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This thesis presents a detailed numerical analysis of flow through a corrugated channel.
The geometry has a rectangular cross section. The bottom wall is corrugated with periodic
cavities which is a two-dimensional representation of a commercial stainless steel flexible
pipe, and the top and two side walls are flat plates. The Reynolds number based on bulk
flow velocity and the hydraulic diameter of the channel is 5300. The principal objective is
to understand the flow field in this corrugated channel, which benefits the future design
of engineering equipment with corrugated wall. Several Sub-grid Scale (SGS) models are
first validated on plane channel flows with different grid densities. Then a Large Eddy
Simulation (LES) is performed on the corrugated channel with 128 corrugations and the
synthetic turbulence inlet. Flow features of different zones in the channel are analysed
in detail, focusing on the time-averaged results, development of the boundary layer, and
mechanism of transition. The principal message emerging from this analysis is that the
flow in the corrugated channel is more complicated than suggested previously by the
experimental study and the two side walls have profound effect on the flow behaviour. The
discrepancies between LES predictions and experimental data are also discussed. After a
detailed examination, a number of problems and open questions are raised concerning the
experimental results and setups. Meanwhile, the LES results are validated from various
aspects. In addition, a study of this corrugated channel with 16 corrugations and a periodic
boundary condition is also conducted, with the focus on hydrodynamic interaction and
vortex evolution. It shows that the case for 16 corrugations with the periodic boundary
condition can reproduce the flow characteristics of the fully turbulent region predicted in
the case of 128 corrugations. The features of vortex evolution shown in the experiment
are reproduced and understood by current LES.
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ūi Filtered instantaneous velocity components in tensor notation

〈ui〉 Temporal average of velocity in tensor notation

˜̄uj Filtered velocity at test filter level in Dynamic SGS model

u, v, w Instantaneous velocity components in x, y, z directions
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Chapter 1

Introduction

The term ”corrugated” describes a surface or material shaped into a series of parallel ridges

and grooves [1]. In engineering context, a corrugated structure adds stiffness transverse

to the corrugation direction, while maintaining flexibility along the corrugation direction

[2]. In addition, the increased surface area enhances the heat and mass transfer [3]. Due

to these important features, corrugated channels or sheets widely appear in industrial

application and academic research, such as LNG transfer hose, culverts, gasket plate heat

exchanger, and structured packing for distillation and absorption.

(a) LNG transfer hose [4] (b) Culvert [5]

(c) Gasket plat heat exchanger [6] (d) Structured packaging [7]

Figure 1.1. The industrial context of the corrugated geometry.
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Although devices with such geometry have been frequently used over the last few dec-

ades, the associated physical phenomena are very complex and have not been properly

understood, such as the flow separation and reattachment on the corrugated surface, and

the momentum exchange between bulk flow and the flow in the corrugation. The combin-

ation of these effects leads to a minor modification in corrugation geometry triggering a

significant change in flow structures and heat transfer characteristics [8]. This makes it a

very interesting and challenging subject to both academia and industry.

Extensive studies [9–11] have been carried out on the three types of corrugated channel

shown in Fig. 1.2. They are the corrugation with a square cross section (Fig. 1.2A),

sinusoidal wave (Fig. 1.2B) and of the periodic hill (Fig. 1.2C).

Figure 1.2. The schematic representation of different corrugation types.

Nevertheless, research on the flow over realistic corrugated geometries used in industry

has not been systematically performed. These geometries, such as the flexible pipes and

secondary flow systems in gas turbine engines, tend to have shorter (or even no) post-

reattachment-recovery region than the periodic hill, and much smaller length-to-height

ratio of a cavity than those corrugations with a sinusoidal wave.

The corrugated channel investigated in present work is shown in Fig. 1.3a. Its corrug-

ation shape is a two-dimensional representation of one of the most widely used commercial

stainless steel flexible pipes (with a circular cross section). The flow domain also has two

side walls and a top wall, and the flow direction is the x-direction.. An experiment with

identical geometry and dimensions was carried out using the Particle Image Velocimetry

(PIV) technique by Unal et al [3, 12]. The team [8] also recorded instantaneous velocity

vectors on the middle plane of the channel for Re = 17600 which are shown in Fig 1.3b.

The experimental result shows a three-dimensional, chaotic and unstable flow. More

importantly, the flow ejection from the cavities to the outer flow are clearly visible, in-

dicating turbulence, especially the strong momentum exchange between the cavities and

the bulk flow, plays a significant role in the flow with such geometry. Despite the findings

in the experimental data, there remain many open questions. These include topics such
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(a) Schematic representation of geometry [3] (b) Velocity vectors from PIV [8]

Figure 1.3. The corrugated pipe studied in current research.

as the details of flow development, suitability of using a periodic boundary condition on

current flow configuration, the interaction between corrugated wall and top and side walls,

and mechanisms of hydrodynamic interaction and vortex evolution.

The objective of the current research is to numerically study the flow in the corrugated

wall by the Large Eddy Simulation (LES), to find answers for these open questions. The

outline of the current thesis is as follow:

• Chapter 2: Literature review and physics associated with the corrugated channel;

• Chapter 3: The governing equations of LES and the Sub-grid Scale (SGS) models

used in current research;

• Chapter 4: Discretisation of governing equations and the solver for solutions;

• Chapter 5: The validation of different SGS models on a channel flow case;

• Chapter 6: A comprehensive numerical study on the corrugated channel to study flow

field, the interaction between different walls, and detailed hydrodynamic interactions;

• Chapter 7: The conclusions and proposals for further research.

All simulations in current study will be performed by OpenFOAM which is a C++

based fully parallelised CFD software solves the filtered NSEs on non-orthogonal and

co-located mesh using the finite volume method.
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Chapter 2

Background

2.1 Literature Review

Due to its wide application and the associated complex physical phenomena, the flow in

corrugated channels have been attracting researchers and engineers’ interest for almost a

century. The earliest experimental study can be traced back to 1923 when Hopf (as cited in

[13]) carried out experiments on rectangular channels with various roughnesses, including

a saw-toothed surface and two other types of corrugated plate. It was the first time that

the roughnesses of a rough pipe were divided into two categories, i.e. surface roughness

and surface corrugation. Five years later, Fritsch (as cited in [13]) investigated the velocity

distribution along the mid-plane of various rough surfaces, including the corrugated (wavy)

and toothed shapes. The channel height was between 10 and 35 mm, while the width was

150 mm to ensure the flow to be two-dimensional. It was reported that if the loss of head

among all types of surface were the same, their velocity distributions were same as well,

except for the region close to the corrugated wall. In 1929, Treer (as cited in [13]) found

from the tests in a channel with extremely coarse roughness that the velocity distribution

depends only on the shearing stress, regardless of whether this shearing stress is changed

by different roughnesses or Reynolds number (Re). This study indicated that turbulence

plays a vital role in corrugated channels.

Since the establishment of a framework on investigating flow over rough surfaces by

Nikuradse in 1933 [13], the focuses of the very early studies were on loss of head, velocity

distribution, and relationship between the resistance factor and Re, relative roughness

and the type of surface [14]. In 1949, Streeter and Chu (as cited in [15]) pointed out that

stable vortices were generated by the outer flow inside of a series of grooves with a smooth

surface. This was the first time that researchers studied the flow details within a cavity.
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Then the research on the flows over corrugated walls were divided into three categories as

shown in Fig. 1.2, i.e. the corrugation with a cross section of square, sinusoidal wave and

periodic hill.

2.1.1 Square Cavity

Cavities with square cross section were the most widely studied type among the afore-

mentioned three in early years. In 1969, Perry et al. [15] carried out a comprehensive

experimental study on the flow characteristics of two types of square-wave groove, i.e.

d-type and k-type which are presented schematically in Fig. 2.1 (reproduced after Perry

et al. [15]).

Figure 2.1. The schematic representation of two different square cavities.

The d-type is typified by the width between two elements being usually equal or similar

to its height, i.e. W ≈ k. The k-type has a much larger distance between the two elements

than d-type, with a width-to-height ratio larger than 4, i.e. W > 4k.

Flow visualisation was carried out using a weak suspension of titanium dioxide in

kerosene. It was found for the d-type (Fig. 2.2, reproduced after Perry et al. [15]).) that

the outer flow separated at the leading edge of the groove. The flow then impinged on the

trailing wall (reaching stagnation). One of the resulting streams goes down to the bottom

of the cavity, forming a stable eddy filling up the whole groove. Another stream flows out

of the cavity, forming a small separation bubble at the tailing edge of the cavity. Two

flattened small eddies are also found at the corners of the cavity.
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Figure 2.2. Surface flow patterns around d-type groove.

Conversely, the flow visualisation of k-type (Fig. 2.3, reproduced after Perry et al.

[15]).) showed a larger circulating structure filling up the groove, yet the flow structure

was not confined to the groove and there was no separation happening at the leading edge

nor flow stagnation on the trailing wall.

Figure 2.3. Surface flow patterns around k-type groove.

Fully developed turbulent boundary layer (BL) flow with d-type roughness was further

studied by Wood and Antonia [16] who found the cavity flow appeared to be isolated from

the bulk flow. Also the distribution of Reynolds stresses, and skewness and flatness of

velocity fluctuation across the BL (measured by hot wires) were similar to those obtained

on a flat plate except for the region immediately above the cavity. However, the result from

Osaka and Mochizuki [17] showed that discrepancies of flow variable distributions between

smooth and d-type walls can be detected even up to 60% of the BL thickness. To overcome

the inaccuracy of hot wire measurements close to the wall, Djenidi et al. [18] carried out an

experiment with the same flow configuration but using Laser Doppler Anemometry (LDA)

for data acquisition. The obtained mean velocity profile confirmed that the outer fluid
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entered the cavity at its downstream end, then strengthened the recirculating structure to

fill the cavity. Interestingly, the dye visualisation indicated that occasionally the fluid was

strongly ejected from the cavity into the bulk flow, and weak ejections were also presented.

This enhanced momentum transport over the rough wall was reflected in the increase in

the magnitude of wall normal velocity and Reynolds stresses. However the location of

maximum magnitudes of wall normal velocity and Reynolds stresses remained the same

between the profiles measured on smooth and roughened walls. The effect of the ejection

on mean stream-wise velocity was also found to be small. The vortex evolution of a d-type

corrugation was later visualised by Elavarasan et al. [19].

A comprehensive review of the study on cavities (of mainly square cross section) was

presented by Jimenez [9] who summarised several works and found conflicting results in

many experimental studies for d-type cavity. He also listed several reasons of flow ejection

proposed by other researchers, such as large scale pressure fluctuations in the outer flow

by Townsend [20], the passage of near wall quasi-streamwise vortices/steaks by Elavarasan

et al. [19] and [21], and vortices spontaneous bifurcation by Ghaddar et al. [22]. However,

their claims were generally not conclusive and detailed mechanism of vortex evolution and

flow ejection were far from understood.

Nevertheless, the numerical prediction and experimental data are generally found to be

in good agreement on velocity field, turbulent structure and heat transfer characteristics.

Saidi and Sunden [23] compared the prediction accuracy of two Reynolds-averaged Navier-

Stokes (RANS) models, i.e. eddy viscosity model (EVM) and explicit algebraic stress

model (EASM) in a duct with square cross section and two ribbed walls. The result

showed both models were able to provide satisfactory agreement with experimental data

in terms of friction factor, velocity fields and thermal parameters. It further pointed out

that the ribbed duct increased the friction factors five times than the smooth duct with

the same cross section, which suggested the enhanced heat transfer rate is accompanied

by a large pressure loss penalty.

A parametric numerical study was carried out by Eiamsa-ard and Promvonge [24]

for Reynolds number (Re) (based on entrance velocity and the hydraulic diameter of

the channel) ranging from 6000 to 18,000, and different pitch-to-height ratios (covering

both d-type and k-type) with different RANS turbulence models. It was found the k-ε

Renormalized Group (RNG) and the standard k-ε models gave the best agreement across

the full range of experimental data. The study also demonstrated that the grooved channel

had higher friction factor than the smooth channel. The friction factor increased with the
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increasing of the ratio between groove width and channel height but decreased with the

increasing of Re due to the suppression of viscous sub-layer which is also observed in the

work of Boulemtafes-Boukadoum and Benzaoui [25].

Simulation results of Lee and Abdel-Moneim [26] and Stel et al. [27] also confirmed

that, although the best turbulence model varied, RANS could generally provide accurate

predictions for a channel with both k-type and d-type roughness.

2.1.2 Wavy Cavity

The flow over a wavy surface was analytically studied as early as 1932 by Stanton and

co-workers [28]. But the primary interest of the early investigations [29, 30] was on the

interaction between air and water waves.

In 1972, Beebe and Cermak [31] carried out the first experimental research on a channel

with a sinusoidal wavy shape. For these experiments Re = 1 × 105. They investigated

three wavy shapes with constant wavelength but different amplitudes. The periodicity

of the current flow configuration was firstly confirmed by the statistical results. Flow

visualisation revealed a single, slow rotating, yet unsteady vortex within the cavity for all

cases, and part of the vortex was intermittently shed (rather than ejected) into the outer

flow. For the case with the highest amplitude, the flow separated in the area behind the

wave crest and reattachment at the trailing face of the cavity, forming a vortex which

filled the cavity and the outer flow skimmed over it. The vortex in the case with the

lowest amplitude was smaller but more frequently shed, and the outer flow was found to

penetrate into the cavity. It was also found that the largest amplitude wave achieved the

most flow speed reduction above the surface.

Subsequent experimental studies by Hudson et al. [32], Nakagawa and Hanratty [33],

and Kruse et al. [10] provided more insights on this flow configuration. It was found that

the turbulence within the cavity was mainly produced by the shear layer due to the flow

separation after the wave crest. In addition, this wavy geometry was able to generate flow

structures as large as half the channel height. Nevertheless, its impact on the statistical

result was shown to be modest, as profiles of normalised Reynolds stresses and turbulent

kinetic energy production were found to be independent of the sinusoidal specification at

a certain distance away from the cavity.

Numerical study on this type of corrugated flow started relatively early. The sinus-

oidal wavy channel with low Re was studied numerically by Krettenauer and Schumann

[34] in 1992 using direct numerical simulation (DNS) and LES. Different amplitudes and
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wavelengths of the sinusoidal shape were tested and the results were compared with the

experiment of Adrian et al. [35]. The DNS result indicated the flow field can be turbu-

lent around such curved surfaces at Re = 100 (based on convective velocity defined by

Deardorff [36] and mean fluid layer height). This parametric study also suggested that the

mean flow features, such as profiles of Reynolds stresses and fluxes were not very sensitive

to the variations of amplitude, wavelength, domain size, resolution and even the compu-

tational methods (DNS or LES). In contrast, details of the flow structure were changed

considerably. The study [34] further concluded that the LES could be regarded as reliable

as experimental measurement for both high-Reynolds-number and high-Rayleigh-number

flows in such cases. Mirzaei et al [37] used LES to study the turbulent flow field in a

wavy channel which found that the shape increased the heat transfer rate but suffered

from a pressure loss penalty. Another work of the same group has successfully used LES

to identified the optimal wave amplitudes to balance the heat transfer gain and pressure

loss [38].

There are not many numerical studies on a wavy channel that use RANS. Knotec

and J́ıcha [39] compared various RANS turbulence models on the flow setup. The results

showed RANS turbulence models generally provide a poor prediction on flow features,

such as mean velocity and Reynolds stresses. The study of Hafez et al. [40] confirmed

this finding, although it demonstrated a tailored wall function was able to improve the

prediction accuracy of RANS turbulence models significantly.

In comparison, a number of studies have been dedicated to assessing the predictive

effectiveness of LES on a wavy channel or using LES to assist experiment to understand the

flow features. Gong et al [41] used LES to study the secondary flow in the cavity. The LES

solution of Henn and Sykes [42] confirmed the inner layer structure between the wall layer

and the outer flow for small amplitude waves with Re = 1 × 104 (based on bulk velocity

and the channel mean half height). Armenio and Piomelli [43] tested a Lagrangian mixed

SGS model on this flow configuration, the LES results were found to agree satisfactorily

with previous experimental studies across wide range of flow parameters, both in the case

of the moderate-amplitude wavy wall at low Reynolds number, and in the case of the

large-amplitude wavy wall at a moderate Reynolds number.

2.1.3 Periodic Hill

For the last three decades, the research focus on the corrugated channel have seen a shift

from the cavity with square cross section and sinusoidal wavy shape to a periodic hill,
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especially with regard to numerical prediction which is found to be more challenging on

curved cavities.

The periodic hill geometry was firstly defined and experimentally studied by Almeida

[44] in 1993. The case configuration is characterised by a channel with a periodic flow

over a series of consecutive hills equally spaced apart at the bottom of the channel [45].

The flow separates due to the unfavourable pressure gradient downstream of the hills

and reattaches at an oblique angle on the upstream surface of the next hill as suggested

by the original experiment. This test case was chosen as one of the five test cases in

4th ERCOFTAC/IAHR Workshop on Refined Flow Modelling in 1995 [46]. However, as

highlighted by Mellen and co-workers [47], three serious issues surround this test case.

The earlier simulations on this test case were carried out based on a periodic boundary

condition (BC) along stream-wise direction and without the sidewalls which were the

least demanding configuration. However, the result in the ERCOFTAC/IAHR workshop

raised doubts concerning the true periodicity of the experimental setup [46]. Also, due

to the short spanwise distance in the original experiment, the sidewalls were expected

to generate spanwise variation, making the experimental data invalid for benchmarking

numerical studies. In addition, the original experiment Re = 365, 000 (with Re based

on the height of the channel and mean centreline velocity) which is very computationally

demanding.

In order to get round these issues, Mellen et al. [47] defined a new configuration

and carried out a wall-resolving LES using a dynamic SGS model. The new geometry

doubled the distance between the two hill crests from 4.5h to 9h, halved the channel

height from 6.07h to 3.035h, kept the spanwise distance as 4.5h but imposed the spanwise

periodicity, and reduced the Reynolds number to 21,560. The new configuration had

two benefits. Firstly, the increased distance between hill crests decreases the streamwise

correlation and allows a natural reattachment at the flat plate between the hills followed

by a recovery region. Secondly, the decrease of channel height and Re make the case

more computationally affordable, and the spanwise periodicity eliminates the influence of

the sidewalls. This well designed flow configuration soon became a standard benchmark

case for studying phenomena such as separation from a curved surface, flow recirculation

and reattachment. This test case was also selected by the ERCOFTAC/IAHR/COST

Workshop in 2001 [48] and 2002 [49].

Although there was no reliable experimental data, the results of Mellen et al. [47] still

provided instructive and useful insight on numerical prediction of flow separation, recir-



11

culation and reattachment. It was found that the point of flow separation was insensitive

to the SGS model, yet greatly influenced by grid density at the crest of the hill. However,

the reattachment location depended on both grid size and SGS model. Wall shear stress

profiles were found to be similar between different SGS models and grid densities. In con-

trast, mean velocity, Reynolds stresses and eddy viscosity content were affected by grid

density and SGS model.

The simulation performed by Temmerman and Leschziner [50] and Temerman et al.

[51] focused on the effectiveness of the different combinations, including six SGS models

and eight wall-functions on three grid densities. The accuracy was judged by a well resolved

simulation with a fine grid. The result demonstrated that the prediction of the separation

point, and the resultant length of separation bubble and reattachment position, is highly

sensitive to grid density (especially for the streamwise resolution close to the separation

line) and numerical implementation of the wall laws (more prominently on the coarsest

grid). Similar to the findings of Mellen et al. [47], the sensitivity of the solution to SGS

models are found to be weaker than grid resolution and wall treatment. This was mainly

due to even the coarsest grid having a relatively high resolution resulting a low level of

SGS viscosity.

Numerical studies on this test case using RANS are very rare. One such study was car-

ried out by Jang et al. [52] who compared the predictive quality of eight RANS turbulence

models with reference to the LES solution of Temmerman and Leschziner [50]. A poor

prediction accuracy in terms of reattachment point and Reynolds stresses was generally

found for all the RANS models tested. A further study on the RANS regime was conducted

by Abe et al. [53] who proposed a new RANS turbulence model. It was found the model

showed a significant improvement in terms of normal Reynolds stress when compared to

the model tested by Jang et al. [52], but it still provided an unsatisfactory result for the

reattachment point and other components of Reynolds stresses. More recently, Jakirlic

[54] parametrically assessed the prediction accuracy of various RANS turbulence models

and concluded that the conventional RANS turbulence models were not able to correctly

capture the flow features of periodic hill configuration, including skin friction, shape and

size of the separation bubble and turbulent quantities.

The numerical study of Fröhlich and co-workers [55] was dedicated to the turbulence

mechanisms associated with flow separation, recirculation, reattachment and acceleration.

Results were studied in detail for mean velocity, Reynolds stresses, two-point correlations

and energy spectra. The links between flow structural features and statistical data were
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also interpreted. One of the interesting features was that a very high level of spanwise

turbulence intensity was found in the post-reattachment-recovery region, especially when

the flow hit the upstream surface of the next hill. The result of budgets showed that

the energy was diverted from both wall-normal and streamwise components to spanwise

component by pressure-strain interaction. This phenomenon was understood as a result

of large vortices from the shear layer impinging onto the windward slope. This feature

is one of the reasons, suggested by the authors [55], why even a Reynolds stress RANS

model could not predict flow features in periodic hill configuration accurately.

A comprehensive study was recently carried out by Breuer et al [11]. The research

complemented the work of Fröhlich and co-workers [55] by highly-resolved numerical (DNS

and LES) and experimental data (PIV) over a large range of Re (between 100 and 10,595,

based on bulk velocity and hill height). The quality of the DNS and LES results were

proven by cross-comparison of two independent codes and experimental data. This study

did not only confirm the previous findings [55], but also shed new light on these flow

features such as the small recirculation on the hill crest (for highest Re) and at the foot

of the windward face of the hill, the behaviours of the separation and reattachment as

a function of Re. It was also found that at Re = 100, the flow was steady and two-

dimensional, but it became three-dimensional, instantaneous and chaotic for Re > 200.

This study clearly demonstrated that LES was able to provide accurate results and assist

the experiment to gain more insight into flow fields, especially for higher Re.

It is noted that pressure field and losses seem not to be the focus of the study on

Periodic Hill so that no associated pressure loss study has been published.
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2.2 Turbulence

2.2.1 Fundamentals of Turbulence

The literature review in Section 2.1 clearly highlights that turbulence plays a vital role

in flow in a corrugated channel. This section is dedicated to providing a theoretical

background of turbulence and the way to model it.

Turbulent flows, that is flow with irregular characteristics and random variation of

quantities with time and space [56], has been regarded as one of the most challenging

problems in fluid dynamics [57]. Numerous scientists and researchers have spent a great

amount of time to observe, describe and understand turbulent flows. The earliest ”in-

formal” study of turbulent flow can be arguably dated back to around 1510 [58], when

Leonardo da Vinci sketched a free water jet from a square hole into a pool and observed

that the water has eddying motions, one part of which is due to the principle current, and

other to the random and reverse motion.

Early fluid mechanics studies generally assumed the fluid to be inviscid, despite the

theorem of viscous fluid being established in 1644 by Torricelli [59]. Euler derived the

frictionless equation in 1755. However, it was pointed out by d’Alembert that a body

immersed in a frictionless flow would not have drag. The paradox, between the existence

of drag in real engineering application and the absence of drag due to the assumption

of frictionless flow, troubled engineers for over a century. In the early to middle of the

nineteenth century, Navier, Cauchy, Poisson and St. Venant advanced the analytical

study to add frictional-resistance terms to Euler’s inviscid equation, but these terms were

associated with an unknown molecular function [59]. In 1845, Stokes derived the equation

of viscous flow by adding a Newtonian viscous term [59] resulting in the Navier-Stokes

equations (NSEs) which are the governing equations for Newtonian flow.

One of the early experimental attempts at quantifying turbulence was made by Reyn-

olds in 1883 [60], who found the Reynolds number at which turbulence first appears was

very sensitive to disturbances at the entrance of the pipe. If no particular effort was taken

to minimise this disturbance, the pipe flow would change from laminar state to a turbulent

one when Re > 2000. In contrast, if the inlet disturbance was minimised, the laminar

state could be maintained up to Re = 13, 000.

The instantaneous flow variable in a turbulent flow is very sensitive to the minor

initial difference, but they are steady-on-average under nominally identical conditions.

The statistical properties of a turbulent flow are uniquely determined by the boundary

and initial conditions [57]. In 1895, Reynolds [61] proposed Reynolds averaging that for
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the first time decomposed the flow variable to time-averaged and instantaneous parts and

introduced Reynolds stresses. Two types of time-averaging are shown in Fig. 2.4.

