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Summary

Science relies on our practical ability to extract information from reality, since pro-
cessing this information is essential for developing theories that explain our world.
This thesis is precisely the study of how to extract and process information using
quantum systems when a constrained amount of resources means that the available
data is limited. The natural framework for this task is quantum metrology, a set
of tools to model and design quantum measurement strategies. Equipped with this
theory, we advocate a Bayesian approach as the appropriate formalism to study sys-
tems with a finite amount of resources, which is a non-asymptotic problem, and we
propose a methodology for non-asymptotic quantum metrology. To start with, we
show the consistency of taking those solutions that are optimal in the asymptotic
regime of many trials as a guide to calculate a generalised measure of uncertainty in
the Bayesian framework. This provides an approximate but useful way of studying
the non-asymptotic regime whenever a direct Bayesian optimisation is intractable,
and it avoids non-physical results that can arise when only the asymptotic theory is
employed. Secondly, we construct a new non-asymptotic Bayesian bound without re-
lying on the previous approximation by first selecting the optimal quantum strategy
for a single shot, and then simulating a sequence of repetitions of this scheme, which
is suitable for experiments where we do not wish or cannot correlate different trials.
These methods are applied to a Mach-Zehnder interferometer, which is a single-
parameter problem, and to quantum sensing networks where the nodes are either
qubits or optical modes, which are multi-parameter protocols. Our results provide a
detailed characterisation of how the interplay between prior information, entangle-
ment and a limited amount of data affects the performance of quantum metrology
protocols, which has important implications for the analysis of theory and experi-
ments in this field.
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Chapter 1

Introduction

The primary empirical idea that underlies science in general and physics in particular
is the existence of a part of the world that is independent of the mental activity of
human beings. When this external world affects us and is affected by our actions
in any way that we can perceive, we say that an interaction has taken place, and
that this happens is precisely what gives us the opportunity of enquiring about the
fundamental nature of reality.

To understand how this is possible, first we note that, to some extent, we have
the ability to divide our perception of the external world as if it were a collection
of different entities that can be categorised. In addition, by noticing that human
beings are just another part of the world, we can extend the idea of interaction to
apply between any two or more of these entities. Therefore, we can always choose
a small set of entities that is delimited in space and time, which we call a system,
and we can generate a chain of local interactions between them in order to study
how the system behaves in a controlled way. This is what an experiment does.

For this process to be successful, it is crucial that we can recognise how the system
changes under the influence of our actions, and the appearance of these changes is
what we call events. A careful exposition of the central role that events play in
physics can be found, for instance, in the treatments of Englert [1] and Haag [2, 3].
Crucially, the chain of actions that ends in the creation of an event does not need
to involve a human observer directly manipulating the system of interest at every
stage. For example, we can consider an interaction between the system and some
artificial object that only interacts with us at a later stage. As a consequence, while
it is true that which events we observe and how we do it depend on the actions that
we choose to implement in the laboratory, it may be considered that the physical
nature of a given event does not rely on the observer, and in that sense we can say
that events give rise to objective facts. An example that illustrates well this point is
that of atomic spectra, which are independent of who is performing the experiments
that create the events that determine them.

The study of the events that we can observe allows us to speak about natural
phenomena in terms of relationships between physical properties, and this provides
us with a basis to construct the theories that help us to explain the world around
us. Although as a first approximation we can describe such properties using verbal
statements, a greater precision (and often clarity) is achieved by capturing their
essence with mathematical objects and relationships. Of particular importance are
quantitative representations, which associate numbers with properties. One of the
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two fundamental procedures to accomplish this task is to measure.
Measurements can be regarded as collections of interactions between the system

and some device, such that the properties that emerge from the events created in
this way can be associated with magnitudes by comparison with respect to stand-
ard references or units [4]. Depending on the experiment, properties are sometimes
quantified using integers or rational numbers, and in general they can be character-
ised by a set of real numbers, each of them lying within some interval whose width is
related to the experimental conditions of the measurement. The use of real numbers
is particularly useful in this context, since the fact that they form a complete ordered
field1 [5] provides us with a powerful tool for the practical necessity of comparing
any two given magnitudes that may vary in a smooth way. The part of science that
studies the design and implementation of measurements is metrology [4].

Unfortunately, not all physical properties can be associated with a measurement
procedure in such direct fashion. In fact, most of them require more complicated
schemes. This is the case, for example, when we need to assign a value to a parameter
that represents the difference of optical phases, which is one of the central scenarios
that we will study in this thesis. In that case, our measurement is based on the
detection of light [6–8], and a difference of phases can only be quantified by means
of a theoretical relationship that connects such parameter with the outcomes of the
measurement. We then say that the parameter has to be estimated.

The estimation of physical parameters has a wide range of applications. These
include the important case of generating an educated guess for the value of those
properties without a direct measurement scheme, or for which a measurement scheme
is difficult to implement, and also the task of connecting parameters of a theoretical
nature with experimental procedures, which is crucial to assigning values to the
constants that characterise a theory. We see then that an estimation procedure is
the second fundamental way of assigning numerical values to physical properties,
and the formal framework that studies how to construct useful estimation schemes
is estimation theory [6, 9, 10]. Note, however, that while estimation theory opens the
door to quantify a larger set of properties, it still relies on the direct measurement
of more primitive quantities that are to be related to the property of interest.

When we succeed in assigning numerical values to some property, we say that we
have extracted information from the natural world. Sometimes this assignment is
unique, but in most cases we can only find a set of possible values that are compatible
with the property that we are studying, and a collection of weights indicating how
likely each value is on the basis of what we know about the situation at hand. When
this happens, the information that we gain is partial in the sense that it does not lead
to a unique answer. This ambiguity is captured by the notion of uncertainty, and
the partial information that is available is modelled via the concept of probability
[9]. Importantly, note that partial information as defined here does not necessarily
imply a notion of incompleteness, since partial information may be all that a given
system is able to offer for the property that we are trying to associate with it.

The previous discussion highlights the crucial importance of our ability to extract
information in the generation, development and testing of our scientific knowledge,
and this motivates searching for new ways of enhancing both our measurement and
estimation techniques. This is, in a general sense, our key motivation for addressing

1Here field refers to the mathematical concept (see, e.g., [5]), and not to the physical object
that will appear in chapter 2.
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the research question that we develop in the following paragraphs.
One of the most powerful known ways of improving how we measure and make

estimates is to exploit the fundamental role that quantum mechanics - which is
one of our fundamental theories about the universe - plays in the technological re-
volution known as the second quantum revolution [11], whose aim is to exploit the
physical principles of quantum theory for the development of new technologies in the
areas of sensing, computation and communication [12–15]. These include important
applications such as gravitational wave detection [16, 17]; medical and biological
imaging [18–20]; measurements for other fragile systems such as atoms, molecules
or spin ensembles [21–25]; magnetic sensing [26]; quantum radar [27–29] and lidar
[29–31]; navigation [32]; and quantum networks for distributed sensing [33–38] and
for satellite-to-ground cryptography [39], among others. In general, quantum tech-
nologies can be classified depending on whether information is extracted, processed,
transferred or stored [40].

Despite this broad scope, the common denominator underlying all quantum tech-
nologies is precisely the possibility of performing high-precision measurements, since
as Dowling and Milburn argued in [11], that is a crucial requirement for the suc-
cess of any technology. This gives rise to the application of quantum mechanics to
the enhancement of our measurement techniques, and this process initiates a very
useful feedback loop whose logic was particularly well captured by the reasoning
advanced by Dunningham in [41]: measurements provide the basic information to
create theories, and those theories allow us to find better measurement techniques
that, in turn, might give rise to a whole new theoretical framework. The result of
this is a theory to design and implement measurements by exploiting the quantum
properties of light and matter. In other words, we have a quantum metrology.

From a formal perspective, quantum metrology can be seen as a collection of
techniques that rely on quantum mechanics in order to extract information about
unknown physical quantities from the outcomes of experiments [7, 41–43]. Expressed
in this way, its final aim is to find the strategy that can extract information with
the greatest possible precision for a given amount of physical resources, and, as a
consequence, it sets an optimisation problem. To solve it, first we need to define
some mathematical quantity that acts as a figure of merit and informs us about the
uncertainty of the estimation process, and then we can minimise such quantity with
respect to the features that we can typically control, which include the details of
the preparation of the experiment, the measurement scheme itself and the statistical
functions employed in the analysis of the experimental data to generate an estimate.

In practice the quality of the information extracted in this way is restricted by
factors such as the number of probes, measurements or repetitions of the experiment,
or by the energy that the experimental arrangement can employ. The latter con-
straint is particularly relevant for cases where we are interested in studying fragile
systems [18–23, 25]. On the other hand, the number of times that we can interact
with the system under study by performing several measurements is always finite
and potentially small. This is a possibility that could arise, for instance, in tracking
scenarios where a scheme for remote sensing can only have access to a few observa-
tions before the object of interest is out of reach [27–31].

It is also important to appreciate that the measurement data is not the only
source of information that we can use to make estimates. To formulate an estimation
problem we normally need to further specify certain details such as the instructions
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that we must follow in order to implement some metrology scheme in the laboratory,
or any other piece of information that we may have about the unknown parameters
whose values we wish to learn, the origin of such information being different from
the measurement data. An example of the latter is the range of possible values that
such parameters could take. This kind of information is said to be known a priori,
in the sense that it precedes the initialisation of the experiment.

Given this state of affairs, it is crucial to observe that quantum metrology pro-
tocols are typically designed around the assumption that we have an abundance of
measurement data (see, e.g., [7, 44–48]), and this clearly excludes real-world scen-
arios with very limited data such as those mentioned above. Moreover, it is frequent
to find studies where it is assumed that we are working either in the high prior in-
formation regime [7, 43], or in the presence of complete ignorance [7, 49–52], which
is the other extreme, while we may expect a realistic amount of prior knowledge to
normally be moderate. In addition, these assumptions are also unsatisfactory from a
theoretical point of view. Indeed, we will see that the mathematical consequence of
assuming a large number of data is that the framework derived from such premise is
generally valid only in an asymptotic sense, and that imposing a very large amount
of prior knowledge effectively restricts the validity of our estimates to a local region
of the parameter space. On the contrary, an approach of a more fundamental nature
should ideally not rely on an asymptotic approximation to be relevant and useful,
and it should allow for the possibility of accessing any regime of prior knowledge.

Therefore, there is an unmet need of developing methods to study and design
metrology protocols that operate in this largely unexplored and more realistic re-
gime. This directly leads us to our thesis, which we now enunciate as follows:

The number of times that we can access a physical system to extract informa-
tion via quantum metrology and estimation theory is always finite, and possibly
small, and a realistic amount of prior information will typically be moderate.
As a consequence, theoretical consistency demands a quantum metrology meth-
odology that can depart from both asymptotic approximations and restricted
parameter locations, while practical convenience requires that such methodo-
logy is also sufficiently flexible and easy to use in applications where the amount
of data is limited. We submit that this methodology can and should be built on
the Bayesian framework of probability theory, and that its construction can be
carried out and adapted for both single and multi-parameter schemes, includ-
ing important models such as the Mach-Zehnder interferometer and quantum
sensing networks. Finally, we advance that this methodology generates a wealth
of new results characterising an interesting interplay between different amounts
of data, the prior information and quantum correlations. In other words, we
propose, construct, explore and exploit a non-asymptotic quantum metrology.

The first step to accomplish our goals will be the introduction of the fundamental
concepts that we need to develop our ideas, a task that will be carried out in chapter
2. We will start by arguing that a version of probability theory where the focus lies
on the information content of our probability models is the most suitable choice for
studying the regime of limited data, and we will review the basic elements of this
approach. Once we have the means to model information in terms of probabilities,
we will proceed to study how such information can be encoded in quantum systems,
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and we will revisit the formalism of quantum mechanics to verify that using the
version of the Bayesian framework that we consider in this thesis is compatible with
the usual notions in quantum theory. We then complete our conceptual framework
presenting the characterisation of a generic Mach-Zehnder interferometer and the
quantum sensing network model introduced by Proctor et al. [33], where the latter
is the type of multi-parameter scheme that we will examine.

At this point we will have all the ingredients to formulate the problem of this
thesis in a formal way, which will happen in chapter 3. We will focus our attention
on experiments that are repeated a certain number of times, and upon introducing
a notion of resources that is relevant for our purposes, we will define the regime of
limited data in terms of a low number of trials. Then we will carry out a detailed
analysis of different measures of uncertainty that we could consider as the figure of
merit to be optimised, and a measure of uncertainty that is appropriate for designing
inference schemes from theoretical considerations will be selected.

Equipped with this uncertainty, we will review the fundamental equations for the
optimal quantum strategy in a Bayesian context [6, 53–55], and also a set of bounds
(including the widely used Cramér-Rao bound [7, 43]) that are often employed and
that can be useful due to the general difficulties to solve the previous equations,
and we will highlight the assumptions that go into the construction of these tools.
Furthermore, we will revisit some known results in the single-shot regime, and we
will demonstrate that a new way of understanding the latter is possible by explicitly
separating the quantum and classical steps during the process of optimising the
single-shot uncertainty. This will be one of our first novel insights.

The analysis of the advantages and potential drawbacks of different tools will
prepare the ground for the construction of our non-asymptotic methodology, which
will emerge as a useful method for quantum metrology that is more general than
simply using bounds, and while it is not as general as solving the fundamental
equations for the optimal strategy, our methods will be associated with calculations
that are more tractable than those in the latter approach.

Two key approaches will constitute the basis of this methodology. We will always
select the estimator that is optimal for any number of repetitions, such that this
part of the problem is always exact in all our calculations, and we propose two
different methods to select the quantum strategy, i.e., how the system is to be
prepared and which measurement scheme should be selected. On the one hand,
we propose to employ the known asymptotic theory as a guide, and to choose a
quantum strategy that is guaranteed to be optimal as the number of repetitions
grows, even when the analysis of the scheme is done with an uncertainty that also
works in the non-asymptotic regime. That is, if we were not sure a priori about
how many times the experiment is to be repeated, a weak condition that we could
impose on the optimisation would be that the performance of the scheme should
not break in the long run. While this does not guarantee that the solutions arising
from this method will be optimal for a low number of trials, we will see that this
is a useful approximation that will allow us to extract some information about the
non-asymptotic regime of our metrology schemes.

As for the second method, we will go a step further and construct a fully Bayesian
approach based on selecting the quantum strategy that is optimal for a single shot, so
that this scheme is then repeated as many times as the application at hand demands
or allows for. In this way only the resources that are needed will be optimised,



6

and the necessity of relying on tools that assume a large amount of data will be
completely eliminated from our calculations. Hence, chapter 3 will lay a bridge
between the current state of the art and the novel ideas that our work introduces.

The next four chapters will be dedicated to developing the theory associated with
our non-asymptotic methodology by dividing this process in four different steps, one
per chapter, and we will demonstrate these ideas explicitly with specific metrology
schemes. The first step is to construct the hybrid method (exact estimation plus
asymptotically optimal quantum strategy) for single-parameter schemes, a task that
will be carried out in chapter 4. Then we will demonstrate its usefulness in the
context of a Mach-Zehnder interferometer that has been prepared using current
techniques in optical interferometry, and we will use our method to address two
questions: when does the Cramér-Rao bound stop being valid, since in general it
is only meaningful in an asymptotic sense, and how the validity of predictions of
such tool change when the experiment is operating in the non-asymptotic regime.
Our results will verify that the number of repetitions and the minimum amount of
prior information needed to recover the asymptotic behaviour crucially depend on
the state of the system. In addition, we will propose a simple analytical relation
to identify and prevent the appearance of states for which the number of trials
required to match the asymptotic uncertainty grows unbounded, while, at the same
time, almost no information is gained for a low number of repetitions.

Our study of the Mach-Zehnder interferometer will continue in chapter 5, but
this time we will implement our second method, that is, the optimisation of the un-
certainty in a shot-by-shot fashion. We will see that this technique generates bounds
on the estimation error that can be tight both for a single shot (by construction)
and for a large number of them, since the predictions of the Cramér-Rao bound
are sometimes recovered as a limiting case within our approach. This partially
fundamental character will further allow us to provide the first rigorous character-
isation of the interplay between the amount of data, the prior information and the
photon correlations associated with the interferometer, fulfilling in this way one of
the main claims of our thesis for single-parameter protocols. Remarkably, we have
found evidence of the potential existence of a trade-off between the asymptotic and
non-asymptotic performances that is associated with the photon correlations within
each optical mode. More concretely, while a large amount of the latter is beneficial
asymptotically, sometimes it appears to be detrimental for a low amount of data.
Moreover, our bounds provide us with a new benchmark to study whether certain
practical measurements are actually optimal in the regime of limited data, and we
have shown that the bounds that emerge from our technique are superior to other
alternatives in the literature such as the quantum Ziv-Zakai and Weiss-Weinstein
bounds [46, 56] whenever we restrict our attention to identical and independent ex-
periments. As a final demonstration of the power of our single-parameter approach
we have combined our methods with a genetic algorithm for state engineering that
has been developed by our colleagues at the University of Nottingham, and we have
shown that our Bayesian methodology can predict schemes that not only supersede
standard benchmarks, but that have the potential to be experimentally feasible.

The transition from single to multi-parameter estimation problems is made in
chapter 6. Here we return to the hybrid method where the quantum strategy
is asymptotically selected and we extend it to cover cases with several paramet-
ers. Once this step has been achieved, we proceed to apply it to a collection of
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sensors that are spatially distributed, which can be modelled with the framework
for quantum sensing networks developed by Proctor et al. [33, 34]. The presence of
several parameters opens the door to a vast set of new possibilities to enhance our
estimation protocols, and for that reason it is useful to introduce some definitions
that help us to identify in a transparent way what our final goal is. To that end we
define, on the one hand, the notion of natural or primary properties of the network,
and, on the other hand, the concept of derived or secondary properties, where the
former refers to the original parameters of the system and the latter to functions
of them. Our task in this chapter is then to determine which role the correlations
between sensors play in the estimation of global properties, where these are under-
stood as linear functions that depend non-trivially on several parameters that were
originally encoded in a local way. Assuming a network where each node is a qubit,
we first solve this problem asymptotically to extract the solutions that will serve
us as a guide at a latter point. In particular, we will uncover the link between the
geometry of the vectors associated with the components of the linear functions and
the amount of inter-sensor correlations that are needed for achieving the asymptot-
ically optimal error, and we will show that how much entanglement is required for
a given geometry crucially varies with the number of repetitions of the experiment,
which is a result fully compatible with our findings in the non-asymptotic study of
the Mach-Zehnder interferometer.

The final step of our methodology, which is implemented in chapter 7, will focus
on generalising the shot-by-shot method to the multi-parameter regime. To achieve
this goal we will first derive a new multi-parameter single-shot quantum bound, and
we will show under which circumstances it can be saturated. This is perhaps one of
the most important results that we report in this thesis. We will calculate this bound
both for the qubit network studied in chapter 6 and for a discrete model for phase
imaging, and we will show that entanglement is not needed for the estimation of the
original parameters of the network when the experiment operates in the regime of
moderate prior knowledge and limited data. The crucial importance of this finding
stems from the fact that an analogous result had only been established in a clear
way in terms of the asymptotic theory [33, 34, 57].

In chapter 8 we will identify some of the limitations of our current approach
and will discuss some ideas to overcome them, as well as potential ideas for the
future of non-asymptotic quantum metrology, while chapter 9 will be dedicated
to the analysis of the unified perspective that will emerge from the findings and
conclusions presented in previous chapters.

Finally, we would like to draw attention to the fact that in appendices B and
C we provide a comprehensive numerical toolbox for optical interferometry and
two-parameter estimation problems that is based on MATLAB and Mathematica
algorithms. Hence, the interested readers will have the opportunity of either repro-
ducing our results or adapting our algorithms to their specific problems. The relative
simplicity and efficiency of these algorithms might help to overcome the extended
perception that Bayesian techniques, while often conceptually clearer, are somehow
less accessible due to the numerical character of the associated calculations. For the
details of some of our analytical calculations and extended discussions about our
methods, see appendix A.
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Chapter 2

Conceptual framework

As a first step we review the tools and concepts needed for our discussion, which
will rest on three fundamental pillars: how we handle information, how quantum
systems are described and which type of schemes are useful for quantum metrology.

2.1 Fundamentals I: probability theory
Our main aim is to study how quantum metrology protocols are to be designed when
the finite character of the number of observations is explicitly taken into account,
with a particular emphasis on the regime of limited data. In this context it is natural
to employ a formulation of probability theory where the central focus lies on the
information content of our probabilities, and this is precisely the path that we will
follow. The formal elements of this approach, which can be seen as a part of the
Bayesian paradigm [9], are briefly reviewed in the following sections1.

2.1.1 Calculus of probabilities
Following the expositions given by Ballentine [63], Van Horn [64] and Jaynes [9], we
can capture the rules of probability theory using the following axioms:

1. 0 ⩽ P (A|B) ⩽ 1,

2. P (A|B) = 1 when it can be concluded that A is true on the basis of B,

3. P (¬A|B) = 1 − P (A|B), and

4. P (A ∧B|C) = P (A|C)P (B|A ∧ C),
1The Bayesian framework can also be constructed using bets, profit and degrees of belief [58, 59].

Here we do not follow this subjectivist approach because metrology rests on the study of natural
phenomena, and this is an impersonal enterprise. One may also work with a purely measure-
theoretic version of the theory [60] if the problem can be recast in the language of sets, although
this is not always possible when the prior information acquires an important role [9]. Finally, note
that a definition of probabilities in terms of relative frequencies that arise in a repeated experiment
is not appropriate for us, since the regime of limited data includes, by definition, scenarios where
the number of trials is low, or where some events happen only once. Moreover, note that it
can be consistently argued that probabilities and relative frequencies are conceptually different
quantities, where the former are assigned by us or by our theory and the latter are empirical facts
(see [9, 61, 62], and also our discussion in section 2.1.2).
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where A, B and C are propositions, and the symbols ¬ and ∧ are the connectives
for negation and conjunction, respectively [65, 66]. The probability P (A|B) is to be
understood as the degree of plausibility for A to be true given B, and it can be seen as
a carrier of information. More concretely, B encodes either what is known about the
real world or hypotheses about it, i.e., it represents a state of information [9, 64], and
the logical analysis of this information is what determines the plausibility associated
with the proposition A, which is the object of our enquiry. The two extremal
values of the scale of plausibility correspond to the most informative scenarios, which
recover as particular cases the two truth values found in propositional logic [9, 65,
66], while any other intermediate plausibility will be associated with an uncertain
scenario. Thus probability theory is seen as an extension of propositional calculus
that allows us to encode and manipulate information in uncertain situations2 [9].

This way of understanding probabilities can be justified via Cox’s work [69, 70],
provided that his assumptions for a reasonable measure of plausability are accepted.
There is a rich literature about the validity, scope and limitations of this approach
[64, 71–74], but for our purposes suffice it to say that: i) there exists a rigorous
treatment of Cox’s ideas (see [71]), and (ii) in practice it can be successfully applied
to a wide range of real-world problems, as the work of authors such as Jeffreys [61]
and Jaynes [9] demonstrates.

Two important concepts are those of mutual exclusivity and independence [9].
Mutually exclusive propositions satisfy that P (A1 ∨ · · · ∨ As|I0) = ∑s

i=1 P (Ai|I0),
where ∨ indicates disjunction [65, 66], and we have that ∑s

i=1 P (Ai|I0) = 1 if {Ai}
are also exhaustive. In addition, independence is expressed as P (B1 ∧ · · · ∧Br|I0) =∏r

j=1 P (Bj|I0). Beyond these notions, for us the key result that can be derived from
these axioms is Bayes theorem:

P (A|B ∧ I0) = P (A|I0)P (B|A ∧ I0)
P (B|I0) , (2.1)

where P (B|I0) = P (A|I0)P (B|A ∧ I0) + P (¬A|I0)P [B|(¬A) ∧ I0].
To understand equation (2.1), suppose we take A to be a proposition about

theoretical parameters, and imagine that the experimental outcomes are encoded in
B. Furthermore, I0 represents our initial state of information, which in this case
includes the conditions under which the experiment is performed and the possible
ranges for parameters and outcomes3. Then we can see that, according to equation
(2.1), the prior probability P (A|I0) is updated using the new information about A
provided by the empirical evidence B, which is encoded in the likelihood P (B|A∧I0),
and the denominator acts as a normalisation constant. The overall result is the
construction of the posterior probability P (A|B∧I0), which gives us the plausibility
for A to be true given the prior information I0 and the empirical data B.

When the propositions refer to variables, as it is the case of A and B in the
previous example, probabilities are defined in term of certain probability functions

2There has been some debate as whether the word plausibility should be employed as it is done
here [67, 68], since this word is used in a different sense in the theory of belief functions [67].
Nevertheless, it can be argued that, historically, its use in our context is older [68], and we have
found that, in practice, it is particularly convenient for studying estimation problems, which is our
topic of discussion.

3In quantum metrology we can think of the prior information I0 as a formal representation of
the operational information that indicates how the experiment is to be arranged and performed,
which in general is a collection of instructions expressed in the language of experimental physics.
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that act as mathematical models for the information about the situation under
analysis. For example,

P (∆θ′|I0) ≡ P (θ ∈ ∆θ′|I0) =
∫

∆θ′
dθ′′ p(θ′′) (2.2)

is the probability that θ lies in an interval of boundaries θ′ and θ′ + ∆θ′ , where we
have introduced the probability density function p(θ). In a similar way,

P (∆θ′ ∧ ∆m′ |I0) =
∫

∆θ′
dθ′′

∫
∆m′

dm′′ p(θ′′,m′′), (2.3)

where p(θ,m) is a joint density. Note that while probabilities are dimensionless
numbers, probability densities can have units.

For the conditional density we may use equations (2.2) and (2.3), assume that
∆m′ ≪ 1 and ∆θ′ ≪ 1, such that

P (∆m′|∆θ′ ∧ I0) = P (∆θ′ ∧ ∆m′ |I0)
P (∆θ′ |I0) → p(θ′,m′)

p(θ′) ∆m′ , (2.4)

and take p(m|θ) = p(θ,m)/p(θ). The linear approximation in the last step can be
found by integrating the Taylor expansions of the density functions p(θ′′,m′′) and
p(θ′′) around θ′ and m′. Since this procedure also applies to P (∆θ′ |∆m′ ∧I0), we have
that p(θ|m) = p(θ)p(m|θ)/p(m), with p(m) =

∫
dθ p(θ)p(m|θ). That is, we have

a version of Bayes theorem in terms of densities, and the same idea is valid when
we consider vector variables. We note that in this thesis we follow the convention
of omitting integration limits of general expressions where the integration is taken
over the complete parameter domain, as it is the case in the latter integral.

Sometimes it is useful to employ the more compact notation P (dθ|I0) = p(θ)dθ
and P (dθ ∧ dm|I0) = p(θ,m)dθdm, which arises from equations (2.2) and (2.3)
by taking infinitesimally small intervals. In general we will use the language of
continuous variables because this also includes discrete cases when we allow the
densities under our integration symbols to involve sums of Dirac deltas [9, 75]. In
those cases where an explicitly discrete treatment is more convenient, we will use
the notation P (n = n′|I0) ≡ p(n′), where p(n) is a probability mass function.

The previous description is suitable for those variables for which only uncertain
information is available. Common reasons for this situation to arise are lack of
knowledge, lack of control in an experiment and the existence of fundamental limits
that nature imposes. The latter scenario is best illustrated by quantum systems.

Finally, instead of working with the variables themselves, we often wish to
consider some function of them. In that case, a useful quantity to have an idea
of the magnitude of such function is the average. For instance, we could have
f̄ =

∫
dθdm p(m, θ)f(m, θ).

2.1.2 Law of large numbers
Another important result that we will exploit is the law of large numbers. Given the
proposition B representing a physical event generated in an experiment specified in
I0, the weak version of this law is [60, 76]

lim
µ→∞

P (|fµ − P (B|I0)| ⩾ ε |I0) = 0, (2.5)
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where fµ = nB(µ)/µ is the relative frequency of B after performing µ independent
repetitions of the experiment in I0, and ε is a positive number. We say that fµ

converges in probability to P (B|I0) [60].
The importance of this result is that it offers an empirical link between prob-

abilities and relative frequencies, since the latter are quantities that we measure in
the laboratory. To see why, we propose the following argument. First we recall that
P (B|I0) is the plausibility for the event B to happen when the experiment in I0 is
run once. Presumably, I0 encodes the procedure that generates the events, and it
also contains the fact that our actions do not produce the same event in each new
repetition. The key observation is that fµ in equation (2.5) is based on the same
I0, in the sense that we could perform a simulation where P (B|I0) and P (¬B|I0)
are used for generating µ outcomes, and calculate the relative frequency fµ for the
event B from them. In view of this, equation (2.5) expresses the intuitive idea that
if in each run some outcomes are more (less) likely to appear, then as we increase
the number of repetitions it is also likely that the largest (lowest) values for relative
frequencies correspond to the largest (lowest) single-shot probabilities.

The frequency fµ in the previous discussion is not yet factual, but a prediction
made on the basis of I0 and our model P (B|I0). If we now perform the actual
experiment and we observe that the experimental frequencies after a very large
number of trials are compatible with those that come from the model, we may
think of it as a good representation of the available information about the physical
phenomenon that gave rise to the experiment. Moreover, since it is likely that fµ

and P (B|I0) are close in the long run, we may also imagine that the experimental
frequencies are to be compared to the probability P (B|I0) directly.

This idea becomes even more meaningful when we consider the strong version of
the law, which instead states that fµ → P (B|I0) almost surely as µ increases [60].
Crucially, comparing probabilities and relative frequencies is precisely what is done
in practice with quantum experiments. A good example can be found in the results
of [26] for the implementation of a magnetometer. In particular, this work shows
a good agreement between the quantum-mechanical probabilities and the measured
frequencies, which is fully compatible with our rationale above. As a consequence,
this way of looking at the law of large numbers provides a clear link with experiments
while probabilities are still seen as mathematical models that encode information,
and that are qualitatively different from the concept of relative frequency.

2.2 Fundamentals II: quantum mechanics
In his celebrated work of 1925 (page 261 of [77]), Heisenberg offered an insight that
would eventually lead to the modern formalism of quantum mechanics. Starting
by representing the dynamical variables4 with Fourier terms, his key idea was to
modify these terms such that the experimental facts of the atomic realm could be
accommodated, while still retaining the form of the classical laws of dynamics. As a
result, later work built on this premise produced a new formalism broad enough to
generate probability models that can capture the behaviour of the phenomenology of

4The dynamical variables represent elementary properties that we can use to describe a physical
system, and also its variation in time. Examples of these include the positions and momenta of an
ensemble of particles, the components of their spin or the amplitude of a field.
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quantum systems, whose nonclassical features stem from the discreteness associated
with the quantum of action h. We turn now our attention to how this theory
describes the physical systems that we use in quantum metrology.

2.2.1 Elements of the theory
A useful way of looking at the theory is to decompose it in three parts:

1. Each dynamical variable is represented with a Hermitian operator whose spec-
trum contains the real numbers that such variable can take, or the inter-
vals in which it can lie. Physical systems are then characterised by a set
Z(t) = {Z1(t), Z2(t), . . . } of these Hermitian operators, for which

[Zi(t), Zj(t)] = Zi(t)Zj(t) − Zj(t)Zi(t) ̸= 0 (2.6)

for at least some of the cases where i ̸= j. That the Hermitian operators for
different dynamical variables may not commute is a mathematical represent-
ation of the fundamental limits associated with the existence of h.

2. To model more complex aspects of the quantum realm we can construct general
functions f(Z(t), t), and we can consider their evolution in time, which for
closed systems is given by Heisenberg’s equation of motion [1, 78]

d

dt
f(Z(t), t) = ∂

∂t
f(Z(t), t) + 1

iℏ
[f(Z(t), t), H(Z(t), t)] , (2.7)

with initial condition f(Z(t0), t0) = f0. The functionH(Z(t), t) is the Hamilto-
nian, a Hermitian operator that generates the temporal displacement, and
ℏ = h/(2π) is the reduced Planck constant. Note that equation (2.7) also gives
the evolution of the dynamical variables themselves when f(Z(t), t) = Zi(t),
for any i. Among all the functions f(Z(t), t), two of them play a crucial role
in the theory:

2.i. The density operator ρ(Z(t), t) is a positive semi-definite Hermitian op-
erator satisfying Tr[ρ(Z(t), t)] = 1, and it represents how the system is
prepared at some moment in time [1, 63]. We call this the state pre-
paration procedure [63], or simply state. When the system is closed, the
details of the initial preparation are preserved as time passes, and as such
we have that dρ(Z(t), t)/dt = 0 [1, 78]. Inserting this fact into equation
(2.7) we find von Neumann’s equation

∂

∂t
ρ(Z(t), t) = 1

iℏ
[H(Z(t), t), ρ(Z(t), t)] , (2.8)

with initial condition ρ(Z(t0), t0) = ρ0.
2.ii. The probability operator

E(∆m′ ,Z(t), t) =
∫

∆m′
dm′′ E(m′′,Z(t), t), (2.9)

also positive semi-definite and Hermitian, represents a measurement device
or instrument [6] that interacts with a system described by Z(t), generat-
ing an event characterised by an outcome m that lies in some subinterval
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of width ∆m′ . We say that E(m,Z(t), t) generates a probability-operator
measurement (POM)5, such that the identity is resolved as∫

dm E(m,Z(t), t) = I. (2.10)

3. The Born rule establishes that the probability density for observing the out-
come m at time t is given by

p(m|t) = Tr [E(m,Z(t), t)ρ(Z(t), t)] , (2.11)

and it provides the link between theory and experiment. In particular, the
probability model p(m|t) can be used to predict the relative frequencies that
we measure in the laboratory, following the rationale that we discussed in
section 2.1.2 in connection with the law of large numbers.

According to the Born rule, quantum probabilities can be seen as depending on
two different types of information. On the one hand, they depend on our choices for
the functions ρ(·) and E(·). Following current practice, we will employ rank-one op-
erators such as pure states and projective measurements when, for all practical pur-
poses, the preparation of systems and instruments involves a degree of control so high
that can be thought of as to provide maximum information. Otherwise, mixed states
(i.e., density operators for which Tr[ρ(t)2] ̸= Tr[ρ(t)] = 1 [75]) and more general
POMs are to be employed. Note that projective measurements originate in the idea
of quantum observable. In particular, an observable is a physical quantity represen-
ted by a Hermitian operator whose eigenvectors give rise to a measurement scheme.
For example, upon calculating the spectral decomposition Z(t) =

∫
dz z |z, t⟩⟨z, t| for

the dynamical variable Z(t), we can implement its measurement using the projectors
|z, t⟩⟨z, t| = E(z, t), for which E(z, t)dzE(z′, t)dz′ = δ(z − z′)E(z, t)dzdz′.

On the other hand, quantum probabilities also incorporate the nonclassicality
that emerges from h via the commutation relations for the dynamical variables, and
also through the law of evolution in equation (2.7). That p(m|t) takes into account
the relevant role of h in quantum physics offers, in fact, a good way of understand-
ing the success of quantum technologies. Probabilities in classical physics are less
constrained because their only source of uncertainty is the lack of knowledge about
an over-idealised initial state of affairs, and thus some of the models that they ad-
mit do not correspond with reality. On the contrary, quantum protocols built using
equation (2.11) are based on a more realistic description of natural phenomena, and
as such they give us a superior framework to explore which are the best technologies
that nature allows.

This way of breaking the theory into what experimenters can freely modify
(states and measurements) and a physical law (the existence of h) provides an heur-
istic intuition that is extremely useful to encode and manipulate information in
quantum systems, which is crucial to design metrology protocols. Beyond that, one
can simply focus on the probability models that emerge from equation (2.11) as the
physically meaningful quantities encoding information about quantum systems, and
we can generally regard the operators that appear in the theory as abstract tools.

The previous perspective suggests that probabilities for classical and quantum
systems differ in the origin of the uncertain information that they encode, which

5Also known as positive operator-valued measure (POVM) [1, 62, 79].
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in turn affects how they are mathematically constructed6, but not necessarily on
what probability as a concept is. This is further supported by the fact that it is
possible to show that no formal contradiction emerges between probability theory
and quantum mechanics when the former is properly applied [81]. This includes
cases where a single event is involved [63, 81], and also joint probabilities for events
associated with commuting POMs7 [63, 75]. A proper probability model for the joint
occurrence of events with non-commuting POMs cannot be constructed on the basis
of such POMs, but there may be other POMs that provide less precise information
about those events in a joint manner (see section 3.6 of [52]), which again would
give a probability compatible with the usual rules. Therefore, we conclude that we
can safely exploit the Bayesian framework that we described in section 2.1 for the
design of quantum metrology protocols8.

2.2.2 Light, atoms and quantum information
The applications of quantum mechanics range from the fundamental description
of natural entities to the pragmatic aspects of encoding information in quantum
systems. Here we collect both types of result in order to prepare the ground for the
metrological protocols in the next sections.

We start with the description of electromagnetic radiation in free space. Given
the Hermitian operators E(x, t) and B(x, t) associated with the electric and mag-
netic fields at position x, we may decompose them as

E(x, t) =
∑
k,σ

Ek,σ(x, t), B(x, t) =
∑
k,σ

Bk,σ(x, t) (2.12)

in a portion of space of volume V = L3 and periodic boundary conditions, where
the form of the modes Ek,σ(x, t) and Bk,σ(x, t) is [63, 83]

Ek,σ(x, t) = i

√
ℏωk

2ε0V
[
εk,σak,σei(k·x−ωkt) − ε∗

k,σa
†
k,σe−i(k·x−ωkt)

]
(2.13)

6In [80] Isham points out that the key difference between classical and quantum probabilities
is that while the former are based on ratios of volumes, the latter come from a version of the
Pythagorean theorem with complex numbers.

