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ABSTRACT

This thesis presents the search for the very rare decays B 0
s → µ+ µ− and B 0

d → µ+ µ−, based

on 26.3 fb−1 of
p

s = 13 TeV LHC proton–proton collision data collected in 2015 and 2016 by the

ATLAS experiment. B 0
(s) → µ+ µ− decays are considered one of the pillars of the ATLAS exper-

iment searches for New Phenomena with flavour, thanks to an extremely clean experimental

signature, a very small and precisely constrained Standard Model (SM) amplitude and the po-

tential sizable interference from New Physics phenomena.

This work greatly improves past ATLAS results, including a new dataset, improved statistical

and systematic extraction techniques, up-to-date muon identification tools and background

models. The analysis results in the experiment’s most precise measurement to date of the

branching fraction B(B 0
s → µ+ µ−) =

(
3.2+1.1

−1.0

)
× 10−9 and upper limit

B(B 0
d → µ+ µ−) < 4.3 × 10−10 at 95% confidence level.

Combining with the ATLAS Run 1 analysis results in B(B 0
s → µ+ µ−) =

(
2.8+0.8

−0.7

)
× 10−9 and

B(B 0
d → µ+ µ−) < 2.1 × 10−10 at 95% confidence level: the most stringent experimental limit

available to this date. All measurements are compatible with the SM prediction.

Projections on the future ATLAS sensitivity are also performed.
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INTRODUCTION

The Standard Model (SM) of particle physics is currently the most successful theory to explain

the fundamental structure and relations of the particles that compose our universe. Despite its

successful confirmation with the discovery of the Higgs boson [1, 2], there are still open issues

that this model can not address. The most compelling are the lack of dark matter candidates,

the inadequacy in describing the matter anti-matter imbalance in the universe, the fine-tuning

problem in the Higgs boson mass and neutrino oscillations.

There are several New Physics (NP) models that try explain these and other SM shortcomings,

and the search for NP is currently one of the drivers of experimental particle physics. There

are two main approaches in the search of Beyond the Standard Model (BSM) phenomena. Dir-

ect searches study new possible particles produced in high energy collisions, while indirect

searches focus on studying processes that can be affected by the presence of virtual NP particles

in loops.

The two rare decays B 0
s → µ+ µ− and B 0

d → µ+ µ− are considered golden flavour physics

channels in the indirect search for NP, as their branching fractions B( B 0
(s) → µ+ µ−) are very

interesting from a theoretical point of view; while these processes are extremely suppressed and

well determined in the SM framework, they can be modified by several BSM scenarios, yielding

either an enhancement or a further suppression of these decays. The experimental measure-

ment of the two branching fractions can therefore help posing constraints on NP models.

Some of the cutting edge experiments that are currently testing the SM and searching for hints

of new phenomena are located around the LHC, at the CERN laboratories (near Geneva, Switzer-

land). The LHC is, as of today, the most powerful particle collider ever built and the products

of the particle collisions are studied by four main experiments: ATLAS, CMS, LHCb and ALICE.

The work described in this thesis is focused on the search for B 0
(s) → µ+ µ− decays in the dataset

collected by the ATLAS experiment during the 2015 and 2016 data taking period. The results of

this physics analysis are also combined with the previous ATLAS analysis, based on the dataset

collected during 2011 and 2012, for a further enhancement of the precision of the results. Ad-

ditionally, a trigger selection aimed at improving the collection of B → hh′ events is presented,

as this is the most irreducible of the B 0
(s) → µ+ µ− analysis’ backgrounds, and the additional

events would refine the analysis performance. As part of the outlook and as a contribution to

the physics case for the High-Luminosity Large Hadron Collider (HL-LHC) proposal [3], pro-

1
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jections on the sensitivity of the ATLAS B 0
(s) → µ+ µ− analysis with the full Run 2 and HL-LHC

statistics are also presented.

The work presented in this thesis resulted, to date, in multiple presentations at conferences

and workshops, the publication of a JHEP article [4], an ATLAS PUB note [5], several confer-

ence proceedings, as well as the CERN HL-LHC yellow report [3].

The theoretical background on the SM and the B 0
(s) → µ+ µ− decays is described in chapter 1,

followed by a description of the experimental tools, in particular an overview on the LHC and a

technical description of the ATLAS detector, in chapter 2. The description of the ATLAS analysis

and simulation frameworks follows in chapter 3.

The author’s contribution with the development of a trigger selection for the B → hh′ pro-

cess, which can help the background reduction for the B 0
(s) → µ+ µ− analysis, is described in

chapter 4, while the central part of this thesis, the 2015-16 ATLAS B 0
(s) → µ+ µ− analysis is in-

troduced in chapter 5. The analysis is then discussed in detail in the following chapters 7 - 12,

culminating with the combination of the results with the ATLAS Run 1 analysis.

Finally, the prospects for the ATLAS B 0
(s) → µ+ µ− analysis based on the full Run 2 statistics and

on the statistics to be collected at HL-LHC are discussed in chapter 13.

This thesis is complemented with three appendices. An overview of the ATLAS B 0
(s) → µ+ µ−

analysis performed on the Run 1 dataset is provided in appendix A. I was granted exceptionally

authorship to this publication thanks to my contribution to the studies performed for the ana-

lysis’ systematic uncertainties.

The various cross-checks performed during the evaluation of a set of kinematic corrections

for the Monte Carlo (MC) samples employed in the 2015-16 ATLAS B 0
(s) → µ+ µ− analysis are

shown in appendix B.

The work described in this thesis has been developed within the heavy flavour group of the

ATLAS Collaboration, in which the author has been collaborating with teams of scientists from

different countries and research institutes. The author’s individual work has therefore been of-

ten part of a bigger collective effort. For this reason, the results obtained in this thesis have

been published on behalf of the ATLAS Collaboration, as envisaged by its policies. A detailed

list of the author’s contribution to the results in this thesis is provided in appendix C.



1THEORETICAL BACKGROUND

This chapter introduces theoretical background needed to understand the work developed in

this thesis. After a summary of the Standard Model (SM) of particle physics and its limitations

(respectively sections 1.1 and 1.2), the B 0
(s) dimuon decays are introduced and their model-

independent branching fraction is evaluated (section 1.3). This quantity is then calculated in

the SM framework (section 1.3.3) and effects of BSM theories are considered (section 1.4). Fi-

nally, the status of the experimental searches for B 0
(s) → µ+ µ− processes is presented (sec-

tion 1.5).

1.1 The Standard Model of particle physics

1.1.1 Overview

The Standard Model (SM) of particle physics [6–8] is a renormalisable Quantum Field The-

ory (QFT) [9] developed to describe the known fundamental components of the universe. It

includes all the particles experimentally discovered and three of the four known fundamental

interactions: electromagnetic, weak, and strong interactions. Attempts at including gravity in

the framework of renormalisable QFT are yet to be successful.

Elementary particles are described as excitations of fundamental quantum fields which live

in a four-dimensional Minkowski spacetime [10]. The classification of elementary particles is

based on their behaviour under Poincaré [9] transformations; one of the most notable invari-

ant under such transformations is the spin, used to define two main categories: fermions have

half-integer spin values in units of ~, while bosons have integer spin.

Present experimental observations show 12 different fermions, and for each fermion a corres-

ponding anti-fermion, with equal mass but opposite quantum numbers. A further categorisa-

tion of fermions is based on which interaction they partake. Six of the known fermions are

called quarks, which differ from the other six fermions, the leptons, because they can interact

strongly. Quarks and leptons are further organised in three generations, which are character-

ised by similar quantum numbers but different mass. The first generation is the lightest, while

the third generation contains the heavier particles. A summary of the SM fermions and their

3
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Table 1.1: Summary of the fermions of the SM, together with their charges and masses [11]. The quark masses listed
are calculated in the MS renormalisation scheme [12], except for the t quark, whose mass comes from
direct measurements [11].

SM fermions

Quarks Leptons

q Charge Mass (MeV) l Charge Mass (MeV)

First Generation
u +2/3 2.2 e -1 0.511

d -1/3 4.7 νe 0 < 2 ·10−6

Second Generation
c +2/3 1275 µ -1 106

s -1/3 95 νµ 0 < 2 ·10−6

Third Generation
t +2/3 173.0 ·103 τ -1 1777

b -1/3 4180 ντ 0 < 2 ·10−6

properties is provided in table 1.1.

Each lepton generation is composed of a negatively charged particle and a neutrino, which has

no charge. These particles only interact via the weak and (if charged) electromagnetic interac-

tions.

Quarks interact via the strong, weak and electromagnetic interactions. Each quark generation

is composed of a +2/3 and a -1/3 electrically charged particle. Quarks with a 2/3 positive charge

are often referred to as up-type quarks, while quarks with a -1/3 charge are referred to as down-

type quarks. Due to the effect of the strong interaction, quarks can not be observed as isolated

particles, but form bound states known as hadrons, which are further divided into mesons,

formed of two quarks, and baryons, made of three quarks.

Fermions follow the Dirac Lagrangian

L =ψ(iγµ∂µ−m)ψ (1.1)

where ψ is the fermion field, γµ are the Dirac matrices [9] and m is the mass of the fermion.

The Dirac Lagrangian is invariant under global gauge transformations like

ψ→ψ′ = e iθψ, (1.2)

where the equation only shows a U (1) symmetry group global transformation. Imposing also

the invariance under local transformations of a given symmetry group requires a modification

in the Lagrangian, which results in the introduction of gauge fields (boson fields).

The SM is based on the invariance under the gauge group [9]

SU (3)C ⊗SU (2)L ⊗U (1)Y . (1.3)

SU (3)C describes the symmetry group of the strong interaction, mediated by 8 gluons; SU (2)L⊗
U (1)Y describes the symmetry group of the electroweak interaction, mediated by the photon,

W ± and Z bosons.
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The mass of the fermions and gauge bosons should appear in the Lagrangian as a term bilinear

with respect to the fields and containing the mass value, as shown in the Dirac Lagrangian in

formula 1.1. The introduction of such term in the SM Lagrangian for either the fermions or the

gauge fields would break the local SU (2)L invariance [9]. This issue is solved with the spontan-

eous symmetry breaking mechanism, which requires the introduction of an additional doublet

of complex scalar fields, from which an additional boson arises, corresponding to the recently

discovered Higgs boson (section 1.1.4). Table 1.2 summarises the property of the bosons in the

Table 1.2: Summary of the bosons of the SM, together with their charges and masses [11].

Name Mass (GeV) Electric charge

Gluon(×8) (g ) 0 0

Photon (γ) 0 0

W ± 80 ±1

Z 91 0

Higgs (H 0) 125 0

SM.

The following sub-sections provide a more complete description of the different theories that

constitute the SM.

1.1.2 Quantum Electrodynamics

Quantum Electrodynamics (QED), developed by Feynman, Schwinger and Tomonaga [13–15],

is the quantum field theory for electromagnetism. The theory is based on the requirement that

the Lagrangian 1.1 is invariant under local gauge transformations of the U (1) symmetry group

ψ→ψ′ = e iθ(x)ψ.

In order to attain local invariance, the Lagrangian must be modified in a manner that is equi-

valent to substituting the partial derivative ∂µ with

∂µ→ Dµ = ∂µ− iQ Aµ, (1.4)

where e is an arbitrary parameter of the theory that will be discussed later. This reformulation

of the derivative operator to preserve local gauge invariance is known as “covariant derivat-

ive” [9]. The newly introduced Aµ field transforms under gauge transformations according to:

Aµ→ A′
µ = Aµ+ 1

Q
∂µθ(x). (1.5)

Additional modifications must be added to the Lagrangian, as a kinetic term for the Aµ field is

needed to describe its spacetime evolution. Such a kinetic term is in the form −1
4 FµνFµν, with

Fµν = ∂µAν−∂νAµ.

The Lagrangian showed in equation 1.1 becomes therefore

L =ψ(iγµDµ−m)ψ− 1

4
FµνFµν =ψ(iγµ∂µ−m)ψ+QψγµAµψ− 1

4
FµνFµν. (1.6)
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Thanks to the introduction of the covariant derivative, a new term appears in the Lagrangian

connecting the fermion field and Aµ, interpreted as the interaction term. No mass term ap-

pears in the Lagrangian for the field Aµ; this is because this term would not be gauge invariant.

The Aµ field can be interpreted as the photon field. Applying Noether’s theorem [9], the con-

served quantity associated to the U (1) symmetry is Q and is interpreted as the electric charge

of the fermions. The coupling constant for QED is a running parameter [9] dependent on the

momentum exchange of the interaction q2. Its value at low q2 is obtained experimentally [11]

and it is expressed in terms of the so-called fine structure constant:

α= e2

4π~c
∼ 1

137
, (1.7)

where the ~ and c constants are respectively the reduced Planck’s constant and the speed of

light in vacuum.

1.1.3 Electroweak unification

The theory of the weak interaction was proposed and unified with QED by Glashow and Wein-

berg [6, 7]. The so-called electroweak theory is based on the symmetry group SU (2)L ⊗U (1)Y .

The structure SU (2)L group implies the existence three gauge bosons. The L stands for left-

handed, meaning that only fermionic fields with a left handed chirality are involved, where

left- and right-handed chiralities are defined as:

ψL/R = 1∓γ5

2
ψ, with γ5 = iγ0γ1γ2γ3. (1.8)

The associated conserved quantity is the weak isospin. Left- and right-handed fields trans-

form in a different way under SU (2)L . Right-handed particles (and left-handed anti-particles)

transform as singlets, while left-handed particles (and right-handed anti-particles) transform

as doublets:

f i
L =

(
νi

L

l i
L

)
,

(
ui

L

d i
L

)
f i

R = l i
R ,ui

R ,d i
R , (1.9)

where the i index runs over the three generations.

U (1)Y is the same symmetry group employed in QED, but in this case the associated conserved

quantity is called hypercharge, which relates to the weak isospin and the electric charge ac-

cording to the following formula:

Y = 2(Q −T3), (1.10)

where T3 refers to the weak isospin.

The covariant derivative in this case has the form:

Dµ = ∂µ− i g T i W i
µ− i g ′ Y

2
Bµ, (1.11)

with W i
µ and Bµ being the gauge fields and g and g ′ the coupling constants associated with the

SU (2)L and U (1)Y symmetries respectively. As for QED, the Lagrangian is further modified by

adding the kinetic terms for the new fields, −1
4 BµνBµν and −1

4W i
µνW iµν, defined as:

Bµν = ∂µBν−∂νBµ, W i
µν = ∂µW i

ν −∂i
νW i

µ+ gεi j kW j
µW k

ν , (1.12)



1.1 The Standard Model of particle physics 7

where εi j k is the totally antisymmetric Levi-Civita tensor [9].

Finally, all these ingredients together give the electroweak Lagrangian:

L = ∑
f =l ,q

f iγµDµ f − 1

4
BµνBµν− 1

4
W i
µνW iµν, (1.13)

where the sum runs over the three generations of leptons and quarks.

Two important remarks must be made about equation 1.13. First, the gauge bosons which

appear in equation 1.13 are not the actual bosons observed in experiments. W 1 and W 2 are

complex fields and in order to obtain the real charged states observed in experiments they

must be combined according to

W ±
µ = 1p

2

(
W 1
µ ∓ iW 2

µ

)
. (1.14)

The other two fields W 3 and B are real neutral states, but they do not coincide with what is

observed by experiments. The photon can not be associated with the B field as the interac-

tion with fermions is different. Similarly, the W 3 field can not be associated with the carrier

of the neutral weak interaction. The Z 0 boson and the photon are thus obtained with a linear

combination of W 3 and B : (
Z 0
µ

Aµ

)
=

cosθW −sinθW

sinθW cosθW

(
W 3
µ

Bµ

)
. (1.15)

The θW mixing parameter is called Weinberg angle. Its value has been precisely measured in

experiments: sin2θW = 0.23155±0.00005 [11]. This angle can also be expressed in terms of the

coupling constants associated with the SU (2)L and U (1)Y symmetries as

cosθW = g√
g 2 + g ′2 , sinθW = g ′√

g 2 + g ′2 . (1.16)

The second remark about the electroweak Lagrangian showed in equation 1.13 regards the

mass terms. All the fields involved, both fermionic and bosonic, appear to be massless, because

the required mass terms are not invariant under SU (2)L ⊗U (1)Y . On the other hand, experi-

mental observations strongly show the existence of massive fermions and bosons. An addi-

tional term must be included in the electroweak Lagrangian to account for the experimentally

observed mass: the mechanism is discussed in the following sub-section.

1.1.4 The Higgs Mechanism

The solution to the mass problem arisen in the previous sub-section was given by R. Brout

and F. Englert [16], and P. Higgs [17]. Mass terms that are SU (2)L invariant can be added to

the electroweak Lagrangian via a spontaneous symmetry breaking mechanism, which can be

achieved with the introduction of a new scalar complex field

φ=
(
φ+

φ0

)
= 1p

2

(
φ1 + iφ2

φ3 + iφ4

)
, (1.17)



1.1 The Standard Model of particle physics 8

which transforms as a doublet in the SU (2)L ⊗U (1)Y group.

The Lagrangian of this new field is written as

Lφ = Dµφ
†Dµφ−V (φ), (1.18)

with V (φ) being the potential of the field and Dµ the covariant derivative introduced in equa-

tion 1.11.

The potential of the field is written as

V (φ) =−µ2φ†φ+λ(φ†φ)2. (1.19)

Ifµ2 is negative, the first term of the potential becomes a mass term for theφ field. On the other

hand, if µ2 is positive, the potential assumes a sombrero-like shape, illustrated in figure 1.1 and

the φ field assumes a non-zero Vacuum Expectation Value (VEV) of

φ†φ= µ2

2λ
≡ v2

2
. (1.20)

The minimum of the potential is now a circumference with radius µ2/2λ. Due to this sym-

Figure 1.1: Illustration of the Higgs potential in the case that µ2 > 0, n which case the minimum is at |φ|2 = µ2/(2λ)
Choosing any of the points at the bottom of the potential breaks spontaneously the rotational U(1) sym-
metry. Picture from [18].

metry, there is an infinite amount of points satisfying φ†φ = v2/2; since the Lagrangian only

depends on φ†φ, any of those points can be chosen as the expectation value for the φ field. A

massless photon requires:

φ=
(

0

v/
p

2

)
. (1.21)

The field can now be perturbatively expanded around this minimum, obtaining

φ=
(

0

v/
p

2+H(x)

)
. (1.22)

The field H(x) is referred to as the Higgs field; the excitation of such field is called Higgs boson.

Once expression 1.22 is added to the Lagrangian shown in equation 1.18, the mass terms of the

gauge bosons naturally appear from the covariant derivatives:

mW = g v

2
mZ = v

√
g 2 + g ′2

2
mA = 0. (1.23)
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The mass term for the Higgs boson appears from the second term in the V (φ) potential 1.19,

with a value mH =p
2λv .

The masses of the fermions do not arise in such a natural way, but they can be introduced as:

L = ∑
f =q,l

λ f ( f Lφ fR + f Rφ fL). (1.24)

The λ f terms, known as Yukawa couplings, contain the coupling constants of the Higgs to the

fermions. After substituting equation 1.22 in 1.24, the fermion masses appear in the form

m f =λ f
v

2
. (1.25)

After about 50 years from the formulation of this theory, the Higgs boson discovery was an-

nounced in 2012 at the CERN laboratories by the ATLAS [1] and CMS [2] collaborations.

1.1.5 Quantum chromodynamics

The last piece of the SM is a quantum field theory describing the strong interaction. This theory

is called Quantum Chromodynamics (QCD) and it is built from a SU (3)C symmetry, where the

C stands for colour [19]. This is defined as an additional quantum number that can assume

three different discrete values (conventionally labelled as green, red and blue).

As for the QED and the electroweak theories, QCD is developed requiring the invariance of

the Lagrangian under local SU (3)C gauge transformations. This is achieved by introducing the

covariant derivative:

Dµ = ∂µ+ gs
λa

2
Aa
µ, (1.26)

where gs is the coupling constant of the strong interaction andλa are the Gell-Mann matrices [9],

which constitute the eight generators of the SU (3) group. The eight additional Aa
µ fields repres-

ent the gluons: by design the mediators of the strong interaction.

Following the approach introduced in section 1.1.2, the kinematic term for the gluons is also

added to the Lagrangian in the form −1
4 F a

µνFµνa , with

F a
µν = ∂µAa

ν −∂νAa
µ− gs fabc Ab

µAc
ν, (1.27)

where fabc are the structure constants of the SU (3) group [9]. The third term in equation 1.27 is

the gluon self-interaction, showing that gluons can interact with each other and therefore carry

colour charge. In particular gluons carry effectively two colour charges: one colour charge and

one “anti-colour” charge.

The resulting Lagrangian for the QCD theory is

LQCD = qi (i Dµγµ−m)i j q j − 1

4
F a
µνFµνa , (1.28)

where the i and j indices account for the colour of the quarks.

In analogy with QED, the strong coupling constant is expressed in terms of αs , with

g 2 = 4παs . (1.29)
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Theαs coupling is a running constant [9], which depends on the energy scale considered, as for

the couplings of the electroweak interaction. On the other hand, the strong coupling constant

decreases with increasing momentum exchange, while the other two tend to increase. This ef-

fect implies that at low energy scaleαs diverges, making the perturbative theory not applicable.

As a consequence of theαs behaviour, quarks and gluons tend to be free at very small distances

(high energies), which is a property known as asymptotic freedom. At the same time, thanks to

the very high value of the coupling constant at low energies, colour-charged particles can not

be observed isolated. This property is called colour confinement.

1.1.6 Quark mixing and the CKM matrix

The concept of quark mixing was first introduced by N. Cabibbo [20] in the framework de-

veloped by M. Gell-Mann [21], which was based on the existence of three quarks: up, down and

strange. The main idea is that the mass eigenstates of quarks do not necessarily overlap with in-

teraction eigenstates, therefore the weak charged current, (mediated by the W ± bosons) could

be expressed as a function of a mixing parameter θc , called the Cabibbo angle. However, such

theory predicted the existence of strangeness changing neutral currents, which would make the

K → µ+µ− process as probable as K + → µ+ν, in open contrast with experimental results. The

solution to this issue was provided by S. L. Glashow, J. Iliopoulos and L. Maiani [22], who de-

veloped the so called Glashow-Iliopoulos-Maiani (GIM) mechanism, predicting the existence

of a fourth quark, named charm. Such a quark was then discovered, with the observation of the

J/ψ: a cc̄ bound state [23, 24]. The GIM mechanism describes quark mixing as follows:

d ′

s′

=
 cosθc sinθc

−sinθc cosθc

d

s

 , (1.30)

where the weak interaction eigenstates are on the left and on the right the Cabibbo matrix and

the mass eigenstates; the value of the Cabibbo angle is sinθc ∼ 0.225.

The remaining two quarks were predicted by M. Kobayashi and T. Maskawa, who noticed that

in order to explain the CP violation found in neutral K meson decays [25], at least three quark

doublets (six quark fields) are needed [26].

The quark mixing is described with the 3×3 unitary Cabibbo–Kobayashi–Maskawa (CKM) mat-

rix: 
d ′

s′

b′

=


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vt s Vtb




d

s

b

 , (1.31)

where CP violation is parametrised with an irreducible complex phase and the probability of a

transition from a quark i to a quark j is proportional to |Vi j |2.

Experimental observations show that the elements on the diagonal of the CKM matrix (cor-

responding to transitions within the same quark generation) are O (1), with decreasing values

while getting further away from the diagonal. The hierarchy of the quarks couplings is manifest
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in the Wolfenstein parameterisation [27] of the CKM matrix:

VC K M =


1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1−ρ− iη) −Aλ2 1

+O (λ4), (1.32)

with λ=Vus = sinθc .

The latest estimates for the magnitudes of the CKM matrix elements are evaluated with a fit on

several measurements [11, 28]:

VC K M =


0.97446±0.00010 0.22452±0.00044 0.00365±0.00012

0.22438±0.00044 0.97359+0.00010
+0.00011 0.04214±0.00076

0.00896+0.00024
−0.00023 0.04133±0.00074 0.999105±0.000032

 . (1.33)

Unlike charged currents, weak neutral currents do not allow any flavour mixing. For this reason

Flavour-Changing-Neutral-Current (FCNC) are not present in the SM: only higher order Feyn-

man diagrams can show such effects, which are therefore predicted to be highly suppressed.

1.2 Limitations of the Standard Model

The SM has been extensively tested and validated during the last 50 years [11, 29] but despite

its major success, there are still some fundamental questions that have no answer.

The following subsections provide an overview of the most known issues of the SM

The hierarchy problem

One of the problems of the SM is strictly connected to the mass of the Higgs boson [30].

According to the theory, the mass of the Higgs boson can be evaluated as m2
H = m2

H0
+δm2

H ,

where m2
H0

is the so-called bare mass, which is the free mass parameter in the Lagrangian,

while δm2
H is due to radiative corrections, which depend on the couplings of the Higgs to all

the other particles. The presence of fermion loops in the Higgs propagator, such as the one

shown in figure 1.2, makes the δm2
H term become extremely large. For a fermion f with Yukawa

Figure 1.2: One-loop self-energy correction to the Higgs mass due to a fermion f .

coupling λ f , the size of this correction is

δm2
H | f =−|λ f |

8π2 Λ
2
UV + .... (1.34)
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where ΛUV is the ultraviolet momentum cut-off, chosen to be at the Planck scale (∼ 1018 GeV).

The correction to the Higgs mass is therefore about 30 order of magnitude higher than the

actual Higgs mass of ∼ 125 GeV.

The huge difference in scale between the Higgs boson mass and the Planck scale is known as the

Higgs hierarchy problem. In the SM framework, this issue is solved by fine-tuning the bare mass

parameter so that it cancels the large radiative corrections. This procedure is not forbidden,

but it is in open contrast with the argument of naturalness. According to this principle, the

existence of these fine cancellations can only be justified with a specific feature of the theory.

Dark matter

Dark matter is a hypothetical form of matter which does not interact via the electromagnetic

interaction, but has a substantial gravitational effect. Its presence is implied in several astro-

physical observations, which show effects that can not be explained by accepted theories of

gravity unless more matter, than can not be seen, is present [31]. Among the main arguments

supporting the existence of dark matter one of the most compelling is based on the observa-

tion of the rotation curves of galaxies [32], where the velocity of the stars as a function of the

distance from the centre of the galaxy is not compatible with the amount and distribution of

visible matter present in the galaxy. Furthermore, the decomposition of the anisotropies of

the Cosmic Microwave Background (CMB), measured by WMAP [33] and Planck [34], into an

angular power spectrum, clearly shows a peak that relates directly to the density of dark matter.

Neutrino mass

Neutrino physics measurements performed by the Super-Kamiokande collaboration [35] and

the SNO collaboration [36] gave unambiguous evidence of neutrino lepton flavour oscillations.

This process is only possible if neutrinos have mass, in open disagreement with the SM, which

implies massless neutrinos and and lepton flavour universality.

CP violation

The only source of CP violation in the SM is the complex phase in the CKM matrix, discussed

in section 1.1.6. The imbalance in matter and anti-matter in the universe can not be explained

only with this CP violation source [37], therefore additional CP violation sources are expected

to appear in new physics scenarios.

Particular interest is devoted to the search for CP violation in strong interactions, QCD in fact

does not explicitly forbid it. However, no strong CP violation effect has ever been observed.
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1.3 Dimuon B decays

The work developed in this thesis is centred on the search for the rare decays of B 0
s and B 0

d

mesons into two muons. This section is therefore dedicated to the theoretical calculation of

the branching fraction of these decays and motivates their experimental search.

The neutral B 0
s and B 0

d mesons are composed of a b̄ quark and, respectively, a s and d quarks

as valence quarks; their properties are summarised in table 1.3. Although extremely rare in the

SM, the decays of these mesons to two muons (B 0
s → µ+ µ− and B 0

d → µ+ µ−) are considered

interesting from an experimental point of view, as they can provide insights on the potential

presence of BSM physics and its scale. The probability of these decays to happen is of the order

of ∼ 10−9 and ∼ 10−10 respectively. Such heavy suppression comes from three sources.

Table 1.3: Summary of the properties of the B0
s and B0

d mesons [11].

Name Mass (GeV) Electric charge Valence quarks

B 0
s 5.367 0 b̄s

B 0
d 5.280 0 b̄d

The first source of suppression is due to the quark composition of the two mesons. The dimuon

decay of B 0
s and B 0

d can proceed at the lowest level in the SM through higher order electroweak

interactions, since tree-level processes would require b → s and b → d transitions mediated

by Flavour-Changing-Neutral-Currents (FCNCs) (not foreseen in the SM, as discussed in sec-

tion 1.1.6). Since they are forbidden at tree-level, the decays proceed via more complex Feyn-

man diagrams, such as W -boxes and Z -penguins, as shown in figure 1.3. Higgs-mediated pen-

�B
0
s

W−

u, c, t

W+

νµ

s

b̄

µ−

µ+

(a) B0
s → µ+ µ− box diagram.

�B
0
s

u, c, t

W

ū, c̄, t̄

Z0

s

b̄

µ+

µ−

(b) B0
s → µ+ µ− penguin diagram.

Figure 1.3: Dominant Feynman diagrams for the B0
s → µ+ µ− decay. The B0

d → µ+ µ− decay has the same dia-
grams, but instead of a s quark in the initial state it presents a d quark.

guins are also possible, but their contribution is negligible [38]. Due to the lack of tree-level

Feynman diagrams, the B 0
(s) → µ+ µ− processes are suppressed with respect to other B 0

(s) de-

cays which can occur at tree-level.

The second source of suppression of the B 0
(s) → µ+ µ− decays is due to the coupling strength
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of the weak interaction to different quark flavours. The coupling strengths are described in the

CKM matrix, introduced in section 1.1.6. Figure 1.3 shows that the internal quarks lines in the

processes have contributions from u, c and t quarks; however, the u and c contributions are

basically negligible compared to t contributions. Since a t − s transition couples quarks from

the second and third generations, it is less suppressed compared to a t −d transition, which

couples quarks from the first and third generation. A relative CKM suppression is therefore the

reason why B 0
d → µ+ µ− decays are more suppressed than B 0

s → µ+ µ− decays, even though

the kinematics of the two decays are basically the same.

The third source of suppression comes from helicity effects. Both B 0
s and B 0

d are pseudoscalar

mesons ( j P = 0−), therefore, the spins of the two muons must be oppositely aligned in order

to conserve the angular momentum in the decay. This leads to the muons having opposite

helicities. On the other hand, the weak interaction only couples to particles with a left-handed

chirality. In the limit of massless particles, negative helicity states correspond to left-handed

chirality states and positive helicity states correspond to right-handed chirality states, making

the B 0
(s) → µ+ µ− decays impossible. Since muons are not massless, the decay is not completely

forbidden, but heavily suppressed, as the muon mass is much smaller than the B mass, making

one of the helicity states highly disfavoured.

The following sub-sections provide the model-independent calculation of the B 0
(s) → µ+ µ−

branching fractions (sub-sections 1.3.2 and 1.3.3) and the corresponding value in the SM (sub-

section 1.3.3).

1.3.1 Branching fraction and B mixing

The branching fraction (B) of a particle decay is defined as the probability of a such decay

to occur. Alternatively, it can also be considered as the relative frequency of the decay. The

definition of the branching fractions for the B 0
s → µ+ µ− and B 0

d → µ+ µ− decays presents an

additional difficulty with respect to other decays, due to the properties of the B 0
(s) mesons.

Neutral B mesons are produced as flavour eigenstates B 0
(s) - ¯B 0

(s), which are described at t = 0 by

the states |B 0
(s)〉 and | ¯B 0

(s)〉. Due to quark mixing (section 1.1.6), these flavour states do not cor-

respond to the mass eigenstates in which the B 0
(s) meson evolve and propagate. The time evol-

ution of the flavour eigenstates is described by the time-dependent Schrödinger equation [9],

where only B 0
s mesons are considered in order to simplify the notation, as [39]:

i
d

d t

(
|B 0

s 〉
|B̄ 0

s 〉

)
=

(
M− iΓ

2

)(
|B 0

s 〉
|B̄ 0

s 〉

)
, (1.35)

where M and Γ are hermitian matrices which describe the mass and decay time. The presence

of non zero off-diagonal elements in such matrices ensures that for any t > 0 the particles are

a superposition of the |B 0
s 〉 and |B̄ 0

s 〉 states. The eigenstates of the time-dependent Schrödinger

equation have different masses and lifetimes with respect to the flavour eigenstates and are

known as the heavy |BH 〉 and light |BL〉 mass eigenstates.

The LHC experiments can only measure the time-integrated B 0
(s) → µ+ µ− branching fractions
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without considering the flavour eigenstate of the B mesons, which corresponds to [40]

B(B 0
q →µ+µ−)exp = 1

2

∫ ∞

0

(
Γ(B 0

q (t ) →µ+µ−)+Γ(B
0
q (t ) →µ+µ−)

)
d t

= 1

2

∫ ∞

0
〈Γ(B 0

q (t ) →µ+µ−)〉d t ,
(1.36)

where 〈Γ(B 0
q (t ) → µ+µ−)〉 is the time-dependent and un-tagged (without considering the fla-

vour) decay rate.

On the other hand, the classical theoretical computation of the two branching fractions yields

the CP averaged decay rates without considering the time evolution of B mesons [40]:

B(B 0
q →µ+µ−)theo =

τBq

2
〈Γ(B 0

q (t ) →µ+µ−)〉|t=0, (1.37)

where τBq is the mean lifetime of the Bq meson.

The time-dependent un-tagged decay rate, introduced in equation 1.36, can be written in terms

of the decay rate of the two mass eigenstates, which have well-defined lifetimes [39]:

〈Γ(B 0
q (t ) →µ+µ−)〉 = Rµ+µ−

H e−Γ
q
H t +Rµ+µ−

L e−Γ
q
L t , (1.38)

where the H and L sub-scripts refer to the heavy and light mass eigenstates and Rµ+µ−

H and

Rµ+µ−

L are the respective decay rates into two muons.

The difference in the decay widths of the light and heavy mass eigenstates is usually reported

as

yq = Γ
q
L −Γq

H

2Γq
= ∆Γq

2Γq
with Γq = τ−1

Bq
= Γ

q
L +Γq

H

2
. (1.39)

The measured magnitude of yq for B 0
d mesons (yd ) is smaller than 1%, while for the B 0

s − B̄ 0
s

system the measured value is [11, 28]

ys = 0.0645±0.0045. (1.40)

Using the definition of yq , equation 1.38 can be re-written as [40]:

〈Γ(B 0
q (t ) →µ+µ−)〉 = (Rµ+µ−

H +Rµ+µ−

L )e−Γq t

cosh

(
yq t

τBq

)
+A

µ+µ−

∆Γ sinh

(
yq t

τBq

) , (1.41)

with

A
µ+µ−

∆Γ = Rµ+µ−

H −Rµ+µ−

L

Rµ+µ−
H +Rµ+µ−

L

. (1.42)

Using this definition, the experimentally measurable branching ratio shown in equation 1.36

can be converted into the CP averaged time-independent branching fraction (equation 1.37)

through

B(B 0
q →µ+µ−)theo =

 1− y2
q

1+ yqA
µ+µ−
∆Γ

B(B 0
q →µ+µ−)exp. (1.43)

For yq ∼ 0 the two definitions coincide. This is basically realised in the B 0
d → µ+ µ− process,

but the difference is sizeable for B 0
s → µ+ µ−.

According to the SM A
µ+µ−

∆Γ takes the maximum value of +1, meaning that only the heavy mass
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eigenstate contributes to the B 0
s → µ+ µ− process. This can be understood because the dimuon

final state is a CP odd state and the B 0
s heavy mass eigenstate is CP odd. However, possible new

physics effects can modify A
µ+µ−

∆Γ . These effects can be experimentally quantified by measuring

the B 0
s → µ+ µ− effective lifetime and can result in a modification of the branching fraction up

to O (10%) [40]

1.3.2 Branching fractions computation

This sub-section provides an overview of the computation of the model-independent B 0
(s) → µ+ µ−

branching fractions. A more detailed discussion can be found in Refs. [41–48].

As shown in the previous section, the branching fraction of the B 0
(s) → µ+ µ− processes can be

expressed in terms of the instantaneous un-tagged decay rate. This quantity, in turn, is given

by Fermi’s golden rule [49]:

Γ(B 0
q (t ) →µ+µ−)|t=0 = 1

16πmB 0
(s)

√√√√√1−4

 mµ

mB 0
(s)

2

|M (B 0
(s) → µ+ µ−)|2 (1.44)

where mµ is the mass of the muon, mB 0
(s)

is the mass of the B meson of interest and M (B 0
(s) → µ+ µ−)

is the matrix element which describes the transition processes responsible for the decays. Un-

like electroweak interactions, where the small coupling constants allow perturbative calcula-

tions at arbitrary energy scales, the strong interaction makes the computation of the matrix

element complicated: as introduced in section 1.1.5, the strong coupling constant tends to di-

verge at low energy scales, ruling out the use of perturbation theory.

The approach followed in this case is to separate the high energy contributions from the low

energy contributions. This procedure is referred to as effective approach. For high transferred

momentum the perturbative approach can be used, as the strong coupling constant is small,

while at at low transferred momentum non-perturbative techniques, like Lattice QCD, must be

employed.

The separation is based on a factorisation scale µS . For energy scales lower than µS the effects

of the mediators of the interactions are omitted; the interaction is therefore expressed in terms

of a set of four-prong vertices, which can be interpreted as initial state particles scattering off

static potentials and emerging as final state particles. The presence of the mediators of the in-

teractions is taken into account at the energy scales higher than µS , where perturbation theory

can be employed. Operator Product Expansion (OPE) [50] is used to factorise the contributions

of different interactions between the initial and final state:

M (B 0
(s) → µ+ µ−) =

OPE∑
i

 Ai︸︷︷︸
Perturbative

× ︸ ︷︷ ︸
Non-perturbative“four legs” vertex

 . (1.45)

Effectively, the OPE is a sum over all the possible local operators between the initial and final

state, representing the non-perturbative part, and a set of weights Ai that allow the reproduc-

tion of the QFT effects.
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In a more formal notation, equation 1.45 can be written as:

M (B 0
(s) → µ+ µ−) = 〈µ+µ−|Heff|B 0

(s)〉+O

(
p2

M 2
W

)

' GFp
2

∑
i

V i
CKMCi (µS)×〈µ+µ−|Oi |B 0

(s)〉,
(1.46)

where GF is the Fermi constant for the weak processes, Ci are the coefficients that take into ac-

count the perturbative effects, Oi are the local operators which consider the non-perturbative

effects and V i
CKM are CKM matrix elements. The O (p2/M 2

W ) term represents higher order op-

erators which are basically negligible given the huge difference between the W ± mass and the

typical B 0
(s) momentum scale p.

The Ci coefficients are called Wilson coefficients. They are evaluated by matching the effective

theory to the calculations performed using perturbation theory, more details are given in [51].

Regarding the matrix elements 〈µ+µ−|Oi |B 0
(s)〉, the strong interaction only affects the initial

state of the B 0
(s) → µ+ µ− processes, as the final state is fully leptonic; it is therefore possible to

decouple, from the point of view of the strong interaction, the final state from the initial state.

The four-prong matrix element can be therefore factorised as:

〈µ+µ−|Oi |B 0
(s)〉 = 〈µ+µ−|O l l

i |0〉︸ ︷︷ ︸
Leptonic matrix element

× 〈0|O qq
i |B 0

(s)〉︸ ︷︷ ︸
Hadronic matrix element

, (1.47)

where all the strong interaction effects are embedded in the hadronic term.

The O
qq
i and O l l

i operators are classified according to their transformations as scalar (1, indic-

ated with S), pseudo-scalar (γ5, indicated with P), vector (γµ, indicated with V), axial-vector

(γµγ5, indicated with A) and tensor (γµγν−γνγµ, indicated with T).

Several possible combinations of operators, expressed as O =O l l ⊗O qq , are therefore available.

The Lorentz invariance requirement allows one to narrow down all the available combinations

to the following four:

Sl l ⊗P qq , P l l ⊗P qq ,V l l ⊗ Aqq , Al l ⊗ Aqq . (1.48)

These combinations present only two operators for the hadronic component, which account

for the strong interaction effects in the initial state. The resulting two hadronic matrix elements

can be expressed in terms of a constant term fB 0
(s)

called the decay constant, which encloses

all the initial state non-perturbative effects due to the strong interaction; its can be evaluated

using Lattice QCD. The two hadronic term are evaluated as follows [52]:

• axial-vector term (Aqq )

〈0|Aqq |B 0
(s)〉 =±i fB 0

(s)
pB
µ , (1.49)

where pB
µ is the four momentum of the B 0

(s) meson;

• pseudo-scalar term (P qq )

〈0|P qq |B 0
(s)〉 =∓

i m2
B 0

(s)

mb +mq
fB 0

(s)
, (1.50)
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where mb and mq are the masses of the b quark and the of other quark in the B meson

(d or s).

Among the four possible combinations of operators shown in formula 1.48, one contains a

vector operator for the leptonic term (V l l ⊗ Aqq ). It can be expressed as

〈µ+µ−|V l l |0〉×〈0|Aqq |B 0
(s)〉 =±〈µ+µ−|V l l |0〉i fB 0

(s)
pµ, (1.51)

and vanishes, due to the Ward identity [46]. In the SM, the presence of a vector current implies

that the process is mediated by a photon; the fact that this term vanishes is the reason why the

B 0
(s) → µ+ µ− penguin diagram in figure 1.3(b) does not include the photon counterpart.

Finally the three operator combinations which have not been excluded, divided into the left-

and right- handed chirality states of the quarks, are:

Sl l ⊗P qq

P l l ⊗P qq

Al l ⊗ Aqq

=⇒
=⇒
=⇒

OL
S = (µµ)(bPL q),

OL
P = (µγ5µ)(bPL q),

OL
10 = (µγµγ5µ)(bγµPR q),

OR
S = (µµ)(bPR q)

OR
P = (µγ5µ)(bPR q)

OR
10 = (µγµγ5µ)(bγµPL q),

(1.52)

Where q = b, s. These operators can now be introduced in equation 1.46, obtaining:

M (B 0
(s) → µ+ µ−) = GFp

2
V †

t qVtb

S,P,10∑
i

(
C L

i (µS)OL
i +C R

i (µS)OR
i

)
, (1.53)

where q = b, s and only the contributions of the t quark to loops are considered, as the con-

tributions from other up-type quarks are negligible. For this reason, the CKM matrix elements

relative to the b − t and t −q vertices are explicitly shown.

Finally, the model-independent experimental branching fraction of the B 0
(s) → µ+ µ− decays

can be expressed taking the connection between the experimental and theoretical definitions

of the branching fractions from equation 1.43, the theoretical definitions of the branching frac-

tions from equation 1.37, Fermi’s golden rule from equation 1.44 and the matrix element cal-

culated using the OPE from equation 1.53. The resulting formula is [53]

B(B 0
(s) → µ+ µ−)exp =

τB 0
(s)

G4
F M 4

W sin4θW

8π5 |C SM
10 V †

t qVtb |2 f 2
B 0

(s)
mB 0

(s)
m2
µ

1+ yqA
µ+µ−

∆Γ

1− y2
q

√√√√√1−4

 mµ

mB 0
(s)

2

(|P |2 +|S|2),

(1.54)

where P and S are defined as

P = |P |e iϕP = C R
10 −C L

10

C SM
10

+
m2

B 0
(s)

2mµ

(
mb

mb +m(d ,s)

)(
C R

P −C L
P

C SM
10

)
,

S = |S|e iϕS =

√√√√√1−4

 mµ

mB 0
(s)

2 m2
B 0

(s)

2mµ

(
mb

mb +m(d ,s)

)C R
S −C L

S

C SM
10

 ,

(1.55)

with C R
10,C L

10 and C SM
10 dimensionless and C R

P ,C L
P ,C R

S and C L
P with dimension GeV−1.
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1.3.3 The SM branching fractions

In the SM the only non-negligible contributions in the evaluation of the branching fractions

of the B 0
(s) → µ+ µ− decays come from the axial-vector operator OR

10 from equation 1.52. The

scalar (OS) and pseudo-scalar (OP ) contributions are in fact absent, with the only exception

of the Higgs penguin process, which is however negligible due to the small coupling of the

Higgs boson with muons. For this reason the C R
P ,C L

P ,C R
S ,C L

P ,C L
10 terms in equation 1.55 vanish,

leaving PSM = 1 and SSM = 0. Equation 1.54 therefore becomes

B(B 0
(s) → µ+ µ−)SM

exp =
τB 0

(s)
G4

F M 4
W sin4θW

8π5

f 2
B 0

(s)
mB 0

(s)
m2
µ

1− yq
|C SM

10 V †
t qVtb |2

√√√√√1−4

 mµ

mB 0
(s)

2

. (1.56)

Where A
µ+µ−

∆Γ =+1, As introduced in section 1.3.1. The SM B(B 0
(s) → µ+ µ−) reference values

considered throughout this thesis are [54]

B(B 0
s → µ+ µ−)SM

exp = (3.65±0.23)×10−9 (1.57)

B(B 0
d → µ+ µ−)SM

exp = (1.06±0.09)×10−10. (1.58)

The largest uncertainties affecting the values in equations 1.57 and 1.58 originate from the

CKM coefficients and the decay constants, as shown in table 1.4. A more recent calculation

Table 1.4: Summary of the main uncertainties affecting the calculation of B(B0
(s) → µ+ µ−) in the SM [54].

CKM [%] fB 0
(s)

[%] Other sources [%] Total [%]

B(B 0
s → µ+ µ−) 4.3 4.0 2.3 6.3

B(B 0
d → µ+ µ−) 6.9 4.5 2.0 4.8

of B(B 0
s → µ+ µ−), performed considering improved electromagnetic corrections, yields [55]

B(B 0
s → µ+ µ−) = (3.57±0.17)×10−9, (1.59)

showing a slightly lower value of the B 0
s → µ+ µ− branching fraction together with a smaller

uncertainty. In order to be consistent with the approach followed in the studies described, only

the values reported in equations 1.57 and 1.58 will be employed throughout this thesis.

1.4 New physics and B 0
(s) → µ+ µ−

There are a large number of BSM theories that predict some influence on the B 0
(s) → µ+ µ−

processes, figure 1.4 shows the effect of some of these. For this reason, the experimental search

for these decays is considered a milestone in the indirect search for new physics. This section

provides an overview of the most known models that can influence B 0
(s) → µ+ µ− decays. A

detailed discussion on possible BSM models and their effects on the B 0
(s) → µ+ µ− decays is

given in Refs. [48, 53, 61, 62].
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Figure 1.4: Possible values of B(B0
(s) → µ+ µ−) due to different models in the B(B0

s → µ+ µ−) - B(B0
d → µ+ µ−)

plane. The SM prediction is shown as a star. The BSM models shown are MFV [56], four MSSM [57]
and the SM4 model [58]. The grey regions shows the upper limit posed by the CDF experiment on
B(B0

s → µ+ µ−) [59] before the results from the LHC experiments. Picture from [60].

One of the most popular models is called Minimal Flavour Violation (MFV) [56]. In this model

the additional flavour structure and the operators that contribute to B 0
(s) → µ+ µ− decays are

assumed to be SM-like; new physics effects can arise in the C R
10 coefficient. Similar models

introduce an additional CP violating phase, which can provoke changes in A
µ+µ−

∆Γ . For these

models the expected effect on B(B 0
(s) → µ+ µ−) is small. For example, the Littlest Higgs Model

with T-Parity (LHT) [63] predicts an enhancement of B(B 0
s → µ+ µ−) of at most 30%.

Other BSM models predict the existence of new particles which could affect B(B 0
(s) → µ+ µ−)

and A
µ+µ−

∆Γ because of their contribution in the Feynman diagrams involved in the decay. These

new particles can appear in loops, similar to the ones shown in figure 1.3, or can allow FCNC

at tree level. The most known theories which imply the introduction of new particles are two

Higgs doublet models (2HDMs) [64], supersymmetric models [57] and leptoquark models [65].

The 2HDMs model implies a modification of the SM Higgs sector by introducing two complex

scalar fields, both with non-zero VEVs. The effect of spontaneous symmetry breaking implies

the production of two charged scalar, two neutral scalar and one pseudoscalar Higgs. All these

new particles can enter the B 0
(s) → µ+ µ− loops or allow FCNC at tree level. Depending on

the property of the particles allowed to interfere in the SM Feynman diagrams the values of the

Wilson coefficients in equation 1.54 can be modified, with possible large effects on the branch-

ing fractions.

Supersymmetric models (SUSY) introduce an additional symmetry, which gives each SM particle

a supersymmetric partner. Since no evidence of SUSY has been found, the symmetry must be

broken and the mass of the supersymmetric partners has to be higher than the SM particles and

possibly not reachable by the current accelerators. Nevertheless, these new particles might

affect B 0
(s) → µ+ µ− decays, appearing in loops or at tree level. Some of the most studied

SUSY models are called Minimal Supersymmetric Standard Model (MSSM) which modify the

SM Higgs sector in a similar way as 2HDM. The overall effect of MSSM models can modify S, P ,
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S ±P and A
µ+µ−

∆Γ .

Leptoquark models are currently popular as they can explain some anomalies observed in

heavy flavour measurements, in particular the ones regarding lepton flavour universality [66–

68]. Leptoquarks are additional bosons which carry both leptonic and baryonic quantum num-

ber and therefore can imply FCNC at tree-level in B 0
(s) → µ+ µ− processes. Their exact proper-

ties depend on how they couple to SM particles.

BSM effects have not been observed yet in B 0
(s) → µ+ µ− processes, but, as shown in the next

section, the current experimental precision leaves plenty of room for them. The Run 2 and fu-

ture runs of the LHC will allow us to study these decays with unprecedented precision, given

the size of the datasets collected, and to pose increasingly stringent limits on BSM physics.

1.5 Experimental state of the art

The history of the B 0
(s) → µ+ µ− branching fraction measurements, up to the beginning of 2018,

is shown in figure 1.5. The latest measurements, excluding the ATLAS results discussed later in

Figure 1.5: History of the limits and measurements of the B0
(s) → µ+ µ− branching fractions across the years [69].

this thesis, come from the ATLAS, CMS and LHCb experiments, which collect pp collisions data

at the LHC.

The CMS and LHCb collaborations combined their analysis performed on the data collec-

ted during the LHC “Run 1” data taking period (2011-2012) [70], respectively 25 fb−1 [71] and

3.0 fb−1 [72], leading to the first observation of the B 0
s → µ+ µ− decay. The resulting branching
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fraction has significance of 6.2σ and is compatible with the SM prediction [54]:

B(B 0
s → µ+ µ−) = (2.8+0.7

−0.6)×10−9 (1.60)

An evidence for the B 0
s → µ+ µ− decay was also reported with a statistical significance of 3.2σ:

B(B 0
d → µ+ µ−) = (3.9+1.6

−1.4)×10−10. (1.61)

Later also the ATLAS collaboration published the analysis performed on the Run 1 dataset

(25 fb−1) [73] (more details are provided in appendix A) leading to:

B(B 0
s → µ+ µ−) = (0.9+1.1

−0.8)×10−9

B(B 0
d → µ+ µ−) < 4.2×10−10 at 95% CL.

(1.62)

The LHCb collaboration published also a result combining Run 1 data with the data collected

in the first part of the LHC Run2 data taking period, for a total combined integrated luminosity

of 4.4 fb−1 [74]. The result of the analysis is compatible with the SM prediction and represents

the first observation of the B 0
s → µ+ µ− decay in a single experiment, having a significance of

7.8 σ:

B(B 0
s → µ+ µ−) = (3.0±0.6+0.3

−0.2)×10−9 (1.63)

as well as the most stringent upper limit on B(B 0
d → µ+ µ−) available prior to the result dis-

cussed in this thesis:

B(B 0
d → µ+ µ−) < 3.4×10−10 at 95% CL. (1.64)

The first uncertainty reported for the B 0
s → µ+ µ− branching fraction is statistical and the

second systematic.

The two-dimensional likelihood contours in the B(B 0
s → µ+ µ−) – B(B 0

d → µ+ µ−) space

obtained from the three analysis described above are shown in figure 1.6, where figure 1.6(a)

shows the ATLAS contours in blue and the CMS+LHCb contours in grey and figure 1.6(b) shows
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Figure 1.6: Two-dimensional likelihood contours in the B(B0
s → µ+ µ−)-B(B0

d → µ+ µ−) space obtained from the
three analysis described in the text. Figure 1.6(a) [73] shows the ATLAS Run 1 contours [73] in blue and
the Run 1 combined CMS+LHCb contours [70] in grey. Figure 1.6(b) shows the LHCb Run 2 contours [74].
Both pictures also include the SM theoretical prediction and its uncertainty [54].

the LHCb Run 2 contours.
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Comparing the various results in figure 1.5 and in the contour plots shown above, it appears

that the B 0
(s) → µ+ µ− analyses performed by the three LHC experiments are characterised

by different sensitivities, as the various confidence intervals show different behaviours. The

experiment with the highest sensitivity, therefore the most precise results, is LHCb, which

was designed specifically to perform flavour physics searches at the LHC. The experiment, in

fact, presents extremely good tracking and vertexing properties, the possibility of performing

particle identification and a lower threshold on the muon transverse momentum acceptance

with respect to the other LHC experiments. The two general-purpose experiments, ATLAS and

CMS, present therefore a lower sensitivity with respect to LHCb, but, when comparing the two,

it seems that the CMS sensitivity is higher than the ATLAS one. This feature will be investigated

in this thesis (section 13.2 in chapter 13), showing that the main reason for the higher CMS

sensitivity is the different dimuon mass resolution of the two experiments.

Even if all the results presented are consistent with the SM prediction, there are disagreements

between the analysis results of the various experiments. The ATLAS B(B 0
s → µ+ µ−) Run 1

result is lower compared to the CMS+LHCb combination and the latest LHCb result. Regarding

B(B 0
d → µ+ µ−), the evidence obtained in the CMS+LHCb combination yields a branching

fraction higher compared to the upper limits from both ATLAS and LHCb.

In order to solve these disagreements, new measurements are needed; thanks to the increased

size of the datasets collected by the three LHC experiments, improved uncertainties are expec-

ted. Additionally, since the analyses presented are highly statistically limited with uncertainties

much larger than the theoretical uncertainty on the SM prediction, there is a lot of room for im-

provements in the precision of the results.



2EXPERIMENTAL APPARATUS

The work developed in this thesis focuses on a physics analysis performed on pp collision data,

delivered by the CERN Large Hadron Collider (LHC) at a centre of mass energy of
p

s = 13 TeV

during 2015 and 2016, and collected by the ATLAS experiment. The author also had a leading

role in the development of physics projections regarding the HL-LHC upgrade.

In this chapter the LHC apparatus and the ATLAS experiment are described, respectively in

sections 2.1 and 2.2. An overview of the HL-LHC upgrade of the LHC accelerator is presented

in section 2.3.

Rather than an exhaustive treatment, this chapter will focus on areas and components that are

most relevant to the work discussed in this thesis.

2.1 The LHC

The Large Hadron Collider (LHC) [75], built between 1998 and 2008 at the European Organ-

ization for Nuclear Research (CERN) laboratories, is, as of today, the world’s biggest and most

powerful accelerator. It lies in an underground tunnel, at a depth ranging from 50 to 175 metres,

beneath the Franco–Swiss border near Geneva. The LHC is composed of a ring about 27 kilo-

metre long that contains two beam pipes, designed to contain two hadron beams which travel

in opposite directions around the accelerator. The beams are guided and collimated by strong

magnetic fields generated by superconducting magnets that surround the beam pipes. 1232

superconducting dipoles, used to bend the beams, and 392 quadrupole magnets, used to focus

the beams, are present. The superconducting magnets are kept at a temperature below 1.7 K,

in order to maintain their superconducting properties, which allow them to produce an aver-

age magnetic field of 8.3 T. Magnets of higher multipole orders are also present are used to to

correct smaller imperfections in the field geometry and in the beams.

The first beam circulated around the LHC in September 2008, but due to an incident that dam-

aged over 50 dipole magnets, the start of the main research programme and the beginning of

the first substantial operational run, called Run 1, only began in November 2009.

In early 2013 Run 1 finished and the two following years, called Long Shutdown 1 (LS1), were

used to upgrade the collider and the experiments. The second operational run, called Run 2,

24
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started in 2015. After about four years of successful operation, Run 2 finished in 2018. Currently

the LHC is not operational, as the accelerator and the experiments are undergoing another up-

grade. The end of this second shutdown, named Long Shutdown 2 (LS2), is foreseen for 2021,

when Run 3, the third operational run, will start.

The following section provides details on the acceleration stages of the beams (section 2.1.1),

while the performance of particle accelerators, and in particular of the LHC, is discussed in

section 2.1.2.

2.1.1 Acceleration stages

Before being injected in the LHC and being accelerated to a maximum possible energy of 6.5

TeV each, the beams are accelerated in various stages by smaller machines, which also provide

beams to other experiments. Figure 2.1 shows a schematic representation of the CERN’s accel-

Figure 2.1: CERN Accelerator complex. The LHC is the last ring (dark grey line) in a complex chain of particle accel-
erators. The smaller machines are used in a chain to help boost the particles to their final energies and
provide beams to a whole set of smaller experiments [76].

erator complex.

Protons, obtained by stripping hydrogen atoms of their electrons, are first accelerated to the

energy of 50 MeV by the Linear Accelerator 2 (Linac2), then injected into the Proton Synchro-

tron Booster (PSB), where they reach 1.4 GeV. The next stages are the Proton Synchrotron and

the Super Proton Synchrotron (SPS), which boost the protons up to respectively 25 GeV and

450 GeV. The protons are finally injected in bunches with a spacing of 25 ns into the LHC beam

pipes, where they are accelerated up to a centre of mass energy of 13 TeV while they travel in
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opposite directions. Once the beams have reached the maximum energy, they are made to col-

lide at four points around the LHC ring.

The LHC is designed to accelerate also ion beams, mainly fully-stripped lead ions (208Pb82+),

for which the acceleration procedure is slightly different. The first acceleration steps are the

Linear Accelerator 3 (Linac3) and the Low Energy Ion Ring (LEIR); the ions are then injected in

the Proton Synchrotron after which they follow the same path as the protons.

Located at the four collision points of the LHC, are four main experiments: two multi-purpose

detectors A Toroidal LHC ApparatuS (ATLAS) [77] and Compact Muon Solenoid (CMS) [78],

Large Hadron Collider beauty (LHCb) [79] which specialises in flavour physics and A Large

Ion Collider Experiment (ALICE) [80] which focuses on heavy ions physics. In addition, there

are other smaller experiments located near the four caverns. Large Hadron Collider forward

(LHCf) [81], located at either side of ATLAS, measures neutral particle production, for use in

cosmic rays research. TOTal cross-section, Elastic scattering and diffractive dissociation Meas-

urement (TOTEM) [82], located at either sides of CMS, measures the total elastic and single or

double diffractive cross-section of proton-proton collisions. Monopole and Exotics Detector at

the LHC (MoEDAL) [83], at the LHCb cavern, searches for magnetic monopoles.

2.1.2 Performance of the LHC

The performance of particle colliders can be quantified in terms of the centre of mass energy

of the collisions and the instantaneous luminosity. The centre of mass energy allows one to

estimate the energy available for the production of new phenomena, while the instantaneous

luminosity provides an estimation of the rate of a physics process a collider is able to produce.

The luminosity is defined based on the following formula:

d Nprocess

d t
=L ×σprocess. (2.1)

Basically, the rate of physics processes depends on the physical properties of the process, en-

closed in the cross-section term σprocess, and on the features of the accelerator, encapsulated

in the instantaneous luminosity L . From equation 2.1 follows that the unit of measurement

the instantaneous luminosity is cm−2s−1, often written as b−1s−1, using the barn unit of meas-

urement (1 b = 10−24cm2, therefore 1034cm−2s−1 = 1pb−1s−1).

The luminosity can be calculated using the properties of an accelerator, using the following

formula [84]:

L = N1N2 frevnb

4πσxσy
, (2.2)

where N1andN2 are the number of particles per colliding bunch, nb is the number of bunches

per beam, frev is the revolution frequency andσx andσy are the horizontal and vertical dimen-

sion of the beams, assuming the same Gaussian profile for both beams.

Formula 2.2 assumes ideal head-on collisions of bunches where the particle densities in the

three dimensions are uncorrelated; in practice, additional effects need to be taken into ac-

count. Such effects include the beams crossing angle, the collision offset and non-Gaussian

beam profiles.
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The integral over the data taking time of the instantaneous luminosity is the so-called integ-

rated luminosity:

Lint =
∫ T

0
L (t ′)d t ′, (2.3)

which provides an estimation of the total number of processes produced:

Lint ×σprocess = Nprocess. (2.4)

This estimation refers only to the total number of physics processes produced and it does not

include any effect due to their experimental detection. In order to estimate the number of

processes that can be observed in an actual detector, several other effects must be taken into

account, such as the acceptance and efficiency of the detector and the dead-time.

The design centre of mass energy and instantaneous luminosity of the LHC are
p

s = 14 TeV

and L = 1.0× 1034cm−2s−1 [85], while for lead-lead collisions at a centre of mass energy of
p

sN N = 5.02 TeV the design luminosity is 1027cm−2s−1 [86].

Due to technical limitations the design energy has not been reached yet: the highest centre of

mass energy in pp collisions reached is
p

s = 8 TeV in Run 1 and
p

s = 13 TeV in Run 2. The

design instantaneous luminosity has been reached and overtaken, with the record instantan-

eous luminosity of L = 2.06×1034cm−2s−1 reached in 2017 [87].

2.2 The ATLAS detector

ATLAS (A Toroidal LHC ApparatuS) [77] is a general-purpose detector located at the CERN’s

“Point 1” cavern, the closest access to the LHC from the CERN Meyrin site.

The detector is designed to run at the highest luminosity provided by the LHC. It measures

about 44 metres in length and 25 metres in diameter, for a weight of about 7000 tons.

The aim of the ATLAS detector is to exploit the high luminosity pp collisions provided by the

LHC to test the SM and search for new physics Beyond the Standard Model; one of the mile-

stones of the ATLAS physics program is the search for the Higgs boson, which was observed in

2012 by both ATLAS and CMS [1, 2].

The ATLAS detector shows the typical design of a general-purpose detector, with a forward-

backward symmetry with respect to the interaction point, defined as the region where the two

proton beams collide and a structure composed of concentric layers, each designed to accom-

plish a specific task.

The detector is divided in two regions, a central region known as barrel and a forward region,

known as end-cap. There are two endcaps, one on either side of the detector.

The overall ATLAS detector layout is shown in figure 2.2. The innermost layer is the Inner De-

tector (ID), which allows high-resolution tracking and vertexing on charged particles. It is im-

mersed in a 2 T field generated by a thin superconducting solenoid. The next layers are the

electromagnetic and hadronic calorimeters, which allow to perform precision measurements

of the energy of photons and electrons, and hadronic jets. The calorimeters are surrounded
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Figure 2.2: Cut-away view of the ATLAS detector. The dimensions of the detector are 25 m in height and 44 m in
length. The overall weight of the detector is approximately 7000 tons. Picture taken from [77].

by the Muon Spectrometer (MS), which is the outermost layer, enclosed in a toroidal magnetic

field; together with the ID it allows precise measurement of momentum and position of muons.