Figure 2.4. Different types of time-averaging processes.

Fig. 2.4A shows the time-averaging process with an averaging window of T =∞. The

red and blue lines are experiments carried out under nominally identical conditions. Due

to the minor discrepancy at the initial conditions, the exact profile of the instantaneous

velocity for the two lines vary, but their time-averaged values over the whole period are the

same. After Reynolds decomposition, the instantaneous velocity, ui(x, t), is represented

as

ui(x, t) = 〈ui(x)〉+ u′′i (x, t) (2.1)

where 〈ui(x)〉 is the statistical average velocity which in operation often associated

with a time averaging [62], i.e.

〈ui(x)〉 ≈ ui(x) = lim
x→∞

1

T

∫ T

0
ui(x, t)dt (2.2)

u′′i (x, t) is the fluctuating part of ui(x, t)
1.

In a large number of turbulent flows, the mean velocity of an unsteady flow can change

with respect to time. In this case, certain low frequency modes in time and the average

field will need to be solved. This process is depicted in Fig. 2.4B. Now the Eq. 2.1 is

replaced with

ui(x, t) = ui(x) + 〈ui(x, t)〉c + u′′i (x, t) (2.3)

1u′′i (x, t) is used here instead of the conventional u′i(x, t) is because that u′i(x, t) will represent the

sub-grid scale velocity component in the later Chapters.
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The first term is the time-averaged velocity; the second is its conditional statistical av-

erage which is interpreted as the contribution of the coherent modes to the flow dynamics;

and the third one is the turbulent fluctuation. The variable used in the numerical model

is actually the sum of ui(x) and 〈ui(x, t)〉c [62].

The study of Reynolds laid the cornerstone for the Reynolds-averaged Navier-Stokes

(RANS) equation. The RANS equation derived from Eq. 2.1 is called steady RANS, while

the one derived from Eq. 2.3 is termed unsteady RANS (URANS).

Another important feature of turbulent flow is at any instant, there exists a broad

spectrum of eddy sizes. The large eddies migrate across the flow, carrying smaller scale

disturbances with them. Richardson [63] summaries this feature at page 66 of his book in

1922 that:

Thus C. K. M. Douglas writing of observations from aeroplanes remarks: ”The

upward currents of large cumuli give rise to much turbulence within, below,

and around the clouds, and the structure of the clouds is often very complex.

...

big whirls have little whirls that feed on their velocity, and little whirls have

lesser whirls and so on to viscosity in the molecular sense.”

The concept of an energy cascade introduced by Richardson [63] is that the largest

eddies, which are created by the instabilities in the mean flow, are unstable and break

up or evolve into smaller eddies. The latter are also unstable, and break up after a

short life-span and transfer their energy to even smaller eddies. This continual energy

cascade stops when the Re based on the eddy length is sufficiently small (order of unity

[57]). At this point, the eddy motion is stable and its kinetic energy is dissipated due

to the significant viscous forces. The picture of the energy cascade process suggests the

dissipation (mainly) happens at the end of the process, and the rate of dissipation on

the smallest eddies is (very nearly equal to) the rate they receive the energy from larger

eddies. This concept is confirmed mathematically, as by definition, the dissipation rate

of kinetic energy in a fluid is ε = 2νSijSij per unit mass [57]. Here ν is kinematic

viscosity, Sij = 1
2 (∂ui/∂xj + ∂uj/∂xi) is the strain rate tensor. This suggests dissipation

is concentrated in regions with a large instantaneous gradient in velocity (and thereby

shear stress), which are the smallest eddies.

The picture of energy cascade was expanded and quantified by Kolmogorov [64]. In

1941, he stated three hypotheses. The first one related to the local isotropy of sufficiently

small scale motions within the flow with very large Re. He argued that all informa-
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tion of the large eddies, which was determined by flow geometry and Re including the

directional information, was lost during the energy cascade process. So the small scale

turbulent motions (an order of magnitude smaller than the large eddies [57]) were stat-

istically isotropic/universal. As shown in the energy cascade concept of Richardson [63],

two important parameters during the process were ε and ν. This then led to the second

hypothesis of Kolmogorov, i.e. ”The first hypothesis of similarity”, which stated that the

statistics of the locally isotropic turbulence (small scale turbulent motions) are uniquely

determined by ε and ν. The size range no larger than this small scale was referred to as

the universal equilibrium range [65]. Following the derivation process shown in the book

of Davidson [57], Kolmogorov scales of length, velocity and time can be obtained as

η = (ν3/ε)1/4 ∼ l0Re−3/4 (2.4a)

uη = (εν)1/4 ∼ u0Re
−1/4 (2.4b)

τη = (ν/ε)1/2 ∼ τ0Re
−1/2 (2.4c)

where Re, l0, u0 and τ0 are the Reynolds number, length, velocity and time scale of the

eddies in the largest size range, respectively. The equations show that increasing Re will

decrease η/l0. Inevitably, a large number of eddies whose size should fall between η and l0,

having a relatively large Re and little effect from ν. Here comes the second hypothesis of

Kolmogorov that the statistics of eddies, whose size l fall within the universal equilibrium

range yet one to two orders of magnitude [57] larger than η, are uniquely determined by ε

and independent of ν. Thus, the universal equilibrium range is split into two subranges,

inertial subrange and dissipation range. The size range above universal equilibrium range

is termed as the ”energy containing range”. The rate of energy transferred from the large

scales does not only determine the dissipation rate, but also the constant rate of energy

transfer throughout the inertial subrange [65]. Combining both similarity hypothesises,

Kolmogorov further proposed the famous power law for inertial subrange2

E(κ) = Ckolε
2/3κ−5/3 (2.5)

where E(κ) is the energy spectrum function in respect of wavenumber, κ = 2π/l and l

is the length scale of turbulent motion; Ckol is Kolmogorov constant. A typical energy

spectrum for a turbulent flow is shown in Fig. 2.5.

2In the original article of Kolmogorov, the formulae contains r2/3 instead of κ−5/3, where r is a length

scale larger than Kolmogorov length scale. A detailed derivation of the −5/3 law can be found in the work

of Levandowski and Pinier [66]
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Figure 2.5. Typical energy spectrum for a turbulent flow.

The length scale, `, can be the integral length scale [67]. The energy spectrum function

E(κ) should follow the slope of −5/3 during the inertial subrange. The hypotheses of

Kolmogorov is the foundation of large eddy simulation (LES). The isotropy and dissipation

of small scales have been the fundamental assumption of the commonly used sub-grid scale

(SGS) models for LES.

The presence of a boundary also has a significant impact on a turbulent shear flow.

This is due to the fact that viscosity and velocity and its fluctuation must fall to zero

on/near the wall [57]. In an internal flow, one of the influences of the boundary is the

boundary layer (BL). The BL or frictional layer was discovered by Prandtl in 1904 [68].

The thin layer attached to the boundary divides the flow into two regions: the bulk flow

region in which viscosity can be neglected under high Re, and the BL where the effect of

viscosity must be considered. There are two types of BL, i.e. laminar and turbulent.

In the current research, the fluid flows into the channel at a relatively low Re. a laminar

BL is expected to form at the beginning. The thickness of this layer will increase as the

fluid flows from inlet to outlet. Then a transition process happens so that the laminar BL

eventually becomes a turbulent BL. The natural transition process is shown in Fig. 2.6

[69].
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Figure 2.6. Sketch of boundary layer natural transition on a flat plate.

It shows that when the indifference Reynolds number3, Reind, is reached, a two-

dimensional undulation, the so-called Tollmien-Schlichting waves, is superimposed onto

the laminar BL [69]. Further downstream, three-dimensional hairpin vortices erupt from

the wall. These structures are long, arch-like tube with modest diameter. The total length

of the tube may be of the order of BL thickness, δ99(x). The erupted vortices then break

down and decay away from the wall. After a short distance, turbulence spots start appear-

ing at various places initiating the transition from laminar to turbulent. The generated

localised turbulent flows finally merge together when critical Reynolds number, Recrit, is

reached and the flow further downstream is fully turbulent.

BL transition is strongly influenced by many parameters, such as Re, roughness, heat

transfer, pressure distribution and turbulence intensity in the bulk flow. In addition,

natural transition does not always happen in real engineering applications. In most cases,

one or more steps listed in Fig. 2.6 are bypassed. Such transition processes are called

by-pass transition, such as in the studies of Irps and Kanjirakkad [70] and Langari and

Yang [71].

One difference between laminar and turbulent BLs is their velocity profile. As shown

3Reind = ρux/µ, where x is the distance from leading edge where Tollmien-Schlichting waves first

appear in a natural transition.
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in Fig. 2.6, the time averaged velocity distribution along wall normal direction is more

uniform in turbulent flows than in laminar ones. This is due to the transverse movement

enhancing mixing and momentum exchange in the transverse direction [69]. Another

difference is that the whole of the laminar BL is affected by viscosity, whereas in the

turbulent BL, the effect of viscosity is restricted to a layer thinner than the BL and very

close to the wall, called the linear or viscous sublayer. The region within a turbulent BL

but above the viscous sublayer is full of turbulent fluctuations and is almost unaffected by

the viscosity.

The viscous sublayer in a turbulent BL is extremely thin (y+ < 5 [72]). It is assumed

the shear stresses in this sublayer are constant and equal to the wall shear stresses

τ(y) = µ
∂U

∂y
∼= τw = µ

(
∂U

∂y

)
w

(2.6)

where τw is the wall shear stress obtained by Newton’s law of friction; µ is laminar viscosity;

U is wall parallel velocity and y is wall normal distance. After integration and applying

boundary conditions (BC), the first part of Universal Laws of the Wall for a flat plate can

be obtained

u+ = y+ (2.7)

where u+ = U/uτ and uτ =
√
τw/ρ is the friction velocity, ρ is the density of fluid;

y+ = yuτ/ν is the characteristic wall coordinate for the wall layer. The equation for the

log-law layer can also be derived for the region outside the viscous sublayer (70 < y+) as

[69]

u+ =
1

κv
ln(y+) + C+ (2.8)

where κv = 0.41 is the von Karman’s constant; C+ = 5.0. The layer in between the

viscous sublayer and log-law layer is called the buffer layer. The universal laws of the wall

can be used as a first validation test for a turbulent model in plane channel flow test case

as shown in Fig. 2.7.
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Figure 2.7. A comparison between a typical prediction of velocity distribution near a

solid wall and the Universal Laws of the Wall.

Other important parameters of the plane channel flow are the distributions of the time-

averaged Reynolds stresses, as these directly link with turbulence kinetic energy. Fig. 2.8

depicts a typical profile of normalised time-averaged Reynolds stresses, i,e, the root mean

square of 〈u′′u′′〉, 〈v′′v′′〉, 〈w′′w′′〉, and 〈u′′v′′〉4.

Figure 2.8. A typical distribution of Reynolds stresses near a solid wall.

Unlike the mean velocity profile, there is no universal law for Reynolds stresses, so

the validation for turbulence models on these parameters is done using comparisons with

experimental or DNS data.

4Due to the fact that the channel flow is symmetric along wall normal direction, its 〈u′′w′′〉 and 〈v′′w′′〉

are equal to zero [73].
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2.2.2 Approaches to Study Turbulence

Given the importance of turbulence in practical engineering applications, engineers have

tried many ways to study and predict its behaviour in a system in order to get better

designs or optimise systems’ operation. Three approaches are normally used, i.e. experi-

mental, analytical and computational [74], which will be discussed in following sections.

Experimental Method

Experimental measurement generally gives the most reliable information about physical

phenomena. Performing experiments allows engineers to understand the system directly

or to build mathematical models to present the system under certain conditions. However,

in most practical engineering applications, an experiment involving full scale testing under

given conditions is either difficult, very expensive or even not possible at all, such as in

circumstances where there is no wind tunnel that can simultaneously test the high Mach

numbers and high flow field temperature to be encountered by trans-atmospheric vehicles

[75].

A common alternative approach is to carry out the experiments on small scale models

or a certain part of those models. Although dimensional scaling enables the small scale

model to capture the features of the full scale system, some key features are very difficult

to measure in the small scale model, such as the velocity after turbine blade root section

for wind turbine generators. Also a part of the model does not usually have the desired

working condition for testing. In addition, even these alternative approaches are turned

out to be very time and cost consuming to design and build [76].

Another aspect which should not be neglected is the limitation of the measuring equip-

ment. Some intrusive instrumentation, such as constant temperature anemometer (CTA)

need to be inserted into the flow field to get measurements and potentially interfere with

the flow conditions. Furthermore, CTA suffers from short life spans in high speed flows,

and is only sensitive to the velocity perpendicular to the wire/film so that multiple wires

probes are required which disturb the flow field more strongly [77].

One solution to the issue of intrusive probes is the non-intrusive techniques, such as

laser doppler anemometry (LDA) and particle image velocimetry (PIV). Both techniques

have been used to experimentally study the flow in corrugated walls as shown in the

literature review. However, as pointed out by DroZdZ and Uruba [78] that although

the mean velocity profile can be well captured by PIV comparing with hot wire, PIV

tends to greatly underestimate the near-wall peak for Reynolds stresses, especially for the
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wall normal component. Such underestimation might be due to the smaller structures

in the flow which are not be able to be resolved using the large field of view in the PIV

methods. In addition, the study of Scharnowski et al. [79] shows that the quality of PIV

measurements is sensitive to the suitability of interrogation window size and displacement

on the image plane. Nevertheless, due to the small flow domain size, the experiment of

the corrugated channel to be investigated in the current research was carried out by Unal

et al. with PIV techniques [3].

Analytical Method

In an analytical method, physical phenomena are represented by a mathematical model,

mainly consisting of a set of differential equations, and solved analytically with various

assumptions and simplifications.

Analytical methods played a significant role in the past and together with experimental

methods were the only options for fluid dynamics research at the early stage. They helped

researchers to understand the macro behaviours of flow, interpret experimental results,

and validate the results obtained by computational fluid dynamics (CFD).

Nevertheless, only a small number of flow problems are adequately simple to have an

analytical solution. Too many assumptions and simplifications limit their validity in more

complex flows. Therefore, analytical methods have been limited to simple flows, such as

Couette flow and Poiseuille flow, etc [80].

Computational Fluid Dynamics

Computational fluid dynamics is a branch of fluid dynamics that solves the equations of

fluid motion numerically to quantitatively predict fluid flows and their associated phenom-

ena, such as turbulence, heat transfer and chemical reaction, etc.

CFD have expanded rapidly with the advent of digital computers. Since the 1950’s,

the continuous improvement of computing power has been boosting its development [74].

From the 1960s the aerospace industry has integrated CFD techniques into the design,

and research and development of aircraft and jet engines [72]. More recently the methods

have been applied to the automotive industry for drag prediction, internal and external

air flow, and internal combustion engine design [81]. Recent years have also seen a trend

of CFD being spread to areas which are not traditionally engineering related, such as the

food industry [82] and physiological applications [83]. The increase in availability of high

performance computing (HPC) and the introduction of user-friendly interfaces have made
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CFD a vital tool for industry and research.

CFD offers many advantages. Firstly, it provides a cost effective way to supplement

experiments in fluid flow studies. Thanks to the more complete set of information and

details of results, CFD has been extensively used in research to explain experimental data

and lead the experimental focus. Secondly, CFD is applicable to complex geometries where

it is impossible for analytical study. Thirdly, CFD can achieve a substantial reduction of

lead times and costs of new designs over experimental-based approach. Finally, CFD is

able to simulate a situation which is too difficult or impossible for experiment, such as

very large systems or hazardous conditions.

Current research will use CFD to numerically study the current corrugated channel to

try to answer those questions raised from the experiment.

2.2.3 Simulation of Turbulence

Three techniques are currently used to solve the NSEs, the governing equations for viscous

flow. They are DNS, RANS and LES. Each method resolves a different range of the

turbulent kinetic energy spectrum shown in Fig. 2.5. Consider a turbulent flow that has

a predominant frequency. The solved and modelled parts of energy for each method can

be indicatively illustrated by Fig. 2.9 (reproduced after Saguat [62]).

DNS directly solves the NSEs under very fine spatial and temporal resolutions which

allow it to resolve the length scale down the energy dissipating Kolmogorov length scale,

η, and the turnover time of the energy-dissipating eddies. Therefore its energy spectrum

most complete and nothing is modelled. The challenge of DNS is that its computational

requirements are prohibitively high for real engineering applications. This is due to the

fact that the number of grid points required for sufficient spatial resolution is of the order

of Re9/4 and Re3 for the CPU time [65]. Therefore, at the current stage, DNS is still

limited to the fundamental study of flows on relatively simple geometries.

The common approach, therefore, is to account for the approximate effects of turbu-

lence by employing appropriate turbulence models. A large range of turbulence models

have been developed and turbulence modelling is a subject of active ongoing research.

Two main classes involving modelling of turbulence at different levels are RANS and LES.

Some hybrid models have also been developed to utilise benefits of both RANS and LES

approaches e.g. Detached-Eddy Simulation (DES) modelling where near-wall regions are

solved using RANS mode and the rest of the flow is treated using the LES approach.
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Figure 2.9. Decomposition of the energy spectrum of the solution associated with dif-

ferent computational methods.

The RANS approach stems from the Reynolds average as shown in Eq. 2.1 where

the instantaneous flow variable is decomposed into a time-averaged part and a fluctuating

part. Then the time-averaged part is calculated directly, and the effect of fluctuating

part is modelled. Therefore, as shown in Fig. 2.9, RANS is a complete opposite to

DNS, as it models all turbulent kinetic energy by a turbulence model. RANS uses the

least computational effort among the methods shown in Fig. 2.9 and it has been used

mostly for engineering calculations [62]. The statistical solution, however, prevents a

fine description of the physical mechanisms. This approach, therefore, is not usable for

fundamental studies.

A variant of RANS is called unsteady RANS (URANS). Its decomposition of flow

variables follows Eq. 2.3, i.e. the time-averaged flow variable changes with time. Thus,

URANS contains more information than RANS, especially when a predominant low fre-

quency exists in the flow field. Nevertheless, due to modelling most turbulent kinetic
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energy, URANS is not able to capture most flow structures apart from the the ones con-

tributing to the predominant frequency of the flow.

LES falls in between DNS and RANS. LES does not have any averaging, rather, it

introduces a filter with certain spatial cut-off length to filter the high frequency motions

out and only calculate the low frequency motion in the space. This process can be found

in Fig. 2.9. The high frequency motion is effectively the small eddies. Their effect

on the flow field is modelled by a SGS model. Therefore, the size of the cut-off length

should locate within the range of inertial subrange in which the eddies are assumed by

Kolmogorov to be isotropic and solely characterised by ε, yet being able to resolve under

a lower resolution than DNS. LES is able to return more complete information of the flow

field, i.e. a three-dimensional time-dependent solution of the governing equations. This is

because the contribution of the large energy-carrying structures to momentum and energy

transfer is computed directly and the effects of only the small structures are modelled.

If referring to the energy spectrum plot in Fig. 2.5, it is found that the grid size of the

URANS method can be located in the energy containing range, as it only captures the

mean flow and some turbulent scales. However, the grid size of DNS is required to locate

within the dissipation range, as it needs to resolve all the turbulent structures. Given the

x-axis in the plot is log scale, the grid size of LES, which falls in the inertial subrange,

can be larger than DNS and smaller than URANS by one to two orders of magnitude

depending on Re. Therefore, LES is perfectly suited for studying a fundamental problems

with a relatively lower computing resource.

2.3 Summary

Past studies on various corrugated channels have been reviewed. A comparison between

well studied geometries and the geometry in current research reveals that the latter as-

sembles many of the interesting features of the previous cavities. Unlike the periodic hill

and the sinusoidal wavy shape, the geometry to be studied in this research does not have a

flow reattachment at the bottom of the corrugation. Instead, similar to the square shape,

it has a large vortex formed in the corrugation that ejects out from time to time. Yet,

its flow separates on the curved surface, unlike the geometry inducted separation for the

square shape. In addition, the smaller length-to-height ratio may cause stronger flow ejec-

tion for current geometry than any of the previously studied geometries. Finally, the side

wall may bring some unexpected effects to the flow field.

Turbulence is the dominant physics in the corrugated channels and its computational
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strategies are compared. Combing the findings in the literature, the RANS method cannot

accurately predict the separation location so that it fails to capture main characteristics

of the cavity with curved wall. The RANS calculation carried out by Unal et al. [8]

on the same geometry with the current study confirmed this. On the other hand, DNS

has been used on the study of cavities with a curved surface, but its high demand on

computing power limited its usage to fairly low Re. The review also shows LES has been

more extensively used than DNS to study the flow features in corrugated walls and is

recognised to have a high accuracy. For these reasons, LES is used as the computational

method in the current numerical study.
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Chapter 3

Governing Equations and Models

Having investigated the characteristics of turbulence and selected LES as the tool to

numerically study the corrugated channel flow, it is necessary to turn the focus to the

principles of LES and its relevant modelling approaches.

This chapter starts with an introduction of the principle of LES, followed by an over-

view of LES Governing equations. A comprehensive review of currently available and

dominant Eddy Viscosity SGS models is then given together with a detailed investigation

and comparison of their pros and cons. The variety of LES, such as Hybrid-LES will also

be briefly discussed. Finally, the selected SGS models for current research are presented.

3.1 Principle of Large Eddy Simulation (LES)

The LES approach was first proposed by Smagorinsky in 1963 [84]. Due to the limited

computational resources, it has only been widely developed in recent decades [85]. Ac-

cording to the theory of Kolmogorov [86], the smallest scales of motion were isotropic. In

addition, the function of these small scales is assumed to mainly drain energy from the

larger scales, suggesting that these small scales can be successfully approximated. The

principle of LES is fundamentally different from RANS. RANS uses a time or ensemble

averaging approach and solves with additional transport equations to calculate the res-

ulting Reynolds stresses. In LES, The large scales motion (large eddies) which contain

most of the energy (thereby strongly related with boundary conditions) are calculated

directly. Meanwhile, the small eddies of SGS are represented by a model. LES is much

more accurate than RANS as the characteristics of large eddies which are energy intensive

and carry out most of momentum transport and turbulent mixing can be fully captured

while they are completely modelled in the RANS approach [62].
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3.2 LES Governing Equations

3.2.1 Filtering Function

In LES, any flow variable or function ϕ(x, t) can be defined as a combination of a large

scale and a small scale as shown in Eq 3.1

ϕ(x, t) = ϕ̄(x, t) + ϕ′(x, t) (3.1)

where the overbar denotes the larger scales (resolved scales), while the prime represents

the small scales (modelled scale).

In order to extract the large scale components (separated from small scales), a filter

function or kernel, G(x,x′,∆), is introduced to conduct spatially filtering which is defined

as Eq 3.2 [87]

ϕ̄(x, t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

G(x,x′,∆)ϕ(x, t)dx′1x
′
2x
′
3 (3.2)

Where:

∆ = filter or cutoff width;

ϕ̄(x, t) = filtered function for spatial variations larger than ∆;

ϕ(x, t) = original function.

The filter function G(x,x′,∆) has to satisfy the following property in order to manip-

ulate the NSEs [62]:

1. Conservation of constants:

ā = a⇔
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

G(x,x′,∆)dx′1x
′
2x
′
3 = 1 (3.3)

2. Linearity

ϕ1 + ϕ2 = ϕ1 + ϕ2 (3.4)

3. Commutation with derivation or differentiation

∂ϕ(x, t)

∂s
=
∂ϕ(x, t)

∂s
, s = x, t (3.5)

The filter or cutoff width, ∆, which is introduced in Eq 3.2 is a characteristic length

scale which determines the size of eddies in resolved-grid scale (RGS). There will be re-

tained in the flow field to be directly resolved by the NSE, while eddies with a length scale

smaller than ∆ are of SGS will be represented by modelling. It is noteworthy that the
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overbar in Eq 3.2 denotes spatial filtering which is an integration in 3D space rather than

time-averaging in RANS which is an integration in the time domain.

Three filters are commonly used in LES for spatial scale separation [62]:

1. Box or Top-hat filter:

G(x,x′,∆) =


1

∆3 |x− x′| ≤ ∆/2

0 |x− x′| ≥ ∆/2

(3.6)

This is an average over a rectangular (box) region.

2. Gaussian filter:

G(x,x′,∆) =

√
6

π∆2
exp

(
−6|x− x′|2

∆2

)
(3.7)

This filter was introduced in the finite difference method (FDM) by the Stanford

group. It is smooth and differentiable. Over a long period, it has been the research

focus of LES and its theory and modelling have been well established [72].