7For example, given the POMs generated by E(m, Z(t0), t) ≡ E(m, t), F (k, Z(t0), t) ≡ F (k, t)
and the state ρ(Z(t0), t) ≡ ρ(t) in the Schrödinger picture, if [E(m, t), F (k, t)] = 0, then

p(m, k|t) = Tr [E(m, t)F (k, t)ρ(t)]

= Tr
[√

F (k, t)E(m, t)
√

F (k, t)ρ(t)
]

= Tr [F (k, t)ρ(t)] Tr
[

E(m, t)
√

F (k, t)ρ(t)
√

F (k, t)
Tr [F (k, t)ρ(t)]

]
= p(k|t)p(m|k, t),

which is the product rule (axiom 4) of probability theory.
8The use of different probability systems in quantum mechanics has been previously explored

in the literature, including our current approach (see, e.g., [63, 76, 81]). Nevertheless, we are
not aware of other works that follow the same argumentation that we propose here, and thus we
consider our presentation to be an important step to enhance the conceptual understanding of the
role of quantum theory in metrology. Importantly, despite our joint use of quantum mechanics and
Bayesian probabilities, our approach is not related to QBism [82], since the latter interprets the
quantum formalism using de Finetti’s personalist philosophy, which, as we previously mentioned,
leads to an alternative formulation of Bayesian theory that we do not use here.
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and Bk,σ(x, t) = [k × Ek,σ(x, t)]/ωk. In addition, k = kûk = 2π(nx, ny, nz)/L
is a wavevector, σ is an index with two values, ωk = ck is an angular frequency,
c = 1/√ε0µ0 is the speed of light, ε0 is the vacuum permittivity and µ0 is the vacuum
permeability. The operators ak,σ and a†

k,σ satisfy the commutation relations

[ak,σ, ak′,σ′ ] = [a†
k,σ, a

†
k′,σ′ ] = 0, [ak,σ, a

†
k′,σ′ ] = δk,k′δσ,σ′ , (2.14)

while we have that k·εk,σ = 0, εk,σε
∗
k,σ′ = δσ,σ′ and∑σ(εk,σ)α(ε∗

k,σ)β = δα,β−kαkβ/k
2

for the polarization vector εk,σ, where α, β are vector components.
If we further use Ek,σ(x, t) and Bk,σ(x, t) to calculate the operator

H ′ = 1
2

∑
kk′,σσ′

∫
V
dx

[
ε0Ek,σ(x, t) · Ek′,σ′(x, t) + Bk,σ(x, t) · Bk′,σ′(x, t)

µ0

]

=
∑
k,σ

ℏωk

(
a†
k,σak,σ + 1

2

)
≡
∑
k,σ

H ′
k,σ, (2.15)

then we can construct the single-mode Hamiltonian

Hk,σ = H ′
k,σ −H0,k = ℏωka

†
k,σak,σ ≡ ℏωiaia

†
i = Hi (2.16)

where H0,k = ℏωk/2 and we have introduced the notational change (k, σ) → i
for simplicity. Note that Ek,σ(x, t) and Bk,σ(x, t) satisfy Heisenberg’s equation of
motion in equation (2.7) when we treat them as dynamical variables labelled by
x and we use the Hamiltonian in equation (2.16). Furthermore, the new notation
implies that the relations in equation (2.14) become

[âi, âj] = [â†
i , â

†
j] = 0, [âi, â

†
j] = δij. (2.17)

Upon diagonalising equation (2.16) we find that Hi = ℏωi
∑

ni
ni |ni⟩⟨ni|, with

ni = 0, 1, 2, . . . and ⟨ni|n′
i⟩ = δni,n′

i
. The eigenvector |ni⟩ is seen as the state for ni

quanta of light, or photons, each of them with energy ℏωi and characterised by the
properties indicated in i. Since a†

i |ni⟩ =
√
ni + 1 |ni + 1⟩ and ai |ni⟩ = √

ni |ni − 1⟩
[7], we can interpret a†

i and ai as creation and annihilation operators, respectively.
Moreover, |0⟩ is a state without photons, i.e., the vacuum, and Ni |ni⟩ = ni |ni⟩,
Ni ≡ a†

iai being the number operator. For j independent modes we have that the
most general initial density operator that we can construct is [7]

ρ0 =
∑
n,n

cn,n′ |n⟩⟨n′| , (2.18)

where n = (n1, . . . , nj) and |n⟩ = |n1, . . . , nj⟩ = |n1⟩ ⊗ · · · ⊗ |nj⟩. Equation (2.18)
and the operators a†

i , ai, for i = 1, . . . , j, are sufficient to describe the optical systems
that we will employ.

On the other hand, we may also consider sensors built with atoms at low energies.
Suppose we have an atom with two energy levels, ℏω0 and ℏω1, where the former is
associated with the ground state |0⟩ and the latter with the excited state |1⟩. This
is one of the possible ways of implementing the notion of qubit in a real system [84].
Its most general initial state is [83]

ρ0 = 1
2 (I + σ · r̂) =

1∑
i,i′=0

ci,i′ |i⟩⟨i′| , (2.19)
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where r̂ is some real unit vector, I is the identity matrix, σ = (σx, σy, σz) with
components

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.20)

which are the Pauli matrices, and we have assumed the convention ⟨0| = (1, 0) and
⟨1| = (0, 1). We notice that, given that the operators in equation (2.20) can be
associated with physical quantities that are observable9 [83], we may use them as
dynamical variables that are expressed in the Schrödinger picture. Those parts of
our study based on this description will be focused on a Hamiltonian with the form
H ∝ σz, for some proportionality constant with units of energy, and, as we will see,
the generalisation to several independent two-level systems is analogous to the case
for independent optical modes.

Let us imagine now that we wish to find the time-evolved state ρ(t) ≡ ρ(Z(0), t)
for some time-independent Hamiltonian H ≡ H(Z(0)) such as those found in the
previous discussion, where we have assumed that t0 = 0. In that case, von Neu-
mann’s equation (2.8) implies that ρ(t) = U(t)ρ0U(t)† = e−iHt/ℏρ0eiHt/ℏ, which is an
example of unitary evolution because U(t)U(t)† = U(t)†U(t) = I. We typically look
at ρ(t) as representing the state of the system at time t. However, an alternative
possibility is to imagine that the elapsed time t is an unknown parameter to be found
by performing measurements on a system that has evolved (i.e., it has changed) and
where ρ0 and H are known. Given this point of view, it would be desirable to exam-
ine whether the same idea can be exploited for more general parameters representing
other changes in the system. In that case, we could use quantum systems to encode
and manipulate information.

It turns out that the answer is in the affirmative. A general parameter θ can
be encoded in a probe with initial state ρ0 via a generator K, which is a Hermitian
operator. For parameter-independent generators we can mimic the time evolution
and take the encoding to be formally expressed as ρ(θ) = e−iKθρ0eiKθ, which is
consistent with the fact that any unitary transformation of a density operator pro-
duces a new valid quantum state [85], and we may recast this as the solution to the
operator differential equation

dρ(θ)
dθ

= i[ρ(θ), K], (2.21)

with initial condition ρ(0) = ρ0. This equation, which is valid for generic paramet-
ers [86], leads us to a more abstract formalism where the focus is shifted to the
information represented by θ, while the mechanical description in terms of dynam-
ical variables is no longer explicit. As a consequence, Hermitian operators such as
ρ(θ) are seen as only depending on the general parameter θ, which justifies the use
of the total derivative in equation (2.21). This contrasts with the partial derivative
in von Neumann’s equation (2.8), where states were treated as functions of both the
dynamical variables and the parametric time.

The departure from the mechanical picture becomes even more apparent in scen-
arios with several unknown parameters θ = (θ1, . . . , θd). If these are encoded by
means of a set of parameter-independent commuting generators K = (K1, . . . , Kd)

9In particular, σx and σy represent the real and complex parts of the complex dipole moment,
while the atomic inversion is given by σz [83].
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(i.e., [Ki, Kj] = 0 for all i, j), then we can trivially upgrade equation (2.21) to the
vector equation

∇ρ(θ) = i [ρ(θ),K] , (2.22)

with initial condition ρ(0) = ρ0, and its solution is ρ(θ) = e−iK·θρ0eiK·θ.
The protocols in this thesis are based on the class of schemes where the informa-

tion is encoded employing either equation (2.21) or equation (2.22)10. Once this has
been achieved, the next step is to extract that information by performing a statist-
ical analysis that involves the probabilities generated via the Born rule in equation
(2.11), which for general parameters can be expressed as p(m|θ) = Tr [E(m)ρ(θ)].
It is clear that the efficiency of these information-processing techniques will depend
on the characteristics of states, measurements and generators, among which entan-
glement and other correlations deserve special attention.

Given a system whose space of operators is partitioned in terms of j subsystems,
we say that a generic ket |a⟩ is entangled when it cannot be expressed as

|a⟩ = |a(1)⟩ ⊗ · · · ⊗ |a(j)⟩, (2.23)

which applies to both pure states and projective measurements. More generally, we
say that a generic operator Ax (e.g., density operators or general POMs) depending
on some variable x is entangled with respect to the chosen partition if it cannot be
written as [85]

Ax =
∫
dx p(x)A(1)

x ⊗ · · · ⊗ A(j)
x , (2.24)

for some probability density p(x). However, note that while an operator of the form
of equation (2.24) is not entangled, in general it will still be correlated. A complete
lack of correlations between subsystems would imply that

Ax = A(1)
x ⊗ · · · ⊗ A(j)

x . (2.25)

Providing new insights to understand the role of correlations in quantum metrology
is one of our main goals.

2.3 Fundamentals III: quantum schemes
Sections 2.1 and 2.2 have provided us with the necessary tools to model information
in general and to encode it in physical systems whose quantum aspects are relevant
in particular. We conclude this chapter by presenting the schemes that will serve as
the basis of the quantum protocols in later chapters.

2.3.1 The Mach-Zehnder interferometer
The Mach-Zehnder interferometer is an optical system formed by two electromag-
netic modes with the same frequency and a series of passive, lossless and linear
elements [7, 89]. This arrangement lies at the heart of quantum metrology as a
paradigmatic protocol for phase estimation.

10We leave the study of schemes with more general unitary transformations, non-unitary encod-
ings or non-commuting generators [87, 88] for future work.
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Figure 2.1: Artistic representation of the Mach-Zehnder interferometer. A probe
state ρ0 is first prepared by mixing two light beams with a 50:50 beam splitter.
Then the probe interacts with an external entity whose properties we wish to study,
so that an unknown parameter θ that is related to them is encoded as ρ(θ). Finally,
the light beams are recombined with a second beam splitter and the number of
clicks of each detector are measured. The information about the parameter can be
extracted by processing these data.

An elegant and economical way of describing this scheme is to employ the Jordan-
Schwinger map [7, 89]

Jx = 1
2
(
a†

1a2 + a1a
†
2

)
, Jy = i

2
(
a1a

†
2 − a†

1a2
)
, Jz = 1

2
(
a†

1a1 − a†
2a2
)
, (2.26)

where Jx, Jy, Jz are angular momentum operators satisfying the commutation rela-
tions [Ji, Jj] = iϵijkJk, with i, j, z = x, y, z, for the Lie algebra of the SU(2) group
[89]. This arises from the commutation relations in equation (2.17) that are satisfied
by the creation and annihilation operators a†

1, a†
2, a1 and a2.

Within this framework we can capture the action of a 50:50 beam splitter with the
unitary operator UBS = exp(−iπ

2Jx), while a difference of phase shifts θ is modelled
with U(θ) = exp(−iJzθ) [7, 89]. If the initial state for the two ports is ρ′

0 and
{|n1, n2⟩⟨n1, n2|} is a POM that counts the number of photons at the end of each
port, then the standard configuration of this interferometer can be implemented
with the sequence of operations

ρ′
0 → UBS → U(θ) → U †

BS → |n1, n2⟩⟨n1, n2| , (2.27)

which is visually represented in figure 2.1. More concretely, we have a protocol
with three steps: i) preparation of the state UBSρ

′
0U

†
BS, (ii) encoding of the un-

known parameter θ in the transformed probe U(θ)UBSρ
′
0U

†
BSU(θ)†, and (iii) record-

ing of the read-out (n1, n2) that has been produced by the measurement scheme
UBS |n1, n2⟩⟨n1, n2|U †

BS. Note that, as we mentioned in section 2.2.2, any unitary
transformation of a quantum state produces a new density operator.

As a generalisation of the previous idea we can consider two-mode interferometry
protocols based on the sequence

ρ0 → e−iJzθ → E(m), (2.28)
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for some state ρ0 and POM E(m). This generalised Mach-Zehnder interferometer11

is the model that we will employ in chapters 4 and 5 to study single-parameter
estimation problems.

Although the full development of estimation techniques will be carried in the
next chapter, let us consider here a simple estimation strategy to illustrate how an
interferometer can be used to extract information about θ, as well as to introduce
those concepts that play a crucial role in optical interferometry. In particular,
suppose that the scheme in equation (2.28) is initialised in the pure state ρ0 =
|ψ0⟩⟨ψ0| and that we measure the observable M =

∫
dmm |m⟩⟨m|, recording the

outcome m. If we repeat this protocol µ times and µ ≫ 1, then in practice we may
assume that

1
µ

µ∑
i=1

mi ≈ ⟨ψ0|U(θ)†MU(θ)|ψ0⟩ = ⟨ψ0|M(θ)|ψ0⟩ = ⟨M(θ)⟩ (2.29)

due to the law of large numbers, where M(θ) = U(θ)†MU(θ) and we have introduced
the notation ⟨ψ0|□|ψ0⟩ = ⟨□⟩.

Next we observe that while µ−1∑µ
i=1 mi is empirically determined, ⟨M(θ)⟩ is a

function of θ that can be calculated from the theory. Let us further imagine that,
according to our prior information, θ is very close to some known value θ′. In that
case we can calculate the Taylor expansion of ⟨M(θ)⟩ and assume that

1
µ

µ∑
i=1

mi ≈ ⟨M(θ′)⟩ + d⟨M(θ′)⟩
dθ

(θ − θ′), (2.30)

which gives us an estimate for the unknown value if we solve it as an equation for θ.
Finally, given that the relationship between the average ⟨M(θ)⟩ and the para-

meter θ is approximately linear, to a good approximation we can connect their
uncertainties via the error propagation formula [7, 89, 91]

∆θ2 ≈ ∆M(θ)2

|d⟨M(θ)⟩/dθ|2
, (2.31)

where ∆M(θ)2 = ⟨M(θ)2⟩ − ⟨M(θ)⟩2. Thus we can use equation (2.31) to quantify
the quality of our estimation.

This simple estimation technique shows in a particularly transparent way how
the assumptions of having an abundance of measurement data and a good prior
knowledge can enter in quantum metrology protocols. In chapter 3 we perform a
detailed analysis of these restrictions, and the results in this thesis will demonstrate
that the methods that we have proposed open the door to design practical schemes
beyond such limitations.

Despite these difficulties, equation (2.31) can still be useful. On the one hand,
this uncertainty can always be accessed experimentally and employed as a measure

11Importantly, the model in equation (2.28) is a direct representation of realistic experiments
when either [ρ0, NT ] = 0 or [E(m), NT ] = 0, or both, where NT = a†

1a1 + a†
2a2 is the total number

operator [89, 90]. If this is not the case, then the SU(2) symmetry is not satisfied in practice
because a second parameter is imprinted by NT in the transformed probe [90]. Here we assume
that the experiment has been calibrated such that this parameter can be set to zero whenever the
previous conditions are not fulfilled, and we consider that only the resources that enter into the
scheme once it has been calibrated are relevant [33].
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of sensitivity (see, e.g., [26]), since the law of large numbers also implies that

∆M(θ)2 ≈ 1
µ

µ∑
i=1

m2
i −

(
1
µ

µ∑
i=1

mi

)2

(2.32)

when µ is large, and d⟨M(θ)⟩/dθ can be approximated by a known constant in
the regime that we are considering. On the other hand, equation (2.31) provides a
theoretical method to compare the efficiency of different quantum strategies.

Furthermore, by combining equation (2.31) with the generalised Mandelstam-
Tamm uncertainty relation 2∆Jz∆M(θ) ⩾ |d⟨M(θ)⟩/dθ| [91] we find the quantum
Cramér-Rao bound for pure states [91]

∆M(θ)2

|d⟨M(θ)⟩/dθ|2
⩾

1
4∆J2

z

. (2.33)

This result indicates that the sensitivity improves when 4∆J2
z increases, and how

this is to be achieved can be revealed if we rewrite such quantity as [92]

4∆J2
z = n̄1 (1 + Q1) + n̄2 (1 + Q2) − 2J

√
n̄1n̄2 (1 + Q1) (1 + Q2), (2.34)

where n̄i = ⟨a†
iai⟩ is the mean number of quanta sent through the i-th port,

Qi = 1
n̄i

[
⟨(a†

iai)2⟩ − n̄i (n̄i + 1)
]

(2.35)

is the Mandel Q-parameter that quantifies the photon correlations within the i-th
mode, and

J = ⟨a†
1a1a

†
2a2⟩ − n̄1n̄2

∆(a†
1a1)∆(a†

2a2)
(2.36)

is a parameter quantifying the correlations between modes. Indeed equation (2.34)
shows that we can enhance the sensitivity by either increasing Qi or making J
negative, or both.

These expressions can be further simplified when we consider the important
family of path-symmetric probes introduced by Hofmann [91], which is precisely the
class of schemes that we will exploit. Following the characterisation given by Sahota
and Quesada [92], we say that a state is path-symmetric when the conditions

n̄1 = n̄2 ≡ n̄/2, ⟨(a†
1a1)2⟩ = ⟨(a†

2a2)2⟩ (2.37)

are satisfied. In that case we have that

4∆J2
z = n̄(1 + Q)(1 − J ), (2.38)

where the parameters quantifying correlations have become

Q = 1
2n̄

[
4⟨(a†

1a1)2⟩ − n̄ (n̄+ 2)
]

= 1
2n̄

[
4⟨(a†

2a2)2⟩ − n̄ (n̄+ 2)
]
,

J = ⟨a†
1a1a

†
2a2⟩ − n̄2/4

∆(a†
1a1)2

= ⟨a†
1a1a

†
2a2⟩ − n̄2/4

∆(a†
2a2)2

. (2.39)

Given the nature of Q and J , from now on we will refer to the former as the
amount of intra-mode correlations, while the latter will be understood as quantifying
inter-mode correlations [33, 57]. These are the type of correlations that will be
relevant for our analysis of interferometric schemes.
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2.3.2 Multi-parameter protocols
Single-parameter protocols such as the Mach-Zehnder interferometer provide a simple
and intuitive formalism to understand the fundamental limits that nature imposes
on our estimation strategies. However, real-world applications typically give rise
to estimation problems with several unknown pieces of information. For instance,
we may need to determine the range and velocity of a moving object [31], quantify
phases and phase diffusion [93, 94], reconstruct an image [57, 95, 96], estimate
the components of a field [88], assess the spatial deformations of a grid of sources
[97, 98] or implement distributed sensing protocols using quantum networks [33–
38]. For that reason, the second part of this thesis will be dedicated to the study of
multi-parameter schemes.

Our starting point is the general framework for quantum sensing networks in-
troduced by Proctor et al. [33]. This is a model for spatially distributed sensing,
where in general there will be several sets of unknown parameters, and each set
will be encoded locally in a sensor. The importance of this configuration is that it
allows us to investigate whether the estimation of such parameters can be enhanced
by exploiting inter-sensor and intra-sensor correlations [33–36, 99], which in a sense
generalise the analogous notions for the Mach-Zehnder interferometer [33, 57].

Here we focus on a particular subset of the problems that this formalism can
accommodate. In particular, we will consider schemes with a single parameter en-
coded in each sensor, and possibly including an ancillary system. The fact that the
sensors are spatially distributed is imposed by means of the local unitary encoding

U(θ) = I ⊗ U1(θ1) ⊗ · · · ⊗ Ud(θd), (2.40)

while both the state ρ0 and the measurement E(m), which are defined on the same
space that U(θ) is, can be correlated with respect to different sensors. Within this
framework, we examine two cases.

In chapters 6 and 7 we explore the role of inter-sensor correlations in a network
designed to estimate local or global properties in the presence of different amounts
of data. Each sensor is modelled as a qubit and no ancillary system is assumed,
which implies that, in this case, the first component of the partition in equation
(2.40) is absent. This scheme could be implemented, for example, with atoms (see
section 2.2.2 and [33]).

On the other hand, in chapter 7 we also examine a network where each sensor
is an optical mode encoding an unknown phase shift that we wish to determine,
including an extra mode that acts as a phase reference and whose phase is assumed
to be known from the calibration of the experiment12 [33]. Therefore, this also
fulfils the condition for distributed sensing in equation (2.40). This arrangement
encompasses an important imagining protocol that has been extensively studied both
with Bayesian [50, 101] and non-Bayesian tools [95, 101], and that has produced a
rich literature about the potential enhancement that the global estimation of several
parameters might provide, or the lack of it [33, 34, 37, 57, 95]. This protocol is one
of the possible ways in which we can generalise two-mode interferometry to the

12Counting the resources of this extra beam is motivated when we wish to entangle it with the
rest of the network because entangled states are generally difficult to prepare in the laboratory [33].
As with the Mach-Zehnder interferometer, we assume any extra resources that may be needed to
calibrate the experiment such that this model applicable in practice [33, 100].
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Figure 2.2: Artistic representation of a quantum sensing network. Several qubit
sensors are entangled to estimate a set of unknown parameters, which are encoded
in the transformed probe ρ(θ) = U(θ)ρ0U(θ)†.

multi-parameter case. For an alternative generalisation where each sensor is a full
interferometer, see [57].

It is important to note that existing literature employs the notions of local and
global estimation strategies in two different ways. Within the context of this sec-
tion, a strategy is said to be local if neither the state nor the measurement present
correlations with respect to the partition in equation (2.40), and global otherwise.
That is, a local strategy is uncorrelated according to the definitions in section 2.2.2.
However, if instead we focus on the more general context of estimation theory, local
strategies are those that rely on a high amount of prior knowledge about the para-
meters of interest, while a global estimation refers to situations where we are almost
completely ignorant about them. In the next chapter we will see that our protocols
will be designed to operate in the intermediate regime between the two latter ex-
tremes. The exact meaning that the terms local and global have in each situation
will be clear from the context.

2.4 Chapter summary
The formalism reviewed in this chapter enables us to perform three tasks that are
crucial for the development of quantum metrology: representing information, en-
coding it in quantum systems, and manipulating those systems to extract such
information, which is the final goal.

We have seen that the uncertain information associated with natural phenomena
can be suitably modelled with the objective version of Bayesian probability theory.
The importance of this fact will become apparent once we have introduced the
condition of limited data in our estimation protocols. Moreover, this perspective has
offered a clear intuition to understand the empirical link between our probability
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models and the relative frequencies that we measure in the laboratory, as well as
their conceptual differences. Crucially, this link plays a fundamental role in verifying
the validity of quantum predictions.

On the other hand, we have revisited the foundations of quantum mechanics to
understand the reasons behind the success of quantum technologies in general, and
of quantum metrology in particular. The key observation is that while the existence
of the quantum of action constrains the probability models that we can construct,
we also have freedom to choose the functions of dynamical variables that give rise to
states and measurements. Hence, the combination of both features provides us with
a framework that is more realistic than the classical paradigm and flexible enough
to develop new applications on the basis of quantum entities.

As a final step we have described two important classes of quantum schemes:
a generalised version of the Mach-Zehnder interferometer and a quantum sensing
network model for distributed sensing, and we have identified the types of correla-
tions that may be present in these systems as one of the fundamental features to be
exploited in our study of quantum metrology protocols.
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Chapter 3

Towards a non-asymptotic
methodology

In this chapter we present the strategy that we will follow to construct our non-
asymptotic methodology for quantum metrology. Some of the results that we use
to motivate and justify such strategy are new, although at this stage we still need
to rely on known ideas that are already available in the literature.

3.1 Formulation of the problem
The basic information needed for the estimation problems that we find in quantum
metrology is encoded in the joint probability

P [E(dm) ∧ ϱ(dθ)|I0] = p(θ)Tr [E(m)ϱ(θ)] dθdm, (3.1)

where p(θ) is the prior probability and we have used both the Born rule p(m|θ) =
Tr [E(m)ϱ(θ)] and the fact that p(θ,m) = p(θ)p(m|θ). More concretely, we have
the following propositions:

i) E(dm), with m = (m1, . . . ,mµ), indicates that the measurement scheme E
generates µ observations with outcomes lying within m and m + dm. The
set of outcomes m is the empirical data.

ii) ϱ(dθ), with θ = (θ1, . . . , θd), represents the fact that the interaction between
an external system that we wish to study and the initial probe ϱ0 encodes in
our scheme d parameters with values lying within θ and θ + dθ. The number
of unknown parameters is the dimension of the estimation problem1.

iii) I0 is the prior information. We can split it as I0 = Ωm ∧ Ωθ ∧ Iexp, where

a) Ωm and Ωθ indicate the values that the experimental outcomes and para-
meters can take when we only know the physical nature of the quantities
that they represent.

b) Iexp represents the operational information that maps our actions in the
laboratory with the mathematical representation for states, measure-
ments and the mechanism that encodes the parameters in the probe,

1Notice that this is different from the dimension of the space where the operators that represent
states and measurements are defined.
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as well as any further prior knowledge that we may have about the ex-
ternal system that we wish to sense and whose properties are represented
by the parameters2.

In short, the likelihood function p(m|θ) encodes the information about the process
that generates the outcomes and its relationship with the parameters, while the
prior p(θ) includes what is known about θ before the experiment is performed. It is
important to observe that while the likelihood model is given by the laws of quantum
mechanics, the prior probability must be assigned by other means. A practically
motivated procedure to select priors will be developed in chapter 4.

While the previous description is completely general, our study will be focused
on identical and independent experiments. Hence, our calculations will be based on
a specific partition of the space of operators where

ϱ(θ) = ρ(θ) ⊗ · · · ⊗ ρ(θ)︸ ︷︷ ︸
µ times

(3.2)

and
E(m) = E(m1) ⊗ · · · ⊗ E(mµ). (3.3)

As a consequence, the likelihood function becomes

p(m|θ) =
µ∏

i=1
p(mi|θ) =

µ∏
i=1

Tr [E(mi)ρ(θ)] . (3.4)

This configuration can model either repetitions of a given experiment, or a collection
of µ copies of some system where independent and identical measurements are per-
formed. We will normally describe our results in terms of the first picture, although
both are mathematically equivalent. Note that states and measurements describing
a single repetition or copy can still be entangled with respect to its internal struc-
ture, as we saw in section 2.3.

The motivation to select the class of schemes specified in equations (3.2 - 3.4)
is twofold. On the practical side, strategies where the same scheme is repeated
several times are relevant for any experimental arrangement where we cannot or
do not wish to correlate different runs, which include a wide range of practical
scenarios. On the other hand, having a sequence of repetitions is an intuitive way
of examining the transition from the regime of limited data that we wish to explore,
to the asymptotic regime of many trials, and this transition is crucial to define the
non-asymptotic regime. In addition, this assumption greatly simplifies the complex
numerical calculations involved in Bayesian scenarios. Admittedly, there are other
interesting practical possibilities that emerge when we allow for POMs that do not
satisfy the constraint in equation (3.3), or for a collection of states that are not
identical. For instance, we could consider adaptive schemes, where the strategy
for each new trial is selected taking into account the information provided by the
previous outcome [48, 102, 103], and they could be a better choice in some scenarios.
These techniques are beyond the scope of this work, although in chapter 5 we briefly

2The proposition I0 is normally omitted in quantum metrology discussions. However, the
information that it encodes is crucial to implement theoretical protocols in real life, and in practice
it is always implicitly taken into account. By making it explicit and giving it a formal representation
inside the theory we can keep track of the assumptions that go into our calculations in an economical
way. Although a study of the practical implementation of our results is beyond the scope of this
thesis, we will still use I0 to make the assignment of the prior probability p(θ) more transparent.
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explore the case of general collective measurements [104, 105] that are implemented
on µ = 10 copies of a NOON state.

We will also assume that in each repetition the parameters are encoded via the
unitary transformation U(θ) = exp(−iK · θ), where K = (K1, . . . , Kd) are com-
muting generators. Thus we can define the following quantum metrology protocol:

1. A probe state ρ0 is prepared.

2. The interaction with an external system transforms the probe as ρ0 → ρ(θ) =
U(θ)ρ0U

†(θ),

3. A measurement scheme with elements {E(mi)} is performed to extract the
information about θ.

4. The process is repeated µ times, which generates the data m = (m1, . . . ,mµ).

To make the protocol more realistic, we typically define some notion of resources
that allows us to capture further constraints that different applications may impose
in practice. To this end, Proctor et al. introduced in [33] the resource operator R,
which is Hermitian, and defined the average amount of resources for a single shot
as ⟨R⟩ = Tr(ρ0R). In addition, they imposed that [R,U(θ)] = 0, since this implies
that Tr[ρ(θ)R] = Tr(ρ0R) = ⟨R⟩. In words, the resources are conserved during the
interaction between the probe and the external system, a condition that guarantees
that the resource counting will not depend on the unknown parameters.

Following this approach, we have that the total amount of resources consumed
on average by the protocol described above is µ⟨R⟩. In turn, we can now formally
define the regime of limited data as the regime where µ is low. In principle we
could consider any realistic value for ⟨R⟩ without leaving this regime. However, the
nature and scope of our study imposes two constraints on ⟨R⟩. On the one hand,
one of our main goals is to identify the novel effects that emerge directly from having
different amounts of data, and, as such, we have chosen ⟨R⟩ to be sufficiently low to
guarantee that µ is the dominant contribution to the total resources. Importantly,
this condition means that our results are particularly useful for the study of fragile
systems [18–23, 25]. On the other hand, ⟨R⟩ needs to be large enough to allow for
certain quantum enhancements to be relevant, which in the majority of our schemes
can be achieved simply by requiring that ⟨R⟩ > 13. Crucially, this configuration will
allow us to explore the interplay between a small amount of data and the usefulness
of exploiting quantum features such as squeezing and sensor entanglement.

3.2 Uncertainty and estimation
Once the outcomes m = (m1, . . . ,mµ) have been generated with the protocol that
we have described, the next step is to develop a technique to extract information
from them. We already saw a first approximation of the type of procedure that is
suitable for this task when we revisited the Mach-Zehnder interferometer in section
2.3, where we were able to identify two key elements: a way of making estimates that

3An illustrative example to justify this choice is the case of a Mach-Zehnder interferometer with
a single photon, since in that scenario we have that the sensitivity of coherent and NOON states
is the same, in spite of the fact that the coherent state is classical-like (see section 4.3.1).
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inform us about the true values of the parameters, and a second type of quantity that
represents the quality of this process. The former are formally encoded in a vector
estimator g(m) = (g1(m), . . . , gd(m)), which is a function of the experimental
outcomes, while the latter is a measure of uncertainty. We then seek the estimators
and the quantum protocol for which the uncertainty is minimal, and this search can
be rephrased as an optimisation problem [9].

To construct the measure of uncertainty, first we introduce the error or deviation
function D[g(m),θ], which quantifies the deviation of our estimates g(m) when the
parameters happened to be θ. Its choice relies on the nature of the variables that
we wish to estimate. In our case, these will be either optical phases, differences of
optical phases or simply periodic parameters; consequently, the deviation function
should respect their periodic character [6, 52, 104, 106].

One of the simplest options that satisfy this requirement for a single parameter
is the sine error [7, 104, 107]

D[g(m), θ] = 4 sin2 {[g(m) − θ] /2} . (3.5)

In principle we could base our analysis of single-parameter schemes on equation
(3.5), since Demkowicz-Dobrzański found in [107] a completely analytical solution
to the problem of phase estimation for µ = 1 using this type of error. However,
the extension of this result to the case where many repetitions are considered is
still numerically challenging. Instead, here we argue that the characteristics of the
regime of limited data motivate an important simplification.

If the empirical data is limited, then the prior information about the unknown
parameters included in I0 will generally play an active role in their estimation.
Therefore, a natural regime to study situations where the number of measurements
is small is the regime of moderate prior knowledge. This is an intermediate case
between complete ignorance and an amount of prior knowledge so high that the
problem can be recast in a local form [107, 108]. Then we may say that, in a certain
sense, the quantity |g(m) − θ|/2 will be moderately small, so that it is meaningful
to approximate equation (3.5) as

D[g(m), θ] ≈ [g(m) − θ]2 . (3.6)

In appendix A.2 we evaluate the error in the truncation of the Taylor expansion that
leads to equation (3.6) in different ways, and we show that the main conclusions of
our results for single-parameter protocols, which operate in the regime of moderate
prior knowledge, are not affected by it. Therefore, we can safely exploit the math-
ematical simplicity of the square error in the context of phase estimation.

Furthermore, given the relative freedom to choose deviation functions, we can
apply the same logic to multi-parameter problems, and we can require that any
reasonable error that we may use for several periodic parameters also approaches its
squared version in the intermediate regime of prior information. That is,

D[g(m),θ,W ] ≈ Tr
{
W [g(m) − θ] [g(m) − θ]⊺

}
, (3.7)

where W = diag(w1, . . . , wd), Tr(W) = 1 and wi ⩾ 0 indicates the relative import-
ance of estimating the i-th parameter [33]. In that way, the optimal strategy will
produce the smallest errors for the most relevant parameters.
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Using the chosen D[g(m),θ,W ] as a basis, it is possible to construct different
types of uncertainty depending on which information is assumed to be exactly known
and which information is only partial [9]. As a result, different authors often base
their analysis of metrology protocols on different quantities [7, 109].

To simplify this state of affairs, here we propose a progressive construction of
different measures of uncertainty, using as a guide the physical requirements im-
posed by the three basic situations that we could face in an scenario with unknown
parameters: a real experiment that is performed in the laboratory, the simulation
of a hypothetical experiment, and the theoretical study of a real or hypothetical
experiment. Moreover, we show that this method gives a clear physical meaning
to the figure of merit that is suitable to design protocols from theory. While the
calculations in this thesis will be based on the square errors in equations (3.6) and
(3.7), we draw attention to the fact that the following discussion is also applicable to
more general deviation functions. For a discussion about the relation of our strategy
with other approaches in the literature, see appendix A.1.

Let us first recall that the raison d’être of any experiment is to produce outcomes.
Since in the first scenario these are known, the measure of uncertainty employed by
an experimentalist will depend on m. On the contrary, it is clear that it should
not depend on θ because the parameters are what we seek. Therefore, we need
a probability function with information about the parameters for a given set of
outcomes, which is precisely what the posterior p(θ|m) provides, and the error of
the estimation is

ϵ(m) =
∫
dθ p(θ|m) D[g(m),θ,W ]. (3.8)

This is the uncertainty that arises from gathering and processing data in a real
experiment, both in quantum [25] and classical [9] scenarios4. As we saw in the pre-
vious chapter, the posterior probability is the result of applying Bayes theorem (see
equation 2.1), and it can be calculated as p(θ|m) ∝ p(θ)p(m|θ). Importantly, in
quantum metrology we can assume that the likelihood models are a good represent-
ation of reality because, so far, the quantum framework has passed all experimental
tests. In addition, the prior knowledge stored in p(θ) will typically include the
multivariate domain in which we can expect to find the parameters, a piece of in-
formation that can be given, for instance, by the results of past experiments.

Apart from analysing a specific experiment, usually we also want to enhance
its design in order to improve the precision of the estimation protocol. This study
will often occur outside of the laboratory, in which case we no longer have access
to specific measurement outcomes. In turn, a measure of uncertainty that is useful
for designing experiments cannot depend on m. Since equation (3.8) already gives
us the experimental error, now we need a probability function with information
about the possible experimental outcomes that the configuration under analysis
could produce. One possibility is to employ p(m|θ′), where θ′ is our simulation of the
true values, and calculate the average of the errors for all the possible experimental
outcomes associated with θ′ weighted by their likelihood, i.e.,

ϵ(θ′) =
∫
dm p(m|θ′) ϵ(m). (3.9)

4Technically, if we use the square error in the laboratory then we need to calculate the square
root of equation (3.8), so that both the estimates and the uncertainty have the same units. However,
the present form is more convenient for studies of a theoretical nature.
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This is the appropriate quantity if our aim is to simulate experiments and study
their performance on average, as it is the case, for example, in [25].

The previous uncertainty still depends on the specific values θ′ of the simulation.
If we instead follow a purely theoretical approach, then we need to take into account
the fact that both outcomes and true values for the parameters are unknown to the
theorist. In that case, the relevant information about the possible outcomes is
p(m) =

∫
dθ′p(θ′)p(m|θ′), and by taking either the average

∫
dm p(m)ϵ(m) = ϵ̄

weighted over p(m), or the average
∫
dθ′p(θ′)ϵ(θ′) = ϵ̄ weighted over our prior

knowledge of θ′, and using that p(m)p(θ|m) = p(θ,m), we finally obtain the error

ϵ̄ =
∫
dθdm p(θ,m) D[g(m),θ,W ], (3.10)

which is independent of the values of parameters and outcomes. Following the
previous discussion, ϵ̄ represents the uncertainty on average about the knowledge
that we can acquire in principle with the experimental configuration that is being
studied. As such, this is the suitable figure of merit to design experiments from
theory in order to make optimal inferences, and we will make use of it from now on.

3.3 Quantum estimation and metrology

3.3.1 The fundamental equations of the optimal strategy
Using the joint probability for quantum systems in equation (3.1) and the error in
equation (3.10), we have that the uncertainty is

ϵ̄ =
∫
dθdm p(θ)Tr [E(m)ϱ(θ)] D[g(m),θ,W ]. (3.11)

Assuming that the prior has been assigned, let us first consider a case where both ϱ0
and the details of its transformation ϱ0 → ϱ(θ) are known. Then, the optimisation
of the protocol is achieved by minimising equation (3.11) with respect to the vector
estimator g(m) and the measurement scheme E(m).

To simplify the problem we can combine g(m) and E(m) into a single object by
labelling the POM elements with the estimates as E(g) =

∫
dm δ (g(m) − g)E(m)

[7]. As a result, equation (3.11) can be recast in the form

ϵ̄ =
∫
dθdg p(θ)Tr [E(g)ϱ(θ)] D(g,θ,W). (3.12)

How equation (3.12) is to be optimised has been known since the works of Helstrom
[6, 53] and Holevo [54, 55]. Following their expositions in [6] and [54], respect-
ively, first we rewrite equation (3.12) as ϵ̄ =

∫
dg Tr [E(g)Q(g)], with Q(g) =∫

dθ p(θ)ϱ(θ)D(g,θ,W). If Eopt(g) is the optimal strategy, then there exists a Her-
mitian operator Y satisfying thatY =

∫
dg Q(g)Eopt(g) =

∫
dgEopt(g)Q(g),

Q(g) − Y ⩾ 0,
(3.13)

and we have that ϵ̄ ⩾ ϵ̄min = Tr(Y ).
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The operator inequality is to be understood as ⟨u|Q(g)|u⟩ ⩾ ⟨u|Y |u⟩ for any |u⟩.
In addition, the conditions in equation (3.13), together with the closure relation∫
dgEopt(g) = I, imply that

[Q(g) − Y ]Eopt(g)dg = 0. (3.14)

Therefore, if we can find the Hermitian operator Y that satisfies the previous in-
equality and gives us the minimum value for Tr(Y ), then we may use equation
(3.14) to construct the optimal strategy5. When this is not possible, the conditions
in equation (3.13) offer at least a way to verify whether a given measurement is
optimal. Helstrom applied the latter approach to several examples in [6].

A second possibility is to assume that the POM is known and minimise equation
(3.12) with respect to the initial probe state ϱ0. Macieszczak et al. studied this
problem in [111] for a single parameter and the square error, and proposed an heur-
istic algorithm to find the state and measurement scheme that are simultaneously
optimal6. We now adapt their arguments to the general case of this section.

If we express the parameter encoding as ϱ(θ) = Λθ(ϱ0), then we can define a dual
map Λ∗

θ for which Tr [BΛθ(C)] = Tr [Λ∗
θ(B)C] [111]. As a consequence, equation

(3.12) is equivalent to

ϵ̄ = Tr
{
ϱ0

∫
dθ p(θ)Λ∗

θ

[∫
dg E(g)D(g,θ,W)

]}
≡ Tr (ϱ0Γ) , (3.15)

and the optimal probe is a pure state given by the eigenvector of Γ with the min-
imum eigenvalue [111]. In addition, we can constrain the minimisation with further
conditions such as a fixed amount of resources ⟨R⟩ [49]. Then, by combining this
procedure with Helstrom and Holevo’s approach we may be able to construct the
general optimal solution. In particular, we can calculate the optimal measurement
E(0)

g for an initial seed ϱ(0)
0 , introduce this POM in equation (3.15) to find its optimal

state ϱ(1)
0 , and repeat the process until the solutions converge [111].

The work of Macieszczak et al. [111] demonstrates that the previous strategy
succeeds at least for the square error. This is a crucial result, since the framework
in this section can provide general solutions to a wide range of estimation problems.
Unfortunately, these results present two important difficulties. One of them is that,
except for a few cases such as those that admit covariant measurements [7, 49–52],
deriving exact solutions from this formalism is known to be challenging [6], and this
makes it difficult to exploit it in many practical scenarios.

As for the second difficulty, the fundamental equations can predict optimal
strategies that do not represent the repetitions of an experiment, which is the phys-
ical model that we have assumed in our definition for the regime of limited data.
We can see why this is the case by noticing that, according to equation (3.13), the
optimal POM for our initial state ϱ0 = ρ0 ⊗ ρ0 ⊗ · · · with µ copies of ρ0 can be
collective [105], and this would contradict our requirement of independent meas-
urements in equation (3.3)7. Similarly, the optimal state that arises from equation

5When the operators are represented by matrices we can find the estimates by imposing that
the determinant of [Q(g) − Y ] vanishes, and construct the optimal POM elements from its null
space. We recall that |v⟩ belongs to the null space of A when A |v⟩ = 0 [110].