The following sub-section provides an overview of the ATLAS coordinate system, used consist-

ently in all ATLAS publications and in this thesis. The subsequent sub-sections discuss in detail

the various ATLAS sub-detectors and systems.

2.2.1 The ATLAS coordinate system

The nominal interaction point is defined as the origin of the ATLAS coordinate system. The

beam direction defines the z-axis, with the x-y plane transverse to it. The positive x-axis is

defined as pointing from the interaction point to the centre of the LHC ring and the positive

y-axis is defined as pointing upwards.

Given the symmetry of the detector and the pp collisions with respect to the interaction point,

cylindrical coordinates are employed. The polar angle θ is measured from the beam axis, while

the azimuthal angle φ is the angle around the beam axis. The polar angle is often reported in

terms of a quantity known as pseudorapidity (η), defined as

η=− ln
(
tan

(
θ/2

))
, (2.5)

with η = 0 corresponding to the direction perpendicular to the beams and η = ±∞ to the for-

ward regions θ = 0,π. This quantity is extensively used in particle physics instead of the polar

angle θ, as differences in pseudorapidity are Lorentz invariant under boosts along the longit-

udinal axis.
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2.2.2 The magnet system

The ATLAS magnet system, 22 m in diameter and 26 m in length, is composed of four large

superconducting magnets. They generate the magnetic field needed to bend the trajectory of

charged particles in order to perform momentum measurements. The four components are a

central solenoid, a barrel toroid and two end-cap toroids. Figures 2.3(a) and 2.3(b) show the

geometry of the magnet system and its components. The central solenoid is located between

(a) Geometry of magnet windings and tile calorimeter
steel. The eight barrel toroid coils, with the end-cap
coils interleaved are visible. The solenoid winding lies
inside the calorimeter volume. Picture taken from [77].

(b) Schematic view of the layout of the four supercon-
ducting spectrometer magnets. Picture taken from [88].

Figure 2.3: The ATLAS magnet system.

the ID and the electromagnetic calorimeter aligned to the beam axis, and has an axial length

of 5.8 m, an inner diameter of 2.46 m and an outer diameter of 2.56 m. It provides a 2 T field

parallel to the beam axis able to bend the charged particles that go through the ID in the φ dir-

ection, allowing an accurate momentum measurement up to 100 GeV [88].

The toroid system, used for the measurement of the momentum of muons, is composed of a

barrel and two end-cap toroids and surrounds the calorimeters. The barrel toroid is composed

of eight coils with a length of 25.3 m and inner and outer diameters of 9.4 m and 20.1 m respect-

ively. It provides a toroidal magnetic field of approximately 0.5 T to the central muon detector.

The end-cap toroids, also composed of eight coils each, produce a 1 T toroidal magnetic field

for the end-cap regions of the muon spectrometer. They have a length of 5.0 m, an inner dia-

meter of 1.65 m and an outer diameter of 10.7 m. The toroids allow the deflection of charged

particles that cross the muon spectrometer in the η direction.

The magnet system composed of both solenoids and toroids is one of the main differences

between ATLAS and CMS, which employs a single solenoid magnet [89]. The usage of the

toroids allows the generation of a magnetic field over a large volume, for a reduced material

budget. This approach helps to minimise the multiple scattering probability for muons cross-

ing the magnets, which is one of the limiting factors of the muon momentum resolution.
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2.2.3 The Inner Detector

The ATLAS ID [90] is the innermost sub-detector of ATLAS, designed to detect electrically-

charged particles in a high particle flux environment, allowing a precise measurement of their

direction, momentum, and charge. It has a length of 6.2 m, a diameter of 2.1 m and is all im-

mersed in a solenoidal magnetic field of 2 T.

The ID is composed of three independent sub-detectors, shown in figure 2.4. The innermost

Figure 2.4: Diagram of the ATLAS ID and its sub-detectors. Picture taken from [91].

sub-detector is the Silicon Pixel Tracker (Pixel), composed of silicon pixel layers. Its innermost

layer, named Insertable B-Layer (IBL) was added during the LS1. The second sub-detector is

the SemiConductor Tracker (SCT), composed of micro-strip silicon detectors. The outer sub-

system is the Transition Radiation Tracker (TRT), made of several layers of drift tube (also called

straw tube) detectors.

The choice of the usage of three different technologies for the ID is strongly influenced by the

need to keep costs within affordable bounds, as silicon detectors provide high-resolution meas-

urements but are highly expensive. For this reason the TRT employs a more economical tech-

nology, at the cost of a lower resolution.

The combination of the sub-detectors, which are discussed more in detail in the following

paragraphs, allows robust track reconstruction, with accurate impact parameter resolution (∼
20µm) and precise Primary Vertex (PV) and Secondary Vertex (SV) reconstruction for charged

particles (tracks) above 500 MeV and within |η| < 2.5.
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IBL

The IBL [92] is the closest layer to the beam pipe, as shown in figure 2.4. It is composed of 6

million channels and each pixel measures 50 × 250 µm2, for a resolution of 8 × 40 µm2, with a

pseudorapidity coverage of |η| < 2.5.

This layer was added during the LS1 of the LHC (2013/2014) at a distance from the beamline

of about 3.3 cm. Due to the aging of the former innermost layer of the Pixel detector, named

B-layer, the ATLAS detector could suffer efficiency losses in Run 2. Instead of replacing the B-

layer, the IBL was designed as an additional pixel layer, improving the vertexing and the impact

parameter reconstruction.

Pixel

The Pixel detector contains about 80 million semiconductor silicon pixels, with a nominal size

of 50 × 400 µm2 and a resolution of 10 × 115 µm2 [93]. It measures 48.4 cm in diameter and

6.2 m in length, for a pseudo-rapidity coverage of |η| < 2.5. In the barrel region (|η| < 1.7) it is

composed of three concentric layers placed 50.5 mm, 88.5 mm and 122.5 mm respectively from

the beamline. Six disk layers are placed in the end-cap region (1.7 < |η| < 2.5), three per side,

such that a charged particle that crosses the layers will generate at least three hits, where a hit

is defined as the energy deposits in a detection cell.

The Pixel detector, including the IBL, is the ID sub-system with the highest granularity, as it

needed to perform high-precision momentum and vertex measurements in the region close to

the interaction point, where the particle density is extremely large.

SCT

The SCT sub-detector consists of 4088 modules of silicon-strip detectors [94], of which 2112

are arranged in four concentric barrels [95] (|η| < 1.4), ranging from 299 mm to 514 mm from

the beamline, and 1976 are arranged in nine disks per endcap [96] (1.4 < |η| < 2.5). Each SCT

module has two sensor layers and each sensor has 768 strips, so that the precision measure-

ment of the position is performed using four points, one per layer, corresponding to a total of 8

hits in the barrel region. The readout strips are 6.356 cm long with a pitch of 80 µm on 285 µm

thick sensor material, for an intrinsic resolution of 17 µm in the R −φ direction and 580 µ m

in the z direction. Since the SCT is further away from the beam-pipe with respect to the Pixel

detector, it is designed to cope with a reduced particle density, allowing a reduced granularity

of the detector while maintaining a comparable R −φ resolution as the Pixel.

TRT

The outermost sub-detector of the ID is the TRT. It is a gaseous detector, composed of of 4 mm

diameter straw tubes made of a multilayer film reinforced with carbon fibers and containing a

30 µm gold plated tungsten wire in the centre. The straws are filled with several gas admixtures,
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depending on their position in the detector; the most used gas admixture is 70% Xe, 27% CO2

and 3% O2 [97].

As the with other sub-detectors, the TRT is divided into a barrel region [98] (|η| < 1) and an end-

cap region [99] (1 < |η| < 2). The barrel region comprises 105088 144 cm long straws parallel to

the beam axis arranged in 73 layers, while the endcap regions contain each 122880 39 cm long

straws oriented radially in 160 layers. The inner radius of the TRT is 554 mm and its maximum

radius is 1082 mm.

When a charged particle crosses a straw it ionises the gas. The resulting free electrons drift to

the anode wire where they are multiplied in an electric avalanche. Since the electric field in the

tube is known, the distance between the particle trajectory and the anode can be calculated

using the time that electrons take to drift to the wire. The ions resulting from the ionisation

drift towards the walls of the straws, but are not used in the detection of charged particles.

The space between the straws is filled with a material with a different dielectric constants with

respect to the straws. Exploiting the Transition Radiation (TR), soft X-ray photon emitted by a

charged particle when crossing the boundary between materials with different dielectric con-

stants, the TRT is also capable of performing Particle IDentification (PID). The TR photons are

detected in the straw tubes by absorption on xenon atoms and subsequent ionisation. In ATLAS

normally only electrons reach the velocity needed for the TR emission, therefore the detection

of TR photons indicates the presence of an electron.

The TRT has a spatial resolution of 130 µm, much lower than the previous layers, but it allows

an almost continuous tracking, with more than 30 hits per charged particle. The lower resolu-

tion is therefore compensated by the high number of hits and the long lever arm (larger than

half a meter); this adds a significant improvement in the momentum resolution for charged

tracks.

2.2.4 The calorimeters

The ATLAS calorimeter system, which surrounds the solenoid, is composed of two main sub-

detectors: the electromagnetic calorimeter [100, 101] and the hadronic calorimeter [102, 103],

shown in figure 2.5. The two calorimeters are designed to stop and measure the energy of

electrons and photons (electromagnetic calorimeter) and hadrons (hadronic calorimeter). The

calorimetric system covers the full φ range and |η| < 4.9. The inner sub-system is the electro-

magnetic calorimeter, surrounded by the hadronic calorimeter; both detectors are composed

of the barrel section and two symmetric endcaps. The following paragraphs provide an over-

view of the two calorimetric systems.

The electromagnetic calorimeter

The electromagnetic calorimeter is a sampling calorimeter that employs lead-Liquid Argon

(LAr) [101] with accordion-shaped kapton electrodes and lead absorber plates over its full cov-

erage.
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Figure 2.5: Cut-away view of the ATLAS calorimeter system. Picture taken from [77].

The choice of the LAr as the active material was driven by its intrinsic linear response, large

signal yield and resistance to radiation. The accordion-shape of the absorber and electrodes,

oriented in the radial direction, allows a complete coverage avoiding cracks in the azimuthal

direction.

The barrel section is divided in three longitudinal layers, characterised by different depths and

η−φ plane segmentations. The first layer has a fine segmentation, allowing it to perform ac-

curate measurements of the coordinates of the particles that enter the calorimeter. It has a

thickness of 4.3 radiation lengths (X0), much smaller than the second layer, which has a thick-

ness of 16 X0. This layer stops most of the showers and provides additional information on the

shower position. The third layer, 2 X0 thick, has a coarser granularity; it is used to estimate the

leakage of showers beyond the electromagnetic calorimeter.

The total thickness of the electromagnetic calorimeter varies as a function of η: in the barrel

region it ranges between 22 and 33 X0, while in the endcap it ranges between 24 and 38 X0.

The performance of the electromagnetic calorimeter was assessed using electron beams fired

against modules which are the same as the ones present in ATLAS. The resulting energy resol-

ution is [104]:

σ(E)

E
= 10%p

E
⊕ 0.17GeV

E
⊕0.7% (2.6)

with E expressed in GeV. The first term in equation 2.6 is due to the stochastic behaviour of

the showers, the second term is due to electronic noise and the third term is due to non-

uniformities of the calorimeter response. The effect of the last term is independent of the en-

ergy of the showers.
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The hadronic calorimeter

The hadronic calorimeter surrounds the electromagnetic calorimeter. The barrel region, called

the Tile calorimeter [102], is a sampling calorimeter: it uses iron plates as an absorber and

plastic scintillating tiles as the active material. Wavelength-shifting fibers are coupled to the

tiles and are read out by photomultipliers.

The endcap regions use the same principle as the electromagnetic calorimeter, but a different

absorber (copper) and a different geometry. A forward region, the closest possible to the beam,

is covered by a LAr forward calorimeter (FCal) [103]. The choice of different technologies for

the hadronic calorimeter was dictated by the different particles flux and performance require-

ments as a function of the pseudorapidity.

The thickness of the hadronic calorimeter is about 7.4 interaction lengths (λI ) for both the bar-

rel and end-cap regions. Combined with the inner sub-systems of the ATLAS detector, the total

thickness is always at least 10 λI .

The resolution of the hadronic calorimeter is assessed by firing a pion beam against a proto-

type of the electromagnetic and hadronic calorimeters. The resulting resolution for the Tile

calorimeter is [102]:
σ(E)

E
= 52%p

E
⊕ 160GeV

E
⊕3.0% (2.7)

with E expressed in GeV and the three terms are due to the same effects as for the electromag-

netic calorimeter. A similar resolution is obtained also for the forward LAr hadronic calori-

meter.

2.2.5 The Muon Spectrometer

The Muon Spectrometer (MS) [105], sketched in figure 2.6, is the outermost sub-detector of

ATLAS. It surrounds the calorimeters and is used to measure the momentum of muons with

detectors partitioned in fast coarser-precision trigger chambers and higher precision detectors

of slower readout speed. All chambers provide positional information on the muon trajectories,

translated into momentum measurements thanks to the deflection of the three ATLAS toroids.

The chambers are arranged such that particles from the interaction point traverse three meas-

uring layers, with a geometry optimised for optimum momentum resolution.

As with the other ATLAS sub-detectors, the MS is divided in a barrel region (0 < |η| < 1) and two

endcap regions (1 < |η| < 2.7). The barrel region is composed of three cylinders concentric with

the beam axis at radii of about 5, 7.5, and 10 m; the endcap regions are composed of four disks

each, at distances of 7, 10, 14, and 21–23 m from the interaction point. The MS provides almost

complete coverage in the |η| < 2.7 pseudorapidity range, except for an opening in the central

R-φ plane at η= 0, known as “MS crack”, for the passage of cables and services of the rest of the

ATLAS detector.

Monitored Drift Tubes (MDT) chambers provide the precision tracking and momentum meas-

urement for both barrel and endcap, except for the innermost layer of the endcap, where Cathode

Strip Chambers (CSCs) are used. The MS is also equipped with two types of trigger detectors,
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Figure 2.6: Cut-away view of the ATLAS muon system. Picture taken from [77].

the Resistive-Plate Chambers (RPCs) in the barrel region and the Thin-Gap Chambers (TGCs)

in the endcap.

MDT chambers are made of aluminium tubes of 30 mm diameter and 400 µm wall thickness,

with a 50 µm diameter central W–Re wire, surrounded by a non-flammable Ar-CH4-N2 mixture

at a pressure of 3 bar. In order to improve the resolution on the particle position beyond the

single wire limit (80 µm), the MDT chambers are constructed with 2×4 layers of drift tubes for

the inner layer of MDTs and 2×3 layers for the middle and outer MDTs sets. The drift tubes

layers are disposed orthogonally with respect to the beam axis, and they only provide a meas-

urement of the η coordinate, while the measurement of theφ coordinate is provided by the RPC

and TGC chambers.

The CSCs are multiwire proportional chambers with a symmetric cell, with cathode strips po-

sitioned above and below the anode wires. In order to enhance the precision of the measure-

ments, a set of wires is orthogonal and the other is parallel to the beam axis, providing a meas-

urement of the transverse coordinate. The gas used in this case is a non-flammable mixture of

Ar-CO2-CF2.

The RPCs are gaseous detectors, comprised of two parallel resistive plates separated by insulat-

ing spacers. The primary ionisation electrons are multiplied into avalanches by a high, uniform

electric field, and then detected by aluminium strips separated from the plates by an insulat-

ing film. These chambers are mounted in the barrel region, while the endcap is equipped with

TGCs, which are multi-wire proportional chambers. RPCs and the TGCs provide a fast signal,

∼ 15−20 ns, making them ideal for triggering purposes.
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2.2.6 Trigger system

The LHC is designed deliver a bunch crossing every 25 ns at the interaction points, as discussed

in section 2.1. The resulting rate of collisions is much higher than the ATLAS readout and re-

cording capabilities. The purpose of the ATLAS Trigger system [106] is to perform a fast online

selection of the physics events1 and decide whether to record or reject the data from a bunch

crossing, effectively reducing the recording rate from more than 30 MHz to about 1kHz.

Due to the high rate of bunch crossings, the ATLAS trigger system is composed of two levels, so

that the first level performs a fast but coarse decision, and the second level can perform a more

complex decision at lower rates. The two trigger levels are named Level-1 trigger (L1) and High

Level Trigger (HLT).

The L1 makes a quick decision based on coarse information from the calorimeters and the MS.

If an event is accepted by the L1, it is passed to the HLT. At this level, more information is used

to make a decision. If the event passes also the HLT selection, it is permanently stored.

When the output rate of a trigger selection is too high, it can be prescaled by a factor P, which

means that only a 1/P fraction of the events that pass the selection is accepted and recor-

ded. The collection of the L1 and HLT selections (trigger chains), together with their prescales,

defines a trigger menu, which is designed based on the physics program taking into account

the LHC luminosity.

The ATLAS trigger is part of a larger system, known as Trigger and Data Acquisition (TDAQ)

system [107]. It is in charge of the data flow in the experiment, as well as control, configuration

and monitoring aspects.

A scheme of the TDAQ system is shown in figure 2.7, highlighting the interplay between the

different sub-components. The entire data acquisition process is supervised by the Detector

Control System (DCS) [108], which allows the coherent and safe operation of the ATLAS de-

tector hardware and serves as a homogeneous interface to all sub-detectors and to the tech-

nical infrastructure of the experiment.

A more detailed description of the two trigger stages is provided in the next sub-sections.

Level-1 trigger

The ATLAS L1 [109, 110] performs the first fast decision using low-granularity information from

the calorimeters (L1 calorimeter) and the MS (L1 muon), reducing the rate from more than

30 MHz to a maximum of 100 kHz.

The trigger decision is basically made by the Central Trigger Processor (CTP), which collects

information from the L1 muon and L1 calorimeter trigger systems. The entire L1 is based on

custom hardware, in order to enhance the speed of the decision time. If an event is accepted

by the CTP, it is buffered in the Read-Out System (ROS) and then processed by the HLT.

The L1 system is also in charge of providing the HLT with Regions of Interest (RoIs), defined as

1 An event is defined as the collection of the final state objects associated to a given bunch crossing.
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Figure 2.7: The ATLAS TDAQ system in Run 2 with emphasis on the components relevant for triggering. Picture
taken from [106].

regions in the η−φ space containing the physics objects of interest. The RoIs are then used as

seeds at the HLT stage. This approach allows a reduction of the computational time, as the HLT

has to analyse only a small portion of ATLAS, instead of reconstructing the full detector.

During Run 2 the L1 has been upgraded by adding a topological trigger processor (L1Topo) [107],

able to combine kinematic information from L1 muon and L1 calorimeter. The addition of

L1Topo allows a complex selection based on the topology of the event, in order to improve the

L1 selection.

HLT

The HLT [111] performs the second-stage decision of the ATLAS trigger, reducing the rate from

100 kHz to approximately 1 kHz, which is the actual recording rate of the detector.

The system is based on software algorithms, running on a cluster of computers (HLT farm), that

reconstruct the physics objects contained in the RoIs received from the L1. The reconstruction

uses additional information with respect to L1, such as tracking from the ID and finer granular-

ity calorimetric inputs. If an event passes the HLT selection it is written to disks for the offline

analysis.

One of the limiting factors for the HLT is the ID tracks reconstruction, which is a CPU expens-

ive process and takes most of the time available to make a decision. For this reason, a new

hardware based Fast Tracker (FTK) [112] is being incorporated in the HLT system for Run 3. It

will provide ID track reconstruction to the HLT at the L1 rate, exploiting lookup tables stored

in custom associative memory chips. This will allow the HLT to perform more complex selec-

tions without having to reconstruct the tracks. Two possible approaches will be available for the

tracks reconstruction: regional tracking and full-scan tracking. The former is a faster approach,
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which provides only the tracks in the RoIs obtained from the L1, while the latter provides the

reconstruction of all the tracks in the ID. More details about the FTK structure and purpose are

given in chapter 4.

2.3 The HL-LHC upgrade

The LHC physics program has completed the Run 2 data-taking period in 2018 and is head-

ing towards the third operational run, named Run 3. The beginning of the Run 3 operations is

scheduled for 2021, after the end of the Phase-I upgrade of the accelerator. Figure 2.8 shows

the timeline for the LHC operations and the planned upgrades. A Phase-II upgrade is sched-

Figure 2.8: Timeline for the LHC accelerator operation and planned upgrades [113].

uled, after the end of Run 3 (2023) to further upgrade the LHC into the High-Luminosity Large

Hadron Collider (HL-LHC) [85].

The HL-LHC is designed to deliver proton-proton collisions at the centre-of-mass energy of
p

s = 14 TeV. The design instantaneous luminosity is 5×1034cm−2s−1, five times the design in-

stantaneous luminosity of the LHC, while the ultimate achievable instantaneous luminosity is

7.5×1034cm−2s−1. In order to be able to reach such instantaneous luminosities, the number

of pp collisions per bunch crossing will have to increase from an average of 34 during Run 2 to

about 200.

The increase in luminosity will allow the ATLAS experiment to collect an unprecedented amount

of data during the entire HL-LHC campaign, reaching about 3000 fb−1 (3 ab−1) of integrated

luminosity. The size of the collected dataset will grant the possibility to perform advanced

searches for physics BSM and precision measurements of the SM.

In order to reach this ambitious goal, the ATLAS detector must be upgraded: the ATLAS Phase-

II upgrade [114, 115] is designed to improve the detector to face the more challenging experi-

mental conditions and to replace aging detector components.

The following sub-sections provide an overview of the upgrades foreseen for the ATLAS de-

tector.
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Inner Tracker

The ATLAS ID, described in section 2.2.3, will be completely replaced at the end of Run 3.

The new innermost component of the detector, called Inner Tracker (ITk), will be a silicon-

only based tracker [116, 117], that will allow improved momentum resolution for reconstructed

tracks.

The ITk will be composed of two main parts, shown in figure 2.9, a silicon pixel detector made

of 5 barrel layers placed closest to the beamline, and a silicon strip detector with 4 barrel layers

that extend out to higher radii. The end-cap region will be covered with a series of rings of both

pixels and strips.

The ITk will also improve the |η| coverage in the forward region, from a coverage up to |η| = 2.5

of the current ID to |η| = 4.0.

The design of the ITk allows a lower material budget than the ID, reducing the uncertainty on

tracking due to multiple scattering.

Figure 2.9: Schematic layout of the ITk for the HL-LHC phase of ATLAS as presented in [118]. The active elements
of the barrel and end-cap Strip Detector are shown in blue; for the Pixel Detector the sensors are shown
in red for both the barrel layers the end-cap rings. Only one quadrant and only active detector elements
are shown. The horizontal axis is the axis along the beam line with zero being the interaction point. The
vertical axis is the radius measured from the interaction region.

Calorimeters

The ATLAS calorimeters, described in section 2.2.4, will have new frontend and readout elec-

tronics, specifically designed to withstand the harder radiation conditions for the duration of

the HL-LHC data taking period.

In particular, the electronics architecture of the Liquid Argon Calorimeter will be optimised to

allow a full-granularity output at 40 MHz, improving the trigger performance. The upgrades

are described in detail in the Liquid Argon Calorimeter Technical Design Report [119] and in

the Tile Calorimeter Technical Design Report [120].
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Muon Spectrometer

A large fraction of the front-end, read-out and trigger electronics of the ATLAS muon spectro-

meter, introduced in section 2.2.5, will be replaced, allowing it to cope with higher trigger rates.

In order to maintain muon identification and reconstruction performance, additional muon

chambers will be also installed.

Following the extension of the acceptance of the inner tracker, the possibility of an extension

of the MS up to |η| = 4.0, called high-η tagger, is currently being considered. The full stud-

ies on the upgrade of the ATLAS MS are provided in the Muon Spectrometer Technical Design

Report [121].

Trigger and data acquisition

The harder experimental conditions with respect to Run 2 and 3, due to the higher number of

interactions per bunch crossing, impose the need of a new TDAQ system. The designed system,

shown in the Phase-II TDAQ Technical Design Report [122], presents a two-level architecture.

A hardware based Level 0 trigger will operate at an output rate of 1 MHz, followed by a pro-

cessing farm, named Event Filter (EF), which will reduce the output data rate to 10 kHz, for

permanent storage. The new architecture will allow higher data granularity and enhanced flex-

ibility, compared to the current system.

The Phase-II TDAQ upgrade includes also a hardware based tracking pre-processor, the Hardware

Track Trigger (HTT), sitting in parallel to the processing farm in the EF. The HTT is designed to

provide the EF with the tracks from the ITk when needed, as the EF would not be able to recon-

struct them, due to the required computing resources. Tracks can be reconstructed with two

approaches: regional tracking, which provides the track reconstruction in regions of interest,

and global tracking, which provides the full ITk reconstruction.

High-Granularity Timing Detector

A new sub-detector will be added to the ATLAS detector in order to precisely measure the

timings of charged particles in the 2.4 < |η| < 4.0 region. The High-Granularity Timing De-

tector (HGTD) [123] will be installed in front of the LAr calorimeter in order to reduce the back-

ground originated by the high number of jets due to the large number of interactions per bunch

crossing.



3THE ATLAS DATA ANALYSIS

AND SIMULATION

FRAMEWORKS

A detector like ATLAS provides a huge amount of data, which need to be stored, processed and

then analysed. In addition, high energy physics experiments vastly base their analyses also on

simulations, which allow one to compare real data with theoretical predictions.

In order to manage all these complicated tasks, the ATLAS software framework Athena [124],

based on the Gaudi framework [125] developed by the LHCb collaboration [79], manages all

the level of processing of the ATLAS data, from high-level trigger to event simulation, recon-

struction and analysis.

The first section of this chapter, section 3.1, provides an overview of the generation of simula-

tions, based on Monte Carlo (MC) techniques. The approach described, used to generate MC

simulations of hadron-hadron collisions at high energy, is common to most high energy phys-

ics experiments. For this reason, the softwares used are not developed internally in ATLAS, but

are developed and maintained by international collaborations.

The second section 3.2 gives a description of the approach followed by the ATLAS experiment

for the reconstruction of physics objects in both simulations and real data.

3.1 Monte Carlo simulation

MC generators [126] are heavily used in particle physics to simulate the physics processes, pre-

dict their kinematic properties and their behaviour in the detector. Simulations can then then

be compared to real data, to validate theoretical predictions.

The MC simulation of physics processes at the LHC is a complicated task, usually split into sev-

eral steps. The two main steps, discussed in the following sub-sections, are the simulation of

physics processes and the detector simulation.

3.1.1 Simulation of physics processes

The simulation of the pp collisions requires the understanding of physics processes involving

very different energy scales. Starting from the high energy scale of the deep-inelastic scattering

between two constituents of the protons (quarks or gluons), down to the low energy scale of

the final state partons that evolve into colourless hadrons. The different regimes can not be

41
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described using the same approach; for instance the soft regime can not be described using

perturbative QCD, which is used to describe high energy scale processes. This forbids a full

analytic description of the process.

In order to overcome this issue, the simulation of physics processes is further divided in sev-

eral steps, effectively factorising the different energy scales involved. This allows the usage of

perturbation theory for the description of the hard regimes and phenomenological models for

the soft regimes. Figure 3.1 illustrates the different steps involved in the pp collision simula-

tion. The first part involves perturbation theory, which models the interaction of the partons

inside two colliding protons via deep-inelastic scattering. All the partons involved in the pp in-

Figure 3.1: Representation of the different steps involved in the simulation of a pp collision at the LHC [127].

teraction are colour charged, therefore they predominantly interact via the exchange of gluons,

which, in turn will radiate further gluons or split into quark/anti-quark pairs and so on, lead-

ing to the formation of a parton shower. This radiation process continues until the partons

involved reach an energy scale of Q ∼ 1 GeV and a new process, called hadronisation, becomes

predominant. At this stage the partons recombine into colourless hadrons, which can be stable

particles or can decay into stable final states. These last processes can only be described with

phenomenological models.

A more detailed description of the various steps of the MC simulation procedure is provided in

the following paragraphs.

Factorisation of the cross-section calculation and PDFs

As already mentioned, the hard scattering in pp collisions occurs between the partons inside

the protons, which carry respectively a fraction xa , xb of the protons momentum. The total
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cross section for a generic pp → X process can be written as [128, 129]:

σpp→X = ∑
a,b

∫
d xad xb fa

(
xa ,µ2

F

)
fb

(
xb ,µ2

F

)
σ̂ab→X

(
pa xa , pb xb ,µ2

F ,µ2
R

)
(3.1)

where the sum is taken over all initial state partons that can produce the given final state.

The fi

(
xi ,µ2

F

)
term, which describes the probability of finding a parton of type i carrying a

fraction of the proton’s momentum xi , is known as Parton Distribution Function.

Parton Distribution Functions are universal, since they do not depend on the particular process

and are usually measured combining information from deep-inelastic scattering experiments

and hadron colliders.

The µF and µR factors are known respectively as factorisation scale and renormalisation scale.

The µF factor can be described as the scale that separates the long- and short-distance physics,

while µR is the renormalisation scale of the QCD running coupling. For a more detailed discus-

sion see [128, 129].

The cross-section of the partonic process σ̂ab→X

(
pa xa , pb xb ,µ2

F ,µ2
R

)
, where pa and pb are the

momenta of the two colliding protons, can be explicitly computed at a fixed order in perturba-

tion theory. This step is also known as Matrix Element (ME) calculation.

Matrix element calculation

The computation of the ME involves the calculation of the scattering matrix, or S-matrix, relat-

ing the initial and final state particles of the process. It can be performed at different orders in

perturbation theory.

A process is said to be calculated at Leading Order (LO) when only tree-level diagrams are in-

volved in the computation, while Next-to-Leading Order (NLO) computations include one loop

diagrams or gluon emission.

While tree-level diagrams are generally convergent, NLO computations can lead to divergences.

However, the Kinoshita-Lee-Nauenberg (KLN) theorem [130, 131] assures that at fixed orders

in perturbation theory the infinities are exactly cancelled, yielding a finite result for the cross-

section.

Issues might arise in fixed-order calculations with a large multiplicity of final states. In these

cases, the integration over the full phase space will include configurations in which one, or

more, final state partons become collinear or soft, leading to singularities. These divergences

are not dealt with in the KLN theorem.

In order to remove these divergences, the ME calculation is truncated by the introduction of a

cutoff, such that soft objects are excluded and a finite result can be obtained. The remaining

part of the phase space, excluded by the introduction of the cutoff, is dealt with in the Parton

Shower (PS) generation.

Parton shower

The PS generation step of the physics event simulation consists of the successive emission of

soft collinear initial and final state partons, used to account for the processes that are not in-
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cluded in the fixed order perturbative calculation. This step is an approximation as it assumes

independent parton emissions, without considering virtual corrections. There are three pos-

sible QCD processes that contribute to the PS: q → g g , g → g g and g → qq̄ , where g is a

gluon and q is a quark. The simulation is based on the Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) equation [132], which describes the evolution of the Parton Distribution Func-

tions as a function of the transferred momentum. The equation is applied iteratively for each

parton involved in the hard interaction, until the energy of the partons reach a regime in which

perturbative QCD can not be applied any more.

The matching of the ME and the PS is not straightforward in general. It is performed by defining

a procedure that can determine two orthogonal domains in the phase space, in order to avoid

possible overlaps between the physics objects generated in the two stages, without causing dis-

continuities in the observable spectra. This is taken care of by dedicated matching algorithms,

the most common implementations are the Catani-Krauss-Kuhn-Webber (CKKW) [133] and

the Michelangelo L. Mangano (MLM) [134] schemes.

Hadronisation

While the parton shower evolves, its energy scale Q2 decreases until it reaches the hadronisa-

tion scale Q0 ∼ 1 GeV. At this level, the confinement effects of QCD become important and the

recombination of the partons into colourless objects (mesons and baryons) must occur. Since

this process is dominated by non-perturbative QCD, generators rely heavily on phenomeno-

logical models. The most common models implemented in the MC generators are the cluster

model [135, 136] and the Lund string model [137, 138].

The Lund model uses a string to represent the confinement potential between a quark-antiquark

pair. For such a pair, as the colour charges move apart, the string is stretched, and its potential

energy grows. Once the potential energy reaches the order of hadron masses, a colour singlet

pair is produced and the string is split into two smaller strings. The process is repeated until all

the energy has been converted into quark-antiquark pairs connected by short strings.

The cluster model firstly forces all the gluons to split into quark-antiquark pairs. The pairs are

then clustered into forming colourless hadrons, which can decay and split into smaller clusters,

depending on the energy available.

Figure 3.2 shows a sketch of the two hadronisation models, the Lund string model on the left

and the cluster model on the right.

Final particles decay

After the hadronisation phase a number of stable and unstable hadrons are produced, and the

latter must decay into particles that are stable at collider timescales. The simulation of had-

ron decays involves non-trivial modelling, as one has to consider several effects, such as the

possible interference effects which can lead to CP-violation and the various excited states. His-

torically the standard generators included few matrix elements for hadron decays and at best
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(a) (b)

Figure 3.2: Schematic representation of the Lund string model, figure 3.2(a), and of the cluster model, figure 3.2(b).
Pictures from [139].

used a naive Breit–Wigner smearing of the masses of the particles, while a more sophisticated

simulation can be performed using external packages, such as EvtGen [140] for hadron decays,

and TAUOLA [141] for τ decays. The EvtGen package in particular is extensively used in flavour

physics because it is the most up to date in terms of experimental measurements and theoret-

ical predictions . It also allows the simulation of B 0 − B̄ 0 mixing and rare B-meson decays that

are of interest for the study of CP-violating phenomena. It also uses a proper spinor algebra,

which allows one to take into account polarisation and helicity effects, allowing the calculation

of the correct angular distributions of the final states.

The emission of soft QED radiation is also simulated by the standard generators, while for a

more precise approach the PHOTOS [142] package provides LO and NLO QED corrections for

the decays.

Underlying event

The Underlying Event (UE) [143] refers to the soft interactions that occur among the partons

not involved in the hard scattering, also called spectator partons. These interactions are pre-

dominantly non-perturbative in nature, therefore the simulations are based on phenomenolo-

gical models with many parameters, tuned using data [144].

Relatively hard interactions are still present also in the UE. Referred to as Multiple Parton In-

teractions (MPIs), these are described with a perturbative calculation and tuned with experi-

mental data [145, 146].

Pile-up

When two bunches collide the number of pp interactions may vary and although, in general,

only one pp interaction is characterised by a hard scattering, the remaining interactions must

be taken into account. They are referred to as in-time Pile-Up (PU), to be distinguished from

out-of-time PU, which arises from previous or later bunch crossings merged to the bunch
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crossing of interest due to limited time resolution of the readout of the detector. Both in-time

and out-of-time PU consist mostly of soft QCD interactions and are modelled in the same man-

ner as the UE.

Monte Carlo generators

Several MC generators have been developed to implement the different steps of the simulation

of LHC physics processes.

They can be roughly divided into two main categories, multi-purpose generators, capable of

handling the full simulation chain, or ME generators, which are specifically designed to per-

form a sophisticated simulation of the hard scattering, but need to be interfaced to additional

PS generators.

The main MC generators currently used are:

• Pythia, multi-purpose MC generator, performs LO calculations for 2 → n (n ≤ 3) pro-

cesses and includes PS. The Lund string model is used for hadronisation and includes

the UE simulation. There are currently two versions of this generator, Pythia6 [147], writ-

ten in Fortran, and Pythia8 [148], written in C++;

• Herwig [149], multi-purpose MC generator, can compute LO ME for 2-to-2 processes and

includes PS. The cluster model is used for hadronisation and for the UE description. It is

usually interfaced with a standalone software, Jimmy [150], for UE and MPI simulation;

• Sherpa [151], multi-purpose MC generator, computes LO or NLO calculations for multi-

leg processes. It contains its own parton shower algorithm, while the matching between

PS and ME is performed with the CKKW method. Hadronisation is simulated with the

cluster method and includes the UE simulation;

• MadGraph [152], ME generator, computes LO or NLO amplitudes for 2 → n (n ≤ 6) pro-

cesses. Must be interfaced with another generator for PS, hadronisation and UE;

• Powheg [153], NLO ME generator. Must be interfaced with another generator for PS,

hadronisation and UE.

3.1.2 Detector simulation

The output of a MC generator is a list of all the four-vectors of the particles involved in the

generation and the information about their decay vertices, usually provided in the HepMC

format [127]. The simulation at this stage is called truth-level simulation, used to perform

truth-level studies on the physics processes.

It is not yet possible to compare the MC simulation with the real data collected by ATLAS or any

other high energy physics experiment, as a simulation of the interaction of the particles with

the detector and its response is needed.
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The detector simulation is performed using Geant4 [154], a C++ based toolkit for the simula-

tion of the passage of particles through matter. It is widely used in high energy, nuclear and

accelerator physics, as well as in medical and space science.

The simulation of the ATLAS detector first considers the energy deposit of the particles in the

detector sub-systems, taking into account the geometry and the materials. The following step

is the conversion of the energy deposit into electric signals and currents (digitisation). The re-

sponse of the various sub-detectors is then simulated, together with the complete structure of

the ATLAS Trigger and Data Acquisition (TDAQ) system. At this stage the output of the simula-

tion and the data are reconstructed using the same software.

The simulation of the full ATLAS detector is an expensive CPU process, therefore a faster de-

tector simulation can be performed using ATLFAST-II (or AF2) [155]. It allows a significant

reduction of the CPU time necessary to process the events by considering a parametrised de-

scription of the behaviour of the detector. The obvious drawback of this fast simulation strategy

is a reduced accuracy in the outcome of the simulation.

3.2 Object reconstruction

After the detector simulation, the output of a simulation is the same as the one obtained from

real data, but before being able to perform a physics analysis another step is needed to convert

the hits in the tracker and in the MS and the energy deposits in the calorimeters into phys-

ics objects to be used in an analysis. The main physics objects are tracks, vertices, electrons,

photons, muons, jets, taus, and missing transverse energy; the work described in this thesis

exploits mainly tracks, vertices and muons, for which a more thorough description is provided,

while a brief description is given for the remaining physics objects.

3.2.1 Track reconstruction

When a charged particle travels through the ID, it releases localised ionisation signals (hits and

clusters) in the sub-detectors, pixel, SCT and TRT, described in section 2.2.3. These charge de-

posits are used to trace the particle’s trajectory and reconstruct a “track”.

Tracks are of particular importance in data and simulation reconstruction, because they are

used in the reconstruction of almost every other physics object, such as leptons, jets and Primary

Vertices (PVs).

Assuming no multiple scattering and negligible bremsstrahlung radiation, the trajectory of a

particle moving in a solenoid magnetic field, as the one present in the ID, can be described as

a helix. The ATLAS tracks reconstruction employs 5 helix parameters P , measured at the point

of closest approach to the z axis:

P = (d0, z0,φ,Θ, q/p) (3.2)

where d0 and z0 are the transverse and longitudinal impact parameters, representing respect-

ively the minimum distance between the track and the centre of the detector in the transverse
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plane and in the longitudinal direction, φ andΘ are the longitudinal and azimuthal angles and

q/p is the ratio between the charge and the momentum of the particle.

Several algorithms are available for track reconstruction [156, 157], the most used is the so-

called inside-out method. It works starting from the centre of the ID, creating a “seed” by

grouping together hits in the pixel and in the SCT; the track candidate is then extended outward

to the TRT. The back-tracking algorithm, on the contrary, exploits an outside-in approach,

seeding the track with clusters in the TRT and then extrapolating the candidate to the silicon

detectors. These approaches result in a list of track candidates.

The following step of the track reconstruction procedure is the search for fake tracks, that do not

correspond to an actual charged particle trajectory, and their removal. This cleaning process

requires a trade-off between the purity of the track list, defined as the number of fake tracks

present with respect to the total, and the track reconstruction efficiency. The candidates are

ordered according to a track score, considering the energy of the track, the number of shared

clusters with other tracks and the number of hits and holes, where a hole is defined when a hit

is expected in a layer of sensors given the fitted trajectory of the track but none is found. The

candidates with the lowest score are removed and further requirements are applied in order to

reduce the overlap between the tracks.

3.2.2 Vertex reconstruction

Due to the large content of protons in the colliding bunches, several interaction vertices can

be reconstructed in each event; their identification is essential for the correct reconstruction of

the physics objects and their kinematics.

The PV reconstruction, where a PV is identified as the points where a pp interaction occurred,

employs a sub-set of all the reconstructed tracks, selected to minimise the number of fake

tracks and the number of tracks coming from secondary interactions.

Once the track’s sub-set is defined, the vertices are reconstructed according to the following

steps [158].

• A seed for the vertex fitting algorithm is identified. The transverse position of the seed is

taken as the centre of the beam spot1. The mode of the z-coordinates of tracks at their

points of closest approach to the centre of the beam spot is used as z-coordinate of the

seed.

• The Adaptive Vertex Fitting algorithm [159, 160] estimates the vertex position with an

iterative fit of the ID tracks based on the least squares method. The fit starting point is

the seed evaluated in the previous step and at the first iteration all tracks are assigned

the same weights. As the iterations progress, tracks more compatible with the vertex are

assigned higher weights and incompatible tracks are assigned small weights, so that their

effect on the fit is minimum. Once the iterative procedure does not show any significant

1 The beam spot is defined as the spatial region around the interaction point where the profiles of the two beams
overlap.
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change, the position of the vertex is defined and tracks not compatible are removed and

used in the determination of another vertex.

• The procedure is repeated with the remaining tracks in the event, until all tracks are as-

signed to a PV or no additional vertex can be found in the remaining set of tracks.

The ATLAS standard approach associates the source of the event of interest to the PV with the

largest sum of the squared momenta of the associated tracks (
∑

p2
T); all the remaining vertices

are considered Pile-Up (PU) vertices.

The
∑

p2
T approach is commonly used, but it was proved to be ineffective when low-pT pro-

cesses, such as flavour physics events, are considered: in this case a different algorithm is used,

based on the kinematics of the event, more details are provided in section 7.5. Once all PVs

have been identified, the impact parameters of the tracks associated with them are recalcu-

lated and expressed with respect to their position.

Vertices originated in secondary interactions, such as particles decays, are named Secondary

Vertices (SVs). They can be reconstructed by looking at the displacement of the tracks with re-

spect to the PV. This allows one to identify processes in which a particle has moved away from

the primary interaction before decaying.

3.2.3 Muons

Muons are reconstructed mainly using tracks in the MS and in the ID [161]. Muon tracks in

the ID are built like any other charged particles as described in section 3.2.1, while the tracks

in the MS are reconstructed in different steps. Hits are searched in the various sub-systems of

the MS and a straight line fit is performed in each layer, creating a set of segments. Muon track

candidates are then built by fitting together hits from segments in different layers.

The reconstructed muon objects employed in ATLAS are classified into different categories,

depending on which sub-detectors are used in the reconstruction:

• Combined muons, when tracks with compatible pT and η−φ coordinates are found in

both the ID and the MS a global refit is performed combining the information from the

two sub-detectors. The result is a combined muon track which describes the trajectory

of the muon through the full detector, taking into account also energy losses in the calor-

imeters. This procedure provides a good resolution at all pT ranges, driven by the ID at

low pT and by the MS at high pT. The acceptance for combined muons is |η| < 2.5, limited

by the ID acceptance.

• Segment-tagged muons, ID tracks are classified as muons if a matching hit in the inner-

most MS layer can be found. This signature is in general associated with low pT muons,

which can not reach the other MS chambers due to the magnetic field, or muons that fell

into the MS crack.

• Calorimeter-tagged muons, an ID track matched to a energy deposit in the calorimeters

consistent with a Minimum Ionising Particle (MIP), with no hits in the MS. This signature
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is generally due to muons that fall in the central pseudorapidity region, |η| < 0.1, where

the MS crack is located.

• Extrapolated muons, in this case the muon’s trajectory is reconstructed using only in-

formation from the MS, adding loose requirements on the compatibility with the interac-

tion point. This signature is generally due to muons that fall outside of the ID acceptance,

but still inside the MS acceptance, 2.5 < |η| < 2.7.

In case of an overlap between different type of muons, a priority is given to the combined

muons, then segment-tagged muons, calorimeter-tagged muons and finally extrapolated muons.

Additional requirements are applied in order to separate “real” muons from muons originated

by decay-in-flight of pions and mesons or hadrons punch-through, which, in both cases, are

called “fake” muons.

A set of Working Points (WPs) is defined, using variables related to the combined track and re-

quirements on the track quality, the charge, the momentum measurements in both the ID and

the MS and requirements on the energy deposit in the calorimeters. Four WPs are available,

Loose, Medium, Tight and HighPT [161]. The first three WPs are characterised by decreasing

real muon efficiency and increasing fake muon rejection, the latter WP is designed for muons

with pT > 100−200 GeV, when the resolution is dominated by the MS and additional require-

ments are applied. In order to improve the background rejection, other requirements on track-

based and calorimeter-based isolation can also be applied.

The performance of the muon reconstruction is studied using a tag-and-probe method in Z →
µ+µ− and J/ψ→ µ+µ− events [162]. Figure 3.3 shows the reconstruction efficiency for low pT

muons, measured with J/ψ→µ+µ− events.

3.2.4 Electrons and photons

The typical signature of electrons and photons in the ATLAS detector is an electromagnetic

shower in the electromagnetic calorimeter. The selection procedure for these objects is de-

scribed in [163, 164], in particular electron candidates are reconstructed as clusters of energy

deposit in the calorimeter matched to a track in the ID, while photons are not associated to an

ID track. However, it is possible that a photon produces a e+e− pair before reaching the calor-

imeter, in this case it is called a converted photon; it is possible to identify also this process,

based on the associated ID hits [165]:

• electron, characterised by a cluster in the calorimeter with a single associated recon-

structed ID track with an associated vertex;

• unconverted photon, characterised by a cluster in the calorimeter without an associated

ID track;

• converted photon, the calorimeter cluster is matched to two opposite-signed tracks (con-

sistent with electrons), associated to a secondary vertex and collinear near it. The detec-

tion of conversion track pairs becomes inefficient at large conversion radius, therefore a



3.2 Object reconstruction 51

Figure 3.3: Muon reconstruction efficiency in different η regions measured in J/ψ → µ+µ− events for Medium
muon selection. Within each η region, the efficiency is measured in seven pT bins (4-5, 5-6, 6-7, 7-8,
8-10, 10-12, and 12-15 GeV). The resulting values are plotted as distinct measurements in each η bin
with pT increasing from 4 to 15 GeV going from left to right. The error bars on the efficiencies indic-
ate the statistical uncertainty. The panel at the bottom shows the ratio of the measured to predicted
efficiencies, with statistical and systematic uncertainties. Figure obtained from [162].

cluster matched to a single track with missing hits in the IBL is also considered a conver-

ted photon.

Similarly to muons, different WPs and additional requirements can be defined, with varying

signal efficiencies and fake rejections. The calibration and efficiency measurement are per-

formed using Z → e+e− and J/ψ→ e+e− events [163, 164, 166].

A detailed discussion on electrons and photons reconstruction and calibration can be found in

Refs. [163–166].

3.2.5 Jets

Due to the confinement properties of QCD, high energy quarks and gluons produced in pp col-

lisions by deep inelastic scattering generate collimated sprays of particles called jets [167]. The

typical signature of a jet are showers in the calorimeters with associated tracks in the ID.

Jets are reconstructed by clustering energy deposits in the calorimeters [168]; several jet-finding

algorithms have been developed, in particular, the ATLAS approach uses the anti-kt algorithm [169].

A detailed discussion on jet reconstruction and calibration can be found in [168].
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3.2.6 Taus

Tau leptons have a lifetime of O (10−13) [11], which corresponds to a decay length much smaller

than the detector resolution. For this reason, no Secondary Vertex (SV) can be identified, con-

sequently they have to be reconstructed via their decay products.

It is hard to separate the product of the leptonic decay channels of the tau from other leptons

originated in the event, therefore taus are usually reconstructed using the hadronic decay chan-

nels. High momentum taus produce jets when they decay hadronically, that can be distin-

guished from quark and gluon originated jets because they are narrower and present a lower

track multiplicity. The tau identification is enhanced using a BDT multivariate classifier, spe-

cifically designed for this purpose.

A detailed description of tau identification and reconstruction can be found in [170, 171].

3.2.7 Missing transverse energy E miss
T

The only standard model particles that can travel through the detector without interacting are

neutrinos, and whenever they are produced in a collision they create an imbalance in the total

transverse momentum measurement. In addition, many BSM theories predict the existence of

particles that do not interact with the detector, producing a similar imbalance.

The momentum imbalance in the transverse plane is measured with a two dimensional vec-

tor called missing transverse momentum vector pmiss
T [172], defined as the negative sum of the

transverse component of the four-momenta of all the visible objects in the event. The mag-

nitude of pmiss
T is defined as missing transverse energy E miss

T .

A detailed discussion on the reconstruction and calibration of these objects can be found in [172].



4STUDIES FOR TRIGGER

IMPROVEMENTS

Most the ATLAS flavour physics analyses are based, as of today, on muon triggers. Due to the

high rate of low momentum hadrons, electrons and photons events, the typical low momentum

flavour physics events not based on muons can not be properly triggered at L1. The addition of

the Fast Tracker (FTK) [112], introduced in section 2.2.6 and discussed in the following section,

to the ATLAS HLT will allow the reconstruction of the tracks in the ID granting access all the pp

collisions in each event in Run 3. As introduced in section 2.2.6, the FTK is designed to perform

regional and global track reconstruction, with an acceptance on the tracks of ptracks
T > 1 GeV

and |ηtracks| < 2.5. The regional reconstruction is seeded by the L1 RoIs and only tracks in these

region are reconstructed. The global reconstruction, called full-scan, allows the reconstruction

of the full ID and is the FTK feature on which these studies are based.

The aim of this section is to explore the use of FTK to enhance the ATLAS B-physics capabilit-

ies. The main possibility explored is that of exploiting the FTK to trigger on pile-up collisions,

parasitically with respect to the L1 selection.

The FTK features relevant to this study are described first (section 4.1) followed by studies rel-

evant to the main analysis topic of this thesis (section 4.2). After a description of the samples

employed (section 4.3), the trigger selection will be optimised (section 4.4) and the correspond-

ing trigger rates will be discussed (section 4.5).

4.1 The FTK

The FTK [112] is a custom electronics system designed to rapidly find and fit tracks in the ATLAS

ID for events passing the L1 trigger [173]. The FTK receives data from the full pixel and SCT de-

tectors and outputs a collection of tracks to the HLT.

In order to cope with the high rate, the system is highly parallelised and the detector is divided

into 64 η−φ regions, called towers, which are processed in parallel. The track fitting procedure

is divided into two steps. The first step (pattern recognition) identifies track candidates com-

paring coarse-resolution information from the ID to predefined trajectories stored in memory

(patterns). The second step (track fitting) determines the charged track trajectory parameters

53



4.2 Case of study 54

from the combinations of ID hits identified by matched patterns. This procedure relieves the

CPU load that track reconstruction would require in the HLT.

Figure 4.1 shows a complete sketch of the FTK system. Data from the ID are transmitted from

Figure 4.1: Functional sketch of FTK. AM is the Associative Memory, DO is the Data Organizer, FLIC is the FTK-
to-Level-2 Interface Crate, HW is the Hit Warrior, ROB is the ATLAS Read Out Buffer, ROD is a silicon
detector Read Out Driver, and TF is the Track Fitter. Picture from [112].

the detector ReadOut Drivers (RODs) to the Data Formatters, which identify the clusters corres-

ponding to hits in the ID and distribute them to the Data Organisers (DOs). The DOs feed hits

to the pattern recognition ASICS (“Associative Memory chips” or AM) which identify match-

ing patterns (“roads”). The DOs align roads with the corresponding hits and feed them to the

Track Fitters (TFs) to perform a first evaluation of the track parameters. The calculation of the

track parameters, based on information from 8 silicon layers of the ID, out of 12 available, is

performed linearly based on pre-calculated constants using the following formula [112]:

pi =
∑

j
ci j x j +q j , ∀i = 1. . .5. (4.1)

The reconstructed tracks are passed to the Hit Warrior (HW), which performs duplicate track

removal and discards tracks with a low fit quality.

When a track passes the HW selection, it is sent to the Second Stage Boards (SSBs), which carry

out a more accurate evaluation of the track parameters, using all the information from the 12

ID silicon layers. Finally, the tracks are sent to the FTK-to-Level2 Interface Crate (FLIC), which

collects and unifies information from the different towers and sends it to the Read-Out Buffer

(ROB), ready to be used by the HLT.

4.2 Case of study

In order to understand if the FTK full-scan tracks can be effectively used to trigger on pile-up

events, four case studies have been identified:
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• B → hh′, where B can be a B 0
d or a B 0

s meson and h and h’ can be either a pion or a kaon;

• B+ → D̄0(K +π−)π+;

• Bs →φφ→ K +K −K +K −;

• Bd → D∗−(D0(K +π−)π−)π+,

where the notation refers also to the charge conjugates of these processes. These four pro-

cesses are characterised by different topologies and final states, allowing coverage of most

of the use cases an experiment like ATLAS may want to focus into. The B → hh′ process

presents the simplest topology, with no intermediate decays and only two particles in the fi-

nal state. This process represent the benchmark for studies on the other channels. The B+ →
D̄0(K +π−)π+ with three particles in the final state and an intermediate decay presents a more

complex topology. The Bs →φφ→ K +K −K +K − process presents an ever more complex topo-

logy, but has two equal intermediate decays, which can simplify its detection. Finally, Bd →
D∗−(D0(K +π−)π−)π+ presents a four particles final state as well, with a series of successive de-

cays. The pion from the D∗− → D0π− decay presents an extremely low momentum, which,

most of the times, is lower than the FTK acceptance. This process can allow the study of pro-

cesses in which not all the particles in the final state can be reconstructed.

The study presented in this thesis focuses on the B → hh′ process. This two-body decay can

allow the measurement of CP violation effects and presents the simplest topology among the

above modes and is fundamental for improvements in the B 0
(s) → µ+ µ− analysis. Section 8.1.2

will show how B → hh′ events with the two hadrons mis-identified as muons are a particularly

problematic background, as they are superimposed on the B 0
d mass peak and present almost

identical features to the signal. The main approach currently followed to study this background

heavily relies on MC simulations. The possibility to study B → hh′ decays with a dedicated

trigger would allow direct data-driven studies on the fake-muons probability, resulting in a im-

proved estimation of its normalisation.

4.3 Samples employed

The design of a trigger selection for the processes listed above requires two samples for the

choice and optimisation of the cuts: a signal sample, to assess the signal efficiency, and a back-

ground sample, to evaluate the rejection power and predict trigger rates. Both samples require

the emulation of the FTK response in order to evaluate the effect of the proposed selection.

4.3.1 Signal sample

The signal samples are based on MC simulations performed using Pythia8 [148]. Some of the

MC samples required are already available in ATLAS, e. g. the B → hh′ sample employed in

the B 0
(s) → µ+ µ− analysis (see chapter 7 for more details) but they do not include the FTK

emulation and are not tuned on the FTK properties. In fact, such samples are designed on
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the properties of the current ATLAS analyses, for instance, the B → hh′ sample is tuned on

the B 0
(s) → µ+ µ− analysis acceptance, requiring the transverse momentum of the tracks to be

higher than 4 GeV. Since the acceptance of the FTK is ptracks
T > 1 GeV and |ηtracks| < 2.5, the MC

samples need to be re-tuned, in order to avoid possible kinematic biases in the selection while

maintaining good generation times.

The MC tuning is based on several parameters, for the processes listed in section 4.2, only three

are mainly responsible for possible kinematic biases. These parameters are:

• p̂T: lower cut applied to the pT of the partons produced in the hard scattering in the

reference system of the incoming partons;

• b̄ quark pT: lower cut on the pT of the b̄ quark in the pp collision centre of mass energy

frame;

• final state particles pT: lower cut on the pT of the final products of the decay.

Notably only the b̄ quark involved in the bb̄ production is subjected to cuts. This is done to

avoid the introduction of biases due to the application of cuts on both quarks. In order to op-

timise the generation, only the B meson is forced to decay into the wanted process, while the

B̄ meson is not constrained.

The parameters tuning is simplified by maintaining p̂T and b̄ quark pT to the same value; this

choice can, in principle, introduce a kinematic bias. As shown later in this section, only the

extremely low pT region of the B meson spectrum is found to be biased, therefore this assump-

tion does not undermine the validity of these studies.

The tuning of the MC parameters is performed using a set of test samples generated ad-hoc

varying the quark cuts, which include p̂T and b̄ quark pT, and the final state particles pT cut.

The production of such samples is limited to generation, without simulation of the detector

response and reconstruction. The kinematic distributions of the particles of interest in the de-

cay are then compared to the same quantities from an unbiased MC sample, generated with

extremely loose cuts. For the B → hh′ MC the unbiased sample is generated using quark cuts =

1 GeV and final state particles pT cut = 0.1 GeV. The test samples are generated with quark cuts

between 1 and 5 GeV with steps of 1 GeV, and final state particles pT cut of 0.5 and 0.8 GeV.

The B meson and final state particles pT distributions are compared to the ones from the un-

biased sample using the Kolmogorov–Smirnov (KS) test [174]. Since a possible bias is likely

to manifest at low pT, the test is performed on sub-samples of the distributions, considering

lower limits on the transverse momentum. The first quantity checked is the pT of the B meson.

Figure 4.2 shows the result of such a test. Each line of the plot represents a different test sample

and each column a different lower pT cut; the height of each bin is the outcome of the KS test.

The B meson pT distribution is shown to be compatible with the unbiased distribution for pB
T

> 3 GeV at low quark cut values, and progressively less compatible with increasing values of the

generation cuts.

The same check is performed on the transverse momentum of the final state particles. Fig-

ure 4.3 shows the result of the various tests performed on the final state particles from the
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Figure 4.2: Result of the KS test [174] applied to the B mesonpT distribution. Each line of the plot shows a different
test sample and each column a different lower pT cut; the height of each bin is the outcome of the KS
test. The white bins indicate an outcome of the KS test = 0.

various B → hh′ sub-processes. Considering the four plots, the sets of cuts which allow one

to avoid any kinematic bias have quark cuts at 2 GeV. Both thresholds considered on the final

state particles pT do not seem to introduce any bias, therefore the higher threshold, 0.8 GeV, is

chosen.

4.3.2 Background sample

The ATLAS experiment collects regularly particular datasets, named enhanced bias samples [175].

These datasets are recorded at various instantaneous luminosity values and are employed to

perform a reliable extrapolation of the output rate of the entire HLT trigger menu (section 2.2.6)

and to test the output rate of new trigger selections. Additionally, enhanced bias samples are

optimal datasets to be used as background samples for the optimisation of a trigger selection

that runs parasitically with respect to the L1 selection. This is because the collection of such

samples is based on a variety of L1 triggers of all signatures types, combinations and pT ranges,

designed to contain events which are more likely to be selected by the trigger. Events recorded

in enhanced bias samples are only biased by the L1 system, no additional selection is applied at

the HLT except for the application of prescales, to control the output rates. This allows to have

a sample that emulates the expected background conditions for the B → hh′ trigger selection

being considered.

Few enhanced bias samples from the Run 2 data taking period, reprocessed to include the FTK

simulation, were available during the development of the studies described in this chapter.

Only one of them will be employed for the optimisation of the trigger selection, while all the

available samples will be employed to estimate the rate of events accepted by such selection.

The output rate of a trigger can be estimated thanks to the particular trigger menu employed

during the data taking of an enhanced bias sample. This trigger menu is, in fact, designed to be
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(a) Kaons from B → K K
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(b) Kaons from B →πK
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(c) Pions from B →πK
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Figure 4.3: Result of the KS test [174] applied to the final state particle of the B → hh′ process for the different sets
of truth-level cuts considered. Each line of the plot shows a different test sample and each column a
different lower pT cut; the height of each bin is the outcome of the KS test. The white bins indicate that
the KS test could not be performed, due to the low statistics available in the samples.

“invertible”, such that a single weight (enhanced bias weight) is calculable per event, in order to

correct for the prescales applied during the enhanced bias data taking and restore an effective

zero bias spectrum [175] (see section 4.5). Once the data taking is concluded, the enhanced

bias samples are reprocessed offline including the full HLT trigger menu without any prescale,

in order to allow testing of triggers not considered during the data taking.

4.4 Trigger selection optimisation

The main idea guiding the B → hh′ trigger selection is to employ a fast selection to reduce the

huge amount of combinatorial background present in each event.

The design of the trigger selection follows a cut-based approach, which is preferred to a Multivariate

Analysis (MVA) based approach, as it is simpler to interpret and is more similar to the preselec-

tion of the B 0
(s) → µ+ µ− analysis. The purpose of this trigger selection is, in fact, mostly de-

volved at fake-rate studies for the B 0
(s) → µ+ µ− analysis (discussed in section 7.4), therefore

the selection variables are derived from the ATLAS B 0
(s) → µ+ µ− analysis performed on the

dataset collected during Run 1 of the LHC operations [73].

The same mass hypothesis of 140 GeV is used for all tracks; this assumption allows avoidance
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of having to run multiple times on the same candidate while varying the mass hypothesis and

was proven not to modify the efficiency of the selection. In addition, tracks are approximated

as straight lines, described by the five track parameters introduced in section 3.2.1. A vertexing

tool could in principle be exploited to precisely identify the position and the properties of the B

decay vertex (Secondary Vertex (SV)), however, this would increase the computational burden

of the trigger selection. The determination of the position and properties of the SV is therefore

performed using a simpler approach: the four-vector of the B candidate is evaluated by sum-

ming the four-vectors of the two tracks, while the position of the SV is identified as the middle

point of the segment joining the points of closest approach of the two tracks.

The calculation of the position of the event PV is another computationally heavy procedure.

Since however this position is extremely useful to select B-physics events from the prompt

background, a more expedited method to approximate the PV position is employed. The point

of closest approach on the beamline to the B candidate momentum backward projection is as-

sumed as position of the PV. The definition of PV used in the rest of this chapter refers therefore

to this modified approach, unless explicitly mentioned.

The order in which the selection cuts are applied can further improve the computational time

needed for the trigger selection. The first selection is performed on the single FTK tracks, in

order to reduce the possible combinations of tracks employed in the second selection, which is

applied to the B candidates.

While the selections of the analyses are usually optimised on a candidate basis, the optimisa-

tion for this trigger selection is based on an event basis. This is because the aim of these studies

is to minimise the trigger rate. The approach employed for the optimisation is the iterative N-1

plots method. This procedure starts with a loose selection for a set of discriminating variables.

One variable at the time is considered and all the cuts on the other discriminating variables are

applied to both the signal and background samples; the value of a figure of merit as a function

of the variable being studied is then analysed: the value of the variable for which the figure of

merit presents the best score is used in the selection for the following iteration. Once the values

of the various selections converge, the optimisation is considered finished.