3. Spectral or sharp cutoff filter:

G(x,x′,∆) =

3∏
i=1

sin[(xi − x′i)/∆]

(xi − x′i)
(3.8)

This filter is applied together with spectral methods which use Fourier series to describe

the flow variables. This filter eliminates all the wave numbers above a chosen frequency

and gives a sharp cutoff in the energy spectrum at a wavelength of ∆/π. This filter has an

advantage in terms of separation of the large and small eddy scales, but it is difficult to

apply to inhomogeneous flow. So the spectral method cannot be used in general-purpose

CFD [72].

There also are two options for filtering operation: Explicit and implicit filtering. “Ex-

plicit filtering” applies a filter such as a Gaussian one with arbitrary filter size ∆ on the

flow governing equations. “Implicit filtering” can be regarded as applying a box filter with

∆ directly related to grid spacing [85]. In the finite volume method (FVM), it is pointless

to choose a ∆ smaller than the grid size since the value of flow variable ϕ(x, t) is stored as

a single cell centre value on each grid cell, or face centre value at the boundary, destroying

the details of the finer resolution. Therefore, “implicit filtering” is adopted in the current

research. A box filter with cutoff width ∆ to be of the same order as the grid size will

be imposed on the flow governing equation. In a three-dimensional flow domain, ∆ is

ordinarily defined as the cube root of grid cell volume
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∆ = 3
√

∆x∆y∆z = 3
√
Vcell (3.9)

Where ∆x, ∆y and ∆z are length, width and height of the grid cells.

In short, eddies with length scale larger than grid size (∆) are classified as “large

eddy” and will be calculated directly, while the eddy smaller than ∆ are in SGS and will

be modelled.

3.2.2 Filtered Navier-Stokes Equations

Recall the incompressible, unsteady NSEs for a fluid with constant kinematic viscosity, ν,

in Cartesian coordinates

∇ · u = 0 (3.10a)

∂u

∂t
+∇ · (uu) = −∂p

∂x
+ ν∇2u (3.10b)

∂v

∂t
+∇ · (vu) = −∂p

∂y
+ ν∇2v (3.10c)

∂w

∂t
+∇ · (wu) = −∂p

∂z
+ ν∇2w (3.10d)

where p is kinematic pressure obtained as static pressure, P , divided by density, ρ.

By applying a uniform filter (whose filtering function satisfies the properties of linearity

and commutation with differentiation) with respect to space and time, one can derive LES

NSEs as

∇ · ū = 0 (3.11a)

∂ū

∂t
+∇ · (uu) = −∂p̄

∂x
+ ν∇2ū (3.11b)

∂v̄

∂t
+∇ · (vu) = −∂p̄

∂y
+ ν∇2v̄ (3.11c)

∂w̄

∂t
+∇ · (wu) = −∂p̄

∂z
+ ν∇2w̄ (3.11d)

where p̄ is the filtered kinematic pressure , ū, v̄ and w̄ are x, y and z direction components

of filtered velocity vector ū.

As in RANS, the filtered momentum Equations (3.11b to 3.11d) create a non-linear

convective term ∇ · (ϕu). This term can be easily rearranged as

∇ · (ϕu) = ∇ · (ϕ̄ū) +∇ · (ϕu− ϕ̄ū) (3.12)



31

It is clear that the 1st term in the r.h.s of the above equation can be calculated from

the filtered field, whereas the second term needs to be modelled. By substituting Eq 3.12

into Eq 3.11b to 3.11d, one can obtain the LES momentum equations

∂ū

∂t
+∇ · (ūū) = −∂p̄

∂x
+ ν∇2ū−∇ · (uu− ūū) (3.13a)

∂v̄

∂t
+∇ · (v̄ū) = −∂p̄

∂y
+ ν∇2v̄ −∇ · (vu− v̄ū) (3.13b)

∂w̄

∂t︸︷︷︸
(I)

+∇ · (w̄ū)︸ ︷︷ ︸
(II)

= − ∂p̄

∂z︸︷︷︸
(III)

+ ν∇2w̄︸ ︷︷ ︸
(IV)

−∇ · (wu− w̄ū)︸ ︷︷ ︸
(V)

(3.13c)

where terms (I) are the rate of change of the filtered velocity of the x, y and z directions;

terms (II) are the filtered convective fluxes of the x, y and z directions; terms (III) are the

filtered pressure gradients of the x, y and z directions; terms (IV) are the filtered diffusive

fluxes of the x, y and z directions; and terms (V) are the terms caused by filtering, which

can be rewritten into suffix notation as

∇ · (uiu− ūiū) =
∂(uiuj − ūiūj)

∂xj
(3.14)

Then the kinematic SGS stresses can be introduced as

τij = uiuj − ūiūj = uiu− ūiū (3.15)

where kinematic SGS stresses, equal SGS stresses divided by density, are normally used

in calculating incompressible flow in which density is constant.

The SGS stresses are introduced by a filtering operation. It is easy to see that when

∆→ 0, τij → 0. As the mesh is refined, the model effect from τij will decrease. Eventually

DNS will be reached if the numerical order is sufficiently high. Although SGS stresses look

similar to Reynolds stresses in RANS, their attributes are different:

1. SGS stresses only account for much smaller portions of turbulent energy in a flow

domain than Reynolds stresses, so the accuracy of the model is not as demanding

as in RANS calculation;

2. SGS stresses contain further contributions.

In order to have an insight of the contributions in SGS stresses, one can substitute the

decomposition of ϕ(x, t) in Eq 3.1 into τij to obtain
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τij = (ūi + u′i)(ūj + u′j)− ūiūj = ūiūj − ūiūj︸ ︷︷ ︸
Lij

+ ūiu′j + u′iūj︸ ︷︷ ︸
Cij

+u′iu
′
j︸︷︷︸

Rij

(3.16)

This process is referred to as the Leonard or triple decomposition [62]. There are three

terms in Eq 3.16

1. Lij = Leonard stresses

This term represents interaction among the large scales. It can be calculated from

the resolved velocity field. A method has been given by Leonard to calculate it from

the filtered flow field [88].

2. Cij = Cross stresses

This term reflects the interaction between large and small scales. It relates to the en-

ergy transfer between the two scales, although the energy can be transferred in either

direction, transfer from large to small scale is dominant. Ferziger [89] developed an

approximate method for this term.

3. Rij = LES Reynolds stresses

This term expresses the interaction along the small scales and needs to be modelled.

Strictly speaking, the SGS model only deals with LES Reynolds stresses, however, even

though the features of the three stresses are different, the decomposition of SGS stresses

was almost abandoned leaving the whole SGS stresses τij to be modelled as a single SGS

model [90]. This may be attributed to the observation that the accumulated errors from

an approximation of each term have a greater negative effect on the model accuracy than

modelling as a whole [91].
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3.3 Sub-grid Scale (SGS) Model

After over 50 years of development, many kinds of SGS models have been proposed and

developed. They can be classified into several groups, such as eddy viscosity models (EVM)

by Berselli et al. [92], gradient (Taylor) models by Clark et al. [93], rational models by

Gladi and Layton [94] and scale similarity models by Bardina et al. [95]. Current research

will only focus on the eddy viscosity approach because it is the most widely used SGS

closure approach.

3.3.1 Principle of Eddy Viscosity SGS Model

The theory of SGS EVM is rooted in RANS modelling. It is based on the presumption

that the function of viscous stresses is analogous to Reynolds stresses in RANS. It is well

known that in Newton’s law of viscosity for incompressible flow

τNewtonianij = 2νSij = ν

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.17)

It has been found that the turbulent stresses increase as the mean rate of deformation

increases [72]. The Boussinesq hypothesis proposed that the Reynolds stress in RANS is

proportional to the mean rates of deformation

τRANSij = −u′′i u′′j = νt〈Sij〉 = ν

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
− 2

3
kδij (3.18)

where u′′i , u
′′
j and u′′k are the fluctuating components (modelled); 〈ui〉, 〈uj〉 and 〈uk〉 are

the mean components of velocity (calculated); u = 〈ui〉+ u′′i ; k = 1
2〈u
′′2
i 〉 is the turbulent

kinetic energy per unit mass; νt is the turbulent or eddy viscosity in RANS; and δij is the

Kronecker delta. Details of the derivation of Reynolds stress can be consulted in general

CFD textbooks [72].

The underlying assumption of EVMs is that turbulence kinematic viscosity (or SGS

kinematic viscosity in LES) νt is isotropic which means the ratios between Reynolds

stresses (or SGS kinematic stresses in LES) and mean rate of deformation (or resolved

strain rate in LES) are the same in all directions. Although this assumption cannot hold

true in many complex flows, it has been proven to give a good prediction accuracy on a

wide range of flow types [96].

On dimensional grounds, it is assumed that νt can be expressed as a product of a

turbulent velocity scale, ϑ, and a turbulent length scale, `, as
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νt = Cϑ` (3.19)

where C is a dimensionless constant. Therefore, in EVM, an appropriate representation

of ϑ and ` is required to obtain νt (or νsgs in LES), and then solve the unclosed NSEs.

3.3.2 Standard Smagorinsky SGS model

Boussinesq’s hypothesis assumes that the turbulence production and dissipation are in

balance, i.e. equilibrium, and the turbulence structure at small scale should be largely

isotropic. Smagorinsky [84] suggested that due to small turbulent eddies being more

isotropic and dissipating its energy which is transferred from resolved scales, Boussinesq’s

EVM is likely to give good representation for the SGS eddies. The SGS stresses are

modelled as

τSGSij = u′iu
′
j = −2νsgsS̄ij +

1

3
τiiδij = −νsgs

(
∂ūi
∂xj

+
∂ūj
∂xi

)
+

1

3
τSGSii δij (3.20)

where νsgs is SGS kinematic turbulent viscosity, S̄ij = 1
2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
is the strain rate of

the resolved flow and the term 1
3τ

SGS
ii δij ensures the sum of modelled normal SGS stresses

is equal to the kinetic energy of the SGS eddies.

Following Prandtl’s mixing length model equation (Eq 3.19), the Smagorinsky-Lilly

SGS model proposed

` = ∆, ϑ = ∆× |S̄| (3.21)

then, νsgs can be described as

νsgs = (Cs∆)2|S̄| (3.22)

where |S̄| =
√

2S̄ijS̄ij =

√
2(S̄11

2
+ S̄22

2
+ S̄33

2
+ 2S̄12

2
+ 2S̄13

2
+ 2S̄23

2
is the average

strain rate of the resolved flow, ∆ is the filter cutoff length and chosen as the cubic root

of the cell volume; and Cs is the Smagorinsky constant, its value varies from 0.11 to 0.22

depending on the flow type [97]. In OpenFOAM v1612, the value is taken as 0.168 [98].

Thus, in the Smagorinsky SGS Model (SMAG), the SGS stresses is expressed as

τSGSij = −2(Cs∆)2|S̄|S̄ij +
1

3
τSGSii δij (3.23)

Since this model only utilises an algebraic formulation to represent νsgs without in-

volving any transport equation, it is also referred to as an algebraic or zero equation SGS
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Model. It has high stability and simplicity [99] and is the simplest and most commonly

used model in the EVM group [65].

3.3.3 k-equation SGS Model

The Smagorinsky SGS model is based on the equilibrium assumption which in theory

only works well in the situation that resolved flow changes very slowly and small eddies

can dissipate the energy received from resolved scales instantaneously. However, in real

industrial applications non-equilibrium conditions are extremely common, such as free

shear layers, separation and reattachment. So one can borrow the turbulence models in

RANS that adds transport equations to account for the transport effect of one or more

SGS turbulence parameters. The simplest model of this kind is the k-equation SGS model

(KEQ).

KEQ solves a transport equation for one or more SGS quantity to evaluate the velocity

scale, ϑ, and length scale, `, then obtain the SGS eddy viscosity to close the governing

equations. In 1975 Schumann [100] proposed the first KEQ for SGS kinetic energy

ksgs =
1

2

∑
n=1

τSGSii =
1

2

(
u′2 + v′2 + w′2

)
(3.24)

The KEQ incorporates rate of change, convection, diffusion, production and dissipation of

SGS turbulent kinetic energy. The form adopted in OpenFOAM v1612 is from the work

of Yoshizawa [101]

∂ksgs
∂t

+∇ · (ksgsū) = ∇ ·
(
ν + νsgs
σk

∇ksgs
)

+ 2νsgsS̄ij · S̄ij − εsgs (3.25)

where ν is molecular viscosity, σk = 1 [72] and εsgs is the SGS turbulent kinetic energy

dissipation rate and

εsgs = Cepss

k
3/2
sgs

∆
(3.26)

where Cepss = 1.0481 [101].

In this model SGS eddies Length scale ` is still equal to ∆, while the velocity scale ϑ

is evaluated by square root of the SGS turbulent kinetic energy
√
ksgs rather than ∆×|S̄|

used in SMAG. Therefore, the formulation of SGS eddy viscosity is

νsgs = Cks∆
√
ksgs (3.27)

1In the work of Fureby et al. [102], Cepss = 1.
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where Cks = 0.0942 [101]. Thus SGS stresses in KEQ are calculated as

τij = −2Cks∆
√
ksgsS̄ij +

1

3
τSGSii δij (3.28)

Although, theoretically, under equilibrium condition the SMAG and KEQ should

provide similar results, it was reported by Fureby et al [102] that KEQ is more effect-

ive and superior to SMAG.

van Driest damping function

One drawback of SMAG and KEQ is that there is no universal value of Cs in the fluid

domain. So νsgs does not become 0 in the viscous sublayer where the flow is laminar. Cs

is suggested to be in the range of 0.17 and 0.21 in the inertial subrange, while due to an

excessive eddy viscosity predicted from the mean shear it was reported that the near-wall

region was too dissipative [103] and spurious dissipation generated by this model dampens

the perturbations which stop transition to the turbulence phase. Cs is suggested to be 0.1

in this region [104, 105]. One way of solving it is to couple the SMAG and KEQ models

with the van Driest damping function (VD) [106] to reduce νsgs as the flow approach the

wall.

The form used in OpenFOAM v1612 is

∆ = min

(
∆mesh,

(
κv
C∆

))
y
(

1− e−y+/A+
)

(3.29)

rather than the form suggested by Ferziger and Peric [107] which modifies Cs while ap-

proaching the wall.

In Eq. 3.29, ∆mesh is the cubic root of cell volume; κ = 0.4187 is the von Karman

constant; C∆ = 0.158, A+ = 26; y is the distance from the wall; and y+ is the dimensionless

distance from the wall calculated the wall shear stress [108]. The SMAG and KEQ models

which are used in conjunction with the van-Driest damping function are referred to as

SMAG+VD and KEQ+VD, respectively.

Dynamic Lagrangian SGS model

Although the van Driest damping function is widely used together with SMAG and KEQ,

it directly links the distance from the wall which is problematic in the case of complex

geometries such as curved boundaries and corners. Cs is a dynamical variable that adjusts

2The value is same as the one proposed by Schumann [100], but in the work of Fureby et al. [102],

Cks = 0.05.
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itself to each flow [97]. Due to different effects from main flow strain and shear plus the

anisotropy of small eddies, run-time adjustment of Cs is required to improve the prediction

accuracy.

To overcome the negative effect of the variability of Cs in LES, the dynamic Smagor-

insky SGS model (DySMAG) was firstly introduced by Germano and co-workers in 1992

[109] to compute the local value of Cs based on the energy content of the smallest resolved

scale rather than a priori. This model is based on the scale-similarity Model [95] which

assumes the interaction between smallest resolved eddies (with the size of ∆) and both

slightly larger resolved eddies (with the size of 2∆) and SGS eddies is similar. Therefore,

the Cs calculated between the eddies with size of ∆ and 2∆ should be similar to the value

calculated between eddies with size of ∆ and SGS eddies.

In DySMAG, apart from the cutoff filter ∆ originally imposed on NSEs which generates

SGS stresses

τij = uiuj − ūiūj (3.30)

a new test filter with cutoff width of ∆test (normally ∆test = 2∆ [72]) will also be applied

on filtered NSEs to introduce SGS stresses in the test filter level as

τ testij = ũiuj − ˜̄ui ˜̄uj (3.31)

The Leonard stresses Ltestij part of SGS stresses τ testij at test filter level can be calculated

from the resolved field of LES as

Ltestij = ˜̄uiūj − ˜̄ui ˜̄uj (3.32)

Then one can obtain

Ltestij = τ testij − τ̃ij (3.33)

which is called the Germano identity. By applying the Smagorinsky model on both τij

and τ testij , after rearrangement, one can get [110]

Ltestij = C2
sMij +

1

3
Lkkδij (3.34)

where

Mij = −2∆test2| ˜̄S| ˜̄Sij + 2∆2 |̃S̄|S̄ij = 2∆2(|̃S̄|S̄ij − 4| ˜̄S| ˜̄Sij) (3.35)
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Lilly [110] proposed a least squares approach to calculate local value of Cs as

Cs =

√〈
Ltestij Mij

〉〈
MijMij

〉 (3.36)

where
〈〉

denotes an appropriate averaging procedure, whose purpose is to remove or

smooth the sharp fluctuation of local Cs. DySMAG achieved a significant improvement

in LES and solved a troublesome issue in the Smagorinsky SGS Model: in high shear

and near wall regions the Dynamic SGS Model automatically adjusted the Cs, and eddy

viscosity automatically changed to 0 in the laminar region.

However, it was found [72, 95, 109] that early dynamic SGS models can predict huge

or negative eddy viscosity. Locally negative eddy viscosity indicates an energy backscatter

and is a physically plausible feature. This is because DNS data [111] confirmed that the

forward and backward energy cascades are within the same order of magnitude but the

former is larger giving an overall energy transfer from large to small eddies. Nevertheless,

the negative eddy viscosity predicted in DySMAG does not correspond to real physics of

backscatter [102] and can cause instability in LES computation. The calculated Cs has a

large auto-correlation time which means once it becomes negative in some region it may

stay in a negative value for a very long time, causing the growth of local velocity fields,

leading to a divergence of the total energy [112].

To alleviate this problem, several averaging procedures have been proposed. For flow

with high homogeneity, the averaging will be conducted over a homogeneous direction

[109]. For more complex flow, the averaging takes place over a small time interval [113];

or introducing an integral formulation of the Germano identity together with an equa-

tion for the SGS kinetic energy budget and solving them in every time-step [114]. In

current research, the averaging procedure proposed by Meneveau and co-workers [115] is

applied. It averages along the fluid-particle trajectories. In essence the dynamic Lag-

rangian model (DyLag) is solving two transport equations for the Lagrangian average of

the tensor products Ltestij Mij and MijMij as TLM and TMM respectively

∂TLM
∂t

+ ū · ∇(TLM ) =
1

T
(Ltestij Mij − TLM ) (3.37a)

∂TMM

∂t
+ ū · ∇(TMM ) =

1

T
(MijMij − TMM ) (3.37b)

where the time scale T represents the memory length of the Lagrangian averaging and is

proposed by Meneveau et al. [115] as
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T = θ∆(TLMTMM )(−1/8); θ = 1.5. (3.38)

the Cs is then evaluated as

Cs =

√
TLM
TMM

(3.39)

Dynamic k-equation SGS model

The dynamic k-equation SGS model (DyK) is the dynamic variant of the KEQ model

[116]. This SGS model also evaluates νsgs and ksgs by Eq. 3.27 and Eq. 3.25, respectively,

but dynamically determines Cks and Cepss by [117]

Cks =
Ltestij Mij

2MijMij
(3.40a)

Cepss =
(νsgs + ν)(S̃ijSij − S̃ijS̃ij)

K
3/2
k /(2∆)

(3.40b)

where

Ltestij = ˜̄uiūj − ˜̄ui ˜̄uj (3.41a)

Mij = −2∆˜̄Sij√max(Kk, 0) (3.41b)

Kk =
1

2
(˜̄uiūi − ˜̄ui ˜̄ui) (3.41c)

The values of Cks and Cepss are kept positive, if a negative value occurs, the negative

value will be replaced by the average of the positive value.

Wall-Adapting Local Eddy-viscosity SGS model

The Wall-Adapting Local Eddy-viscosity SGS model (WALE) was proposed by Nicoud &

Ducros [118] to recover the νsgs = O(y3) near wall scaling without using extra transport

equation, damping functions as dynamic procedures. This model also calculates νsgs by

Eq. 3.27 and keeps the constant Cks = 0.094, but instead of solving a transport equation

for ksgs, it uses an algebraic formulation

ksgs =

(
C2
w∆

Ck

)2

(
S̄dijS̄

d
ij

)3

[(
SijSij

)5/2
+
(
S
d
ijS

d
ij

)5/4
]2 (3.42)

where

S
d
ij =

1

2

(
∂uk
∂xi

∂uj
∂xk

+
∂uk
∂xj

∂ui
∂xk

)
− 1

3
δij
∂uk
∂xl

∂ul
∂xk

(3.43)

and the constant Cw = 1.048
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3.3.4 Reynolds Stresses SGS Model

The aforementioned SGS models are all based the Boussinesq hypothesis which assumes

the SGS eddy viscosity has no direction preference (isotropic) and the SGS stresses can

be expressed by a SGS eddy viscosity and the strain rate of resolved flow. Although this

assumption can provide good predictions in many kinds of flow, the universal validity of

this theory is still questionable. Challenging the assumption will naturally lead to Reynolds

Stress SGS models (RSSM). This is similar to its counterpart in RANS modelling, using

transport equations to directly calculate SGS stresses. The model was first derived by

Deardorff [119] in 1973. In this model six transport equations for each SGS stress are solved

along with a modelled isotropic dissipation rate and a total of 18 empirical constants. Also,

νsgs still appears in each transport equation and is modelled in the same way in the k-

equation SGS model. Therefore, it can be classified as half EVM. Theoretically, it should

be the model with the potential to predict SGS stresses most accurately, however, Fureby

et al [120] reported that RSSM only gives a small improvement and predicted similar

results to other EVM models at low and moderate Re and behaved more like an EVM

model on a coarse mesh. Additionally, solving six transport equations is considerably more

computationally expensive even in low Re channel flow. In addition, the number of model

constants in RSSM may affect the universality of the model.

3.3.5 Conventional Hybrid Model

There is another group of LES methods which mostly focus on reducing computation cost

rather than improving the LES model itself. Most of them are hybrid Models and share a

common principle that large eddies are resolved away from walls (in the detached region)

and the wall boundary layers (in the attached region) are covered by a RANS model.

Examples of these Hybrid Models are summarised by Menter [121] and ANSYS [122] as

detached eddy simulation (DES), wall-modelled LES (WMLES) and zonal or embedded

LES (ZLES/ELES). These models are listed in Appendix A.
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3.4 Model Selection

As aforementioned, each modelling approach has its pros and cons, but due to the fact

that the current research is to numerically study the flow characteristics in a corrugated

channel, the flow domain should be resolved as much as possible. To this end, the hybrid

models and wall functions are excluded for the current study, as they will use RANS or

predefined functions to model the flow features close to the wall which are key for the

current study. The Reynolds stresses SGS model will also not be included because of

its complexity and marginal accuracy gains. Therefore, only EVMs are selected to go

through the validation test on a plane channel flow case. They are listed in Table 3.1

and include SMAG and KEQ, and their variants with van Driest Damping function and

dynamic features, as well as the WALE models.

SGS Models Model Description

SMAG Smagorinsky

SMAG+VD Smagorinsky SGS model with van-Driest wall damping function

DyLag Dynamic Lagrangian SGS model

KEQ k-equation SGS model

KEQ+VD k-equation SGS model with van-Driest wall damping function

DyK Dynamic k-equation SGS model

WALE Wall-adapting local eddy-viscosity SGS model

Table 3.1. List of SGS models to be validated.
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Chapter 4

Numerical Methods

The governing equations and models presented in the last chapter are only a comparat-

ively small part of what constitutes a functional LES solution method. The process of

obtaining the computational solution consists of two stages, discretisation and solution,

which are collectively referred to as the numerical method. The first stage involves the

conversion of the filtered Navier-Stokes equations, i.e. several sets of partial differential

equations (PDEs) and auxiliary (boundary and initial) conditions into a system of discret-

ised algebraic equations. The second stage is to solve the discretised algebraic equations

by a method such as the Pressure Implicit with Split Operator (PISO) algorithm [123].

The selection of numerical methods follows the following principles. It is crucial to

maintaining the order of accuracy of the discretisation method to minimise its error in the

solution. Moreover, the methods are also required to be flexible enough to accommodate

unstructured meshes and for application to complex geometries in engineering flows. Fi-

nally, the discretisation of the governing equations should facilitate efficient parallelisation,

without which only very limited LES would be possible.

The numerical methods that are related directly to current research are presented in

this Chapter. The description starts by recalling the governing equations and their form

with the SGS model, followed by a comparison of different discretisation methods. Then

the detailed discretisation of the governing equation will be given for each term. Finally,

the solver used in the current LES is presented.