6We may think of the optimisation of the measurement scheme as the goal of quantum metrology,
and of the full optimisation as the aim of quantum estimation theory.

7Remarkably, in section 5.3.5 we demonstrate that a collective POM is not better than inde-
pendent measurements for NOON states in a Mach-Zehnder interferometer.
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(3.15) for independent and identical measurements might entangle different copies
of the probe.

Given these difficulties, an alternative path that is commonly followed in quantum
metrology is to bound the estimation error [7, 46, 47, 56, 109]. The key advantage
of this method is that it sometimes produces tight bounds, and in many situations
this is sufficient to extract useful information about the fundamental precision that
a given scheme could achieve [7, 87, 112], which in turn provides a mathematic-
ally simpler way of finding optimal solutions without relying on the exact theory.
This is a common feature, for instance, of the asymptotic regime of many repetitions
[7, 112, 113]. Note, however, that in general the latter is only appropriate for applic-
ations with an abundance of measurement data, which is precisely the requirement
that we wish to weaken in this thesis, while those bounds that can be applied with
a low number of trials contain less information about fundamental limits because
they tend to be loose in such regime [46, 56].

The fact that the reliance on bounds is a type of approximation that will generally
introduce limitations on the applicability of the results cannot be overstated. Indeed,
the misapplication of bounds can often lead to paradoxes [109]. An important
example of these that we will revisit in later sections is that of the states that
appear to provide an infinite precision [114, 115], even when in practice they do not
and are, in fact, inefficient [7, 56, 116–118] (although not completely useless [119]).
The key observation is that such paradoxes appear when the assumptions that go
into the construction of such bounds are not appropriately taken into account, and
in principle there is no reason to think that there is a problem with the physical
scheme itself unless the paradox also arises in the exact theory.

This state of affairs best highlights the importance of developing a non-asymptotic
methodology and its potential usefulness in applications: we seek a formulation able
to provide more information about the regime of limited data than what current
techniques can do, and yet make it tractable enough to be useful in real-world ap-
plications. To achieve this, we will perform two preliminary analyses. Firstly, we
will examine which elements of the strategy based on bounds can be exploited for
our purposes. Secondly, we will explore how Helstrom and Holevo’s approach can be
adapted to study repetitions. The foundation of our methodology will emerge from
the practical combination of both, and while our solutions will not be as general
as what the exact theory could offer, we will show that they give us access to a
regime largely unexplored and required for further practical progress in the field of
quantum metrology and sensing.

3.3.2 Cramér-Rao bounds
Let us make our choice of deviation function in section (3.2) explicit, such that the
uncertainty of the estimation is approximately given by the mean square error

ϵ̄ ≈ ϵ̄mse =
∫
dθdm p(θ,m) Tr

{
W [g(m) − θ] [g(m) − θ]⊺

}
. (3.16)

In addition, we notice that, according to the condition in equation (3.4) for inde-
pendent and identical experiments, p(θ,m) = p(θ)∏µ

i=1 p(mi|θ).
A widely used method to compare estimation schemes consists in optimising

equation (3.16) by approaching the Cramér-Rao bound [7, 10, 43]. If we rewrite the
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mean square error as

ϵ̄mse =
∫
dθ p(θ) Tr

{
W
[
C(θ) + b(θ)b(θ)⊺

]}
, (3.17)

where we have introduced the covariance matrix of the vector estimator

C(θ) =
∫
dm p(m|θ)g(m)g(m)⊺

−
∫
dm p(m|θ)g(m)

∫
dm p(m|θ)g(m)⊺ (3.18)

and its vector bias b(θ) =
∫
dm p(m|θ) [g(m) − θ], then the classical version of the

Cramér-Rao bound is [9, 10, 120]

ϵ̄mse ⩾
∫
dθ p(θ) Tr

W


[
I + ∂b(θ)

∂θ

]
F (θ)−1

µ

[
I + ∂b(θ)

∂θ

]⊺


+
∫
dθ p(θ) Tr

[
Wb(θ)b(θ)⊺

]
, (3.19)

which is given in terms of the Fisher information matrix8

F (θ) = 1
µ

∫ dm

p(m|θ)

[
∂p(m|θ)

∂θ

] [
∂p(m|θ)

∂θ

]⊺

=
∫ dm

p(m|θ)

[
∂p(m|θ)
∂θ

] [
∂p(m|θ)
∂θ

]⊺
. (3.20)

A bound is particularly useful when it can be saturated. In our case, the neces-
sary and sufficient condition for the saturation of the previous inequality is [9, 10]

[g(m) − θ] =
[
I + ∂b(θ)

∂θ

]
F (θ)−1

p(m|θ)µ
∂p(m|θ)

∂θ
+ b(θ). (3.21)

For a given vector estimator and likelihood function, we can always use equation
(3.21) to verify whether our scheme achieves the bound. However, ideally we would
like to exploit the result in equation (3.19) to find optimal strategies in a more
general fashion. This can be done in two steps.

The first step is to employ the so-called maximum likelihood estimator, which is
defined as g(m) = maxθ [p(m|θ)] [7, 10]. The key advantage of this tool lies on its
asymptotic properties in the limit µ → ∞. In particular, the maximum likelihood
is asymptotically unbiased [7, 10], i.e., b(θ) → 0 as µ grows, and it satisfies the
saturation condition in equation (3.21) in such limit, which implies that it is also
asymptotically optimal [10, 121]. Thus, we can always approach the Cramér-Rao
bound in the regime of many repetitions µ ≫ 1, where it becomes

ϵ̄mse ≈ 1
µ

∫
dθ p(θ) Tr

[
WF (θ)−1

]
. (3.22)

If we further assume that the Fisher information does not depend on the parameters,
so that F (θ) = F for all θ, then we conclude that ϵ̄mse ≈ Tr(WF−1)/µ.

8Notice that the multidimensional integral in equation (3.20) is equivalent to µ times the integral
over a single observation m because we are assuming independent and identical trials.
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The true usefulness of this method is revealed when we further consider the
quantum aspect of the problem, which is the second step. According to equation
(3.20), the Fisher information matrix only depends on the likelihood function, which
is constructed out of the measurement scheme and the transformed state. In the
single-parameter case, this matrix is reduced to the scalar

F (θ) =
∫ dm

p(m|θ)

[
∂p(m|θ)
∂θ

]2

, (3.23)

and by maximizing it over all the POMs, Braunstein and Caves [122] proved the
inequality F (θ) ⩽ Fq(θ) = Tr [ρ(θ)L(θ)], where Fq(θ) is the quantum Fisher inform-
ation originally introduced by Helstrom in [123]. The symmetric logarithmic deriv-
ative L(θ) is obtained by solving L(θ)ρ(θ)+ρ(θ)L(θ) = 2∂ρ(θ)/∂θ, and the bound on
the Fisher information may be saturated with a measurement scheme based on the
projections onto the eigenstates of L(θ) [122, 124]. Moreover, Fq does not depend
on θ when the transformation is a unitary that takes the form U(θ) = exp(−iKθ)
[7, 125]. Therefore, ϵ̄mse ≈ ϵ̄cr = 1/ (µFq) given a POM for which F (θ) = Fq, which
is a quantum version of the scalar Cramér-Rao bound.

From this we conclude that the asymptotically optimal precision for a single
parameter is a function of ρ(θ) alone, and that to find optimal probes in this regime
we just need to maximize the quantum Fisher information. Since we also know an
estimator and a POM that can achieve this precision, we have completed our search
of the optimal strategy for many trials. Furthermore, an alternative and simpler
procedure that is very useful in practice is to consider a collection of relevant probe
states and compare their performances using 1/ (µFq), a quantity that is independent
of both the estimator and the measurement scheme.

To extend this idea to the multi-parameter case, we may construct a quantum
version of the Fisher information matrix with components [6, 33, 87, 99, 123]

[Fq(θ)]ij = 1
2Tr {ρ(θ) [Li(θ)Lj(θ) + Lj(θ)Li(θ)]} , (3.24)

where Li(θ) is the symmetric logarithm derivative of the i-th parameter. Assuming
that the state is pure, it can be shown that there is an individual measurement on
a single copy of the system for which F (θ) = Fq(θ) if and only if [99, 126]

⟨ψ(θ)|[Li(θ), Lj(θ)]|ψ(θ)⟩ = 0, (3.25)

for all i, j. Moreover, if the parameters are encoded with the unitary U(θ) =
exp(−iK · θ), then the weak commutation condition in equation (3.25) is satisfied
when [Ki, Kj] = 0, for all i, j [99, 126], and the components of such matrix are

(Fq)ij = 4 (⟨ψ0|KiKj|ψ0⟩ − ⟨ψ0|Ki|ψ0⟩⟨ψ0|Kj|ψ0⟩) , (3.26)

so that the optimal asymptotic error is ϵ̄cr = Tr(WF−1
q )/µ when F (θ) = Fq. Im-

portantly, this is again a function of ρ(θ) alone. It is interesting to note that from
equation (3.26) we recover a notion of sensitivity similar to what we found via the
error propagation formula in section 2.3.1, since for a single parameter it becomes
Fq = 4 (⟨ψ0|K2|ψ0⟩ − ⟨ψ0|K|ψ0⟩2) and, in that case, ϵ̄cr = 1/(4µ∆K2)9.

9Nevertheless, in section 2.3.1 we used the quantity 1/(4∆K2) as an approximation to the
experimental error that was measured in the laboratory after many trials, while in this context it
plays the role of a quantity that gives information about the precision for each shot in the regime
of many of them.
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The restrictive conditions required to exploit the multi-parameter result contrast
with the generality of the scalar case. Fortunately, all the multi-parameter schemes
in this thesis are based on pure states and commuting generators, and as such the
condition in equation (3.25) is satisfied. In those cases where this is not true, one
can still study bounds based on the right logarithmic derivatives that arise from
ρ(θ)Ri(θ) = ∂ρ(θ)/∂θi, which can be tighter than the bounds based on equation
(3.24) [6, 87], or rely on the Holevo Cramér-Rao bound [52, 99, 127]. The latter
is a more general result and can be asymptotically approached if we allow for col-
lective measurements within the framework of quantum local asymptotic normality
[99, 128]. However, note that as in the case of Helstrom and Holevo’s Bayesian
approach, these collective measurements would no longer represent repetitions of an
experiment, which is the practical case that we wish to investigate.

It is also important to observe that the classical Cramér-Rao bound in equation
(3.22) that acts as the basis of the previous method can be also obtained without
taking the limit µ → ∞ if we assume unbiased or locally unbiased estimators10 [7, 10,
104, 130]. Nevertheless, here we are interested in considering a more general set of
scenarios where these restrictions do not necessarily apply, and this generality means
that in most cases we can only approach the Cramér-Rao bound asymptotically.

From this discussion we can readily extract an important conclusion that will
prove to be useful for our methodology. Since the quantum Cramér-Rao error can
be approached asymptotically when the appropriate conditions are fulfilled, the
bounds derived with this tool are fundamental in the regime of many trials. As a
consequence, we may see the Bayesian uncertainty in equation (3.16) as the true
underlying theory (for a moderate amount of prior knowledge) that can give us
the optimum in general and the Cramér-Rao bound as an approximation to it that
works and is recovered in certain situations. While the formal framework to exploit
this idea in a consistent way is given by the theory of local asymptotic normality
[121, 128, 131], for our purposes it suffices to follow some known heuristic arguments
that will be revisited in chapters 4 and 6, and to combine them with the numerical
simulations of practical schemes that constitute a part of our results.

3.3.3 Other quantum bounds
Although the Cramér-Rao bound generates fundamental limits once we have collec-
ted enough data, there is no reason to expect that these results will be valid out of
this regime, and this motivates the search of quantum bounds that are valid for all
µ. This idea was precisely explored by Tsang [56] and Lu and Tsang [46], where the
two families of Bayesian bounds [120] were extended to the quantum regime.

According to their results, the single-parameter quantum Ziv-Zakai bound for a
flat prior of width W0 is [56]

ϵ̄mse ⩾
1
2

∫ W0

0
dθθ

(
1 − θ

W0

) [
1 −

√
1 − |f(θ)|2µ

]
, (3.27)

where f(θ) = ⟨ψ0|ψ(θ)⟩, |ψ0⟩ is a pure state and |ψ(θ)⟩ is the result of having
encoded the parameter with a unitary transformation. Note that the parameter
domain of the integral in equation (3.27) is always [0,W0], independently of where

10An estimator is unbiased if b(θ) = 0 for all θ, while it is locally unbiased at θ0 if b(θ0) = 0
and

∫
dm gi(m) ∂p(m|θ0)/∂θj = δij [129].
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the uniform prior is centred. Equation (3.27) can be derived by reinterpreting the
expression for the mean square error as a binary hypothesis problem [56, 120].

Furthermore, the quantum Weiss-Weinstein bound, which belongs to the second
Bayesian family and is based on the covariance inequality11, establishes that [46]

ϵ̄mse ⩾ sup
0<s<1

θ2fc(s, θ)2|f(θ)|4µ

hc (s, θ) |f(θ)|2µ − 2fc(s, 2θ)Re
{

[f(θ)2f(2θ)∗]µ
} , (3.28)

where
hc (s, θ) = fc(2s, θ) + fc(2 − 2s, θ), (3.29)

fc(s, θ) =
∫

{θ′, p(θ′) ̸=0}
dθ′p(θ′ + θ)sp(θ′)1−s. (3.30)

Interestingly, these tools share the simplicity of the Cramér-Rao bound to some
extent, since the quantities in equations (3.27 - 3.30) do not depend on either the
estimator or the POM. Thanks to this we can derive lower bounds for a given trans-
formed state ρ(θ) and any desired number of copies. Moreover, while the Cramér-
Rao bound is a local quantity that depends on the derivatives of the likelihood
function, the Ziv-Zakai and Weiss-Weinstein bounds are able to access the global
topology of the parameter domain. This is particularly transparent when we observe
that equations (3.27) and (3.28) are given in terms of the fidelity |f(θ)|2.

These bounds can provide useful information about the non-asymptotic regime
where the number of repetitions is low, but they also present important limitations.
For example, the quantum Ziv-Zakai bound can recover the asymptotic scaling given
by the Cramér-Rao bound, but it is not tight in general [56]. The situation improves
with the quantum Weiss-Weinstein bound, since it is asymptotically tight. However,
it is not guaranteed that we can saturate this bound in the regime with a finite
number of measurements [46].

Similar problems arise when we consider other quantum bounds. For instance,
Liu and Yuan [47] introduced the quantum optimal-bias bound by optimising the
trade-off between bias and variance in the scalar version of equation (3.17). This
result is also valid for all µ, but it is lower than the Cramér-Rao bound by construc-
tion and, as we will see, the latter is sometimes lower than the optimal error when
it is applied out of its regime of applicability.

In addition, there exists a Bayesian version of the Cramér-Rao bound based
on the van Trees inequality [132]. Unfortunately, its derivation requires that the
prior probability satisfies the boundary conditions p(a) → 0 and p(b) → 0, and this
excludes the case of a flat prior between a and b.

Some of these caveats are also inherited by the multi-parameter generalisation
of these results, as the multi-parameter Ziv-Zakai bound introduced by Zhang and
Fan [133] exemplifies. Worse, in some cases we can even lose the computational
advantage provided by the use of bounds, which is precisely what happens with the
multi-parameter Weiss-Weinstein bound [46].

Due to these difficulties, we will not employ these types of bounds to derive our
results. Nonetheless, in chapter 5 we compare the single-parameter Ziv-Zakai and
Weiss-Weinstein bounds in equations (3.27 - 3.30) with the results that arise from
our proposed strategy, and we show that our methodology is a superior choice to
study the non-asymptotic regime of the practical situations under consideration.

11The covariance inequality is
∫

dθdm p(θ,m) f(θ,m)f(θ,m)⊺ ⩾ T G−1T , where T =∫
dθdm p(θ,m) f(θ,m)g(θ,m)⊺ and G =

∫
dθdm p(θ,m) g(θ,m)g(θ,m)⊺ [120].
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3.3.4 The single-shot paradigm
Instead of addressing a multi-parameter experiment that is repeated µ times directly,
let us change our strategy and focus our attention on a simpler scenario first: a single
shot of a system with one parameter. Since µ = 1, collective measurements do not
arise, and thus the optimal strategy that satisfies Helstrom and Holevo’s condition
in equation (3.13) presents no practical difficulty. Moreover, the solution for the
squared deviation function is known [6, 111, 134]. We dedicate the rest of this
section to review this result.

Assuming that the probe state ρ0 and the unitary operator U(θ) are known, we
wish to optimise the mean square error

ϵ̄mse =
∫
dθdm p(θ,m) [g(m) − θ]2 , (3.31)

which arises from equation (3.16) when µ = 1 and d = 1, over all possible measure-
ment schemes and estimators. Following Macieszczak et al. [111], first we rewrite
equation (3.31) as

ϵ̄mse =
∫
dθp(θ)θ2 + Tr(S2ρ− 2Sρ̄), (3.32)

where ρ =
∫
dθp(θ)ρ(θ) and ρ̄ =

∫
dθp(θ)ρ(θ)θ are state moments, and having

the POM and estimator inside the operators S =
∫
dm g(m)E(m) and S2 =∫

dm g(m)2E(m).
The measurement scheme E(m) is completely general. However, Macieszczak

et al. [111] proved that restricting the possible POMs to the class of projective
measurements does not lead to a loss of optimality. To see it, let us rewrite the
operators S and S2 as

S =
∫
dg gE(g), S2 =

∫
dg g2E(g), (3.33)

where we have used E(g) =
∫
dm δ(g(m) − g)E(m) to relabel the POM elements

with the estimates, and notice that

S2 − S2 =
∫
dg g2E(g) −

[∫
dg gE(g)

]2
⩾ 0 (3.34)

due to the operator version of Jensen’s inequality12 [111, 135]. This implies that
Tr(S2ρ) ⩾ Tr(S2ρ), which can be saturated by choosing a projective measurement;
consequently, in the latter case we have that

ϵ̄mse =
∫
dθp(θ)θ2 + Tr

(
ρS2 − 2ρ̄S

)
. (3.35)

The final step to find the optimum is to minimise the latter equation with respect
to S, arriving at [111, 134]

ϵ̄mse ⩾
∫
dθp(θ)θ2 − Tr (ρ̄S) , (3.36)

where now S satisfies Sρ+ ρS = 2ρ̄. This is the minimum uncertainty.
12Given a convex function f(t), Jensen’s operator inequality establishes that

∫
dt E(t)f(t) ⩾

f
[∫

dt E(t)t
]

[111, 135].
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A key advantage of this result is that the single-shot optimal strategy can be
explicitly constructed from

S =
∫
ds sE(s) =

∫
ds s |s⟩⟨s| , (3.37)

since the inequality in equation (3.36) is saturated when the projectors {|s⟩} as-
sociated with the estimates {s} are used as the measurement scheme. In fact, the
eigenvalues {s} are precisely the estimates given by the mean of the posterior density
p(θ|s) ∝ p(θ)p(s|θ) [134], which is the classical solution for the optimal estimator
[7, 9, 136], and for that reason we will refer to the observable S as the optimal
quantum estimator.

Since equation (3.37) provides the optimal strategy, it must fulfil Helstrom and
Holevo’s condition in equation (3.13). That this is indeed the case was shown by
Helstrom in [6]. Following his discussion, we start by noticing that, in this case,
Q(g) =

∫
dg p(θ)ρ(θ)(g − θ)2 = g2ρ− 2gρ̄+ ρ2, where ρ2 =

∫
dθp(θ)ρ(θ)θ2. We may

now use this and the optimal POM {|s⟩⟨s|} to construct the operator Y given in
equation (3.13), finding that

Y = S2ρ− 2Sρ̄+ ρ2 = ρS2 − 2ρ̄S + ρ2. (3.38)

The goal is then to show that Q(g) − Y is semi-definitive positive. To achieve this,
let us rewrite Y as Y = ρ2 − SρS by using the two forms in equation (3.38) and
the equation satisfied by the optimal quantum estimator S [6]. Similarly, Q(g) =
ρ2 + gρg − gρS − Sρg. Hence, Q(g) − Y = (S − gI)ρ(S − gI) and [6]

⟨u| [Q(g) − Y ] |u⟩ = ⟨u|(S − gI)ρ(S − gI)|u⟩ ⩾ 0, (3.39)

as required, since |u⟩ can be any state and we may choose |u⟩ = (S − gI)−1|ū⟩, with
|ū⟩ arbitrary [6].

Equation (3.36) was originally discovered by Personick [134, 137] and explored
by him and others in the context of communication theory [6, 134, 137], and it
has been more recently used to study a depolarizing channel [138], for frequency
estimation [111], for magnetic sensing [139] and to estimate the coupling strengh
of an optomechanical system [140]. Moreover, a formally similar result emerges in
the construction of the quantum Allan variance [141]. Nevertheless, this result does
not appear to have been fully exploited to study phase estimation in the regime of
limited data and an intermediate prior that we are considering here.

As with the Cramér-Rao bound, the results derived from the optimal single-shot
mean square error will be fundamental and achievable, and there is an algorithm to
calculate the optimal strategy explicitly. One of the central ideas in this thesis is
the proposal of a practical way of exploiting this result for µ ̸= 1 and d ̸= 1.

3.3.5 A new derivation of the optimal single-shot mean square
error for a single parameter

The final idea that we need to construct our non-asymptotic framework, which we
discuss now, emerges in a rather surprising way when we derive the optimal single-
shot mean square error using a different method. To the best of our knowledge, the
path that we follow in this section has not been considered in existing literature.
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Given the single-parameter error in equation (3.31), our first step is to perform a
classical optimisation over all the possible estimators. If we look at ϵ̄mse in equation
(3.31) as a functional of g(m), then we can formulate the variational problem [9]

δϵ̄mse [g(m)] = δ
∫
dm L [m, g(m)] = 0, (3.40)

where we have defined the object L [m, g(m)] =
∫
dθp(θ,m) [g(m) − θ]2, and, math-

ematically, equation (3.40) is equivalent to requiring that [110]

dϵ̄mse [g(m) + βh(m)]
dβ

∣∣∣∣∣
β=0

= 0, for all h(m). (3.41)

In our case we have that
dϵ̄mse [g(m) + βh(m)]

dβ
= d

dβ

∫
dm L [m, g(m) + βh(m)]

= 2
∫
dθdm p(θ,m) [g(m) + βh(m) − θ]h(m), (3.42)

which means that the requirement to find the extrema of the error is

dϵ̄mse [g(m) + βh(m)]
dβ

∣∣∣∣∣
β=0

= 2
∫
dθdm p(θ,m) [g(m) − θ]h(m) = 0, (3.43)

and this implies that
∫
dθp(θ,m)[g(m) − θ] = 0 if equation (3.43) it is to be sat-

isfied by an arbitrary h(m). By decomposing the joint probability as p(θ,m) =
p(m)p(θ|m), where the posterior satisfies that p(θ|m) ∝ p(θ)p(m|θ), we see that the
solution g(m) =

∫
dθp(θ|m)θ makes the error ϵ̄mse [g(m)] in equation (3.31) extremal,

which is a well-known result in probability theory13 [9].
To verify that this is a minimum we can use the functional version of the second

derivative test. Calculating the second variation from equation (3.42) we see that

d2ϵ̄mse [g(m) + βh(m)]
dβ2

∣∣∣∣∣
β=0

= 2
∫
dθdm p(θ,m)h(m)2 > 0 (3.44)

for non-trivial variations; consequently, choosing the estimator g(m) =
∫
dθp(θ|m)θ

gives the minimum mean square error.
Upon introducing g(m) =

∫
dθp(θ|m)θ in equation (3.31) we thus find the bound

ϵ̄mse ⩾ ϵc
opt =

∫
dm p(m)

{∫
dθp(θ|m)θ2 −

[∫
dθp(θ|m)θ

]2
}

=
∫
dθp(θ)θ2 −

∫ dm∫
dθp(θ)p(m|θ)

[∫
dθp(θ)p(m|θ)θ

]2
, (3.45)

where the second line can be obtained by noticing that
∫
dm p(m)p(θ|m) = p(θ)

and using Bayes theorem (see section 2.1).
The first line of equation (3.45) is the familiar expression for the variance of

the posterior probability averaged over the probability p(m), which represents the
13Interestingly, we may say that L =

∫
dθp(θ, m) [g(m) − θ]2,

∫
dθp(θ, m)[g(m) − θ] = 0 and the

estimator g(m) =
∫

dθp(θ|m)θ are to Bayesian estimation theory what the Lagrangian, the Euler-
Lagrange equations and the trajectory of the system are to analytical mechanics, respectively.
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theoretical information about the possible values for the outcomes. The second
expression, on the other hand, contains a term that displays a remarkable similarity
with the expression for the classical Fisher information in equation (3.23), and this
formal analogy becomes even more apparent when we further consider the quantum
part of the problem. In particular, by inserting p(m|θ) = Tr[E(m)ρ(θ)] in equation
(3.45) we find that

ϵc
opt =

∫
dθp(θ)θ2 −

∫
dm

Tr [E(m)ρ̄]2

Tr [E(m)ρ] , (3.46)

with ρ =
∫
dθp(θ)ρ(θ) and ρ̄ =

∫
dθp(θ)ρ(θ)θ. This suggests that it may be possible

to bound this term with a procedure similar to the proof proposed by Braunstein
and Caves [122] to derive the quantum Cramér-Rao bound.

Following this analogy we can introduce the Bayesian counterpart of the equation
for the symmetric logarithmic derivative in section 3.3.2, that is, Sρ + ρS = 2ρ̄14.
This allows us to manipulate the second term in the right hand side of equation
(3.46) as

∫
dm

Tr [E(m)ρ̄u]2

Tr [E(m)ρ] =
∫
dm

Re {Tr [E(m)Sρ]}√
Tr [E(m)ρ]

2

⩽
∫
dm

∣∣∣∣∣∣Tr [E(m)Sρ]√
Tr [E(m)ρ]

∣∣∣∣∣∣
2

=
∫
dm

∣∣∣∣∣∣Tr
 ρ

1
2E(m) 1

2√
Tr [E(m)ρ]

E(m) 1
2Sρ

1
2

∣∣∣∣∣∣
2

⩽
∫
dm Tr [E(m)SρS] = Tr(ρS2) = Tr (ρ̄S) , (3.47)

where we have used the Cauchy-Schwarz inequality

|Tr[X†Y ]|2 ⩽ Tr[X†X]Tr[Y †Y ] (3.48)

with X = E(m) 1
2ρ

1
2/
√

Tr [E(m)ρ], Y = E(m) 1
2Sρ

1
2 . As expected, the operations

performed in equation (3.47) are formally identical to those appearing in the proof
of the Braunstein-Caves inequality [122, 124].

The combination of equations (3.45 - 3.47) finally gives us the chain of inequalities

ϵ̄mse ⩾ ϵc
opt ⩾ ϵq

opt =
∫
dθp(θ)θ2 − Tr(ρ̄S), (3.49)

where the second term in ϵq
opt can be seen as a Bayesian counterpart of the quantum

Fisher information.
From our discussion of the classical optimisation we see that the first inequality

in equation (3.49) is saturated when the estimator is given by the average over
the posterior. On the other hand, the quantum bound in equation (3.47) relies on
two inequalities. The first of them is saturated when Tr[E(m)Sρ] is real, while the

14However, note that ρ̄ is not a derivative.
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Cauchy-Schwarz inequality is saturated if and only ifX ∝ Y for some proportionality
constant [142]. In our case this implies that

E(m) 1
2ρ

1
2

Tr [E(m)ρ] = E(m) 1
2Sρ

1
2

Tr [E(m)Sρ] . (3.50)

These conditions are fulfilled by constructing a POM based on the projections
onto the eigenstates of S. To verify this, let us first consider the eigendecomposition
S =

∫
ds s |s⟩⟨s|. Then, by using the POM E(s) = |s⟩⟨s| we find that

∫
ds

Tr [E(s)ρ̄]2

Tr [E(s)ρ] =
∫
ds

Re {Tr (|s⟩⟨s|Sρ)}√
Tr (|s⟩⟨s| ρ)

2

=
∫
ds s2Tr (|s⟩⟨s| ρ]) = Tr(ρS2), (3.51)

as required, since Tr(ρS2) = Tr(ρ̄S). Therefore, we have recovered the result for the
single-shot mean square error reviewed in section 3.3.4. Moreover, further intuition
can be gained by noticing that Tr(ρS) =

∫
dθp(θ)θ, so that we can rewrite the

quantum bound in equation (3.49) as

ϵ̄mse ⩾ ∆θ2
p − ∆S2

ρ , (3.52)

where we have defined the prior uncertainty as

∆θ2
p =

∫
dθp(θ)θ2 −

[∫
dθp(θ)θ

]2
(3.53)

and ∆S2
ρ = Tr (S2ρ) − Tr (Sρ)2. In words, the uncertainty of our estimation is lower

bounded by the difference between the prior variance and the variance of the optimal
quantum estimator.

One could be tempted to argue that by introducing Sρ + ρS = 2ρ̄ into the
derivation we are somehow assuming the answer, as this is indeed the formal solution
that arises from the direct optimisation in section 3.3.4 that combines classical
and quantum elements. However, note that this equation is introduced here as
a redefinition of ρ̄ that allows us to derive a bound, and whose form is imposed by
exploiting the formal analogy with the Fisher information. In addition, there is a
way to see how Sρ+ρS = 2ρ̄ emerges without performing the quantum optimisation.
If we combine Bayes theorem and the Born rule as

p(θ|m) = p(θ)Tr[E(m)ρ(θ)]∫
dθp(θ)Tr [E(m)ρ(θ)] , (3.54)

then we have that g(m) =
∫
dθp(θ|m)θ = Tr[E(m)ρ̄]/Tr[E(m)ρ] for the optimal

estimator. By further rearranging its terms we find that

0 = Tr [g(m)E(m)ρ− ρ̄E(m)] ,
0 = Tr [g(m)E(m)ρ+ ρg(m)E(m) − 2ρ̄E(m)] ,
0 = Tr [ρg(m)E(m) − ρ̄E(m)] , (3.55)

which at this stage are fully equivalent. However, we can rewrite them as

Tr [Lρ− ρ̄] = 0, Tr [Sρ+ ρS − 2ρ̄] = 0, Tr [ρR − ρ̄] = 0, (3.56)
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respectively, after taking the integral over the experimental outcomes, so that they
are satisfied when Lρ = ρ̄, Sρ+ρS = 2ρ̄ and ρR = ρ̄. Note that these equations are
not equivalent, and since we have implicitly assumed that the unknown parameter
is a real quantity, we need a quantum estimator that is Hermitian, which in general
is only given by S. Remarkably, this way of looking at the problem is reminiscent of
the quantization rule to upgrade expressions with real quantities from their classical
form to their quantum version by replacing c-numbers with q-numbers.

Thus we conclude that while the proofs by Personick [134], Helstrom [6] and Ma-
cieszczak et al. [111] are preferred from a mathematical point of view, our present-
ation provides physically useful insights. Certainly, its major strength is that it
clearly separates the classical optimisation from the manipulations associated with
the quantum part of the problem, in complete analogy with the original derivation
by Braunstein and Caves for the Fisher information [143]. This separation between
classical and quantum contributions to the process of optimising the error is precisely
the insight that we were looking for, and it will provide us with a powerful heuristic
intuition to understand why the method proposed in the next section works.

3.4 Constructing a non-asymptotic metrology
We finally have all the pieces that we need in order to formulate the central method
that we propose in this thesis:

1. A common way of extracting information from reality is to repeat a given
experiment a certain number of times while we also exploit quantum features
such as squeezing or entanglement in each shot. The number of trials is always
finite in practice, and potentially small. Moreover, a realistic amount of prior
knowledge will typically be moderate.

2. According to our discussion in section 3.2, a suitable figure of merit to study
this experimental arrangement is the Bayesian square error in equation (3.16).

3. Our first step is to consider the optimisation of the estimator and that of the
quantum strategy in a separate fashion. While this separation is commonly
exploited in the context of the Cramér-Rao bound (section 3.3.2), both minim-
isations are usually merged when the Bayesian approach is employed (sections
3.3.1 and 3.3.4). Our discussion in section 3.3.5 demonstrates that splitting
the problem in this way is also meaningful within the Bayesian framework.

4. We will choose the Bayesian estimator that is optimal with respect to the
square error criterion for any number of repetitions. Therefore, this part of
the problem will always be exact in all our calculations.

5. The quantum strategy will be selected in two ways. One of them is to use
the asymptotic regime as a guide and consider quantum schemes that are
asymptotically optimal according to the Cramér-Rao bound. The solutions
that emerge from this method, which is based on a direct analysis of the
non-asymptotic uncertainties that we calculate, provide less general but useful
information about the non-asymptotic regime15.

15Note that the optimal Bayesian estimator can approach the Cramér-Rao bound asymptotically
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6. A different possibility is to select the quantum scheme that is optimal for a
single shot of the experiment, and then repeat this strategy as many times
as the application at hand demands or allows for. To achieve this, we will
exploit the quantum square error in sections 3.3.4 and 3.3.5, and in chapter
7 we will generalise this result to cover the multi-parameter regime. This
procedure generates uncertainties that have been optimised in a shot-by-shot
fashion and, as such, we are only optimising the resources that we need.

One may see the first procedure to select the quantum strategy as analogous to
a semiclassical approximation, where the Fisher information and the Cramér-Rao
bound are to the Bayesian uncertainty what the part of the problem that is modelled
by classical mechanics is to the quantum degrees of freedom. This contrasts with
the different logic that is followed by the shot-by-shot method, which instead of
optimising the protocol assuming that we will have many trials, it selects a strategy
with a good performance for the experiments that will actually be performed.

Other techniques could be more general. However, our method provides a direct
link with the reality of experimental practice, while, at the same time, we will see
that it relies on computations that are generally tractable. We recall that we do
not apply Helstrom and Holevo’s method in its most general way (section 3.3.1),
neither shall we use the Holevo Cramér-Rao bound directly16, because our model
represents repetitions and, as such, it excludes the possibility of considering collective
measurements. Furthermore, we have also excluded the application of lower bounds
for which it is not clear whether they are tight in the regime of limited data, as is
the case in general for the proposals considered in section 3.3.3.

The rest of this work is dedicated to implementing this programme, and its
potential application shall be illustrated by analysing the performance predicted by
our methodology for optical interferometers and quantum sensing networks.

3.5 Summary of results and conclusions
In this chapter we have laid a bridge between the results that are available in the
literature and those that we intend to derive in the following chapters. We have
reviewed the fundamental equations that the optimal quantum strategy needs to
satisfy in the Bayesian framework, identifying its strengths in the single-shot re-
gime, and acknowledging its practical limitations when collective measurements are
allowed. We have also discussed the useful aspects of an approach based on bound-
ing the estimation error, with a particular emphasis on the potentially fundamental
character of the Cramér-Rao bound in the regime of many repetitions.

Furthermore, we have offered a new perspective on the derivation of the quantum
strategy that makes the mean square error optimal for a single shot. A key novelty is
the explicit separation of the classical and quantum contributions to the optimisation
of the uncertainty, in analogy with Braunstein and Caves’s original derivation of the
inequality for the Fisher information [122]. This formal connection between Bayesian
quantities and those associated with Fisher methods has appeared in [144]

in the same way that the maximum of the likelihood does. We will recall the arguments showing
that this is the case in chapters 4 and 6.

16Although if we can saturate the multi-parameter quantum Cramér-Rao bound, then we are
also saturating the version given by Holevo [99].
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Bayesian multi-parameter quantum metrology with limited data, Jesús Rubio
and Jacob Dunningham, arXiv:1906.04123 (2019).

From the analysis of these results we propose a strategy to study and design
experiments that takes into account the challenges faced in practice, focusing our
attention on limited amounts of measurement data and moderate prior knowledge.
In particular, it is argued that the classical part of the problem can always be treated
exactly, while the quantum part can be approximated to make the optimisation
more tractable. This is the case if we employ the asymptotic regime given by the
Cramér-Rao bound as a guide. Alternatively, a more powerful approach is to repeat
the quantum strategy that is optimal for a single shot. The philosophy of both
methods, being completely different, can complement each other, since the former
assumes in advance that a large number of experiments will eventually be performed
while the latter only focus on those that will actually happen.

Finally, we have carried out a detailed analysis of how different measures of
uncertainty should be used in metrology, and the quantity that is relevant for our
purposes has been identified, which provides our results with a strong conceptual
and physically rigorous foundation. The three-step construction based on the char-
acteristics of experiments, simulations and theoretical studies was included in [136]

Non-asymptotic analysis of quantum metrology protocols beyond the Cramér-
Rao bound, Jesús Rubio, Paul Knott and Jacob Dunningham, J. Phys.
Commun. 2 015027 (2018).
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Chapter 4

Non-asymptotic analysis of
single-parameter protocols

4.1 Goals for the first stage of our methodology
We start by considering an experiment that has been repeated µ times and where
there is an unknown parameter θ. Given that configuration, the main aim of this
chapter is to analyse the non-asymptotic performance of metrology protocols that
have been optimised as if the asymptotic theory were valid, and to explore the
structure of the non-asymptotic regime with concrete examples. This is achieved by
utilising a versatile numerical framework that combines the exact optimal estimator
with the asymptotically optimal quantum strategy, implementing in this way the
first version of our methodology in chapter 3.

A crucial advantage of this approach is that it provides the means to investigate
the regime of validity of the quantum Cramér-Rao bound for specific strategies.
Moreover, it allows us to understand what happens in practice with the conclusions
extracted from this bound in the regime where it is not a valid approximation. We
will address these questions as a first application of our methods, having chosen a
selection of schemes among those that are commonly employed in the context of
optical quantum metrology [7, 8, 25, 89, 91, 92, 102, 108, 145–149].

The fundamental importance of determining when this bound should be em-
ployed becomes apparent if we take into account that many protocols are designed
by simply maximising the quantum Fisher information [7, 25], and that the assump-
tions that go into the construction of this tool are often not explicitly taken into
account [25, 33]. For example, in chapter 3 we saw that this technique normally
requires many repetitions to be useful, and that this is an important drawback to
study realistic physical systems. Since in general it is not possible to foresee when
and how the Cramér-Rao bound is going to fail in a concrete practical scenario from
the asymptotic theory itself, a closer analysis of those schemes that are asymptotic-
ally optimal is needed.

This problem has been widely acknowledged in the literature, both before [7, 44,
46, 47, 56, 130] and after [45, 48, 150, 151] the appeareance of our results in this
chapter (which were published in [136]), and several solutions have been proposed.
The direct approach based on choosing some general measure of uncertainty and es-
timating how many measurements are needed such that the results of the asymptotic
theory are valid has been implemented numerically [44, 152]. The early proposal in
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[44] provides, in addition, an analytical estimate of this number, a result that can be
derived by generalising the likelihood equation. More recently, Tsang [56] succeeded
in capturing the effect of the prior information with his quantum Ziv-Zakai bound
(see section 3.3.3), and the works based on the quantum Weiss-Weinstein [46] and
optimal-bias bounds [47] also included repetitions.

From our discussion in chapter 3 we can readily see the advantages of our meth-
odology over previous ideas. The numerical nature of the proposal in this chapter
is shared with the work in [152]. However, the latter does not take into account the
prior information, while our method is based on Bayesian techniques. On the other
hand, the fact that we are modelling the prior knowledge rigorously is shared with
the alternative quantum bounds in [46, 47, 56]. Nevertheless, we have seen that
these are not tight in general. On the contrary, we calculate the actual uncertainties
associated with the schemes under analysis, which implies that, by construction,
we know how to generate them in a hypothetical experiment. Thus our pragmatic
approach is both more general in the sense that it does not ignore important in-
formation, and also useful in practice because it relies on real uncertainties.