The figure of merit exploited is S/
p

S +B , where S and B refer to the number of signal or back-

ground events in which at least one B → hh′ candidate passes the selection. In particular, the

number of signal events S corresponds to the number of signal candidates, as only reconstruc-

ted candidates matched to the MC truth-level information are employed.

The selection optimised specifically for the B → hh′ process is shown in table 4.4, together

with an explanation of the quantities involved. The order employed to show the variables re-

flects the order in which the selection cuts are applied. The plots in the third column show the

distribution of the discriminating variables employed; they are obtained by applying the selec-

tions not included in the optimisation (requirements on the pT of the tracks and on the pT and

invariant mass of the B candidates) and without applying any requirements on the remaining

variables. The signal efficiency, evaluated as the number of signal events from the MC sample
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which pass the selection divided by the number of events containing signal candidates recon-

structed by the FTK, is about 3%. The background rejection, evaluated as the number of events

from the enhanced bias sample in which at least one candidate passes the selection divided by

the total number of events, is 99.997%.

Table 4.1: Trigger selection for the B → hh′ process. The first column provides the name of the variable and the

selection applied. the second column provides a description of the variable and the third column shows a

normalised plot of the quantity for the truth-matched MC B → hh′ candidates and the background can-

didates from enhanced bias samples. The Primary Vertex (PV) and Secondary Vertex (SV) are evaluated

as explained in the text. The order in which the cuts are listed reflects the order in which they are applied

in the selection.

Cut Description

tracks pT > 6, 4 GeV Transverse momentum cut on

each of the two tracks. The two

thresholds refer to the leading

and sub-leading tracks respect-

ively. This cut is not included

in the optimisation, but is set to

the pT thresholds employed in

the 2015-16 B 0
(s) → µ+ µ− ana-

lysis.

tracks pT [MeV]
4000 6000 8000 10000 12000 14000 16000 18000

a.
u.

0

0.005

0.01

0.015

0.02

0.025

0.03

 MC
-

 h
+

 h→B 

Enhanced bias

|d0|min > 0.18 Smaller absolute value of the

impact parameter to the beam-

line.

 min [mm]
0

d
0 0.2 0.4 0.6 0.8 1 1.2 1.4

a.
u.

-4
10

-3
10

-2
10

-1
10

 MC
-

 h
+

 h→B 

Enhanced bias

total charge = 0 Charge of the B candidate, ob-

tained as sum of the charge of

the two tracks. No plot is shown
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Table 4.1: Trigger selection for the B → hh′ process. The first column provides the name of the variable and the

selection applied. the second column provides a description of the variable and the third column shows a

normalised plot of the quantity for the truth-matched MC B → hh′ candidates and the background can-

didates from enhanced bias samples. The Primary Vertex (PV) and Secondary Vertex (SV) are evaluated

as explained in the text. The order in which the cuts are listed reflects the order in which they are applied

in the selection.

Cut Description

pB
T > 7 GeV Transverse momentum of the B

candidate. This cut is not in-

cluded in the optimisation, as it

does not improve significantly

the selection.
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4 GeV < M B < 7 GeV Mass of the B candidate. This

cut is not included in the op-

timisation. The interval is

centred on the B 0
(s) masses

and is large enough to allow

the identification of mass side-

bands to perform a fit on the

M B distribution.
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angle”.
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Table 4.1: Trigger selection for the B → hh′ process. The first column provides the name of the variable and the

selection applied. the second column provides a description of the variable and the third column shows a

normalised plot of the quantity for the truth-matched MC B → hh′ candidates and the background can-

didates from enhanced bias samples. The Primary Vertex (PV) and Secondary Vertex (SV) are evaluated

as explained in the text. The order in which the cuts are listed reflects the order in which they are applied

in the selection.

Cut Description

τ> 0.3 mm Proper decay time of the B can-

didate. This quantity is evalu-

ated as Lx y ·M B /pB
T , where Lx y

is the projection of the line con-

necting the PV and the SV along
−→pT

B . M B and pB
T are the mass

and the transverse momentum

of the B candidate. Although

this quantity should be meas-

ured in seconds, the same unit

of measurement as Lx y is main-

tained.
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4.5 Trigger rate estimation

The estimation of the trigger rate for the B → hh′ trigger selection is performed using different

enhanced bias samples, characterised by different PU and instantaneous luminosity condi-

tions. These estimations are valid under the assumption that most of the events that trigger the

chain are background events.

The HLT output rate of a trigger chain and its error (respectively R and Rerr) are evaluated ac-

cording to the following formulas [175]:

R =
∑N

e=1 w(e)

∆t
, Rerr =

√∑N
e=1 w(e)2

∆t
. (4.2)

Where the sum runs over all e = 1,2, . . . , N events in the enhanced bias sample and ∆t is the

time period over which the sample was collected (typically about one hour). The weight w(e)

represents the effective number of events passed by the trigger chain. The rate obtained with

this formula corresponds to the average instantaneous luminosity over the time period during

which the enhanced bias data sample was collected.

The weights w(e) are, in turn, evaluated according to the following formula [175]:

w(e) = wEB(e) ·wC(e) ·wL (e). (4.3)
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The wEB(e) term is the enhanced bias weight, introduced in sub-section 4.3.2, used as per -

event weight to correct for the prescales employed during the data taking of the enhanced bias

sample and restore an effective zero bias spectrum. This weight is always equal to or higher

than 1 and is evaluated according to [175]:

1

wEB(e)
= 1−

EB chains∏
j=1

(
1− r j e

p j

)
(4.4)

Where the product runs over the trigger chains used to collect the dataset, r j e is the trigger de-

cision before the application of any prescale (0 not passed, 1 passed) and p j is the total prescale

for the chain.

The wL (e) term is called luminosity extrapolation weight (wL (e) > 0). This quantity is used

to extrapolate the estimated rate for a trigger chain or a combination of trigger chains to a dif-

ferent luminosity. There are several ways to evaluate this term, based on the properties of the

physics process of interest and of the trigger chain. The trigger rate estimations performed in

this thesis assume wL (e) = 1, meaning no luminosity extrapolation is performed. More in-

formation on the luminosity extrapolation weights is available in Ref. [175].

The wC(e) term is the chain/combination weight. This quantity accounts for prescales on the

trigger chains involved in the rate estimation and its value is bounded 0 < wC(e) ≤ 1. The for-

mula used to calculate the chain/combination weights depends on the trigger selection being

analysed, and can be evaluated for individual chains, for the union of multiple chains and for

the intersection of chains. The B → hh′ trigger selection is designed to be seeded by all the fired

L1 triggers, for this case the formula is [175]:

wC(e) = 1−
N L1∏
i=1

1− r L1
i e

pL1
i

 . (4.5)

The product runs over all the L1 triggers which seed the HLT selection, r L1
i e is the L1 trigger de-

cision before the application of any prescale (0 not passed, 1 passed) and pL1
i is the L1 prescale

for the chain. This expression does not take into account possible prescales applied to the HLT

selection of interest, which would result in an overall 1/p HLT term.

Ideally, for the B → hh′ selection, the product in equation 4.5 would run on all the possible L1

triggers. Unfortunately, the presence of a trigger and its prescale are not constant in the trigger

menu, but depend on several factors, such as the instantaneous luminosity. For this reason, an

estimation of the HLT trigger rate for the B → hh′ selection seeded by every possible L1 trigger

combination is not possible. The estimation performed in this thesis is based on the triggers

called lowest unprescaled triggers. These are the unprescaled triggers characterised by the low-

est thresholds. Almost all the events contained in the enhanced bias sample pass at least one

of these triggers, therefore the estimation of the trigger rate takes into account all the events in

the sample.

The trigger rate estimation is based on three enhanced bias samples, the only datasets where

the FTK emulation was available at the time of these studies. The result of the trigger rate es-

timation is shown in figure 4.4. The x axis represents the average instantaneous luminosity of
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Figure 4.4: Rate estimation for the B → hh′ trigger selection performed using the procedure explained in the text.
The three points show the estimation based on different enhanced bias samples, characterised by differ-
ent instantaneous luminosities.

the enhanced bias samples, while the y axis is the rate estimation. The estimated HLT output

trigger rates range between 0.5 and 1 Hz, with uncertainties of the order of 0.5 Hz. Such rates

are optimal, as they are low enough not to occupy too much bandwidth.

An estimation of the dependence of the rate on the instantaneous luminosity is not possible,

due to the low number of available enhanced bias samples and the large uncertainty on the

estimations.

4.6 B → hh′ signal yield estimation

The expected signal yield for the B → hh′ trigger selection is evaluated based on the proper-

ties of the ATLAS B 0
(s) → µ+ µ− analysis performed on the dataset collected during 2015 and

2016 [4], extensively described in the following chapters. Assuming the same efficiency of the

trigger selection for all the B → hh′ processes, only the expected B 0
d →π+π− yield is calculated.

This value is then rescaled according to the total branching fraction of B → hh′ processes. The

other processes are used to validate the estimation.

The values employed in the extraction of the branching fractions for the B 0
(s) → µ+ µ− (chapter 5)

allow the estimation of the number of expected B 0
d → π+π− decays in the B 0

(s) → µ+ µ− ana-

lysis truth-level acceptance volume pµ

T > 6,4 GeV, |ηµ| < 2.5, pB
T > 8.0 GeV and |ηB | < 2.5, where

the cuts are applied to the hadrons instead of the muons. This number, multiplied by the

efficiency of the B → hh′ trigger selection calculated with respect to this acceptance volume

gives the number of B 0
d → π+π− events that would pass the B → hh′ trigger selection in the

2015/2016 dataset. Considering that the FTK only reconstructs events accepted by the L1 trig-

ger, a factor of L1rate/collisionrate has to also be considered. Equation 4.6 summarises the for-

mula employed for the estimation of expected B 0
d →π+π− yield. An additional L /LB 0

(s) → µ+ µ−

factor, where LB 0
(s) → µ+ µ− = 36.1fb−1 is the integrated luminosity of the dataset employed for
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the 2015-16 ATLAS B 0
(s) → µ+ µ− analysis, is also shown and used to rescale the expected yield

to a wanted integrated luminosity L .

NB 0
d→π+π−(L ) =

εB 0
d→π+π− ·B(B 0

d →π+π−) ·NB 0
s → µ+ µ−

εB 0
s → µ+ µ− ·B(B 0

s → µ+ µ−) · fs/ fu
· L1rate

collisionrate
· L

LB 0
(s) → µ+ µ−

. (4.6)

The εB 0
d→π+π− term is the efficiency of the trigger selection for B 0

d →π+π− events with respect to

the B 0
(s) → µ+ µ− analysis acceptance volume, B(B 0

d →π+π−) and B(B 0
s → µ+ µ−) are the SM

branching fractions for the two processes, obtained from Ref. [11] and fs

fd
= 0.256±0.013 is the

b quark hadronisation probability ratio for B 0
s to B 0

d mesons, obtained from the latest HFLAV

average [28]. The two terms εB 0
s → µ+ µ− and NB 0

s → µ+ µ− are obtained from the 2015-16 ATLAS

B 0
(s) → µ+ µ− analysis [4], which is the core part of this thesis and will be presented later start-

ing from chapter 5, and are respectively the efficiency for the B 0
s → µ+ µ− channel with respect

to the analysis acceptance volume and the expected number of B 0
s → µ+ µ− events according

to the SM prediction.

The resulting B → hh′ yield, obtained by rescaling NB 0
d→π+π−(L ) according to the total branch-

ing fraction for the B → hh′ process [11] and for the total expected integrated luminosity of

Run 3 (300 fb−1) is about 17000 events. The same procedure performed considering the other

B → hh′ processes yields a comparable expected number of events.

4.7 Results and conclusions

The optimisation of a trigger selection that runs parasitically with respect to the L1 selection

for the B → hh′ process has been performed and the expected HLT output rate for this trigger

selection and the expected amount of B → hh′ events to be collected in Run 3 have also been

evaluated.

The main result obtained in this chapter is that employing a series of selections, which appear

to be affordable from a computational point of view, it is possible to maintain a low HLT output

rate and collect a good amount of signal statistics. This represents a proof of principle: pile-up

events can be exploited at the HLT level to collect fully hadronic processes, exploiting the FTK

full-scan reconstruction.

Regarding the particular trigger selection studied, the estimated B → hh′ yield for the total

expected integrated luminosity of Run 3 is about 17000 events. Unfortunately, this yield does

not allow any accurate study. In fact, considering the current sensitivity of CP violation studies

on B → hh′ samples [11], together with the limited mass resolution of the ATLAS experiment

and the impossibility of performing particle identification, the resulting studies would not be

significant, compared to the current state of the art. Regarding the studies on the muon-fake

rate for the ATLAS B 0
(s) → µ+ µ− analysis, the average fake-muon rate for hadrons (studied

in detail on both simulations and data in sections 7.4 and 11.2.2.2) is found to be ∼ 0.09%,

implying that only about 32 B → hh′ events would contain at least one fake muon. Such low

fake-muons yield would not allow to properly study the muon mis-identification fraction.

Two main possibilities are being studied to improve the selection in order to be able to employ
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the B → hh′ sample for muon-fake rate studies. Relaxing some of the selections described

in section 4.4 would allow the collection of more signal events, at the cost of a higher trigger

rate due to background events. The other possibility is to require that at least one of the the

two tracks associated to a B → hh′ candidate is matched to a track in the MS. The study of

the second track of the process can allow the estimation of the fake rate. The MS matching

requirement would strongly reduce both the output rate of the trigger selection and its CPU

load, implying the possibility of relaxing most of the selection cuts.

The selection for the remaining processes considered in section 4.2 can be based on the one

designed in this chapter, which was proven to highly reduce the effect of the combinatorial

background. The B → hh′ mode, in fact, presents the simplest topology among the processes

considered; the additional requirements deriving from a more complex topology will therefore

allow a more effective selection.



5B 0
(s) → µ+ µ− ANALYSIS

STRATEGY

The B 0
(s) → µ+ µ− analysis performed on the data collected by the ATLAS experiment during

the first two years of the LHC Run 2 pp collision data-taking period constitutes the core of this

thesis. This chapter provides an introduction to the analysis strategy, followed by a description

of the main steps of its development. An overview of the content of the following chapters, in

which the analysis is discussed in detail, is also provided. Finally, the expected sensitivity is

discussed, in order to motivate the publication of results based on partial Run 2 data.

The aim of the analysis is to measure the branching fractions of the two extremely rare de-

cays B 0
s → µ+ µ− and B 0

d → µ+ µ−, which are relevant for indirect searches of BSM physics, as

introduced in chapter 1.

The analysis strategy is mostly derived from the previous ATLAS measurement based on the

dataset collected during the Run 1 of the LHC [73], described in appendix A: the B 0
s → µ+ µ−

(B 0
d → µ+ µ−) branching fractions are extracted relative to a reference decay mode B+ →

J/ψ(→ µ+µ−)K +, which is abundant and has a well-measured branching fraction B(B+ →
J/ψK +)×B(J/ψ→µ+µ−). This procedure allows the cancellation of several systematic uncer-

tainties due to sources affecting both the signal and the reference channels. Additionally, the

B 0
s → J/ψφ process, with J/ψ→ µ+µ− and φ→ K +K −, is employed in the analysis as a control

channel for the signal kinematic variables. The reference and control channels are comple-

mentary: while B+ → J/ψK + presents a topology more similar to the signal, as it is a 3-prong

process, the B 0
s → J/ψφ process allows access to a B 0

s sample. This grants the possibility to

check for possible kinematic differences between the signal and the reference channels due to

hadronisation effects.

The notation used throughout this thesis refers also to the charge conjugates unless otherwise

specified, therefore B+ → J/ψK + includes also B− → J/ψK −. Additionally, in order to avoid

mentioning the two signal processes, e. g. B 0
s → µ+ µ− and B 0

d → µ+ µ−, the B 0
(s) → µ+ µ−

notation is used to refer to both.

The branching fraction calculation is performed according to the following formula:

B(B 0
(s) → µ+ µ−) = fu

fs(d)
×B(B+ → J/ψK +)×B(J/ψ→µ+µ−)×

NB 0
d (B 0

s )

NJ/ψK +
×RAε, (5.1)

where:

67
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• fu

fs(d)
is the ratio of the hadronisation probabilities of a b-quark into B+ and B 0

s (B 0
d ), this

quantity is not measured in the analysis and its value is taken from the latest available

HFLAV average [28]: fs

fd
= 0.256±0.013, which assumes fu

fd
= 1. The value of this quantity

may present a dependency on the b quark kinematics, therefore the HFLAV value might

need an additional correction. This effect can be studied by analysing the transverse mo-

mentum and η dependence of the B 0
s → J/ψφ and B 0

d → K?0 J/ψ yield ratio. This tech-

nique has been employed by the ATLAS experiment to measure fu

fs
at a centre of mass en-

ergy of
p

s = 7 TeV during Run 1, obtaining fs

fd
= 0.240±0.004stat±0.010syst±0.017theo [176].

Considering that this value is compatible within the uncertainty with the HFLAV average,

it is used is the analysis without any modification;

• B(B+ → J/ψK +)×B(J/ψ→µ+µ−) is the branching fraction of the B+ → J/ψ(→µ+µ−)K +

process, its value is taken from world averages of the two branching fractions [11]: B(B+ →
J/ψK +) = (1.010±0.029)×10−3 and B(J/ψ→µ+µ−) = (5.961±0.033)%.

• NJ/ψK + is the yield of the reference channel, this quantity is extracted from data. Only

half of the reference channel sample is employed in the determination of this term, as the

other half is used to tune the kinematic distributions of simulated events. This approach

avoids unwanted correlations within the analysis;

• RAε is the ratio of the acceptances (A) and efficiencies (ε) for the reference and signal

channels, defined as
A×εJ/ψK+
A×εµ+µ− ; this quantity is extracted from MC simulations corrected

with data-driven techniques based on B+ → J/ψK + and B 0
s → J/ψφ data;

• finally NB 0
d (B 0

s ) is the B 0
d → µ+ µ− (B 0

s → µ+ µ−) signal yield, which is extracted from

data.

The whole analysis strategy and tuning is developed maintaining the dimuon mass window

that contains the signal blinded (not accessible), to avoid the non-measurable experimenter’s

bias [177].

The candidates considered in the analysis are required to have fired a low pT dimuon trig-

ger and pre-selected with a set of loose cuts in order to obtain a uniform reference selection

for all the steps of the analysis and manageable sized samples while keeping a very high signal

efficiency. These cuts exploit the kinematic of the particles involved in the processes and the

topology of the two-body decays B 0
(s) → µ+ µ−, in which the B meson travels away from the PV

before decaying, allowing the identification of a SV.

On top of this selection, tight requirements on the muon properties are applied, in order to

strongly reduce the presence of hadrons mis-identified as muons. In particular the background

due to B → hh′ events, where h = π,K and both hadrons are erroneously identified as muons,

has the same topology as the signal: a branching fraction four orders of magnitude higher and

an invariant mass close to the B 0
d mass.

At this stage of the analysis it is impossible to distinguish the presence of signal on top of the
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background, due to the overwhelming number of background events. The main source of back-

ground is the so-called continuum, which is mostly due to muons originating from distinct b

quarks in a bb̄ pair. A MVA selection, based on a Boosted Decision Tree (BDT) algorithm1,

which makes use of topological and kinematic information of the candidates, is employed to

reduce the continuum background contribution.

Finally, a fit to the candidate’s invariant mass distribution measures the B 0
s → µ+ µ− and

B 0
d → µ+ µ− yields. The functional models employed in the fit are studied on MC samples

and verified on data when possible. The signal fit is performed solely on data, simultaneously

on four datasets obtained by dividing the BDT output in the higher S/B region in contiguous

bins with the same signal efficiency. This procedure exploits most of the sample signal events

while distinguishing the regions with different signal purities: the lower the BDT range, the

lower the signal to background ratio.

The confidence intervals on the signal branching fractions are extracted with the exact Neyman

frequentist approach [178]. This approach allows the exact evaluation of confidence intervals

and a natural way of switching between upper limits and measurements.

The various steps of the analysis are explained in detail in the following chapters. The con-

tent is organised to achieve clarity and minimise forward references.

Before starting the discussion of the analysis, the main statistical tools employed are described

(chapter 6), with particular attention given to the Neyman belt construction (sections 6.3.3

and 6.3.4). After describing the collected and simulated datasets employed in the analysis (sec-

tions 7.1 and 7.2 in chapter 7), the set of pre-selection cuts, which ensure manageable sized

samples and provide a uniform reference for all the analysis steps, is identified (section 7.3).

Once the baseline selection of the analysis is defined, the weighting procedure, designed to

correct possible imperfections of the simulated samples, is introduced (section 7.6). After a

description of the main backgrounds that affect the analysis (section 8.1 in chapter 8), the final

MVA based selection designed to reduce the contribution of the most important background is

described (section 8.2).

This concludes the definition and tuning of the analysis selection, therefore a data-MC com-

parison is performed (chapter 9), to check that simulations properly reproduce real data and to

quantify possible residual data-MC discrepancies.

The following steps of the analysis pertain to the various terms present in formula 5.1.

• The evaluation of the B+ → J/ψK + yield (section 10.1 in chapter 10).

• The calculation of the RAε term (section 10.2 in chapter 10).

• The signal yield extraction (chapter 11). Particular attention is given to this important

step. First the models used in the fit are accurately defined (sections 11.1 and 11.2 de-

scribe the non-resonant and the resonant models respectively), then the fitting proced-

ure is constructed and tested (section 11.3). Finally, the strategy followed to extract the

1 A Boosted Decision Tree (BDT) is an algorithm based on MVA techniques; a description is provided in chapter 8.



5.1 Expected sensitivity 70

B 0
(s) → µ+ µ− branching fractions, based on this fitting procedure, is introduced (sec-

tion 11.4).

This completes the tuning phase of the analysis, therefore the blinded region in the data is

opened (chapter 12). The fitting procedure is applied to the unblinded data and the signal

branching fractions are extracted (section 12.1). Additionally, the likelihood of the analysis is

combined with the likelihood obtained in the Run 1 analysis to improve the accuracy of the

results (section 12.2).

5.1 Expected sensitivity

Before starting the detailed discussion on the ATLAS B 0
(s) → µ+ µ− analysis performed on the

2015/16 dataset, its expected sensitivity is evaluated. The significant improvements with re-

spect to the Run 1 analysis that will be shown later in this section motivate the decision of

analysing only a part of the Run 2 dataset, while the data taking was still ongoing.

The analysis sensitivity will be illustrated with the expected confidence regions in the B(B 0
s → µ+ µ−)

– B(B 0
d → µ+ µ−) plane, evaluated with the same procedure employed for the full Run 2 and

HL-LHC analysis projections, discussed later in this thesis (section 13.1 in chapter 13).

The expected signal and background statistics are extrapolated relative to the expected number

of signal events of the Run 1 analysis [73] according to the SM predictions [54]. Toy-simulations

are then generated based on these extrapolations and used to evaluate the confidence regions

using the Neyman belt approach (sections 6.3.3 and 6.3.4 in chapter 6).

The expected statistics considers the 2015/16 integrated luminosity, the increase in centre of

mass energy of the pp collisions and the different triggers employed with respect to Run 1. The

integrated luminosity in the 2015/16 period amounts to 36.2 fb−1, compared to the Run 1 in-

tegrated luminosity of 25 fb−1. Additionally, the increase in centre of mass energy of the pp

collisions yields an increment in the B mesons production cross-section; the same ×1.7 incre-

ment employed in the analysis projections is used to parameterise this effect. Due to the higher

instantaneous luminosity that characterises Run 2 with respect to Run 1, the thresholds of the

dimuon triggers employed in the analysis had to be increased. This results in a lower signal

efficiency. A detailed discussion on the trigger employed in the analysis is provided later in sec-

tion 7.1.

These ingredients yield a two-fold increment in the available signal statistics with respect to

the Run 1 analysis.

The resulting 68.3 %, 95.5 % and 99.7 % confidence regions for the expected statistics, obtained

with the Neyman belt approach, are shown in figure 5.1. For comparison, also the confidence

regions for the Run 1 expected SM statistics are shown as solid lines. Considering the size of

the expected confidence regions, a significant increment in the analysis sensitivity is therefore

expected.
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Figure 5.1: Expected 68.3 %, 95.5 % and 99.7 % confidence regions for the ATLAS B0
(s) → µ+ µ− analysis performed

on the 2015/16 dataset (dashed lines). The confidence regions for the Run 1 expected statistics according
to the SM predictions are shown for comparison (solid lines). The expected 2015/16 statistics is extra-
polated based in the Run 1 analysis according to the procedure detailed in section 13.1 in chapter 13. All
confidence regions are obtained with the Neyman belt approach [178]. The SM prediction for the signal
branching fractions with its uncertainties [54] is also indicated.



6STATISTICAL TOOLS

The work presented in this thesis relies on several statistical concepts and tools, summarised

in this chapter.

The likelihood function and maximum likelihood fits are introduced first (section 6.1), followed

by the concepts of hypothesis testing and p-value (section 6.2). The evaluation of the uncer-

tainty on the estimated values with maximum likelihood estimators and the concept of con-

fidence intervals are then introduced (section 6.3). Three approaches for the extraction of the

uncertainty (or confidence intervals) are discussed: the Rao-Cramer-Frechet (RCF) variance

(sub-section 6.3.1), the likelihood intervals (sub-section 6.3.2) and the Neyman belt construc-

tion (sub-section 6.3.3). They will be employed for the extraction of the signal branching frac-

tions uncertainty in sequence, providing a cross-check to the Neyman belt approach, which

is chosen to provide the final result of the analysis and its combination with the ATLAS Run

1 B 0
(s) → µ+ µ− analysis. Additionally, the evaluation of the result employing the three ap-

proaches allows one to cross-check the ATLAS result against other experiment’s, depending in

the procedure they employ for the uncertainty extraction.

Particular attention is dedicated to the Neyman belt construction (sub-section 6.3.4): while the

other approaches are already implemented in the software employed for the estimation of the

signal branching fractions (the RooFit toolkit [179] in the ROOT framework [180]), a dedicated

2D construction of the Neyman contours had to be developed for this work.

6.1 Likelihood function

The likelihood concept and the maximum likelihood estimators are extensively employed in

high-energy particle physics for the estimation of the parameters of interest in experimental

analyses. This section provides an overview on the likelihood and maximum likelihood estim-

ator concepts. A more extended discussion on these topics can be found in Refs. [181–186].

Consider a random variable x, scalar or vector, distributed according to a Probability Distri-

bution Function (PDF) f (x;θ) [182]; the term θ represents a set of parameters which define

the functional form of the PDF. Repeated measurement of x can be performed, leading to a

72
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dataset x1, x2, . . . , xn of size n. By definition, and under the assumption that x is distributed

according to f (x;θ), the probability of finding measurement x1 in the interval [x1, x1 +d x1] is

given by f (x1;θ)d x1. Assuming all measurement to be independent, the joint probability that

all n measurements fall in [xi , xi +d xi ] is given by
∏n

i=1 f (xi ;θ)d xi . If the assumption of the

data to be distributed according to f (x;θ) and the parameter values are correct, the intuitive

expectation is a high value of such probability. Vice versa, if there is something not correct in

the assumptions one can expect a low value.

Since the parameters do not depend on the d xi , the likelihood function L can be therefore

introduced as [182]:

L (θ) =
n∏

i=1
f (xi ;θ). (6.1)

Which, For a given dataset {x1, x2, . . . , xn}, is only a function of the parameter(s) θ.

As discussed in Refs. [181, 182], assuming that the functional form is correct but the value of

one, or more parameters is not known, one can estimate their values, using the maximum like-

lihood estimator:
∂L (θ)

∂θi
= 0 for i = 1, . . . ,nparameters. (6.2)

The estimators of the values that maximise the likelihood are defined as θ̂i , in order to distin-

guish them from the real (physical) parameters that are unknown. The act of maximising the

likelihood to find the optimal θ̂i parameters is called a maximum likelihood fit.

Maximum likelihood estimators can be proved to be consistent, meaning that in the limit of

large datasets, the estimator θ̂i converges to a defined value, and asymptotically unbiased,

meaning that a possible bias on the estimator θ̂i approaches 0 for increasing size for the data-

set. Given their optimal properties and the simplicity of their definitions, maximum likelihood

estimators are widely used in particle physics.

Rather than using the likelihood function as defined in equation 6.1, it is usually more con-

venient to use its logarithm, allowing one to convert the complicated product in L into a more

manageable sum. Since the logarithm is a monotonically increasing function, the maximum of

L is also the maximum of logL .

There are some examples in which the estimator θ̂i can be analytically evaluated, but most of

the times numerical techniques are employed.

Based on the properties of the dataset and of the measurement being performed, maximum

likelihood fits can be classified as follows [182].

• Binned and unbinned maximum likelihood fits; the example shown in equation 6.1 as-

sumes an unbinned dataset, meaning that all the data points are explicitly employed in

the likelihood, and histograms are not used in the procedure. This fitting procedure is

called an unbinned maximum likelihood fit. For very large data samples the unbinned

likelihood might become too difficult to compute. Instead of recording each measure-

ment, a histogram can be employed. This reduces the number of data points employed

in the fitting procedure to the number of bins of the histogram. The expectation values
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of each bin can be estimated by integrating the PDF between the edges of each bin and

the joint PDF is now given by a multinomial distribution. The log likelihood distribution

becomes therefore:

logL =
N∑

i=1
ni log

(
ntot

∫ xup
i

x low
i

f (x;θ)d x

)
, (6.3)

where additive factors which do not depend on the parameters have been dropped. x low
i

and xup
i are the edges of each bin, ntot is the total number of entries in the histogram

with N bins and ni is the content of each bin. The usage of a histograms implies a loss

of information on the dataset, therefore the uncertainty on the estimated values (dis-

cussed later in sub-section 6.3) is larger compared to the one obtained for unbinned

maximum likelihood estimators. In the limit of a small bin size (therefore a large number

of bins) binned maximum likelihood estimators become asymptotically the same as the

unbinned ones [182].

• Extended maximum likelihood fits; in the likelihood shown in function 6.1 the size of the

dataset is assumed to be fixed and known. It is often the case that the size of the sample

itself is a randomly distributed variable which follows a poisson distribution. In order

to take into account this behaviour, the likelihood is modified introducing an additional

poissonian PDF as follows:

L = νn

n!
e−ν

n∏
i=1

f (xi ;θ), (6.4)

where n is the size of the dataset and ν is the real and unknown physical parameter of the

poisson distribution.

• Simultaneous maximum likelihood fits; a likelihood maximum fit can also be performed

on two different datasets at the same time. In this case, the two likelihoods relative to the

two datasets are multiplied together to obtain a simultaneous likelihood. This quantity

is then maximised to estimate the parameters. If the likelihoods employed are not cor-

related, e. g. do not have any parameter in common, this procedure does not improve the

performance of the estimators. On the other hand, if the two likelihoods are correlated,

the parameter estimation can be significantly improved. The same approach is often fol-

lowed to combine experimental results. The likelihoods from different experiments can

be combined and maximised, improving the final result.

6.2 Hypothesis test and p-value

One of the frequent goals in a statistical analysis in particle physics is to test whether the pre-

dictions of a given model are in agreement with the observed data. A hypothesis H can be

defined as a statement for the probability of finding the data x, where x denotes the outcome

of a measurement [185]. In case x includes continuous variables, the hypothesis H specifies a

PDF for x. The probability of finding a dataset x under the assumption of the hypothesis H can

therefore be written as the conditional probability P (x|H) [182].
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A statement about the validity of a hypothesis, for instance H0, may involve the comparison

with some alternative hypothesis H1, H2, H3, . . . . A classical example in particle physics is to at-

tribute the H0, or null hypothesis, to the “background only” hypothesis, while H1, the alternate

hypothesis, corresponds to the hypothesis of a signal being present together with the back-

ground.

In order to measure the disagreement between the observed data and a given hypothesis, a

function of the measured variables is constructed. This function is referred to as test statistic

t (x). Each considered hypothesis will therefore imply a given PDF for the test statistic t , that

can be written as g (t |H0), g (t |H1), etc. In case of a test with two hypotheses, the test statistic

can e. g. be designed to assume large values when the data are incompatible with H0. The

PDF of the test statistic for a given hypothesis can be estimated using asymptotic approxim-

ations [184] in case of samples with large statistics, otherwise, the PDF is estimated with toy-

MC studies. Toy-MCs, extensively employed in the work described in this thesis, are basically

defined as simplified simulations. Instead of employing the full simulation procedure of the

physical processes and the detector (section 3.1), toy-MCs rely on the knowledge of the PDF of

the observables of the analysis. This allows one to generate quickly and in a CPU affordable

way a large amount of different datasets with the same properties as the one composed of real

data.

The compatibility of a hypothesis with the data is tested through the introduction of the concept

of the p-value. This quantity represents the probability of finding a larger incompatibility

between the data and the H hypothesis, under the assumption that H is valid, as illustrated in

figure 6.1(a). Considering the hypothesis H0, the p-value can therefore be evaluated as [184]:

p =
∫ ∞

tobs

g (t |H0)d t , (6.5)

where the integral is taken between the observed value of the test statistic to infinity. It is often

convenient to convert the p-value into a significance Z , defined as the number of standard

deviations from the mean of a normal distribution for which the integral of the tail of the curve

is equal to p. The significance Z is therefore written as

Z =Φ−1(1−p), (6.6)

whereΦ−1 represents the inverse of the cumulative function of a normal distribution. A graph-

ical representation of the significance is provided in figure 6.1(b). The standard approach in

particle physics when e. g. performing a signal+background versus background only hypothesis

test, is to declare a discovery for a significance Z ≥ 5 against the background only hypothesis.

This corresponds to p ≤ 2.87×10−7. A significance 3 ≤ Z < 5 is often regarded as evidence and

corresponds to 2.87×10−7 < p ≤ 0.0013.

6.2.1 The profiled likelihood ratio

The choice of an appropriate test statistic is crucial for hypothesis testing. A test statistic widely

employed by the LHC experiments is the profiled likelihood ratio, and it is defined as [182, 187]:
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(a) Illustration of the relation between the p-value ob-
tained from an observed value of the test statistic tµ.

(b) The standard normal distribution φ(x) =
1/
p

2πexp(−x2/2) showing the relation between
the significance Z and the p-value.

Figure 6.1: Figures from [184].

λ(s) = L (s, ˆ̂θ)

L (ŝ, θ̂)
, (6.7)

where s represents the vector of the parameters of interest, defined as the quantities that the

analysis aims to measure, and θ represents the nuisance parameters. These are the remaining

parameters of the likelihood and represent quantities not of immediate interest but that must

be taken into account in the analysis of the parameters of interest. The ŝ and θ̂ symbols repres-

ent the maximum likelihood estimators of s and θ, while ˆ̂θ is the maximum likelihood estimator

of θ for a given s; therefore, the denominator L (ŝ, θ̂) corresponds to the absolute maximum of

the likelihood, while the numerator L (s, ˆ̂θ) corresponds to the maximum of the likelihood for

a given value of s.

This quantity ranges between 0 and 1, with higher values corresponding to a better agreement

of the data with the s hypothesis.

It can be proved that for samples with large statistics, the function of the profiled likelihood

ratio defined as

Λ(s) =−2logλ(s) =−2log

L (s, ˆ̂θ)

L (ŝ, θ̂)

 (6.8)

behaves as a χ2 function with the number of degrees of freedom corresponding to the number

of parameters of interest [182, 184].

6.3 Uncertainties and confidence intervals

The maximum likelihood approach allows one to obtain an estimation of the parameters of

interest, but an evaluation of the uncertainty still has to be discussed. The uncertainty on a

measurement is usually reported as its standard deviation σ (or its variance σ2) and referred to

as standard error. It measures how widely the estimates would be distributed if the experiment

were to be repeated many times with the same number of observations per experiment [182].
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The standard error reported for a measurement, θi ±σθi or θ
+σ+

θi

i −σ−
θi

for asymmetric uncertainties,

is conventionally chosen to cover an interval in which 68.3% of the repeated measurements

would fall.

The definition of the standard error does not make any statement on the position of the “true”

value, the actual physical parameter the experiment is trying to measure. Confidence intervals,

on the other hand, allow for a quantitative statement about the fraction of times that such an

interval would contain the true value of the parameter in a large number of repeated exper-

iments [182]. Confidence intervals are usually extracted to have a coverage of 68.3%, which

corresponds to the canonical 1 σ interval.

Even if the final result of the analysis discussed in this thesis employs confidence intervals eval-

uated using the exact frequentist construction known as Neyman belt construction [178], two

other methods are used to estimate the standard errors and the confidence intervals. This al-

lows one to cross-check the Neyman belt based final result against other procedures and gives

a way to validate the ATLAS result against other experiment’s, which may employ a different

procedure for the extraction of the uncertainty.

The three approaches employed for the standard errors and confidence intervals evaluation

are the are the Rao-Cramer-Frechet (RCF) variance, that estimates the standard error, the like-

lihood intervals, which allow an approximated evaluation of the confidence intervals, and, as

already mentioned, the Neyman belt construction. The three approaches are discussed in the

following sub-sections.

6.3.1 RCF variance method

The RCF variance method [182] is the common approach employed to evaluate the covariance

matrix when the likelihood is maximised numerically. The approach is derived from the Rao-

Cramer-Frechet inequality [188] and assumes a gaussian behaviour of the likelihood as a func-

tion of the parameters θ on the vicinity of its maximum. The inverse of the covariance matrix

can be obtained as [182]: (
V̂ −1

)
i j
=−∂

2 logL

∂θi∂θ j

∣∣∣∣∣
θ=θ̂

. (6.9)

In case of a single parameter the variance can be therefore derived as:

(
σ̂2
θ

)
=

(
−1

/
∂2 logL

∂θ2

)∣∣∣∣∣∣
θ=θ̂

. (6.10)

The MIGRAD and HESSE routines in the MINUIT program [189], extensively employed in the

ROOT analysis framework [180], use this approach.

The RCF variance method allows the evaluation of the standard error of a measurement, but

does not make any statement on the position of the “true” physical value. Additionally, it de-

pends on the assumption of a gaussian likelihood. For low statistics the likelihood is not expec-

ted to show a gaussian behaviour, which implies asymmetric uncertainties on the estimated

parameters, therefore the result provided by the RCF variance is not optimal.
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6.3.2 Likelihood intervals

Confidence intervals can be estimated with an approximate technique based on the likelihood

function. As for the RCF variance, the construction depends on the gaussian assumption for

the likelihood as a function of the parameters θ.

In the case of a likelihood function with only one parameter, L takes the form [182, 185]

L (θ) =Lmax exp

− (θ̂−θ)2

2σ2
θ

 , (6.11)

where Lmax is the maximum value of the likelihood. The following log likelihood ratio can be

therefore derived

Λ(θ) =−2log
L (θ)

Lmax
= (θ̂−θ)2

σ2
θ

, (6.12)

often written as −2∆log(L ), which can lead to a simple prescription to evaluate confidence

intervals, by changing the parameter θ by N standard deviations:

Λ(θ̂±Nσθ) =±N 2. (6.13)

In particular, the approximated confidence interval with 68.3% coverage can be obtained with

Λ(θ̂±σθ) =±1.

The procedure just discussed considers a likelihood which depends only on one parameter.

In case of one parameter of interest and several nuisance parameters, instead of the likelihood

ratio shown in equation 6.12, the profiled likelihood ratio from equation 6.8 is employed.

In the case of a likelihood with several parameters of interest, the profiled likelihood ratio al-

lows the evaluation of approximated confidence regions. The profiled likelihood ratio must be

evaluated at a different value to obtain the same approximated coverage as the intervals. For

instance, for a likelihood with two parameters of interest the 1, 2 and 3 sigma contours, corres-

ponding to 68.3%, 99.5% and 99.7% coverage, can be obtained with −2∆log(L ) =2.3, 6.2 and

11.8.

For a gaussian likelihood, the likelihood intervals are symmetric around the likelihood max-

imum and correspond to the uncertainty evaluated with the RCF variance. In case of a non-

gaussian likelihood, the confidence intervals can become asymmetric, as one would expect for

a low signal statistics. However, since the hypothesis of gaussianity of the likelihood is lost, the

intervals do not necessarily correspond any more to the wanted coverage.

6.3.3 Neyman belt construction

An exact frequentist approach to evaluate confidence intervals was first developed by Ney-

man [178]. This approach, usually referred to as Neyman belt construction, relies on the know-

ledge of the PDF of the measured value of a parameter of interest sm , given the true unknown

value of the physical quantity s. This PDF g (sm |s) can be evaluated with analytical calculations
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or, more often, MC based studies.

For each possible value of the true quantity s, one can construct acceptance intervals with a

given coverage probability, e. g. 68.3%, defined as [sl , sh](s) via the integration [183]:∫ sh

sl

g (sm |s)d sm = 68.3%. (6.14)

The evaluation of an acceptance interval for each possible value of s leads to the construction

of a belt in the sm − s space. Figure 6.2 shows an illustration of a Neyman belt, where the hori-

zontal lines correspond to the acceptance intervals evaluated for different values of s.

Figure 6.2: Illustration showing the Neyman belt. The horizontal lines are the acceptance intervals in the measured
parameter space sm for a given possible true s, [sl , sh ](s). Given an observation so one can construct the
confidence interval [sd , su ]. Figure from [183].

Given an experimental measure so , which lies on the x-axis in figure 6.2, one can extract the

68.3% confidence interval [sd , su](so), in the space of the true quantity s, providing an evalu-

ation of the confidence interval.

The same approach can also be employed to obtain confidence regions in the case of more than

one parameter of interest. The integration in equation 6.14 is modified and performed over a

volume instead of an interval. In this case the Neyman belt does not lie in a 2-dimensional

space as the one shown in figure 6.2, but, for the case of two parameters of interest, in a 4-

dimensional space, with two dimensions for the true parameters and the other two for the

observed parameters.

It must be pointed out that there is no prescription given for the choice of the integration limits
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for the acceptance intervals. Given different limits, the size of the intervals might vary. Addi-

tionally, one-sided confidence intervals (upper or lower limits) can also be evaluated by chan-

ging e. g. the lower bound of the integral in equation 6.14 to minus infinity to obtain upper

limits. In order to sort out the integration limits an ordering rule is needed.

A commonly used approach, that allows a unique ordering scheme to evaluate confidence in-

tervals and upper or lower limits without changing the belt construction, is based on the likeli-

hood ratio [181, 190]

λ(s) = L (s, ˆ̂θ)

L (ŝ, θ̂)
. (6.15)

This approach, known as Feldman-Cousins ordering, allows seamless switching between an

upper limit or a confidence interval for a given coverage based on the measured value so .

It is common to come across single-parameter constructions of Neyman belts, for which sev-

eral software libraries provide pre-packaged solutions. Software solutions for the construction

of multi-dimensional belts are not as readily available. As part of the work for this thesis, a

software implementation of such a construction in the case of two physical parameters and

two observables had to be developed. A description of this implementation is provided in the

remainder of this chapter.

6.3.4 Neyman belt implementation

Given the aim of this thesis, the Neyman belt construction will be discussed here with specific

reference to the B 0
(s) → µ+ µ− analysis. In particular, the studies performed to design the Ney-

man construction procedure are based on the likelihood of the ATLAS Run 1 B 0
(s) → µ+ µ−

analysis [73], described in appendix A.

The Neyman construction will be employed to extract the belts for the evaluation of the con-

fidence intervals on the B(B 0
s → µ+ µ−) and B(B 0

d → µ+ µ−) branching fractions separately

(one-dimensional belt) and for the evaluation of the confidence regions in the B(B 0
s → µ+ µ−)–

B(B 0
d → µ+ µ−) plane (two-dimensional belt). The approach followed for the construction of

the belt, which relies on the principles described earlier in this chapter (sub-section 6.3.3), is

the same for the one- and two-dimensional cases; for this reason, the main features of the

belt construction are explained in this sub-section, while a description of the one- and two-

dimensional cases are provided later respectively in sub-sub-sections 6.3.4.1 and 6.3.4.2. The

introduction of the systematic uncertainty in the construction procedure is then discussed in

sub-sub-section 6.3.4.3.

Toy-MCs are generated according to the analysis likelihood, employing as true value of the

parameters of interest the set of values (B(B 0
s → µ+ µ−)true;B(B 0

d → µ+ µ−)true), or only

one of the two for the one-dimensional case. The fitting procedure designed to extract the

branching fractions is then applied to evaluate the likelihood maximum and extract the estim-

ated B(B 0
(s) → µ+ µ−) values. A second fit is also performed, fixing the parameters of interest

to the true values used in the generation, in order to evaluate the numerator of the profiled like-
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lihood ratio. Once a large set of toy-MCs is ready1, they are ordered according to the likelihood

ratio in formula 6.15.

The toy-MCs estimated branching fractions are taken to build the acceptance interval starting

from the ones characterised by a higher value of the likelihood ratio, until the interval presents

the wanted coverage. When the confidence band on only one of the branching ratios is sought,

the likelihood ratio in formula 6.15 is considered to have only that one parameter of interest,

and the resulting Neyman belt construction becomes one-dimensional. When, on the other

hand, a constraint on both branching ratios is placed simultaneously from the same dataset,

the likelihood ratio presents two parameters of interest and two experimentally observed val-

ues of the branching fraction.

In order to ensure exact coverage, two independent sets of toy-MCs are generated for each set

of true values. The first set, called sample A, is employed to build the acceptance interval, while

the second set, sample B, is employed to measure its coverage. In case under-coverage is detec-

ted, toy-MCs from sample A are added to the interval until the coverage measured with sample

B reaches the desired value. This procedure could then suffer from biases due to the reliance

on sample B for the final choice of the sample A entries that constitute the desired band. For

this reason further studies were carried out employing a third simulated sample (sample C) to

measure the coverage of the interval obtained with samples A and B. As an example, figure 6.3

shows the unbiased coverage measurement for the construction of the two-dimensional belt

with 68.3% (1 σ) coverage obtained with the likelihood resulting from the Run 1 analysis. The

toy-MCs are generated using the Run 1 likelihood function, varying the expected number of

signal events according to the points in a grid in the (N (B 0
s → µ+ µ−)true−N (B 0

d → µ+ µ−)true)

space2. For each point on the grid three toy-MC samples are generated (samples A, B and C),

each with 10000 events.

The coverage measured using sample A (plots in left column of figure 6.3) is overestimated with

respect to the coverage measured with the sample C (plots in right column of figure 6.3), which

is unbiased with respect to the belt construction and compatible within its uncertainty with the

desired coverage. The coverage measured with sample B (plots in central column of figure 6.3)

shows a sharp cut at the wanted coverage, this is due to the construction procedure, as the cov-

erage measured with sample B is not allowed to be lower then the wanted coverage; this choice

yields a conservative estimation of the confidence region and its coverage. The compatibility

of the measured coverage with sample C with the wanted coverage shows that the procedure

employed provides the desired acceptance regions, within the uncertainty discussed later in

this section. Additionally, the compatibility of the coverage of sample C with the desired one

motivates the usage of two samples for the construction of the acceptance regions, as the usage

of sample A alone would bias the coverage measurement.

Due to the limited size of the toy-MC samples employed in the belt construction, statistical

1 The samples employed are composed of 10000 toy-MCs each, as discussed later in this sub-section.
2 The usage of a (N (B0

s → µ+ µ−)true − N (B0
d → µ+ µ−)true) grid instead of a (B(B0

s → µ+ µ−)true −
B(B0

d → µ+ µ−)true) grid does not imply any change in the procedure. In fact there is a biunivocal connec-
tion between the number of signal events and the branching fraction given the values of the normalisation terms
in equation 5.1
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Figure 6.3: Coverage of the 1 sigma (68.27% coverage) acceptance regions built for all the points in a
(N (B0

s → µ+ µ−)true − N (B0
d → µ+ µ−)true) grid, all the toy-MC sets are generated using the Run 1

analysis likelihood function. The three columns show the coverage measured with the three samples,
respectively, starting from the left, coverage measured with sample A, B and C. The upper plots show the
coverage of each point in the grid of possible values used in the generation, while the lower plots show
the 1D plot of all measurements of the coverage. The coverage measured with sample C (not used in the
region construction) is compatible with the wanted coverage within its statistical uncertainty, while the
coverage measured with sample A overestimates the actual value. The coverage measured with sample
B shows a sharp cut, this is due to the region construction procedure, as explained in the text.

fluctuation on the measured coverage arise. The uncertainty on the coverage of the 68.3% con-

fidence region due to such fluctuations can be extracted from the Root Mean Square (RMS)

of the one-dimensional plots in figure 6.3. The uncertainty on the coverage measured using

sample C is comparable with the uncertainty measured with sample A and yields a coverage

uncertainty of 0.65 %. The same procedure is performed on the 95.5 % and 99.7 % confidence

regions (the canonical 2 σ and 3 σ), and the resulting uncertainty on the coverage is respect-

ively 0.25 % and 0.07 %.

The uncertainties obtained are considered satisfactory, therefore an increment in the size of

the simulated samples in order to reduce statistical fluctuations is not needed. For this reason,

all the toy-MCs sets employed for the construction of the Neyman belts shown in this thesis are

based on samples with 10000 simulations .

6.3.4.1 One-dimensional belt

The one-dimensional Neyman belt construction follows the procedure previously described,

leading to a well defined belt in the plane of measured vs true values of the considered branch-

ing fraction. The procedure is tested with the Run 1 likelihood; in the original version of the

analysis the confidence interval on B(B 0
s → µ+ µ−) was in fact extracted with the Neyman

approach.

Figure 6.4 shows the resulting belt in the B(B 0
s → µ+ µ−)true −B(B 0

s → µ+ µ−)fitted plane.

Both the belts with statistical only uncertainties (blue) and statistical+systematics uncertain-
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Figure 6.4: One-dimensional Neyman belt built for the extraction of the 68.3% B(B0
s → µ+ µ−) confidence interval

using the Run 1 ATLAS B0
(s) → µ+ µ− analysis likelihood. The blue belt includes statistical uncertainties

only, while the red belt includes statistical and systematic contributions, according to the procedure
discussed in sub-sub-section 6.3.4.3. The resulting confidence interval for the Run 1 B(B0

s → µ+ µ−)
value which maximises the likelihood corresponds to the Run 1 interval.

ties (red) are shown (the inclusions of the systematic uncertainties is discussed later in sub-sub-

section 6.3.4.3). The confidence interval obtained for the Run 1 analysis is B(B 0
s → µ+ µ−) =

(0.9+1.1
−0.8)×10−9 [73], which includes both statistical and systematic uncertainties. Exploiting as

experimentally observed value B(B 0
s → µ+ µ−) = 0.9×10−9 and a local approximation of the

belt with a first order polynomial in order to reduce the effects of statistical fluctuations, the

resulting confidence interval is the same as the one of the Run 1 analysis.

This validates the approach designed for the construction of the Neyman belt, allowing now to

extend it, for the evaluation of the two-dimensional confidence regions.

6.3.4.2 Two-dimensional belt

The evaluation of the two-dimensional Neyman belt is a novelty with respect to the Run 1 ana-

lysis. In fact, even if the result was in a region in which likelihood contours do not ensure

the exact coverage, due to technical reasons the two-dimensional confidence contours were

evaluated employing the likelihood contours. Thanks to the tools developed in this thesis, the

2015/16 result is based on a construction which ensures coverage.

In the two-dimensional case the Neyman belt is actually a manifold in a four-dimensional

space, where 2 dimensions are dedicated to the fitted values of the branching fractions and
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the other two to their true physical values. The acceptance region are therefore 2-dimensional,

with respect to the 1-D intervals obtained with the one-dimensional Neyman belt.

This introduces an additional issue in the construction of the acceptance regions. The same

likelihood ratio ordering is employed, but, while in the one-dimensional case it naturally provides

well defined edges of the acceptance regions, in this case it only provides a set of points in a 2-

D space. In order to obtained a well defined contour, a convex hull finding algorithm [191] is

employed on the set of points identified.

The two-samples technique to define the acceptance regions and measure their coverage (men-

tioned in section 6.3.4) is employed also in this case; the observed B(B 0
s → µ+ µ−)- B(B 0

d → µ+ µ−)

values obtained from the toy-MCs fits are ranked according to the likelihood ratio and are taken

starting from the ones with the higher ranking score. Every time a point is added the coverage

is measured with sample B on the region identified with the convex hull finding algorithm. The

procedure stops once the desired coverage is reached.

When all the acceptance regions are defined, the 4-dimensional manifold that constitutes the

Neyman belt is ready and the confidence regions can be extracted. Given an experimental

value, the two-dimensional confidence regions are evaluated finding the acceptance regions

that contain this value. Figure 6.5 shows the confidence region obtained with the construc-

Figure 6.5: B(B0
s → µ+ µ−)- B(B0

d → µ+ µ−) two-dimensional confidence regions with coverage 68.3 % (red
area), 95.5 % (green area) and 99.7% (blue area), built considering the statistical uncertainty only, based
on the Run 1 likelihood and following the procedure described in the text. The expected SM branching
fractions [54] are employed as measured value to start the confidence regions construction. Statistical
fluctuations are well visible at the edges of the contours, therefore a smoothing technique is applied to
derive well defined contours. The three lines superimposed to the filled ares show the resulting confid-
ence regions.

tion procedure based on the Run 1 likelihood, considering only the statistical uncertainty and

taking the SM expected branching fractions [54] as experimentally measured values. The filled

areas are the confidence regions with 68.3 % (red area), 95.5 % (green area) and 99.7% (blue

area) coverage.

Statistical fluctuations are well visible at the edges of the confidence regions, in particular for
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the one with 99.7% coverage. As discussed in section 6.3.4, these fluctuations are due to the

finite size of the toy-MC samples generated. An additional smoothing procedure is employed,

in order to obtain well defined contours. The three lines drawn on top of the filled areas in

figure 6.5 correspond to the edges identified with the smoothing algorithm.

6.3.4.3 Systematic uncertainties

The addition of the systematic uncertainties of the analysis to the Neyman construction is not

trivial. In fact, systematics are usually implemented in the likelihood as gaussian smearings

associated with the nuisance parameters affected by systematic uncertainties. During the like-

lihood fit, these gaussian smearings increase the uncertainty on the estimated parameters of

interest, but do not modify their central values. Since the Neyman approach does not consider

the estimated uncertainties, but only the estimated central values of the toy-MCs, an additional

step needs to be added in the procedure to include systematic uncertainties.

The generation of the toy-MCs is performed using the likelihood of the analysis, but, before

starting the fitting procedure, the central values of the nuisance parameters affected by sys-

tematic uncertainties are modified. The gaussian smearings are employed to generate a new

central value for the nuisance parameters they are associated to and such values are then used

in the fit. In order to verify that this procedure modifies the RMS of the fitted B(B 0
(s) → µ+ µ−)

distributions according to the value of the systematic uncertainties, a detailed test was con-

ducted on the Run 1 likelihood. Different sets of toy-MCs are generated using the same truth

values of the signal branching fractions (SM prediction) and adding different sources of sys-

tematic uncertainties one at the time; the distribution of the various toy-MC fit results are then

drawn to evaluate the effect of the systematic uncertainties on the RMS of the distribution.

The systematic uncertainties affecting the Run 1 analysis, discussed in appendix A, can be di-

vided into two main categories, the systematic uncertainties that scale with the estimated sig-

nals yield and the systematic uncertainties that are independent from it. Four sets of toy-MCs

are generated, according to the following specifications:

• set 1, statistical uncertainty only;

• set 2, statistical uncertainty and systematic uncertainties independent from the signals

yield;

• set 3, statistical uncertainty and systematic uncertainties that scale according to the sig-

nals yield;

• set 4, statistical uncertainty and all systematics considered.

The resulting distributions of the B(B 0
s → µ+ µ−) estimated values are shown in figure 6.6, to-

gether with the measured and expected RMS. The measured RMS is always consistent with the

expectations, showing that the procedure for the introduction of the systematic uncertainties

affects the distribution of the estimated branching fractions according to the systematics value.
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Figure 6.6: Resulting B(B0
s → µ+ µ−) distribution from toy-MC sets generated based the Run 1 likelihood function

and using the SM theoretical predictions of the signal branching fractions as true values. The top left plot
shows the B(B0

s → µ+ µ−) distribution when only the statistical uncertainty is considered (set 1), while
the systematic uncertainties do not depend on the signals yield (set 2) are added in the top right plot; in
the bottom left plot the systematic uncertainties that scale according to the signals yield are added to the
statistical uncertainty (set 3) and in the bottom right plot both systematics are considered (set 4). The
measured and expected RMS of the distributions are shown in each plot. The measured RMS is always
in agreement with the expectations.

Similar results are obtained for B(B 0
d → µ+ µ−).

The effect of the inclusion of the systematic uncertainties in the Neyman construction is shown

in figure 6.7, where the 68.3 %, 95.5 %, and 99.7% confidence regions for the construction based

on the Run 1 likelihood and taking the SM expected branching fractions [54] as experiment-

ally measured values are shown. Both the statistical only contours (dashed lines) and the stat-

istical + systematic contours (solid lines) are shown for comparison. Due to the presence of

fu/ fs(d) in the evaluation of B(B 0
s → µ+ µ−) and the larger relative statistical uncertainty of

B(B 0
d → µ+ µ−) compared to B(B 0

s → µ+ µ−), the effect of the inclusion of the systematic

uncertainties is larger on B(B 0
s → µ+ µ−) with respect to B(B 0

d → µ+ µ−).
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Figure 6.7: B(B0
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d → µ+ µ−) two-dimensional confidence regions with coverage 68.3 %, 95.5 %
and 99.7%, built considering statistical+systematic uncertainties (solid lines) and statistical only uncer-
tainties (dashed lines). The Belt construction is based on the Run 1 likelihood and follows the procedure
described in the text. The SM expected branching fractions are employed as measured values [54].



7DATA AND MC SAMPLES

A comprehensive list of the data and MC samples used in the analysis is presented in this

chapter, together with the preselection applied to both, in order to obtain a uniform reference

selection for all the steps of the analysis and manageable sized samples. The weighting proced-

ure applied to the simulated samples in order to obtain a faithful response of the MCs is also

described.

The datasets collected by the ATLAS experiment are introduced first, together with the trig-

ger selection employed (section 7.1), followed by the MC samples generated for the analysis

(section 7.2). The preselection applied uniformly to all samples is then described (section 7.3);

particular attention is devoted to the muons mis-identification probability, which is evaluated

on simulations (section 7.4) and validated on data later in the analysis, once the full selection is

defined (section 11.2.2.2). The studies carried out to validate the PV-SV association algorithm

introduced in section 3.2.2, are then described (section 7.5). Finally, the MC weighting proced-

ure is discussed (section 7.6).

7.1 Data and trigger selection

The analysis uses data from the first part of the ATLAS Run 2 dataset, consisting of
p

s = 13 TeV

collision data taken with stable LHC beams in the years 2015 and 2016. The total collected lu-

minosity is 36.2 fb−1 with an uncertainty of 2.1%, most of which was collected during 2016.

The luminosity measurement is performed using a methodology similar to that detailed in

Ref. [192], and based on the LUminosity Cherenkov Integrating Detector-2 (LUCID-2) detector [193]

for the baseline luminosity measurement. Figure 7.1 shows the cumulative luminosity de-

livered to and recorded by ATLAS during the 2015/2016 data taking period.

The trigger chains (see section 2.2.6 for more details on the ATLAS trigger system) employed

in the analysis, referred to as dimuon triggers, are based on the presence of two muons in the

MS. Several muon low-pT thresholds are available, depending on the instantaneous luminos-

ity. All the trigger chains have in common a full track reconstruction of the muon candidates

performed by the HLT, where an additional loose selection is imposed on the dimuon invariant

mass mµµ, accepting candidates in the range 4 to 8.5 GeV.

88
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Figure 7.1: Cumulative luminosity versus time delivered to (green) and recorded by ATLAS (yellow) during stable
beams for pp collisions at 13 TeV centre-of-mass energy in 2015 7.1(a) and 2016 7.1(b). The “good for
physics” luminosity obtained after the application of data quality selection, is not shown and amounts
to 36.2 fb−1, with an uncertainty of 2.1%. Plots obtained from [194].

The dimuon triggers employed in the analysis are characterised by muon pT cuts of 6 GeV

and 4 GeV respectively for the leading and sub-leading muon. Two trigger chains with these

thresholds are available during the data-taking period considered, both seeded by L1_MU6_2MU41

at the Level-1 trigger stage:

• HLT_mu6_mu4_bBmumu, dimuon trigger with pT thresholds of 6 and 4 GeV, unpres-

caled during 2015 and heavily prescaled during 2016, in favour of the next item; this is

the baseline trigger of the analysis;

• HLT_mu6_mu4_bBmumu_Lxy0, not active in 2015 and prescaled in 2016. This trigger

selection applies the same cuts, with the addition of a Lx y > 0 cut, where Lx y is the

projection of the distance between the PV and the SV on the transverse momentum of

the B candidate evaluated online by the HLT.

The total effective integrated luminosity of these two triggers combined is 26.3 fb−1, where the

prescaling of the triggers approximately averages to a reduction by a factor of 1.4.

The addition of another trigger, HLT_2mu6_bBmumu_Lxy0, characterised by muon pT thresholds

of 6 GeV, would allow the usage of the full available integrated luminosity, but studies per-

formed with toy-MC simulations show limited improvements on the reach of the analysis, for a

major increment in its complexity. For this reason, the trigger chain with muons pT thresholds

of 6 GeV is not used.

Considering the two triggers with muon pT thresholds at 6 and 4 GeV, a two-fold increment in

the available signal statistics with respect to the Run 1 analysis [73] is estimated, exploiting the

approach described in chapter 13 for the signal statistics extrapolation, as already mentioned

in section 5.1.

1 L1 trigger which requires a 6 GeV muon pT threshold to fire once and a 4 GeV muon pT threshold to fire twice,
effectively requiring a muon with pT = 6 GeV and a muon with pT = 4 GeV.
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The B+ → J/ψK + (reference) and B 0
s → J/ψφ (control) channels need a different trigger se-

lection, as the dimuon invariant mass of the J/ψmeson would fall outside of the mass window

selected. In order to allow the systematic uncertainty reduction in equation 5.1, the trigger

selection performed has to be similar to the one used for the signal samples. For this reason,

the same L1 trigger is employed, L1_MU6_2MU4, and the HLT selection only differs for the

dimuon invariant mass mµµ cut, tuned on the J/ψ meson mass (2.5 < mµµ < 4.3 GeV). The

available triggers with this property are:

• HLT_mu6_mu4_bJpsimumu: basic dimuon trigger for muons pT thresholds of 6 and 4

GeV, only active in 2015;

• HLT_mu6_mu4_bJpsimumu_Lxy0: adds an Lx y > 0 cut on-top of

HLT_mu6_mu4_bJpsimumu. This trigger was prescaled at the beginning of 2016 and

heavily prescaled afterwards;

• HLT_mu6_mu4_bJpsimumu_Lxy0_delayed: same as

HLT_mu6_mu4_bJpsimumu_Lxy0 but redirected to a different data stream, named

delayed stream.

