University of Sussex

A University of Sussex PhD thesis
Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

US

UNIVERSITY
OF SUSSEX

Understanding the Characteristics of
Internet Traffic and Designing an

Efficient RaptorQ-based Data Transport
Protocol for Modern Data Centres

Submitted for the degree of Doctor of Philosophy
School of Engineering and Informatics, University of Sussex

Prepared by: Supervisor:

Mohammed Alasmar Dr. George Parisis

September 2019

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this thesis are original and have not been submitted in whole or in part for con-
sideration for any other degree or qualification in this, or any other university. This thesis
is my own work and contains nothing which is the outcome of work done in collaboration
with others, except as specified in the text and Acknowledgements.

This thesis conforms to a ‘papers style’ format in which a substantial part of the
contents are reproductions from published and un-published submissions to conferences
and journals. In particular chapters 3 , 4 and 5 contain publications published /submitted
to peer reviewed conferences/journals of which I was the first author. I hereby declare
that substantially all of the experimental and theoretical work presented in those papers

was my own, except as detailed in the preamble to the papers in those chapters.

Mohammed Alasmar

September 2019

ii

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. George Parisis. I don’t know
where to start and how to thank him. My work would not have been possible without
his constant guidance, his unwavering encouragement, his many insights and ideas, and
his exceptional resourcefulness. And most importantly, his friendship. I have been very
fortunate to have him as my supervisor. For all of this, George, thank you!

Special thanks to my second supervisor, Prof. Ian Wakeman for his great support,
guidance and supervision. I have also been fortunate to have many fantastic collaborators
outside Sussex. I would like to thank all of them: Prof. Jon Crowcroft, Dr. Richard Clegg
and Dr. Nickolay Zakhleniuk.

My PhD has been fully funded by the Department of Informatics at the University of
Sussex for which I am very grateful.

I also would like to thank Dr. Patrick Holroyd and Dr. Phil Watten for providing us
access to computational resources to run large-scale simulations.

Moreover, I would like to extend my thanks to the members of the “Foundations of
Software Systems” research group for their outstanding support and friendship throughout
my PhD time.

Last but not least, I would like to thank my family, especially my parents, for their
unwavering support during my studies. This PhD is devoted to my uncle ‘Mohammed’ and

my aunt ‘Samira’ who raised me, loved me and encouraged me to pursue my education.

iii

Abstract

This thesis is the amalgamation of research on efficient data transport protocols for
data centres and a comprehensive and systematic study of Internet traffic, which
came as a result of the need to understand traffic patterns and workloads in modern

computer networks.

The first part of the thesis is on the development of efficient data transport pro-
tocols for data centres. We study modern data transport protocols for data centres
through large scale simulations using the OMNeT++ simulator. We developed and
experimented with an OMNeT++ model of NDP. This has led to the identification
of limitations of the state of the art and the formulation of research questions with
respect to data transport protocols for modern data centres. The developed model
includes an implementation of a Fat-tree topology and per-packet ECMP load bal-
ancing. We discuss how we integrated the model with the INET Framework and
validated it by running various experiments that test different model parameters
and components. This work revealed limitations of NDP with respect to efficient
one-to-many and many-to-one communication in data centres, which led to the de-
velopment of SCDP, a novel and general-purpose data transport protocol for data
centres that, in contrast to all other protocols proposed to date, natively supports
one-to-many and many-to-one data communication, which is extremely common in
modern data centres. SCDP does so without compromising on efficiency for short
and long unicast flows. SCDP achieves this by integrating RaptorQQ codes with
receiver-driven data transport, in-network packet trimming and Multi-Level Feed-
back Queuing (MLFQ); (1) RaptorQ codes enable efficient one-to-many and many-
to-one data transport; (2) on top of RaptorQ codes, receiver- driven flow control, in
combination with in-network packet trimming, enable efficient usage of network re-
sources as well as multi-path transport and packet spraying for all transport modes.
Incast and Outcast are eliminated; (3) the systematic nature of Raptor(Q codes, in
combination with MLFQ, enable fast, decoding-free completion of short flows. We
extensively evaluated SCDP in a wide range of simulated scenarios with realistic
data centre workloads. For one-to-many and many-to-one transport sessions, SCDP

performs significantly better than NDP. For short and long unicast flows, SCDP

iv
performs equally well or better compared to NDP.

In the second part of the thesis, we extensively study Internet traffic. Getting
good statistical models of traffic on network links is a well-known, often-studied
problem. A lot of attention has been given to correlation patterns and flow duration.
The distribution of the amount of traffic per unit time is an equally important
but less studied problem. We study a large number of traffic traces from many
different networks including academic, commercial and residential networks using
state-of-the-art statistical techniques. We show that the log-normal distribution is
a better fit than the Gaussian distribution. We also investigate a second, heavy-
tailed distribution and show that its performance is better than Gaussian but worse
than log-normal. We examine anomalous traces which are a poor fit for all tested
distributions and show that this is often due to traffic outages or links that hit
maximum capacity. Stationarity tests showed that the traffic is stationary at some
range of aggregation times. We demonstrate the utility of the log-normal distribution
in two contexts: predicting the proportion of time traffic will exceed a given level (for
link capacity estimation) and predicting 95th percentile pricing. We also show the

log-normal distribution is a better predictor than Gaussian or Weibull distributions.

Context Statement

This thesis has been prepared as a series of papers for publication, with the ex-
ception of Chapters 1, 2 and 6, which serve as the introduction, background and
conclusion chapters respectively. The main manuscript that makes up Chapter 3
has been submitted for publication and it is currently under review. Chapter 3 also
includes our published and peer reviewed poster paper that includes our early ex-
perimentation. The manuscripts that make up Chapter 4 and 5 have been accepted
for publication in peer reviewed conferences.

Co-Authors. The papers that make up Chapters 3 of my thesis have three
authors [9, 10]: myself, Dr George Parisis', who is my main PhD supervisor, and
Professor Jon Crowcroft (University of Cambridge)?. The paper that makes up
Chapter 4 has two authors [7]: myself and Dr George Parisis. Finally, the paper
presented in Chapter 5 has four authors [8]: myself, Dr George Parisis, Dr Richard
Clegg (Queen Mary University of London)? and Dr Nickolay Zakhleniuk (University
of Essex)*.

Context Statement. [am the lead author on all papers. The work outlined in
each paper is substantially my own. I designed the solutions, collected the data, im-
plemented the required models, conducted the experiments, evaluated the proposed
approaches and wrote up the first draft of each paper.

Contribution form Co-Authors. I received comments from all other authors
on the first drafts of each paper, which I incorporated into the final versions. The
final version of each paper was reviewed again by my main supervisor. The research
questions and general research have been evolved by the tremendous help of my
main supervisor through our discussions in the weekly supervisory meetings. Here
I provide brief details of the contributions from each co-author to each paper.

Chapter 3: Paper 1&2 [9, 10]. The idea of employing fountain codes for data
transport in data centres was part of a workshop paper [65] that was published by
my supervisor and Prof. Crowcroft. The resulted papers for this thesis are the full

realisation of the research hypothesis that fountain coding can be the foundation for

"https://www.sussex.ac.uk/profiles/334868
*https://www.cl.cam.ac.uk/~jac22/
3http://www.richardclegg.org/
‘https://www.essex.ac.uk/people/zakh171400/nick-zakhleniuk

https://www.sussex.ac.uk/profiles/334868
https://www.cl.cam.ac.uk/~jac22/
http://www.richardclegg.org/
https://www.essex.ac.uk/people/zakhl71400/nick-zakhleniuk

vi

an efficient transport protocol for data centres. My supervisor provided suggestions
and feedback for all key aspects of the research, including experimentation. He also
helped in formulating the motivation of this work by directing me to the literature
and related work on this topic.

Chapter 4: Paper 3 [7]. I was encouraged by my supervisor to build an
OMNeT++ model for data centre transport protocols. The source code for all
simulation models is my own work. I wrote up the first draft of this paper and
I received comments from my supervisor (co-author) on the first draft, which T
incorporated into the final version.

Chapter 5: Paper 4 [8]. The idea of studying the characteristics of Inter-
net traffic was inspired by Nickolay Zakhleniuk, who contributed to this paper by
highlighting the limitations of some current approaches that study Internet traffic
volumes. Nickolay also helped in improving the quality of the paper through his
general comments on the text and suggestions in adding more tests to evaluate
our approach. The statistical approach [44] that I use in this paper was suggested
by Richard Clegg, who also gave valuable feedback to improve the paper through
several meetings and discussions. Richard also helped in formulating the research
question in this paper and he provided useful comments on the presentation of the
experiments. My supervisor contributed in shaping the research motivation and

contributions of this paper and in improving the text in this paper.

vii

Contents

Declaration

Acknowledgements L

Abstract . .

Context Statement

List of Figures

1 Introduction

1.1 Data Transport Protocols for Data Centres

1.2 Internet Traffic Characterisation
1.3 Research Contribution oo
1.4 Thesis Structure e
1.5 Related publications e

2 Background

2.1 Data Centre Network Topologies

2.1.1
2.1.2
2.1.3

Switch-centric and server-centric topologies
Google, Facebook and Microsoft DCNs.

Flexibility and performance optimisation in modern data centres . .

2.2 Load Balancing and Multicasting in Data Centres
2.3 TCP Limitations in Data Centre Networks

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5

TCP Incast o . o
TCP Outcast o
Buffer pressure and queue build-up
Single-path TCP (per-flow connection)
Modern workloads/applications in DCNs

2.4 Existing Data Transport Protocols and Flow Scheduling Approaches for

DCNs
2.4.1
2.4.2
2.4.3
244

Data Centre TCP (DCTCP)
Multipath TCP (MPTCP)
pFABRIC: optimal flow completion times
pHost

ii

v

ix

viii

2.4.5 PIAS: Practical Information-Agnostic flow Scheduling 23
2.4.6 Hedera: dynamic flow scheduling in data centres 24
2.4.7 Homa: a receiver-driven low-latency transport protocol 24
2.4.8 QJUMP: Queues don’t matter when you can JUMP them! 24
2.4.9 NDP: Novel Data-centre transport Protocol 25
2.4.10 Congestion control mechanisms for RDMA 26
2.4.11 Redundant transmission and coding-based transport protocols . . . 26
2.4.12 ICTCP: Incast Congestion Control TCP 27
2.4.13 D2TCP: Deadline-aware Datacenter TCP 28
2.4.14 TCP with Fine Grained RTO (FG-RTO) 29
2.5 Limitations of Existing Approaches, 29
2.6 Data centre network traffic characteristics L. 30
2.7 Fountain coding L 32
2.7.1 Luby Transform (LT) Codes 34
2.7.2 Fountain codes: Raptor Codes (R10 and RaptorQ) 36
2.8 Network Simulator 40
2.9 Internet Traffic Characterisation and Modelling 40
2.9.1 Traffic fluctuations L 41
2.9.2 Representing traffic volumes using the Gaussian model 41
2.9.3 The failure of the Gaussian model in modelling traffic volumes . . . 42
2.9.4 Heavy-tailed traffic o L 42
2.9.5 Link dimensioning: bandwidth over-provisioning and provisioning . . 42
2.9.6 Network traffic billing: the 95th percentile 43
2.9.7 Modern statistical framework for fitting Internet Traffic 43
2.9.8 The studied traces L 47

3 SCDP: Systematic Rateless Coding for Efficient Data Transport in Data
Centres 48

4 Evaluating Modern Data Centre Transport Protocols in OMNeT++ /INET 67

5 On the Distribution of Traffic Volumes in the Internet and its Implica-

tions 80
6 Conclusion and Future Directions 920
6.1 Contributions and Conclusions e 90
6.2 Future researcho 91

Bibliography 93

X

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23

Fat-tree topology [B]
Google Jupiter data centre topology [176]
TCP limitations in DCNs o
Incast phenomenon
Outcast phenomenon [152] Lo
Example of Port Blackout [152] L0000
Write/read requests in HDFS. Example of writing a 256 MB file (2 blocks

128 MB each) by a client node and reading the file by another client node .
Communication patterns examples in DCN [41]
NDP protocol e
Achieved performance goals by each proposed data transport protocols . . .
Fountain coding-based network [65]
LT Encoder
LT decoding example [125] Lo o
Raptor code oL
The generator matrices of R10 and RQ [173]
RaptorQ Decode failure portability [156]
R10 Vs. RaptorQ o
RaptorQ-based data transport
RaptorQ data partitioning Lo L L
The data rate of an Internet traffic trace at different timescales
The basic idea in Clauset et. al. approach
Finding the best fitted distribution based on the power-law approach
Data rate PDF of a Mawi trace

Chapter 1

Introduction

Modern computer networks are diverse and complex and support a wide range of net-
work applications with different requirements. Examples of said complexity and diversity
include ultra-fast, low-latency data centre networks [17, 72, 138, 176], computing re-
sources from cloud providers (e.g., Amazon Web Services!, Google Cloud Platform?, or
Microsoft Azure®), densely connected satellite networks [91, 28, 57], interconnected ISP
networks [32, 31, 150] and various kinds of wireless networks [29, 161, 185]. Efficiency
in exchanging data is a key requirement for all these networks and data transport proto-
cols are key in achieving it. At the same time, designing correct and efficient protocols
requires understanding the properties of networks, including the traffic they carry, its
characteristics and how these change over time.

This thesis primarily looks into the design of efficient data transport protocol for
data centres which is extremely important given the rapid changes in the underlying net-
work topologies, traffic workloads and application requirements. As part of understanding
traffic workloads and application requirements, we also study the characteristics of Inter-
net traffic, namely the traffic volume, by applying modern statistical analysis toolsets on

a large number of publicly available traces.

1.1 Data Transport Protocols for Data Centres

Data centres support the provision of core Internet services such as search (e.g. Google),
social networking (e.g. Facebook), cloud services (e.g. Amazon EC2) and video streaming
(e.g. NetFlix). Therefore, it is crucial to have in place data transport mechanisms that
ensure high performance for the diverse set of supported services. Data centres consist
of a large number of commodity servers and switches, support multiple paths among
servers, which can be multi-homed, very large aggregate bandwidth and very low latency

communication with shallow buffers at the switches.

"Mttps://aws.amazon.com/
*https://cloud.google.com/
3https://azure.microsoft.com/en-gb/

https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/en-gb/

2

TCP limitations in DCNs. In TCP, packet losses are detected by either triple duplic-
ate ACKs or via retransmission timeouts (RTO). Although triple duplicate ACKs trigger
fast retransmission, the recovery delay is still high as at least three packets after the loss
need to be received. TCP reacts by halving its congestion window in fast retransmission or
resetting it to initial value upon timeout [94]. Obviously, this behaviour has a significant
impact on bandwidth utilisation as filling up the available bandwidth will take a long time
after a loss.

Furthermore, the RTO is generally in order of hundreds of milliseconds but the RTT
in a DCN is often just hundreds of microseconds (i.e. RTO >> RTT). This means that
retransmission based on the RTO is not appropriate for low-latency DCNs. Improving
the quality of user experience of latency-sensitive applications requires an efficient data
transport mechanism. For instance, Amazon estimates that every 100 ms increase in
latency cuts profits by 1% [74]. Furthermore, in TCP, when a packet is lost or delayed,
the subsequent packets have to be buffered in the receiving buffer until the missing packets
arrive to fill the gaps. Once the receiving buffer is full, a zero window is advertised to the
sender and the sender stops sending even if the link is not fully occupied [16]. This leads

to throughput collapse and causes more delay in the network.

One-to-many and many-to-one communication. A significant portion of data traffic
in modern data centres is produced by applications and services that replicate data for resi-
lience purposes. For example, distributed storage systems, such as GFS/HDFS [70, 21] and
Ceph [192], replicate data blocks across the data centre (with or without daisy chaining?).
Partition-aggregate [56, 200], streaming telemetry [170, 138, 129], and distributed mes-
saging [4, 101] applications also produce similar traffic workloads. Multicast has already
been deployed in data centres® and, with the advent of P4, scalable multicasting is be-
coming practical [172]. As a result, much research on scalable network-layer multicasting
in data centres has recently emerged [132, 64, 116, 47, 117].

Existing data centre transport protocols are suboptimal in terms of network and server
utilisation for these workloads. One-to-many data transport is implemented through multi-
unicasting or daisy chaining for distributed storage [21]. As a result, copies of the same
data are transmitted multiple times, wasting network bandwidth and creating hotspots
that severely hurt the performance of short, latency-sensitive flows.

In many application scenarios, multiple copies of the same data can be found in the
network at the same time (e.g. in replicated distributed storage) but only one replica
server is used to fetch it. Fetching data from all servers, in parallel, from all available
replica servers (many-to-one data transport) would provide significant benefits in terms
of eliminating hotspots and naturally balancing load among servers. However, this is not

possible with any of the existing DCN transport protocols. Unfortunately,the state of the

“https://patents.google.com/patent/US20140215257
Se.g. https://www.rackspace.com/en-gb/cloud/networks

https://patents.google.com/patent/US20140215257
https://www.rackspace.com/en-gb/cloud/networks

3

art data transport protocols for data centres (such as NDP [66]) cannot efficiently support

such commonly used traffic patterns.

Long and short flows. Modern cloud applications commonly have strict latency re-
quirements [13, 141, 198, 122, 140, 15]. At the same time, background services require
high network utilisation [109, 63, 59, 6]. A plethora of mechanisms and protocols have
been proposed to provide efficient access to network resources of data centre applications,
by exploiting support for multiple equal-cost paths between any two servers [157, 66, 59]
and hardware capable of low latency communication [140, 37, 80] and eliminating In-
cast [38, 39, 202] and Outcast [152]. Recent proposals commonly focus on a single di-
mension of the otherwise complex problem space; e.g. TIMELY [164], DCQCN [203],
QJUMP [84] and RDMA over Converged Ethernet v2 [98] focus on low latency commu-
nication but do not support multi-path routing. Other approaches [6, 59] do provide
excellent performance for long flows but perform poorly for short flows [157, 109]. None

of these protocols supports efficient one-to-many and many-to-one communications.

TCP Incast. Incast [38] is a catastrophic TCP throughput collapse which occurs when
a large number of synchronised short flows hit the same switch queue in the data centre.
In distributed storage or partition/aggregate workloads Incast occurs at the queue of the
switch port connected to the storage client or aggregator, respectively. Incast occurs
when, under severe congestion, packet loss is high and so TCP falls back to retransmission
timeouts (RTOs) to recover. Several techniques have been proposed to mitigate Incast [13,
66], but none of these approaches can efficiently support one-to-many and many-to-one

workloads nor multi-path communication or multi-homed network topologies.

Multi-path data transport. TCP or other single-path variations of TCP for DCNs
rely on ECMP [96] to distribute multiple flows across all available paths. However, per-
flow ECMP can cause flow collisions which lead in hotspots and significant performance
deterioration. MPTCP [63] improves resource utilisation between two endpoints by us-
ing multiple paths. MPTCP also relies on ECMP to distribute data over multiple paths
and therefore suffers from sub-flow collisions [66]. Moreover, MPTCP performance suffers
when the quality of the used paths varies significantly (e.g. due to persistent or transient
hotspots in the network due to link failures or bursty traffic). Per-packet load balancing
across different paths is also problematic in both TCP and MPTCP because out-of-order

packets significantly hurt the overall performance.

The above discussion leads us to formulate the following research question:

e Research Question 1. How can we design a data transport protocol that supports

diverse and modern communication patterns in data centres, while providing high

4

goodput, low completion times and high network utilisation to a diverse set of data

centre applications?

1.2 Internet Traffic Characterisation

Internet traffic characterisation is an important problem for network researchers and oper-
ators. The subject has a long history. Early research [154, 46| resulted in discovering that
the correlation structure of network traffic exhibits self-similarity and that the duration
of individual flows of packets exhibit heavy-tails [69]. By comparison, the distribution of
the volume of traffic seen on a link in a given time period has been comparatively less
studied. This is surprising as this quantity can be extremely useful in network planning.
Several studies showed that network traffic follow a Gaussian distribution [134, 52, 53].
All these studies are based on straightforward goodness-of-fit tests (e.g., Quantile-Quantile
(Q-Q) plots) and relevant correlation tests that are used to assess how well captured traffic
traces are fitted to Gaussian or heavy-tailed distributions [60, 120, 143, 126]. As discussed
n [44], these statistical approaches can produce a substantially inaccurate assessments
about whether traffic volume samples follow a Gaussian/heavy-tailed distribution or not.
This is because they are very sensitive to the volatile tail of said distributions and, there-
fore, require a very large sample of data to produce reliable results [44].

Traffic modelling has significant practical value; e.g. (1) in bandwidth provisioning
which is one of the key activities of network management that aims at achieving desired
levels of quality of service. Current practices of provisioning by network operators are
based on rules-of-thumb and on rough traffic measurements. For example, the link provi-
sioning is done by adding to the average obtained via SNMP a safety margin (e.g., 30% of
the calculated average) [42]. However, traffic measurements showed that traffic perform
high variations at small aggregation times [127, 3, 134]. Consequently, the link usage and
the bandwidth need are not correctly estimated, resulting in poor network performance
(in the case of underestimation), respectively waste of resources (in the case of overestim-
ation). In general, the key challenge in bandwidth provisioning is to create an adequate
model of current and future traffic behaviour. (2) A traffic model can be used to predict
customers’ bills using the 95th percentile method. This method is based on measuring the
utilisation of a customer link in 5-minute bins throughout a month, and then computing
the 95th percentile of these values as the billing volume [180, 160].

Hence, we formulate the second research question as follows:

e Research Question 2. i. How can we understand the Internet traffic behaviour
by investigating real Internet traces? . Can we find a well-established statistical
methodology that can be used to find the best model that can characterise traffic
volume? iii. What are the benefits of characterising and modelling Internet traffic

volumes?

1.3 Research Contribution

This thesis is the amalgamation of research on efficient data transport protocols for data
centres and a comprehensive and systematic study of Internet traffic, which came as a res-
ult of the need to understand traffic patterns and workloads in modern computer networks.

More specifically, the research contribution of this thesis is as follows.

Contribution 1. We propose SCDP [10] (Research Question 1), a general-purpose
transport protocol for data centres that, unlike any other protocol proposed to date,
supports efficient one-to-many and many-to-one communication. This, in turn, results in
significantly better overall network utilisation, minimising hotspots and providing more
resources to long and short unicast flows. At the same time, SCDP supports fast com-
pletion of latency-sensitive flows and consistently high-bandwidth communication for long
flows. SCDP eliminates Incast [38, 39, 202] and Outcast [152]. All these are made pos-
sible by integrating RaptorQ codes [67, 173] with receiver-driven data transport [66, 140],
in-network packet trimming [40, 66] and Multi-Level Feedback Queuing (MLFQ) [24].

RaptorQ codes are systematic and rateless, induce minimal network overhead and sup-
port excellent encoding/decoding performance with low memory footprint. They naturally
enable one-to-many and many-to-one data transport. They support per-packet (encoded
symbol) multi-path routing and multi-homed network topologies [85, 178]; packet reorder-
ing does not affect SCDP’s performance, in contrast to protocols like [109, 13, 157]. In
combination with receiver-driven flow control, and packet trimming, SCDP eliminates In-
cast and Outcast, playing well with switches’ shallow buffers. The systematic nature of
RaptorQ codes enables fast, decoding-free completion of latency-sensitive flows by prior-
itising newly established ones, therefore eliminating loss (except under very heavy loads).
Long flows are latency-insensitive so lost symbols can be recovered by repair ones; SCDP
employs pipelining of source blocks, which alleviates the decoding overhead for large data
blocks and maximises application goodput. SCDP is a simple-to-tune protocol, which, as
with NDP and scalable multicasting, will be deployable when P4 switches [30] are deployed
in data centres.

We found that SCDP improves goodput performance by up to ~50% compared to NDP
with different application workloads involving one-to-many and many-to-one communic-
ation. Equally importantly, it reduces the average FCT for short flows by up to ~45%
compared to NDP under two realistic data centre traffic workloads. For short flows, decod-
ing latency is minimised by the combination of the systematic nature of RaptorQ codes and
MLFQ; even in a 70% loaded network, decoding was needed for only 9.6% of short flows.
This percentage was less than 1% in a 50% congested network. The network overhead
induced by RaptorQ codes is negligible compared to the benefits of supporting one-to-
many and many-to-one communication. Only 1% network overhead was introduced under

a heavily congested network. RaptorQ codes have been shown to perform exceptionally

6

well even on a single core, in terms of encoding/decoding rates. We, therefore, expect that
with hardware offloading, in combination with SCDP’s block pipelining mechanism, the

required computational overhead will be insignificant.

Contribution 2. We develop a simulation framework [7] for data centre transport pro-
tocols (Research Question 1), including a simulation model for NDP [66], the state of
the art data transport protocol for data centres, a fat-tree network topology and per-
packet ECMP load balancing. We describe how we integrated our model with the INET
Framework and present example simulations to showcase the workings of the developed
framework. For that, we conducted large scale experimentation evaluating and validat-
ing different components and parameters of the developed models. We have used the
developed framework to understand the behaviour of NDP in various diverse network
scenarios, including one-to-many and many-to-one communication, Incast and Outcast,

for evaluating SCDP and comparing its performance with NDP.

Contribution 3. We present an extensive statistical analysis applied to the real Internet
traffic datasets (Research Question 2) [8]. We use a rigorous statistical approach to fitting
a statistical distribution to the amount of traffic within a given time period. We investigate
the distribution of the traffic over a wide range of values of timescales. We show that this
distribution has considerable implications for network planning; for assessing how often a
link is over capacity and in particular for service level agreements (SLAs), and for traffic
pricing, particularly using the 95th percentile scheme [180]. Previous authors have claimed
that the normal (or Gaussian) distribution is the best fit for the traffic volume [134, 54, 52].
Others claim that heavy-tailed distributions are better in fitting the traffic [51, 199].

We use a well-established statistical methodology [44] to show that a log-normal dis-
tribution is a better fit than Gaussian or Weibull for the vast majority of traces. This
holds over a wide range of timescales 7' (from 5 ms to 5 sec). We study a large number of
publicly available traces from a diverse set of locations (including commercial, academic
and residential networks) with different link speeds and spanning the last 15 years. We
develop the mathematics to show how often a link following a given distribution will be
over a given capacity and show that our approach improves greatly on results assuming
traffic follows a normal distribution. We further show that if an ISP wishes to estimate
future transit bills that use the 95th percentile billing scheme, then the log-normal is a

better model than the normal distribution.

Overall. The techniques that we suggest to study Internet traffic could be adopted
for data centres traffic. Besides, understanding the characteristics of Internet traffic by
investigating real Internet traces from different networks is a right step towards designing
and developing new protocols. Hence, Contributions 1&2 of designing data transport

protocol for data centres are achieved by the help of the outcomes in Contribution 3.

1.4 Thesis Structure

This thesis is structured as follows:

e Chapter 2 gives an overview of the background literature that is related to the work
presented in this thesis. The chapter first introduces the most commonly deployed
data centre topologies and discusses modern data centre applications and produced
traffic workloads. Next, it describes recently proposed TCP variants and other data
transport schemes in DCNs. Additionally, it provides a brief description of fountain
codes, including LT and RaptorQ codes. We then focus on literature related to the

characterisation of the volume of Internet traffic.

e Chapter 3 includes the paper on developing SCDP [10], a fountain coding-based
data transport protocol. Through large-scale simulations, we demonstrate the su-
periority of SCDP in comparison to TCP and NDP for a large and diverse set of
traffic workloads and networking scenarios. For completeness, we also provide our

early publication that set the foundation for researching SCDP [9].

e Chapter 4 includes the paper on developing a simulation framework for data centres
and evaluating data centre protocols in OMNeT++ [7]. The paper describes the de-
veloped framework, including the fat-tree topology, per-packet and per-flow ECMP,
flow scheduling and the NDP model. The paper then evaluates the performance of
NDP in OMNeT++ in a simulated fat-tree topology.

e Chapter 5 includes the paper on the characterisation of Internet traffic volumes
using a robust statistical approach [8]. The findings suggest that the log-normal
model is a good distribution to fit Internet traffic, which is important for operators

for network dimensioning and traffic billing purposes.

e Chapter 6 draws conclusions arising from the work of this thesis, and presents

directions for future work.

1.5 Related publications

The works described in this thesis is included in the following published and submitted

papers.

e Mohammed Alasmar, George Parisis and Jon Crowcroft, “Polyraptor: embracing
path and data redundancy in data centres for efficient data transport”. In Proceed-
ings of ACM SIGCOMM 2018 (Poster Sessions), Budapest, Hungary [9].

e Mohammed Alasmar, George Parisis and Jon Crowcroft, “SCDP: Systematic Rate-
less Coding for Efficient Data Transport in Data Centres”. IEEE/ACM Transactions

on Networking 2019 (submitted)®.

e Mohammed Alasmar and George Parisis, “Evaluating Modern Data Centre Trans-
port Protocols in OMNeT++ /INET”. In Proceedings of the OMNeT++ Community
Summit 2019, Hamburg, Germany [7].

e Mohammed Alasmar, George Parisis, Richard Clegg and Nickolay Zakhleniuk, “On
the Distribution of Traffic Volumes in the Internet and its Implications”. In Pro-
ceedings of IEEE INFOCOM 2019, Paris, France [8].

Shttps://arxiv.org/abs/1909.08928

https://arxiv.org/abs/1909.08928

Chapter 2
Background

In this chapter, we present research and background works that are relevant to this thesis.

The background includes two main strands of work as follows:

e In the first part of this chapter, we present the background that is related to design-
ing a reliable data transport protocol in data centre networks. This is divided
into these sections. Firstly, we present the network architecture of today’s data
centres (§2.1). Secondly, we describe mechanisms for load balancing and multicast-
ing in data centres (§2.2). Thirdly, we discuss the main TCP limitations in today’s
data centres (§2.3). Next, we provide an overview of the most common and re-
cent data transport protocols and flow scheduling approaches for DCNs (§2.4, §2.5).
Besides, we discuss research on data centre network traffic characteristics (§2.6).
Furthermore, we motivate the benefits of adopting fountain codes in data transports
by discussing their properties (§2.7). We also introduce the used network simulator
in this work (§2.8).

e In the second part of this chapter, we present the background of Internet traffic
volume characteristics and how to use a robust statistical approach to model traffic

volumes. We also describe some use cases of such model (§2.9).

2.1 Data Centre Network Topologies

2.1.1 Switch-centric and server-centric topologies

Data Centre Network (DCN) topologies are categorised into server-centric and switch-
centric according to the employed routing protocols and the components that perform
routing and switching. In server-centric topologies, servers act as the relaying nodes in
multi-hop networks. BCube [85] and DCell [87] are examples of this approach. On the
contrary, in switch-centric topologies, switches act as the relaying nodes. Fat-tree [5],
VL2 [83] and PortLand [145] are switch-centric topologies.

Fat-tree [5] is a commonly deployed topology in modern data centres. A fat-tree data

iaggregation

Yt St

o hU NN Nes 6088 v

Figure 2.1: Fat-tree topology [5]

centre network is divided into three layers: the core, aggregation, and edge layer. It is
a folded Clos topology [1]. An important feature of this network topology is its ability
to offer full bisection bandwidth. Full bisection bandwidth means that any server can
communicate with any unused server at full line-rate. Non-blocking networks provide full

bisection bandwidth. The edge of the network is usually oversubscribed [5].

A Fat-tree DCN is composed of k£ pods. Each pod contains k servers and k switches.
These switches are divided into two layers, each one consisting of k/2 switches. The first
layer is the edge (top of rack switch) where each switch is connected to k/2 of the servers
in the same pod, while the second layer is the aggregation layer where each switch is
connected to k/2 of the core switches. Each core switch is connected to one aggregation
switch of each pod. The maximum number of servers in a Fat-tree with &k pods is (k/3)%.
In a k-ary Fat-tree topology there are k/ 22 core switches which is the same number as
the shortest-paths between any two servers on connected pods. Figure 2.1 shows a 4-ary

Fat-tree topology consisting of 16 hosts.

In fat-tree topologies, servers can communicate with other servers in the same rack at
the full rate of their interfaces (1:1 over-subscription). However, the presence of multiple
levels leads to high oversubscribed ratios at the aggregation and core switches, for example,
1:20 oversubscribed indicates that 1 Gbps of up-link for 20 servers each one with 1 Gbps
interface.

The existence of multiple equal-cost paths in this topology can be exploited to deploy
multipath protocols (i.e., MPTCP [158]), which provide better performance and higher
throughput.

Fat-tree topologies have a number of limitations. Most importantly, they suffer from
wiring complexity and high deployment costs, especially as the number of servers increases.
In case of failure, there are no direct alternative nodes around the failure node. This means

that only the source switch can be used to reroute the failure. This indicates that the

11

nodes that have alternative paths are on the other side of the network and comes from the
fact that fat-tree networks are symmetric. The AB fat-tree topology has been proposed
to provide better network-level failure recovery [118]. Moreover, it is hard for fat-tree
topologies to be expanded by a small number of hosts since any expansion requires a full
pod to be added to maintain consistency in the network.

PortLand [145] applies a logically centralised Fabric Manager that contains the in-
formation of the network configuration such as topology. The fabric manager is a user
process running on a specific machine inside the data centre. The idea of deploying a cent-
ralised manager can help in reducing the complexity of routing, but at the same time it
decreases robustness. Therefore, the amount of information in the fabric manager should
be limited to maintain high robustness. In Virtual Layer 2 (VL2) topology [83] the key
objective is to redesign the traditional Layer 2/3 network architectures to be more ef-
ficient for modern data centres i.e., VL2 requires modifying end-host OS and network
stacks. DCell [87] and BCube [85] are server-centric DCN topologies, where servers act
as relaying nodes in multi-hop networks. Jellyfish [178] is an unstructured data centre
network topology, where it is easy to add/replace servers and switches.

Our proposed transport protocol [10] is agnostic to the underlying data centre network
topology and only requires specific in-network functionality (i.e. packet trimming) that is

or will be readily available when P4 [30] switches are deployed in data centres.

2.1.2 Google, Facebook and Microsoft DCNs

Google [176], Microsoft [177, 83] and Facebook [17] data centre network topologies follow
the fat-tree design. In the Jupiter [176] data centre generation (shown in Figure 2.2),
Google use their own switches using 16 x 40Gbps merchant silicon and a ToR switch
has 48 x 40Gbps connections to servers in the rack and 16 x 40Gbps connections to the
aggregation switches. Four such switches form a Middle Block (MB), which serves as
a building block in the aggregation block. The logical topology of an MB is a 2-stage
blocking network, with 256 x 10Gbps connections to ToRs and 64 x 40Gbps connections
to the spine. Each ToR connects to eight MBs with dual redundant 10Gbps links. An
aggregation block has 512 x 40Gbps or 256 x 40Gbps links towards the spine blocks. A
spine block has six switches with 128Gbps ports to the aggregation blocks. There are 64
aggregation blocks.

2.1.3 Flexibility and performance optimisation in modern data centres

Recently, a number of techniques have been proposed to give operators more room for
performance optimisations. This includes some new technologies that are deployable in
data centres such as P4 Switches [30], Advanced NICs [73], DPDK [171] and RDMA [98].

12

Spine Block
Merchant Centauri
Silicon 32x40G up D,:l Dj D] E\D
0O (T [T s o [l 1x40G
128x10G down to 64 aggregation blocks
64x40G up
- Aggregation block (512x40G to 256 spine blocks)
EE' ,l—l—' LLI LLJ MB MB MB MB MB MB MB MB
i 71806 1 L2 i3 il Al s L6 17 18
256x10G down ‘ T12x10G
Middle Block (MB) ﬁmﬂmm“mmummummmmmxﬂ ﬁﬁ

Figure 2.2: Google Jupiter data centre topology [176]

P4 Switches. Programmable data planes (PDPs) allow the packet processing functions
to be changed at the forwarding devices, i.e., switches can apply new forwarding functions
at the line rate. This is orthogonal to programmable forwarding planes (e.g., SDN) where
different forwarding rules can be selectively applied to packets. PDPs make it easier to
deploy traffic control schemes that depend on custom in-network processing or feedback.
For example [14, 15, 95, 66] rely on custom packet headers and feedback from switches. P4
(Programming Protocol-Independent Packet Processors)® [30] is a high-level open-source
language to program Protocol-Independent Switch Architecture (PISA) switches which is
vendor independent, and protocol independent (i.e., operates directly on header bits and
can be configured to work with any higher layer protocol). P4 compiler can also compile

P4 code to run on a general purpose processor as software switches [146].

Advanced NICs. Several vendors have been developing NICs with advanced offloading
features. These features allow complex operations at high line rates of data centres (40
Gbps and more) which at the OS may incur significant CPU overhead and additional
communication latency. Examples of offloading features include cryptography, quality
of service, encapsulation, congestion control, storage acceleration, erasure coding, and
network policy enforcement. Examples of these advanced NICs: Mellanox ConnectX [135]
and Microsoft SmartNIC [73].

DPDK. Data Plane Development Kit (DPDK) [171] consists of libraries to accelerate
packet processing by allowing userspace programs to directly access NIC buffers to read
incoming packets or write packets for transmission. It works by bypassing Operating
System’s networking stack and use polling instead of interrupts. DPDK is able to reduce

the number of required cycles to process a packet by up to 20x on average [62, 146].

"https://p4.org/specs/

https://p4.org/specs/

13

RDMA. Remote Direct Memory Access (RDMA) [86, 203, 98, 175] is a transport pro-
tocol that allows delivery of data from one machine to another machine without involving
the OS networking protocol stack. RDMA operates on the NICs of machines communicat-
ing. Compared to TCP, RDMA offers higher bandwidth and lower latency at lower CPU
utilization. TCP has been the dominant transport protocol across data centres for the ma-
jority of applications. Since implemented as part of OS protocol stack, using TCP at high
transmission rates can exhaust considerable CPU resources and impose a notable amount
of communication latency. Unlike TCP, RDMA needs a lossless network; i.e. there must
be no packet loss due to buffer overflow at the switches. RDMA over Converged Ether-
net (RoCEv2) [98] allows RDMA over an Ethernet network by using PFC (Priority-based
Flow Control) [149]. PFC prevents buffer overflow by pausing the upstream sending entity

when buffer occupancy exceeds a specified threshold.