The results in this chapter show that, once we have fixed the measurement
strategy, both the number of trials and the minimum prior knowledge needed to
reach the asymptotic regime are state-dependent, so that the conclusions about
the relative performance of different optical schemes change in the non-asymptotic
regime. As a result, in general we can say that maximizing the Fisher information
alone does not always guarantee the best precision for experiments with a limited
number of observations, a conclusion with important implications for the analysis
of theory and experiments in quantum metrology.

4.2 Methodology (part A)

4.2.1 The asymptotic regime as a guide
The uncertainty in equation (3.16) is reduced to

ϵ̄mse =
∫
dθdm p(θ,m) [g(m) − θ]2 (4.1)

for µ repetitions and a single parameter (i.e., d = 1), and the estimator g(m) that
makes this error minimum can be found by solving the variational problem [9]

δϵ̄mse [g(m)] = δ
∫
dm L [m, g(m)] = 0, (4.2)

where L [m, g(m)] =
∫
dθp(m, θ) [g(m) − θ]2. This problem is formally identical

to the analogous case for a single repetition that we examined in section 3.3.5.
Consequently, we know that the optimal estimator is g(m) =

∫
dθp(θ|m)θ, with

p(θ|m) ∝ p(θ)p(m|θ), and that equation (4.1) becomes

ϵ̄mse =
∫
dmp(m)ϵ(m), (4.3)

where p(m) =
∫
dθp(θ)p(m|θ) and

ϵ(m) =
∫
dθp(θ|m)θ2 −

[∫
dθp(θ|m)θ

]2
. (4.4)
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Note that equation (4.4) is the experimental error identified in section 3.2. The
uncertainty in equation (4.3) is a function of the number of repetitions µ and, as
such, it is the quantity that we will employ to study the low-µ regime.

Once we have selected g(m), we wish to choose some quantum protocol that is
asymptotically optimal, but for our purposes this is only meaningful if we can treat
the Cramér-Rao bound as an approximation to equation (4.3). Fortunately, it is
known that this is the case not only for the maximum likelihood estimator reviewed
in section 3.3.2, but also for equation (4.3) [59, 153]. We now recall an heuristic
version of the standard argument that leads to this result (this can be found, e.g.,
in [9, 59, 153]), so that we can identify the key assumptions and the nature of the
approximation that we intend to exploit.

Let us imagine a hypothetical scenario where the likelihood p(m|θ) as a function
of θ becomes narrower and concentrated around a maximum θm when µ ≫ 1 [153],
where the observations m were originated from an unknown parameter θ′. In ad-
dition, the prior knowledge is enough to identify a region of the parameter domain
that contains θ′ and in which such maximum is absolute and unique, although the
experimental information dominates in this regime. This can be captured by a prior
probability that is approximately flat in that region, whose width we can express as
(b− a). Hence, p(θ) ≈ 1/(b− a) when θ ∈ [a, b], and zero otherwise.

If we express the likelihood formally as p(m|θ) = exp{log [p(m|θ)]}, then the
first step is to calculate the Taylor expansion

log [p(m|θ)] ≈ log [p(m|θm)] + 1
2
∂2log [p(m|θm)]

∂θ2 (θ − θm)2, (4.5)

where the first order term has vanished because θm represents a maximum. Addi-
tionally, by the law of large numbers (section 2.1.2)

∂2log [p(m|θm)]
∂θ2 =

µ∑
i=1

∂2log [p(mi|θm)]
∂θ2 ≈ µ

∫
dmp(m|θ′)∂

2log [p(m|θ′)]
∂θ2 , (4.6)

where we have also used that θm ≈ θ′ due to the consistency of the maximum of
the likelihood [10, 125, 153]. Therefore,

p(m|θ) ≈ p(m|θ′)exp
[
−µF (θ′)

2 (θ − θ′)2
]
, (4.7)

where F (θ′) is the classical Fisher information in equation (3.23) that arises from
expanding the derivative of equation (4.6).

By performing the calculation1

∫ b

a
dθp(θ)p(m|θ) ≈ p(m|θ′)

b− a

∫ ∞

−∞
dθ e− µF (θ′)

2 (θ−θ′)2 = p(m|θ′)
b− a

√
2π

µF (θ′) , (4.8)

where the approximation of the infinite limits holds due to the concentration of
p(m|θ) around a single point, we can approximate the posterior probability by a
Gaussian density as

p(θ|m) = p(θ)p(m|θ)∫
dθp(θ)p(m|θ) ≈

√
µF (θ′)

2π exp
[
−µF (θ′)

2 (θ − θ′)2
]
. (4.9)

1The details of both this calculation and those in equation (4.10) can be found in appendix A.4.
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In turn we can now calculate the Gaussian integrals
∫ b

a
dθp(θ|m)θ ≈

√
µF (θ′)

2π

∫ ∞

−∞
dθ e− µF (θ′)

2 (θ−θ′)2
θ = θ′,

∫ b

a
dθp(θ|m)θ2 ≈

√
µF (θ′)

2π

∫ ∞

−∞
dθ e− µF (θ′)

2 (θ−θ′)2
θ2 = (θ′)2 + 1

µF (θ′) (4.10)

and introduce them in equation (4.4), finding that ϵ(m) ≈ 1/[µF (θ′)] for the vari-
ance of the posterior.

Finally, by integrating the approximation for ϵ(m) with respect to the outcomes
we conclude that the error in equation (4.3) can be approximated as

ϵ̄mse ≈
∫
dθ′p(θ′)

∫
dm

p(m|θ′)
µF (θ′) =

∫
dθ′ p(θ′)

µF (θ′) , (4.11)

which is the single-parameter version of the classical Cramér-Rao bound in equation
(3.22). As a consequence, if the measurement scheme is given by the projections
onto the eigenspaces of the symmetric logarithmic derivative L(θ), or by some POM
consistent with these, and we have that F (θ) = Fq, then ϵ̄mse ≈ 1/(µFq), where
we recall that Fq = Tr[ρ(θ)L(θ)] is the quantum Fisher information and that this
quantity does not depend explicitly on the parameter when the latter is encoded as
ρ(θ) = e−iKθρ0eiKθ, where ρ(θ) is the transformed state2.

As we announced, this discussion demonstrates that the Bayesian uncertainty in
equation (4.3) can be approximated by the quantum Cramér-Rao bound under cer-
tain circumstances. Therefore, in our work this result plays the role of an asymptotic
approximation, instead of being employed as a proper bound that is generally valid.
This perspective3 allows us to define the asymptotic regime by two basic properties:

i) the number of trials µ is sufficiently large, and

ii) the prior information is enough to localise the relevant domain,
2Even if the Fisher information (classical or quantum) depends explicitly on the parameter,

we can still derive a lower bound on equation (4.11). In effect, let us define the functions u(θ) =√
p(θ)/

√
µF (θ), v(θ) =

√
p(θ)µF (θ), and apply the Cauchy-Schwarz inequality [110]∫

dθ|u(θ)|2
∫

dθ|v(θ)|2 ⩾

∣∣∣∣∫ dθu(θ)v(θ)
∣∣∣∣2;

then equation (4.11) satisfies

ϵ̄mse ≈
∫

dθ
p(θ)

µF (θ) ⩾
1∫

dθp(θ)µF (θ)
.

The inequality can be saturated when u(θ) ∝ v(θ), with a constant of proportionality that does not
depend on the parameter, and this is fulfilled if and only if the Fisher information F is a constant.
This result can also be derived using Jensen’s inequality [104].

3While in physics it is very natural (and useful) to explore how the limiting cases of some
theories recover the results given by less general theories, in estimation theory it is still common to
make a distinction between local and global approaches [7, 43, 109], where the former is associated
with the Fisher information and the frequentist interpretation of probabilities and the latter with
Bayesian techniques. However, the view exploited here is conceptually simpler, and as we argue in
appendix A.1, it can be applied to most cases that we may find in practice, which cast doubts on
the necessity of introducing different frameworks. The results in this thesis constitute an explicit
piece of evidence in favour of our perspective.
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while the non-asymptotic emerges when these requirements are not fulfilled4. It is
clear that whenever two strategies are being compared in terms of the quantum
Cramér-Rao bound, in general it is also necessary to indicate how large µ needs to
be such that ϵ̄mse ≈ 1/(µFq) is a good approximation. Moreover, if the likelihood
reaches its maximum for several values of the parameter, then we need enough prior
knowledge to select a single peak.

The verification of the fulfilment of these restrictions is often not done in the
literature, a problem that can be overcome by using the framework in the next
sections. Once we have identified the boundary separating the asymptotic and non-
asymptotic regimes, we can proceed to also analyse the low-µ performance of our
protocols. The intuition behind this idea can be understood as follows. Suppose that
a given scheme is designed to be run a certain number of times. In many situations
we might not know in advance the amount of data that will be generated, and one
of the weakest conditions that we can impose in those cases is that the scheme is
optimal after many repetitions. If the experiment happens to produce a low amount
of data, our protocol may not be optimal, but at least we will always be certain
that its performance in the long run will not break. A useful analogy is to imagine
a function f(x) for which the only known piece of information is that f(x) → a as
x → ∞. In general the limit cannot select a unique solution, but it will constrain
the search of f(x) to some extent. Similarly, we can think of the Cramér-Rao bound
as an asymptotic guide for the quantum strategy to be employed in the absence of
a better solution even when µ is low.

4.2.2 Experimental configuration and prior knowledge
Consider an experiment where a system described by ρ(θ) = e−iKθρ0eiKθ is meas-
ured with a scheme that is optimal with respect to the quantum Cramér-Rao bound
(i.e., where the classical and quantum Fisher information coincide), and that this
configuration is summarised in p(m|θ) = ∏µ

i=1 Tr[E(mi)ρ(θ)], with θ unknown. In
this section we discuss our method to select a prior that is suitable for this arrange-
ment and compatible with the idea of using the asymptotic regime as a guide.

For many practical cases such as those that we will consider, it is reasonable to
assume that we know a priori that the parameter is localised somewhere within a
domain of width W0, and that this domain is centred around the value θ̄, a state of
information that can be represented by the uniform density

p(θ) = 1/W0, for θ ∈ [θ̄ −W0/2, θ̄ +W0/2], (4.12)

and p(θ) = 0 otherwise5. Importantly, we have seen that W0 must be sufficiently
small to guarantee that the square error is an appropriate deviation function for
the estimation of periodic parameters, and this constraint on W0 implies that, in
general, the prior knowledge represented in equation (4.12) will be moderate. A first

4Note that we are implicitly assuming that the probability densities are regular enough to
perform the operations in the previous calculations. That this is the case will become apparent in
the outputs of our numerical simulations.

5It could be argued that a more realistic way of capturing this state of knowledge is to use
a probability function such as p(θ) = γ exp

[
−(θ − θ̄)2γ

]
/Γ[1/(2γ)], which is a box-like Gaussian

density with a flat peak [44]. Nevertheless, the idealisation in equation (4.12) suffices for our
purposes, since, as we discussed in section 3.2, in general the use of the square error as the measure
of uncertainty is already an approximation.
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rough estimate of this threshold is W0 ⩽ π, as our calculation in appendix A.2 for
the schemes of this chapter shows. This estimate will be refined in chapter 5.

We may justify equation (4.12) from first principles with Jaynes’s method of
transformation groups [9, 154, 155], whose key idea is to express the consequences of
the propositions that constitute our prior information I0 as mathematical statements
and to impose these conditions to construct the density p(θ). To see how this
is possible, first we notice that the periodic nature of the magnitude for an optical
phase implies that in principle 0 ⩽ θ < 2π. If we are completely ignorant about such
magnitude, then our state of information does not change when we rotate the phase
by some arbitrary angle, so that it can be treated as a location parameter. Formally,
this means that our state of knowledge is invariant under the transformation θ →
θ′ = θ + c, for some constant c and taking it to be modulo 2π. As a result, the
problems associated with the estimation of θ and θ′ are equivalent, which amounts
to imposing that p(θ)dθ = p(θ′)dθ′ = p(θ + c)dθ [9], that is, p(θ) = p(θ + c).
This functional equation is satisfied when p(θ) ∝ 1, and upon its normalisation we
conclude that p(θ) = 1/(2π) for 0 ⩽ θ < 2π, which is precisely the probability
measure employed by authors such as Helstrom [6] and Holevo [52] for the study of
an angular variable in the absence of prior knowledge.

Now we observe that, as Jaynes notes in [9], a transformation group is an ideal-
isation that can only be approximate in real-world problems. However, we may
consider the argument above as valid for some region of the parameter domain
where the invariance is approximately satisfied. If that region is of width W0, then
we recover the prior in equation (4.12).

Although this argument is conceptually appealing and a flat prior simplifies the
calculations, other authors have successfully employed different prior densities in
the context of phase estimation6. Moreover, there are other techniques to choose a
prior probability from formal arguments [157], and we could also imagine that our
experiment was previously carried by a different team and that we have a summary
of their findings encoded in p(θ). However, this malleable character of the prior
probability is not a problem for us, since we can always treat W0 and θ̄ as referring
to the parameter domain itself and take other prior measures on that region.

While the values for W0 and θ̄ will be given in practice by the prior information
about θ, our discussion in the previous section suggests that W0 has to fulfil certain
requirements associated with the likelihood model if the scheme that we intend to
implement is to be useful. In particular, we have seen that the likelihood function
needs to be concentrated around its highest peak in order to be able to use the
approximation ϵ̄mse ≈ 1/(µFq). This local behaviour implies that, for a given scheme,
the width of the parameter domain must be such that the solution to the problem
∂p(m|θ)/∂θ = 0 includes an asymptotically unique absolute maximum. Hence, we
introduce the quantity Wint, which we call intrinsic width, and we define it as the
width that fulfils the above criterion on average. Moreover, the prior probability
should not modify the information of the likelihood in the region where it becomes
narrower, which is already satisfied by equation (4.12).

We will see that different states are associated with a different Wint, and, as a

6For example, a prior emerging from a diffusive evolution offers an elegant transition from a
high amount of prior information to a state of complete ignorance [107], and a popular choice is to
use a Gaussian prior [111, 156], which according to the principle of maximum entropy [9] amounts
to assuming that the prior knowledge is given as the first two moments of some prior density.
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consequence, only those states with a value for Wint that is greater than or equal
to the width imposed by the experiment would be useful in a real scenario. In fact,
if W0 > Wint, then the experiment cannot distinguish between two or more equally
likely values, and the error tends to a constant when µ ≫ 17. When W0 = Wint, we
will refer to equation (4.12) as the intrinsic prior of our particular strategy.

To find Wint we can plot the posterior probability p(θ|m) as a function of θ dir-
ectly, since its relative extremes coincide with those of the likelihood when the prior
is flat. This procedure depends on the simulation of several random outcomes m for
different values of the parameter, and thus the solution is necessarily probabilistic.
However, this is enough for our purposes because our analysis only requires that
this is satisfied in the asymptotic regime, where µ is large. Furthermore, we will see
that in some simple cases it is possible to relate the conclusions extracted from the
numerical study with the analysis of the symmetries of the likelihood.

Recalling that the use of probability densities is a shorthand for

P (dθ, dm|I0) = p(θ)
µ∏

i=1
Tr[E(mi)ρ(θ)]dθdm, (4.13)

(see chapter 2), as a final observation we notice that we can think of the method in
this section as if we had introduced an extra piece of information in I0 indicating
that the experiment is well designed, in the sense that it can give potentially partial
but unambiguous information about θ.

4.2.3 Asymptotic approximation threshold
Once we have a method to choose the prior probability, the next step is to de-
vise a procedure that allows us to identify the boundary between the asymptotic
regime, which as we have seen is dominated by the experimental data, and the non-
asymptotic regime, where the prior information plays a central role. This can be
achieved by introducing the relative error

ετ = |ϵ̄mse(µτ ) − ϵ̄cr(µτ )|
ϵmse(µτ ) = |ϵ̄mse(µτ ) − 1/(µτFq)|

ϵmse(µτ ) , (4.14)

for ϵ̄mse ̸= 0, which is a simple but effective way of quantifying the deviation of
the quantum Cramér-Rao bound ϵ̄cr = 1/(µFq) with respect to the exact Bayesian
error ϵ̄mse in equation (4.3). Equation (4.14) will give us the minimum number of
observations µτ that is needed such that the approximation ϵ̄mse ≈ 1/(µFq) is valid
for a given threshold ετ , and such threshold needs to be chosen according to the
requirements of the specific experimental configuration that is being analysed.

4.2.4 Numerical mean square error
The final ingredient is an algorithm for the exact calculation of our central quantity,
that is, the mean square error in equation (4.3), where the optimal estimator g(m) =∫
dθp(θ|m)θ has already been selected. Since this integral has (µ + 1) dimensions

and we are interested in studying its behaviour as µ increases, in general we can
7This is an example of how the asymptotic approximation might fail, and new cases will arise

when we extend these ideas to multi-parameter scenarios in chapter 6.
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only compute it numerically. Although this is a purely numerical problem that
is well known in the Bayesian literature [7, 9] and can be treated with standard
numerical techniques [110, 158], we would like to highlight our specific calculation
scheme because it has proven to be relatively straightforward, very efficient for a
reasonable number of trials and robust against small variations of several numerical
parameters8. In particular, we have followed a three-step method:

1. We sample a collection of µ experimental outcomes m from p(m|θ′), and we
use them to update the prior in equation (4.12) via Bayes theorem until we
have generated the posterior probability p(θ|m), so that we can calculate its
variance in equation (4.4) and obtain ϵ(m). The integral that defines this
quantity can be calculated with a standard deterministic method.

2. The previous µ-trial process is repeated many times and the variances emerging
from them are averaged. Therefore, by virtue of the law of large numbers we
can construct the quantity

ϵ(θ′) =
∫
dmp(m|θ′)ϵ(m). (4.15)

This is an instance of the Monte Carlo techniques employed for multidimen-
sional integrals [110, 158].

3. By approximating the domain of p(θ′) with a discrete counterpart, implement-
ing the first two steps for each value of θ′ and taking the average∫

dθ′p(θ′)ϵ(θ′) = ϵ̄mse (4.16)

weighted by p(θ′) we finally arrive at the mean square error. For the integral
over θ′ we can again use a deterministic numerical method.

Surprisingly, the decomposition of the mean square error that provides us with an
efficient algorithm parallels in a perfect way our discussion about different measures
of uncertainty in section 3.2, which highlights a remarkable connection between the
design of the algorithm and the physical principles that are relevant for the present
situation. The numerical details, as well as the code to implement it in MATLAB,
are provided in appendix B.6.

4.3 Our methodology in action: results and dis-
cussion

The methodology that we have described is general enough to accommodate a wide
range of estimation problems, and in this section we explore its application to phase
estimation in optical interferometry [7, 89].

8We have found that the average run-time of our algorithm using a standard workstation is no
more than two days for any graph of ϵ̄mse in any of the figures of this thesis. The single-parameter
version of the algorithm can be found in appendix B.6.
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4.3.1 Common states in two-mode interferometry
Suppose we are working with the Mach-Zehnder interferometer that we reviewed
in chapter 2, so that the parameter θ is encoded as a difference of phase shifts by
means of the unitary operator exp(−iKθ) = exp(−iJzθ), with Jz = (a†

1a1 − a†
2a2)/2

and where ai, a
†
i are the creation and annihilation operators for the modes i = 1, 2.

Here we focus on a collection of states that together represent techniques commonly
employed in optical quantum metrology [7, 25, 92, 100]. Concretely, we consider:

1. Coherent states

|ψ0⟩ = UBSD1(α) |0, 0⟩ = |α/
√

2,−iα/
√

2⟩, (4.17)

where D1(α) = exp(αa†
1 − α∗a1) is the displacement operator and we recall

that UBS = exp(−iπ
2Jx), with Jx = (a†

1a2 +a†
2a1)/2, is the 50:50 beam splitter.

See appendix A.3 for the calculation of the second equality in equation (4.17).

2. NOON states
|ψ0⟩ = 1√

2
(|N, 0⟩ + |0, N⟩). (4.18)

3. Twin squeezed vacuum

|ψ0⟩ = S1(r)S2(r)|0, 0⟩ = |r, r⟩, (4.19)

where Si(r) = exp{[r∗a2
i − r(a†

i )2]/2}, for i = 1, 2, are squeezing operators.

4. Squeezed entangled states

|ψ0⟩ = N (|r, 0⟩ + |0, r⟩) (4.20)

where N = [2 + 2/cosh(|r|)]−1/2.

Coherent states present no photon correlations, since as Sahota and Quesada
[92] showed, in that case Q = J = 09, and this means that, according to equation
(2.38), the quantum Fisher information for these probes is Fq = n̄, where n̄ =
⟨ψ0|(N1 + N2)|ψ0⟩ is the total mean number of quanta per trial, Ni = a†

iai and
R = N1 + N2 is our resource operator for the interferometer. As such, we say that
their precision is asymptotically given by the standard quantum limit. Contrarily, for
NOON states we have that Q = n̄/2 − 1 and J = −1 [92], so that Fq = n̄2, and this
o(n̄) enhancement is commonly denominated Heisenberg limit10 [145]. Despite the
fact that NOON states present both intra-mode and inter-mode correlations, it can
be shown that only intra-mode correlations are necessary to achieve a Heisenberg

9Note that in this chapter Q and J denote the intra-mode and inter-mode correlations for a
Mach-Zehnder interferometer that we reviewed in section 2.3.1.

10While the standard quantum limit and the Heisenberg limit are useful notions, it is important
to observe that their definition depends in a crucial way on which measure of uncertainty is chosen
[7, 90, 109], and in general there are not unique definitions even when the latter is fixed [45].
Moreover, what we ultimately want is to enhance the overall performance for a given amount of
resources, which does not necessarily involve an analysis of the scaling with n̄. In fact, in chapter
7 we will see that the scaling with the number of parameters in a multi-parameter protocol is
sometimes more relevant than other contributions to the uncertainty. For a discussion about the
relative importance of studying the scaling of the error see [25, 45].
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Figure 4.1: Quantum Fisher information (solid lines) and its classical counterpart
(symbols) for coherent (circles), NOON (squares), twin squeezed vacuum (diamonds)
and squeezed entangled (triangles) states, with n̄ = 2 and a photon counting
measurement that has been implemented after the action of a 50:50 beam split-
ter UBS = exp(−iπ

2Jx). This numerical calculation illustrates the saturation of the
Braunstein-Caves inequality for path-symmetric states in equation (4.21).

scaling, as the twin squeezed vacuum with Q = n̄ + 1, J = 0 and Fq = n̄2 + 2n̄
demonstrates [7, 92], although squeezed entangled states, which have both types of
correlations, constitute a precision improvement over the previous probes [25]. Note
that although we have selected pure probes for simplicity, the ideas that form the
basis for our methods are also applicable to mixed states.

A common property of these configurations is that they belong to the family
of path-symmetric states that we reviewed in section 2.3.1, so that each mode is
associated with the same mean number of photons and the same photon number
variance. For this class of probes Hofmann showed that [91]

F (θ) =
∫ dm

p(m|θ)

[
∂p(m|θ)
∂θ

]2

= Tr [ρ(θ)L(θ)]

= 4
(
⟨ψ0|J2

z |ψ0⟩ − ⟨ψ0|Jz|ψ0⟩2
)

= Fq (4.21)

if we implement a photon-counting measurement after the action of a 50:50 beam
splitter, the POM elements of this scheme being{

exp
(

−iπ2Jx

)
|k⟩⟨k| exp

(
i
π

2Jx

)}
k
, (4.22)

with N1 ⊗ N2 =
∫
dk k |k⟩⟨k|. That is, the classical Fisher information for path-

symmetric probes reaches the bound imposed by the Braunstein-Caves inequality
[122]. In figure 4.1 we show an explicit calculation illustrating this fact for n̄ = 2.

Crucially, this implies that any discrepancy between the mean square error ϵ̄mse
in equation (4.3) and the Cramér-Rao bound ϵ̄cr = 1/(µFq) must necessarily come
from the asymptotic approximation that we discussed in section 4.2.1.
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Figure 4.2: Posterior density functions for random simulations of 1, 2, 10 and 100
trials, a flat prior and a photon-counting measurement implemented after the action
of a 50:50 beam splitter. The initial probes are (i) coherent state with n̄ = 2, (ii)
NOON state with n̄ = 2, (iii) NOON state with n̄ = 1, and (iv) twin squeezed
vacuum with n̄ = 2. We draw attention to the fact that these configurations cannot
distinguish a unique value when the initial prior is set to W0 = 2π, even if we are
in the asymptotic regime with µ ≫ 1.

4.3.2 Prior information analysis
The first step to apply our numerical strategy is to identify the intrinsic width Wint
of each state for a given n̄ and the POM in equation (4.22), recalling that we have
defined Wint as the largest value that the intrinsic width W0 can take such that the
likelihood p(m|θ) is concentrated around a single absolute maximum. Some of the
random simulations that are required to achieve this goal are shown in figure 4.2,
which allow us to deduce the size of the maximum width by direct examination.
The algorithm employed to generate them can be found in appendix B.5.

For a twin squeezed vacuum and a squeezed entangled state we have found that
Wint = π/2, while coherent states have Wint = π. Note that those results hold for any
n̄. On the contrary, with NOON states we have that Wint = π/n̄ or Wint = π/(2n̄)
depending on whether the value for N = n̄ in equation (4.18) is even or odd, provided
that we choose a prior centred around θ̄ = Wint/2.

The value of Wint for coherent states was also determined in [104] by examining
the regions where the single-shot likelihood function p(m|θ) increases or decreases
monotonically as a function of θ. This motivates the search of an alternative way of
determining Wint by studying the form of p(m|θ).

From figure (4.2) we observe that the posterior p(θ|m) ∝ p(m|θ) of our schemes
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presents two types of symmetry: the periodicity of an imaginary envelope and an
axis of symmetry within each period. We can formalise these by imposing

p(m|θ) = p(m|θ + T ),
p(m|S − θ) = p(m|S + θ) (4.23)

when the prior is flat, where T is the period of the envelope and S is the position
of the axis of symmetry. In addition, a form of the second condition that is more
useful in calculations is

p(m|θ) = p(m|2S − θ), (4.24)
which is found after introducing the change of variables θ → S − θ.

Let us check whether the previous idea allows us to recover the intrinsic width
that our numerical method associates with NOON states. The single-shot likelihood
function of this scheme is

p(n1, n2|θ) = ||⟨n1, n2|e−i π
2 Jxe−iJzθ|ψ0⟩||2, (4.25)

where |ψ0⟩ is the NOON state in equation (4.18) and we have changed the notation
as m → (n1, n2) to make the fact that each port has its own output explicit. A
lengthy but straightforward calculation that we include in appendix A.3 shows that

p(n1, n2|θ) = p(n,N − n|θ) = 2N ! cos2 [Nθ/2 + (2n−N)π/4]
2Nn!(N − n)! . (4.26)

Introducing this probability in the periodicity condition of equation (4.23), and
recalling that cos2(x) = [1 + cos(2x)]/2, we have that

cos (xn,N) = cos (xn,N +NT ) = cos (xn,N) cos (NT ) − sin (xn,N) sin (NT ) , (4.27)

with xn,N = Nθ + (2n−N)π/2, and this implies that

T = 2πk
N

, with k = 0,±1,±2, . . . . (4.28)

Similarly, from the condition in equation (4.24) we find

cos (xn,N) = cos [2SN + (2n−N)π − xn,N ]
= cos (xn,N) cos [2SN + (2n−N) π]

+ sin (xn,N) sin [2SN + (2n−N) π] , (4.29)

so that
S = π (k − n)

N
+ π

2 , with k = 0,±1,±2, . . . . (4.30)

To guarantee that the products of single-shot likelihoods do not generate sym-
metric absolute maxima we need an interval where the likelihood of a single trial
does not contain redundant information. Equation (4.28) means that the width of
such interval must be equal to or less than the period 2π/N . In addition, given that

S(k + 1) − S(k) = π

N
(4.31)

for the points of symmetry in equation (4.30), we see that, actually, the width cannot
be larger than π/N . We also notice that the axes of symmetry in equation (4.30)
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only contain the point θ = 0 when 2(n− k) = N , which can only happen when N is
even. If N is odd, then we may find θ = 0 as the middle point between axes, since

S ± π

2N = π [2 (k − n) ± 1]
2N + π

2 = 0 ⇒ N ± 1 = 2(n− k), (4.32)

and the latter condition can be satisfied for odd N . As a consequence, if the para-
meter domain is [0,Wint], as it is the case in this chapter, then we conclude that
Wint = π/N = π/n̄ when n̄ is even, and Wint = π/(2N) = π/(2n̄) when n̄ is odd,
since in the latter case only half of the width free of redundancies is included in the
domain. We thus arrive in this way at the same result found in the simulations.

This demonstrates that if the analytical formula for the likelihood function is
known, then it is sometimes possible to derive the intrinsic width explicitly by ana-
lysing the symmetries of the quantum probability for a single shot. Thus our method
complements the previous proposal in [104] based on studying the monotonicity of
the likelihood. Moreover, our numerical approach provides the means to find Wint
even if the analytical expression for p(m|θ) is not available, which is sometimes the
situation for more complicated states. This is usually the case, for example, when
the quantum circuit is designed using state engineering algorithms [159].

The important observation is that none of these states allows us to uniquely
identify the relative phase shift when we have no information about its possible
values, that is, if W0 = 2π. We conclude then that the scheme that we are employing
introduces some limitations to the estimation protocol, in spite of the fact that the
measurement is optimal according to the quantum Cramér-Rao bound criterion.

4.3.3 Uncertainty as a function of the number of trials
Once Wint is known we can use the uniform prior in equation (4.12) with W0 = Wint
and θ̄ = Wint/2 to perform the numerical calculation of the mean square error ϵ̄mse
in equation (4.3), which can be achieved by means of the algorithm described in
section 4.2.4 (see also appendix B.6). In addition, the algorithm in appendix B.3.1
gives the quantum Cramér-Rao bound ϵ̄cr = 1/(µFq), and the combination of ϵ̄mse
and ϵ̄cr allows us to obtain the relative error ετ in equation (4.14). While the explicit
form of the optimal estimator g(m) =

∫
dθp(θ|m)θ will not be provided, note that

this is already included within the numerical calculation of ϵ̄mse.
The results of these operations are shown in figure 4.3.i and figure 4.3.ii, where

we have assumed that the experiment can only be repeated µ = 103 times as an
extra constraint. For this number of observations, the mean square error of coherent,
NOON and twin squeezed vacuum states is close enough to the result predicted by
the quantum Cramér-Rao bound. In particular, their relative error is smaller than
the selected threshold ετ = 0.05. However, the minimum number of observations
that are needed in order to reach that threshold is different for different states,
and the squeezed entangled state does not even reach it in the regime that we are
studying. This state-dependent phenomenon, whose concrete values are indicated
in table 4.1, has important consequences.

If we consider first the comparison between a NOON state and a twin squeezed
vacuum with n̄ = 2, Wint = π/2, we can see that the latter is a better choice accord-
ing to the Fisher information, but its error is higher for µ < 20. Even if we focus
on the results of the asymptotic regime, the twin squeezed vacuum requires µ ∼ 103
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Figure 4.3: i) Mean square error (solid lines) for the POM in equation (4.22) and
quantum Cramér-Rao bound (dashed lines) for (a) a coherent state with n̄ = 2 and
Wint = π, (b) a NOON state with n̄ = 2 and Wint = π/2, (c) a NOON state with
n̄ = 1 and Wint = π/2, (d) a twin squeezed vacuum with n̄ = 2 and Wint = π/2,
and (e) a squeezed entangled state with n̄ = 2 and Wint = π/2, where n̄ is the mean
number of quanta per trial and Wint is the intrinsic width; (ii) relative error defined
by equation (4.14) with (f) a threshold ετ = 0.05 for the states considered in figure
4.3.i; (iii) repetition of the calculation performed in figure 4.3.i with a common prior
width W0 = π/3 and the same values for n̄; and (iv) relative error for the states
considered in figure 4.3.iii. These results are examined in the main text.

observations to achieve it, while the NOON state only needs µ ∼ 102. Thus a state
whose Fisher information is maximum with respect to other probes can still pro-
duce a larger error if the experiment is operating outside of the asymptotic regime.
Moreover, although it was shown that only the intra-mode correlations are crucial
to surpass the standard quantum limit in the regime where the Fisher approach is
valid [33, 92, 148], this comparison between a NOON state, which includes both
types of correlations, and a twin squeezed vacuum, that has intra-mode correlations
only, suggests that the role of photon correlations in metrology should be revisited
for the non-asymptotic regime. This study will be carried out in detail in section
5.3.3 using a more sophisticated approach.

On the other hand, a coherent state with n̄ = 2, Wint = π is less precise than a
NOON state with n̄ = 1, Wint = π/2 when µ ∼ 1. This implies that there is a region
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Probe state n̄ Wint µτ (Wint) µτ (W0 = π/3)
|α/

√
2,−iα/

√
2⟩ 2 π 3.9 · 10 4.97 · 102

NOON state (even N) 2 π/2 1.15 · 102 2.67 · 102

NOON state (odd N) 1 π/2 5.26 · 102 -
S1(r)S2(r) |0, 0⟩ 2 π/2 8.74 · 102 5.95 · 102

N (|r, 0⟩ + |0, r⟩) 2 π/2 > 103 > 103

Table 4.1: Numerical values of Wint and µτ obtained in figure 4.2 and figure 4.3,
respectively, for an asymptotically optimal strategy and a threshold ετ = 0.05. The
representation of the posterior probability p(θ|m) for the squeezed entangled state
that provides the value of its intrinsic width was very similar to that of the twin
squeezed vacuum, and therefore it has been omitted in figure 4.2 for brevity. In
addition, note that we have chosen n̄ = 2 for most of our schemes in order to detect
a significant improvement over the standard quantum limit.

in which a probe with fewer resources can still beat a scheme with more photons
if the prior knowledge of the former is higher. By combining these observations
with those extracted from the previous probes we conclude that the Cramér-Rao
bound can both overestimate and underestimate the precision outside of its regime
of validity. It is particularly relevant to draw attention to the latter case, since the
fact that NOON and coherent states display a mean square error which is lower
than their respective Cramér-Rao bounds for low values of µ demonstrates that the
unbiased estimators of the local theory are not always optimal.

The analysis of the squeezed entangled state provides further details of the prop-
erties of the non-asymptotic regime. In particular, its performance is worse than all
the previous cases for µ ∼ 10, and it only becomes the best choice when the number
of repetitions is greater than µ ∼ 102. Surprisingly, this result is showing that while
states with an indefinite number of photons can do better than the optimal choice
for a finite number of quanta, NOON states have the best absolute precision among
the cases that we have studied if the number of observations is less than µ ∼ 10.

To have a fairer comparison, we have repeated the calculation with a common
width W0 = π/3 and n̄ = 2. Figures 4.3.iii and 4.3.iv show that, while the numerical
values are different, the qualitative conclusions are the same. Nonetheless, there is
an important difference given that the prior knowledge is now higher. For the NOON
and coherent states, µτ has increased with respect to the previous calculation, since
the starting difference between the error and the bound is now greater. On the other
hand, for the twin squeezed vacuum there is a point where now the mean square
error crosses the Cramér-Rao bound before a stable saturation is reached. This
happens because for W0 = Wint the error approached the bound from above, while
for W0 = π/3 the error begins below the bound and then crosses it to achieve the
asymptotic regime from above. This suggests that if we keep increasing our prior
information and we make the width of the parameter domain very small, then the
number of observations needed to approach the Cramér-Rao bound will grow.

4.3.4 A practical relation to prevent infinite-precision states
It is possible to formalise the previous phenomenon and derive an intuitive and
informative relation that detects states that are not well-behaved. Firstly, we note
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that the uncertainty of an estimation that is made before we perform the experiment
is represented by the variance of the prior probability

ϵ̄mse(µ = 0) = ∆θ2
p =

∫
dθp(θ)θ2 −

[∫
dθp(θ)θ

]2
(4.33)

that we introduced in section 3.3.5, which for the flat density in equation (4.12) is

∆θ2
p =

(
θ̄2 + W 2

0
12

)
− θ̄2 = W 2

0
12 . (4.34)

On the other hand, we know that the precision is given by the Fisher information
when µ ≫ 1; consequently, an estimation protocol is only worthwhile when

∆θ2
p(ρ) > 1

µ(ρ)Fq(ρ) (4.35)

is asymptotically satisfied, where we have made explicit the dependence on the state
to indicate that the values of µ and ∆θ2

p guarantee that the Cramér-Rao regime can
be reached. If equation (4.35) were not fulfilled, then the experiment would not be
telling us more than what we already knew. By reorganizing the terms we arrive at

µ(ρ) > 1
∆θ2

p(ρ)Fq(ρ) , (4.36)

which is a constraint based on practical requirements.
According to equation (4.36), the number of required observations will increase

when the Fisher information is fixed and the prior knowledge is improved, which is
consistent with the results of figure 4.3. Furthermore, we have seen that the prior
width cannot be arbitrarily large if we want to employ certain states in an experi-
ment. Thus, if we maximise the Fisher information at the expense of decreasing the
maximum prior uncertainty, and the latter phenomenon is faster, then the number
of observations will tend to infinity11.

This is precisely the case of the family of one-mode states

|ψ0⟩ =
√

1 − δ |0⟩ +
√
δ |N/δ⟩ (4.37)

that was considered, e.g., in [119], where 0 < δ < 1 and N/δ is an integer. To
see it, first we perform an analysis of the periodicity associated with the unitary
transformation

|ψ(θ)⟩ =
√

1 − δ |0⟩ +
√
δe−iθN/δ |N/δ⟩ . (4.38)

By imposing |ψ(θ)⟩ = |ψ(θ + T )⟩ we find that

exp (−iNθ/δ) = exp (−iNθ/δ) exp (−iNT /δ) , (4.39)

which implies that T = 2πkδ/N , with k = 0,±1,±2, . . . . This indicates that
Wint ⩽ 2πδ/N , so that ∆θ2

p ⩽ π2δ2/(3N2) when W0 = Wint. Furthermore, the
Fisher information is

Fq = 4[⟨ψ0|(a†a)2|ψ0⟩ − ⟨ψ0|a†a|ψ0⟩2] = 4
(
N2

δ
−N2

)
= 4N2(1 − δ)

δ
. (4.40)

11It is important to note that equation (4.36) only helps to predict cases where µ(ρ) grows
indefinitely. Any other finite result will constitute a necessary but not sufficient condition that the
value of the number of observations needed to reach the asymptotic regime must satisfy.
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Hence, from equation (4.36) we have that

µ(δ) > 3
4π2δ(1 − δ) . (4.41)

The Fisher information suggests that we can get an infinite precision in the limit
δ → 0 for a fixed number of resources per trial n̄ = N , but equation (4.41) shows
that this conclusion only holds if the total number of resources is actually infinite,
which is consistent with the analyses of sub-Heisenberg strategies in the literature
[56, 117, 130]. From a physical point of view we conclude that it is not advantageous
to use states for which the majority of our resources have to be employed in making
our scheme as sensitive as the prior uncertainty that we already had.

4.4 Summary of results and conclusions
The first step of our methodology, which combines the optimal Bayes estimator
with a quantum strategy that is asymptotically optimal, has been implemented
in a numerical fashion. This process has involved a rigorous analysis of the prior
knowledge required by given state and POM and the estimation of the number of
repetitions that are needed to reach the asymptotic regime. This has allowed us
to explore the limitations of approximating the Bayesian mean square error by the
quantum Cramér-Rao bound for practical scenarios that are relevant in quantum
metrology, to characterise the boundary that separates the asymptotic and non-
asymptotic regimes, and to perform a first analysis of the non-asymptotic regime.