The total effective collected integrated luminosity for the reference and control channels is

15.1 fb−1, for an effective prescale of about 2.4.

7.2 MC

Several MC samples are required for most of the steps of the analysis: a comprehensive list of

the processes simulated is provided in table 7.1. MC samples are categorised “signal” if they

are used to emulate the behaviour of the signal processes, “reference” for the MC used for the

reference channel simulation, “control” for the control channel and “bkg” for the background

samples. In addition, the number of generated events is reported, as well as the MC generator

used.

In order to expedite the generation of the MC samples listed in the table, a set of kinematic

cuts is employed at the generation level. The usage of such cuts can introduce a bias in the

kinematic distributions. For this reason, a re-weighting procedure, discussed in detail in sec-

tion 7.6.4.1, is applied to the MC samples.

For all the MC samples the detector simulation has been performed using ATLFAST-II, de-

scribed in section 3.1.2, the only exceptions are the samples used for the studies of the peaking

background and muon mis-identification probability, for which the full simulation of the de-

tector is exploited.

Most of the dimuon candidates in the data sample, as observed in the Run 1 analysis, originate

from the decay of hadrons produced in the hadronisation of bb̄ pairs. This includes a large

amount of possible processes, which are simulated in the inclusive bb →µ+µ−X MC. The gen-

eration of this sample requires the presence of two muons in the final state, with both muons
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Table 7.1: Monte Carlo data samples for signal, reference, control and background channels. EvtGen is employed
for all the samples except for B0

s → J/ψφ, B → hh′ and bb → µ+µ−X . This is because the B0
s → J/ψφ

sample is shared with other analyses, therefore it is generated with flat angular distributions and then the
SM distributions are recovered through a hit-and-miss approach. Regarding the B → hh′ sample, in order
to ????? The bb →µ+µ−X is specifically designed to contain only certain decays, therefore the property of
such decays are added by hand.

Channel Type Events Generator

B 0
s → µ+ µ− exclusive signal 1,000,000 PYTHIA+ EvtGen

B 0
d → µ+ µ− exclusive signal 1,000,000 PYTHIA+ EvtGen

B+ → J/ψK + with J/ψ→µ+µ− exclusive reference 1,997,000 PYTHIA+ EvtGen

B− → J/ψK − with J/ψ→µ+µ− exclusive reference 1,999,500 PYTHIA+ EvtGen

B+ → J/ψπ+ with J/ψ→µ+µ− exclusive bkg 498,000 PYTHIA+ EvtGen

B− → J/ψπ− with J/ψ→µ+µ− exclusive bkg 500,000 PYTHIA+ EvtGen

B 0
s → J/ψφ with J/ψ→µ+µ−, φ→ K +K − exclusive control 5,000,000 PYTHIA+ Photos

B → hh′ exclusive bkg 5,000,000 PYTHIA

B 0
s → K −µ+ν exclusive bkg 250,000 PYTHIA+ EvtGen

B 0
s →π−µ+ν exclusive bkg 500,000 PYTHIA+ EvtGen

Λ0
b → pµ−ν exclusive bkg 250,000 PYTHIA+ EvtGen

bb → J/ψX with J/ψ→µ+µ− inclusive bkg 10,000,000 PYTHIA+ EvtGen

bb →µ+µ−X inclusive bkg 650,000,000 PYTHIA+ Photos

originating from the bb̄ decay chain. Prompt dimuons and dimuons from cc̄ pairs are not

included in this simulation, as their contribution would be removed in any case by the MVA

selection, discussed in section 8.2.

According to the SM, the main contributor to the B 0
s → µ+ µ− decay is the Bs,H state, whose

lifetime is 1.615 ps [11]. On the other hand, some new physics scenarios are expected to modify

the decay time distribution of B 0
s → µ+ µ−, which would become different from the one of Bs,H ,

with the effect related to the observable A
µµ

∆Γ [48, 53]. Possible changes in the analysis due to

lifetime variations can be checked by applying a correction to the acceptance and efficiency

ratio present in formula 5.1. In order to minimise the uncertainty due to application of this

correction, the B 0
s → µ+ µ− MC sample is generated using as lifetime of the B 0

s meson the av-

erage of the two mass eigenstates Bs,H and Bs,L , 1.533 ps. A correction is therefore applied to

the RAε term in formula 5.1 for the evaluation of the branching fraction in the SM.

This procedure is not employed for the B 0
d → µ+ µ− process; due of the small value of∆Γd , vari-

ations in the branching fraction would not be appreciable. For this reason, the B 0
d → µ+ µ−

MC is generated maintaining the B 0
d experimentally measured lifetime.

7.3 Event preselection

A first loose selection is applied to the candidates of both MC and data samples allowing man-

ageable dataset sizes and a uniform reference selection for all the analysis steps. Table 7.2
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shows the preselection applied to the signal, reference and control channels, on top of the trig-

ger selection described in section 7.1.

The information on the B decay vertex (SV) can be determined either combining the ID and

Table 7.2: Preselection applied to signal, reference and control channels. The first column shows the cut applied, the
second column the channel(s) affected and the third column provides a brief description of the quantity
involved.

Cut Type description

combined muon [161] all Muon candidates are required to have com-
patible tracks in both the ID and the MS.

pT(µ1) > 6 GeV, pT(µ2) > 4 GeV all Transverse momentum of the muon candid-
ates.∣∣η(µ)

∣∣< 2.5 all Pseudorapidity of the muon candidates.

pB
T > 8.0 GeV all Transverse momentum of the B candidate.∣∣∣ηB

∣∣∣< 2.5 all Pseudorapidity of the B candidates.

χ2
B /N DF < 6 all Reduced χ2 obtained from the vertexing

procedure employed to reconstruct the SV.

4766 MeV < m(B) < 5966 MeV signal and
control

Invariant mass of the B candidates.

4930 MeV < m(B) < 5630 MeV reference Invariant mass of the B candidates.

loose track quality selection [195] reference
and control

Quality requirement on the tracks.

pT(K ) > 1.0 GeV reference
and control

Transverse momentum of the kaon candid-
ates.∣∣η(K )

∣∣< 2.5 reference
and control

Pseudorapidity of the kaon candidates.

2915 < m(J/ψ) < 3275 MeV reference
and control

Invariant mass of the J/ψ candidates.

χ2
J/ψ/N DF < 6 reference

and control
Reduced χ2 obtained from the vertexing
procedure employed to reconstruct the J/ψ
candidate.

1005 < m(φ) < 1035 MeV control Invariant mass for the φ candidate.

χ2
φ/N DF < 10 control Reduced χ2 obtained from the vertexing

procedure employed to reconstruct the φ

candidate.

MS tracking information (section 2.2.5) or using ID hits alone (section 2.2.3). The first approach

was proved to provide a narrower mass distribution of the signal MC samples with respect to

the second approach, and therefore it is chosen to evaluate the properties of the B candidates

for the B 0
(s) → µ+ µ− channels.

The reference and control modes final states contain also additional tracks (the kaons in the B

decay chain); for these channels the combined ID-MS information was found to provide wider

mass distributions than the second approach. For this reason, only the ID hits are employed
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for them.

The mass distribution of the B 0
(s) → µ+ µ− candidates has a blinded region (5166-5526 MeV)

chosen to exclude the B 0
s → µ+ µ− and B 0

d → µ+ µ− peaks. The reconstructed mass interval

(4766 MeV < m(B) < 5966 MeV) is designed to contain this blinded region, allowing studies on

the mass sidebands (4766 MeV < m(B) < 5166 MeV and 5526 MeV < m(B) < 5966 MeV). Fig-

ure 7.2 shows the expected shapes of the B 0
s → µ+ µ− and B 0

d → µ+ µ− mass distributions

obtained from simulations, together with the width of the blinded region; more detailed stud-

ies are provided in section 11.2.1. Data contained in this region was not accessible until the
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Figure 7.2: Dimuon invariant mass distribution for the B0
s and B0

d signals shapes obtained from simulations (sec-
tion 11.2.1), normalised to the SM prediction for the expected yield with an integrated luminosity of
26.3 fb−1. The two dashed lines indicate the blinded region that contains the the B0

s → µ+ µ− and
B0

d → µ+ µ− peaks.

analysis was fully tuned.

The tight muon [161] working point is also required, in order to enhance the fake-muon rejec-

tion. This requirement is relaxed in the studies performed on the B → hh′ MC, to estimate the

muon mis-identification fraction, section 7.4, and on the studies performed on data and MC to

estimate the B → hh′ yield in the signal region, section 11.2.2.2.

Additional cuts are applied to reduce the background yield without significantly affecting the

signal. The addition of these cuts reduces the background by more than 20%, maintaining a

signal efficiency of about 98%. These are:

• ∆Rflight < 1.5;

• |α2D | < 1.0;

• Lx y > 0, tightened to Lx y > 0.3 for the B+ → J/ψK + Data Driven Weights (DDW) calcula-

tion, see section 7.6.4.2.
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Where ∆Rflight is the three-dimensional opening, defined as
√
∆φ2 +∆η2, between the B can-

didate reconstructed momentum and the vector between the PV and SV, and |α2D | is the ab-

solute value of its transverse-plane projection. Lx y is the projection of the distance between

the PV and the SV along the transverse momentum of the B candidate (already mentioned in

section 7.1).

7.4 Studies on fake muons rate

Muon fake rates need to be carefully tuned and measured as the backgrounds due to B de-

cays with hadrons mis-identified as muons constitute one of the main background sources of

the analysis. This section shows therefore the studies performed on the B → hh′ MC sample to

evaluate the mis-identification fraction (or fake rate) of hadrons into muons. Additional studies

on the B 0
s → µ+ µ− simulated sample are performed, to evaluate the efficiency of real muons.

The muon fake rate measured on MC will then be validated on real data in section 11.2.2.2.

The mis-identification fraction is evaluated using the hadrons coming from B → hh′ decays, as

the MC sample generated for this process has large statistics and the hadrons produced present

the typical kinematic properties of the particles involved in this analysis. The two hadrons in

the decay are considered uncorrelated, as the possible effect of such correlation on the mis-

identification fraction has been tested and found to be negligible. The quantity evaluated in

this section is therefore the “single-leg” mis-identification fraction.

The calculation is based on the ratio of hadrons mis-identified as muons divided by the total

number of hadrons. The preselection described in the previous chapter is applied to both the

numerator and the denominator, except for the tight muon Working Point (WP) requirement

and the kinematic cuts on the reconstructed muons. Since most of the events do not contain

any reconstructed muon, the kinematic selection is applied to the tracks in the ID and the pT of

the tracks is required to be higher than 4 GeV. In order to be mis-identified as a muon, a hadron

not only has to be reconstructed offline as a muon object, but also needs to be identified as a

muon by the online trigger system. For this reason, a single muon trigger, with a pT threshold

of 4 GeV, is required in the numerator, while no trigger requirements are applied to the denom-

inator. A different muon threshold (pT higher than 6 GeV) has also been tested, applying the

threshold to both the offline muon pT and the trigger threshold, but no significant difference

was found.

The muon efficiency is evaluated on the B 0
s → µ+ µ− MC, using only muons coming from

the signal process. The number of muons that pass the muon quality requirements divided by

the total number of muons is defined as muon efficiency. Also in this case the preselection de-

scribed in the previous chapter is applied to both the numerator and the denominator, except

for the tight muon quality requirement. The dimuon trigger HLT_mu6_mu4_bBmumu, seeded

at L1 by L1_MU6_2MU4 is required to have fired in both the numerator and the denominator.

Possible variations in the muon efficiency might be due to the usage of a different trigger. The
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other HLT trigger employed in the analysis is therefore tested (HLT_mu6_mu4_bBmumu_Lxy0)

and no difference in the muon efficiency is found.

The definitions of the mis-identification fraction and muon efficiency follow the ones used in

the Run 1 analysis, so that the performance of the two analyses can be compared.

The Run 1 analysis [73] employed an ad-hoc BDT classifier (“fake-BDT”) to optimise efficiency

vs mis-ID probability (section A.2 in appendix A), as the ATLAS default muon identification was

found to be not sufficient. The muon requirements have been re-defined for Run 2 [161], im-

proving the muon purity, thanks to the introduction of different Working Points (WPs) which

implement some of the most effective variables used in the fake-BDT.

Table 7.3 shows the mis-identification fractions and the muon efficiency for the loose and tight

WPs, for different admixtures of positive and negative π and K . The mis-identification fraction

and muon efficiency from the Run 1 analysis are also shown (when available).

Table 7.3: Mis-identification fraction and muon efficiency for the loose and tight muon Working Points (WPs), meas-
ured respectively employing the B → hh′ and B0

s → µ+ µ− exclusive MC samples. For comparison, the
same quantities from the Run 1 analysis, when available. Different admixtures of positive and negative
π and K are considered. The mis-identification fraction is calculated as the ratio of the number of had-
rons after all selections and the quality requirements divided by the total number of hadrons that pass
all selections. Muon efficiency is defined as the number of muons that pass all selections and the qual-
ity requirements divided by the total number of muons that pass all selections. The uncertainty, when
reported, is purely statistical, due to the finite size of the simulated samples.

Run1 fake-BDT loose muon WP tight muon WP

Mis-identification
fraction

total 0.00067 0.002395 ± 3.0e-05 0.000944 ± 1.9e-05

total + 0.00227 ± 4e-05 0.00091 ± 3e-05

total - 0.00252 ± 4e-05 0.00098 ± 3e-05

total π 0.0004 0.00270 ± 5e-05 0.00106 ± 3e-05

total K 0.0009 0.00210 ± 4e-05 0.00083 ± 3e-05

π+ 0.00042 0.00257 ± 6e-05 0.00103 ± 4e-05

π− 0.00044 0.00282 ± 7e-05 0.00108 ± 4e-05

K + 0.00101 0.00199 ± 6e-05 0.00079 ± 44e-05

K − 0.00076 0.00222 ± 6e-05 0.00088 ± 4e-05

Muon efficiency

µ 0.95 0.997 ± 1e-03 0.899 ± 1e-03

µ+ 0.997 ± 1e-03 0.900 ± 1e-03

µ− 0.997 ± 1e-03 0.898 ± 1e-03

The resulting mis-identification fraction for the tight muon WP is a factor of ∼ 1.5 higher than

the Run 1 fake-BDT, for a comparable muon efficiency.

In order to ensure that the usage of the tight muon WP does not compromise the performance

of the analysis, a toy-MC based study is performed.

The impact of the usage of tight muon WP on the Run 1 analysis is verified first, in order to

check the possible degradation of the result. This studies are performed generating toy-MC

using the likelihood of the Run 1 analysis in two configurations. The first configuration is the
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baseline Run 1 analysis, as described in appendix A; the second configuration uses the same

functional forms as the Run 1 likelihood, but the normalisations of the various components are

set to the usage of the Run 2 tight muon WP. Such expected yields are calculated by applying

the mis-identification rates and muon efficiency from table 7.3 to the calculated yields of the

Run 1 analysis before the application of the fake-BDT. All the toy-simulations are generated for

the SM value of the signal branching fractions [54].

The impact of the tight muon WP with respect to the usage of an ad-hoc fake-BDT is then

checked scaling the expected signal and background statistics to the one of the 2015/16 ana-

lysis, according to the evaluation performed in section 7.1. Two sets of toy-MC are generated

also in this case, maintaining the properties of the ones already described, but scaling the stat-

istics by a factor of 2.

The resulting RMS of the signal yield distributions obtained from the four toy-MC studies are

sown in table 7.4. No significant effect on analysis sensitivity is visible for B 0
s , while a ∼ 1%

broader RMS is visible on the B 0
d count.

In view of these result, the tight muon WP does not compromise the performance of the ana-

lysis, and is therefore employed to reduce the fake muons contamination.

Table 7.4: RMS of distributions of number of fitted B0
s and B0

d candidates in the four toy-MC studies described in
the text. The columns labelled “Run 1 analysis” refer to the statistics available in the previous analysis,
modified for the usage of tight muons in case of the second column. Columns labelled “2015/16 analysis”
refer to the estimation of the statistics available for this analysis, performed in section 7.1.

Run 1 analysis 2015/16 analysis

fake-BDT tight muons WP fake-BDT tight muons WP

RMS NB 0
s → µ+ µ− 15.20±0.01 15.16±0.01 21.260±0.015 21.260±0.015

RMS NB 0
d → µ+ µ− 13.88±0.01 13.96±0.01 18.850±0.015 19.130±0.015

7.5 Primary vertex association

The standard ATLAS approach to select the PV to be associated with the candidates of interest

(
∑

p2
T, described in section 3.2.2) was proven to be not optimal for the low momentum scale

of the physics objects involved in this search in the previous version of the analysis [73]. The

correct association of the B decay vertex to its PV is critical for the B 0
(s) → µ+ µ− analysis. In

fact, some of the variables used in the MVA selection for the background reduction, described

in section 8.2, heavily depend on the correct PV-SV association. For this reason, the previous

analysis relied on an ad-hoc approach to associate PV to B candidates; this approach is named

PV_MIN_Z0_BA and is described below.

Given the increased energy and pile-up conditions that characterise the Run 2 of the LHC, the

PV-SV association algorithm needs to be tested.

In this section the performance of the Run 1 approach is compared to three alternate methods.

The four algorithms considered are:
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• PV_MAX_SUM_PT2: predefined in ATLAS, considers the sum of the squared transverse

momentum of the tracks associated to each PV, the chosen PV is the one with the highest

sum;

• PV_MIN_A0: a backward extrapolation of the B momentum from the decay vertex is

considered, the PV is chosen as the one with the shortest 3D distance from the Point

Of Closest Approach (POCA) of the B extrapolation to each of the reconstructed PVs;

• PV_MIN_Z0: similar to PV_MIN_A0, but uses the distance along z from the POCA of the

B extrapolation to each of the reconstructed PVs;

• PV_MIN_Z0_BA (Run 1 analysis approach): the associated PV is chosen as the one with

the shortest separation, along z, from the POCA of the B extrapolation to the beam line.

The performance of these procedures is tested on a sub-sample of the signal MC.

A quantitative estimation of the algorithm’s performance is obtained computing, for each PV

reconstructed in the events, the χ2 compatibility of the 3D vertex position relative to the MC

truth for the signal. The reconstructed PV with the lowest χ2 in each event is “truth-matched”

i. e. considered to be correctly associated to the B candidate. Figure 7.3 shows the distribution

of the χ2 of all the PVs reconstructed in the events (blue points) and the distribution of the χ2

of the “truth-matched” PVs (red points). Two clear peaks appear in the plot, the first on the left,

which corresponds to the “truth-matched” vertices and the second, much higher, on the right,

corresponding to all the remaining vertices. Figure 7.4 shows the distribution of the chosen
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Figure 7.3: χ2 of all the PVs (blue points) and the distribution of the χ2 of the “truth-matched” PVs.

PVs using the 4 approaches (green distributions) superimposed to the truth-matched distribu-

tion (red). While the PV_MAX_SUM_PT2 distribution shows two clear peaks, corresponding to

correct (left peak) and wrong (right peak) associations, the other three algorithms present es-

sentially the single “truth-matched” peak one would expect for the right PV association. Two

quantities can be defined to compare the performance of the four algorithms:

• efficiency, defined as the ratio of the number of successful PV-SV associations, without

considering if it is correct, and the total number of B candidates;
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Figure 7.4: χ2 distribution of the chosen PVs using the 4 approaches (green distributions) superimposed to the
truth-matched distribution (red).

• purity, defined as the ratio between the number of correct associations and the total

number of successful associations.

Given the definition of the four approaches, their efficiency is always 1, as they always provide a

PV candidate. On the other hand, the purity of each algorithm, shown in table 7.5, can vary. As

Table 7.5: Purity of the four considered approaches to perform PV-SV association.

Approach Purity

PV_MAX_SUM_PT2 0.451±0.0053

PV_MIN_A0 0.9938±0.0008

PV_MIN_Z0 0.9937±0.0008

PV_MIN_Z0_BA 0.9931±0.0009

anticipated, the purity for PV_MAX_SUM_PT2 is significantly lower than the other approaches,

which have compatible performance with one another.

Due to the increasing pile-up environment in Run 2, the stability of the four approaches as

a function of the number of reconstructed primary vertices in each event is also tested. Fig-

ure 7.5 shows the purity of each approach as a function of the number of reconstructed primary

vertices in the pp collision. While PV_MAX_SUM_PT2’s purity depends on the number of re-

constructed primary vertices, the other algorithms appear stable. Given the lack of significant
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Figure 7.5: Purity as a function of number of reconstructed PVs for the four approaches.

improvements with the two new approaches tested, the same algorithm used in the Run 1 ana-

lysis (PV_MIN_Z0_BA) is chosen.

7.6 MC samples reweighting

MC simulations often do not fully reproduce the data kinematics, one common approach ap-

plicable in cases where reference samples are accessible is to re-weight them to obtain a real-

istic response. This procedure allows also to evaluate systematic uncertainties related to the

MC imperfections.

This section provides a description of the main causes of MC mis-modelling and the approach

followed in the reweighting procedure.

The main causes of data-MC discrepancies are an imperfect detector and trigger response sim-

ulation, the usage of a different PU profile in the simulation with respect to data and kinematic

discrepancies of the B meson spectrum due to imperfections in the b quark phase space and

hadronisation models.

The differences between MC and data are tackled separately, introducing different sets of cor-

rections to be applied on MC simulations. In order to have a realistic response in simulations,

all the corrections are evaluated with data-driven approaches.

• Pile-up reweighting: this set of weights is used to correct the PU profile of the simu-
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lation in order to match the one present in data, these weights are described in sub-

section 7.6.1.

• Muon offline efficiency weights: these weights correct the detector response to muons

in simulations, they are described in sub-section 7.6.2.

• Muon trigger weights: used to correct the trigger response to muons in simulations, de-

scribed in sub-section 7.6.3.

• Kinematic corrections: these weights are used to correct kinematic discrepancies in the

B candidates spectrum in MC. As introduced in section 7.2, only the exclusive samples

are subjected to this procedure. More attention is dedicated to these corrections in the

current chapter, as the author had a major role in their calculation. Sub-section 7.6.4

presents an extensive discussions on these weights.

7.6.1 Pile-up reweighting

MC samples are usually produced before data taking has concluded, by this design, only a best

guess of the data Pile-Up (PU) conditions can be put into the MC. For this reason, there is the

need to reweight the MC PU profile to the actual data taking conditions.

The PU reweighting is based on the average number of pile-up interactions, defined as 〈µ〉.
This quantity allows one to take into account both the in-time PU (number of interactions in

the same bunch crossing, as explained in section 3.1.1) and the the out-of-time PU (overlap-

ping signals in the detector from other neighbouring bunch crossings). Figure 7.6 shows the

mean number of interactions per bunch-crossing during the 2015-2016 data taking campaign.

Since the PU reweighting is a procedure applied to essentially all ATLAS analyses, a common

Mean Number of Interactions per Crossing

0 5 10 15 20 25 30 35 40 45 50

/0
.1

]
-1

D
el

iv
er

ed
 L

um
in

os
ity

 [p
b

0
20
40
60
80

100
120
140
160
180
200
220
240

=13 TeVsOnline, ATLAS -1Ldt=42.7 fb∫
> = 13.7µ2015: <
> = 24.9µ2016: <
> = 23.7µTotal: <

2/17 calibration

Figure 7.6: Mean number of interactions per bunch-crossing for the 2015 and 2016 pp collision data at 13 TeV
centre-of-mass energy. Plot obtained from [194].

tool is provided in the ATLAS software, called PileupReweighting tool. This tool basically takes



7.6 MC samples reweighting 101

the ratio of the average number of PU interactions in data and in MC and provides per-event

weights to be used on simulations; this approach is designed not to modify the normalisation

of the simulations. On top of its main purpose, the PileupReweighting tool is also designed to

take into account the effect of the prescales applied to the triggers employed in the analyses.

In this case the tool is designed to modify the normalisation of the simulation according to the

effective collected luminosity for the selected samples; this allows to avoid the association of

large weights to the simulated events.

The uncertainty associated with the PU weights, derived from the PU reweighting procedure

and from the uncertainty on the collected luminosity, is also provided, to be used as a system-

atic uncertainty in the ATLAS analyses.

7.6.2 Muon offline efficiency weights

Muon offline efficiency weights are used to correct the detector response to muons in MC.

As for the PU weights, these corrections are widely used in all ATLAS analyses which employ

muons.

These weights are applied to single muons, therefore each B candidate is associated to two

weights. Different sets of weights are available, based on the muon-ID working point used in

each analysis.

The weights are calculated as the ratio of the offline reconstruction efficiency in data εData and

in simulations εMC [196]. The efficiencies, in turn, are evaluated using a tag-and-probe tech-

nique in both data and MC. Muon samples from J/ψ→ µ+µ− and Z → µ+µ− events are em-

ployed, in order to study the efficiency for different muon pT ranges. The samples are collected

by requiring one leg of the decay (tag) to be identified as a muon that fires a single muon trig-

ger and the second leg (probe) to be reconstructed by a system independent of the one being

studied [196]. An additional selection, tuned on the event topology, is applied to reduce the

background contamination.

Since muons are reconstructed using information from the ID, the calorimeters and the MS,

three kinds of probes are available. ID tracks and calorimeter-tagged muons (see section 3.2.3

for more details) are used to measure the MS efficiency, while MS tracks are used to evaluate

the complementary efficiency of the muon reconstruction in the ID. The final value of the effi-

ciency is obtained combining the different efficiency measurements.

The efficiencies are evaluated in different η and pT regions, as shown in figure 3.3 in sec-

tion 3.2.3, allowing to calculate the offline efficiency weights with the same binning scheme.

As for the PU reweighting, these weights are associated with an uncertainty, to be used as a

systematic uncertainty in the ATLAS analyses.

7.6.3 Muon trigger weights

Muon trigger weights account for the different response of the muon triggers in real data and

simulations. Also in this case these corrections are common to the ATLAS analyses which em-
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ploy muon triggers.

The evaluations of the weights is similar to the approach used to calculate the muon offline

efficiency weights, taking the ratio of the trigger efficiency measured in data and in MC. Such

efficiency measurements are performed for a range of different topologies and muon trans-

verse momentum. Dimuon decays of J/ψ and Z are used to evaluate the trigger efficiency for

low and moderate pT muons respectively. Two topologies targeting semileptonic t t̄ candid-

ates and W+jets events are employed for the determination of the efficiency of high-pT muons.

Given the low-pT regime of the B 0
(s) → µ+ µ− analysis, the most important contribution comes

from the weights obtained with the J/ψ→µ+µ− process.

The efficiencies in data and MC are evaluated with a tag-and-probe method, using single muon

triggers to select the tag muon. The probe muon is obtained by reconstructing the physics pro-

cess of interest, e. g. a J/ψ dimuon decay. In order to obtain the weights for dimuon triggers, the

correlation between the two muons at the trigger stage should be taken into account. The cor-

relation term becomes relevant if the opening angle between the two muons is small, therefore

they might trigger the same muon chamber. Given the typical opening angle of the dimuon

candidates for the B 0
(s) → µ+ µ− analysis, this term is found to be not relevant and therefore is

not included.

Two sets of weights are derived. The first set of weights is obtained for 2015 and 2016 separately,

divided in intervals of pµ

T and ηµ. The second set of weights is obtained dividing the datasets

in smaller time periods, but maintaining a coarser binning in pµ

T and ηµ in order to preserve a

manageable uncertainty. Since no difference in the effects of the two sets of weights is found,

the former is chosen to be used in the analysis.

As for the other corrections described, these weights are associated to an uncertainty, to be

used as a systematic uncertainty in the ATLAS analyses.

7.6.4 Kinematic corrections

The remaining set of weights are meant to correct B mesons kinematic discrepancies between

data and simulations. Such discrepancies are due to cuts applied to the MC samples at the

generation stage or to a non-perfect modelisation of the physics processes in simulations.

Two sets of weights are used to improve the data-MC agreement:

• Quark Level Corrections (QLC): account for the (pT(B), η(B)) selection bias introduced

to expedite the MC generation of b quarks; these weights are described in sub-section 7.6.4.1;

• Data Driven Weights (DDW): account for residual data-MC (pT(B), η(B)) discrepancies,

mostly arising from differences in the b quark phase space and hadronisation models;

these weights are described in sub-section 7.6.4.2.

Both sets of weights are evaluated on a (pT(B), η(B)) grid and only for the exclusive MC simu-

lations, that are consistently used across the analysis after applying both QLC and DDW. The

two sets of weights are meant to be used in combination in order to obtain the most faithful re-

sponse from the MC, as well as a direct way of accounting for residual data-MC discrepancies
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through the propagation of QLC and DDW uncertainties.

While QLC are evaluated using simulations, as explained in section 7.6.4.1, DDW are obtained

with data-driven techniques. For this reason, background contributions have to be considered.

A background subtraction procedure is employed, based on an additional set of weights called

Sideband Weights (SBW), described in detail in section 7.6.4.2.

The full event selection shown in section 7.3 is applied to both data and MC for the SBW and

DDW calculation. The simulated samples involved in the DDW calculation are corrected using

the PU, offline efficiency, trigger efficiency and QLC weights. This allows one to account for

all possible residual data-MC discrepancies. The DDW are evaluated for both the B+ → J/ψK +

and B 0
s → J/ψφ channels. An additional Lx y > 0.3 mm is employed for the reference channel,

in both the SBW and DDW evaluation, in order to remove most of the combinatorial back-

ground, which would otherwise overtake the signal, especially in the low pT region. This cut

was shown to highly reduce the background, about 80% reduction verified on B+ → J/ψK +

data sidebands, while removing about 13% of the signal, verified with a study performed on

MC. The pT(B) and η(B) distributions were also found not to be critically modified by this addi-

tional cut. The Lx y > 0.3 mm selection is not employed for the control channel, as the combin-

ation of the selections applied to the J/ψ candidate and to the φ candidate (both described in

section 7.3) allows a high reduction of the background. For this reason, the B 0
s → J/ψφ sample

has a better signal over background ratio compared to the reference channel sample.

These weights are exclusive to the B 0
s → µ+ µ− analysis and are not employed in other ATLAS

analyses, therefore the full description of their derivation is given in the following sections. QLC

are described in sub-section 7.6.4.1, the procedure followed to evaluate the DDW is described

in sub-section 7.6.4.2, together with the SBW, used to perform the background subtraction in

data.

7.6.4.1 Quark Level Corrections

Signal MC simulations are generated with specific b quark kinematic cuts (quark-level cuts).

These cuts are employed to enhance the MC production speed, with the drawback of a bias on

the signal kinematics. The Quark Level Corrections (QLC) are introduced to correct this selec-

tion bias.

An additional truth-level selection is also applied to the kinematics of the particles present in

the final state of the physics processes2, in order to maximise the amount of events that pass

the kinematic requirements discussed in section 7.3. These truth-level cuts, referred to as Final

State (FS) cuts, are looser than the selection applied at reconstruction level and their effect on

the MC simulation is overtaken by the offline selections.

Due to the different topologies of the processes considered, three sets of quark-level cuts are

employed in the analysis; they are summarised in table 7.6. Charge conjugate processes, such

as B+ → J/ψK + and B± → J/ψK ±, are generated separately, applying the same quark level

cuts to the b quark responsible for the hadronisation of the decay of interest. Three versions

2 Muons pT > 3.5 GeV and muons |η| < 2.6; in case hadrons are present in the final state, the cuts applied on their
kinematic properties are pT > 0.8 GeV and |η| < 2.6
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Table 7.6: Quark-level cuts employed in the generation of the exclusive MC sample. p̂Tmin is the lower cut applied
to the pT of the partons produced in the hard scattering in the reference system of the incoming partons.
The last two columns referred to the cuts on pT and |η| of the b quark responsible for the hadronisation
that originates the B meson of interest.

Process p̂Tmin b (anti-b) |η| b (anti-b) pT

B 0
s → µ+ µ−, B 0

d → µ+ µ−, B → hh′ 5 GeV 2.6 5 GeV

B± → J/ψK ±, B± → J/ψπ±,
7 GeV 2.6 7 GeV

B 0
s →π−µ+ν, B 0

s → K −µ+ν, Λ0
b → pµ−ν

B 0
s → J/ψφ 11 GeV 2.5 9 GeV

of the QLC are therefore calculated, providing a way to correct the different bias introduced by

the three sets of quark-level cuts. The processes employed for the evaluation of the QLC are

B 0
s → µ+ µ−, B+ → J/ψK + and B 0

s → J/ψφ.

QLC are evaluated as the ratio of yields in a given (pT(B), η(B)) cell, relative to the signal distri-

bution in an unbiased reference phase space volume common to all the different signal simula-

tions. This guarantees that all efficiencies, discussed in chapter 10, are calculated relative to the

same common b quark phase space volume, by design containing the kinematic acceptance of

the analysis.

Each set of QLC is evaluated using two different MC samples3:

• unbiased MC: generated with looser quark-level cuts with respect to the default MCs,

described in section 7.2, and no FS cuts;

• quark biased: generated with the same quark-level cuts as the default MCs and without

FS cuts.

Table 7.7 shows the sets of generation cuts employed for the different MCs.

The QLC calculation is based on two samples because the p̂Tmin cut, which is the lower cut

applied to the pT of the partons produced in the hard scattering in the reference system of

the incoming partons, affects the phase space distribution of the events also above the cut

itself, due to features of the PYTHIA generator [148]. A more extended discussion is provided

in section B.1 of appendix B.

The computation of the QLC is performed using the unbiased and the quark biased samples

according to the following formula:

WQL = νFScuts
quarkBiased ·

σPythia
quarkBiased

N tot
quarkBiased

/

νFScuts
unbiased ·

σPythia
unbiased

N tot
unbiased


 , (7.1)

where ν is the number of entries in a (pT(B), η(B)) bin from the unbiased or quark biased

samples after applying the final state particle cuts. σPythia is the Pythia-calculated generation

3 Since QLC are meant to correct generator-level biases, the production of the unbiased and quark biased MCs is
limited to generation, without simulation of the detector response and reconstruction.
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Table 7.7: Quark-level and Final State particle cuts per MC sample. p̂Tmin is the lower cut applied to the pT of the
partons produced in the hard scattering in the reference system of the incoming partons. Anti-b |η| and
anti-b pT are the cuts applied to the anti-b quark produced in the hard scattering. No cuts are applied to
the b quark, as it is not responsible for the production of B mesons; when generating the charge conjugate
of the processes, the Anti-b and b quarks are swapped, therefore the cuts are applied only to the b quark.
Muons |η|, muons pT, final h |η| and final h pT are the FS cuts applied respectively to muons and hadrons.

p̂Tmin anti-b |η| anti-b pT muons |η| muons pT final h |η| final h pT

default B+ → J/ψK + 7 GeV 2.6 7 GeV 2.6 3.5 GeV 2.6 0.9 GeV

unbiased B+ → J/ψK + 5 GeV 4 2.5 GeV

quark biased B+ → J/ψK + 7 GeV 2.6 7 GeV

default Bs →µ+µ− 5 GeV 2.6 5 GeV 2.6 3.5 GeV

unbiased Bs →µ+µ− 5 GeV 4 2.5 GeV

quark biased Bs →µ+µ− 5 GeV 2.6 5 GeV

default Bs → J/ψφ 11 GeV 2.5 9 GeV 2.6 3.5 GeV 2.6 0.9 GeV

unbiased Bs → J/ψφ 5 GeV 4 2.5 GeV

quark biased Bs → J/ψφ 11 GeV 2.5 9 GeV

cross-section; this quantity is evaluated by PYTHIA and encloses the production cross-section

evaluated with the Matrix Element (ME), the decay cross-section and the effects of the quark

level and FS cuts. Finally, N tot is the number of generated events for the given samples4. Effect-

ively the QLC are correcting not only the pT(B)−η(B) shape distribution of the events, but also

their normalisation in order to account for the specific generator-level cuts chosen.

The inverse of these weights is used to weight events individually, thus correcting with event-

weights the quark level cut biases.

The computation of the QLC is limited to the B fiducial volume of the analysis (pT(B) > 8 GeV

and |η(B)| < 2.5); the binning scheme adopted is not regular, but rather chosen to maintain a

comparable statistical uncertainty in every bin. In order to ensure that such a binning scheme

allows to properly correct the kinematic bias, a complementary binning has also been tested;

it is discussed in section B.2.4 of appendix B. The B meson η spectrum is assumed to be sym-

metric with respect to 0, allowing a reduction on the uncertainty associated to the corrections;

the absence of any η(B) asymmetry has been tested by calculating the QLC without folding the

distribution, as reported in section B.2.5 of appendix B.

Figure 7.7 shows a 2D (pT(B), η(B)) map of the QLC and their uncertainties for the three pro-

cesses B+ → J/ψK +, Bs → J/ψφ and Bs →µµ. The QLC consistency is checked for the three sets

of weights applying QLC calculated using odd-numbered events, from both the quark biased

and unbiased samples, to the even-numbered events of the quark biased sample. The result-

ing pT(B) and η(B) distributions are compared to the unbiased distributions obtained using

only even-numbered events. The same test is repeated switching even- with odd-numbered

events. The outcome of all these checks is reported in appendices B.2.1 for B+ → J/ψK +, B.2.2

for B 0
s → J/ψφ and B.2.3 for B 0

s → µ+ µ−: all the distributions show good compatibility.

4 The σPythia

N tot terms in equation 7.1 effectively account for the relative “integrated luminosity” of the two MC
samples considered.
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Figure 7.7: The three sets of plots show the QLC (left plot) and the relative uncertainty (right plot), calculated for
the three processes, respectively, B+ → J/ψK+ figure 7.7(a), Bs → J/ψφ figure 7.7(b) and Bs → µµ fig-
ure 7.7(c).
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7.6.4.2 Data Driven Weights

Data Driven Weights (DDW) aim to account for any residual data-MC discrepancy, after the

simulation is tuned at its best applying all the appropriate prescriptions. In particular, all

the PU, offline efficiency, trigger efficiency and QLC corrections are applied to the simulated

samples used in the calculations of the DDW.

The calculation of the corrections is performed using both real and simulated samples, as men-

tioned before. In order to perform a meaningful comparison, background contributions need

to be removed from the data. A sideband subtraction technique is therefore applied to both

data and MC, in order to remove the background contribution for the first and account for pos-

sible signal subtractions due to signal leakage in the mass sidebands for the latter. A description

of the SBW employed in the background subtraction is provided later in this sub-section.

DDW are evaluated for both the B+ → J/ψK + and B 0
s → J/ψφ channels. Despite the difference

in principle, the B+ DDW are found to be interchangeable with the B 0
s → J/ψφ ones, as was

the case for the Run 1 analysis. This is verified by calculating the DDW for the B 0
s → J/ψφ pro-

cess and comparing them with the B+ DDW. As shown later in this sub-section, the resulting

weights are compatible within statistical uncertainty: the DDW corrections are therefore dom-

inated by data-MC differences common to B+ and B 0
s , most likely due to b quark kinematics,

while differences due to the fragmentation function, which is different for B+ and B 0
s , are less

important and cannot be resolved with the current statistics. The compatibility of the two sets

of DDW confirms also that the additional Lx y > 0.3 mm cut applied to the B+ → J/ψK + samples

does not affect the kinematic distributions of the B meson.

The DDW consistency between B 0
s → J/ψφ and B+ → J/ψK + can be considered also as a con-

sistency check on the QLC: since the B+ → J/ψK + and B 0
s → J/ψφ MCs are generated with

different kinematic biases, any mistake in the QLC on either sample would reflect in an incon-

sistency between the two sets of DDW.

In order to avoid possible correlations between data and MC after the reweighting procedure,

only even numbered MC and data events are used in the DDW calculation The remaining data

and MC events are respectively used for the B+ yield fit and efficiency and acceptance calcula-

tion.

Due to the limited statistics available for the B 0
s → J/ψφ and B+ → J/ψK + datasets, DDW are

not computed in a two-dimensional grid of pT(B) and η(B). Instead, they are obtained with an

iterative method: pT(B) and η(B) corrections are calculated separately and applied to the MC

as if they were independent corrections. The resulting pT(B) and η(B) distributions are then

used to evaluate again pT(B) and η(B) corrections, which are applied again to the MC. This

is repeated until the corrections become compatible with 1, showing that the procedure con-

verged. This approach was shown to converge in a few iterations in the Run 1 analysis. The

convergence will be verified also with the current datasets and shown later.

The following formulas are therefore used in the evaluation of the DDW:

W 1
pT

=
∑
ηDη(B),pT(B)∑

η(B),pT(B) Dη(B),pT(B)

∑
η(B),pT(B) MCη(B),pT(B)∑

ηMCη(B),pT(B)
(7.2)
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W n
pT

=
∑
ηDη(B),pT(B)∑

η(B),pT(B) Dη(B),pT(B)

∑
η(B),pT(B)

(
MCη(B),pT(B)

∏m=n−1
m=1 W m

pT
W m
η

)
∑
η

(
MCη(B),pT(B)

∏m=n−1
m=1 W m

pT
W m
η

) , (7.3)

where equation 7.2 is the formula for the first iteration, which allows to extract the W 1
pT

weights,

and equation 7.3 is the formula for the nth iteration, which allows to evaluate the W n
pT

weights.

MCη(B),pT(B) refers to a particular η(B), pT(B) bin of the MC sample, weighted as described at

the beginning if this section, while Dη(B),pT(B) refers to a η(B), pT(B) bin of the data distribu-

tion.

The corresponding formulas for the calculation of the η weights can be obtained from equa-

tions 7.2 and 7.3 by exchanging the η and pT indices.

The combined η and pT weights are obtained multiplying the corresponding weights obtained

at each iteration. Assuming a convergence after iteration N , the weights are:

W pT =
m=N∏
m=1

W m
pT

W η =
m=N∏
m=1

W m
η .

(7.4)

The final weights used in the analysis are obtained multiplying the η and pT weights according

to

WDDW
(
pT,η

)=WpT ·Wη (7.5)

Due to the elaborate formulas employed, the calculation of the uncertainty associated to the

DDW is rather complex, as one has to consider the correlation of the different iterations with

the event counts in all the data and MC bins together with the propagation of the sideband

subtraction weights’ uncertainties. For this reason, an ad-hoc framework was developed, able

to perform automatically the error propagation, taking into account all the aspects discussed

earlier.

The binning scheme chosen for the DDW follows the one used in the Run 1 analysis, which

was proven to be dense enough to properly correct data-MC discrepancies, while maintaining

a manageable uncertainty on the weights. Additionally, the DDW calculated for the 2015/16

analysis can be compared with the ones from the Run 1 analysis, as an additional check.

Before proceeding to the actual DDW extraction, the Sideband Weights (SBW) must be intro-

duced and evaluated. The following sub-section provides an extensive description of these

weights.

Sideband Weights

The number of signal events in each (η(B), pT(B)) bin in data for the DDW calculation is ob-

tained through a sideband subtraction procedure.

The Sideband Weights (SBW) are per event weights defined as 1 if the mass of the B candidate

falls into a defined region around the mass peak (signal region). If this is not the case then the



7.6 MC samples reweighting 109

event acquires a negative weight proportional to the background fraction in the region, with

the SBW defined as:

WSBW =−1 ·
∫

signal region PDFbkg∫
left sideband PDFbkg +

∫
right sideband PDFbkg

(7.6)

where PDFbkg is the PDF associated with the background. This PDF is estimated with a binned

extended maximum likelihood fit on the mass distribution of the B meson in different pT(B)

and η(B) bins.

Unlike the QLC, the DDW are extracted in the full [−2.5;2.5] η(B) interval, as their distribution

shows an asymmetry with respect to η(B), therefore the SBW are calculated in the same full

η(B) range. The binning scheme employed is chosen to maintain a comparable statistical un-

certainty for the SBW. This binning scheme is coarser than the one employed for the DDW.

The SBW are calculated separately for the B 0
s → J/ψφ and B+ → J/ψK + processes, and dis-

cussed in the following paragraphs; the fits on the data are modified accordingly to the features

of the datasets and the definition of the signal and sideband regions is modified according to

the position and the width of the mass peak.

Control channel SBW

For the B 0
s → J/ψφ process the signal and sideband regions are defined as:

• signal region: [5286,5456] MeV

• left sideband: [5201,5286] MeV

• right sideband: [5456,5541] MeV.

A visual representation of these regions is provided later in figure 7.9.

The fit on the data is performed using the following configuration:

• the signal is described with two Gaussians with equal mean;

• the continuum background is described with a third order Chebychev polynomial.

All shape and amplitude parameters are extracted from the fit. Systematic uncertainties on the

fits employed are evaluated by varying the functional model for the background and checking

the effect on the SBW. They are found to be small compared to the statistical uncertainty, there-

fore systematic effects are not included.

The SBW are calculated separately in pT(B) and η(B) bins. Figure 7.9 shows some of the fits per-

formed to extract the B 0
s → J/ψφ yield and evaluate the SBW, together with vertical lines which

show the signal and sideband regions. The result of the SBW evaluation is shown in figure 7.8.

The η(B) SBW show compatibility among each other, confirmed by a linear fit (p-value ∼ 56%).

For the B 0
s → J/ψφ process the sideband subtraction procedure is therefore within the avail-

able statistics, independent of the specific η bin chosen, so only the pT SBW are used in the

DDW calculation.
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Figure 7.8: SBW calculated for the B0
s → J/ψφ process. The SBW have been calculated separately in pT(B) 7.8(a) and

η(B) 7.8(b) bins. The dependence of the SBW on η(B) is checked with a linear fit on the SBW, that shows
a good compatibility with the histogram (p-value ∼ 56%) proving that the SBW for this process do not
depend on η.

Reference channel SBW

Signal and sideband regions for the B+ → J/ψK + process are defined as:

• signal region: [5182.96,5382.96] MeV

• left sideband: [5082.96,5182.96] MeV

• right sideband: [5382.96,5482.96] MeV.

As for the B+ → J/ψK + SBW, a visual representation of these regions is provided later in fig-

ure 7.11.

The fit on the data is performed using the following configuration:

• the signal is described with two Gaussians with equal mean;

• the continuum background is described by an exponential;

• the background due to partially reconstructed decays (B+ → J/ψ X , with m(J/ψh+) <
5.200 GeV) is described with a complementary error function. Such a functional form

was proven to properly described this background in the Run 1 analysis and it is used

as functional form for this background in the systematic uncertainty evaluation of the

reference channel yield (section 10.1.3).

All shape and amplitude parameters are extracted from the fit. Possible systematic uncer-

tainties are considered and checked by varying the functional models employed for the back-

ground. The variation of the SBW is found to be much smaller than the statistical uncertainty,

therefore systematic effects are not included.

The B+ → J/ψK + SBW were initially evaluated separately in pT(B) and η(B) bins, as is done for

the B 0
s → J/ψφ SBW, but a dependence of the SBW on η(B) was found. This η(B) dependence is
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(a) Fit performed on the 8 GeV < pT < 16 GeV bin.
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(b) Fit performed on the 38 GeV < pT < 100 GeV bin.
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(c) Fit performed on the 0 < η< 0.2 bin.
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(d) Fit performed on the 2.0 < η< 2.5 bin.

Figure 7.9: Some of the fits performed on the B0
s → J/ψφ sample. Each plot shows the data points (black dots) and

the PDFs used to perform the fit: the green and red lines are the two gaussians for the signal PDF, while
the black line is the total signal PDF, the yellow line is the PDF for the combinatorial background and
the blue line is the total PDF. Each plot shows also the compatibility of the data with the fitted curve and
the pulls are shown in the lower frame in each plot. The vertical lines indicate the sideband and signal
regions.

shown in figure 7.10, where the SBW are evaluated folding the η(B) distribution with respect to

zero. Three linear fits are performed on the η(B) SBW. The fit performed on the full X axis (red

line) range has a low compatibility with the data (p-value ∼ 0.00%); two other fits are there-

fore performed in the two η regions that show a different behaviour. The compatibility with

the SBW of these two fits is much higher than the previous (p-value ∼ 14.6% for η < 1.3, green

line, and p-value ∼ 24.9% for η > 1.3, blue line). The full η(B) interval is hence divided in four

regions were the SBW are compatible, and the B+ SBW are extracted in combined pT(B) - η(B)

bins: 11 pT bins and 4 η bins are employed.

Figure 7.11 shows some of the fits performed to extract the B+ yield and evaluate the SBW. The

result of the SBW extraction is shown in figure 7.12.
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Figure 7.10: η(B) SBW calculated for the B± → J/ψK± process folding the η(B) distribution with respect to zero. The
dependence of the SBW on η(B) is checked with a linear fit on the SBW, and it does not show a good
compatibility with the histogram (red line, p-value ∼ 0.00%). Two other fits are performed, dividing the
η range in two, and they show a much higher compatibility, p-value ∼ 13.6% for η< 1.3, green line, and
p-value ∼ 24.9% for η> 1.3, blue line. The SBW extraction is therefore performed in combined pT-η bin.
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(a) Fit performed on the 0 < η< 1.3, 8 GeV < pT < 13
GeV bin.

Invariant mass [MeV]

E
ve

nt
s 

/ 5
 M

eV

0

100

200

300

400

500

600

700

800

900

 / ndf = 1.1043
2

χ

 = 111.4371
2

χ

p-value = 0.2245

Data

Total fit

Total Background

Continuum background

PRD background
+

 Kψ J/→ 
+

B

Invariant mass [MeV]
5100 5200 5300 5400 5500 5600

P
ul

ls

-2

0
2
4

(b) Fit performed on the 0 < η < 1.3, 34 GeV < pT <
100 GeV bin.
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(c) Fit performed on the 1.3 < η < 2.5, 8 GeV < pT <
13 GeV bin.
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(d) Fit performed on the 1.3 < η< 2.5, 34 GeV < pT <
100 GeV bin.

Figure 7.11: Some of the fits performed on the B+ → J/ψK+ sample. Each plot shows the data points (black dots)
and the PDFs used to perform the fit: the red line is the signal PDF, the light blue line is the PDF for
the combinatorial background, the yellow line is the PDF for the partially reconstructed decays, the
blue line is the total background PDF and the green line is the total PDF. Each plot shows also the
compatibility of the data with the fitted curve and the pulls are shown in the lower frame in each plot.
The vertical lines indicate the sideband and signal regions.
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Figure 7.12: SBW calculated for the B+ → J/ψK+ process 7.12(a) and their uncertainty 7.12(b).
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Data Driven Weights extraction

Now that the SBW have been calculated, the DDW can finally be extracted. Figure 7.13 shows
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Figure 7.13: First three iterations of the B+ → J/ψK+ DDW calculation. Figure 7.13(a) shows the pT DDW,
while 7.13(b) shows the η DDW. The first bin of the first iteration in figure 7.13(a) is omitted due it its
huge uncertainty, allowing to properly read the remaining weights. The plots clearly show the conver-
gence of the procedure used to calculate the DDW. The first iteration of the weights (blue histogram)
provides the core of the correction, as most of the points are away from 1. The second iteration (red
histogram) already shows values really close to one, in particular for the pT weights. Finally, the third it-
eration (green histogram) is compatible with one. The uncertainties associated to the weights (vertical
bars) are evaluated considering the correlation of the different iterations with the event counts in all
the data and MC bins together with the propagation of the sideband subtraction weights uncertainties.
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Figure 7.14: Final values of the B+ → J/ψK+ DDW. The weights are obtaining combining the first two iterations
shown in figure 7.13, while the third iteration, which is compatible with one, is not employed. In this
case the first bin of 7.13(a) is shown.

the first three iterations for the pT and η weights for the B+ → J/ψK + process; the procedure

converges at the second iteration, as the weights obtained with the third iteration are compat-

ible with 1. The resulting DDW, obtained combining the first and second iterations are shown

in figure 7.14.

The first pT weight shows a huge uncertainty, due to the low statistics available in the B+ →
J/ψK + dataset for pT(B) < 10 GeV. This issue did not affect the Run 1 analysis, which was based

on a mixture of several triggers, among which were lower momentum ones (pT > 4 GeV for both

muons), and the collected statistics was proven to be enough to calculate the first pT DDW.
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Figure 7.15: Final pT B+ → J/ψK+ DDW, the first bin has been replaced with the first bin of the DDW calculated
with the 2mu4 trigger in order to reduce the bin’s uncertainty.

In order to reduce the impact of this bin’s uncertainty, data collected using a different dimuon

trigger with pT thresholds of 4 GeV for both muons (referred to as 2mu4), are used to derive the

data-driven weight for the first pT(B) bin and its uncertainty. This trigger was heavily prescaled

in 2015 and disabled in 2016.

The same procedure for the calculation of the DDW is applied to the 2mu4 sample, in this case

changing the trigger and offline muons requirements (pT thresholds of 4 GeV instead of 4 and

6 GeV). The calculation converges again at the second iteration, and the weights obtained are

compatible with the ones shown before.

The first pT weight calculated with the 2mu4 based dataset is therefore used as the first bin of

the DDW used in the analysis. Figure 7.15 shows the resulting set of pT DDW.

The first consistency check is performed by calculating the DDW using odd-numbered MC and

data events and comparing them to the DDW evaluated with even-numbered events. The two

sets of weights are superimposed and their compatibility is quantified with aχ2 test. Figure 7.16

shows the comparison of the two sets of weights, together with the result of the χ2 test. Both
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(a) B+ → J/ψK+ pT DDW comparison.
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Figure 7.16: Comparison of the B+ → J/ψK+ DDW calculated using odd-numbered data and MC events with the
DDW calculated using even numbered events. The compatibility is quantified with a χ2 test, which
gives a p-value of 0.9999 for the pT DDW (figure 7.16(a)) and 0.7001 for the η DDW (figure 7.16(b)).

the pT and η DDW show high compatibility.

The DDW consistency is also checked in the same way as the QLC, by applying DDW calcu-
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lated using odd (even) MC and data events to the even (odd) MC events and comparing the

result with the even (odd) numbered data events. All these tests, presented in appendix B.3.1,

show compatibility between the weighted MC and the data.

DDW for the B 0
s → J/ψφ process are calculated using the same approach. The binning scheme

employed is the same as the one used for the B+ → J/ψK + corrections, in order to allow a com-

parison between the two sets of weights. Given the smaller size of the datasets used in the cal-

culation, larger statistical uncertainties are expected. Also in this case the procedure converges

at the second iteration. The DDW consistency is checked in the same way as the B+ → J/ψK +
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Figure 7.17: Comparison of the B0
s → J/ψφ DDW calculated using odd-numbered data and MC events with the

DDW calculated using even numbered events. The compatibility is quantified with a χ2 test, which
gives a p-value of 0.9881 for the pT DDW (figure 7.17(a)) and 0.7531 for the η DDW (figure 7.17(b)).

DDW, first comparing the DDW calculated using odd-numbered MC and data events with the

DDW evaluated with even-numbered events (figure 7.17); the two sets of weights show a good

compatibility. The B 0
s → J/ψφ DDW are also tested by applying DDW calculated using odd

(even) MC and data events to the even (odd) MC events and comparing the result with the even

(odd) numbered data events, obtaining a good compatibility between the weighted MC and the

data. As before, the results of the checks are shown in appendix B.3.2.

Figure 7.18 compares the B 0
s → J/ψφ DDW with the B+ → J/ψK + DDW. The B 0

s → J/ψφ DDW

have a larger uncertainty, as expected; the first pT bins are merged, in order to avoid large un-

certainties or issues in the calculations due to empty bins5. Since the two sets of weights show

compatibility, as already mentioned, the DDW calculated with the B+ → J/ψK + datasets are

used to correct also the B 0
s MCs.

As introduced in section 7.6.4.2, a comparison with the DDW employed in the Run 1 analysis is

also performed. It is reported in section B.3.3 of appendix B.

The ad-hoc framework developed to properly calculate the DDW taking into account the un-

5 The B0
s → J/ψφ sample presents a harder B meson pT spectrum compared to B0

(s) → µ+ µ− and B+ → J/ψK+.
This is due to the topology of the decay and the selection cuts applied: in order to have more particles in the final
state with the same pT as the particles in the other processes, the B meson must have a higher pT.



7.6 MC samples reweighting 117

 [GeV]
T

B p
10 20 30 40 50 60 70 80 90 100

 D
D

W
Tp

0.5

1

1.5

2

2.5

3  DDW
+

 Kψ J/→ 
+

 B
T

p

 DDWφ ψ J/→ 
s

0
 B

T
p

(a)

ηB 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

 D
D

W
η

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

 DDW
+

 Kψ J/→ 
+

 Bη

 DDWφ ψ J/→ 
s

0
 Bη

(b)

Figure 7.18: Comparison of the DDW calculated with the B+ → J/ψK+ datasets (red) and with the B0
s → J/ψφ data-

sets (blue). The plot on the left shows the pT DDW 7.18(a), while the plot on the right shows the η
DDW 7.18(b). The uncertainty of the B0

s → J/ψφDDW is visibly larger with respect to the B+ → J/ψK+
weights due to the limited size of the datasets used. The two sets of weights are compatible within their
uncertainty.

certainties and the correlations of the various ingredients needed performs also the evaluation

of the correlation matrix of the DDW. It is shown in figure 7.19, where the diagonal is set to 0 to

make the plot more readable. The main feature noticeable in the correlation matrix is a “block

structure”, where groups of DDW show a higher correlation. This is due to the looser binning

scheme of the SBW with respect to the DDW, where care is taken in matching the boundaries

of the bins of both sets of weights. The block structure corresponds, in fact, to the binning

scheme of the SBW. The relative uncertainty between the DDW and the SBW acquires import-

ance in this condition. For the low pT DDW, the relative uncertainty of the two sets of weights

is comparable, therefore higher correlation effects appear (up to 30%). With increasing pT the

uncertainty of the DDW becomes larger than the uncertainty of the SBW, therefore the correl-

ation effect introduced by the latter becomes less relevant.

Due to their size, the correlation terms are taken into account and propagated in the system-

atic uncertainty evaluation throughout the analysis. A similar study is performed to assess the

correlation between the QLC and the DDW. This is found to be negligible with respect to the

correlations among the DDW, and therefore can be omitted in the determination of the sys-

tematic uncertainties.
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Figure 7.19: Correlation matrix of the DDW calculated for the B+ → J/ψK+ process. The diagonal has been set to 0
to improve readability. The height of each bin shows the correlation between two DDW. As introduced
in the text, most of the weights have small correlation terms, but few of them show an exceptionally
large correlations, up to 30%.



8BACKGROUND SOURCES AND

REDUCTION

After the application of the selection described in chapter 7 the dimuon mass region considered

in the analysis (4766 MeV < m(B) < 5966 MeV) contains about 3.5×106 candidates, of which

about a third fall into the signal region. This huge amount of background events is compared

to an expected total signal yield of about 200 events1, considering the sum of the B 0
s → µ+ µ−

and B 0
d → µ+ µ− channels. A further reduction of the background contribution is therefore

needed.

Several background categories can be identified in the dimuon mass region, depending on their

source and their mass dependence. They are discussed in section 8.1.

In order to enhance the discrimination against the main background source of the analysis, a

MVA technique based on a Boosted Decision Tree (BDT) algorithm is employed. Section 8.2 is

devoted to a description of the BDT implementation.

8.1 Main analysis backgrounds

This section provides a description of the main categories of background identified in the dimuon

mass region considered in the analysis. Real muon pairs are one of the primary background

sources in this analysis. Out of these, only non-prompt pairs are relevant, due to lifetime-

related selections exploited to isolate the signal effectively, discussed later in section 8.2. This

leaves essentially only dimuons coming from B mesons, out of which two main contributions

can be distinguished: the first, rapidly falling below the B meson masses, is due to dimuons

produced in the decay chain of one single hadronised b quark. The second contribution, com-

monly referred to as continuum background, has the two muons originating from distinct b

quarks in a bb̄ pair.

Dimuon pairs with at least one fake muon constitute another source of background for the

analysis. Two main sources can be identified also in this case. The first, characterised by the

1 Expected signal yield estimation based on the SM expected yield of the Run 1 analysis (41 B0
s events and 5 B0

d
events). After the preselection a BDT selection with signal efficiency of 54% was applied, therefore the total ex-
pected signal yield of the Run 1 analysis after the preselection is about 100 events. Considering the two-fold
increase in signal statistics estimated in section 7.1 for the 2015/16 analysis and the fact that the preselection
employed is extremely similar to the Run 1 counterpart, an expected total signal yield of about 200 events after
the preselection is estimated.
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presence of one fake muon, is mainly due to semileptonic b decays. This background presents

similar features as the one coming from the decay chain of one single hadronised b quark. The

second source of background is due to events with two fake muons. The main contributors are

B → hh′ process, where h = π,K . As introduced in chapter 5, these decays present the same

topology and kinematic properties as the signal processes.

These sources of backgrounds are categorised into three groups, based on the source of the

background events and their mass dependence. The following sub-sections provide an over-

view of these three background categories: continuum (sub-section 8.1.1), B → hh′ (sub-section 8.1.2)

and Partially Reconstructed Decays (PRD), which encloses the dimuons coming from the decay

chain of one single hadronised b quark and the semileptonic b decays (sub-section 8.1.3).

8.1.1 Continuum background

μ1

μ2

b

b
_

primary 
vertex

Figure 8.1: Sketch of a continuum background event. The two muons are originated from two decay chains, origin-
ated by the b quarks in a bb̄pair. The trajectory of the two muons shows an intersection point, which, at
reconstruction level, can be taken as the decay vertex of a B candidate.

The main source of background for the analysis is due to real dimuon events originating from

distinct b quarks in a bb̄ pair. A common Secondary Vertex (SV) can be identified for the tra-

jectory of the two muons, which are therefore identified as a B candidate.

As already mentioned, this background is called continuum background. A sketch of the typ-

ical topology of these dimuon events is shown in figure 8.1. Due to the huge amount of con-

tinuum background events, which constitutes more than 99% of the B candidates in the mass

sidebands, a dedicated selection is designed and applied to the datasets. As introduced at the

beginning of this chapter, it is based on a Boosted Decision Tree (BDT) algorithm and described

in section 8.2.

This selection, in particular, removes all the prompt sources of dimuon events. For this reason,

the large bb → µ+µ−X MC, introduced in section 7.2, does not contain most of the prompt

background sources and events due to cc →µ+µ−X processes.
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8.1.2 B → hh′ background

h’
h

b

b

_

primary 
vertex

B

Figure 8.2: Sketch of the peaking background. This decay shows large similarities with the B0
(s) → µ+ µ− processes,

making it a problematic background.

Charmless two-body B → hh′ decays, where h = π,K and both hadrons are mis-identified2 as

muons constitute an important source of background. Since this is the only background which

presents a resonant structure, it is called peaking background.

This background is particularly problematic, because due to the mass distortion of the K → µ

and π → µ assignments, the invariant mass distribution of the three main processes, B 0
d →

π±K ∓, B 0
s → K ±K ∓ and B 0

d → π+π−, is basically superimposed on the B 0
d peak. The invariant

mass distribution of remaining processes is not superimposed on the B 0
d peak, but considering

their small branching fraction compared to the three processes mention before, their effect is

negligible. Anyway, the presence of these processes is accounted for in these studies.