2.2 Load Balancing and Multicasting in Data Centres

Load Balancing in data centre networks. Routing protocols in data centre networks,
such as Equal-Cost Multi-Path (ECMP) [96], which provide per-flow load balancing can
cause significant underutilisation in the network due to collisions of large flows [59, 66].
Randomised load balancing by switching any incoming flow randomly to one of the avail-
able links can cause high congestion in some links. Per-packet ECMP may cause out-of-
order packet delivery, which affects the performance of all lows when TCP is employed
as a transport protocol [66].

In [59], the authors showed that random packet spraying (RPS) leads to better load
balance and network utilisation than per-flow ECMP. RPS incurs little packet reordering
since it exploits the symmetry in DCNs. This approach is less complex than other ap-
proaches as Hedera [6] and MPTCP [157] and it is readily implementable. RPS would be a
good load balancing option to work with transport protocols that can handle out-of-order

packets as NDP [66] and SCDP [10], the transport protocol proposed in this thesis.

Multicast support in data centre networks. In modern data centres, one-to-many
group communication workloads are common for tasks, such as file dissemination, data
replication, distributed messaging etc. [88, 172, 117]. One-to-many workloads exploit sup-
port for network-layer multicast (e.g. with [172, 132, 64, 116, 68]) and coordination at the
application layer; for example, in a distributed storage scenario, multicast groups could
be pre-established for different replica server groups or setup on demand by a metadata
storage server [147]. Multicast is widely considered as the best solution since it natively
involves less traffic load and server overheads [172]. With recent advances in scalable
data centre multicasting, a very large number of multicast groups can be deployed with
manageable overhead in terms of switch state and packet size. For example, Elmo [172]

encodes multicast group information inside packets, therefore minimising the need to store

14

state at the network switches. Elmo can support an extremely large number of groups,
which can be encoded directly in packets, eliminating any maintenance overhead associ-
ated with churn in the multicast state. “In a three-tier data centre topology with 27K
hosts, Elmo supports a million multicast groups using a 325-byte packet header, requiring
as few as 1.1K multicast group-table entries on average in leaf switches, with a traffic
overhead as low as 5% over ideal multicast” [172]. Eventually, multicast has already been
deployed in data centres?, but with the advent of P4 [30], scalable multicasting is becoming
practical [172].

2.3 TCP Limitations in Data Centre Networks

TCP: Transmission Control Protocol

The Transmission Control Protocol (TCP) is the de-facto data transport protocol for
the Internet, ensuring reliable, in-order data transmission between two endpoints. TCP
ensures reliable data delivery by applying error recovery and flow control through an end-
to-end connection. TCP handles packet losses, that are due to transmission errors or
network congestion. TCP congestion control algorithms (such as Tahoe [16], Reno [16],
Vegas [34], New Reno [94], CUBIC [89], and Compound [179]) throttle the sender when
the network becomes congested.

TCP is nowadays considered ill-suited for modern DCNs [65, 66, 24] that support
high-bandwidth, low-latency links and applications with wildly varying requirements.
Known problems that TCP suffers from in such networks include TCP Incast [38] and
Outcast [152], latency due to queue build-up and buffer pressure [13] and low resource
utilisation [66]. Moreover, TCP cannot inherently support the extremely common one-to-
many and many-to-one traffic workloads of modern data centres. These limitations are

shown in Figure 2.3, which we discuss in the following sections.

2.3.1 TCP Incast

In many-to-one communication, the presence of many concurrent and parallel flows to a
single switch result in throughput collapse. This phenomenon is called TCP Incast [38].
It is a drastic reduction in application level throughput that is presented when simul-
taneous TCP requests from a number of concurrent senders (see Figure 2.4) are sent to
a single receiver. The congestion at the switch buffers leads to extensive packet loss.
The retransmission of any lost packet occurs after the RTO (Retransmit TimeOut) timer
fires. When there are no massive losses, retransmission can be faster by using duplicate
acknowledgements to invoke Fast Retransmit phase. The RTO is generally in order of

hundreds of milliseconds but the RTT in a DCN is often just hundreds of microseconds

2e.g. https://www.rackspace.com/en-gb/cloud /networks

15

low modern
utilisation workloads

throughput collapse TCP uses per-flow load no support for
due to triggering balancing to avoid out- parallelised requests
many timeouts of-order delivery and replicas read/write
TCP limitations in DCNs
unfairness between per-flow ECMP causes high FCT due to long
flows due to port less utilisation and heavy queueing delay and
blackout and tail drops congestion buffer pressure

Figure 2.3: TCP limitations in DCNs

(i.e. RTO >> RTT). This means that the sender should wait a minimum of RTO before

receiving any subsequent segments, which leaves the relevant links entirely idle [39, 38].

Switch .
Receiver

/ Throughput drops to
small % of link capacity

Sender 1

Sender 2

Sender 3

b apo

Sender N

Figure 2.4: Incast phenomenon

This behaviour causes severe reduction in the application throughput and it increases
the job completion times that are observed by the users. Employing developed TCP con-
gestion control mechanisms such as NewReno, SACK, and ECN improve the throughput,
but do not solve the throughput collapse due to TCP Incast [38]. Approaches that deal
with TCP Incast problem will be discussed later in this chapter.

2.3.2 TCP Outcast

Bandwidth sharing via TCP in commodity data centre networks organised in multi-rooted
tree topologies can lead to severe unfairness, which is termed as the TCP Outcast problem.
TCP Outcast occurs when a small set of flows share a bottleneck with a large set of flows.
This is common in data centre tree topologies where any edge switch with two input ports
has two input competing flows (a small set of flows from the neighbour servers and large set

of flows from servers in different pods) which are forwarded at one common output port,

16

as shown in Figure 2.5. The small set of flows suffers from unfairness at this bottleneck,

which is manifested as lower throughput compared to other flows [152].

12 ﬂowi/ —}AppZ
! Appl

Boj heck 2 flows
ToR1

ToRO

A

Figure 2.5: Outcast phenomenon [152]

TCP outcast is related to a phenomenon called port blackout. This occurs due to
employing tail-drop queues in commodity switches. Port blackout can be essentially ex-
plained as follows. When a series of packets enter the switch from different input ports,
they must compete for the only output port. Some of the packets may luckily get into the
switch’s cache, while the rest of them will only be discarded, since the queue in the output
port is full. Figure 2.6 illustrates an example of port blackout where there are packets
coming in from input port A and packets coming in from input port B and they are com-
peting at output port C. The arrived packets from port A are dropped due to a full queue.
The port blackout occurs due to the existence of flows with roughly the same packet size.
Furthermore, TCP outcast appears in many-to-one communication forms where two sets

of flows compete at the input ports [152].

Packet Arrival

Port A ! A A3
ot | Bl X | B2 x | B3 X
Queue

Full Full Full

Port C c1 / 2 ‘ c3 ‘ Time

Packet Dequeue

Figure 2.6: Example of Port Blackout [152]

Intuitively, flows with high RTT achieve lower throughput than flows with low RTT.
However, the presence of TCP outcast in DCN causes higher throughput for flows that

have higher RTT. In [152], the authors have evaluated a number of solutions to overcome

17

the TCP outcast problem. These solutions include using different queuing mechanisms

such as Stochastic Fair Queuing (SFQ)[133] and Random Early Detection (RED) [75].

2.3.3 Buffer pressure and queue build-up

In DCNs, there are two types of TCP flows: short lived and long lived, with sizes that
typically range from 2 KB to 100MB [201, 13]. Short-lived flows are latency sensitive,
while long-lived flows are latency insensitive. The sharing of a bottleneck between short
and long flows increases the latency for the short flows. Therefore, short flows may suffer
from poor performance due to a large number of packets lost, timeouts and frequent
retransmissions. The queue build-up results in full buffer space, since buffers are shared
resources. This leaves very little space for any incoming packets. As a consequence of
frequent retransmissions due to packet drops, the TCP sender needs to reduce the size
of congestion window and needs more RTTs to complete the flow. Furthermore, in data
centre networks the majority of the traffic is bursty, and hence, packets of short-lived
TCP flows get dropped frequently [13]. Like TCP Incast, buffer pressure occurs due to
the presence of many requests to a relatively small switch buffer, but it occurs without
requiring barrier-synchronised flows [13].

In a TCP connection with large traffic, queues build up gradually. The queue build-up
depends on how much buffer space is not occupied and on the present traffic. When both
short and long flows traverse through the same switch, the performance of the short flows
is significantly affected. In such scenario, the short flows suffer from high queuing delay
with a high probability of packet dropping. Queue build-up can be avoided by employing
a proactive data transport mechanism (e.g. DCTCP [13]) which can minimise the queue
occupancy by imposing an effective congestion control algorithm [13].

It was found that latency-sensitive TCP connections with packet loss take on average
five times longer to complete than those without any loss due to the loss detection and
recovery mechanism of TCP [74]. Also, it was reported that most losses occur at the
tail of a transmission burst, which does not have enough acknowledgements to trigger

fast retransmission; thus, losses are recovered through expensive retransmission timeouts

(RTOs) [74, 50].

2.3.4 Single-path TCP (per-flow connection)

In Modern DCNs, transport protocols should exploit the existence of multiple equal-
cost paths to better balance traffic in the network, eliminating hotspots and achieving
high throughput. TCP and its single-path variants, such as DCTCP, do not fully utilise
the available bandwidth in DCN, which results in the degradation of throughput and
unfairness. Multi-path TCP (MPTCP) [157] was proposed to overcome the utilisation
limitation of TCP.

18

2.3.5 Modern workloads/applications in DCNs

Applications that commonly run in DCNs can be categorised as follows 3 [151]:

Control and management applications: for example, clock synchronisation (e.g.,

Precision Time Protocol [181]) and cluster management (e.g., Google’s Borg [190]).

Data storage and retrieval: for example, distributed file systems (e.g., HDFS/GFS [70],
distributed database systems (e.g., Spanner [45]) and key-value stores (e.g., Memcached [136]).
The Hadoop Distributed File System (HDF'S) [21] (&Google File System [70]) is designed
to reliably store very large files across data nodes in a large cluster (MapReduce [56] is
a framework to process in parallel large amount of data stored over the data nodes). It
stores each file as a sequence of blocks. The blocks of a file are replicated for fault toler-
ance (the replication factor is three). Write operation: (Figure 2.7a) HDFS’s placement
policy is to put one replica on one node in the local rack, another on a node in a different
(remote) rack, and the last on a different node in the same remote rack. Clients write
data to replicas following a daisy chain and pipelined manner where each replica is for-
warded as it is received by each replica server. In GFS’s daisy-chained writes, the client
writes to the topologically nearest replica, which in turn writes to the next replica, and
so on. Read operation: (Figure 2.7b) a client reads data from the topologically nearest
replica. HDF'S read operations happen in parallel (parallel reads of different blocks in the
file) instead of sequential like write operations. The read operation ensures parallelism by

concurrently requesting to read distinct blocks from the same client.

== N

'S, /> ——
I A

Y

/

(/

(a) write
2} replica2 replica3 replica2 replica3

lical
replica CN: Client Node, DN: Data Node

Figure 2.7: Write/read requests in HDFS. Example of writing a 256 MB file (2 blocks 128
MB each) by a client node and reading the file by another client node

30ur proposed data transport protocol SCDP supports all these workloads

19

Applications serving users’ needs: for example, data processing frameworks (MapRe-
duce [56]), graph processing (e.g., Apache Giraph [18]), stream processing (e.g., Apache
Storm [20]), machine learning analytics (e.g., Tensorflow [2]), Web traffic [19], search en-
gine and social network backends. In addition to these, tenant applications running in
VMs, which can be any of the previous applications or custom applications.

In the MapReduce pattern [56], a mapper reads its input from the distributed file
system (DFS), performs user-defined computations on the input read and writes interme-
diate data to the disk. Each reducer pulls the intermediate result from different mappers
(shuffle phase), merges them, and writes the output to the DFS, which then replicates it
to multiple destinations.

In the partition-aggregation pattern [13], user-facing online services (e.g., search res-
ults in Google or Bing, home feeds in Facebook) receive requests from users and send
it downward to the workers using an aggregation tree. At each level of the tree, indi-
vidual requests generate activities in different partitions. Ultimately, worker responses are

aggregated and sent back to the user within strict deadlines.

superstep(/)

reducers

superstep(i+1

—

workers barrier

write
barrier
(a) MapReduce (b) Partition-aggregate (c) Bulk Synchronous Parallel (BSP)

Figure 2.8: Communication patterns examples in DCN [41]

2.4 Existing Data Transport Protocols and Flow Scheduling
Approaches for DCNs

Recently, a large body of data transport protocols and flow scheduling approaches aimed at
tackling various performance targets in data centres have been proposed. Approaches focus
on either achieving low latency such as DCTCP [13], pFABRIC [15], PTAS [24], pHost [80],
NDP [66], HOMA [140], D2TCP [186], CAPS [97], TIMELY [164], DCQCN [203] and
QJUMP [84] or high throughput as in MPTCP [63], MMPTCP [109], Hedera [6], RPS [59]
and FMTCP [48]. NDP [66] and Homa [140] appear to perform well with respect to both
low latency and high throughput requirements by combining a number of data transport
mechanisms. Incast was discussed in some of these works [189, 13, 195, 102, 140, 66]. In
this section, we discuss some of the proposed data transport protocols and briefly discuss

how they tackle specific TCP limitations in data centres.

20
2.4.1 Data Centre TCP (DCTCP)

DCTCP [13] has been proposed to improve the TCP congestion control mechanism for
DCNs. It utilizes the Explicit Congestion Notification (ECN) option [162], which is avail-
able in modern data centre switches. DCTCP aims to overcome the TCP impairments
such as Incast, queue build-up and buffer pressure. DCTCP follows a proactive approach
since it attempts to avoid packet loss rather than waiting until packet loss occurs. DCTCP
uses an efficient marking scheme mechanism at switches. The switch marks any incoming
packet’s CE (Congestion Experienced) code point when the queue occupancy is larger
than marking threshold K. At the sender, DCTCP responds to a marked ACK (when
queue length is larger than threshold K) by reducing the cwnd based on the fraction of
marked packets in the most recent window of data. The receiver sets the ECN flag when
a packet with the CE mark is received. This occurs when the bottleneck link buffer size is
larger than a threshold K. For a set of synchronised flows competing for a shared link of
capacity C packets/second with identical RT'T seconds, the lower bound of the marking
threshold K is C' x RTT/7 [13].

The experimental results of DCTCP show that short flows achieve low latency and
long flows achieve high throughput [13]. TCP convergence and fairness are very poor
compared to DCTCP [13]. TCP requires several seconds to converge [114]. This problem
is caused by the poor performance of receive buffer tuning [13].

Two drawbacks of DCTCP have been identified in [104]. Firstly, DCTCP and TCP do
not coexist well. It is observed that the existence of DCTCP causes regular TCP flows to
stop completely [104]. Secondly, DCTCP does not allow ECN Capable Transport (ECT)
to be set on neither SYN nor SYN/ACK packets [162]. Therefore, the non-ECT SYN
and SYN/ACK packets will be dropped in the congestion case when the queue length
is larger than the marking threshold. This reduces the probability of establishing a new
DCTCP connection promptly. The authors of [104] have proposed employing ECT in SYN
and SYN/ACK packets to improve DCTCP connection establishment. DCTCP does not

exploit the existence of multiple equal-cost paths in modern data centres.

2.4.2 Multipath TCP (MPTCP)

In conventional TCP, the flow has to be sent over a single path. This single-path approach
does not work efficiently with today’s DCNs. In modern data centres, the availability
of many paths between two endpoints should be exploited effectively [63]. Multipath
TCP (MPTCP) has been standardised by the IETF MPTCP working group in order
to provide efficient and fair resource sharing between competing flows. The group has
published six RFCs, which discuss different features of MPTCP, such as the architectural
components for MPTCP development [78], congestion control mechanism for multipath
transport protocols [159], MPTCP implementation instructions [77], MPTCP application

interface considerations [169], security considerations for MPTCP [22], and an analysis of

21

the residual threats for MPTCP [23].

MPTCP improves resource utilisation between two multi-addressed endpoints by us-
ing multiple paths. It provides the ability to transmit the network traffic over multiple
concurrent paths on a single transport-level connection. This provides significant advant-
ages in terms of goodput over traditional TCP. MPTCP works by splitting data from a
single TCP connection into multiple subflows and leveraging ECMP [96] to route them
over multiple paths. The transport layer in MPTCP is divided into two sublayers, namely,
MPTCP and subflow TCP. MPTCP is backwards compatible since it can switch to a con-
ventional TCP connection if the server does not support MPTCP. Besides, MPTCP is
implemented to be compatible with existing applications and it provides the same socket
interface as TCP [77].

In MPTCP, data can be sent over any of the established subflows over multiple paths.
This can cause out-of-order delivery of data packets. This is due to sending packets
over different paths with different round-trip times (RTT). MPTCP employs two levels
of sequence numbers: subflow sequence number (SSN) and data sequence number (DSN).
The SSN is similar to the conventional TCP sequence number, which guarantees that data
is transmitted in order over each subflow and it helps in detecting any loss, whereas the
DSN is used to reassemble packets received from different subflows. Consequently, MPTCP
uses two levels of acknowledgements, connection-level acknowledgements or DATA_ACKs
to acknowledge the reception of a packet with expected DSN. In addition, it uses regular
TCP acknowledgements to acknowledge the reception of packets sent over the subflow
independently of their DSN. Any lost packet can be retransmitted over any of the available
subflows [77].

COUPLED has been proposed as an MPTCP congestion control algorithm [159, 194].
COUPLED algorithm works by moving the traffic of a multipath flow to the least-congested
path. This algorithm depends on the total congestion window size of all subflows wyet.
For each acknowledgement on path r, the congestion window increases by 1/wiot, while
it decreases by wiot/2 for each loss [159]. In COUPLED, as the least-congested paths are
the only paths that are used, this can cause loss of some paths which are underutilised.
Therefore, it is important to keep some traffic on these paths (e.g. the congestion window
size can be kept 1 packet size as a probe) to re-employ them when the congestion will
decrease.

Employing MPTCP in DCNs gives better results in terms of throughput, fairness,
and robustness [158, 194]. However, throughput may collapse when multiple subflows
collide on the same path. In MPTCP, the completion times of short flows increase as the
number of subflows increases. MPTCP can do little to help with the latency of very short
transfers. Maximum MPTCP (MMPTCP) [109, 106, 107, 108] has been proposed
to decrease short flows’ completion times, while ensuring high throughput for long flows.
MMPTCP initially scatters packets and then switches to the MPTCP after sending a

specific amount of data. To prevent spurious fast retransmission, MMPTCP increases the

22

fast retransmission threshold.

2.4.3 pFABRIC: optimal flow completion times

pFABRIC [15] (priority-based packet scheduling and dropping at switches) aims at provid-
ing near-optimal flow completion times for short flows by switching packets based on strict
priorities. pFabric decouples flow prioritisation from rate control. pFabric’s approach is
different from DCTCP’s [13], where feedback from the network is used to adjust the rate
control loop to ensure that high-priority small flows do not see large queues of packets
from long flows.

pFabric works very well for short flows as it employs greedy Shortest Remaining Pro-
cessing Time (SRPT), hence it achieves close to theoretically minimal FCT. SRPT is used
as an optimal flow scheduling to assign priorities. pFabric leverages priority queues in
switches. In pFabric, end hosts add a number in the packet header that represents its pri-
ority. Packets are scheduled and dropped at switches based on their priorities. If the queue
overflows, then the switch drops any new incoming packet if it has less priority than the
buffered packets. Otherwise, the switch drops the buffered packet with the lowest priority
and it buffers the high priority incoming packet. When transmitting, the switch sends the
packet with the highest priority. In this way, the switches can operate independently in a
greedy and local fashion using priority-based scheduling and dropping mechanism.

pFabric requires specialised network hardware that implements a specific packet schedul-
ing and queue management algorithm. In pFabric, near-optimal FCT can be achieved if
each flow can be assigned to a unique priority, so that the link bandwidth can be alloc-
ated to flows strictly according to their priorities. There are millions of flows in a DCN.
So ideally, we’d like to have the same number of priorities. However, existing commod-
ity switches only provide a very limited number of priority levels. For example, some
commodity switches only support eight priorities queues, and in practice, not all of these
priority queues can be used for flow scheduling.

In pFabric, long flows suffer a noticeable degradation in the achieved throughput when
employing pFabric. In practice, no existing scheme can deliver the near-optimal latency of
SRPT at high network load [140]. pFabric approximates SRPT accurately, but it requires
too many priority levels to implement with today’s switches. Also, pFabric is difficult to
deploy as it delegates hosts to correctly prioritise their traffic assuming flow size is known

a priori.

2.4.4 pHost

pHost [80] emulates pFabric’s behaviour but using only scheduling at the end hosts and
hence allows the use of commodity switches. The priority-based packet scheduling happens
at end hosts in pHost, while it happens at switches in pFabric. pHost allows end hosts

to directly make scheduling decisions, thus avoiding the overheads of Fastpass’s [148]

23

centralised scheduler architecture. pHost transport empowers end hosts to perform flow
scheduling on the basis of grant assignments.

pHost is a receiver-driven transport that runs very small packet buffers and per-packet
ECMP, but does not use packet trimming (as in NDP [66]). pHost uses pull-based packet
scheduling using token packets generated from receivers in order to minimize the flow
completion time. However, pHost assumes congestion-free network (free congestion core)
by using a network with full bisection bandwidth and packet spraying. In addition, pHost
does require knowledge of individual flow size in advance.

Destinations can choose which source is entitled to transmit data packets by sending
tokens. Sources decide to which destination to reply when receiving multiple tokens.
pHost exploits packet-spraying to eliminate congestion by leveraging the property of DCN
of full-bisection bandwidth and avoiding explicit path-scheduling

The receivers then assign tokens to the flows, optionally specifying a priority level
to be used for the packets in the flow based on performance objectives e.g., using SRPT
algorithm for minimizing flow completion time or Earliest Deadline First (EDF) algorithm

for deadline-constrained traffic.

2.4.5 PIAS: Practical Information-Agnostic flow Scheduling

Information-aware schemes (e.g, pFabric [15]) require a priori knowledge of flow size or
deadline information, while the information-agnostic schemes (e.g., PIAS [24]), make no
assumption about the flow information. PIAS leverages multiple priority queues available
in existing commodity switches to implement a Multiple Level Feedback Queue (MLFQ),
in which a PIAS flow is gradually demoted from higher-priority queues to lower-priority
queues based on its priority. Priorities are set on packets of flow at sending end hosts
based on the number of bytes it has sent. As a result, short flows are likely to be finished
in the first few high-priority queues and thus be prioritised over long flows in general,
which enables PTAS to emulate SJF without prior knowledge of flow size information.
The main limitation in PIAS is that the thresholds of the MLFQ are based on using
a central server to collect and manage the traffic load information, which is then issued
to each end host to determine demoted thresholds for the priority queues. A challenging
task associated to MLFQ-based scheduling is the derivation of a set of demotion thresholds
that minimises the average and tail FCT. PTAS calculates these thresholds based on traffic
information consisting in the CDF of the flow sizes of the workload that will be present in
the network. After the derivation of the thresholds, they are distributed and deployed at
end hosts. Then, they use these thresholds to perform the packet tagging procedure [24].
However, since traffic in DCN presents time and space variations, a set of thresholds that

minimizes the FCT of a given workload might not be adequate for a different one.

24
2.4.6 Hedera: dynamic flow scheduling in data centres

To address the limitations of ECMP in data centres, Hedera [6] has been proposed as
a centralised approach that detects large flows, and then directs them to lightly loaded
links. Hedera is based on PortLand [145]. Hedera aims to maximise network utilisation by
enhancing PortLand routing and fault-tolerant mechanisms. The flow scheduler collects
flow information from switches. This includes the bandwidth utilisation of each flow, and
then assigns flows to non-conflicting paths. The scheduler avoids placing multiple flows on
a path that cannot fulfil large bandwidth demands [6]. Hedera performs significantly better
than the ECMP hash based flow placement [6]. Hedera’s limitations are related to the fact
that the scheduler needs to detect and mitigate possible congestion in a very short timescale
in the high bandwidth and low-latency networks, where traffic patterns are diverse, volatile
and unpredictable. Hedera as a centralised solution may face a scalability problem in data
centre networks. It has also been shown that Hedera, with a scheduling circle of 500ms,

can only achieve similar performance to randomised load-balancing mechanisms [201].

2.4.7 Homa: a receiver-driven low-latency transport protocol

Homa [140] is a receiver-driven low-latency transport protocol using network priorities.
Homa provides exceptionally low latency, especially for workloads with a high volume of
very short messages, and it also supports large messages and high network utilisation.
In Homa, the receiver drives the senders by assigning transmission credits. The credits
are used to specify which senders are allowed to transmit to the receiver and to define
the network priority to be used during the data transmission. The priority is selected by
exploiting information on the flow length distribution so as to prioritise short flows over
long ones.

A near optimal policy to minimise the average latency of short packet is the Shortest
Remaining Processing Time (SRPT) first scheduler. Such scheduler is hard to implement
in practice since the remaining processing time is not available at the server, and it requires

too many priority levels. Homa provides a better approximation to SRPT.

2.4.8 QJUMP: Queues don’t matter when you can JUMP them!

QJUMP [84], Ethernet Flow Control is a data link layer congestion control mechanism
that aims to avoid queuing delays that might affect especially short flows without requiring
the size of the flow in advance. QJUMP claims that applications dominated by short flows
exhibit low latency variance and that low throughputs require higher priorities whereas ap-
plications with high latency variance and high throughput require lower priorities. In order
to reduce this network interference, end hosts perform rate limitation in a non-intrusive
way; this enables the applications to specify their required priorities. This approach is
agnostic in the sense that it does not require to know in advance the size of the flows

in order to schedule them. However, QJUMP does not aim at improving the scheduling

25

but reducing the occupation of switch buffers. QJUMP requires an additional API which
implies modifications in the applications in order to use it. QJUMP applies QoS-inspired
concepts to data centre applications to mitigate network interference. QJUMP requires
priorities to be allocated manually on a per-application basis, which is too inflexible to

produce optimal latencies.

2.4.9 NDP: Novel Data-centre transport Protocol

NDP [66] takes a different approach to simultaneously achieving both low delay and high
throughput. The authors combine a number of existing ideas into a sophisticated clean-
slate design. NDP is a receiver-driven transport protocol; receivers can have all required
information about the congestion (by receiving data and header packets), therefore they

can swiftly react to congestion.

P

Senderl —)
Packets b ToR switch Receiver
': P.Q] Data Queue
Sender2 :
Packets H PoQ| Header Queue PULL QUEUE
-

(@ Each sender sends initial ‘\.:‘l P,
window (8 packets with

123164125
SYN flag) at line rate PoQ

(@The receiver opens connl and conn2, adds PULL
packet to the pull queue for every received packet
& sends ACK for each received packet.

e receiver starts
JRRTITLTTRN . pacing pull packets
& @, e it . ﬂﬂﬂ B to tZe corresi)or;.cliling
. S Tttt sender so as to fi
@PULLS trigger sending S N N SO~ .
new data. Free (® If data queue is full, then the receiver’s
) any new incoming packet incoming link (e.g.,
acknowledged data.
“‘g is trimmed and its header MTU/1Gbps)
is priority forwarded ~ SOLS
RS (® The receiver adds a Pull packet upon receiving
.... D 2 either header or data packet
. .| @ The receiver sends NACK to the sender
NACKinforms the sender to prepare Q- (O 3] upon receiving header
the trimmed packet for retransmission L T, @ o ;I

Figure 2.9: NDP protocol

NDP is explained in the numbered steps in Figure 2.9 (see the numbered circles). In
Step 1, senders are allowed to send their first window of data at line rate without an
initial handshake with the receiver as this will minimise the latency cost of the handshake.
At the receiver, pull packets are sent back to senders to request new data, or to request
retransmissions for missing data (Step 2). Because the receiver is in control of pacing
the pull packets based on it link’s capability, this ensures the aggregate rate seen at the
receiver is exactly the available line rate (Step 3). This solves the Incast problem. After
the initial window sent at line rate, senders can only transmit packets when they see a
pull packet and so the network quickly reaches a stable operating point (Step 4). Switch

queues are kept very short (maximum of 8 packets). If the queue overflows, the packet

26

data is trimmed and the header is priority forwarded (Step). The receiver adds a pull
packet for each received data or header packet, which are then paced from the shared pull
queue (Step 6). The receiver sends an ACK for each correctly received data packet (this
can be a flag in the pull packet). Also, the receiver sends a NACK for each received header
(i.e., trimmed packet), and this NACK will inform the sender to prepare the packet that
was trimmed for retransmission (Steps 7&8).

NDP achieves very good performance, including high throughput and network utilisa-
tion with low flow completion time. NDP requires custom switch hardware, which will be
deployable when P4 switches [30] are deployed in data centres. However, NDP does not
support one-to-many and many-to-one workloads which are very common in today’s data

centres.

2.4.10 Congestion control mechanisms for RDMA

Unlike TCP, RDMA [98] needs a lossless network; i.e. there must be no packet loss due
to buffer overflow at the switches. RDMA over Converged Ethernet (RoCEv2) [98] allows
RDMA over an Ethernet network by using PFC (Priority-based Flow Control) [149]. Hosts
and switches issue special pause messages when their queues are nearly full, alerting senders
to slow down. TIMELY [164] and Datacenter Qau Congestion notification (DCQCN) [203]
are congestion control mechanisms for lossless networks. DCQCN [203, 155] uses a com-
bination of ECN markings with a QCN-inspired rate-based congestion control algorithm
implemented in the NIC [155]. DCQCN is a way of running DCTCP [13] over lossless
Ethernet networks. DCQCN reacts to the queue lengths at the intermediate switches to
reduce the generation of the PFC pause frames. TIMELY [164] relies exclusively on RTT
as a congestion metric i.e., it uses delay measurements to detect congestion. TIMELY does
not require any switch-support and it is inspired by TCP Vegas [34]. TIMELY takes ad-
vantage of modern NIC support for timestamps and fast ACK turnaround to perform
congestion control based on precise RTT measurements. Both DCQCN and TIMELY
cannot completely prevent pause frames and their negative impact on innocent network
traffic. Also, they only focus on low latency, while ignoring network utilization or large-flow

performance.

2.4.11 Redundant transmission and coding-based transport protocols

Coding-based transport protocols introduce redundant information by encoding sent pack-
ets. This provides faster loss recovery, higher throughput and lower latency. Forward Er-
ror Correction (FEC) has been widely studied at the link layer. Network coding extends
the concept of encoding a message beyond source coding (for compression i.e., efficiency)
and channel coding (for protection against errors and losses i.e., reliability) to implement
simple in-network processing with packet combinations in the nodes [182, 100]. Network

coding aims at meeting the throughput and latency requirements of applications [71].

27

End-to-end coding for TCP has been proposed by several studies that suggest redund-
ant transmission to avoid TCP timeout in data centres [50]. Sundararajan et al. [182]
suggested placing network coding (NC) in TCP. In [25, 184], the authors explored ex-
tending TCP to incorporate FEC in wireless links. Maelstrom [131] is an FEC variant
for long-range communication between data centres. Repflow [198] and More-is-less [191]
replicate short flows to reduce their delay. Corrective [74] is designed as a TCP extension
by employing FEC with coding. Corrective adds aggressiveness to congestion control to
do loss recovery before RTO. Corrective can recover a single packet loss in one window
without loss detect delay and retransmission delay. Corrective can provide faster loss re-
covery but it can only deal with one packet loss in one window as its coding redundancy
is fixed. Moreover, fountain code is used by FMTCP [49, 48] to improve the performance
of MPTCP [157] by recovering the blocked data over multiple subflows. FMTCP uses the
sequence-agnostic properties of rateless coding, where coded packets in the same block are
sequence-agnostic. Thus, in FMTCP, what matters is receiving sufficient encoded pack-
ets rather than which packets are lost/received. LTTP [102] is a UDP-based transport
protocol that uses fountain codes (mainly Luby Transform (LT) code [137]) to mitigate
Incast in data centre. LTTP employs forward error correction (using LT code) approach
instead of retransmissions to tackle the Incast problem when many senders send to the
same receiver. LTTP adopts the TCP Friendly Rate Control (TFRC) [90] protocol for
congestion control. TFRC is used to adjust the traffic sending rates at servers and it
ensures that the sender can send data continuously even if the network is congested rather
than stopping sending data for a long time. CAPS [97] solves the out-of-order problem
using FEC on short flows to reduce the FCT while it keeps using ECMP on long flows to
obtain high throughput. NC-MPTCP [139] introduces packet coding to some but not all
subflows. The regular subflows deliver original packets while the coding subflows deliver
linear coded packets. The coded packets are used to compensate for the lost and much

delayed packets in order to avoid receive buffer blocking.

2.4.12 ICTCP: Incast Congestion Control TCP

ICTCP [195] leverages the idea of improving TCP performance by avoiding packets loss
proactively. ICTCP only requires some modifications on the receiver. The receiver is able
to perform congestion control based on its prior knowledge of the achieved throughput and
the available bandwidth. The implemented algorithm is based on the incoming measured
throughput (i.e. the achieved throughput) and the expected throughput. The measured
throughput is updated every RTT. The expected throughput of a connection is measured
based on the measured throughput, the received window of the connection and the RTT
for the same connection. ICTCP adjusts the receiver window (rwnd) to avoid TCP Incast
depending on the ratio of difference between the measured and expected per connection

throughput over expected throughput. When the difference ratio is small, the rwnd in-

28

creases, while the rwnd decreases when the difference ratio is large. This algorithm has
taken inspiration from TCP Vegas congestion control algorithm [34] but ICTCP is based
on the throughput difference ratio, while TCP Vegas uses throughput difference and it
modifies cwnd at the sender side.

ICTCP performs better than TCP with respect to Incast congestion, as shown in the
experimental results in [195]. However, ICTCP does not work efficiently with a large
number of senders since it employs per flow congestion control [183]. ICTCP does not

exploit the existence of multiple equal-cost paths.

2.4.13 D2TCP: Deadline-aware Datacenter TCP

Flows in DCNs come with real-time constraints on their completion times, typically of the
order of tens of milliseconds. One of the issues with DCTCP [13] is that it is a deadline-
agnostic; instead, it tries to assign link bandwidth fairly to all flows regardless of their
deadlines. As a result, it has been shown [193] that around 7% of flows may miss their
deadlines with DCTCP. A number of DCN congestion control have recently proposed to
overcome this deficiency by incorporating the flow deadline information into the congestion
control algorithm, as in D2TCP [186].

D2TCP [186], like DCTCP, uses ECN which is already effectively supported by existing
commodity switches but D2TCP takes into account deadline information before modifying
the congestion window size. Similar to DCTCP, each switch marks the CE bit in a packet
if its queue size exceeds a threshold K. This information is sent back to the source by
the receiver through ACK packets. D2TCP introduces a new variable that is computed
on the sender side, called the deadline imminence factor d, which is a function of a flows
deadline value. The factor d can be found as: d = T,/ D, where T, is the time needed for a
flow to complete transmitting all its data under a deadline agnostic behaviour and D the
time remaining until its deadline expires. If T, > D then the flow should be given higher
priority in the network because it has a tight deadline and vice versa. The algorithm
behaves differently compared with DCTCP and depending on the value of d, the window
size changes as a function of the deadlines. Far-deadline flows gets a smaller window size,
so they do not occupy large bandwidth, therefore near-deadline flows get high probability
in approaching their deadlines.

D2TCP has been simulated in [186] and the results show that D2TCP reduces the
percentage of missed deadlines by 75% when compared to DCTCP [13] and 50% com-
pared to D3TCP [193]. It is also able to coexist with TCP flows without reducing their
performance.

In D2TCP, far-deadline flows back-off aggressively, since the priority in bandwidth
allocation is provided to near-deadline flows. This approach is inefficient in administrating
flows that have data rate requirements, like long flows with deadlines. Initially, long

flows backoff for other flows, whereas giving these long flows higher priority in the later

29

stage when their deadlines approach may already not be enough to meet their deadlines

requirements [36]. Also, in this approach deadlines are required to be explicitly known.

2.4.14 TCP with Fine Grained RTO (FG-RTO)

In [189], the authors have proposed two solutions for the TCP Incast problem. The
first one includes minimum modifications to the regular TCP. They show that the overall
throughput in DCNs can be improved significantly by reducing the RTO from its default
value (usually 200 ms) to be on the order of microseconds. However, the current operating
systems lack the high-resolution timers which are required to support timeouts in the order
of microseconds. Although reducing RTO can mitigate the effect of TCP timeouts, it has
a side effect of increasing the rate of packet loss. This is expected as reducing the RTO
increases the number of competing flows [104].

The second proposed solution is to disable delayed acknowledgements. Delayed ac-
knowledgements are specified in RFC1122 [33]. The idea of this option is to delay the
acknowledgement of a data segment from being sent back to the sender. This adds some
delay to have data available to be sent back to the sender. In this case the acknow-
ledgement can be piggybacked with a data packet. The delayed acknowledgement timer
has a default value of 40ms in Linux and 200ms in Windows [38]. Employing delayed
acknowledgement mechanism in DCNs causes significant throughput degradation [189].
However, disabling delayed acknowledgements causes significant increase in the CPU util-
isation. In [104], the authors have suggested reducing the delayed acknowledgement to a

few milliseconds (around 1ms) instead of completely disabling this option [104].

2.5 Limitations of Existing Approaches

The key takeaway from the description above is that each of the described protocols
(discussed in Section 2.4) only focusses on one or some of the limitations discussed in Sec-
tion 2.3 (as depicted in Figure 2.3). Figure 2.10 shows these protocols and the performance
targets that are achieved by each one of them. In particular, DCTCP [13] eliminates Incast
and Outcast but it does not improve the network utilisation and it performs less efficiently
in ensuring low latency comparing with NDP [66] and HOMA [140]. ICTCP [195], FG-
RTO [189] and LTTP [102] are not general-purpose transport protocols, instead they only
aim at solving the Incast problem. All of pFabric [15], pHost [80], PIAS [24], QJUMP [84],
D2TCP [186] and CAPS [97] protocols show promising improvement in short flows com-
pletion times. However, they do not pay attention to long flows throughputs. MPTCP [63]
and FMTCP [49, 48] supports multipath transmission but they still suffer from collisions
between subflows which might affect the throughput and latency goals. DCQNC [203]
and TIMELY [164] are congestion control mechanisms that work for RDMA for reliable
fast transmissions, however, they ignore network utilisation and large-flow performance.