4.1 Governing Equations

In the current research, the SGS model will mainly be applied to aerodynamic cases at

low Mach numbers. Therefore, incompressible and Newtonian flows with constant thermo-
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physical properties are considered. The governing equations for current LES, which have

been convoluted with a filter of uniform width, ∆, are given by

∇ · ū = 0 (4.1a)

∂ū

∂t
+∇ · (ūū) = −∇p̄+∇ · ν∇ū−∇ · τ (4.1b)

Here, p is filtered pressure divided by the constant density; u is the filtered velocity

vector; ν is kinematic viscosity; τ are the SGS stress tensors which have to be modelled

to close the system.

Then, due to ∇· ū = 0 for incompressible flow, ∇· ν∇ūT , where ∇ūT is the transpose

of ∇ū, can be added into above equation without affecting its conservation property. As

discussed in Chapter 3, the EVM will be applied, i.e. τ = −νsgs(∇ū +∇ūT ), therefore,

Eq 3.13 is changed to

∂ū

∂t
+∇ · (ūū) = −∇p̄+∇ · νeff (∇ū+∇ūT ) (4.2)

where νeff is the sum of the kinematic and SGS viscosities.
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4.2 Discretisation Method

The process of obtaining a numerical solution to a differential equation can be viewed

in the same way as conducting an experiment. The physical quantity, flow velocity, for

example, is measured at a set of discretised points in the domain of interest using a

measurement device. A picture of the flow variation can then be constructed by connecting

the measurement points allowing visualisation of the flow. If the flow quantities between

the measurement points are required, some interpolation technique can be used which

may be a linear or a higher order interpolation. This will depend on how far the points

are from each other, or the required accuracy. Similarly, numerical techniques convert the

continuous differential equation to the discretised points in space i.e. grid points, and find

the solution on it.

Several discretisation methods are currently used for LES of engineering flows, includ-

ing finite volume (FV), finite difference (FD), finite element (FE) [74, 91, 107, 124] which

will be discussed and compared in this section. There are also other methods such as

spectral methods and Lattice-Boltzmann methods, but they will not be discussed here,

due to their limited application in complex engineering flow.

4.2.1 Finite Difference Method

The FD method is the oldest and simplest method for the discretisation of PDEs. It can

be traced back to 1768 when Euler developed it for hand calculation of PDEs [124]. The

flow variables are calculated and stored at each nodal point of the grid. Taylor series

expansions are used to convert the PDEs of the governing equations into several sets of

algebraic equations for flow solution at each grid point.

The FD method can theoretically be applied to any type of grid system and up to any

degree of accuracy. However, the method is more commonly applied to structured grids

due to its requirement of a high degree of mesh regularity, and limited grid stretching

or distortion. Despite that the use of body-fitted coordinate system extends its usage to

more complex shapes [124], generally, the FD structured grids are still constrained to the

general coordinate systems, such as Cartesian grids with six-sided computational domains.

It is also reported not to work well in the convection-dominated problem [124].

One of the major advantages of the FD method is its high-order accuracy [125] on reg-

ular grids. It therefore has some popularity in research-oriented investigations [126–129].

But, its main disadvantage is that the flow property is not usually conserved unless special

care is taken [124] and the requirement of body fitted coordinates limits its application to
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fairly complex cases [91]. For this reason, FD is not widely used in modern LES.

4.2.2 Finite Element Method

The FE method was initially developed for structural analysis between 1940 and 1960

to calculate stress and strain displacements, and then extended to CFD [74]. The FE

method discretises the flow domain with non-overlapping cells called elements and the

flow variables are stored at the nodes comprising the element. It can accommodate a wide

range of element shapes, such as tetrahedral prisms and Hexahedrons. Therefore, unlike

the FD method, it is suitable for irregular computational domains and able to handle

complex arbitrary geometries [124].

Another distinguishing feature of the FD method is that a shape/interpolation/basis

function needs to be selected in the FE method to represent the variation of the solution

over the element. The derivative can then be written as a matrix of the nodal value and

distance. Then next step is to substitute this approximation into weighted residuals over

the solution domain and make these equal to zero to generate sets of algebraic equations

[74, 124].

The FE method has not been extensively used in CFD, although there are a number

of codes available that employ it, such as FEniCS [130] and COMSOL [131]. This is

mainly due to the fact that the FE method requires greater computational resources than

the equivalent FV method [124]. Moreover, the formulation of the FE method does not

guarantee the local conservation of flow variables, such as mass [91].

4.2.3 Finite Volume Method

The FV method was introduced in 1971 for two-dimensional flow and later extended to

three-dimensional flow in 1973 by Rizzi and Inuoye [124]. Similar to the FE method, the

FV method divides the computational domain into continuous and non-overlapping control

volumes called cells. The scalar flow variables, such as p and νsgs are stored at the cell

centre, and a vector variable, such as U is either stored at the cell centre or at the surface

surrounding the cell as the flow of flux [72]. The distinctive advantage of FV method over

the FD and FE methods is that it discretises the integral form of the governing equation

directly, so that by nature the FV method guarantees the conservation of flow properties

for each cell, regardless of the cell shape [107]. Nevertheless, it does have disadvantages

when compared to the FD method, i.e. third order approximation and above are more

difficult to develop in three dimensions for the FV method [124].
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From a practical Engineering application perspective, the FV method has more ad-

vantages than disadvantages. Firstly, it can accommodate any type of grid and handle very

complex geometries without worrying about the conservation of flow variables. Secondly,

no transformation of equations in terms of a body-fitted coordinate system is required as

in FD method. Thirdly, second order accuracy is easily maintained for LES solution.

Governing Equations For Finite Volume Method

Taking account of the pros and cons of all methods discussed in this subsection, the FV

method, which is employed in the majority of all CFD codes today, was found to offer the

best balance between flexibility and accuracy and will be used in current research.

The governing equations Eq 4.1a and 4.2 (rearranged to incorporate νeff ) represent the

conservation of mass and momentum respectively and will be applied to an infinitesimal

region of space. In the FV method, they are integrated over a control volume and in time

to produce the integral form of the governing equations

∫
V
∇ · ūdV =

∫
A
n · ūdA = 0 (4.3a)∫ t+∆t

t

[
∂

∂t

∫
V
ūdV +

∫
V
∇ · (ūū)dV −

∫
V
∇ · νeff (∇ū+∇ūT )dV

]
dt

= −
∫ t+∆t

t

[∫
V
∇p̄
]
dt

(4.3b)

¡hlwhere the A is the area of the entire surface of the control volume and dA represents

an infinitesimal surface element. n · ū is the component of the vector ū in the direction

of the outward unit vector n normal to dA.

The above governing equation is second order, as a second derivative appears in the

diffusion term [91]. It is recognised that the numerical discretisation scheme is one of the

primary error sources for LES (with another one being the SGS modelling. Therefore,

higher-order numerical schemes (at least second order) are desirable [132] which however

are difficult to implement for the complex geometry. Hence, second order discretisation

scheme are normally used for complex engineering configurations in order to balance the

accuracy and practicability [85]. In addition, since the time steps for LES are normally

small, the temporal discretisation are usually chosen to be second order as well, rather

than higher order [85]. Details about the discretisation method used in current research

are presented in Section 4.3.
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4.3 Discretisation of Governing Equations

Discretisation in the current research involves spatial discretisation and temporal discret-

isation. In spatial discretisation, the space domain is sub-divided into a finite number of

non-overlapping and contiguous control volumes (CVs) as seen in Fig. 4.1. The governing

equations, i.e. Eq 4.3 is then discretised onto this mesh. The discretisation of time is done

by breaking the total simulation time period into a set of time steps, ∆t, whose size may

be changed during the simulation as required by some calculation criteria.

Figure 4.1. Discretisation of the solution domain.

A detailed view of two adjacent CVs is shown in Fig. 4.2. Each of these CV encap-

sulates a computational point at its centroid, such as point P for the left cell, at which

dependent variables, such as ū and p̄, etc., and other properties are stored. The CV is

bounded by a number of flat faces, collectively referred to as A. These faces can have

arbitrary shapes and unstructured alignments which provide greater flexibility in complex

geometries. d is the vector connecting adjacent cell centres P and Q, and n is the face

normal area vector for the common face between the cells.

Figure 4.2. Control Volume for Finite Volume discretisation.
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4.3.1 Spatial Discretisation

The governing equations (Eq. 4.3) are effectively transport equations, it is beneficial to

examine the discretisation for each term of a generic transport equation. Recalling the

integral form of the general transport equations

d

dt

∫
CV

φ dV︸ ︷︷ ︸
Temporal derivative

+

∫
CV
∇ · (ūφ)dV︸ ︷︷ ︸

Convective term

−
∫
CV
∇ · (Γφ∇φ)dV︸ ︷︷ ︸

Diffusion term

=

∫
CV

SφdV︸ ︷︷ ︸
Source term

(4.4)

where φ is any transported variable, such as u or p; Γφ is the diffusivity coefficient of this

transported variable; Sφ is the source ¡hlterm in this equation. If all flow variables are

assumed to vary linearly around the point P and time t, one can get

φQ = φP + (XQ −XP ) · (∇φ)P (4.5a)

φ(t+∆t) = φt + ∆t(
∂φ

∂t
)t (4.5b)

where φQ and φP are values of φ at point Q and P respectively, XQ−XP is the distance

between PointQ and P , (∇φ)P is the gradient of φ at point P ; φ(t+∆t) and φt are values of

φ at time t and t+ ∆t respectively, ∆t is the time interval and (∂φ∂t )t is the time derivative

of φ at time t.

Recalling Gauss’s theorem

∫
CV
∇ · φdV =

∫
A
n · φdA (4.6)

indicates the surface integration needs to be performed over area A of the CV. As in Eq.

4.3, the physical interpretation of n · φ is the component of φ (if φ is a vector) in the

direction of the outward unit vector n normal to dA. Applying Gauss’s theorem to Eq

4.4 gives

d

dt

∫
CV

φ dV +

∫
A
n · (ūφ)dA−

∫
A
n · (Γφ∇φ)dA =

∫
CV

SφdV (4.7)

where A is the area of the entire cell surface bounding the CV and dA is an infinitesimal

surface element belonging to A. The area integration is then performed over all surface

elements to get

d

dt

∫
CV

φ dV +
∑
all

∫
∆Ai

ni · (ūφ)dA−
∑
all

∫
∆Ai

ni · (Γφ∇φ)dA =

∫
CV

SφdV (4.8)
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Where ∆Ai is the area of specific surface among the entire control surface, and ni is

the normal unit vector to that specific surface. Each term in Eq 4.8 is treated separately

in the following sections.

Convection Term

The convective term of Eq 4.8 is ∑
all

∫
∆Ai

ni · (ūφ)dA

The area integration is the summation of the integrals over all ∆Ai. Each of these

integrals is evaluated as the dot product of ni and the multiplication between a convective

flux vector ūφ and ∆Ai. The convective flux parameter Fi is defined as the flow rate

normal to the surface element

Fi =

∫
∆Ai

ni · ūdA ∼= ni · ū∆Ai (4.9)

then, the convective term can be written as

∑
all

∫
∆Ai

ni · (ūφ)dA =
∑
all

Fiφi (4.10)

where φi is the value of φ at the centre of surface area element dAi. It is worthwhile

pointing out that due to the continuity equation, the flux should satisfy

∫
CV
∇ · ū dV =

∫
A
n · ū dA =

∑
all

∫
∆Ai

ni · ūdA =
∑
all

Fi = 0 (4.11)

As discussed before, linear variation of the dependent variable is assumed. The face

value can be evaluated by applying a Central Differencing (CD) scheme which is done by

conducting an interpolation between the cell values at P and Q as

φi = fiφp + (1− fi)φQ (4.12)

where fi is the interpolation factor which is defined as the ratio of the distances between

Q to surface, DfP , and PQ, DPQ

fi =
Dfp

DPQ
(4.13)

The CD scheme is able to offer second order accuracy even on unstructured meshes [107].

However, A disadvantage of the CD scheme is its unboundedness when the convection
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term strongly dominates the system which can lead to non-physical oscillations in the

solution or even divergence [72].

An alternative approach, the ¡hlupwind differencing (UD) scheme, has been widely

used to improve the instability and unboundedness issues brought by the CD scheme. In

this scheme the face value, φi, is determined according to the direction of the flux

φi =


φP Fi ≤ 0

φQ Fi ≥ 0

(4.14)

The UD scheme by nature complies with boundedness, but a major drawback of the

scheme is that it introduces diffusion-like erroneous results when the grid lines are mis-

aligned with the flow, which is well known as numerical diffusion or false diffusion [107].

Due to the fact that the turbulent diffusivity predicted by LES is generally very small,

even a modest numerical diffusion can contaminate the result. Therefore, the UD scheme

is only used in LES to increase the stability of the calculation when the CD scheme cannot

guarantee convergence of solution. Therefore, the central differencing scheme will be used

throughout the research.

Diffusion Term

The diffusion term of Eq 4.8 is

∑
all

∫
∆Ai

ni · (Γφ∇φ)dA

Similar to the the convective term, the area integration is the summation of the integ-

rals over all ∆Ai. Each of these integrals is evaluated as the dot product of ni and the

multiplication between a diffusive flux vector Γφ∇φ and ∆Ai

∑
all

∫
∆Ai

ni · (Γφ∇φ)dA ∼=
∑
all

ni · (Γφ∇φ)∆Ai (4.15)

If the mesh is orthogonal, i.e. surface unit normal vector ni, d, and the line joining nodes

P and Q are in the same direction, the equation above can be approximated by using the

CD scheme along line PQ:

∑
all

ni · (Γφ∇φ)∆Ai ∼= Γi
φQ − φP
|d|

∆Ai (4.16)

where the |d| is the distance between the centroids P and Q, Γi is the diffusion coefficient

on the surface dAi that can be calculated by the CD scheme in Eq 4.12. However, in
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more complex geometries such as the corrugated channel in the current research, the mesh

will have some degrees of skewness and non-orthogonality so that line PQ is not parallel

to ni. In this case, a correction is needed for Eq 4.16 to offset the error brought by

non-orthogonality. This research adopts the method of introducing a term called cross-

diffusion [72] as in Eq. 4.17. By considering an arbitrary geometry in Fig. 4.3, vector d is

the direction of line joining centroids P and Q of adjacent cells, vector c is the direction

of the line joining vertices a and b, n is the unit vector normal to surface A, m is the

midpoint of ab, and θ is the angle between n and d. The diffusion flux through each CV

face can then be evaluated as

ni · (Γφ∇φ)∆Ai = Γ · 1

cosθ

(φQ − φP )

|d|
∆Ai︸ ︷︷ ︸

Direct gradient term

−Γ · tanθ
(φQ − φP )

|c|
∆Ai︸ ︷︷ ︸

Cross−diffusion term

(4.17)

where |c| is the distance between vertices a and b, and will be ∆Ai in 3D mesh, and φa and

φb can be calculated by taking an average over the neighbouring nodal cell centre value

φa =
φQ + φP + ...

N
(4.18)

where N is the number of cells surrounding the vertex a.

It should be noted that a further error term can be introduced by skewness, as the CD

scheme is only second order accurate if the integration of the control surface element uses

the midpoint value of ni · (Γφ∇φ)∆Ai. In the case of mesh having high skewness, the lines

PQ and ab do not intersect at the midpoint m of ab. This error increases with the rise of

skewness and aspect ratio, indicating it is important to minimise the non-orthogonality,

skewness and aspect ratio in the mesh.

Figure 4.3. Sketch for evaluation of diffusion flux.
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Source Terms

In the current research, all terms which are not convection, diffusion or temporal contri-

butions are classified as source terms. The volume integration in the source term on the

r.h.s and transient term on the l.h.s of Eq 4.8 can be approximated by the product of the

cell volume and the centroid value of the variable, i.e.

∫
CV

φdV = φPVP (4.19)

where VP is the cell volume, and

∫
CV

Sφ dV = S̄φ∆V (4.20)

Where S̄φ is the average of Sφ over the CV and ∆V is the volume of the CV. By using

the midpoint rule, replacing S̄φ by the value at the centroid of the CV offers second-order

accuracy. The source term is then introduced to the discretised equation as

S̄φ∆V = SuVP + SpVPφP (4.21)

The integral relation for the generic transport equation without time integration can

be written as

d

dt

∫
V
φdV +

∫
V
∇ · (ūφ)dV −

∫
V
∇ · (Γφ∇φ)dV =

∫
V
SφdV (4.22)

This can be written with time integration as

∫ t+∆t

t

[
d

dt

∫
V
φdV +

∫
V
∇ · (ūφ)dV −

∫
V
∇ · (Γφ∇φ)dV

]
dt =

∫ t+∆t

t

[∫
V
SφdV

]
dt

(4.23)

By substituting the equations discussed above, Eq. 4.22 can now be rewritten as

d(φPVP )

dt
+
∑
all

Fiφi −
∑
all

ni · (Γφ∇φ)∆Ai = SuVP + SpVPφP (4.24)

Eq. 4.23 can now be rewritten as

∫ t+∆t

t

[
d(φPVP )

dt
+
∑
all

Fiφi −
∑
all

ni · (Γφ∇φ)∆Ai

]
dt =

∫ t+∆t

t
[SuVP + SpVPφP ] dt

(4.25)



53

Temporal Discretisation

The time integration in Eq. 4.25 can be treated by the Crank Nicholson scheme which is an

equal blend of first order explicit and implicit Euler schemes and only offers second order

accuracy for equal blending [107]. It is shown that Crank-Nicholson scheme requires extra

inner-iterations during each time step to evaluate the diffusion term using the properties

at the new time, and has a large memory overhead due to the stored variables [91].

In this research the second order backward differencing scheme will be used to treat the

time derivative. The scheme is fully implicit, of second order accuracy and unconditionally

stable [89]. Although it has a larger truncation error than the Crank Nicholson scheme,

the backward differencing scheme is cheaper to run and less prone to producing oscillatory

solutions than the latter. Given that the time step for current research is very small (Co <

1), the size of numerical diffusion caused by the temporal scheme is kept to a minimum

[91]. In the backward differencing scheme, the temporal derivative is approximated as

[
d(φPVP )

dt

]n+1

=
3(φPVP )n+1 − 4(φPVP )n + (φPVP )n−1

2∆t
(4.26)

where (φPVP )n+1 = (φPVP )t+∆t is at the new time level, i.e. the time step being solved

for; (φPVP )n = (φPVP )t is at the current time level, the value is stored from the previous

time step; and (φPVP )n−1 = (φPVP )t−∆t is at the old time level, the value is stored from

the time step before the last.

The other terms are evaluated only at the new time level, neglecting the temporal

variation. Then Eq. 4.24 becomes

3(φPVP )n+1 − 4(φPVP )n + (φPVP )n−1

2∆t
+
∑
all

Fiφ
n+1
i −

∑
all

ni · (Γφ∇φ)n+1∆Ai

= SuVP + SpVPφ
n+1
P

(4.27)
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4.4 Solver

The solver selected in the current research is the PIMPLE algorithm1. This algorithm is

a combination of PISO (Pressure Implicit with Splitting of Operator) [123] and SIMPLE

(Semi-Implicit Method for Pressure-Linked Equations) [133]. The PIMPLE algorithm

allows users to specify the number of outer loops other than the default value of 1 for

PISO. However, if 1 outer corrector step and 2 inner corrector steps are specified, this

algorithm is effectively a PISO algorithm. The flow chart of the PIMPLE algorithm is

shown in Fig. 4.4 followed by the explanations of various steps in the flow chart2.

Figure 4.4. A flow chart of the PIMPLE algorithm.

1There is no literature about this algorithm, but it exists in OpenFOAM v1612, and is regarded as

more robust than PISO by the OpenFOAM community.
2The flow chart is made by combining the information in the source code of OpenFOAM and the

information about SIMPLE and PISO algorithms in various textbooks [72, 107, 134].
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1. The flow variables at t = 0 (the initial condition) is used as an initial guess for

computing the flow solution at t+ ∆t.

2. Assemble and solve the first momentum equations/predictor to obtain a tentative

velocity. The solution of velocity components is obtained by a smooth solvers with

a symmetric Gauss-Seidel smoother. The resultant velocity field does not normally

satisfy the mass conservation.

3. Assemble and solve the first pressure correction equation. The solution of matrix

is achieved by a generalised geometric-algebraic multi-grid (GAMG) solver with

a Gauss-Seidel smoother. Despite that the pressure correction equation has been

presented in various literature [72, 91, 107, 135], for the sake of completeness, the

pressur correction equation is described in Appendix B.

4. Update U , p and Fi using the flow variable calculated in momentum and pressure

correction equations and the value at t.

5. Use the latest U , p and Fi to assemble and solve the second momentum cor-

rector/predictor.

6. Use the newly solved U to assemble and solve the second pressure correction equa-

tion. The solution is obtained by GAMG but smoothed by diagonal incomplete-

Cholesky/LU with Gauss-Seidel (DICGaussSeidel).

7. Update U , p and Fi by summing the flow variable calculated in the second mo-

mentum and pressure correction equations and their intermediate value generated

after Step 4.

8. Step 5-7 is now performed repeatedly until the maximum number of inner corrector

steps is reached. Due to the fact that the time step size in current research is very

small, convergence can generally be reached within 2 iterations.

9. When the maximum number of inner corrector steps is reached, U , p and Fi will

be assigned as the initial value back to Step 2. Then step 2-8 is repeated iteratively

until the maximum number of outer corrector steps is reached.

10. Set the value at t+ ∆t to be the final solution.

11. Advance to next time step.
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Chapter 5

Validation of SGS Models

Fig. 1.3a shows clearly that the top wall and the two side walls of the corrugated channel

are flat plates. Therefore, although the modelling accuracy of various SGS models is

unclear on the corrugated wall, their performances can be assessed on the fully developed

turbulent channel flow. Due to the simplicity of its geometry and abundant experimental

and DNS data, channel flow is generally used as the first test case to validate SGS models.

In this test case, the performance of different SGS models from Chapter 3 (summarised

in Table. 5.1) are compared in terms of streamwise velocity profile, mean shear stress

profile and second order velocity moments. The effects of grid density on the prediction

accuracy of SGS models are also analysed. Finally, the computing cost of various SGS

models are compared leading to the conclusions of the current chapter.

SGS Models Model Description

SMAG Smagorinsky SGS model

SMAG+VD Smagorinsky SGS model with van-Driest wall damping function

DyLag Dynamic Lagrangian SGS model

KEQ k-equation SGS model

KEQ+VD k-equation SGS model with van-Driest wall damping function

DyK Dynamic k-equation SGS model

WALE Wall-adapting local eddy-viscosity (WALE) SGS model

Table 5.1. List of SGS models tested in current channel flow case.
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5.1 General Case Setup

The channel flow case is shown schematically in Fig 5.1. A channel flow case should consist

of two infinite (at least long enough) parallel plates within which there is an equilibrium

turbulent flow. It is non-practical to simulate the whole domain. Thus an approximation

is made that a finite sub-domain of this channel is taken and periodic boundaries are

applied in the streamwise, x, and spanwise, z, directions. This BC has been shown to be

the best practice in similar research [11, 27, 103, 136], since this method removes the need

for specification of inflow conditions and significantly reduces the computational domain.

When the required streamwise bulk velocity, Ub, is defined, a pressure gradient is calculated

at each time step, acting as an additional external force term into the momentum equation,

in order to keep Ub constant across the channel.

The distance between the paired boundaries should be sufficiently far that the largest

eddy structure will not interfere with itself. It was reported that an adequate dimensions

of the computational domain should be around 2πh× 2h× 1.5πh [91, 100, 137] in the x,

y and z directions respectively (h is the half channel height), although it is also shown by

Fureby et al. [136] that a smaller channel dimension (4h× 2h× 2h) is also viable.

Figure 5.1. Schematic representation of a channel flow case.

The emphasis of current testing is on the flow with medium Re. The Re based on h and

Ub is 38000. The experiment was done by Wei and Willmarth [138] using a water tunnel

and flow variables were measured by Laser Doppler Anemometer (LDA). The relevant LES

on this test case was originally done by Poimelli [113] to test a dynamic SGS model based

on a spectral method. It was then used by Shah and Ferziger [139] to test a non-eddy

viscosity based SGS model. Tang et al. [140] also tested a multigrid 3D pressure solver

on the same configuration. A DNS study was recently performed by Lee and Moser [141].

The flow domain and parameters are given in Table. 5.2.
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Parameter Notation Value Expression

Bulk Reynolds number Reb 38000 Ubh/ν

Centre Reynolds number Rec 39582 Uch/ν

Friction Reynolds number Reτ 1800 uτh/ν

Domain size Lx × Ly × Lz 2.5πh× 2h× 0.5πh —

Table 5.2. Global flow parameter of the channel flow test case.