We have applied this strategy to coherent, NOON, twin squeezed vacuum and
squeezed entangled states for the estimation of phase shifts in optical interferometry,
finding that the conditions for approaching the Cramér-Rao bound crucially vary
with the state of the system once the POM has been fixed. Moreover, we have
proposed a simple and practical criterion to detect states that may require an infinite
amount of trials before they provide useful information beyond the prior knowledge.

From the results of our simulations we can conclude that maximizing the Fisher
information alone is not always enough to find the best precision in general. For
instance, while a twin squeezed vacuum outperforms NOON states according to the
Fisher information, we have found that this conclusion may not hold when the num-
ber of observations is low. Similarly, a squeezed entangled state is asymptotically
better than the previous examples, but it is the worst choice for small values of µ
among the schemes that we have examined. In fact, a coherent state with no cor-
relations and a NOON state with less photons per observation outperform it when
µ ∼ 10. An additional lesson extracted from section 4.3 is that the role of inter-
mode and intra-more correlations and the use of states with an indefinite number of
quanta to enhance the precision needs to be revisited in the non-asymptotic regime.

As a consequence, for a real experiment either we need to perform a fully Bayesian
analysis or we must estimate explicitly the number of observations that are required
to guarantee that we are operating in the asymptotic regime if we want to follow the
path of the Fisher information. This practice will improve the quality and fairness
of the comparisons between strategies, helping us to understand the fundamental
limits of estimation theory and aiding the design of quantum sensing protocols for
quantum technologies. A clear demonstration of the latter can be found in [160]
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Designing quantum experiments with a genetic algorithm, Rosanna Nich-
ols, Lana Mineh, Jesús Rubio, Jonathan C. F. Matthews and Paul A.
Knott, Quantum Sci. Technol. 4 045012 (2019).

where in collaboration with the University of Nottingham and the University of
Bristol we succeeded in combining the methods of this chapter with a genetic al-
gorithm in order to design optical experiments that can be accessed with current
technology. This proposal will be examined in section 5.5 once we have completed
our methodology for single-parameter estimation protocols.

Finally, we notice that the contents in this chapter have been published in [136]

Non-asymptotic analysis of quantum metrology protocols beyond the Cramér-
Rao bound, Jesús Rubio, Paul Knott and Jacob Dunningham, J. Phys.
Commun. 2 015027 (2018).
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Chapter 5

Quantum metrology in the
presence of limited data

5.1 Goals for the second stage of our methodology
The results obtained so far have provided us with a first quantitative characterisation
of how much information our schemes can extract in the presence of limited data.
However, while the approach that we have followed is more general than simply
maximising the Fisher information, our method still relies on the Cramér-Rao bound
to select the quantum strategy that is asymptotically optimal. The main goal of
this chapter is to go a step further and construct a strategy where the quantum
optimisation is directly performed in the non-asymptotic regime.

This is precisely where the second version of our methodology in chapter 3 enters
the scene. The key idea is to find the measurement scheme predicted by the optimal
single-shot mean square error in sections 3.3.4 and 3.3.5, and use that measurement
in a sequence of repeated experiments. As such, the new method that we propose
here combines analytical and numerical techniques, and we will demonstrate its
potential using a Mach-Zehnder interferometer that operates in the regime of limited
data and moderate prior knowledge.

We will show that the bounds that arise from this technique are tight and can be
approached in principle both for a single shot (by construction) and in the asymp-
totic regime of many measurements, since the results predicted by the Fisher in-
formation are recovered in the latter case. Admittedly, this does not guarantee
that our solution will be generally optimal for a few trials (in that case an adaptive
scheme could be better than repeating the same measurement). Nevertheless, we
will see that having an error that is a function of the number of repetitions where the
first point is already tight, and that also tends towards the asymptotically optimal
solution as the number of shots grows, is enough to draw conclusions to important
questions such as the role of photon number correlations or the performance of ex-
perimentally feasible measurements in the non-asymptotic regime.

For instance, we have found an example where the correlations between the paths
of the Mach-Zehnder interferometer appear to be particularly useful in this regime,
and we have demonstrated that while measuring quadratures and counting photons
after the action of a beam splitter are asymptotically equivalent in an ideal scenario,
the former measurement scheme is better for a low number of repeated experiments.
In addition, we will show that the combination of both the methods in this chapter
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and those in chapter 4 with a genetic algorithm allows us to design quantum experi-
ments for engineering optical states that supersede certain benchmarks in the regime
that we are studying. These findings may prove to be important in the development
of quantum enhanced metrology applications where practical considerations mean
that we are limited to a small number of trials.

It is interesting to note that two related approaches were proposed during the de-
velopment of the work in this chapter. On the one hand, Lumino et al. [48] exploited
techniques from machine learning to optimise an experimental implementation with
a low number of shots. On the other hand, Mart́ınez-Vargas et al. [103] presen-
ted a modification of the quantum van Trees inequality and used it to construct
an adaptive strategy based on a parameter-independent single-shot measurement
scheme. The experimental nature of Lumino et al. [48] and the adaptive character
of Mart́ınez-Vargas et al. [103] are aspects that are not covered here. On the other
hand, the advantage of our proposal is its fundamental character, in the sense that
it is built on the true optimum for a single shot. In fact, our results can be seen as
a non-trivial generalisation with respect to those that are obtained when the Fisher
information is used instead. Thus our work and those mentioned above are comple-
mentary.

5.2 Methodology (part B)

5.2.1 Shot-by-shot strategy

Our starting point is the single-parameter configuration exploited in chapter 4, where
we had a quantum probe with statistical properties described by the density matrix
ρ0, and an unknown parameter θ that was encoded in the probe state through the
unitary transformation ρ(θ) = e−iKθρ0eiKθ.

The fundamental difference is that now we perform the measurement described
by the POM elements {|s⟩⟨s|}, which are the eigenstates of the optimal quantum
estimator S =

∫
ds s |s⟩⟨s| that satisfies the equation Sρ + ρS = 2ρ̄, with ρ =∫

dθp(θ)ρ(θ), ρ̄ =
∫
dθp(θ)ρ(θ)θ and p(θ) being the prior that is to be updated after

a single shot. As we saw in chapter 3, this is the quantum strategy that minimises
the single-shot mean square error.

Furthermore, the prior knowledge is again represented by the uniform density
of width W0 and centred around θ̄ that was introduced in equation (4.12). While
in chapter 4 we found that the square error was a reasonable approximation for
periodic parameters when W0 ⩽ π, a more powerful analysis based on the schemes
of this chapter reveals that a better estimate of that threshold is W0 ≲ 21. The
discussion that leads to this conclusion can be found in appendix A.2. In addition,
in section 5.3.4 we will see that the local regime of prior information is not properly
recovered until the prior width is W0 = 0.1 or smaller. Hence, we will work in the
regime of moderate prior information with 0.1 < W0 < 2.

Once we have calculated the projectors of S, we proceed to repeat the same
optimal experiment µ times, so that the uncertainty associated with the overall

1Note that most schemes in chapter 4 do still fulfil this requirement, the only exception being
the coherent state with W0 = π.



64

Figure 5.1: Representation of the extraction of information from a quantum sensor
following the shot-by-shot strategy. This process consists of three stages: prepara-
tion of the probe state ρ0, parameter encoding exp(−iKθ) and measurement scheme
|si⟩⟨si|. The statistics of the outcome si is given by the Born rule, and the protocol
is repeated µ times. Taking also into account any prior information that we may
have we can construct an estimator g(s1, . . . , sµ) as a function of the experimental
outcomes, and assess its performance using the measure of uncertainty ϵ̄mse.

experience is given by

ϵ̄mse =
∫
ds p(s)

{∫
dθp(θ|s)θ2 −

[∫
dθp(θ|s)θ

]2
}
. (5.1)

This is the single-parameter error in equation (4.3) after having selected the op-
timal estimator g(s) =

∫
dθp(θ|s)θ, where in this case the posterior is p(θ|s) =

p(θ)p(s|θ)/p(s), the likelihood is p(s|θ) = ∏µ
i=1⟨si|ρ(θ)|si⟩ and p(s) =

∫
dθp(θ)p(s|θ).

Therefore, this approach combines numerical simulations with the rigorous found-
ation provided by an analytical and potentially reachable quantum bound. A visual
representation of this strategy can be found in figure 5.1.

5.2.2 Calculation scheme for the optimal single-shot strategy
The error in equation (5.1) can be numerically calculated as a function of µ following
the same three-step algorithm that we discussed in section 4.2.4. On the other hand,
to obtain the eigendecomposition of the quantum estimator S that gives rise to the
POM |si⟩⟨si| we need to solve Sρ+ ρS = 2ρ̄ for given ρ0, K and p(θ).

By expanding ρ in the basis of its eigenvectors, that is, ρ = ∑
i pi |ϕi⟩⟨ϕi|, and

inserting it into Sρ+ ρS = 2ρ̄, we find that

Sρ+ ρS − 2ρ̄ =
∑
ij

[(pi + pj) ⟨ϕi|S |ϕj⟩ − 2 ⟨ϕi| ρ̄ |ϕj⟩] |ϕi⟩⟨ϕj| = 0, (5.2)

so that we can formally express the solution for S as

S = 2
∑
ij

⟨ϕi| ρ̄ |ϕj⟩
pi + pj

|ϕi⟩⟨ϕj| . (5.3)
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Importantly, equation (5.3) is only defined on the support of ρ, since Sρ+ρS = 2ρ̄ is
a Sylvester equation and, as such, it only has a unique solution in the subspace where
the spectra of ρ and −ρ are disjoint (see pages 203, 204 of [161]). However, this
is not a problem, since the quantity Tr(ρ̄S) = Tr(ρS2) appearing in the single-shot
bound in equation (3.36) only depends on the terms associated with the support of
ρ, that is,

Tr(ρS2) =
∑

i

pi ⟨ϕi|S2 |ϕi⟩ =
∑

{i, pi ̸=0}
pi ⟨ϕi|S2 |ϕi⟩ . (5.4)

Unfortunately, the analytical calculation of equation (5.3) is challenging for in-
definite photon number states, since they belong to a space whose dimension is
infinite. For that reason, we have employed a hybrid method where ρ and ρ̄ are
calculated analytically and S is obtained numerically from equation (5.3) with the
algorithm in appendix B.2.

To find the analytical expressions of ρ and ρ̄, first we recall that the generator for
the Mach-Zehnder interferometer that we are analysing is K = Jz. By expanding
the transformed pure state |ψ(θ)⟩ = e−iJzθ |ψ0⟩ in the number basis as |ψ(θ)⟩ =∑

nm e−i(n−m)θ/2cnm |nm⟩, where cnm are the components of the initial state |ψ0⟩, we
can construct the density matrix

ρ(θ) = |ψ(θ)⟩⟨ψ(θ)| =
∑

nmlk

e−i(n−m)θ/2ei(k−l)θ/2cnmc
∗
kl |nm⟩⟨kl| , (5.5)

with cnmc
∗
kl = (ρ0)nmkl. Then, given that p(θ) = 1/W0 when θ lies between θ̄−W0/2

and θ̄ +W0/2, we have that

ρ =
∫
dθp(θ)ρ(θ) =

∑
nmkl

Knmklcnmc
∗
kl |nm⟩⟨kl| (5.6)

and
ρ̄ =

∫
dθp(θ)ρ(θ)θ =

∑
nmkl

Lnmklcnmc
∗
kl |nm⟩⟨kl| , (5.7)

where
Knmkl = 1

W0

∫ θ̄+W0/2

θ̄−W0/2
dθe−ixnmklθ/2, (5.8)

Lnmlk = 1
W0

∫ θ̄+W0/2

θ̄−W0/2
dθθe−ixnmklθ/2 (5.9)

and xnmkl = n−m+ l − k. These integrals can be computed directly, finding that

Knmkl = 4
W0

AnmklBnmkl

xnmkl

, (5.10)

and
Lnmkl = 2Anmkl

xnmkl

(2BnmklDnmkl

W0
+ iCnmkl

)
, (5.11)

where we have defined

Anmkl = exp
(
−ixnmklθ̄/2

)
,

Bnmkl = sin (xnmklW0/4) ,
Cnmkl = cos (xnmklW0/4) and
Dnmkl = θ̄ − 2i/xnmkl. (5.12)
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Note that all the elements Knmkl and Lnmkl are well defined except when xnmkl

vanishes, in which case we have an indetermination. In those cases we need to take
the limits

lim
xnmlk→0

Knmkl = 1, lim
xnmkl→0

Lnmkl = θ̄. (5.13)

Since Knmkl, Lnmkl and cnmc
∗
kl can be seen as (nm × kl) matrices, we can finally

rewrite equations (5.6) and (5.7) as ρ = ρ0 ◦ K and ρ = ρ0 ◦ L, where we are using
the entrywise product of matrices defined as X ◦ Y = ∑

ij XijYij |i⟩⟨j| [162].

5.3 Our methodology in action: results and dis-
cussion

5.3.1 Highly-sensitive states in two-mode interferometry
Previously we saw that the coherent state |α/

√
2,−iα/

√
2⟩ is a natural benchmark

to evaluate the enhancement derived from quantum resources such as entanglement
or squeezing, while the NOON state (|N, 0⟩ + |0, N⟩)/

√
2 is an intuitive example of

a definite photon number state that reaches the Heisenberg limit [145] when enough
prior knowledge is available (see [117, 130] and its analysis in section 4.3.2). This
justifies their use in this chapter mainly as a reference, although we will also highlight
those features related to the regime of limited data2.

The principal analysis will instead be dedicated to states that are experiment-
ally feasible and whose quantum Fisher information is large with respect to the two
previous benchmarks; i.e., we wish to optimise the non-asymptotic regime of states
with a great sensitivity. According to the work by Knott et al. [25], this is precisely
the case of the other two probes that we examined in chapter 4: the twin squeezed
vacuum state |r, r⟩ = S1(r)S2(r) |0, 0⟩, where Si(r) = exp{[r∗a2

i −r(a†
i )2]/2}, and the

squeezed entangled state Nses (|r, 0⟩ + |0, r⟩), where Nses = [2+2/cosh(|r|)]−1/2. Ad-
ditionally, this is also true for the twin squeezed cat state Ntscs [S(r) (|α⟩ + |−α⟩)]⊗2,
with Ntscs = (2 + 2exp(−2|α|2)−1/2 and |α⟩ = D(α) |0⟩.

In order to have a fair comparison, the parameters that define the previous states
have been chosen such that, on average, all the strategies utilise the same amount
of resources (see the third column in table 5.1). In particular, n̄ = ⟨ψ0|R |ψ0⟩ =
⟨ψ0| (N1 +N2) |ψ0⟩ = 2 for all |ψ0⟩. This energy constraint fixes the parameters of all
the states except those of the twin squeezed cat state; the parameters of the latter
case will be chosen such that the quantum Fisher information is maximum in all
the sections of this work except in sections 5.3.3 and 5.3.4, where we also consider
an intermediate scenario. Note that the fact that n̄ = 2 for all our protocols implies
that we are working in the low photon number regime [25].

Finally, we will assume that the prior width is W0 = π/2 < 2 and that the prior
mean is θ̄ = 0. The former is consistent with our findings in chapter 4, while the
latter is justified by the fact that, as we will see, the fundamental bounds generated
by the method in section 5.2 do no depend on θ̄, and θ̄ = 0 is more natural than
θ̄ = W0/2 in optical interferometry [107]. Moreover, the results that arise from θ̄ = 0
and those associated with θ̄ = W0/2 can be related with controllable phase shifts as
part of the POM. This will be demonstrated in section 5.3.5.

2Other aspects of these two states have been extensively studied in previous works. See, e.g.,
[104, 105, 117, 130].
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5.3.2 Quantum bounds in the presence of limited data
The application of the method described in section 5.2 to interferometric config-
urations leads to the results shown in figure 5.2.i, where the mean square error in
equation (5.1) is plotted as a function of the number of repetitions for the optical
probes in section 5.3.1: (a) coherent state, (b) NOON state, (c) twin squeezed va-
cuum state, (d) squeezed entangled state and (e) twin squeezed cat state. Let us
proceed to analyse the consequences of these graphs.

To start with, figure 5.2.i presents two different regimes. On the one hand, the
performance of all the states becomes linear with the number of repetitions in the
logarithmic scale when µ ≳ 102. This is precisely the behaviour that we would
expect in the asymptotic regime µ ≫ 1, since in that case the mean square error
can be approximated by the Cramér-Rao bound as ϵ̄mse ≈ 1/(µF ), and as such
log(ϵ̄mse) ≈ −log(µ) − log(F ). In this regime we can observe that the graphs of
different states do not intersect each other. This property allows us to identify the
twin squeezed cat state as the best asymptotic choice, followed by the squeezed
entangled state, the twin squeezed vacuum state, the NOON state and, finally, the
coherent state, whose performance is the worst. We notice that this is consistent
with the findings in [25].

On the other hand, the graphs deviate from this logarithmic linear approximation
when 1 ⩽ µ ≲ 102 and, as a consequence, a non-trivial structure emerges in this
part of the plot. This is the non-asymptotic regime of limited data for the schemes
in this chapter. Since the graphs no longer follow straight lines, they intersect each
other, and this implies that the ordering of the states in terms of their performance
depends on the number of repetitions. For instance, the twin squeezed vacuum state
produces the lowest uncertainty when 1 ⩽ µ < 5, while the squeezed entangled state
is the best option when 5 < µ < 40. In addition, the twin squeezed cat state is
recovered as the best probe when µ > 40, although it practically has the same
performance as the coherent state when µ = 1, 2, 3. Interestingly, the coherent state
is also associated with the largest uncertainty for a low number of trials.

That the strategy leading to the lowest uncertainty can depend on the number
of repetitions in a crucial way was already demonstrated in chapter 4. However, our
previous results were based on a specific measurement scheme (counting photons
after the action of a 50:50 beam splitter), while now the bounds are constructed
by repeating a single-shot strategy that has been optimised over all possible POMs.
Thus, the results in figure 5.2.i generalise those in chapter 4 and put the state-
dependence behaviour of the non-asymptotic regime on a more solid basis.

For these results to be useful, we need to understand the optimality and saturab-
ility of the bounds. The uncertainty for µ = 1 is already optimal by construction and
can always be reached in principle for any given state using the single-shot POM in
equation (3.37). This means that other tools such as the quantum Ziv-Zakai bound
[56] and the quantum Weiss-Weinstein bound [46] will necessarily produce less tight
single-shot results whenever their value is different from the solution found here.
The demonstration of this fact is provided in section 5.4.

Furthermore, figures 5.2.ii - 5.2.vi show how our results for each state approach
the quantum Cramér-Rao bound asymptotically, that is, ϵ̄mse ≈ 1/(µFq) when µ ≫
1. Taking into account that the bounds for a large number of trials that can be
constructed using the quantum Cramér-Rao bound are fundamental, we conclude
that our bounds are also optimal in this limit. As a result, if we work in the
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Figure 5.2: i) Mean square error as a function of the number of repetitions using
the optimal single-shot strategy for (a) the coherent state, (b) the NOON state, (c)
the twin squeezed vacuum state, (d) the squeezed entangled state, and (e) the twin
squeezed cat state, with mean number of photons n̄ = 2, prior mean θ̄ = 0 and
prior width W0 = π/2, while (f) represents the variance of the prior probability;
(ii) mean square error based on the optimal single-shot strategy (solid line) and
quantum Cramér-Rao bound (dashed line) for the same coherent state, (iii) NOON
state, (iv) twin squeezed vacuum state, (v) squeezed entangled state and (vi) twin
squeezed cat state considered in (i). These graphs constitute the main results of
section 5.3.2, and their consequences are analysed in the main text.

regime of intermediate prior knowledge and ρ(θ) and p(θ) are given, then the scheme
developed in section 5.2 is optimal both for a single shot and a large number of trials.
Moreover, it is also optimal for any number of trials if we exclude the possibility of
having adaptive measurements and focus on identical and independent experiments.

To quantify the number of repetitions that are needed to reach this asymptotic
regime where our methods are no longer required we can follow section 4.2.3, con-
struct the relative error ετ = |ϵ̄mse(µτ ) − 1/(µτFq)|/ϵmse(µτ ) in equation (4.14) and
select µτ after imposing that ετ ≈ 0.05 for each state. According to the results of
this calculation, which are summarised in the last column of table 5.1, the uncer-
tainty for the twin squeezed vacuum state agrees with the prediction of the quantum
Cramér-Rao bound when the number of trials is as low as µτ = 5. Therefore, in this
case the asymptotic theory mostly gives the right answer. However, the squeezed
entangled state and the twin squeezed cat state require µτ = 45 and µτ = 66, re-
spectively, and the quantum Cramér-Rao bound overestimates the performance of
these probes in the regime of limited data because the graphs of our bounds are



70

higher (figures 5.2.v and 5.2.vi). We note that it is in scenarios of this type where
we could not extract useful information from the quantum optimal-bias bound de-
rived in [47], since for a flat prior this quantity is always lower than the quantum
Cramér-Rao bound by construction. Finally, the NOON state needs µτ = 116 and
the coherent state requires µτ = 282, but the Cramér-Rao bound prediction under-
estimates the precision of these protocols when µ is low. It is interesting to observe
that the chosen probes exemplify the three basic behaviours that we could expect
to find in the non-asymptotic regime, that is, that the Cramér-Rao bound is lower,
higher or approximately equal to the Bayesian mean square error.

It is possible to perform the explicit calculation of the optimal measurement
scheme that generates the results associated with the NOON state. Using the nota-
tion introduced in section 5.2.2, its initial density matrix is

ρ0 =
(

(ρ0)2020 (ρ0)2002
(ρ0)0220 (ρ0)0202

)
= 1

2

(
1 1
1 1

)
, (5.14)

while from equations (5.10 - 5.13) we have that

K =
(

K2020 K2002
K0220 K0202

)
= 1
π

(
π 2
2 π

)
(5.15)

and
L =

(
L2020 L2002
L0220 L0202

)
= i

π

(
0 −1
1 0

)
(5.16)

Therefore,

ρ = ρ0 ◦ K = 1
2π

(
π 2
2 π

)
= I

2 + σx

π
(5.17)

and
ρ̄ = ρ0 ◦ L = i

2π

(
0 −1
1 0

)
= σy

2π . (5.18)

Inserting equations (5.17) and (5.18) in Sρ + ρS = 2ρ̄ we find that the equation to
be solved is

S + 1
π

{S, σx} = σy

π
, (5.19)

where {X, Y } = XY + Y X. Recalling that the anticommutator for the Pauli
matrices is {σi, σj} = 2δij, for i, j, k = x, y, z, by inspection we conclude that the
solution is S = σy/π. This implies that the optimal single-shot POM is given by
the eigenvectors

|s1⟩ = 1√
2

(
i
1

)
= 1√

2
(i |2, 0⟩ + |0, 2⟩),

|s2⟩ = 1√
2

(
1
i

)
= 1√

2
(|2, 0⟩ + i |0, 2⟩), (5.20)

and that the Bayesian estimates that the NOON state predicts for θ are given by
the eigenvalues s1 = −1/π and s2 = 1/π. In section 5.3.5 we will construct physical
measurements that realise these projectors exactly. In addition, it is important to
note that, while this spectrum of estimates is discrete and the difference of phase
shifts θ is a continuous variable, Luis and Peřina [163] showed that this behaviour
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Figure 5.3: Spectrum of the optimal quantum estimator S for (a) the coherent state,
(b) the NOON state, (c) the twin squeezed vacuum state, (d) the squeezed entangled
state, and (e) the twin squeezed cat state, with n̄ = 2, θ̄ = 0 and W0 = π/2. The
details of this calculation can be found in appendix B.2.

is not contradictory due to the existence of an ultimate quantum limit to the un-
certainty in phase estimation.

Although the numerical character of the projectors for the indefinite photon
number states makes it difficult to visualise their structure, we can still provide
a partial characterisation of these single-shot strategies through the spectra of S.
A numerical approximation of these spectra has been represented in figure 5.3 for
the coherent state, the twin squeezed vacuum state, the squeezed entangled state
and the twin squeezed cat states, which shows their Bayesian estimates distributed
within the parameter domain [θ̄ −W0/2, θ̄ +W0/2]3.

We finish this analysis by noting that both the projectors {|s⟩} and the estimates
{s} depend on the specific shape of the prior probability p(θ). Interestingly, in our
case we have verified numerically that while the results change with W0, they do
not depend on θ̄. Nonetheless, in section 5.3.5 we will see that this is no longer true
for measurement schemes different from the optimal single-shot strategy.

5.3.3 The role of intra-mode and inter-mode correlations for
a low number of repetitions

Following our discussion in section 2.3.1, there are two types of correlations that are
relevant for optical metrology: the intra-mode correlations quantified by the Mandel
Q-parameter, and the inter-mode correlations quantified by J . We recall that these
quantities were defined in equation (2.39) for path-symmetric states, which is the
family of probes to which the states in our analysis belong [25, 91, 92].

3We draw attention to the fact that the particular number of estimates represented in the
approximated spectra of figure 5.3 for each indefinite photon number state depends on the numerical
truncation of the support where S is defined (see section 5.2.2), which in our case assumes that
an eigenvalue of ρ is non-zero when its value is higher than ∼ 10−12. See appendix B.2 for more
details about the numerical approximations employed in this chapter.
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These quantities play a crucial role in the regime where ϵ̄mse ≈ 1/(µFq) because
the quantum Fisher information for path-symmetric pure states can be rewritten as
Fq = 4∆J2

z = n̄(1+Q)(1−J ) ([57, 92] and section 2.3.1). Therefore, we can control
the asymptotic performance by changing Q and J . Recalling that −1 ⩽ Q < ∞
and −1 ⩽ J ⩽ 1, optimising the performance amounts to increasing the intra-
mode correlations as much as possible, since path entanglement can only improve
the precision by a factor of 2 at most. To verify that the asymptotic part of figure
5.2.i is consistent with this way of proceeding we have calculated the amount of
intra-mode and inter-mode correlations and the quantum Fisher information for
each state4, and the results can be found in the fourth, fifth and sixth columns of
table 5.1, respectively. As expected, the twin squeezed cat state, which was found
to be the asymptotically optimal choice, has the largest values for Fq and Q among
the states that we are studying.

On the other hand, we have also demonstrated that this state is not better than
a coherent state when µ ∼ 1, in spite of the fact that for the coherent state we
have Q = 0 and J = 0, and that the other three probes perform better in the low
trial number regime. This already supports the idea that the clear role that photon
number correlations play asymptotically is not preserved when µ is low, something
that was suggested by the results in section 4.3.3 using a specific POM. While it
is not currently possible to find a rigorous relationship between uncertainty and
correlations that is also valid in the regime of limited data because an analytical ex-
pression for ϵ̄mse(µ) is not available, we can still exploit the methodology introduced
in section 5.2 to further explore this idea.

First we note that the twin squeezed cat state can be seen as a family of states
defined in terms of the parameters r and α. Since this state is separable with respect
to the arms of the interferometer, J = 0, and as such we are free to choose different
combinations of r and α to control the Mandel Q-parameter while keeping n̄ = 2
and W0 = π/2 unchanged. The particular instance of the twin squeezed cat family
with Q = 11.75 and Fq = 25.49 considered until now is the optimal choice after
maximising Fq numerically5. A second example with Q = 10.00 and Fq = 22.00 has
been included in table 5.1 to represent the intermediate case. In addition, the twin
squeezed vacuum state is recovered within the twin squeezed cat family when we
choose α = 0 [25], and for this state we have that Q = 3 and Fq = 8.

Next we examine the mean square errors associated with the optimal case, the
intermediate case and the twin squeezed vacuum from the previous family. Their
graphs are represented in figure 5.4 and labelled respectively as (e), (g) and (c). If
we compare the optimal and intermediate states first, we see that a larger amount of
intra-mode correlations is associated with a larger number of repetitions needed to
reach the asymptotic regime, since the former state requires µτ = 66 and the latter
µτ = 42 (see table 5.1). Furthermore, by comparing the form of the graphs (e) and
(g) in figure 5.4 for these two states we can observe that the transition from the non-
asymptotic regime to the asymptotic regime is associated with a larger uncertainty
for the optimal twin squeezed cat state for which Q is also larger. Finally, the graph

4An analytical calculation of these quantities for coherent, NOON and twin squeezed vacuum
states is available in [92] and in section 4.3.1, while the results for squeezed entangled and twin
squeezed cat states can be found in [25].

5The optimisation has been performed using the analytical expression for the quantum Fisher
information of the twin squeezed vacuum state that is provided in the appendices of [25]. Notice
that our result is consistent with the equivalent optimisation that was carried out there.
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Figure 5.4: Mean square error as a function of the number of repetitions using the
optimal single-shot strategy for (c) the twin squeezed vacuum state with Q = 3 and
J = 0, (d) the squeezed entangled state with Q = 9 and J = −0.1, (e) the twin
squeezed cat state with Q = 11.75 and J = 0, and (e) the twin squeezed cat state
with Q = 10.00 and J = 0, where Q and J quantify the intra-mode and inter-
mode correlations, and having n̄ = 2, θ̄ = 0 and W0 = π/2, while (f) represents the
variance of the prior probability.

(c) shows that the twin squeezed vacuum state, which has the smallest Q, performs
worse than the two previous cases asymptotically, while its error is the lowest when
1 ⩽ µ ≲ 10. In other words, for this family of states there seems to be a trade-off
between the performances in the asymptotic and non-asymptotic regimes that is
associated with changes in Q, which in practice would imply that increasing the
amount of intra-mode correlations blindly can lead to high-uncertainty schemes in
the regime of limited data. Moreover, we note that this conclusion is consistent with
the related analysis by Tsang [56] for the Rivas-Luis state [114] based on the quantum
Ziv-Zakai bound and our own analysis in section 4.3.4; both approaches demonstrate
that if a certain parameter is modified such that the Fisher information increases
arbitrarily, then the error cannot deviate substantially from the prior variance unless
the number of trials is very large.

Since increasing Q seems to be detrimental to the performance of our probes
when the number of repetitions is low, the next natural step is to investigate whether
path entanglement could be useful in this regime. Including in our analysis the
squeezed entangled state with Q = 9 and J = −0.1, which is labelled as (d) in
figure 5.4, we can see that this state converges asymptotically to the performance
associated with the intermediate case of the twin squeezed cat family (g), that is,
both probes have the same Fisher information. However, the graph of the squeezed
entangled state presents a smaller curvature and a lower uncertainty when µ < 30.
The key aspect that distinguishes these two probes is that the squeezed entangled
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state has a lower amount of intra-mode correlations and a certain amount of benefi-
cial path entanglement, which suggests that inter-mode correlations have helped to
improve the precision in the non-asymptotic regime while keeping a large Fisher in-
formation. Hence, we conclude that path entanglement could be considerably more
relevant in schemes that need to be optimised for a low number of trials than it is
in the asymptotic regime.

Despite these surprising results, we must acknowledge that our analysis is centred
on a particular set of states, and that other schemes based on different states could
show different properties6. Therefore, the existence of a more general relationship
between the number of trials and the usefulness of photon number correlations in
interferometry for a given prior is an open question.

5.3.4 The effect of the prior information
In a wide set of inference problems that includes the scenarios presented here, the
importance of the prior information depends on the number of shots. In particular,
we know that the prior becomes less important as we increase the number of repe-
titions [153], and this implies that, as we argued in chapter 3, the prior probability
will play an important role for making inferences if only a few experimental shots
are possible. In that scenario it is crucial then to establish how different states of
prior knowledge may affect the overall performance of a given metrology scheme.

Taking the form of the uniform prior given in equation (4.12), the parameters
that we can alter are the prior width W0 and the prior mean θ̄. In section 5.3.2 we
already mentioned that the bounds constructed in figure 5.2.i do not depend on θ̄,
leaving W0 as the only free parameter. In principle we should consider the possibility
of having both W0 > π/2, which includes the intermediate and global regimes, and
W0 < π/2, which encompasses the intermediate and local regimes. However, for
large values of W0 it is not possible to approximate the periodic deviation function
in equation (3.5) to the square error. For that reason, we will only focus on the
transition from the intermediate regime of prior knowledge to the local regime.

To do this, let us start by calculating the optimal single-shot mean square error
(equation (3.36) or equation (5.1) with µ = 1) for all the states with the prior widths
W0 = π/2, π/3, π/4 and 0.1. The numerical results are shown in table 5.2. While
the best probe in the single-shot regime for W0 = π/2 is the twin squeezed vacuum
state, the squeezed entangled state becomes the preferable choice when W0 = π/3
and W0 = π/4, and we need to start with a prior with width W0 = 0.1 in order
to recover the twin squeezed cat state as the optimal state. Moreover, the ordering
of probes in terms of their performance when W0 = 0.1 is exactly the same as the
ordering found in the asymptotic regime, which is also included in the last column
of table 5.2. Consequently, we can say that for our schemes the local regime due to
a high amount of prior information is achieved when W0 ⩽ 0.1.

An equivalent path to arrive to the same result relies on the approximation

ϵ̄mse ≳ ∆θ2
p

(
1 − ∆θ2

pFq

)
(5.21)

6Furthermore, it is reasonable to expect that other schemes that allow other types of correlations
behave differently too. For instance, in [150] the authors showed that allowing entanglement
between a finite number of probes in a frequency estimation protocol can lead to a less precise
strategy.
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Figure 5.5: i) Mean square error as a function of the number of repetitions using
the optimal single-shot strategy for (a) the coherent state, (b) the NOON state, (c)
the twin squeezed vacuum state, (d) the squeezed entangled state, (e) the (optimal)
twin squeezed cat state, and (g) the (intermediate) twin squeezed cat state, with
mean number of photons n̄ = 2, prior mean θ̄ = 0 and prior width W0 = π/2, while
(f) represents the variance of the prior probability; (ii) repetition of the calculation
performed in (i) with prior width W0 = π/3, (iii) W0 = π/4, and (iv) W0 = 0.1.
The results in these figures represent the transition from the regime of intermediate
prior knowledge and a low number of trials to the local regime of a narrow prior and
a large number of measurements.

employed in [111, 113] for the single-shot mean square error. This relation was found
in [111] assuming a Gaussian prior with a narrow width but, in fact, it can be shown
that it also holds for our flat prior if W0 ≪ 1. Assuming the latter condition, the
Taylor expansion around θ̄ for the transformed state ρ(θ) is

ρ(θ) ≈ ρ(θ̄) + ∂ρ(θ̄)
∂θ

(θ − θ̄). (5.22)

Furthermore, recalling that L(θ̄)ρ(θ̄) + ρ(θ̄)L(θ̄) = 2∂ρ(θ̄)/∂θ for the symmetric
logarithmic derivative L(θ̄) [6, 7, 43], equation (5.22) can be rewritten as

ρ(θ) ≈ ρ(θ̄) + 1
2
[
L(θ̄)ρ(θ̄) + ρ(θ̄)L(θ̄)

]
(θ − θ̄). (5.23)
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The next step is to introduce equation (5.23) in the expressions ρ =
∫
dθp(θ)ρ(θ)

and ρ̄ =
∫
dθp(θ)ρ(θ)θ, finding that ρ ≈ ρ(θ̄) and

ρ̄ ≈ θ̄ρ(θ̄) +
∆θ2

p

2
[
L(θ̄)ρ(θ̄) + ρ(θ)L(θ̄)

]
. (5.24)

Hence, from Sρ + ρS = 2ρ̄ and the previous approximations we can see that the
equation to be solved in this regime is[

S − θI − ∆θ2
pL(θ̄)

]
ρ(θ̄) + ρ(θ̄)

[
S − θI − ∆θ2

pL(θ̄)
]

≈ 0, (5.25)

which means that the quantum estimator takes the form

S ≈ θ̄ I + ∆θ2
p L(θ̄). (5.26)

In turn, this implies that

Tr (ρ̄S) ≈ θ̄2 + ∆θ4
p Fq(θ̄), (5.27)

where Fq(θ̄) = Tr[ρ(θ̄)L(θ̄)2] and we have used the fact that Tr[ρ(θ̄)L(θ̄)] = 0, and
by introducing equation (5.27) in the single-shot bound ϵ̄mse ⩾

∫
dθp(θ)θ2−Tr(ρ̄S) =

∆θ2
p + θ̄2 − Tr(ρ̄S) that was reviewed in sections 3.3.4 and 3.3.5 we finally arrive at

equation (5.21).
That the Fisher information Fq appears in equation (5.21) as the key quantity

to determine which scheme has the best performance for a given prior explains why
the numerical results in table 5.2 for W0 = 0.1 predict the same order of probes as
the approximation 1/(µFq) in the asymptotic regime of many repetitions. In both
cases, the larger Fq, the better the performance.

It is interesting to observe the similarity between the local regime of prior know-
ledge for a single shot and the local regime due to a large number of experiments.
On the one hand, the best states for W0 = π/2 and W0 = 0.1 have intra-mode
correlations only, while for W0 = π/3 and W0 = π/4 the best state presents path
entanglement too. On the other hand, figure 5.5.i shows that for 1 ⩽ µ < 5 and
µ > 40 there is no inter-mode entanglement in the optimal probes, but it appears in
the best state for 5 < µ < 40. One way of understanding this similar behaviour is
to note that updating our posterior density via Bayes theorem after each new trial
reduces the uncertainty in a way that is formally similar to making the prior nar-
rower in a sequential way. Nevertheless, both processes are conceptually different.

Finally, figures 5.5.i - 5.5.iv show the transition from the intermediate regime of
prior knowledge and a low number of trials to a local regime with both high prior
information and a large number of shots. This modifies the connection between
the number of repetitions and the properties of different probes considerably, as
can be seen by the change in the points where the graphs for different states cross
each other as the prior width is reduced. As a result, establishing a pattern that
helps us to understand what probes we need to use for different values of µ in the
regime of limited data becomes more complicated than in the two previous sections.
Fortunately, this is not a problem in real experiments because we typically know
what our specific prior information is and we can always proceed on a case-by-case
basis, but it constitutes an important obstacle to deriving more general conclusions.
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5.3.5 Performance of physical measurements
Until now we have investigated the physical consequences of the bounds constructed
following the procedure of section 5.2. Nevertheless, in a real-world situation we also
need to be able to generate concrete sequences of operations that can be implemented
in the laboratory, study whether they saturate the theoretical bounds and, if they do
not, determine how close to the fundamental minimum the associated uncertainty is.
Since here we are using a fixed set of probe states, we need only consider sequences
for implementing the measurement scheme.

States that can be generated using operations such as squeezing or displacement
from the vacuum are generally easier to prepare than the abstract (and possibly
entangled) states that arise in theoretical optimisations [7, 25, 164]; consequently,
there is an intrinsically practical interest in exploring how close to the fundamental
bounds this type of state can get. We already know that we can approach the
quantum Cramér-Rao bound asymptotically for path-symmetric pure (but otherwise
general) states when each individual measurement consists of counting photons after
the action of a 50:50 beam splitter [91]. For instance, using that POM we have shown
in section 4.3.3 that if W0 = π/2 and we impose that the relative error in equation
(4.14) is ετ = 0.05, then this is true for the twin squeezed vacuum state for µτ ⩾ 874,
although surpassing the 0.05 threshold with the squeezed entangled state requires
more than µ = 103 repetitions because its convergence is slower.