Among all the discussed protocols, NDP [66] and HOMA [140] are the closest to optimal

30

ICTCP, FG-RTO MPTCP] NDP pFabric, pHost, PIAS DCQNC

DCTCP
LTTP FMTCP o 'Y HOMA QJUMP, D2TCP, CAPS TIMELY

Figure 2.10: Achieved performance goals by each proposed data transport protocols

protocols in tackling all TCP limitations in data centres and achieving all the target per-
formance goals. Their main limitation is that they do not have support for modern data
centre workloads.

DCTCP is deployed in an intra-data-centre environment where both endpoints and the
switching fabric are under a single administrative domain. However, no real deployment
of the other proposed protocols in the data centres has been publicly documented.

In this thesis, we proposed SCDP [10], a general-purpose transport protocol for data
centres that is the first to support one-to-many and many-to-one application workloads
which are common in modern data centres. SCDP performs at least as well as the state
of the art with respect to throughput and flow completion time for long and short unicast
flows, respectively. SCDP also eliminates Incast and Outcast, and it improves network

utilisation by the benefit of its natural multipath load balancing.

2.6 Data centre network traffic characteristics

Data centres network traffic characteristics are seen as sensitive information by companies,
so there is not much work on analysis and characterisation of data centre traffic [105, 26,
167, 27]. Traffic characteristics such as flow size distributions, traffic locality and flow
interarrival times are highly correlated with applications [146]. Obviously, understand-
ing intra/inter-data centres traffic characteristics is crucial for effective network manage-
ment. In this section, we present two main available studies on characterising data centre
traffic [26, 167].

Benson et al. [26] present the network traffic characteristics of 10 data centres that
belong to three different types of organisations: 5 commercial clouds, 2 private enterprise

and 3 university data centres. Each data centre runs a variety of applications including

31

Web services, custom software applications and intensive Map-Reduce jobs. In this study,
the data was collected over several weeks. The main findings in this study are as follows.
(1) Flow size: 80% of the flows are smaller than 10 KB in size, and almost all flows are
less than 10 MB. (2) Flow live time: 80% of flows are less than 11s long. (3) Interarrival
time: 80% of the flows have interarrival times of less than 1ms in private enterprise data
centres, while 80% of the flows have interarrival times between 4 ms - 40 ms in the other
data centres. (4) Traffic pattern: traffic originating from a rack has an ON/OFF pattern
(intervals) with properties that fit heavy-tailed distributions, and traffic that leaves the
edge switches is bursty. (5) Active flows: the number of active flows is less than 10,000
per second per rack across all data centres. (6) Traffic locality: 40-90% of the traffic
leaves the rack (in the university and private enterprise data centres), while 80% of the
traffic coming from servers stays within the rack (in the cloud data centres and due to
administrators’ applications). (7) Utilisation: link utilisation is higher in the core layer,
while the edge layer is lightly utilised. A maximum of 25% of the core links are highly
utilised (hot-spots). (8) Losses are not correlated with high link utilisation but are due to
temporary bursts.

In [27], the authors studied traffic at the edges of a data centre by examining SNMP
traces from routers. The study shows a strong ON-OFF pattern where the packet inter-
arrival follows a log-normal distribution. Also, it shows that utilisation is highest in the
core but losses are highest at the edge.

In [167], Facebook reports the characteristics of its traffic. The traffic in this study
is one of these applications: Web, Hadoop and Cache applications. The main reported
traffic characteristics in this study are as follows. (1) Flow size: median and tail flow
sizes for Hadoop, Web Server and Cache applications are reported to be between about
100 KB and 100 MB, 3 KB and 10 MB, 1 KB and 10 KB within racks while 1 KB and 1
MB, 5 KB and 500 KB, 30 KB and 3 MB between racks, respectively. (2) Flow duration:
Hadoop flows had a median of about 300 ms and tail of less than 1000 seconds, Web
Server flows had a median of about 900 ms and a tail of about 200 seconds, and Cache
flows had a median of almost 400 seconds and a tail of almost 800 seconds, respectively.
(3) Interarrival time: the median interarrival time of various flow types was between 1ms
and 10 ms and the tail was between 10 ms and 100 ms. (4) Traffic locality: the majority of
traffic is intra-cluster (57.5%, from caching follower servers), with only 12.9% intra-rack.
(5) Active flows: web and cache servers have 100s to 1000s of concurrent connections;
Hadoop nodes have 25 concurrent connections on average. (6) authors did not observe
an ON/OFF packet arrival pattern at the switches which is suggested to be due to a
large number of concurrent destinations, since ON/OFF pattern was observed on a per

destination basis.

32

2.7 Fountain coding

Fountain coding is an information-theoretical approach for efficiently encoding and de-
coding blocks of data, which can be used to build efficient and reliable data transport
protocols. Key properties of fountain coding that we take advantage of in the context of

this thesis are as follows.

e Systematic coding. In coding theory, codes can be classified into two types system-
atic and non-systematic codes [173, 174]. A systematic code is any error-correcting
code in which the source symbols are among the encoding symbols that are gener-
ated. Conversely, in a non-systematic code the output does not contain the source
symbols. Linear codes like Hamming, Tornado and Reed-Solomon codes are system-
atic error-correcting codes [121, 43]. Fountain codes like Luby Transform (LT) [137]
codes are non-systematic codes, while fountain codes like R10 (RFC 5053) [123] and
RaptorQ (RFC 6330) [67] are systematic codes[112].

e Rateless erasure coding. Fountain codes are all rateless codes; i.e. these codes do
not exhibit a fixed code rate as they can theoretically produce an infinite number of
redundant (or repair) symbols. In Block Codes (fized rate), k symbols of message are
encoded to a pre-assigned number of blocks n i.e., if the code rate is k/n, for every k
source symbols, the encoder generates totally n encoding symbols of which n — k are
redundant symbols. On the other hand, Fountain Codes (rateless) can transform a
k source symbols message into an infinite (practically as large as needed) encoded

form by generating an arbitrarily large number of redundant symbols [125, 137].

e Ordering and retransmission are not required. In fountain coding, the source
symbols can be retrieved from any subset of the encoding symbols of size equal to
or only slightly larger than the number of source symbols; packet loss and ordering
become less important [125, 137]. The name fountain comes from the fact that a
fountain code works similar to a water fountain. When filling a bottle from a water
fountain, it does not matter which drops fill the bottle, only getting enough drops
to fill the bottle matters.

e Minimal overhead and negligible decoding failure probability. The overhead
is defined as the number of encoding symbols that the decoder needs to collect in
order to decode the original data with high probability. If n is the number of encoding
symbols, k is the number of source symbols and o is the overhead (the number of
redundant symbols), then n = k + o = (1 +)k, where ¢ = 0/k. In RaptroQ codes,
with two extra encoding symbols o = 2, the decoding failure probability is 1076 [67].

e Low encoding and decoding cost. For k source symbols, LT codes use on average
O(log(k)) symbol operations to generate an encoded symbol and O(klog(k)) symbol

operations to decode the received symbols [173]. Raptor codes can achieve an average

33

of O(log(1/¢)) number of symbol operations per generated encoded symbol and need
O(klog(1/e)) operations to decode the received symbols [173].

e Fast encoding and decoding. In [124], the authors report encoding and decoding
speeds of over 10 Gbps using a RaptorQ software prototype running on a single core.
With hardware offloading RaptorQ codes would be able to support data transport

at line speeds in modern data centre deployments.

In a data transport context, fountain coding can be used as follows. A sender uses a
fountain encoder to divide the original data into a potentially large stream of encoding
symbols. A receiver should be able to recover the original data by collecting enough
number of the encoded symbols. Regardless of which symbols were received and which
ones were lost. It does not matter which symbols are collected; it only matters that a
sufficient number of symbols are received.

Figure 2.11 shows an example of communication using fountain codes. In this example,
each sender generates (1 +)k = 6 encoded symbols from k = 4 source symbols, where
e = 0.5 presents the percentage of redundant symbols that are added to the source symbols.
Upon receiving (1 +)k = 6 symbols, the receiver has the ability to perform decoding

successfully.

Sender Network Receiver

k source symbols u as
p g

} ‘ B o 'i.> ¥

JAVASSSSNNN «, e |
Kl K3 Ei ki £ kN X' ~. 1
‘
k(1 + ¢€) encoded symbols

| |Encoded symbol .Network node

Figure 2.11: Fountain coding-based network [65]

With fountain coding, a number of data transport modes can be supported.

e Unicast transmission, where the sender generates encoded symbols from the source
symbols using a fountain encoder. These encoded symbols are placed into packets,
which can be transmitted based on a proper flow control mechanism. Whenever the

receiver collects enough encoded symbols, it can decode the source symbols.

e One-to-many (multicast) data transmission, where the encoding symbols are trans-
mitted through multicast protocols. The receiver can decode the original data by
receiving enough data. Each receiver gets what is enough and stops when they have

enough. Again, this requires a well-defined flow and congestion control approach.

e Many-to-one (multisource) data transmission, when a group of senders wants to

transmit to a single receiver. The receiver collects enough encoded symbols from the

34

various senders and ideally all the different encoding symbols are equally useful for

recovering the original source symbols.

2.7.1 Luby Transform (LT) Codes

LT codes are the first codes in the fountain code family [137]. Below, we discuss briefly
both LT encoder and decoder.

LT Encoder

The process of generating an encoding symbol in LT is as follows [137]:

e Choose a degree d that is between 1 and k, where k is the number of source symbols
and d is the degree for the encoding symbol and it is selected from an LT degree

distribution (Soliton distribution [137]).
e Choose uniformly at random d distinct of the k source symbols.

e Generate the encoding symbol by XORing of d chosen source symbols.

For example, in Figure 2.12, the second encoding symbol FE; is obtained by XORing the
first two input source symbols Sy and Sy, here d equals 2 which is selected from a LT

degree distribution.

Source S0 s1 52 s3
symbols
Encoding = g E1 E2 £3 E4
symbols
50 S0 @ S1 2053 S1@S2@®S3 S1@S3

Figure 2.12: LT Encoder

LT Decoder

This decoding algorithm is known as “belief-propagation” [173]. The decoder collects
enough encoded symbols that ensures decoding with high probability of success. For
the source symbols 51, ..., Sk and the encoding symbols Fj, ..., E,, the decoder works as
follows [173, 137]:

e Collect k.(1 + €) encoding symbols.

35

e Find an encoding symbol with exactly one (degree 1) un-recovered neighbour. This
encoding symbol E; is connected to only one source symbol S; (if there is no such

symbol, then decoding fails).
e Set Sj:EZ‘
e Add S; (XOR) to all encoded symbols that are connected to it.

e Remove all the connection lines between the encoded symbols and the source symbol
S;.

e Go to step (2) until all source symbols are determined.

Figure 2.13 shows an example [125] of how LT decoding is processed. In this example,
there are three source packets Si, So, and S3 and for simplicity each packet is just one
bit. The receiver receives four encoded packets FyFEoE3FE4 = 1011. At the first iteration,
FE is the only encoded symbol of degree 1, so it is used to decode its unique neighbour,
by setting S; = 1 and then removing Fy (Figure 2.13b). Next, it adjusts the values of the
neighbour encoded symbols (E2, E4) of the source symbol (S7) by XORing their values.
This results, S1 & E, =190 =1and S1P Ey =141 =0, then removes the lines between
S7 and both of Fy and Fy (as shown in Figure 2.13c). At the second iteration, Fy is the
only encoded symbol of degree 1, so it is used to decode its unique neighbour, by setting
Sy = 0 and then removing Fy4 (Figure 2.13d). Next, it adjusts the values of the neighbour
encoded symbols (FEsq, E3) of the source symbol (S7) by XORing their values. This results,
So@y=0d1=1and So® F3 =0& 1 =1, then it removes the lines between S5 and
both of E5 and Es3 (as shown in Figure 2.13e). Finally, Ey is chosen to recover S3. Hence,

S3 =1 as shown in Figure 2.13f.

Figure 2.13: LT decoding example [125]

36
2.7.2 Fountain codes: Raptor Codes (R10 and RaptorQ)

Raptor (Rapid Tornado) codes extend LT codes to improve the encoding and decoding
complexity [174]. The encoding of Raptor consists of two phases, as shown in Figure 2.14.
Firstly, during the precode phase, k source symbols are encoded into intermediate symbols.
The precode can be LDPC (low-density parity-check) code [165]. Secondly, the encoding
symbols are generated from the intermediate symbols by using an LT code. The encoding

symbols consist of original source symbols and redundant (repair) symbols [174].

Source Block

Source Symbols | [SIECPRRCE BT R TO RNy A

LDPC

Intermediate Symbols

LT code
) Source Symbols Repair Symbols -
) Encoding Symbols j

Figure 2.14: Raptor code
k' k'
k' G k' G

Gf2) B _GF(Z) B

R10 RQ

Figure 2.15: The generator matrices of R10 and RQ [173]

Two Raptor codes families have been commercially deployed and standardised, namely
R10 [123] and RaptorQ [67] codes. R10 is the first standardised Raptor code that has been
adopted into a number of different standards. These include 3rd Generation Partnership
(3GPP), Multimedia Broadcast/Multicast Service (MBMS), Internet Engineering Task
Force (IETF) and many others [173]. More advanced RaptorQ code [67] is implemented
and used by Qualcomm in broadcast/multicast file delivery and fast data streaming ap-

plications. R10 and RQ code designs are performed systematically and based on the idea

37

Overhead
5, 10
i
r
L d q=28
% 1p—10 .
£ q=16
=
& 10718
[
T - 1
b4 <
Q
o
B jo-20
~ g = 256
10—25

Figure 2.16: RaptorQ Decode failure portability [156]

of inactivation decoding. Thus, their designs are slightly different compared to standard
LT codes.

R10 vs RaptorQ. R10 mimics a dense random linear fountain code defined over
Galois Field* GF(2) whereas RaptorQ uses a mixture of the finite fields GF(2) and
GF(256). The majority of the code operates over GF(2) and a tiny minority over uses
GF(256). Utilising larger finite fields helps in achieving recovery with lower reception
overhead. The generator matrices of these codes have a particular structure, as shown in
Figure 2.15. As can be seen, a sparse Graph G is complemented by a denser matrix B
(entries from GF(2)) in R10 and additionally by Q (entries from GF(256)) in RaptorQ.
The design of B is completely deterministic and consists of two sub-matrices one for sparse
LDPC code and one for dense parity check code.

Figure 2.16 shows the decode failure probability curves of different finite fields GF(q)
as a function of the overhead. It is obvious that using larger finite fields provide better
recovery, but it is more computationally expensive. Conversely, the sum operations in
GF(2) is nothing else than the XOR operation.

The two improvements of RaptorQ over R10 codes are the steeper overhead-failure
curve and the larger number of supported source symbols per encoded source block. Rap-
torQ achieves that performance using permanent inactivation decoding and operation over
larger field alphabets. RaptorQ offers better coding performance in terms of supporting
larger source symbol sizes with less symbol overhead. RaptorQ ensures lower reception
overhead as it utilises large finite fields. If the decoder receives two extra encoding sym-

bols, then, on average, the decoder will fail to recover the entire source block at most 1

4@alois Field GF(p") is a finite field that contains p" elements. Representing data as a vector in a
Galois Field allows mathematical operations to scramble data easily and effectively. The result of adding
or multiplying two elements from the field is always an element in the field.

38

out of 1,000,000 times [67]. The table in Figure 2.17 compares the properties of both R10
and RaptorQ. RaptorQ can encode up to 56,403 source symbols into a source block in
contrast to 8,192 of R10. Also, RaptorQ can generate up to 16,777,216 encoding symbols,
256 times more than R10. For example, if the symbol size is 1024 B, then the maximum
source data size that can be encoded by RaptorQ is as follows: 256 x 56403 x 1024 ~ 14.78
GB

Property R10 (RFC 5053) | RaptorQ (RFC 6330)
Number of source symbols 8,192 56,403
Number of encoding symbols 65,536 16,777,216
Maximum symbol size 65,536 65,536
Number of source blocks 65,536 256
Number of symbols/packet multiple 1
Recovery ability Good Exceptional

Figure 2.17: R10 Vs. RaptorQ

RaptorQ-based data transport example. The encoder generates as many redund-
ant symbols as needed on the fly. Furthermore, since the code is systematic, the encoding
symbols include both the source symbols and the repair symbols. Therefore, source sym-
bols can be placed directly in the transmitted packets. The redundant symbols are sent
to the network as they are generated. The benefit is that in the case where there are no
packets lost, there is no need for decoding and the data can be directly delivered to the
application. Figure 2.18 shows an example of communication using RaptorQ. The data is
first partitioned into source blocks; the actual way of doing this is left to the application.
These blocks are processed independently by the encoder, where they are divided into
K equal sized units called source symbols. The decoder starts decoding to recover the
source block after receiving any subset of encoding symbols whose size is equal or slightly
larger than K. The received repair symbols are used to compensate for any lost symbols.
These extra repair symbols are the overhead symbols. The code overhead is defined as
the minimum number of repair symbols required to start the decoding process. The code
overhead can be agreed upon between the sender and receiver, the minimum value is 0o = 0.
RaptorQ can successfully decode with a high probability with overheads as low as 0 to 2
(see Figure 2.16) [173].

RaptorQ data partitioning. The required input parameters to perform encoding
and decoding are the total size of the input object, the symbol size and the number
of source blocks. Moreover, the RFC also explains an example partitioning algorithm
(Section 4.3 in [67]). The algorithm makes the symbol size equal to the maximum payload
of a packet (i.e. the MTU minus the headers), ensuring that a recommendation is followed
where each packet contains exactly one symbol (see Figure 2.19). It then distributes the

data through a number of source blocks, trying to maximise their size, while taking into

39

Sender Receiver
Data
| Data | -
Partition into Reconstruct
source blocks the data
« = = |Source blocki| === Source block i
RaptorQ
Encoder ¢ RaptorQ
Repair Decoder
' Generator: Network
S) :
a Overhead
A 4 v s 31
c|bja| 8|7|6|5|4|3]2]1 @07855213
Repair Source
Symbols (R) Symbols (K) ol® 2 \ J
\ } C7 A
| \fecelved Symbols (= K)
Encoding Symbols (o~
o NG
P B tvork odo
Figure 2.18: RaptorQ-based data transport
Source Block(s)
SBN,
000110101011
011001011101
Source Data Source Symbols(s)
000110101011
000101 [ESIo
011001011101 SBN;,
000101100010 100010 [EsSI
C0oTo00to 101010111011 - " packet
101010711011 101010 | p [Header] 101010 | Network
SBN ESl,
010001000110 2
110001101000 010001000110 RN =S
110001101000
011111110010
111001110101 SBN; +
011111110010 .
111001110101 - Repair symbol(s)

* SBN: Source Block Number
* ESI: Encoding Symbol ID Fmax= 256 x 56403 x 655368

Figure 2.19: RaptorQ data partitioning

consideration the memory limitations of the receivers. After that, the source block is
further divided into K source symbols (see Figure 2.19).

The encoding process in RaptorQ codes. The encoding process starts by con-
structing the extended symbols; then, a precode matrix A (the generator matrix) is gen-
erated based on the input parameters; the intermediate symbols are obtained by solving

a system of linear equations; a "Tuple Generator’ is used to produce the repair symbols.

40

Finally, the encoding symbols are formed by combining the source symbols together with
the repair symbols. Finding the inverse of matrix A is the most time consuming process in
the whole RaptorQ encoding and decoding processes. Hence, an effective and optimised
mechanism is required. RaptorQ uses an optimised permanent inactivation technique.
The decoding process in RaptorQ codes. The decoding process is very similar
to encoding. The decoder needs to know the structure of the source block; therefore,
this configuration information must be conveyed by the transmitter. If all source symbols
arrive, decoding is not required. Otherwise, the construction of a system of linear equations
takes place. If additional repair symbols are received, they may also take part in the system
of equations, ensuring a much greater probability of successful decoding (these are the
overhead symbols). The specification of the RaptorQ code proposes an efficient decoding
algorithm. It is built around the idea of inactivation decoding. This mechanism combines
the low-complexity of belief-propagation (BP) decoding with the decoding guarantee of

Gaussian elimination (GE) decoding.

2.8 Network Simulator

OMNeT++ [188] is an excellent simulation environment for developing models for data
centre networks and respective protocols. This is possible through the INET Framework,
which is built on top of the simulation core provided by OMNeT++. OMNeT++ and
INET is built around the concept of modules that communicate by message passing.
Protocols are represented by components, which can be combined to form hosts, routers,
switches and other networking devices. What makes this framework ideal for evaluating
DCN protocols is that new modules can be easily integrated with the existing modules.
DCN topologies (e.g. FatTree [5]) can be easily built and parametrised using OMNeT++
NED language.

Recently, some DCN-related research has been based on OMNeT++/INET [140, 12,
55, 9]. Large-scale simulations are crucial for the DCN research community given that
access to real-world deployments is very difficult. Developing models for DCNs in OM-
NeT++ would ensure reproducibility, revisability (dynamic debugging and profiling) and
control over the studied traffic workloads (generating realistic traffic workloads in a de-

terministic fashion) [166].

2.9 Internet Traffic Characterisation and Modelling

Recently, there has been an increasing demand on high performance services in the In-
ternet; these services include data, voice and video transmission. In the context of IP
networks, the validation of network performance requirements depends on the examin-
ation of QoS metrics such as delay, jitter, packet loss, availability and throughput [99].

These metrics are described in a committed contract between the users and the service

41

Data rate (Mbps)

0 300 600 900
Time (seconds)

Figure 2.20: The data rate of an Internet traffic trace at different timescales

providers which is known as service level agreement (SLA). This indicates the importance
of allocating sufficient bandwidth in the network. In general, traffic characterisation is im-
portant for network design, planning, deployment and management; e.g. for traffic billing

and network dimensioning.

2.9.1 Traffic fluctuations

It has been shown that traffic volume fluctuates significantly at small aggregation times [127,
3,134, 11]. The timescale of traffic aggregation is therefore critical in assessing the volume

of the underlying traffic and provisioning the relevant network links. Figure 2.20 shows

the data rate bps of a Mawi trace [130] over an interval of 900 sec at different timescales:

10 ms, 1 sec and 5 sec. It is obvious that more fluctuations appear at small aggregation

times. The more the fluctuations, the more the data rate values are far from the mean,

which indicates more variation. Therefore, the conventional techniques of bandwidth al-

location are imprecise at small timescales and this could result in provisioning that would

break agreed SLAs.

The importance of considering these fluctuations is to ensure that any modelling pro-
cess will contain all the properties of the traffic. Thereby, the quality of service (QoS)
of the network will not be affected by the mismatching between the real traffic and the
reference model. Consequently, the seeking of an accurate Internet traffic model is one of

the main challenges for network planning.

2.9.2 Representing traffic volumes using the Gaussian model

Historically, network traffic has been widely assumed to follow a Gaussian distribution.
In [134, 52, 53|, the authors studied network traces and verified that the Gaussianity

assumption was valid (according to simple goodness-of-fit tests they used) at two different

42

timescales. In [81], the authors studied traffic traces during busy hours over a relatively
long period of time and also found that the Gaussian distribution is a good fit for the
captured traffic. Schmidt et al. [51] found that the degree of Gaussianity is affected by
short and intensive activities of single network hosts that create sudden traffic bursts. All
the above mentioned works agreed on the Gaussian or ‘fairly Gaussian’ traffic at different

levels of aggregations in terms of timescale and number of users.

2.9.3 The failure of the Gaussian model in modelling traffic volumes

There has been some researches that demonstrates the failure of the Gaussian model in
representing the Internet traffic volumes [3, 110, 103, 60, 163]. This failure comes from
the fact that Internet traffic is bursty on a wide range of time scales. For example, the
authors in [110, 60] examined the levels of aggregation required to observe Gaussianity in
the modelled traffic, and concluded that this can be disturbed by traffic bursts. The work
in [3, 199] reinforces the argument above, by showing the existence of large traffic spikes at
short timescales which result in high values in the tail. The fact that Gaussian distribution
characterises several aggregated traffics is based on the central limit theorem [51]. How-
ever, this theory is valid for independent and identically distributed (iid) random processes

and it fails if there are dependencies between any combinations in the distribution.

2.9.4 Heavy-tailed traffic

Deciding whether Internet flows could be heavy-tailed became important as this implies
significant departures from Gaussianity. The authors in [76] provided robust evidence for
the presence of various kinds of scaling, and in particular, heavy-tailed sources and long-
range dependence in a large dataset of traffic spanning a duration of 14 years. Also, there
is a large body of work [115, 168, 199, 93] which shows that Internet traffic is heavy tailed.
These studies [60, 120, 143, 126] show that Internet traffic is characterised by long-tailed
distributions such as Log-normal, Pareto, Weibull, Generalized Extreme Value (GEV) and

log-gamma distributions.

2.9.5 Link dimensioning: bandwidth over-provisioning and provisioning

The designing of an accurate Internet traffic model is crucial as this model plays a crit-
ical role in network planning. Bandwidth provisioning is a commonly used bandwidth
allocation mechanism. The main idea in bandwidth provisioning is to allocate sufficient
bandwidth to the link until achieving acceptable performance, which ensures that the SLA
requirements are met[153, 53]. In the conventional methods of bandwidth provisioning,
operators just apply rules of thumb, such as bandwidth over-provisioning by upgrad-
ing the link bandwidth to 30% of the average traffic value [153]. This ensures that no

traffic congestion will occur in the link. The drawback of this mechanism is that it can

43

provide the link more bandwidth than is actually needed, unnecessarily increasing the de-
ployment cost. On the other hand, the bandwidth provisioning approach provides the
link by the essential bandwidth that guarantees the required performance [187]. Deploying
the bandwidth provisioning approach requires an accurate model of the traffic. Running
bandwidth provisioning approach over a Gaussian model does not necessarily achieve the
target performance, and attention has to be paid to the tail values.

Meent et al. [153] proposed a new bandwidth provisioning formula, which relies on the
statistical parameters of the captured traffic and a performance parameter. This formula
calculates the minimum bandwidth that guarantees the required performance, according
to an underlying SLA. They assumed that Internet traffic can be characterised by a Gaus-
sian distribution. Their assumption about the applicability of a Gaussian distribution to
represent the Internet traffic is based on related work such as [134, 79]. However, this
work has not investigated the validation of the Gaussianity assumption. Hence, this for-
mula may provide inaccurate bandwidth allocation for links with heavy tailed traffic [8].
Designing a favourable bandwidth provisioning scheme requires a better model that can

fit the traffic at different aggregation times.

2.9.6 Network traffic billing: the 95th percentile

The 95th percentile method is used widely for network traffic billing. Dimitropoulos et
al. [58] found that the computed 95th percentile is significantly affected by traffic aggreg-
ation parameters. However, in their approach they do not assume any underlying model
of the traffic; instead, they base their study on specific captured traces. Stanojevic et
al. [180] proposed the use of Shapley value for computing the contribution of each flow
to the 95th percentile price of interconnecting links. In [82, 113, 35, 197] authors propose
calculating the 95th percentile using experimental approaches. Xu et al. [196] assume
that network traffic follows a Gaussian distribution “through reasonable aggregation” and

propose a cost-efficient data centre selection approach based on the 95th percentile.

2.9.7 Modern statistical framework for fitting Internet Traffic

Employing a robust statistical approach in finding the best model for Internet traffic
volume is crucial. As discussed above, the importance of this model can be shown through
two sample traffic engineering problems: firstly, predicting the proportion of time a link will
exceed a given capacity. This could be useful for provisioning links, secondly, predicting the
95th percentile transit bill that ISP might be given. The Internet networks traffic (packet-
based networks) shows clear fluctuations over a wide range of timescales (as discussed
above). The conventional and simple approaches for testing distribution fitting (e.g.,
quantile-quantile plots) gives inaccurate results (as discussed in Appendix A in [44]).

For a random variable x of a power-law distribution, the probability distribution can

[0

be written as follows, p(z) ~ =%, where « is the scaling parameter. The linear form can

44

be derived by applying the logarithm as follows,

log(p(z)) = alog(x) + ¢ (1)

The value of « is obtained from the log-log plot, where « is the slope of the fitted
line (using least-squares method) in this plot. This approach has several drawbacks,
such as requiring large sample size and being sensitive to fluctuations in the tail of the
distribution [119][44].

Clauset et. al. approach: introduction. In [44], the authors present a well-
defined statistical framework for testing power-law behaviour in empirical data®%. We
use this approach to find out which distribution is the best fit for Internet traffic volumes.
The approach provides strong evidence whether power-law (Pareto) or another alternative
distribution (e.g., log-normal, exponential, Weibull, ..) is favoured in fitting the traffic. As
shown in Figure 2.21, this approach is based on introducing a normalised constant (scaling
factor that ensures that the total probability is 1) C' to the probability density function
of each distribution. The new definition of the probability destiny function ensures better
representation for the large fluctuations that occur in the tail of the distribution. The
constant C' can be derived in term of %, (see Figure 2.21). Hence, the power-law

distribution can be defined as follows: p(x) = Cz™%, i.e.,

Power-law

— sy introduce new
p(x) (x) variables

p(x) = C(x)™

> ijmc(x)_a =1

4
/” >C= (C(- 1)(“{)711')1)“_17

0
I
I
1
’

PDF

X

min

Figure 2.21: The basic idea in Clauset et. al. approach

e @
Tmin \ Lmin

where x,,;, is the estimate of the lower bound of the power-law behaviour and « is the
scaling exponent. The power-law distribution applies to the elements above iy, i.€,
X > Tpin. Similarly, all other distributions (e.g., log-normal) can be redefined in that way
(see Table 2.1 in [44]).

Clauset et. al. approach: steps. Figure 2.22 describes all the steps in this

Swww.tuvalu.santafe.edu/~aaronc/powerlaws/
Swww . pypi.org/project/powerlaw/

www.tuvalu.santafe.edu/~aaronc/powerlaws/
www.pypi.org/project/powerlaw/

45

approach, which we briefly discuss in this section. In this approach, the power-law distri-

bution has the probability density function as defined in Equation 2.

Step 1(a): Estimating the scaling parameter «. Finding the value of o that makes
the power-law model most likely to have generated our data. The estimated value of « is

found by using Maximum Likelihood Estimation (MLE), where the likelihood function is

L(@) =[] pla) (3)

where n is the number of observations. Thus, the estimated & is the value o that maximises

the log-likelihood function, which can be found by solving this first derivative equation:

dlog(L(a)) _

(o) 0, which gives

a=1+n éln(i)]_1 (4)

Tmin

Estimatingi (lZ » Xmin s Miail)

: using MLE & KS test

Uncertainty in the fitted
parameters (Bootstrapping)

Goodness-of-fit
p-value

fail to
reject Ho

Ho: Power-law is favoured

None is Alternative || None is Power-law None is None is Alternative
favoured is favoured || favoured is favoured || favoured favoured is favoured

Figure 2.22: Finding the best fitted distribution based on the power-law approach

Step 1(b): Estimating z,,;, value. The estimated value of z,,;, is calculated using the
Kolmogorov-Smirnov(KS) D-statistic test [128]. The value of D represents the distance
between the CDF of the input data S(z) and the CDF of the power-law distribution
p(x). Now, the estimated &y, is the value of x,,;, that minimises the distance D, as in

Equation 5.
D = maz |S(x) — P(x)| (5)

Estimating parameters in this approach is more rigorous than the conventional linear fit

base on log-log plots.

46

Example. Here, we present an example of how the power-law test is used to determine
which distribution is the best to fit captured Internet traffic. The tested trace is a 15-
minute long Mawi trace aggregated at a timescale of 100 ms. The trace contains 9000 data
rate samples. The data rate PDF of this trace is shown in Figure 2.23. The estimated
parameters of applying the power-law test on this trace are as follows: & = 5.6867, Z.pnin =
202052640 bps and the number of samples above i, 1S figqy; = 1746. The uncertainty
in the estimated parameters is quantified using resampling (bootstrapping) [61], which
when applied in the above example, gives these uncertainty values: & = 5.6867 + 0.4465,
Tmin = 202052640 £ 29367788 and 44 = 1746 £+ 791.

Step 2: Uncertainty in the estimated parameters « and z,,;,. This is done by

using resampling methods such as bootstrapping.

Step 3: Goodness-of-fit test. The goodness of fit of the power-law distribution has
to be evaluated before concluding that a power-law is a good description of the traffic.
The null hypothesis Ho here is that the sample is drawn from a power-law distribution,
while the alternative hypothesis H1 describes the case that the sample is not drawn from

a power-law distribution.

Steps 4&5: Alternative Distributions. The likelihood-ratio test is used for compar-
ing the goodness of fit of two different distributions, which are the power-law distribution
and an alternative distribution (e.g., log-normal, exponential, Weibull, ..). Hence, this

ratio is defined as the ratio of the likelihood function of each model, which is given by

0.03 : .

0.025

0.02

5 0.015
o

0.01

0.005

4 5 6 7 8
Data rate (bps) x108

Figure 2.23: Data rate PDF of a Mawi trace

Ly I[L pe()

47

where p1(z) is the power-law likelihood function and ps(z) is the alternative distribution

likelihood function. The log-Likelihood ratio is obtained as

n
R=) llog(pi(w:)) - log(pa(:))] (7)
i=1

If ® > 0, then the power-law distribution is favoured, while if & < 0, then the alternative
distribution is favoured. Equation (7) gives the value |R|, which is the measured log-
likelihood ratio as magnitude. In order to support one hypothesis (either power-law or
alternative), then the magnitude |R| has to be large enough (not close to zero). This can
be tested by finding the p-value. By the Central Limit Theorem, the sum R becomes
normally distributed as n gets very large, i.e., ® ~ N(nu,no?). Thus, the p-value is

defined as the probability that |R| is not close to zero:

|| 0o
p= N (np,no?)dR + N (nu,no?)dR (8)
—o0 |
A small p-value (p < 0.1) means that the value of R can be trusted to make a conclusion
about which distribution is a better fit to the data. In contrast, a large p-value (p > 0.1)
indicates that |R| is close to zero and there is nothing to be concluded from the likelihood
ratio test.

The test returns the value of the normalised log-likelihood R ratio and the p-value. If
R < 0, then the alternative distribution is favoured, while if ® > 0, then none is favoured.
A small p-value (p < 0.1) means that the value of R can be trusted to make a conclusion
about which distribution is a better fit to the data. In contrast, a large p-value (p > 0.1)
indicates that |R| is close to zero and there is nothing to be concluded from the likelihood

ratio test.

2.9.8 The studied traces

Understanding the characteristics of Internet traffic by investigating real Internet traces
from different networks is a right step towards designing and developing new protocols.
The used dataset in this work includes various Internet traces from wide-area traffic (see
Chapter 5). Our dataset does not include any data centre or mobile/wireless access net-
works traces. However, the techniques that we suggest to study Internet traffic could be

used for any network traffic regardless of the network type.

48

Chapter 3

SCDP: Systematic Rateless
Coding for Efficient Data

Transport in Data Centres

Preface: paper 1&2

This chapter includes our paper on developing SCDP [10]!, a fountain coding-based data
transport protocol. Through large-scale simulations, we demonstrate the superiority of
SCDP in comparison to TCP and NDP for a large and diverse set of traffic workloads and
networking scenarios. For completeness, we also provide our early publication that set the

foundation for researching SCDP [9].

e Mohammed Alasmar, George Parisis and Jon Crowcroft, “Polyraptor: embracing
path and data redundancy in data centres for efficient data transport”. In Proceed-
ings of ACM SIGCOMM 2018 (Poster Sessions), Budapest, Hungary [9].

e Mohammed Alasmar, George Parisis and Jon Crowcroft, “SCDP: Systematic Rate-
less Coding for Efficient Data Transport in Data Centres”. IEEE/ACM Transactions
on Networking 2019 (submitted) [10].

Contributions from Co-Authors

The research presented in the papers was driven by me. My co-authors contributed much
in shaping the presented arguments, design solutions and experimental evaluation. They
have also provided constructive feedback about the manuscript and shepherded me through
the submission process. The initial abstract idea of employing fountain codes for data
transport in data centres was published by my supervisor in a HotNets paper (2013)
[65]. Both papers in this chapter are inspired by that position paper, and substantially

built on in to provide a full realisation of a real-world data transport protocol for data

https://arxiv.org/abs/1909.08928

https://arxiv.org/abs/1909.08928

49

centres. My supervisor provided suggestions and feedback on the developed approaches
and experiments in these papers. He also helped in forming the motivation of this work
by directing me to the literature and related work on this topic. In addition, he guided

me through the design and implementation phases of this research.

50

Polyraptor: Embracing Path and Data Redundancy in
Data Centres for Efficient Data Transport

Mohammed Alasmar
Department of Informatics
University of Sussex
M.Alasmar@sussex.ac.uk

ABSTRACT

In this paper, we introduce Polyraptor, a novel data transport
protocol that uses RaptorQ (RQ) codes and is tailored for
one-to-many and many-to-one data transfer patterns, which
are extremely common in modern data centres. Polyraptor
builds on previous work on fountain coding-based transport
and provides excellent performance, by exploiting native
support for multicasting in data centres and data resilience
provided by data replication.

CCS CONCEPTS

« Networks — Data center networks; Transport proto-
cols; Network performance analysis; Network simulations;

KEYWORDS

Datacenter Storage; Data Transport; Fountain coding

ACM Reference Format:

Mohammed Alasmar, George Parisis, and Jon Crowcroft. 2018.
Polyraptor: Embracing Path and Data Redundancy in Data Cen-
tres for Efficient Data Transport. In SIGCOMM Posters and Demos
’18: ACM SIGCOMM 2018 Conference Posters and Demos, August
20-25, 2018, Budapest, Hungary. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3234200.3234222

1 INTRODUCTION

Data centres support the provision of core Internet services,
such as search, social networking, cloud computing and video
streaming. Data Centre Networks (DCNs) consist of a large
number of commodity servers and switches, support multiple
paths among servers and very large aggregate bandwidth.
TCP is ill-suited for meeting the throughput and latency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org,.