One objective of current validation is to investigate the effect of grid density on the

result of the simulation. So three different mesh sizes are tested and referred to as Mesh1,

Mesh2 and Mesh3. Mesh1 is the coarsest among the three. The mesh is uniform in the x

and z directions, and stretched in the y direction. Mesh2 doubles the number of grid lines

of mesh1 along all dimensions. By using the same way of refinement on Mesh2, Mesh3 is

obtained as the finest mesh. The mesh information is summarised in Table. 5.31. The

configurations of Mesh2 are the same as those used by Piomelli [113], Shah and Ferziger

[139] and Voloudis et al [142]. For Mesh1 the ratio between the largest and smallest

cell size along y-axis is 75, this ratio for Mesh2 and Mesh3 is 90. It is acknowledged

that the required grid resolution to obtain accurate LES results for turbulent channel

flow is (∆x+,∆y+,∆z+) ' (100, 1, 30) [143]. Therefore, even Mesh3 is not fine enough

for accurate results. However, in the real engineering application, the mesh density and

quality may not always follow the best practice due to the complexity of the geometry and

computing power. Therefore, current mesh densities serve the purpose of assessing SGS

models on sub-optimal meshes.

Mesh name Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+

Mesh1 32× 40× 40 442 71 2.5-185

Mesh2 64× 80× 80 221 35 1.1-99

Mesh3 128× 160× 160 110 18 0.56-50

Table 5.3. The mesh used in the simulation.

Constant mean velocity is imposed in the x direction with periodic BC being set in

both x and z directions. No-slip is applied on the wall and y+ < 3 for all three meshes,

meaning the flow field close to the wall is explicitly computed. Time step size, ∆t, is set

1Note that ∆x+, ∆y+, ∆z+ are calculated based on theReτ value in Table. 5.2. ∆x+ = (Lx/Nx)×uτ/ν,

and Reτ = h× uτ/ν, so ∆x+ = (Reτ × Lx)/(Nx × h).
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to be 2× 10−5s, making the Courant Number, Co, less that one.

Initial turbulence was generated by using utilities provided by the community of Open-

FOAM [144]. LES simulation started with the model KEQ+VD. the simulation is run

for first 5s (43 flow through, 250,000 time steps) in order to allow the flow field to fully

develop and reach a statistically stationary state. Then the time averaging is carried out

from 5s to 8s (26 flow through, 150,000 time steps). Result verification can be found in

Appendix C.

5.2 Results

5.2.1 Global Flow Quantities

Global flow quantities include the computed friction velocity and mean centreline velocity

which characterise the flow. These values predicted by various SGS models under different

mesh densities are summarised in Table. 5.4 to 5.6. The target value is from the work of

Shah and Ferziger [139].

Parameter SMAG SMAG+VD DyLag KEQ KEQ+VD DyK WALE

Uc/Ub 1.177 1.098 1.066 1.164 1.092 1.069 1.066

Target value 1.124 1.124 1.124 1.124 1.124 1.124 1.124

Error (%) 4.69% -2.28% -5.15% 3.51% -2.87% -4.94% -5.14%

Reτ 699 1683 1333 908 1684 1384 1324

Target value 1800 1800 1800 1800 1800 1800 1800

Error (%) -61.17% -6.50% -25.94% -49.56% -6.44% -23.11% -26.44%

Table 5.4. Global flow quantities of SGS models compared under Mesh1.

Parameter SMAG SMAG+VD DyLag KEQ KEQ+VD DyK WALE

Uc/Ub 1.133 1.092 1.078 1.128 1.088 1.076 1.077

Target value 1.124 1.124 1.124 1.124 1.124 1.124 1.124

Error (%) 0.79% -2.84% -4.11% 0.34% -3.22% -4.23% -4.18%

Reτ 936 1764 1596 1230 1770 1614 1576

Target value 1800 1800 1800 1800 1800 1800 1800

Error (%) -48.00% -2.00% -11.33% -31.67% -1.67% -10.33% -12.44%

Table 5.5. Global flow quantities of SGS models compared under Mesh2.
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Parameter SMAG SMAG+VD DyLag KEQ KEQ+VD DyK WALE

Uc/Ub 1.137 1.108 1.108 1.137 1.109 1.103 1.104

Target value 1.124 1.124 1.124 1.124 1.124 1.124 1.124

Error (%) 1.17% -1.44% -1.46% 1.13% -1.37% -1.84% -1.75%

Reτ 1202 1824 1760 1528 1828 1770 1751

Target value 1800 1800 1800 1800 1800 1800 1800

Error (%) -33.22% 1.33% -2.22% -15.11% 1.56% -1.67% -2.72%

Table 5.6. Global flow quantities of SGS models compared under Mesh3.

The results demonstrate the targeted centreline to bulk velocity ratio, Uc/Ub, can be

well captured by all models. Even under Mesh1, the smallest error is -2.28% obtained by

KEQ+VD, and the largest error is -5.15% obtained by DyLag. In addition, as expected,

increasing the mesh density will increase the prediction accuracy for all the models, as on

Mesh3 all errors on predicting Uc/Ub are within 2%.

In terms of Reτ , however, most SGS models tend to under-predict the value and the

accuracy of each model varies considerably. Also a close link between accuracy and mesh

density is observed. The SMAG under Mesh1 has the highest error and it under-predicts

the target value by 61.17%. By adding an extra k-equation, KEQ reduces the error but the

value is still around 50%. Their dynamic variants, DyLag and DyK future reduce the error

to around 25%, which is at the same level with WALE. The best accuracy is obtained by

adding the van-Driest Damping function to SMAG and KEQ. It is found SMAG+VD and

KEQ+VD both under-predict the target value by less than 7% on Mesh1. The accuracy

is found to be improved by increasing the mesh density. In Mesh2, the error obtained by

SMAG+VD and KEQ+VD is reduced to 2%, but their dynamic counterparts, DyLag and

DyK, still under-predict the target value by over 10%. In Mesh3, all SGS models see a

further improvement in accuracy, and apart from SMAG and KEQ, all other SGS model

have reduced the error to less than 3%.



61

5.2.2 Mean Velocity Profiles

The profile of the averaged stream-wise velocity, 〈u〉, is inspected in this section. The result

of mean flow field for each SGS model under different mesh densities is shown in Fig. 5.2.

The profile is presented in wall coordinates, y+ = uτy/ν, and streamwise velocity is scaled

with friction velocity, i.e. U+ = 〈u〉/uτ . The red and blue dotted lines represent the SGS

models without van-Driest damping function (VD), i.e. SMAG and KEQ respectively.

The red and blue solid lines show the results of SMAG+VD and KEQ+VD respectively.

The coloured dashed lines are for dynamic models, i.e. DyLag and DyK. Finally, the

yellow solid line is for WALE.

It appears that apart from KEQ, all the results of the SGS models match the profile

within viscous layer even with Mesh1. However, both SMAG and KEQ completely fail to

reproduce the profile within the log layer region. Their VD counterparts, SMAG+VD and

KEQ+VD, predict a similar result and generally match the profile predicted by DNS and

observed by LDA, although slight under-prediction is shown between y+ of 10 and 100,

and over-prediction is exhibited beyond y+ = 100. The result of DyLag, DyK and WALE

are similar, they present an over-prediction of the profile from y+ = 70 to the end. But

at log layer region, those three models are able to match the gradient of the profile.

As the mesh density increases for Mesh2, the accuracy of all SGS models improves.

The difference between the prediction of DyLag, DyK and WALE and the correct log layer

profile reduces by 5 units on U+ axis, compared with the prediction under for Mesh1.

Their results are similar to the standard Smagorinsky and k-equation with another wall

damping function proposed by Yoshizawa [101] which were reported by Veloudis et al.

[142]. Due to the result predicted by SMAG+VD and KEQ+VD being close to the correct

profile in Mesh1 already, the mesh refinement has less impact on their result, despite a

small improvement of prediction accuracy being visible within the log layer region. The

profile predicted by SMAG+VD and KEQ+VD are comparable to the results reported by

Piomelli [113] and Shah and Ferziger [139].

Further refining to Mesh3, the prediction of both models with VD are now very close

to the correct profile. The difference between the results of DyLag, DyK and WALE and

DNS data further decreases, although a bulge still exists between the y+ value of 20 and

100. The refinement also sees that the SMAG and KEQ approaches the correct profile. It

is expected that the prediction of all SGS models will be closer to the DNS result under

further refinement and will eventually match it if the numerical scheme is adequately high

and numerical errors are properly controlled.
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(a) Mesh1

(b) Mesh2

(c) Mesh3

Figure 5.2. Mean normalised stream-wise velocity in wall coordinates on different mesh

densities.
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5.2.3 Velocity Fluctuations

This section is devoted to the analysis of each component of the Reynolds stress tensor

obtained from various SGS models under different mesh densities. The Reynolds stresses

tensor, u′iu
′
j , is the variances of velocity components which are the primary quantities

describing the turbulent fluctuations. The root-mean-square value (standard deviation)

of its diagonal components,
√
〈u′2i 〉, are often non-dimensionalised by friction velocity, uτ ,

(referred to as u′+i ) and compared against y+. Since the channel flow is symmetric in

the wall normal direction, its 〈u′w′〉 and 〈v′w′〉 components are equal to zero [73]. So the

〈u′v′〉 component, whose negative value is referred to as turbulent shear stress, is the only

component left to be analysed. It is customary to normalise the time-averaged turbulent

shear stress, 〈−u′v′〉, by u2
τ (refers to as u′v′+) and compare against y+.

Fig. 5.3 to Fig. 5.5 compare the u′+, v′+ and u′v′+ with y+ predicted by each SGS

model under different mesh densities with data obtained by DNS and LDA. From those fig-

ures, a general trend of improvement is observed as the mesh is refined. Also, SMAG+VD

and KEQ+VD provide similar results, and results predicted by DyLag, DyK and WALE

are almost identical, and SMAG and KEQ fail to predict a correct profile completely under

Mesh1.

For u′+ in Fig 5.3, it is found that SMAG+VD and KEQ+VD are able to capture

the right level of turbulence intensity (with slight under-prediction) even under Mesh1,

but fail to predict where the highest intensity occurs. On the opposite, DyLag, DyK

and WALE tend to over-predict the highest value of turbulence intensity, but they are

better at predicting the location where the highest turbulence in intensity happens under

very coarse mesh. In Fig 5.4, DyLag, DyK and WALE demonstrate better accuracy in

predicting the profile of v′+ than SMAG+VD and KEQ+VD in all mesh densities, despite

that all SGS models are not able to match the exact DNS profile. In terms of u′v′+ in

Fig. 5.5, DyLag, DyK and WALE still outperform SMAG+VD and KEQ+VD. The first

three SGS models predict a profile which is close to DNS result under the coarsest mesh

and match it well when refining to Mesh3, whereas, SMAG+VD and KEQ+VD show

considerable difference with DNS data under Mesh1. Although their accuracy benefits

from increasing the mesh density, their results still depict discrepancy within y+ < 100.
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(a) Mesh1

(b) Mesh2

(c) Mesh3

Figure 5.3. Stream-wise turbulence intensities by wall coordinates on different mesh

densities.
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(a) Mesh1

(b) Mesh2

(c) Mesh3

Figure 5.4. Wall normal direction turbulence intensities by wall coordinates on different

mesh densities.
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(a) Mesh1

(b) Mesh2

(c) Mesh3

Figure 5.5. Mean shear stress by wall coordinates on different mesh densities.
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5.3 Conclusion

Several SGS models are tested under different mesh densities on a well documented chan-

nel flow configuration. It is found that under every mesh density, results obtained by

SMAG+VD and KEQ+VD are very similar, and DyLag, DyK and WALE predict almost

identical profiles. All these models can predict flow profile close to the data of DNS and

LDA on Mesh3 ([∆x+, ∆ymin
+, ∆z+] = [110, 0.56, 18]). However, SMAG and KEQ failed

to provide satisfactory results even under the finest mesh (Mesh3).

Although the prediction accuracy of all SGS models should deteriorate as the mesh is

coarsened, in terms of predicting mean velocity profile, decreasing mesh density has less

effect on SMAG+VD and KEQ+VD than DyLag, DyK and WALE. As the mesh density

coarsens by a factor of 64 (i.e. under Mesh1), SMAG+VD and KEQ+VD are still able to

provide a reasonably accurate result, whereas DyLag, DyK and WALE show a considerable

over-prediction in log layer region, despite the gradient being well retained. In addition,

DyLag, DyK and WALE tend to over-predict the value of the highest turbulence intens-

ities, although they are able to capture the location of the highest turbulence intensities

(except for 〈v′v′〉) even under the coarsest mesh. Conversely, SMAG+VD and KEQ+VD

tend to slightly under-predict the highest turbulence intensities, but have worse accuracy

on predicting their locations, especially the wall normal turbulence intensity.

Combing the aforementioned findings, SMAG+VD will be used in the study of the

corrugated channel flow, as it is able to produce an overall more satisfactory result on

Mesh3 at lower computing cost2.

2The comparison of computing cost between different SGS models is presented in Appendix D.
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Chapter 6

Analysis of Corrugated Channel

The main objectives of the current research are to numerically investigate the flow in a

corrugated channel, including its flow development, mean flow profiles, and vortex evolu-

tion mechanisms within the corrugations. In what follows, Section 6.1 discusses the key

features of the flow domain. Section 6.2 outlines the numerical setup and the BCs em-

ployed, followed by the grid independence study in Section 6.3. Results are presented and

discussed in Section 6.4.

6.1 Experimental Setup

As mentioned in Chapter 1, an experiment study has been carried out to compare with

the numerical predictions. The experimental results were acquired by PIV technique and

the schematic of the experimental setups are shown in 6.1.

Two experimental setups were used for testing under different Re ranges. The first one

is shown in Fig. 6.1a in which flow through the channel is driven by the pressure difference

(700mm elevation difference) between the reservoir and the flow control valve at the exit.

The flow rate changes 3-4% during a typical run1 due to the change of pressure head as

water in the reservoir discharges. Due to the limiation of pressure head, this setup is only

able to achieve Re = 6000. Therefore another setup wth pump, as shown in 6.1b, was

built to measure flows with higher Re. In this setup, the pump was located downstream

of the test section to minimise turbulence [12].

The corrugated channel investigated in the present work has a rectangular cross section,

as shown in Fig. 1.3a, the bottom wall has a wavy shape with periodic grooves, whereas

the top wall and two sidewalls are both flat plates. The dimensions of the geometry is

1The duration for a typical run was not reported in the work of Unal et al. [3]
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(a) Experimental setup for Re up to 6000 [3]

(b) Experimental setup for Re above 6000 [12]

Figure 6.1. Schematic of the experimental setups.

shown in Table. 6.1.

Variables Description Value (mm)

H channel height 15.85

h corrugation height 4.15

λ wavelength of the corrugation 6.6

d1 diameter of the groove 3.0

d2 corrugation diameter 3.6

b channel width 20

Table 6.1. Configurations of the flow domain.

The PIV experiment reports that the flow in current configurations became turbulent

at Reb > 2000, based on bulk velocity, Ub, and hydraulic diameter of the channel, 2bH/(b+

H). In this research, simulations are performed for Re = 5300. The density and laminar

viscosity of the fluid are kept the same as in the work of Unal et al [8], i.e ρ = 998.2kg/m3

and µ = 0.001 Pa s, leading to Ub = 0.3 m/s. Detailed descriptions of the experimental
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setup can be found in the work of Unal et al [3, 12].

6.2 Numerical Methods

Three simulations are performed in the current research as listed in Fig. 6.2. BCs on

the walls are no slip for U , i.e. Uw = (0, 0, 0)m/s, zero gradient for p and νsgs, i.e.

∂(p|νsgs)/∂nw = 0, where nw is the unit normal vector on the wall, and there is a fixed

value of 0 for ksgs, i.e. ksgsw = 0.

Figure 6.2. Simulation performed in current research.

Detailed BCs for inlet and outlet of each simulation are listed below:

1. SIM1

• Purpose:

To investigate mesh independence and the effect of corrugated channel length.

• BCs:

Inlet and outlet are coupled for periodic BC. Mesh independence study com-

pares the results obtained by different mesh densities on cases with 8 corrug-

ations. The study of the effect of corrugated channel length will use the same

mesh density but compares results from cases with 8, 16 and 32 corrugations.

2. SIM2

• Purpose:

To investigate flow development in the corrugated channel.
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• BCs:

At the inlet, 〈U〉 = (0.3, 0, 0)m/s with randomly generated turbulence hav-

ing a maximum turbulence intensity of U ′/〈U〉 = (22.4%, 11%, 11.85%); zero

gradient for p and νsgs. At the outlet, convective BC is for U , i.e. ∂U/∂t +

Un · (∂U/∂n) = 0, where n is the outward pointing unit normal vector at the

outlet; p is set to be reference level and zero gradient for νsgs.

3. SIM3:

• Purpose:

To investigate hydrodynamic interaction and vortex evolution.

• BCs:

Inlet and outlet are coupled for periodic BC. Simulation is performed on the

appropriate mesh density and channel length found in SIM1.

All simulations in current study are performed with OpenFOAM v1612+. Spatial

interpolation of convection and diffusion terms is based on Gauss integration and second

order central differencing schemes (Green-Gauss scheme). The gradient term is based on

the least-squares method rather than the default Green-Gauss scheme. This is because

the recent study of Syrakos et al. [145] suggests that when calculating the gradient, the

Green-Gauss scheme is second-order accurate only on a structured mesh yet zeroth-order

accurate on a general unstructured mesh. In contrast the least-squares gradient scheme

is able to provide a second-order accurate result on both meshes. Time marching is

approximated by a second-order backwards differencing implicit scheme with a time step

of ∆t = 5 × 10−5s for cases with 8 corrugations and of ∆t = 1 × 10−4s for cases with

more than 8 corrugations. A posterior analysis shows the maximum Courant number is

less than 1 and its mean value within the flow domain is below 0.1, if ∆t = 1 × 10−4s is

used.

In the first simulation, the periodic flow in the 8 corrugation channel is calculated by

initialising the entire flow domain with a uniform velocity of (0.267, 0, 0) m/s, pressure of

reference value, and νsgs of 1× 10−6m2/s. This initial calculation is allowed to achieve a

statistically steady state and stops at 10s. Then the resulting fully developed flow field is

used as the initial condition for all cases.

For each simulation, in order to demonstrate that the flow reaches a statistically steady

state, time series data at various points are evaluated before post-processing. Fig 6.3 shows

the time history of velocity and its fluctuation at the point y/h = 0.82, x = 52.8mm
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and z/b = 0.5 (mid-plane) predicted by SMAG+VD on 16 corrugations. The grey line

represents the time history of u. The blue and red lines are 〈u〉 and
〈
u′2
〉

obtained by

OpenFOAM. The blue and red circle are the moving average of u and u′2 calculated from

u by a self-written code2.

Figure 6.3. The time history profile of velocity at y/h = 0.82 on the mid-plane.

It is found that the 〈u〉 reaches the statistically steady state after taking the average for

few simulation seconds. However, value for 〈u′2〉 seems not to reach statistically stationary

after 8 simulation seconds’ averaging. In order to determine whether the 8 seconds time-

averaging window is adequate long, the time history data of 〈u′u′〉 and 〈v′v′〉 at same

corrugation predicted by SMAG+VD are studied. The average was taken from T = 15 to

23s, data between T = 18 and 23s are displayed in Fig. 6.4 with time interval of 1s.

The time history data below reveals that after T = 21s the flow variable is almost

statistically stationary. The largest discrepancy between results at T = 22 (peach solid

line) and 23s (dashed black line) is less than 1% at y/h = 0.5 for 〈u′2〉. Therefore, the flow

at T = 22s is deemed to reach the statistically stationary state. It is therefore concluded

that the time-averaging window of 8 seconds is adequately long to obtain a statistical

steady state.

2The self-written code is used to verify every average obtained by OpenFOAM, as a bug was found in

the software which could stop it from taking average correctly if the correct procedure or setup was not

followed.
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(a) 〈u′u′〉 (b) 〈v′v′〉

Figure 6.4. The time history profile of 〈u′u′〉 and 〈v′v′〉 at C8 predicted by SMAG+VD

on 16 corrugation case.
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6.3 Grid Independence Study

6.3.1 Effect of Grid Density

A hexahedral mesh is used for spatial discretisation. Fig. 6.5 shows that the mesh (referred

to as Grid 1) is increasingly dense when approaching the wall. The first layer thickness

on the corrugated wall is 0.005 mm for the bottom, 0.0044 mm for the side, and 0.0058

mm for the top. The first layer thickness on the top wall is 0.01 mm and 0.05 mm for the

side walls.

Figure 6.5. Localised views of Grid 1.

A finer grid (Grid 2) is constructed for the grid independence study. The density of

Grid 2 doubles along each direction compared with Grid 1. The mesh for Grid 2 at the

corrugation are shown in Fig. 6.6.

Simulations are performed by applying SMAG+VD and the same BCs on both grids.

The properties and resultant 〈y+〉 and relevant details of both grids are listed in Table.

6.2. The y direction for this y+ is the direction perpendicular to the wall. Therefore y+

for the side wall actually indicates the mesh density for z direction in current coordinate

system.

Despite not being shown here, the contour plots of 〈U〉 and 〈U ′U ′〉 predicted by both

grids are very similar. The differences mainly appear on the ratio between the SGS and
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(a) Corrugation at z-y plan for Grid 2 (b) Corrugation at x-y plane for Grid 2

Figure 6.6. The mesh at corrugation for Grid 2

Grid CV per corrugation
〈y+〉 (max, spatial average)

Top wall Side wall Corrugated wall

Grid1 0.9 million 0.12, 0.10 1.86, 0.69 0.17, 0.04

Grid2 7.2 million 0.06, 0.05 0.98, 0.35 0.09, 0.02

Table 6.2. The dimensions of the flow domain.

the laminar viscosity, µsgs/µ (Fig. 6.7), and the percentages of the resolved turbulent

kinetic energy, kr% = kr/(kr + ksgs) (Fig. 6.8). The figures indicate that, as expected,

simulation on Grid 2 predicts a smaller value of νsgs globally and resolves more turbulent

kinetic energy, but the flow field simulated on Grid 1 is well resolved. This is because the

predicted value of µsgs on Grid 1 is generally lower than 25% of the value of µ, with only

a few regions reaching up to 50%, also the maximum value (68%) only occurs at a very

small spot close to the side wall. In addition, although there are some under-resolved flow

regions (kr% < 80%3) close to the top and side walls, most turbulent kinetic energy is

resolved on Grid 1.

The normalised time-averaged stream-wise velocity, 〈u〉/Umean, also confirms that Grid

1 is adequately fine to provide a well resolved LES solution. The comparison of 〈u〉/Umean,

at mid-plane (z/b = 0.5) and x/λ = 04 between Grid 1 and Grid 2 is presented in Fig. 6.9.

It is found the results obtained by both grids are very similar. Only a marginal difference

of 〈u〉max location between the results of the two grids is visible. For Grid 1, 〈u〉max is at

3When 80% of the turbulent kinetic energy is resolved, the LES can be considered to be well-resolved

[143].
4x/λ = 0 means the vertical line originated from the top of the corrugation.
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Figure 6.7. The contour of µsgs/µ on x−y plane of z/b = 0.5 and y−z plane of x/λ = 0

predicted by SMAG+VD on Grid 1 and 2.

Figure 6.8. The contour of kr% on x− y plane of z/b = 0.5 and y − z plane of x/λ = 0

predicted by SMAG+VD on Grid 1 and 2.

y/h = 1.89 5 and 1.85 for Grid 2, the difference is only 2%.

Figure 6.9. 〈u〉/Umean at z/b = 0.5 and x/λ = 0 predicted by SMAG+VD on Grid 1

and Grid 2.

The normalised time-averaged Reynolds stresses, i.e. 〈v′v′〉, 〈u′u′〉 and 〈u′v′〉, obtained

by Grid 1 and Grid 2 are compared in Fig. 6.10. Fig. 6.10a, Fig. 6.10b and Fig. 6.10c are

for the Reynolds stresses at z/b = 0.5, z/b = 0.75 and z/b = 0.85, respectively. It is worth

5y/h = 0 is at the top of the corrugation.
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pointing out that as discussed later in the Section 6.3.2 the distribution and magnitude

of the high Reynolds stresses vary from corrugation to corrugation. Therefore, the profile

compared in Fig. 6.10 is obtained from a spatial average of the profile of all corrugations.

It is found that the result predicted on Grid 1 generally matches well with that on Grid

2, especially for the region close to the corrugated wall. The y/h location and magnitude

for the maximum Reynolds stresses predicted by both grids are very close. The largest

discrepancies for these two parameters both occur on 〈v′v′〉 at z/b = 0.5, the value are

0.2% and 0.28%, respectively.