By using the bounds with W0 = π/2 and θ̄ = 0 in section 5.3.2 we can now an-
swer this question in the regime of limited data too, both for the previous states and
for the coherent and the twin squeezed cat states. As a preliminary step we have
reproduced these bounds as shaded areas in figures 5.6.i - 5.6.iv for the coherent
state, the twin squeezed vacuum state, the squeezed entangled state and the twin
squeezed cat state, respectively. In addition, the dashed lines in those figures rep-
resent the mean square error associated with the measurement of the energy at each
port of the interferometer (i.e., counting photons) after the action of a 50:50 beam
splitter. We draw attention to the fact that we have also introduced a known phase
shift in the second port of the interferometer before this beam splitter is applied,
the complete sequence of operations for each state being presented in table 5.3. The
reason behind this choice is that we have found that the uncertainty of this POM
depends on θ̄, and the extra phase shift allows us to achieve the optimal single shot
precision when the prior is centred around θ̄ = 0, which is our case. This dependence
with θ̄ can be seen as a Bayesian analogue of those cases where the standard error
propagation formula for a given observable depends on the unknown parameter θ,
which is not a problem in practice provided that the experiment is arranged close
to an optimal operating point [7].

Importantly, the results in chapter 4 for W0 = π/2 were based on a prior centred
around π/4 and did not include the extra phase shift discussed in the previous
paragraph as part of the measurement scheme. However, we have found that the
configuration in chapter 4 generates uncertainties that are numerically similar to
those discussed here when the extra phase shifts are taken into account. Therefore,
the comparison between both collections of results is meaningful for W0 = π/2.

To start our discussion of the low trial number regime with this POM, we first
observe that, according to figure 5.6.i, measuring energy with coherent states pro-
duces an uncertainty that is already very close to the associated bound for a low
value of µ. More concretely, the bound and the measurement error only differ in
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Figure 5.6: i) Mean square error based on the optimal single-shot strategy (shaded
area), error associated with the measurement of energy (dashed line) and prior
variance (horizontal solid line) for the coherent state, (ii) the twin squeezed vacuum
state, (iii) the squeezed entangled state, and (iv) the twin squeezed cat state, with
mean number of photons n̄ = 2, prior mean θ̄ = 0 and prior width W0 = π/2.
Furthermore, the dash-dot graphs in (ii), (iii) and (iv) represents the uncertainty
for the measurement of quadratures. The sequences of operations that implement
the POMs that produce these results can be found in table 5.3.

their second and third significant figures, as can be directly verified from the values
in table 5.4, where we provide the numerical uncertainties for the first ten shots
of every scheme based on indefinite photon number strategies. Moreover, this can
be further improved if instead we undo the preparation of the probe state before
counting photons, that is, by reversing the 50:50 beam splitter and the displacement
from the vacuum operations that generated the coherent state in the first place. The
extra known difference of phases showed in table 5.3 is also needed for the case with
θ̄ = 0 that we are considering. Nonetheless, taking into account the fact that both
schemes produce an uncertainty whose first significant figure is that of the optimum
(see table 5.4), we conclude that, for most practical purposes, they are equally useful
and optimal given any number of repetitions.

The situation is very different when we consider the other three states in figures
5.6.ii - 5.6.iv, where the uncertainty of the energy measurement is now notably higher
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Measurement Observable Projectors States

50:50 splitter &

counting (even)

N1N2 =
∫
dk k |k⟩⟨k|,

with Ni = a†
iai

{
e−i π

4 N2e−i π
2 Jx |k⟩

}
k

All but

coherent

50:50 splitter &

counting (odd)

N1N2 =
∫
dk k |k⟩⟨k|,

with Ni = a†
iai

{
e−i π

2 N2e−i π
2 Jx |k⟩

}
k

Coherent

π/8 quadratures
X1X2 =

∫
dq q |q⟩⟨q|, with

Xi = [ei π
8 a†

i + e−i π
8 ai]/

√
2

{
ei π

4 N1e−i π
2 Jx |q⟩

}
q

All but

coherent

Undoing &

counting
N1N2 =

∫
dk k |k⟩⟨k|

{
eiπJz ei π

2 JxD†
1 (α) |k⟩

}
k

Coherent

Parity POMs
Π1Π2 =

∫
dp p |p⟩⟨p|,

with Πi = (−1)a†
i ai

{
e−i π

4 N2e−i π
2 Jx |p⟩

}
p

NOON

Table 5.3: Sequences of quantum operations needed to implement the practical
measurements discussed in section 5.3.5, whose uncertainty is represented in figures
5.6 and 5.7. Note that the observable column indicates the physical quantity that
is being measured, and that the different combinations of phase shifts that appear
in the third column have been chosen such that the schemes are optimal when the
prior is centred around θ̄ = 0 and n̄ = 2.

than each bound in the regime of limited data, the distance between the graphs of
the measurement and those of the bounds being larger for a few repetitions than for
a single shot. This measurement is particularly detrimental for the strategy based
on the squeezed entangled state, since its error is very close to the prior variance
(horizontal line in 5.6.iii) when µ ∼ 1 and this indicates that almost no information
is being gained there. Additionally, we can observe that the twin squeezed cat state
in figure 5.6.ii presents a slow convergence to the asymptotic Cramér-Rao bound
when we use this POM, compared with the twin squeezed vacuum probe state in
figure 5.6.ii or the coherent state in in figure 5.6.i. Note that this is the same problem
found in section 4.3.3 for the squeezed entangled state, which is also reproduced in
our calculations here.

These results show that counting photons is not the best strategy to be followed
when µ is low and the probes have been prepared in states with a large Fisher
information such as the ones considered here, and this motivates the search for
other practical alternatives. More concretely, instead of projecting onto the energy
basis, we can consider the measurement of a different physical quantity. The dash-
dot lines in figures 5.6.ii - 5.6.iv show the results where we have projected onto the
eigenstates of the observable X1 ⊗X2,

Xi = 1√
2
(
a†

i eiπ/8 + aie−iπ/8
)

(5.28)

being a quadrature rotated by π/8 for the i-th mode [83], after having introduced
the phase shift exp(iπ

4a
†
1a1) and having applied a 50:50 beam splitter (see table 5.3)7.

7Note that the eigenstates of the quadrature operator in equation (5.28) cannot be normalised
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ϵ̄mse (µ = 1), . . . , ϵ̄mse (µ = 10)
Coherent state Twin squeezed vacuum state

Single-shot
POM

50:50 splitter
& counting

Undoing &
counting

Single-shot
POM

50:50 splitter
& counting

π/8
quadra.

1.44 · 10−1 1.49 · 10−1 1.47 · 10−1 9.94 · 10−2 1.57 · 10−1 1.27 · 10−1

1.11 · 10−1 1.15 · 10−1 1.13 · 10−1 6.48 · 10−2 1.23 · 10−1 8.37 · 10−2

8.94 · 10−2 9.25 · 10−2 9.07 · 10−2 4.49 · 10−2 9.71 · 10−2 5.83 · 10−2

7.47 · 10−2 7.70 · 10−2 7.56 · 10−2 3.36 · 10−2 7.85 · 10−2 4.31 · 10−2

6.40 · 10−2 6.59 · 10−2 6.47 · 10−2 2.64 · 10−2 6.44 · 10−2 3.32 · 10−2

5.60 · 10−2 5.74 · 10−2 5.66 · 10−2 2.17 · 10−2 5.38 · 10−2 2.67 · 10−2

4.98 · 10−2 5.10 · 10−2 5.02 · 10−2 1.83 · 10−2 4.56 · 10−2 2.22 · 10−2

4.48 · 10−2 4.58 · 10−2 4.51 · 10−2 1.58 · 10−2 3.91 · 10−2 1.89 · 10−2

4.07 · 10−2 4.15 · 10−2 4.10 · 10−2 1.40 · 10−2 3.39 · 10−2 1.64 · 10−2

3.74 · 10−2 3.80 · 10−2 3.76 · 10−2 1.25 · 10−2 2.98 · 10−2 1.45 · 10−2

Squeezed entangled state Twin squeezed cat state
Single-shot

POM
50:50 splitter
& counting

π/8
quadra.

Single-shot
POM

50:50 splitter
& counting

π/8
quadra.

1.12 · 10−1 1.93 · 10−1 1.54 · 10−1 1.43 · 10−1 1.76 · 10−1 1.62 · 10−1

7.38 · 10−2 1.80 · 10−1 1.18 · 10−1 1.08 · 10−1 1.52 · 10−1 1.30 · 10−1

5.08 · 10−2 1.68 · 10−1 9.23 · 10−2 8.46 · 10−2 1.32 · 10−1 1.06 · 10−1

3.60 · 10−2 1.56 · 10−1 7.34 · 10−2 6.77 · 10−2 1.16 · 10−1 8.75 · 10−2

2.62 · 10−2 1.45 · 10−1 5.95 · 10−2 5.53 · 10−2 1.02 · 10−1 7.33 · 10−2

1.96 · 10−2 1.34 · 10−1 4.87 · 10−2 4.56 · 10−2 9.08 · 10−2 6.22 · 10−2

1.51 · 10−2 1.24 · 10−1 4.06 · 10−2 3.81 · 10−2 8.13 · 10−2 5.33 · 10−2

1.19 · 10−2 1.15 · 10−1 3.43 · 10−2 3.19 · 10−2 7.33 · 10−2 4.60 · 10−2

9.65 · 10−3 1.06 · 10−1 2.94 · 10−2 2.70 · 10−2 6.65 · 10−2 4.01 · 10−2

8.04 · 10−3 9.77 · 10−2 2.54 · 10−2 2.30 · 10−2 6.07 · 10−2 3.52 · 10−2

Table 5.4: Mean square error for the indefinite photon number states using the
optimal single-shot POM and the physical measurement schemes described in the
main text, with 1 ⩽ µ ⩽ 10, n̄ = 2, θ̄ = 0 and W0 = π/2.

The error of this scheme also depends on θ̄.
By comparing the energy and quadrature POMs figures 5.6.ii - 5.6.iv we see that

the graphs based on the latter measurement are substantially closer to the bounds
than those for the former POM when the experiment is operating in the regime of
limited data. In other words, we have found a physical measurement that improves
over the results based on measuring the energy for the practical states under consid-
eration and a low number of trials. Interestingly, the dash-dot lines still converge to
the fundamental asymptotic bound, and this implies that in the asymptotic regime

[83], and that the eigenvectors mentioned in the main text refer to the numerical approximation
associated with the truncated state that we are employing here.
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both schemes are, nevertheless, equivalent in practice and optimal.
Although these results extend our findings in chapter 4, figures 5.6.ii - 5.6.iv

also show that it could still be possible to find other physical schemes with a better
precision when µ is low, with a faster rate of convergence to the asymptotic minimum
or even saturating the bound for any µ. These are some of the questions that should
be addressed for further progress in the design of experimentally feasible protocols
that operate both in and out of the regime of limited data.

5.3.6 Optimality of NOON states
The fact that NOON states are conceptually simple makes them an excellent tool
to understand metrology protocols, which is why we have chosen to study them
separately. They emerge as the optimal probe that maximises the Fisher information
over the definite photon number states [105, 107], and while they are unsuitable for
a global estimation due to the multi-peak structure associated with the posterior
probabilities that they generate ([104, 105] and our analysis in section 4.3.2), and
they require that the scaling of the prior variance is already ∼ 1/n̄2 in order to
achieve the same scaling that the Cramér-Rao bound predicts [117, 130], the results
in section 4.3.3 have shown that they can still be useful to a certain extent in the
intermediate regime of prior knowledge and limited data when the number of photons
is low and the POM is based on measuring the energy at each port. In addition, this
moderate usefulness also holds for the repetition of the single-shot optimal strategy
according to our results in figure 5.2.i, since the NOON state performs better than
the twin squeezed cat state for 1 ⩽ µ ⩽ 10. By studying the performance of this
probe for different physical measurements with respect to the non-asymptotic bound
we will see that NOON states are also optimal in another sense.

We start considering the two measurement schemes that we described in the
previous section, that is, counting photons and measuring rotated quadratures after
the introduction of some phase shifts that are indicated in table 5.3, and after the
action of a 50:50 beam splitter. The mean square errors generated by them for the
NOON state, which are represented in figures 5.7.i and 5.7.ii, respectively, display
a perfect agreement with the bounds for any number of repetitions. This can be
further verified by observing that the numerical uncertainties for the first ten shots
provided in table 5.5 are virtually identical. Additionally, for the photon counting
measurement and a single shot it can be easily shown in an analytical fashion. To
see it, first we calculate the likelihood function (see appendix A.3), finding that

p(n, 2 − n|θ) = cos2 [θ + (2n− 3)π/4]
n!(2 − n)! . (5.29)

Recalling that n = 0, 1, 2, equation (5.29) can be expressed as

p(2, 0|θ) = p(0, 2|θ) = 1
2 sin2

(
θ − π

4

)
, p(1, 1|θ) = cos2

(
θ − π

4

)
. (5.30)

Next we need to find the normalisation term of Bayes theorem, that is,

p(n, 2 −N) = 2
π

∫ π/4

−π/4
dθp(n, 2 − n|θ). (5.31)

Introducing equation (5.30) in the formula for p(n, 2 − n) we find that p(2, 0) =
p(0, 2) = 1/4 and p(1, 1) = 1/2. At the same time, this gives us the last piece that
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Figure 5.7: Mean square error based on the optimal single-shot strategy (shaded
area), prior variance (horizontal solid line) and error associated with (i) the meas-
urement of energy (dashed line), (ii) the measurement of quadratures (dash-dot line),
(iii) parity measurements (dotted line), and (iv) the optimal collective measurement
on µ copies of the probe (plus signs), for a NOON probe state with n̄ = 2, θ̄ = 0
and W0 = π/2.

we need to apply Bayes theorem and find the posterior probability p(θ|n, 2 − n) =
p(θ)p(n, 2 − n|θ)/p(n, 2 − n), which in our case is

p(θ|2, 0) = p(θ|0, 2) = 4
π

sin2
(
θ − π

4

)
, p(θ|1, 1) = 4

π
cos2

(
θ − π

4

)
. (5.32)

Now we observe that it is possible to rewrite the classically-optimal single-shot mean
square error in equation (3.45) as

ϵ̄mse(µ = 1) =
∫
dθp(θ)θ2 −

∫
dn p(n, 2 − n)gopt(n, 2 − n)2, (5.33)

where
gopt(n, 2 − n) =

∫ π/4

−π/4
dθp(θ|n, 2 − n)θ (5.34)

is the optimal estimator. Taking into account that gopt(2, 0) = gopt(0, 2) = −1/π
and gopt(1, 1) = 1/π, the error associated to this POM is

ϵ̄mse(µ = 1) = 2
π

∫ π/4

−π/4
dθθ2 − 1

π2 = π2

48 − 1
π2 . (5.35)
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ϵ̄mse (µ = 1), . . . , ϵ̄mse (µ = 10)
NOON state

Single-shot
POM

50:50 splitter
& counting

π/8
quadra.

Parity
POMs

Collective
POMs

1.04 · 10−1 1.04 · 10−1 1.04 · 10−1 1.04 · 10−1 1.04 · 10−1

7.06 · 10−2 7.06 · 10−2 7.06 · 10−2 7.06 · 10−2 7.02 · 10−2

5.36 · 10−2 5.36 · 10−2 5.36 · 10−2 5.35 · 10−2 5.31 · 10−2

4.33 · 10−2 4.33 · 10−2 4.33 · 10−2 4.32 · 10−2 4.28 · 10−2

3.63 · 10−2 3.63 · 10−2 3.63 · 10−2 3.63 · 10−2 3.59 · 10−2

3.14 · 10−2 3.13 · 10−2 3.13 · 10−2 3.13 · 10−2 3.09 · 10−2

2.76 · 10−2 2.76 · 10−2 2.76 · 10−2 2.76 · 10−2 2.72 · 10−2

2.46 · 10−2 2.46 · 10−2 2.46 · 10−2 2.46 · 10−2 2.43 · 10−2

2.23 · 10−2 2.23 · 10−2 2.23 · 10−2 2.23 · 10−2 2.20 · 10−2

2.03 · 10−2 2.03 · 10−2 2.03 · 10−2 2.03 · 10−2 2.00 · 10−2

Table 5.5: Mean square error for the NOON state using the optimal single-shot
POM, the physical measurement schemes described in the main text and collective
measurements, with 1 ⩽ µ ⩽ 10, n̄ = 2, θ̄ = 0 and W0 = π/2. We note that
the calculation for collective measurements has been performed with a different
numerical algorithm (see the Mathematica code in appendix B.2).

On the other hand, the single shot quantum bound is, in this case,

ϵ̄mse(µ = 1) ⩾ 2
π

∫ π/4

−π/4
dθθ2 − Tr(ρ̄S) = π2

48 − 1
π2 , (5.36)

which is the exact value found in equation (5.35) (see the calculation of ρ̄ and S
for the NOON state in section 5.3.2). Hence, the measurement under consideration
saturates the single-shot bound, as we expected8.

Similarly, a parity measurement based on the projectors of the observable Π1 ⊗
Π2 = (−1)a†

1a1 ⊗ (−1)a†
2a2 [146, 147], and performed after introducing an extra phase

shift and the action of a beam splitter (see table 5.3), also saturates the bound for
all µ, as it can be observed in figure 5.7.iii. This is consistent with the fact that the
information about the phase is actually contained in the parity of the number of
photons [104, 146, 147]. Interestingly, we have verified that counting photons and
checking the parity at each port produces the same non-asymptotic results for the
indefinite photon number states too.

That different physical schemes are able to saturate the same quantum bound
can be explained by recalling that the optimal quantum estimator S is only defined
on the support of ρ. In particular, for NOON states ρ can be represented by a
non-singular (2 × 2) matrix in the number basis (see section 5.3.2), which is only a
part of the full space including all the sectors with any number of photons. As a
consequence, any measurement that coincides with the projectors |s1⟩ and |s2⟩ given

8We also notice the agreement of π2/48 − 1/π2 ≈ 0.104 with the numerical results showed in
table 5.5.
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in equation (5.20) in the part of the space that corresponds to the support of ρ is
going to be optimal, independently of the particular form of the POM elements.

Furthermore, the same intuition can be used to understand why it is more
difficult to saturate the bounds for indefinite photon number states in the non-
asymptotic regime. For these states there is a non-zero probability of detecting any
number of photons at each port of the interferometer, which implies that the optimal
quantum estimator S can be constrained in all the sectors of the operator space,
and these constraints need to be fully satisfied to saturate the single-shot bound.
However, as we accumulate more data we start to approach the quantum Cramér-
Rao bound, which is based on the equation L(θ)ρ(θ) + ρ(θ)L(θ) = 2∂ρ(θ)/∂θ, and
this equation only has a unique solution on the support of ρ(θ) [124], which in our
case is simply a pure state. That is, finding physical measurements that saturate
the asymptotic bounds is generally less demanding and, in fact, the errors of the
physical measurements in figures 5.6.i - 5.6.iv converge to the fundamental bound.

This state of affairs gives rise to an interesting situation. The Bayesian bounds
in figure 5.2.i show that, in principle, the NOON state is not the best option among
the probes that we are examining for any number of repetitions. In spite of this
fact, if we compare the uncertainty associated with counting photons after undoing
the preparation of a coherent state, the measurement of quadratures for the states
based on the squeezing operator, and any of the physical measurement previously
discussed for the NOON state, then it can be shown that, in this case, the NOON
state is the best probe when 1 ⩽ µ ⩽ 3. In particular, this conclusion can be extrac-
ted by inspection from tables 5.4 and 5.5. This analysis highlights the importance
of studying the possibility of saturating the theoretical bounds using realistic im-
plementations in a particularly transparent way.

On the other hand, the mathematical simplicity of NOON states allows us to go
one step further and study collective measurements [105, 113]. Until now this work
has followed the model for repetitions that we introduced in section 3.1. However,
we also saw that a more general possibility is to prepare µ identical copies of some
probe and perform a single measurement on all of them at once. Given that repeating
an experiment is generally easier than implementing collective techniques, it would
interesting to find out whether collective POMs produce better uncertainties in those
schemes whose associated calculations are tractable.

If we upgrade the optimal single-shot bound in equation (3.36) to cover the
collective case we find that

ϵ̄mse ⩾
∫
dθp(θ)θ2 − Tr (ρ̄µSµ) , (5.37)

where now Sµ is given by Sµρµ + ρµSµ = 2ρ̄µ with

ρµ =
∫
dθp(θ)ρ(θ) ⊗ · · · ⊗ ρ(θ)︸ ︷︷ ︸

µ times

(5.38)

and
ρ̄µ =

∫
dθp(θ)ρ(θ) ⊗ · · · ⊗ ρ(θ)︸ ︷︷ ︸

µ times

θ. (5.39)

An algorithm to calculate equation (5.37) for NOON states is proposed in ap-
pendix B.2, and its application for 1 ⩽ µ ⩽ 10 results in the graph of figure 5.7.iv,
which coincides with the bound generated by repeating the optimal strategy for a
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single probe9. Numerically, this agreement occurs at least for the first significant
figure, as it can be verified in table 5.5. Thus we conclude that collective meas-
urements do not provide a better performance than the practical measurements
previously studied when we are working in the low-µ regime, each probe is prepared
in a NOON state with n̄ = 2 and the prior width is W0 = π/2.

In summary, we have shown that there are measurements that can saturate the
bound for the NOON state for all µ simultaneously. Consequently, NOON states
do not only have a special status in the local regime, but also in the regime of
limited data and moderate prior knowledge10. This can be explained by noticing
that the optimal projectors for a single shot in equation (5.20) are the same that
the projectors predicted by the symmetric logarithmic derivative that defines the
quantum Fisher information [104]. While this probe state is fragile and difficult
to prepare in more realistic scenarios [164], these results are still interesting from
a fundamental perspective, and they have helped us to understand the problems
associated with saturating the bounds of more practical states that we need to
overcome in the future.

5.4 Comparing our method with the alternative
quantum bounds

The shot-by-shot strategy that we have constructed generates valid lower bounds
for repetitive experiments. The fact that they are based on the single-shot optimum
implies that, in a sense, they are fundamental in scenarios where the experiment is
repeated, and we have seen that there is a constructive way of finding the theoretical
POM that reaches them.

A crucial aspect of our tool is that the calculations associated with it can be
performed in an efficient way for practical schemes, having provided an algorithm
with analytical and numerical components to achieve that goal. However, one could
argue that some of the quantum bounds for low µ that we reviewed in section (3.3.3)
are still computationally simpler, even when in general they also require a numerical
treatment. In this section we analyse the relative merit of employing our strategy
when the results generated by the latter are compared with the predictions of two
alternative tools: the quantum Ziv-Zakai and Weiss-Weinstein bounds [46, 56].

The Ziv-Zakai bound in equation (3.27) is already in a form that we can ap-
ply to our optical configuration, and the numerical algorithm that implements
this operation can be found in appendix B.3.2. On the other hand, the Weiss-
Weinstein bound in equation (3.30) is expressed in terms of the quantity fc(s, θ) =∫
dθ′p(θ′+θ)sp(θ′)1−s, for {θ′, p(θ′) ̸= 0}. A choice for s that tends to produce tighter

9Unfortunately, it becomes numerically challenging to increase the number of copies, which is
why we only consider 1 ⩽ µ ⩽ 10 for this calculation.

10In [105] it is argued that NOON states emerge as the optimal probe with a definite number
of photons in the limit where the prior information dominates, something that is shown in [107],
and it is concluded that, for that reason, using NOON states is almost useless in a practical
Bayesian context. Although it is true that NOON states are limited due to the ambiguity that
they introduce in the estimation and, more importantly, because of the difficulties to use them in
real experiments [164], we draw attention to the fact that the regime where the prior knowledge
may play a substantial role is relevant and useful whenever we need to make inferences from a
practical scenario where only a low number of experiments can be performed.
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Figure 5.8: Shot-by-shot strategy (solid line), quantum Ziv-Zakai bound (dash-
dotted line) and quantum Weiss-Weinstein bound (dotted line) for (i) the coher-
ent state, (ii) the NOON state, (iii) the twin squeezed vacuum state, and (iv) the
squeezed entangled state, with n̄ = 2 and Wint = π/2.

bounds is s = 1/2 [46, 165], and we will also use it here. In that case, the previ-
ous quantity is simplified as fc(1/2, θ) =

∫
dθ′
√
p(θ′ + θ)p(θ′), for {θ′, p(θ′) ̸= 0},

which measures the overlap between the prior probability and a displaced version
of it. For the flat prior of width W0 that we are employing this overlap is simply
fc(1/2, θ) = 1−|θ|/W0. Consequently, the Weiss-Weinstein bound in equation (3.30)
becomes

ϵ̄mse ⩾ sup
θ

θ2
(
1 − θ

W0

)2
|f(θ)|4µ/2

|f(θ)|2µ −
(
1 − 2θ

W0

)
Re

{
[f(θ)2f(2θ)∗]µ

} , (5.40)

with 0 ⩽ θ < W0. The algorithm to find this bound is provided in appendix B.3.3.
Figure 5.8 shows the results of performing the previous calculations for (i) the

coherent state, (ii) the NOON state, (iii) the twin squeezed entangled state and (iv)
the twin squeezed cat state, where we have also included the bounds generated by
repeating the single-shot optimal strategy (solid lines). As we can observe, neither
the Ziv-Zakai bound (dash-dotted lines) nor the Weiss-Weinstein bound (dotted
lines) coincides with with the single-shot optimum at µ = 1, which means that
these bounds are not tight in the single-shot regime. The Weiss-Weinstein bound
is actually tight when µ ≫ 1, as it was proven in [46], while the Ziv-Zakai bound
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presents the correct scaling in this regime but it is not tight. Despite this, the latter
bound is the tighter option when µ ∼ 1.

The comparison for a low µ such that µ > 1 is more subtle, since the bounds
in equations (3.27) and (5.40) are defined for µ copies of the probe state, which
in principle allows for collective measurements, while our bounds in section (5.3)
are specifically designed for repetitions. Fortunately, we have been able to study
collective techniques for NOON states, finding that both collective and repetitive
measurements have the same precision for this configuration when µ is low. For that
reason, the results for the NOON state in figure 5.8.ii demonstrate that the altern-
ative bounds are loose in the intermediate regime. This implies that, in general, the
quantum Ziv-Zakai and Weiss-Weinstein bounds are not tight in the non-asymptotic
regime of optical metrology, in consistency with the examples in [46], and thus we
conclude that our technique is preferred whenever we study repetitive experiments11.

5.5 Practical application: designing quantum ex-
periments with genetic algorithms

The results in the previous sections, together with those in chapter 4, complete
our non-asymptotic methodology for single-parameter estimation problems. Now
we would like to go a step further and conclude this chapter by exploiting our
methods to design quantum states. In particular, we seek states that not only
provide precision enhancements in the regime of limited data, but whose preparation
is also associated with a concrete sequence of operations that can be implemented
with current technology. Therefore, the findings in this section complement those
in sections 5.3.5 and 5.3.6, where the sequences were only provided for POMs.

This problem belongs to the broader field of quantum state engineering, where
ideas from machine learning and artificial intelligence are often utilised [159, 160,
166]. In this context, Knott and his collaborators at Nottingham and Bristol [160]
proposed a genetic algorithm to design states in optical experiments. In what follows
we show how the combination of these techniques with our methodology for single-
parameter schemes provides a solution to the problem in the previous paragraph.

Let us first summarise the key ideas of the algorithm developed by Knott et
al. [160], which is called AdaQuantum. One starts by creating a numerical toolbox
with states, operations and measurements that can be performed with an optical
arrangement. For example, the work [160] includes a general splitter

Uij = exp
[
ϕ
(
aia

†
j + a†

iaj

)]
(5.41)

with transmissivity T = cos2(ϕ), the two-mode squeezing operator

Sij = exp
(
ζ∗aiaj − ζa†

ia
†
j

)
(5.42)

and the single-mode photon counting measurement |n⟩⟨n|, among others.
The next step is to construct combinations of states, operations and measure-

ments that together generate single-mode states. This is achieved by working in the
11Nonetheless, we observe that the quantum Ziv-Zakai and Weiss-Weinstein bounds correctly

lower-bound the uncertainty for low values of µ, in contrast to the Cramér-Rao bound, since these
bounds are valid for both biased and unbiased estimators [46, 56, 120].



88

Setting |ψin⟩ O1 O2 O3 |n⟩⟨n|

Ada, µ = 8 |0, 0⟩ S12(ζ = 0.89 ei0.031) U12(T = 0.69) eiN10.32 |4⟩⟨4|

Ada, µ = 4, 12 |0, 0⟩ S12(ζ = 0.91 ei0.040) U12(T = 0.66) — |6⟩⟨6|

Ada, µ = 1 |0, 0⟩ S12(ζ = 0.95 ei6.1) U12(T = 0.72) — |2⟩⟨2|

Table 5.6: Details of the sequences generated by AdaQuantum using the Bayesian
framework. The first two schemes are for a photon counting measurement after a
50:50 beam splitter, and the last one is for the optimal single-shot POM. Note that
|n⟩⟨n| implements the heralding measurement that produces the single-mode state.

space of M modes and performing heralding measurements on (M−1) of them, such
that the state of the remaining mode is selected on the basis of the measurement
outcome [159]. The results in this section have been obtained with M = 2. Then the
final goal is to find arrangements of these experimental elements that give output
states that are good for certain tasks, which is a search problem [160].

Each of these combinations is said to be a genome, and a collection of genomes is
the population. In addition, a fitness function encoding the properties that we wish
the final state to have is defined. This allows the algorithm to examine the values
of such function for each of the genomes in the population, and to select those that
are the fittest according to the criterion of the fitness function. The latter are then
combined or modified, producing a new generation, and the process is repeated until
the probability of producing new improvements is very small.

AdaQuantum, which was made available by its authors on GitHub [167], is flex-
ible enough to accommodate different fitness functions, and this is precisely where
our contribution starts. In particular, we prepared a MATLAB module including
the numerical algorithms in appendices B.2, B.4 and B.6, such that the Bayesian
mean square error employed here could play the role of a fitness function in the
regime of limited data and a realistic amount of prior knowledge.

Since AdaQuantum produces single-mode states and these cannot be used on its
own because in experiments we can only access the information about the difference
of phase shifts, one approach is to take a pair of such states as the input of our
interferometer, that is, |ψ0⟩ = |ψ⟩ ⊗ |ψ⟩, where |ψ⟩ is the outcome of the genetic
algorithm. The task given to AdaQuantum is thus to find the state |ψ⟩ that min-
imises ϵ̄mse for a given number of repetitions and measurement scheme.

While the algorithm for the Bayesian error in appendix B.6 is relatively efficient
when we only require the performance of a few schemes (section 4.2.4), the genetic
algorithm needs to calculate this error a large number of times in order to successfully
evolve the optimal strategy through different generations, and this is numerically
demanding. For that reason, we have chosen a narrow flat prior with W0 = π/12 and
θ̄ = 0, so that the calculations associated with the integrals in equations (4.3) and
(5.1) for the mean square error are simplified12. In addition, AdaQuantum assumes
that n̄ = 1 for our configuration. As a consequence, the strategies in this section
cannot be directly compared with those in the first part of this chapter.

We will optimise the error using two different strategies. First we focus on
12Notice that, according to our discussion in sections 5.2.1 and 5.3.4, W0 = π/12 ≈ 0.3 is still a

moderate amount of prior information.
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Figure 5.9: Mean square error as a function of the number of repetitions for (i) the
coherent state (solid line, CS), the twin squeezed vacuum (dashed line, SV) and the
states found by AdaQuantum for µ = 4 (plus sign), µ = 8 (asterisk) and µ = 12
(cross) repetitions. Here the measurement scheme is based on counting photons after
the action of a 50:50 beam splitter. In (ii) we again consider the coherent and twin
squeezed vacuum states, but now measured by their respective optimal single-shot
POMs. The state found by AdaQuantum (dash-dot line) is then based on our shot-
by-shot strategy, which already takes into account the optimal single-shot POM for
the given state. All the configurations are based on a two-mode interferometer with
1 photon on average, W0 = π/12 and θ̄ = 0.

one of the practically-motivated POMs that we have studied: counting photons
after the action of a 50:50 beam splitter, including an extra phase shift that is
known and that takes into account the fact that the prior is centred around zero13,
and we set the algorithm to optimise the error for µ = 4, µ = 8 and µ = 12
repetitions. This search produces a state that takes the form |ψ⟩ = N ⟨n|Û12Ŝ12|0, 0⟩
for µ = 4 and µ = 12, where N is the normalisation, while for µ = 8 we find |ψ⟩ =
N ⟨n|P̂1Û12Ŝ12|0, 0⟩, where P1 is a phase shift in the first mode. Table 5.6 provides the
numerical parameters for the sequences of operations that would prepare these states
in practice, and the uncertainty associated with two copies of the previous probes has
been represented in figure 5.9.i (individual points). Furthermore, we have included
the errors for the coherent state (solid line, CS) and the twin squeezed vacuum state
(dashed line, SV), as references. The motivation to use the latter as a benchmark
is that while it illustrates the potential enhancement that quantum resources can
provide, it is also a common and well-understood probe state, in contrast with more
exotic choices such as those studied in section 5.3.

Figure 5.9.i shows that the states found by AdaQuantum perform better than
the chosen references, which demonstrates that AdaQuantum is able to optimise a
Bayesian figure of merit in a regime where the Fisher information is often unsuitable.
More concretely, we can quantify this improvement by introducing the quantity

Ir = ϵ̄r − ϵ̄ada

ϵ̄r
, (5.43)

where ϵ̄r is the uncertainty of any of the reference states and a positive Ir indicates
13In particular, we have chosen its even version in table 5.3.
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AdaQuantum’s relative enhancement
50:50 splitter & counting Single-shot POM

Ref. Ir(µ = 4) Ir(µ = 8) Ir(µ = 12) Ref. Ir(µ = 1)
SV 0.02 0.04 0.07 SV 0.03
CS 0.05 0.10 0.15 CS 0.04

Table 5.7: Improvement factor as defined in equation (5.43) to quantify the enhance-
ment of the states found by AdaQuantum with respect to the twin squeezed vacuum
state (SV) and the coherent (CS). The details of the experimental configuration are
those indicated in the caption of figure 5.9 and in the main text.

that there has been an improvement. Its calculation, whose results are summarised
in table 5.7, shows an enhancement of between 2% and 7% with respect to the twin
squeezed vacuum, and between 5% and 15% with respect to the coherent state.

The second strategy is to select the optimal single-shot POM given by the eigen-
states of the quantum estimator S before the search of AdaQuantum starts, such
that the fitness function is the uncertainty in equation (5.1). For this configuration
we find another state with the form |ψ⟩ = N ⟨n|Û12Ŝ12|0, 0⟩, but with different para-
meters (see table 5.6). As table 5.7 shows, this state is 3% better than the twin
squeezed vacuum measured by its correspondent single-shot POM, and 4% better
than the coherent state. In addition, we notice that the performance of a scheme
where this probe is repeated 20 times, which has been represented in figure 5.9.ii,
shows that the state found by AdaQuantum using the optimal single-shot POM is
better than the benchmarks even when the number of repetitions grows.

To summarise, we can say that the combination of AdaQuantum and the meth-
ods introduced in both this chapter and chapter 4 provides a robust method to find
practical probe states with a strong performance for those systems that operate in
the regime of limited data. Moreover, this may have important consequences for
quantum metrology in a more general sense. We recall that, according to our dis-
cussion of the work by Macieszczak et al. [111] in section 3.3.1, a way of finding
quantum strategies that approach the optimum is to construct an algorithm where
the state and the POM are sequentially optimised, which can be achieved by com-
bining the fundamental equations (3.13) found by Helstrom and Holevo [6, 53–55]
with the minimisation of equation (3.15). In view of the promising results of this
section, the possibility of using genetic algorithms with experimentally realisable
operations to upgrade the strategy in [111] suggests itself.

5.6 Summary of results and conclusions
We have proposed to use the strategy that is optimal after minimising the single-
shot mean square error over all the possible POMs in a sequence of µ repeated
experiments, completing in this way the part of our non-asymptotic methodology
that is dedicated to single-parameter estimation problems.

Given a state, a generator and a prior probability, we have seen that the bounds
that arise from this technique are optimal for the first shot by construction, and
that they also start to converge to the quantum Cramér-Rao bound when µ ∼
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102. In addition, we have argued that they can be saturated using measurements
that are equivalent to the projectors of the optimal quantum estimator S for each
repetition, and that this strategy is optimal for those experiments based on identical
and independent trials where adaptive techniques or more general measurements are
excluded. Furthermore, the comparison of our method with alternative tools such as
the quantum Ziv-Zakai and Weiss-Weinstein bounds has revealed that our shot-by-
shot strategy is preferred even when its calculation is not always as simple as that
of more standard bounds, since the latter have been shown to be generally loose
for optical protocols in the non-asymptotic regime. The calculation of the quantum
Ziv-Zakai and Weiss-Weinstein bounds appeared in [136]

Non-asymptotic analysis of quantum metrology protocols beyond the Cramér-
Rao bound, Jesús Rubio, Paul Knott and Jacob Dunningham, J. Phys.
Commun. 2 015027 (2018).

The usefulness of this method in the context of quantum metrology has been
demonstrated through the analysis of a Mach-Zehnder interferometer, and we have
focused our study on three indefinite photon number states that have been proposed
in the literature due to their large Fisher information: the twin squeezed vacuum
state, the squeezed entangled state and the twin squeezed cat state. We have found
that the twin squeezed vacuum state is the best option when 1 ⩽ µ < 5, W0 = π/2,
and for µ = 1, W0 = π/3; that the squeezed entangled state is the preferred choice
if 5 < µ < 40, W0 = π/2 and when µ = 1, W0 = π/3 or W0 = π/4; and that the
twin squeezed cat state recovers its status of best probe due to its largest Fisher
information when µ > 40, W0 = π/2 and µ = 1, W0 = 0.1. To the best of our
knowledge, a fully Bayesian analysis in the terms explored in this work had not
been done before for these probes.

Using the twin squeezed cat state as a family of probes whose parameters can
be modified for given mean number of photons and prior width, we have provided
evidence that suggests that increasing the amount of intra-mode correlations, that
is, the correlations within each arm of the interferometer, could be detrimental when
the number of repetitions is low, which contrasts with the fact that the same type
of correlations are actually beneficial in the asymptotic regime. Moreover, we have
shown that using a state with less intra-mode correlations and a certain amount of
path entanglement such as the squeezed entangled state appears to help to enhance
the precision in the non-asymptotic regime without damaging the asymptotic per-
formance in a dramatic way. Therefore, we conjecture that there might exist a more
general relationship between the number of trials and the amount of intra-mode and
inter-mode correlations that could indicate how to reduce the uncertainty of the
protocols in the regime of limited data.

It has been shown that, for a low number of trials, the usual strategy of counting
photons after the action of a beam splitter is optimal for most practical purposes
when the probe is prepared in a coherent state, although it does not saturate the non-
asymptotic bounds for the other indefinite photon number states. However, we have
found that in the latter case the situation can be improved if instead we measure
quadratures rotated by π/8, since this scheme is closer to our bounds for low µ.
This result is particularly relevant because states prepared with operations such as
squeezing or displacement from the vacuum and quadrature measurements are easier
to implement in real-world situations. In addition, our calculations indicate that
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counting photons, measuring quadratures and implementing parity measurements
are optimal strategies for any number of repetitions if the probe is in a NOON state,
and that collective measurements on the first ten copies of this probe do not provide
an advantage over the schemes based on identical and independent experiments.

Furthermore, we have addressed the inverse problem, such that the POM is fixed
and the initial state is optimised over a set of experimentally feasible quantum op-
erations. To achieve this, we have combined our single-parameter methodology de-
veloped in both this chapter and chapter 4 with the genetic algorithm AdaQuantum
proposed by Knott et al. [160], finding that AdaQuantum is able to select probe
states with precision enhancements over the chosen benchmarks for a low number
of repetitions, and we have provided the specific sequences of operations that would
allow us to prepare such states in the laboratory. This contribution has appeared
in one of the sections of [160]

Designing quantum experiments with a genetic algorithm, Rosanna Nich-
ols, Lana Mineh, Jesús Rubio, Jonathan C. F. Matthews and Paul A.
Knott, Quantum Sci. Technol. 4 045012 (2019).

