaTRA using models generated using the pair-wise non-bias segregated
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training sets.  This supports our theory that the additional pairwise features incorporated

into Slant leads to a generalisation of the models.

Finally we analysed the 2518 predicted human SSL pairs, with a SINaTRA score of over

0.90, that were published in the original paper.  Of these, none of these predictions have

subsequently  been  reported  in  BioGRID,  either  as  SSLs  or  as  negative  genetic

interactions.   However,  the  number  of  reported SSLs for  humans is  still  rather  low.

Encouragingly,  55%  of  the  SINaTRA  high  confidence  SSL  predictions  were  also

predicted to be SSLs by Slant.

3.3.14 Slorth database

We employed the full  cross-species consensus model to predict  SSL and SDL gene

pairs in all of our species. All pairs that did not achieved a consensus score of over 0.75

were removed from our final prediction list.  All  predictions are available in the Slorth

database http://slorth.biochem.sussex.ac.uk.

The graphical visualizations of the SSL predictions and the experimentally derived SSL

interactions from our training data  (Supplementary Figure 3.4a) shows that the SSL

network becomes much denser around the genes represented in the initial training data

from BioGRID. This suggests that genes already implicated in an SSL pairs may share

more SSL interactions than currently experimentally identified.

3.3.15 Predicting and validating SSL gene pairs 

associated with cancer
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Using  the  models  and  classifiers  described  above  we have  identified  and  validated

previously  unpublished  human  SSLs  that  could  be  exploited  therapeutically  in  the

treatment  of  cancer.   To  identify  potential  therapeutic  targets  using  our  consensus

method, we identified all the SSL gene pairs in H. sapiens where one of the genes had

been  identified  as  a  tumour  suppressor  by  the  cancer  gene  census  (Futreal  et  al.,

2004) (Supplementary Figure 3.4b, Supplementary Table 3.4) and the other was a target

of a drug approved for human use.

We  found  an  enrichment  in  highly  scoring  SSL  pairs  containing  the  tumour

suppressors VHL and PTEN.  SSL pairs with the highest  consensus scores included

SREBF1,  a  transcription  factor  that  binds  to  sterol  regulatory  element-1  and  VHL

(confidence score 0.810) and PTEN and SFN, a gene associated with breast cancer

(confidence score 0.808).  Other novel, highly scoring gene pair predictions that included

cancer associated genes included PARP1 with PBRM1, BRCA2, ARID1A and APC as

well as PIK3CA with MAP2K1, ABL1 and EGFR.

Validation on a handful of these predicted pairs providing some evidence that  PBRM1 /

PARP1 and PBRM1 / ABL1 share  previously undescribed SSL interactions. We also see

some evidence that PBRM1 / POLA1 share a synthetic rescue interaction.

3.3.16 Experimental validation of predictions 

A set  of  predicted gene pairs,  where one of  the genes identified  was PBRM1,  was

selected for experimental validation.  The PBRM1 gene codes for the tumour suppressor

BAF180  a  protein  that  plays  a  key  role  in  both  chromatin  remodelling  and  gene

transcription.   It  is  frequently  mutated  in  a  subset  of  cancers  including  Clear  Cell
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Papillary Renal Cell Carcinoma and Clear Cell Renal Cell Carcinoma (Brownlee et al.,

2012) We chose gene pairs  where the second gene codes for  a protein which has

published  inhibitors.   These  included;  PARP1,  ERBB2,  RAF1,  POLA1,  JAK2,  ABL1,

GSK3B (Supplementary Table 3.5). Inhibitors were chosen and procured via Sellekchem

(https://pubchem.ncbi.nlm.nih.gov/source/Selleck%20Chemicals).

Clonogenic survival assays (Franken et al., 2006) were prepared for a control group and

a BAF180 knockout group from the U2OS cell line. Both cell groups were treated with a

range of drug concentrations based on previous literature for each.  The resulting cell

colonies were stained and counted after 14 days of incubation.
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Figure 3.5. Carcinogenic survival assay results charting survival of PBRM1 / BAF180 knock-out 

cell lines with concentration intervals of the PARP inhibitor Olaparib, the POLA inhibitor 

Erocalciferol and the ABL inhibitor Dasatanib. These results suggest PBRM1 mutant cells may be

more sensitive to both the PARP and ABL1 inhibitors while gaining some resistance to POLA1 

inhibition. Error bars measure standard error of measurement. All drug intervals are measured in 

mM.
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Of the drugs tested, three showed differential effects on the BAF180-deficient cells when

compared to the control cells.  PBRM1 mutant cells were more sensitive to both the

PARP inhibitor and, to a lesser extent, ABL1 inhibitor than the control cells (Figure 3.5

with plate photography in supplementary Figure 3.5), whereas the PBRM1 mutant cells

appeared  less  sensitive  to  the  POLA1  inhibitor  than  the  control  cells  (Figure  3.5).

Interestingly,  cells  lacking  ARID1A,  which  is  another  SWI/SNF  subunit,  are  also

selectively sensitive to PARP inhibitors  (Geng et al.,  2016; Shen et al.,  2015), which

supports this relationship. We also note this ARID1A / PARP1 SSL interaction was not

present in the BioGRID data used to generate our training set but was also predicted

with a high probability by Slant. The two protein products of the two genes SSL with

PBRM1;  PARP1  and  ABL1,  share  a  number  of  similar  cellular  processes  such  as

regulation  of  differentiation,  proliferation  and  of  DNA damage  and  stress  response.

POLA1 which potentially shares a different type of interaction, synthetic rescue, plays an

essential role in the initiation of DNA replication.

3.4 Discussion

In this paper we have predicted SSL relationships using features derived from both in-

species and cross-species PPI network information.   The SLant  consensus classifier

out-performs  previous  attempts  at  predicting  human  and  model  organism  SSL

interactions and may provide a useful tool in guiding future experimental validation of

SSL pairs.  

The original intention in this study was to predict cross-species without using the target

species' data in the training set. However our in-species predictions generally performed
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so  well  it  seemed  sensible  to  instead  use  the  additional  cross-species  data  as  an

enhancement  instead.   The  only  in-species  classifier  that  underperformed  was  that

derived for S. cerevisiae.  However, this result should be interpreted with caution; direct

comparison of results is not possible as there are differences in the validation data. So

that others may compare their algorithm to ours we have made all of the source code for

SLant  freely  available so that  our  results,  training data and validation can easily  be

recreated and repeated.

Improving the quantity and the quality of the input data will also improve the quality of

the SSL and SDL predictions.  For instance the amount of genetic interaction data is

very limited in humans and D. melanogaster.  Protein-protein interaction data is plentiful

for humans and the model organisms studied,  but the majority of the interactions are

unlabelled.  Adding additional annotation to these interactions, e.g. the direction of an

interaction, may improve predictions if enough labelled data were available.  Also, both

the PPI and the genetic interactions reported have ‘popularity bias’; genes and proteins

of  biological  or  medical  interest  are  frequently  studied  and  hence  more  interactions

involving them are reported.  

Recently  Abdollahpouri  et  al.  (Abdollahpouri  et  al.,  2017) developed  a  flexible

regularization-based  framework  which  can  be  used  to  control  for  popularity.  An

adaptation of this method to enhance the coverage of less frequently reported genetic

interactions, may help mitigate this bias.  Furthermore, providing a reliability score for

genetic interactions and only using the more reliable ones may be particularly important

for S .cerevisiae  where although there is a wealth of data, the number of false positives

reported experimentally may be corrupting the prediction accuracy.
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In  an  attempt  to  ascertain  whether  synthetic  lethal  interactions  occurred  within  or

between local clusters of genes in our physical network we applied a spin glass random

walk to assign genes to distinct clustered communities separated by choke points across

the graph. Analysis showed that the majority of SSL interactions occurred between these

communities rather than within them. Based on the shorter distance between SSL genes

and higher occurrence of adjacency presumably SSL genes are often at the peripheries

of these communities.  Further exploration of how SSL pairs are distributed between

clustered communities such as these may shed further light on the node wise features of

genetic interactions. 

Although  this  study  does  not  use  orthology  data  directly  we  do  note  that  our  GO

annotation features may in some way serve as a proxy for orthology data and this study

could be also be expanded in the future through improved analysis of the relationship

between GO terms and pairwise SSL pairs. 

The identification of SSL interactions is a key step in expanding and improving targeted

cancer therapy.  The results presented here suggest that inhibition of PARP1 or of ABL

protein kinase 1 may have therapeutic value in tumours lacking functional BAF180.  The

computational and experimental validation of our models performance presented in this

study suggests that the predictions provided by SLant, all  of which have been made

publicly available, will be useful in guiding future SSL screening studies and ultimately in

the continued goal of generating a more complete list of human SSL pairs.
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4 - Slorth:  Validated and predicted 

synthetic lethal gene pairs with 

associated drug, disease and orthology 

data

4.1 Introduction

4.1.1 Synthetic lethal interactions may make suitable 

cancer drug targets

Synthetic lethal (SL) interactions are negative genetic interactions that can broadly be

classified into two sub-types;  synthetic  sick  lethal  (SSL)  and synthetic  dosage lethal

(SDL). Two genes are said to share a synthetic sick lethal (SSL) relationship when a

disruption to either gene individually leaves the host cell viable while the deactivation of

both genes simultaneously leads to cell sickness or death.  Similarly two genes are said

to be synthetic dosage lethal (SDL) when  the disruption of one gene paired with an up-

regulation in the other causes cell death (Hartwell et al., 1997). 
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SSL interactions can be exploited therapeutically for instance, when one gene, a tumour

suppressor, is inactivated by a cancer driving mutation while the protein product of the

other  gene  in  the  SSL  pair  is  targeted  and  inactivated  pharmacologically

(Megchelenbrink et al., 2015). The most prominent cancer drugs in the clinic that exploit

SSL interactions are the PARP inhibitors which are effective in a variety of BRCA1 and

BRCA2 deficient cancers  (Bryant et al.,  2005; Tangutoori et al.,  2015).  Theoretically,

SDL interactions could also be exploited to target tumours where an  hard-to-target over-

expressed oncogene shares an SDL interaction with a gene that has a therapeutically

tractable protein product (Chan and Giaccia, 2011; Kaelin Jr and Kaelin, 2005).

Due to the experimental burden of exhaustive screening for human SSL interactions a

large number of potentially therapeutically actionable interactions remain undiscovered

(You et al., 2010). Computational methods for inferring and predicting SSL interactions

are  proving to  be a  promising  way  to  guide  experimental  screening  to  mitigate  this

challenge (Benstead-Hume et al., 2017a) with published algorithms including (Jacunski

et al., 2015; Jerby-Arnon et al., 2014; Kranthi et al., 2013; Li et al., 2011; Madhukar et

al., 2015b; Paladugu et al., 2008; Ryan et al., 2014; Wang and Simon, 2013; Wong et

al., 2004b; Wu et al., 2014, 2013; Zhang et al., 2015). We have recently developed, and

experimentally validated, the Slant algorithm which predicts humans SSL interactions

with a ROC AUC of 0.985, an improved performance on previously available algorithms

(Benstead-Hume et al., 2019).

4.1.2 Existing synthetic lethal interaction databases

Considering the therapeutic potential of genetic interactions there are relatively few on-

line resources available for easy browsing and discovery of clinically relevant synthetic
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lethal gene pairs.

BioGRID  (Stark,  2006) is  the  prominent  curated database  that  features  a  wealth  of

experimentally  determined  physical  and  genetic  interactions  for  a  range  of  species.

BioGRID  (version  3.5.172)  features  598,168  negative  genetic  interactions  including

those  labelled  as  ‘Synthetic  lethality’,    'Synthetic  Growth  Defect',  'Dosage  Growth

Defect',  'Dosage Lethality'  and the general  ‘Negative Genetic’.   These include 4,778

human negative genetic interactions, 24 fruit fly, 1,244 worm, 462,432 budding yeast and

39,799 fission yeast published across 4,230 publications. While search functionality is

available,  the  on-line  browsing  and  discovery  ability  is  somewhat  limited  without

downloading data and manual analysis.

SynlethDB (Guo et al., 2015) comprises of  ~34,000 SL pairs.  The data was derived

from experimentally determined genetic interactions extracted from databases including

Syn-Lethality (Li et al., 2014)  GenomeRNAi (Gilsdorf et al., 2009) and BioGRID (Chatr-

Aryamontri  et  al.,  2015).   The  data  were  augmented  by  interactions  extracted  from

manual curation of literature and text mining results, bi-specific shRNA screenings (Firth

et al., 2009) and SL pairs for humans computationally predicted by the Daisy algorithm

(which achieved a AUC ROC score of 0.779) (Ryan et al., 2014). Drug and orthologue

data are available via SynlethDB although this functionality is not  integrated into the

application’s search tools. SynlethDB has not been updated since 2017 and does not

appear maintained since 2018.

4.1.3 Slorth
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Here  we  present  the  Slorth   (Synthetic  Lethality  and  ORTHology)  database

(http://slorth.biochem.sussex.ac.uk)  database  that  has  been  designed  to  integrate

852,609  high  quality  SSL  interaction  predictions  from  the  SLant  (Synthetic  Lethal

analysis via network topology) algorothim  (Benstead-Hume et al.,  2019) with 331,308

experimentally  determined negative  genetic  interactions  for  humans,  worms,  fruit  fly,

budding yeast and fission yeast sourced via the BioGRID database.

Slorth then combines these data with cancer, drug, pathways and orthologue information

with  the  aim  to  enable  researchers  and  clinicians  to  identify  SL  interactions  with

therapeutic potential.  

Tools are available to quickly highlight interactions that feature genes associated with

cancer, gene's whose protein products are possible drug targets, and the pathways that

the proteins are involved in.  Slorth's network visualizations highlight high-quality cross-

species  interactions  and  provide  a  wider  view  of  the  network  of  SL  interactions

surrounding a gene.

4.2 Methods and results

4.2.1 SLant

A brief summary of the Slant algorithm is described here. The SLant  algorithm employs

supervised machine learning classifiers to predict  human and other model organisms

synthetic lethal interactions by exploiting conserved patterns in biological network data

both within and across model species. 
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SLant's  network  models  were  built  using  protein-protein  interaction  data  from  the

STRING (von Mering et al., 2005) database for humans and each model organism.  In

these models nodes represent proteins and edges represent an interaction between two

proteins. Network analysis algorithms were performed upon each network to extract a

number  of  topological  parameters be used as features used in  classifiers  trained to

classify and predict SSL interactions. 

The SLant  algorithm employs  a  total  of  17 network parameter  features and 3  gene

ontology (GO) term features. These network features are classified as either pairwise, a

feature that relates to a gene pair or node-wise, a feature associated with an individual

gene.  Node-wise features include parameters such as degree, the number of edges

entering or  exiting a node and betweeness,  the number of  shortest  paths across all

nodes in the network that pass through a certain node.  Pairwise topological features

include parameters such as the shortest path between two genes and adhesion, the

number of edges you would have to remove from a network to create two separate sub-

networks separating the two nodes. Spinglass random walks were also performed on the

biological  networks  to  find  natural  clustering  on  proteins  and  their  interactions,  this

community  clustering  provided  further  pairwise  features  with  good  predictive  power.

SLants GO term features were generated by integrating GO consortium (Ashburner et

al., 2000) data with STRING data to model how GO terms are distributed across the

network  of  protein  interactions.  A full  list  of  features  used  in  Slant  is  available  in

Supplementary Table 4.1.

 SLant’s random forest classifiers are trained using these features for a large number of

potential gene pairs which are labelled as either SSL or non-SSL, based directly from

BioGRID data.  SLant provides both in-species classification, where training and test
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data from a single organism is used for classification and validation and cross-species

classification where models built using the training data for each model organism is used

to to blindly  predict  SSL for  each other  species.  Slant  uses the results  from the in-

species  classifier  and  each  of  the  cross-species  classifiers  as  features  for  a  final

consensus random forest classifier. The prediction score provided in the Slorth database

give the proportion of trees in the consensus classifier that classified the interaction as

SSL. 