However, most discrepancies are found at regions above y/h = 2. For z/b = 0.5 and

0.75, although curves for Grid 1 are similar with those for Grid 2, the largest discrepancies

for the location of maximum Reynolds stresses (6.5%) occurs at 〈v′v′〉 for z/b = 0.5, and

the largest under-prediction of Grid 1 comparing to Grid 2 (20%) occurs at 〈u′u′〉 at

z/b = 0.5. However, the the curve obtained on Grid one at z/b = 0.5 follows the curve

obtained by Grid 2 better than the case for z/b = 0.75.

The discrepancies for the same flow region at z/b = 0.85 are more obvious than the two

other locations. Despite the the general trends of the curve simulated by both grids are

similar, the result obtained by Grid 1 are more apart from the Grid 2 than the results for

other two z/b locations. The largest discrepancies for the location of maximum Reynolds

stresses (6.5%) occurs at 〈v′v′〉 and the largest under-prediction of Grid 1 comparing to

Grid 2 (43%) occurs at 〈u′u′〉.

The discrepancies and under-predictions of Grid 1 at z/b = 0.5 and 0.75 are due to the

mesh density, as the finer mesh (Grid 2) should be able to resolve more turbulent kinetic

energy. While, the discrepancies at z/b = 0.85 are more due to the effect of the side wall.

As shown in Chapter 5, the Reynolds stresses predicted by SMAG+VD on channel flow

are sensitive to the mesh density and can predict Reynolds stresses at a good agreement

with DNS data when 〈y+〉 < 1.1. Whereas the maximum y+ for side wall is 1.86, even

thought its spatial averaged value is 0.69. Nevertheless, the effects caused by this are

deemed limited, as the trends of the profiles and the locations of maximum Reynolds

stresses obtained by the two grids are generally very close. In addition, the computing

resource for Grid 1 is only 1/8 of Grid 2. It is therefore concluded that Grid 1 offers a good

balance between computing resource and accuracy and is able to produce a well resolved

LES solution.
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(a) z/b = 0.5

(b) z/b = 0.75

(c) z/b = 0.85

Figure 6.10. Profile of resolved Reynolds stresses, 〈v′v′〉, 〈u′u′〉 and 〈u′v′〉, normalised

by Umean
2 at different z location by SMAG+VD on Grid 1 and Grid 2.
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6.3.2 Effect of Corrugated Channel Length

Stream-wise decorrelation is crucial for simulations with periodic BC [91, 137]. In order to

determine a suitable total length of the computational domain in the streamwise direction,

three simulations are performed with different corrugation counts: 8 corrugations, total

length L8 = 8λ = 52.8 mm, 16 corrugations, L16 = 16λ = 105.6 mm and 32 corrugations,

L32 = 32λ = 211.2 mm. The results are shown in Fig. 6.11. The red, yellow and blue

solid lines represent results predicted by SMAG+VD with mesh density of Grid 1 on 8,

16 and 32 corrugations, respectively.

Figure 6.11. 〈u〉/Umean at z/b = 0.5 and x/λ = 0 predicted by SMAG+VD on channels

with 8, 16 and 32 corrugations.

It is shown that the results predicted with the three different channel lengths are very

similar. However the 〈u〉max for case with the 8 corrugation is at y/h = 1.89, whereas the

value for cases with 16 and 32 corrugations is at y/h = 1.81. The difference is 4.25%.

A study on the two-point (2pt) correlation is conducted to find the suitable computa-

tional domain. The definition of the 2pt-correlation is

Rij(r,x, t) =
〈
u′i(x, t)u

′
j(x+ r, t)

〉
(6.1)

where x represents the location of the starting point for evaluating the 2pt-correlation;

x + r is the location of points away from the starting point; 〈〉 is the time-averaging

operator; and u′i and u′j are the instantaneous velocity fluctuations of i and j components

respectively. After spatial and temporal average, Rij(r,x, t) becomes Rij(r).

The data is extracted along three lines at mid-plane which are located at y/h = 0.265,

y/h = 0.578, and y/h = 0.819, respectively. Those three locations cover the region of high

Reynolds stresses close to the corrugated wall. The locations of the sampling lines are

shown in Fig. 6.12. The start point of the sampling line of y = 1.1mm is shown in detail.



80

The sampling line is divided into 10559 pieces with distance, dr, between each sampling

point being 1× 10−5m.

Figure 6.12. The details of the sampling lines for the case with 16 corrugations.

The result of the two-point correlation along the line of y/h = 0.578 is shown in Fig.

6.13. The profiles at y/h = 0.265 and y/h = 0.819 are similar to the one at y/h = 0.578,

and are shown in Appendix E.

Figure 6.13. The normalised 2pt correlation of velocity along x direction at y/h = 0.578

predicted by SMAG+VD on 16 corrugations with periodic BC.

The 2pt-correlation is normalised to be 1 at the location where the 2pt-correlation

calculation starts, i.e. 0 point on x-axis. Its value then reduces along both positive and

negative directions of the x-axis due to the periodic BC. The spatial and temporal aver-

aged correlation is visible for around 5.2 corrugations. It suggests that at some locations

and time instants, the correlation exists at a longer distance between two points. There-

fore, 8 corrugations may not be large enough to accommodate all the relevant turbulent

structures. Given the aforementioned reasons, the 16 corrugations (L16), ∆t = 1× 10−4s

and Grid 1 are used for all the simulations with periodic BC.
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6.4 Flow Features in Corrugated Channel

6.4.1 Case Setup for 128 Corrugations

To investigate how flow develops over the entire region, a case with 128 corrugations is

simulated with a turbulent inlet and non-reflective outlet BCs.

The case setup is referred to as SIM2 and briefly elaborated in Fig. 6.2 in Section 6.2

and is re-plotted in Fig. 6.14. The mesh density and numerical schemes of SIM2 are the

same as the cases in the study of the effect of corrugated channel length (Section 6.3.2).

The details of BCs are explained below.

Figure 6.14. Setup of case with 128 corrugations.

At the inlet, both pressure and SGS viscosity are set to be zero gradient as

∂(p|νsgs)
∂nb

= 0 (6.2)

where nb is the unit normal outward-pointing vector on the boundary, i.e. inlet and outlet.

A uniform velocity of 0.3m/s plus the random perturbations are imposed by applying Eq.

6.36

Up = (1− α)Un−1
p + α(Uref + S{(r − 0.5), s}CRMS |Uref |) (6.3)

where Up is the velocity vector used for the current time step; α is the fraction of the

new random component added by the previous time step (the default value is 0.1); Uref

is the reference velocity vector, in this case Uref = 0.3m/s; n is time level, so n − 1

represents the previous time step; CRMS is the RMS coefficient used to compensate for

the loss of RMS fluctuation due to the temporal correlation introduced by α, its formula

is CRMS =
√

12× (2α− α2)/α; r is a random vector with the value of each component

being between 0 and 1; s = (
√
〈u′2〉/|Uref |,

√
〈v′2〉/|Uref |,

√
〈w′2〉/|Uref |) is the vector of

turbulence intensity for three dimensions; and S is the scale operator for two vectors, i.e.

S{a, b} = (a1b1, a2b2, a3b3) [117]. The parameters for Eq. 6.3 are listed in Table 6.3.

There is no best practice to choose the value of s. In the current study,
√
〈u′2〉/|Uref |

and
√
〈v′2〉/|Uref | were chosen to be the largest value in PIV data (calculated from Fig.6

6The equation is directly interpreted from the source code of OpenFOAM v1612+
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Variables Value

Uref (0.3, 0, 0) m/s

s (22.4%, 11%, 11.85%)

α Default value (0.1)

Table 6.3. Parameters for random generated turbulent inlet BC.

of Unal et al’s work [3]). The
√
〈w′2〉/|Uref | is less crucial in this case. It was obtained by

taking the integrated average of
√
〈w′2〉/|Uref | at the inlet for the 32 corrugation case with

periodic BC. Despite that the sensitivity study of the result on the perturbation levels is

not carried out, it is believed that the bulk flow behaviour will be dominantly affected by

the flow from the corrugation. Therefore, the level of perturbation should have minimum

effect on the result, especially for the fully turbulent region.

At the outlet, the pressure is set to the reference value. νsgs is zero gradient. As

suggested by Versteeg and Malalasekera [72], the convective BC

∂φ

∂t
+Un ·

∂φ

∂n
= 0 (6.4)

is used for velocity, where n is the outward-pointing unit normal vector at outlet.

The simulation is started from the case with 32 corrugations, then the flow domain is

extended to 64 corrugations, and the resulting flow fields from the first 32 corrugations are

mapped onto the newly added 32 corrugations.. After 4s run, the result of 64 corrugations

is mapped onto the case with 128 corrugations by the same way. After a further simulation

of 8s case time, the statistical result is obtained by a time-averaging of another 8s case

time (80,000 time steps).
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6.4.2 Overview of Flow Development

Fig. 6.15 shows the overview of the instantaneous velocity magnitude, Umag, on the

mid-plane (x-y plane at z/b = 0.5) predicted by SMAG+VD. Fig. 6.15a to 6.15d are

the localised snapshots of regions in Zone 1 to 4, respectively. Different stages of flow

development can be identified from Fig. 6.15 and summarised in Table 6.4.

Zone Top BL Corrugated Wall BL Range

1 Fast development, visually laminar Fast development, gradually becoming chaotic C1 ∼ C15

2 Slow development, visually laminar Slow development, unsteady and chaotic C16 ∼ C41

3 Transition to turbulent Unsteady and chaotic C42 ∼ C78

4 Unsteady and chaotic Unsteady and chaotic C79 ∼ C128

Table 6.4. Different zones for flow development in current corrugated channel.

Within Zone 1, as shown in Fig. 6.15a the BL at the top wall is visually laminar and

develops faster than the flow in other zones. The development of the BL at the corrugated

wall is also visible. Prior to the 7th corrugation (C7), the increase of the BL thickness at

the corrugated wall is almost laminar and there is no momentum exchange between the

flow in corrugations and bulk flow. However, this exchange starts becoming visible at C7

and being intensified downstream with several flow ejections being found at C11 and C14.

The flow ejections from the corrugations affect the flow field in the bulk flow and make

the BL at the corrugated wall chaotic.

In Zone 2, shown in Fig. 6.15b, the BL at the top wall is still visually laminar, but

develops much slower than Zone 1. The flow close to the corrugated wall is chaotic and

its BL thickness remains largely unchanged across the Zone.

Fig. 6.15c suggests that at Zone 3, the top wall BL seems to experience transition

from laminar to turbulent, despite that the transition process was not studied in the

experimental work [3]. At the beginning of this Zone, some undulations are observed at

the BL of the top wall. This BL is distorted downstream and finally breaks up at the end

of this Zone. This process also affects the bulk flow region. From Zone 1 to the beginning

of Zone 3, the region of bulk flow with y/h > 0.5 is relatively uniform. But at the end of

Zone 3, the whole region of bulk flow becomes chaotic.

In Zone 4, Fig. 6.15d demonstrates a chaotic bulk flow which has momentum interac-

tion with every corrugation. This characteristics is very similar to the observation of the

PIV (Shown in Fig. 1.3b).
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The plot of time-averaged velocity magnitude, 〈Umag〉, reveals how flow develops in

a time-averaged manner. The overview of 〈Umag〉 on the mid-Zplane is presented in Fig.

6.16. Fig. 6.16a to 6.16g are the localised snapshots of regions in the flow field. Fig. 6.16h

and 6.16i show the normalised stream-wise velocity, 〈u〉/Umean7, profile along the black

lines in Fig. 6.16a to 6.16g. For the sake of clarity, 〈u〉 profiles of the sampled lines at the

first half of the corrugated channel are placed in Fig. 6.16h, the profiles for the second

half are shown in Fig. 6.16i. The profile of C62 appears at both figures to maintain the

continuity between them.

The profile at C4 in Fig. 6.16h is examined first. It is noted that the velocity peaks

close to the walls are non-physical. Although there is no available experimental data to

compare with, it is believed that these velocity peaks are caused by a numerical error

which can be demonstrated in Fig. 6.17a8.

It is known that the flow velocity should be close to zero at the wall regions due to

the non-slip BC. Current simulation specifies a uniform velocity at the inlet, i.e, the flow

velocity at the near wall region is the same as the bulk flow. When the flow enters the

computational domain, the velocity of the flow close to the wall regions will experience

a sudden decrease which leads to a static pressure increase, generating local high static

pressure regions close to the top wall and two side walls (Fig. 6.17a). These high pressure

regions accelerate the flow close to the wall for the first few corrugations, such as C4,

creating the local velocity peaks in the profile of C4 in Fig. 6.16h and Fig. 6.17b (〈u〉

along the z-axis). Therefore, it is good practice to apply a fully developed flow velocity

profile as the inlet condition to eliminate this error. But as shown by the 〈u〉 profile of

C33 in Fig. 6.16h and Fig. 6.17b the effect of this numerical error is not identifiable after

C33. Considering the length of the current computational domain (up to C128), this error

is not expected to affect the results in Zone 3 and Zone 4.

7Umean = 0.3m/s.
8Applying a uniform velocity with zero turbulence intensities on the inlet.
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(a) The high pressure regions at the inlet (b) 〈u〉 profile along z-axis for C4 and C33

Figure 6.17. The numerical error caused by uniform velocity inlet.

From C33, different BL thicknesses are calculated based on the method in the book

of Mayes et al. [69]. The umax for x/λ = 0 of each corrugation is chosen to be the free

stream velocity. The calculated displacement and momentum thicknesses are plotted in

Fig. 6.18. Fig. 6.18a is for the displacement thickness, δ∗, which is a parameter to quantify

the reduction of mass flow rate (blockage) caused by the BL. Fig. 6.18b shows the profile

of the momentum thickness, θ, which quantifies the amount of the momentum that the

BL destroys. The shape factor, H = δ∗/θ, is presented in Fig. 6.18c. H is an indicator

of whether the BL is turbulent or laminar. The laminar BL in a flow with uniform static

pressure (Blasius BL) has H = 2.59 and H ∼ 1.4 is the indication of a turbulent BL [69].

At C33, the differences between the BL of the top and corrugated walls are apparent.

The rate of BL development at the corrugated wall is much faster than at the top wall.

This is not only shown by the 〈u〉 profile of C33 in Fig. 6.16h, but is also reflected on the

value of δ∗, θ, and H. At C33, the BL of the corrugated wall is turbulent (H = 1.6), while

the one at the top wall is laminar (H = 2.34). The turbulence close to the corrugated wall

causes considerably greater (52% and 122% respectively) reduction of mass flow rate and

flow momentum than at the top wall.

The BL thicknesses at the corrugated wall increase until δ∗ and θ reach their maximum

levels at C55 and C51 respectively (δ∗max = 0.46h and θmax = 0.29h). Then the values

of these BL thicknesses decrease continuously at roughly the same rate until C89. At the

same corrugations range, the H of the top wall sees a rapid decline from 2.26 at C51 to

1.67 at C79, indicating the BL at the top wall experiences a transition from laminar to

turbulent. This suggests the undulation-distortion-breakup process observed in the Umag

snapshot (Fig. 6.16c) is a transition process.
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(a) Displacement thickness, δ∗.

(b) Momentum thickness, θ.

(c) Shape factor, H.

Figure 6.18. The profiles of BL thicknesses at x − y plane of z/b = 0.5 predicted by

SMAG+VD on channels with 128 corrugations.
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During the BL transition, the trend of the BL thicknesses at the top wall seems to

correlate with the development of the Reynolds stresses at same region. The counter plots

of 〈u′u′〉 and 〈v′v′〉 between C55 and C73 on the mid-plane are shown in Fig. 6.19.

Figure 6.19. The contour of 〈u′u′〉 and 〈v′v′〉 at z/b = 0.5 between C55 and C73.

At the beginning of the transition, the BL thicknesses of the top wall increase, so does

the area of the regions with high 〈u′u′〉 and 〈v′v′〉 value close to the top wall, as seen in

Fig. 6.19a and Fig. 6.19b, respectively. The δ∗ and θ reach their maximum values at C62

and C65 respectively. Around the similar location, the upper casing thickness for high

turbulence intensity regions reach their maximum values as well. Then the BL thicknesses

at the top wall join the declining trend of that at the corrugated wall. Similarly, the sizes

of the regions with high turbulent intensity at the top wall decrease after C65 (not very

clear for 〈v′v′〉). However, the reason for the upper casing thickness increase first then

decrease beyond C64 remains to be explored and there is no experimental data available

to compare with.

At C65, H = 1.75 indicates that the BL at the top wall becomes turbulent. Interest-

ingly, the δ∗ at top wall reaches the same value with the one at the corrugated wall at

C65 and follows the similar trend further downstream. Also from C65, θ for both the top

and corrugated walls starts following a similar trend, although the value at the corrugated

wall is around 10% larger than the one at the top wall. This suggests that when the BL

and also the entire flow in the corrugated channel become turbulent, the blockages and

momentum reductions caused by the BL at both top and corrugated walls are roughly the

same.

This is reflected in the profiles of 〈u〉 across the channel. As shown in Fig. 6.16h and

6.16i, unlike C51, the profile at C62 is largely symmetric and has a 〈u〉max value around

the centreline. As the values of δ∗ and θ keep on reducing, the bulk flow becomes more

uniform. Finally, in Zone 4 the flow reaches its fully developed profile and has the 〈u〉max
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value at y/h = 1.813 which is just below the centreline of the channel (y/h = 1.91).

The findings from the overview of flow development in this corrugated channel suggest

that the BL development of the corrugated wall is suppressed by the BL transition at the

top wall, and the time-averaged effects of BL at the top and corrugated walls on the fully

developed turbulent flow are similar. After the overview one may naturally come up with

following questions:

1. Can the features of the fully developed turbulent flow region (Zone 4) be captured

by 16 corrugations with periodic BC?

2. How does the LES prediction compare with available experimental data?

3. What is the details of flow development and how the transition happens?

4. How are the hydrodynamic interaction and vortices evolution in the fully developed

turbulent flow region?

The following sections are dedicated to answering these questions.

6.4.3 128 vs 16 Corrugations in Fully Turbulent Region

As shown in the literature review, the study of fully developed turbulent flow over multiple

cavities is normally performed on one or several cavities with streamwise (or spanwise)

periodicity, rather than on a full length channel. This method greatly reduces the required

computing resources, but it is not applicable to every case with multiple cavities, such as

the first case of periodic hill by Almeida et al [44].

This section will compare the flow features and time-averaged results predicted by

SMAG+VD on the 128 corrugations with turbulent inlet and 16 corrugations with periodic

BC. The data between C97 and C112 is used to represent the fully turbulent region in the

128 corrugations case, as this corrugation range falls in the middle of Zone 4. The data

for 16 corrugations with periodic BC from in Section 6.3.2 is used to study the effects of

different channel lengths.

Contours of Umag, 〈Umag〉 and Reynolds stresses predicted for the 128 and 16 corrug-

ations cases are similar. Therefore, only the contours obtained with 16 corrugations and

periodic BC are presented here. Fig. 6.20a shows the Umag contours on the mid-plane

(z/b = 0.5) and Fig. 6.20b is an iso-surface of Q-criterion coloured by v.

The two figures collectively demonstrate a chaotic bulk flow with a wide spectrum of

vortex sizes being affected by the flow bursting from corrugations. Various regions of velo-

city reduction caused by the turbulent BL at the top wall and strong interaction between
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(a) Instantaneous velocity magnitude.

(b) The iso-surface of Q-criterion coloured v.

Figure 6.20. The contour of Umag at z/b = 0.5 and the iso-surface of Q-criterion

predicted by SMAG+VD on 16 corrugation with periodic BC.

the eddies in corrugation and bulk flow are clearly visible. The result also shows that

multiple vortices with different sizes co-exist at different locations in each corrugation. All

these phenomenons are in agreement with the observation of the case with 128 corrugation

and the experiment by Unal et al. [12].

The profile of 〈u〉 /Umean at x/λ = 0 and z/b = 0.5 predicted by 128 and 16 corrug-

ations cases are compared in Fig. 6.21. It shows the two profiles match well and their

〈u〉max locate at y/h = 1.813.

The contours of 〈u′u′〉 and 〈v′v′〉 predicted on 16 corrugations are shown in Fig. 6.22.

It is observed that each corrugation in Fig. 6.22a has a region with high 〈u′u′〉 over the

exit of the corrugation. These are the regions where the momentum exchange in the x

direction occurs. However, the shape and the magnitude of the high intensity region of

〈u′u′〉 varies from corrugation to corrugation. This feature is also observed in the case

with 128 corrugations. The discrepancies between the shape of high turbulence intensity

regions are studied in Appendix F. It is found this discrepancies are caused by the nature

of this type of flow. Thus, a spatial-averaging of Reynolds stresses is performed across all

the corrugations before they are compared between different cases.
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Figure 6.21. 〈u〉/Umean at z/b = 0.5 and x/λ = 0 predicted by SMAG+VD on by cases

with 128 and 16 corrugations.

(a) 〈u′u′〉

(b) 〈v′v′〉

Figure 6.22. Profile of 〈u′u′〉 and 〈v′v′〉 predicted on 16 corrugations.

Profiles of 〈u′u′〉, 〈v′v′〉 and 〈u′v′〉 at different locations along z direction predicted on

the cases with 128 and 16 corrugations are shown in Fig. 6.23. It is found that Reynolds

stresses predicted on the case with16 corrugations are in a very good agreement with the

profile predicted on 128 corrugations. Although there are some discrepancies, they are very

minor, and the differences are even smaller than the difference between each corrugation.

It is therefore concluded that flow simulated on 16 corrugations with periodic BC is

able to reproduce the characteristics of the fully developed turbulent region produced on

the case with 128 corrugations and turbulent inlet.
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(a) z/b = 0.5

(b) z/b = 0.75

(c) z/b = 0.85

Figure 6.23. Profile of 〈u′u′〉, 〈v′v′〉 and 〈u′v′〉 at different locations along z direction

predicted on the cases with 128 and 16 corrugations.
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6.4.4 LES Results Validation

In this section, the time-averaged flow features obtained by SMAG+VD on 16 corruga-

tions with periodic BC are compared with the PIV measurement for the fully developed

turbulent region in current corrugated channel. Their differences are also analysed and

discussed.

The profiles of 〈u〉 /Umean at x/λ = 0 and z/b = 0.5 predicted by LES and measured

by PIV are compared in Fig. 6.24.

Figure 6.24. Comparison of 〈u〉/Umean at z/b = 0.5 and x/λ = 0 between the LES

prediction and the PIV measurement.

A noticeable difference between LES prediction and PIV measurements of 〈u〉 is ob-

served. The PIV data is not as symmetric as the LES prediction and their differences on

various BL thicknesses are summarised in Table. 6.5.

PIV LES Difference

Top wall

H 1.661 1.745 5.1%

δ∗/h 0.282 0.331 17.4%

θ/h 0.170 0.190 11.8%

Corrugated wall

H 1.948 1.589 -48.7%

δ∗/h 0.585 0.347 -40.7%

θ/h 0.301 0.218 -27.6%

〈u〉max location y/h 2.164 1.813 -16.2%

Table 6.5. Difference of BL thicknesses and 〈u〉max between LES prediction and PIV

measurement.
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It was found the profile of the PIV data is generally shifted towards the top wall when

compared with the more symmetric profile of the LES prediction. This is also reflected

by the fact that the 〈u〉max location of LES prediction is 16.2% lower than the PIV data.

The LES predicted profile is only in good agreement with the PIV data at the region

very close to the top wall, but differences start being apparent after 〈u〉/Umean > 1. The

comparison of various BL thicknesses suggests that LES predicts the top wall to cause

more blockage and momentum reduction than measured by PIV. At the lower half of the

channel, the discrepancies between the two profiles are observable even from the beginning,

but the rate of increase of the two profiles seems to be similar. The comparison of various

BL thicknesses suggests the LES predicts the corrugated wall to have considerably less

blockage and momentum reduction effects than measured by PIV.

The discrepancies between the LES predictions and PIV measurements also exist in

Reynolds stresses. Profiles of the normalised 〈u′u′〉, 〈v′v′〉 and 〈u′v′〉 at different locations

along z direction predicted by LES and measured by PIV are shown in Fig. 6.25.

The plots show that the discrepancies between the LES prediction and PIV measure-

ment is noticeable, although LES predictions capture the general trend of the PIV profiles

and have a better agreement at the region close to the top wall than the corrugated wall.