Section 7.4 describes the studies performed on MC samples to evaluate the probability of a

hadron to be mis-identified as a muon. Such studies are validated on data in section 11.2.2,

in order to obtain an estimation of the normalisation of the peaking background after the full

selection of the analysis is applied. The expected peaking background yield is about 3 events

(section 11.2.2.2), to be compared to the estimated B 0
d → µ+ µ− yield after the BDT selection

of about 10 events.

8.1.3 Partially reconstructed background

The remaining background events are gathered into the PRD category. These processes can be

described as two muons, of which at least one is a real muon, and additional tracks in the final

state coming from a single b quark decay chain. Since only the two muons are considered in

the B candidates’ reconstruction, the dimuon mass of the candidate will be smaller than the B 0
s

2 The hadron mis-identification considers both the case of a punch-through of hadrons to the MS and of hadrons
decay-in-flight.
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and B 0
d masses. This background therefore populates predominantly the lower mass sideband.

The PRD background can be further classified on the basis of the origin of the two muons:

μ1

μ2

b

b

_

primary 
vertex

c

(a) PRD background due to same-side decays.

μ1

μ2

b

b

_

primary 
vertex

(b) PRD background due to same-vertex decays.

b

b

_

primary 
vertex

Bc

μ1

ν

μ2μ

J/Ψ

(c) PRD background due to B±
c → µ±νJ/ψ(µ+µ−) de-

cays.

μ1
h

b

b

_

primary 
vertex

B

(d) PRD background due to semileptonic decays.

Figure 8.3: Sketches of the PRD background sources. These processes are originated by a single b quark

• same-side, (figure 8.3(a)), is composed of muons originated by the same b quark from a

cascade like b → cµ−ν→ s(d)µ−µ+νν̄. This background is simulated in the large bb →
µ+µ−X MC introduced in section 7.2;

• same-vertex, (figure 8.3(b)), decays such as B± → K ±µ+µ−, where both muons originate

from the same decay vertex, belong to this category. Also this background is contained in

the bb →µ+µ−X MC;

• B c , (figure 8.3(c)), mainly due to B+
c → µ+νJ/ψ(µ+µ−) decays, where the muon from the

Bc decay and the oppositely charged muon from the J/ψ decay are reconstructed into a
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B candidate. As the two previous background, also the Bc background is simulated in the

bb →µ+µ−X MC;

• semileptonic, (figure 8.3(d)), is due to few-body semileptonic B decays, as introduced

at the beginning of this section, feeding into the final selection through a muon mis-

identification, in the limit of low energy neutrinos. The processes that contribute the

most are Bd → πµν, Bs → Kµν and Λb → pµν. Exclusive MC simulations are generated

for these three processes, as shown in section 7.2.

Figure 8.4 shows the invariant mass of the PRD backgrounds from simulation, after the applic-

ation of the preselection described in section 7.3.
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Semi-leptonic decays

-µ +µ → s
0B

-µ +µ → 0B

Figure 8.4: Dimuon invariant mass distribution for the partially reconstructed background, from simulation, before
the final selection against the continuum background is applied. The different components are shown
as stacked histograms, normalised according to world-averaged measured branching fractions. The SM
expectations for the B0

(s) → µ+ µ− signals are also shown for comparison. Continuum background
is not included here and the Same-Side and Same-Vertex background categories are summed into the
b →µµX histogram.

8.2 Background reduction

As introduced at the beginning of this chapter, the amount of background present in the dimuon

mass region considered after the application of the preselection cuts is extremely large. An ad-

ditional background reduction is therefore needed.

The only background source that can be highly reduced without critically affecting the signal

is the continuum background, thanks to its kinematic and topologic differences with respect
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to the events of interest. Regarding the remaining background sources, PRD backgrounds are

mostly made of real dimuons, and get kinematical and topological features very close to the

signal when the mass approaches the B mass. The fake-muon component of this background

presents similar features and is partially rejected thanks to the muon quality cuts. Also the

peaking background is attenuated by the muon quality cuts, but then it is indistinguishable

from the signal.

In order to achieve a high continuum background rejection, a MVA technique based on a BDT

algorithm is employed, as implemented in the TMVA [197] package of ROOT [180].

After a description of BDT classifiers, (sub-section 8.2.1), the list of the input variables em-

ployed is discussed (sub-section 8.2.2). The BDT training and testing phases are then described

(sub-section 8.2.3), together with a brief comparison of the BDT performance with respect to

its Run 1 counterpart.

8.2.1 BDT description

A Decision Tree is a simple binary decision tool, sketched in figure 8.5. Each binary decision

of the tree is called a node and represents cuts applied on individual variables, while the final

decision of a tree is referred to as leaf node. The number of nodes before a decision is taken is

the depth of the tree. There are two main kinds of decision trees, based on the output variable:

classification trees, when the outcome is a discrete variable, and regression trees, when the out-

come is a real number.

Ideally, each node cut would correspond to the optimal signal-background separation in the

Depth

Figure 8.5: Schematic view of a decision tree. Starting from the root node, a sequence of binary splits using the
discriminating variables xi is applied to the data. The same variable may thus be used at several nodes,
while others might not be used at all. The leaf nodes at the bottom end of the tree are labelled “S” for
signal and “B” for background depending on the majority of events that end up in the respective nodes.
Picture obtained from [197].

given variable. This is achieved through a training procedure. The training is based on the
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measurement of the impurity of each leaf node, defined as the contamination of signal or back-

ground events in such leaf node. Signal purity is defined as psig = s
s+b , where s and b are the

number of signal and background events in the leaf node.3 The background purity is defined as

pbkg = 1−psig. There are several functions of the purity used in the training of decision trees. As

for other BDT features, different configurations have been tested for the BDT employed in this

analysis, and no significant difference was found in the final behaviour. The chosen function

for the analysis is called Gini impurity index, defined as Gini = ∑i 6= j
i , j∈sig,bkg pi p j when several

classes of events are used. In case of a signal-background discrimination, it can be simplified

to Gini = 2sb
(s+b)2 . This quantity becomes 0 when the leaf node contains only signal or back-

ground events, but increases when both are present.

The term Boosted in the BDT acronym refers to the usage of several trees, obtaining a forest.

Basically, the forest is built training one tree at the time; each new tree is trained to improve the

signal-background separation of the previous, based on their purity function. This procedure

allows one to reduce the sensitivity of the decision tree to fluctuations in the training datasets,

and can considerably enhance the performance with respect to the usage of a single tree.

There are several algorithms used for the boosting procedure, one of the most used is called

adaBoost, short for “adaptive boosting”; the basic idea of this algorithm is that the outcomes of

the various decision trees are combined into a weighted sum, allowing a higher discrimination

power.

The adaBoost boosting procedure is used in combination with the bagging approach, short for

bootstrap aggregation. The aim of this procedure is to further reduce the sensitivity of the de-

cision tree to fluctuations in the training datasets. The basic idea is to use several collections of

random subsets of the original training dataset to train different decision trees.

8.2.2 BDT input variables

The BDT exploited in the analysis is based on regression trees, with 15 input variables, sum-

marised in table 8.1, selected in analogy with the Run 1 analysis [73]. A set of complementary

and alternative variables has been extensively tested and shown not to increase the separation

power of the BDT.

The input variables can be categorised into three main groups:

• B meson variables, related to the reconstructed B candidate, its decays vertex and the

collinearity between the candidate’s momentum −→p B and the flight vector between the

production and decay vertices
−→
∆x;

• muon variables, related to the two muons that form the B meson candidate, for the

B 0
(s) → µ+ µ− channel, and to the two muons that form the J/ψ candidate for the ref-

erence and control channels;

3 When using weighted events s and b are defined as weighted sums.
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• variables related to the rest of the event, which consider the UE in proximity of the B

candidate; a correct PV-SV association of the B candidate is crucial for these variables

because, as mentioned in section 7.5, an incorrect association would imply an incorrect

estimation of e. g. the isolation.

Table 8.1: Description of the 15 input variables used in a BDT classifier to discriminate between signal and con-
tinuum background. When the BDT classifier is applied to B+ → J/ψK+ and B0

s → J/ψφ candidates, the
variables related to the decay products of the B mesons refer only to the muons from the decay of the
J/ψ. Horizontal lines separate the classifications into the three groups described in the text. For the last
category, additional tracks are required to have pT>500 MeV. Table obtained from [198].

Variable Description

pB
T Magnitude of the B candidate transverse momentum −→pT

B .

χ2
PV,DV x y Compatibility of the separation

−→
∆x between production (i.e. associated PV) and

Decay Vertices (DVs) in the transverse projection:
−→
∆xT·Σ −1−→

∆xT

·−→∆xT, where Σ−→
∆xT

is the

covariance matrix.

∆Rflight Three-dimensional angular distance between −→p B and
−→
∆x:

√
α2D

2 + (∆η)2

|α2D| Absolute value of the angle in the transverse plane between −→pT
B and

−→
∆xT.

Lx y Projection of
−→
∆xT along the direction of −→p B

T : (
−→
∆xT·−→pT

B )/|−→pT
B |.

IP3D
B Three-dimensional Impact Parameter (IP) of the B candidate to the associated PV.

DOCAµµ aDistance Of Closest Approach (DOCA) of the two tracks forming the B candidate
(three-dimensional).

∆φµµ Azimuthal angle between the momenta of the two tracks forming the B candidate.

|d0|max-sig. Significance of the larger absolute value of the impact parameters to the PV of the
tracks forming the B candidate, in the transverse plane.

|d0|min-sig. Significance of the smaller absolute value of the impact parameters to the PV of
the tracks forming the B candidate, in the transverse plane.

P min
L The smaller of the projected values of the muon momenta along −→pT

B .

I0.7 Isolation variable defined as ratio of |−→pT
B | to the sum of |−→pT

B | and the trans-
verse momenta of all additional tracks contained within a cone of size ∆R =√

(∆φ)2 + (∆η)2 = 0.7 around the B direction. Only tracks matched to the same
PV as the B candidate are included in the sum.

DOCAxtrk DOCA of the closest additional track to the decay vertex of the B candidate. Only
tracks matched to the same PV as the B candidate are considered.

N close
xtrk Number of additional tracks compatible with the DV of the B candidate with

ln
(
χ2

xtrk,DV

)
<1. Only tracks matched to the same PV as the B candidate are con-

sidered.

χ2
µ,xPV Minimum χ2 for the compatibility of a muon in the B candidate with any PV re-

constructed in the event.

Two of the most discriminating variables employed are ∆Rflight and its transverse projection
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|α2D|. As one can expect from the topology of the signal, signal candidates are characterised

by small values of these variables; continuum background events, on the other hand, can show

much larger values.

Another important variable is Lx y , but in this case, the signal is characterised by large values.

For instance, for B mesons cτ∼ 470µm; given a B meson with an energy of ∼ 50 GeV, the flight

length becomes about 5 mm. Only the transverse projection of the flight length is considered,

as the accuracy of the ATLAS detector on the x − y plane is much higher compared to the ac-

curacy on the z direction. The Lx y variable is highly effective in discriminating the prompt

background, as already introduced in section 7.6.4.

The significances of the impact parameters of the two muons, |d0|min-sig. and |d0|max-sig., are

highly connected to Lx y . Considering the example provided earlier, the two muons produced

by the decay of a B meson with energy ∼ 50 GeV are characterised by an impact parameter of

d0 ∼ 500µm. The usage of the significance allows one to choose only muons whose trajectory

is not close to the PV, effectively requiring a B candidate that moves away from it. Additionally,

the significances of the impact parameters of the two muons are expected to be correlated for

real dimuon decays of B mesons, while it is not the case for continuum events. This allows ad-

ditional rejection power in the training of the BDT.

Similarly, χ2
PV,DV x y requires the Secondary Vertex (SV) not to be compatible with the PV, enfor-

cing the requirement of a B meson that moved away from its generation vertex.

The B meson three-dimensional impact parameter IP3D
B requires the impact parameter of the

B meson to be small, requiring the trajectory of the B meson to be compatible with the PV.

The DOCAµµ variable enforces the vertexing procedure applied to the two muons. In fact,

muons coming from the same SV are characterised by a small distance between their tracks.

On the other hand, dimuons originated from background sources, in particular the ones from

distinct b quarks, are characterised by higher distances.

The four variables I0.7, N close
xtrk , DOCAxtrk and χ2

µ,xPV are strictly related to the environment sur-

rounding the dimuon candidate. I0.7 requires that the B candidate is isolated from other particles.

This helps reducing the contribution of the continuum background as well as PRD events. Sim-

ilarly, N close
xtrk acts to ensure that the SV is only associated with two muons.

DOCAxtrk is complementary to N close
xtrk ; while the latter allows checking of the surrounding of the

SV, the former explicitly searches for the most compatible track with the decay vertex.

The three variables just described only consider tracks associated to the same PV as the B

meson. This allows the reduction of the pile-up dependence of these variables, while main-

taining a high background rejection. From this consideration, it follows that the choice of the

correct PV for the B candidate is extremely important, as introduced in section 7.5. The variable

χ2
µ,xPV performs an additional check on this. Even if two signal muons do not come explicitly

from the PV of the B meson, their compatibility with such a vertex is higher compared to their

compatibility with every other PV in the event. This is not the case for the continuum back-

ground, in which case one of the two muons can show a high compatibility with other PVs.

The three remaining variables pB
T , ∆φµµ, P min

L carry similar information regarding the boost of

the B candidate. In fact, real B mesons are expected to show a harder energy and momentum
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spectrum with respect to dimuons from the background.

8.2.3 BDT training and testing

The training and testing of the BDT classifier are performed using the B 0
s → µ+ µ− exclusive

MC and the data sidebands, with the selection described in chapter 7 applied to both.

The usage of data sidebands as background sample in the training and testing phase of the

BDT selection is a novelty compared to the previous version of the analysis [73], which em-

ployed the large bb →µ+µ−X MC as the background sample. An attempt to train the BDT with

the bb →µ+µ−X MC as background sample was performed, but the performance of the classi-

fier was not satisfying (see section 9.3 for more details).

In order to avoid biases due to the usage of the same sample to train, test and evaluate the

BDT selection, a rotation strategy is implemented. Both the data sidebands and the MC are

split into three independent sets of approximately equal statistics and used in turns to train,

test and evaluate three separate BDTs. The evaluation phase is only performed on the upper

data sideband, as the low mass sideband is contaminated with PRD background. The sample

rotation strategy is summarised in table 8.2.3.

Table 8.2: Training, testing, and evaluation of the 3 BDTs. Each data sample contains 1/3 of the sideband data and
1/3 of the signal MC. For the evaluation sample, 1/3 of the signal MC and only the high-mass sideband of
the collision data is used.

Trained Tested Evaluated

BDT 1 Sample 1 Sample 2 Sample 3

BDT 2 Sample 2 Sample 3 Sample 1

BDT 3 Sample 3 Sample 1 Sample 2

A dedicated study is performed to obtain the optimal settings for the BDT training. The res-

ults are summarised in table 8.2.3, together with a short description. The optimal values for

the configuration parameters MinNodeSize and AdaBoostBeta are found with the help of a grid

scan using background rejection at 36% signal efficiency on the Receiver Operating Charac-

teristic (ROC) curve as a figure of merit of classifier performance. MaxDepth is studied in a

similar manner and the performance of the BDT is found to improve with increasing value of

this parameter. However, the discrepancy between the training and testing samples, assessed

using the KS test [174], is also found to increase with increasing value of MaxDepth, leading to

over-training. The adaBoost technique is known to work best on trees with a small depth; for

this reason, the value MaxDepth=4 is chosen, which allows to avoid over-training while main-

taining a good performance of the BDTs.

The NTrees parameter is found to be highly correlated with the performance of the BDT. Low

values imply a low separation between signal and background, while high values can provoke

over-training. The chosen value allows the maintaining of a high performance of the BDT,
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Table 8.3: Configuration parameters used in the BDT training.

Parameter Value Description

NTrees 500 Number of trees employed in the clas-
sifier

MinNodeSize 0.2 % Minimum percentage of training
events required in a leaf node

MaxDepth 4 Max depth of the decision tree al-
lowed

BoostType AdaBoost Trees boosting strategy

AdaBoostBeta 0.5 Learning rate for AdaBoost algorithm,
this is the weight assigned to each
subsequent tree

UseBaggedBoost True Use Bootstrap aggregating (bagging)
approach to improve BDT

BaggedSampleFraction 0.6 Relative size of bagged event sample
to original size of the data sample

SeparationType GiniIndex Separation criterion for node splitting

nCuts 100 Number of grid points in variable
range used in finding optimal cut in
node splitting

NormMode EqualNumEvents Overall renormalisation of event-by-
event weights used in the training

without introducing any over-training effect.

Figure 8.6(a) shows the comparison between the ROC curves of the three BDTs trained and

tested on Run 2 data and the BDT employed in the Run 1 analysis applied to both Run 1 and

Run 2 data. The three Run 2 classifiers show, as one can expect, a comparable separation power,

while the Run 1 BDT applied to Run 2 data shows a decrease on the separation power with re-

spect to its application to Run 1 data. Figure 8.6(b) shows the same Run 1 BDT ROC curves and

the ROC curve of the Run 2 BDT obtained merging the three Run 2 classifiers. The Run 2 BDT

shows a lower separation power with respect to the Run 1 BDT applied to Run 1 data. This loss

in performance of the selection has been investigated and its source was recently identified.

The definition of the isolation related variables of the Run 2 analysis is not fully compatible

with their Run 1 counterparts in the ATLAS core software. This feature also explains the low

performance of the Run 1 BDT applied to Run 2 data. Ongoing studies are trying to assess

how to fix this issue, in order to improve the performance of the isolation variables. Figure 8.7

shows the distribution of the BDT output variable for the various MC samples and the data

sidebands. The BDT output variable is designed to range between -1 and 1, with higher values

corresponding to signal-like candidates. Most of the background events belong to the con-

tinuum background category, as shown in figure 8.7(b). The continuum background simulated

sample shows a slightly different behaviour compared to the data sidebands. This is due to the

presence of prompt dimuon contributions in data, in particular at low BDT values. Such com-
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Figure 8.6: Comparison of the ROC curves of the Run 2 BDTs with the ROC curves of the Run 1 BDT applied to
both Run 1 and Run 2 data. In figure 8.6(a) the Run 2 BDTs ROC curves are shown, while in figure 8.6(b)
the ROC curve of the Run 2 BDT obtained merging the three BDTs is shown. Errors on the background
efficiency values are represented by shaded error bands.

ponents are not simulated in the bb → µ+µ−X MC, as introduced in section 7.2. The events

categorised as PRD background, shown in figure 8.7(a), have a signal-like behaviour, which al-

lows them to acquire a higher BDT output value. Even if these components have a much lower

yield compared to the continuum background, their presence becomes relevant in the signal-

like BDT region, as discussed later in section 11.1.

The correlation of the BDT input variables are studied using the signal and continuum back-
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Figure 8.7: BDT output distribution for the signal and background events after the preliminary selection and be-
fore applying any reweighting to the BDT input variables described in section 10.2: 8.7(a) simulation
distributions for B0

s → µ+ µ− signal, continuum, partially reconstructed b → µ+µ−X events and Bc
decays; 8.7(b) dimuon sideband candidates (which also include prompt contributions, mainly at lower
BDT values and not simulated in the continuum MC sample), compared with the continuum MC sample
and the simulated signal. All distributions are normalised to unity in 8.7(a) and to data sidebands
in 8.7(b).

ground MC samples and the data sidebands. Figure 8.8 shows the correlations matrix for the

discriminating variables together with mB , |ηB | and nPV for the signal MC and data sidebands

before, 8.8(a) and 8.8(b), and after, 8.8(c) and 8.8(d), applying the BDT selection with a signal
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efficiency of 54%; the value of this cut is discussed later in this section.

These four plots provide a large amount of information on the BDT, its training and its validity.

The first important piece of information regards the correlation of the various variables with

the invariant mass of the dimuons. Any mass-dependence might introduce selection-driven

sculpting of the dimuon invariant mass distribution, which can modify the shape of the signal

peaks. Since none of the variables shows a relevant correlation with the mass of the dimuon

candidates, both before and after the BDT application, the BDT is considered independent

from the dimuon invariant mass.

The comparison of the correlation matrices before and after the application of the BDT allows

a simple check to verify the proper functioning of the selection. While before the application

BDT signal and data sidebands show different features, after the selection the two correlation

matrices are extremely similar. This confirms that the BDT is only selecting signal-like candid-

ates.

The expected behaviour of the discriminating variables can be also checked. As introduced in

section 8.2.2, the significances of the impact parameters of the two muons, |d0|min-sig. and

|d0|max-sig. are expected to be highly correlated for the signal, but not for the background. The

correlation matrices obtained before the application of the BDT show exactly this behaviour.
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Dimuon sideband data
-1 = 13 TeV, 26.3 fbs Before BDT selectionATLAS
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The final BDT selection is not re-optimised with respect to the previous analysis. A cut on the

BDT output variable with a signal efficiency of 54% is therefore chosen. This corresponds to

BDT values larger than 0.2455 and a background rejection of about 99.97%.

The resulting dataset is divided in three disjoint BDT intervals in order to enhance the signal

sensitivity of the analysis. An explicit optimisation of the BDT binning is not repeated: the BDT

efficiency binning simply repeats the one chosen for the Run 1 analysis.

The three BDT bins have boundaries 0.2455, 0.3312, 0.4163 and 1, chosen to obtain a B 0
(s) → µ+ µ−

efficiency of 18% each, measured with the B 0
s → µ+ µ− MC sample.

A novelty with respect the previous analysis is the introduction of an additional bin at lower

BDT values. It is chosen to have the same signal efficiency as the other BDT bins (18%): this

corresponds to a lower boundary of 0.1439, for an overall signal efficiency of 72% and a back-

ground rejection of about 99.7%. Accepted candidates in this BDT bin are dominated by back-

ground contributions and are basically insensitive to the signal contribution: as discussed

in section 11.3, their role is effectively that of constraining the background models. For this

reason, signal and reference channel yields as well as efficiencies are measured with respect to

the former selection, implying a signal efficiency of 54%.

Systematic uncertainties related to the BDT selection are taken into account in the RAε term in

formula 5.1. Systematic uncertainties due to the binning scheme chosen for the BDT output

distribution are also described in section 10.2, and taken into account in the signal fit proced-

ure.



9DATA-MC COMPARISON

Simulated signal and background events are used in this analysis to assess signal efficiency,

identify suitable background models and other purposes. It is therefore important to gauge the

consistency of such simulations with data where possible, and identify potential sources of sys-

tematic uncertainties that will need to be taken into account in the final result. This chapter is

devoted to the comparison of data and MC samples, in order to quantify relevant discrepancies.

The efficiency of the BDT-based selection will be assessed on signal MC, which cannot be

easily compared to data. It will be therefore verified, in sections 9.1 and 9.2 respectively, that

the distributions of the BDT input variables introduced in section 8.2.2 are consistent between

data and MC when considering the reference channel B+ → J/ψK + and the control channel

B 0
s → J/ψφ.

Possible residual discrepancies will be used as sources of systematic uncertainties, as discussed

in chapter 10.

Despite its limited use in the analysis, the inclusive background simulation is compared against

data sidebands as well, since even though simulated background samples are not used for the

training of the BDT, they are still employed in the last stage of the analysis (section 11.1) to

identify suitable invariant mass models in the data invariant mass distribution fit. The reliance

on the background simulation is limited to the selection of suitable functional models (and not

used e. g. to determine background yields or shape parameters) which are then checked against

data sidebands, and is complemented with systematic studies challenging these assumptions.

9.1 Reference channel comparison

This section describes the comparison between data and MC for the high-statistics B+ → J/ψK +

channel, used to estimate the agreement between the simulated samples and real data and to

evaluate any discrepancy, used in section 10.2 to estimate the systematic uncertainties on the

efficiency and acceptance ratio.

Before comparing it to data, the B+ → J/ψK + MC sample is re-weighted according to the full

133
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procedure described in section 7.6 and the signal distribution in data is extracted using the

sideband-subtraction procedure, introduced in section 7.6.4.2.

Figures 9.1 and 9.2 show the comparison for the most important variables used in the BDT se-
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Figure 9.1: Comparison of B+ → J/ψK+ sideband-subtracted data and MC. The variable compared is shown below
each plot. The black filled markers correspond to data and the red histogram corresponds to the B+ →
J/ψK+ MC sample, normalised to the data. The lower plot for each comparison shows the ratio of the
data to the MC.

lection (section 8.2). The remaining variables not present in these figures show a comparable

agreement. Since the B+ vertex is 3-prong, certain variables are not directly equivalent to their
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Figure 9.2: Comparison of B+ → J/ψK+ sideband-subtracted data and MC. The variable compared is shown below
each plot. The black filled markers correspond to data and the red histogram corresponds to the B+ →
J/ψK+ MC sample, normalised to the data. The lower plot for each comparison shows the ratio of the
data to the MC.

counterparts in the two-prong B 0
(s) → µ+ µ− signal; for these cases, together with the 3-prong

version of the variables, the comparison is performed also mimicking a two-prong counterpart

by reconstructing the dimuon vertex in the normalisation and control channel signal candid-

ates.

The result of the data-simulation comparison is not qualitatively different from the one from [73]:
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the overall behaviour of the distributions of data and MC is comparable, with possible dis-

agreements especially in the regions with low statistics. A more significant disagreement (also

compared to what found in [73]) is present in the isolation-related variables N close
xtrk and I B

0.7 (fig-

ures 9.1(d) and 9.2(a)). This discrepancy was found to be the main source of the disagreement
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Figure 9.3: Comparison of the BDT output variable for the B+ → J/ψK+ channel. The black filled markers cor-
respond to the sideband-subtracted data and the red histogram corresponds to the MC sample. The
re-weighting procedure discussed in section 7.6 has been applied to the MC distribution in figure 9.3(a),
while figure 9.3(b) shows the same distributions, after additionally reweighting the MC according to the
I B

0.7 distribution observed in the sideband subtracted signal.

in the data-MC comparison of the BDT output variable, shown in figure 9.3. This figure depicts

the data-MC comparison of the BDT output variable zoomed in the region of interest for the

analysis, before (figure 9.3(a)) and after (figure 9.3(b)) a re-weighting performed on the isola-

tion distribution on sideband-subtracted data, showing the improvement in the comparison

after the re-weighting.

Due to the large data-MC disagreement in the isolation-related variables and its extensive ef-

fect on the BDT output distribution, the central value of the efficiencies, derived in section 10.2,

is calculated applying all the MC corrections as well as the reweighting on the isolation variable

applied to figure 9.3(b).

The residual discrepancies in the data-MC comparison are considered in the systematic uncer-

tainties that affect the efficiency ratio (section 10.2.2). Such effects are, in fact, not expected to

have a sizeable contribution to the systematic uncertainties affecting the analysis, as was the

case for [73].

9.2 Control channel comparison

The same data-MC comparison described in the previous section for B+ → J/ψK + channel is

performed also on the control channel B 0
s → J/ψφ.

This second comparison is important for three main reasons:

• it provides a cross-check of the observed discrepancies on B+ → J/ψK + and their applic-
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ability to B 0
s decays;

• it allows the checking of the consistencies (or lack thereof) on a sample with a much

cleaner signal to background ratio than the reference channel;

• the control channel provides also a check on a final state with a different particle multi-

plicity, sustaining the applicability of the corrections on the BDT input variables distri-

butions also to two-body B decays.

The approach followed is the same as of the B+ → J/ψK + samples: the MC sample is weighted

according to the procedure described in section 7.6 and the signal distribution in data is ex-

tracted using a sideband-subtraction procedure, already discussed in section 7.6.4.2.

Figures 9.4 and 9.5 show the result of the comparison for the most important variables used

in the BDT selection. Analogously to the reference channel, the overall agreement is good, ex-

cept for a significant discrepancy in isolation-related variables. In this case, the disagreement

is less pronounced than the one found for B+ → J/ψK +. Figure 9.6 shows the data-MC com-

parison for the BDT output variable of the control channel, zoomed in the region of interest

for the analysis. In particular, figure 9.3(a) shows the comparison before the same isolation

based re-weighting as the B+ → J/ψK + channel is applied, while figure 9.6(b) shows the com-

parison afterwards. As for the data-MC comparison performed on the single variables, the

comparison for the BDT output variable shows a better agreement for B 0
s → J/ψφ compared to

B+ → J/ψK +. This effect can be related to the smaller size of the sample, which implies larger

statistical uncertainties, but might also point to issues in the sideband subtraction procedure.

In fact, the B 0
s → J/ψφ has a much lower background contribution compared to B+ → J/ψK +,

allowing a more efficient background subtraction. In any case, the compatibility of the DDW

calculated for B+ → J/ψK + and B 0
s → J/ψφ rule out the possibility of issues in the sideband

subtraction procedure.

The overall compatible agreement for the discriminating variables between data and MC is

therefore found for the B+ → J/ψK + and B 0
s → J/ψφ processes. This validates the possibil-

ity of employing the data-MC discrepancies in the B+ → J/ψK + channel for the evaluation of

systematic uncertainties related also to signal and control channels, as discussed later in sec-

tion 10.2.
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Figure 9.4: Comparison of B0
s → J/ψφ sideband-subtracted data and MC. The variable compared is shown below

each plot. The black filled markers correspond to data and the red histogram corresponds to the B0
s →

J/ψφMC sample, normalised to the data. The lower plot for each comparison shows the ratio of the data
to the MC.
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Figure 9.5: Comparison of B0
s → J/ψφ sideband-subtracted data and MC. The variable compared is shown below

each plot. The black filled markers correspond to data and the red histogram corresponds to the B0
s →

J/ψφMC sample, normalised to the data. The lower plot for each comparison shows the ratio of the data
to the MC.
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9.3 Continuum background comparison

The data-MC comparison for the validation of the continuum background simulated sample is

performed between the bb →µ+µ−X MC and the B 0
(s) → µ+ µ− data sidebands.

The purpose of the bb → µ+µ−X MC, at the beginning of the analysis, was two-fold. It was

supposed to be used for the background sample for the BDT training and to evaluate the func-

tional forms to be used in the B 0
(s) → µ+ µ− signal extraction fit. The BDT was first trained with

this sample, while the analysis was being developed, but the resulting BDT showed a low per-

formance. The BDT training is hence based on data; the purpose of the bb → µ+µ−X sample

for this analysis is therefore to evaluate the functional forms that will be used in the signal fit

on the unblinded data.

The preselection described in chapter 7 is applied to both data and MC, with an additional

Lx y > 0.3 mm cut to suppress the prompt components. This is the same cut described in sec-

tion 7.6.4: it allows the elimination of the prompt background components, which are not sim-

ulated in the bb →µ+µ−X MC. Additionally, only the continuum events are retained in the MC

sample, via a truth-level selection.

The MC re-weighting procedure, shown in section 7.6, is applied, except for the kinematic

weights, which are derived only for the exclusive samples. The kinematic re-weighting is per-

formed instead based on three variables: pB
T , ηB and N trks

0.7 . The last variable is the number of

tracks contained within a cone of size∆R =
√

(∆φ)2 + (∆η)2 = 0.7 around the B candidate direc-

tion. It is added to the re-weighting procedure as the same discrepancy present in the previous

data-MC comparison is found. The re-weighting is performed simultaneously on all the three

variables, employing a gradient boosted re-weighting technique [199]; the re-weighting uses as

reference sample the data sidebands.

Figures 9.7 and 9.8 show the distributions of the re-weighted variables, together with the most

important discriminating variables used in the BDT selection.

The level of agreement of the variables is found to be worse than the one found for the Run

1 analysis [73]; as already described, an attempt to train the BDT using this simulated sample

was made, resulting in a low-performance classifier. For this reason, the BDT is trained on real

data, as described in section 8.2

On the other hand, the agreement of the distributions is considered sufficient to employ this

sample to identify suitable functional forms to be used in the final signal extraction fit. As

already mentioned, the reliance on this MC sample is limited, as the signal fit is performed

solely on data (section 11.3). In addition, all the models designed using the bb → µ+µ−X

MC are checked against data sidebands and systematic uncertainties relative to the functional

models chosen are considered.
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Figure 9.7: Comparison of B0
(s) → µ+ µ− data sidebands and bb → µ+µ−X MC. The variable compared is shown

below each plot. The black filled markers correspond to the sideband data and the green histogram
corresponds to the bb →µ+µ−X MC sample. For reference, the B0

s → µ+ µ− signal MC is also displayed
in the figures as a filled histogram. All histograms are normalised to unity. The inset below for each
comparison shows the ratio of the sideband data to the bb →µ+µ−X MC.
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Figure 9.8: Comparison of B0
(s) → µ+ µ− data sidebands and bb → µ+µ−X MC. The variable compared is shown

below each plot. The black filled markers correspond to the sideband data and the green histogram
corresponds to the bb →µ+µ−X MC sample. For reference, the B0

s → µ+ µ− signal MC is also displayed
in the figures as a filled histogram. All histograms are normalised to unity. The inset below for each
comparison shows the ratio of the sideband data to the bb →µ+µ−X MC.
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The preceding chapters have established the foundations of the analysis: the required real and

simulated samples have been introduced in chapter 7, and assessed in terms of potential sys-

tematic deviations between the two in section 7.6, with chapter 8 then focusing on the finalisa-

tion of the analysis selection.

This chapter focuses on the determination of the terms of equation 5.1 which involve the ref-

erence channel: the B+ → J/ψK + yield and its relative efficiency compared to the signal.

Section 10.1 will discuss the fit technique employed in the reference channel yield extraction

and the result of this procedure, followed by the detailed determination of the relative signal

efficiency RAε (section 10.2).

10.1 B+ → J/ψK + yield extraction

This section is dedicated to the extraction of the reference channel yield, which enters in for-

mula 5.1.

The number of B+ → J/ψK + candidates is estimated using a fit to the J/ψK + invariant mass

distribution: the samples employed are described in sub-section 10.1.1, while the fitting pro-

cedure is detailed in sub-section 10.1.2. Systematic uncertainties associated with the fitting

procedure are reviewed and evaluated in sub-section 10.1.3. The final result of the fit is repor-

ted in sub-section 10.1.4.

10.1.1 Samples composition

The B+ → J/ψK + fit is extracted from data after the application of a selection as close as pos-

sible to the one used on B 0
(s) → µ+ µ− candidates; as discussed in chapter 7, this allows the

minimisation of systematic uncertainties in the relative efficiencies of the two signals. Simu-

lated samples are employed to study the functional forms used on data and, in certain cases, to

constrain such functional forms in the fit.

The pre-selection described in section 7.3 and the BDT cut at 0.2455 (54% efficiency on B 0
s → µ+ µ−,

as described in section 8.2) are applied to both data and MC samples employed in the reference

yield extraction. The invariant mass region considered for the fit is defined at preselection level

144
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(4930 MeV < m(B) < 5630 MeV from section 7.3); it is centred on the B+ mass peak and wide

enough to allow the proper modelisation of the background for a good signal-background dis-

crimination, without introducing additional background contributions. Only half of the data

and MC signal samples are exploited in the fitting procedure, as the other half is used to tune

the kinematic distributions of simulated events; this avoids possible correlations among the

various steps of the analysis. The samples are split according to the unique event number asso-

ciated with each recorded pp collision: odd-numbered events are used in the B+ → J/ψK + fit

and even-numbered events are used in the derivation of the DDW.

After the application of the selection, four main components can be identified in the B+ can-

didates’ invariant mass distribution in data. The B+ signal is evident, with a tall peak in the

centre of the invariant mass distribution, together with visible contributions from three back-

ground categories.

• The Combinatorial background spans across the fit mass range, which corresponds to

the B+ invariant mass region defined at preselection level (4930 MeV < m(B) < 5630 from

section 7.3), with a mild dependence on the J/ψK ± invariant mass. Studies performed

on the bb → J/ψX MC show that this background is mostly due to J/ψ→ µ+µ− decays

associated with a random track from the event.

• The B+ → J/ψπ+ background is shifted away from the B+ mass peak due to the π→ K

mass misassignment, and for this reason appears as a distorted peak to the right of the

main signal. The contribution is less noticeable with respect to the other backgrounds,

due to the CKM suppression of the B+ → J/ψπ+ process. This background is studied with

the exclusive B+ → J/ψπ+ MC.

• The Partially Reconstructed Decays (PRD) background originates from decays in which

one or more particles in the final state are not reconstructed, e. g. B → K ∗(πK )J/ψ(µµ).

Due to the missing four-momentum, this background populates the left side of the B+ →
J/ψK + peak. The studies of this background are based on the bb → J/ψX MC.

10.1.2 Reference channel fit configuration

The B+ → J/ψK + yield extraction is performed with an unbinned extended maximum likeli-

hood fit to the J/ψK + mass distribution.

All functional forms used to model signal and background are extracted from studies on MC

samples; as part of the systematic studies, these models will be varied to assess the effect of

this assumption on the signal yield. Some of the shape parameters of the functional forms are

constrained fitting simultaneously data and MC samples, while the yields of both signal and

backgrounds are extracted from the data.

The B+ → J/ψK + model is studied on the exclusive MC generated for this process; such sim-

ulations include also the radiative decays where the B+ meson emits a γ. The models for the

non-radiative and radiative components are studied separately and are both parametrised with

the sum of a Johnson SU [200, 201] and a gaussian function. The total PDF used for the signal
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is therefore the sum of the two components. The shape parameters associated with the signal

PDF are extracted with a simultaneous fit on data and the exclusive B+ → J/ψK + MC.

The three background sources are parametrised as follows:

• the Combinatorial background is modelled with an exponential PDF, although the model

is chosen on the basis of past analyses and MC studies, the normalisation and shape

parameters are extracted as free parameters in the data fit;

• the B+ → J/ψπ+ background is described with the sum of a Johnson SU and a gaussian.

The shape parameters are extracted from a simultaneous fit on data and the exclusive

B+ → J/ψπ+ MC;

• the PRD background is further divided into sub-categories according to the mass de-

pendence of its various components.

– PRD1 produces a “shoulder” at about 5150 MeV; the main contributors to this com-

ponent are found to be B 0 → J/ψρ0, B+ → J/ψρ+, B 0 → J/ψK +π−, and B+ →
J/ψK +π0.

– PRD2, mainly composed of B+ → χc1(J/ψγ)K + decays, due to the different miss-

ing four-momentum compared to PRD1 presents a shoulder in the invariant mass

distribution at 5050 MeV.

– PRD3 includes the remaining PRD events; this component shows a smoother mass

dependence.

The three categories are parametrised with combinations of Fermi-Dirac [202, 203] and

exponential functions, whose parameters are extracted from the simultaneous fit on data

and MC.

The simultaneous fit on data and MC includes also a gaussian smearing of the data PDF re-

lative to the MC templates, to account for possible data-MC discrepancies in mass scale and

resolution.

The starting values of the fit parameters are based on the result of the studies based on MC for

the functional shapes, while the relative normalisations are based on the result of the B+ →
J/ψK + fit of the Run 1 analysis [73].

The result of fit on data and MC performed using the configuration described above is shown

in figure 10.1 and yields 334351 ± 975 B+ → J/ψK + decays, corresponding to a statistical un-

certainty of 0.3%.

The additional smearing parameters introduced in the fit, to account for data-MC discrepan-

cies show a negligible difference in resolution between data and MC ( 0.1±0.3 MeV) and a mass

shift at the level of -2 MeV.
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Figure 10.1: Result of the fit to the B+ → J/ψK+ invariant mass distribution for all B+ candidates in half of the data
events, with linear and logarithmic y axis respectively in 10.1(a) and 10.1(b). The various components of
the spectrum are described in the text. The inset at the bottom of the plots shows the bin-by-bin pulls
for the fit, where the pull is defined as the difference between the data point and the value obtained
from the fit function, divided by the error from the fit.

10.1.3 Systematic uncertainties on the B+ → J/ψK + fit

Some of the potential sources of systematic uncertainty are included in the fitting procedure:

the effect of the finite size of the simulated samples as well as the differences in mass scale

and resolution between data and MC. Additional systematic uncertainties originate from the

assumptions on the fit models, which are evaluated by varying the default models described in

section 10.1.2.

• Combinatorial background model. The choice of the functional form for this back-

ground, an exponential PDF, is challenged by changing the model to a linear function.

• PRD1 and PRD2 models. Systematic uncertainties associated with the functional form

chosen for these backgrounds are evaluated by replacing the Fermi-Dirac PDF employed

in the baseline fit with a complementary error function.

• PRD composition in MC. The relative normalisation of the PRD components in the data

sample is free and not tied to the PRD MC values. However, the relative abundance of

partially reconstructed final states within a given PRD mode can affect the correspond-

ing model shape and therefore the signal yield in the combined fit. In order to take this

effect into account, the MC sample PRD background composition is modified by varying

the relative abundances of the different processes within the uncertainties of the latest

Particle Data Group (PDG) [11] values.

Besides shape parameterisations, other sources of systematic uncertainty affect the fit.

• Kinematic differences between data and MC. These discrepancies are evaluated and

corrected for the exclusive samples by the QLC and DDW, which are applied to the MC
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samples in the baseline fit. The systematic uncertainty associated with these weights is

evaluated by removing the weighting procedure on the MC.

• B± → J/ψK ± charge asymmetry. The MC fit for this component is performed on an even

generation of B+ → J/ψK + and B− → J/ψK − events. The fit is varied by including only

either B+ → J/ψK + or B− → J/ψK − signal MC, with the full variation taken as systematic

uncertainty on the J/ψK charge asymmetry.

• Fit stability. Finally, the stability of this large sample fit is tested by repeating the fit with

different starting values for the parameters, with respect to the baseline starting point

described in section 10.1.2.

In each case the variation relative to the baseline fit is recorded, symmetrised with respect to

the baseline result and used as an estimate of the systematic uncertainty.

Table 10.1 shows a breakdown of the contribution of the different systematic uncertainties

Table 10.1: Sources of systematic uncertainties associated with the fit performed to extract the normalisation chan-
nel yield. The systematics are combined by taking the maximum between the combination in quadrat-
ure of the positive and that of negative deviations.

Source of systematics Value[%]

PRD1 Parameterisation +1.7

PRD2 Parameterisation -3

PRD3 Parameterisation +1

Combinatorial Parameterisation +1.7

Use B+ signal sample +2.2

Use B− signal sample +1.4

Weights +0.7

Starting point ±1.4

PRD composition +2.4

Combined 4.8

and the resulting total systematic uncertainty, which amounts to 4.8%; the main contributions

come from the functional models of the background components, the PRD composition and

the charge asymmetry.

10.1.4 Result of the reference channel yield extraction

The B+ → J/ψK + yield obtained is NJ/ψK + = 334351× (1±0.3%±4.8%), where the first uncer-

tainty is statistical and the second is systematic.

As a cross-check of the fit behaviour, the relative B± → J/ψπ±/ B+ → J/ψK + yield is assessed.

The fit yields a ratio of (3.71±0.09)%, where the uncertainty reported is statistical only, in

agreement with the world average [11] of (3.84±0.16)%.
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10.2 Evaluation of the B+ → J/ψK + to B 0
(s) → µ+ µ− efficiency ratio

The efficiency and acceptance terms for both the reference and signal channels enter in equa-

tion 5.1 through their ratio RAε, evaluated using MC samples corrected with the weighting pro-

cedure reported in section 7.6. This term is evaluated for the selection obtained combining the

preselection described in section 7.3 and the BDT cut at 54% B 0
s → µ+ µ− efficiency described

in section 8.2.

The technique employed to evaluate the RAε is discussed first (sub-section 10.2.1). The associ-

ated systematic uncertainties are then evaluated (sub-section 10.2.2).

The relative signal fraction for the BDT bins introduced in section 8.2.3 with respect to the

selection mentioned is discussed separately, together with the associated uncertainties (sub-

section 10.2.3).

10.2.1 Efficiency ratio calculation

The efficiency ratio RAε is evaluated by separating the contribution of an acceptance term A

and an efficiency term ε, according to the following formula:

RAε =
AB+→J/ψK + ×εB+→J/ψK +

AB 0
s → µ+ µ− ×εB 0

s → µ+ µ−
(10.1)

The A term considers the effect of the cuts applied to the finals state particles in the preselec-

tion (defined in section 7.3) pµ

T > 6,4 GeV,
∣∣∣ηµ∣∣∣ < 2.5, pK

T > 1.0 GeV and
∣∣ηK

∣∣ < 2.5. These are

measured with respect to a kinematic fiducial volume (also defined in section 7.3) pB
T > 8.0 GeV

and
∣∣ηB

∣∣ < 2.5. Acceptances are hence evaluated by taking the ratio of the number of events

passing the cuts on the final state particles and the number of events in the fiducial volume in

the signal simulations.

The acceptance does not consider any effect due to the detector or the reconstruction pro-

cedure, therefore it is evaluated using generator level MC, without simulation of the detector

response and reconstruction, applying the fiducial volume and cuts on the final state particles

Table 10.2: A terms for B+ and B0
s channels for the 2015/16 analysis and for the Run 1 analysis. The latter was char-

acterised by two different centre of mass energies, therefore two values are provided (2011 and 2012).
The statistical uncertainty due to the finite size of the simulated samples is also reported.

2011 2012 2015/16

AB+→J/ψK + 0.0819 ± 0.0003 0.0865 ± 0.0002 0.0734 ± 0.0001

AB 0
s → µ+ µ− 0.3035 ± 0.0005 0.2902 ± 0.0005 0.2413 ± 0.0005

to the truth-level appropriate quantities. Two simulations are employed, one for the signal

and the other for the reference channel, with the same properties of the quark biased samples

defined in section 7.6.4.1. In order to take into account known MC mis-modellings, the QLC
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and DDW corrections, defined in section 7.6.4 are applied to both the numerator and the de-

nominator.

The resulting values for A are reported in table 10.2, together with the values obtained in the

Run 1 analysis for comparison. The uncertainties reported account only for the finite size of the

simulations employed. The comparison with the Run 1 acceptance terms shows the effect of

the higher pT cut applied to the leading muon, 6 GeV instead of 4 GeV, which lowers the value

of both signal acceptances.

The ε term accounts for all the detector and reconstruction effects, such as the application

of selections cuts to reconstructed quantities, trigger efficiency and reconstruction efficiency. ε

is evaluated as the ratio between the number of events passing the full analysis selection1 and

the number of events passing the fiducial volume cuts on the final state particles applied to the

appropriate truth level quantities (i. e. the numerator of the acceptance defined just before). As

for the acceptance, the efficiency is evaluated using MC simulations, with QLC and DDW cor-

rections applied to both numerator and denominator. Trigger and reconstruction efficiency

corrections and pile-up reweighting, discussed in sections 7.6.3, 7.6.2 and 7.6.1, are also ap-

plied to the numerator, as it considers reconstructed quantities.

As introduced in section 7.2 (page 91), the B 0
s → µ+ µ− signal efficiency needs to account for

uncertainties on the B 0
s lifetime. The B 0

s → µ+ µ− signal MC was chosen to be generated with

the average B 0
s meson lifetime (1.615 ps). According to the SM predictions, the mass eigenstate

contributing to B 0
s → µ+ µ− decays is Bs,H [53, 54]. The signal MC is thus reweighted to an ef-

fective lifetime of 1.533 ps, which increases the efficiency ratio of B 0
s → µ+ µ− to B+ → J/ψK +

by 3.3%. Systematic uncertainties arising from this reweighting procedure are considered and

found to be negligible compared to the other systematic uncertainties affecting RAε (discussed

later in subsection 10.2.2)

The resulting values of ε are 0.0719× (1±0.4%) and 0.1745× (1±0.7%) for the B+ → J/ψK + and

B 0
s → µ+ µ− (before the lifetime reweighting) channels respectively. Before calculating the

value of RAε and comparing the results with the same quantities obtained in the Run 1 ana-

lysis an additional step is required: as introduced in section 9.1, due to the noticeable data-MC

disagreement found for the isolation related variables, the central value of RAε is corrected ac-

cording to a re-weighting based on the I B
0.7 variable. Table 10.3 summarises the resulting values

for ε, A×ε and RAε, before and after the isolation re-weighting.

Where present, the first uncertainty is statistical and the second is systematic. The sources of

systematic uncertainties affecting RAε are discussed in sub-section 10.2.2.

A comparison between the efficiency and RAε terms between Run 1 and the current analysis

is not trivial, as several effects should be considered. The effect of the trigger prescales is not

considered in RAε of the Run 1 analysis but explicitly inserted in the equivalent of formula 5.1,

while it is taken into account in the 2015/16 calculation; the overall effect yields a reduction of

a factor ∼ 1.72 on RAε, compatible with the ratio of the prescale factors of the triggers employed

1 Which includes the preselection presented in section 7.3 and the cut on the BDT output at 0.2455 (which has 54%
efficiency on the signal) presented in section 8.2.
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Table 10.3: ε, A × ε and RAε values for B+, B0
s and B0

d (where present) channels for Run 1 and 2015/16 samples.
Where present, the first uncertainty is statistical and second one is systematic. The complete list of
systematic uncertainties considered can be found in sub-section 10.2.2. The last row reports the values
for the B0

d → µ+ µ− channel, evaluated using the appropriate MC sample.

channel ε A×ε RAε

B+ Run 1 0.0928 0.0080 ± 0.0001 ± 0.0013
0.180 ± 0.001 ± 0.093

B 0
s Run 1 0.1522 0.0441 ± 0.0002 ± 0.0045

B+ 2015/16 0.0719 ± 0.0003 0.0053 ± 0.0001 ± 0.0063
0.1254 ± 0.0001 ± 0.009

B 0
s 2015/16 0.1745 ± 0.0007 0.0421 ± 0.0003 ± 0.0004

B+ 2015/16 with
B+ isol. rew.

0.0670 ± 0.0003 0.0049 ± 0.0001 ± 0.0005
0.1144 ± 0.0009 ± 0.0046

B 0
s 2015/16 with
B 0

s isol. rew.
0.1783 ± 0.0007 0.0430 ± 0.0003 ± 0.0037

B+ 2015/16 with
B+ isol. rew.

0.0670 ± 0.0003 0.0049 ± 0.0001 ± 0.0005
0.1176 ± 0.009 ± 0.0047

B 0
d 2015/16 with
B 0

s isol. rew.
0.1734 ± 0.0007 0.0419 ± 0.0003 ± 0.0036

in the analysis for B 0
(s) → µ+ µ− and B+ → J/ψK +.

Considering that the acceptances ratio AB+/ABs increased by about 3% with respect to the pre-

vious analysis, the main contribution to the increase of RAε is due to the efficiency terms. In

particular, the ratio of efficiencies εB+ over εBs increased by 16% with respect to Run 1. This

is compatible with the harder cut applied to the leading muon transverse momentum in the

2015/16 analysis, which favours the B 0
(s) → µ+ µ− channels with respect to B+ → J/ψK +, as

the former shows a harder muon pT spectrum, due to the additional cuts on the kaon.

In conclusion, even if the 2015/16 efficiency ratio calculation shows a different behaviour com-

pared to the Run 1 analysis, the various differences can be addressed. This corroborates the

validity of the RAε term for the 2015/16 analysis.

The last row of table 10.3 shows the ε, A × ε and RAε values obtained using the B 0
d → µ+ µ−

MC sample, as expected the results are compatible with the B 0
s → µ+ µ− channel within the

uncertainty. The value obtained for the B 0
s → µ+ µ− channel is therefore employed for both

the signal processes2.

10.2.2 Systematic uncertainties on RAε

Several sources of systematic uncertainties are considered in the evaluation of RAε; they origin-

ate from the reweighting procedure discussed in section 7.6 (muon trigger efficiency, pile-up

re-weighting, muon offline efficiency, QLC and DDW), the kaon tracking efficiency and the re-

2 The RAε term enters in the branching fraction extraction fit, discussed in chapter 12. The same efficiency ratio
value is used for both B0

s and B0
d branching fractions extraction, with the additional lifetime corrections applied

only to B0
s → µ+ µ−.
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sidual data-MC discrepancies already discussed in chapter 9.

The systematic uncertainties due to the MC reweighting procedure are evaluated singularly

for each correction described in section 7.6. A toy-MC based study is run, varying the correc-

tions being studied within their uncertainty and re-computing RAε after each toy. The RMS of

the resulting distribution of the efficiency ratio is taken as systematic uncertainty.

The systematic uncertainties arising from the reweighting procedure are:

• trigger and offline efficiency corrections: 1.0%;

• PU re-weighting: 0.6%;

• kinematic corrections (QLC + DDW): 0.8%.

Notably, the systematic uncertainty due to the kinematic corrections is smaller than its Run 1

counterpart, which was found to be about 1.5%. The reduction in the uncertainty is compatible

with the increased size of the B+ → J/ψK + dataset used to compute the DDW, which is roughly

4 times larger than the one used in Run 1.

The numerator and denominator processes differ by the presence of one additional hadron in

the final state. As a result, the ratio directly depends on the absolute tracking efficiency for this

extra particle. The systematic uncertainty related to the kaon tracking efficiency is mostly due

to inaccuracies in the modelling of passive material in the ID in simulations. It is evaluated by

varying the detector model in simulations. The resulting systematic uncertainty varies between

0.4% and 1.5%, depending on the η range considered [204]. The largest value is conservatively

used in the full eta range. This systematic only affects the reference channel, therefore its effect

on RAε is 1.5%.

The last source of systematic uncertainties considered arises from the residual discrepancies

between data and MC observed for the B+ → J/ψK + and B 0
s → J/ψφ channels, after all the

corrections discussed in section 7.6 are applied. For each of the BDT input variables (see sec-

tion 8.2) the data-MC discrepancy observed in the reference channel (section 9.1) is used as

a corrective weight. This is applied to the same variable in the MC samples entering the RAε

calculation (B 0
s → µ+ µ− or B+ → J/ψK +). The change in RAε observed when applying this

correction for a given BDT input variable is taken as systematic uncertainty for that variable.

The only exceptions are the I0.7 and ∆φµµ variables:

• the reweighting of the I0.7 variable for the B 0
s → µ+ µ− channel is performed using

B 0
s → J/ψφ data and MC, as differences in the b quark hadronisation might alter the

environment around the B candidate with respect to the reference channel.

• the reweighting of the∆φµµ variable is not performed for the B 0
s → µ+ µ− channel, given

the difference in this distribution with respect to B+ → J/ψK + and B 0
s → J/ψφ events,
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where the two muons come from a J/ψ → µ+µ− process. Since this variable shows a

large correlation with pB
T and P min

L , the reweighting on these two is assumed to take into

account also the ∆φµµ effects.

The total systematic uncertainty due to discrepancies in the BDT input variables is obtained

by summing in quadrature the systematic uncertainty due to each variable. The resulting total

systematic uncertainty on RAε due to this procedure after the isolation reweighting, which con-

tributes an additional 1% effect, is 3.2%. The breakdown of the contribution of the single BDT

input variables after the isolation reweighting is provided in table 10.4. The effect of the sys-

Table 10.4: Breakdown of the contribution of the BDT input variables to the systematic uncertainty of RAε after the
isolation reweighting is applied. The systematic uncertainty relative to the A × ε term for both B0

s and
B+ channels is shown, together with the combined effect on RAε. No systematic uncertainty due to the
reweighting of the ∆φµµ variable is evaluated for A×εµ+µ− as explained in the text.

Source
Contribution [%]

A×εµ+µ− A×εJ/ψK + RAε

pB
T 0.0 0.0 0.0

χ2
PV,DV x y 0.4 1.2 0.8

∆Rflight 0.5 0.5 0.0

|α2D| 0.5 0.7 0.2

Lx y 0.2 0.2 0.0

IP3D
B 0.5 0.5 0.1

DOCAµµ 0.5 1.1 0.6

∆φµµ - 0.0 0.0

|d0|max-sig. 1.9 2.2 0.2

|d0|min-sig. 3.6 1.9 1.7

P min
L 0.0 0.1 0.1

I0.7 0.0 0.0 0.0

DOCAxtrk 5.1 6.9 1.8

N close
xtrk 2.5 2.8 0.4

χ2
µ,xPV 3.5 2.1 1.5

Total 7.9 8.5 3.2

tematic uncertainty on the single BDT variables is shown separately for the A × ε terms of the

B 0
s → µ+ µ− and B+ → J/ψK + channels and for RAε: the combined effect on RAε is smaller

than the effect on the single channel. This clearly shows the effect of the strategy of measuring

the B 0
s → µ+ µ− branching fractions with respect to a reference channel in order to reduce the

contribution of the systematic uncertainties.

The total systematic uncertainty for B 0
s → µ+ µ− amounts to 7.9%, dominated by DOCAxtrk

(5.1%), |d0|min-sig. (3.6%) and χ2
µ,xPV (3.5%); regarding B+ → J/ψK +, the total systematic un-

certainty for A×ε amounts to 8.5%, dominated by DOCAxtrk (6.9%).
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Table 10.5 shows a summary of the various contributions to the total systematic uncertainty on

RAε, together with the total value, obtained by summing in quadrature the single contributions.

As for table 10.4, the systematic uncertainties related to the A×ε terms are bigger compared to

Table 10.5: Summary of the systematic uncertainties in RAε after the isolation re-weighting procedure. The contri-
butions to the A×ε for both B0

s → µ+ µ− and B+ → J/ψK+ are also shown. No systematic uncertainty
due to the kaon tracking efficiency is associated with the B0

(s) → µ+ µ− process since it does not contain
a kaon.

Source
Contribution [%]

A×εµ+µ− A×εJ/ψK + RAε

Kinematic reweighting (QLC, DDW) 2.1 2.3 0.8

Muon trigger and reconstruction 2.5 2.6 1.0

Isolation reweighting 0.8 0.6 1.0

BDT input variables 7.9 8.5 3.2

Kaon tracking efficiency - 1.5 1.5

Pile-up reweighting 0.8 1.2 0.6

Total 8.6 9.4 4.0

the systematic uncertainties on RAε, confirming the systematic uncertainty reduction due to

the B(B 0
(s) → µ+ µ−) measurement relative to a reference channel.

10.2.3 Systematic uncertainties on BDT bins

As introduced in chapter 5 and section 8.2, the candidates effectively3 employed in the signal

yield extraction procedure are required to have a BDT output value larger than 0.2455, which

corresponds to a signal efficiency of 54%. The resulting dataset is further divided in three sub-

sets, referred to as BDT bins, with boundaries 0.2455, 0.3312, 0.4163 and 1, and a B 0
(s) → µ+ µ−

efficiency of 18% each. Since this binning is based on the B 0
s → µ+ µ− exclusive MC, additional

uncertainties due to the BDT distribution in simulations, which can affect the relative popula-

tion in the BDT bins, must be considered.

Two approaches are exploited to evaluate these uncertainties:

• the same re-weighting procedure of the BDT input variables used to calculate the un-

certainty on the RAε term, described in the previous section, is used to evaluate also the

uncertainty on the three BDT bins;

• the BDT output distribution from MC is compared to sideband-subtracted data for the

the B+ → J/ψK + and B 0
s → J/ψφ channels. The linear dependencies observed for the

two channels are in turn used to reweight the B 0
s → µ+ µ− simulated sample. Figure 10.2

3 The first BDT bin, with boundaries 0.1439 < BDT output < 0.2455, is highly dominated by the background and
does not add any sensitivity to the signal. For this reason, this bin is effectively only used to constrain the back-
ground models in the signal yield extraction.
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shows the linear fits performed on the data/MC ratios of the B+ → J/ψK + and B 0
s → J/ψφ

BDT output distributions.
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Figure 10.2: BDT distributions observed on data for B0
s → J/ψφ (figure 10.2(a)) and B+ → J/ψK+ (figure 10.2(b))

candidates (filled markers), compared to the corresponding distribution from MC (red histograms).
The inset at the bottom of the plots shows the data / MC ratio for each bin. The linear fit shown is used
to evaluated the dependence of the data/MC ratio to the BDT output.

The first approach shows similar effects for both the B+ → J/ψK + and B 0
s → J/ψφ channels.

Absolute variations of ±1.0%, ±2.4%, ±4.4% are obtained for the bins with boundaries 0.2455–

0.3312, 0.3312–0.4163 and 0.4163–1 respectively. The maximum variations found with the second

approach are equal to +1.7% and −2.3% respectively for the bins with boundaries 0.2455–

0.3312 and 0.4163–1 respectively. The middle interval is found to be basically unaffected.

In order to avoid correlations with the uncertainty on the RAε term, the second approach de-

scribed is used to evaluate the uncertainty on the BDT bins. Figure 10.3 shows the effect of the

linear reweighting used in the second approach on the B 0
s → µ+ µ− BDT output.
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Figure 10.3: BDT output for the B0
s → µ+ µ−, with the dashed histogram illustrating the effect of the linear reweight-

ing on the BDT output discussed in the text. The vertical dashed lines correspond to the boundaries of
the BDT intervals used in the B0

(s) → µ+ µ− signal fit.
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The extraction of the B 0
(s) → µ+ µ− signal yield is performed using an extended unbinned

simultaneous maximum likelihood fit, as introduced in chapter 5. The same fitting proced-

ure is then exploited to evaluate the signal branching fractions, by substituting the number of

signal events with B(B 0
(s) → µ+ µ−) and the normalisation terms from formula 5.1. The fit

is carried out on the dimuon invariant mass distribution of the four contiguous BDT bins in-

troduced in section 8.2. This is similar to the strategy employed by CMS [70] and LHCb [74].

The fit is performed on the dimuon invariant mass range defined at preselection level (4766

MeV < m(B) < 5966 MeV from section 7.3). Such mass window is designed to be centred on

the signal mass peaks, which fall into the blinded region, and has two sidebands (4766 MeV

< m(B) < 5166 MeV and 5526 MeV < m(B) < 5966 MeV) which allow studies on some of the

backgrounds that affect the analysis. The size of the sidebands is chosen to be large enough

to contain enough candidates to allow accurate studies on the functional shapes of the back-

grounds, without introducing additional background sources.

The fit is performed exclusively on data: for this reason all the preparatory studies are based on

MC and, if possible, verified on data sidebands. This allows one to maintain the choice of the

fitting procedure independent from data, thus preventing biases or double counting effects.

For the sake of readability of this chapter, the four BDT bins employed in the fit are numbered

as follows:

• bin 0, with 0.1439 < BDT output ≤ 0.2455;

• bin 1, with 0.2455 < BDT output ≤ 0.3312;

• bin 2, with 0.3312 < BDT output ≤ 0.4163;

• bin 3, with 0.4163 < BDT output ≤ 1.0.

The addition of bin 0 is a novelty with respect to the Run 1 analysis, which employed 3 BDT

bins. As explained in section 8.2, although its fit template includes signal components, bin 0

is effectively not contributing to the signal extraction: it was verified on toy-simulations not

to have any impact on the signal yield. The reason for its inclusion is mostly to allow a better

handling of the background and an overall stabilisation of the fit.
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This chapter describes the studies performed to design and validate the fit. The models em-

ployed on the non-resonant backgrounds are identified first (section 11.1), followed by the

studies performed on the resonant models (section 11.2), that include the signals and the peak-

ing background. The final model designed with these components is then tested and validated

(section 11.3). Finally, the procedure to substitute the number of signal events with the signal

branching fractions is discussed in section 11.4.

11.1 Non-resonant background models

The models used to describe the non-resonant backgrounds are identified first.