SIGCOMM Posters and Demos ’18, August 20-25, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5915-3/18/08...$15.00
https://doi.org/10.1145/3234200.3234222

George Parisis
Department of Informatics
University of Sussex
G.Parisis@sussex.ac.uk

Jon Crowecroft
Computer Laboratory
University of Cambridge
Jon.Crowcroft@cl.cam.ac.uk

requirements of applications in DCNs. Exploiting multiple
paths and maximising resources’ utilisation, while network
congestion is fairly dealt with, has been a prominent research
area [1][6][7][4][8]. A range of application workloads in
modern data centres involve one-to-many and many-to-one
traffic exchange. For example, distributed storage systems,
such as GFS [9], replicate data blocks, but clients are con-
strained by the underlying unicast transport protocol when
storing data to multiple servers (one-to-many) and fetch-
ing data that is available on multiple servers (many-to-one).
Partition-aggregate application workloads are similarly con-
strained, as they make use of underlying distributed storage
systems. Polyraptor builds on our previous work [3] and is
tailored for one-to-many and many-to-one data transfer pat-
terns, supports multi-path transport, eliminates Incast and
can work well with shallow buffers in network switches (sec-
tion 2). Polyraptor uses RQ codes [5] and follows a receiver-
driven approach for flow and congestion control, which is
reminiscent to NDP [6]. We have implemented a simula-
tion model of Polyraptor ! and compared its performance to
standard unicast data transport (section 3).

2 DESIGN

Polyraptor employs a receiver-driven communication model,
where receivers actively manage the rate at which encoding
symbols arrive by explicitly requesting symbols from senders.
RQ codes are rateless and systematic; encoding symbols con-
sist of the source symbols (i.e. original data fragments), along
with a potentially very large number of repair symbols. In
Polyraptor, source symbols are sent at the beginning of a ses-
sion, followed by repair symbols, as required by receivers. In
the absence of loss, source symbols are immediately passed
to the application without inducing any penalty in terms of
decoding latency; this is particularly desirable for short flows
that are commonly latency-sensitive. RQ codes have excel-
lent performance in terms of network overhead, decoding
latency and failure probability[5]2.

Polyraptor sessions. A Polyraptor session may involve one
sender and multiple receivers or multiple senders and one
1Our Polyraptor OMNet++ model: https://github.com/mzsala/polyraptor.

2Decoding a source block fails only 1 in 1,000,000 when the receiver collects
n + 2 encoding symbols, n being the number of original fragments [5].

SIGCOMM Posters and Demos *18, August 20-25, 2018, Budapest, Hungary

51

M. Alasmar, G. Parisis, and J. Crowcroft

- - 1ReplicaRQ . = = 1SendersRQ . ———RQ256KB.
Bt O S T ! e
0.8 I==3RelicasTcp| __.----""" 08} Zasmmercr ___----""" —&—TCP70KB
@ B | oommanit 708
5y & - &
O 06 O 0.6 4 O] 06
S04} S04 f =5 G \{/} Fos \%ﬁ H H% i s
Q Q / 8 0. \
o o rd o |
PR ~ S S A 1H]
©o2 O02 k—g O % *A/{% et
0 0 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0O 10 20 30 40 50 60 70

Rank of transport session

(a) Multicast

Rank of transport session

(b) Multi-source

Number of sendersin parallel

(c) Incast

Figure 1: Goodput results at a 250 servers FatTree topology (1GB link speed & 10us link delay). 20% of the sessions
are background traffic. The presented results are for the rest 80% of the sessions (4 MB each) with arrival times
follow a Poisson process with A = 2560. Session (flow) scheduling follows a permutation traffic matrix. Error bars
in (c) represent 95% confidence interval. Each experiment is the average of 5 repetitions using different seeds.

receiver (unicast data transport is a specialisation of one of
the above scenarios). A sender first sends a whole window
of encoded symbols at line rate for the first RTT; receivers
then take control of the data transfer by requesting encoded
symbols (by sending pull requests). We adopt NDP’s switch-
ing architecture [6], which supports two different packet
queues: a priority header queue and a data queue. When
the data queue overflows, incoming encoding symbols are
trimmed and the resulting headers get priority forwarding.
The data transport layer at each receiver has only one pull
queue shared by all sessions. A pull request is added to this
queue upon receiving a full or trimmed symbol. The receiver
then paces pull packets across all sessions, so that the ag-
gregate data rate matches the receiver’s link capacity. These
pull packets trigger the sending of new encoded symbols. A
lost symbol does not have to be re-requested. Instead, a new
symbol will contribute to the decoding process equally to
the lost one. This, along with symbol trimming, is crucial for
supporting an Incast-free protocol. Packet loss and out-of-
order packets don’t hurt performance as they do in TCP, thus
there is no need to extensively buffer packets to minimise
losses; symbols can be sprayed in the network, exploiting all
available (equal-cost) paths.

Multi-source transport. In Polyraptor, a receiver can pull
encoding symbols from multiple senders. RQ symbols are
equally useful for decoding the original data, if no dupli-
cate symbols are received. This can be achieved without any
coordination; senders independently seed the underlying
pseudorandom generator that is used to encode symbols [5],
therefore collectively producing statistically unique symbols.
Senders initially select and send a subset of source sym-
bols (exploiting the systematic nature of RQ codes), before
sending statistically unique repair symbols. The number of
senders is known at session establishment, therefore a simple
partitioning of the source symbols would ensure absence of

duplicate symbols at the receiver side. Multi-source trans-
port enables a natural load balancing mechanism where each
server contributes symbols at its available capacity.
Multicast transport. The rateless and systematic nature of
RaptorQ codes makes them ideal for multicasting data. A
sender initially pushes a window of encoding symbols to all
receivers, which then start pulling additional (source and
repair) ones. A Polyraptor sender aggregates pull requests
and multicasts a new symbol only after all receivers have
sent one. As part of our current work is to be able to detect
and eliminate straggler receivers by detaching them from
the group and exchanging symbols with them independently
through a one-to-one Polyraptor session.

3 DISCUSSION

In Figure 1a, we present Polyraptor’s performance in a dis-
tributed storage scenario with 1 and 3 replicas. The three
replica servers are randomly selected outside the client’s rack.
We have emulated the same behaviour with TCP by multi-
unicasting data to the randomly selected servers. We have
simulated 10,000 sessions (flows). Our multicasting model
follows the design in [2]. Polyraptor maintains excellent
performance when replicating data to 3 servers due to the
underlying multicast support. Packet trimming along with
RQ coding provide resilience against transient and persis-
tent congestion. In order to demonstrate Polyraptor’s perfor-
mance when multi-sourcing data, we simulated a distributed
storage scenario where a client fetches data from 1 and 3
replica servers at the same time. We emulated this behaviour
with TCP by assuming that storage servers transfer back to
the client part of the requested blocks without requiring any
coordination. Figure 1b follows the same pattern as Figure
la. Polyraptor sustains excellent performance fully utilis-
ing all available data replicas and the underlying network
resources. Figure 1c presents a classic Incast scenario with

02

Polyraptor SIGCOMM Posters and Demos *18, August 20-25, 2018, Budapest, Hungary

synchronised short flows. Packet trimming along with the
rateless nature of the RQ codes result in Incast elimination.

As part of our current work, we are evaluating Polyrap-
tor’s behaviour under different workloads and the existence
of network hotspots. We are also looking at the influence
of RQ encoding/decoding complexity, latency and decoding
failure probability in the performance of Polyraptor.

REFERENCES

[1] C.Raiciuetal. 2011. Improving Datacenter Performance and Robustness
with Multipath TCP. Proc. of SIGCOMM.

[2] D. Li et al. 2014. Reliable Multicast in data center networks. IEEE
Transactions on Computers.

[3] G.Parisis et al. 2013. Trevi: Watering Down Storage Hotspots with Cool
Fountain Codes. Proc. of HotNets.

[4] K. Rashmi et al. 2013. A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study on the
facebook warehouse cluster. Proc. of USENIX.

[5] M.Luby et al. [n. d.]. RaptorQ Forward Error Correction Scheme for
Object Delivery. IETF, RFC 6330, 2011.

[6] M. Handley et al. 2017. Re-architecting datacenter networks and stacks
for low latency and high performance. Proc. of SSIGCOMM.

[7] M. Kheirkhah et al. 2016. MMPTCP: A multipath transport protocol for
data centers. Proc. of INFOCOM.

[8] P. Cheng et al. 2014. Catch the Whole Lot in an Action: Rapid Precise
Packet Loss Notification in Data Center. Proc. of USENIX.

[9] S. Ghemawat et al. 2003. The Google File System. SOSP.

IEEE/ACM TRANSACTIONS ON NETWORKING

93

SCDP: Systematic Rateless Coding for Efficient
Data Transport in Data Centres

Mohammed Alasmar*, George Parisis*, Jon Crowcroft t
*School of Engineering and Informatics, University of Sussex, UK, Email: {m.alasmar, g.parisis} @sussex.ac.uk
fComputer Laboratory, University of Cambridge, UK, Email: Jon.Crowcroft@cl.cam.ac.uk

Abstract—In this paper we propose SCDP, a novel, general-
purpose data transport protocol for data centres that, in contrast
to all other protocols proposed to date, natively supports one-to-
many and many-to-one data communication, which is extremely
common in modern data centres. SCDP does so without com-
promising on efficiency for short and long unicast flows. SCDP
achieves this by integrating RaptorQ codes with receiver-driven
data transport, in-network packet trimming and Multi-Level
Feedback Queuing (MLFQ); (1) RaptorQ codes enable efficient
one-to-many and many-to-one data transport; (2) on top of
RaptorQ codes, receiver-driven flow control, in combination with
in-network packet trimming, enable efficient usage of network
resources as well as multi-path transport and packet spraying
for all transport modes. Incast and Outcast are eliminated; (3)
the systematic nature of RaptorQ codes, in combination with
MLFQ, enable fast, decoding-free completion of short flows.
We extensively evaluate SCDP in a wide range of simulated
scenarios with realistic data centre workloads. For one-to-many
and many-to-one transport sessions, SCDP performs significantly
better compared to NDP. For short and long unicast flows, SCDP
performs equally well or better compared to NDP.

Index Terms—Data centre networking, data transport protocol,
fountain coding, modern workloads.

I. INTRODUCTION

Data centres support the provision of core Internet services

and it is therefore crucial to have in place data transport
mechanisms that ensure high performance for the diverse
set of supported services. Data centres consist of a large
number of commodity servers and switches, support multiple
paths among servers, which can be multi-homed, very large
aggregate bandwidth and very low latency communication
with shallow buffers at the switches.
One-to-many and many-to-one communication. A signifi-
cant portion of data traffic in modern data centres is produced
by applications and services that replicate data for resilience
purposes. For example, distributed storage systems, such as
GFS/HDFS [1], [2] and Ceph [3], replicate data blocks across
the data centre (with or without daisy chaining'). Partition-
aggregate [4], [5], streaming telemetry [6]—[8], and distributed
messaging [9], [10] applications also produce similar traf-
fic workloads. Multicast has already been deployed in data
centres? and, with the advent of P4, scalable multicasting is
becoming practical [11]. As a result, much research on scal-
able network-layer multicasting in data centres has recently
emerged [12]-[16].

Uhttps://patents.google.com/patent/US20140215257
2e.g. https://www.rackspace.com/en- gb/cloud/networks

Existing data centre transport protocols are suboptimal in
terms of network and server utilisation for these workloads.
One-to-many data transport is implemented through multi-
unicasting or daisy chaining for distributed storage. As a result,
copies of the same data is transmitted multiple times, wasting
network bandwidth and creating hotspots that severely hurt the
performance of short, latency-sensitive flows.

In many application scenarios, multiple copies of the same
data can be found in the network at the same time (e.g. in
replicated distributed storage) but only one replica server is
used to fetch it. Fetching data from all servers, in parallel, from
all available replica servers (many-to-one data transport) would
provide significant benefits in terms of eliminating hotspots
and naturally balancing load among servers

These performance limitations are illustrated in Figure 1,
where we plot the application goodput for TCP and NDP [17]
in a distributed storage scenario with 1 and 3 replicas. When a
single replica is stored in the data centre, NDP performs very
well, as also demonstrated in [17]. TCP performs poorly?.
On the other hand, when three replicas are stored in the
network, both NDP and TCP perform poorly in both write and
read workloads. Writing data involves either multi-unicasting
replicas to all three servers (bottom two lines in Figure la)
or daisy chaining replica servers (the line with the diamond
marker); although daisy chaining performs better, avoiding the
bottleneck at the client’s uplink, they both consume excessive
bandwidth by moving multiple copies of the same block in
the data centre. Fetching a data block from a single server
when it is stored in two more servers creates hotspots at
servers’ uplinks due to collisions from randomly selecting
a replica server for each read request (see 3-sender goodput
performance in Figure 1b).

Long and short flows. Modern cloud applications commonly
have strict latency requirements [18]-[23]. At the same time,
background services require high network utilisation [24]-
[27]. A plethora of mechanisms and protocols have been pro-
posed to date to provide efficient access to network resources
to data centre applications, by exploiting support for multiple
equal-cost paths between any two servers [17], [26], [28],
[29] and hardware capable of low latency communication [22],
[30], [31] and eliminating Incast [32]-[35] and Outcast [36].
Recent proposals commonly focus on a single dimension of

3It is well-established that TCP is ill-suited for meeting throughput and
latency requirements of applications in data centre networks, therefore we
will be using NDP [17] as the baseline protocol throughout this paper.

IEEE/ACM TRANSACTIONS ON NETWORKING

Goodput (Gbps)
o
W

1 Replica NDP == 1 Replica TCP
E 3 Replicas NDP (daisy chain) 3 Replicas TCP
0 §3 Replicas NDP (multi-unicast)
0 5000 10000
Rank of transport session

(a) One-to-many (write)

=©-1 Sender NDP =B-1 Sender TCP
=9~ 3 Senders NDP -#-3 Senders TCP

0 5000 10000
Rank of transport session

(b) Many-to-one (read)

Fig. 1: Goodput results in a 250-server FatTree topology with 1GB link speed & 10us link delay. Background traffic is present
to simulate congestion. Results are for 10,000 (a) write and (b) read block requests (2MB each). Each I/O request is ‘assigned’
to a host in the network, which is selected uniformly at random and acts as the client. Requests’ arrival times follow a Poisson
process with A = 1000. Replica selection and placement is based on HDFS’ default policy (see Section IV-A for a full

description of the experimental setup).

the otherwise complex problem space; e.g. TIMELY [37],
DCQCN [38], QJUMP [39] and RDMA over Converged
Ethernet v2 [40] focus on low latency communication but do
not support multi-path routing. Other approaches [26], [27]
do provide excellent performance for long flows but perform
poorly for short flows [24], [28]. None of these protocols sup-
ports efficient one-to-many and many-to-one communication.
Contribution. In this paper we propose SCDP*, a general-
purpose transport protocol for data centres that, unlike any
other protocol proposed to date, supports efficient one-to-
many and many-to-one communication. This, in turn, results
in significantly better overall network utilisation, minimising
hotspots and providing more resources to long and short
unicast flows. At the same time, SCDP supports fast comple-
tion of latency-sensitive flows and consistently high-bandwidth
communication for long flows. SCDP eliminates Incast [32],
[33], [35] and Outcast [36]. All these are made possible by
integrating RaptorQ codes [43], [44] with receiver-driven data
transport [17], [22], in-network packet trimming [17], [45] and
Multi-Level Feedback Queuing (MLFQ) [46].

RaptorQ codes are systematic and rateless, induce minimal
network overhead and support excellent encoding/decoding
performance with low memory footprint (§II). They naturally
enable one-to-many (§III-E) and many-to-one (§III-F) data
transport. They support per-packet (encoded symbol) multi-
path routing and multi-homed network topologies [47], [48]
(§II-C); packet reordering does not affect SCDP’s perfor-
mance, in contrast to protocols like [18], [24], [28]. In combi-
nation with receiver-driven flow control (§III-D), and packet
trimming (§II1-C), SCDP eliminates Incast and Outcast, play-
ing well with switches’ shallow buffers. The systematic nature
of RaptorQ codes enables fast, decoding-free completion of
latency-sensitive flows by prioritising newly established ones,
therefore eliminating loss (except under very heavy loads)
(§II-H). Long flows are latency-insensitive so lost symbols

4SCDP builds on our early work on integrating fountain coding in data
transport protocols [41], [42].

can be recovered by repair ones; SCDP employs pipelining
of source blocks, which alleviates the decoding overhead for
large data blocks and maximises application goodput (§I1I-G).
SCDP is a simple-to-tune protocol, which, as with NDP and
scalable multicasting, will be deployable when P4 switches
[49] are deployed in data centres.

SCDP performance overview. We found that SCDP improves
goodput performance by up to ~50% compared to NDP with
different application workloads involving one-to-many and
many-to-one communication (§1V-A). Equally importantly, it
reduces the average FCT for short flows by up to ~45% com-
pared to NDP under two realistic data centre traffic workloads
(§IV-B). For short flows, decoding latency is minimised by
the combination of the systematic nature of RaptorQ codes
and MLFQ; even in a 70% loaded network, decoding was
needed for only 9.6% of short flows. This percentage was less
than 1% in a 50% congested network (§IV-F). The network
overhead induced by RaptorQ codes is negligible compared
to the benefits of supporting one-to-many and many-to-one
communication. Only 1% network overhead was introduced
under a heavily congested network (§IV-G). RaptorQ codes
have been shown to perform exceptionally well even on a
single core, in terms of encoding/decoding rates. We therefore
expect that with hardware offloading, in combination with
SCDP’s block pipelining mechanism (§1II-G), the required
computational overhead will be insignificant.

II. RAPTORQ ENCODING AND DECODING

Encoding. RaptorQ codes are rateless and systematic. The
input to the encoder is one or more source blocks; for each
one of these source blocks, the encoder creates a potentially
very large number of encoding symbols (rateless coding). All
source symbols (i.e. the original fragments of a source block)
are amongst the set of encoding symbols (systematic coding).
All other symbols are called repair symbols. Senders initially
send source symbols, followed by repair symbols, if needed.

IEEE/ACM TRANSACTIONS ON NETWORKING

Sender

. Network Node
‘ Source Block ‘

v

[Encoder]

¢ Source

Repair I
el oL, |/
EncodingYSymbols

a
o
B

95

Receiver

X Lost packet
‘ Source Block ‘

T

3 [Decoder]
Overhead
([B

|
Received Symbols

J

Fig. 2: RaptorQ-based communication

Decoding. The decoder decodes a source block after receiving
a number of encoding symbols that must be equal to or larger
than the number of source symbols; all symbols contribute
to the decoding process equally. In a lossless communication
scenario, decoding is not required, because all source symbols
are available (systematic coding).

Performance. In the absence of loss, RaptorQ codes do not
incur any network or computational overhead. The trade-off
associated with RaptorQ codes when loss occurs is with re-
spect to some (1) minimal network overhead to enable success-
ful decoding of the original fragments and (2) computational
overhead for decoding the received symbols to the original
fragments. RaptorQ codes behave exceptionally well in both
respects. With two extra encoding symbols (compared to the
size of original fragments), the decoding failure probability is
1075, It is important to note that decoding failure is not fatal;
instead more encoding symbols can be requested. The time
complexity of RaptorQ encoding and decoding is linear to the
number of source symbols. RaptorQ codes support excellent
performance for all block sizes, including very small ones,
which is very important for building a general-purpose data
transport protocol that is able to handle equally efficiently
different types of workloads. In [50], the authors report en-
coding and decoding speeds of over 10 Gbps using a RaptorQ
software prototype running on a single core. With hardware
offloading RaptorQ codes would be able to support data
transport at line speeds in modern data centre deployments.
On top of that, multiple blocks can be decoded in parallel,
independently of each other. Decoding small source blocks is
even faster, as reported in [51]. The decoding performance
does not depend on the sequence that symbols arrived nor on
which ones do.

Example. Before explaining in detail how RaptorQ codes are
integrated in SCDP, we present a simple example of point-to-
point communication between two hosts, which is illustrated in
Figure 2.5 On the sender side, a single source block is passed
to the encoder that fragments it into K= 8 equal-sized source
symbols S, 57, ..., Ss. The encoder uses the source symbols
to generate repair symbols S,, Sy, S, (here, the decision to
encode 3 repair symbols is arbitrary). Encoding symbols are

SNote that Figure 2 does not illustrate SCDP’s underlying mechanisms for
requesting encoding symbols and flow control. It is only intended to showcase
the main features of RaptorQ codes, which SCDP builds on. The design of
SCDP is discussed extensively in Section III.

transmitted to the network, along with the respective encoding
symbol identifiers (ESI) and source block numbers (SBN) [43].
As shown in Figure 2, symbols Sy and S}, are lost. Symbols
take different paths in the network but this is transparent to
the receiver that only needs to collect a specific amount of
encoding symbols (source and/or repair). The receiver could
have been receiving symbols from multiple senders through
different network interfaces. In this example, the receiver
attempts to decode the original source block upon receiving 9
symbols, i.e. one extra symbol which is a necessary network
overhead (as shown in Figure 2). Decoding is successful and
the source block is passed to the receiver application. As
mentioned above, if no loss had occurred, there would be
no need for decoding and the data would have been directly
passed to the application.

III. SCDP DESIGN

In this section, we describe SCDP in detail. We first
present an overview of the protocol and discuss its key
design decisions. We define SCDP’s packet types and switch
service model, the supported communication modes and how
efficiency is provided for short and long flows.

A. Design Overview

Figure 3 illustrates SCDP’s key components (shown in
rectangles) and how these are brought together to tackle the
challenges identified in Section I (shown in ellipses). SCDP
is a receiver-driven transport protocol, which allows for swift
reactions to congestion when observing loss; more specifically
trimmed headers, as discussed in Section III-B (no Incast, no
hotspots in Figure 3). Initially, senders push a pre-specified
number of symbol packets, starting with source symbols;
subsequently, receivers request additional symbols at their
link capacity (no Incast) until they can decode the respective
source block. Transport sessions are initiated immediately,
without any handshaking, by the source symbols pushed by
the sender(s) (fast FCT in Figure 3). In SCDP, there are no
explicit acknowledgements; a request for an encoding symbol
implicitly acknowledges the reception of a symbol. SCDP
adopts packet trimming to provide fast congestion feedback
to receivers (no Incast, no Outcast in Figure 3) and MLFQ,
as in [46], to eliminate losses for short flows (except under
extreme congestion); this, along with the implicit connection
establishment, results in fast, decoding-free completion of

IEEE/ACM TRANSACTIONS ON NETWORKING

decoding-free completion of
short flows, no handshaking

overhead, multi-homing

~ - —

RaptorQ
codes

\
rateless coding,
symbol ordering not important

MLFQ

high network
utilisation

per-symbol spraying, minimal

o6

no hotspots

/ ’\
swift reactions to congestion,
request pacing

swift feedback

\

receiver- packet
driven data trimming
transport
\ /’
pulling at link swift .
capacity feedback no tail drop

Fig. 3: SCDP’s key components

(almost all) short flows (fast FCT). RaptorQ codes incur
minimal network overhead due to the extra repair symbols
when loss occurs, therefore network utilisation is not affected
(high network utilisation in Figure 3).

A unique feature of SCDP that differentiates it from all
previous proposals is its support for one-to-many (multicast)
and many-to-one (multi-source) communication modes (see
Figure 3). In SCDP’s one-to-many communication mode, a
sender initially pushes a window of symbols to all receivers,
which then start pulling additional (source and/or repair) ones.
Senders aggregate pull requests and multicast a new symbol
after receiving a pull request from all receivers. In the many-
to-one mode, a receiver pulls encoding symbols from multiple
senders. Duplicate symbols are avoided by having senders
partitioning the stream of repair symbols in a distributed
fashion [43]. Senders initially select and send a subset of
source symbols, before sending repair symbols. Multi-source
transport enables natural load balancing; (1) at the server level,
each server contributes symbols at its available capacity; (2) at
the network level, more symbols come through less congested
paths. Unicast transport is a specialisation of many-to-one
transport with one sender.

In SCDP, receivers are oblivious of the provenance of
encoding symbols. Symbols can follow different paths in the
network, enabling per-packet ECMP routing. Symbol reorder-
ing does not affect decoding performance. Symbols can also
be received from different network interfaces, enabling multi-
homed communication [47], [48] (high network utilisation).

B. Packet Types

SCDP supports three types of packets. A symbol packet
carries one MTU-sized encoding symbol, either source or
repair, the respective source block number (SBN) (i.e. the
source block it belongs to), and the encoding symbol identifier
(ESI), which identifies a symbol within a stream of source and
repair symbols for a specific source block [43]. Data packets
also include port numbers for identifying transport sessions, a

priority field that is set by the sender and a syn flag that is set
for all symbol packets that senders initially push.

A pull packet is sent by a receiver to request a symbol and
contains a sequence number and a fin flag. Note that multiple
symbol packets may be sent in response to a single pull
request, as described in Section III-D. The sequence number
is only used to indicate to a sender how many symbols to send
(e.g. if pull requests get reordered due to packet spraying in
the network). ®The fin flag is used to identify the last pull
request; upon receiving such a pull request, a sender sends
the last symbol packet for this SCDP session.

Header packets are trimmed versions of symbol packets.
Whenever a network switch receives a symbol packet that
cannot be buffered, instead of dropping it, it trims its payload
(i.e. a source or repair RaptorQ symbol) and forwards the
remaining header with the highest priority. Header packets
are a signal of congestion and are used by receivers for flow
control and to always keep a window worth of symbol packets
on the fly.

C. Switch Service Model

SCDP relies on network switching functionality that is
either readily available in today’s data centre networks [22] or
is expected to be [17] when P4 switches are widely deployed.
Note that it does not require any more switch functionality
than NDP [17], QJUMP [39], or PIAS [46] do.

Priority scheduling and packet trimming. In order to support
latency-sensitive flows, we employ MLFQ [46], and packet
trimming [45]. We assume that network switches support a
small number of queues (with respective priority levels). The
top priority queue is only used for header and pull packets.
This is crucial for swiftly providing feedback to receivers
about loss in the network. Given that both types of packets
are very small, it is extremely unlikely that the respective

®Note that RaptorQ codes are rateless, therefore there is no need for
receivers to request lost symbols; a new symbol will equally contribute to
the decoding of the source block.

IEEE/ACM TRANSACTIONS ON NETWORKING

queue gets full and that they are dropped’. The rest of the
queues are very short and are used to buffer symbol packets.
Switches perform weighted round-robin scheduling between
the top-priority (header/pull) queue and the symbol packet
queues. This guards against congestion collapse, a situation
where a switch only forwards trimmed headers and all symbol
packets are trimmed (to headers). When a data packet is to
be transmitted, the switch selects the head packet from the
highest priority, non-empty queue. In combination with the
priority setting mechanism, this minimises loss for short flows,
enabling fast, decoding-free completion.

Multipath routing. SCDP packets are sprayed to all available
equal-cost paths to the destination® in the network. SCDP
relies on ECMP and spraying could be done either by using
randomised source ports [24], or the ESI of symbol and header
packets and the sequence number of pull packets.

D. Unicast Transport Sessions

A unicast SCDP transport session is implicitly opened by
a sender by pushing a window of symbol packets to the
receiver. Senders tag outgoing symbol packets with a priority
value, which is used by the switches when scheduling their
transmission (§1II-C). The priority of outgoing symbol packets
is gradually degraded, when specific thresholds are reached.
Calculating these thresholds can be done as in PIAS [46] or
AuTO [30]. After receiving the initial window of packets,
the receiver takes control of the flow of incoming packets by
pacing pull requests to the sender. A pull request carries a se-
quence number which is auto-incremented for each incoming
symbol packet. The sender keeps track of the sequence number
of the last pull request and, upon receiving a new pull request,
it will send one or more packets to fill the gap between the
sequence numbers of the last and current request. Such gaps
may appear when pull requests are reordered due to packet
spraying. Senders ignore pull requests with sequence numbers
that have already been ‘served’; i.e. when they had previously
responded to the respective pull requests.

Receivers maintain a single queue of pull requests for all
active transport sessions. Flow control’s objective is to keep
the receiver’s incoming link as fully utilised as possible at
all times. This dictates the pace at which receivers send pull
requests to all different senders. Receivers buffer encoding
symbols along with their ESI and SBN and start decoding a
source block upon receiving either K source symbols, where
K is the total number of source symbols, or K + o source and
repair symbols, when loss occurs (o is the induced network
overhead). We found that 0 = 2 extra symbols, when loss
occurs, is the sweet spot with respect to the overhead and
decoding failure probability trade-off.

The receiver sets the fin flag in the pull request for the
last symbol (a source or repair symbol at that point) that
sends to the sender. Note that this may not actually be the
last request the receiver sends, because the symbol packet that

TReceivers employ a simple timeout mechanism, as in [17], to recover from
the unlikely losses of pull and header packets.

8In SCDP’s one-to-many communication mode there are many destinations.
In Section III-E, we describe this communication mode in detail.

o7

is sent in response to that request may get trimmed. All pull
requests for the last required symbol (not a specific one) are
sent with the fin flag on. The sender responds to fin-enabled
pull requests by sending the next symbol in the potentially very
large stream of source and repair symbols with the highest
priority. It finally releases the transport session only after a
time period that ensures that the last prioritised symbol packet
was not trimmed. This time period is very short; in the very
unlikely case that the prioritised symbol packet was trimmed,
the respective header would be prioritised along with the pull
packet subsequently sent by the receiver.

E. One-to-many Transport Sessions

One-to-many transport sessions exploit support for network-
layer multicast (e.g. with [11]-[16]) and coordination at the ap-
plication layer; for example, in a distributed storage scenario,
multicast groups could be pre-established for different replica
server groups or setup on demand by a metadata storage
server. This would eliminate the associated latency overhead
for establishing multicast groups on the fly and is practical
for other data centre multicast workloads, such as streaming
telemetry and distributed messaging, where destination servers
are known at deployment time. With recent advances in
scalable data centre multicasting, a very large number of
multicast groups can be deployed with manageable overhead in
terms of switch state and packet size. For example, Elmo [11]
encodes multicast group information inside packets, therefore
minimising the need to store state at the network switches.
With small group sizes, as in the common data centre use
cases mentioned above, Elmo can support an extremely large
number of groups, which can be encoded directly in packets,
eliminating any maintenance overhead associated with churn
in the multicast state. “In a three-tier data centre topology with
27K hosts, Elmo supports a million multicast groups using a
325-byte packet header, requiring as few as 1.1K multicast
group-table entries on average in leaf switches, with a traffic
overhead as low as 5% over ideal multicast” [11].

As with unicast transport sessions, an SCDP sender initially
pushes IW (syn-enabled) symbol packets tagged with the
highest priority. Receivers then request more symbols by
sending respective pull packets. The sender sends a new
symbol packet only after receiving a request from all receivers
within the same multicast group. Receivers queue and pace
pull packets as in all other transport modes. Depending on
the network conditions and server load, a receiver may get
behind in terms of received symbols. The rateless property
of RaptorQ codes is ideal for such situation; within a single
transport session, receivers may receive a different set of
symbols but they will all decode the original source block
as long as the required number of symbols is collected,
regardless of which symbols they missed (see Section II). On
the other hand, some receivers may end up receiving more
symbols than what would be required to decode the original
source block. This is unnecessary network overhead induced
by SCDP but, in Section IV-G, we show that even under
severe congestion, SCDP performs significantly better than
NDP, exploiting the support for network-layer multicast. In

IEEE/ACM TRANSACTIONS ON NETWORKING

extreme scenarios where receivers become unresponsive, this
overhead increases significantly, as all other receivers will be
unnecessarily receiving a potentially very large number of
symbols. In such situations, detaching the straggler server from
the multicast group (at the application layer) would trivially
solve the issue.

FE. Many-to-one Transport Sessions

Many-to-one data transport is a generalisation of the uni-
cast transport discussed in Section III-D. Senders initialise a
multi-source transport session by pushing an initial window
IW; of symbol packets to the receiver. As in the unicast
transport mode, these symbol packets have the syn flag set,
are tagged with the highest priority and contain source or
repair symbols. The total number of initially pushed symbol
packets IWiotqr = > 1o IW;, where ng is the total number
of senders, is selected to be larger than the initial window
IW wused in unicast transport sessions. This is to enable
natural load balancing in the data centre in the presence of
slow senders or hotspots in the network. In that case, SCDP
ensures that a subset of senders (e.g. 2 out of 3 in a 3-
replica scenario) can still fill the receiver’s downstream link.
In Section IV-E, we show that initial window sizes that are
greater than 10 symbol packets result in the same (high)
goodput performance. A large initial window would inevitably
result in more trimmed symbol packets, which however would
not affect short, latency-sensitive flows that would always be
prioritised over longer multi-source sessions.

As discussed in Section II, RaptorQ codes are rateless
and all symbols contribute equally to the decoding process,
therefore the receiver is agnostic to the origin of each symbol.
In many-to-one communication scenarios, senders are coordi-
nated at the application layer. For example, in a distributed
storage scenario, clients can either resolve the IP addresses
of servers in a deterministic way (e.g. as in [3], [52]) or by
asking a metadata server (e.g. as in [53]). Before fetching the
data, they are aware of (1) the total number of senders n, and
(2) the server index ¢ in the set of all senders. As a result,
they can partition the potentially large stream of source and
repair (if needed) symbols so that each one produces unique
symbol packets.

G. Maximising Goodput for Long Flows through Source Block
Pipelining

With RaptorQ codes, if loss occurs, the receiver must
decode the source block after collecting the required number
of source and repair symbols (§1I). This induces latency before
the data can become available to the application.

For large source blocks, SCDP masks this latency by
splitting the large source block to many smaller blocks, instead
of encoding and decoding the whole block. The smaller blocks
are then pipelined over a single SCDP session. With pipelin-
ing, a receiver decodes each one of these smaller source blocks
while receiving symbol packets for the next one, effectively
masking the latency induced by decoding, except for the last
source block. The latency for decoding this last smaller block
is considerably smaller compared to decoding the whole block

o8

at once.” For short, latency-sensitive flows, this could be a
serious issue, but SCDP strives to eliminate losses, resulting
in fast, decoding-free completion of short flows (§III-H).

H. Minimising Network Overhead and Completion Time for
Short Flows

SCDP ensures that a window of ITW symbol packets are
on the fly throughout the lifetime of a transport session.
The window decreases by one symbol packet for the last
IW packets that the sender sends. As long as no loss is
detected (through receiving a trimmed header), a receiver
sends K — IW pull requests, in total. For every received
trimmed header (i.e. observed loss), the receiver sends a pull
request, and, subsequently, the sender sends a new symbol,
which equally contributes to the decoding of the source block.
This ensures that SCDP does not induce any unnecessary
overhead; i.e. symbol packets that are unnecessary for the
decoding of the respective source block. The target for the
total number of received symbols also changes when loss
is detected. Initially, all receivers aim at receiving K source
symbols. Upon receiving the first trimmed header, the target
changes to K + 2, which ensures that decoding failure is
extremely unlikely to occur (see Section II).

By prioritising earlier packets of a session over later ones
through MLFQ, SCDP minimises loss for short flows. This
has an extremely important corollary in terms of SCDP’s
computational cost; no decoding is required for the great
majority of short flows, therefore completion times are almost
always near-optimal. We extensively evaluate this aspect of
SCDP’s design in Section IV-F. It is important to note that
for all supported types of communication, there is no latency
induced due to encoding, because repair symbols can be
generated while source symbols are sent; i.e. there can always
be one or more repair symbols ready before they are needed.

IV. EXPERIMENTAL EVALUATION

We have extensively evaluated SCDP’s performance through
large scale, packet-level simulations. We have developed mod-
els of SCDP, NDP, the switch service model and network-
layer multicast support [54] in OMNeT++'°, ', Our results
are fully reproducible. For our experimentation we have used
a 250-server FatTree topology with 25 core switches and 5
aggregation switches in each pod (50 aggregation switches
in total). This is a typical size for a simulated data centre
topology, also used in the evaluation of recent data centre
transport proposals [22], [23], [31], [46]. The values for the
link capacity, link delay and switch buffer size are 1 Gbps,
10pus and 20 packets, respectively. The buffer is allocated
to 5 packet queues with different scheduling priorities. The
thresholds for demoting the priority for a specific session
are statically assigned to 10KBs, 100KBs, IMB and 10MBs,

9For the experimental evaluation presented in Section IV, we have inte-
grated pipelining into the developed SCDP model and simulated the respective
latency following the results reported in [S1].

10Some of our models that we use in this paper have been published at
OMNeT++ Community Summit [55].

https://github.com/mohammedalasmar/ndpTcpDatacentreOmnetppModel

IEEE/ACM TRANSACTIONS ON NETWORKING

G R:

—>
(b) NDP one-to-many
(daisy chain)

(a) NDP one-to-many
(multi-unicast)

99

@ rrrnnnnnnnnns >
(e) SCDP many-to-one

Fig. 4: Tllustration of read and write workloads and replica placement policy used in comparing goodput performance for
SCDP and NDP. For clarity, the core of the data centre is omitted and replica groups (and the respective transport sessions)
are selected to be in the same pod. In our simulations, the selection of remote racks to store data blocks is random and racks
in different pods can be selected. Network-layer multicast is supported in SCDP one-to-many communication.

respectively!2. The top priority queue is for pull and header
packets which are very small, therefore we can avoid timeouts
by setting its size to a relatively large value (as also done in
[17]). Unless otherwise stated, the initial window I W for one-
to-one and one-to-many sessions is set to 12 symbol packets.
For many-to-one sessions the initial window is set to 6 symbol
packets per sender. For all experiments we set the block size
for pipelining to 100 MTU-sized symbol packets. We have
run each simulation 5 times with different seeds and report
average (with 95% confidence intervals) or aggregate values.

A. Goodput for One-to-Many and Many-To-One Communica-
tion

In this section we measure the application goodput for
SCDP and NDP in a distributed storage setup with 3 replicas
(as depicted in Figure 4).The setup involves many-to-one and
one-to-many communication. In each run, we simulate 2000
transport sessions (or I/O requests at the storage layer) with
sizes IMB and 4MB each (s in the figures). Transport session
arrival times follow a Poisson process; we have used different
A values (2000 and 4000) to assess the performance of the
studied protocols under different loads. Each I/O request is
‘assigned’ to a host in the network (C; in Figure 4), which is
selected uniformly at random and acts as the client. Replica
selection and placement is based on HDFS’ default policy.
More specifically, we assume that clients are not data nodes
themselves, therefore a data block is placed on a randomly
selected data node (R; in Figure 4). One replica is stored on a
node in a different remote rack, and the last replica is stored
on a different node in the same remote rack. A client will read
a block from a server located in the same rack, or a randomly
selected one, if no replica is stored in the same rack. In order
to simulate congestion in the core of the network, 30% of the

121n a real-world deployment these would be set dynamically, e.g. as in
AuTO [30].

nodes run background long flows, the scheduling of which is
based on a permutation traffic matrix.