4.2.2 SLant validation

5-fold cross validation was used to to optimise parameters for each organism's random

forest classifier and evaluate in-species classification performance. Data was segmented

into  training  and  test  sets  with  20%  set  aside  for  validation.    Ultimately  SLant’s

consensus classifier achieved a mean AUC ROC of 0.985 (se. 0.008, n=10) in validation

for  the  classification  of  human  SL  interactions  out-performing  all  synthetic  lethal

classification systems previously published.  budding yeast achieved an AUC ROC of

0.907,  worm  0.982,  fruit  fly  0.903,  and  fission yeast 0.920  in  validation  for  their

respective consensus classifiers. 

In  addition,  clonogenic survival  assays  (Franken et  al.,  2006) were used to perform

experimental  validation  of  a small  sample of  SLant  human SSL predicted pairs  with

therapeutic potential.  Using PBRm1 (BAF180) knockouts from the U2OS cell line and

the selected inhibitors , some evidence was found to support interactions between 3 of 7

gene pairs screened including PBRm1 – PARP1, PBRm1 – ABL and PBRm1 – POLA; all

gene pair predictions not found in the oringal SLant training data. Though this work is not
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conclusive it does further support the quality of the classification and predictive power of

SLant.

4.2.3 BioGRID data

The SLant  training set is labelled based on BioGRID data, specifically those genetic

interactions labelled as either synthetic lethal or negative genetic or Synthetic Dosage

Lethal.  As  such  SLant’s  predictions  do  not  include  those  interactions  featured  in

BioGRID (Stark, 2006). To provide a more complete set of SL interactions the BioGRID

data is included alongside the Slorth dataset with each interactions scored based on the

number of reference papers available in BioGRID for that interaction.

4.2.4 Slorth Statistics

At  time  of  writing  Slorth  includes  243,750  human  SSL interactions  featuring  4,474

genes . These genes are associated with 449 related drugs, 318 diseases and 3,403 GO

terms.  Slorth  features  a  further  386,309  interactions  for  Budding  yeast,  37,113

interactions for worm, 103,258 interactions for fruit fly and 42,211 interactions for fission

yeast along with links to associated gene orthologs across species where available.

4.2.5 Functional annotation

Slorth's  predicted  and  validated  SL  data  has  been  integrated  with  cancer,  drug,

orthologue and pathway data to help users more easily browse and search for clinically
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relevant interactions.

Cancer mutation data was sourced via the COSMIC Cancer Gene Census  (Forbes et

al., 2016)(Futreal et al., 2004) and associated with 719 genes in the Slorth data where

mutations have been causally implicated in cancer. Drug and inhibitor data were sourced

through  DrugBank  (Wishart,  2006) which  curates  drug/target  data  from  a  range  of

sources including PubChem (Wang et al., 2009), KEGG (Ogata et al., 1999), PubMed

(Canese and Weis, 2013), ChEBI (Degtyarenko et al., 2008), MetaCyc (Karp, 2002) and

OMMBID (Welsh MJ, Ramsey BW, Accurso F, 2001). Orthologue data linking genes and

interactions between species was sourced via Ensembl BioMart  (Kinsella et al., 2011).

Pathway  data  was  sourced  via  GO  annotation  via  the  Gene  Ontology  consortium

(Ashburner et al., 2000), a large scale bioinformatics project that curates experimental

data from over 100,000 peer-reviewed papers to "annotate" gene function (Figure 4.1).
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Figure 4.1 Slorth database population workflow – A schematic describing the process taken to

populate  Slorth.  Interaction  data  from  Slorth  and  BioGRID  was  used  to  create  relational

associations between individual gene objects in a Ruby on Rails relational database. Interaction

objected were also created and associated with their respective gene objects in many to many

relationships. Disease data from cosmic, drug data from drugbank and gene ontology data from

the gene ontology consortium were added as items to the database and associated with any

associated genes. Orthology data was used to create ontology relationships between relevant

gene pairs.

4.2.6 Slorth development and database population 

workflow

Slorth  was  built  using  the  Ruby  on Rails  (version  4.2.8)  web  development  platform

(Bächle and Kirchberg, 2007). 

To populate the Slorth database we use a Ruby on Rails helper script that reads raw

CSV data files and creates rails active record objects for each row which are in turn

passed to their respective table in a relational database. The Slorth database features

tables for  genes,  interactions, diseases,  drugs,  orthology and GO ontology with data

sourced from the resources discussed above.

After populating the gene table with gene names, identities and organism names for all

genes with available interactions we populated our interaction table which includes the

two interacting gene names,  an interaction type,  source and a score.  Based on the

information  given  by  each  interaction  a  many  to  many  relational  link  was  created
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between  the  two  respective  gene  objects.  Additional  relationships  were  also  added

between each gene and their respective interaction object.

Once the database model for interactions and genes was complete we imported further

data for  diseases, drugs, gene ontology using the same helper script. In each case, for

each  row,  a  data  object  was  created  in  the  relevant  table  and  a  many  to  many

relationship was created between the given data object and the related gene. Finally we

imported orthology data.  For each row of orthology data we create an relational link

between the two corresponding genes.

4.3 Using Slorth

PBRM1 is commonly mutated in both clear cell renal carcinoma and breast cancers. As

a tumour suppressor PBRM1 does not traditionally represent a suitable drug target but

as part of a SSL pair it may still provide therapeutic opportunities. 

We can search for a gene such as PBRM1 in Slorth at either the gene or interaction

level. Interactions can also be filtered by drugs, diseases and pathways associated with

either gene in each pair .

Performing a broad search for interactions associated with PBRM1 as in Figure 4.2 we

are given a list of associated interactions as well as a network visualisation to help us

understand the relationships between interactions. 

The first two results are experimentally validated SSL interactions sourced via  BioGRID.

Interactions  sourced  from  BioGRID  are  scored  based  directly  on  the  number  of

references available for  that interaction. We can see that  these two results are both
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supported  by  one  paper  each.  Links  to  these  references  are  available  on  each

interaction page. 

Below these experimentally validated results are an additional 27 high quality predictions

sourced via the SLant classifier. The first of these, PARP1 / PBRM1 reports a score of

~0.86.  Interactions  predicted  via  SLant  are  scored  based  on  a  random  forest

classification  probabilistic  output  ranging  from  0.5  which  means  the  interaction  was

neither predicted by SLant as SL or Non-SL with any confidence to 1 which means the

interaction was classified with a high confidence.
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Figure 4.2 a.
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Figure 4.2 b.
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Figure 4.2 c.
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Figure 4.2 d.
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Figure 4.2. Work flow example for Slorth database – Example of interaction search page (a.) and 

results for ‘PBRM1’ filtered for high quality predictions results in 29 results including both 

experimentally valid results form BioGRID and high certainty predictions from Slant (b.) . From 

the results page additional information such as associated diseases, drugs, pathways and 

orthology is available for both individual genes in a gene results pages (c.) and for interactions in 

an interaction results pages (d.).

To help researchers control  the quality of interactions in their  search Slorth provides

quality filtering in  its search suite allowing users to filter  for  experimentally  validated

entries  only,  high  quality  SLant  predations,  which  includes  validated  entries  and  all

entries.  Experimentally validated interactions include only those featured in BioGRID.

High  quality  predictions  include  both  experimentally  validated  interactions  and

interactions predicted via SLant with a confidence score of above 0.75. 

The interaction  view page provides  further  detail  on  the genes associated  with  that

interaction.  Slorth  provides  network visualizations  for  both  genes and interactions  to

provide a wider view of

 the network of SSL interactions surrounding a gene. In these network visualisations

each node denotes a gene and each edge an interaction. From this we can see that

BRCA2, CHEK, and EP300 share SSL interactions with both PARP1 and PBRM1 all of

which may present therapeutic opportunities. 

Below the network visualisation a table contains additional data for both genes in the

interacting pair. The GO term data provided shows that both genes are associated with

DNA and  protein  binding  and  although  SL pairs  are  not  always  conserved  across

species (Wu et al., 2013) the orthology section may help researchers relate gene pairs

between  organisms.  In  this  case  we  see  that  PARP1  has  a  known  ortholog  in  D.
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melanogaster  and PBRM1  have orthologs  in S.  cerevisiae,  C.  elegans  and D.

melanogaster. 

Finally we can see that PBRM1 is associated with clear cell renal carcinoma and breast

cancer while PARP1 is associated with a drug, OLAPARIB, a PARP1 inhibitor. This result

may guide the researcher to explore the potential of PARP1 as a therapeutic target in a

PBRM1 deficient tumour..

4.4 Conclusion

Slorth features some of the highest quality SL predictions available via SLant along with

a full compliment of experimentally validated SL pairs via BioGRID. Furthermore Slorth

provides  an interface that  has  been  designed to  enable  easy  discovery  of  clinically

relevant pairs. The ultimate aim of Slorth is to help better guide future SL screening and

ultimately further the development of targeted drug therapies to improve patient outcome

and quality of life.
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5 - Biological network topology 

features predict gene 

dependencies in cancer cell lines 

5.1 Introduction

An  essential  gene  is  one  which  is  necessary  for  cellular  survival  and  reproductive

success. However, the exact set of essential genes is context specific depending on the

cell  type,  genetic  and epigenetic  aberrations  and the cell  environment.  The different

definitions and measurements of essentiality often have considerable overlap but there

are also  large areas of  disagreement  (Bartha et  al.,  2018;  Eisenberg and Levanon,

2013).

During the process of carcinogenesis, the pattern of essential genes changes as cells

become addicted to oncogenes and tumour suppressor genes become inactivated (Luo

et  al.,  2009b;  Weinstein,  2002).  Identifying  gene  dependencies  that  result  from

carcinogenesis  can provide opportunities for  targeted treatments,  as the inhibition of

proteins which are essential in cancer cells but not in normal cells can lead to selective

cell death (Workman et al., 2013).  However, the heterozygous nature of cancer and the

large  number  of  genetic  alterations  in  cancer  cell  lines  prevent  the  exhaustive
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identification of these acquired essential proteins for all possible cell lines.

Several  groups  have  used  features  derived  from  protein-protein  interaction  (PPI)

networks to predict cancer genes (Li et al., 2009), and genetic interactions  (Benstead-

Hume et al., 2019).  Furthermore there have been a number of successful attempts to

predict common essential genes using biological network data in different contexts and

in different organisms (for a review see Zhang et al. (Zhang et al., 2016) ). These studies

have used a range of different network data including protein-protein interaction (PPI)

networks, transcriptional regulatory networks, gene co-expression networks, metabolic

networks (Mns) and networks that integrate two or more of the above.  Due to data

availability these studies have generally focused on model organisms. For studies on S.

cerevisiae see (Acencio et al., 2009; Chen and Xu, 2005; Saha and Heber, 2006). For

studies on  E. coli  see  (Hwang et al.,  2009; da Silva et al.,  2008) and for studies on

various bacteria see (Cheng et al., 2014; Lu et al., 2014; Plaimas et al., 2010). For the

most part these studies employ similar methods where topology data is extracted from

the biological networks. This topology data is subsequently used as a feature set to train

machine learning models to identify essential genes.  For example, Saha et al.  (Saha

and Heber, 2006) reported a ROC AUC of 82% using PPI network degree count and

conservation score features to classify ~2,200 essential  genes in   S. cerevisiae and

Müller  da  Silva  et  al.  (da  Silva  et  al.,  2008) who  reported  F1 scores  of  83.4% for

essential gene predictions and 79.7% for non-essential gene prediction in E coli. Similar

levels of prediction have not been reported for human cell lines.

Generally past studies have focused on a static version of the known PPI network with

little  modification  for  individual  samples.  Observations  made  by  Roumeliotis  et  al.

(Roumeliotis et al., 2017), suggest that the effect of genetic variations can be transmitted
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from  directly  affected  proteins  to  distant  gene  products  through  protein  interaction

pathways, suggest that the inclusion genetic alterations may allow us to improve the

traditional PPI network model.

Recently there have been significant  efforts to identify and catalogue cancer specific

acquired  essential  genes,  otherwise  known  as  gene  dependencies,  experimentally.

Amongst  these  efforts  are  a  number  of  loss  of  function  screens  (Ngo  et  al.,  2006)

performed using both RNAi and CRISPR-Cas9 systems (Aguirre et al., 2016; Aksoy et

al.,  2014; Cheung et al.,  2011; Luo et al.,  2008; Marcotte et al.,  2012, 2016). These

screens investigate the changes in  phenotype caused in  cell  lines by systematically

knocking genes out one by one either through deletion or disruption. Knock-outs that

result  in  significantly  deleterious phenotypes signal  that  the respective gene may be

essential in that cell line. 

In response to reported off-target effects observed in loss of function screens, where

genes  other  than  the  target  are  disrupted  by  certain  RNAi  (Aguirre  et  al.,  2016;

Birmingham et al., 2006; Buehler et al., 2012; Jackson and Linsley, 2004; Munoz et al.,

2016), Tsherniak et al. (Tsherniak et al., 2017) building on previous work by Cowley et al.

(Cowley et al., 2014), performed 285 genome scale systematic loss-of-function screens

to identified cancer dependencies across a total of 501 human cancer cell lines covering

21 different tissue types. They found 6,476 genes that had a cancer dependency score

of over 0.65 in at least one cell line. Of these 6,476 genes, 545 were dependencies in

20-50% of cell lines in at least one tissue-type. This suggested that these genes are

commonly essential in cancer cells of that tissue type but non-essential in normal cells.

While  identifying  general  essential  genes  or  disease  specific  gene  dependencies

provides a better  understanding of  potential  disease specific targets,  loss of function
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screens are not readily available for the majority of individual cancer patients. Tools that

could predict cell line specific gene dependencies from more readily available data such

as mutations and gene expression may offer new opportunities for affordable tailored

therapies (Benstead-Hume et al., 2017b; Charlton and Spicer, 2016).

In this  study  we use recent  cell  line  specific  gene dependency data along with  PPI

networks data to build models able to identify novel cell line specific gene dependencies.

To do this we model genetic alterations in specific cell lines by perturbing their respective

PPI networks. We explore the viability of identifying cell line specific gene dependencies

both  within  and  between  various  human  cancer  cell  lines  using  this  perturbed  PPI

networks data. Finally, we introduce DependANT, a classifier trained to predict cell line

specific gene dependencies using both generic and perturbed PPI networks data with

the aim of providing a low cost approach to identifying personalised cancer drug targets

without the cost of exhaustive loss of function screening.
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5.2 Methods

5.2.1.1 Constructing the base PPI

Our base protein-protein interaction data was obtained via the STRING database (v.10)

(von Mering et  al.,  2005).  This  data was filtered to include only  interactions with an

experimental score higher that 80 to ensure each interaction was reliable.  The ENSP

protein IDs in this data set were converted to their respective ENSG gene IDs using

Ensembl data (Hubbard et al., 2002). R (version 3.4.0) and the igraph package (version

1.1.2) (Csárdi and Nepusz, 2006) were used to produce a network model of the PPI data

for each cell line.

5.2.1.2 Essentiality data and labelling

The Tsherniak et al.  (Tsherniak et al., 2017)  survival screen data, via project Achilles,

provides a likelihood score for each gene in each cell line being a essentiality. We the

same likelihood threshold as Tsherniak et al. to label each gene in our model as a gene

dependency, those above 0.65 or non- dependency those below 0.65 for each cell line.

5.2.1.3 Perturbing the PPI

All edges in the directed PPI network have a weight of (0,1] which reflects the strength of

expression of the initial protein, i.e. proteins that are not expressed have edges of weight

1 emanating from them, and as expression increases so the weight  reduces.  These

weights  are  determined  by  modifying  RNA seq data  to  reflect  the  loss  and  gain  of
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function of proteins with mutated gene sequences. 