The studies presented in this chapter heavily rely on the exclusive bb →µ+µ−X MC and on the

exclusive semileptonic MC, both introduced in section 7.2.

First the non-resonant backgrounds are classified according to their response to the BDT se-

lection and their dimuon mass distribution (sub-section 11.1.1). Each background class is

then studied individually on simulations, in order to identify a suitable functional form to be

used in the four BDT bins (sub-section 11.1.2); these studies are carried out by splitting the

bb → µ+µ−X MC in the various background categories, thanks to a MC-truth based selec-

tion. Significant background contributions will eventually be grouped in four categories: con-

tinuum 11.1.2.1, same-side and same-vertex 11.1.2.2, Bc 11.1.2.3 and semileptonics 11.1.2.4.

The combined fitting model for the non-resonant backgrounds is then obtained combining the

different functional forms with individual free scale parameters; the model is chosen and val-

idated first on MC and then on data sidebands before unblinding (sub-section 11.1.3).

The final fit model, designed to perform the simultaneous fit on the four BDT bins, is then in-

troduced and tested (sub-section 11.1.4).

Finally, sub-section 11.1.5 provides a summary of the fit configuration of the non-resonant

background components.

While the first part of the studies presented in this section is performed on the full invariant

mass range of the bb → µ+µ−X MC, the tests performed on the combined and simultaneous

models (sub-sections 11.1.3 and 11.1.4) imply the application of the fitting procedure to both

data and MC. In order to perform a fair comparison between the data and MC fit results, also

the MC distribution is blinded for these studies. The absence of additional structures in the

invariant mass signal region, that would require the addition of other functional forms, is guar-

anteed by the studies performed with the “unblinded” MC in sub-section 11.1.2.

In order to be coherent with the final fit, all fits performed in this section, unless explicitly

stated, are extended unbinned maximum likelihood fits.

The fit quality of all the fits performed throughout this chapter are validated using a binned

χ2 test based on the uncertainty of the data, according to the following formula:

χ2 =
Nbins∑
i=0

(Oi −Ei )2

σ2
i

, (11.1)
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where Nbins is the number of bins in a histograms, Oi is the observed number of events in a bin,

σ is the uncertainty on Oi and Ei is the expected number of events in the bin, based on the fit

results. Due to the properties of this statistical test, its result when applied to datasets with low

statistics might not provide a meaningful estimation of the fit quality, usually over-estimating

the compatibility. While a more appropriate approach is exploited for the goodness of fit of the

final fit performed on unblinded data (chapter 12), the compatibility of the remaining datasets

with the fits is still performed using the χ2 test. This choice does not have any consequence on

the analysis, as all the assumptions made in this chapter are then challenged with systematic

uncertainties.

An additional issue in the calculation of the χ2 test for the evaluation of the goodness of fit is

due to the application of the PU weights described in section 7.6.1. As introduced in section 7.1,

the datasets employed in the analysis were collected with triggers subjected to prescale. In

particular the triggers were deactivated or heavily prescaled in case of high PU, usually at the

beginning of the data taking runs, while they were running basically unprescaled at low PU.

This effect is noticeable in figure 11.1, which compares the PU profile for the B 0
s → µ+ µ−

and B+ → J/ψK + MC (respectively figures 11.1(a) and 11.1(b)) before and after the application

of the PU weights. In both plots the preselection introduced in section 7.3 is applied to all

the distributions and the histograms are normalised with respect to the one representing the

PU profile before the reweighting. The PU weights obtained with the PileupReweighting tool,
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Figure 11.1: Comparison of the PU profile for the B0
s → µ+ µ− (figure 11.1(a)) and B+ → J/ψK+ (figure 11.1(b))

MC before and after the application of the PU weights. In both plots the preselection introduced in
section 7.3 is applied to all the distributions and the histograms are normalised with respect to the one
representing the PU profile before the reweighting.

in this case, can assume extremely small values when the simulated PU has high values. The

effect of such small corrections on a large dataset would be un-noticed, as they do not have

any contribution in e. g. the height of a bin or in its uncertainty1. In case of small datasets, e. g.

a bin with only one entry, the presence of these weights can provoke issues in the calculation

of the χ2, as they count as zero entries with a corresponding uncertainty which is basically

zero as well. This is because the evaluation of the uncertainty on a weighted distribution is an

asymptotic process, which acquires meaning only if the effective number of weighted events is

1 The uncertainty on a weighted distribution is evaluated as the sum in quadrature of the weights.
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large enough.

This issue does not compromise the maximum likelihood fits performed in this section: since

all the fits are unbinned, the contribution of the entries with small weights basically does not

contribute to the total likelihood. On the other hand, this issue will appear in the calculation

of the χ2 test. Often the data and the fitted functional form are visually extremely compatible,

but the resulting χ2 is large. For this reason, a bad compatibility due to χ2 tests applied to

distributions which present this feature are not considered harmful. Anyway, in order validate

the fits performed on simulations, the Pearson χ2 test is also considered. This test is based on

the following formula:

χ2 =
Nbins∑
i=0

(Oi −Ei )2

Ei
, (11.2)

where Nbins is the number of bins in a histograms, Oi and Ei are the observed and expected

number of events in a bin. This test does not suffer the same issue as the one shown in for-

mula 11.1, as it considers the uncertainty on the expected number of events instead of the

uncertainty in the observed number of events.

11.1.1 Non-resonant background components

The large bb →µ+µ−X MC (introduced in section 7.2) is used to identify and model the various

sources of non-resonant background. The only exception is represented by the semileptonic

backgrounds, which are studied separately using dedicated high-statistics exclusive MC samples

introduced in section 7.2.

Events in the bb → µ+µ−X MC are classified based on the underlying b-hadron decay mode,

using the MC truth information. Figure 11.2 shows the dimuon invariant mass and BDT output

distributions for the bb →µ+µ−X MC; the analysis preselection (described in section 7.3) is ap-

plied, and the simulation is corrected for discrepancies from data according to the weighting

procedure described in chapter 7.6. The reweighted bb → µ+µ−X MC passing all the selection

cuts is additionally normalised to the number of events in the data sidebands. Two sets of plots

are shown, the first row presents the bb → µ+µ−X MC without applying the blinding proced-

ure, while the events in the signal region are removed in the plots in the second row.

The various components highlighted in the plot are described in chapter 8, except for “un-

matched”, “missing particles” and “b-onia”. “Unmatched” and “missing particles” are origin-

ated by dimuon candidates that could not be associated to MC truth particles. A study on the

reconstructed muons showed that such events originate form Pile-Up (PU) vertices or from the

Underlying Event (UE), for which the MC truth is not available. Given the combinatorial nature

and the mass shape similar to the continuum background, these events are merged, for the

sake of model building, with the “continuum” background sample.

The “b-onia” component is due to heavier bb bound states decaying into two muons and ad-

ditional particles, e. g. Υ(1S) → τ+(ντµ+νµ) τ−(ντµ−νµ); the dimuon invariant mass falls into

the reconstructed region due to the loss of energy taken by the particles not considered in the

dimuon candidate reconstruction. No events from this background source survive the BDT

with signal efficiency at 72 %, as shown in figure 11.2(b). This background is therefore not con-
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Figure 11.2: Breakdown of the composition of the bb → µ+µ−X MC into the background components explained
in the text. Two sets of plots are shown: the two plots in the first row show the mass distribution (fig-
ure 11.2(a)) and the BDT (figure 11.2(b)) output for the same events without applying the blinding pro-
cedure to the bb →µ+µ−X MC. The same plots are reported in the second row, but removing the events
present in the signal region (figure 11.2(c) and 11.2(d)). The four vertical lines in the two plots showing
the BDT output distribution mark the lower edge of the BDT bins employed in the analysis.

sidered in the signal yield extraction procedure; its possible small contribution is assumed to

be absorbed in the continuum background.

As suggested by figure 11.2, the main contribution to the background is due to continuum

events. These events show a smooth dependence on the dimuon invariant mass across the

fit region. The other backgrounds show a much steeper dependence on the mass: due to phase

space constraints, they populate only the low mass region.

As for the BDT distribution, continuum events clearly dominate the lower BDT ranges used in

the analysis, with the other components (same-side and same-vertex, as well as Bc to a smaller

extent) becoming more important in the higher BDT bins.

11.1.2 Non-resonant backgrounds parameterisation

This section will identify a suitable functional model for the non-resonant backgrounds. This

will rely on the bb → µ+µ−X MC components as well as the semileptonic b decay samples

(B 0
s →π−µ+ν, B 0

s → K −µ+ν and Λ0
b → pµ−ν, introduced in section 7.2).
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The expected yield of the different backgrounds is obtained by weighting the sidebands of the

bb → µ+µ−X MC to the data sidebands, while for the semileptonic backgrounds a different

approach is applied, explained in sub-section 11.1.2.4.

The studies are performed considering the four BDT bins with 18% signal efficiency introduced

in section 8.2; similar studies are performed including also BDT bins at lower values, but do not

show any relevant feature.

11.1.2.1 Continuum background

The combinatorial (opposite-side) background, is described with a Chebychev first order poly-

nomial:

f (x) = 1+αT1(x), T1(x) =−1+2 · x −4766MeV

5966MeV−4766MeV
. (11.3)

Figure 11.3 shows the fits performed on the bb → µ+µ−X MC combinatorial sub-sample split

in the four BDT bins already discussed: in all fits the Chebychev first order polynomial repro-

duces satisfactorily the MC shape. The resulting slope of the first order polynomial for all fits

as a function of the BDT bin is shown in figure 11.4: the X axis is the average value of the BDT

variable in each bin, while the Y axis is the fitted slope of the polynomial. The error bars rep-

resent the RMS of the BDT variable distribution in each bin (X axis) and the uncertainty on the

fitted parameter extracted by the fit (Y axis). The binned fit applied to figure 11.4 shows that the

continuum slope variation as a function of the BDT value is consistent with a linear model. As

discussed later in section 11.1.3, this linear behaviour is confirmed on the data sideband fits,

therefore the linear function is used as a constraint in the signal extraction fit. The systematic

uncertainty arising from this assumption will be presented in section 11.3.3.

11.1.2.2 Same-Side and Same-Vertex background

The mass distribution of the two muons of the combined Same Side and Same Vertex (SS+SV)

backgrounds peaks far below the signal region. The fit region contains the upper tail of the

SS+SV distribution sculpted by kinematic limits and detector resolution effects. This back-

ground is represented with an exponential PDF f (x) = exp(αx). Figure 11.5 shows the fits per-

formed on the four BDT bins of the SS+SV component of the bb →µ+µ−X MC.

All fits show a similar behaviour, and the exponential well reproduces the MC shape. The

resulting slope of the exponential as a function of the BDT value is studied in figure 11.6. In

analogy with figure 11.4, the X axis is the average value of the BDT variable in each bin, while

the Y axis is the fitted slope of the exponential. Errors bars are the RMS of the BDT distribution

in each bin and the uncertainty on the exponential slope obtained in the fit.

The exponential slope seems independent of the BDT bin: this is verified with the constant fit

shown in figure 11.6. This feature is confirmed by the fit performed on the data sidebands, sec-

tion 11.1.3, therefore the slope of the exponential is treated as a common parameter among the

bins in the simultaneous fit. A systematic uncertainty, described in chapter 11.3.3, is included

to account for this assumption.
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Figure 11.3: Fits performed on the combinatorial background component of the bb →µ+µ−X MC in the four higher
BDT bins. In all bins the fitting PDF, a Chebychev first order polynomial, well reproduces the MC. This
is confirmed by the χ2 values for bins 0, 1 and 2. As for bin 3, due to the low value of the PU weights
employed on the simulated sample, the χ2 test shows low compatibility; in any case, the Pearson χ2

test ensures a good fit quality also for this bin.

11.1.2.3 Bc background

The Bc background is characterised by a small number of events; the expected contribution to

the highest three BDT bins are respectively 1.5%, 1.8% and 0.2% of the background in the same

BDT bins. It can be fitted with an exponential PDF, f (x) = exp(αx), as shown in figure 11.7; The

choice of this functional form is purely empirical. The exponential PDF reproduces the MC dis-

tribution reasonably well; there is a possible structure in the mass distribution at about 4950

MeV, that could be caused by a selection-driven sculpting of the dimuon mass distribution.

This feature might be taken into account by fitting the distribution with a gaussian+exponential

shape. However, given the small amount of expected Bc events and the fact that the usage of

this more complicated model would reduce the leakage of Bc events in the signal region com-

pared to the exponential fit, the gaussian+exponential model is conservatively avoided.
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Figure 11.4: Chebychev first order polynomial slopes from the fits performed on the combinatorial component of
the bb →µ+µ−X MC in different BDT bins. The X axis is the average BDT variable for each bin. The ho-
rizontal error bars are the RMS of the BDT variable distribution in each bin, while the vertical error bars
are the uncertainties on the polynomial slope extracted by the fit. The slope shows a linear behaviour
with respect to the BDT variable, confirmed by a binned linear fit.

A similar treatment as the SS+SV slope can be performed in this case, checking the slope as a

function of the BDT bins, but given the smaller yield of the Bc background with respect to com-

binatorial and SS+SV backgrounds, these events are expected to be absorbed by the Chebychev

first order polynomial and exponential PDFs. No PDF is added to the fit model for this com-

ponent of the background: the contribution of the Bc background is taken into account in the

evaluation of the systematic uncertainties related to the fit, described in section 11.3.3.

The mass distribution of simulated Bc background events is susceptible to the choice of the

form factors exploited in the MC generation. The introduction of a systematic uncertainty

might be considered for this effect, but, as discussed earlier, no PDF is added to the fit model

for this background, as its expected yield is small and it is expected to be absorbed by the other

background components. For this reason, the systematic uncertainty associated to the form

factors employed in the simulation is not considered.

11.1.2.4 Semileptonic background

The semileptonic background is characterised by low-multiplicity semileptonic b decays passing

the final selections through a h → µ mis-identification, in the limit of low energy neutrinos. In

particular B 0
d → π−µ+ν and B 0

s → K −µ+ν are found to contribute significantly, together with

Λ0
b → pµ−ν. The mass distribution for the last process extends the closest to the signal region,

but is highly suppressed by the low probability of protons to be mis-identified as muons.

The expected yield of these processes is evaluated counting separately for each BDT bin the

number of sideband events passing tight and loose muon quality requirements. Assuming the

muon mis-identification probability and efficiency evaluated in section 7.4, the estimated pur-
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Figure 11.5: Fits performed on the SS+SV background component of the bb → µ+µ−X MC in the four BDT bins.
Due to the weights applied to the MC, some of the fit qualities (χ2 tests) do not show a good agreement
between the MC and the fits; Anyway, the fit quality estimated with the the Pearson χ2 test show high
compatibility between the data and the fit results.

ity is 97%. The purity is defined as the estimated number of dimuon candidates composed

of real muons divided by the total number of candidates after the full analysis selection is ap-

plied. Performing the same estimation on the lower sideband, where the semileptonic decays

are expected to appear, the number of events with a single-leg fake-muon is 30±3 in the region

with BDT output > 0.2455. Conservatively assuming to saturate these with the semileptonic

backgrounds, the contribution from these semileptonic modes is significantly smaller than the

SS+SV and the combinatorial background contributions in all bins of the BDT output. The

exponential+polynomial background model is therefore assumed to absorb these small con-

tributions in the default fit model. In order to assess the systematic uncertainty due to this

assumption, the mass distribution of the combination of these three modes is fitted with a

combination of an exponential plus a gaussian tail, without constraints or fixed parameters.

This model will be used later in toy-simulations in section 11.3.3.
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Figure 11.6: Exponential slopes from the fits performed on the SS+SV component of the bb → µ+µ−X MC in the
four BDT bins. The X axis is the average BDT variable for each bin. The horizontal error bars are the
RMS of the BDT variable distribution in each bin, while the vertical error bars are the uncertainties on
the polynomial slope extracted by the fit. The result of the fit performed on the bin at low BDT values
is not shown, because only one event is present in the dataset. The slope shows a linear behaviour with
respect to the BDT variable, confirmed by a binned pol0 fit.

Figure 11.8 shows the fits performed on the combination of the semileptonic MC samples

merged and normalised according to the expected yields.

As for the Bc background, an additional systematic uncertainty might be considered, due to the

uncertainty associated with the form factors employed in the MC generation. Anyway, also in

this case, the PDF is not employed in the model, but only considered for systematic uncertainty

studies. For this reason, the systematic uncertainty associated with the form factors employed

in the MC generation is not considered.

11.1.3 Fit to MC and data sidebands with combined model

The model employed to describe the non-resonant backgrounds, studied in the previous sub-

section, is a combination of a Chebychev first order polynomial and an exponential PDFs, re-

spectively modelling the smooth background that extends across the mass region and the back-

ground at low dimuon masses. The validity of this model is tested in this section.

The model is first used to fit the combinatorial and SS+SV components of the bb →µ+µ−X MC

separately in each BDT bin, verifying the stability of different fits; the model is then tested on

the data sidebands, again fitting each BDT bin separately. The behaviour of the slope paramet-

ers of the different PDFs as a function of the BDT bin is compared with what is observed in the

MC, corroborating the constraints applied to the simultaneous fit.

Figure 11.9 shows the fits performed on the four BDT bins. The fits well reproduce the shape of

the simulated sample, as confirmed by the χ2 test. The last bin shows a not satisfying fit quality,

due to the PU weights employed on the simulated sample. The same model is also used to fit
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Figure 11.7: Fits performed on the Bc background component of the bb → µ+µ−X MC in the four BDT bins. Due
to the weights applied to the MC, some of the fit qualities (χ2 tests) do not show a good agreement
between the MC and the fits, even if the fitted PDF is able to reproduce the shape of the MC. This is
confirmed by the Pearson χ2 test, which shows high compatibility between the data and the fit results.

the data-sidebands, the resulting fits are shown in figure 11.10; again the fit model well repro-

duces the data, as confirmed by the χ2 test.

The resulting slope parameters are shown in figure 11.11, where 11.11(a) shows the slopes

of the first order Chebychev polynomials and figure 11.11(b) shows the slopes of the expo-

nentials. In both plots the X axis is the average value of the BDT variable in each bin, while

the Y axis is the fitted slope of the PDF. The error bars are the RMS of the BDT distribution in

each bin and the uncertainty on the slope parameter obtained with the fit. Three sets of points

are plotted: the black points are obtained with the fits performed separately on the corres-

ponding MC components (first order Chebychev polynomial for the continuum background,

section 11.1.2.1, and exponential for the SS+SV background, section 11.1.2.2), the red points

are obtained with the fits performed with the combined model on the bb → µ+µ−X MC and
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Figure 11.8: Fits performed in the four BDT bins to the semileptonic background MC samples merged together
and normalised according to what is described in the text. The fit model employed is a combination
of an exponential (red dashed line) and a gaussian tail (green dashed line). The solid line shows the
combined model. The relative normalisation of the two PDFs is a free parameter in the fit. Due to the
weights applied to the MC, some of the fit qualities (χ2 tests) do not show a good agreement between
the MC and the fits, even if the fitted PDF is able to reproduce the shape of the MC. This is confirmed
by the Pearson χ2 test, which shows high compatibility between the data and the fit results.

green points are obtained with the fits on data sidebands.

The slopes of the polynomial, figure 11.11(a), show compatibility between the two sets of fits

performed on MC. This ensures that the combined Chebychev+exponential model does not

modify the fitting procedure. Additionally, the slope parameters are also compatible with the

fits performed on data; the last data bin shows error bars considerably larger than in the MC

case, due to the limited statistics available. The polynomial slope as a function of the BDT

output is compatible with a line, confirming the choice of this linear constraint in the signal

extraction.

The exponential slopes appear again independent on the BDT bin in the fits performed on

the bb → µ+µ−X MC, confirming what was observed in section 11.1.2.2. This constraint is as-
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Figure 11.9: Fits performed on the combinatorial and SS+SV background components of the bb → µ+µ−X MC in
the four higher BDT bins. The fit model is composed of an exponential PDF and a Chebychev first order
polynomial, and it well reproduces the data. This is confirmed by the χ2 values for bins 0, 1 and 2. As
for bin 3, due to the weights employed on the simulated sample, the χ2 test shows a low compatibility,
even if the the fitted PDF is able to reproduce the shape of the MC. This is confirmed by the Pearson χ2

test, which shows high compatibility between the data and the fit results.

sumed in the signal extraction. Although still constant, the exponential slope seems to differ

between data and MC. This is accounted for in the unblinded fit, where the background shape

parameters are free to vary, with no input from the MC.

The assumptions regarding the two constraints on the polynomial and exponential PDFs are

challenged with a systematic uncertainty, as discussed in section 11.3.3.

11.1.4 Fit to MC and data sidebands with simultaneous model

The final test on the non-resonant background models is the validation of the BDT depend-

ency of the background slopes both on bb → µ+µ−X MC and data sidebands when including

the constraints on the polynomial and exponential slopes as part of the simultaneous fit of the
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Figure 11.10: Fits performed on the data sidebands in the four higher BDT bins. The fit model is composed of an
exponential PDF and a Chebychev first order polynomial. The model well reproduces the data, as
shown by the fit quality (χ2 test).

background shapes to the analysis four BDT bins. This will allow the comparison of the results

on data to the ones on MC, as well as the simultaneous fit against the fits to the four individual

bins. The resulting parameters are then compared with the results of the fits performed in the

previous sections.

The slopes of the exponential PDFs involved in the simultaneous fit are constrained to be the

same in all BDT bins, while the polynomial slopes are constrained to depend linearly on the

average BDT value of the data points in each bin. No constraints are applied to the normalisa-

tions of the PDFs.

Both the fits on the bb → µ+µ−X MC sidebands and on the data sidebands fully converge and

show a good fit quality. The individual mass plots of the fits are not shown, as they do not differ

visually from the ones shown in the previous section.

Figure 11.12 shows the slope of the Chebychev polynomial 11.12(a) and the slope of the ex-

ponential 11.12(b) as a function of the average BDT output in each BDT bin. In each plot the
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Figure 11.11: The plots show the slopes of the first order Chebychev polynomial 11.11(a) and exponential 11.11(b)
as a function of the average BDT value of each BDT bin. The red points are the values of the slopes
obtained fitting the combinatorial and SS+SV components of the bb →µ+µ−X MC with the combined
model, the black points are the slopes obtained with the fits on the single MC components and the
green points are obtained with the fit on the data sidebands.

results from the fits on the single bins on the MC sidebands (black points) and on the data side-

bands (red points) are shown, superimposed on the results of the linear fits performed on data

(green) and MC (blue).

The lines showing the simultaneous fit results for the polynomial slopes and the exponential
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Figure 11.12: Slopes of the first order Chebychev polynomial 11.12(a) and exponential 11.12(b) as a function of the
average BDT value of each BDT bin. The black points are obtained fitting the combinatorial and SS+SV
components of the bb → µ+µ−X MC with the combined model, the red points are obtained with the
fits on the data sidebands and the two lines are obtained with the simultaneous fit on the MC (blue)
and data sidebands (green).

slopes show compatibility with the points obtained with the single fits on the same datasets.

The level of agreement between the results of the simultaneous fits on data and MC is shown in

figure 11.13. The parameters of the lines that constrain the polynomial slopes are compared in

figure 11.13(a): the two sets of parameters are consistent within their uncertainty. The slopes of

the exponential PDFs obtained with the simultaneous fits are shown in figure 11.13(b): the two

parameters are not compatible. This is interpreted as residual inconsistencies between MC and

data. Such disagreement does not constitute an issue for the analysis, as the fit on unblinded
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data does not depend on any of these results. In fact, the parameters used as constraints are

left free to be determined by the fit. These effects are in any case considered in the evaluation

of the systematic uncertainties arising from the fitting procedure (section 11.3.3).
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Figure 11.13: Data - MC comparison of the parameters that constrain the combinatorial and exponential slopes in
the simultaneous fit. Parameters of the line that constrains the polynomial slope (p0+p1· < BDT >)
for data (red) and MC (black) shown in the p0 - p1 plane with their uncertainty in figure 11.13(a). The
common exponential slope to all the BDT bins is shown in figure 11.13(b).

11.1.5 Summary of the non-resonant background configuration

The baseline configuration of the non-resonant models in signal yield is, in conclusion, made

of the following two components:

1. linear background PDF; first order Chebychev polynomial with the normalisation ex-

tracted independently in each BDT bin. The slopes of the polynomials depend linearly

on the bin averaged BDT value. Systematic uncertainties on the final fit result are derived

for this assumption;

2. exponential background PDF: exponential dependence on the mass. The normalisation

is extracted independently in each BDT bin, while the slope is assumed to be uniform.

This assumption is challenged as part of the systematic studies.

The following parameters are free in the model:

• the number of linear background events in each BDT bin (4 free parameters);

• the number of exponential background events in each BDT bin (4 free parameters);

• the two parameters describing the linear constraints for the polynomial slopes;

• the common slope of the low-mass background.
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11.2 Signal and peaking background models

This section is dedicated to the models employed in the signal yield fit to describe the B 0
s → µ+ µ−

and the peaking background shapes.

As for the non-resonant backgrounds, the functional forms are studies on MC, but in this case

it is not possible to check the behaviour of the PDFs on data, because they all end up in the

blinded region. Systematics uncertainties are added to account for assumptions on the mod-

els.

The first functional models studied are the signal models for B 0
s → µ+ µ− and B 0

d → µ+ µ−

(sub-section 11.2.1). The model employed for the peaking background is then discussed (sub-

section 11.2.2), with a dedicated study performed to estimate its normalisation (sub-section 11.2.2.2).

11.2.1 B 0
(s) → µ+ µ− models

The B 0
s → µ+ µ− and B 0

d → µ+ µ− mass shapes are described with a superposition of two gaus-

sians with independent means, in order to take into account radiative tails. The parameters of

these distributions are extracted from MC and the mass PDF is found to be independent from

the output of the BDT used to reduce the combinatorial background. The signal MC samples

have much higher statistics than the O (100) events expected on data, and would be sensitive

to nuances in the signal shape parameterisation which are totally irrelevant for the fit on data.

For this reason, a bootstrap technique is employed in the determination of the parameters of

the functional forms. This approach allows the evaluation of the functional forms of the signals

with a simple model, maintaining its independence from possible statistical fluctuations that

might appear when fitting a single sample with a small size.

Four random subsets of O (1000) events are extracted from the MC, representing the four BDT

bins of the analysis. These events are then fitted with a simultaneous extended unbinned max-

imum likelihood fit to extract the parameters of the double gaussian PDF, with the constraint

of maintaining the same shapes across the four bins. This procedure is repeated 1000 times

and the averages of the fit results are taken as parameters of the signal PDFs.

As introduced in section 7.3, the information on the B vertex can be evaluated combining the

the ID and MS tracking information or using the ID hits alone. The invariant mass distribution

of the B 0
s → µ+ µ− MC sample is found to be narrower when using the first approach, which is

therefore employed in the analysis. The resulting measurement on MC of the B mesons ID and

MS tracking information based invariant mass shows a bias of about 9 MeV with respect to the

expected PDG values [11]. This offset is not observed when using the ID-based tracking and is

thus most likely due to calibration effects on the combined muon tracking.

The bias on the combined-muon-based B invariant mass is checked on the J/ψmass distribu-

tion from B± → J/ψK ± data and MC. In both cases the J/ψ mass is displaced with respect to

the PDG mass of about 5 MeV. The J/ψmass difference between MC and data is about 0.5 MeV,

smaller than the uncertainties on the difference of the two means.

The same mass offset is observed in both data and MC Υ samples [205] when evaluating the
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dimuon invariant mass with the combined-muon-based approach.

These checks assure that the same mass bias is present consistently in both data and MC. The

means of the gaussians for the signal models are therefore fixed to the values extracted from the

MC. Possible shifts will be taken into account as part of the mass scale systematic uncertainty

(section 11.3.3).

All the BDT bins employed in the analysis are designed to each contain the same number of

signal events (section 8.2.3). Given the insensitivity of bin 0 to the signal contribution, its sig-

nal content is fixed, for consistency, to the average content of the other three bins. Systematic

uncertainties on the relative fractions of signal in the BDT bins are derived from the studies

discussed in section 10.2.3 and are implemented as gaussian constraints. Since the systematic

uncertainties associated to the BDT with a 54% efficiency on the B 0
s → µ+ µ− signal are already

taken into account in the RAε term, the sum of the relative efficiencies of bins 1, 2 and 3 is con-

strained to 1. This is effectively achieved by implementing the gaussian constraints to the yield

of bins 2 and 3 relative to bin 1.

The resulting shape parameters for the functional models of the B 0
(s) → µ+ µ− signals are sum-

marised in table 11.1; the uncertainty on the parameters is the RMS of the various fit results

obtained with the bootstrap technique. The widths of the gaussians employed are larger than

what found in the Run 1 analysis (σ1 = 67.7 MeV and σ2 = 142.9 MeV for B 0
s → µ+ µ− and

σ1 = 64.9 MeV and σ2 = 135.5 MeV for B 0
d → µ+ µ−). This is consistent with the higher amount

of material in the ID with respect to Run 1, that increases the multiple scattering of particles at

low pT, effectively resulting in a loss of resolution.

Figure 11.14 shows the B 0
d and B 0

s PDFs superimposed on the invariant mass distribution for

Table 11.1: Shape parameters for the PDFs of the B0
(s) → µ+ µ− signals. The values are obtained with the bootstrap

technique described in the text. The uncertainties are obtained taking the RMS of the various fit results.

B 0
s → µ+ µ− B 0

(s) → µ+ µ−

µ1 5357.7±1.5 MeV 5270.6±1.5 MeV

σ1 83.0±1.9 MeV 79.2±2.2 MeV

µ2 5257.0±18.3 MeV 5197.1±14.5 MeV

σ2 193.8±10.5 MeV 172.9±9.6 MeV

fraction of
0.88±0.02 0.83±0.03

gaussian 1

the B 0
(s) → µ+ µ− MC samples. Both templates are normalised to the number of events expec-

ted according to the SM: NB 0
s
= 91 and NB 0

d
= 10 (obtained inverting formula 5.1).

11.2.2 Peaking background

The peaking background is composed of B → hh′ decays, mainly Bs → K +K −, Bd → K ±π∓ and

Bd → π+π−, with both hadrons mis-identified as muons. Due to the mass distortion related to

the K /π→ µ assignment the mass distribution of these events is substantially superimposed
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Figure 11.14: Dimuon invariant mass distribution for the B0
s and B0

d signals from simulation, normalised to the SM

prediction for the expected yield with an integrated luminosity of 26.3 fb−1. The double-Gaussian
B0

(s) → µ+ µ− PDFs obtained with the bootstrap technique discussed in the text are superimposed.

with the B 0
d signal.

The functional model for B → hh′ is evaluated on simulations (sub-section 11.2.2.1) and par-

ticular attention is dedicated to its normalisation (sub-section 11.2.2.2). In fact, the yield of this

background needs to be constrained in the unblinded fit, in order to avoid the leakage of events

from the B 0
d peak to this background (or the opposite).

11.2.2.1 Peaking background model

As for the signal functional forms, the PDF for the peaking background is evaluated on simula-

tions. The B → hh′ MC sample, however, does not present sufficient statistics to directly study

the invariant mass distribution of the double-fake events by applying the same muon quality

requirements used on data. This means that the invariant mass calculated combining ID and

MS tracking information for the B → hh′ candidates can not be directly accessed. The invariant

mass distribution of the B → hh′ background is therefore studied using the ID-based calcula-

tion of the vertex mass, without requiring the presence of fake-muons in the final state.

Before evaluating the shape parameters for the B → hh′ PDF, several effects have to be taken

into account. The offset found in the combined ID and MS (combined-muon) based mass dis-

tribution of the signals (section 11.2.1) is not present in the ID-only based mass calculation.

As discussed later in this section, this effect is taken care of by applying the B 0
d mass offset to

the B → hh′ mass distribution. Additionally, the requirement of two muons in the final state

can modify the invariant mass distribution. This effect can be due to the trigger selection (sec-

tion 7.1), which requires the presence of two muons in the MS, and to the tight muon-ID re-

quirements applied in the analysis preselection (section 7.3).

The first effect is studied on the B 0
s and B 0

d mass distributions in simulation as a function

of the B mass itself. The combined-muon-based – ID-based mass shift obtained from the
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B 0
d → µ+ µ− MC is applied to the ID-based mass distribution of the B 0

s → µ+ µ− simulation.

The B 0
s → µ+ µ− MC combined-muon-based distribution and ID-based mass distribution

before the application of the B 0
d mass shift are shown in figure 11.15(a), while figure 11.15(b)

shows the same B 0
s → µ+ µ− combined-muon-based mass distribution, superimposed on the

ID-based mass distribution shifted according the what found in the B 0
d MC. The resulting shape

for the shifted ID-based mass is consistent with the combined-muon-based B 0
s → µ+ µ− mass

distribution. The same test is repeated inverting the roles of B 0
s and B 0

d , and the same result is

obtained.

The mass offset that affects the fake dimuon invariant mass distribution might differ from the
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Figure 11.15: Application of the B0
d → µ+ µ− combined-muon-based mass offset measured in simulations on the

ID-based mass distribution of the B0
s → µ+ µ− MC. Figure 11.15(a) shows the combined-muon-based

and ID-based mass distributions for before the application of the B0
d mass shift, while figure 11.15(b)

show the same combined-muon-based mass distribution together with the shifted B0
s ID-based mass

distribution.

one that affects the invariant mass distribution of real dimuons, due to the possible differences

between the kinematic properties of the reconstructed fake muon in the MS and the track in

the ID. This is checked on the B → hh′ simulation by comparing the reconstructed kinematic

properties of the fake muons to the kinematic properties of the relative tracks in the ID. These

are found to be compatible, therefore additional effects on the mass offset, if present, are ex-

tremely small.

The potential distortion of the invariant mass distribution of the B → hh′ candidates due to

the requirements on the presence of two muons is checked by separating the possible contri-

butions due to trigger and muon identification requirements. The first effect is checked on the

B 0
s → µ+ µ− mass distribution in simulations, which is compared before and after the applic-

ation of the trigger requirements discussed in section 7.1. The result of this check is shown in

figure 11.16(a): the two distributions are compatible.

The effect due to the muon-ID requirements is checked on the invariant mass distribution of

the B → hh′ MC. As discussed earlier, the size of the simulation does not allow a comparison

of the mass before and after the application of the muon-ID requirements on both hadrons.

For this reason, only one hadron in the B → hh′ decay is required to produce a fake-muon and

the tight muon requirement is applied. The remaining hadrons are weighted according to the
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fake-muon rates calculated on MC in section 7.4 and shown in table 7.3. Both distributions

are shifted according to the B 0
d mass offset discussed earlier in this section. The resulting mass

distributions, shown in figure 11.16(b), are compatible.

In conclusion, the B → hh′ invariant mass distribution is not significantly affected by the
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Figure 11.16: Checks on the potential distortion of the invariant mass distribution due to the requirements on
the presence of two muons in the final state. The dimuon trigger requirements are checked in fig-
ure 11.16(a), where their effect on the B0

s → µ+ µ− mass distribution are shown. The distribution
before and after the requirement of the triggers discussed in section 7.1 are compared. The potential
mass distortion due to the muon-ID requirements discussed in section 7.3 is shown in figure 11.16(b),
where the invariant mass distribution of the B → hh′ sample without any muon-ID requirement is
compared to the same distribution with one of two hadrons required to produce a fake muon. The
mass shift obtained from the B0

d simulation is applied to both.

muon quality requirements. The B → hh′ mass distribution, corrected as described above, is

therefore fit with the same model developed for the signal PDFs. Also in this case the paramet-

ers of the functional models are found to be independent from the output of the BDT.

Figure 11.17 shows the resulting distribution of the B → hh′ MC events after the complete ana-

lysis selection is applied, normalised according to the procedure described in 11.2.2.2.

The fit parameters on the B → hh′ MC template obtained as described above are:

• µ1: 5239.5±1.3 MeV

• σ1: 85.90±0.2 MeV

• µ2: 5216±10 MeV

• σ2: 188.7±3.2 MeV

• fraction of gaussian 1: 0.85±0.02

11.2.2.2 Normalisation of the B → hh′ background

Due to the irreducible nature of the B → hh′ background and its similarity in shape with the

B 0
d → µ+ µ− signal, the unblinded fit will need the yield for this background component to be

constrained.
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Figure 11.17: Invariant mass distribution of the B → hh′ peaking background components after the complete signal
selection is applied. The B0

s → π+π− and B0 → K+K− contributions are negligible on this scale. The
vertical dashed lines indicate the blinded analysis region. Distributions are normalised to the expected
yield for the integrated luminosity of 26.3 fb−1.

Two techniques are employed to estimate this yield: the first is based on the muon mis-ID

rates discussed in section 7.4. The second technique is data-driven and exploits event counts

in the invariant mass signal region obtained for muons of lower purity than was used for the

definition of the blinded signal region.

The first estimation of the B → hh′ yield is performed following the approach used to estimate

the SM expected NB 0
s

and NB 0
d

yields. In analogy to formula 5.1, it can be found that:

NB→hh′ = fs(d)

fu
× NJ/ψK +

B(B+ → J/ψK +)×B(J/ψ→µ+µ−)
× B(B → hh′)

RAε
. (11.4)

This is combined with the PDG branching fractions [11], obtaining an estimate of each indi-

vidual B → hh′ contribution before the application of the muon identification requirements,

shown in the second column of table 11.2. Assuming the mis-identification rates of table 7.3

in section 7.4, separated per particle type and charge, the yields listed in the last column of

table 11.2 are obtained for each decay mode. The total predicted yield is 2.7±1.3 events, equally

distributed in BDT bins 1, 2 and 3.

The second technique for the estimation of the B → hh′ yield exploits real data events in the

invariant mass signal region that do not pass the tight muon-ID requirements discussed in sec-

tion 7.4. The expected yield for these events is calculated using the same approach used for the

values in table 11.2. The blinding procedure is not applied on these events, therefore a fit is

performed to evaluate their yield and the result is compared with the prediction.
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Table 11.2: Breakdown of the expected B → hh′ yield for the different processes. The numbers in the second
column, obtained with equation 11.4 show the estimated yield before the application of the muon iden-
tification requirements. Assuming the mis-identification rates of table 7.3, the expected yield of the last
column are obtained. The last row shows the total expected B → hh′ background yield for the analysis.

Process
B → hh′ expected yield

Before muon-ID requirements After muon-ID requirements

B 0
d →π+π− 4.0 ·105 0.38

B 0
d →π±K ∓ 1.9 ·106 1.68

B 0
d → K +K − 7.6 ·103 0.01

B 0
s →π+π− 1.3 ·104 0.01

B 0
s →π±K ∓ 1.1 ·105 0.09

B 0
s → K +K − 5.4 ·105 0.51

total 2.7

Based on the effect of the muon-ID requirements, muons are defined not-tight (NT), if they sat-

isfy the loose muon-ID requirement but do not satisfy the tight one, and tight (T), if they satisfy

the tight muon-ID. Four possible combinations are obtained taking the two muon categories

and applying all possible permutations to the particles in the final state2:

• NT-NT (Not Tight - Not Tight), where both muons must satisfy the loose criteria but do

not satisfy the tight criteria;

• NT-T (Not Tight - Tight), where the leading muon satisfies the loose criteria and does not

satisfy the tight criteria, and the sub-leading muon satisfies the tight criteria;

• T-NT (Tight - Not Tight), same as the previous, but swapping the leading and sub-leading

muons;

• T-T (Tight - Tight), both tight muons, this is the actual blinded signal region.

The mis-identification fractions of table 7.3 allow the estimation of the expected number of

events for the four categories, using the same approach employed to calculate the values in

table 11.2. Table 11.3 shows the expected B → hh′ yields for the four combinations, as well as

the expected B 0
(s) → µ+ µ− yields.

An unbinned extended maximum likelihood fit is then performed on the control region char-

acterised by NT-NT events in real data. The PDFs developed for the background and signal

components in the previous sections are exploited in the same fitting procedure discussed in

section 11.3. The B 0
s → µ+ µ− and B 0

d → µ+ µ− contributions are fixed to their SM pre-

diction and the background shapes are fixed to what was determined in the sideband fits in

section 11.1. The normalisations of all the backgrounds are left free in the fit. Figure 11.18

2 Where µ1-µ2 are the leading and sub-leading muons
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Table 11.3: Estimated yields of B0
(s) → µ+ µ− and B → hh′ events for the possible combinations of the following

requirements: tight muon and loose muon inverting the tight muon requirement. The two require-
ments are shown in the table as “tight” and “loose and not tight”. All the expected yields are obtained
inverting formula 5.1, using the appropriate branching fraction from the PDG [11], and exploiting the
mis-identification rates and muon efficiencies estimated on simulations in section 7.4.

B 0
s → µ+ µ− B 0

d → µ+ µ− B → hh′

µ1 WP

µ2 WP
tight

loose and
not tight

tight
loose and
not tight

tight
loose and
not tight

tight 90.7 10.2 10 1.1 2.7 4.2

loose and not tight 10.2 1.15 1.1 0.11 4.2 6.4

shows the invariant mass of distributions of the four BDT bins, together with the projection of

the likelihood.

This procedure yields a total number of B → hh′ events N N T−N T
hh = 6.8± 3.7, in good agree-

ment with the 6.4 expected events from table 11.3. This number is translated into a prediction

of the B → hh′ yield in the tight-tight signal region, by taking the ratio between the expected

yields in simulations:

N T−T
hh = N N T−N T

hh × MC T−T
hh

MC N T−N T
hh

= (2.9±2.0)events. (11.5)

As a loose cross-check, a fit is also performed in the data in the control region obtained sum-

ming the T-NT and NT-T datasets. The same fit procedure as the one used in the NT-NT region

is employed, with the inclusion of a constraint on the B 0
d → µ+ µ− SM expectation of 2.2±0.4

events. The result of this check yields N N−N T,N T−T
hh = 5.8±7 events, compatible with the expec-

ted number of events of 8.4.

Additionally, the ratio
N N T−N T

hh

N T−N T
hh

= 1.2±1.6 is used to measure directly the single-leg hadron species-

averaged fake rate for hadrons from B → hh′ decays. Figure 11.19 shows the per-species value

obtained from table 7.3. This ratio is remarkably constant across hadron species, and consist-

ent with the data-based estimation.

In conclusion, the expected B → hh′ yield in the three higher BDT bins, evaluated with sim-

ulations (2.7± 1.3 events) and by fitting the “NT-NT” control region (2.9± 2.0 events) are in

agreement. The more conservative value of 2.9±2.0 events, obtained in equation 11.5, is used

to constrain the total yield of the peaking background in the unblinded fit.3

11.3 Signal yield extraction

The combination of the non-resonant functional forms from section 11.1 and the signal and

peaking background functional forms from section 11.2 allows the obtaining of a full model

3 The value 2.9±2.0 is used to constrain the total B → hh′ yield in bins 1, 2 and 3. Since this background presents
the same BDT response as the signal, the relative yield in the three bins are set to be the same. Regarding bin 0,
its B → hh′ content is set to the average content of the other three.
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Figure 11.18: Di-muon invariant mass distributions of the control region characterised by NT-NT events in real
data, in the four intervals of BDT output. Superimposed is the result of the maximum-likelihood fit.
The total fit is shown as a continuous line, with the dashed lines corresponding to the observed sig-
nal component, the b → µµX background, and the continuum background. The B0

s → µ+ µ− and
B0

d → µ+ µ− signal components are represented with dot-dashed red and violet lines respectively.

Considering the low expected yield for the B0
d → µ+ µ− process, the corresponding component is

basically not visible. The curve representing the peaking B → hh′ background is represented with a
fine-dashed line.

to be used in the unblinded fit on data. This section is dedicated to the studies performed on

the full fit model. First, the description of the model is provided (sub-section 11.3.1), then the

convergence properties are tested in sub-section 11.3.2 by means of a toy-MC study. Exploit-

ing a similar toy-MC study, the systematic uncertainties arising from the fitting procedure are

evaluated in sub-section 11.3.3; the introduction of the systematic uncertainties related to the

other terms in formula 5.1 is discussed later in section 11.4.

The studies performed in this section rely heavily on the usage of toy-MCs. The initial val-

ues used for the generation of the mock datasets for the non-resonant backgrounds are the

ones found in the simultaneous fit on data sidebands in section 11.1, while for the signal and

peaking background the values used are obtained in section 11.2. Regarding the signal norm-

alisation, the studies are performed on a grid of possible values, usually ranging between 0 and

about twice the SM expectation.

The number of events expected given B(B 0
(s) → µ+ µ−) is calculated by inverting formula 5.1,

obtaining NB 0
s
= 91 and NB 0

d
= 10 for the nominal SM branching fractions [54].
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Figure 11.19: Comparison of the relative muon-ID fraction for different particle species as determined from the
B → hh′ MC.

11.3.1 Fit configuration

This section provides a summary of the PDFs used in the signal yield extraction.

1. Signal: the mass dependence for B 0
s → µ+ µ− is described with the sum of two gaussians.

The means and the widths of the gaussians and their relative fraction are taken from MC

with their values fixed in the fit. The same configuration, but with different parameters is

used for the B 0
d → µ+ µ− signal.

The three higher BDT bins are designed to contain each 1/3 of the total number of events,

with the uncertainty discussed in section 10.2.3. Such systematic uncertainties are im-

plemented as gaussian constraints applied to the relative fractions of signal in the BDT

bins.

The lower BDT bin (bin 0), also designed to be as efficient for the signal as the three bins

with higher S/B, was verified not to affect the signal sensitivity of the analysis, but allows

a better background estimation. Its signal yield is fixed, for consistency, to the average

content of the other three BDT bins and it is not considered in the branching fractions

extraction.

2. Linear background: the mass dependence is a first order Chebychev polynomial. The

normalisation is independent in each BDT bin. The polynomials’ slope is constrained to

depend linearly on the average content of each BDT bin. Systematic uncertainties on the

final fit result are derived for this assumption.

3. Exponential background: exponential dependence on the mass. The normalisation is

extracted independently in each BDT bin, while the shape is assumed to be independent

of the BDT bin value. This assumption is challenged as part of the systematic studies.
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4. Peaking background (B → hh′): the mass dependence is described with the same double

gaussian model used for the signals, but independent parameters determined from sim-

ulation. A gaussian constraint is applied to the normalisation, as discussed in section 11.2.2.2.

The following free parameters are to be determined by the fit:

• the total number of B 0
s events, and the total number of B 0

d events in bins 1, 2 and 3;

• the number of events associated with the linear background in each BDT bin (four para-

meters);

• the number of events associated with the exponential background in each BDT bin (four

parameters);

• the parameters describing the linear constraints for the polynomial slopes (two paramet-

ers);

• the parameter describing the shape of the low-mass background;

The following parameters subject to gaussian constraints are also determined by the fit:

• the fractions of signal events contained in each bin of the BDT bin;

• the total number of peaking-background events (see constraint derived in section 11.2.2.2);

No boundaries are applied to the normalisations of the various components4. This means that

the yields extracted by the fit can fluctuate and assume non-physical values. Fit results with

a negative number of events, especially for the B 0
d → µ+ µ− component which is affected by

large uncertainties, are therefore possible. This possibility does not constitute a problem for the

validity of the analysis. In fact, the estimated values and uncertainties obtained with maximum

likelihood estimators do not relate to the true physical parameter the experiment is trying to

measure [182]. The maximum likelihood fit result is, however, employed in the extraction of

confidence intervals, which allow for a quantitative statement about the fraction of times that

such an interval would contain the true value of the parameter in a large number of repeated

experiments [182]. The approach employed in the analysis, the Neyman construction [178], is

an exact frequentist method for the confidence intervals and regions extraction.

11.3.2 Fit convergence properties

The convergence properties of the fit are tested by means of a toy-MC based study. Two main

aspects are investigated, the fraction of toy-MC in which the fitting procedure converges and

the possible presence of a bias in the estimated signal yields.

4 Except for the B → hh′ yield which is subjected to a gaussian constraint.
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Toy-simulations are generated according to the values of the slopes and normalisations ob-

tained in the previous chapters and then fitted with the baseline configuration of the simultan-

eous fit. Since both the fit convergence and the signal yield bias can show a dependence on the

estimated number of events, 10000 toy-simulations are run in each point of a 20×20 grid in the

B(B 0
s → µ+ µ−) - B(B 0

d → µ+ µ−) space, with values ranging between 0 and about twice the

SM expectations.

Figure 11.20 shows the invariant mass of distributions of the four BDT bins for one of the toy-

MCs generated at the B(B 0
(s) → µ+ µ−) SM prediction. Each plot reports also the projection of

the fitted model with its various components.

The first property of the fit investigated is the fraction of toys for which the fitting procedure
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Figure 11.20: Di-muon invariant mass distributions in the four intervals of BDT output of one of the toy-MCs gener-
ated for the B(B0

(s) → µ+ µ−) SM prediction. Superimposed is the result of the maximum-likelihood
fit. The total fit is shown as a continuous black line, with the dashed lines corresponding to the ob-
served signal component, the low-mass background, and the continuum background. The signal
components are grouped in one single curve, including both the B0

s → µ+ µ− and the B0
d → µ+ µ−

component. The curve representing the peaking B → hh′ background lies very close to the horizontal
axis in all BDT bins.

converges.

The fraction of toy-MCs that converge, providing a maximum of the likelihood function and re-

turning a covariance matrix5 for the fit parameters is shown in figure 11.21, as a function of the

5 The likelihood maximisation is performed numerically by the MINUIT [189] program. While MINUIT provides
the maximum of the likelihood, its routine HESSE provides the covariance matrix of the fit parameters. The estim-
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branching fraction of the signal processes used in the generation. The overall fit convergence is

good, with more than 99.5% of the toy-MCs fully converging. In case of B(B 0
s → µ+ µ−) = 0, the

fraction of converging toys decreases; a dependence on the B 0
d branching fractions is visible in

this case, with the fraction of converging toy-MCs getting down to 96% for (NB 0
s
, NB 0

d
) = (0,0).

This behaviour shows a clear dependence of the fit on the number of events fitted. Due to the

degeneracy of the B 0
s and B 0

d peaks, which are almost superimposed (figure 11.14), once the

available signal statistics drops, the fit has too many degrees of freedom to manage, resulting

in an instability of its convergence.

Another important quantity regarding the fit convergence is the fraction of toy-MCs for which
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Figure 11.21: Fraction of toy-MC in which the maximum of the likelihood is identified and the covariance matrix
of the fit parameters is returned by the fit, as a function of the signals branching fractions used in the
generation of the toy-MCs.

the likelihood maximum is found, without requiring a covariance matrix. This quantity is par-

ticularly interesting, as the analysis confidence interval extraction is performed using the Ney-

man belt approach [178]. The construction of the belt, in fact, does not require the extraction

of the uncertainty on toy-MCs or on the fitted value of the analysis: the entire construction is

based on the central values obtained in the fits. In this case the average fraction of toy-MCs that

converge is higher than 99.99%. An effect similar to what is shown in figure 11.21 is also found,

with the fraction of converging toys dropping to about 99% at (NB 0
s
, NB 0

d
) = (0,0).

These two tests on the fit convergence show a possible issue at extremely low signal statistics.

In this case, the best approach would be to fit both signals with a single PDF, avoiding the de-

generacy of the two signal models. Considering the recent experimental results in the search

for B 0
(s) → µ+ µ− decays, the probability of such low signal statistics is extremely low. Using

toy-MCs generated for the expected SM signal yields, the probability of an underfluctuation for

which the fitted number of B 0
s → µ+ µ− events is zero, is estimated to be at the level of 5σ.

Additionally, in this case only a small fraction of fits would show convergence issues. For this

reason, an analysis result with a fitted B 0
s → µ+ µ− yield of 0 events would point more towards

an issue in the analysis, than to a possible indication of BSM physics.

In conclusion, the convergence of the fit is considered satisfactory, with the large majority of

the toy-MC in the region of interest of the analysis converging.

ation of the covariance matrix is performed using a gaussian approximation of the likelihood near its maximum.
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The presence of a bias in the fitting procedure is checked using the same set of toy-MC em-

ployed to study the fraction of converging fits. The average value of the pull with respect to

the generated value in each point of the B(B 0
s → µ+ µ−) - B(B 0

d → µ+ µ−) grid is calculated

as (Ngen − Nfit)/σN fit . The uncertainty employed in this calculation is evaluated with a gaus-

sian approximation around the likelihood function maximum. For this reason, only the toy-

simulations for which the likelihood maximum is found and the covariance matrix of the fitted

parameter is returned are used. Figure 11.22 shows the resulting distributions for the pulls. At
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Figure 11.22: Toy-MC assessment of the bias on the position of the likelihood maximum as a function of the
B0

s → µ+ µ− and B0
d → µ+ µ− branching fractions. The bias is estimated as the pull on the fitted num-

ber of events, with respect to the generated number of events: (Ngen −Nfit)/σN fit. The uncertainty
on the fitted number of events is calculated using a gaussian approximation around the likelihood
function maximum.

the SM value, the bias on the B 0
s → µ+ µ− (B 0

d → µ+ µ−) branching fraction is at the level of

5% (10%) of the uncertainty on the branching fraction itself, with the bias on B(B 0
s → µ+ µ−)

becoming higher than 10% below B(B 0
s → µ+ µ−) = 1×10−9.

In the regions of low generated branching fractions the bias of the fit becomes more pronounced,

and as large as 50% of the uncertainty for B(B 0
s → µ+ µ−) = 0. Regarding B 0

d → µ+ µ−, the

bias behaves similarly as B 0
s → µ+ µ−, expect that for B(B 0

s → µ+ µ−) = 0 it becomes posit-

ive. These effects can be caused by the lack of asymptoticity of the likelihood fit itself or by the

instability of the fit caused by the degeneracy of the B 0
s and B 0

d peaks. In particular, the large

effects that appear for B(B 0
s → µ+ µ−) = 0 are most likely due to the degeneracy of the signals,

as B 0
s → µ+ µ− is the main peak present in the fit and when it disappears the fit becomes un-

stable.

As for the fraction of converging toy-MCs, the behaviour of the fit is satisfactory, with undesir-

able effects at low signal yields. The same argument discussed earlier in this section can be

used also in this case: the possibility of a huge underfluctuation of the signal events is a remote

possibility, at the level of a 4-5 σ fluctuation. This eventuality would therefore mostly point

towards an issue in the analysis.

In conclusion, the convergence properties of the fit are tested, in particular the fraction of toy-
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MC that converge and the presence of a possible bias in the maximum likelihood estimation.

Both tests show satisfactory properties for the expected B 0
s and B 0

d statistics. In case the signal

statistics approaches (NB 0
s
, NB 0

d
) = (0,0) the fitting procedure shows instability, with large biases

and a larger fraction of non-converging toy-MCs, due to the degeneracy of the B 0
s and B 0

d mass

peaks. The possibility of such low signal events yields is tiny (at the level of a 4-5σ fluctuation),

and would be most likely explained with an issue in the analysis procedure. Therefore, the

fitting procedure is considered validated.

11.3.3 Fit model systematics

The systematic uncertainties associated with the fitting procedure are extracted with a similar

toy-MC based study.

Basically, the model used in the generation of the toy-simulations is modified according to sys-

tematic variations and the baseline fit model (described in section 11.3.1) is used to fit the res-

ulting datasets. The corresponding variations in the B 0
(s) → µ+ µ− yields, estimated as de-

scribed in this section, are analysed and taken as systematic uncertainties associated with the

fitting procedure and introduced in the fitting procedure as gaussian constraints on the num-

ber of fitted signal events.

Three main classes of systematic uncertainties are considered: systematics arising from the

resonant models, systematics arising from the choice of the non-resonant models and con-

straints, and systematics arising from the non-resonant models neglected in the baseline fit.

The systematic uncertainties associated with the resonant models are evaluated by applying

mass scale and resolution variations, derived from the known features of the detector and from

previous analyses. The systematic uncertainties on the choice of the non-resonant models are

derived by using different functional models in the generation of the toy-simulations. The new

models are derived following the same approach described in section 11.1.2. The systematic

uncertainties associated with the constraints used in the baseline fit are evaluated by generat-

ing the toy-MCs varying the quantities subjected to a constraint according to the values found

in data and MC. Finally, systematics arising from the neglected models in the baseline fit are

evaluated by adding such models in the generation of the toys. The shape and normalisations

of the functional models employed are obtained in section 11.1.2.

The following list summarises the various systematic variations considered.

• Mass scale ± 5 MeV: a momentum scale uncertainty of ±0.05 % on the di-muon mass has

been estimated at the mass of the Υ meson [205] (±2.7 MeV at the B 0
s mass). When com-

paring the J/ψmass peak position in MC and data (section 10.1.2), a mass scale variation

of about 2 MeV is found. The sensitivity of the signal fit to the mass scale uncertainty is

conservatively tested by shifting the means of the peaking models by 5 MeV.

• Mass resolution ± 5%: an average systematic uncertainty of 5 % on the dimuon mass

resolution has been estimated employing the J/ψ→µ+µ− and Z →µ+µ− [161]; the mass
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resolution uncertainty is thus probed varying the width of the resonant PDFs increased

or reduced by 5%.

• Combinatorial bkg PDF model and low mass bkg PDF model: the assumptions on the

functional models for the exponential and polynomial components are (separately) tested

using respectively a gaussian-tail and exponential model.

• Exponential slope (data) and exponential slope (MC): the assumption of the constant

dependence of the exponential background slope on the BDT value is challenged by gen-

erating independent slopes for each BDT bin. A gaussian PDF is used to generate the dif-

ferent slopes in each bin, based on the results of the fits on data and MC in section 11.1.3.

The mean and width of the gaussian are set to the fit results for the exponential slope

and its uncertainty; the values used in the generation are shown in figure 11.9 for the MC

and 11.10 for the data.

• Polynomial slope (data), polynomial slope (MC) and flat polynomial slope: the as-

sumption of the linear dependence of the linear background slope on the average BDT

value in each BDT bin is challenged by generating independent slopes for each BDT bin,

according to the values measured in data and on the bb → µ+µ−X MC in section 11.1.3.

The same procedure employed for the exponential slope variations is used. In addition

the slope is also generated assuming a flat dependence of the background slope with

respect to the BDT value.

• Inclusion of semileptonic background: the semileptonic background is neglected in the

baseline fit. Its inclusion in the toy generation is therefore used to assess the systematic

uncertainty on the presence of this contribution using the model and scales defined in

section 11.1.2.4.

• Inclusion of Bc background: Bc decays are neglected in the baseline fit. Their inclusion

in the toy generation is tested with the model described in section 11.1.2.3.

In order to test the possible dependence of these systematic uncertainties on the B 0
s and B 0

d

yields, a 5×5 points grid of values of B 0
d → µ+ µ− and B 0

s → µ+ µ− branching ratios, ranging

between 0 and about twice the SM expectation, is explored. 10k toy-MC samples are gener-

ated for each variation listed above in each grid point. Additionally, toy-MCs are also generated

using the baseline fit in both the generation and fit (baseline toys), for a total of 140k toy-MC

samples generated for each grid point.

The generated toy-MCs show convergence fractions similar to the ones discussed in section 11.3.2.

Only the converging fits are employed in the systematic uncertainties determination.

The variation between the average signal yields obtained with the baseline toys and the modi-

fied toys is taken as �NB 0
(s)

baseline−�NB 0
(s)

modified
. Positive and negative variations are then summed

in quadrature separately; the larger between the combination of negative and positive vari-

ations is taken as systematic uncertainty for the (NB 0
s
, NB 0

d
) grid point considered.

Since the invariant mass peaks of the B 0
(s) → µ+ µ− signals overlap, the yields extracted by the
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fit are correlated; this introduces a correlation also in the systematic uncertainties discussed in

this section. For this reason, the correlation between the systematic uncertainties associated

with the fitting procedure is also evaluated.

The resulting systematic uncertainties on the B 0
s and B 0

d yields and their correlation are shown
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Figure 11.23: Systematic uncertainty associated with the B0
s → µ+ µ− fitted yield as a function of the generated B0

s
and B0

d yields. The systematic variations and their combinations are obtained as explained in the text.
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Figure 11.24: Systematic uncertainty associated with the B0
s → µ+ µ− fitted yield as a function of the generated B0

s
and B0

d yields. The systematic variations and their combinations are obtained as explained in the text.
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Figure 11.25: Correlation of the systematic uncertainties associated with the B0
s → µ+ µ− and B0

d → µ+ µ− fitted

yields as a function of the generated B0
s and B0

d yields.

respectively in figures 11.23, 11.24 and 11.25.

The relative ranking of the various systematic sources implemented is shown in table 11.4 for

the SM expectation on the signal yields. Systematic variations associated with the B 0
d yield

are larger compared to the B 0
s ones. This is due to the fact that the B 0

d yield is much smaller
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Table 11.4: Fit modelling systematic uncertainties expressed as fraction of the expected signal yield, evaluated for
the SM expectation on the signal yields.

Systematic source Impact on Bs yield Impact on Bd yield

Mass scale -5 MeV 5.0% 64.0%

Mass scale +5 MeV 4.9% 64.4%

Mass resolution -5% 3.5% 4.6%

Mass resolution +5% 2.9% 2.9%

Exponential slope (data) 1.2% 0.5%

Exponential slope (MC) 0.2% 7.6%

Flat polynomial slope 0.1% 1.3%

Polynomial slope (data) 0.1% 0.9%

Polynomial slope (MC) 0.9% 1.6%

Combinatorial bkg PDF model 0.5% 2.2%

Low mass bkg PDF model 5.8% 53.6%

Inclusion of Bc background 0.2% 1.3%

Inclusion of semil. background 0.4% 12.1%

compared to the B 0
s counterpart and it is closer to the lower mass sideband, implying a higher

contamination of background events from PRD events.

The dependence of the systematic variations as a function of (NB 0
s
, NB 0

d
) is fit with a 2D linear

function. A similar parameterisation is used to account for the correlation coefficient between

the systematic uncertainties associated with the B 0
s → µ+ µ− and B 0

d → µ+ µ− event counts,

resulting in the determination of the full 2D gaussian systematic uncertainty as a function of

(NB 0
s
, NB 0

d
). The dependence of the combined systematics on the number of B 0

s → µ+ µ− and

B 0
d → µ+ µ−, as well as their correlation, are fit with a linear model aNB 0

s
+bNB 0

d
+ c. The res-

ulting coefficients are summarised in table 11.5, together with the actual dependence of the

gaussian parameters implemented in the signal fit.

The resulting 2D gaussian systematic uncertainty as a function of (NB 0
s
, NB 0

d
) is implemented in

the fit model described in section 11.3.1 as a gaussian smearing parameter on the number of

fitted B 0
s and B 0

d events.

11.4 Branching fraction extraction approach

The signal branching fraction extraction is based on the same fitting procedure discussed in

the previous sections. The number of signal events is replaced with the branching fractions

together with the normalisation terms from formula 5.1.

The approach followed to replace the signal yields in the fitting procedure is discussed in this

section, together with a summary of the terms needed in formula 5.1. An estimation of the ex-

pected 2D likelihood contours for the SM B(B 0
(s) → µ+ µ−) hypothesis [54] is also presented.