One-to-many transport sessions. We evaluate SCDP’s per-
formance in one-to-many traffic workloads and assess how
it benefits from the underlying support for network-layer
multicast, compared to NDP. One-to-many communication
with NDP is implemented through (1) multi-unicasting data
to multiple recipients (Figure 4a) or (2) daisy-chaining the
transmission of replicas through the respective servers (Figure
4b). In daisy-chaining, each replica starts transmitting the data
to the next replica server (according to HDFS’s placement
policy), as soon as it starts receiving data from another replica
server. Daisy-chaining eliminates the bottleneck at the client’s
uplink. We measure the overall goodput from the time the
client initiates the transmission until the last server receives
the whole data. The results for various loads and I/O request
sizes are shown in Figure 5. In all figures, flows are ranked
according to the measured goodput performance (shown on
the y axis). SCDP, with its natural load balancing and the
support of multicast (Figure 4c), significantly outperforms
NDP even when daisy-chaining is used for replicating data.
Daisy-chaining is effective compared to multi-unicasting when
the network is not heavily loaded. In SCDP, around 50% of the
sessions experience goodput that is over 90% of the available
bandwidth for IMB sessions and A = 2000. The remaining
50% sessions still get a goodput performance over 60% of the
available bandwidth. When the network load is heavier, daisy-
chaining does not provide any significant benefits over multi-
unicasting because data needs to be moved in the data centre
multiple times and congestions gets severe. For A = 4000 and
4MB sessions, NDP’s performance is significantly worse for
most sessions, whereas SCDP still offers an acceptable trans-
port service to all sessions. SCDP fully exploits the support
for network-layer multicasting providing superior performance
to all storage clients because the required network bandwidth
is minimised. Minimising the bandwidth requirements for

IEEE/ACM TRANSACTIONS ON NETWORKING

z
505 ,-7 ..
(=¥ r e
'8 l SCDP
[®] H = NDP (daisy chain)
O 0 -=* NDP (multi-unicast)
0 5000 10000

Rank of transport session

(a) rs = IMB, A = 2000

—

vl

& A

’

=05 -~ o

2 e

] PR

=3 P SCDP

8 s — NDP (daisy chain)
0 «+« NDP (multi-unicast)

0 5000

Rank of transport session

(b) rs = IMB, X = 4000

10000

60

—_

SCDP
= NDP (daisy chain) g
+ NDP (multi-unicast)| , = % 4

Goodput (Gbps)
o
W

0
0 5000
Rank of transport session

(c) rs = 4MB, X = 2000

Goodput (Gbps)
=)
O

10000

SCDP
= NDP (daisy chain)
--+ NDP (multi-unicast)

o

o
-ﬂ--ﬂ--ﬂuﬂl"'

T
Lowwe

0 5000 10000
Rank of transport session

(d) rs = 4MB, X\ = 4000

Fig. 5: Performance comparison for SCDP and NDP - write I/O with 3 replicas (one-to-many)

Ju—

g ;_,.:r\-m.«-‘.—.._..--m-ﬂ‘"
o

o If'

505

S i SCDP

s — NDP (multi-block)
O - NDP (single-block)

(=)
(=)

Rank of transport session

(a) rs = IMB, A = 2000

5000 10000

SCDP
— NDP (multi-block)

Goodput (Gbps)
o
,

+* NDP (single-block)

0
0 5000
Rank of transport session

(b) rs = IMB, X\ = 4000

10000

—_

SCDP
— NDP (multi-block)
=* NDP (single-block)

0 5000
Rank of transport session

(c) r1s = 4MB, A = 2000

Goodput (Gbps)
(=)
(9]

Goodput (Gbps)
(=)
n

10000

Pt SCDP
o = NDP (multi-block)
+++ NDP (single-block)

0
0 5000 10000
Rank of transport session

(d) rs = 4MB, X\ = 4000

Fig. 6: Performance comparison for SCDP and NDP - read I/O with 3 replicas (many-to-one)

one-to-many flows that are extremely common in the data
centre, makes space for regular short and long flows. For the
experimental setup with the heaviest network load (A = 4000
and 4MB sessions), we have measured the average goodput
for SCDP background traffic to be 0.408 Gbps, compared
to 0.252 Gbps for the respective NDP experiment!?. This is
15.6% of the available bandwidth freed up for all other flows.
We evaluate the positive effect that SCDP has with respect to
network hotspots in Section IV-C.
Many-to-one transport sessions. In the many-to-one scenario
(Figure 6), clients read previously stored data from the net-
work. SCDP naturally balances this load according to servers’
capacity and network congestion, as discussed in Section III-F
(see Figure 4e). With NDP, clients read data either from a
replica server located in the same rack or a randomly selected
server, if there is no replica stored in the same rack. For NDP,
we simulate both a single-block (see Figure 4d) and multi-
block request workload. The latter enables parallelisation at
the application layer (e.g. the read-ahead optimisation where a
client reads multiple consecutive blocks under the assumption
that they will soon be requested). Here, we simulate a 3-block
read-ahead policy and measure the overall goodput from the
time the I/O request is issued until all 3 blocks are fetched.
To make the results as comparable to each other as possible,
for the 3-block setup we use blocks the size of which is one
third of the size of the single-block scenario (as reported in
Figure 6). We do not include multi-block results for SCDP as
they are almost identical to the single-block case, confirming
the argument that it naturally distributes the load without any
application-layer parallelisation.

In Figure 6 we observe that SCDP significantly outperforms

13Note that this improvement for background flows is despite these running
at the lowest possible priority, given that they span the whole duration of the
simulation.

NDP for all different request sizes and A\ values. Even under
heavy load, SCDP provides acceptable performance to all
transport sessions. This is the result of (1) the natural and
dynamic load balancing provided to SCDP’s many-to-one ses-
sions and (2) MLFQ; long background flows run at the lowest
priority to boost the performance of shorter flows. Around
82% of the sessions experience goodput that is above 90%
of the available bandwidth for 1IMB sessions and A = 2000.
In contrast, NDP offers this good performance to only 10%
of the sessions. For A = 4000 and 4MB sessions, NDP’s
performance is significantly worse for most sessions, whereas
SCDP still offers good performance to all sessions. Notably,
the performance difference between SCDP and NDP increases
with the congestion in the network, with SCDP being able to
provide acceptable levels of performance where NDP would
not (e.g. in the presence of hotspots or in over-subscribed
networks).

0- 10KB - | 100KB - | IM- Average
10KB | 100KB IMB flow size
Web
Search [18] 49% 3% 18% 20% 1.6MB
Data
Mining [56] 78% 5% 8% 9% 7.4MB

TABLE I: Flow size distribution of realistic workloads

B. Performance Benchmarking with Realistic Workloads

SCDP is a general-purpose transport protocol for data
centres therefore it is crucial that it provides high performance
for all supported transport modes and traffic workloads. In this
section, we use realistic workloads reported by data centre
operators to evaluate SCDP’s applicability and effectiveness
beyond one-to-many and many-to-one sessions. Here, we
consider two typical services; web search and data mining

IEEE/ACM TRANSACTIONS ON NETWORKING

61

10 1
—~ |eNDP 2
g _|*SCcDP 5
=8 ©)
I 0 =
2 503 —SCDP Load 0.5
o 6 , 2 —-SCDP Load 0.8
> (.—’—'// Q NDP Load 0.5
< © . — NDP Load 0.8

4

0.5 0.6 07 0.8 0 1000 2000 3000 4000
Load Rank of transport session

(c) (100KB, 1MB] (d) (IMB, 10MB]

Fig. 7: Web search workload with unicast flows as background traffic

6 2 et T T
~ |eNDP 2 (7
£ _|+scpp S
=5 s 2
3 205
&) Q__,e———e/(30 —SCDP Load 0.5
- 2 —-SCDP Load 0.8
£ - NDP Load 0.5
<) L +~—1t © o — NDP Load 0.8
3
05 06 0.7 0.8 0 500 1000 1500
Load Rank of transport session

(c) (100KB, 1MB] (d) (1IMB, 10MB]

Fig. 8: Data mining workload with unicast flows as background traffic

045
= - NDP 0.5/ ©NDP
£ 04*+SCDP ~ " |l*SCDP
3)
Q035 > 04
03 -
> .
< g / 0.3
0.25
0 0.6 0.7 0.8 0.5 0.6 0.7 0.8
Load Load
(a) (0, 100KB] (b) (0, 100KB] 99th percentile
Ao.os 0.1 !
E o —o—o— 7 ao.oscf
;0.04‘ g
5 oNDP £ 06/@NDP
% .03+ SCDP 5 |+scDp
gnt K 0.04 "
< 4
0.02 0.02
0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
Load Load
(a) (0, 100KB] (b) (0, 100KB] 99th percentile
045
o~ -©NDP D -©NDP D
E 04|*SCDP ,;0'5 +SCDP
5 0.35 é
ST, H0'4< i
. . Q
2?03 =
< 0.34
0.25
0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
Load Load

(a) (0, 100KB] (b) (0, 100KB] 99th percentile

10 T
- |[©NDP) i ,_-:-:':":— =
£ |wscop & ﬁ -
~ 8 O ,
5 =05V
£ a e —SCDP Load 0.5
5 0 - —-SCDP Load 0.8
2 8 NDP Load 0.5
< R 0 — NDP Load 0.8
0.5 0.6 07 0.8 0 1000 2000 3000 4000
Load Rank of transport session

(c) (100KB, 1MB] (d) (IMB, 10MB]

Fig. 9: Web search workload with a mixture of one-to-many and many-to-one sessions as background traffic

[18], [56]. The respective flow size distributions are shown
in Table I. They are both heavy-tailed; i.e. a small fraction
of long flows contribute most of the traffic. We have chosen
the workloads to cover a wide range of average flow sizes
ranging from 64KB to 7.4MB. We simulate four target loads of
background traffic (0.5, 0.6, 0.7 and 0.8). We generate 20000
transport sessions, the inter-arrival time of which follows a
Poisson process with A = 2500. In Figures 7a and 7c and 8a
and 8c, we report the average flow completion time (FCT)
of flows with sizes in (0 — 1MB). For the shortest flows
(0—100KB) we also report the 99th percentile of the measured
FCTs (Figures 7b and 8b). Finally, Figures 7d and 8d illustrate
the measured goodput for flows with sizes in (1IMB, 10MB]
(for load values of 0.5 and 0.8).

SCDP performs better in all scenarios due to the decoding-
free completion of (almost all) short flows and the supported
MLFQ. Note that when loss occurs, SCDP sessions must
exchange 2 additional symbols; they also pay the ‘decoding
latency’ price. For very short flows, the 99th percentile FCT
is close to the average one for all loads, which indicates
that this is rarely happening. We study the extent that this

overhead and the associated decoding latency is required in
Section IV-F. For higher loads, NDP performs even worse
than SCDP because of the lack of support for MLFQ, which
results in the trimming of more packets belonging to short
flows. Note that the FCT of short flows in web search is larger
than in data mining. This is mainly because the percentage
of long flows in the former workload is larger than in the
latter, resulting in a higher overall load (for all fixed loads of
background traffic). A key message here is that SCDP provides
significantly better tail performance for short flows compared
to NDP, especially as the network load increases, despite the
(very unlikely) potential for decoding and network overhead.
For flows with sizes in (1IMB, 10MB], we observe that goodput
with SCDP is better compared to NDP; tail performance is also
better.

C. Minimising Hotspots in the Network

SCDP increases network utilisation by exploiting support
for network-layer multicasting and enabling load balancing
when data is fetched simultaneously from multiple servers, as
demonstrated in Section IV-A. This, in turn, makes space in

IEEE/ACM TRANSACTIONS ON NETWORKING

62

10

0.05 7«; 0.1 6 ! 1 =
I DN 0.084 e)__e_’—e/ 2 [-
~ DP ,':\ N = e} > -
=004 +SC é SNDP = 5 — g
2 £ 0.06|l+SCDP 2 2 sonp 509 —SCDP Load 0.5
,0.03 g F ot E —+SCDP Load 0.8
0.04 > o]
> _*/a———'n 8 NDP Load 0.5
< < — NDP Load 0.8
0.02 0.02 3 0
0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0 500 1000 1500
Load Load Load Rank of transport session
(a) (0, 100KB] (b) (0, 100KB] 99th percentile (c) (100KB, 1IMB] (d) (IMB, 10MB]
Fig. 10: Data mining workload with a mixture of one-to-many and many-to-one sessions as background traffic
1 o) 1 P T /{2\06 =
~ e = e & pp
w» ! w r H 12 flows/ App2
& m T ¥ = ot 5 EIApp!
S ! H Z04
505 JWW*\{ 005 i Boj neck .2 flows 2,
= 1 o [/é ToR1 2
ot
S SChr ok & Nbp 20k - Top e N -+ NDP 256KB 4 &b
0 10 20 30 40 50 60 70 140 145 150] < 0
Number of senders in para“el FCT (mS) Dest 1 Dest2 Srcl Src2 SCDP TCP

(a) Incast: goodput comparison

(b) Incast: FCT with 70 senders

(c) Outcast: setup (d) Outcast: goodput

Fig. 11: Incast and Outcast evaluation

the network for regular short and long flows. In this section,
we evaluate this performance benefit. We use as background
traffic a 50%/50% mixture of write and read I/O requests
(4MB each) that produce one-to-many and many-to-one traffic,
respectively. We repeat the experiment of the previous section
and evaluate the performance benefits of SCDP over NDP
with respect to minimising hotspots and maximising network
utilisation for regular short and long flows.

In Figures 9a and 9c, we observe that SCDP’s performance
is almost identical to the one reported in Figures 7a and 7c
(similarly between Figure 8 and Figure 10). In contrast, NDP’s
performance deteriorates significantly because the background
traffic requires more bandwidth (one-to-many) and results in
hotspots at servers’ uplinks (many-to-one). Tail performance
for SCDP gets only marginally worse (the 99th percentile
increases from 0.277ms to 0.287ms for the web search work-
load in load 0.5), whereas NDP’s performance gets signif-
icantly worse (the 99th percentile increases from 0.306ms
to 0.381ms). The observed behaviour is more pronounced in
the web search workload which, as described in the previous
section, results in higher overall network utilisation compared
to the data mining workload.

D. Eliminating Incast and Outcast

SCDP eliminates Incast by integrating packet trimming
and not relying on retransmissions of lost packets (given the
rateless nature of RaptorQ codes). We have simulated Incast by
having multiple senders (ranging from 1 to 70) sending blocks
of data (7T0KB and 256KB, each, in two separate experiments)
to a single receiver. All transport sessions were synchronised
and background traffic was present to simulate congestion.
Figure 11a illustrates the measured aggregated goodput for
all SCDP, NDP and TCP flows. Error bars represent the 95%

confidence interval. As expected, TCP’s performance collapses
when the number of senders increases. SCDP performs slightly
better compared to NDP even when a large number of servers
send data to the receiver at the same time. This is attributed to
the decoding-free completion of these flows, in combination
with the packet trimming and the lack of retransmissions for
SCDP. Figure 11b shows the CDF of the FCTs in the presence
of Incast with 70 senders. We observe that for the vast majority
of transport sessions, SCDP provides superior performance
compared to NDP.

SCDP eliminates outcast by employing receiver-driven flow
control and packet trimming, which prevent port blackout. We
have simulated a classic outcast scenario, where two receivers
that are connected to the same ToR switch receive traffic from
senders located in the same pod (2 flows crossing 4 hops) and
different pods (12 flows crossing 6 hops), respectively. Flow
size is 200KB and all flows start at the same time. This is
illustrated in Figure 11c. Here, the bottleneck link lies between
the aggregate switch and the ToR switch, which is different
from the Incast setup. Figure 11d shows the aggregate goodput
for the two groups of flows, for SCDP and TCP. TCP Outcast
manifests itself through (1) unfair sharing of the bottleneck
bandwidth (around 113 and 274 Mbps for the groups of flows,
respectively) and (2) suboptimal overall performance (around
0.387 Gbps). SCDP eliminates Outcast as the bottleneck is
shared fairly between the two groups of flows (around 460
and 435 Mbps for the groups of flows, respectively, and the
overall goodput is around 0.9 Gbps).

E. The effect of the Initial Window Size

A key parameter of SCDP is the initial windows IW
of symbol packets that a sender pushes to the network.

IEEE/ACM TRANSACTIONS ON NETWORKING

1 A
g A5F I
O » /
o 7
s0s5t-" "7 7 !
& ~IW=4 —IW=16
S IW=8 =IW =20
) . +IW=12—IW =24

0 5000 10000

Rank of transport session

(a) Goodput performance

63

11

[\ (9%}
o o

Avg. #trimmed
s

2 46 8101214161820
w

(b) Number of trimmed packets

Fig. 12: The effect of the IW value

Throughout the lifetime of a transport session this window is
maintained and only decreased for the last /W pull packets.
In many-to-one transport sessions the sum of all the initial
windows for all senders is set to be larger than the initial
window for the one-to-one and one-to-many modes. This is
to enable natural load balancing between all senders in the
presence of congestion in the network (see Section III-F).
In this section we evaluate the effect that the initial window
has in the performance of SCDP. The experimental setup is
as described in Section IV-A, with 1.5MB unicast sessions
(we evaluated one-to-many and many-to-one sessions as well,
which showed similar results as the unicast sessions).

In Figure 12a, we observe that for very small values of
the initial window, the goodput is very low and the receiver’s
downlink underutilised. As the window increases, utilisation
approaches the maximum available link capacity (for 10
symbol packets). For larger values, the measured goodput is
the same (full link capacity). This means that for many-to-
one sessions, increasing the sum of initial windows for all
senders does not have any negative impact on the goodput.
However, increasing the window inevitably leads to more
trimmed packets due to the added network load, which would
be beyond the receiver’s downlink capacity. This is illustrated
in Figure 12b, where the average number of trimmed packets
for session sizes of 1.5MB grows from 13 for an initial window
of 12 symbol packets to 32 for an initial window of 20. This
increase and the resulting necessity for decoding (and extra
overhead) does not negatively affect many-to-one sessions
which are commonly not latency-sensitive.

F. Network Overhead and Induced Decoding Latency

SCDP provides zero-overhead data transport when no loss
occurs. In the opposite case, 2 extra symbols (compared to
the number of original fragments) are required by the decoder
to decode the source block (with extremely high probabil-
ity). Additionally, the required decoding induces latency in
receiving the original source block. Short flows in data centres
are commonly latency sensitive so SCDP must be able to
provide decoding-free completion of such flows. To asses
the efficacy of our MLFQ-based approach, we measure the
number of unicast flows that suffer symbol packet loss for

B 400 /B = 1000 B\ = 6000
=

2" [= 2000 A = 8000
= mmA=4000

e0300

£

9

8200

Q

o

%l()()’

B

**

Load 0.5

Load 0.6 Load 0.7

Fig. 13: Number of sessions that needed decoding for different
loads and session inter-arrival times. The total number of
simulated sessions is 5000

different network loads ranging from 0.5 to 0.7. For each
network load, we examine different A\ values for the Poisson
inter-arrival rate of the studied short flows (150KB). In each
simulation, we generate 5000 sessions with the respective A
value as their inter-arrival time. In Figure 13, we observe that
for load values of 0.5 and 0.6, the times that a short flow
would require decoding and extra 2 symbol packets is very
small (0.44% and 1.2% of the flows, respectively, when \ =
8000), rendering the respective overhead negligible.

G. Overhead in One-to-Many Sessions

In Section III-E, we identified a limitation of SCDP with
respect to unnecessary network overhead which may occur in
one-to-many transport sessions in the presence of congestion.
This is due to receivers getting behind with the reception of
symbols. Consequently, up-to-date receivers will be receiving
more symbols than what they actually need. In order to
evaluate the extent of this limitation we setup a similar
experiment to the one presented in Section IV-A. Figures
14a and 14b depict the CDF of the number of symbols that
were sent unnecessarily for different values of A, and session
sizes. We observe that as the network load increases, the
number of sessions that induce unnecessary network overhead
increases. It is important to note that, even when this happens,
the measured goodput for SCDP is significantly better than

IEEE/ACM TRANSACTIONS ON NETWORKING

64

12

1 ‘-__.:___.—___7___7..--...-..—..- 1 I——
0.8 :\\=4288 08§
! =1 f
& 0.6: — \2250 & 0.6:
O 04 © 0.4}
02f 02|
ol of
0 5 10 15 0

Overhead (unnecessary symbols)

(a) One-to-many - 1IMB

10

Overhead (unnecessary symbols)
(b) One-to-many - 3MB

—~ 1 == +SCDP IMB P ———
[72) == SCDP 3MB P
A=4000 S -
=+ A=1500 <) - P
= A=250 =05
o
9
o
]
O !
0
20 0 2500 5000

Rank of transport session
(c) Goodput - IMB and 3MB - A = 4000

Fig. 14: Unnecessary network overhead in one-to-many sessions

—flow 1 —flow 4] !'_"
20.4 = flow 2 ==flow 5]
8 flow 3 !
=03 1
|

= |—l"’“‘"u ,-_.'
,8-‘0.2 | m,-—--i
o I i I

0 1 1 1

0 2 4 6 8 1012 14 16 18

Time (seconds)

Fig. 15: Convergence test

that of NDP. Figure 14c illustrates the measured goodput
for the examined session sizes and highest network load
(A = 4000). Clearly, SCDP significantly outperforms NDP
despite the potential for some unnecessary network overhead.
The benefit of exploiting network-layer multicast makes this
potential overhead negligible.

H. Resource Sharing

SCDP achieves excellent fairness without needing addi-
tional mechanisms. SCDP’s principles for resource sharing
are as follows: (1) receivers pull symbol packets from one
or more senders in the data centre at a pace that matches
their downlink bandwidth. Given that servers are uniformly
connected to the network with respect to link speeds, SCDP
enables fair sharing of the network to servers. (2) A receiver
will pull symbol packets for each SCDP session on a round
robin basis.

As a result, SCDP enables fair sharing of its downlink to all
transport sessions running at a specific receiver'*. (3) SCDP
employs MLFQ in the network. Obviously, this prioritisation
scheme provides fairness between competing flows only within
the same priority level. In Figure 15 we report goodput results
with respect to the convergence behaviour of 5 SCDP unicast
sessions that start sequentially with 2 seconds interval and 18

141t would be straightforward to support priority scheduling at the receiver
level as in NDP.

seconds duration, from 5 sending severs to the same receiving
server under the same ToR switch. SCDP performs equally
well to DCTCP in that respect [18]. Clearly, flows acquire
a fair share of the available bandwidth very quickly. Each
incoming flow is initially prioritised over the ongoing flows
(MFLQ) but, given the reported time scales, this cannot be
shown in Figure 15. We have repeated this experiment with
larger number of flows, and we find that SCDP converges
quickly, and all flows achieve their fair share.

V. CONCLUSION

In this paper, we proposed SCDP, a general-purpose trans-
port protocol for data centres that is the first to exploit
network-layer multicast in the data centre and balance load
across senders in many-to-one communication, while perform-
ing at least as well as the state of the art with respect to
goodput and flow completion time for long and short unicast
flows, respectively. Supporting one-to-many and many-to-one
application workloads is very important given how extremely
common they are in modern data centres [11]. SCDP achieves
this remarkable combination by integrating systematic rateless
coding with receiver-driven flow control, packet trimming and
in-network priority scheduling.

RaptorQ codes incur some minimal network overhead, only
when loss occurs in the network, but our experimental evalua-
tion showed that this is negligible compared to the significant
performance benefits of supporting one-to-many and many-
to-one workloads. RaptorQ codes also incur computational
overhead and associated latency when when loss occurs.
However, we showed that this is rare for short flows because of
MLEQ. For long flows, block pipelining alleviates the problem
by splitting large blocks into smaller ones and decoding each
of these smaller blocks while retrieving the next one. As a
result, latency is incurred only for the last smaller block.
RaptorQ codes have been shown to perform at line speeds
even on a single core; we expect that with hardware offloading
the overall overhead will not be significant.

In general and to the best of our knowledge, SCDP is the
first protocol that provides native support for one-to-many and
many-to-one communication in data centres and our extensive
evaluation shows promising performance results.

IEEE/ACM TRANSACTIONS ON NETWORKING

(1]
[2]
[3]

(4]

(1]

(6]

(7]

(81

[91

(10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

REFERENCES

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in SOSP, 2003.

“HDFS architecture guide [Online] accessed Sep 2019,” https://hadoop.
apache.org/docs/r1.2.1/hdfs_design.html.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance distributed file sys-
tem,” in USENIX, 2006.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in USENIX OSDI’04, 2004.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in NSDI,
USENIX, 2012.

“Open config. streaming telemetry.” Accessed on 11/06/2019. [Online].

Available: http://blog.sflow.com/2016/06/streaming-telemetry.html
“Microsoft Azure,” Accessed on 11/06/2019.
[Online]. Available: https://azure.microsoft.com/en-us/blog/

cloud-service-fundamentals-telemetry-reporting/

M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” in Elsevier
Parallel Computing, 2014.

“Akka: Build powerful reactive, concurrent, and distributed applications
more easily using udp,” Accessed on 11/06/2019. [Online]. Available:
https://doc.akka.io/docs/akka/2.5.4/java/io-udp.html

“Jgroups: A toolkit for reliable messaging.” Accessed on 11/06/2019.
[Online]. Available: http://www.jgroups.org/overview.html

M. Shahbaz, L. Suresh, N. Feamster, J. Rexford, O. Rottenstreich,
and M. Hira, “Elmo: Source-routed multicast for cloud services,”
in arxiv, May 2018 [Online]Available:. [Online]. Available: http:
/farxiv.org/abs/1802.09815

M. McBride and O. Komolafe, “Multicast in the data center overview,”
in Huawei Arista Networks draft IETF, 2019.

D. Li, M. Xu, Y. Liu, X. Xie, Y. Cui, J. Wang, and G. Chen, “Reliable
multicast in data center networks.” IEEE Transactions on Computers,
2014.

D. Li, J. Yu, J. Yu, and J. Wu, “Exploring efficient and scalable multicast
routing in future data center networks.” INFOCOM, 2011.

W. Cui and C. Qian, “Dual-structure data center multicast using
software defined networking,” in arxiv, 2014. [Online]. Available:
http://arxiv.org/abs/1403.8065

X. Li and M. J. Freedman, “Scaling ip multicast on datacenter topolo-
gies,” in CoNEXT, 2013.

M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. An-
tichi, and M. W¢jcik, “Re-architecting datacenter networks and stacks
for low latency and high performance,” in Proc. of SIGCOMM, 2017.
M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP).”
Proc. of SIGCOMM, 2010.

A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Igbal,
and B. Khan, “Minimizing flow completion times in data centers,” in
IEEE INFOCOM, 2013.

H. Xu and B. Li, “Repflow: Minimizing flow completion times with
replicated flows in data centers,” in JEEE INFOCOM, 2014.

Y. Lu, G. Chen, L. Luo, K. Tan, Y. Xiong, X. Wang, and E. Chen, “One
more queue is enough: Minimizing flow completion time with explicit
priority notification,” in IJEEE INFOCOM, 2017.

B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” in In
Proc. ACM SIGCOMM, 2018.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
Proc. of SIGCOMM, 2013.

M. Kheirkhah, I. Wakeman, and G. Parisis, “MMPTCP: A multipath
transport protocol for data centers,” in Proc. of INFOCOM, 2016.

C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness with
Multipath TCP,” in Proc. of SIGCOMM, 2011.

A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact of
packet spraying in data center networks,” in Proc. of INFOCOM, 2013.
M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks.” Proc.
of USENIX, 2010.

C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, and
M. Handley, “Data Center Networking with Multipath TCP,” in Proc.
of SIGCOMM. ACM, 2010.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37

[38]

[39]

[40

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

65

13

Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP: A fountain
code-based multipath transmission control protocol,” IEEE/ACM Trans-
actions on Networking, 2015.

L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling Deep
Reinforcement Learning for Datacenter-scale Automatic Traffic Opti-
mization,” in In Proc. ACM SIGCOMM, 2018.

P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “pHost: Distributed Near-optimal Datacenter Transport over
Commodity Network Fabric,” in Proc. of CoONEXT, 2015.

Y. Chen, R. Griffith, J. Liu, and A. Joseph, “Understanding TCP incast
throughput collapse in datacenter networks,” in Proc. of SIGCOMM,
2009.

Y. Chen, R. Griffith, D. Zats, A. D. Joseph, and R. Katz, “Understanding
TCP incast and its implications for big data workloads.” Proc. of
USENIX, 2012.

C. Jiang, D. Li, and M. Xu, “LTTP: An LT-code based transport protocol
for many-to-one communication in data centers,” IEEE Journal on
Selected Areas in Communications, 2014.

C. J. Zheng, D. Li, M. Xu, and K., “A Coding-based Approach to
Mitigate TCP Incast in Data Center Networks,” International Conference
on Distributed Computing Systems Workshops, 2012.

P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella, “The TCP Outcast

Problem : Exposing Unfairness in Data Center Networks.” Proc. of
USENIX, 2012.
R.Mittal, V.Lam, N.Dukkipati, E.Blem, H.Wassel, M.Ghobadi,

A.Vahdat, Y.Wang, D.Wetherall, and D.Zats, “TIMELY: RTT-based
Congestion Control for the Datacenter,” in Proc. of SIGCOMM, 2015.

Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” in SIGCOMM, 2015.

M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore,
S. Hand, and J. Crowcroft, “Queues don’t matter when you can JUMP
them!” in USENIX NSDI, 2015.

“Infiniband Trade Association. RoCEv2.” 2014. [Online]. Available:
https://cw.infinibandta.org/document/dl/7781

M. Alasmar, G. Parisis, and J. Crowcroft, “Polyraptor: Embracing path
and data redundancy in data centres for efficient data transport,” in
Proceedings of the ACM SIGCOMM 2018 Conference on Posters and
Demos, 2018.

G. Parisis, T. Moncaster, A. Madhavapeddy, and J. Crowcroft, “Trevi:
Watering Down Storage Hotspots with Cool Fountain Codes,” in Proc.
of HotNets, 2013.

M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder,
“RaptorQ Forward Error Correction Scheme for Object Delivery,” IETF,
RFC 6330, 2011.

A. Shokrollahi and M. Luby, “Raptor Codes, Foundations and Trends.”
Communications and Information Theory, Now Publisher, 2011.

P. Cheng, F. Ren, R. Shu, and C. Lin, “Catch the Whole Lot in an
Action: Rapid Precise Packet Loss Notification in Data Center,” in Proc.
of USENIX, 2014.

W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
agnostic flow scheduling for commodity data centers,” in In Proc. NSDI,
USENIX, 2015.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “BCube: : A High Performance, Server-centric Network
Architecture for Modular Data Centers,” in Proc. of SIGCOMM, 2009.
A. Singla, C.-Y. Hong, L. Popa, and P. Godfrey, “Jellyfish: Networking
data centers randomly,” in Proc. of USENIX, 2012.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” in ACM
SIGCOMM, 2014.

M. G. Luby, R. Padovani, T. J. Richardson, L. Minder, and P. Aggarwal,
“Liquid cloud storage,” CoRR, vol. abs/1705.07983, 2017. [Online].
Available: http://arxiv.org/abs/1705.07983

P. A. Michael Luby, Lorenz Minder, ‘“Performance of codornicesrq
software package,” in International Computer Science Institute, May,
2019. [Online]. Available: https://www.codornices.info/performance

G. Parisis, G. Xylomenos, and T. Apostolopoulos, “Dhtbd: A reliable
block-based storage system for high performance clusters,” in Proc. of
IEEE/ACM CCGrid, 2011.

P. J. Braam, “File systems for clusters from a protocol perspective,’
http://www.lustre.org.

Z. Guo and Y. Yang, “Multicast fat-tree data center networks with
bounded link oversubscription,” in /IEEE INFOCOM, 2013.

IEEE/ACM TRANSACTIONS ON NETWORKING

[55] M. Alasmar and G. Parisis, “Evaluating modern data centre transport
protocols in OMNeT++/INET,” in Proceedings of the 6th OMNeT++
Community Summit Conference, Hamburg, Germany, 2019.

[56] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. a. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network Albert,” in Proc. of SIGCOMM, 2009.

66

14

67

Chapter 4

Evaluating Modern Data Centre

Transport Protocols in
OMNeT++4 /INET

Preface: paper 3

This chapter includes our paper on developing a simulation framework for evaluating data
transport protocols for data centres in OMNeT++ [7]. The paper describes the developed
framework, including the fat-tree topology, per-packet and per-flow ECMP, flow scheduling
and the NDP model. The paper then evaluates the performance of NDP in OMNeT++

in a simulated fat-tree topology.

e Mohammed Alasmar and George Parisis, “Evaluating Modern Data Centre Trans-
port Protocols in OMNeT++/INET”. In Proceedings of the OMNeT++ Com-
munity Summit 2019, Hamburg, Germany [7].

Contributions from Co-Authors

The work presented in this paper is substantially my own. I was encouraged by my
supervisor to build an OMNeT++ model to simulate data centre protocols, which led to
this publication. All the source code that was used in the context of this paper is my own
work!. My supervisor (and co-author in this paper) provided constructive feedback on
the manuscript and the developed framework which contributed to the completion of this

work and the respective paper.

"https://github.com/mohammedalasmar/ndpTcpDatacentreOmnetppModel

https://github.com/mohammedalasmar/ndpTcpDatacentreOmnetppModel

68

Evaluating Modern Data Centre Transport Protocols in
OMNeT++/INET

Mohammed Alasmar and George Parisis

School of Engineering and Informatics
University of Sussex, UK
M.Alasmar@sussex.ac.uk, G.Parisis@sussex.ac.uk

Abstract

In this paper we present our work towards an evaluation platform for data centre
transport protocols. We developed a simulation model for NDP', a modern data transport
protocol in data centres, a FatTree network topology and per-packet ECMP load balancing.
We also developed a data centre environment that can be used to evaluate and compare
data transport protocols, usch as NDP and TCP. We describe how we integrated our model
with the INET Framework and present example simulations to showcase the workings of
the developed framework. For that, we ran a comprehensive set of experiments and studied
different components and parameters of the developed models.

1 Introduction

The study of network protocols for Data Centre Networks (DCNs) has become increasingly
important, given that data centres support all major Internet services, such as search (e.g.
Google), social networking (e.g. Facebook), cloud services (e.g. Amazon EC2) and video
streaming (e.g. NetFlix). DCNs consist of a large number of commodity servers and switches
and support multiple paths among servers. Recent research on data centre networking is based
on various simulation tools and respective models for network protocols [15, 19, 18].
OMNeT++ [25] is an excellent candidate for developing models for data centre networks and
respective protocols, and more work is required for establishing it as the de facto simulator for
this research community. This is possible through the INET Framework, which is built on top of
the simulation core provided by OMNeT++4. Omnet++ and INET is built around the concept
of modules that communicate by message passing. Protocols are represented by components,
which can be combined to form hosts, routers, switches and other networking devices. What
makes this framework ideal for evaluating DCN protocols is that new modules can be easily
integrated with the existing modules. DCN topologies (e.g. FatTree [1]) can be easily built and
parameterised using Omnet++ NED language.

Modelling DCN protocols in OMNeT++. Recently, some DCN-related research has been
based on OMNeT++/INET [20, 4, 10, 3]. Achieving the critical mass of researchers that use
OMNeT++ for evaluating data centre networks and protocols requires making more modern
protocols available in the OMNeT++ environment. Large-scale simulations are crucial for the
DCN research community given that access to real-world deployments is very difficult. Devel-
oping models for DCNs in OMNeT++ would also ensure reproducibility, revisability (dynamic

Ihttps://github.com/mohammedalasmar/ndpTcpDatacentreOmnetppModel (OMNeT++-5.2.1 & INET-3.6.3)

69

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

debugging and profiling) and control over the studied traffic workloads (generating realistic
traffic workloads in a deterministic fashion) [24].

Efficient data centre transport protocols. In DCNs, an efficient data transport mechanism
is crucial to provide near-optimal completion times for short transfers and high goodput for
long flows. The performance of TCP in DCNs is problematic due to TCP Incast [9], queue
build-up and buffer pressure [13, 23, 16] and per-flow ECMP collisions. TCP performance can
get singificantly degraded because of frequent retransmissions of lost packets [5, 16]. Recently,
a large body of work aimed at tackling various aspects of data centre transport: proposed
approaches usually focus on either achieving low latency [5, 21, 26, 20, 6] or high throughput
[16, 22, 11, 2]. NDP [13] appears to perform well with respect to both low latency and high
throughput requirements by combining a number of data transport mechanisms.

NDP and FatTree models. In this paper we present an OMNeT++/INET framework
for evaluating data transport protocols (NDP and TCP) in data centres. This includes: (1)
a model for building FatTree topologies to evaluate the performance of TCP, NDP and other
community-developed protocol models for data centres (§2), (2) a model for per-packet and per-
flow Equal-Cost Multi-Path (ECMP) load balancing in a FatTree topology (§3), (3) a model
for NDP (§4 and §5), and (4) a central traffic scheduler for scheduling flows in the simulated
network and setting up simulation parameters for experimenting with the above-mentioned
contributions (§5).

2 FatTree Topology

Among the recently proposed DCN topologies, FatTree, which originated from the Clos switch-
ing network, is widely used [1]. We developed a FatTree topology generator using the NED
language. FatTree data centres allow any two servers to communicate by fully utilising network
resources and ensuring non-blocking behaviour. The role of core switches is to forward traffic
among aggregation switches, and that of the aggregation switch is to inter-connect core and
edge switches. The edge switches reside at lowest level of the topology, and forward traffic
between hosts and aggregation switches (see Figures 1a&2). The size of a FatTree topology
depends on the number of pods it consists of (k). A FatTree network consists of three layers:
the core layer, aggregation layer and edge layer. In a k-ary FatTree topology there are k2/4
core switches which is the same number as the shortest-paths between any two servers that
are connected to any pod in the network. Each pod contains k servers and k switches. These
switches are divided into two layers each consisting of k/2 switches. The first layer is the edge
where each switch is connected to k/2 of the servers (a rack) in the same pod, while the second
layer is the aggregation layer where each switch is connected to k/2 of the core switches. Each
core switch is connected to one aggregation switch of each pod. The maximum number of
servers in a FatTree with k pods is k3/4. All switches have the same number of ports which is
equal to k. Table 1 summarises the construction of a k-ary FatTree (with examples when k =
4, 8 and 10).