In order to create these weights, RNA seq data from was downloaded from the Cancer

Cell Line Encyclopaedia (Cancer and Line, 2015) , and mutation data was downloaded

from Tsherniak via Achilles (Tsherniak et al., 2017).

Mutations that lead to loss and gain of function were identified or predicted as follows.

Frameshift indels were assumed to lead to loss of function. The program SIFT (Kumar et

al., 2009) was then used to remove mutation which were predicted to have no functional

impact. The remaining missense mutations were categorised as leading to either loss of

function or gain of function using a version of the MOKCARF algorithm (Baeissa et al.,

2017b). MOKCARF uses features from Mutation Assessor (Reva, B.A., Antipin, Y.A. and

Sander, 2010), Polyphen2 (Adzhubei et al., 2013) and FATHMM (Shihab et al., 2013) as

input to a ADA boost classifier which has been trained on protein domains mutated in

proto-oncogenes, or tumour suppressor to predict loss or gain of function.

Gain of function is assumed to have a multiplicative impact on RNA expression (set here

to a factor of 10), whilst loss of function sets the resulting weight to 1.

Equation 5.1

weight ( p)=max (0.5(1−tanh( ln(ex ( p)∗gof ( p)))) ,lof ( p))

where p is the protein and and ex(p) is the RNA_seq expression associated with protein

p, gof ( p)=10 if there is a mutation in the gene associated with protein p leading to

gain of function, otherwise gof ( p)=1 .

and lof ( p)=1  if there is a mutation in the gene associated with protein p leading to

loss of function, otherwise lof ( p)=0 .
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Tanh was used to constrain the resulting score to values between -1 and 1. 

5.2.1.4 Feature generation

R and the igraph package were used to extract 14 network topology features for each

cell line’s protein interaction network described in Table 5.2.

5.2.1.5 Preprocessing feature data

To improve performance in cross cell line classification each cell line’s feature set was

normalised  (Jacunski et al., 2015). To ensure unbiased validation we held-out 20% of

this data to be used as a test set leaving 80% to be used as training data.

5.2.1.6 Model validation

Classification was performed using the R caret  library’s  “ADA” boosted classification

trees classifier.  5-fold cross validation was applied to each cell-lines training data to

select the most optimised set of hyper-parameters. The ADA classifier as implemented in

the caret  library has three hyper-parameters to optimise,  number  of  trees,  max tree

depth and learning rate.

A final model using these optimised hyper-parameters was then used to predict against

the hold-out test set to assess predictive performance within each cell line and between

each  cell  lines.  These  predictions  were  outputted  as  the  probability  of  each  class,

essential or non-essential.

5.2.1.7 Pan-cancer model and unlabelled predictions
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To predict dependency genes in unlabelled cell lines we first concatenated all training

data into one large labelled training data set.  We produced a number of feature sets for

cell lines that were not included in the original training data and predicted dependency

genes in these unlabelled cell lines based on a model trained on the pan cancer set.

5.2.1.8 Experimental validation

We chose a single unlabelled cell line, MCF7, for experimental validation. MCF7 was not

featured in our training data and was chosen based on ready availability and good class

balance for predictions on genes featured as part of the available DDR gene library.

We  performed  a  high-throughput  siRNA screen  for  experimental  validation.  Human

breast (adenocarcinoma) MCF7 cells (validated by ATCC STR.V profiling) were grown in

MEM supplemented with 10% FCS, penicillin/streptomycin and L-glutamine at 37oC and

5% CO2.

Cells were reverse transfected with library siRNA using lipofectamine RNAiMAX (as per

the manufacturer’s instructions) in black 96 well plates. Plates were incubated at 37oC,

5% CO2 for 72 hours. CellTitre-Blue was added to determine cell viability, plates were

analysed using a plate reader at 560/590nm.

5.2.1.9 Druggability annotation

Druggability annotation was performed using Cansar Black’s cancer protein annotation

tools (Bulusu et al., 2014). We designated any genes with a “nearest drug target” score

of 100% as a known drug target and any gene with one or more predicted drug targets in

three dimensional structures that exhibited 100% homology with the respective gene’s
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sequence Identity.

5.3 Results

5.3.1 Data sets

DependANT  classifies  cell  line  specific  gene  dependencies  via  models  built  using

protein-protein interaction (PPI) network and genetic alteration data. The PPI networks

were  sourced  via  STRING  (von  Mering  et  al.,  2005)  and  the  mutation  and  gene

expression data used to perturb our networks, as well as the gene dependency scores

used to label our training data, are publicly available from Tsherniak et al. via project

Achilles (Tsherniak et al., 2017). 

We selected all breast, kidney and pancreatic cancer cell lines that had sufficient gene

dependency and genetic alteration data in the Tsherniak data (Supplementary Figure

5.1). These included 19 breast, 11 kidney and 11 pancreatic cell lines. For each cell line

we selected all genes with a likelihood score higher than 0.65 in the Tsherniak study as a

gene upon which its host cell is dependent, a total of 4,030 gene dependencies across

39 cell lines.

5.3.2 Gene dependency count and magnitude of 

genomic alteration are significantly correlated
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We first set out to find out if and how acquired gene dependencies differ across cell lines

and tissue types and how gene dependency is related to genomic alteration. Using the

data sourced via Tsherniak et  al.  we first  plotted the number  of  gene dependencies

reported for each cell line against a measure of that cell line’s genomic alteration.

We measured each cell  line's level of  genomic alteration by counting the number of

genes that had pathogenic mutations as identified by SIFT (Sim et al., 2012) and the

number of genes differentially expressed when compared to the mean expression level

for cell lines of that tissue type, using a cut-off point of 0.5 TPM.

Across all  cell  lines we found a slight but significant positive correlation between the

measure of genetic alteration and the number of gene dependencies in cell lines (R=

0.36, p=0.012) (Supplementary Figure 5.2. a.).  To calculate the significance of this level

of correlation we shuffled the data for genomic alterations 10,000 times, calculating the

correlation  coefficient  each  time  to  provide  a  normal  distribution  of  correlation

coefficients (Supplementary Figure 5.2. b.).

This significant positive correlation may be the result of alterations that have affected

one or  more otherwise  non-essential  genes  that  are  part  of  synthetic  lethal  genetic

interactions rendering the surviving gene in the pair as essential for cell viability.

We found that  when compared to the other two tissue types cell  lines originating in

breast tissues exhibited, on average, a higher level of genomic alteration (p=3*10-5) and

a higher number of reported gene dependencies (p=0.024).

5.3.3 Gene dependency signatures are enriched for 

specific disease tissue types
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In order to quantify how gene dependencies are distributed across specific tissue types

we next  performed non-negative matrix  factorisation (NMF) in  order to find common

signatures  of  gene  dependency.  To  better  understand  how  these  signatures  relate

across tissue types we added additional cell lines from  pancreatic tissue samples. To

render the data more easily manageable for NMF we filtered our gene dependency data

to remove genes that showed low variation between tissue types, i.e. any genes with var

<0.1 across all tissue types were removed from the data before factorisation.

153



154



Figure 5.1 – Genedependency signatures derived from non-negative matrix factorisation

a. A clustered heatmap shows the clustering of gene dependency signature prominence across 
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cell lines.  Dependency signature prominence sourced via the basis matrix (also known as matrix 

W) given by negative matrix factorisation.

b. Enrichment analysis shows that tissue type is predictive of prominent gene dependency 

signature. Signature 6 for example is fully enriched for kidney cell lines, signature 2 for breast and

signature 3 prominently features pancreatic cell lines.

c. The composition of each gene dependency signature given by the mixture coefficients matrix 

(or matrix H)

We found that six signatures was the minimum number required to describe the majority

of the data (Figure 5.1. a.).  We took the most representational signature for each cell

line and called this the cell line’s prominent signature. We plotted a count of cell lines

with each corresponding prominent signature which was further grouped for tissue type

to find enrichment.  We found that two signatures contained only one type of tissue type,

signature 2 which features only breast and signature 5 which features only kidney tissue.

Signature 3 was also highly enriched for pancreatic tissue (Figure 5.1. b.).

This may suggest that different tissue types feature fairly stable, unique patterns of gene

dependency either as a result of cellular environment or, especially in the case of cancer

cell lines, synthetic lethal interactions.
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Sig 1 Sig 2 Sig 3 Sig 4 Sig 5 Sig 6

GART FOXA1 EFR3A POLG ELMO2 PAX8

ATIC STX4 KRAS MRPL23 GPX4 MDM2

CAD MARCH5 TUBB4B MRPL46 ITGAV HNF1B

PAICS TADA1 RAB6A HUS1 VPS4A RPP25L

PFAS EP300 SLC7A1 LARS2 FERMT2 PARD6B

NAMPT FBXW11 MYH9 MRPL17 SEPSECS ZFP36L1

FPGS CCDC101 ARHGEF7 QRSL1 MARCH5 POLE3

UMPS PIK3CA VPS4A DCPS CHMP3 CDK6

LIAS CDK4 ADAR PMVK UBIAD1 FERMT2

OGDH MED1 EAF1 TXNRD1 SMARCA4 C16orf72

Table  5.1.  Prominently  differentiated  genes between gene  dependency  signatures.  For  each

signature every gene was ranked by distance from the mean score given by the basis matrix

compared to the same gene across all other signatures.

We generated a  list  of  the most  prominently  differentiated genes (Figure 5.1.  c.)  by

ranking the distance of each gene’s occurrence count in each signature from the mean

number of occurrences of that gene across all signatures as reported in Table 5.1.

5.3.4 Modelling cell  lines  with biological  network and

genetic alteration data

For each selected cell line a model was created from the STRING PPI networks data

(von Mering et al., 2005). In each model a node represents a protein and each edge
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between nodes a physical interaction between the two respective proteins. Once each

model is generated in this way we essentially treat each node as the gene associated

with the protein (Figure 5.2).

Figure  5.2.  Plot  of  the  PPI  network  graphs for  breast  cell  line  AU565  BREAST highlighting

acquired essential genes in red suggests clustering of these gene dependencies. 

We then extracted topology data for each node (Table 5.2) and used these data points

as  features  in  our  machine  learning  models.  The  distribution  of  features  values  for

dependency genes are somewhat different to those of non-dependency genes notably

158



for  the  betweenness,  constraint,  eigen  centrality  and  hub_score  features

(Supplementary  Figure  5.3)  suggesting  that  these  features  should  provide  some

predictive power.

Feature name Description

Betweenness The number of shortest paths in the entire graph that pass through the

node.

Constraint Related  to  ego  networks.  A  measure  of  how  much  a  node’s

connections are focused on single cluster of neighbours.

Closeness The number of  steps required to reach all other nodes from a given

node.

Coreness Whether a node is part of the k-core of the full graph, the k-core being

a maximal sub-graph in which each node has at least degree k.

Degree The number of edges coming in to or out of the node.

Eccentricity The shortest path distance from the node farthest from the given node.

Eigen centrality A measure  of  how  well  connected  a  given  node  is  to  other  well-

connected nodes. 

Hub score Related to the concepts of hubs and authorities the hub score is  a

measure of how many well linked hubs the node is linked to. 

Neighbourhood n size The number of nodes within n steps of a given node for n of 1, 2, 5

and 6.

Table 5.2. List of graph topology features extracted from protein interaction network data with

descriptions

For training purposes we labelled the nodes in PPI network using the gene dependency

data sourced via Tsherniak et al.  (Tsherniak et al., 2017) for each cell line as either a

dependency or non-dependency.  We refer to this unperturbed labelled PPI model as our

base PPI networks model.
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5.3.5 Base PPI network parameter data predicts  pan-

cell line dependency genes

To establish baseline performance for our classification models and to generate a list of

relatively common dependency genes across cell lines we ran our classifiers on each

cell  line  with  no  alterations  or  perturbations  using  the  base  PPI  network  discussed

above.

We ran these classifiers to validate performance within cell lines, across cell lines of the

same  tissue  type  and  across  cell  lines  originating  from  different  tissue  types  to

understand how well the classifiers generalise.

To  validate  classification  within  individual  cell  lines  we  optimised  our  ADA  boost

classifiers’  hyper  parameters  using  5-fold  cross-validation  on  our  training  data  and

further  validated  the  classification  performance  using  hold-out  test  data  which

constituted 20% of the full data set.

We validated the model separately on each of our 42 cell lines, using both training data

and validation data extracted from the same single cell line. Each trial was repeated 10

times using the base PPI model. This gave us a mean predictive performance of AUC

ROC 0.765 (s.d. 0.024).

To measure performance across cell lines originating from the same tissue type and the

predictive performance between tissue types we used the training sets that were already

generated for each cell line to train our classifiers and we systematically validated each

cell line against each other cell lines test set.
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To ensure that our models were not being biased by genes that were present in both

training  and  test  sets  we  ensured  that  any  genes  present  in  the  training  set  were

removed from the active test set.

We first measured how well our models generalise from one cell line to another within

the same tissue type. Under these conditions the base PPI models had an average AUC

ROC of 0.761 (s.d. 0.005), 0.755 (s.d. 0.008) and 0.754 (s.d. 0.012) for breast, kidney

and pancreatic cell line sets respectively.

Finally,  we  trained  our  model  on  kidney  data  before  predicting  acquired  gene

dependencies in breast and pancreatic tissue. These cross cell line predictions resulted

in a mean AUC ROC of 0.758 (s.d. 0.007) and 0.758 (s.d. 0.01) respectively. Similarly

when  we trained  the  model  on  breast  data  before  predicting  dependency  genes  in

kidney tissue the model  had a mean AUC ROC of  0.759 (s.d.  0.006) and breast  to

pancreas performed similarly with 0.761 (s.d. 0.01) Taking the mean performance of all

cell lines predicting all other cell lines the base PPI network model gave an AUC ROC of

0.757 (s.d. 0.007).

5.3.6 Feature importance

To  quantify  which  features  provide  the  most  predictive  power  to  our  models  we

calculated a normalised importance score for each feature for each cell line and took the

distribution of these scores across all cell lines.  Feature importance was calculated by

measuring the mean decrease in  accuracy  holding  out  each feature  across  all  tree

permutations in a random forest.
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We found that a number of features that measure connectivity of a gene perform better

than degree centrality although degree centrality does provide a moderate amount of

predictive  power.  PageRank  and  eigen  centrality  scored  well  in  all  cell  line  models

followed by hub score and constraint. Eccentricity, the distance a given node is away

from the furthest node from itself in the network, a measure of how close that node is to

the centre of the network, performs badly across all models.

These importance scores reflected the class feature distributions fairly well, i.e. features

whose values varied more between essential and non-essential genes provided more

predictive power. PageRank and constraint showed a noticeable differentiation between

classes  whilst  the  differentiation  between  classes  for  eigen  centrality  and  hubscore

features were not as prominent (Supplementary Figure 5.4).

5.3.7 Our perturbed models reported improved 

predictive power compared to our base model

Our base PPI models performed moderately well when predicting commonly observed

essential genes within and across cancer cell lines. We used genetic alteration data to

create unique models for each cell line to improve overall performance and classify less

common dependency genes that occur in a smaller subset of cell lines lines.

Based  on the available  project  Achilles  mutation  and  expression  data  we  applied  a

number of treatments to the base PPI networks to encode each cell line’s unique genetic

alteration profile as discussed below.
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Mutations such as frameshift indels or nonsense substitutions were labelled as loss of

function. For missense mutations the Pathogenic mutations were identified using the

SIFT online (Sim et al., 2012) and then split into either loss of function or gain of function

using  the MoKCaRF  (Baeissa,  2019) algorithm.  Nodes  that  represented  genes  with

inactivating mutations were removed from the PPI network, for those that represented

gain of function we amended the weights of their outgoing edges as discussed below.

As well as removing inactivated nodes we weighted edges to represent the strength of

the signal between the two genes – the stronger the signal the lower the barrier. Two

unidirectional edges were created between each gene pair (g1, g2).