It is important to note that we have not considered what happens in the presence
of noise because our aim was to identify the novel effects that emerge directly from
having a low number of trials without the interference of other features, which
justifies our focus on ideal schemes. However, a comprehensive study of the effect of
noise when the available data is limited is also crucial to model realistic scenarios.
Although we leave this analysis for the future, in chapter 8, which is where we
will explore several potential ideas for future research, we provide an initial test to
demonstrate the application of our method to a scheme where photon losses are
present, finding that the qualitative behaviour of our practical results does not seem
to change substantially for a reasonable amount of loss.

We believe that these results constitute an important advance towards the estab-
lishment of a practical and useful methodology that will help us to design optimal
metrology experiments taking the finite number of trials into account, and that they
could play a crucial role in the design of realistic inference schemes once our approach
has been combined with other features such as the presence of noise, larger numbers
of photons, adaptive techniques or multi-parameter systems. The next two chapters
of this thesis are precisely dedicated to extend our single-parameter methodology to
the multi-parameter regime.

The results of this chapter (other than those in sections 5.4 and 5.5) have been
published in [168]

Quantum metrology in the presence of limited data, Jesús Rubio and
Jacob Dunningham, New J. Phys. 21 043037 (2019).
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Chapter 6

Quantum sensing networks and
the role of correlations

6.1 Goals for the third stage of our methodology
While the methods in the two previous chapters can be applied to a wide range of
single-parameter problems, in section 2.3.2 we argued that more realistic scenarios
typically involve several pieces of unknown information; consequently, the next step
is to accommodate our ideas to this type of schemes, and in this chapter we will
generalise the hybrid estimation approach in chapter 4 to the multi-parameter re-
gime. Given that the transition from single-parameter metrology to multi-parameter
schemes opens the door to a vast set of new ways of enhancing our estimation proto-
cols [31, 33–38, 50, 57, 87, 88, 93–98, 101, 106, 133, 169–177], it is important that we
first identify the subset of estimation problems that we intend to investigate here.

Let us recall our discussion in section 2.3.2, where we introduced the quantum
network model for distributed sensing proposed by Proctor et al. [33, 34]. We will
focus our attention on a collection of sensors arranged such that a single parameter
θi is encoded in the i-th sensor, and we will explore whether allowing for correlations
between different sensors enhances the overall precision of their estimation. In the
context of this configuration, Proctor et al. [33, 34] have shown that, assuming that
the associated generators commute, such correlations are not needed to achieve the
uncertainty that is optimal when the inverse of the Fisher information matrix is
employed as the figure of merit [33, 34]. Crucially, using this measure of uncertainty
could be a potential caveat to the results of their framework, since we can always
achieve any value for the local variances with the class of infinite-precision states
studied in section 4.3.4, while, at the same time, this type of probe can require a
high amount of prior knowledge to work and a large number of trials to reach the
Cramér-Rao bound. Moreover, in chapter 5 we have provided compelling evidence
of the existence of a potential trade-off between the performances in the asymptotic
and non-asymptotic regimes. Therefore, a study of the role of entanglement for the
estimation of the parameters encoded in each sensor when the network operates
in the non-asymptotic regime is needed, and this is one of the multi-parameter
problems that both this chapter and chapter 7 will address.

On the other hand, if we consider that the parameters in each sensor are local
properties of the network, then a collection of functions of the parameters encoded
in different sensors represents global properties. In that case, entangled strategies
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can provide a notable advantage with respect to local schemes [33, 34] and, as a
consequence, we can say that whether local or global strategies are preferable cru-
cially depends on the type of information that we wish to extract1. The estimation
of global properties or functions is particularly relevant in problems such as the
interpolation of non-linear functions [38] and the determination of the coefficients
in Taylor or Fourier expansions of some field [173], and, from a fundamental per-
spective, it is important to understand the connection between the form of the
functions to be estimated and the form of the quantum strategy that yields an op-
timal precision. For instance, using the model for quantum sensing networks under
consideration it has been established that one can find entangled states that beat
the best separable probe for the optimal estimation of a single function f(θ) that
is linear [33, 34, 36–38, 177], while a collection of linear functions that generate an
orthogonal transformation (that is, f(θ) = V ⊺θ with V V −1 = I) can be estimated
optimally with a completely local strategy [33].

This state of affairs motivates the second and main multi-parameter problem that
we wish to study in this chapter. More concretely, the problem of estimating several
functions will be formulated using the asymptotic theory first, and then we will take
those solutions as a guide to perform a Bayesian analysis of the non-asymptotic
regime for some of these schemes. While a general answer is beyond the scope of our
methods, we will see that it is possible to arrive to definite conclusions by focusing
on a subclass of schemes with sensor-symmetric states, and by modelling its global
properties with linear but otherwise general functions. Given that configuration, we
will establish and exploit the link between the geometry of the linear functions and
the strength of the inter-sensor correlations of the network, and we will explore how
this may change as the number of repetitions varies.

Importantly, unlike with the schemes of chapter 4, whose asymptotically op-
timal quantum strategies where available in the literature, here we will solve the
asymptotic estimation problem explicitly before we perform its associated Bayesian
analysis. In particular, suppose we denote the number of functions by l, and recall
that d is the number of unknown parameters. If the functions can be written in
terms of an orthogonal transformation, then we have that l = d. Hence, from the
previous discussion we see that the next natural step is to search for and examine the
connection between global properties and the optimal strategy for their estimation
when l ̸= 1 and l ̸= d, or when l = d and the functions are linear but not orthogonal.
This new intermediate regime is precisely the case that we will consider2.

In summary, the third stage of our methodology, which rests on combining the
multi-parameter estimator that is exactly optimal with the asymptotically optimal
quantum strategy, will serve as a basis to investigate how to harness correlations in
multi-parameter problems when different amounts of data are available. Note that,
as in chapter 4, our approach not only provides a characterisation of our schemes

1A related conclusion was reached by Altenburg and Wölk in [37], where the authors further
studied sequential strategies, that is, strategies that use entangled states to estimate one global
property at a time, and concluded that no type of strategy local, global or sequential - could be
claimed to be optimal in general.

2Note that the estimation of several functions that are not orthogonal to each other has already
arisen in specific applications. An example of this can be found in [176], where the authors studied
a protocol for Ramsey interferometry. The importance of the results in the first half of this chapter
rests on the partial generality and the fundamental focus of our approach, which is based on the
framework provided by the quantum sensing network model in [33].
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in the non-asymptotic regime, but also estimates the number of repetitions and
prior knowledge needed to recover the predictions of the Cramér-Rao bound. Since
the construction and maintenance of entangled networks are likely to be difficult in
practice, our proposal may prove to be crucial in the study and implementation of
sensing networks that operate with a realistic amount of data.

6.2 Methodology (part C)

6.2.1 Relevant information in multi-parameter schemes
Let us formulate the problem of estimating several functions in terms of the inform-
ation content that we wish to extract using the network3.

We will assign the terminology natural or primary properties to those parameters
that appear in the physical characterisation of the scheme. These have been denoted
by θ in the first part of this work. In addition, any collection of functions of them,
which we can generally denote by f(θ) = (f1(θ), . . . , fl(θ)), can be seen as a set of
derived or secondary properties that we might wish to find. Importantly, there is
a degree of arbitrariness in deciding which quantities are primary and which ones
are secondary, and this should be fixed by the concrete application under analysis.
For example, in previous chapters we have considered that the difference of optical
phase shifts in a Mach-Zehnder interferometer is the natural parameter, instead of
considering each phase shift independently and the difference as a function of them.

The information that characterises the network is complete once we know all
the natural parameters. In that case, we could also calculate any function of them.
However, if the functions of interest only depend on some parameters, or they only
require a particular combination of the primary properties, then it is not necessary
nor optimal to spend resources in gathering all the information about the original
parameters [33], since only certain pieces of information are relevant to us. In
other words, studying functions of the original parameters is effectively equivalent
to selecting which information the network should be focused on, so that we can
optimise it accordingly. For that reason, the specific form of the functions, i.e., f(·),
will be assumed to be known.

In turn, this motivates the use of f [g(m)] = (f1[g(m)], . . . , fl[g(m)]) as the
vector estimator for the functions, where we recall that g(m) are the estimators
for the natural parameters. Although in principle we could consider more general
estimators for the derived properties [128], this choice is appropriate to highlight that
the functions are part of the specification of the problem, and that the information
is partial only due to the lack of knowledge about the parameters. Then, given some
reasonable deviation function D [g(m),θ,f(·),Wf ] for the estimation of derived or
secondary properties, we can approximate it with the square error as

D [g(m),θ,f(·),Wf ] ≈ Tr
(
Wf {f [g(m)] − f(θ)} {f [g(m)] − f(θ)}⊺)

, (6.1)

for a moderate amount of prior knowledge about the primary properties, where the
weighting matrix for the functions is Wf = diag(w1, · · · , wl). Note that if the nature
of the functions is such that the square error generates an appropriate measure of
uncertainty, then the approximation in equation (6.1) becomes an equality.

3We recall that this perspective was also exploited in chapter 3 to justify the suitability of
different measures of uncertainty.
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To make the problem more tractable, we will assume that the secondary prop-
erties are linear, that is, f(θ) = V ⊺θ + a, where V is a (d × l) matrix and a is a
column vector with l components. In that case, the error in equation (6.1) becomes

D [g(m),θ,f(·),Wf ] ≈ Tr
{
WfV

⊺ [g(m) − θ] [g(m) − θ]⊺ V
}
. (6.2)

The fact that it does not depend on a allows us to set a = 0 without loss of
generality. Thus the functions are simply f(θ) = V ⊺θ, such that the coefficients are
encoded in the columns of V .

The previous formalism is reduced to some of the extreme cases that have been
studied by other authors (e.g., in [33, 34, 37]). In particular, equation (6.2) includes
the estimation of a single function when V is chosen as a column vector, and a
collection of l = d orthogonal functions is equivalent to imposing that V is an
orthogonal matrix. Note that, in the latter case, Wf = diag(w1, . . . , wd) = W .
Moreover, if the orthogonal transformation happens to be the identity, i.e., V =
I, then we recover the deviation function for the natural parameters in equation
(3.7). However, this framework also covers a rich spectrum of possibilities where
any number of linear but otherwise general functions are allowed. Therefore, it is
clear that, despite our linearity assumption, this approach will allow us to explore
the new regime described in section 6.1.

Once we have selected a suitable deviation function for the multi-parameter
problem of estimating functions, we can finally construct the measure of uncertainty

ϵ̄mse =
∫
dθdm p(θ,m) Tr

{
WfV

⊺ [g(m) − θ] [g(m) − θ]⊺ V
}

(6.3)

that is to be optimised.

6.2.2 The asymptotic regime for many parameters
We start by optimising equation (6.3) over all the possible vector estimators. First
we rewrite it as

ϵ̄mse = Tr
(
WfV

⊺ΣmseV
)

=
l∑

i=1

d∑
j=1

(
WfV

⊺Σmse
)

ij
Vji

=
d∑

j=1

l∑
i=1

Vji

(
WfV

⊺Σmse
)

ij
= Tr

(
VWfV

⊺Σmse
)
, (6.4)

where we have defined the matrix square error

Σmse =
∫
dθdm p(θ,m) [g(m) − θ] [g(m) − θ]⊺ . (6.5)

Given that both VWfV
⊺ and Σmse are symmetric positive semi-definite matrices4,

we can find the minimum value for ϵ̄mse simply by searching for the estimators that
4That V Wf V ⊺ is symmetric can be easily verified as

(
V Wf V

⊺)⊺ =

 d∑
i,m=1

l∑
k,j=1

Vij(Wf )jkVmkeie
⊺
m

⊺

=
d∑

i,m=1

l∑
k,j=1

Vik(Wf )jkVmjeie
⊺
m

= V W⊺
f V

⊺ = V Wf V
⊺
,
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make Σmse minimal in the matrix sense. In other words, we need to show that
u⊺Σmseu ⩾ u⊺Cu for an arbitrary real vector u and some symmetric positive semi-
definite matrix C that arises after selecting the optimal estimators5.

Our task is then to minimise the scalar quantity

u
⊺Σmseu =

∫
dθdm p(θ,m) [gu(m) − θu]2 , (6.6)

with gu(m) = u⊺g(m) = g⊺(m)u, θu = u⊺θ = θ⊺u and arbitrary u. Since u⊺Σmseu
is a functional of gu(m), we can formulate another variational problem as

δϵ [gu(m)] = δ
∫
dm L [m, gu(m)] = 0, (6.7)

where ϵ [gu(m)] = u⊺Σmseu and L [m, gu(m)] =
∫
dθp(θ,m) [gu(m) − θu]2. Form-

ally, this is the same type of calculation found in sections 3.3.5 and 4.2.1. As such,
we know that the solution that makes ϵ [gu(m)] extremal is gu(m) =

∫
dθp(θ|m)θu,

with p(θ|m) ∝ p(θ)p(m|θ), and we can expand it as

d∑
i=1

ui

[
gi (m) −

∫
dθp(θ|m)θi

]
= 0. (6.8)

We also know that equation (6.8) gives rise to a minimum; consequently, by inserting
this solution in equation (6.6) we find that u⊺Σmseu is lower bounded by

u
⊺
∫
dm p(m)

{∫
dθp(θ|m)θθ⊺ −

[∫
dθp(θ|m)θ

] [∫
dθp(θ|m)θ

]⊺}
u, (6.9)

where p(m) =
∫
dθp(θ)p(m|θ).

where ei is the i-th element of the basis, while its positive semi-definiteness arises from the fact
that, for any u,

u
⊺
V Wf V

⊺
u =

d∑
i,m=1

l∑
j,k=1

uiVij(Wf )jkVmkum =
d∑

i,m=1

l∑
j=1

uiVijwjVmjum

=
l∑

j=1
wj

(
d∑

i=1
uiVij

)2

⩾ 0.

5To see why this method works, note that, if (Σmse − C) ⩾ 0, then

Tr
[
V Wf V

⊺ (Σmse − C)
]

= Tr
(√

V Wf V ⊺
√

V Wf V ⊺
√

Σmse − C
√

Σmse − C
)

= Tr
(√

V Wf V ⊺
√

Σmse − C
√

Σmse − C
√

V Wf V ⊺
)

= Tr
[√

V Wf V ⊺
√

Σmse − C
(√

V Wf V ⊺
√

Σmse − C
)⊺]

=
d∑

i,j=1

(√
V Wf V ⊺

√
Σmse − C

)2

ij
⩾ 0,

which implies that
ϵ̄mse = Tr

(
V Wf V

⊺Σmse
)
⩾ Tr

(
V Wf V

⊺
C
)

.
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Equation (6.9) must be less than or equal to u⊺Σmseu for any u. As such, we
conclude that the minimum matrix error is

Σmse =
∫
dm p(m)Σ(m), (6.10)

with

Σ(m) =
∫
dθp(θ|m)θθ⊺ −

[∫
dθp(θ|m)θ

] [∫
dθp(θ|m)θ

]⊺
, (6.11)

and that this is achieved for the optimal vector estimator g (m) =
∫
dθp(θ|m)θ,

in agreement with what is known in the literature [10]. Furthermore, combining
equation (6.10) with the original uncertainty in equation (6.3), and expanding the
result of that operation in components, we find that the minimum error for the
estimation of the functions is

ϵ̄mse =
l∑

i=1
wi

∫
dm p(m)

{∫
dθp(θ|m)f 2

i (θ) −
[∫

dθp(θ|m)fi(θ)
]2
}
, (6.12)

where fi(θ) = ∑d
j=1 Vjiθj. This is the central quantity of this chapter.

Next we wish to select the quantum strategy that is asymptotically optimal, so
that we need to examine the asymptotic behaviour of equation (6.12). This study
mimics the strategy that we employed in section 4.2.1 for the scalar case, for which
we followed the works [9, 59, 153], and we also do it here.

Suppose there is a region of the multi-parameter domain with hypervolume ∆
where the likelihood p(m|θ) becomes concentrated around an absolute maximum
θm as µ → ∞, and that the prior for the primary properties is approximately flat
in such region. Furthermore, the true vector parameter is θ′. In this regime we can
then approximate log[p(m|θ)] formally as

log[p(m|θ)] ≈ log[p(m|θm)]

+ 1
2

d∑
i,j=1

∂2log[p(m|θm)]
∂θi∂θj

(θi − θm,i) (θj − θm,j) . (6.13)

In addition, using the law of large numbers (section 2.1.2) and the consistency of
the maximum of the likelihood [10], we can see that

∂2log[p(m|θm)]
∂θi∂θj

=
µ∑

k=1

∂2log[p(mi|θm)]
∂θi∂θj

≈ µ
∫
dm p(m|θ′)∂

2log[p(m|θ′)]
∂θi∂θj

, (6.14)

and since by expanding the derivative the latter term becomes the negative of the
Fisher information matrix F (θ) in equation (3.20), we can approximate p(m|θ) as

p(m|θ) ≈ p(m|θ′)exp
[
−µ

2 (θ − θ′)⊺ F (θ′) (θ − θ′)
]
. (6.15)

The Fisher information matrix is positive semi-definite in general, and as such it
does not always have an inverse. In the context of the asymptotic theory [33, 99, 126],
a singular F (θ) would imply that one or more parameters cannot be estimated with
a finite precision [99], and to extract the information about the other parameters
one would need to resort to techniques such as the reduction method proposed in
[33], or simply to work in the support of F (θ).
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Crucially, that F (θ)−1 might not exist does not introduce any fundamental dif-
ficulty for the Bayesian estimation based on equation (6.12), which can always be
performed, and this will be explicitly demonstrated in section 6.3 with an example.
However, some care is still needed in order to optimise the quantum strategy using
the asymptotic theory as a guide. For our purposes it suffices to only attempt the
latter when the information matrix can be inverted, leaving for future work the ex-
tension of our procedure to cases where F (θ) is singular.

Having assumed that F (θ)−1 exists, we can now proceed to calculate three mul-
tivariate Gaussian integrals that will allow us to find the final form of the asymptotic
error6. By noting that∫

dθp(θ)p(m|θ) ≈ p(m|θ′)
∆

∫ ∞

−∞
dθ e− µ

2 (θ−θ′)⊺F (θ′)(θ−θ′)

= p(m|θ′)
∆

{
(2π)d

det[µF (θ′)]

} 1
2

, (6.16)

we have that the posterior can be approximated as

p(θ|m) = p(θ)p(m|θ)
p(m) ≈

{
det[µF (θ′)]

(2π)d

} 1
2

e− µ
2 (θ−θ′)⊺F (θ′)(θ−θ′). (6.17)

Furthermore, using equation (6.17) we see that
∫
dθp(θ|m)θ ≈

{
det[µF (θ′)]

(2π)d

} 1
2 ∫ ∞

−∞
dθ e− µ

2 (θ−θ′)⊺F (θ′)(θ−θ′)θ = θ′,

∫
dθp(θ|m)θθ⊺ ≈

{
det[µF (θ′)]

(2π)d

} 1
2 ∫ ∞

−∞
dθ e− µ

2 (θ−θ′)⊺F (θ′)(θ−θ′)θθ
⊺

= θ′ (θ′)⊺ + F (θ′)−1

µ
, (6.18)

and by inserting the previous results in equation (6.10) we arrive at the asymptotic
matrix error

Σmse ≈ 1
µ

∫
dθ′p(θ′)

∫
dmp(m|θ′)F (θ′)−1 = 1

µ

∫
dθ′p(θ′)F (θ′)−1. (6.19)

Following sections 2.2.2 and 3.1, the natural parameters of the network will be
encoded in the initial state ρ0 as ρ(θ) = e−iK·θρ0eiK·θ, with [Ki, Kj] = 0. Since we
will also employ pure states ρ0 = |ψ0⟩⟨ψ0|, we have that

⟨ψ(θ)|[Li(θ), Lj(θ)]|ψ(θ)⟩ = 4⟨ψ0|[Ki, Kj]|ψ0⟩ = 0, (6.20)

where we recall that Li(θ) is the symmetric logarithmic derivative for the i-th
natural parameter and that, for pure sates, Li(θ) = 2∂ρ(θ)/∂θi. This means
that we may find a POM such that [F (θ)]ij = (Fq)ij for a single copy, where
(Fq)ij = 4 (⟨ψ0|KiKj|ψ0⟩ − ⟨ψ0|Ki|ψ0⟩⟨ψ0|Kj|ψ0⟩) is the quantum Fisher inform-
ation matrix ([99, 126] and section 3.3.2). Therefore, the Bayesian uncertainty in
equation (6.12) can be approximated as

ϵ̄mse ≈ ϵ̄cr = 1
µ

Tr
(
WfV

⊺
F−1

q V
)

(6.21)

6The details of such calculations can be found in appendix A.4.
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when the prior information is enough to identify the relevant region of the parameter
domain. The right hand side is the quantum Cramér-Rao bound for functions.

While both the previous discussion and our review in section 3.3.2 have led us to
the same mathematical result, we would like to highlight that these two approaches
are different from a conceptual point of view; the goal in section 3.3.2 was to find the
conditions for the saturation of a multi-parameter bound, but here we are simply
studying a limiting case (under certain assumptions) of the theory that arises when
we employ the error in equation (6.12) as the measure of uncertainty. The crucial
role of the theory in section 3.3.2 is that it allows us to see that the asymptotic
expansion in this section is indeed optimal.

Equation (6.21) enables us to study the asymptotic performance of quantum
sensing networks. Once we have completed this step, we will search for a combin-
ation of ρ0 and POM for which F (θ) = Fq, and we will perform a non-asymptotic
analysis of that strategy using equation (6.12), where the optimal Bayes estimators
g(θ) =

∫
dθ p(θ|m)θ have been selected. The latter step demands an extension of

our techniques in chapter 4 to the multi-parameter regime, a generalisation that is
developed in the next section.

6.2.3 Non-asymptotic analysis of multi-parameter protocols
Let us consider that, according to our prior information, the natural parameters
θ = (θ1, . . . , θd) can be initially thought of as if they were independent in the
statistical sense, and that a displacement by an arbitrary real vector c does not
change our state of information. That is, θ and θ′ = θ + c generate equivalent
estimation problems. Note that if we knew that the parameters were optical phases,
the displacement would be modulo 2π.

This invariance is equivalent to imposing that p(θ)dθ = p(θ′)dθ′ = p(θ + c)dθ,
which gives rise to the functional equation

p(θ) = p(θ + c). (6.22)

A way of searching for a solution is to expand the right hand side as

p(θ + c) =
∞∑

k=0

1
k! (c · ∇)k p(θ), (6.23)

which is a multivariate Taylor expansion [110], so that by introducing equation
(6.23) in (6.22) we arrive at

∞∑
k=1

1
k! (c · ∇)k p(θ) = 0. (6.24)

Recalling that this must be fulfilled by an arbitrary vector c, we see that this is
satisfied when p(θ) ∝ 1.

Since we are interested in the intermediate prior information regime, we further
imagine that the previous argument is only approximately fulfilled in a portion of
the parameter domain with hypervolume ∆0 that is centred around θ̄ = (θ̄1, . . . , θ̄d).
Moreover, given that a priori the parameters are thought of as independent, we may
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express the hypervolume ∆0 as ∆0 = ∏d
i=1 W0,i, where W0,i is the prior width for

the i-th parameter. Therefore, our multi-parameter prior probability will be

p(θ) = 1/∆0 = 1/
(

d∏
i=1

W0,i

)
, (6.25)

for θ ∈ [θ̄1 −W0,1/2, θ̄1 +W0,1/2]×· · ·× [θ̄d −W0,d/2, θ̄d +W0,d/2], and zero otherwise.
We notice that this argument generalises the analogous derivation in section 4.2.2
for a single parameter.

On the other hand, in section 6.2.2 we have learned that, to exploit the multi-
parameter Cramér-Rao bound as an asymptotic guide, ∆0 must be sufficiently small
for the likelihood p(m|θ) to develop a unique absolute maximum as µ grows. We
will denote the largest hypervolume where this is the case by ∆int, and we will call it
intrinsic hypervolume, in analogy with the notion of intrinsic width Wint introduced
in chapter 4 and utilised in the context of a Mach-Zehnder interferometer.

A method to extract Wint by a visual inspection of the posterior probability7 was
proposed and applied to single-parameter problems in sections 4.2.2 and 4.3.2. In
section 6.3.4 we will see that the same idea can be adapted in a straightforward way
for a network with two primary properties, and the algorithm to implement it can
be found in appendix C.1.

Unfortunately, in general it is less clear how to implement the previous method
for large d. Moreover, the challenges associated with a large d are even more serious
when we face the calculation of ϵ̄mse in equation (6.12) as a function of µ. The
algorithm that we constructed in section 4.2.4 was able to integrate a large amount of
outcomes because it exploited how the information is updated within the expression
for the Bayesian mean square error (see appendix B.6). However, the integration
associated with the parameter was implemented by a standard deterministic method,
which is the type of approach that is known to become less efficient as the dimension
grows. Given these difficulties, we will focus our multi-parameter non-asymptotic
analysis on quantum sensing networks with two natural parameters, and we will
only consider the general case with arbitrary d for the preliminary asymptotic study
in sections 6.3.2 and 6.3.3 and some of the single-shot scenarios in chapter 7.

The algorithm that we will utilise to calculate ϵ̄mse(µ, d = 2) is:

1. A collection of µ experimental outcomes m is sampled from p(m|θ′
1, θ

′
2). These

are used to construct the posterior p(θ1, θ2|m) via Bayes theorem as

p(θ1, θ2|m) ∝ p(θ1, θ2)
µ∏

i=1
p(mi|θ1, θ2), (6.26)

and we calculate the components of the experimental covariance matrix as

[Σ(m)]ij =
∫
dθ1dθ2p(θ1, θ2|m)θiθj

−
[∫

dθ1dθ2p(θ1, θ2|m)θi

] [∫
dθ1dθ2p(θ1, θ2|m)θj

]
. (6.27)

Then we define the matrix G ≡ VWfV
T and obtain the experimental error

ϵ(m) = Tr [GΣ(m)] = G11[Σ(m)]11 +G22[Σ(m)]22 + 2G12[Σ(m)]12. (6.28)
7We recall that the posterior has the same extrema as the likelihood when the prior is flat.
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2. The previous step is repeated a large number of times, so that the average of
all the experimental uncertainties can be used as an approximation for

ϵ(θ′
1, θ

′
2) =

∫
dmp(m|θ′

1, θ
′
2)ϵ(m) (6.29)

due to the law of large numbers.

3. Finally, this process is implemented for all the pairs (θ′
1, θ

′
2) in a discrete ap-

proximation to the parameter domain, and the resultant errors are averaged
over the prior probability p(θ′

1, θ
′
1), arriving at∫

dθ′
1dθ

′
2p(θ′

1, θ
′
1)ϵ(θ′

1, θ
′
2) = ϵ̄mse, (6.30)

which is the uncertainty for the linear functions in equation (6.12).

Hence, this is an extension of the proposal in section 4.2.4, and its numerical imple-
mentation in MATLAB can be found in appendix C.2.

It is interesting to examine the nature of the matrix G in equation (6.28). The
measure of uncertainty introduced in section 3.2 for the natural parameters had the
form Tr(WΣ), with W = diag(w1, . . . , wd) and Σ being the matrix error for a general
deviation function. On the other hand, the uncertainty for linear functions in this
chapter can be recast as Tr(VWfV

⊺Σ), with Wf = diag(w1, . . . , wl). Both of them
are particular cases of the more general expression Tr(GΣ), where G is a symmetric
positive semi-definite matrix, and in fact this is how multi-parameter metrology is
often presented in more general treatments (see, e.g., [99]).

The crucial observation is that different combinations of linear functions and
weights can produce the same G. We may then say that using G is more econom-
ical, in the sense that it throws away irrelevant details and it only keeps the part
of the linear transformation introduced by VWfV

⊺ that effectively affects the over-
all calculation of the uncertainty. However, while this is indeed useful to perform
calculations, it also implies that the structure of the specific linear functions that
we wish to estimate in a particular problem is lost. This is why we have chosen to
show the objects (V,Wf ), or, equivalently, (fi(·), wi), explicitly in our derivations of
sections 6.2.1 and 6.2.2, while we only consider G for more pragmatic tasks.

6.3 Our methodology in action: results and dis-
cussion

6.3.1 Sensor-symmetric states for quantum sensing networks
Suppose we have a collection of d quantum sensors that are distributed in a portion
of the physical space, and that we assume that each sensor is modelled by a qubit.
Furthermore, since, in general, the spatial separation between sensors can be large,
it is natural to choose a model with the following property: when one or more
parameters are encoded in one of the sensors, the rest of them are not affected by
this operation. To capture this idea we will employ the separable unitary encoding

U(θ) = e−iσzθ1/2 ⊗ · · · ⊗ e−iσzθd/2, (6.31)
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where a single parameter is locally encoded in each sensor. Therefore, the natural
properties of the system, represented by θ, are local, while the secondary properties
that depend non-trivially on more than one natural parameter will be global.

The unitary in equation (6.31) is of the form seen in section 2.3.2 when the
ancillary system is omitted, and it constitutes a particular case of the more general
sensing model proposed by the authors of [33]. Moreover, by rewriting it as

U(θ) = exp
(

−i
d∑

i=1
σz,iθi/2

)
= exp (−iK · θ) , (6.32)

where we have introduced the notation

2Ki = σz,i ≡ I1 ⊗ · · · ⊗ Ii−1 ⊗ σz ⊗ Ii+1 ⊗ · · · ⊗ Id, (6.33)

we can explicitly see that [Ki, Kj] = [σ(i)
z , σ(j)

z ]/4 = 0. The most general pure state
for this system can be written in the σz basis as

|ψ0⟩ =
1∑

i1...id=0
ai1...id

|i0, i1 . . . id⟩ , with
1∑

i1...id=0
|ai1...id

|2 = 1, (6.34)

and in principle we allow for any general measurement with POM elements {E(mj)}
and outcomes {mj}, which is to be performed on all the sensors at once during j-
th repetition of the experiment. Finally, for this scenario we choose the resource
operator to be trivial, that is, R = I, so that ⟨R⟩ = 1, with ⟨□⟩ = ⟨ψ0|□|ψ0⟩. This
is unlike in the optical case, where each mode admitted different numbers of quanta,
while here we have that each sensor is a quantum entity on its own.

We would like to see this configuration as a quantum network. It is clear that
each sensor can be regarded as a physical node of such network, but the nature of
the link between different nodes is more subtle. In general, what is networked is the
information related to each node, a part of which is the information collected by the
network about each of the primary properties θ. More concretely, the links between
nodes, if they exist, are to be understood as correlations associated with the initial
probe |ψ0⟩, the POM E(m) and the prior probability.

In section 6.2.3 we have assumed that, a priori, the primary parameters are to be
thought of as independent, and this means that prior correlations do not play a role
in our study. Furthermore, in section 3.3.2 we saw that the quantum Cramér-Rao
bound, which is the tool that we will use first, is a function of |ψ(θ)⟩ = U(θ) |ψ0⟩
alone. Hence, as a first step it is sufficient to examine the correlations associated
with the preparation of the network. In particular, we will exploit the concept of
inter-sensor correlations, whose strength can be defined as [33, 57]

Jij = ⟨KiKj⟩ − ⟨Ki⟩⟨Kj⟩
∆Ki∆Kj

, (6.35)

for i ̸= j, where ∆K2
i = ⟨K2

i ⟩ − ⟨Ki⟩2 and −1 ⩽ Jij ⩽ 1. We can see that only the
initial state and the generators that give rise to ρ(θ) are involved in this definition,
and that the nature of these correlations is pairwise.

This formalism allows us to further introduce the concept of sensor-symmetric
states, which were defined by Proctor et al. [33] as those satisfying that

v = ⟨K2
i ⟩ − ⟨Ki⟩2,

c = ⟨KiKj⟩ − ⟨Ki⟩⟨Kj⟩, (6.36)
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for all i, j, where c and v are fixed values that characterise the preparation of the
network. In turn, equation (6.35) becomes Jij = J = c/v, also for all i ̸= j, and for
our qubit model we see that

4v = ⟨σ2
z,i⟩ − ⟨σz,i⟩2 = 1 − ⟨σz,i⟩2,

4c = ⟨σz,iσz,j⟩ − ⟨σz,i⟩⟨σz,j⟩, (6.37)

where, in addition, 0 ⩽ 4v ⩽ 1. This inequality for the variances stems from the
fact that the eigenvalues for the σz Pauli matrix are ±1, so that |⟨σz,i⟩| ⩽ 1.

Formally, sensor-symmetric configurations can be seen as a generalisation of
those optical schemes based on path-symmetric states that we exploited in chapters
2, 4 and 5. Thus from our experience in previous chapters we can expect this
arrangement to be very useful to simplify the calculations. Additionally, this type
of configuration can be relevant in certain physical scenarios. For instance, they
could be a reasonable choice for sensing a portion of space that either is largely
homogeneous or we expect it to be, and they would also be appropriate if all the
unknown parameters represent the same type of physical quantity, which is the case
in imaging problems [95, 133].

6.3.2 Asymptotic estimation of arbitrary linear functions
From our discussion in section 6.2.2 we know that, under the appropriate conditions,
we can expect the mean square error ϵ̄mse to converge to the quantum Cramér-Rao
bound ϵ̄cr = Tr(WfV

⊺F−1
q V )/µ as the number of trials µ grows. Let us thus examine

the quantum strategies that are useful in this regime as the first step to apply our
semiclassical methodology (section 3.4).

If we denote by {ei} the basis components of the real space where Wf , V and
Fq are defined, with e⊺

i ej = δij, then from equation (6.37) we have that

Fq =
d∑

i,j=1
(⟨σz,iσz,j⟩ − ⟨σz,i⟩⟨σz,j⟩) eie

⊺
j = 4

v d∑
i=1

eie
⊺
i + c

d∑
i,j=1

i̸=j

eie
⊺
j


= 4 [(v − c)I + cI] = 4v [(1 − J )I + J I] , (6.38)

where I is a (d× d) matrix of ones. This is the quantum Fisher information matrix
for sensor-symmetric states.

To invert Fq, we need to impose the condition of positive definiteness, which
is equivalent to require that its eigenvalues are strictly positive. Expressing I as
I = 11⊺, where 1 is the column vector of ones, the information matrix becomes Fq =
4v [(1 − J )I + J 11⊺]. In that case, the characteristic equation for the eigenvalues
{λ} is

det
{

4v
[(

1 − J − λ

4v

)
I + J 11

⊺

]}
= 0, (6.39)

which upon using the identity det(X + yz⊺) = (1 + z⊺X−1y) det(X), with X =
[4v(1 − J ) − λ]I, y = 4vJ 1 and z = 1, implies that

{4v [1 + (d− 1)J ] − λ} [4v (1 − J ) − λ]d−1 = 0. (6.40)
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As a result, the eigenvalues of Fq are λ1 = 4v[1 + (d− 1)J ], with multiplicity 1, and
λ2 = 4v(1 − J ), with multiplicity d− 1, and by imposing that they are positive we
conclude that Fq is invertible when 1/(1 − d) < J < 1. The rest of the calculations
in this section assume that J lies in such open interval.

In [33] the inverse of Fq was found to be

F−1
q = [1 + (d− 1)J ] I − J I

4v(1 − J ) [1 + (d− 1)J ] (6.41)

for our configuration, and utilising this result we find that the asymptotic uncertainty
for the estimation of linear functions is given by

ϵ̄cr = [1 + (d− 2)J ] Tr (WfV
⊺V ) − J Tr (WfV

⊺XV )
4µv(1 − J )[1 + (d− 1)J ] , (6.42)

where we have introduced the (d×d) matrix X ≡ I − I to separate the contribution
to the uncertainty due to the diagonal elements of F−1

q , which are the errors for each
of the primary parameters, from that of the rest of the matrix.

Equation (6.42) shows that the uncertainty depends on three types of quantities:
i) the number of repetitions µ and the number of parameters d, (ii) the combined
properties of state and generators through the inter-sensor correlations J and the
variance v, and (iii) two new quantities, Tr (WfV

⊺V ) and Tr (WfV
⊺XV ), that are

defined in terms of the functions encoded in V and the weighting matrix Wf . The
next step is to investigate the physical meaning of the latter factors.

By relabelling the vector formed by the components of the j-th linear function
as fj (i.e., fj(θ) = ∑d

i=1 Vijθi ≡ f⊺
j θ), we can rewrite the first quantity in a more

suggestive form as

Tr
(
WfV

TV
)

=
l∑

i,j=1

d∑
k=1

(Wf )ij VkjVki =
l∑

j=1
wj

d∑
k=1

VkjVkj

=
l∑

j=1
wjf

⊺
j fj =

l∑
j=1

wj|fj|2. (6.43)

We observe that this is simply the weighted sum of the squared magnitudes of
the vectors associated with the linear functions. Since VWfV

T is positive semi-
definitive, and excluding the degenerate case where all the coefficients vanish, we
have that Tr(WfV

TV ) = Tr(VWfV
T ) > 0. In addition, when the functions are

normalised, that is, |fi| = 1 for 1 ⩽ i ⩽ l, and recalling that Tr(Wf ) = ∑l
i=1 wi = 1,

we have that Tr(WfV
TV ) = 1. Hence, we define the normalisation term

N ≡ Tr(WfV
TV ) =

l∑
j=1

wj|fj|2 (6.44)

satisfying that N > 0, with N = 1 for normalised linear functions.
On the other hand, the second term associated with the functions can be ex-
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pressed as

Tr
(
WfV

T XV
)

= Tr
[
WfV

T (I − I)V
]

= −N +
l∑

i,j=1

d∑
k,m=1

(Wf )ij VkjIkmVmi

= −N +
l∑

j=1
wj

d∑
k,m=1

Vkj1k1mVmj = −N +
l∑

j=1
wj

(
d∑

k=1
Vkj1k

)2

= −N +
l∑

j=1
wj

(
f

⊺
j 1
)2

= −N + d
l∑

j=1
wj|fj|2cos2 (φ1,j)

=
l∑

j=1
wj|fj|2

[
d cos2 (φ1,j) − 1

]
, (6.45)

where φ1,j is the angle between the vector associated with the j-th function and the
direction defined by the vector of ones 1, and having used the fact that |1| =

√
d.

Recalling that |cos (φ1,j) | ⩽ 1 and using the result in equation (6.45), we see
that Tr

(
WfV

T XV
)

is bounded as

− N ⩽ Tr
(
WfV

T XV
)
⩽ N (d− 1), (6.46)

and that the extremes are realised when either the functions are aligned with the
direction of the vector of ones 1, or they lie in a subspace with (l − 1) dimensions
orthogonal to it. In other words, we have shown that, for sensor-symmetric networks
whose secondary properties are modelled by linear functions, there are two kinds
of global properties that play a special role: the sum of all the natural parameters
with equal weights, and any linear combination of them such that the sum of its
coefficients vanishes. Any other set of global properties will produce some value
for Tr

(
WfV

T XV
)

lying within the interval defined in equation (6.46), and this
value will be given by the geometry of the transformation defined by VWfV

T . This
motivates the introduction of the geometry parameter

G ≡ 1
N

Tr
(
WfV

T XV
)

= 1
N

l∑
j=1

wj|fj|2
[
d cos2 (φ1,j) − 1

]
, (6.47)

which satisfies that −1 ⩽ G ⩽ (d− 1).
Inserting equations (6.44) and (6.47) in equation (6.42) we find that the asymp-

totic uncertainty finally becomes

ϵ̄cr = N
4µvh (J ,G, d) , (6.48)

where
h (J ,G, d) = [1 + (d− 2 − G)J ]

(1 − J )[1 + (d− 1)J ] . (6.49)

Given a sensor-symmetric network with d local properties, the factor in equation
(6.49) codifies the interplay between the inter-sensor correlations J and the geo-
metry parameter G for any linear property, which may be local or global. A rep-
resentation of this interplay can be found in figure 6.1. Furthermore, note that the
formulas in equations (6.48) and (6.49) have been obtained without imposing fur-
ther restrictions on the functions, which implies that this formalism can be applied
to any number of arbitrary linear functions whose coefficients generate vectors that
can form any angle and have any length.
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Figure 6.1: Representation of the interplay between the inter-sensor correlations J
and the geometry parameter G in equation (6.49) for a quantum sensing network
with (i) d = 2, (ii) d = 3, (iii) d = 5 and (iv) d = 10 natural parameters. We
observe that, given G ∈ (−1, (d− 1)), the minimum uncertainty is achieved using a
scheme with inter-sensor correlations of strength J ∈ (1/(1−d), 1). The quantitative
characterisation of these minima is provided in section 6.3.3.