Generating FatTree networks. The implementation of the FatTree topology using the
NED language is based on the values in Table 1. The only required input value to generate the
topology is k. Figure 1 shows an example of a generated FatTree topology when k = 4. The
FatTree module is a network (complex) module that contains two simple modules: Pod and

70

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis
(a) FatTree (b) Pod
FatTreeNdp.Pod[0]
= & = @ || i
c 0] c 1 « 12 c Bl | 1
I a_l [General]
\ 1 a >~ network = FatTreeNdp
| | hetwork FatTreeNdp | | i il ** K = ${FatTreeSize=4..40 step 2}
| { { | AI p **_trafficMatrixType = ${"permTM"}
pargmeters :) : 1 # or randTM
| /'/'t 5 od; fuiied) il B ** arrivalRate = 2000 #Poisson process
int k = defau ; | | g *+ flowSize = 100 # 150KB(each 15008
stbmodules: /{ X f A -_= ———— ++ nunShor-tFLows = 2000 e ’
Pod[k]: Pod; |
[t S schatuter CoreRouter[(k/2)A2]: Router; ** longFlowSize = 100000 #150MB

connections: | ** percentLongFlowNodes = 0.15

for i=0. k-1, for j:OA:sizeoft(oreRouter)—l { | L 1
- Pod[1].podg++ =--> CoreRouter[3].pppg+t; | # 1 . ::.igi;iglw:]adow =
v . I .ndpSwitchQueueleng =
} **_perPacketEcmp = true
| I 1 I [| I ** perFlowEcmp = false
| ! | AT e, 1 1 **_seedValue = 1111
Bi hi &i s ki K I 1 **_ppp[*].queueType = "NDPQueue”
L L L . .
5 H 1
Pod(0] Pod(1] Pod(2) “podal | | wenemior snenm)
LA e
(a) FatTree topology (k=4) (b) centralScheduler ini file

Figure 1: FatTree implementation in NED language including a central scheduler node

Rack submodules. The NED code for the FatTree module is depicted in Figure la, which is
used to create a single link between each core switch and each pod.

Pods k 4 8 10
Servers kxk/2xk/2 | 16 | 128 | 250
Core switches (= servers in each Pod) | k/2 X k/2 4 16 | 25
Edge switches in each Pod (racks) k/2 2 |4 5
Aggregation switches in each Pod k/2 2 4 5
Total edge/aggregation switches kxk/2 8 24 50
Switch ports k 4 8 10
Equal-cost p'ath between any pair of k2 x k)2 4 16 50
servers (at different pod)

Table 1: k-ary FatTree topology architecture: examples when k = 4, 8 and 10

3 Per-packet and per-flow ECMP

Modern data centre transport protocols exploit the existence of multiple equal-cost paths in
FatTree networks to better balance traffic in the network, eliminate hotspots and achieve high
throughput. ECMP is used for packet forwarding in the network [14]. In per-flow ECMP,
packets are classified into different flows by hashing the each packet’s 5-tuple (source IP address,
destination IP address, protocol number, source port number and destination port number).
Packets of the same flow go over the same link, as depicted in Figure 2a. Per-flow hashing
ensures that packets belonging to the same flow (or sub-flow in MultiPath TCP) will arrive in
order to their destination. However, this can cause significant underutilisation in the network
due to collisions of large flows (i.e. when a large number of flows cross the same link while
other links are not used) and this can significantly reduce throughput, as discussed in [12].
In addition, per-flow load-balancing can result in unequal link utilisation and hotspots. In

71

Evaluating Modern Data Centre Transport Protocols in OMNeT+-+ M.Alasmar and G.Parisis

pathl

[FaTreends Podi racks 1 serverst1]

oL 2L WAL X e

/}3 /E /5 /Ez /\g [y /b A\E} T zim
H‘OS'CL G I‘;Io‘stbg G HOSth G G Host, ml%ﬂ<\ "‘@M Zil:es
e ——— \-@- o NdpSinkApp

(a) Per-flow ECMP (b) Per-packet ECMP

Figure 2: (a) Per-flow ECMP vs (b) per-packet ECMP in 4-FatTree = Figure 3: NDP modules

per-packet ECMP, packet forwarding is randomised over all equal-cost links used for load
balancing, as shown in Figure 2b. Per-packet multipath forwarding is a good option when using
a data transport protocol that can tolerate reordering (e.g., NDP [13][3]). As per-packet ECMP
may result in packets arriving out of order, it cannot be used with data transport protocols
that are sensitive to packet reordering (e.g., TCP).
A model of per-packet and per-flow ECMP in INET. We implemented both per-packet
and per-flow ECMP by updating the source code that is provided in INETv3.6.3 network
layer. Routing in INET is done in five main steps as follows: (1) building topology and
assigning addresses (NetworkConfiguratorBase:: Topology), (2) setting links and node weights
(IPv4 NetworkConfigurator::computeConfiguration), (3) using Dijkstra’s Algorithm for multi-
ple paths (Topology::calculate WeightedSingleShortestPathsTo), (4) adding a route to all des-
tinations in the network (IPuv4NetworkConfigurator::addStaticRoutes) and (5) generating the
routing tables (IPv/RoutingTable::printRouting Table).
When implementing ECMP, we updated step 3 so that all shortest paths to all destinations
are registered. Additionally, we updated step 4 to include the updates in step 3 when adding
routes to all destinations. The routing tables in step 5 are automatically updated. Finally, we
implemented the hashing function in IPv{RoutingTable::findBestMatchingRoute Ecmp (which is
called by IPvj::routeUnicastPacket). There are two options for hashing:

e per-packet ECMP: selectPath = rand()% numPossibleEcmpRouts, and

e per-flow ECMP: selectPath = hashValue% numPossibleEcmpRouts, where the hashValue

is calculated based on the 5-tuple (we also included the router’s name in this hashing).

4 A model of NDP in INET

NDP aims at offering both low latency and high throughput in FatTree data centre networks.
NDP combines several ideas into a clean slate protocol design. NDP exhibits very good perfor-
mance by employing receiver-driven flow control and packet trimming. NDP will be deployable
when P4 switches [8] are deployed in data centres. NDP operation can be summarised as follows
(and depicted through the numbered circles in Figure 4). Senders are allowed to send an initial

4

72

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

window of data at line rate (circles 1 and 2). Switches use shallow buffers (e.g. 8 packets long)
with two queues: the data (used for data packets only) and control (high priority) queue (for
PULL, ACK, NACK and Header packets). If the data queue overflows, the packet payload is
trimmed and the header is priority-forwarded (circles 3, 4, 5 and 6). At the receiver, an ACK for
each data packet received and a NACK for each header will be sent immediately to the sender
(circles 7 and 8). The receiver has a shared PULL queue between all active connections. The
receiver adds a PULL packet for every received header or data packet (circle 9). The receiver
paces PULL packets so as to fill the receiver’s incoming link. Pacing is across all connections,
so that the aggregate rate matches the receiver’s link speed (circle 10). The goal is to keep the
incoming link full, so the receiver spaces pull requests accordingly (e.g. assuming each incoming
packet has the same MTU size = 1500B, then the receiver sends a packet every lj\gggg = 12u
seconds if the receiver’s link speed is 1Gbps). At the sender, PULL requests trigger either a
retransmission or a new data packet (circle 11).

@Packet is trimmed|ﬂ @ New incoming packet]

5 i (but data queue is full)
NDP switch :

AgiERES

1
1 ,” AN
1,7 Thgdata queue
v @ N
Data Queue is Full# | starts.to build at
1. Data Queue 12845678] oK the ToR NQP switch
\,
2. Priority Queue 4L| ETII = \\\
~
(N/ACKs, PULLs, Headgfs) 'f J; VAN o T
~ 7 7 S N @Send initial window (~8
,' ,’ ,’ N""\\ 1 packets) at line rate
! f—, - - \\ 1
_ 4 2" 7 Trimmed headers get \ 1
= ' I/ e riority forwarded o '
= 17 ¢ P Y \\ \
Pace pull 17 @ . NACK informs the %V Data
packets so as Upon receiving header, sender to prepare \‘ \A u
to fill the % the receiver sends) \ 5.
= the trimmed packet 1 £
ver’ NACK to the sender - 1
recewgr s . Receiv' r for retransmission |
incoming link F @ | Ji2B3E5678 @ :l Sender
(eg., UUL]UU[_JUUU Add PULL packet to the pull _ Free acknowledged
MTU/1Gbps) PULLs Queue queue for every received PULLs .trl.gger data.
header or data packet retransmissions, or
& send ACK for each sending new data

received data packet.

Figure 4: NDP operation 2

Here we describe how we implemented NDP in INET. Our implementation follows the TCP
model in INET. We developed StandardHostNdp, a predefined NED type which is an OM-
NeT++ compound module that is composed of the following components:

Applications. There are two main applications that can communicate with the NDP layer,
as shown in Figure 3. The first application is the NdpBasicClientApp module, which is used

2This is an abstract diagram of NDP functionality — the details of NDP can be found in [13]

73

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

by NDP senders to start a connection. The second application module is NdpSinkApp which
is used by NDP receivers to listen for incoming connections. NDP applications and the NDP
layer communicate with each other by sending cMessage objects. These messages are specified
in the NDPCommand.msg file. The NDPCommandCode enumeration defines the types of
messages that are sent by the application to the NDP layer. These are the main message types:
NDP_C_OPEN_ACTIVE: active open, NDP_C_OPEN_PASSIVE: passive open, NDP_C_SEND:
send data and NDP_C_CLOSE: no more data to send. Each command message should have
attached control information of type NDPCommand. For example, the command message
NDP_C_OPEN_ACTIVE requires this control information to be attached: connld, localAddr,
locarPrt, remoteAddr, remotePrt and numPacketsToSend. In Figure 5, NdpSinkApp can open
a local port by sending a NDP_C_PASSIVE_OPEN to the NDP layer with control information
that contains the local address and port. NdpBasicClientApp opens a connection to a remote
server by sending a NDP_C_OPEN_ACTIVE command to the NDP layer.

NDP layer.The NDP module creates an NDPConnection object upon receiving either an
active or passive open command from an NDP application. The main message kinds that the
application receives from the NDP layer are: NDP_I_ESTABLISHED: connection established,
NDP_I_DATA: data packet received and NDP_I_ PEER_CLOSED: FIN flag received from remote
NDP. The NDP module and the NDP applications implement NDP operations (as discussed in
§4) as follows:

1. The NDP sender performs the following operations (see Figure 5):

e creates the sendQueue for the data to be sent: NDPMSgBasedSendQueue::init(data),

e sends the initial window of data packets with SYN flag: sendInitial Window(),

e precesses received packet (can be ACK, NACK or PULL) from the receiver: NDPCon-
nection::process_.RCV_Pkt(ndpPkt). The sender takes one of the following actions:

— frees acknowledged data packet: sendQueue->ackArrivedFree(ndpPkt),
— queues NACKed data packet for retransmission: nackArrivedMoveFront(ndpPkt),
— sends data packet if PULL request arrived: sendQueue->sendNdpPFkt(),

e sets the FIN flag when sending the last data packet: ndpPkt->setFinFlag(true).

2. The NDP receiver performs the following operations (see Figure 5):

e establishes a connection when receiving a data packet with the SYN flag set: NDPCon-
nection:processPktInListen(pktSynTrue),

e acknowledges a received data packet: sendAckPkt(seqNo),

e sends NACK when receiving header packet: sendAckPkt(seqNo),

e adds PULL packet to the PULL queue upon receiving either data or header packet:
addRequestToPullQueue(),

e schedules a self message that is used to pace pull packets from the PULL queue: Sched-
uleAt(PACING_TIME, pullTimerMsg)

e removes all pull packets when receiving the last data packet: pullQueue->removePulls()

Network layer. The IPv4 module performs IP encapsulation/decapsulation and routing of
datagrams. This is based on function call interface of the IPv4dRoutingTable which we updated
as discussed in §3.

6

74

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

NICs. We use the available NIC modules (PPPInterface and FEthernetInterface) that are
provided in the INET Framework.

NDP Switch. It contains two queues: (1) highPriorityQueue: which is used to enqueue
Header, ACK, NACK and PULL packets, and (2) dataQueue: which is used to enqueue data
packets. NDP switches trim packets when their dataQueue is full and insert the headers in the
highPriorityQueue. NDPSwitch:dequeue() is round robin (10:1 ratio) between the two queues.

NDP Sender NDP Receiver
NdpBasicClientApp module | NdpSinkApp module |
socket.connect(ACTIVE_OPEN) socket.bind(PASSIVE_OPEN)

listen
connld connld [
NDP module | NDP module |

e conn->process_OPEN_PASSIVE(msg)
¢ conn->process_OPEN_ACTIVE(msg)

* NDPMSgBasedSendQueue::init(dataToSend) r
v+ ndpPkt->getIsDataPkt(true)

* NDPConnection:processPktInListen(pktSynTrue

« sendInitial Window(): ndpPkt->setSynBit(true) cl

gel = sendAckPkt(seqNo)
¢ NDPConnection::process_RCV_Pkt(ndpPkt) /
= addRequestToPullQueue()
+ ndpPkt->getAckBit(true) &

* ndpPkt->getlsHeaderPkt(true)

/' > sendNackPkt(seqNo)
=> addRequestToPullQueue()

¢ Schedule At(PACING_TIME, pullTimerMsg)
= pullQueue->sendNewPull()

= sendQueue->ackArrivedFree(ndpPkt)
* ndpPkt->getNackBit(true) £
=> sendQueue->nackArrivedMoveFront(ndpPkt)

* ndpPkt->getIsPullPkt(true) <

= sendQueue->sendNdpPkt()
* ndpPkt->finFlagTrue()

¢ ndpPkt->setFinFlag(true)

= pullQueue->removePulls()

Figure 5: NDP implementation

5 Experimenting with the Simulation Framework

We developed a central scheduler node (centralSchedulerNdp®) to schedule NDP connections
in a FatTree topology (as shown in Figure 1). The main parameters in this node are shown in
Figure 1b and explained below:

o FatTreeSize. This is used to generate a k-ary FatTree topology (as described in §2)

o trafficMatrixType. The scheduler node can schedule either a permutation or random traffic
matrix (as explained in[17])

e arrivalRate. This is used to generate flow arrival times according to a Poisson process.
This is implemented by creating an exponential distribution (mean = 1/)) based on the
Poisson arrival rate A.

o flowSize. This is the size of the data (number of packets) that each created NdpBasic-
ClientApp is going to send to an NdpSinkApp.

3We have developed another scheduler: centralSchedulerTcp, which is used for TCP experiments and it has
a similar interface as the NDP scheduler. It is used to schedule TCP connections in a FatTree topology.

75

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis
1 1 | ” 6
zos(08 g
j=9 : <
je)
Qo6 %06 % 4
EH Coa :
.,8 0.4 E .q,g 2
502 02 :
0 0 0
500 1000 1500 2000 1 2 3 4 1950 1960 1970 1980 1990 2000
Rank of transport flow FCT (msec) Rank of short flow
(a) Goodput (b) FCT (¢) Num. of received headers
&60 —= ShonFlow Node —@ LongFlow Node 60 —« ShortFlow Node —© LongFlow Node 2(5) O LongFlows ShonFlows‘S
< . 550 s 4 &
g = z 45 & & @t e
540 <40 G40 »é o Yy
3 2 35) ¢ & o*
Q g g ¢ & “*°
g Z 230 @ ¢ ° s
4 o g 25 g & @ g
m 20 220 £20 P °
=9 7] &
e Y o 15 s YO «° &
Z. Q10 , ¢ @ & o
B 5. € Go &
0 [~] [5~n] 0 [~] [5~n] o
1 11 21 31 41 51 1 11 21 31 41 51 0 5 10 1520 25 30 35 40 45 50
Servers Servers Source Server
(d) #created sender’s app. (e) #created receiver’s app. (f) Perm. traffic matrix

Figure 6: The results of running 2000 NDP short flows (150KB each) in a 6-FatTree (54 servers)

e numShortFlows. This is the number of NDP connections that will be scheduled based on
the selected traffic matrix, e.g. scheduling 1000 flows means that there are 1000 different
NdpBasicClientApps communicate with 1000 NdpSinkApps.

e [ongFlowSize and percentLongFlowNodes. These parameters are used to generate back-
ground traffic in the simulation. The background traffic can either run until all short
flows will finish or by assigning the size of the long flows to a large flow size. For example,
percentLongFlowNodes of 30% in a 10-FatTree (250 servers) topology means that there
are 75 servers that are used only to run background traffic.

e initial Window and ndpSwitchQueueLength. These are used as described in Section refndp-
section).

5.1 NDP Experiments

Here, we present experimentation using the developed NDP model. We conducted four different
experiments?.

Experiment 1. We ran this experiment with the parameters that are shown in Figure 1b in a 6-
FatTree (54 servers) where 15% of servers (8 servers) ran background load. The number of short
flows were 2000 and each flow had a size of 150KB. The results of this experiment are shown in
Figure 6 (one seed was used). The developed model provides the ability to record and plot the
following measurements: goodput (Figure 6a), flow completion time (FCT) (Figure 6b), the
number of received header packets per flow (connection) (Figure 6¢), the number of data sending

4Due to space limitations we will not discuss simulations with TCP. Some of these results can be found in

[3].

76

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis
x10° x10°
280 280
L | 3 <
Q N Q
£ oo ERIIA I|“I ||I|I||||“||'|| SR
))
Za0 A 240
g (g il A o 0
2 20 v 20
& & =0 TR A AR A
0 0
1 6 11 16 21 26 31 36 1 6 11 16 21 26 31 36
Core switches Core switches
(a) Per-flow ECMP (b) Per-packet ECMP

Figure 7: Per-flow vs per-packet ECMP in 12-FatTree (36 core switches) topology. Each colour
in each bar (12 colours) represents the number of received packets at each port (12-port switch)

applications at each server (Figure 6d), the number of data receiving applications at each server
(Figure 6d) and traffic matrix plot (Figure 6e). We use OMNeT++’s scavetool command-line
tool to process the results. These scripts can be found in the shell file (runNdpSimulation.sh)
that we use to run the simulation and generate several .csv files which are input to MATLAB
scripts to produce the required figures °. The results are as expected; most flows achievedvery
high goodput and low Flow Completion Times.

Experiment 2. In this experiment, we compare between per-flow and per-packet ECMP in a
FatTree topology. We have simulated the two protocols in a 12-FatTree (36 core switches) by
running 5000 short flows (300KB each) and with arrival rate A = 2000 (without introducing
any background load). The other parameters are as depicted in Figure 1b. Figure 7 illustrates
the number of received packets at each port of the 36 12-port core switches. It is obvious that
per-packet ECMP provides better load balancing than per-flow ECMP (as discussed in §3).
Experiment 3. In this experiment we test the performance of NDP when varying specific
parameters. A key parameter of NDP is the initial window of packets that a sender pushes
to the network. In Figure 8a, we observe that for very small values of the initial window, the
goodput is very low and the receiver’s downlink underutilised. As the window increases, utili-
sation approaches the maximum available link capacity (for 16 packets). For larger values, the
measured goodput is the same (full link capacity). In Figure 8b, we show the goodput of NDP
flows at different flow sizes (when A = 2500). Similarly, in Figure 8b, we obtain the goodput of
10000 flows (1.5MB each) at different A values.

Experiment 4. In the experiment, we use realistic web search workloads reported by data
centre operators to evaluate NDP [5]. We simulate two target loads of background traffic (0.5
and 0.8). We generate 20000 flows, with A = 2500. We report the flow completion time (FCT)
of all flows (split in two different ranges), as shown in Figure 9. NDP achieves low FCT.

5The shell and MATLAB scripts are available in the GitHub repository, along with a demo.

77

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

[N
i
[N

~08 %08 —~08
2 Q 2
ko) Q ke)
006 Qo6 Vo6
5 W=4 =] % —NDP 150K B =1
S04 e lW=8 504 —-NDP 300KB £04 —A=250
S Sw=12 § ~ NDP 900KB S - 1=500
- = =%)\ =1000
02 o2 0.2' -e-NDP 1.5MB 0.2 e
¢ — W =24 ----NDP 3MB ¢ +ees A = 3000
0 0 v
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Rank of transport session Rank of transport session Rank of transport session
(a) Varying initial window (b) Varying flow size (c) Varying arrival rate A

Figure 8: NDP Goodput for 10000 flows in a 10-FatTree when varying specific parameter

6 50
-9-Load 50% -9-Load 50%
-»-Load 80% 40 t |[=~Load 80%
24 >
g €30
= =
2 2
10
(4—p—b—o—t—0 0
2000 6000 10000 1000 2000 3000
Rank of flow Rank of flow
(a) Flow size (0, 100KB] (b) Flow size (100KB, 1MB]

Figure 9: FCT of web search workload flows (two ranges) at different background loads

6 Summary and future work

The proposed model is intended to be used to evaluate NDP and compare its performance
with existing models (e.g. TCP) in a FatTree data centre topology. The current implementa-
tion supports most of NDP’s specifications. The current version of our NDP model does not
support priority pulling at the pull queue. As a future work, we plan to improve the NDP
model by allowing priority pacing in the pull queue for short flows. In addition, we aim at
leveraging multiple priority queues available in commodity switches to implement a Multiple
Level Feedback Queue (MLFQ). Also, we aim at evaluating NDP in Incast and Outcast sce-
narios and assess the provided fairness among competing flows. Furthermore, we plan to build
more OMNeT++/INET-based models that simulate other modern data transport protocols for
DCNs, such as DCTCP[5], MPTCP[23], DCQCN][27] and PTAS[7].

References

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data center
network architecture. In Proc. of SIGCOMM, 2008.

[2] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin
Vahdat. Hedera: Dynamic Flow Scheduling for Data Center Networks. In Proc. of USENIX,
2010.

10

78

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

3]

(4]

[5]

[10]
[11]
12
[13)
[14]
[15]
[16]
[17)

(18]
(19]

20]

(21]
(22]

23]

Mohammed Alasmar, George Parisis, and Jon Crowcroft. Polyraptor: Embracing path and data
redundancy in data centres for efficient data transport. In Proceedings of the ACM SIGCOMM
2018 Conference on Posters and Demos, 2018.

M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan, B. Prabhakar, and M. Seaman.
Data center transport mechanisms: Congestion control theory and ieee standardization. In Annual
Allerton Conference on Communication, Control, and Computing, 2008.

M Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data Center TCP (DCTCP). In SIGCOMM, 2010.
Mohammad Alizadeh, S Yang, Milad Sharif, Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: Minimal near-optimal datacenter transport. In Proc. of SIGCOMM, 2013.
Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. Information-agnostic flow
scheduling for commodity data centers. In In Proc. NSDI, USENIX, 2015.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. P4: Program-
ming protocol-independent packet processors. In ACM SIGCOMM, 2014.

Yanpei Chen, Rean Griffith, David Zats, Anthony D. Joseph, and Randy Katz. Understanding
TCP incast and its implications for big data workloads. In Proc. of USENIX, 2012.

T. Das and K. M. Sivalingam. Tcp improvements for data center networks. In 2013 Fifth Inter-
national Conference on Communication Systems and Networks (COMSNETS), 2013.

A Dixit, P Prakash, Y C Hu, and R R Kompella. On the impact of packet spraying in data center
networks. In Proc. of INFOCOM, 2013.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye, and Marina
Lipshteyn. Rdma over commodity ethernet at scale. In SIGCOMM, 2016.

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W. Moore, Gianni
Antichi, and Marcin Wéjcik. Re-architecting datacenter networks and stacks for low latency and
high performance. In Proc. of SIGCOMM, 2017.

C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm Status. IETF, RFC 2992, 2000.
Teerawat Issariyakul and Ekram Hossain. Introduction to Network Simulator NS2. Springer
Publishing Company, Incorporated, 2010.

M. Kheirkhah, I. Wakeman, and G. Parisis. MMPTCP: A multipath transport protocol for data
centers. In Proc. of INFOCOM 2016, 2016.

Morteza Kheirkhah. Mmptcp: a novel transport protocol for data centre networks|. In University
of Sussez, 2016.

Morteza Kheirkhah, Ian Wakeman, and George Parisis. Multipath-TCP in ns-3. In WNS3, 2014.
A. R. A. Kumar, S. V. Rao, and D. Goswami. Ns3 simulator for a study of data center networks.
In IEEE International Symposium on Parallel and Distributed Computing, 2013.

Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. Homa: A receiver-
driven low-latency transport protocol using network priorities. In In Proc. ACM SIGCOMM,
2018.

A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Igbal, and B. Khan. Minimizing
flow completion times in data centers. In IEEE INFOCOM, 2013.

Costin Raiciu, Sebastien Barre, Chris Pluntke, Adam Green, Damon Wischik, and Mark Handley.
Improving Datacenter Performance and Robustness with Multipath TCP. In SIGCOMM, 2011.
Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon Wischik, and
Mark Handley. Data Center Networking with Multipath TCP. In Proc. of SIGCOMM. ACM,

11

79

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

2010.

[24] Bilel Ben Romdhanne. Large-scale network simulation over heterogeneous computing architecture.
In Telecom ParisTech, 2013.

[25] A. Varga. Omnet++ discrete event simulation. In System User Manual, 2006.

[26] H. Xu and B. Li. Repflow: Minimizing flow completion times with replicated flows in data centers.

In IEEE INFOCOM, 2014.

[27] Y Zhu, H Eran, Dan F, Chuanxiong G, Marina L, Ye Liron, J Padhye, Shachar R, Mohamad Haj
Y, and Ming Zhang. Congestion control for large-scale rdma deployments. In SIGCOMM, 2015.

12

80

Chapter 5

On the Distribution of Traffic
Volumes in the Internet and its

Implications

Preface: paper 4

This chapter includes our paper on the characterisation of Internet traffic volume using a
robust statistical approach [8]. The findings suggest that the log-normal model is a good
distribution to fit Internet traffic volumes. The work has significant utility for network

operators for network dimensioning and traffic billing purposes.

e Mohammed Alasmar, George Parisis, Richard Clegg and Nickolay Zakhleniuk, “On
the Distribution of Traffic Volumes in the Internet and its Implications”. In Pro-
ceedings of IEEE INFOCOM 2019, Paris, France [8].

Contributions from Co-Authors

The research presented in this paper is substantially my own. The idea of studying the
characteristics of Internet traffic has been initially suggested by Nickolay Zakhleniuk, who
contributed to this paper by highlighting the limitations of some current approaches that
study Internet traffic volumes. Nickolay also helped in improving the quality of the paper
by his general comments on the text and suggestions on adding more tests to evaluate our
approach. The work was developed to its current form as part of an effort to understand
Internet traffic and design network protocols, at the first stages of my PhD. The statistical
approach [44] that T used in this paper was suggested by Richard Clegg, who also provided
valuable feedback to improve the paper through several online discussions. Richard and
my supervisor contributed in shaping the research question, presenting the motivation
and conducting the experimental evaluation. All co-authors contributed in improving the

published manuscript.

81

On the Distribution of Traffic Volumes in the
Internet and its Implications

Mohammed Alasmar George Parisis
Department of Informatics Department of Informatics
University of Sussex University of Sussex
Brighton, UK Brighton, UK
m.alasmar @sussex.ac.uk g.parisis @sussex.ac.uk

Abstract—Getting good statistical models of traffic on network
links is a well-known, often-studied problem. A lot of attention
has been given to correlation patterns and flow duration. The
distribution of the amount of traffic per unit time is an equally
important but less studied problem. We study a large number of
traffic traces from many different networks including academic,
commercial and residential networks using state-of-the-art sta-
tistical techniques. We show that the log-normal distribution is a
better fit than the Gaussian distribution commonly claimed in the
literature. We also investigate a second heavy-tailed distribution
(the Weibull) and show that its performance is better than
Gaussian but worse than log-normal. We examine anomalous
traces which are a poor fit for all distributions tried and show
that this is often due to traffic outages or links that hit maximum
capacity.

We demonstrate the utility of the log-normal distribution
in two contexts: predicting the proportion of time traffic will
exceed a given level (for service level agreement or link capacity
estimation) and predicting 95th percentile pricing. We also show
the log-normal distribution is a better predictor than Gaussian
or Weibull distributions.

Index Terms—Traffic modelling, network planning, bandwidth
provisioning, traffic billing

I. INTRODUCTION

Internet traffic characterisation is an important problem for
network researchers and vendors. The subject has a long
history. Early works [1], [2] discovered that the correlation
structure of traffic exhibits self-similarity and that the durations
of individual flows of packets exhibit heavy-tails [3]. These
works were later challenged and refined (see Section VI for
a summary). By comparison the distribution of the amount
of traffic seen on a link in a given time period has seen
comparatively less research interest. This is surprising as this
quantity can be extremely useful in network planning.

In this paper we use a rigorous statistical approach to fitting
a statistical distribution to the amount of traffic within a given
time period. Formally, we choose some timescale 7" and let X;
be the amount of traffic seen in the time period [¢T’, (i+1)T).
We investigate the distribution of the random variable X over a
wide range of values of T". We show that the distribution of the
variable has considerable implications for network planning;
for assessing how often a link is over capacity and in particular
for service level agreements (SLAs), and for traffic pricing,
particularly using the 95th percentile scheme [4].

School of Computer Science
Queen Mary University of London

Richard Clegg Nickolay Zakhleniuk
School of Computer Science
University of Essex
Colchester, UK

naz@essex.ac.uk

London, UK
r.clegg@qmul.ac.uk

Previous authors have claimed that X has a normal (or
Gaussian) distribution [5]-[7]. Others claim X is Gaussian
plus a tail associated with bursts [8], [9]. A variable X has a
log-normal distribution if its logarithm is normally distributed
In(X) ~ N(u,0?) where u € R is the mean and o > 0
is the standard deviation of the distribution. We use a well-
established statistical methodology [10] to show that a log-
normal distribution is a better fit than Gaussian or Weibull'
for the vast majority of traces. This holds over a wide range
of timescales 1" (from 5 msec to 5 sec). This paper is the most
comprehensive investigation of this phenomenon the authors
know about. We study a large number of publicly available
traces from a diverse set of locations (including commercial,
academic and residential networks) with different link speeds
and spanning the last 15 years.

The structure of the paper is as follows. In Section II we
describe the datasets used. In Section III we describe our best-
practice procedure for fitting traffic and demonstrate that log-
normal is the best fit distribution for our traces under a variety
of circumstances. We examine those few traces that do not
follow this distribution and find it occurs when a link spends
considerable time either having an outage or completely at
maximum capacity. In Section IV we demonstrate that the
log-normal distribution is the most useful for estimating how
often a link is over capacity. In Section V we show that the
log-normal distribution provides good estimates when looking
at 95th percentile pricing. In Section VI we give related work.
Finally, Section VII gives our conclusions.

II. NETWORK TRAFFIC TRACES

A key contribution of our work stems from the spatial and
temporal diversity of the studied traces. The dataset spans a
period of 15 years and comprises 229 traces.

CAIDA traces. We have used 27 CAIDA traces captured
at an Internet data collection monitor which is located at
an Equinix data centre in Chicago [11]. The data centre is
connected to a backbone link of a Tier 1 ISP. The monitor
records an hour-long traces four times a year, usually
from 13:00 to 14:00 UTC. Each trace contains billions
of IPv4 packets, the headers of which are anonymised.

1A variable X has a Weibull distribution with parameters k& > 0 (known as
shape) and A > O (known as scale) if its probability density function follows

fla)y=% (%)1“1 exp(—(x/\)*¥) when > 0 and is 0 otherwise.

The average captured data rate is 2.5 Gbps. At the
time of capturing, the monitored link had a capacity of
10 Gbps. Traces were captured between 2013 and 2016.

MAWI traces. The MAWI archive [12] consists of a
collection of Internet traffic traces, captured within the WIDE
backbone network that connects Japanese universities and
research institutions to the Internet. Each trace consists of IP
level traffic observed daily from 14:00 to 14:15 at a vantage
point within WIDE. Traces include anonymised IP and MAC
headers, along with an ntpd timestamp [12]. We have looked
at 107 traces (each one being 15 minutes long). Traces were
captured between 2014 and 2018. On average, each trace
consists of 70 million packets; the average captured data rate
is 422 Mbps. The monitored link had a capacity of 1 Gbps.

Twente University traces. We used 40 traffic traces captured
at five different locations (8 traces from each location). Traces
are diverse in terms of the link rates, types of users and
captured time [13]. Each trace is 15 minutes long. The first
location is a residential network with a 300 Mbps link, which
connects 2000 students (each one having a 100 Mbps access
link); traces were captured in July 2002. The second location
is a research institute network with a 1 Gbps link which
connects 200 researchers (each one having a 100 Mbps access
link); traces were captured between May and August 2003.
The third location is at a large college with a 1 Gbps link
which connects 1000 employees (each one having a 100 Mbps
access link); traces were captured between February and July
2004. The fourth location is an ADSL access network with a
1 Gbps ADSL link used by hundreds of users (each one having
a 256 Kbps to 8 Mbps access link); traces were captured
between February and July 2004. The fifth location is an
educational organisation with a 100 Mbps link connecting 135
students and employees (each one having a 100 Mbps access
link); traces were captured between May and June 2007.

Waikato University VIII traces. The Waikato dataset
consists of traffic traces captured by the WAND group at
the University of Waikato, New Zealand [14]. The capture
point is at the link interconnecting the University with the
Internet. All of the traces were captured using software that
was specifically developed for the Waikato capture point
and a DAG 3 series hardware capture card. All IP addresses
within the traces are anonymised. In our study, we have used
30 traces captured between April 2011 and November 2011.

Auckland University IX traces. The Auckland dataset
consists of traffic traces captured by the WAND group at
the University of Waikato [15]. The traces were collected
at the University of Auckland, New Zealand. The capture
point is at the link interconnecting the University with the
Internet. All TP addresses within the traces are anonymised.
In our study, we have used 25 traces captured in 2009.

III. FITTING A STATISTICAL DISTRIBUTION TO INTERNET
TRAFFIC DATA

In this section we present an extensive statistical analysis
applied to the datasets described in the previous section. The

82

aim is to discover which statistical distribution best fits the
traces. In contrast to the existing research (see Section VI), we
are basing our analysis on the framework proposed by Clauset
et al. [10], a comprehensive statistical framework developed
specifically for testing power-law behaviour in empirical data’.
The framework combines maximum-likelihood fitting meth-
ods with goodness-of-fit tests based on the Kolmogorov—
Smirnov statistic and likelihood ratios. The method reliably
tests whether the power-law distribution is the best model for
a specific dataset, or, if not, whether an alternative statistical
distribution (e.g., log-normal, exponential, Weibull) is. The
framework performs the tests described above as follows: (1)
the parameters of the power-law model are estimated for a
given dataset; (2) the goodness-of-fit between the data and
the power-law is calculated, under the hypothesis that the
power-law is the best fit to the provided traffic samples. If
the resulting p-value is greater than 0.1 the hypothesis is
accepted (i.e. the power law is a plausible fit to the given
data), otherwise the hypothesis is rejected; (3) alternative
distributions are tested against the power-law as a fit to the
data by employing a likelihood ratio test.

For the vast majority of the traces examined, the hypothesis
was rejected; i.e. the power-law distribution was not a good
fit. Consequently, we investigate alternative distributions by
performing the likelihood ratio (LLR) test (following Clauset’s
methodology), as follows:

R, p = fit.distributionCompare(powerlaw, alternative)

where R is the normalised LLR® between the power-law and
alternative distributions and p is the significance value for this
test. R is positive if the power-law distribution is a better fit for
the data, and negative if the alternative distribution is a better
fit for the data. A p-value less than 0.1 means that the value
of R can be trusted to make a conclusion that one candidate
distribution (power-law or alternative, depending on the sign
of ®) is a good fit for the data. In contrast, a p-value greater
than 0.1 means that there is nothing to be concluded from the
likelihood ratio test.

A. Fitting the log-normal distribution to Internet traffic data

Figure 1 shows the results of the LLR test for all 229
traces with log-normal, exponential and Weibull distribution as
the alternative to power-law. For this test we have aggregated
traffic at a timescale 7" = 100 msec. The points marked with
a circle are the ones with p > 0.1. It is clear that the log-
normal distribution (black line in Figure 1) is the best fit for
the studied traces; i.e. ®# < 0 and p < 0.1 for most traces
when the alternative distribution (to the power-law which is
almost always rejected) is the log-normal one*. The log-normal
distribution is not the best fit for 1 out of 27 CAIDA traces, 2
out 30 Waikato traces, 1 out of 25 Auckland traces, 5 out of

2We have used the source code discussed in [16].

3R is calculated as R/(o+/n), where R is the log likelihood ratio [10].

4For clarity, in Figures 1(e) and 2(e) we only plot traces 60 — 107. For
traces 1 — 59, R is less than 0 and the respective p-value is less than 0.1; i.e.
the alternative distribution is the best fit for the respective trace

83

10 30 = 10
L - Weibull i
o A o 20} |-« Lognormal ! ax O
-1 0 & — —+ Exponentia , -
p M reeest Il — 10 i —-10
§-10 poose® g o 2 B 20
© i © ©
g # £-101 peassssssy £-30y ¥ .
5 20+ > Weibull & g, it 5 * = Weibull
z ! - Lognormal Z-20 Z -40 *,* - Lognormal
i —+ Exponential / 1t —+ Exponentia
-30 -30t -50
5 10 15 20 25 5 10 15 20 25 30 5 10 15 20 25
Rank of trace Rank of trace Rank of trace
(a) CAIDA traces (b) Waikato traces (c) Auckland traces
20 10 .
—o- Weibull E
xr xr - Lognormal #
3 0 | —+ Exponentia f#
_ a5 o
B2 3 -~ e
= 30 o @x@%ﬁﬁ
€ -401 = K - ng@xx@@
S ! ~ Weibull S ” o
— Lognormal 3k
-60 — Exponential S
10 20 30 40 60 70 80 90 100
Rank of trace Rank of trace

(d) Twente traces

(e) MAWI traces

Fig. 1: Normalised Log-Likelihood Ratio (LLR) test results for all studied traces and candidate distributions. Aggregation
timescale 7" is 100 msec. Circled points in the plot are the ones with p-value greater than 0.1; i.e. likelihood test is inconclusive
with respect to fitting any of the candidate distributions to the traffic data.