We calculated each edge weight so that as gene expression (g) tends to 0, weight (w)

tends to 1. As g tends to infinity, w tends to 0. Specifically

Equation 5.2

w=0.5 –0.5∗(math . tanh(math . log(g+1e-10 )))

Where w is  the  weight  assigned  to  an edge and g  is  the  expression  score  for  the

outgoing gene node.

For genes subject to a gain of function mutation we multiplied the gene expression by 10

before calculating the weight.  Whilst  the exact  equation w is  somewhat  arbitrary we

found that our results were robust to changes in w.

We used three distinct versions of our expression data to implement these perturbations.

We first used the raw expression data for each gene directly, next we normalised the

expression level of each gene in a cell line against the same gene in all other cell lines of

the same tissue type and finally, we normalised the data against the same gene in all

other cell lines.
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We found that of all the PPI networks treatments the raw gene expression data showed

the best overall predictive performance both within and across cell lines. Within cell lines

our raw data models scored a mean AUC ROC of 0.812 (s.d. 0.023) compared to the

base model’s performance of AUC ROC 0.765 (s.d. 0.024).  

Figure 5.3. AUC ROC plots for each PPI model show that our raw expression model exhibits the

largest AUC ROC, and therefor the best performance, while the base PPI model shows the worst

performance.
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Predicting across all cell lines and all rarities of gene our raw data model performed with

ROC AUC of 0.801 (s.d. 0.006) again an improvement performance to that of the base

PPI networks model’s mean ROC AUC of 0.758 (s.d. 0.007) (Figure 5.3) (Table 5.3).

PPI networks 

treatment

Description Within Cell line mean 

AUC ROC

Across all cell lines 

mean AUC ROC

Base PPI network Non-directional PPI 

network sourced via 

STRING.

0.765 (s.d. 0.024) 0.758 (s.d. 0.007).

Compared to tissue 

type

Gene expression 

normalised against all 

cell lines of same 

tissue type.

0.778 (s.d. 0.021) 0.756 (s.d. 0.128)

Compared to all Gene expression 

normalised against all 

cell lines.

0.781(s.d. 0.023) 0.756 (s.d. 0.01)

Raw data Raw gene expression 

data via Cancer cell 

line encyclopaedia 

(CCLE).

0.812 (s.d. 0.023) 0.801 (s.d. 0.006)

PPI networks 

treatment

Description Within Cell line mean 

AUC ROC

Across all cell lines 

mean AUC ROC

Base PPI network Non-directional PPI 

network sourced via 

0.765 (s.d. 0.024) 0.758 (s.d. 0.007).
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STRING.

Compared to tissue 

type

Gene expression 

normalised against all 

cell lines of same 

tissue type.

0.778 (s.d. 0.021) 0.756 (s.d. 0.128)

Compared to all Gene expression 

normalised against all 

cell lines.

0.781(s.d. 0.023) 0.756 (s.d. 0.01)

Raw data Raw gene expression 

data via Cancer cell 

line encyclopaedia 

(CCLE).

0.812 (s.d. 0.023) 0.801 (s.d. 0.006)

Table 5.3. Mean model performance when predicting gene dependencies within each cell  line

(where training and test  datasets  were sourced from a single  cell  line)  and across cell  lines

(where  training  was  sourced  from  one  cell  line  and  used  to  classify  all  other  cell  lines).

Performance measured with mean AUC ROC scores.

5.3.8 Perturbed PPI network models perform well  for

both common and rarer  gene dependencies across

cell lines

To quantify how well our models predict those genes with high dependency scores in

only a few cell lines we trained our models on all cell lines and then performed validation

on test sets filtered for the rarity of the acquired essential genes being predicted.
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580 of the total 4030 (~14.3%) essential genes in our training data were identified as

essential in all 39 cell lines. 2424 (~60.1%) were essential in more than half of the cell

lines and 821 (~20.3%) of the total genes were specific to just one cell line.  We created

test sets featuring genes that occurred in just one cell line, below 10, 20, 30 in all 39 cell

lines  to  calculate  how  well  our  models  performed  at  each  gene  dependency  rarity

interval.

Of our four models, three (our base PPI network, proportional to tissue and proportional

to all models) had similar levels of predictive ability for gene dependencies found in all

cell lines in our training data. However across the other rarity intervals the proportional

models performed slightly better than the base PPI model.
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Figure  5.4.  Model  performance  across  gene  dependency  rarity  intervals  shows  the  general

improved  performance of  the raw expression model.  Each  coloured line  represent  a  models

performance at each interval as per the legend where the blue bars representing the distribution

of genes at each rarity level. For example 200 genes are reported to be dependency genes in

exactly three cell lines.

The final  model,  our raw expression model  outperformed the other models by some

margin reporting a mean ROC AUC 0.660 when predicting genes that were reported as

a dependency in only one cell line (compared to base model’s 0.615), 0.681 for genes

that  showed  dependency  in  less  than  10  cell  lines  (compared  to  0.621),  0.711

168



(compared to 0.644) for genes in less than 20 cell lines, 0.727 (compared to 0.665) for

genes in less than  30 cell lines and 0.801 for all gene dependency rarities (compared to

0.758 for the base PPI model) (Figure 5.4.).

5.3.9 Our models are robust to PPI networks 

incompleteness

It  is  known  that  current  PPI  networks  models  are  both  incomplete  and  suffer  from

ascertainment bias in that some proteins are better studied than others  (Huttlin et al.,

2017; Mosca et al., 2013; Rolland et al., 2014). In order to quantify how the incomplete

nature  of  the  PPI  networks  affects the  robustness  of  our  models,  we  repeated  our

classification pipelines with revised PPI networks data randomly holding out 25% of the

data from original  network.  In the case of the 25% holdout PPI networks network we

observed minimal loss of predictive power from our raw expression cross cell line model

with mean reported performances of AUC ROC 0.78 (s.d. 0.011) compared to 0.801 (s.d.

0.006).

We conclude that while an increasingly complete PPI network may improve our models

predictive performance our current models are fairly resilient to the incomplete nature of

the currently available PPI networks data.

5.3.10 Creating a pan tissue cell line training set

To maximize the amount  of  training data available  for  use by our  classifiers  for  the

prediction of gene dependencies in previously unlabelled cell lines we concatenated all
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available cell line training sets from all tissue types into one super set.  We used our raw

expression models for this super set based on their relatively high overall performance

during previous validation.

In  an  attempt  to  estimate  how  well  this  concatenated  data  should  perform  for  the

prediction of gene dependency in unlabelled data sets we once more validated each of

our individual test sets based on models trained using our super training set.

We found that our super training set classified gene dependencies across all cell lines

with an AUC ROC of 0.843 (s.d. 0.012), a further improvement on the individual raw

expression model’s mean cross cell-line AUC ROC score of 0.801 (s.d. 0.006).

This model provided the greatest predictive power and as such represents the most

suitable available for predicting gene dependencies in cell lines with no prior labelling as

discussed below.

5.3.11 Predicting and validating gene dependencies in

previously unlabelled cancer cell lines.

To create  a  set  of  predictions  we  took  37  cell  lines  previously  unlabelled  for  gene

dependency, 16 for breast, 13 for kidney and 8 for pancreas. Each of these cell lines

was chosen based on the amount of mutation and expression training data available.

We used our pan-tissue training set to train our classifiers and produced a full set of

predictions for each of these cell lines.  

Survival  screens  focusing  on  a  library  of  240  genes  involved  in  the  DNA damage

response (DDR) were repeated in triplicate for the MCF7 breast cell line.  Cell viability
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was  reported  using  a  z-score  where  positive  numbers  suggested  a  cell’s  viability

increases  with  the  knock-down  of  the  predicted  gene,  negative  scores  suggests  a

decrease in viability and z-scores below -1 constitute a true dependency. The variance of

results across all three repeats was high.  This may have been due to the choice of

library.  The loss of genes involved in the DDR can often lead to genomic instability in a

cell.   Knocking out   a  single  gene (e.g.  MSH3) can  cause the subsequent  loss  of

different sets of genes, resulting in different sets of dependencies. 

Gene name Z-score Dependency Likihood

RAD23B -0.4723 0.9741

RAD23A 0.2654 0.9713

PRPF19 -0.3052 0.9704

SHFM1 -0.3754 0.9681

TP53BP1 0.7196 0.9554

RUVBL2 -0.0575 0.9538

TRIM28 -0.6968 0.9470

XRCC5 -0.2933 0.9467

RAD1 -0.4956 0.9455

XAB2 -0.7499 0.9360

Table 5.4. Top 10 dependency gene predictions with likelihood score reported by our pan-tissue

classifier and z-scores from the MCF7 DDR library survival screens. Negative z-scores suggest

that  the knockout of  a predicted gene impacts cell  viability  and z-scores of below 1 suggest
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dependency. 8 of these 10 genes showed negative z-score with XAB and TRIM28 reporting a z-

score of less than -1 in at least one repeat of the screen.

We ranked all of our predictions for MCF7 by dependency likelihood score. Filtering for

likelihood scores to keep predictions of above 0.85 and below 0.15 and treating negative

z-scores as a hit we report an accuracy of 0.64 with a sensitivity of 0.73 and a false

discovery rate of 0.38 based on experimental validation for the MCF7 cell line.  Next, we

extracted the top 10 predictions. 8 of our top 10 predictions showed signs of essentiality

with a mean negative z-score. Two of these top 10 predictions, PARP1 and TRIM28,

reported a z-score of less than -1 in at least one repeat (Table 5.4). 

Gene name Z-score Dependency likihood

POLA1  -1.9200 0.6750

MEN1   -1.6886 0.8546

PNKP -1.5129 0.5851

LIG3 -1.4379 0.3555

CHEK1  -1.2784 0.8503

EME1    -1.2168 0.4798

RBBP8 -1.2160 0.7818

PARP1 -0.9221 0.8987

ERCC2 -0.9021 0.6446

RECQL5 -0.8604 0.5324
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Table  5.5.  The 10 lowest  genes by reported z-score in  the MCF7 cell  line with  dependency

likelihood scores given by our pan-cancer classifier.  Three of these, MEN1, CHEK1 and PARP1

obtained dependency likelihoods of over 0.85 and 8 of the 10 scored over 0.5.

Only 7 of the 240 genes screened and classified for in the MCF7 cell line reported a

mean z-score of less than -1 in all three repeats and two of these, MEN1 and CHEK1

were predicted as gene dependencies with a score of over 0.85 (Table 5.5).  

5.3.12 Therapeutic opportunities in cancer 

dependency genes

Using Cansar’s cancer protein annotation tools  (Bulusu et al., 2014)  we labelled our

predicted dependency genes,  based on their respective protein products, as either a

drug target, druggable or non-druggable (Figure 5.5). 
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Figure 5.5.  Dependency gene druggability counts by cell  line. a. A histogram of dependency

gene counts per cell line in our training data stratified by druggability status as reported by cansar

black’s cancer protein annotation tools. b.  Predicted dependency gene druggability count by cell

line.

The proportion of known drug targets in our predicted gene set was slightly lower than

those  in  our  training  data  at  0.7% compared  to  1.1%.  The  proportion  of  predicted

druggable genes based on a 3 dimensional structure was higher at 45.1% compared to

34.2% in our training set. We found therapeutic opportunities in almost every cell-line in

both our training data and prediction set both in the form of genes with known drugs and

genes that exhibit druggable traits.

5.4 Discussion

Protein-protein interaction maps provide us with a robust model of how the proteome is

organised. Here we find that the topological relationships across these maps tend to be

different for essential genes and non-essential genes, opening up the opportunity for

predicting gene dependency. We find that topological features can be used to predict

gene dependency in human cell lines with ROC AUC scores of up to 0.84. This is an

improvement on accuracy reported by previous studies that use PPI network models to

predict essential genes in S. cerevisiae (Saha and Heber, 2006) and E coli (da Silva et

al., 2008).

Jeong et al’s seminal publication (Jeong et al., 2001) was the first to show a correlation

between degree centrality, I.e. the number of edges leading in or out of a given node,

and gene essentiality. We find here that it is possible to use these and other topological
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features to predict essential genes and acquired essential genes in previously unseen

cell lines, using models trained on different cell lines. We note though that the topological

features  that  are  predictive  of  gene  dependency  such  as  eigencentrality  are

predominantly measures of a protein’s connectedness. These features are robust to the

type of network perturbations caused by changes in gene expression and mutations.

This  suggests that  modified PPI networks can only  provide a partial  picture of  gene

essentiality.

We  described  how  the  standard  PPI  Network  does  not  capture  the  massive  cell

reorganisation seen in cancer,  due to genetic mutations, copy number variances and

epigenetic  changes affecting gene expression.  By personalising our PPI  networks to

reflect some of these changes we were able to model our cells lines better and improve

predictive  power  gene  dependency  classification.  This  improvement  is  particularly

noticeable for those genes we are particularly interested in, i.e. the genes which are

essential in only a few cell lines.

Despite  the  relatively  high  performance  of  our  classifiers  we  are  aware  that  the

association between gene expression and protein expression is only partial and so it is

likely that further improvements will be possible for this type of model when it is possible

to modify the PPI network as a result of protein expression as well as existing ‘omics

data.

Additionally consideration of the biological nature of the protein interactions reported as

well as improvements to the completeness of our source PPI networks is also likely to

lead to significant improvements in this type of study. In particular our source protein-

protein  interaction  network  provides  only  non-directional,  binary  information  about

interactions  between  proteins  rather  than  the  inhibitory  or  excitatory  nature  of  the
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interaction. Although we report that our models are relatively robust to incompleteness in

the source networks  we expect  that  as  the completeness  and  sophistication  of  PPI

models improves so will the effectiveness of this type of model.
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6 - Defining signatures of arm-wise 

copy number change and their 

associated drivers in kidney 

cancers

6.1 Introduction

One of the most striking features of the cancer cell genome is the frequently observed

abnormal karyotype. Many factors can lead to abnormal structural rearrangements of

chromosomes  including  errors  in  cell  division  such  as  Spindle  assembly  checkpoint

defects  (Orr  et  al.,  2015) and  missegregation  due  to  issues  such  as  telomerase

insufficiency (Millet and Makovets, 2016).  The inaccurate repair of DNA double-strand

breaks can also result in translocations, duplications, deletions and inversions of DNA

leading  to  genome  instability  (Aparicio  et  al.,  2014).  Recurrent  translocations  are

frequently observed in haematological malignancies where the resulting fusion genes

drive  tumourigenesis  (Gordon  et  al.,  2012).  Loss  of  heterozygosity  (LOH)  can  also

contribute to the loss of function of tumour suppressor genes (Burrell et al., 2013), and
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large-scale  copy  number  changes  can  lead  to  oncogene  amplification  (Bagci  and

Kurtgöz, 2015; Schwab, 1999) . 

In addition, defects in the fidelity of chromosome segregation can lead to the gain or loss

of entire chromosomes. The chromosoma can vary greatly within tumours (Stephens et

al.,  2012) and  changes  in  ploidy  are  known contributors  to  tumourigenesis  and  the

progression  of  certain  cancer  types  (Holland  and  Cleveland,  2012).  Indeed  some

individual  gene  variations  such  as  alterations  in  BRAF  (Kamata  et  al.,  2010),  TP53

(Thompson and Compton, 2010; Tomasini et al., 2008), PTEN  (Puc et al.,  2005) and

VHL (Thoma et al., 2009) have been linked directly with genome stability and changes in

the aneuploidy state of the cell.

The production of large-scale cancer sequencing projects, such as The Cancer Genome

Atlas (TCGA)  (Tomczak et al., 2015), now available via the Genomic Data Commons

(GDC)  (National  Cancer  Institute,  2019) and  The  International  Cancer  Genome

Consortium (ICGC)  (Zhang et  al.,  2011),  has  enabled the detailed  interrogation  and

analysis  of  the  cancer  genomes.  The  multi-omic  data  sets  generated  have  allowed

researchers to identify driver genes  (Tamborero et  al.,  2013), investigate correlations

between expression, copy number variance (CNV) and mutation data (Gerstung et al.,

2015) and to calculate the mutual exclusivity of altered gene sets (Ciriello et al., 2012). 