It is also found LES predictions do not match well with the PIV data in terms of the

magnitudes and locations of Reynolds stresses. However, the 〈v′v′〉 profiles predicted by

LES are in agreement with the PIV profile at the region very close to the corrugated wall,

which is closely associated with flow ejection from the corrugations.

The discrepancies between the LES predictions and PIV data may be attributed to

two reasons, i.e. the inaccuracy of the SGS model used in LES and/or the uncertainties in

the experiment. These two aspects will be discussed in detail in the next two subsections,

respectively.
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(a) z/b = 0.5

(b) z/b = 0.75

(c) z/b = 0.85

Figure 6.25. Comparison of profiles of 〈u′u′〉, 〈v′v′〉 and 〈u′v′〉 at different locations

along z direction between the prediction of LES and the measurement of PIV.
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Validation of LES Predictions

The numerical result should be firstly validated against the pressure loss correlation. Al-

though the pressure loss is not reported in experimental data, the pressure drop predicted

on current configuration should be within the range between the pressure drop due to a

smooth pipe with a same cross section and a circular corrugated pipe with similar (if the

same one is not available) area of cross section and corrugated pitch and depth.

The pressure drop for flow in ducts of non-circular section is [146]

− dp

dx
=

4f

DE

1

2
ρU2 (6.5)

where f is the friction factor and DE is the equivalent diameter, defined as

DE =
4A

Pw
(6.6)

where A is the cross section area and Pw is the wetted perimeter of the duct.

The friction factor, f , is determined from the data for ducts of circular section at a

Reynolds number Re = UDE/ν [146]. The Moody chart shows that f = 0.03727 for

a smooth pipe with current cross section configuration [147]. This leads to −dp/dx =

94.67Pa/m.

A circular corrugated pipe which has a similar cross section area with current configura-

tion will have a diameter of 20.09mm. The closest corrugated pipe which has available data

is Witzenman’s HYDRA metal hoses RS331S12-D20, which has a diameter of 20.2mm,

a cross section of 320.3mm2, a corrugation depth of 4.05mm, and a ratio between cor-

rugation depth and inner diameter of 0.2 (2.9% smaller than current configuration). The

Mannual of Witzenman’s HYDRA metal hoses RS331S12-D20 shows its friction factor is

around 0.7 [148]. This leads to −dp/dx = 156.51Pa/m for such circular corrugated pipe.

The calculated pressure drop for current configuration is −dp/dx = 135.52Pa/m, which

suggests that the simulation result is in the correct range.

The test on channel flow in Chapter 5 has already shown that SMAG+VD is able to

provide an accurate prediction for the flow over a flat wall, on the grid density used in the

simulation of current corrugated channel. It is still beneficial to cross-check the results

predicted by different SGS models to make sure the discrepancies between the previous

LES prediction and PIV data is not due to the inaccuracy of SMAG+VD.

Three other SGS models listed in Table. 6.6 are tested on 16 corrugations with periodic

BC. They are all validated by the channel flow test case.
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SGS Models Model Description

KEQ+VD k-equation SGS model with van-Driest wall damping function

DyK Dynamic k-equation SGS model

WALE Wall-adapting local eddy-viscosity SGS model

Table 6.6. Other SGS models tested in current corrugated channel.

The reasons for choosing the above SGS models are given here. KEQ+VD gives similar

results to SMAG+VD in the channel flow case, but it is a non-equilibrium SGS model.

Thus, it should be less dissipative than the model based on local equilibrium assumption

(SMAG+VD). It is shown that there are lots of regions with sudden turbulence kinetic

energy generation in the corrugated channel due to the momentum exchange between the

corrugation and the bulk flow, so KEQ+VD may provide a better result in the current cor-

rugated channel flow case. The reason for choosing DyK instead of DyLag is that although

DyLag has a similar theory background with DyK and requires less computational time,

it introduces two parameters, TLM and TMM , whose values are calibrated for the channel

flow case, but not for the current case. Whereas for DyK, the initial ksgs value can be

obtained by running KEQ+VD, thus having less uncertainty than DyLag. Finally, WALE

is selected because it uses a different approach to recover wall scaling for eddy viscosity

without using an extra transport equation, damping function or dynamic procedure.

The 〈u〉 /Umean at x/λ = 0 of C9 on mid-plane predicted by various SGS models are

compared in Fig. 6.26. This plot shows the 〈u〉 /Umean predicted by different SGS models

are very similar. The locations of 〈u〉max predicted for all four SGS models are below the

centreline of the channel (y/h = 1.91). The values for SMAG+VD and DyK are both

y/h = 1.813. The value for KEQ is y/h = 1.852 and for WALE is y/h = 1.89, only 2%

and 4% higher than SMAG+VD, respectively.
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Figure 6.26. Comparison of 〈u〉/Umean at z/b = 0.5 and x/λ = 0 between the prediction

of different SGS models.

The profiles of the normalised Reynolds stresses for different planes along the z-axis

predicted by different SGS models are compared in Fig. 6.27. It is found that the Reynolds

stresses predicted by all these SGS models follow the same trend. Despite some minor

discrepancies, the locations of max Reynolds stresses obtained by these SGS models are

very similar.



100

(a) z/b = 0.5

(b) z/b = 0.75

(c) z/b = 0.85

Figure 6.27. Comparison of 〈u′u′〉, 〈v′v′〉 and 〈u′v′〉 at different locations along z direc-

tion predicted by different SGS models.

The similarity between the results of different models is attributed to highly resolved
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turbulent kinetic energy9 (Fig. 6.28a) and low effect of SGS viscosity (Fig. 6.28b).

(a) kr%

(b) µsgs/µ

Figure 6.28. The contour of kr% and µsgs/µ on mid-plane and y-z plane of x/λ = 0

predicted by SMAG+VD on 16 corrugation with periodic BC.

As stated in the section of Fundamentals of Turbulence in Chapter 2, the energy

spectrum plot is able to show how the turbulent kinetic energy changes with respect to

the length scale of the flow structures. It is also the key method to determine whether the

LES is well resolved. Therefore, energy spectrums are calculated at y/h = 0.265, 0.578

and 0.819, covering the regions which are strongly influenced by the flow ejection from the

corrugations. The energy spectrum plot for these three locations are similar, thus only

the energy spectrum at y/h = 0.819 is shown in Fig. 6.29.

9kr% = kr/(kr + ksgs)
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Figure 6.29. The energy spectrum for y/h = 0.819 predicted by SMAG+VD on 16

corrugations with periodic BC.

It is shown that the calculated energy spectrum matches well with the slope of −5/3

as presented in Eq. 2.5. This confirms that the sizes of the cut-off length in current LES

locates within the range of inertial subrange, indicating all the energy containing large

structures are effectively resolved. Therefore, all aforementioned findings suggest that

current LES is well resolved.

Nevertheless, it should be acknowledged that the uncertainty for the LES prediction

remains, as the similar results obtained across different SGS models may also be due to

overly large numerical errors caused by the chosen mesh density and numerical schemes.

However, the mesh quality have been verified by both icem-CFD and OpenFOAM’s mesh

checking tools, and the Grid 1 is shown in Section 6.3 to be able to offer a good balance

between computing resource and the accuracy of the prediction. In addition, the numerical

schemes are selected from the available options in OpenFOAM and by following the good

practice as shown in Section 4.3. Although the higher order schemes are desirable, the

current second order accuracy schemes are the best options available in the software.

Therefore, at the moment, the accuracy gain by applying a higher order accuracy numerical

scheme is not quantifiable.
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Issues In The Experiment

The validation of current LES suggests a high confidence level on the predicted results.

It is therefore likely that the issues and uncertainties in the experiment are the dominant

contribution to the difference between LES predictions and PIV measurements. After a

comprehensive review of experimental results and setups, a number of serious problems

and open questions are highlighted in this section.

One suspicious feature of the PIV profile (Table. 6.5) is its high shape factor value

at the corrugated wall (H = 1.948). This value suggests that the BL at the corrugated

wall may be transitional, while the BL at the top wall is turbulent (H = 1.66). It seems

to be unreasonable, as the experimental data [8] depicted strong momentum interactions

between the corrugations and the bulk flow, so that the BL at the corrugated wall should

become turbulent earlier or at least no later than the BL at the top wall. This issue may

be caused by the inadequacy of data sampling frequency used in the PIV measurement.

So, the effects of different sampling frequencies on the LES predictions is studied.

It is noted that the PIV measurement has a data sampling frequency of 8Hz, and takes

388 data points for a total period of 48.5s. It is unpractical to run the simulation for the

same period, so 8s of time history data are used and expanded to 48.5s. 12 locations on

the vertical line of x/λ = 0 and mid-plane are selected for the data recording. These raw

data are in a frequency of 10kHz, as dt = 1× 10−4s in current simulation. They are then

sampled at a frequency of 8Hz. The original time history data and the sampled data are

compared in Fig. 6.30 for y/h = 1.446.

Figure 6.30. Comparison of different sampling frequencies on u data obtained by

SMAG+VD at y/h = 1.4458 on z/b = 0.5 and x/λ = 0.
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The differences between the data of the two sampling frequencies are not large. The

largest discrepancy is around 4.5% at the corrugated wall region. The differences for the

remaining locations are around 2%. The value of normalised 〈u〉 at the sampled locations

obtained by both sampling frequencies are compared in Fig 6.31.

Figure 6.31. Comparison between 〈u〉 obtained by different sampling frequencies on

x/λ = 0 at mid-plane.

The results show that the profile obtained by the 8Hz sampling frequency is very sim-

ilar to the one produced by the 10kHz. By repeating the same procedures, the Reynolds

stresses along the line of x/λ = 0.5 at different locations along z-axis can also be calculated

for both sampling frequencies. Their results are compared in Fig. 6.32.

It is found that the results from the 8Hz sampling frequency only match the trend

of LES data close to the top wall. Large discrepancies are found at the lower half of the

channel. Also, the data with 8Hz sampling frequency have larger differences with the PIV

profile than the original data. It indicates the sampling frequency of 8Hz may not be able

to capture the correct features of Reynolds stresses in the lower half of the channel, even

though it seems to reproduce the 〈u〉 profile at a high accuracy.

However, this may raise a question that if a larger sampling frequency (smaller time

step size) can result in a prediction closer to the experimental data, as Fig. 6.32 indeed

shows that results for 10kHz are closer to the ones obtained by 8Hz. This uncertainty

caused by different time step size is partially mitigated by the study in Section 6.3.1, as the

result obtained by Grid 2 are based on a time step size of 20kHz and its results at region

close to the corrugation are very similar to the ones predicted by Grid 1 at 10kHz (shown
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in Fig. 6.10). However, due to the limit of computing resources, the gain of accuracy from

further decreasing the simulation time step size is currently not quantifiable.

Apart from the tendency of underestimation of the Reynolds stresses at the near wall

region by PIV method (mentioned in Section 2.2.2), another uncertainty which should not

be ignored is the spatial-averaging process during PIV data acquisition. It is understood

that this spatial-averaging area is much larger than the cell used in LES. Therefore, if the

method used in the PIV techniques is fully implemented on current LES data, the data at

the recording points will be strongly influenced by the cells which are a certain distance

away from it. This may result in larger discrepancies between the flow field and the data

recorded by PIV, even for 〈u〉.
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(a) z/b = 0.5

(b) z/b = 0.75

(c) z/b = 0.85

Figure 6.32. Comparison of various Reynolds stresses on x/λ = 0.5 at different locations

along z direction calculated by different sampling frequencies.

Furthermore, apart from the errors in the PIV system (2%) and flow rate measurement

(2%) of the experiment [3] , some other issues may also contribute to the discrepancies
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between the LES predictions and PIV data. Firstly, due to the water level changes in

the reservoir, the flow rate changes 3 − 4% during a typical test. The duration of a

typical test is unclear, if it is for one data set, i.e. 48.5s, this flow rate reduction will

be significant, and the flow in the corrugated channel during the experiment is transient,

which is not the condition simulated in current case. Secondly, due to the limitation of

pressure head, experiments with Re > 6000 are performed by another system with a pump

which can maintain the flow rate. However, the video for the case of Re = 670 with the

pump system clearly shows a pulsation in the flow, which is also different from BCs of the

current simulation. Thirdly, the temperature seems not to be monitored and controlled

during the experiment. As water viscosity changes with temperature, the Re may change

largely during the run. Finally, it is not clear if the flow in the channel reaches fully

turbulent status when the measurements are taken. A comparison between the PIV data

and LES predictions across the channel reveals that the 〈u〉 predicted by LES at C57

(〈u〉max = 2.2, only 1.7% below PIV data) has a better agreement with PIV data than

at the fully turbulent region (Fig. 6.33). It may suggest that the flow is still transitional

when the PIV takes the measurements. It worth mentioning that the experimental data

does not contain the data for transition. However, as pointed out in 6.4.5, current mesh

density should be adequate for predicting the transition satisfactorily.

Figure 6.33. Comparison between 〈u〉 obtained by LES at C57 on x/λ = 0 at mid-plane

and PIV data.

The various issues and open questions highlighted in the current subsection raise doubts

concerning the validity of the PIV data being the benchmark for the LES predictions. In
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addition, the validation of the LES results from various aspects suggest that the flow

field in the corrugated channel are well resolved with a relatively high confidence level.

Despite that some uncertainties remains for current numerical prediction, the discrepancies

between the LES prediction and PIV data is more likely to be caused by the uncertainties

in the measurements and experiment conditions. Therefore, the study of the flow field

inside this corrugated channel will be based on the current LES predictions.
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6.4.5 Details of Flow Development

Most of the numerical studies on corrugated channels listed in the literature review only

focus on the flow field in the fully turbulent region. However, as highlighted in Section

6.4.2, the overview of the flow development in the corrugated channel suggests that the

BL transition at the top wall has a profound influence on the flow characteristics in the

channel, which are reflected on the changes of various BL thicknesses and 〈u〉 profile across

different Zones (see Table 6.4). Therefore, the detailed flow developments across Zone 1

to 4 are discussed in this section, with focuses on turbulent structures visualisation, the

mechanisms of the BL transition, and time-averaged flow field for the fully turbulent

region.

Zone 1 is studied first. Fig. 6.34 shows the turbulent structures visualised by Q-

criterion for the flow region between C1 and C9. Fig. 6.34a is the overview of the flow

structures (Q = 3000) between C1 and C9 coloured by u. It was found that despite

not showing here, the synthetic turbulence at the inlet decays rapidly, and its resulting

large structures are not visible after the first half corrugation. However, the synthetic

turbulence triggers the flow exchange between the bulk flow and the corrugation close to

the exit of C1. This exchange can be seen by the structure tagged as Initial Interaction

in Fig. 6.34a. The structure is rooted inside the corrugation (y/h ∼ −0.5) and is more

irregular than the two-dimensional rollers at the same places for C2 and C3.

The flow interactions between bulk flow and corrugations are stronger for the down-

stream. Thus the two-dimensional rollers are pushed by the flow from the corrugation

to higher locations, and stretched by the bulk flow, forming the Λ-shape structures on

top of the separation bubbles (C5 ∼ C6). The localised view of the Λ-shape structures

(coloured by v) is provided in Fig. 6.34b. The momentum interactions continue building

up until the flow in the corrugation has adequate momentum to burst out. Then the

Λ-shape structures are distorted and replaced by the flow ejections from the corrugation.

As shown in Fig. 6.34c, no Λ-shape structures can be observed at C8 and C9, and the

ejecting structures have higher u and v than structures at C5 and C6, indicating the flow

ejections are penetrating the bulk flow. Fig. 6.34d also shows the flow structures at C8

and C9, but coloured by 〈v′v′〉. It shows that at C9 the flow from the corrugation is able

to be ejected up to y/h = 0.72, but most of the ejections can only affect the flow at around

y/h = 0.36.
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The flow field between C32 and C38 in Zone 2 is also visualised by Q-criterion in Fig.

6.35. The plot indicates an increasing number of small detached structures that have an

upward trend toward the top wall.

Figure 6.35. The iso-surface plot of Q-criterion coloured by v between C32 and C38.

Interestingly, as shown in Fig. 6.36a, these small structures are very close to the side

walls. The plot (Fig. 6.36b) which combines Q-criterion plot (Q = 350) and the v contour

on x-z plane at y/h = 2.53 suggests that these detached structures originate from the side

walls rather than the flow ejections from the corrugations.

It is found at C38 that the highest structure reaches up to y/h = 3.13 at z/b = 0.435,

which is very close to the top wall. The influence of this structure on the flow field is

shown in Fig. 6.36c and Fig. 6.36d. Undulations, which are caused by this structure, are

seen at the Umag contours for both horizontal and vertical planes. These undulations are

very similar to the one found at around C45 on the Umag plot at the mid-plane (Fig. 6.15),

but they are at C38 and closer to the side wall. This suggests that the instabilities and

subsequent transition of the BL at the top wall are initialised by the structures originated

from the side walls.

Fig. 6.37 provides the flow details of the transitional process, in which Fig. 6.37a gives

the snapshot of Umag at z/b = 0.5, Fig. 6.37b is the iso-surface plot of Q-criterion of 3000

coloured by v between C39 and C77 and Fig. 6.37c is its localised view between C54 and

C73, Fig. 6.37d is the v contour on x−z plane at y/h = 3.37, and Fig. 6.37e same contour

plot at the middle of the channel (y/h = 1.91).
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It is found that the flow goes through a dramatic change during the transition. At

the early stage of transition, the flow velocity within the bulk flow region is still largely

uniform. Some structures are found reaching the BL of the top wall between C45 and C50

in Fig. 6.37b. These structures can also be seen as the high v spots originated from the

side walls in Fig. 6.37d. It is known from Fig. 6.36 that these structures cause instabilities

at the BL of the top wall. But at this time the undulations are not very apparent at the

Umag contour at the mid-plane. Similarly, at the middle of the channel (Fig. 6.37e), the

regions close to the mid-plane have some upward-pointing high v spots, but generally have

no net wall normal velocity.

Further downstream, the undulations at the top wall are more apparent from around

C57 (Fig. 6.37a). It appears to be caused by the increasing number of structures hitting

the BL at the top wall (Fig. 6.37b). It is found in Fig. 6.37c that between C54 and C60,

most of the structures are traveling upwards towards the top wall. When reaching C60,

the upwards-travelling structures becomes less, but some structures which depart from the

top wall and travel down to the bulk flow start appearing. These downwards-travelling

structures become dominant at around C65, which generally have a large length, with

the longest one being seen across three corrugations just before C70. These downwards-

traveling structures can also be seen as the negative v spots around the mid-plane region

in Fig. 6.37d. Their effect on the flow field is also visible at the middle of the channel, as

more and more negative v spots can also be found from C55 in Fig. 6.37e.

These downwards-travelling structures cause distortion of the BL at the top wall until

around C70 (Fig. 6.37a). After C70, the BL is broken up, and the upward-travelling

structures are rarely found at the region close to the top wall (Fig. 6.37c). An increasing

number of negative v spots are found in the contours of x-z planes for both y/h locations,

and the regions close to the mid-plane generally have negative wall normal velocity. This

suggests that the BL transition at the top wall suppresses the flow development at the

corrugated wall, which leads to a shifting down of 〈u〉max location and results in a more

symmetric 〈u〉 profile after the transition, as seen in Fig. 6.16.

During transition process, the unstable Tollmien-Schlichting waves and hairpin vor-

texes are not seen. Therefore, the current transition is a bypass transition. It is worth men-

tioning that the mesh density for the top wall is (∆x+,∆y+,∆z+) = ([1.6, 3.5], 0.12, 1.2)

which is much finer than the mesh density adequate for predicting a natural transition,

(∆x+,∆y+,∆z+) = (38.7, 0.91, 11.44) [149]. Further, Yang and Voke [150] found that

correctly predicting the position and speed of bypass transition only needs a coarser mesh
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than the one for the natural transition, as the detailed computation of the form of the

instabilities is not crucial. Therefore, despite that the experimental data does not report

the transition, the prediction of transition process and associated parameters should have

a high confidence level.
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The vector plot on x/λ for x-z plane of C101 (within fully turbulent region) coloured

by the magnitude of 〈v〉 and 〈w〉 is shown in Fig. 6.38. Mean secondary flows are found

at few locations, such as the upper corners, the middle of the channel, and the exit of

and within the corrugation. Fig. 6.38 confirms the findings shown in Fig. 6.37d and e,

i.e. the mean flows travel upwards along the side walls, create the secondary flow at the

upper corners and meet at around z/b = 0.5 at the top wall, then travel down towards

the corrugation and form another secondary flow at around y/h = 2..

Figure 6.38. The vector plot on x/λ for y-z plane of C101 coloured by the magnitude

of 〈v〉 and 〈w〉

The time-averaged streamlines coloured by v at C101 are shown at Fig. 6.39. Together

with Fig. 6.38, they suggest that part of the mean flow which travels down from the top

wall travel towards the side wall, causing net flow goes into the corrugation at the regions

close to the side walls. The flow then moves transversely across the corrugation, forming

a large vortex, and finally flows out of the corrugation at the middle region between

z/b = 0.2 and 0.8. Another part for the mean flow which travels down from the top wall

does not get in to the corrugation, rather it joins the flow out of the corrugation and travel
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towards mean flow direction.

Figure 6.39. The time-averaged streamlines coloured by v at C101.

Contour and vector plots of 〈Umag〉 at C112 and C113 (fully turbulent region) for

z/b = 0.5 are shown in Fig. 6.40. It is found that the 〈Umag〉 contours (Fig. 6.40.a)

between C101 and C102 are identical. The time-averaged vector plots of 〈Umag〉 (Fig.

6.40.b) and their localised views for C101 and C102 indicate that two vortices coexist in

the corrugation, one of which is large and almost fills whole corrugation. This dominating

vortex is centred at around x/λ = 0.53 and y/h = −0.36 for all corrugations. Another one

is small and is flattened at the bottom of the corrugation and their locations vary slightly

for different corrugations.

Figure 6.40. The snapshot of Umag contour and vector at z/b = 0.5 for C101 and C102.
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6.4.6 Hydrodynamic Interaction in Fully Turbulent Region

Hydrodynamic interactions and vortex evolution in the corrugations play a significant

role in the corrugated channel flow as they are the primary mechanism under which the

corrugations affect the bulk flow.

The unsteady flow patterns inside the corrugations are visualised in the work of Unal

et al. [3, 12] who observed that a vortex first appears at the upstream upper corner of

the corrugation, then becomes larger while travelling toward the downstream wall of the

corrugation. When the vortex hits the downstream wall, part of its circulatory motions

are transported over the crest and starts a new vortex in the next corrugation. The vortex

weakens after hitting the wall and ejects from the corrugation into the bulk flow after the

ejections at the previous corrugation. The existing flow visualisations provide valuable

insights into the vortex evolution in this corrugated channel flow, but the findings are

mainly descriptive, and the detailed vortex dynamics and the mechanisms of the vortex

evolution are still to be understood. Therefore, this section is dedicated to study these

two aspects.

Fig. 6.41 depicts the mid-plane snapshot of each stage of vortex evolution predicted

by SMAG+VD on the 16 corrugations case with periodic BC. The plots in Fig. 6.41 are

for the same set of cavities at different time instants from T = 28.06s to 28.19s. The

time step of these plots is 0.01s, i.e. the flow travels less than a half corrugation for each

time instant. The three cavities are referred to as upstream, centre, and downstream

corrugations.

A vortex evolution, similar to the one previously recorded by Unal et al [3], is clearly

visible at the centre corrugation, including formation, travelling and enlargement, weak-

ening, and ejection. At T = 28.06s, i.e. the first time instant, the flow is bursting from the

corrugation into the bulk flow. Soon after it (at T = 28.07s), a small vortex/perturbation

appears at the upstream upper corner of the centre corrugation due to flow separation

at the top of the corrugation. At this moment the bursting of flow is still on-going. It

then becomes larger and travels towards the downstream wall of the centre corrugation

as seen at T = 28.08s. It hits the downstream upper corner of the centre corrugation

0.01s later, rather than reattaching at the bottom of the corrugation. The travelling of

the vortex generates a local high pressure region at the downstream upper corner of the

centre corrugation (T = 28.08s in Fig. 6.42), and the pressure difference between this high

value region and surrounding areas increases when the vortex hits that corner (T = 28.09s

in Fig. 6.42).
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Figure 6.42. The pressure distribution at z/b = 0 of the corrugation set at T = 28.08s

and 28.09s predicted by SMAG+VD for the 16 corrugations case.

The higher pressure region will accelerate the flow in two directions. One stream will

have more momentum to flow deeper into the corrugation and enlarge the vortex in the

corrugation. Another stream will accelerate over the top of the corrugation, and experience

flow separation at the downstream corrugation, creating a small vortex that triggers the

vortex evolution process in the subsequent corrugation. This process is clearly shown in

the vector plot in Fig. 6.43.