40 Twente traces and 9 out of 107 MAWI traces. We examined
these traces in more detail and discuss them in Section III-B.

For the vast majority of traces the power-law distribution
is favoured over the exponential one (i.e. ® > 0), as shown
in Figure 1. Thus, the exponential distribution cannot be
considered as a good model for our traffic traces. On the other
hand, the Weibull appears to be a better fit over the power-
law distribution; however, when compared to the log-normal
distribution, it still performs poorly (i.e. it > 0 or & < 0 but
p > 0.1) for a substantial amount of traces.

Identifying the log-normal distribution as the best fit for
the vast majority of traffic traces at 7' = 100 msec is very
encouraging. This specific traffic aggregation timescale has
been commonly studied in the literature [17], [18]. Next we
investigate what the best model is for a range of aggregation
timescales. The results are shown in Figure 2. As reflected
by the R and p-values, the log-normal distribution is the best
fit for the vast majority of captured traces at all examined
timescales (5 msec to 5 sec)’. This is a strong result suggesting
the generality of our observations. The good log-normal fit
at time scales as small as 5 msec is important for practical
applications of the log-normal model.

SNote that it is possible that the network traffic may not follow a log-normal
distribution at very fine or coarse aggregation granularities.

We also examined Q-Q plots for a large number of traces®.

The log-normal distribution appeared to be a better fit than
other tested distributions and no deviations from the expected
pattern were observed in the body or tail of the distribution.

B. Anomalous traces

As mentioned in Section III-A, there are a small number
of traces for which the log-normal distribution is not a
good fit (none of the other examined distributions is, either).
Figure 3(a) shows the PDF plot for one of the 8 anomalous
MAWTI traces. Figure 3(b) shows the PDF for another MAWI
trace for which the log-normal distribution is a good fit. It is
obvious from Figure 3(a) that the link was either severely
underutilised (see large spike on the left part of the plot
area) or fully utilised (see smaller spike at the right part of
the plot area) for higher data rates. All traces for which the
log-normal distribution was not a good fit exhibited similar
behaviour and (aggregated) traffic patterns. On the contrary,
we did not observe any such behaviour for the majority of
traces for which the log-normal distribution was the best fit. A
likely explanation for the anomalous traces is that those traces
contain either periods of over-capacity (traffic is at 100% of
link capacity) or periods where the link is broken (no traffic).

®Due to lack of space, Q-Q plots are not included as we would have to
present plots for each trace, separately.

84

0 HHHHHWQ 0 7 0 waw“;;;;;;;;;%%%%ﬁﬁ
E X *;W . kKoK *iiiii ,”‘ 5 L s SN K K K 2 X HRHRAKAXAHH ?ﬁfé/ @ -10 /** %%W;ﬁ 4 + -
O -5 X « A+t o pers T 20l *éﬁ/ﬁff,++++++

L o T -10% # Lt ot
.@ -10 el T g # o -@ 304
© gt et ® 201 SRR, © f
g |t T=5sc £ A < T=5sec £ -40 < T=5sc
S .15)7 +T=1sec S ¥ -+ T=1sec = # +T=1sec
215 T o Z 30, T = 100 msec Z =0/ ~ T = 100 msec
_2077 —+ T =5msec —+ T =5msec .60 —+ T =5msec
5 10 15 20 25 5 10 15 20 25 30 5 10 15 20 25
Rank of trace Rank of trace Rank of trace

(a) CAIDA traces

0
& 10
-
'& -20
T-30f
g | S T=5s%c
S -401f —+T=1sec
z E — T =100 msec
-50 —+ T =5msec
10 20 30 40
Rank of trace

(d) Twente traces

(b) Waikato traces

(c) Auckland traces

a4
—
-
®
IS
5
o — T =100 msec
15} T =5msec
60 70 80 90 100
Rank of trace

(e) MAWI traces

Fig. 2: Normalised Log-Likelihood Ratio (LLR) test results for all studied traces and log-normal distribution. Aggregation
timescales are 5 sec, 1 sec, 100 msec and 5 msec. Circled points in the plot are the ones with p-value greater than 0.1, i.e.
likelihood test is inconclusive with respect to fitting the log-normal distribution to the traffic data.

0.02 0.03
mPDF WPDF

0.015 0.02
0.01

0.005 0.01

0 0

0 500 1000 0 500 1000
Datarate (Mbps) Datarate (Mbps)

(a) Anomalous trace (b) Log-normal trace

Fig. 3: PDF of an anomalous and non-anomalous trace.

C. Fitting the log-normal and Gaussian distributions using the
correlation coefficient test

The linear correlation coefficient test has been widely used
to assess the fit of a distribution to empirical data. To reinforce
the results of Section III-A, we employ the linear correlation
coefficient assuming that the log-normal distribution is the best
fit (as we showed in Section III). We compare the results of
this test for both the log-normal and Gaussian distributions.
We use the linear correlation coefficient as defined in [19]:

Y= i1 (S — A1) (@i — @)
VI (S =) S =)

(1)

where S(;y is the observed sample i, and i = %2?21 Sy 1s
the samples’ mean value. x; is sample ¢ from the reference
distribution (log-normal in our case), which can be calculated
from the inverse CDF of the reference random variable z;

—1(_é 1N :
F (and & = -3 ", ; is the respective mean value.

n+1
The value of the correlation coefficient can vary between —1 <

v < 1, with a 1, 0 and —1 indicating perfect correlation,
no correlation and perfect anti-correlation, respectively. Strong
goodness-of-fit (GOF) is assumed to exist when the value of
v is greater than 0.95 [17].

We measure the linear correlation coefficient for all datasets
at four different aggregation timescales (ranging from 5 msec
to 5 sec) and plot the results in Figures 4(a) to 4(e) for the log-
normal distribution and Figures 4(f) to 4(j) for the Gaussian
distribution. Traces are ordered by the value of v for the
given timescale. It can be clearly seen that v > 0.95 for most
traces when employing the test for the log-normal distribution,
but this is not the case for the Gaussian distribution. 7y is
larger for smaller aggregation timescales indicating that the
log-normal distribution is an even better fit as the aggregation
gets finer. For very small values of 7', i.e. lower than 1 msec,
data samples exhibit binary behaviour, where either a packet
is transmitted or not during each examined time frame [18].
We have examined ~ for very short (and large) aggregation
timescales, and can confirm the absence of a model describing
the data (for brevity, we have omitted the relevant figures).

85

1 1 i 1 1
uruaaael ressssss R ;2,3! A I
o e a 095 095| ol |
0954 v T [s 095/
< Pe - = e095y ~T=5s¢ = 09 <09 ;ﬁf o T=bsc < I T=5sec
il - T=1sec ! - T=1sec 1/ - T=1sec } - T=1sec
-~ T=100msec | -~ T=100msec 0.85; 085 . T=100msec [f - T=100msec
0.9 = T=5msec 09 - - T=5msec ’ - T=5msec 0.9 - T=5msec
5 10 15 20 25 ' 10 20 30 5 10 15 20 2 10 20 30 4 20 40 60 80 100
Rank of Traces Rank of Traces Rank of Traces Rank of Traces Rank of Traces
(a) CAIDA traces (b) Waikato traces (c) Auckland traces (d) Twente traces (e) MAWI traces
1 1 . 1 1
0.9
e “‘/ﬂ”: 0.9 Lapstrert 0.95 N ﬁ&ﬁ%i:‘é 0.95 09
0.8t-=resst pOREeoessing L wl(é;;?y 0.9 Ej’ﬁﬁﬁ-; ’
(o »g;::“em B <08 i%‘lﬁﬁ%i?wu':'rzssec Y e = = 09 /‘;2 i = e
077" o T=lsec 44 o T=lsec 0.85 F - T=1sec 0858 [rTelx 0.8
g — T=100msec 0.7 — T=100msec [+T:100msec 3 [-+ T=100msec
- T=5msec . - T=5msec 0.8}4+* -~ T=5msec 08 s - T=5msec 07
5 10 15 20 25 10 20 30 5 10 15 20 2 "0 20 4 7 20 40 60 80 100
Rank of Traces Rank of Traces Rank of Traces Rank of Traces Rank of Traces
(f) CAIDA traces (g) Waikato traces (h) Auckland traces (i) Twente traces (j) MAWI traces
0.1 0.08 0.15 0.08 0.1
% LOO- al % LOg-! al - % Log-normal - Log-normal
d ' ' 0.1 o “
50,05 | 27004 s | § 57004 y 50.05
oec00e® 0.05 ® - 5o o
oeaaewe “H*x”"x. 0.02 b000” —)e‘xxxf :aaaaeeeee(:i«)(” 0.02 con?
0»5H4xxxfﬂxx* Lo X %2660
5 10 15 20 25 10 20 30 5 10 15 20 2 10 20 30 40 20 40 60 80 100
Rank of Traces Rank of Traces Rank of Traces Rank of Traces Rank of Traces
(k) CAIDA traces (1) Waikato traces (m) Auckland traces (n) Twente traces (0) MAWI traces
< 1 FE s T T 1 T g0 © L < 1 < 1 TE § 5
g 0 P g 0 LI [] g %} b ?} c % = %: L] []
5, bo,et| B2 } X §09 i § 09 H % &09 H%H
;30.8 % i + ﬁ_q’ a L?O'B % L o \80'8 L al L? \L? L el
So7 e B, e &] & os [oz g o8 sy
O NNV NNBON o NNV NNBLV oo'7mmmmwmmmm O NDNNLLOVOV o NNV NOVY
WNAEEEEEE WNAEEEEEE WNAEEEEEE WNASEEEEEE WNAEEEEEE
SS3SWwWOL6 SSSWOLB SS3SWOL6 SSowSI6 SS3SWOL
T T T T T

(p) CAIDA traces (q) Waikato traces

(r) Auckland traces

(s) Twente traces (t) MAWI traces

Fig. 4: Correlation coefficient test results for all studied traces and different timescales.

Next, we calculate v, (the variation of) for each dataset.
v, gives an indication of the stability of « for each dataset,
for all timescales tested. This metric is defined as:

U’Y = \/’UU/I“ (’yTl s VT ’7T3) 7T4) (2)

where T, = 5 sec, 15 = 1 sec, 75 = 100 msec and T, = 5
msec. Figures 4(k) to 4(o) show the results for each dataset
with the traces ranked by v.. For log-normal model, v,, is very
small (below 0.045) for all traces, therefore we can conclude
that v is almost constant for all studied aggregation timescales.
While v, is higher for Gaussian model. Furthermore, the error
bars in Figures 4(p) to 4(t) represent the standard deviation of
the correlation coefficient at different timescales (see x-axis).
This again shows that for log-normal model ~y is larger than
0.95 (at different T values) for most CAIDA and MAWTI traces,
while it is larger than 0.9 for all other datasets. This is not the

case with the Gaussian model, where most v values are less
than 0.9.

Overall, the correlation coefficient test reinforces the results
extracted in Section III-A, providing strong evidence that the
log-normal distribution is the best fit for all studied traces.
Superior performance of our model can also be seen from
comparison of our results for correlation coefficient with those
in [20] where the Gaussian model was used.

IV. BANDWIDTH PROVISIONING

It has been previously suggested that network link provi-
sioning could be based on fitted traffic models instead of rely-
ing on straightforward empirical rules [20]. In this way, over-
or under-provisioning can be mitigated or eliminated even in
the presence of strong traffic fluctuations. Such approaches
rely on having a statistical model that accurately describes

the network traffic. This is therefore an excellent area for
applying our findings on fitting the log-normal distribution to
Internet traffic data. In the literature, the following inequality
(the authors call it the “link transparency formula”) has been
used for bandwidth provisioning [18]:

P(A(T) > CT) <e. 3)

In words, this inequality states that the probability that the
captured traffic A(T') over a specific aggregation timescale
T is larger than the link capacity has to be smaller than
the value of a performance criterion €. The value of ¢ is
chosen carefully by the network provider in order to meet
a specific SLA [20]. Likewise, the value of the aggregation
time 7" should be sufficiently small so that the fluctuations in
the traffic can be modelled as well, taking into account the
buffering capabilities of network switching devices’.

We compare bandwidth provisioning using Meent’s approx-
imation formula [20] (assuming Gaussian) and using a log-
normal traffic model.

1000 [C1: Meent
m === C2: Log-normal
8 800 C3: Weibull
<
g O [N .
% 400 “ “ \m.\ e K " .

S 200

0
0 200 400 600 800
Time (sec)
Fig. 5: Data rate of a MAWI trace (I' = 100 msec and
€ = 0.01). The horizontal lines represent the calculated link
capacity based on different models.

A. Bandwidth provisioning using Meent’s formula

To find the minimum required link capacity, Meent et
al. [20] proposed a bandwidth provisioning approach that is
based on the assumption that the traffic follows a Gaussian
distribution. Meent’s dimensioning formula is defined as fol-
lows [20]:

Cl=pu+ % —2log(e).v(T) “)

where (i is the average value of the traffic, v(7T') is the variance
at timescale 7' and ¢ is the performance criterion. The link
capacity is obtained by adding a safety margin value

T
Safety margin = \/—2log(e) . UJ(,Q)

to the average of the captured traffic (see Equation 4). This
safety margin value depends on ¢ and the ratio \/v(T)/T2.
As the value of € decreases the safety margin increases. For
example, when the value of ¢ decreases from 1072 to 1074,

7Large traffic fluctuations at very short aggregation timescales are smoothed
by the presence of buffers at network routers and switches.

86

then value of the safety margin increases by 40%. This is
different from conventional link dimensioning methods, where
the safety margin is fixed to be 30% above the average of the
presented traffic [20], [21]. Traffic tails are represented using
the Chernoff bound, as follows:

P(A(T) > CT) < e5°TE FSA(T)} .)

Here E [¢54(T)] is the moment generation function (MGF)
of the captured traffic A(T).

B. Bandwidth provisioning based on the log-normal model

Here we investigate whether we could achieve more reliable
bandwidth provisioning by adopting the log-normal traffic
model. We calculate the mean and variance from the captured
trace and generate the respective log-normal model. Then,
we use the CDF function (F') to solve the link transparency
formula shown in Equation 3. Hence, F' is defined as F'(C) =
P(A(T)/T < C), which can be solved to find C, as follows:

C2=F1'(1-¢). (6)

C. Comparison of bandwidth provisioning approaches

In this section, we compare the bandwidth provisioning
approaches described above. The performance indicator is the
empirical value of the performance criterion, which is denoted
by € and defined as follows:

#{AlA > CT)

n

= el...n. @)

In words, this empirical value is the percentage of all the
data samples of the captured traffic which are measured larger
than the estimated link capacity. Ideally, £ would be equal to
the target value of the performance criterion . The difference
between ¢ and ¢ is due to the fact that the chosen traffic model
is not accurately describing the real network traffic. A simple
example of the described comparison approach is illustrated
in Figure 5, in which we plot the captured data rate for a
MAWI trace (T' = 100 msec)®. The calculated capacity values
from each approach when the target € is 0.01 are C'1 = 344.8
Mbps and C2 = 444.3 Mbps (represented by the horizontal
lines in Figure 5). The empirical value can be calculated by
using Equation 7, which gives £; = 0.042 and é; = 0.012.
Obviously, with the first approach the network operator would
not be able to meet the target ¢ = 0.01, while with the second
approach the empirical value is close to the target.

We next compare results of bandwidth provisioning calcu-
lations based on the (a) Meent’s formula, (b) Weibull model
and (c) proposed log-normal model. Figure 6(a)-(d) shows
the average of the empirical value (avg(¢)) for all traces in
each dataset at 7' = 0.1 sec, 7' = 0.5 sec and T' = 1 sec.
The value of T is chosen to be sufficiently small so that
the fluctuations in the traffic can be modelled as well. Each
model is tested for four different values of the performance

8Note that in all subsequent figures we have also included results for a
Weibull model to get insights about bandwidth provisioning using a heavy-
tailed distribution.

0.6

I T=0.1sEAT=0.55]T= 15|

0
M T C W A
(b) target € = 0.1

M T C W A
(a) target € = 0.5

0
M T C W A
(f) target € = 0.1

M T C W A

(e) target € = 0.5

0.6
B T=0.1SET=05S[JT=15| 01 ET=0.1sEmT=05sJT=15|

M T C W A

(i) target € = 0.5

(j) target e = 0.1

87

0.015

0.06

—

‘W

~—
2
&S]

0
M T CW A
(d) target € = 0.01

M T C W A
(c) target € = 0.05

0.06

M T C W A M T C W A

(g) target € = 0.05 (h) target € = 0.01
0.06

EET=0.1SEMT=05S[_JT=15| ENT=0.1 sEAT=05s[]T=15|

M T C W A

(k) target € = 0.05 (1) target € = 0.01

Fig. 6: Link dimensioning based on (a-d) log-normal model, (e-h) Weibull model and (i-1) Meent’s formula: avg(¢) for different
datasets (M: MAWI, T: Twente, C: CAIDA, W: Waikato, A: Auckland), aggregation timescales (100 msec, 500 msec and 1
s), and target values of ¢ (0.5, 0.1, 0.05 and 0.01). Error bars represent stderr |e — &|.

criterion: ¢ = 0.5, ¢ = 0.1, ¢ = 0.05 and ¢ = 0.01. In
Figure 6(a)-(d) we clearly see that the log-normal model is
able to satisfy the required performance criterion ¢ at different
aggregation time-scales for all datasets. In contrast, Meent’s
formula failed to allocate sufficient bandwidth, which results in
missing the target performance criterion € for all datasets and
target performance values, as depicted in Figure 6(i)-(1) (see
horizontal red line). The Weibull distribution performs better
comparing to Meent’s formula, but bandwidth provisioning
using the log-normal model is far superior, as can be seen
from Figures 6(a)-(d) and 6(e)-(h).

V. 95TH PERCENTILE PRICING SCHEME BASED ON
LOG-NORMAL MODEL

Traffic billing is typically based on the 95th percentile
method [22]. Traffic volume is measured at border network
devices (typically aggregated at time intervals of 5 minutes)
and bills are calculated according to the 95-percentile of the
distribution of measured volumes; i.e. network operators calcu-
late bills by disregarding occasional traffic spikes. Forecasting
future bills, which is important for ISPs and clients, can be
done using a model of the traffic calculated through previously
sampled traffic. In this section, we apply our findings on
Internet traffic modelling in predicting the cost of traffic
according to the 95th percentile method. For each network

trace we calculate the actual 95th percentile of the traffic
volume. The majority of the studied traffic traces were 15-
minute long but operators typically use measurements traffic
volumes for much longer periods, therefore we scale down the
calculation of the 95th percentile by dividing each trace (900
seconds) into 90 groups (10 seconds length each). The authors
appreciate that by using 15-minute rather than day long traces
we omit any study of diurnal effects in the distribution. We
note that the sum of several log-normal distributions is itself
very accurately represented by a log-normal distribution [23].
Hypothetically, therefore, if 96 consecutive 15-minute traces fit
a log-normal distribution (with different parameters for each)
then the resulting 24 hour trace is also likely to be a good
fit to a log-normal. We also note that the distributions tested
were on a level playing field in that they would all be affected
equally by the shorter duration of the data sets.

We calculate the 95th percentile for the observed traffic. We
then fit a Gaussian, Weibull and log-normal distribution to each
trace (for " = 100 msec) and calculate the 95th percentile
of the fitted distribution. We plot the actual 95th percentile
against the three predictions in Figure 7 with a red reference
line to show where perfect predictions would be located. It is
clear that the log-normal model provides much more accurate
predictions of the 95th percentile than the Gaussian model. As
with the bandwidth dimensioning case discussed in Section IV,

88

P @ @ 250
36 o Log-norma - * é. o Log-normal * a o Log-norma v
3 || e Webull » Weibull i 2001| © Weibull *
o : = 100 . = :
~g|| + Gaussian g + Gaussian = + Gaussian “l ®
) 1)
T T
>4 >
B B
:
T2 T o
2 3 4 5 0 50 100 50 100 150
Actual vaue (Gbps) Actual value (Mbps) Actual value (Mbps)
(a) CAIDA (b) Waikato (c) Auckland
@50) iw
o o Log-normal * * o o Log-normal
g 40/ * Weibul . g 12001, weibull e
by + Gaussian] E—J/]_OOO + Gaussian T
S5 5 "
£ 30 3 800 .
3 20 3 600 2
S0 5 400 ik
-g 0 -g 2001: =%
0 10 20 30 200 400 600 800
Actual value (Mbps) Actua value (Mbps)
(d) Twente (e) MAWI

Fig. 7: 95th percentile values (actual vs predicted rates) based on log-normal, Weibull and Gaussian models. An ideal model
would result in points in the plot area that fall exactly on the red line.

TABLE I: Goodness of fit (GOF) using normalised root mean
squared error (NRMSE)

Model/Dataset | CAIDA | Waikato | Auckland | Twente | MAWI
Log-normal 0.0399 0.0401 0.1058 0.0979 | 0.1528
Weibull 0.2410 0.1148 0.2984 0.2123 0.4145
Gaussian 0.5544 0.4193 0.6866 0.5741 0.9828

the Weibull is better than the Gaussian model but worse than
the proposed log-normal model.

We employ the normalised root mean squared error
(NRMSE) as a goodness of fit to the results in Figure 7.
NRMSE measures the differences between values predicted by
a hypothetical model and the actual values. In other words, it
measures the quality of the fit between the actual data and the
predicted model. Table I shows the NRMSE for all datasets
and the three considered models. It is clear that the lowest
NRMSE value is for the log-normal model, which is the best
model compared to the Gaussian and Weibull ones.

VI. RELATED WORK

Reliable traffic modelling is important for network plan-
ning, deployment and management; e.g. for traffic billing and
network dimensioning. Historically, network traffic has been
widely assumed to follow a Gaussian distribution. In [5],
[7], the authors studied network traces and verified that
the Gaussianity assumption was valid (according to simple
goodness-of-fit tests they used) at two different timescales.
In [24], the authors studied traffic traces during busy hours
over a relatively long period of time and also found that the
Gaussian distribution is a good fit for the captured traffic.
Schmidt et al. [8] found that the degree of Gaussianity is

affected by short and intensive activities of single network
hosts that create sudden traffic bursts. All the above mentioned
works agreed on the Gaussian or ‘fairly Gaussian’ traffic at
different levels of aggregations in terms of timescale and
number of users. The authors in [19], [25] examined the levels
of aggregation required to observe Gaussianity in the modelled
traffic, and concluded that this can be disturbed by traffic
bursts. The work in [9], [26] reinforces the argument above,
by showing existence of large traffic spikes at short timescales
which result in high values in the tail. Compared to existing
literature, our findings are based on a modern, principled
statistical methodology, and traffic traces that are spatially
and temporally diverse. We have tested several hypothesised
distributions and not just Gaussianity.

An early work drawing attention to the presence of heavy
tails in Internet file sizes (not traffic) is that of Crovella and
Bestavros [2]. Deciding whether Internet flows could be heavy-
tailed became important as this implies significant departures
from Gaussianity. The authors in [27] provided robust evidence
for the presence of various kinds of scaling, and in particular,
heavy-tailed sources and long range dependence in a large
dataset of traffic spanning a duration of 14 years.

Understanding the traffic characteristics and how these
evolve is crucial for ISPs for network planning and link di-
mensioning. Operators typically over-provision their networks.
A common approach to do so is to calculate the average
bandwidth utilisation [6] and add a safety margin. As a rule of
thumb, this margin is defined as a percentage of the calculated
bandwidth utilisation [21]. Meent et al. [20] proposed a
new bandwidth provisioning formula, which calculates the

minimum bandwidth that guarantees the required performance,
according to an underlying SLA. This approach relies on the
statistical parameters of the captured traffic and a performance
parameter. The underlying fundamental assumption for this to
work is that the traffic the network operator sees follows a
Gaussian distribution. Same approach has been used in [18].

The 95th percentile method is used widely for network
traffic billing. Dimitropoulos et al. [22] have found that the
computed 95th percentile is significantly affected by traffic
aggregation parameters. However, in their approach they do
not assume any underlying model of the traffic; instead, they
base their study on specific captured traces. Stanojevic et
al. [4] proposed the use of Shapley value for computing
the contribution of each flow to the 95th percentile price
of interconnect links. Works [28]-[31] propose calculating
the 95th percentile using experimental approaches. Xu et
al. [32] assume that network traffic follows a Gaussian dis-
tribution“through reasonable aggregation” and propose a cost
efficient data centre selection approach based on the 95th
percentile.

VII. CONCLUSION

The distribution of traffic on Internet links is an important
problem that has received relatively little attention. We use
a well-known, state-of-the-art statistical framework to investi-
gate the problem using a large corpus of traces. The traces
cover several network settings including home user access
links, tier 1 backbone links and campus to Internet links.
The traces are from times from 2002 to 2018 and are from a
number of different countries. We investigated the distribution
of the amount of traffic observed on a link in a given (small)
aggregation period which we varied from 5 msec to 5 sec. The
hypotheses compared were that the traffic volume was heavy-
tailed, that the traffic was log-normal and that the traffic was
normal (Gaussian). The vast majority of traces fitted the log-
normal assumption best and this remained true all timescales
tried. Where no distribution tested was a good fit this could be
attributed either to the link being saturated (at capacity) for a
large part of the observation or exhibiting signs of link-failure
(no or very low traffic for part of the observation).

We investigate the impact of the distribution on two sample
traffic engineering problems. Firstly, we looked at predicting
the proportion of time a link will exceed a given capacity.
This could be useful for provisioning links or for predicting
when SLA violation is likely to occur. Secondly, we looked
at predicting the 95th percentile transit bill that ISP might be
given. For both of these problems the log-normal distribution
gave a more accurate result than a heavy-tailed distribution
or a Gaussian distribution. We conclude that the log-normal
distribution is a good (best) fit for traffic volume on a normally
functioning internet links in a variety of settings and over a
variety of timescales, and further argue that this assumption
can make a large difference to statistically predicted outcomes
for applied network engineering problems.

In future work, we plan to test the stationarity of the traffic
traces.

[1]
[2]

3

[4

[5]
[6]
[7]
[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16

[17]

[18]

[19]

[20]

[21]

[22]

[23

[24]

[25]

[26]

[27]

[28]
[29]
[30]
[31]

[32]

89

REFERENCES

P. Pruthi and A. Erramilli, “Heavy-tailed on/off source behavior and
self-similar traffic,” in Proc. of ICC, 1995.

M. E. Crovella and A. Bestavros, “Self-similarity in world wide web
traffic: evidence and possible causes,” IEEE/ACM ToN, 1997.

P. Loiseau, P. Goncalves, G. Dewaele, P. Borgnat, P. Abry, and P. V. B.
Primet, “Investigating self-similarity and heavy-tailed distributions on a
large-scale experimental facility,” IEEE/ACM ToN, 2010.

R. Stanojevic and et. al., “On economic heavy hitters: Shapley value
analysis of 95th-percentile pricing,” in Proc. of ACM IMC, 2010.

R. V. D. Meent, M. Mandjes, and A. Pras, “Gaussian traffic every-
where?” in Proc. of IEEE ICC, 2006.

R. d. O. Schmidt, H. van den Berg, and A. Pras, “Measurement-based
network link dimensioning,” in Proc. of IFIP/IEEE, 2015.

R. d. O. Schmidt, R. Sadre, and A. Pras, “Gaussian traffic revisited,” in
Proc. of IFIP Networking, 2013.

R. d. O. Schmidt, R. Sadre, N. Melnikov, J. Schnwlder, and A. Pras,
“Linking network usage patterns to traffic gaussianity fit,” in Proc. of
IFIP Networking, 2014.

X. Yang, “Designing traffic profiles for bursty Internet traffic,” in Proc.
of IEEE GLOBECOM, 2002.

A. Clauset, C. S. Rohilla, and M. Newman, “Power-law distributions in
empirical data,” arXiv:0706.1062v2, 2009.

“The caida ucsd anonymized internet traces,” 2016. [Online]. Available:
http://www.caida.org/data/passive/passive_dataset.xml

“Mawi archive,” 2018. [Online]. Available: http://mawi.wide.ad.jp/

R. R. R. Barbosa, R. Sadre, A. Pras, and R. van de Meent,
“Simpleweb/university of twente traffic traces data repository,”
http://eprints.eemcs.utwente.nl/17829/, Tech. Rep., 2010.

“Wits: Waikato internet traffic storage,” 2013. [Online]. Available:
https://wand.net.nz/wits/waikato/8/

“Wits: Auckland x,” 2009. [Online]. Available: https://wand.net.nz/wits/
auck/10/

J. Alstott, E. Bullmore, and D. Plenz, “powerlaw: a python package for
analysis of heavy-tailed distributions,” arXiv:1305.0215, 2014.

M. Mandjes and R. van de Meent, “Resource dimensioning through
buffer sampling,” IEEE/ACM Transactions on Networking, 2009.

R. d. O. Schmidt, R. Sadre, A. Sperotto, H. van den Berg, and A. Pras,
“Impact of packet sampling on link dimensioning,” IEEE Transactions
on Network and Service Management, 2015.

J. Kilpi and I. Norros, “Testing the gaussian approximation of aggregate
traffic,” in Proc. of SIGCOMM, 2002.

A. Pras, L. Nieuwenhuis, R. van de Meent, and M. Mandjes, “Di-
mensioning network links: a new look at equivalent bandwidth,” IEEE
Network, 2009.

“Best practices in core network capacity planning,” online, accessed
July 2018. [Online]. Available: https://www.cisco.com/c/en/us/products/
collateral/routers/wan-automation-engine/white_paper_c11-728551.pdf

X. Dimitropoulos, P. Hurley, A. Kind, and M. P. Stoecklin, “On the
95-Percentile Billing Method,” in Proc. of PAM, 2009.

R. Mitchell, “Permanence of the log-normal distribution.” J. Optical
Society of America, 1968.

J. L. Garcia-Dorado, J. A. Hernandez, J. Aracil, J. E. Lopez de Vergara,
and S. Lopez-Buedo, “Characterization of the busy-hour traffic of IP
networks based on their intrinsic features,” Computer Networks, 2011.

A. B. Downey, “Evidence for Long-tailed Distributions in the Internet,”
in Proc. of ACM SIGCOMM Workshop on Internet Measurement, 2001.
H. Abrahamsson, B. Ahlgren, P. Lindvall, J. Nieminen, and P. Tholin,
“Traffic characteristics on 1gbit/s access aggregation links,” in Proc. of
IEEE ICC, 2017.

R. Fontugne and et. al., “Scaling in internet traffic: A 14 year and 3 day
longitudinal study, with multiscale analyses and random projections,”
IEEE/ACM Transactions on Networking, 2017.

L. Golubchik and et. al., “To send or not to send: Reducing the cost of
data transmission,” in Proc. of IEEE INFOCOM, 2013.

N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-datacenter
bulk transfers with netstitcher,” in Proc. of ACM SIGCOMM, 2011.

I. Castro, R. Stanojevic, and S. Gorinsky, “Using Tuangou to Reduce
IP Transit Costs,” IEEE/ACM Transactions on Networking, 2014.

H. Xu and B. Li, “Joint request mapping and response routing for geo-
distributed cloud services,” in Proc. of IEEE INFOCOM, 2013.

, “Cost efficient datacenter selection for cloud services,” in Proc.
of IEEE ICCC, 2012.

90

Chapter 6

Conclusion and Future Directions

This chapter presents the contributions and conclusions for the research presented in this

thesis and suggests some directions for further research.

6.1 Contributions and Conclusions

The papers presented in Chapters 3, 4 and 5 form the main contributions in this thesis.
The first research question in this thesis is about designing a data transport protocol that
supports diverse and modern communication patterns in data centres while providing high
goodput, low completion times and high network utilisation to a diverse set of data centre
applications. This research question is answered in the first two papers, where we present
the design of SCDP, a general-purpose data transport protocol for data centres [9, 10].
SCDP is the first protocol that provides native support for one-to-many and many-to-one
communication in data centres. It also ensures good performance for long and short unicast
flows. SCDP integrates RaptorQ codes, receiver-driven data transport, in-network packet
trimming and MLFQ. RaptorQ codes incur some minimal network overhead, only when
loss occurs in the network, but our experimental evaluation showed that this is negligible
compared to the significant performance benefits of supporting one-to-many and many-to-
one workloads. RaptorQ codes also incur computational overhead and associated latency
when a loss occurs. However, we show that this is rare for short flows because of MLFQ.
For long flows, block pipelining alleviates the problem by splitting large blocks into smaller
ones and decoding each of these smaller blocks while retrieving the next one. As a result,
latency is incurred only for the last smaller block. RaptorQ codes have been shown to
perform at line speeds even on a single core; we expect that with hardware offloading
the overall overhead will not be significant. Our extensive evaluation of SCDP shows
substantial performance improvements over other data transport protocols. In the third
paper [7], we present our developed simulation framework for data centre protocols in
OMNeT++. This framework is used in the evaluations in the first two papers.

The second research question in this thesis is about understanding and modelling the

Internet traffic volumes by investigating real Internet traces. The modelling process has

91

to follow a well-established statistical methodology. This research question is answered
in the fourth paper [8], where we present a very comprehensive statistical analysis of
aggregated Internet traffic volumes over a large set of public datasets. These datasets
span a diverse range of locations, time scales, link speeds and user populations. The goal
of the work is to derive the marginal distribution of the time discrete process X (volume
of traffic in bit/s) where z; is the volume measured on a pre-defined time scale going from
1 ms to 5 sec. The distribution of traffic on Internet links is an important problem that
has received relatively little attention. We use a well-known, state-of-the-art statistical
framework to investigate the problem using a large corpus of traces. The conclusion is
that the best fit for the marginal distribution is a log-normal distribution, compared to
Gaussian, Weibull, exponential or power law. We investigate the impact of the distribution
on two sample traffic engineering problems. Firstly, we looked at predicting the proportion
of time a link will exceed a given capacity. This could be useful for provisioning links or
for predicting when SLA violation is likely to occur. Secondly, we looked at predicting
the 95th percentile transit bill that ISP might be given. For both of these problems, the
log-normal distribution gave a more accurate result than a heavy-tailed distribution or a

Gaussian distribution.

6.2 Future research

The work in this thesis fits in the broader context of the new challenges and opportunities
that have arisen due to the significant interest and investment in large-scale data centres.
Data centres provide an opportunity to revisit some of the fundamental issues of packet
switched networks, such as congestion control, forwarding/routing and traffic engineering.
This makes data centres a very rich environment for networking researchers. We conclude

the thesis by discussing some of the directions in which our work can be pursued further.

e Our proposed transport protocol SCDP [10] is agnostic to the underlying data centre
network topology i.e., it is deployable in both switch-centric and server-centric data
centre topologies. In our evaluation, we adopted a switch-centric Fat-tree topology.
Thus, as a future work we plan to evaluate SCDP in server-centric topologies as
DCell [87] and BCube [85]. We expect SCDP to outperform other modern transport
protocols in this type of topologies as ordering does not harm the performance of
SCDP.

e SCDP flow and congestion control mechanism is based on packet trimming and
pacing pull requests. It would be interesting to investigate other mechanisms that
can benefit from RaptorQ proprieties to design a reliable data transport protocol.
Furthermore, there are some switch vendors who are interesting in implementing
NDP switch!, and as SCDP adopts NDP switch, we would be looking forward to

!Private communication with Professor Mark Handley, also mentioned here [92]

92

seeing this happens. Moreover, we have not evaluated the coexistence between SCDP
and TCP flows, however, this can be ensured by scheduling TCP flows to a separate
queue and performing fair queueing between the two types of flows. Also, we plan
to build more OMNeT++/INET-based models that simulate other modern data
transport protocols for data centre networks, such as MPTCP [157] and PIAS [24].

e We built a RaptorQ model in Matlab and C++ based on the specifications in
RFC6330 [67], however, there is a space of optimisation in these implementations or

one can get access to an optimised RaptorQ model by Codornices 2.

e Currently, SCDP is implemented in OMNeT++, a packet-level discrete-event sim-
ulator. We plan to have a prototype of SCDP in real systems, for example, Linux
end-systems using DPDK [171], hardware switch using NetFPGA [144] and P4
switch [30].

e In our fourth paper [8], the distribution tests assume that the underlying data is
strictly stationary. The paper does not test for stationarity or discuss deviations
from stationarity in the measurement dataset. We plan to test a timescale within
which the stationarity assumption and the log-normal distribution fits hold. We have
progressed in this by using some well-known stationarity tests such as ADF [142] and
KPSS [111]. The results of running these tests on the datasets will be published soon.
Also, this work may be extended to another direction to do analysing and modelling
of packet inter-arrival times in the datasets. Furthermore, the used datasets in this
work can be extended to include any available data centres traces. Finally, testing

the time correlation property would be interesting as well.