CNVs  have  been  used  as  predictive  features  in  previous  studies  in  an  attempt  to

characterise distinct classes of tumour and provide insight into the functional significance

of alterations across the cancer genome.  Zack et al. (Zack et al., 2013) found recurrent

copy number aberrations in a number of  pan-cancer regions where no oncogene or

tumour  suppressor  had  previously  been  described.  They  suggested  that  recurrently

deleted regions could either be enriched for novel tumour suppressors or enriched with
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non-essential genes. Kim et al.  (Kim et al.,  2013) revealed similarity of chromosomal

arm-level alterations among developmentally related tumour types as well as a number

of co-occurring pairs of arm-level alterations.  

Ciriello et al.  (Ciriello et al.,  2013) have postulated that tumours can be classified as

either M class or C class, that is, those driven primarily by mutations (M class) or copy

number aberrations, often occurring alongside mutations specifically in TP53  (C class).

In their study C class tumours include breast (BRCA), ovarian (OV), lung (LUSC) and

head and neck squamous cell (HNSC) carcinomas.  M Class tumours include kidney

clear-cell carcinoma (KIRC), glioblastoma multiformae (GBM), acute myeloid leukemia

(LAML), colorectal carcinoma (COAD) .

There are three subtypes of kidney cancers, renal clear cell carcinoma (KIRC), kidney

renal papillary cell carcinoma (KIRP) and kidney chromophobe (KICH). KIRC is the most

common form of kidney cancer and the 8th most common form of cancer in the UK.

KIRC often presents a distinctive, previously described karyotype.  KIRC tumours are

often  initiated  by  loss  of  function  of  VHL caused  by  a  combination  of  mutation  or

epigenetic  silencing  of  the  gene  in  one  allele,  in  conjunction  with  the  loss  of

heterozygosity of chromosomal arm 3p, where the gene resides  (Gnarra et al., 1994).

For complete transformation into a cancer cell, further abnormalities are required. These

commonly include mutations in PBRM1, BAP1 or  SETD2 all of which are also located

on chromosome arm 3p (A Ari Hakimi, Irina Ostrovnaya, Boris Reva, Nikolaus Schultz,

Ying-Bei  Chen,  Mithat  Gonen,  Han  Liu,  Shugaku  Takeda,  Martin  H  Voss,  Satish  K

Tickoo, Victor E Reuter, Paul Russo, Emily H. Cheng, Chris Sander and rt J. Motzer,

2013). Other characteristic arm-wise copy number changes in KIRC tumours include

losses in 8p, 9p and 14q and gains in 5q and 7q (Turajlic et al., 2015). 
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n this study we focused on the analysis of kidney cancers, giving us the opportunity to

compare  and  contrast  three  molecularly  distinct  cancers  that  all  arise  at  the  same

primary site.  In addition, KIRC has a distinct and well characterised karyotype, aiding

the  validation  of  our  methods.  We  utilised  publicly  available  copy  number  data  to

compare the overall copy number status of cancer cell lines across tissue types and to

identify  correlated  arm-wise  copy  number  changes  and  use  unsupervised  machine

learning to discover recurring patterns of chromosomal arm ploidy change across each

cell  line  and  tissue  type.  Using  these  insights  we  investigated  the  association  of

commonly  mutated  genes  in  kidney  cancers  with  the  general  aneuploidy  status  of

samples across our three kidney tissue datasets.  Finally,  to explore whether specific

mutated  genes  could  lead  to  specific  arm-wise  copy  number  variance  patterns,  we

employed a set  of  supervised machine learning classifiers to measure the  predictive

power of chromosome arm ploidy profile data to identify mutations in specific genes.

Describing patterns of copy number change across diseases and identifying associated

gene mutations may provide clues for the drivers of these genomic instabilities and how

specific genes interact with the karyotype as a whole.
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6.2 Materials and Methods

6.2.1 Data acquisition

In total, we analysed 3,559,315 samples (356,069 in our kidney group, 3,203,246 in our

pan-cancer group) across 5756 patients (888 kindey, 4868 pan-cancer). Our source data

consisted  of  somatic  mutation  data  (BCM  Curated  or  Automatic  Somatic  Mutation

Calling) and copy number variant data (BI Genome-Wide SNP6) downloaded from the

GDC data portal (National Cancer Institute, 2019). 

For  our  kidney  cancer  data  set  we  included  samples  from KIRC (Renal  Clear  Cell

Carcinoma),  KIRP  (Kidney  renal  papillary  cell  carcinoma)  and  KICH  (Kidney

Chromophobe).  For  our  pan-cancer  dataset  we  included  patients  from  cohorts  with

tissue types including; BRCA (Breast cancer), DLBC (Diffuse large B-cell lymphoma),

GBM  (Glioblastoma),  LGG  (Low  Grade  Glioma),  LUSC  (Lung  Squamous  Cell

Carcinoma), MESO (Mesothelioma), OV (Ovarian), PRAD (Prostate Adenocarcinoma),

SARC (Sarcoma), UCEC (Uterine Corpus Endometrial Carcinoma).

To compare the aneuploidy exhibited by different tumour types we used the segment

mean values in the CNV data provided by TCGA / GDC. The segment mean value is the

log2  geometric  mean of  the  ratio  a  sample's  copy  number  over  the  wild-type  copy

number.  Throughout  this  study,  our  CCN values were calculated directly  from these

segment mean values using the formula:
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Equation 6.1

(2sm)∗2

Where sm is segment mean.

Sex chromosomes were excluded from the study, thus the chromosomal copy number

for healthy tissue is 2. 

To ensure the data represented large-scale changes in ploidy rather than smaller, linear

duplication  CNVs,  we  sorted  the  sample  data  by  length  and  removed  the  shortest

samples observed in the bottom 25th percentile of data. Samples with a probe number

of less than 10 were also filtered out to provide high confidence in the CNV data as per

Laddha et al.  (Laddha et al., 2014).

All data preprocessing and analysis was completed using R 3.4.4 (R Development Core

Team, 2011) and the machine learning component of the study was completed using

python pandas version 0.19 (McKinney, 2010).

6.2.2 Describing chromosome arm-wise ploidy patterns

To  prepare  the  data  for  modelling,  we  segmented  CNV  data  for  each  patient  by

chromosome  arm.  Centromere  position  data  were  obtained  from  genome.ucsc.edu

(James  Kent  et  al.,  2002).  These  data  were  organised  with  each  patient  as  an

observation and each of their chromosome arm’s average CCN as a variable. 

6.2.3 Correlation of mutated genes with overall  ploidy 

change
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We identified the ten most recurrently mutated genes in KIRC and KIRP tumours via

cBioPortal (Cerami et al., 2012). In KIRC tissue these genes included VHL (occurring in

47.8% of  KIRC patients),  PBRM1 (34.8%),  SETD2  (12.1%),  BAP1  (~9.4%),  MTOR

(6.7%), KDM5C (5.9%), ARID1A (4.1%), KMT2C (4.1%), SPEN (3.8) and PTEN (3.8). In

KIRP these genes include MET (7.4%), KMT2C (6.4%), SETD2 (5.7%), KMT2D (5.0%),

BAP1 (5.0%), AR (4.6%), FAT1 (4.3%), PCLO (4.3%), PBRM1 (3.9%), NF2 (3.5%). Little

mutation data was available for KICH at the time of writing.

Samples with deleterious mutations that were likely to change the protein product or the

functioning  of  the  protein  such  as  missense  mutations,  frameshift  insertion  and

deletions, nonsense mutations and in-frame insertions and deletions were labelled as

mutations in the data whilst all other samples were labelled as not-mutated.

To calculate correlation between each mutation and overall genome ploidy we took an

absolute,  positive  value  for  each  sample's  segment  mean  to  better  measure  and

compare overall average ploidy change. This data was grouped by individual patients

resulting in a list of all patients each with an average absolute genome-wide segment

mean.

A list of patients featuring mutations in our chosen genes was then extracted from the

somatic mutation data and used to filter our preprocessed CNV data to calculate the

probability of each chosen gene mutation being associated with a general change in

ploidy. For each gene, the cohort of patients with a mutation in that particular gene was

sampled against a control group of all other available patients.

We used t-tests to calculate the probability that patients with mutations in each gene

would exhibit a significant change in overall ploidy. This was repeated in our pan-cancer,
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KIRC and KIRP tissue datasets for comparison. All  p-values were adjusted through the

use of the Bonferroni procedure to correct for false discovery.

6.2.4 Arm ploidy correlations

To measure correlation between chromosome arms we first stratified patients by tissue

type and then measured correlational  coefficients  between each arm pair  for  all  the

samples within those groups. 

Significance values were calculated using a permutation test where a mock distribution

was produced using the same data for each arm pair but with one arm’s data randomly

permeated  for  1000  samples.  The  real  value  was  then  compared  to  this  mock

distribution using a student t-test. 

6.2.5 Generating arm-wise ploidy signatures

Arm-wise ploidy signatures were generated from the arm-wise ploidy data (as above)

using  non-negative  matrix  factorisation  (NMF).  We  used  a  Cophenetic  Correlation

Coefficient score via the R NMF library  (Gaujoux and Seoighe, 2010) to measure the

stability of our models and to select the most stable component count. When associating

a sample with a signature we chose the highest scoring component in the coefficient

matrix for that sample. 

6.2.6 Gene mutation and pattern change

To measure the distance between the arm-ploidy pattern of groups of patients with and

without gene mutations we took the median values of each arm for each group and
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measured distance using cosine similarity. We took the top 250 most frequently mutated

genes in kidney cancers to analyse. Similar to the arm ploidy correlation analysis, we

used permutation tests to measure significance for each of these gene mutations, this

time randomising the labelling of patients in the two groups.

6.2.7 Finding gene mutations enriched within signatures

To find the most frequently mutated genes in each signature we stratified our samples by

most prominent signature (as above), counted the frequency of gene mutations in these

groups and ranked by their frequency.  To determine whether the frequency of mutations

was significantly increased compared to that which we would expect at random we once

again  used  permutation  tests  using  randomised  sampling  of  all  patients  from  all

signatures  to  create  our  mock  distribution.  In  each  case  the  number  of  randomly

sampled patients was equal to the number of samples found in the respective signature.

6.2.8 Using chromosome arm ploidy patterns to predict

gene mutations

A boolean, stating whether the patient suffered a mutation in the respective gene or not,

served as the label  for  each observation.  Data was split  randomly  into  training and

testing groups with a test size of 0.2 and a training set size of 0.8 of all samples.

To measure the predictive power of chromosome arm-wise segment mean for specific

gene  mutations,  receiver  operating  characteristic  area  under  the  curve  (ROC AUC)

scores were calculated. We initially trialled four different machine learning classifiers;
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Bernoulli Naive Bayes, Support Vector Machine, logistic regression and random forest.

Hyper-parameters for each classifier were optimised using 5 fold cross validation.

Ultimately  it  was  found  that  a  random  forest  classifier  with  1000  estimators  and  a

minimum sample leaf size of 30 performed consistently better when compared to the

other classifiers and so ROC AUC scores given in this study were all a result of this

classifier

For each model, feature importance was calculated by measuring the mean decrease in

classifier accuracy with the removal of each feature across all trees in the random forest.

This metric was reported as the mean decrease in accuracy given the removal of  a

feature.

Using this measure of the mean decrease in accuracy we ranked and identified which

chromosome  arms  were  most  commonly  lost  or  gained  when  specific  genes  are

mutated.  This analysis was applied to pan-cancer data,  KIRC tissue data alone and

finally to all tissue types excluding KIRC for comparison.

The source code and data for this study is available via bitbucket at https://bitbucket.org/

bioinformatics_lab_sussex/ploidy_nmf. Results data is available at  https://bitbucket.org/

bioinformatics_lab_sussex/ploidy_nmf/downloads/.

186

https://bitbucket.org/bioinformatics_lab_sussex/ploidy_nmf/downloads/
https://bitbucket.org/bioinformatics_lab_sussex/ploidy_nmf/downloads/
https://bitbucket.org/bioinformatics_lab_sussex/ploidy_nmf
https://bitbucket.org/bioinformatics_lab_sussex/ploidy_nmf


6.3 Results

6.3.1 Magnitude  of  copy  number  changes  differs

between cancer subtypes

We first compared overall chromosomal copy number change across all tissue types.

We processed raw CNV data downloaded from the GDC data portal  (National Cancer

Institute, 2019). This data was originally generated by using Affymetrix  Genome-Wide

Human SNP Array 6.0 to identify repeated regions of the sample genome and to further

infer the copy number of these repeats. We calculated mean chromosomal copy number

(CCN) for  all  samples (excluding sex chromosomes) and grouped these samples by

cancer subtype (Figure 6.1).
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Figure 6.1. Chromosomal copy number by tissue type – A box-plot summarising mean genome-

wide copy number for all samples in the 14 tissue types featured in our pan-cancer dataset. Copy

number values were converted from segment mean sourced via TCGA / GDC data.

Across tumours from all tissue types present in this study, we see a slight overall gain of

genetic  material  with a mean CCN of  2.046.  There is  much variance with  a bottom

quartile of CCN 1.932 and a top quartile of CCN 2.128. The lowest CCN recorded in our

samples is 0.375, from a breast cancer sample, and the highest 8.308 from an ovarian

cancer sample.

Mean chromosome copy number did not fall below 2 for any of the tissue types included

in this study. KICH exhibited most gain with a mean CCN of 2.105 (s.d. 0.450) as well as

the lowest 25th percentile at CCN 1.605 and the highest 75th percentile at CCN 2.488.
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Ovarian cancer samples showed the most variance of CCN with a standard deviation of

0.499.   The  tissue  types  with  the  lowest  variance  of  CCN  included  prostate

adenocarcinoma and KIRC with standard deviations of 0.175 and 0.219 respectively.

These results show that the extent of genomic ploidy change seems to vary by cancer

subtype type rather  than  by  the primary  site  of  the  sample.  For  example  the three

classes of kidney tissue exhibited notably different distributions.

6.3.2 Different genes are associated with changes in 

overall aneuploidy in different tissues

We next investigated how gene mutations were associated with overall ploidy change.

We identified the 250 most commonly mutated genes in our kidney cancers.  Genetic

mutations in VHL, PBRM1, SETD2, BAP1, MTOR, KDM5C, PCLO, KMT2C, ARID1A and

SPEN were most commonly seen in KIRC and MET, KMT2C,  AR, FAT1, PCLO and NF

mutations were most commonly found in KIRP tissue (Cerami et al., 2012). Mutational

data was not available for KICH tissue.

Within each tissue type we compared the distributions of copy number change between

samples with a specific mutation and those without a mutation to calculate a significance

score for each gene. After applying Bonferroni correction to correct for false discovery

error we ranked these genes by the reported corrected significance score. 

In KIRC tissue samples those with POLE mutations were reported to show the most

significant loss in ploidy (p = 1.53*10-13) while samples with mutations in TP53 exhibited

the most  significant  gains (p 1.33*10-12).  Other prominent  gene mutations associated

with ploidy change in KIRC included GRM8 (associated with loss, p = 3.44*10-12) and
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SYNE1 (associated with gain,  p = 2.36*10-11)  and ASTN1 (associated with gain,  p =

2.66*10-11) all of which are associated with brain function and have not previously been

associated with ploidy change or KIRC tissue.  Mutations in VHL and SETD2, genes

traditionally associated with KIRC tissue, also result in a significant change in ploidy in

our KIRC tissue samples (p = 0.002 and p= 0.006 respectively) though mutations in

PBRM1 did not. 