The number of signal events NB 0
s

and NB 0
d

, after the application of the systematic uncertainties
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Table 11.5: The first three lines show the parameters obtained with a linear fit of the combined systematic uncer-
tainties as a function of NB 0

s
and NB 0

d
. The last three lines show the dependence of the parameters used

to implement the 2D gaussian constraint in the fitting procedure.

NB 0
s

Coefficient NB 0
d

Coefficient Constant

σNB0
s

0.049±0.001 0.008±0.011 2.99±0.16

σNB0
d

0.046±0.001 0.046±0.011 2.92±0.16

ρ −0.0001±0.0003 −0.827±0.034

σNB0
s
= 3+0.05NB 0

s

σNB0
d
= 2.9+0.05NB 0

s
+0.05NB 0

d

ρ =−0.83

arising form the fitting procedure (section 11.3.3), are replaced with the corresponding branch-

ing fractions divided by the normalisation terms obtained rearranging formula 5.1. Effectively,

the signal yields are replaced as follows:

NB 0
d (B 0

s ) →

 B(B 0
(s) → µ+ µ−)×NJ/ψK +

fu

fs(d)
×B(B+ → J/ψK +)×B(J/ψ→µ+µ−)×RAε

 . (11.6)

Additional gaussian smearing factors are added to the likelihood function to take into account

the uncertainties of the terms in formula 11.6. The only terms not associated with gaussian

constraints are the signal branching fractions, which are left free to be determined by the fit-

ting procedure. This approach allows the evaluation of the two signal branching fractions tak-

ing into account the correlation between the two signal yields arising from the fitting procedure

as well as a clean way to propagate all the uncertainties.

The terms needed in formula 11.6 for the evaluation of the signal branching fractions have

been evaluated in chapter 10 or taken from the most recent experimental measurements [11,

28].

The normalisation terms included in equation 11.6 are the following:

• fs

fd
= 0.256±0.013, which assumes fu

fd
= 1, taken from the latest HFLAV average [28];

• B(B+ → J/ψK +) = (1.010± 0.029)× 10−3 and B(J/ψ → µ+µ−) = (5.961± 0.033)%, ob-

tained from the world average of the two branching fractions [11];

• NJ/ψK ± = 334351× (1±0.3%±4.8%), obtained in section 10.1;

• RAε = 0.1144±0.8%±4.0%, used for both B 0
s and B 0

d branching fraction extraction. Ad-

ditionally, the lifetime correction discussed in section 10.2.1 applied to RAε term for the

B(B 0
s → µ+ µ−) evaluation.

The modified fitting procedure for the extraction of the signal branching fractions is employed

to evaluate the 2D profiled likelihood contours in the B(B 0
s → µ+ µ−) – B(B 0

d → µ+ µ−) plane
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for the toy-MC shown in figure 11.20. Only likelihood contours are extracted in order to limit the

CPU consumption, as the Neyman approach [178] requires a large number of toy-simulations.

The toy-MC is generated for the B(B 0
(s) → µ+ µ−) SM prediction, and the contours are drawn

for values of −2∆ ln
(
L

)
equal to 2.3, 6.2 and 11.8, as discussed in section 6.3.2. Figure 11.26

shows the resulting contours: the blue lines are obtained considering both the statistical and

systematic uncertainties, while the red lines are obtained considering only the statistical uncer-

tainty. As expected, the statistical uncertainty largely dominates, in fact the two sets of contours

are extremely similar.
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Figure 11.26: Likelihood contours obtained with the fit on simultaneous fit to B(B0
s → µ+ µ−) and B(B0

d → µ+ µ−)

on the toy-MC shown in figure 11.20, generated for the B(B0
(s) → µ+ µ−) SM prediction. The contours

are drawn for values of −2∆ ln
(
L

)
equal to 2.3, 6.2 and 11.8. Two sets of contours are shown: one

including statistical and systematic uncertainties (blue lines) and the other including only statistical
uncertainties (red lines). Also the SM prediction with uncertainties is indicated.

11.5 Conclusions

The fit for the extraction of the B 0
(s) → µ+ µ− signal yields has been designed and tested.

The choice of the functional models and their constraints are based on simulations and com-

pletely independent from data. The final fit, on the other hand, will be performed solely on

data, without any input from simulations.

The fitting procedure has been tested with a large number of toy-MC simulations, in particular

studying the convergence of the fit and the possible bias in the signal yields. Systematic uncer-

tainties arising from the assumptions and choices made during the development of the fitting

procedure have also been evaluated and considered in the fit.

The procedure for the extraction of the signal branching fractions has also been designed: it

is based on the fit for the extraction of the signal yields, where the number of signal events is

substituted with the signal branching fractions and the normalisation terms from equation 5.1.

The implementation of the fit on data for the extraction of the signal yields was the last ingredi-
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ent needed for the definition and tuning of the analysis. Since all the procedures are now set,

the blinded mass signal region can be opened. The following chapter therefore discusses the

fit performed on real data and the final result of the analysis.



12BRANCHING FRACTION

EXTRACTION

The preceding chapters have provided all the ingredients needed to evaluate the B 0
(s) → µ+ µ−

branching fractions using formula 5.1: the hadronisation probabilities of a b-quark into B+

and B 0
s (B 0

d ) and the reference channel branching fraction, which are taken from the latest

available experimental measurements [11, 28], the reference channel yield (section 10.1), the

B+ → J/ψK + to B 0
(s) → µ+ µ− efficiency ratio (section 10.2) and a procedure for the extraction

of the branching fractions employing the fit on data to extract the signal yields (chapter 11). The

final steps of the analysis are discussed in this chapter, with the extraction of the B 0
(s) → µ+ µ−

branching fractions using the 2015/16 dataset discussed in section 12.1. This result is then

combined with the result of the Run 1 analysis [73] in section 12.2, in order to improve the stat-

istical precision of the result.

The results of the analysis performed on the 2015/16 dataset and its combination with the

ATLAS Run 1 analysis are finally summarised in section 12.3.

Additionally, the ongoing effort to combine the latest B 0
(s) → µ+ µ− results from the LHC ex-

periments is presented in section 12.4.

12.1 2015/16 dataset branching fractions extraction

The first step towards the final result of the analysis is the unblinding procedure, in order to

access the mass signal region, not accessible during the analysis definition and tuning phases.

Once the signal region is accessible, the number of signal events can be extracted (sub-section 12.1.1),

applying the fitting procedure described in chapter 11, followed by the evaluation of B(B 0
(s) → µ+ µ−).

Given the low statistics regime of the analysis, a reliable strategy for the extraction of the uncer-

tainty on the signal branching fractions is needed. The three approaches for the evaluation of

the uncertainty described in chapter 6 are applied and discussed in sub-section 12.1.3, conver-

ging to the Neyman belt construction method, which is used to provide the final result of the

analysis. This result is finally summarised in sub-section 12.1.4.

194
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12.1.1 Fit on unblinded data

As introduced at the beginning of this chapter, the analysis is fully tuned and the signal region

can be unblinded. Table 12.1 summarises the event counts in the data mass sidebands and

signal region for the four BDT bins after the unblinding procedure.

The fitting procedure is then applied to the unblinded data. From the sideband-only fit on

Table 12.1: Event counts in the four BDT bins in data after the unblinding procedure.

bin 0 bin 1 bin 2 bin 3

left sideband
3800 639 191 42

(4766 MeV < m(B) < 5166 MeV)

signal region
2683 354 63 35

(5166 MeV < m(B) < 5526 MeV)

left sideband
2730 337 58 7

(5526 MeV < m(B) < 5966 MeV)

data (section 11.1.4) 2708, 331, 56 and 8.2 events are interpolated in the blinded signal region

for BDT bins 0, 1, 2 and 3 respectively. The number of background events observed in the data

blinded region after the application of the fitting procedure is respectively 2685 ± 37, 330 ± 14,

51 ± 6 and 7.9 ± 2.6 for BDT bins 0, 1, 2 and 3, in good agreement with the interpolations.

As already mentioned, the number of expected signal events according to the SM prediction [54]

is NB 0
s
= 91 and NB 0

d
= 10. The number of expected signal events and the number of background

events observed in the signal regions in the three BDT bins effectively employed in the signal

yield extraction are used to compare the performance of the Run 1 and the 2015/16 analyses.

The value of the figure of merit S/
p

S +B , where S and B are the expected SM yield of the signal

and the interpolated background yield in the signal region respectively, is evaluated for both

the analyses and shown in table 12.2. Even if the BDT selection of the 2015/16 analysis shows a

lower performance with respect to the one employed in Run 1, the value of the figure of merit

Table 12.2: Comparison of the performance of the 2015/16 and Run 1 analyses. The performance is quantified with
the figure of merit S/

p
S +B , where S and B are the yields of the SM expected signal and interpolated

background in the signal region of the three higher BDT bins respectively. The number of expected
signal events includes both B0

s → µ+ µ− and B0
d → µ+ µ− contributions.

Run 1 Run 2

Nbkg Expected Nsig
Sp

S+B
Nbkg Expected Nsig

Sp
S+B

bin 1 509 15.3 0.7 330 33.7 1.8

bin 2 32 15.3 2.2 51 33.7 3.7

bin 3 4.8 15.3 3.4 7.9 33.7 5.2

in the three BDT bins is higher. This is most likely due to the additional precision on the meas-

urement of e. g. the decay length resolution, granted by the introduction of the IBL in the ID.
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Without applying any bounds on the values of the fitted parameters, the number of signal

events obtained by the fit are NB 0
s
= 80± 22 and NB 0

d
= −12± 20, compatible with the SM ex-

pectation, with a correlation of ρ = 0.82%. The uncertainties are obtained using a gaussian

approximation in the neighbourhood of the likelihood maximum and include the contribu-

tions of the statistical uncertainty and the systematic uncertainties associated with the fitting

procedure; statistical uncertainties largely dominate.

The non-physical result obtained for the B 0
d → µ+ µ− yield does not constitute an issue for

the validity of the analysis. Given its underfluctuation, the Neyman construction for the ex-

traction of the confidence intervals on the branching fractions will provide an upper limit on

B(B 0
d → µ+ µ−).

Figure 12.1 shows the invariant mass of distributions of the four BDT bins, together with the

projection of the likelihood.

The fitting procedure for the extraction of the branching fractions, discussed in section 11.4, is
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Figure 12.1: Di-muon invariant mass distributions in the unblinded data, in the four intervals of BDT output. Su-
perimposed is the result of the maximum-likelihood fit. The total fit is shown as a continuous line, with
the dashed lines corresponding to the observed signal component, the b → µµX background, and the
continuum background. The signal components are grouped in one single curve, including both the
B0

s → µ+ µ− and the (negative) B0
d → µ+ µ− component. The curve representing the peaking B → hh′

background lies very close to the horizontal axis in all BDT bins.
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then applied to evaluate B(B 0
(s) → µ+ µ−), obtaining

B(B 0
s → µ+ µ−) = 3.21×10−9 (12.1)

B(B 0
s → µ+ µ−) = −1.3×10−10. (12.2)

Before evaluating the uncertainty on the measurements, the quality of the fit performed on

data needs to be checked. The following sub-section provides a discussion on the evaluation

of the goodness-of-fit.

12.1.2 Unblinded fit quality

The estimation of the quality of the fitting procedure performed on the unblinded data repres-

ents an interesting problem. Due to the simultaneous fit and the small statistics available in

the last BDT bin, the usage of a standard binned χ2 test would not provide a meaningful result.

Binned χ2 tests are, in fact, known to provide a meaningful estimation of the fit quality only if

all the bins in the histogram present sufficient statistics to assume symmetric errors on the bin

content.

The fit quality is therefore estimated with a modified Kolmogorov–Smirnov (KS) test [174]. The

KS test is applied to each BDT bin between the normalised unbinned data distribution and

the PDF resulting from the fit on data; the maximum KS distance found among the four bins

is taken as resulting KS distance. The same procedure is applied to a set of toy-MC generated

according to the result of the fit to data PDF parameters and fitted with the baseline fit.

Figure 12.2 shows the distribution of the maximum KS distance obtained from the toy-MC

study and the result of the test applied to the fit to the real data (red arrow). The fit quality

is extracted as the integral of the distribution on the right-hand side of the arrow, normalised

by the integral of the entire distribution. The result is p-value is 0.84, which shows good agree-

ment between the data and the fit.

12.1.3 Branching fractions uncertainty

As introduced at the beginning of this section, given the low-statistics regime of the analysis,

a reliable approach for the evaluation of the uncertainty on the branching fractions is needed.

The three methods for the extraction of the uncertainty (or confidence interval) described in

chapter 6 are employed. The three approaches are applied successively, starting from the one

with the most requirements on the properties of the likelihood (RCF variance [182]) and con-

verging to the most accurate and reliable, the Neyman belt construction [178].

This procedure is employed for two main reasons. The first two approximate approaches can

provide a cross-check for the Neyman belt construction. In fact, knowing the expected be-

haviour of the different procedures allows a gauge of the consistency of the final result of the

analysis, e. g. the Neyman approach is expected to provide a larger uncertainty compared to

the others, which underestimate the coverage. Additionally, providing the uncertainty with all

three approaches gives a way to validate the ATLAS result against the result from other experi-

ments, based on the uncertainty extraction procedure they employ.
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Figure 12.2: Distribution of the KS distance calculated as described in the text for a set of toy-MC generated using
the result of the fit on data as generation PDF parameters. The red arrow shows the KS distance value
obtained for the data fit. The fit quality is extracted as the integral to the right of the arrow of the
normalised histogram. The resulting p-value is 0.84.

The first approach employed for the extraction of the B(B 0
(s) → µ+ µ−) uncertainty is the RCF

variance, introduced in section 6.3.1. Assuming a gaussian behaviour of the likelihood in the

neighbourhood of its maximum, the uncertainty on the signal branching fractions is evaluated

applying formula 6.10. Formulas 12.1 and 12.2 therefore become:

B(B 0
s → µ+ µ−) = (3.21±0.85±0.37)×10−9 = (3.21±0.93)×10−9 (12.3)

B(B 0
s → µ+ µ−) = (−1.3±2.0±0.6)×10−10 = (−1.3±2.1)×10−10. (12.4)

Statistical and systematic uncertainties (shown separately at first, and then combined) are ob-

tained by repeating the likelihood fit after removing the contribution of the gaussian smearing

terms in the likelihood function. Table 12.3 shows the breakdown of the systematic uncertain-

ties on the two branching fractions. In both cases the dominant systematic uncertainty is due

to the fitting procedure. The last row shows the statistical uncertainty, which is the main source

Table 12.3: Breakdown of the systematic uncertainties in B(B0
(s) → µ+ µ−). The measurements are dominated by

statistical uncertainty, followed by the systematic uncertainty from the fit. The latter is dominated by
contributions from the mass scale uncertainty and the parameterisation of the low mass background
background. The statistical uncertainties reported here are obtained from the maximisation of the fit
likelihood and are meant only as a reference for the relative scale uncertainties.

Source B 0
s [%] B 0

d [%]

fs/ fd 5.1 -
B+ yield 4.8 4.8
RAε 4.1 4.1
B(B+ → J/ψK +)×B(J/ψ→µ+µ−) 2.9 2.9
Fit systematic uncertainties 8.7 65

Stat. uncertainty (from likelihood est.) 27 150
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of uncertainty in the analysis.

As introduced in section 6.3.1, the resulting uncertainties are symmetric around the central

value. Given the low statistical regime of the analysis, asymmetric uncertainties are expected.

Additionally, the RCF variance does not provide any information about the “true” physical value

of the branching fraction.

The second approach described in chapter 6 is therefore employed: approximated confidence
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Figure 12.3: Profiled likelihood ratio scan of −2ln

L
(
B 0

(s) → µ+ µ−
)

L (max)

 as a function of B(B0
(s) → µ+ µ−), for

B0
s → µ+ µ− (left), and B0

d → µ+ µ− (right). The continuous curve includes statistical and systematic
uncertainties, while the dashed one represents the effect of statistical uncertainties alone. The corres-

ponding −2ln

L
(
B 0

(s) → µ+ µ−
)

L (max)

 = 1 intersections are B(B0
s → µ+ µ−) =

(
3.21+0.90+0.48

−0.83−0.31

)
×10−9 and

B(B0
d → µ+ µ−) =

(
−1.3+2.2+0.7

−1.9−0.8

)
×10−10.

intervals built using the profiled likelihood ratio. Exploiting the profiled likelihood ratio scans

shown in figure 12.3, the approximated confidence intervals on B(B 0
(s) → µ+ µ−) can be eval-

uated taking −2∆log(L /L (max)) = 1:

B(B 0
s → µ+ µ−) =

(
3.21+0.90+0.48

−0.83−0.31

)
×10−9 =

(
3.21+1.02

−0.89

)
×10−9 (12.5)

B(B 0
d → µ+ µ−) =

(
−1.3+2.2+0.7

−1.9−0.8

)
×10−10 =

(
−1.3+2.3

−2.1

)
×10−10. (12.6)

When two sets of errors are reported, they refer to the statistical and systematic uncertainties,

obtained repeating the profiled likelihood ratio scan after removing the contribution of the

gaussian smearing terms in the likelihood function. In both scans the likelihood function is

profiled with respect to all other parameters, including the other branching fraction.

The 2D likelihood contours are also evaluated by profiling the likelihood function with respect

to B(B 0
s → µ+ µ−) and B(B 0

d → µ+ µ−) and taking −2∆log(L /L (max)) = 2.3, 6.2 and 11.8.

Such contours are shown in figure 12.4, where the red contours include statistical uncertainty

only and the blue contours statistical+systematic uncertainty.
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Figure 12.4: Two-dimensional likelihood contours for the simultaneous fit to B(B0
s → µ+ µ−) and B(B0

d → µ+ µ−),

for values of −2∆ ln
(
L

/
L (max)) equal to 2.3, 6.2 and 11.8. The SM prediction with uncertainties is

indicated.

Compared to the RCF variance, the profiled likelihood scans produce asymmetric uncertain-

ties. As introduced in section 6.3.2, the intervals obtained can be interpreted as confidence

intervals with a given coverage only if the likelihood can be assumed to have a gaussian beha-

viour. Considering the scans in figure 12.3 and the fact that this approach provided asymmetric

uncertainties, the likelihood can not be considered gaussian, hence the −2∆log(L ) = 1 interval

can not be assumed to be a 68.3 % confidence level interval.

The third and final approach described in chapter 6, the exact frequentist Neyman belt con-

struction [178], is then employed to extract exact confidence intervals. Toy-MCs are generated

to construct the 1D and 2D Neyman belts for the extraction of B(B 0
(s) → µ+ µ−). The resulting

1D belts are shown in figures 12.5(a) and 12.5(b) for B 0
s → µ+ µ− and B 0

d → µ+ µ−. Both belts
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Figure 12.5: 68.3 % Confidence band for B(B0
s → µ+ µ−) (figure 12.5(a)) and 95.5 % confidence band for

B(B0
d → µ+ µ−) (figure 12.5(b)), obtained with toy-MCs, following the Neyman belt construction ap-

proach [178]. The continuous belt includes statistical and systematic uncertainties, while the dashed
one represents the effect of statistical uncertainties alone.



12.1 2015/16 dataset branching fractions extraction 201

are built considering statistical uncertainty only (red dashed lines) and statistical+systematic

uncertainties (blue solid lines). The B(B 0
s → µ+ µ−) belt has a coverage of 68.3 % and is em-

ployed to extract the confidence interval

B(B 0
s → µ+ µ−) =

(
3.21+0.96+0.49

−0.91−0.30

)
×10−9 =

(
3.2+1.1

−1.0

)
×10−9. (12.7)

When multiple errors are reported, they refer to the statistical and systematic uncertainties,

obtained by building the Neyman belt after removing the contribution of the gaussian smearing

terms in the likelihood function.

Given the underfluctuation of the B 0
d → µ+ µ− yield, its belt is built with a coverage of 95.5 %,

in order to extract the upper limit

B(B 0
d → µ+ µ−) < 4.3×10−10. (12.8)

The Neyman construction is also exploited to extract the expected result of the analysis assum-

ing the SM predicted branching fractions [54], obtaining B(B 0
s → µ+ µ−) =

(
3.6+1.1

−1.0

)
× 10−9

and an upper limit at 95% CL of 7.1 × 10−10 for B(B 0
d → µ+ µ−).

The results shown in formulas 12.7 and 12.8 are compatible with the SM predictions.

Finally, the 2D belt is also constructed: the resulting 68.3 %, 95.5 % and 99.7 % confidence re-

gions, corresponding to the 1, 2 and 3 σ contours, are shown in figure 12.6.
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Figure 12.6: Neyman contours in the B(B0
s → µ+ µ−)–B(B0

d → µ+ µ−) plane for 68.3%, 95.5% and 99.7% coverage.
The inner (red) contours are statistical uncertainty only, while the outer ones (blue) include statistical
and systematic uncertainties. The construction of these contours makes use of both the dimuon (26.3
fb−1) and the reference channel (15.1 fb−1) datasets. The SM prediction for the signal branching frac-
tions with its uncertainties [54] is also indicated.

Compared to the results obtained with the previous approaches, the B(B 0
(s) → µ+ µ−) con-

fidence intervals extracted with the Neyman approach are different, enforcing the initial state-

ment of this chapter, that an exact approach for the evaluation of the uncertainty on the branch-

ing fractions is needed. The Neyman approach allows also to extract in a natural way the upper
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limit on B(B 0
d → µ+ µ−), without requiring the usage of additional statistical tools.

The resulting confidence interval (or upper limit) obtained with the Neyman construction con-

stitutes therefore the final result of the analysis, summarised in the following sub-section.

12.1.4 2015/16 analysis result

In conclusion, the B 0
(s) → µ+ µ− analysis performed on the dataset collected during 2015 and

2016 by the ATLAS experiment yields a 68.3 % confidence interval on B(B 0
s → µ+ µ−):

B(B 0
s → µ+ µ−) =

(
3.2+1.1

−1.0

)
×10−9. (12.9)

obtained exploiting the Neyman belt approach.

A similar construction is exploited for the evaluation of the upper limit on B(B 0
d → µ+ µ−) at

95.5% coverage of

B(B 0
d → µ+ µ−) < 4.3×10−10. (12.10)

Both results are compatible with the SM predicted branching fractions [54].

12.2 Combination with the Run 1 result

The result obtained in the previous section employs a large part of the data ever collected by

the ATLAS experiment until the end of 2016, but, as already mentioned, an analysis was also

performed on the dataset collected during the Run 1 of the LHC data taking period. The two

analyses are combined to improve the results already obtained.

In order to limit the CPU consumption to obtain the results in this section, the uncertainties de-

rived, unless explicitly reported, always include both statistical and systematic contributions.

This section is dedicated to the combination of the two analyses. After a comparison between

the two results (sub-section 12.2.1), the procedure employed to perform the combination is de-

scribed (sub-section 12.2.2). The result of the combination is finally obtained in sub-section 12.2.3

and compared to the most recent experimental results (sub-section 12.2.4).

12.2.1 Comparison with the Run 1 result

The two ATLAS B 0
(s) → µ+ µ− analyses performed on the full Run 1 dataset [73] and on the

2015/16 dataset, described in the previous chapters, yield the following results:

B(B 0
s → µ+ µ−)Run 1 = (0.9+1.1

−0.8)×10−9 B(B 0
s → µ+ µ−)2015/16 =

(
3.2+1.1

−1.0

)
×10−9

B(B 0
d → µ+ µ−)Run 1 < 4.2×10−10 B(B 0

d → µ+ µ−)2015/16 < 4.3×10−10.
(12.11)

Both analyses show a final result which is lower than the expected SM branching fractions [54].

In particular, both analyses show an underfluctuation on the measured B(B 0
d → µ+ µ−), while

regarding B(B 0
s → µ+ µ−), the 2015/16 analysis shows a result which is compatible with the

SM and the Run 1 analysis reports a lower branching fraction.
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Such underfluctuations can be motivated in different ways. A possible interplay between the

two signals in the fitting procedure can explain fluctuations, but in such a case one of the

two would overfluctuate and the other underfluctuate. Since both channels show underfluctu-

ations, the possibility of such interplay must be discarded.

In case the B → hh′ contribution is overestimated, the B 0
d → µ+ µ− branching fraction could

be underestimated, as signal events would leak into the peaking background PDF. In both ana-

lyses the B → hh′ expected yield is cross-checked on data, enforcing the validity of the gaussian

smearing term associated with the B → hh′ PDF. Even in case of an issue in the B → hh′ eval-

uation, the expected B → hh′ contribution is extremely small (1 event for Run 1 and 2.9 for

2015/16) not enough to motivate the B 0
d underfluctuation.

Effects due to new physics can modify the branching fractions, as discussed in section 1.4, but

this possibility would add tension between the ATLAS result and the latest results from other

experiments, which do not show any significant discrepancy with the SM expectation.

Finally, statistical fluctuations in the signal and/or the background components can motivate

the results obtained in both analyses. This is considered the most probable possibility.

The compatibility of the two analyses is gauged with a χ2 test, which yields a compatibility

of 1.16 standard deviations, giving a fair agreement between the results. The combination of

the results is expected to provide a central value smaller than the one found in the 2015/16 ana-

lysis alone, due to the lower values of the branching fractions found in Run 1. Anyway, thanks

to the higher statistics available, the central value is expected to be closer to the 2015/16 result.

12.2.2 Analyses combination procedure

The combination of the Run 1 and 2015/16 ATLAS B 0
(s) → µ+ µ− analyses is based on the likeli-

hood combination. This procedure, discussed later in this sub-section, allows the combination

two likelihoods into one, while considering possible correlated effects.

The basic concept of a likelihood combination is simple, the two likelihood are multiplied with

each other maintaining the two signal branching fractions as common parameters. The result-

ing likelihood is then maximised with respect to the signal branching fractions, as was done for

the likelihoods of the two analyses. This is the same idea employed in the simultaneous likeli-

hood fits, discussed in section 6.1 and largely used in both the Run 1 and 2015/16 analyses.

Correlations between the two analyses due to the usage of the same parameters are considered.

The values employed in formula 5.1 and in its Run 1 counterpart which are not evaluated in the

analyses ( fu

fs(d)
and B(B+ → J/ψK +)×B(J/ψ→µ+µ−)) are set to be fully correlated and to have

the most recent measured values (employed in the 2015/16 analysis):

• fu

fs(d)
= 0.256±0.013, which assumes fu

fd
= 1 [28];

• B(B+ → J/ψK +) = (1.010±0.029)×10−3 and B(J/ψ→µ+µ−) = (5.961±0.033)% [11].

The full correlation of these parameters is implemented employing the same smearing term for

the systematics uncertainty association in both likelihoods.
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The two likelihoods are therefore combined as follows

L1(s1,θcommon
1 ,θonlyL1

1 ); L2(s1,θcommon
2 ,θonlyL2

2 )

↓
L1(s,θcommon,θonlyL1

1 )×L2(s,θcommon,θonlyL2

2 )

=Ltot(s,θcommon,θonlyL1

1 ,θonlyL2

2 ),

(12.12)

where Li represents the likelihood of one of the two experiments (i = 1,2), with si being the

parameters of interest, θcommon
i the nuisance parameters in common between the two likeli-

hoods and θonlyLi

i the nuisance parameters not in common. The resulting likelihood only has

one set of parameters of interest and common nuisance parameters, which are shared between

the two likelihoods.

12.2.3 Branching fraction extraction

The approach for the combination of the likelihoods discussed in the previous sub-section

is implemented and the combined likelihood is then maximised. The results obtained from

this procedure are discussed in this sub-section; first the signal yields and branching fractions

which maximise the likelihood are discussed, followed by the extraction of their uncertainties

and confidence intervals, as was performed for the 2015/16 analysis in section 12.1.3.

The maximum of the likelihood is found for the following signal branching fraction values:

B(B 0
s → µ+ µ−) = 2.8×10−9 (12.13)

B(B 0
s → µ+ µ−) = −1.9×10−10. (12.14)

The corresponding number of signal events obtained for each channel and period are summar-

ised in table 12.4, where the uncertainties reported, evaluated assuming a gaussian behaviour

Table 12.4: Number of signal events fitted with the the combination of the 2015+2016 Run 2 likelihood with the one
for the full Run 1 result. The uncertainties reported, which consider the statistical uncertainty and the
systematic uncertainty arising from the fitting procedures employed in the two analyses, are evaluated
assuming a gaussian behaviour of the likelihood in the vicinity of its maximum.

Period Channel Fitted yield

Run 1
B 0

s → µ+ µ− 30.7±8.1

B 0
d → µ+ µ− −8.7±7.2

2015/16
B 0

s → µ+ µ− 72.0±18.1

B 0
d → µ+ µ− −17.8±15.0

of the likelihood in the neighbourhood of its maximum, consider the statistical uncertainty

and the systematic uncertainty arising from the fitting procedures employed in the two ana-

lyses. As expected the central values of the measured branching fractions are lower compared

to the ones found in the 2015/16 analysis.
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The same approach for the extraction of the uncertainties and confidence intervals exploited

for the 2015/16 analysis is used in this case. The uncertainties are extracted employing the

three techniques described in section 6.3, starting from the one with the most requirements on

the properties of the likelihood and ending with the exact Neyman belt approach.

The uncertainty extracted with the RCF variance (section 6.3.1) are the following:

B(B 0
s → µ+ µ−) = (2.8±0.7)×10−9

B(B 0
d → µ+ µ−) = (−1.9±1.6)×10−10.

Where the uncertainties include statistical and systematic contributions. Similar considera-

tions as the ones made for the 2015/16 result can be made in this case. This approach does not

provide any information regarding the “true” values of the branching fractions and the uncer-

tainties are symmetric with respect to the central value. This is not expected, in fact, given the

low statistics regime of the analysis, asymmetric uncertainties should appear.

The likelihood intervals (section 6.3.2) are employed to estimate the approximated confidence

intervals and contours. Figure 12.7 shows the likelihood contours obtained profiling the like-

lihood with respect to B(B 0
s → µ+ µ−) and B(B 0

d → µ+ µ−) and drawing the contours for

−2∆log(L /L (max)) = 2.3, 6.2 and 11.8. The combined likelihood contours are shown with

black lines and shaded areas, together with the 2015/16 likelihood contours (blue lines) and, in
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Figure 12.7: Comparison of the Run 1 and 2015/16 combined likelihood contours (black lines and shaded areas)
with the likelihood contours obtained using the 2015/16 likelihood (figure 12.7(a)) and also with the
likelihood contours obtained using the Run 1 likelihood (green lines in figure 12.7(b)). All contours
include the contribution of statistical and systematic uncertainties. The three sets of contours for each
result are obtained by profiling the likelihood with respect to B(B0

s → µ+ µ−) and B(B0
d → µ+ µ−)

and taking −2∆log(L /L (max)) = 2.3, 6.2 and 11.8. The SM expected branching fractions [54] are also
indicated.

figure 12.7(b), also the Run 1 likelihood contours (green lines). The compatibility of the 2015/16

and Run 1 analyses is cross-checked by taking the value of −2(logLRun 1 + logL2015/16) at the

maximum value of the combined likelihood, with LRun 1 and L2015/16 set to have maxima at

zero. This quantity can be interpreted as a χ2 with two degrees of freedom [184], leading to

a compatibility of 1.2 standard deviations, in good agreement with what was found in sub-

section 12.2.1.



12.2 Combination with the Run 1 result 206

The likelihood ratio scans profiled with respect to only one of the two signal branching frac-

tions, shown in figure 12.8, are then employed to obtain the approximated confidence intervals
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Figure 12.8: Profiled likelihood ratio scan of −2ln

L
(
B 0

(s) → µ+ µ−
)

L (max)

 as a function of B(B0
(s) → µ+ µ−), for

B0
s → µ+ µ− (left), and B0

d → µ+ µ− (right), obtained using the Run 1 + 2015/16 com-
bined likelihood. The curves include statistical and systematic uncertainties. The corresponding

−2ln

L
(
B 0

(s) → µ+ µ−
)

L (max)

= 1 intersections are B(B0
s → µ+ µ−) =

(
2.8+0.8

−0.7

)
×10−9 and B(B0

d → µ+ µ−) =(
−1.9+1.7

−1.5

)
×10−10.

taking −2∆log(L ) = 1:

B(B 0
s → µ+ µ−) =

(
2.8+0.8

−0.7

)
×10−9 (12.15)

B(B 0
d → µ+ µ−) =

(
−1.9+1.7

−1.5

)
×10−10, (12.16)

where the uncertainties reported include statistical and systematic contributions. As for the

2015/16 result, the profiled likelihood ratio scans do not show a gaussian behaviour, as visible

in figure 12.8 and by the asymmetric uncertainties on the branching fractions. This means that

the intervals obtained for −2∆log(L ) = 1 do not ensure a coverage of 68.3 %.

The Neyman belt approach is therefore employed to extract the exact confidence intervals.

Only the one-dimensional Neyman belts for B(B 0
s → µ+ µ−) and B(B 0

d → µ+ µ−) are ob-

tained, following the approach discussed in sections 6.3.3 and 6.3.4; in order to limit the CPU

consumption, the two-dimensional belt is not constructed. Figure 12.9 shows the one-dimensional

belts for B(B 0
s → µ+ µ−) (figure 12.9(a)), built with a coverage of 68.3 %, and the one-dimensional

belt for B(B 0
d → µ+ µ−) (figure 12.9(b)), built with a coverage of 95.5 %; in both cases the

belts include both statistical and systematic uncertainties. The 68.3 % confidence interval on

B(B 0
s → µ+ µ−) is therefore

B(B 0
s → µ+ µ−) =

(
2.8+0.8

−0.7

)
×10−9, (12.17)
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Figure 12.9: 68.3 % confidence band for B(B0
s → µ+ µ−), figure 12.9(a), and 95.5 % confidence band for

B(B0
d → µ+ µ−), figure 12.9(b); both are obtained with toy-MCs, following the Neyman belt con-

struction approach discussed in sections 6.3.3 and 6.3.4. Both include the contribution of statistical
and systematics uncertainties.

and the upper limit at 95.5% CL on B(B 0
d → µ+ µ−) is

B(B 0
d → µ+ µ−) < 2.1×10−10. (12.18)

For comparison, using the predicted SM branching fractions [54], the analysis is expected to

yield on average a measurement of
(
3.6+0.9

−0.8

)
× 10−9 for B(B 0

s → µ+ µ−) and an upper limit

of 5.6 × 10−10 for B(B 0
d → µ+ µ−). The two results shown in formulas 12.17 and 12.18 are

compatible with the SM expectations.

The significance of the result obtained for B(B 0
s → µ+ µ−) is estimated evaluating the pro-

filed likelihood ratio shown in figure 12.8(a) in the hypothesis of no signal (B(B 0
s → µ+ µ−) =

0) [184]. This test yields a profiled likelihood ratio value of 21.5, which, for one degree of free-

dom corresponds to a significance of 4.6 standard deviations. This measurement is therefore

the first ATLAS evidence of the B 0
s → µ+ µ− process.

The compatibility of the result obtained with the SM expected branching fractions [54] is meas-

ured in a similar way, evaluating the likelihood ratio profiled with respect to to B(B 0
s → µ+ µ−)

and B(B 0
d → µ+ µ−) at the SM expected value [184]. The resulting significance in this case is

2.4 standard deviations, considering two degrees of freedom.

12.2.4 Comparison with other experiments

The result obtained in the previous sub-section can be compared with the most recent experi-

mental results, which are obtained by the other LHC experiments.

As introduced in section 1.5, the most recent results are the combined CMS and LHCb analyses

based on the full Run 1 dataset [70] and the LHCb analysis performed on the Run 1 dataset to-

gether with to first part of the dataset collected in Run 2 [74]. The CMS and LHCb combination

yields the following results:

B(B 0
s → µ+ µ−) =

(
2.8+0.7

−0.6

)
×10−9 (12.19)

B(B 0
d → µ+ µ−) =

(
3.9+1.6

−1.4

)
×10−10. (12.20)
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While the B(B 0
s → µ+ µ−) result shows a remarkable compatibility with the ATLAS result dis-

cussed in the previous section, the estimated B(B 0
d → µ+ µ−) shows tensions.

Such disagreement is not present when comparing the ATLAS result with the most recent LHCb

result, as shown in figure 12.10, where the profiled likelihood contours drawn in the B(B 0
s → µ+ µ−)–

B(B 0
d → µ+ µ−) plane for the ATLAS 2015/16 and Run 1 combined analyses and for the LHCb
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Figure 12.10: Comparison of the Run 1 and 2015/16 combined likelihood contours (black lines and shaded areas)
with the likelihood contours obtained by the LHCb experiment (red lines) [74]. The SM expected
branching fractions [54] are also indicated.

analysis [74] are compared. The LHCb analysis yields

B(B 0
s → µ+ µ−) =

(
3.0±0.6+0.3

−0.2

)
×10−9 (12.21)

B(B 0
d → µ+ µ−) < 3.4×10−10 at 95% CL. (12.22)

Also in this case B(B 0
s → µ+ µ−) result shows good compatibility with the ATLAS result. The

upper limit on B(B 0
d → µ+ µ−) estimated by LHCb is compatible, even if less stringent1, with

the ATLAS one shown in formula 12.18. The ATLAS B(B 0
d → µ+ µ−) upper limit obtained with

the combination of the 2015/16 and Run 1 analyses is therefore, as of today, the most stringent

upper limit ever found on B(B 0
d → µ+ µ−).

12.3 Summary of results

The B 0
(s) → µ+ µ− analysis performed on the dataset collected during 2015 and 2016 with the

ATLAS experiment is concluded. The results of the analysis and its combination with the one

performed on the Run 1 dataset are summarised in this section.

The analysis performed on the 2015/16 dataset yields a 68.3 % confidence interval on B(B 0
s → µ+ µ−)

1 While the LHCb sensitivity is higher than ATLAS’, the underfluctuation on the B0
d → µ+ µ− yield allows the ATLAS

upper limit to be more stringent.
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of

B(B 0
s → µ+ µ−) =

(
3.2+1.1

−1.0

)
×10−9, (12.23)

and an upper limit at 95.5 % CL on B(B 0
d → µ+ µ−) of

B(B 0
d → µ+ µ−) < 4.3×10−10. (12.24)

Both results are obtained with the exact frequentist Neyman belt approach [178] and are com-

patible with the SM expectations [54].

The combination of the 2015/16 analysis with the ATLAS analysis performed on the Run 1 data-

set leads to the first ATLAS evidence of the B 0
s → µ+ µ− process, with a 68.3 % confidence

interval obtained with the same Neyman construction:

B(B 0
s → µ+ µ−) =

(
2.8+0.8

−0.7

)
×10−9. (12.25)

The Neyman approach is also employed to derive the upper limit at 95.5 % CL on B(B 0
d → µ+ µ−),

leading to the most stringent upper limit ever found, thanks to its underfluctuation:

B(B 0
d → µ+ µ−) < 2.1×10−10. (12.26)

Both results are compatible with the SM expected branching fractions [54].

12.4 LHC experiment B 0
(s) → µ+ µ− combination

In order to increase the reach of the current published analysis performed by the LHC experi-

ments, an effort to combine their results is ongoing. The results shown in this section are still

work-in-progress therefore will be subject to changes before being published.

The combination is based on the following analyses:

• ATLAS analysis [4]: performed on the first two years of the Run 2 data-taking period

and combined with the likelihood from the ATLAS Run 1 analysis; this is the analysis

described in chapters 5 to 12.2;

• CMS analysis [71]; performed on the full Run 1 dataset, this analysis has been briefly

introduced in section 1.5;

• LHCb analysis [74]: performed on the dataset collected during the Run 1 and the first

two years of the Run 2 data-taking periods; this analysis has been briefly introduced in

section 1.5 as well.

The chosen approach for the combination is a sum of the profiled likelihoods. Two-dimensional

histograms with the profiled likelihood ratios of the three experiments are shared among the

experiments and summed. The minimum of the resulting histogram is then shifted to zero,

obtaining the profiled likelihood ratio of the combination.
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This approach allows an easy and quick way to combine the results from different experiments,

but does not take into account the effect of common systematic uncertainties, such as the ref-

erence channel branching fraction and the hadronisation probability. While the correlation

effect on the reference channel branching fraction can be neglected, thanks to its small rel-

ative uncertainty, the correlation effect for the hadronisation probability has to be taken into

account. For this reason, studies for its inclusion are currently ongoing.

Figure 12.11 shows the result of the combination, without considering the common systemat-

ics. Several likelihood contours are shown, representing the −2∆log(L ) = 2.3, 6.2, 11.8 con-

tours of the ATLAS experiment in blue, the CMS experiment in red, the LHCb experiment in

green and the combination of the three in black with grey shades. The central value of the

combination is shown with a black round marker, while the central values of the analyses of

the three experiments are omitted, in order to reduce the amount of information in an already

overcrowded plot. The SM theoretical prediction [54] is also shown.
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Figure 12.11: Two-dimensional likelihood contours for the ATLAS (blue), CMS (red) and LHCb (green) B0
(s) → µ+ µ−

analyses and for their combination (black with shades of grey). The SM theoretical prediction [54] for
the two branching fractions is also shown together with its uncertainty. The contours are obtained
taking −2∆log(L ) = 2.3,6.2,11.8 on the single experiments likelihoods, while the combination is ob-
tained summing the profiled likelihood ratios of the three experiments. Common systematic uncer-
tainties are not considered.

The approach followed for the combination of the likelihoods allows also to obtain the one-

dimensional profiled likelihood ratio scans of the combination. Figure 12.12 shows the result-

ing plots for B(B 0
s → µ+ µ−) and B(B 0

d → µ+ µ−). The result of the combination is obtained

taking the minimum of the two likelihood scans as central values and −2∆log(L ) = 1 as uncer-
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(a) One-dimensional profiled likelihood scan for
B(B0
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(b) One-dimensional profiled likelihood scan for
B(B0

d → µ+ µ−).

Figure 12.12: One-dimensional profiled likelihood scans for the combination of the B0
(s) → µ+ µ− analyses of the

ATLAS, CMS and LHCb experiments.

tainty. This yields in

B(B 0
s → µ+ µ−) = (2.65±0.4)×10−9 (12.27)

B(B 0
d → µ+ µ−) =

(
1.3+0.8

−0.7

)
×10−10. (12.28)

The significance of the results is quantified with the same likelihood ratio approach employed

in section 12.2.3. The significance on the B 0
s → µ+ µ− measurement is 9σ, while the signific-

ance on B 0
d → µ+ µ− is 1.85σ. The two results are compatible with the SM prediction within

2.3σ.



13EXTRAPOLATIONS FOR THE

B 0
(s) → µ+ µ− ANALYSIS

This chapter presents simulation-based studies on the B 0
(s) → µ+ µ− analysis sensitivity. Two

sets of studies are performed. The first study is carried out to estimate the sensitivity of the

ATLAS B 0
(s) → µ+ µ− analysis employing the statistics collected during the Run 2 of the LHC

data taking period (section 13.1); the second study compares the performance of the ATLAS

and CMS B 0
(s) → µ+ µ− analyses performed on the Run 1 dataset, in order to understand the

main drivers in the different performance of the two experiments (section 13.2).

13.1 Projection for the B 0
(s) → µ+ µ− analysis

The simulation-based projections of the B 0
(s) → µ+ µ− analysis sensitivity using the statistics

collected in Run 2 and to be collected at HL-LHC with the ATLAS detector are discussed in this

section; the results are published as an ATLAS PUB note [5] and from an integral part of [206]

and [3].

These studies are based on the ATLAS B 0
(s) → µ+ µ− analysis performed on the Run 1 data-

set [73] as they were carried out before the most recent analysis was published.

The projection strategy is described in sub-section 13.1.1, with the systematic uncertainties

discussed in sub-sub-section 13.1.1.1. After validating the technique against the Run 1 ATLAS

result (sub-section 13.1.2), the extrapolation proceeds with projections to the full Run 2 statist-

ics (sub-section 13.1.3) and to the HL-LHC projected sensitivity (sub-section 13.1.4). The res-

ults are then discussed (sub-section 13.1.5) and compared against the extrapolations of other

LHC experiments (sub-section 13.1.6).

13.1.1 Extrapolation procedure

The analysis sensitivity is going to be quantified through the expected B(B 0
s → µ+ µ−) –

B(B 0
d → µ+ µ−) contour plots. This will require the choice of a reference yield for the ex-

trapolations, which is chosen to be based on the expected SM branching ratios [54]. Rather

than performing absolute extrapolations, the analysis statistical power gain is expressed relat-

ive to the ATLAS Run 1 result. This procedure leverages on a well established result based on

212
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actual data, requiring to account for the possible differences in analysis performance and the

relative gain in number of signal and background events.

This gain is then implemented in a PDF that recreates the Run 1 analysis likelihood, with further

modifications discussed later in this sub-section. The resulting PDF is then used to generate

toy-MC samples of the observable candidates invariant mass distribution. The resulting distri-

butions are then fitted employing the same likelihood, via a simultaneous maximum-likelihood

fit in invariant mass.

The evaluation of the branching ratios contours will be performed with two approaches. Due

to the expected statistics regime of the Run 2 analysis the contours need to be derived using

the Neyman belt construction technique [178] described in sections 6.3.3 and 6.3.4. Such con-

tours will be compared with the likelihood based contours (discussed in section 6.3.2), in order

to probe the asymptotic gaussian behaviour of the likelihood. This comparison represents a

pivotal point in these studies, justifying the usage of the likelihood contours asymptotic ap-

proach for the HL-LHC projections.

Since likelihood contours are based on the the value which maximises the likelihood, confid-

ence intervals are built by generating a large number of toy-MC samples and constructing the

contours using one toy-MC, for which the maximum of the likelihood is the closest to the ref-

erence yield for the extrapolations. The remaining toy-MC samples are employed to gauge the

variance of the contours.

This extrapolation of the signal and background statistics implicitly assumes the same selec-

tion and reconstruction efficiencies as the Run 1 analysis. The statistics extrapolation will be

performed considering the increase in centre of mass energy and integrated luminosity, ac-

counting for a different trigger selection. The main source of background of the Run 1 analysis

was due to bb̄ events, which are also responsible for the production of the B mesons of interest

for the analysis. Thanks to the selection variables employed, e. g. vertexing quality and pointing

angle requirements, the analysis is robust against pile-up, therefore heavy flavour decays from

a single pp interaction are the dominant source of background after the final selection. Signal

and background yields are therefore expected to scale in the same way, which allows to assume

the same S/B as the Run 1 analysis for these studies.

The effects of the most relevant detector upgrades with respect to Run 1 are also considered.

The insertion of the IBL in the ID, discussed in section 2.2.3, affects the signal mass resolution;

this effect is taken into account in the Run 2 projections. The Phase-II upgrade, discussed in

section 2.3, foresees major modifications to the detector. In particular, the ITk upgrade en-

tails improvements in the vertex and mass determination, partly enhanced by the increased

muon trigger momentum thresholds, necessary to cope with the higher luminosity and pile-

up conditions. While the decay length resolution improvements are neglected in favour of a

conservative S/B assumption, the signal mass resolution variations are taken into account in

the projections. Figure 13.1, from [117], compares the B 0
s → µ+ µ− mass spectrum obtained

from Run 2 simulations and from simulations of the HL-LHC detector.
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Figure 13.1: HL-LHC and Run 2 reconstructed B0
s → µ+ µ− mass spectra for muons with

∣∣η∣∣ < 2.5. For reference,
the B0

d mass value [11] is indicated with a dotted line to emphasise the limited B0
d -B0

s resolving abilities
of the ATLAS detector. The figure shows the mass resolution using only the ID (red)/ITk (blue) track
parameter measurement, evaluated at the fitted B-vertex.

The expected gain in statistics is evaluated assessing separately three factors:

(Projected statistics gain) = (projected B cross-section)

(Run 1 B cross-section)

× (projected Luminosity)

(Run 1 Luminosity)
× (projected trigger efficiency)

(Run 1 trigger efficiency)
.

(13.1)

The B production cross-section scale factors used will assume, conservatively, that Run 1 data

have been all collected at a centre of mass energy of 8 TeV. Sub-sections 13.1.3 and 13.1.4 are

dedicated to the estimation of the different terms of equation 13.1.

13.1.1.1 Systematic uncertainties

Two main classes of systematic uncertainties, characterised by different properties, are para-

metrised in the Run 1 analysis and considered in the projections.

• External systematics: these systematic uncertainties are due to uncertainties on external

inputs, namely fu

fs(d)
and B(B+ → J/ψK +)×B(J/ψ→µ+µ−). It is plausible to expect these

the uncertainties on these quantities to be reduced with other measurements, however,

the present study conservatively assumes their values to be those used in the Run 1 ana-

lysis.

• Internal systematics: these systematic uncertainties depend on internal analysis effects,

e. g. uncertainties on invariant mass fit shapes and efficiencies. In the Run 1 analysis they

were parametrised as a function of the signal yields where dependencies were found to

be significant. The same parameterisation is maintained for these extrapolations.
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The same systematic uncertainties that affect the Run 1 analysis are therefore maintained.

Most of the sources of systematic uncertainties are not parametrised as a function of the signal

yields, these quantities are:

• fs/ fd = 0.240±0.020 [176];

• B(B+ → J/ψK +) = (1.027±0.031)×10−3 and J/ψ→µ+µ− = (5.961±0.033)% [207];

• the normalisation term Dnorm = (2.77±0.16)×106, which encloses the reference channel

yield, the ratio of the acceptances and efficiencies for the reference and signal channels,

and the uncertainty associated with the total integrated luminosity.

Only the systematic uncertainties arising from the uncertainties on the fitting procedure present

a dependence on the signals yield. Following the parameterisation obtained in Ref. [73], the

systematic uncertainty for the fitted number of B 0
s events is parametrised asσsyst(Ns) =

√
4+ (0.06Ns)2,

while the uncertainty on B 0
d yield is parametrised asσsyst(Nd ) = 3. The correlation between the

B 0
s and B 0

d systematics is found to be ρsyst =−0.7.

All the sources of systematic uncertainties are taken into account in the likelihood as gaus-

sian smearing parameters; the systematic uncertainties associated with the fitting procedure,

in particular, are included as two smearing parameters for the number of fitted B 0
s and B 0

d

events constrained by a two-dimensional Gaussian distribution parametrised by the values of

σsyst(Ns), σsyst(Nd ) and ρsyst.

13.1.2 Cross-check on Run 1 result

Since these studies are extensively based on the Run 1 B 0
(s) → µ+ µ− analysis, the extrapolation

technique is first cross-checked by reproducing the published ATLAS Run 1 profiled likelihood

contour1.

Toy-simulations are generated and fitted, based on the procedure described in sub-section 13.1.1,

with all the factors in formula 13.1 set to one. Only the toy-simulations with a central value close

to the one obtained in the Run 1 analysis are retained and employed to draw the−2∆log(L /L (max)) =
2.3, 6.2 and 11.8 profiled likelihood contours. Considering the amount of signal statistics, vari-

ations at the level of ∼ 15% on such contours are expected; the contours obtained with toy-

simulations are found to be compatible with the Run 1 result within such expectations. Fig-

ure 13.2 shows the Run 1 analysis result (left) and the result of one of the toy-MC generated

(right).

Given the compatibility of the Run 1 likelihood contours with the contours obtained with the

procedure described in sub-section 13.1.1, the toy-MC generation and fitting procedure are

considered validated.

1 The final result of the analysis was provided employing profiled likelihood contours, therefore the same procedure
is used to test the extrapolation technique.
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Figure 13.2: Comparison of the contour plot of the published Run 1 analysis 13.2(a) and the contours obtained with
a toy simulation 13.2(b) which present a central value compatible with the Run 1 result.

13.1.3 Run 2 yield extrapolation

The three ingredients of equation 13.1 for the Run 2 extrapolation are computed as follows.

1. B production cross section with respect to Run 1:

Run 2 is characterised by a higher centre of mass energy with respect to Run 1. The in-

crease in energy, 8 to 13 TeV, corresponds to an increase of approximately ×1.7 in B pro-

duction cross-section, according to studies performed using FONLL [208]. This factor is

assumed for the first term of formula 13.1.

2. Expected collected luminosity for the selected triggers in Run 2:

an integrated luminosity of 130 fb−1 is assumed for the full Run 2 data taking period.

These studies were performed at the beginning of 2018, when Run 2 data were still being

taken. Similar trigger conditions as the ones present in 2017 are projected to 2018. The ra-

tio of integrated luminosities between the Run 2 assumption and Run 1 (130fb−1/25fb−1 =
5.2) is therefore used in the second term of formula 13.1. These assumptions are, a pos-

teriori, found conservative: the total integrated luminosity for the full Run 2 is 139 fb−1 [194]

and, when allowed by the pile-up conditions, on top of the triggers projected from 2017,

events from additional low dimuon pT triggers have been collected. These additional

effects are not considered in these studies.

3. Efficiency of the difference in dimuon triggers available in Run 2 with respect to Run

1:

this is evaluated exploiting B 0
s → µ+ µ− MC simulations for the Run 2 data-taking con-

ditions. The computation of the relative Run 2 / Run 1 trigger efficiency is based on fully

reconstructed simulated signal events, after the application of the same preselection as

the Run 1 analysis. All trigger efficiencies are normalised with respect to the trigger with

the lowest muon pT thresholds available in Run 1; such trigger has pT thresholds of 4 GeV

for both muons, similar to the ones described in section 7.1.

The dataset employed in the Run 1 analysis was based on an admixture of different dimuon
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triggers, as described in appendix A, in order to maximise the signal statistics. The com-

bination2 of several dimuon triggers is therefore considered also for the full Run 2 ana-

lysis. The third term of formula 13.1 is evaluated taking the ratio of the combined trigger

efficiencies of Run 2 and Run 1, weighted according to their prescales. This term amounts

to ∼ 0.81.

The evaluation of formula 13.1 based on these ingredients yields a 7-fold increase with respect

to the Run 1 statistics.

13.1.4 HL-LHC yield extrapolation

The HL-LHC B 0
(s) → µ+ µ− signal yields is extrapolated as follows:

1. B production cross section with respect to Run 1:

any further increase in the centre of mass energy relative to Run 2 is neglected, conser-

vatively assuming the same ×1.7 factor as for the Run 2 extrapolation.

2. Expected collected luminosity for the selected triggers at HL-LHC:

an integrated luminosity of ∼ 3 ab−1 (3000 fb−1) is assumed to be collected during the

whole HL-LHC data taking period (section 2.3);

3. Efficiency of the di-muon triggers available at HL-LHC with respect to the Run 1 trig-

gers:

the efficiency of the HL-LHC triggers is evaluated exploiting the same simulations used

in sub-section 13.1.3. The pile-up conditions in these simulations differ from what is

expected for HL-LHC, but this is secondary when assessing truth-matched signal effi-

ciencies. Depending on the delivered instantaneous luminosity, three possible dimuon

triggers are foreseen [122]. Similar topological selections as those employed in Run 2

are assumed, with di-muon transverse momentum thresholds (pµ1

T ,pµ2

T ): (6GeV,6GeV),

(6GeV,10GeV) and (10GeV,10GeV). A combination of these three triggers is the most

likely option for the full HL-LHC B 0
(s) → µ+ µ− ATLAS analysis, but an estimation of such

a combination would require further assumptions on the instantaneous luminosity pro-

file delivered by HL-LHC. Instead, three scenarios are considered, each characterised by

the usage of only one of these triggers. The resulting trigger efficiencies relative to the

Run 1 trigger combination are 0.37, 0.28 and 0.07, respectively for the three sets of muon

pT thresholds.

2 The Run 2 data taking period can be divided into two main parts, separated by the introduction of the topolo-
gical trigger processor L1Topo (introduced in section 2.2.6). Three dimuon triggers are considered for the first
main part (2015/16): the two triggers employed in the ATLAS 2015/16 B0

(s) → µ+ µ− analysis, described in sec-
tion 7.1, and a dimuon trigger with higher muon pT thresholds (pT > 6 GeV on both muons), which was basically
unprescaled. These three dimuon triggers were deactivated or heavily prescaled in 2017, in favour of their coun-

terparts with additional ∆R =
√

(∆φ)2 + (∆η)2 between the muons and dimuon invariant mass requirements at
the L1 stage of the ATLAS trigger. Such dimuon triggers present a lower signal efficiency, due to the additional
trigger selection, but also a much higher background rejection, which allows to maintain them active at higher
PU conditions.
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Depending on the di-muon trigger scenario chosen, three Working Points (WPs) are evaluated:

• Conservative: ×15 Run 1 statistics (trigger thresholds (10GeV,10GeV));

• Intermediate: ×60 Run 1 statistics (trigger thresholds (6GeV,10GeV));

• High-yield: ×75 Run 1 statistics (trigger thresholds (6GeV,6GeV)).

13.1.5 Results

The preceding sub-sections have provided a approach for the evaluation of the expected stat-

istics (sub-section 13.1.1) and discussed all the ingredients needed to implement such a pro-

cedure (sub-sections 13.1.3 and 13.1.4 respectively for Run 2 and HL-LHC). The results of the

projections are therefore discussed in this section.

The Run 2 projections are evaluated first and compared to the confidence contours evaluated

for the Run 1 statistics (sub-section 13.1.5.1). As introduced in sub-section 13.1.1, the Run 2

confidence regions are also compared to the ones obtained with likelihood contours. This com-

parison shows that the likelihood presents a gaussian behaviour close to its maximum, which

becomes progressively less adequate with increasing ∆ logL , but is deemed consistent within

sample fluctuations for the lowest ∆ logL value.

This justifies the usage of the likelihood contours approach for the HL-LHC projections (sub-

section 13.1.5.2). In this extrapolation three sets of contours are obtained, one for each WP

defined in sub-section 13.1.4. On top of the two-dimensional contours, also the one-dimensional

projected uncertainties on B(B 0
(s) → µ+ µ−) are evaluated for every extrapolation performed.

13.1.5.1 Run 2 projections

The confidence contours of the combined measurement of B(B 0
s → µ+ µ−) and B(B 0

d → µ+ µ−)

for the Run 2 projections are first extracted using the Neyman belt construction. Figure 13.3

shows the result of the projections for the Run 2 expected statistics. The 68.3%, 95.5% and 99.7%

confidence level Neyman-based contours are compared with the contours for the Run 1 statist-

ics in figure 13.3(a), both sets of contours are centred on the SM prediction of B(B 0
(s) → µ+ µ−)

and include systematic uncertainties. The effects of the systematic uncertainties on the projec-

ted Run 2 analysis are shown in figure 13.3(b), where the same Run 2 68.3%, 95.5% and 99.7%

confidence level Neyman-based contours are compared with their counterpart built without

considering the systematic uncertainties.

As anticipated in sub-section 13.1.1, the Neyman-based confidence contours can be compared

with the likelihood contours in order to the test the asymptotic behaviour of the likelihood. This

comparison is shown in figure 13.4, where the 68.3%, 95.5% and 99.7% confidence level Ney-

man contours are drawn together with the likelihood contours obtained taking −2∆ logL =
2.3,6.2,11.8, which correspond to confidence levels of 68.3%, 95.5% and 99.7% in gaussian ap-

proximation. Both sets of contours include statistical and systematic uncertainties. The expec-

ted variance on the likelihood contours is estimated to be at the level of ∼ 5%, therefore the
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Figure 13.3: Comparison of 68.3% (solid), 95.5% (dashed) and 99.7% (dotted) stat.+syst. confidence level contours
for the Run 2 expected statistics with the same confidence regions evaluated for the Run 1 statistics (fig-
ure 13.3(a)) and for the Run 2 statistics without including systematic uncertainties (figure 13.3(b)). All
confidence regions are obtained with the 2D Neyman belt construction based on toy-MC experiments
and the Run 1 analysis likelihood. The Run 2 toy-MCs reproduce the expected signal mass resolution
and have been scaled with respect to their Run 1 counterpart according to the triggers available in Run
2, the different integrated luminosity and the different B production cross section. The black point
shows the SM theoretical prediction and its uncertainty [54].

consistency for the 68.3% confidence level contours is good, but it degrades with increasing

∆ logL (with inconsistencies at the level of 15-20%). This effect is probably due to the pro-

gressively less adequate gaussian approximation of the likelihood maximum.

As introduced in sub-section 13.1.1, this comparison represents a crucial point for these stud-

ies. The 68% contour, most relevant in the understanding of the extrapolated ATLAS experi-

mental capabilities is already well approximated by −2∆ logL = 2.3 at the level of Run 2 stat-

istics. As for the 95.5% and 99.7% contours, their approximation with likelihood contours is

expected to improve in the extrapolations at higher integrated luminosities. In light of this, the

HL-LHC projections are performed using constant −2∆ logL contours.

13.1.5.2 HL-LHC projections

For each of the three HL-LHC working points discussed in sub-section 13.1.4 the 68.3%, 95.5%

and 99.7% confidence level contours are obtained taking∆ logL = 2.3,6.2,11.8. Both statistical

only and statistical + systematic uncertainties are considered. Figure 13.5 shows the resulting

sets of contours. In particular figures 13.5(a), 13.5(b) and 13.5(c) show respectively the Conser-

vative, Intermediate and High-yield WPs, corresponding to the dimuon trigger selections with

muon pT thresholds of (10GeV,10GeV), (6GeV,10GeV) and (6GeV,6GeV).

Table 13.1 shows a comparison of the profiled likelihood ratio uncertainties separately for the

B(B 0
s → µ+ µ−) and B(B 0

d → µ+ µ−) measurements at the various data taking points dis-

cussed in the previous paragraphs. Such uncertainties are not obtained from the two-dimensional
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Figure 13.4: Comparison of the 68.3% (solid), 95.5% (dashed) and 99.7% (dotted) stat.+syst. confidence regions for
the extrapolated Run 2 statistics. Red contours are obtained exploiting the 2D Neyman belt construc-
tion based on toy-MC experiments, while blue contours are drawn at constant ∆ logL in the gaussian
maximum approximation. The Run 2 toy-MCs reproduce the expected signal mass resolution and have
been scaled with respect to their Run 1 counterpart according to the triggers available in Run 2, the
different integrated luminosity and the different B production cross section. The black point shows the
SM theoretical prediction and its uncertainty [54].

likelihood contours shown before, but rather employing the one dimensional likelihood inter-

vals (section 6.3.2).

Table 13.1: Projected uncertainty on B(B0
s → µ+ µ−) and B(B0

d → µ+ µ−) as reported by the fitting procedure
applied to the toy simulations. The results are centred on the SM theoretical prediction [54]. For each
extrapolation performed, statistical and statistical + systematic uncertainties are reported in units of
10−10. The table reports a sufficient number of significant digits to highlight the difference between
statistical+systematics and systematics-only uncertainties.

B(B 0
s → µ+ µ−) B(B 0

d → µ+ µ−)

stat [10−10] stat + syst [10−10] stat [10−10] stat + syst [10−10]

Run 2 7.0 8.3 1.42 1.43

HL-LHC: Conservative 3.2 5.5 0.53 0.54

HL-LHC: Intermediate 1.9 4.7 0.30 0.31

HL-LHC: High-yield 1.8 4.6 0.27 0.28

13.1.6 Comparison with other analyses

The results shown in the previous sub-section can be compared to the latest B 0
(s) → µ+ µ−

experimental results, including the one discussed in this thesis, and with the projections per-

formed by the other LHC experiments.