Figure 6.43. The velocity vector plot at z/b = 0 of the corrugations set at T = 28.08s

and 28.09s predicted by SMAG+VD for the 16 corrugations case.

The enlarged vortex starts becoming unstable from T = 28.10s, and some weak ejec-

tions are observed between T = 28.11s and T = 28.15s. The flow in the centre corrugation

starts strong ejection at T = 28.16s and this lasts for 0.02s. It is interesting to find out

that the pressure also plays a vital role in this process. Fig. 6.44 shows the pressure
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distribution and velocity vector plot for upstream and centre corrugations at T = 28.11s,

28.12s, 29.14s and 28.15s. It is found that at T = 28.11s, a low pressure band appears on

top of the upstream corrugation and across the whole channel height. This low pressure

band initialises the flow ejection at the upstream corrugation, and the flow is always ejec-

ted towards the low pressure region as the band is convected downstream by the bulk flow.

When the low pressure band moves to the top of the centre corrugation, it triggers the

flow ejection at that corrugation as well. This explains why flow bursts in one corrugation

triggers flow ejection in the subsequent one as observed in the experiment [3].

Figure 6.44. The pressure distribution and velocity vector plot of the corrugation set at

T = 28.11s, 28.12s, 29.14s and 28.15s predicted by SMAG+VD for the 16 corrugations

case.

The flow feature at T = 28.19s is similar to that at T = 28.08s, i.e. a small vortex

appears at the upstream upper corner of the centre corrugation. Similarly, the enlargement
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of this vortex is also observed at both T = 28.09s and T = 28.20s, suggesting a new

round of vortex evolution starts again. This indicates the total time scale of this single

vortex evolution is around 0.11s, corresponding to a flow distance of 0.033m or around five

corrugations which matches the result obtained by 2pt-correlations (Fig. E.1). Also, given

that the duration of the strong ejection is 0.02s, the ratio between ejection period and

duration is 5.5 which is the same as observed by Djenidi et al [21] on a d-type roughness

wall.

In summary, the results show that a strong hydrodynamic interaction, like a chain

reaction, is predicted by LES in this corrugated channel. The above findings explain the

characteristics of the flow which is observed in the experimental studies with the same

[3, 12] and similar shapes [27]. The travelling of the vortex from the upstream upper

corner of one corrugation triggers the flow separation and initialise the vortex formation

at the subsequent corrugation. In addition, the sequential flow ejection is understood to

be caused by the convection of a low pressure band across the channel.
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Chapter 7

Conclusions and Suggestions

A detailed numerical analysis of the flow over a corrugated channel is performed by LES.

The flow configuration is a two-dimensional representation of a widely used commercial

stainless steel flexible pipe. The computational domain has a rectangular cross section.

The bottom wall is corrugated with periodic cavities and the top and two side walls are

flat plates. Reynolds number based on bulk flow velocity and the hydraulic diameter of

the channel is 5300. The main objective of this research is to study the flow characteristics

in this corrugated channel, including its BL development, transition mechanisms, mean

profiles of flow variables, hydrodynamic interaction and vortex evolution.

Prior to the analysis, the principles of LES are discussed together with the discussion

of popular SGS and hybrid models. The widely used EVM SGS models are selected for

further validation. The numerical methods are then carefully chosen to maintain a second

order accuracy. After that, several EVM SGS models are tested on a plane channel flow

test case with different grid densities, including SMAG and KEQ, their variants with

the van-Dries damping function, SMAG+VD and KEQ+VD, and their dynamic variant,

DyLag and DyK, and WALE. It is found on all mesh densities that the results obtained by

SMAG+VD and KEQ+VD are similar, and that from DyLag, DyK and WALE are almost

identical as well. SMAG and KEQ, however, fail completely to capture the correct result

even on the finest mesh. The results also suggest that the prediction accuracy of all models

improve as the mesh is refined. It is also noted that DyLag, DyK and WALE tend to over-

predict the mean velocity profile and magnitude of maximum Reynolds stresses when

the grid is coarse, whereas SMAG+VD and KEQ+VD tend to mispredict the location

of the maximum Reynolds stresses. Finally, SMAG+VD is found to offer a satisfactory

prediction at a lower computing cost, and is selected as the SGS model for the numerical

analysis of the corrugated channel.
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7.1 General Remarks

The numerical analysis of the corrugated channel is divided into four parts: the overview

and details of the flow development predicted by LES, comparison of the fully turbulent

region between the cases of 128 corrugation with turbulent inlet and 16 corrugations with

periodic BC, comparison between LES predictions and PIV measurements, and hydro-

dynamics interaction in the fully turbulent region.

Prior to the above detailed analysis, a grid independence study is performed to assess

the effect of grid densities and corrugated channel length on the predicted results. Two

mesh densities are tested on 8 corrugations with periodic BC. The coarser one (Grid 1)

has 0.9 million CV per corrugation and y+
max lower than 0.2 on the top and corrugation

wall, and below 2 on the side walls. The finer mesh (Grid 2) doubles the mesh grid on

each dimension of Grid 1. Both cases are solved using SMAG+VD. The time-averaged

result obtained from both meshes are very similar, even the coarser grid can resolve most

of the turbulent kinetic energy, and the resulting νsgs is generally less than 25% of ν. It

is then concluded that the resolution of Grid 1 is able to support a well-resolved LES.

Results obtained on three channels (8, 16 and 32 corrugations) are also compared. It is

found the results predicted by 16 and 32 corrugations are identical, while the differences

of the result between 8 and 16 corrugations are only marginal. Two-point correlation is

performed at three locations for the 16 corrugations case. The results show that the time-

averaged correlation can be found for as long as 5 corrugations, indicating the channel

with 8 corrugations may not be able to accommodate the largest flow structures in the

channel. Therefore the channel with 16 corrugations is selected for the analysis of the fully

turbulent region of the channel.

LES is performed on the corrugated channel with 128 corrugations and synthetic tur-

bulence inlet and convective outlet. The simulation is carried out using SMAG+VD on

Grid 1. An overview of flow development is first given. The flows in the channel are di-

vided into different Zones according to their visual features at the BL. The numerical error

introduced by the inlet conditions is also discussed. A BL transition process is identified

visually and proved numerically by calculating various BL thicknesses of the 〈u〉 profile

across the channel. The results also suggest that the transition seems to suppress the flow

development at the corrugated wall, and the BL thicknesses of both top and corrugated

walls become similar after the transition.

In order to check the periodicity of the current flow configuration, features of the

fully turbulent region predicted on the 128 corrugations case with turbulent inlet and
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the 16 corrugations case with periodic BC are compared. It is found that the contour of

different flow variables predicted on both cases share the same characteristics, including

the variability of Reynolds stresses across different corrugations. A study on this variability

confirms that it is caused by the nature of the current corrugated channel rather than the

inadequacy of the time-averaging window. The comparison between the 〈u〉 and Reynolds

stresses profiles predicted by both cases shows good agreement. It confirms that the case

with 16 corrugations and periodic BC is able to reproduce the flow features of the fully

turbulent region calculated by the 128 corrugations case.

The LES predictions are compared with PIV measurements on the same corrugated

channel. Large discrepancies are found for both 〈u〉 and Reynolds stresses profiles. The

LES predictions are then cross-checked by using different SGS models. The predictions

of these SGS models are found to be very similar, which is due to the high percentage of

resolved turbulent kinetic energy and a low level of νsgs. In addition, the energy spectrum

across different turbulent length scales is calculated at three y/h locations, covering the

region of most momentum interactions between the corrugations and the bulk flow. It is

found spectrum profiles match well with the −5/3 slope, suggesting the flow field is well

resolved by current LES. it is acknowledged that there are still uncertainties associated

with error introduced by the numerical scheme and the time step size. However, these

uncertainties cannot be addressed at current stage due to the limitation of the computing

power and the software.

A closer examination of the experimental results and setups raises several issues and

open questions on the experiment. Firstly, the calculated shape factor for the PIV data

suggests that the BL at the corrugated wall may still be transitional while the BL at the top

wall is turbulent when the measurement is taken. This seems unreasonable, because the BL

at the corrugated wall should become turbulent quicker than that at the top wall due to the

flow ejection from the corrugation. Secondly, the PIV data is recorded at 8Hz. To assess

the adequacy of this sampling frequency, LES data at several locations are recorded with

10kHz for 8s case time. These data are then sampled with 8Hz. The results calculated

by 8Hz are shown to be able to match the original results for 〈u〉 and follow the trend

of Reynolds stresses for the upper half of the channel. However, they cannot reproduce

the Reynolds stresses profile of the original LES data at the lower half of the channel,

especially for the regions close to the corrugated wall. Also, the uncertainties brought

by the spatial-averaging process during the PIV measurement cannot be assessed in this

test, which may introduce errors for the measured 〈u〉 profile. Thirdly, the experimental
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conditions seem to be either transient (in flow rate or/and Re) or pulsation, rather than

steady, due to the limitation of the hardware. Fourthly, it is found the 〈u〉 profile predicted

by LES at C57 (transitional) has a better agreement with the PIV data than the one at

the fully turbulent region. This also raises doubts on whether the flow is fully turbulent

when the PIV data is taken.

Despite that one may argue that the LES setup does not represent the experimental

condition. However, the intention of the experiment was to investigate the turbulent flow

field under a steady flow condition rather than a decreasing or pulsation flow condition.

Therefore, the discrepancies between the LES prediction and PIV measurement are likely

to be caused by the uncertainties in the experiment, and the LES predictions are used to

study the detailed flow field in the channel under a steady flow condition.

The details of the flow development across the current corrugated channel are presented

and discussed. Flow features for Zone 1 (C1 ∼ C15) and Zone 2 (C16 ∼ C41) are visualised

and some small detached structures are found to have an upward trend toward the top

wall. These structures are shown to cause fluctuations in the BL at the top wall and

trigger the transition. It is interesting to find out that these structures are not from the

flow ejection from the corrugation, rather, they are originate from the side wall. The

subsequent BL transition at the top wall generates an increasing number of downward

travelling structures, suppressing the flow development at the corrugated wall, thereby

pushing the location of 〈u〉max down to a level slightly below the centreline of the channel.

The vector plot on x/λ = 0.5 for x-z plane shows mean secondary flows at few locations,

such as the upper corners, the middle of the channel, and the exit of and within the

corrugation. It demonstrates that the mean flows travel upwards along the side walls,

create the secondary flow at the upper corners and meet at around z/b = 0.5 at the

top wall, then travel down towards the corrugation and form another secondary flow at

around y/h = 2. Together with the time-averaged streamlines for the same corrugation, it

suggests that part of the mean flow which travels down from the top wall travel towards

the side wall, causing net flow goes into the corrugation at the regions close to the side

walls. The flow then moves transversely across the corrugation, forming a large vortex,

and finally flows out of the corrugation at the middle region between z/b = 0.2 and 0.8.

Another part for the mean flow which travels down from the top wall does not get in to

the corrugation, rather it joins the flow out of the corrugation and travel towards mean

flow direction.

The time-averaged vector plot of Umag is also studied on mid-plane. It is found that the
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resulting vortices in the corrugation has the same characteristics as recorded in experiment.

The time-averaged streamlines suggest that the outer flow goes into the corrugation from

regions close to the side walls, and moves transversely across the corrugation, forming a

large vortex, and finally flows out of the corrugation at the middle region.

Hydrodynamic interaction and vortex evolution are studied on the 16 corrugations

case with periodic BC. The chain-reaction like behaviour and various stages of vortex

evolution, which are recorded by the experiment, are reproduced by LES. It was found that

after the generation of the small vortex at the upstream upper corner of the corrugation,

its subsequent convection and impinging hitting on the downstream upper corner of the

corrugation create a local high pressure region. Due to this, two streams of flow are

accelerated, one of which goes deep inside the corrugation forming a large vortex that fills

the corrugation. Another stream flows over the top of the corrugation and separates at

the top of the corrugation generating small vortex at the upstream upper corner of the

subsequent corrugation. Due to the lack of momentum, the large vortex in the corrugation

becomes unstable. Then a low pressure band which across the whole channel height

sweeps through with the bulk flow causing the flow ejection of the upstream, current

and downstream corrugations. The time scale of the vortex evolvement is around 0.11s,

corresponding to a flow travel distance of five corrugations which is same as the value

obtained by the two-point correlation.



128

7.2 Recommendations for Future Work

Notwithstanding of the insight obtained by current numerical analysis on the corrugated

channel, further works are recommended to supplement current research.

Current study shows that the side walls have a profound effect on the flow in current

corrugated channel. It should be acknowledged that if the effect of the corrugation on the

mean flow is the only area to be investigated, the distance for spanwise direction should

be much longer to minimise the effect from the side walls. In other words, current config-

uration shared the same issues with the original periodic hill case proposed by Almeida.

Therefore, a new configuration with adequately long spanwise distance (a spanwise period-

icity for numerical case) or a corrugated pipe with circular cross section need to be tested

in order to isolate the effect of the corrugation on the mean flow from the side walls.

Due the the uncertainties of the experiment and the LES, there are many unquantifiable

factors for the discrepancies between the experimental and numerical results. Therefore,

a new experiment is suggested with all aforementioned uncertainties being minimised or

properly controlled, in order to provide a benchmark for LES.

It is also suggested performing a DNS with the same flow configurations to cross-check

the PIV data and provide a benchmark for LES.

It is found that the high resolution of the grid is the reason of low sensitivity of flow

solutions on various SGS models. Thus, the performance of these SGS models cannot

be properly assessed. It is suggested coarsening the mesh to evaluate the performance of

various SGS models on low mesh resolutions.

The geometry of the current corrugated wall is widely used in heat exchanger. There-

fore, it would be beneficial to conduct further study on heat transfer and noise prediction

on these flow configurations.
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Appendix A

Conventional Hybrid Model

A.1 Detached Eddy Simulation

Detached Eddy Simulation (DES) was proposed by Spalart et al [151]. In this model,

the wall BLs are computed completely by the RANS model and the free shear flow away

from walls is covered by LES model. The switch between RANS and LES is based on

grid resolution. Theoretically, any RANS turbulence model can be incorporated in DES.

Within DES model, the RANS and LES switch criterion is


CDES∆max > ` ↔ flow solved in RANS model

CDES∆max ≤ ` ↔ flow solved in LES model

(A.1)

Where ∆max = max(∆x,∆y,∆z) and ` is the turbulence length scale which is evaluated

by relevant RANS parameters (using k − ε and k − ω two equation RANS models as

examples)

` =
k3/2

ε
=
k1/2

β∗ω
(A.2)

It is defined that when the grid resolution ∆max ≤ ` the model will be switched from

RANS to LES. It requires a grid and time step resolution to be of LES quality in the

detached region. For a normal RANS grid with the wall-parallel (x and z directions) grid

spacing usually exceeds BL size, and the DES model will stay in RANS mode for the

entire BL. However, care must be taken in this case as if ∆max > ` the LES mode will

be activated inside the attached BL even though the grid is not fine enough for resolving

turbulence. Menter and Kuntz [152] reported this Grid-Induced Separation (GIS), and

that the BL can separate at arbitrary locations due to various mesh resolutions. In order

to overcome this drawback, they introduced a concept of ”shielding” of the BL which was
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extended to Delayed-DES (DDES) by Spalart et al [153]. DDES modifies the dissipation

term in the k-equation by introducing a function FDDES which is set to be 1 within the

wall BL and 0 in the detached region.

A.2 Wall Modelled Large Eddy Simulation

Wall Modelled Large Eddy Simulation (WMLES) has a different feature to DES as its

switch between RANS and LES model is dependent on wall distance. In this model,

kinematic turbulent viscosity is given as [154]

νt = fDmin[(κy)2, (Cs∆)2]S (A.3)

Where y is the wall distance, fD is a wall damping function, κ is von Karman constant,

Cs is the Smagorinsky constant and s is the strain rate. The very near-wall region is

represented by RANS and the mode will be switched to LES when the mesh resolution is

sufficient for resolving turbulence scale.

A.3 Embedded/Zonal Large Eddy Simulation

Other than using mesh resolution and wall distance as the switch trigger between RANS

and LES, WMLES, E/ZLES predefines the region for LES and RANS before calculation

and turbulence is imposed at the interface between the two regions [155, 156].
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Appendix B

Pressure Correction Equation for

PISO Algorithm

The current study is based on incompressible flow for which the governing equations do

not have coupling between density and pressure, and the energy equation and the rest of

the system. However, such pressure-velocity system contains two complex couplings, i.e.

the non-linear convection term and the pressure-velocity coupling [135].

Since there is no pressure equation for incompressible flow, a pressure correction equa-

tion needs to be derived by the continuity and momentum equations. The derivation

process can start by discretising the momentum equation as

aPuP +
∑
N

aNuN = Q−∇p (B.1)

where p is the index of an arbitrary cell centre; N denotes the neighbour cell centres

surrounding that arbitrary cell centre; aP and aN are coefficients which are obtained by

discretisation of the momentum equation1; Q is the source term which contains all other

terms in the equation.

An operator H can be introduced

H = Q−
∑
N

aNuN (B.2)

then

uP = (aP )−1[H −∇p] (B.3)

1The details of calculation aP and aN can be found in different CFD text books [72, 107]
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Substituting this in the continuity equation (∇·u = 0), the pressure correction equation

for incompressible flow can be obtained as

∇ · [(aP )−1∇p] = ∇ · [(aP )−1H] (B.4)
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Appendix C

Channel Flow Result Verification

Result verification is presented in this section. The two key aspects of the result verification

for the current simulation are:

1. whether the statistical variable obtained by OpenFOAM is correct;

2. whether the flow reaches the statistically steady state at the end of simulation;

This section will be dedicated to answer the above three questions. Fig C.1 depicts

the comparison between the mean variables obtained by OpenFOAM and calculated by

the instantaneous velocity data.

Figure C.1. Velocity time history profile at y/h = 0.412 for SMAG+VD on Mesh1.

The grey line represents the time history of the instantaneous stream-wise velocity, u.

The blue and red lines are the cumulative average of velocity and fluctuation at streamwise

directions obtained by OpenFOAM, i.e. 〈u〉 and
〈
u′2
〉

respectively. The blue and red

circles are the moving average of u and u′2 calculated by u by using Matlab code. It
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verifies that the mean value calculated by OpenFOAM is numerically accurate. Data at

different locations for other cases appear to show the same behaviour. It is noted that

although the flow through time is 50% more than the comparable case conducted by Tang,

et al. [140], the 〈u〉 and
〈
u′2
〉

has not yet become a straight line at the end of simulation.

However, this does not necessarily indicate the flow has not reached statically steady state.

Because the data to be analysed are not based on single point, rather they are spatially

averaged along x and z directions (on which periodic BC are applied) and then temporally

averaged prior to the analysis. Therefore, Fig. C.2 to Fig. C.4 present the spatially and

temporally averaged variables along y axis for different flow times obtained by different

models on different mesh densities. Among them, Fig C.2 is for SMAG+VD on Mesh1,

Fig C.3 is for KEQ on Mesh2, and Fig C.4 is for DyK on Mesh3.

Figure C.2. Spatially and temporally averaged variables along y axis at different flow

times for SMAG+VD on Mesh1.

Fig. C.2 to Fig. C.4 show that most of the variables reach a statistically steady state

at around T = 7s. Some variables reach this state even at T = 5.5s or 6s. Also, the

figures indicate that the finer the mesh, the quicker the flow reaches a statistically steady

state. This confirmed that the result obtained at T = 8s is appropriate to be used in data

analysis.
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Figure C.3. Spatially and temporally averaged variables along y axis at different flow

times for KEQ on Mesh2.

Figure C.4. Spatially and temporally averaged variables along y axis at different flow

times for DyK on Mesh3.
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Appendix D

Comparison of Computing Speeds

D.1 Computational Cost of Various SGS models

Calculation speed (clock time) of each SGS model under different mesh densities are

recorded and summarised in Fig. D.1. All simulations are conducted on same the hardware

configuration (128 cores on the HPC in the University of Sussex), numerical method (as

stated in previous sections), and case setup (taking average between t = 5 and 8 with 12

point sampling). The time duration is 1s simulation time, corresponding to 50,000 time

steps. It is found that taking average has no obvious effect on calculation speed. The gray

bar represents Mesh1, the white bar plus the gray bar is for Mesh2 and the combination

of the three colours is for Mesh3. All time cost is normalised by the time cost of SMAG

model on Mesh1, TSMAG = 2800s.

0 1 2 3 4 5 6 7 8 9 10

WALE

DyK

KEQ

KEQ+VD

DyLag

SMAG+VD

SMAG

T/TSMAG

Figure D.1. Time cost of various SGS model for channel flow

It is found out that WALE requires the least computing resource, only 94% of the time

cost of SMAG under Mesh1, 96% under Mesh2 and 98% under Mesh3. Whereas, under
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Mesh1 and Mesh2, the greatest calculation resource is required by KvD, which are 19.4%

and 23.7% more than SMAG respectively. Under Mesh3, DyK spends the longest time to

finish its calculation, which is 15% more than the time of SMAG.

D.2 Computational Speeds of Various HPC

A computational speed between the HPC in Sussex University and the ARCHER (the

UK national supercomputing services) is compared1. The result is in Table. D.1. It is

shown that the computational time savings on ARCHER is obvious, but the scaleability

on ARCHER over 384 cores are not good for current case. So current simulation is run

on 386 cores.

HPC with CPU No. Case Time (s) Physical Time (s) Physical Time per 1s Case Time (h)

Sussex, 128 1 106967 29.71

ARCHER, 192 0.054 3000 15.43

ARCHER, 384 0.1 3414 9.31

ARCHER, 768 1 30584 8.50

Table D.1. Time cost on different HPC systems for SMAG

1The calculation on Sussex HPC starts from T = 12s and finishes at T = 13.5s. There are some numer-

ical instabilities at the beginning as a result of mapping the 32 corrugation case onto the 64 corrugation

case as its initial condition. So the time consuming data from T = 12.5 and 13.5s is used to compare with

the simulation on ARCHER.
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Appendix E

Results of Two-point correlation

The results of the two-point correlation along the line of y/h = 0.265 and y/h = 0.819 are

shown in Fig. E.1.

(a) y/h = 0.265

(b) y/h = 0.819

Figure E.1. The normalised 2pt correlation of velocity along x direction at y/h = 0.265

and y/h = 0.819 predicted by SMAG+VD on 16 corrugations with periodic BC.
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Appendix F

Discrepancies of Reynolds Stresses

Between Each Corrugation

It is found in the predictions of both 128 and 16 corrugations cases that the high turbulent

intensity regions show discrepancies between each corrugation. This may be due to the

nature of current flow or the inadequacy of time-averaging window. Both possibilities are

studied in current section.

Firstly, the profiles of 〈u′u′〉 and 〈v′v′〉 at 5 corrugations (black lines in Fig. F.1) are

compared. The selected corrugation are C2, C5, C8, C11 and C14.

(a) 〈u′u′〉

(b) 〈v′v′〉

Figure F.1. The location of data sampling lines.
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The comparison between 〈u′u′〉 of the selected sampling lines is presented in Fig.

F.2. The result confirms the visual observation in Fig. F.1a that the profile of 〈u′u′〉

varies across different corrugations. Although they generally follow the same shape, large

discrepancies are appeared at around y/h = 0.071, 0.363, 1 and 3.58, and the difference

between the max and min value at these locations are 16.6%, 42.9% (not shown explicitly

in Fig. F.1a) , 17.6% and 7.4%, respectively. Nevertheless, the locations of 〈u′u′〉max are

same for each corrugation, which are y/h = 0.071 for the corrugated wall and y/h = 3.576

for the top wall. The values for 128 corrugations case are the same.

Figure F.2. Comparison between 〈u′u′〉 of the selected corrugations for SMAG+VD.

Fig. F.3 depicts the comparison between 〈v′v′〉 of the selected corrugations. The shape

of profile at each corrugation largely agrees with each other. However, discrepancies can

be found at around y/h = 0.36, 1.68 and 3, the difference between the max and min value

at these locations are 9.8%, 14.5% and 14.3%, respectively. Also, similar to the profile of

〈u′u′〉, the locations of 〈v′v′〉max are same for all corrugation, which are y/h = 0.363 for

the corrugated wall and y/h = 3.04 for the top wall. These values for the 128 corrugations

case are the same.
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Figure F.3. Comparison between 〈v′v′〉 of the selected corrugations for KEQ+VD.

As shown in Section 6.2, the above discrepancies are not caused by inadequacy of

the time-averaging window. It is therefore concluded that the discrepancies of the high

turbulent intensity region between each corrugation are caused by the nature of this type

of flow. The comparison between the Reynolds stresses obtained by difference cases will

be based on the spatial-averaging values.
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