In KIRP tissue we found that patients with KRAS mutations showed the most significant

loss in copy number (p < 2.2*10-16) followed by THSD7B (p = 2.48*10-36) and CHD4 (p =

3.31*10-24).  Patients  with  mutations  in  EP400  (p  =  8.99*10-16)  and  PCDH11X  (p  =

2.79*10-09) exhibited the most significant levels of ploidy gain. Surprisingly we found that

mutations  in  TP53  did  not  appear  to  result  in  any  significant  ploidy  change  in  the

available KIRP tissue samples. 

6.3.3 Chromosome arm ploidy patterns vary by tissue

We next  investigated  copy  number  data  stratified  by  chromosome arm to  ascertain

whether certain chromosome arms were preferentially gained or lost in the kidney cell

lines compared to other cancers (Figure 6.2). All p-values below were calculated using

segment mean values to allow direct comparison. 

Across our kidney tissue samples we found that each tissue type exhibited a distinct

pattern of  copy number  variance.  This  suggests that  arm-wise copy number change

profiles depend on tissue type more than the primary cancer site.

As expected based on previous studies 5q showed the highest ploidy gain on average in

our KIRC tissue samples (CCN=2.27, STD=0.24) and 3p the most loss by a significant

margin  (CCN=1.61,  STD=0.23).  In  comparison,  in  our  pan-cancer  data  neither  5q
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(CCN=1.98, STD=0.26 P=3.50*10-144)  or 3p (CCN=1.94, STD=0.26, P=2.21*10-144) show

any notable copy number variance on average.

In KIRP tissue 7p and 7q both exhibit  a significant gain (both CCN 2.48, STD 0.46)

whilst in our pan-tissue data the arms show less dramatic change (7q CCN=2.24, std =

0.35, 7p CCN = 2.23, std = 0.39). 

KIRP also exhibited loss in 22q (CNN 1.84, STD 0.22) while KICH tissue showed a gain

(2.33,  0.317,  P  =  1.43745*10-20)  compared  to  the  pan  cancer  (1.92,  0.29,  P  =

1.71014*10-38).

The KICH arm-wise copy number data exhibit much larger copy number changes across

every arm with only 21p appearing relatively diploid. On average each of the other arms

seems to have either gained or lost roughly half of its genetic material.
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Figure 6.2.   Chromosome Arm-wise copy number -  By grouping chromosome arm-wise copy

number data across our kidney tissues individually we develop a clearer picture of the pattern of

chromosome arm copy number that occurs specifically in each kidney tissue compared to our

pan-cancer dataset.  
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These results support existing research into the karyotype of KIRC tissue, including loss

in 3p and gain in 5q.

Across the pan-cancer samples, a set of 10 cancer types excluding the three kidney

cancers (see methods) the chromosomes that exhibited the most notable copy number

change included 8q and 17p. We note that the patterns found in our pan-cancer samples

were not shared with our kidney tissue samples.

Chromosome arm 8q was to shown to exhibit the highest average copy number gain and

variance in our pan-cancer data (CCN 2.29, STD 0.0.49). Comparatively KIRC and KIRP

tissues both showed significantly less change in arm 8q with a mean copy number close

to normal (KIRC CCN 2.04, STD 0.22, P=1.65*10-87 and KIRP CCN 2.00, STD 0.25,

P=2.12*10-55).

Across  our  pan-cancer  samples  chromosome arm 17p  showed the  greatest  loss  of

ploidy on average (CCN=1.88, STD=0.30). Again our KIRC tissue samples exhibited as

near diploid  (KIRC CCN=2.01 STD=0.16, P=0.17*10-74) and KIRP exhibits a significant

gain in copy number (KIRP CCN=2.27, STD=0.37, P=7.79*10-55).

The apparent stability of 8q in KIRC and KIRP tissues compared to our post-cancer set,

may be a possible avenue for further research.

6.3.4 Patterns of arm ploidy correlation are found 

within tissue types

A loss in chromosome arm 3p paired with a gain in chromosome arm 5q is a common

and well described trait of KIRC tissue. Next we investigated how changes of ploidy in

other pairs of chromosome arms relate to each other.   We measured the correlation
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coefficient for each pair of arms within tissue type (Figure 6.3). Significance scores were

measured using permutation tests as discussed in methods.

The most  prominent  positive correlation scores occurred between arms of  the same

chromosome (For example chromosome arms 1p and 1q commonly exhibited a similar

amount of  gain or  loss together),  however these scores were not  uniform across all

tissue types.   In KIRC,   for  example,  the 9p-9q arm pair  was reported to show the

highest positive correlation coefficient (r = ~0.73, p = 4.08*10-72) while in KIRP it was the

20p-20q arm pair (r = ~0.78, p =  7.27*10-53). Conversely the 9p-9q arm pair in KIRP

exhibits a much lower correlation score  (r = ~0.313, p = 2.69*10-18) and the 20p-20q arm

pair in KIRC shows a slightly negative correlation (r = -0.02, p = 4.17*10-55).

In terms of negative correlation, where one arm’s gain of genetic material was commonly

associated with a loss in the others, we found the 3p-5q pair featured prominently for

KIRP  tissue  (r  =  -0.6348595,  p  =  1.369225*10-07) but  perhaps  surprisingly  not  as

prominently for KIRC (r = -0.1250279, p = 2.212398*10-05) although both are reported to

be significant. In KIRC tissue the 4q-6q  exhibits the strongest negative correlation ploidy

(r = -0.5838217, p = 3.641906*10-05) (Supplementary Figures 6.1 & 6.2 ).
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Figure  6.3.  Arm  ploidy  correlational  heat  maps  –  Taking  the  Pearson  correlation

coefficient as our measure we visualise the correlation of gain and loss of copy number

for each chromosome arm pair in each of our kidney datasets and in our pan-cancer

data. Bright yellow tiles denote highly positive correlation and dark red tiles denote highly

negative correlations.  The results along the diagonal (which report, for example, of the

correlation of c.1p – c.1p) are normalised to r=0 to improve overall contrast)
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6.3.5 Arm ploidy signatures are somewhat enriched for

tissue types 

The patterns of arm ploidy correlation found above suggest that underlying mechanisms

that occur in specific tissues may give rise to different profiles of loss and gain of ploidy

in different chromosome arms. In an attempt to capture these profiles more fully we

employed non-negative matrix factorisation (NMF) to generate a number of arm ploidy

signatures across our kidney tissue data.

NMF  is  a  multivariate  analysis  tool  commonly  used  for  easily  interpretable

decomposition. NMF was chosen because it provides both dimensionality reduction and

clustering. Essentially NMF decomposes a feature matrix into two descriptive matrices, a

basis,  which describes the feature composition of each component and a coefficient,

which  describes  the  component  composition  of  each  sample  in  the  original  feature

matrix.

NMF generates a specified number of components (used as signatures). To identify the

optimum  number  of  components  for  each  dataset  we  ran  a  number  of  trials  for

decompositions with an increasing value of required components. Each of these trials

provided  a  cophenetic  score,  a  measure  cluster  stability,  i.e.  how well  the  clusters

obtained by NMF preserved the pairwise distances between the original data points. For

each dataset we selected the lowest component count associated with a local minimum

cophenentic score.

Our kidney tissue ploidy data was decomposed into six component signatures (Figure

6.4). We found that some of these signatures where highly enriched for just one of the
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three tissue types within the kidney group, KIRC, KIRP and KICH whilst others were

more mixed. KIRC samples were most prominent in signature 1 and 4, KIRP samples

were dominant  in  signatures  2,  3  and  6,  and KICH was  found most  prominently  in

signature 5.

In terms of composition we found that the feature composition of signature 2, associated

with KIRP tissue, exhibited the most notable deficiency of 3p paired with gains in 5q

which reflected our correlation analysis. This was paired with large gains in 6p, 15q and

16p.

a.
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b.

Figure 6.4 a. Copy number signature composition - A breakdown of the features that describe

each of our 6 signatures. For example we can see that chromosome arms 19q and 20p are

prominent  features  in  signature  6.  b.  A  chart  showing  the  proportion  of  kidney  patients

categorised by most prominent signature and stratified by tissue type. From this visualisation we

can see that signature 1 is highly enriched for KIRP tissue and signature 5 is highly enriched for

KICH tissue.

We found that signature 1, most prominently associated with KIRC, featured gains in a

number of  arms most  notably  in  10p,18q and 19p.   Signature 5,  enriched for  KICH

samples, also features gains in a number of chromosome arms that do not feature in the

other signatures and notably exhibits losses in arms 6p, 6q and 7p.  Notably, signature

6, the other signature associated with KIRP tissue, exhibits gains in 3p and 3q paired

with some loss in 5p and 5q. 19q and 20p also exhibited large gains in signature 6.
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6.3.6 The amount of signature composition change 

varies by gene mutation

We  next  used  cosine  similarity,  the  cosine  of  the  angle  between  two  signatures

represented as vectors projected in a multi-dimensional space, to measure the effect of

specific  mutations  on  overall  signature  composition  change.  By  taking  the  median

signature  composition  of  patients  with  and  without  specific  gene  mutations  and

measuring the cosine similarities of these compositions we were able to rank genes by

the distance of signature composition between these groups.

In our kidney cancer data we found a number of gene mutations associated with an

increased distance in signature composition. The genes with the highest cosine similarity

(all with cosine similarity scores of ~0.678) in our ranked list are included in table 6.1a.

In our pan-cancer data we found a different set of genes with some similar functionality

listed in 6.1b.

We note the frequency of gene associated with the innate immune system as well as

KDM6B,  INCENP and  H2AFJ which are all related to the chromosome organisation.

6.3.7 Some gene mutations are enriched in our kidney 

ploidy signatures

To  find  gene  mutation  enrichment  in  our  six  kidney  cancer  signatures  we  first

categorised samples into signature groups and counted the frequency of mutations that

occurred in patients in each group. We then used permutation tests to measure if each
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mutation in each group was significantly higher than would be expected in a random

sample of patients. Below we highlight some of the notable gene mutations that were

reported to be significantly  enriched in each signature.

Signature 1,  the largest  signature group,  and associated with KIRC tissue,  exhibited

significant enrichment for MUC4 (p = 0.008800434). MUC4 is associated with changes

in ErbB2 expression, apoptosis, proliferation, differentiation, and some cancers.  

In signature 2, which is enriched for KIRP tissue and composed of notable ploidy change

in 3p, 5q, 6p, 15q and 16p, CENPF (Centromere protein F) was mutated in 4.2% of

patients (p = 9.30e-05) and DSPP (Dentin Sialophosphoprotein), a gene associated with

calcium ion binding and extracellular matrix structural constituent, was also mutated in

4.2% (p = 3.55e-05).  

Signature 4, a group again associated with KIRC and changes in 3p, 3q, 17q and 18p,

saw  enrichment  for  KMT2D  (also  MLL2),  a  histone  methyltransferase,  which  was

mutated in 6.2% of patients (p=1.678634e-08).  

Signature 6, associated with KIRP and changes in 6q, 7p, 19q and 20p, was enriched for

MUC4 (Mucin 4) which occurred in 7.1% of patients (p = 4.890953e-06).  Signatures 3

did not exhibit any significant enrichment for mutations.

200



Gene Functional associations

PON2 Oxidative stress protection

Pathogenic bacteriaprotection

IL6ST Adipogenesis

Innate immune system

KDM6B Chromatin organisation control

Gene silencing

SEC16B Organisation of transitional endoplasmic reticulum sites and

protein export

INCENP (Inner 

Centromere 

Protein)

A component of the chromosomal passenger complex (CPC),  a key 

regulator of mitosis

Table 6.1a.  Gene mutations associated with an increased distance in signature composition between wild type and 

mutated kidney cancer samples

Gene Functional associations

RNF185 (Ring 

Finger Protein 

 Ligase activity

201



185) selective mitochondrial autophagy

TMEM30C Innate immune system

CUEDC2 DNA damage response

H2AFJ Histone H2A.J

PRG3 Innate immune system

Table 6.1b. Gene mutations associated with an increased distance in signature composition between wild type and 

mutated pan-cancer samples

6.3.8 Patterns  of  ploidy  of  chromosome  arms  are

associated with specific mutated genes

To investigate to what extent mutations in specific genes lead to specific patterns of arm-

wise copy number change we trialled a set of four machine learning classifiers designed

to predict  gene mutations  based on a patient's  chromosome arm ploidy profile  (see

methods). Using an AUC ROC score of 0.70 as a cut-off we found that the patterns of

ploidy in chromosome arms had varied predictive power for mutations in specific genes. 

We  trialled  four  classifiers;  Bernoulli  naive  Bayes,  support  vector  machine,  logistic

regression and random forest. Due to consistently better performance when compared

to the other  classifiers  all  ROC  AUC scores  below are  based on the results  of  the

random  forest  classifier.  In  our  pan-cancer  dataset  patterns  of  ploidy  changes  in

chromosome arms were strongly predictive of mutations in VHL (ROC 0.91), TP53 (ROC

0.74),  and PBRM1 (ROC 0.71),  with BAP1 (ROC 0.67)  narrowly missing the cut-off

score. 
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To better understand how different features contributed to the predictive power of each

classifier we ranked the importance of each feature for each model. Feature importance

was  calculated  by  measuring  the  mean  decrease  in  classifier  accuracy  when

systematically holding out each variable across all tree permutations in a random forest.

Feature importance was reported as a mean decrease in accuracy.

When analysing the important features in the predictive model, losses in 3p featured

heavily  in  patients  with  BAP1,  PBRM1  and  VHL mutations.  Gains  in  5p  were  an

important feature for both PBRM1 and VHL mutated genes.

In general KIRC tissue arm-wise CCN data, which exhibited less variance than KIRP

tissue,  were less predictive of specific gene mutations. The highest scoring genes, in

terms of ROC AUC score, were PTEN (ROC 0.68),  PBRM1 (ROC 0.61) and AKAP9

(ROC 0.61) (Figure 6.5). 18q previously noted for its overall low ploidy change in KIRC

tissue was found to be the most important feature for both AKAP9 (0.15 mean decrease

in accuracy) and PTEN (0.081 mean decrease in accuracy).

Chromosome arm 3p, the arm on which both PBRM1 and BAP1 are located, commonly

exhibits loss in KIRC tissues. However we found that 3p reported a relatively low overall

importance score in our KIRC tissue predictive models. Instead of 3p the highest ranking

feature for PBRM1 was 10p (0.063 mean decrease in accuracy ). This may be due to the

all but uniform loss of these genes along with 3p in KIRC tissue (94% of patients with

overall loss in 3p and 71% with less than CCN 1.8) leading to less variation and, as

such, less signal.
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Figure 6.5. AUC ROC curves used to measure the performance of random forest classifiers 

trained on arm-wise chromosome copy number patterns to predict gene mutation status of VHL, 

TP53, PBRM1 and BAP1. A larger area under the ROC indicates better performance.

In models derived from our pan-cancer data, features based on patterns of arm-wise

CCN performed relatively  well  when predicting TP53 and PTEN mutations with AUC

ROC  scores  of  0.74  and  0.73  respectively.  TP53  has  been  implicated  in  genetic
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instability in many tissue types (Donehower et al., 2019; Eyfjörd et al., 1995).  BAP1 also

performed fairly well with a ROC AUC score of 0.66; with the important features being a

loss  of  3p  (0.076  mean decrease  in  accuracy)  and  of  3q  (0.15  mean decrease  in

accuracy).  Our pan-cancer tissues models performed poorly when predicting PBRM1

with a ROC AUC score of 0.47. 

Once again both PBRM1 and VHL were found to be associated with KIRC tissue with

losses in 3p and gains in 5p featuring as important predictors for both PBRM1 and VHL

mutated genes. Chromosome arm ploidy proved a strong predictor of mutations in VHL,

TP53 and PBRM1 in our pan-cancer dataset and the insight drawn from our feature

importance scores again matched our expected results.

6.4 Discussion

The goal of this study was to investigate how genome-wide and chromosome arm-wise

ploidy varies by tumour  type,  how these ploidy patterns are associated with genetic

mutations and how suitable ploidy data is as a predictor of specific mutations.