Without considering the ATLAS experiment, as the comparison with its most recent analysis

(described in this thesis) will be performed later in this sub-section, the most recent exper-
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Figure 13.5: The three plots show the comparison of 68.3% (solid), 95.5% (dashed) and 99.7% (dotted) confid-
ence level profiled likelihood ratio contours for the three Working Points (WPs) discussed in sub-
section 13.1.4. Red contours do not include the systematic uncertainties, which are then included in
the blue ellipsoids. The black points shows the SM theoretical prediction and its uncertainty [54]. Fig-
ure 13.5(a) corresponds to the conservative WP, figure 13.5(b) to the Intermediate WP and figure 13.5(c)
to the High-yield WP.

imental results come from the CMS and LHCb experiments. Such results are the combined

Run 1 measurement of CMS and LHCb [70], which yields B(B 0
s → µ+ µ−) = (2.8+0.7

−0.6)× 10−9

(∼ 23% relative uncertainty) and B(B 0
d → µ+ µ−) = (3.9+1.6

−1.4)× 10−10 (∼ 38% relative uncer-

tainty), and the latest LHCb result based on 4.4fb−1 of integrated luminosity [209], which yields

B(B 0
s → µ+ µ−) = (3.0±0.6+0.3

−0.2)×10−9 (∼ 22% relative uncertainty). The projections performed

in this chapter lead to an estimated relative uncertainty of 23 % and 13 % on B(B 0
s → µ+ µ−)

and 135 % and 29 % and B(B 0
d → µ+ µ−), considering respectively the Run 2 and HL-LHC

intermediate WP extrapolations.

The expected sensitivity of the ATLAS Run 2 analysis appears to be the same as the two ana-

lyses mentioned above. Similarly, the confidence intervals obtained with the 2015/16 ATLAS

B 0
(s) → µ+ µ− analysis discussed in this thesis appear to be comparable to the Run 2 ATLAS

projection.

Considering the confidence interval on B 0
s → µ+ µ−, there is in fact an apparent inconsistency

between the projections and the result of the analysis presented in the previous chapters. The

result of the analysis, combined with the one performed on the Run 1 dataset, yields a confid-
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ence interval of B(B 0
s → µ+ µ−) = (2.8+0.8

−0.7)× 10−9, comparable (if not smaller) with the one

projected considering the full Run 2 statistics. The increment in statistics due to the combin-

ation with the Run 1 analysis is not enough to motivate such improvement. In fact, the Run

2 dataset is estimated to present a 7-fold increase in statistics compared to Run 1, while the

combined 2015/16 + Run 1 dataset can be estimated to have only about three times the Run 1

statistics (two-fold increase for the 2015/16 dataset, section 5.1, and the actual Run 1 dataset).

This apparent inconsistency is explained with the conservative assumptions made in the pro-

cedure followed for the projections (sub-section 13.1.1). Only two main effects are considered

in the projections, the increase in available statistics and the changes in dimuon mass resolu-

tion, while additional effects are neglected. Such effects include the improvements in the decay

length resolution, due to the addition of the IBL in the ATLAS ID, which allow a better discrim-

ination of the background. Additionally, given the higher trigger thresholds employed in Run 2

and that will be employed at HL-LHC with respect to Run 1 imply, several discriminating vari-

ables are expected to improve their discriminating power. Such effects can already be noticed

comparing the performance of the Run 1 and 2015/16 analyses, as done in table 12.2 in sec-

tion 12.1.1. The performance of the analyses is quantified with the value of the figure of merit

S/
p

S +B in the three higher BDT bins, where S and B are the expected signal yield and the in-

terpolated background yield in the signal region respectively. The performance of the 2015/16

analysis is significantly higher than the Run 1’s, while, according to the assumptions made for

the projections (same S/B ratio), the value of the figure of merit should have been only a factor

×p2 higher. In conclusion, the apparent inconsistency between the projections and the result

of the combined 2015/16 and Run 1 analyses is an effect of the conservative assumptions made

in sub-section 13.1.1.

HL-LHC projections have been performed also by CMS [210] and LHCb [211], extrapolating

the performance of the B 0
(s) → µ+ µ− analysis.

The CMS projections are based on an extrapolation of the Run 1 analysis performance to the

HL-LHC scenario. The trigger efficiency is expected to be comparable to the one in Run 2 [212],

and the signal selection efficiency is not expected to be reduced by the higher pile-up condi-

tions. Phase-II upgrades of the CMS detector are also foreseen [212]: the CMS HL-LHC inner

tracker will allow a 40-50% improvement relative to Run 2 on the di-muon mass resolution, res-

ulting in an improved separation of the B 0
s and B 0

d signals.

The LHCb experiment is already highly optimised for the detection of B 0
(s) → µ+ µ− decays;

the foreseen LHCb Phase-II upgrade will insure improvements to the tracking system and to

the muon detector shielding, allowing it to maintain a high muon reconstruction purity and

efficiency.

The treatment of the systematic uncertainties is slightly different in the projections of the three

experiments. The ATLAS projections assume conservatively that the external systematics will

be at the same level as the ones in the Run 1 analysis [73]. The CMS and LHCb projections

assume a reduction of such systematics, based on assumptions about additional Belle II inputs
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and improvements in branching fraction measurements.

Table 13.2, obtained from [3], summarises the projected statistical and systematic uncertainties

Table 13.2: Projected ATLAS, CMS and LHCb uncertainty on B(B0
s → µ+ µ−) and B(B0

d → µ+ µ−). The HL-LHC

scenario corresponds to an integrated luminosity of 300 fb−1 for LHCb and 3 ab−1 for ATLAS and CMS.
For each extrapolation the total (statistical+systematic) uncertainties are reported. The SM prediction
for the two branching fractions [54] is also shown for comparison. Table obtained from [3]

.

B(B 0
s → µ+ µ−) B(B 0

d → µ+ µ−)

Experiment Scenario stat + syst % stat + syst %

LHCb 23 fb−1, Run 3 8.2 33

LHCb 300 fb−1, HL-LHC 4.4 9.4

CMS 300 fb−1, Run 3 12 46

CMS 3 ab−1, HL-LHC 7 16

ATLAS 130 fb−1, Run 2 22.7 135

ATLAS 3 ab−1, Conservative HL-LHC 15.1 51

ATLAS 3 ab−1, Intermediate HL-LHC 12.9 29

ATLAS 3 ab−1, High-Yield HL-LHC 12.6 26

SM 6.4 8.5

for the three experiments, together with the theoretical uncertainty on the SM predictions [54]

for comparison. Similarly figure 13.6 [3] shows the expected 1 sigma contours for the HL-LHC

ATLAS intermediate WP, CMS and LHCb, together with the branching fraction predictions from

a particular class of BSM models [213].

The expected performance of the ATLAS B 0
(s) → µ+ µ− analysis seems to be much lower com-

pared to the others. This effect is due to three main reasons. The trigger thresholds that ATLAS

is planning to employ at HL-LHC are higher than the ones planned by the other two experi-

ments. This largely affects the signal statistics that the experiment is going to collect. Addi-

tionally the ATLAS dimuon mass resolution is lower compared to CMS (as shown later in sec-

tion 13.2) and LHCb; this affects negatively the B 0
s - B 0

d separation and the background discrim-

inating power of the B 0
(s) → µ+ µ− analysis. Finally, as already pointed out in the comparison

with the 2015/16 ATLAS B 0
(s) → µ+ µ− analysis, the assumptions made in the extrapolation

procedure (sub-section 13.1.1) are extremely conservative. This already affects the ATLAS Run

2 projections, which show comparable expected confidence intervals to the ones found for the

combined Run 1 + 2015/16 result. Possible further improvements can be foreseen at HL-LHC,

thanks to improvements in the discriminating variables due to the ITk upgrade.

Table 13.2 and figure 13.6 show that the projected HL-LHC experimental sensitivity is close

to the current theoretical SM uncertainty. The small uncertainty on the measurements will al-

low one not only to discriminate between SM and BSM models, but also to discriminate within

the parameter space of those BSM models, in case of inconsistency with the SM.
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Figure 13.6: B(B0
s → µ+ µ−) and B(B0

d → µ+ µ−) branching ratios as computed using new sources of Flavour-
Changing-Neutral-Current (FCNC), as discussed in [213]. The green points are the subset consistent
with other measurements. The black cross point is the SM prediction, while the coloured contours
show the expected 1-sigma HL-LHC sensitivities of ATLAS (Intermediate WP), CMS, and LHCb.

13.2 ATLAS-CMS B 0
(s) → µ+ µ− analyses comparison

The overview of the B 0
(s) → µ+ µ− experimental state of the art (section 1.5) and the compar-

ison of the projections for the B 0
(s) → µ+ µ− analyses performed by the LHC experiments (sec-

tion 13.1.6) show that the B 0
(s) → µ+ µ− analyses carried out by the LHC experiments present

very different performances.

The LHCb experiment is highly optimised for the detection and analysis of heavy flavour phys-

ics events, therefore it is expected to have a higher performance compared to e. g. ATLAS and

CMS. However, despite ATLAS and CMS being similar general-purpose detectors, the CMS

B 0
(s) → µ+ µ− analysis performance seems to be much higher compared to the ATLAS one.

This section is dedicated to the studies performed to understand the main differences between

the ATLAS and CMS B 0
(s) → µ+ µ− analyses sensitivities, aiming at potential improvements to

the ATLAS analysis strategy. The main idea guiding these studies is to emulate the result of the

CMS Run 1 B 0
(s) → µ+ µ− analysis [71] exploiting the same tools used in the Run 2 and HL-LHC

projections (section 13.1). The ATLAS toy-MCs are modified according to the characteristics of

the CMS analysis and the resulting performance is gauged with the two-dimensional confid-

ence regions in the B(B 0
s → µ+ µ−)– B(B 0

d → µ+ µ−) plane, obtained with the Neyman belt

construction. The confidence regions highlight the prominent role of two key aspects of the

CMS B 0
(s) → µ+ µ− analysis (dimuon mass resolution and background discrimination), as they
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are found to be reasonably similar to the ones published in CMS Run 1 B 0
(s) → µ+ µ− analysis.

The procedure followed to perform the analysis performance comparison (sub-section 13.2.1)

is followed by a discussion of the results obtained (sub-section 13.2.2). The conclusions of these

studies are then discussed in sub-section 13.2.3.

13.2.1 Comparison procedure

The procedure followed to compare the ATLAS and CMS Run 1 B 0
(s) → µ+ µ− analyses per-

formance is based on the tools exploited for the Run 2 and HL-LHC projections of the ATLAS

analysis (section 13.1). Two aspects believed to be the possible source of the difference in per-

formance are implemented as modifications to the ATLAS toy-simulations, in order to repro-

duce the CMS analysis result. These two aspects are the different dimuon mass resolution and

background discrimination of the CMS analysis with respect to the ATLAS counterpart. The

resulting performance of the analyses is gauged with the two-dimensional confidence regions

in the B(B 0
s → µ+ µ−)– B(B 0

d → µ+ µ−) plane. The Neyman belt construction technique (sec-

tions 6.3.3 and 6.3.4) is employed for the evaluation of the confidence regions. Other effects

that could contribute to the difference in performance between the two experiments, such as

the different design of the fit for the extraction of the signal yield, are assumed to be of minor

importance. The CMS fit in fact employs a simultaneous fit on 12 datasets and uses the per-

event mass resolution as a conditional variable, but these features are not considered the main

source of difference between the two analyses. The assumption will be proved correct later in

sub-section 13.2.2.

The CMS dimuon mass resolution for the B 0
(s) → µ+ µ− peaks is obtained from Ref. [71], where

the signal peaks are modelled with Crystal Ball functions [214]. The two CMS Crystal Ball func-

tions are approximated with the same model employed by ATLAS (double gaussians with the

same mean), with a suitable modification of the model RMS. Table 13.3 summarises the para-

Table 13.3: Comparison of the parameters employed to describe the B0
(s) → µ+ µ− invariant mass peaks in the

ATLAS and CMS-like toy-MCs. The four parameters fully describe the double gaussian with the same
mean models employed. The parameters shown for ATLAS are the values actually employed in the Run
1 analysis [73]. The CMS analysis exploits Crystal Ball functions to described the signal peaks [214].
In order to be able to compare the dimuon mass resolution of the two experiments, the Crystal Ball
functions are approximated with the same models employed for ATLAS.

ATLAS PDFs CMS PDFs

B 0
s → µ+ µ− B 0

d → µ+ µ− B 0
s → µ+ µ− B 0

d → µ+ µ−

mean [MeV] 5366 5279 5366 5279

σ1 [MeV] 67.7 64.9 42 42

σ2 [MeV] 142.9 135.5 75 75

fraction 0.86 0.82 0.71 0.71

meters employed in the various PDFs. The resulting width of the models employed to describe

the CMS signal peaks are much smaller compared to the ATLAS ones. In order to consider this
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effect, the widths of the gaussian PDFs employed in the toy-MCs is modified according to the

values listed in table 13.3.

The CMS signal and background yields are taken from Ref. [215] and used in the toy-MC. The

total number of signal events observed by CMS is assumed to be respectively 30 B 0
s → µ+ µ−

and 18 B 0
d → µ+ µ−, compared to an expected yield of the ATLAS Run 1 analysis of 41 B 0

s → µ+ µ−

an 5 B 0
d → µ+ µ− events. The Dnorm term of equation A.1, which encloses the B+ → J/ψK +

yield, the ratio of the efficiency and acceptance for signals and reference channel and the ef-

fect of the trigger prescale factors and integrated luminosities of the signal and normalisation

channels, is modified, so that the observed number of signal events of the CMS experiment

matches the observed branching fractions. The total number of background events generated

in the toy-MCs is modified as well, without modifying either the relative normalisation of the

background PDFs or the structure of the ATLAS Run 1 signal yield extraction fit (described in

section A.4 of appendix A) implemented in the toy-simulations.

In order to factor possible dependencies on the observed branching fraction, the comparison

between the resulting ATLAS and CMS-like confidence regions in the 2D Bplane is performed

assuming in both cases the branching ratio values observed by the CMS experiment.

As shown later in section 13.2.2, the resulting confidence regions obtained with the CMS-like

toys resemble the actual CMS Run 1 result; such confidence region is much smaller compared

to the one obtained with the ATLAS toys. Two additional confidence regions are therefore con-

structed, in order to verify if one of the two modified features of the CMS-like toys is mostly

responsible for the different performance of the ATLAS and CMS analyses. Each region is ob-

tained modifying either the dimuon mass resolution or the background discrimination. This

will finally show that the main feature responsible for the higher CMS performance is its better

dimuon mass resolution, which allows a better B 0
s - B 0

d separation.

All confidence regions discussed in this section are obtained employing the Neyman construc-

tion approach (sections 6.3.3 and 6.3.4), but since these studies were conducted while the Ney-

man construction procedure was under development, the resulting contours differ from the

ones shown in sections 12.1.3 (2015/16 analysis result) and 13.1 (B 0
(s) → µ+ µ− Run 2 and

HL-LHC projections) because of two reasons:

• the smoothing procedures for the acceptance and confidence regions defined in sec-

tion 6.3.4.2 are not included; for this reason the resulting confidence regions present

boundaries that are not-well defined. As shown later in sub-section 13.2.2, this does not

constitute an issue for the 68.3 % coverage regions, which present a defined contour,

while the 95.5 % coverage region shows large fluctuations; the 99.7 % region is not shown

as it presents even bigger fluctuations;

• the procedure for the inclusion of the systematic uncertainties was under development,

therefore the systematic uncertainties are not considered in these studies. Since both

the ATLAS and CMS Run 1 analyses were largely statistically limited, such an effect is not

critically relevant.
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13.2.2 Results

The procedure defined in sub-section 13.2.1 is employed to construct the confidence regions

based on the ATLAS toys and on the CMS-like toys. Both employ the CMS Run 1 B 0
(s) → µ+ µ−

analysis result [71] as the experimentally observed value. Figure 13.7 shows the resulting con-

fidence regions, superimposed to the confidence regions obtained in the CMS Run 1 analysis.

(a) Confidence regions obtained with the ATLAS toys. (b) Confidence regions obtained with the CMS-like
toys.

Figure 13.7: (a): 68.3 % and 95.5 % coverage confidence regions based on the toy-MCs generated with the ATLAS Run
1 analysis likelihood (ATLAS toys). (b): 68.3 % and 95.5 % coverage confidence regions based on the toy-
MCs generated with the same likelihood modifying the dimuon mass resolution and the background
discrimination, according to the CMS Run 1 B0

(s) → µ+ µ− analysis [71] (CMS-like toys). Both sets of
confidence regions are superimposed to the two-dimensional likelihood contours of the CMS analysis
and employ its result as experimentally observed value.

The confidence regions obtained with the ATLAS toys (figure 13.7(a)) show a different beha-

viour compared to the result of the CMS analysis. Basically, in the direction of the bisecting line

of the B(B 0
s → µ+ µ−)– B(B 0

d → µ+ µ−) plane the confidence regions show a similar width,

while in the perpendicular direction the ATLAS region is much larger. This behaviour does not

appear for the confidence regions obtained with the CMS-like toys (figure 13.7(b)), which show

a similar shape as the contours resulting from the CMS analysis. As one can expect the confid-

ence regions do not show an exact overlap with the CMS results, as the procedure employed to

mimic the CMS analysis is only approximated.

The two plots in figure 13.8 clearly show that the two features considered in the CMS-like toys

are responsible for most of the better CMS performance with respect to ATLAS. In order to un-

derstand if one of the two is dominant over the other, two additional sets of confidence regions

are built. One is based on the ATLAS toys, with only the dimuon mass resolution modified ac-

cording to the one found in the CMS analysis, while the second is built considering only the

different background discrimination. The resulting contours, superimposed to the confidence

regions obtained in the CMS Run 1 analysis, are shown in figure 13.8. The behaviour of the

confidence regions resembles the one shown in figure 13.7: the regions based on the toy-MCs
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(a) (b)

Figure 13.8: 68.3 % and 95.5 % coverage confidence regions based on the toy-MCs generated with the ATLAS Run 1
analysis likelihood modifying the background discrimination (figure (a)) or the dimuon mass resolution
(figure (b)) according to the CMS Run 1 B0

(s) → µ+ µ− analysis [71]. Both sets of confidence regions are
superimposed to the two-dimensional likelihood contours of the CMS analysis and employ its result as
experimentally observed value.

modified according to the CMS background discrimination present the same shape as the one

obtained with the ATLAS toys. On the other hand, the regions based on the toy-MCs that only

take into account the different dimuon mass resolution show a behaviour extremely similar to

the CMS result and to the confidence regions shown in figure 13.7(b).

The main contributor to the difference in performance between the ATLAS and CMS B 0
(s) → µ+ µ−

analyses is therefore the higher dimuon mass resolution of the CMS experiment.

13.2.3 Conclusions

A comparison of the performance of the ATLAS and CMS B 0
(s) → µ+ µ− analyses based on the

dataset collected during the LHC Run 1 data taking period has been performed. Since the CMS

analysis shows a higher performance, the reasons for such difference in the two analysis are

investigated.

The possible sources of discrepancy in the performance are narrowed down to two possibilities,

the higher dimuon mass resolution and the different background discrimination of the CMS

analysis. Employing the same technique used for the projections of the ATLAS B 0
(s) → µ+ µ−

analysis performance at Run 2 and HL-LHC (section 13.1), the main source of discrepancy is

found to be the dimuon mass resolution.

Thanks to its high magnetic field the CMS experiment has a dimuon mass resolution for the

B 0
(s) → µ+ µ− peaks which is better compared to the one of the ATLAS detector, as shown in

table 13.3. The corresponding ATLAS analyses are wider, resulting in a large correlation of the

B(B 0
(s) → µ+ µ−) branching fraction and an effective increased background contamination.

This effect is visible in all the ATLAS confidence regions shown in this thesis, e. g. figure A.4
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in appendix A, figures 13.3 and 13.7(a) in this chapter and the results of the analysis on the

2015/16 dataset in chapter 12, which show elliptic shapes. The branching ratio correlation is

less present in the CMS contours, shown in all the plots of this section.

Since the dimuon mass resolution is strictly related to the properties of the detector, improve-

ments in the ATLAS B 0
(s) → µ+ µ− analysis can not overcome this effect, while possible up-

grades of the ATLAS detector can improve the dimuon mass resolution. In fact, as discussed in

section 13.1, the ITk upgrade will allow an improvement in the dimuon mass resolution. Any-

way, a more refined analysis techniques could be used to advance the analysis performance. A

possibility being considered is the modification of the signal extraction fit of the analysis, e. g.

differentiating events according to their dimuon mass resolution or employing per-candidate

mass resolution as a conditional variable in the fit. This would result in a fit where the bins with

low background and low uncertainty on the dimuon mass contribute to reducing the correla-

tion between the two signals.

Due to time constraints, studies on how to improve the fitting procedure of the 2015/16 analysis

were not pursued, although studies are ongoing exploiting the full Run 2 ATLAS dataset.



CONCLUSIONS

The core of this thesis is the first ATLAS Run 2 search for the rare decays of B 0
s and B 0

d mesons

into oppositely charged muons in pp collisions at
p

s = 13 TeV delivered by the LHC. The data-

set was collected during 2015 and 2016 and corresponds to a total integrated luminosity of 36.2

fb−1, for an effective integrated luminosity of 26.3 fb−1.

The branching fractions of the B 0
(s) → µ+ µ− decays are evaluated relative to the reference

channel B+ → J/ψK +, allowing a reduction of the systematic uncertainties. The efficiency of

the selection on signal and reference channels are evaluated on simulations corrected with

data-driven techniques, while the reference channel yield is evaluated with a simultaneous

fit on data and MC. Several background sources can affect the signal topology. In particular,

events characterised by uncorrelated muons from the bb̄ decay chain constitute the largest

background. A MVA selection, based on a BDT algorithm, is optimised to separate B 0
(s) candid-

ates from this background from the signal. Events with B → hh′ decays where both hadrons are

mis-identified as muons constitute an irreducible background, as they present the same topo-

logy as the B 0
d → µ+ µ− signal. Standard ATLAS muon-id requirements are employed to reduce

the mis-identification probability of hadrons to muons of a factor 0.39, while still maintaining

a good efficiency on muons.

The B 0
(s) → µ+ µ− yields are extracted simultaneously with an unbinned extended maximum

likelihood fit on four independent data categories, designed using the BDT response to have

the same signal efficiency.

The Neyman belt exact frequentist approach is employed to extract the final results, obtaining

a 68.3% confidence interval on the B 0
s → µ+ µ− branching fraction of (3.2+1.1

−1.0)×10−9 and a 95%

CL upper limit of 4.3×10−10 on B(B 0
d → µ+ µ−).

The likelihood of this analysis is combined with the likelihood of the previous ATLAS B 0
(s) → µ+ µ−

analysis performed on the full Run 1 dataset. The Neyman belt approach provides B(B 0
s → µ+ µ−) =

(2.8+0.8
−0.7)×10−9, which is the first ATLAS evidence of the B 0

s → µ+ µ− process with a signific-

ance of 4.7 σ, and B(B 0
d → µ+ µ−) < 2.1×10−10 at 95.5% CL, which is, as of today, the most

stringent upper limit on B(B 0
d → µ+ µ−). All the results presented are compatible with the SM

prediction and with the current available experimental results.

Figure 13.9 shows the history of the B 0
(s) → µ+ µ− branching fraction measurements, already

shown in chapter 1, but modified to contain also the result of the analysis presented in this
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thesis.

Since no major deviations from the SM prediction are found, NP effects on B(B 0
(s) → µ+ µ−),

if they exist, are small. The ATLAS analysis, as well as the analyses performed by other experi-

ments, is statistically limited, therefore the new data provided by the LHC collisions will allow

an improvement in the experimental precision on both decays. Therefore, a study of the sens-

itivity of the ATLAS B 0
(s) → µ+ µ− analysis based on the statistics collected in Run 2 and to be

collected at HL-LHC is also presented. Projections on the analysis sensitivity are performed

and compared with the ones from the other LHC experiments.
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Figure 13.9: History of the limits and measurements of the B0
(s) → µ+ µ− branching fractions across the years [69]

modified adding the result of the ATLAS B0
(s) → µ+ µ− analysis performed on the dataset collected

during 2015 and 2016 and combined with the result of the Run 1 analysis.



ATHE ATLAS RUN 1 ANALYSIS

The ATLAS B 0
(s) → µ+ µ− analysis performed on the full Run 1 dataset is particularly relevant

for the work developed in this thesis, in fact, a large part of the 2015/16 B 0
(s) → µ+ µ− analysis

strategy is derived from it. In addition, the author had a role in the evaluation on the systematic

uncertainties arising from the fitting procedure.

A.1 Analysis overview

The ATLAS Run 1 B 0
(s) → µ+ µ− analysis [73] employs a dataset made of

p
s = 7 TeV pp and

p
s =

8 TeV pp collision data taken with stable LHC beams in 2011 and 2012 by the ATLAS experiment,

for a total integrated luminosity of about 25 fb−1.

The dimuon invariant mass region between 5166 and 5526 MeV, where the signal peaks fall, is

kept blinded until the procedures for event selection and the details of signal yield extraction

are completely defined.

The B 0
(s) → µ+ µ− branching fractions are extracted relative to a reference decay mode B+ →

J/ψ(→ µ+µ−)K +. The branching fraction calculation is performed according to the following

formula:

B(B 0
(s) → µ+ µ−) = fu

fs(d)
×B(B+ → J/ψK +)×B(J/ψ→µ+µ−)×NB 0

d (B 0
s ) ×

1

Dnorm
, (A.1)

where fu/ fs(d) is the hadronisation probability of a b-quark into B+ and B 0
s (B 0

d ), B(B+ → J/ψK +)×
B(J/ψ→µ+µ−) is the branching fraction of the reference channel B(B+ → J/ψ(µ+µ−)K +) and

NB 0
d (B 0

s ) is the number of signal events. The first two quantities are not measured in the analysis,

but are obtained from recent measurements. The normalisation term Dnorm is defined as:

Dnorm =∑
k

N k
J/ψK +αk

(
εµ+µ−

εJ/ψK +

)
k

, (A.2)

where the k index runs over four mutually exclusive data samples, defined with different trig-

ger selections and data-taking periods. The N k
J/ψK + term refers to the reference channel yield,

(εµ+µ−/εJ/ψK +)k is the ratio of the efficiency and acceptance for signals and reference channel

and αk takes into account the different trigger prescale factors and integrated luminosities in

the signal and normalisation channels.
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The various triggers employed require two muons and a full track reconstruction of the can-

didates, together with a loose cut on the dimuon invariant mass 4 < mµµ < 8.5 GeV, while they

differ on the transverse momentum and pseudorapidity cuts on the muons. The three trigger

categories for the 2012 dataset are characterised by different prescale factors, therefore their

combination is used to maximise the available statistics. They are:

• T1: “higher threshold” trigger, with dimuon pT threshold of 6 and 4 GeV;

• T2: “barrel” trigger, with pT > 4 GeV for both muons and at least one of them with |ηµ| <
1.05. In addition, the T1 category can not be satisfied;

• T3: “basic” trigger, with pT > 4 GeV for both muons. The categories T1 and T2 can not be

satisfied.

A fourth category is defined for events from the 2011 dataset. The trigger employed is char-

acterised by muon pT thresholds of 4 GeV. This category does not present any prescale. The

triggers employed to collect the reference channel dataset have the same requirements, but a

dimuon invariant mass cut of 2.5 < mµµ < 4.3 GeV, tuned on the J/ψ mass.

Several simulated samples are employed in the analysis. These MCs present the same proper-

ties as the ones listed in table 7.1, but a lower amount of events; a similar reweighting procedure

as the one presented in section 7.6 is applied to all the MC samples.

A.2 Background reduction

After the offline reconstruction a preliminary selection is applied to the candidates. This se-

lection uses the same cuts as the ones shown in table 7.2, except for the muon pT thresholds,

which are both set to 4 GeV.

The main backgrounds that affect the analysis can be divided into three categories.

• Continuum background, which is the dominant background, is due to pairs of uncor-

related muons. This background is highly reduced with the application of a MVA based

selection; specifically, a BDT, named c-BDT is employed. It is based on 15 variables, the

same as the ones listed in table 8.1, and it is trained and tested on the bb → µ+µ−X and

B 0
s → µ+ µ− MCs .

• Partially reconstructed background, composed of several topologies. Same-side back-

ground, from decay cascades like b → cµ−ν → s(d)µ−µ+νν̄, same-vertex background,

from B decays containing a muon pair and additional particles, Bc background, mostly

due to Bc → J/ψ(µµ)µν events and semileptonic background, due to semileptonic b-

hadron decays where the final-state hadron is mis-identified as muon. Figure A.1(a)

shows the dimuon mass distribution of these backgrounds obtained from simulations.
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• Peaking Background, due to B → hh′ decays with both hadrons mis-identified as muons.

It populates the signal region below the B 0
d peak. Figure A.1(b) shows the invariant mass

distribution for this background obtained from simulation.
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Figure A.1: A.1(a) Dimuon mass distribution for the partially reconstructed background, from simulation, before the
final selection against continuum is applied but after all other requirements. The different components
are shown as stacked histograms, normalised according to world-averaged measured branching frac-
tions. The SM expectation for the B0

s → µ+ µ− signal is also shown for comparison (non-stacked). Con-
tinuum background is not included here. A.1(b) Invariant mass distribution of the peaking background
components B → hh′, after the complete signal selection is applied. In both plots the distributions are
normalised to the expected yield for the integrated luminosity of 25fb−1. Figures taken from [73].

In order to reduce the background contribution from hadrons mis-identified as muons, an ad-

ditional MVA selection is employed. Such selection uses a BDT, named fake-BDT, based on

eight input variables, listed in table A.1. The usage of the fake-BDT allows a reduction of the

Table A.1: Description of the eight variables used in the discrimination between signal muons and those from had-
ron decays in flight and punch-through. Table taken from [73].

1. Absolute value of the track rapidity measured in the ID.

2. Ratio q/p (charge over momentum) measured in the MS.

3. Scattering curvature significance: maximum variation of the track
curvature between adjacent layers of the ID.

4. χ2 of the track reconstruction in the MS.

5. Number of hits used to reconstruct the track in the MS.

6. Ratio of the values of q/p measured in the ID and in the MS, corrected
for the average energy loss in the calorimeter.

7. χ2 of the match between the tracks reconstructed in the ID and MS.

8. Energy deposited in the calorimeters along the muon trajectory ob-
tained by combining ID and MS tracks.

muon mis-identification probability by a factor 0.37, leading to a number of expected peaking

background events in the signal region of 1.0±0.4.
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A.3 Reference channel

The reference channel yield and the efficiency ratio terms in equation A.1 are evaluated separ-

ately in each trigger category.

A.3.1 Reference channel yield

The reference channel yield is extracted with an unbinned extended maximum likelihood fit

on the J/ψK + mass distribution, similar to the one described in section 10.1. All the yields are

extracted from the fit to data, while the shape parameters are determined from a simultaneous

fit to data and MC samples. The fit models and the systematic uncertainties considered have

already been described in sections 10.1.2 and 10.1.3.

Figure A.2 shows the fit performed on the T1 category, while table A.2 summarises the result of

the fits on the four categories.
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Figure A.2: J/ψK+ invariant mass distribution for all B+ candidates in the T1 trigger category in 2012 data in lin-
ear A.2(a) and logarithmic A.2(b) scale. The result of the fit is overlaid. The insets at the bottom of the
plots show the bin-by-bin pulls for the fits, where the pull is defined as the difference between the data
point and the value obtained from the fit function, divided by the error from the fit. Figure obtained
from [73].

Table A.2: Results of the fits to the events reconstructed as B+ → J/ψK+ in each trigger and data category. Uncer-
tainties are statistical and systematic, respectively. Table obtained from [73].

Category NJ/ψK + NJ/ψπ+

T1 46860±290±280 1420±230±440

T2 5200±84±100 180±51±89

T3 2512±91±42 85±77±30

2011 95900±420±1100 3000±340±1140
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B+ → J/ψπ+/ B+ → J/ψK + ratio measurement

In addition to the B+ → J/ψK + yield, the fits on the J/ψK + mass distribution are also exploited

to extract the branching fraction ratio between B+ → J/ψπ+ and B+ → J/ψK +. The meas-

urement is performed separately in the four trigger categories and combined into an error-

weighted mean ρπ/K .

Systematic uncertainties are considered in the evaluation of ρπ/K . Several systematic sources

cancel in the measurement of this ratio, while residual systematic uncertainties arise from the

K −/K +, π−/π+ and K +/π+ relative efficiencies.

The final result on the ρπ/K term is:

ρπ/K = B(B+ → J/ψπ+)

B(B+ → J/ψK +)
= 0.035±0.003±0.012, (A.3)

where the first error is statistical and the second is systematic. The result is in good agreement

with the current world average [11] of (3.84±0.16)%.

A.3.2 Evaluation of the B+ → J/ψK + to B 0
(s) → µ+ µ− efficiency ratio

The evaluation of the efficiency and acceptance ratios that appear in equation A.1 follows the

same steps of the one described in section 10.2.

Table A.3 shows the values of the efficiency and acceptance ratios for the four trigger categories,

together with their statistical and systematic uncertainties. The same efficiency ratio can be

used for B 0
s → µ+ µ− and B 0

d → µ+ µ−, as they are proven to agree within the MC statistical

uncertainty of ±0.5%.

A correction for the B 0
s → µ+ µ− efficiency ratio is needed due to the width difference ∆Γs

between the two B 0
s mass eigenstates. This is the same correction described in section 10.2.1

and its effect is found to modify the B 0
s → µ+ µ− efficiency by +4%.

Table A.3: Values of the efficiency ratios εJ/ψK +/εµ+µ− for the 2012 trigger categories and the 2011 sample, and
their relative contributions to Dnorm (Eq. A.1). The first uncertainty is statistical and the second system-
atic. The systematic component includes the uncertainties from the MC reweighting and from data–MC
discrepancies. The correction due to the B0

s effective lifetime value is not applied to the numbers shown.
Table obtained from [73].

Category εJ/ψK +/εµ+µ− Relative contribution to Dnorm

T1 0.180±0.001±0.009 68.3%

T2 0.226±0.004±0.014 6.0%

T3 0.189±0.005±0.022 3.5%

2011 0.156±0.002±0.009 22.2%
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A.4 Signal yield extraction

The signal yield is extracted with a simultaneous extended unbinned maximum likelihood fit

on the mass distribution of three datasets defined taking three intervals in the c-BDT output:

0.240-0.346, 0.346-0.446 and 0.446-1. Each interval is designed to have a signal efficiency of

18% and in each bin the four trigger categories are merged.

The following models and constraints are used in the fit, where the shape parameters and nor-

malisations are, unless explicitly said, extracted from data.

• B 0
(s) → µ+ µ− PDFs: a superposition of two gaussians is used to describe the mass dis-

tribution of the signals. The parameters are extracted from MC simulation, and they are

taken to be uncorrelated with the c-BDT output.

• B → hh′ background PDF: the mass distribution of the peaking background is similar

to the B 0
d signal, as shown in figure A.1(b). The same double gaussian model is there-

fore used, with fixed shape parameters obtained from simulations and a normalisation

of 1.0±0.4 events, as introduced in section A.2. As for the signal, the B → hh′ contribution

is equally distributed among the three c-BDT intervals.

• Continuum background PDF: the dependence of this background on the dimuon mass is

described with a Chebychev first order polynomial. The slope parameter is independent

in the three bins but subjected to a loose gaussian constraint within ±40% between the

first and second interval, and ±80% between the first and the third.

• PRD background PDF: the dependence of this background on the dimuon mass is de-

scribed with an exponential. The same slope parameter is used in the three c-BDT bins.

A.4.1 Systematic uncertainties in the fit

Two sets of systematic uncertainties are included in the fit: uncertainties due to the signal effi-

ciency in the three c-BDT intervals and uncertainties due to the fitting procedure.

The former is obtained as explained in section 10.2.3, values of ±0.026, ±0.010, ±0.023 are

found respectively in the first, second and third c-BDT bin. Gaussian terms are included in

the fitting procedure in order to describe these uncertainties. Care is taken in constraining the

sum of the efficiencies in the three intervals to 1, since the uncertainty on the c-BDT selection

is already included in the efficiency ratio term.

The systematic uncertainties due to the fitting procedure are evaluated with toy-MC experi-

ments. Variations in the description of the components of the fit are considered in the gen-

eration of the toy-MC, and the generated sample is fitted with the nominal fit configuration.

The corresponding variations in the number of fitted signal events with respect to the toy-MC

study performed with the nominal fit configuration used in both generation and fit are taken

as systematic uncertainties.
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The normalisation and shape parameters of the different components in the toy-MC experi-

ments are set to what extracted from the mass sidebands of the signal region in data or from

simulations.

The following variations in the baseline model are considered:

• Mass scale ± 5 MeV and Mass resolution ± 5%: the sensitivity of the signal fit to the mass

scale and mass resolution uncertainty uncertainties is tested by separately shifting the

signal mean by 5 MeV and varying the width of the signal PDF increased or reduced by

5%.

• Combinatorial bkg PDF model and low mass bkg PDF model: the assumption on the

functional models for the exponential and polynomial are (separately) probed using re-

spectively a gaussian-tail and an exponential.

• Inclusion of semil. background and Inclusion of Bc background: the semileptonic and

Bc backgrounds are neglected in the baseline fit. Systematic uncertainties associated

with this choice are evaluated by including (separately) the semileptonics or the Bc back-

grounds in the generation of the toy-MC. Their PDF and the shape parameters and nor-

malisations are evaluated from simulations.

• Polynomial slope: the introduction of the gaussian constraints on the polynomial slope

is challenged by varying the mass dependence among the different c-BDT intervals.

• Exponential slope: the usage of the same exponential slope in all c-BDT bins is chal-

lenged by varying the mass dependence among the different c-BDT intervals.

The different variations are evaluated in four points in the N (B 0
s )− N (B 0

d ) space, three close

to the unphysical region and the SM expectation corresponding to N (B 0
s ) = 41, N (B 0

d ) = 5.

Samples of 10000 toy experiments per variation are generated in each point, together with the

baseline configuration toys.

For each point, the quadratic sums of the deviations computed separately for the positive and

the negative contributions are evaluated for both B 0
s and B 0

d ; the larger value between the posit-

ive and negative variations is taken as systematic uncertainty in the fit. The correlation between

the N (B 0
s ) and N (B 0

d ) variations is also evaluated.

For B 0
s the total systematic uncertainty is found to increase with the assumed size of the signal,

while for B this dependence is not observed. The systematic uncertainty on B 0
s is paramet-

rised as σsyst(Ns) =
√

4+ (0.06Ns)2, while the systematic uncertainty on B 0
d is parametrised as

σsyst(Nd ) = 3. The correlation among the B 0
s and B 0

d variations is found to be approximately

constant ρsyst =−0.7.

These systematic uncertainties are included in the fit as two smearing parameters for N (B 0
s )

and N (B 0
d ), constrained by a two-dimensional Gaussian distribution parametrised by the val-

ues of σsyst(Ns), σsyst(Nd ) and ρsyst.
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A.4.2 Fit on unblinded data

The fit on unblinded data, shown in figure A.3 yields to N (B 0
s ) = 16±12 and N (B 0

d ) = −11±9,

where the uncertainties include the systematics on the fit discussed in section A.4.1, but stat-

istical uncertainties largely dominate. As mention in section A.4.1, the expected yields for the

SM branching fractions are N (B 0
s ) = 41, N (B 0

d ) = 5.

The primary result of this analysis is obtained by applying the natural boundary of non-negative

yields, for which the fit returns the values N (B 0
s ) = 11 and N (B 0

d ) = 0.
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Figure A.3: Dimuon invariant mass distributions in the unblinded data, in the three intervals of continuum-BDT
output. Superimposed is the result of the maximum-likelihood fit, obtained imposing the boundary
of non-negative signal contributions. The total fit is shown as a black continuous line, the filled area
corresponds to the observed signal component, the blue dashed line to the SS+SV background, and the
green dashed line to the continuum background. Figures taken from [73].

A.5 Branching fraction extraction

The branching fractions of B 0
s → µ+ µ− and B 0

d → µ+ µ− are extracted from data using the

fit described in section A.4 and replacing N (B 0
s ) and N (B 0

d ) with the corresponding branching

fractions divided by the normalisation terms shown in equation A.1. The uncertainties on the

normalisation terms are included as gaussian smearings.

The B(B+ → J/ψ(µ+µ−)K +) term is obtained from [207] as the product of B(B+ → J/ψK +) =
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(1.027±0.031)×10−3 and J/ψ→µ+µ− = (5.961±0.033)%. The hadronisation probability is one

for B 0
d and for B 0

s is obtained from the ATLAS measurement fs/ fd = 0.240±0.020 [176], which

uses fu/ fd = 1 [216].

The Dnorm term, obtained by combining the quantities shown in equation A.2 is Dnorm = (2.88±
0.17)×106 for B 0

s and Dnorm = (2.77±0.16)×106 for B 0
d , where the former includes the correc-

tion due to the width difference between the B 0
s mass eigenstates.

The values of the branching fractions that maximise the likelihood function within the con-

straint of non-negative values are B(B 0
s → µ+ µ−) = 0.9×10−9 and B(B 0

s → µ+ µ−) = 0.

The 68.3% confidence interval on B(B 0
s → µ+ µ−) obtained with the Neyman construction

approach [178] is

B(B 0
s → µ+ µ−) = (0.9+1.1

−0.8)×10−9, (A.4)

where the uncertainty includes both statistical and systematic contributions.

Figure A.4, already shown in section 1.5 and included here for completeness, shows the 2-

dimensional profiled.likelihood contours in the B(B 0
s → µ+ µ−)−BR(B 0

s → µ+ µ−) plane

drawn for −2∆ln(L/Lmax) = 2.3, 6.2 and 11.8, allowing negative values of the branching frac-

tions. The 68.3% confidence interval on B(B 0
s → µ+ µ−) is also shown, together with the cor-

responding contours of the combination of the results of the CMS and LHCb experiments [70]

and the SM prediction [54].

The CLs method [217] implemented with toy-MC is employed to set an upper limit on both
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Figure A.4: Contours in the plane B(B0
s → µ+ µ−) − BR(B0

s → µ+ µ−) for intervals of −2∆ln(L) equal to 2.3,
6.2 and 11.8 relative to the absolute maximum of the likelihood, without imposing the constraint of
non-negative branching fractions. Also shown are the corresponding contours for the combined result
of the CMS and LHCb experiments, the SM prediction, and the maximum of the likelihood within the
boundary of non-negative branching fractions, with the error bars covering the 68.3% confidence range
for B0

s → µ+ µ−. Picture from [73].

branching fractions. The 95% CL upper limit on B(B 0
s → µ+ µ−) obtained under the back-
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ground only hypothesis, with B(B 0
d → µ+ µ−) left free to be determined by the fit is

B(B 0
s → µ+ µ−) < 3.0×10−9 (95% CL), (A.5)

for an expected upper limit of 1.8+0.7
−0.4 ×10−9.

The 95% CL upper limit on B(B 0
d → µ+ µ−), obtained generating the toy-MC according to the

observed amplitudes of backgrounds and B 0
s signal is

B(B 0
d → µ+ µ−) < 4.2×10−10 (95% CL), (A.6)

for an expected upper limit of 5.7+2.1
−1.5 ×10−9.



BADDITIONAL STUDIES ON

KINEMATIC CORRECTIONS

This appendix reports several additional studies performed on the kinematic reweighting de-

signed for the inclusive simulations (QLC and DDW, extensively described in section 7.6.4).

Section B.1 shows a study on the p̂Tmin cut applied at generator level to all the simulated

samples.

Section B.2 reports the plots of all the cross-checks performed to validate the QLC: the cor-

rections are evaluated using only half of the samples, while the remaining half samples are

weighted and used for the comparison.

Section B.2.4 shows additional studies performed on the binning scheme chosen for the QLC.

Section B.3 reports the plots of all the cross-checks performed on the DDW. As for the checks

on the QLC, the DDW are evaluated using only half of the MC and data samples, while the

remaining halves are weighted and used for comparison.

B.1 Studies on p̂Tmin cut

Considering the generator-level cuts applied to the exclusive simulations at generator level,

QLC might be evaluated using only one sample generated with unbiased quark-level cuts and

no final state particle cuts. The formula used in this case would be:

WQL = νunbiased+QLsel+FScuts(pT(B),η(B))

νunbiased+FScuts(pT(B),η(B))
, (B.1)

where ν is the number of entries in a (pT(B), η(B)) bin and the quark-level selection (QLsel)

and final state particle cuts ( FScuts), implicit in the default MC sample, are explicitly applied

to the unbiased sample.

This approach was tested by evaluating the QLC for the B+ → J/ψK + process using the un-

biased sample introduced in section 7.6.4.1. As for the QLC evaluated in section 7.6.4.1, the

weights have been cross-checked by calculating the QLC using odd events from the unbiased

MC and applying them to the quark biased sample. The resulting (pT(B), η(B)) distributions are

compared with the distributions of the even events from the unbiased sample. The outcome of

this cross-check is reported in figure B.1. The B meson η distribution shows good agreement,

while the pT(B) distribution shows an inconsistency at low pT. The same effect is visible swap-

ping odd and even unbiased events.

242
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The source of this discrepancy was found to be the p̂Tmin cut introduced at generator level.

Figure B.2 shows the p̂T distribution of the unbiased sample and the p̂T distribution from a

new sample, called semi biased, generated with the same cuts as the unbiased sample but with

tighter p̂T (7 GeV instead of 5 GeV). The distribution of the unbiased sample is cut at 7 GeV in

order to compare the two distributions, that are clearly not compatible.

This is due to a regularisation in the Pythia generation for low p̂T: basically the parton-parton

cross section becomes too high as p̂T decreases, causing a violation of unitarity. The Pythia

generator smoothly takes care of this divergence applying a regularisation for decreasing p̂T

values [148], effectively modifying the p̂T distribution.

Due to this feature QLC calculated using a single unbiased sample are not usable, as they would

introduce an additional bias due to this p̂T discrepancy. The correct approach for the QLC eval-

uation is therefore based on the usage of two samples, as described in 7.6.4.1.

An additional check is needed, before being able to evaluate the QLC. The set of quark-level

cuts employed in the generation of the unbiased sample has to be tested to verify that it is not

affected by the p̂T bias. A new sample with the same quark-level cuts as the unbiased but with

looser p̂T (3 GeV instead of 5) is generated and its p̂T distribution is compared with the one from

the unbiased sample. Figure B.3 shows this comparison. The distribution of the new sample

is cut at 5 GeV in order to compare the two distributions. Quark-level cuts, final state particle

cuts and B fiducial volume cuts (pT(B) > 8 GeV and |η(B)| < 2.5 ) are applied, as the main in-

terest is to avoid a bias in the parameter space used in the analysis. The two distributions are

compatible, therefore the cuts chosen for the unbiased sample do not introduce any additional

bias.
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Figure B.1: Comparison of the η(B) (top plot) and pT(B) (bottom plot) QLC corrected quark biased distribution
and the unbiased distribution. The QLC have been calculated using the approach based on one sample
described in the text. In order to avoid correlations between the distributions, QLC have been calculated
using odd numbered events from the unbiased sample and the QLC corrected quark biased distributions
are compared with even numbered unbiased events.
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named semi biased. This new sample has the same quark-level cuts as the unbiased but tighter p̂T (7
GeV instead of 5). In order to compare the two distribution, the p̂T spectrum of the unbiased sample is
cut at 7 GeV.
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Figure B.3: Comparison of the p̂T distribution from the unbiased sample and the p̂T distribution from a new sample
characterised by the same quark-level cuts as the unbiased but with looser p̂T (3 GeV instead of 5). The
p̂T distribution from this sample is cut at 5 GeV in order to compare the two distributions. Quark-level
cuts, final state cuts and B fiducial volume cuts (pT(B) > 8 GeV and |η(B)| < 2.5 ) are applied to both
distributions.
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B.2 Cross-checks on QLC

B.2.1 B+ → J/ψK + QLC consistency
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Figure B.4: Comparison of the η(B) (top plot) and pT(B) (bottom plot) QLC corrected B+ → J/ψK+ quark biased dis-
tribution with the respective unbiased distributions. In order to avoid correlations between the distribu-
tions, the QLC are calculated using odd-numbered events from the unbiased and quark biased samples,
and the remaining events in the two samples are weighted and used for the comparison.
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Figure B.5: Comparison of the η(B) (top plot) and pT(B) (bottom plot) QLC corrected B+ → J/ψK+ quark biased
distribution with the respective unbiased distributions. In order to avoid correlations between the dis-
tributions, the QLC are calculated using even-numbered events from the unbiased and quark biased
samples, and the remaining events in the two samples are weighted and used for the comparison.
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B.2.2 B 0
s → J/ψφQLC consistency
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Figure B.6: Comparison of the η(B) (top plot) and pT(B) (bottom plot) QLC corrected B0
s → J/ψφ quark biased dis-

tribution with the respective unbiased distributions. In order to avoid correlations between the distribu-
tions, the QLC are calculated using odd-numbered events from the unbiased and quark biased samples,
and the remaining events in the two samples are weighted and used for the comparison.
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Figure B.7: Comparison of the η(B) (top plot) and pT(B) (bottom plot) QLC corrected B0
s → J/ψφ quark biased dis-

tribution with the respective unbiased distributions. In order to avoid correlations between the distribu-
tions, the QLC are calculated using even-numbered events from the unbiased and quark biased samples,
and the remaining events in the two samples are weighted and used for the comparison.
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B.2.3 B 0
s → µ+ µ− QLC consistency
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Figure B.8: Comparison of the η(B) (top plot) and pT(B) (bottom plot) QLC corrected B0
s → µ+ µ− quark biased dis-

tribution with the respective unbiased distributions. In order to avoid correlations between the distribu-
tions, the QLC are calculated using odd-numbered events from the unbiased and quark biased samples,
and the remaining events in the two samples are weighted and used for the comparison.
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Figure B.9: Comparison of the η(B) (top plot) and pT(B) (bottom plot) QLC corrected B0
s → µ+ µ− quark biased

distribution with the respective unbiased distributions. In order to avoid correlations between the dis-
tributions, the QLC are calculated using even-numbered events from the unbiased and quark biased
samples, and the remaining events in the two samples are weighted and used for the comparison.
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B.2.4 Check on QLC binning scheme

The (pT(B), η(B)) binning scheme chosen for the QLC calculation assures a comparable stat-

istical uncertainty in every bin. Basically the binning scheme is composed of two regions, one

with a regular binning, in the pT < 38 GeV region, with bins of size (0.1 × 1 GeV), and bins that

cover the entire |η(B)| spectrum and increasing size in pT in the pT > 38 GeV region.

In order to check that a unique |η(B)| bin in the region above pT(B) = 38 GeV is sufficient to

provide an adequate correction to the simulations, the QLC are evaluated using a different bin-

ning scheme. While the pT < 38 GeV region maintains the same binning scheme as before, one

bin in the pT(B) direction for pT> 38 GeV and bins with a width of 0.1 in the |η(B)| direction are

used. The resulting QLC are shown in figure B.10.

In order to verify the absence of a |η(B)| dependence of the QLC for pT > 38 GeV, the QLC dis-

tribution for said region is shown as a 1 dimensional histogram and a linear fit is performed

on them. The results are shown in figure B.11, the histograms are compatible with a flat line,

therefore the QLC distributions do not show a |η(B)| dependence.
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(a) B+ → J/ψK+ QLC (left) and the corresponding uncertainty
(right) calculated with the modified binning scheme in the
pT(B) > 38 GeV region.
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(b) Bs → J/ψφ QLC (left) and the corresponding uncertainty
( right) calculated with the modified binning scheme in the
pT(B) > 38 GeV region.
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Figure B.10: QLC (left plot) and the relative uncertainty (right plot), calculated for three processes, respectively,
B+ → J/ψK+ figure B.10(a), Bs → J/ψφ figure B.10(b) and Bs →µµ figure B.10(c). The binning scheme
in the pT(B) > 38 GeV region has been modified according to the text.
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Figure B.11: QLC for the pT(B) > 38 GeV region calculated using the modified binning scheme described in the
text for three processes, respectively B± → J/ψK±, figure B.11(a), B0

s → J/ψφ, figure B.11(b) and
B0

s → µ+ µ−, figure B.11(c). A linear fit is performed on each distribution to verify the compatibil-
ity with a flat line, showing the absence of a |η|(B) dependence.
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B.2.5 Check on QLC η(B) symmetry

The QLC employed in the analysis assume the B meson η spectrum to be symmetric with re-

spect to 0, therefore the QLC are evaluated for |η(B)| < 2.5; this allows to increase the statistics

in each (pT(B),η(B)) bin, reducing the uncertainty associated to the QLC.

The assumption on the QLC symmetry with respect to B meson η is tested by calculating the

QLC in the full η(B) range. The binning scheme chosen is the same as the one used for the cor-

rection employed in the analysis, but symmetrised with respect to η(B) = 0. Figure B.12 shows

a 2D (pT(B), η(B)) map of the QLC evaluated in the full η(B) range and their uncertainties for

the three processes B+ → J/ψK +, Bs → J/ψφ and Bs → µµ. The compatibility of the η(B) > 0

QLC with the η(B) < 0 QLC is quantified with a χ2 test. Figure B.13 shows the pulls evaluated

as (QLCη>0 −QLCη<0)2/((ση>0
QLC)2 + (ση<0

QLC)2) for the QLC at (pT(B), |η(B)|) and (pT(B), −|η(B)|);

the pulls are calculated for all the three processes considered in the QLC extraction. The χ2 is

evaluated as the sum of all the pulls, while the number of degrees of freedom is equal to the

number of bins. The resulting p-values for the compatibility are 0.998 for B+ → J/ψK +, 0.997

for B 0
s → J/ψφ and 0.891 for B 0

s → µ+ µ−, confirming the absence of a η(B) asymmetry for the

QLC.
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Figure B.12: The three sets of plots show the QLC evaluated in the full η(B) range (left plot) and the relative un-
certainty (right plot), calculated for the three processes, respectively, B+ → J/ψK+ figure B.12(a),
Bs → J/ψφ figure B.12(b) and Bs →µµ figure B.12(c).
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Figure B.13: Pulls evaluated to test the compatibility of the η(B) > 0 QLC with the η(B) > 0 QLC. The pulls are calcu-

lated as (QLCη>0−QLCη<0)2/(σ
η>0
QLC−ση<0

QLC) for the QLC at (pT(B), η(B)) and (pT(B), −η(B)). The three

plots are referred to the three processes involved in the QLC evaluation, respectively, B+ → J/ψK+ in
figure B.13(a), Bs → J/ψφ in figure B.13(b) and Bs →µµ in figure B.13(c).
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B.3 Cross-checks on DDW

B.3.1 B+ → J/ψK + DDW consistency
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Figure B.14: Top plot: comparison of the η(B) DDW corrected B+ → J/ψK+ MC distribution with the respective
data and original MC distributions. The muon offline efficiency weights, the muon trigger weights and
the QLC are applied to both the original and the corrected MCs. Bottom plot: quantitative comparison
between the η(B) DDW corrected B+ → J/ψK+ MC distribution with the respective data distribution,
already shown also in the top plot. The bottom panel shows the bin-by-bin pulls.
In order to avoid correlations between the distributions, the DDW are calculated using odd-numbered
events from both data and B+ → J/ψK+ MC, and the remaining events in the two samples are weighted
and used for the comparison.
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Figure B.15: Top plot: comparison of the pT(B) DDW corrected B+ → J/ψK+ MC distribution with the respective
data and original MC distributions. The muon offline efficiency weights, the muon trigger weights and
the QLC are applied to both the original and the corrected MCs. Bottom plot: quantitative comparison
between the pT(B) DDW corrected B+ → J/ψK+ MC distribution with the respective data distribution,
already shown also in the top plot. The bottom panel shows the bin-by-bin pulls.
In order to avoid correlations between the distributions, the DDW are calculated using odd-numbered
events from both data and B+ → J/ψK+ MC, and the remaining events in the two samples are weighted
and used for the comparison.
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Figure B.16: Top plot: comparison of the η(B) DDW corrected B+ → J/ψK+ MC distribution with the respective
data and original MC distributions. The muon offline efficiency weights, the muon trigger weights and
the QLC are applied to both the original and the corrected MCs. Bottom plot: quantitative comparison
between the η(B) DDW corrected B+ → J/ψK+ MC distribution with the respective data distribution,
already shown also in the top plot. The bottom panel shows the bin-by-bin pulls.
In order to avoid correlations between the distributions, the DDW are calculated using even-numbered
events from both data and B+ → J/ψK+ MC, and the remaining events in the two samples are weighted
and used for the comparison.
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Figure B.17: Top plot: comparison of the pT(B) DDW corrected B+ → J/ψK+ MC distribution with the respective
data and original MC distributions. The muon offline efficiency weights, the muon trigger weights and
the QLC are applied to both the original and the corrected MCs. Bottom plot: quantitative comparison
between the pT(B) DDW corrected B+ → J/ψK+ MC distribution with the respective data distribution,
already shown also in the top plot. The bottom panel shows the bin-by-bin pulls.
In order to avoid correlations between the distributions, the DDW are calculated using even-numbered
events from both data and B+ → J/ψK+ MC, and the remaining events in the two samples are weighted
and used for the comparison.
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B.3.2 B 0
s → J/ψφDDW consistency
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Figure B.18: Top plot: comparison of the η(B) DDW corrected B0
s → J/ψφ MC distribution with the respective data

and original MC distributions. The muon offline efficiency weights, the muon trigger weights and the
QLC are applied to both the original and the corrected MCs. Bottom plot: quantitative comparison
between the η(B) DDW corrected B0

s → J/ψφ MC distribution with the respective data distribution,
already shown also in the top plot. The bottom panel shows the bin-by-bin pulls.
In order to avoid correlations between the distributions, the DDW are calculated using odd-numbered
events from both data and B0

s → J/ψφ MC, and the remaining events in the two samples are weighted
and used for the comparison.
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Figure B.19: Top plot: comparison of the pT(B) DDW corrected B0
s → J/ψφMC distribution with the respective data

and original MC distributions. The muon offline efficiency weights, the muon trigger weights and the
QLC are applied to both the original and the corrected MCs. Bottom plot: quantitative comparison
between the pT(B) DDW corrected B0

s → J/ψφ MC distribution with the respective data distribution,
already shown also in the top plot. The bottom panel shows the bin-by-bin pulls.
In order to avoid correlations between the distributions, the DDW are calculated using odd-numbered
events from both data and B0

s → J/ψφ MC, and the remaining events in the two samples are weighted
and used for the comparison.
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Figure B.20: Top plot: comparison of the η(B) DDW corrected B0
s → J/ψφ MC distribution with the respective data

and original MC distributions. The muon offline efficiency weights, the muon trigger weights and the
QLC are applied to both the original and the corrected MCs. Bottom plot: quantitative comparison
between the η(B) DDW corrected B0

s → J/ψφ MC distribution with the respective data distribution,
already shown also in the top plot. The bottom panel shows the bin-by-bin pulls.
In order to avoid correlations between the distributions, the DDW are calculated using even-numbered
events from both data and B0

s → J/ψφ MC, and the remaining events in the two samples are weighted
and used for the comparison.
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Figure B.21: Top plot: comparison of the pT(B) DDW corrected B0
s → J/ψφMC distribution with the respective data

and original MC distributions. The muon offline efficiency weights, the muon trigger weights and the
QLC are applied to both the original and the corrected MCs. Bottom plot: quantitative comparison
between the pT(B) DDW corrected B0

s → J/ψφ MC distribution with the respective data distribution,
already shown also in the top plot. The bottom panel shows the bin-by-bin pulls.
In order to avoid correlations between the distributions, the DDW are calculated using even-numbered
events from both data and B0

s → J/ψφ MC, and the remaining events in the two samples are weighted
and used for the comparison.
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B.3.3 DDW comparison with Run 1 analysis
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Figure B.22:

As a further cross-check, the B+ → J/ψK + DDW are compared to the DDW calculated for the

Run 1 analysis, figure B.22. A full compatibility is not expected, as the two analysis are based

on data collected at different energy and a different release of the ATLAS software was used to

generate and / or reconstruct the events.

The pT DDW show a good compatibility. The DDW calculated using the 2015/16 data and

MC show a more regular behaviour with smaller uncertainties with respect to the Run 1 DDW,

thanks to the increased size of the samples used. The ηDDW are more complicated to compare:

the Run 1 weights were calculated folding the η distribution with respect to 0, as no asymmetry

was found in the DDW. This is not the case for the new DDW, which show a clear η asymmetry.

The behaviour of the weights as a function of η is also different, this is probably due to im-

provements in the muon reconstruction, which was highly increased in Run 2 with respect Run

1, especially in the end-cap regions [161].



CSUMMARY OF PERSONAL

CONTRIBUTIONS

This appendix presents a detailed list of my contributions to the results presented in the thesis.

Studies for trigger improvements

I carried out the studies on the B → hh′ trigger selection using the FTK full-scan for my quali-

fication task. I had a leading role in the design and optimisation of the trigger selection, as well

as in the estimation of the trigger rates (chapter 4).

2015/16 B 0
(s) → µ+ µ− analysis

The B 0
(s) → µ+ µ− analysis performed on the dataset collected during the first two years of

Run 2 has been the core activity of my PhD. I was one of the main analysers, the main PhD

student leading the analysis and one of the editors and authors of the internal documentation

and publication.

In particular, I had a leading role in the following studies:

• selection of the triggers used in the analysis (section 7.1);

• evaluation of the muon mis-identification fraction (section 7.4);

• validation of the PV-SV association algorithm (section 7.5);

• evaluation and validation of the kinematic corrections for simulations (section 7.6.4 and

appendix B);

• design,implementation and validation of the fit used to extract the B 0
(s) → µ+ µ− yields

(chapter 11);

• statistical extraction of the final results, using different statistical approaches (section 12.1);

• combination of the analysis likelihood with the Run 1 likelihood and statistical extraction

of the results (section 12.2).
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LHC experiments B 0
(s) → µ+ µ− combination

I have been an active contributor of the ongoing effort to combine the B 0
(s) → µ+ µ− analysis

results from the ATLAS, CMS and LHCb experiments (section 12.4).

Extrapolations for the B 0
(s) → µ+ µ− analysis

I have been the main analyser and the main editor of the prospects for the B 0
(s) → µ+ µ− ana-

lysis at Run 2 and HL-LHC (section 13.1).

I have also been the main analyser in the ATLAS-CMS B 0
(s) → µ+ µ− performance comparison

(section 13.2).

Run 1 B 0
(s) → µ+ µ− analysis

During my first year I contributed to the Run 1 B 0
(s) → µ+ µ− analysis, by co-working on the

evaluation of the systematic uncertainties on the fitting procedure with another PhD student

(sub-section A.4.1).
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