’https://www.codornices.info/

https://www.codornices.info/

93

References

1]

[10]

C. Clos. A. A Study of Non-blocking Switching Networks. Bell System Technical
Journal, 1953. 10

Martin Abadi and et. al. TensorFlow: A system for large-scale machine learning. In
Proc. of USENIX (OSDI), 2016. 19

H. Abrahamsson, B. Ahlgren, P. Lindvall, J. Nieminen, and P. Tholin. Traffic
characteristics on 1Gbit/s access aggregation links. In Proc. of IEEE ICC, 2017. 4,
41, 42

Akka. Akka Build Powerful Reactive Concurrent and Distributed Applications more
Easily Using UDP. https://doc.akka.io/docs/akka/2.5.4/java/io-udp.html,
2019. [Online; accessed 19-July-2019]. 2

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. In Proc. of SIGCOMM, 2008. ix, 9, 10,
40

Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang,
and Amin Vahdat. Hedera: Dynamic Flow Scheduling for Data Center Networks.
In Proc. of USENIX, 2010. 3, 13, 19, 24

Mohammed Alasmar and George Parisis. Evaluating modern data centre transport
protocols in OMNeT++/INET. In Proc. of the 6th OMNeT++ Community Summit
Conference, Hamburg, Germany, 2019. v, vi, 6, 7, 8, 67, 90

Mohammed Alasmar, George Parisis, Richard Clegg, and Nickolay Zakhleniuk. On
the Distribution of Traffic Volumes in the Internet and its Implications. In Proc. of
INFOCOM, 2019. v, vi, 6, 7, 8, 43, 80, 91, 92

Mohammed Alasmar, George Parisis, and Jon Crowcroft. Polyraptor: Embracing
Path and Data Redundancy in Data Centres for Efficient Data Transport. In Proc.
of the ACM SIGCOMM Conference on Posters and Demos, 2018. v, 7, 40, 48, 90

Mohammed Alasmar, George Parisis, and Jon Crowcroft. SCDP: Systematic Rate-
less Coding for Efficient Data Transport in Data Centres. Submitted to IEEE/ACM

https://doc.akka.io/docs/akka/2.5.4/java/io-udp.html

[13]

[14]

[15]

[19]

[20]

94

Transactions on Networking, 2019. https://arxiv.org/abs/1909.08928. v, 5, 7,
11, 13, 30, 48, 90, 91

Mohammed Alasmar and Nickolay Zakhleniuk. Network Link Dimensioning based on
Statistical Analysis and Modeling of Real Internet Traffic. Submitted to IEEE/ACM
Transactions on Networking, 2017. https://arxiv.org/abs/1710.00420. 41

M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan, B. Prabhakar,
and M. Seaman. Data center transport mechanisms: Congestion control theory and
IEEE standardization. In Annual Allerton Conference on Communication, Control,

and Computing, 2008. 40

Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data Center
TCP (DCTCP). In Proc. of SIGCOMM, 2010. 3, 5, 14, 17, 19, 20, 22, 26, 28, 29

Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. Less Is More: Trading a Little Bandwidth for Ultra-Low
Latency in the Data Center. In Proc. of NSDI USENIX, 2012. 12

Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. pfabric: Minimal near-optimal datacenter
transport. In Proc. of SIGCOMM, 2013. 3, 12, 19, 22, 23, 29

M Allman, V Paxson, and E Blanton. TCP Congestion Control. IETF, RFC 5681,
2009. 2, 14

Alexey Andreyev. Introducing data center fabric, the next-generation Facebook data
center network. Online; accessed August, 2019. https://tinyurl.com/tt685av. 1,
11

Apache. Apache Giraph. Online; accessed August, 2019. https://giraph.apache.
org/. 19

Apache. Apache HTTP Server Project. Online; accessed August, 2019. https:
//www.mysql.com/. 19

Apache. Apache Storm. Online; accessed August, 2019. https://storm.apache.
org/. 19

Apache. HDFS. Online; accessed August, 2019. https://hadoop.apache.org/. 2,
18

M. Bagnulo. Threat analysis for TCP extensions for multipath operation with mul-
tiple addresses. IETF, RFC 6181, 2011. 20

https://arxiv.org/abs/1909.08928
https://arxiv.org/abs/1710.00420
https://tinyurl.com/tt685av
https://giraph.apache.org/
https://giraph.apache.org/
https://www.mysql.com/
https://www.mysql.com/
https://storm.apache.org/
https://storm.apache.org/
https://hadoop.apache.org/

[23]

[24]

[25]

95

M. Bagnulo, C. Paasch, F. Gont, O. Bonaventure, and C. Raiciu. Analysis of Re-
sidual Threats and Possible Fixes for Multipath TCP (MPTCP). IETF, RFC 7430,
2015. 21

Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. Information-
Agnostic Flow Scheduling for Commodity Data Centers. In Proc. of NSDI, USENIX,
2015. 5, 14, 19, 23, 29, 92

L. Baldantoni, H. Lundqvist, and G. Karlsson. Adaptive end-to-end FEC for improv-
ing TCP performance over wireless links. In Proc. of IEEE International Conference

on Communications, 2004. 27

Theophilus Benson, Aditya Akella, and David A. Maltz. Network Traffic Charac-
teristics of Data Centers in the Wild. In Proc. of IMC, 2010. 30

Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understanding
Data Center Traffic Characteristics. In Proc. of SIGCOMM, 2010. 30, 31

Debopam Bhattacherjee, Waqar Aqeel, Ilker Nadi Bozkurt, Anthony Aguirre, Bal-
akrishnan Chandrasekaran, P. Brighten Godfrey, Gregory Laughlin, Bruce Maggs,
and Ankit Singla. Gearing Up for the 21st Century Space Race. In Proc. of HotNets,
2018. 1

Sanjit Biswas, John Bicket, Edmund Wong, Raluca Musaloiu-E, Apurv Bhartia, and
Dan Aguayo. Large-scale Measurements of Wireless Network Behavior. In Proc. of
SIGCOMM, 2015. 1

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David

Walker. P4: Programming Protocol-independent Packet Processors. In Proc. of
SIGCOMM, 2014. 5, 11, 12, 14, 26, 92

Timm Bottger, Gianni Antichi, Eder Leao Fernandes, Roberto di Lallo, Marc Bruy-
ere, Steve Uhlig, and Ignacio Castro. The Elusive Internet Flattening: 10 Years of
IXP Growth. ArXiv, abs/1810.10963, 2018. 1

Timm Bottger, Felix Cuadrado, Gareth Tyson, Ignacio Castro, and Steve Uhlig.
Open Connect Everywhere: A Glimpse at the Internet Ecosystem Through the
Lens of the Netflix CDN. In Proc. of SIGCOMM, 2018. 1

Robert T. Braden. Requirements for Internet Hosts - Communication Layers. RFC
1122, 1989. 29

L Brakmo and L Peterson. TCP Vegas: End-to-End Congestion Avoidance on a
Global Internet. IEEE Journal on Selected Areas in Communications, 1995. 14, 26,
28

[35]

[38]

[39]

[40]

[44]

[45]

[47]

[48]

96

I. Castro, R. Stanojevic, and S. Gorinsky. Using Tuangou to Reduce IP Transit
Costs. IEEE/ACM Transactions on Networking, 22(5), 2014. 43

Li Chen, Shuihai Hu, Kai Chen, Haitao Wu, and Danny H. K. Tsang. Towards
minimal-delay deadline-driven data center TCP. In Proc. of HotNets, 2013. 29

Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. AuTO: Scaling Deep Reinforce-
ment Learning for Datacenter-scale Automatic Traffic Optimization. In Proc. of
SIGCOMM, 2018. 3

Yanpei Chen, Rean Griffith, Junda Liu, and Anthony Joseph. Understanding TCP
incast throughput collapse in datacenter networks. In Proc. of SIGCOMM, 2009. 3,
5, 14, 15, 29

Yanpei Chen, Rean Griffith, David Zats, Anthony D. Joseph, and Randy Katz.
Understanding TCP incast and its implications for big data workloads. In Proc. of
USENIX, 2012. 3, 5, 15

Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin. Catch the Whole Lot in an
Action: Rapid Precise Packet Loss Notification in Data Center. In Proc. of USENIX,
2014. 5

Mosharaf Chowdhury and Ion Stoica. Coflow: A Networking Abstraction for Cluster
Applications. In Proc. of HotNets, 2012. ix, 19

CISCO. Best Practices in Core Network Capacity Planning. Online; accessed Au-
gust, 2019. https://tinyurl.com/wké4ge3t. 4

C.K.P. Clarke. R&D White Paper: Reed-Solomon error correction. Research &
Development British Broadcasting Corporation, 2002. 32

Aaron Clauset, Cosma Shalizi Rohilla, and M Newman. Power-law distributions in

empirical data. arXiw:0706.1062v2, 2009. vi, 4, 6, 43, 44, 80

James Corbett and et. al. Spanner: Google’s Globally-distributed Database. In
Proc. of OSDI/USENIX, 2012. 18

M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic: evidence
and possible causes. IEEE/ACM Transactions on Networking, 5(6):835-846, 1997.
4

Wenzhi Cui and Chen Qian. Dual-structure Data Center Multicast using Software

Defined Networking. arxiv, 2014. http://arxiv.org/abs/1403.8065. 2

Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang. FMTCP: A Fountain Code-
Based Multipath Transmission Control Protocol. IEEE/ACM Transactions on Net-
working, 2015. 19, 27, 29

https://tinyurl.com/wk4ge3t
http://arxiv.org/abs/1403.8065

[49]

97

Y. Cui, X. Wang, H. Wang, G. Pan, and Y. Wang. FMTCP: A Fountain Code-Based
Multipath Transmission Control Protocol. In Proc. of International Conference on
Distributed Computing Systems, 2012. 27, 29

Yong Cui, Lian Wang, Xin Wang, Yisen Wang, Fengyuan Ren, and Shutao Xia.
End-to-end coding for TCP. IEEE Network, 2016. 17, 27

R. d. O. Schmidt, R. Sadre, N. Melnikov, J. Schonwalder, and A. Pras. Linking
network usage patterns to traffic Gaussianity fit. In Proc. of IFIP Networking, 2014.
6, 42

R. d. O. Schmidt, R. Sadre, and A. Pras. Gaussian traffic revisited. In Proc. of IFIP
Networking, 2013. 4, 6, 41

R. d. O. Schmidt, R. Sadre, A. Sperotto, H. van den Berg, and A. Pras. Impact of
Packet Sampling on Link Dimensioning. IEEE Transactions on Network and Service
Management, 2015. 4, 41, 42

R. d. O. Schmidt, H. van den Berg, and A. Pras. Measurement-based network link
dimensioning. In Proc. of IFIP/IEEE IM, 2015. 6

T. Das and K. M. Sivalingam. TCP improvements for data center networks. In
Proc. of COMSNETS, 2013. 40

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proc. of OSDI, 2004. 2, 18, 19

B. Di, H. Zhang, L. Song, Y. Li, and G. Y. Li. Ultra-Dense LEO: Integrating
Terrestrial-Satellite Networks Into 5G and Beyond for Data Offloading. In IEEFE

Transactions on Wireless Communications, 2019. 1

Xenofontas Dimitropoulos, Paul Hurley, Andreas Kind, and Marc Ph. Stoecklin. On
the 95-Percentile Billing Method. In Sue B. Moon, Renata Teixeira, and Steve Uhlig,
editors, Proc. of PAM, 2009. 43

A Dixit, P Prakash, Y C Hu, and R R Kompella. On the impact of packet spraying
in data center networks. In Proc. of INFOCOM, 2013. 3, 13, 19

Allen B Downey. Evidence for Long-tailed Distributions in the Internet. In Proc. of
ACM SIGCOMM Workshop on Internet Measurement, 2001. 4, 42

B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman and
Hall, New York, 1993. 46

Paul Emmerich, Maximilian Pudelko, Simon Bauer, and Georg Carle. User Space
Network Drivers. In Proc. of of the Applied Networking Research Workshop, ANRW
18, 2018. 12

[63]

[64]

[65]

98

C. Raiciu et al. Improving Datacenter Performance and Robustness with Multipath

TCP. In Proc. of SIGCOMM, 2011. 3, 19, 20, 29

D. Li et al. Reliable Multicast in data center networks. In IEEE Transactions on
Computers, 2014. 2, 13

G.Parisis et al. Trevi: Watering Down Storage Hotspots with Cool Fountain Codes.
In Proc. of HotNets, 2013. v, ix, 14, 33, 48

M. Handley et al. Re-architecting datacenter networks and stacks for low latency
and high performance. In Proc. of SIGCOMM, 2017. 3, 5, 6, 12, 13, 14, 19, 23, 25,
29

M.Luby et al. RaptorQ Forward Error Correction Scheme for Object Delivery. IETF,
RFC 6330, 2011. 5, 32, 36, 38, 92

N.Mohammad et al. DCCast: Efficient Point to Multipoint Transfers Across Data-
centers. In Proc. of HotCloud Workshop, USENIX, 2017. 13

P. Loiseau et. al. Investigating self-similarity and heavy-tailed distributions
on a large-scale experimental facility. IEEE/ACM Transactions on Networking,
18(4):1261-1274, 2010. 4

S. Ghemawat et. al. The google file system. In SOSP, 2003. 2, 18

Muhammad Zubair Farooqi, Salma Malik Tabassum, Mubashir Husain Rehmani,
and Yasir Saleem. A survey on network coding: From traditional wireless networks

to emerging cognitive radio networks, 2014. 26

Nathan Farrington and Alexey Andreyev. Facebook’s data center network architec-

ture. IEEE Optical Interconnects, 2013. 1

Daniel Firestone and et al. Azure Accelerated Networking: SmartNICs in the Public
Cloud. In Proc. of NSDI, USENIX, 2018. 11, 12

Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, and Neal Card-
well. Reducing Web Latency : the Virtue of Gentle Aggression. In Proc. of SIG-
COMM, 2013. 2, 17, 27

Sally Floyd and Van Jacobson. Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Transactions on Networking, 1993. 17

R. Fontugne, P. Abry, K. Fukuda, D. Veitch, K. Cho, P. Borgnat, and H. Wendt.
Scaling in Internet Traffic: A 14 Year and 3 Day Longitudinal Study, With Multiscale
Analyses and Random Projections. IEEE/ACM Transactions on Networking, 2017.
42

[77]

[81]

[84]

[85]

99

A Ford, C Raiciu, M Handley, and O Bonaventure. TCP Extensions for Multipath
Operation with Multiple Addresses. IETF, RFC 6824, 2013. 20, 21

A. Ford, R. Raiciu, M. Handley, S. Barre, and J. Iyengar. Architectural Guidelines
for Multipath TCP Development. IETF, RFC 6182, 2011. 20

C Fraleigh, F Tobagi, and C Diot. Provisioning IP backbone networks to support
latency sensitive traffic. In Proc. of IEEE INFOCOM, 2003. 43

Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. pHost: Distributed Near-optimal Datacenter Transport over
Commodity Network Fabric. In Proc. of CoNEXT, 2015. 3, 19, 22, 29

José Luis Garcia-Dorado, José Alberto Hernandez, Javier Aracil, Jorge E. Lépez de
Vergara, and Sergio Lopez-Buedo. Characterization of the busy-hour traffic of IP

networks based on their intrinsic features. Computer Networks, 2011. 42

L. Golubchik, S. Khuller, K. Mukherjee, and Y. Yao. To send or not to send:
Reducing the cost of data transmission. In Proc. of IEEE INFOCOM, 2013. 43

Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon
Kim, Parantap Lahiri, David a. Maltz, Parveen Patel, and Sudipta Sengupta. VL2:
A Scalable and Flexible Data Center Network Albert. In Proc. of SIGCOMM, 2009.
9, 11

Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N.M. Watson, An-
drew W. Moore, Steven Hand, and Jon Crowcroft. Queues don’t matter when you
can JUMP them! In Proc. of NSDI USENIX, 2015. 3, 19, 24, 29

Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, Chen
Tian, Yongguang Zhang, and Songwu Lu. BCube: : A High Performance, Server-
centric Network Architecture for Modular Data Centers. In Proc. of SIGCOMM,
2009. 5,9, 11, 91

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. RDMA over Commodity Ethernet at Scale. In Proc. of
SIGCOMM, 2016. 13

Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. DCell: A Scalable and Fault-Tolerant Network Structure for Data Centers. In
Proc. of SIGCOMM, 2008. 9, 11, 91

Z. Guo, J. Duan, and Y. Yang. On-Line Multicast Scheduling with Bounded Con-
gestion in Fat-Tree Data Center Networks. IEEE Journal on Selected Areas in

Communications, 2014. 13

[89]

[90]

[91]

(98]

[100]

[101]

[102]

100

Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: a new TCP-friendly high-speed
TCP variant. ACM SIGOPS Operating Systems Review, 2008. 14

M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP Friendly Rate Control
(TFRC): Protocol Specification. In IETF RFC 5348, 2003. 27

Mark Handley. Delay is Not an Option: Low Latency Routing in Space. In Proc. of
HotNets, 2018. 1

Mark Handley. Keynote Video time 32:45. In Proc. of the ACM Special Interest
Group on Data Communication, SIGCOMM, 2019. 91

Guanghui He and Jennifer C. Hou. On sampling self-similar Internet traffic. Com-
puter Networks, 2006. 42

T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modification to
TCP’s Fast Recovery Algorithm. In IETF, RFC 6582, 2012. 2, 14

Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. Finishing Flows Quickly
with Preemptive Scheduling. In Proc. of SIGCOMM, 2012. 12

C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm Status. IETF, RFC
2992, 2000. 3, 13, 21

J. Hu, J. Huang, W. Lv, Y. Zhou, J. Wang, and T. He. CAPS: Coding-based
Adaptive Packet Spraying to Reduce Flow Completion Time in Data Center. In
IEEE INFOCOM, 2018. 19, 27, 29

infinibandta. Infiniband Trade Association. RoCEv2., howpublished = Online; ac-
cessed August 2019, note = https://cw.infinibandta.org/document/d1/7781,
year = 2014,. 3, 11, 13, 26

Manish Jain and Constantinos Dovrolis. End-to-end Available Bandwidth: Meas-
urement Methodology, Dynamics, and Relation with TCP Throughput. In Proc. of
SIGCOMM, New York, NY, USA, 2002. 40

By Jay, Kumar Sundararajan, Devavrat Shah, Muriel Me, Szymon Jakubczak, and
Michael Mitzenmacher. Network Coding Meets TCP : Theory and Implementation.
Proc.of the IEEFE, 2011. 26

JGroups. JGroups A Toolkit for Reliable Messaging. http://www.jgroups.org/
overview.html, 2019. [Online; accessed 19-July-2019]. 2

Changlin Jiang, Dan Li, and Mingwei Xu. LTTP: An LT-code based transport
protocol for many-to-one communication in data centers. IEEE Journal on Selected
Areas in Communications, 2014. 19, 27, 29

https://cw.infinibandta.org/document/dl/7781
http://www.jgroups.org/overview.html
http://www.jgroups.org/overview.html

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

101

Hao Jiang and Constantinos Dovrolis. Why is the Internet Traffic Bursty in Short
Time Scales? In Proc. of SIGMETRICS, 2005. 42

Glenn Judd and Morgan Stanley. Attaining the Promise and Avoiding the Pitfalls
of TCP in the Datacenter. In Proc. of USENIX, 2015. 20, 29

Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. The Nature of Data Center Traffic: Measurements & Analysis. In Proc.
of IMC, 2009. 30

M. Kheirkhah, I. Wakeman, and G. Parisis. Multipath transport and packet spraying
for efficient data delivery in data centres. In Computer Networks, 2019. 21

Morteza Kheirkhah. MMPTCP: a novel transport protocol for data centre networks.
In PhD Thesis: University of Sussex, 2016. 21

Morteza Kheirkhah, Ian Wakeman, and George Parisis. Short vs . Long Flows : A
Battle That Both Can Win. In Proc. of SIGCOMM (Poster), 2015. 21

Morteza Kheirkhah, Ian Wakeman, and George Parisis. MMPTCP: A multipath
transport protocol for data centers. In Proc. of INFOCOM, 2016. 3, 5, 19, 21

Jorma Kilpi and Ilkka Norros. Testing the Gaussian Approximation of Aggregate
Traffic. In Proc. of SIGCOMM, 2002. 42

Denis Kwiatkowski, Peter C.B. Phillips, Peter Schmidt, and Yongcheol Shin. Testing
the null hypothesis of stationarity against the alternative of a unit root: How sure

are we that economic time series have a unit root? Journal of Econometrics, 1992.
92

Dave K Kythe and Prem K Kythe. Algebraic and Stochastic Coding Theory.
Springer, 2012. 32

Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang, and Pablo Rodriguez. Inter-
datacenter Bulk Transfers with Netstitcher. In Proc. of ACM SIGCOMM, 2011. 43

D. Leith, Rn Shorten, and G. McCullagh. Experimental evaluation of Cubic-TCP.
Proc. of PFLDnet, 2008. 20

W E Leland, M S Taqqu, W Willinger, and D V Wilson. On the self-similar nature
of Ethernet traffic (extended version). In IEEE/ACM Transactions on Networking,
1994. 42

D. Li, J. Yu, J. Yu, and J. Wu. Exploring efficient and scalable multicast routing in
future data center networks. In Proc. of INFOCOM, 2011. 2, 13

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

102

Xiaozhou Li and Michael J. Freedman. Scaling IP Multicast on Datacenter Topolo-
gies. In Proc. of CONEXT, 2013. 2, 13

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson. F10:
A fault-tolerant engineered network. In Proc. of USENIX, 2013. 11

Charles Loboz. Cloud resource usage heavy tailed distributions invalidating tradi-

tional capacity planning models. Grid Comput., 2012. 44

P Loiseau, P Goncalves, G Dewaele, P Borgnat, P Abry, and P V B Primet. Investig-
ating Self-Similarity and Heavy-Tailed Distributions on a Large-Scale Experimental
Facility. IEEE/ACM Transactions on Networking, 2010. 4, 42

Jos?? Lopes and Nuno Neves. Stopping a Rapid Tornado with a Puff. Proc. of
IEEE Symposium on Security and Privacy, 2014. 32

Y. Lu, G. Chen, L. Luo, K. Tan, Y. Xiong, X. Wang, and E. Chen. One more queue
is enough: Minimizing flow completion time with explicit priority notification. In
Proc. of INFOCOM, 2017. 3

M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer. Raptor Forward Error
Correction Scheme for Object Delivery. IETF, RFC 5053, 2007. 32, 36

Michael George Luby, Roberto Padovani, Thomas J. Richardson, Lorenz Minder,
and Pooja Aggarwal. Liquid Cloud Storage. CoRR, 2017. 33

D J C MacKay. Fountain codes. IEEFE Proceedings - Communications, 2005. ix, 32,
35

David Malone, Ken Duffy, and Christopher King. Some Remarks on Ld Plots for
Heavy-tailed Traffic. In SIGCOMM, 2007. 4, 42

M. Mandjes and R. van de Meent. Resource dimensioning through buffer sampling.
IEEE/ACM Transactions on Networking, 17(5), 2009. 4, 41

George Marsaglia, Wai Wan Tsang, and Jingbo Wang. Evaluating Kolmogorov’s
Distribution. Journal of Statistical Software, 2003. 45

Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia distributed
monitoring system: design, implementation, and experience. In FElsevier Parallel
Computing, 2014. 2

MAWI. Mawi Archive. Online; accessed August 2019, 2018. http://mawi.wide.
ad.jp/. 41

M.Balakrishnan, T.Marian, K.Birman, H.Weatherspoon, and L.Ganesh. Maelstrom:
Transparent error correction for communication between data centers. IEEE/ACM

Transactions on Networking, 2011. 27

http://mawi.wide.ad.jp/
http://mawi.wide.ad.jp/

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

103

M. McBride and O. Komolafe. Multicast in the Data Center Overview. In Huawe?
Arista Networks draft IETF, 2019. 2, 13

P E McKenney. Stochastic fairness queueing. In Proc. of INFOCOM, 1990. 17

R V De Meent, M Mandjes, and A Pras. Gaussian traffic everywhere? In Proc. of
IEEE ICC, 2006. 4, 6, 41, 43

Mellanox. Mellanox NICs. Online; accessed August, 2019. http://www.mellanox.
com/page/ethernet_cards%/. 12

Memcached. Memcached. Online; accessed August, 2019. https://memcached.
org/. 18

Michael Luby. LT codes. Foundations of Computer Science, 2002. Proceedings. The
43rd Annual IEEE Symposium on, 2002. 27, 32, 34

Microsoft. Microsoft Azure. https://azure.microsoft.com/en-us/blog/
cloud-service-fundamentals-telemetry-reporting/. [Online; accessed 19-
July-2019]. 1, 2

Ming Li, A. Lukyanenko, and Yong Cui. Network coding based multipath tcp. In
2012 Proceedings IEEE INFOCOM Workshops, 2012. 27

Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. Homa:
A Receiver-driven Low-latency Transport Protocol Using Network Priorities. In
Proc. of SIGCOMM, 2018. 3, 5, 19, 22, 24, 29, 40

A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Igbal, and
B. Khan. Minimizing flow completion times in data centers. In Proc. of INFOCOM,
2013. 3

Rizwan Mushtaq. Augmented Dickey Fuller Test. In SSRN, 2011. 92

Jayakrishnan Nair, Adam Wierman, and Bert Zwart. The Fundamentals of Heavy-
tails: Properties, Emergence, and Identification. In Proc. of SIGMETRICS, 2013.
4, 42

NetFPGA. NetFPGA. Online; accessed August, 2019. https://netfpga.org. 92

Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,
Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, Amin Vahdat, and
Radhika Niranjan Mysore. PortLand: a scalable fault-tolerant layer 2 data center
network fabric. In Proc. of SIGCOMM, 2009. 9, 11, 24

M. Noormohammadpour and C. S. Raghavendra. Datacenter traffic control: Under-
standing techniques and tradeoffs. IEEE Communications Surveys Tutorials, 2018.
12, 30

http://www.mellanox.com/page/ethernet_cards%/
http://www.mellanox.com/page/ethernet_cards%/
https://memcached.org/
https://memcached.org/
https://azure.microsoft.com/en-us/blog/cloud-service-fundamentals-telemetry-reporting/
https://azure.microsoft.com/en-us/blog/cloud-service-fundamentals-telemetry-reporting/
https://netfpga.org

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

157]

[158]

[159]

[160]

104

Seo Jin Park and John Ousterhout. Exploiting Commutativity For Practical Fast
Replication. In Proc. of NSDI, USENIX, 2019. 13

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devarat Shah, and Hans Fu-
gal. Fastpass: A Centralized ”Zero-Queue” Datacenter Network. In Proc. of SIG-
COMM, 2014. 22

PFC. IEEE DCB. 802.1Qbb - Priority-based Flow Control. Online; accessed August,
2019. http://www.ieee802.0rg/1/pages/802.1bb.html. 13, 26

Telecommunications Policy. Speed isn’t everything: A multi-criteria analysis of the

broadband consumer experience in the UK. Telecommunications Policy, 2018. 1

Diana Andreea Popescu. Latency-driven performance in data centres. In PhD thesis,
University of Cambridge, 2019. 18

Pawan Prakash, Advait Dixit, Y Charlie Hu, and Ramana Kompella. The TCP
Outcast Problem : Exposing Unfairness in Data Center Networks. In Proc. of
USENIX, 2012. ix, 3, 5, 14, 16

A. Pras, L. Nieuwenhuis, R. van de Meent, and M. Mandjes. Dimensioning network
links: a new look at equivalent bandwidth. IEEE Network, 2009. 42, 43

P. Pruthi and A. Erramilli. Heavy-tailed on/off source behavior and self-similar
traffic. In Proc. of ICC, 1995. 4

QCN. IEEE. 802.11Qau. Congestion notification. Online; accessed August, 2019.
https://1.ieee802.0rg/dcb/802-1qau/. 26

QUALCOMM. RaptorQ Technical Overview. QUALCOMM, 2010. ix, 37

Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon
Wischik, and Mark Handley. Data Center Networking with Multipath TCP. In
Proc. of SIGCOMM, 2010. 3, 5, 13, 17, 27, 92

Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon
Wischik, and Mark Handley. Data Center Networking with Multipath TCP. In
Proc. of SIGCOMM, 2010. 10, 21

D Raiciu, C., Handley, M., Wischik. Coupled congestion control for multipath
transport protocols. Internet Engineering Task Force (IETF), RFC 6356, 2011. 20,
21

Vamseedhar Reddyvari Raja, Srinivas Shakkottai, Amogh Dhamdhere, and kc claffy.
Fair, Flexible and Feasible ISP Billing. Proc. of SIGMETRICS, 2014. 4

http://www.ieee802.org/1/pages/802.1bb.html
https://1.ieee802.org/dcb/802-1qau/

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

105

A. Rajaei, D. Chalmers, I. Wakeman, and G. Parisis. GSAF: Efficient and flexible
geocasting for opportunistic networks. In Proc. of WoWMoM, 2016. 1

K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. IETF, RFC 3168. 20

Vaidyanathan Ramaswami, Kaustubh Jain, Rittwik Jana, and Vaneet Aggarwal.
Modeling Heavy Tails in Traffic Sources for Network Performance Evaluation. In
G. Sai Sundara Krishnan, R. Anitha, R. S. Lekshmi, M. Senthil Kumar, Anthony
Bonato, and Manuel Grana, editors, Computational Intelligence, Cyber Security and
Computational Models, 2014. 42

R.Mittal, V.Lam, N.Dukkipati, E.Blem, H.Wassel, M.Ghobadi, A.Vahdat, Y.Wang,
D.Wetherall, and D.Zats. TIMELY: RTT-based Congestion Control for the Data-
center. In Proc. of SIGCOMM, 2015. 3, 19, 26, 29

V. Roca, C. Neumann, and D. Furodet. Low Density Parity Check (LDPC) Staircase
and Triangle Forward Error Correction (FEC) Schemes Status. IETF, RFC 5170,
2008. 36

Bilel Ben Romdhanne. Large-scale network simulation over heterogeneous comput-

ing architecture. In Telecom ParisTech, 2013. 40

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
Inside the Social Network’s (Datacenter) Network. In Proc. of ACM Conference on
Special Interest Group on Data Communication, 2015. 30, 31

Z Sahinoglu and S Tekinay. On multimedia networks: self-similar traffic and network

performance. IEEE Communications Magazine, 1999. 42

A. Scharf, M., Ford. Multipath TCP (MPTCP) application interface considerations.
IETF, RFC 6897, 2013. 20

sFlow. OPEN CONFIG. Streaming Telemetry. Online; accessed August. http:
//blog.sflow.com/2016/06/streaming-telemetry.html. 2

sFlow. Data Plane Development Kit (DPDK). Online; accessed August, 2019.
https://www.dpdk.org. 11, 12, 92

Muhammad Shahbaz, Lalith Suresh, Jennifer Rexford, Nick Feamster, Ori Rotten-
streich, and Mukesh Hira. Elmo: Source Routed Multicast for Public Clouds. In
Proc. of SIGCOMM, 2019. 2, 13, 14

A. Shokrollahi and M. Luby. Raptor codes. Raptor Codes, Foundations and Trends
in Communications and Information Theory, Now Publisher, 2011. ix, 5, 32, 33, 34,
36, 38

http://blog.sflow.com/2016/06/streaming-telemetry.html
http://blog.sflow.com/2016/06/streaming-telemetry.html
https://www.dpdk.org

[174]

[175]

176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

106

Amin Shokrollahi. Raptor codes. IEEE Transactions on Information Theory, 2006.
32, 36

Alexander Shpiner, Eitan Zahavi, Omar Dahley, Aviv Barnea, Rotem Damsker,
Gennady Yekelis, Michael Zus, Eitan Kuta, and Dean Baram. RoCE Rocks Without
PFC: Detailed Evaluation. In Proc. of the Workshop on Kernel-Bypass Networks,
2017. 13

Arjun et al. Singh. Jupiter Rising: A Decade of Clos Topologies and Centralized
Control in Google’s Datacenter Network. In Proc. of SIGCOMM, 2015. ix, 1, 11, 12

Ankit Singla, P. Brighten Godfrey, and Alexandra Kolla. High Throughput Data
Center Topology Design. In Proc. of NSDI, USENIX, 2014. 11

Ankit Singla, Chi-Yao Hong, Lucian Popa, and P.Brighten Godfrey. Jellyfish: Net-
working data centers randomly. In Proc. of USENIX, 2012. 5, 11

M. Sridharan, K. Tan, D. Bansal, and D. Thaler. Compound TCP: A New TCP
Congestion Control for High-Speed and Long Distance Networks. Network Working
Group, 2008. 14

Rade Stanojevic, Nikolaos Laoutaris, and Pablo Rodriguez. On Economic Heavy
Hitters: Shapley Value Analysis of 95Th-percentile Pricing. In Proc. of ACM IMC,
2010. 4, 6, 43

IEEE Std. IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems - Redline. IEEE Std 1588-2008 (Revision
of IEEE Std 1588-2002) - Redline, 2008. 18

J. K. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzenmacher, and
J. Barros. Network Coding Meets TCP: Theory and Implementation. Proc. of the
IEEE, 2011. 26, 27

Rohit P. Tahiliani, Mohit P. Tahiliani, and K. Chandra Sekaran. TCP Variants for
Data Center Networks: A Comparative Study. International Symposium on Cloud

and Services Computing, 2012. 28

Omesh Tickoo, Vijaynarayanan Subramanian, Shivkumar Kalyanaraman, and K. K.
Ramakrishnan. Lt-tcp: End-to-end framework to improve tcp performance over
networks with lossy channels. In Hermann de Meer and Nina Bhatti, editors, Quality
of Service — IWQoS 2005. Springer Berlin Heidelberg, 2005. 27

Francesco Tonolini and Fadel Adib. Networking Across Boundaries: Enabling Wire-
less Communication Through the Water-air Interface. In Proc. of SIGCOMM, 2018.
1

[186]

[187]

[188]

[189)]

[190]

[191]

[192]

193]

[194]

[195]

[196]

197]

[198]

107

Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. Deadline-aware datacen-

ter tcp (D2TCP). In Proc. of SIGCOMM, 2012. 19, 28, 29

Hans van den Berg, Michel Mandjes, Remco van de Meent, Aiko Pras, Frank Roijers,
and Pieter Venemans. QoS-aware Bandwidth Provisioning for IP Network Links.
Computer Networks, 2006. 43

A. Varga. OMNET++ Discrete Event Simulation. In System User Manual, 2006.
40

Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G Andersen,
Gregory R Ganger, Garth A Gibson, and Brian Mueller. Safe and Effective Fine-
grained TCP Retransmissions for Datacenter Communication. In Proc. of SIG-
COMM, 2009. 19, 29

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. Large-scale cluster management at Google with Borg. In

Proc. of the European Conference on Computer Systems (EuroSys), 2015. 18

Ashish Vulimiri, Oliver Michel, P. Brighten Godfrey, and Scott Shenker. More is
Less: Reducing Latency via Redundancy. In Proc. of HotNets, 2012. 27

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. Ceph: A scalable, high-performance distributed file system. In Proc. of
USENIX, 2006. 2

Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowstron. Better
Never than Late: Meeting Deadlines in Datacenter Networks. In Proc. of SIG-
COMM, 2011. 28

Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design,
Implementation and Evaluation of Congestion Control for Multipath TCP. In Proc.
of USENIX, 2011. 21

Haitao Wu, Zhengian Feng, Chuanxiong Guo, and Yongguang Zhang. ICTCP: Incast
congestion control for TCP in data-center networks. In Proc. of CoNEXT, 2010. 19,
27, 28, 29

H. Xu and B. Li. Cost efficient datacenter selection for cloud services. In Proc. of
IEEE ICCC, 2012. 43

H. Xu and B. Li. Joint request mapping and response routing for geo-distributed

cloud services. In Proc. of IEEE INFOCOM, 2013. 43

H. Xu and B. Li. RepFlow: Minimizing flow completion times with replicated flows
in data centers. In Proc. of INFOCOM, 2014. 3, 27

[199]

200]

[201]

[202]

203]

108

Xiaowei Yang. Designing traffic profiles for bursty Internet traffic. In Proc. of IEEFE
GLOBECOM, 2002. 6, 42

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Com-
puting. In Proc. of NSDI, USENIX, 2012. 2

David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy Katz.
DeTail: Reducing the Flow Completion Time Tail in Datacenter Networks. In Proc.
of SIGCOMM, 2012. 17, 24

C. Jiang Zheng, D. Li, M. Xu, and K. A Coding-based Approach to Mitigate
TCP Incast in Data Center Networks. In International Conference on Distributed

Computing Systems Workshops, 2012. 3, 5

Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn, Ye-
honatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA Deployments. In Proc. of SIG-
COMM, 2015. 3, 13, 19, 26, 29

	PhD Coversheet
	PhD Coversheet

	Alasmar, Mohammed
	Declaration
	Acknowledgements
	Abstract
	Context Statement
	Contents
	List of Figures
	1 Introduction
	1.1 Data Transport Protocols for Data Centres
	1.2 Internet Traffic Characterisation
	1.3 Research Contribution
	1.4 Thesis Structure
	1.5 Related publications

	2 Background
	2.1 Data Centre Network Topologies
	2.1.1 Switch-centric and server-centric topologies
	2.1.2 Google, Facebook and Microsoft DCNs
	2.1.3 Flexibility and performance optimisation in modern data centres

	2.2 Load Balancing and Multicasting in Data Centres
	2.3 TCP Limitations in Data Centre Networks
	2.3.1 TCP Incast
	2.3.2 TCP Outcast
	2.3.3 Buffer pressure and queue build-up
	2.3.4 Single-path TCP (per-flow connection)
	2.3.5 Modern workloads/applications in DCNs

	2.4 Existing Data Transport Protocols and Flow Scheduling Approaches for DCNs
	2.4.1 Data Centre TCP (DCTCP)
	2.4.2 Multipath TCP (MPTCP)
	2.4.3 pFABRIC: optimal flow completion times
	2.4.4 pHost
	2.4.5 PIAS: Practical Information-Agnostic flow Scheduling
	2.4.6 Hedera: dynamic flow scheduling in data centres
	2.4.7 Homa: a receiver-driven low-latency transport protocol
	2.4.8 QJUMP: Queues don't matter when you can JUMP them!
	2.4.9 NDP: Novel Data-centre transport Protocol
	2.4.10 Congestion control mechanisms for RDMA
	2.4.11 Redundant transmission and coding-based transport protocols
	2.4.12 ICTCP: Incast Congestion Control TCP
	2.4.13 D2TCP: Deadline-aware Datacenter TCP
	2.4.14 TCP with Fine Grained RTO (FG-RTO)

	2.5 Limitations of Existing Approaches
	2.6 Data centre network traffic characteristics
	2.7 Fountain coding
	2.7.1 Luby Transform (LT) Codes
	2.7.2 Fountain codes: Raptor Codes (R10 and RaptorQ)

	2.8 Network Simulator
	2.9 Internet Traffic Characterisation and Modelling
	2.9.1 Traffic fluctuations
	2.9.2 Representing traffic volumes using the Gaussian model
	2.9.3 The failure of the Gaussian model in modelling traffic volumes
	2.9.4 Heavy-tailed traffic
	2.9.5 Link dimensioning: bandwidth over-provisioning and provisioning
	2.9.6 Network traffic billing: the 95th percentile
	2.9.7 Modern statistical framework for fitting Internet Traffic
	2.9.8 The studied traces

	3 SCDP: Systematic Rateless Coding for Efficient Data Transport in Data Centres
	4 Evaluating Modern Data Centre Transport Protocols in OMNeT++/INET
	5 On the Distribution of Traffic Volumes in the Internet and its Implications
	6 Conclusion and Future Directions
	6.1 Contributions and Conclusions
	6.2 Future research

	Bibliography