As  described  above  we  observe  significant  variation  in  both  genome-wide  and

chromosome arm-wise ploidy between samples from different tissue types.  This may be

expected given that different tumours are driven via gains or losses of specific genes

located  on  various  chromosome  arms.  Whilst  we  observed  a  small  number  of

generalisations regarding the pattern of genetic material e.g. 20p shows gains in CCN

across all tumour types, beyond these similarities, there is significant variation in arm

ploidy profiles between tumour types.

Our  focus  on  KIRC  and  kidney  tissue  was  due  to  it  is  distinct  and  well-described
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karyotype.  Throughout  this  study,  we  compare  our  observations  with  previous

experimental studies of KIRC to cross-validate our analysis.  Turajlic et al. (Turajlic et al.,

2015) found that KIRC is generally characterised by recurrent copy-number variants in

arms including, but not exclusive to, 3p, 5q, 7q, 8p, 9p, and 14q. SQSTM1, a gene which

resides on 5q, an arm which shows relatively large gains in CCN in this study has been

postulated to represent an alternative mechanism for activation of mTORC1  (Li et al.,

2013).  PBRM1, VHL, BAP1 and SETD2 all reside on 3p, a copy of which is known to be

often lost at the outset of KIRC tumourigenesis. As such we expected changes in 3p

ploidy to feature prominently in our results. The association between 3p and KIRC was

supported by the findings in this study, both whilst investigating the chromosome arm

ploidy  profile  of  KIRC  compared  to  other  tissues  and  whilst  calculating  feature

importance as part  of  our classification where we clearly found 3p performing as an

important  indicator  for  both  PBRM1  and  VHL  mutations.  We  also  found  some

association  between 3p and 5q in  KIRP tissue samples  both  in  our  correlation  and

signature analysis.

Of further interest is the prominence of 5q in our results which often sees a gain in

ploidy. This gain might be a direct or indirect result of the loss of heterozygosity and

resulting vulnerability to loss of gene function at 3p (Turajlic et al., 2015). Our random

forest importance scores suggest that 5p is highly associated with both PBRM1 (0.088

mean decrease in  accuracy)  and VHL (0.13  mean decrease in  accuracy)  mutations

across all tissues. Chen et al. (Chen et al., 2016) describe the gain of 5q as a common

trait of papillary-enriched KIRC subtype which often includes mutation or amplification of

MET.  
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VHL,  a  gene  often  found  mutated  early  during  the  progression  of  KIRC and  found

associated with changes in ploidy in this study, has been shown to drive aneuploidy (Hell

et  al.,  2014). Loss of a functioning VHL gene (located on chromosome arm 3p) has

previously  been  associated  with  spindle  misorientation,  chromosome  instability  and

aneuploidy  (Thoma et al., 2009). Similarly PBRM1, a gene that encodes BAF180 and

also located on chromosome 3p, has been shown to be important for the establishment

or maintenance of cohesin on chromatin at centromeres. Loss of functioning PBRM1 has

recently been reported as a driver of chromosomal instability and aneuploidy (Brownlee

et al., 2014).

The observations in this study suggest that our analysis has been sensitive to known

karyotypic patterns and may be useful for the detection of additional patterns.

As well as these commonly cited kidney tissue gene mutations we identified a number of

other  mutations  significantly  associated to  changes  in  kideny tissue karyotypes.  We

identified a number of genes associated with increased overall ploidy change, such as

POLE  in  KIRC  tissue  and  KRAS  in  KIRP.  We  found  a  number  of  gene  mutations

associated  with  the  innate  immune  system  and  chromosome  organisation  such  as

KDM6B,  INCENP and H2AFJ which appear to contribute to broad changes in ploidy

patterns and we found genes significantly associated with the ploidy pattern signatures

we generated in this study which in some cases describe karotypes shared between

tissue types. 
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7 - Discussion

In this thesis I have developed a range of methods to classify and predict potential drug

targets that exploit negative genetic interactions such as synthetic lethality or acquired

lethality and those associated with genetic instability.  

In  Chapter  2  I  present  a  review  of  genetic  interactions  and  SSL,  covered  the

shortcomings  of  traditional  cancer  therapies,  how  therapies  that  exploit  genetic

interactions  such  as  SSL  might  mitigate  some  of  these  shortcomings  in  the  next

generation of tailored therapies and how drug discovery groups have approached the

identification and validation of these interactions. I discussed how one of the primary

obstacles to systematic experimental validation of synthetic lethal pairs is currently that

of insurmountable experimental burden and how the prediction of SSL pairs through the

use of  computational methods may help better guide future  screens for these genetic

interactions. This chapter provided an in-depth literature review and background for the

following chapters.

In Chapter 3 I present the Slant algorithm, Slant extends previous attempts to predict

human SSL pairs using topological and social  features extracted from PPI networks.

These models were shown to classify SSL gene pairs with accuracy even when one

species SSL pairs were predicted using the training data from another species. These

results  suggest  that  many  topology  patterns  associated  with  SSL  gene  pairs  are

conserved between species even if the SSL pairs themselves are not.  I demonstrated

that network models that focus on pair-wise node features report significantly improved

predictive power compared to previous studies that did not utilise pair wise features.
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Finally we demonstrated that our models were also more robust than previous studies to

pair input bias, a bias introduced when the same genes are present in training and test

datasets that feature gene pairs. 

Though the classifiers used in Slant demonstrate high predictive power there are some

limitations  associated  with  the  available  source  PPI  data.  These  limitations  include

incompleteness,  a lack of  directionality and a lack of  functional  information for  each

interaction,  for  example does an interaction result  in an increase or decrease in  the

target protein’s activity. Some of the predictive power lost due to to incompleteness was

quantified in the study and our model was fairly robust to this incompleteness. I note that

similar models should report increased accuracy as the known PPI network is improved

through more sophisticated screening. Related to these limitations the pairs predicted in

the Slant study are based on a generic, consensus version of the PPI network which

may not be fully representative of the PPI networks of all cancer cell-lines. As such the

potential for personalised therapies is limited.

In Chapter 4 I introduced Slorth,  a publicly available online database developed to allow

researchers and clinicians to easily browse and search for clinically relevant SSL pairs.

Slorth features SSL predictions produced via the classifiers introduced in Chapter 3 as

well as experimentally validated SSL pairs from BioGRID. The overriding motivation for

the Slorth database is to provide public and easy access to high quality SSL predictions

to guide future screening.

In Chapter 5 I further developed the idea of using network topology features to classify

potential  therapy  targets,  this  time  extending  the  idea  into  genuinely  personalised

medicine. By modifying PPI networks based on the respective patient’s unique genetic

alteration profile I  was able to model individual cell  lines which were in turn used to
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predict genes that had acquired essentiality in the given cancer patient. Individual PPI

networks were modified by removing nodes associated with loss of function mutations in

the patient and modulating edge weight based on gain of function mutations and gene

expression  changes.   Again  these  classifiers  reported  predictive  power  both  when

classifying dependency genes within a cell-line and across cell-lines. This suggests that

patterns of PPI associated with acquired essential genes is conserved in a similar way to

that observed in the cross-species classification of SSL.

The incompleteness of the known PPI as well as lack of directionality and functional

outcome of interactions was again a limiting factor in this study. To fairly model edge

weights without directional information all edges were made bi-directional with individual

weights based on the expression level and mutational status of the associated source

node.  This  model  is  unlikely  to  accurately  represent  the  full  complexity  of  the  real

interactome and again improvements in the base data will offer further opportunities to

improve this type of study. 

Despite these limitations this study presents a novel way of personalising an otherwise

generic biological network and furthermore reports success when using these models to

predict potential drug targets.

Finally in Chapter 6 I investigated how patterns of ploidy could be used as an alternative

approach to identifying genes that were associated with genetic instability and cancer

progression.  I describe patterns of ploidy across chromosome arms including correlation

of  gains and losses and ploidy signatures using NMF.  These patterns matched with

previously  described  changes  in  kidney  cancer  issues  and  highlighted  a  number  of

previously undescribed patterns. Using these patterns we identified a range of genes
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that  may be associated with  genetic  stability  and as  such could  lead to novel  drug

targets.

An overarching theme of this work has been to add additional value to existing publicly

available biological data through the development of novel models that utilise data from

a range of sources. These models have led to a SSL classifier that is robust to pair input

bias, the public availability of nearly one million high quality SSL and SDL predictions,

each a potential therapy target, and a novel approach to predicting personalised cancer

drug targets. 

Despite the scope for improvement the known PPI network has proved a valuable and

flexible resource for building models with the purpose of drug target classification. The

modification of this resource to better model individuals or groups is especially promising

and may present many opportunities for personalised medicine. 
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9 - Appendices

9.1 Appendix 1 – Contribution to other 

work

Mutational patterns in oncogenes and tumour suppressors

https://doi.org/10.1042/BST20160001

Hanadi M. Baeissa, Graeme Benstead-Hume, Christopher J. Richardson, Frances M.G. 

Pearl

June 2016

Abstract

All cancers depend upon mutations in critical genes, which confer a selective advantage 

to the tumour cell. Knowledge of these mutations is crucial to understanding the biology 

of cancer initiation and progression, and to the development of targeted therapeutic 

strategies. The key to understanding the contribution of a disease-associated mutation 

to the development and progression of cancer, comes from an understanding of the 

consequences of that mutation on the function of the affected protein, and the impact on 

the pathways in which that protein is involved. In this paper we examine the mutation 

patterns observed in oncogenes and tumour suppressors, and discuss different 

approaches that have been developed to identify driver mutations within cancers that 
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contribute to the disease progress. We also discuss the MOKCa database where we 

have developed an automatic pipeline that structurally and functionally annotates all 

proteins from the human proteome that are mutated in cancer. 

Contribution

For this paper I provided informatics and statistical analysis support.

Identification and analysis of mutational hotspots in oncogenes

and tumour suppressors

https://doi.org/10.18632/oncotarget.15514

Hanadi Baeissa, Graeme Benstead-Hume, Christopher J. Richardson, Frances M.G. 

Pearl

February 2017

Abstract

The key to interpreting the contribution of a disease-associated mutation in the 

development and progression of cancer is an understanding of the consequences of that

mutation both on the function of the affected protein and on the pathways in which that 

protein is involved. Protein domains encapsulate function and position-specific domain 

based analysis of mutations have been shown to help elucidate their phenotypes.

In this paper we examine the domain biases in oncogenes and tumour suppressors, and

find that their domain compositions substantially differ. Using data from over 30 different 
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cancers from whole-exome sequencing cancer genomic projects we mapped over one 

million mutations to their respective Pfam domains to identify which domains are 

enriched in any of three different classes of mutation; missense, indels or truncations. 

Next, we identified the mutational hotspots within domain families by mapping small 

mutations to equivalent positions in multiple sequence alignments of protein domains

We find that gain of function mutations from oncogenes and loss of function mutations 

from tumour suppressors are normally found in different domain families and when 

observed in the same domain families, hotspot mutations are located at different 

positions within the multiple sequence alignment of the domain.

By considering hotspots in tumour suppressors and oncogenes independently, we find 

that there are different specific positions within domain families that are particularly 

suited to accommodate either a loss or a gain of function mutation. The position is also 

dependent on the class of mutation.

We find rare mutations co-located with well-known functional mutation hotspots, in 

members of homologous domain superfamilies, and we detect novel mutation hotspots 

in domain families previously unconnected with cancer. The results of this analysis can 

be accessed through the MOKCa database (http://strubiol.icr.ac.uk/extra/MOKCa).

Contribution

I coded a binomial test to identify which positions had a significant number of mutations. 

If each individual mutation were to affect a random residue across the domain the 

frequency of mutations at each site would follow a binomial distribution. As such our null 

model states that there is an equal probability of a mutation occurring at each residue on
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the given domain.

Where n is the total number of mutations in the domain, k is the number of mutations 

falling at a specific residue and p the probability of any mutation affecting a specific 

residue we can find the probability of observing k mutations falling at any specific point in

the domain by calculating the probability of a minimum of k mutations at that point and 

comparing it to our null model.

‘Big data’ approaches for novel anti-cancer drug discovery.

h  ttps://doi.org/10.1080/17460441.2017.1319356  

Benstead-Hume G., Wooller SK, Pearl FMG.  Expert Opinion on Drug Discovery 12(6):1-

11 

May 2017

Abstract

The development of improved cancer therapies is frequently cited as an urgent unmet 

medical need. Here we review how recent advances in platform technologies and the 

increasing availability of biological ‘big data’ are providing an unparalleled opportunity to 

systematically identify the key genes and pathways involved in tumorigenesis. We then 

discuss how these discoveries may be amenable to therapeutic interventions.

We discuss the current approaches that use ‘big data’ to identify cancer drivers. These 

approaches include genomic sequencing, pathway data, multi-platform data, identifying 

genetic interactions such as synthetic lethality and using cell line data. We review how 
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big data is being used to assess the tractability of potential drug targets and how 

systems biology is being utilised to identify novel drug targets. We finish the review with 

an overview of available data repositories and tools being used at the forefront of cancer

drug discovery. Targeted therapies based on the genomic events driving the tumour will 

eventually inform treatment protocols. However, using a tailored approach to treat all 

tumour patients may require developing a large repertoire of targeted drugs.

Contribution

I researched and wrote this paper with S.K.W. and F.M.G.P.

Bioinformatics in translational drug discovery

http://doi.org/10.1042/BSR20160180

Sarah K. Wooller, Graeme Benstead-Hume, Xiangrong Chen, Yusuf Ali, Frances 

M.G. Pearl

July 2017

Abstract

Bioinformatics approaches are becoming ever more essential in translational drug 

discovery both in academia and within the pharmaceutical industry. Computational 

exploitation of the increasing volumes of data generated during all phases of drug 

discovery is enabling key challenges of the process to be addressed. Here, we highlight 

some of the areas in which bioinformatics resources and methods are being developed 

to support the drug discovery pipeline. These include the creation of large data 

warehouses, bioinformatics algorithms to analyse ‘big data’ that identify novel drug 

targets and/or biomarkers, programs to assess the tractability of targets, and prediction 
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of repositioning opportunities that use licensed drugs to treat additional indications.

Contribution

I researched and wrote this paper with S.K.W. and F.M.G.P.

Repression of Transcription at DNA Breaks Requires Cohesin 

throughout Interphase and Prevents Genome Instability

https://doi.org/10.1016/j.molcel.2018.11.001

Cornelia Meisenberg, Sarah I.Pinder, Suzanna R.Hopkins, Sarah K.Wooller, 

GraemeBenstead-Hume, Frances M.G.Pearl, Penny A.Jeggo, Jessica A.Downs

13 December 2018

Abstract

Cohesin subunits are frequently mutated in cancer, but how they function as tumor 

suppressors is unknown. Cohesin mediates sister chromatid cohesion, but this is not 

always perturbed in cancer cells. Here, we identify a previously unknown role for 

cohesin. We find that cohesin is required to repress transcription at DNA double-strand 

breaks (DSBs). Notably, cohesin represses transcription at DSBs throughout interphase,

indicating that this is distinct from its known role in mediating DNA repair through sister 

chromatid cohesion. We identified a cancer-associated SA2 mutation that supports sister

chromatid cohesion but is unable to repress transcription at DSBs. We further show that 

failure to repress transcription at DSBs leads to large-scale genome rearrangements. 

Cancer samples lacking SA2 display mutational patterns consistent with loss of this 

pathway. These findings uncover a new function for cohesin that provides insights into its
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frequent loss in cancer.

Contribution

To investigate the difference in mutational patterns in SA2 competent and SA2 deficient 

tumors, I implemented mutational fingerprints for two groups of patients were generated 

using mutational data from whole genome screens annotated in the COSMIC database. 

One group included samples from 336 bladder cancer patients that did not exhibit a SA2

mutation and the other group included samples from 38 bladder cancer patients with a 

SA2 mutation.

For both groups of samples their mutational fingerprints were decomposed using a non-

negative matrix factorisation to produce 5 signatures. Decomposition was performed 

using the Brunet method through the NMF library in R3.4.0. The resulting signatures 

were compared to those published in COSMIC using a correlation matrix produced again

in R using the Pearson’s correlation method.

Cell-derived extracellular vesicles can be used as a biomarker 

reservoir for glioblastoma tumor subtyping

https://doi.org/10.1038/s42003-019-0560-x

Rosemary Lane, Thomas Simon, Marian Vintu, Benjamin Solkin, Barbara Koch, Nicolas 

Stewart, Graeme Benstead-Hume, Frances M. G. Pearl, Giles Critchley, Justin Stebbing 

& Georgios Giamas 

August 2019
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Glioblastoma (GBM) is one of the most aggressive solid tumors for which treatment 

options and biomarkers are limited. Small extracellular vesicles (sEVs) produced by both

GBM and stromal cells are central in the inter-cellular communication that is taking place

in the tumor bulk. As tumor sEVs are accessible in biofluids, recent reports have 

suggested that sEVs contain valuable biomarkers for GBM patient diagnosis and follow-

up. The aim of the current study was to describe the protein content of sEVs produced 

by different GBM cell lines and patient-derived stem cells. Our results reveal that the 

content of the sEVs mirrors the phenotypic signature of the respective GBM cells, 

leading to the description of potential informative sEV-associated biomarkers for GBM 

subtyping, such as CD44. Overall, these data could assist future GBM in vitro studies 

and provide insights for the development of new diagnostic and therapeutic methods as 

well as personalized treatment strategies.

Contribution

Mean phenotype parameter measurement across all available cell lines was 

decomposed into seven different signatures to reduce the dimensionality of the data and

provide a method of clustering the cell lines by phenotype similarity. Additionally the 

LN18, U87, U118, G166, and GS090 cell lines alone were decomposed into four 

signatures. This decomposition was achieved using non-negative matrix factorization 

(NMF). Each cell-line’s mean parameter measurement was used to build a feature 

matrix. NMF was used to decompose these features into two separate matrices, the 

basis, which describes the composition of each signature and the coefficient, which 

reports how prominent each signature is in each cell line and stem cell. The number of 

components parameter used for each decomposition was decided by running many 

NMF decompositions with increasing parameters, and choosing the number of 
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components where the reconstruction error plateaued. Finally, we used hierarchical 

clustering on the coefficient matrices in order to cluster GBM cell lines and stem cells 

based on signature composition similarity.
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9.2 Appendix 2 - Chapter 3 

supplementary content 

9.2.1 A2.1 Chapter 3 supplementary figures

Supplementary Figure 3.1

a.  A distribution of normalised adhesion scores for each organism illustrate significant differences

in SSL and non-SSL pairs across species. b.  A normalised shortest path distribution shows a 

general trend for shorter shortest paths between H. sapiens SSL pairs though this difference is 

less pronounced in our model organisms.  c. A distribution of normalised mutual neighbour counts

suggests that SSL pairs often share more mutual neighbours than non-SSL pairs.
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Supplementary Figure 3.2. Count of most common associations between molecular function GO 

terms observed in SSL pairs. Individual feature GO associations extracted from full GO 

annotation lists for each SSL gene pair.
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Supplementary Figure 3.3.  Violin plots illustrating feature value distributions for a. S. cerevisiae, 

b. C. elegans, c.  D. melanogaster and d. S. pombe.
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Supplementary Figure 3.4

a. Full SSL interaction network of predicted human SSL pairs shaded by likelihood of being a true

SSL pair based on consensus score.  Red edges are interactions sourced from our training data 

(directly from BioGRID) lighter edges denote a lower consensus scores. Produced with Gephi 

0.9.1 (Bastian et al., 2009). 

b. Network of SSL interaction predictions with high consensus scores associated with known 

tumour suppressors including, where available, VHL, BRCA1, BRCA2, PBRM1, PTEN and APC.
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Supplementary Figure 3.5. Carcinogenic survival assay plate images for ABL inhibitor Dasatanib 

(marked as Dasat) (supp figures 5a, b, c & d) and POLA inhibitor Erocalciferol (marked as VD2, 

an abbreviation of vitamin D2) experiments (supp figures 5e, f, g & h). BAF180 knock-out cell-line

plate images for the PARP1 inhibitor Olaparib BAF180 are labeled with BAF and control plates 

marked with NSC on plate lids and the corresponding plate colonies are displayed adjacent to 

each lid (supp figures 5i & j).  
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9.2.2 A2.2 Chapter 3 Supplementary Tables

GO Annotation 
type

H. sapiens 
shared GO 
terms

SSL Non-SSL Welch 2 
sample t-test 
(p)

Molecular

function

Mean 1.195 0.733 < 2.2*10-16

Stdev. 0.903 0.682 

Biological

process

Mean 0.837 0.149 < 2.2*10-16

Stdev. 1.554  0.550 

Cellular

compartment

Mean 1.679 0.817 < 2.2*10-16

Stdev. 1.210 0.991

Supplementary Table 3.1a

GO Annotation 
type

S. cerevisiae 
shared GO 
terms

SSL Non-SSL Welch 2 
sample t-test 
(p)

Molecular

function

Mean 0.486 0.258 < 2.2*10-16

Stdev. 1.099 0.681

Biological

process

Mean 0.760 0.136 < 2.2*10-16

Stdev. 1.364 0.504

Cellular Mean 1.355 0.674 < 2.2*10-16
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compartment Stdev. 1.369 0.825 

Supplementary Table 3.1b

GO Annotation 
type

C. elegans 
shared GO 
terms

SSL Non-SSL Welch 2 
sample t-test 
(p)

Molecular

function

Mean 0.423 0.229 < 2.2*10-16

Stdev. 0.970 0.643

Biological

process

Mean 2.368 0.683 2.642*10-07

Stdev. 2.290 1.210

Cellular

compartment

Mean 0.483  0.256 1.89*10-08

Stdev. 0.772 0.510 

Supplementary Table 3.1c

GO Annotation 
type

D. melanogaster
shared GO 
terms

SSL Non-SSL Welch 2 
sample t-test 
(p)

Molecular

function

Mean 0.554 0.099 < 2.2*10-16

Stdev. 0.843 0.332

Biological

process

Mean 1.842 0.098 < 2.2*10-16

Stdev. 2.993 0.332
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Cellular

compartment

Mean 0.619 0.179 < 2.2*10-16

Stdev. 0.829 0.428

Supplementary Table 3.1d

GO Annotation 
type

S. pombe 
shared GO 
terms

SSL Non-SSL Welch 2 
sample t-test 
(p)

Molecular

function

Mean 0.252 0.107 0.2934

Stdev. 0.519 0.331

Biological

process

Mean 0.0841 0.025 2.832*10-09

Stdev. 0.312 0.173 

Cellular

compartment

Mean 1.16 0.623 < 2.2*10-16

Stdev. 0.837 0.776

Supplementary Table 3.1e

Supplementary Table 3.1. Distribution of shared molecular function, biological process and 

cellular compartment GO terms that occur between SSL and non-SSL pairs in a. H. sapiens, b. S.

cerevisea, c. C. elegans, d. D. melanogaster, and e. S. pombe. We observe that SSL pairs share 

significantly more molecular function and cellular compartment GO terms while non-SSL pairs 

share significantly more biological process terms in H. sapiens. A welch 2 sample t-test was used 

to measure significance for each annotation. 2.2*10-16 was the smallest value availble. 
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H. 
sapiens

S. 
cerevisiae

C. 
elegans

D. 
melanogast
er

S. 
pombe

Adhesion ✔

Adjacent ✔

Cohesion ✔ ✔

Mutual neighbours ✔ ✔

Shared GO Count – cellular 
compartment

✔ ✔ ✔ ✔

Shared GO count – molecular 
function

✔

Shared GO Count – biological 
process

✔ ✔ ✔

Coreness ✔ ✔ ✔ ✔

Neighborhood  size ✔ ✔

Supplementary Table 3.2.  A list of most important features for each species reported via the R 

caret libraries random forest classifier. Feature importance rankings were calculated by 

measuring the mean decrease in accuracy without each variable across all tree permutations in 

the random forest.

Model Cross-species SDL classification performance (ROC AUC )
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H. 
sapiens

S. 
cerevisiae

H. sapiens 0.782 0.754

S. cerevisiae 0.736 0.890

Consensus 0.805 0.918

Supplementary Table 3.3. Cross validation ROC AUC scores for S. cerevisiae and H.sapiens SDL

models. The best score for each species model is highlighted in green. Consensus model results 

are highlighted in blue.

Gene1 Gene2 Consensus score

SREBF1 VHL 0.810066584

PTEN SFN 0.808599164

RBX1 VHL 0.808448941

PTEN CHEK2 0.808017586

UBE2D3 VHL 0.807876266

BRAF PTEN 0.807264817

FBXW7 VHL 0.806462054

PTEN CTNND1 0.806458647

GSK3B VHL 0.805455056

APC AURKB 0.805347415

APC CTNND1 0.805335746

PIN1 PTEN 0.805318639

MAP3K1 PTEN 0.805219709

CDKN1B PTEN 0.804986161

ORC1 PTEN 0.80472497

ARRB2 PTEN 0.804692535

SKP2 PTEN 0.80468009

BUB1B PTEN 0.803596615

VHL NOTCH1 0.803412785

Supplementary Table 3.4. Top 20 Predictions featuring common tumour suppressor genes

257



Drug Target Citation

Olaparib PARP1
(Tangutoori et al., 

2015)

CP-724714 ERBB2/HER2 (Jani et al., 2007)

ZM 336372 RAF1
(Hall-Jackson et al., 

1999)

Ergocalciferol 

(Vitamin D2)
POLA1

(Mizushina et al., 

2003)

AZD1480 JAK2
(Plimack et al., 

2013)

Dasatinib ABL1 (Raju et al., 2012)

CHIR-98014 GSK3B
(Rahmani et al., 

2013)

Supplementary Table 3.5. We chose a group of genes with selective inhibitors that were predicted

to share a synthetic lethal interaction with BAF180 (PBRM1) for validation. We performed 

clonogenic survival assays for each inhibitor using U2OS cell lines (shControl + mCherry/NLS 

and shBAF180 + GFP/NLS).
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Organism Protein interactions SSL / Negative GI count SDL count

H. sapiens 60,278 411 259

S. cerevisiae  82,480 17,568 (of 395,199) 2,389

C. elegans 36,332 1,237 0

D. melanogaster 34,324 348 0

S. pombe 47,492 3836 (of 35,391) 0

Supplementary Table 3.6. Number of protein-protein interactions used to generate the protein 

interaction networks for each organism. Number of SSL pairs and SDL pairs sourced for each 

organism from BioGRID after filtering for distinct pairs that inlcude genes present in the protein 

interaction network.  The SSL pair data for S. cerevisiae were filtered to include only interactions 

cited in 3 or more papers.   SSL pair data for S. pombe were filtered to include only interactions 

recorded in 2 or more papers. 
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Feature SLant SINaTRA

Betweenness x x

Constraint x

Closeness x x

Coreness x

Degree x x

Eccentricity x x

Eigen centrality x x

Hub score x

Neighbourhood n size x x

PageRank x

Adhesion x

Cohesion x

Communicability x

Current-flow betweenness centrailty x

Adjacent x
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Mutual neighbours x x

Mutual non-neighbours x

Shortest path x

Inversed shortest path x

Between community x

Cross community x

Shared GO count – Biological process x

Shared GO count – Molecular function x

Shared GO count – Cellular compartment x

Supplementary Table 3.7. A comparison of the features used by SLant and SINaTRA. SLant also 

treats node-wise features differently by providing an averaged difference between node pairs as 

well as the individual values per gene node.

9.3 Appendix 3 - Chapter 4 

Supplementary material
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9.3.1 A3.1 Chapter 4 Supplementary Tables

Parameter Features Description

Betweenness Gene1 betweenness

Gene 2 betweenness

Betweeness difference

Count of shortest paths across the graph that pass through

a node.

Constraint Gene 1 constraint

Gene 2 constraint

Constraint difference

A measure of how much a node’s connections are focused

on single cluster of neighbours.

Closeness Node-wise The number of   steps required to  reach all  other  nodes

from a given node.

Coreness Node-wise Whether a node is part of the k-core of the full graph, the k-

core being a maximal sub-graph in which each node has at

least degree k.

Degree Node-wise The number of edges coming in to or out of the node.

Eccentricity Node-wise The shortest path distance from the node farthest from the

given node.

Eigen centrality Node-wise A measure of how well connected a given node is to other

well-connected nodes. 

Hub score Node-wise Related to the concepts of hubs and authorities the hub

score is   a  measure of  how many well  linked hubs the
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nodes is linked to. 

Neighbourhood  n

size

Node-wise The number of nodes within n steps of a given node for n

of 1, 2, 5 and 6

Adhesion Pairwise The  minimum  number  of  edges  that  would  have  to  be

severed to  result  in  two separate sub-graphs separating

the source and target nodes.

Cohesion Pairwise The  minimum  number  of  nodes  that  would  have  to  be

removed to result in two separate sub-graphs separating

the source and target nodes.

Adjacent Pairwise Whether a source and target node are connected via an

edge.

Mutual neighbours Pairwise How  many  first  neighbours  a  target  and  source  node

share.

Shortest path Pairwise The minimal number of  connected vertices that create a

path between the source and target node.

Between community Pairwise A logical  feature  stating  whether  the  source  and  target

nodes inhabit the same community produced by the spin

glass random walk.

Cross community Pairwise A logical  feature  stating  whether  the  source  and  target

nodes connect two communities as produced by the spin

glass random walk.

Shared  GO  count  –

Biological process

Go term The number of biological process GO annotations shared

between the source and target node.
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Shared  GO  count  –

Molecular function

Go term The number of molecular function GO annotations shared

between the source and target node.

Shared  GO  count  –

Cellular compartment

Go term The  number  of  cellular  compartment  GO  annotations

shared between the source and target node.

Supplementary Table 4.1 – Features used in the Slant classification models
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9.4 Appendix 4 - Chapter 5 

Supplementary material

9.4.1 A4.1 Chapter 5 supplementary figures

Supplementary Figure 5.1. Number of cell lines available after filtering for public accessibility, 

tissue type and genetic alteration data availability.
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Supplementary Figure 5.2. - Measuring the relationship between generic alteration levels  and 

count of gene dependencies in cell lines

a. By plotting the number of gene dependencies reported for each cell line against a measure of 

that cell lines genomic alteration we find a small positive correlation between the two. 
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b. Shuffling the data and then finding the correlations for this data demonstrates that our 

correlation is statistically significant p-value=0.012.

 

Supplementary Figure 5.3. Feature distributions between dependent and non-dependent gene 

classes show some   differences between the classes for the betweeness, constraint, eigen 

centrality and hub_score features.
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Supplementary Figure 5.4. Importance for each feature used in each model calculated by 

measuring the mean decrease in accuracy when holding out each variable across all tree 

permutations in the random forest.
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Supplementary Figure 5.5. Survival screen’s z-score distribution with variation. This box plot 

graphs each gene featured in the survival screen with its z-score distribution across 3 

experimental repeats. Blue boxes denote genes which were featured in our prediction set. White 

boxes denote genes that were not in our prediction set due to insufficient training data (i.e. 

mutational or copy number data).
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9.5 Appendix 5 - Chapter 6 

Supplementary material

9.5.1 A5.1 Chapter 6 supplementary figures

Supplementary Figure 6.1. A ranked bar chart showing the most extreme arm-wise copy number 

correlation coefficients.
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Supplementary Figure 6.2. A graphical illustration of arm-wise copy number correlation. 

Nodes represent chromosome arms and edges represent correlations of above a 
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threshold of r=0.4  and below r=-0.4. Red edges denote positive correlation between the 

chromosome arms and blue represent negative correlations. 
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