6.3.3 The role of inter-sensor correlations I: asymptotic case
Let us exploit the previous result to address the problem of selecting an arrangement
that is optimal to estimate a specific set of linear functions, which was introduced
in section 6.2.1. Mathematically, we need to find the values for v and J that are
optimal for a given G. One approach is to use the fact that, for qubits, 0 ⩽ 4v ⩽ 1,
which allows us to lower bound equation (6.48) as ϵ̄cr ⩾ ϵ̄f = Nh (J ,G, d) /µ and
focus on searching for the amount of correlations J that minimises this bound after
having fixed G, d and µ. In principle, there is no guarantee that the pairs (4v = 1,J )
generated by this method will correspond to any physical state, although the bounds
on the asymptotic error constructed in this way would still be valid. Nevertheless,
later in this section we will study an example that can realise a large portion of the
pairs (4v = 1,J ) that we are going to predict.

The minimisation of ϵ̄f reveals that, if 4v = 1, and restricting our attention to
the range 1/(1 − d) < J < 1, the optimal strength for the inter-sensor correlations
of the network is

Jopt = 1
G + 2 − d

1 −
√

(G + 1)(d− 1 − G)
d− 1

 , (6.50)
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Figure 6.2: Optimal link between the inter-sensor correlations J and the geometry
G of a set of arbitrary linear functions, for d = 2, 3, 5 and 10. The analytical formula
of this result has been provided in equation (6.50).

for −1 < G < d − 1, which is determined by the structure of the functions alone
via G once d has been fixed8. Crucially, equation (6.50) provides a map between
correlations and geometry with one-to-one correspondence9, as it can be directly
verified in the representation of equation (6.50) in figure 6.2. This is the central
result of our asymptotic analysis.

Equation (6.50) reveals that, the more a collection of functions is clustered
around the vector of ones 1, the larger the amount of positive correlations is re-

8This result can be found as follows. If we look at ϵ̄f as a function of J , then the equation for
its extrema is

N
µ

∂h (J , G, d)
∂J

= N
µ

(d − 1)(d − 2 − G)J 2 + 2(d − 1)J − G
(1 − J )2[1 + (d − 1)J ]2 = 0,

whose solutions are

J± = 1
G + 2 − d

[
1 ∓

√
(G + 1)(d − 1 − G)

d − 1

]
.

Since we need to restrict our study to the range 1/(1 − d) < J < 1 for Fq to be invertible, only
J+ is a valid candidate to find a minimum. Next we examine the sign of the slope in the left hand
side of equation (6.51) for some values of J around J+. By noticing that N /µ > 0 and using the
endpoints of the domain for J we find that

∂h (1 − ε, G, d)
∂J

> 0,
∂h (1/(1 − d) + ε, G, d)

∂J
< 0

for an arbitrarily small ε > 0 when G ≠ −1, G ≠ d − 1, which we exclude to guarantee that
J ̸= 1/(1 − d), J ≠ 1. Consequently, J+ gives rise to the minimum that we were looking for.

9Note that Jopt → (d − 2)/[2(d − 1)] when G → d − 2.
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quired to be in order to perform the estimation optimally, provided that 4v = 1.
Similarly, the amount of correlations with negative strength needs to be large if the
functions are instead clustered around the subspace orthogonal to 1. The potential
existence of this type of connection between geometry and correlations was precisely
one of the general open questions identified by the authors of [33], which here has
been answered in a definite way for the case of sensor-symmetric states.

Furthermore, both equation (6.50) and figure 6.2 show that any amount of pair-
wise correlations would be detrimental whenever the geometry parameter vanishes.
We need then to find out which kind of linear functions imply that G = 0. To
achieve this goal, let us recall our original definition for G in equation (6.47), that
is, G = Tr(WfV

⊺XV )/N . If we choose the uniform weighting matrix Wf = I/l and
V is an orthogonal transformation, such that V V ⊺ = V ⊺V = I, then

G = 1
N l

Tr(V V ⊺X ) = 1
N l

Tr(X ) = 1
N l

Tr(I − I) = 0. (6.51)

Now we observe that J = 0, which is the optimal choice for the previous scenario,
is always achieved by a separable qubit state |ψ0⟩ = (

√
a |0⟩ +

√
1 − a |1⟩)⊗d, and

by selecting a = 1/2 we have that 4v = 1. Thus we can say that the estimation
of a set of l = d linear functions that are equally relevant and orthonormal can
be carried out optimally by preparing our scheme with separable states. Moreover,
since the estimation of the original parameters is a particular case of this type of
transformation, our result implies that separable states are also sufficient for the
optimal estimation of the primary properties. In other words, our formalism is
consistent with the results available in the literature [33, 34, 37, 178].

According to our definitions of local and global properties in section 6.2.1, the
previous conclusion is technically sufficient to affirm that while entangled pure states
are generally useful for the optimal estimation of global properties, it is not true
that we always need entangled probes in such case. However, a transformation
that is orthogonal preserves angles and lengths, and for that reason one may argue
that, in a sense, the information encoded by a set of functions that gives rise to an
orthogonal transformation is equivalent to the information content of the original
parameters, provided that the weighting matrices are uniform. Hence, it is perhaps
not surprising that a local estimation strategy is preferred here, since Proctor et al.
[33, 34] had already shown that the estimation of local properties associated with
commuting generators can be performed optimally with a local strategy.

In view of this, it is desirable to establish whether there are global properties
with G = 0 that select information that is not equivalent to estimate all the original
parameters. First we observe that the eigendecomposition of X , which is a symmet-
ric matrix, is

XD = U
⊺
X XUX = diag [(d− 1),−1, . . . ,−1] , (6.52)

where the eigenvector for the first eigenvalue is 1 and those for the other eigenvalues
belong to the orthogonal subspace10. That implies that if we choose a single linear

10The characteristic equation for X is

det (X − λI) = det
[
11

⊺ − (1 + λ)I
]

∝ (1 − d + λ) (1 + λ)d−1 = 0,

giving the eigenvalues λ1 = d − 1, with multiplicity 1, and λ2 = −1, with multiplicity d − 1 (see
the calculation for equation (6.39), which is formally similar to the one here). By inspection we
see that 1 is one of the eigenvectors. Since the latter satisfies that X1 = (11⊺ − I)1 = (d−1)1, the
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function as V = f = UX1, then we will have that G = 1⊺U⊺
X XUX1/d = 1⊺XD1/d =

0. Imagine that we consider a three-parameter network, so that

f = UX1 = 1√
6


√

2
√

3 1√
2 −

√
3 1√

2 0 −2


1

1
1

 = 1√
6


√

2 +
√

3 + 1√
2 −

√
3 + 1√

2 − 2

 . (6.53)

Clearly, this is a global property, and, as a consequence, this result strengthens the
idea that entanglement is sometimes not needed in scenarios where we are estimating
global properties. Interestingly, the same argument fails for d = 2, since in that case

f = UX1 = 1√
2

(
1 1
1 −1

)(
1
1

)
=
(√

2
0

)
, (6.54)

which simply rescales the first parameter, and this is a local property. Nonetheless,
our conclusion above is still valid in general.

For the link between geometry and correlations in equation (6.50) to be truly
useful, it is necessary that there are physical states with the properties that such link
predicts as optimal. Consider first a network where d = 2. Proctor et al. (appendix
E of [33]) studied the estimation of 1 ⩽ l ⩽ d linear and normalised but otherwise
arbitrary functions using the sensor-symmetric state

|ψ0⟩ = 1√
2 (1 + γ2)

[|00⟩ + γ (|01⟩ + |10⟩) + |11⟩] , (6.55)

with −∞ < γ < ∞, which is a particular case of the more general formalism that
we are developing in this chapter. The fact that the authors of [33] succeeded in
solving their problem completely with this state suggests that the latter may realise
all the pairs (4v = 1,J ) that are optimal according to our results.

Recalling that σz |i⟩ = (−1)i |i⟩, we can see that, for the state in equation (6.55),
⟨σz,1⟩ = ⟨σz,2⟩ = 0 and ⟨σz,1σz,2⟩ = ⟨σz,1σz,2⟩ = (1−γ2)/(1+γ2), so that the variance
is 4v = 4v1 = 4v2 = 1 and the quantifier for the inter-sensor correlations can be
written as a function of γ as J = (1 − γ2)/(1 + γ2). This function reaches the
maximum J = 1 at γ = 0, while it tends monotonically from such point to J = −1
when γ → ±∞. In other words, for d = 2 there is always a physical state that
satisfies the condition imposed in equation (6.50) when 4v = 1.

It is interesting to observe that γ splits the state in a part where the sum of the
parameters is encoded and a part that can encode the difference. More concretely11,

e− i
2 (σz,1θ1+σz,2θ2) |ψ0⟩ = 1√

2 (1 + γ2)

[
e− i

2 (θ1+θ2) |00⟩ + e i
2 (θ1+θ2) |11⟩

]
+ γ√

2 (1 + γ2)

[
e− i

2 (θ1−θ2) |01⟩ + e i
2 (θ1−θ2) |10⟩

]
. (6.56)

rest of the eigenvalues must be associated with the subspace orthogonal to 1, and this concludes
the eigendecomposition of X .

11For this calculation we have used that

eiφσz |j⟩ =
∞∑

k=1

(iφ)k

k! σk
z |j⟩ =

∞∑
k=1

(iφ)k

k! (−1)jk |j⟩ = ei(−1)jφ |j⟩ .
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A partial extension of this idea to the d-parameter case can be achieved by con-
structing a state where the part that encodes functions aligned with the direction
of 1 is separated in an analogous fashion, i.e.,

|ψ0⟩ = 1√
2 [1 + (2d−1 − 1) γ2]

[
(1 − γ)

(
|0⟩⊗d + |1⟩⊗d

)
+ γ (|0⟩ + |1⟩)⊗d

]
.

∝ |00 . . . 0⟩ + |11 . . . 1⟩ + γ (the rest of the terms) . (6.57)

For this probe, 4vi = 1−⟨σz,i⟩2 = 1 = 4v for all i, and 4cij = ⟨σz,iσz,j⟩−⟨σz,i⟩⟨σz,j⟩ =
⟨σz,iσz,j⟩ = (1 − γ2)/[1 + (2d−1 − 1)γ2] = 4c for all i ̸= j, verifying in this way that
the state in equation (6.57) is also sensor symmetric. As a result, we can see that
its inter-sensor correlations are given by

J = 1 − γ2

1 + (2d−1 − 1) γ2 . (6.58)

If 0 ⩽ |γ| ⩽ 1, then we have that 1 ⩾ J ⩾ 0. This implies that there always
exists a physical state associated with all the results in this section that require
either positive inter-sensor correlations, or the absence of them. On the other hand,
the amount of negative correlations that this state can cover lies in 0 > J >
−1/(2d−1 − 1), which corresponds to 1 < |γ| < ∞. Unfortunately, the amount of
negative correlations that equation (6.50) might predict can lie in 0 > J > 1/(1−d),
where 1/(1−d) ⩽ −1/(2d−1 −1) for d ⩾ 2 and the inequality is only saturated when
d = 2. Thus there is a subinterval not covered by equation (6.57). Whether there
are other physical states that may realise the missing values is an open question.

Finally, we draw attention to the fact that the only entangled pure probes that
may be asymptotically relevant for sensor-symmetric networks are those that give
rise to inter-sensor correlations, while any other form of entanglement will be ir-
relevant in this type of scenario. To illustrate this idea, let us consider the state
in equation (6.57) for d = 3, and suppose that the functions to be estimated are
associated with G = 0. We have seen that, in that case, no inter-sensor correlations
are needed to perform the estimation optimally, which implies that, according to
equation (6.58), γ = ±1 . By inserting these parameters in equation (6.57) we find
that the optimal states are

|ψ+⟩ = 1
2
√

2
(|0⟩ + |1⟩)⊗3 (6.59)

and
|ψ−⟩ = 1

2
√

2
[
2
(
|0⟩⊗3 + |1⟩⊗3

)
− (|0⟩ + |1⟩)⊗3

]
. (6.60)

The first state is separable, but it can be shown that |ψ−⟩ is not. If we tried
to write the latter as |ψ−⟩ = (x0 |0⟩ + x1 |1⟩)(y0 |0⟩ + y1 |1⟩)(z0 |0⟩ + z1 |1⟩), with
|x0|2 + |x1|2 = |y0|2 + |y1|2 = |z0|2 + |z1|2 = 1, we would find contradictions such as

[(x0 = x1) ∧ (x0 = −x1)] ∧ (|x0|2 + |x1|2 = 1), (6.61)

which by reductio ad absurdum allows us to conclude that the state with γ = −1
and d = 3 is entangled. Hence, while here entanglement is not required to reach the
asymptotic optimum, neither is it necessarily detrimental. The only requirement
imposed by our formalism is the absence of pairwise correlations, and the presence
or absence of any other kind of correlation does not affect the uncertainty.
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6.3.4 Multi-parameter prior information analysis
Now we focus on two-parameter networks and we turn to the more general problem
of estimating linear functions when different amounts of data are available, using
our findings about the properties of the asymptotically optimal quantum probes as
a guide. To do this, our prior knowledge needs to be consistent with the idea that, if
we were to keep repeating the experiment, our scheme would continue being useful
(section 4.2.1). In other words, our prior must allow for the asymptotic regime to
be reached, which requires a multi-parameter analysis of the prior information.

In section 6.2.3 we concluded that a suitable prior for this problem in the regime
of moderate prior knowledge is the multi-parameter flat density in equation (6.25).
Since our network is highly symmetric, it is appropriate to imagine that our prior
information is similar for both parameters, and this justifies assuming that W0,i =
W0 and θ̄i = θ̄ for i = 1, 2, where we recall that W0,i and θ̄i were the prior width
and the prior mean for the i-th primary parameter. Hence, the prior area is simply
∆0 = W 2

0 , and we will choose θ̄ = W0/2 for the Bayesian calculations in this chapter.
Next we need to choose W0 (and thus the prior area ∆0) such that the likelihood

does not contain ambiguous information in the region where the original parameters
can lie, and to construct the likelihood we have to select a measurement. As with
the state, we wish to select an asymptotically optimal POM, which is achieved by
requiring that F (θ) = Fq. We know that a POM fulfilling this condition always
exists for the scenario with pure states and commuting generators considered here
([99, 126] and sections 3.3.2 and 6.2.2), since, in such case, the symmetric logarithmic
derivatives are not unique and we may find some pair of logarithmic derivatives
that commute, which would allow us to construct the POM [99]. Alternatively,
Humphreys et al. [95] proposed a set of projectors such that one of the elements is
the original state, while the rest are orthogonal to it, and this idea was refined and
extended in [126] by identifying conditions that projective POMs need to fulfil to
have that F (θ) = Fq. However, for us it suffices to follow a simpler approach; first
we will provide a qualitative argument suggesting a potential measurement scheme,
and then we will verify that it is indeed optimal by a direct calculation.

Although we wish to estimate functions, the condition F (θ) = Fq refers only to
the original parameters, and we know that these can be estimated optimally using
a local strategy ([33, 34] and section 6.3.3). In view of this, a local POM might
be sufficient to make the classical and quantum information matrices equal, and, in
fact, this would be very useful for our analysis, since in that case we could associate
any enhancement derived from the presence of correlations with the initial state.

Consider then the local POM |n, k⟩ = [|0⟩ + (−1)n |1⟩] ⊗ [|0⟩ + (−1)k |1⟩]/2, for
n, k = 0, 1. In addition, we have seen that, if d = 2, then the state in equation
(6.55) is sufficient to realise all the asymptotic results predicted by our theory. As
such, we will use this probe for our Bayesian calculation. Combining this POM
with the transformed state |ψ(θ1, θ1)⟩ = e− i

2 (σz,1θ1+σz,2θ2) |ψ0⟩ in equation (6.56), the
probability amplitude is

⟨n, k|ψ(θ1, θ2)⟩ ∝ e− i
2 (θ1+θ2) + (−1)n+ke i

2 (θ1+θ2)

+ γ
[
(−1)ke− i

2 (θ1−θ2) + (−1)ne i
2 (θ1−θ2)

]
∝ cos {[θ1 + θ2 + π(k + n)] /2}

+ γ cos {[θ1 − θ2 − π(k − n)] /2} , (6.62)
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the modulus of the proportionality factor being 1/
√

2(1 + γ2). This allows us to
find the likelihood function

p(n, k|θ1, θ2) = || ⟨n, k|ψ(θ1, θ2)⟩ ||2 = [cos(x+) + γcos(x−)]2 /[2(1 + γ2)], (6.63)

where we have introduced the notation x± ≡ [θ1 ± θ2 ± π(k ± n)] /2.
The elements of the classical Fisher information matrix for the probability in

equation (6.63) are

[F (θ)]11 =
1∑

n,k=0

1
p(n, k|θ1, θ2)

[
∂p(n, k|θ1, θ2)

∂θ1

]2

= 1
2 (1 + γ2)

1∑
n,k=0

[sin(x+) + γsin(x−)]2 = 1, (6.64)

[F (θ)]22 =
1∑

n,k=0

1
p(n, k|θ1, θ2)

[
∂p(n, k|θ1, θ2)

∂θ2

]2

= 1
2 (1 + γ2)

1∑
n,k=0

[sin(x+) − γsin(x−)]2 = 1, (6.65)

and

[F (θ)]12 =
1∑

n,k=0

1
p(n, k|θ1, θ2)

∂p(n, k|θ1, θ2)
∂θ1

∂p(n, k|θ1, θ2)
∂θ2

= 1
2 (1 + γ2)

1∑
n,k=0

[
sin2(x+) − γ2sin2(x−)

]
= 1 − γ2

1 + γ2 , (6.66)

with [F (θ)]21 = [F (θ)]12. On the other hand, in sections 6.3.2 and 6.3.3 (see also
appendix E of [33]) we have seen that, for this configuration,

Fq =
(

1 J
J 1

)
=
(

1 (1 − γ2)/(1 + γ2)
(1 − γ2)/(1 + γ2) 1

)
, (6.67)

which is identical to the classical Fisher information matrix in equations (6.64 -
6.66). Therefore, we conclude that the quantum strategy formed by the previous
local POM and the state in equation (6.55) is asymptotically optimal.

Following section 6.2.3, one way of identifying the size of the region where
the likelihood function of this strategy is free of ambiguities is to represent the
posterior probability p(θ1, θ2|n,k) ∝ p(n,k|θ1, θ2), where n = (n1, . . . , nµ) and
k = (k1, . . . , kµ), so that we can visualise the regions with an asymptotically unique
absolute maximum in a direct fashion. The result of this operation, which is based
on the algorithm in appendix C.1, is shown in figure 6.3 for several values of γ.

First we note that the simulations in figure 6.3 have been restricted to the area
(θ1, θ2) ∈ [0, 2π]×[0, 2π] because it is clear that the single-shot likelihood in equation
(6.63) is invariant under θi → θi + 2πm, with m = 0,±1,±2, . . . and i = 1, 212, and

12The calculations required to arrive at this conclusion are analogous to those in section 4.3.2
for the NOON state.
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Figure 6.3: Posterior density functions for random simulations of µ = 100 trials, a
flat prior and the quantum strategy represented by the likelihood in equation (6.63),
with (i) γ = 1, (ii) γ = 0.9, (iii) γ = 0.531, (iv) γ = 0.334 and (v) γ = 0. The
simulated true values of the original parameters are θ′

1 = 1 and θ′
2 = 2. We draw

attention to the fact that the representation for 1 < γ < ∞ follows the same pattern
but with the posterior peaks tending to the direction orthogonal to that in (v).

thus it suffices to examine the symmetries within one period. While the number of
maxima changes with γ, we can observe that all the ambiguities in figures 6.3.i -
6.3.iv can be avoided if the prior area satisfies that ∆0 = W 2

0 ⩽ π2.
The situation for γ = 0 in figure 6.3.v is, however, different. In that case, no

single peak can be selected even after a large number of repetitions, which implies
that such scheme does not have an asymptotic approximation. This is consistent
with the fact that, if γ = 0, then J = 1, and according to our results in section
6.3.2, this case needs to be excluded for the Fisher information matrix to be invert-
ible. Furthermore, the same type of behaviour would have been observed if we had
examined the limit |γ| → ∞, for which J → −1. Hence, we only need to impose
the existence of a unique maximum for 0 < |γ| < ∞. As such, we conclude that,
given our configuration, the intrinsic area is ∆int = W 2

int = π2, provided that the
parameters are thought of as independent before the experiment is performed.

Crucially, the previous discussion does not imply that the scheme with γ = 0
is useless. Figure 6.3.v shows that this scheme is giving information about the
combination θ2 + θ1 = πm, with m = 0,±1,±2, . . . , that is, about the sum of the
parameters. In fact, this can be seen in a very transparent way by inserting γ = 0
in equation (6.63), since then the likelihood for a single shot is only sensitive to the
sum of the primary parameters. The calculations in the next section will reveal that
while the performance of this scheme is generally poor in the asymptotic regime, it
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can be useful when µ is low.

6.3.5 The role of inter-sensor correlations II: non-asymptotic
case

Using the quantum strategy in section 6.3.4 for a two-sensor qubit network and the
optimal estimator found in section 6.2.2, we wish to estimate two global properties of
such network when the experiment operates both in and out of the regime of limited
data. In particular, we consider the linear functions f1(θ) = (2θ1 + πθ2)/

√
4 + π2

and f2(θ) = (2θ1 + θ2)/
√

5, which we encode in the columns of V as

V = 1√
20 + 5π2

(
2
√

5 2
√

4 + π2

π
√

5
√

4 + π2

)
. (6.68)

To complete this task, we assume that both functions are equally relevant, so that
Wf = I/2, and that our prior knowledge is represented by the prior probability
p(θ1, θ2) = 4/π2, when (θ1, θ2) ∈ [0, π/2] × [0, π/2], and zero otherwise. Since ∆0 =
π2/4 < π2 = ∆int, our analysis in section 6.3.4 implies that this prior assignment
will allow us to reach the asymptotic regime.

Let us start by comparing a local strategy with an entangled scheme that is
asymptotically optimal. The former assumes that the experiment is arranged such
that γ = 1, J = 0, while to find the properties of the latter we need to recall our
results in section 6.3.3 for the asymptotic role of inter-sensor correlations. Equation
(6.50) indicates that, for d = 2,

Jopt =
(
1 −

√
1 − G2

)
/G, (6.69)

when G ̸= 0, and Jopt = 0 if G = 0. In addition, J = (1 − γ2)/(1 + γ2), and by
combining the latter expression with equation (6.69) we find that

γopt = ±
(

G − 1 +
√

1 − G2

G + 1 −
√

1 − G2

) 1
2

, (6.70)

when G ≠ 0, and γopt = 1 if G = 0. The normalisation term for the functions in
equation (6.68) is simply N = Tr(WfV

⊺V ) = 1, while the geometry parameter is
G = Tr (WfV

⊺XV ) /N = (8 + 10π + 2π2)/(20 + 5π2) ≈ 0.853, and by inserting this
result in equations (6.69) and (6.70) we have that γopt ≈ ±0.531 (we can choose the
positive solution without loss of generality) and that J = 0.561, where the latter
verifies that this state is indeed entangled13.

The numerical calculation of ϵ̄mse in equation (6.12) for these two strategies
can be performed with the algorithm in appendix C.2, and the results have been
represented in figure 6.4.i as graphs (a) for the local scheme and (b) for the optimal
entangled strategy. We can observe that the local strategy performs worse than the
entangled one for any number of repetitions. Therefore, in this case we have that

13This is because the two-sensor state in equation (6.55) is only separable when γ2 = 1. To show
it, we just need to impose that

(x0 |0⟩ + x1 |1⟩) (y0 |0⟩ + y1 |1⟩) ∝ |00⟩ + γ (|01⟩ + |10⟩) + |11⟩ ,

from where the previous statement follows.
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Figure 6.4: i) Mean square error for the estimation of the linear functions f1(θ) =
(2θ1 + πθ2)/

√
4 + π2 and f2(θ) = (2θ1 + θ2)/

√
5 by means of the two-sensor qubit

network introduced in section 6.3.4, where (a) is a local strategy, with γ = 1, J = 0;
(b) is the asymptotically optimal entangled strategy, with γ = 0.531, J = 0.561;
(c) is a strategy whose enhancement has been balanced between the asymptotic
and non-asymptotic regimes, with γ = 0.334, J = 0.799; and (d) is a maximally
entangled state, with γ = 0, J = 1, while figures (ii - iv) compare the mean square
error (solid lines) and the multi-parameter quantum Cramér-Rao bound (dashed
lines) for the strategies in (a - c). All the calculations assume the weighting matrix
Wf = I/2 and a flat prior of area ∆0 = π2/4 and centred around (π/4, π/4).

the prediction made by the asymptotic theory is qualitatively preserved in the non-
asymptotic regime. However, a closer analysis reveals that the distance between
both graphs is considerably shorter when 1 ⩽ µ ≲ 20 than when µ ≫ 1. This
behaviour is reminiscent of what we found for a Mach-Zehnder interferometer in
figure 5.2.i, where some of the probes with a large Fisher information (and thus
with a good asymptotic performance) had an error very close to that of a coherent
laser beam in the regime of limited data, the latter being an optical analogue of the
notion of local strategy in this chapter. Moreover, from the optical study we learned
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Strategy γ J µτ (∆0 = π2/4)
Local 1 0 4.58 · 102

Asymptotically optimal 0.531 0.561 4.3 · 10
Balanced enhancement 0.334 0.799 5.37 · 102

Maximally entangled 0 1 −

Table 6.1: Properties of different strategies based on a two-parameter qubit network,
where γ selects the state and J is the amount of inter-sensor correlations. Further-
more, the third column provides the number of repetitions needed such that the
relative error between the Bayesian uncertainty and the Cramér-Rao bound is equal
to or less than 5% (that is, ετ = 0.05 in equation (4.14)). These results demonstrate
the state-dependent nature of the conditions required to approach the Cramér-Rao
in multi-parameter systems.

that a better asymptotic error was sometimes associated with a worse performance
in the regime of low µ. As a consequence, a natural question is whether we could
obtain an uncertainty that is lower than the error for the asymptotically optimal
entangled state when the network operates in the non-asymptotic regime.

To test this idea, let us select a third arrangement with an asymptotic error that
lies between those of the local scheme and the asymptotically optimal strategy. The
asymptotic error for our network can be written in terms of γ as (see equations
(6.48) and (6.49))

ϵ̄mse ≈ ϵ̄cr = (1 + γ2) [(1 − G) + (1 + G) γ2]
4µγ2 ≡ ϵ̄qbit (γ) , (6.71)

and using this we can find the γ of the strategy satisfying our desideratum above
by imposing that

ϵ̄qbit (γ) = 1
2 [ϵ̄qbit (γloc = 0) + ϵ̄qbit (γent = 0.531)] . (6.72)

The solutions of this equation are γ ≈ ±0.334,±0.842, and we take our third strategy
to be prepared such that γ = 0.334, J = 0.799, since this is the option with the
lowest uncertainty for a single shot14.

The uncertainty ϵ̄mse for the third scheme has been represented as a function of
the number of trials in figure 6.4.i, where it is labelled as (c). As expected, this
error lies between the local and the asymptotically optimal strategies when µ ≫ 1,
but this is no longer the case in the regime of limited data. More concretely, the
graphs for the asymptotically optimal strategy and the new scheme cross each other
when µ ≈ 40, so that the former is optimal when µ > 40 and the latter is the
preferred choice if 1 ⩽ µ ≲ 40. Consequently, we may say that trading a part of the
asymptotic enhancement is sometimes associated with an improved performance in
the non-asymptotic regime, which is the same phenomenon that we uncovered in
chapter 5 for highly sensitive optical probes.

Interestingly, the balanced strategy (γ = 0.334, J = 0.799) is associated with a
larger amount of inter-sensor correlations, and it can be argued that this is consistent

14In particular, ϵ̄mse(µ = 1, γ = 0.334) ≈ 0.158 and ϵ̄mse(µ = 1, γ = 0.842) ≈ 0.173.



118

with the fact that this scheme provides a better precision in the non-asymptotic
regime. To see why, let us first recall that, when µ is large, the information about
the global properties is essentially provided by the experimental data that we are
accumulating, so that the strength of the correlations predicted by the asymptotic
theory is assuming a large amount of information. On the contrary, the information
in the regime of limited data is a mixture of prior knowledge and experimental
data, and given that we are employing a moderately vague prior, it is reasonable
to expect the amount of entanglement that is optimal when we have an abundance
of measurement data to be generally inappropriate in the non-asymptotic regime.
By noting that the geometry parameter G ≈ 0.853 is relatively close to 1, which
was precisely the geometry value for the direction of the vector of ones 1 (i.e., our
functions are clustered around the equally weighted sum of the parameters), we can
compensate the low amount of information with a J that is closer to that associated
with 1, which is J = 1, in order to enhance the precision when µ is low. This is
what (b) and (c) in figure 6.4.i show.

We may push this intuition further and consider a network with γ = 0, J = 1,
which is a maximally entangled state. Its graph has been labelled as (d) in figure
6.4.i, and upon comparing it with the three previous strategies we see that the
maximally entangled state is the best option when 1 ⩽ µ ≲ 10. The price that we
pay for this low-µ enhancement is that the scheme ceases to be useful after µ ≈ 20
trials, and it is asymptotically beaten by the rest of schemes, including the local
strategy. We notice that this result is consistent with our analysis in section 6.3.4,
where we established that this probe is only sensitive to the equally weighted sum
of the original parameters.

The maximally entangled state is also a good example to illustrate that the
main consequence of a non-invertible Fisher information matrix is the lack of the
asymptotic approximation provided by the Cramér-Rao bound, without this imply-
ing that we cannot perform the estimation using such strategy. On the contrary, for
the local, asymptotically optimal and balanced strategies we have that the Bayesian
mean square errors converge to their respective Cramér-Rao bounds, as it may be
verified by observing figures 6.4.ii - 6.4.iv. The number of repetitions required for
the relative error between these Bayesian uncertainties and their asymptotic bounds
to be equal to or less than 5% runs from µ ∼ 10 to µ ∼ 102 (see table 6.1).

In summary, we have demonstrated that the strength of the inter-sensor cor-
relations that is useful to estimate a given collection of global properties changes
substantially for different amounts of data, i.e., for different values of µ. Since this
is the same type of behaviour that we have established for single-parameter schemes
in previous chapters, we conjecture that the novel effects associated with a limited
amount of data that here have been uncovered using specific examples may actually
be a more general feature of non-asymptotic quantum metrology and be generally
present in a wide range of experiments operating in the regime of limited data.

6.4 Summary of results and conclusions
In this chapter we have made the transition from single-parameter problems to
scenarios with several unknown pieces of information. One of the crucial advantages
of exploiting multi-parameter schemes is the possibility of harnessing correlations
between different sensors in an array of them, and to study this question we have
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built our work on the quantum sensing network model that Proctor et al. [33, 34]
proposed as a framework for problems of distributed sensing.

We have seen that previous results in the literature had established that the pres-
ence of correlations between sensors is particularly useful when we wish to estimate
properties that can be seen as global with respect to a partition in terms of spatially
separated sensors. In the context of the model in [33, 34], a property is said to be
local if it can be represented by a locally encoded parameter, while a global prop-
erty is modelled by a non-trivial function of two or more local parameters. Given
these basic notions, our first step has been to introduce the concepts of natural or
primary and derived or secondary properties for a quantum sensing network, where
the former are the physical parameters that characterise the system and the latter
are functions of them. Crucially, it has been argued that, to some extent, we are
free to decide which parameters are natural and which ones are secondary, and for
the purposes of this chapter we have taken the primary parameters to be local.

Next we have carried out an analysis to determine the measure of uncertainty
that is suitable for the estimation of functions in general, and of linear functions in
particular, in analogy with our related discussion in section 3.2, and this has provided
us with a framework suitable to extend our methodology in chapter 4 to the multi-
parameter regime. More concretely, we have selected the multi-parameter estimator
that is optimal for any number of trials, and we have examined the asymptotic regime
of the multi-parameter Bayesian error as a potentially useful guide for choosing
the quantum strategy. Apart from the conditions on the prior information and
the number of repetitions that we had already encountered in chapter 4, the fact
that the Fisher information matrix is sometimes singular introduces here a new
potential difficulty. We have generalised our methods in previous chapters to find
out the minimum amount of prior knowledge and trials that are needed for the multi-
parameter Cramér-Rao bound to be valid, and we have restricted our proposal of
exploiting the asymptotic theory as a guide to cases where the information matrix
is invertible. Nonetheless, we have conjectured that it might be possible to adapt
our approach to singular Fisher information matrices (e.g., working in the support
of such matrix).

The central question that we have addressed with this formalism is that of the
role of inter-sensor correlations for the estimation of arbitrary linear functions using
sensor-symmetric networks and different amounts of data. First we have centred
our attention on the asymptotic part of the problem, and we have derived an ana-
lytical expression that provides us with a link between the geometry of the vectors
formed by the components of the linear functions and the amount of inter-sensor
correlations, such that the asymptotic uncertainty is optimal. Furthermore, we have
shown that there exists a physical state for most of the optimal configurations that
our result predicts. Crucially, this relationship between the amount of entanglement
in a pure state and how much the vectors associated with the functions are clustered
around certain directions was precisely one of the open questions that Proctor et al.
[33] identified when they proposed their network model, and here we have provided
a definite and complete answer for the case of sensor-symmetric states. Additionally,
our results are applicable to any number of linear functions, while other approaches
in the literature have generally focused on estimating either a single function or an
orthonormal collection of them.

Using these results we have been able to show that the largest amounts of cor-
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relations are associated for sensor-symmetric states with two special subspaces: the
direction indicated by the vector of ones, and the subspace orthogonal to it. Further-
more, we have recovered the known result that orthogonal transformations, which
include the estimation of the original parameters as a trivial case, can be estimated
optimally without inter-sensor correlations.

While orthogonal transformations are generally a form of global properties, we
have given arguments suggesting that the information captured by an orthogonal
transformation is, in a sense, equivalent to that encoded by all the original para-
meters, which in our model are local. In view of this, it was crucial to establish
whether there exist other global properties that require no correlations to be estim-
ated optimally. The answer to this question has been in the affirmative, and we
have constructed an example demonstrating this idea explicitly. As a consequence,
our results have strengthened the idea that entanglement is sometimes not needed
even when we are estimating global properties.

Moreover, another example with a three-sensor network has revealed that entan-
glement might not only be detrimental, but that it might also be irrelevant. The
key idea is to observe that the asymptotic uncertainty only depends on the inter-
sensor correlations, which are of a pairwise nature; consequently, other forms of
entanglement that do not produce this specific type of correlations do not affect the
estimation error in the asymptotic regime.

On the other hand, the application of our link between geometry and correlations
has allowed us to select an asymptotically optimal quantum strategy for our Bayesian
analysis of sensor-symmetric networks. After finding a POM for which the classical
and quantum Fisher information matrices coincide, we have determined the prior
information that such scheme would require for the Cramér-Rao bound to be a valid
approximation, establishing in this way the size of the region where the estimation
can be performed without ambiguities. Remarkably, we have succeeded in applying
Jaynes’s principle of transformation groups to our multi-parameter problem, and we
have justified the use of a multivariate flat prior from first principles.

From the study of the non-asymptotic uncertainty of this strategy we have
learned that the amount of correlations that are needed to enhance the performance
of the network crucially depends on the amount of data that has been collected.
While our Bayesian analysis is still limited (we have only considered the case d = 2
for this part of the problem), the fact that we have found important results with
such a low-dimensional estimation problem invites optimism and suggests that there
is still a vast set of unexplored possibilities to be uncovered. For instance, it would
be interesting to examine whether the irrelevancy of forms of entanglement other
than those that generate inter-sensor correlations is also true for a low number of
trials, which is a question that requires simulations where d ⩾ 3. Therefore, we
conclude that our proposal provides a solid methodology to investigate the design of
quantum sensing networks that operate in a regime with realistic amounts of data.

The results of this chapter will appear in [179]

Quantum sensing networks for the estimation of linear functions, Jesús
Rubio, Paul A. Knott, Timothy J. Proctor and Jacob A. Dunningham,
in preparation (2020).
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Chapter 7

Bayesian multi-parameter
quantum metrology

7.1 Goals for the final stage of our methodology
Our study of quantum sensing networks has uncovered a wealth of new results
associated with the interplay between correlations and different amounts of data.
However, this is only a small part of the rich variety of novel effects that we expect
to be relevant for multi-parameter non-asymptotic metrology. While the practical
usefulness of our hybrid estimation method (optimal estimator plus asymptotically
optimal quantum strategy) will certainly play an important role in exploring this
line of thought, it is clear that a limited amount of data demands multi-parameter
tools that are specifically designed to take into account the intrinsically Bayesian
nature of this type of scenarios.

In chapter 3 we saw that the fundamental equations for the optimal Bayesian
quantum strategy have been known since the works of Helstrom, Holevo and others
[6, 53–55, 134, 180], and in chapter 5 we exploited this formalism for single-parameter
schemes in a way that takes into account the reality of experimental practice, where
the resources are always finite and possibly limited. In particular, we have proposed
to first calculate the single-shot optimal quantum strategy and then repeat it as
many times as the application at hand demands or allows for, and we demonstrated
that this procedure generates uncertainties that are optimised in a shot-by-shot
fashion and that sometimes recover the Cramér-Rao bound asymptotically.

The main task of this chapter is to extend the previous idea to the multi-
parameter regime, a goal that will complete the construction of our non-asymptotic
methodology. To achieve it, first we will derive a new single-shot lower bound on the
multi-parameter uncertainty on the basis of the single-parameter optimum for the
square error, so that our result will always be applicable to scenarios where there
is a moderate amount of prior information. Then we will discuss how and under
which circumstances we can employ our new tool in strategies where the same exper-
iment is repeated several times, and we will illustrate the application of these ideas
with two important examples: the two-parameter qubit network that we studied in
chapter 6, and a discrete model of phase imaging.

Our findings will provide new insights to understand the role of correlations
when we wish to estimate the natural properties (i.e., the original parameters) of
some experiment where the data is limited and the prior information is moderate.
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A comprehensive study of this question was, to the best of our knowledge, missing,
since the literature has mainly addressed it using asymptotic tools [33, 34, 37, 57] and
the Bayesian part of our analysis in chapter 6 has been primarily dedicated to the
estimation of functions of the original parameters. In addition, we will demonstrate
that the multi-parameter Cramér-Rao bound is sometimes recovered as a limiting
case within our approach. While our results will not be as general as if we could
solve the fundamental equations for the multi-parameter optimal strategy in an exact
fashion (section 3.3.1), they will be shown to constitute a reasonable alternative that
not only can be applied to real-world problems, but that also relies on calculations
that are tractable, both from a numerical and an analytical point of view.

7.2 Methodology (part D)

7.2.1 A new multi-parameter single-shot quantum bound
Suppose we have a probe state ρ0 that is employed to encode the unknown para-
meters θ = (θ1, · · · , θd), so that the transformed state is ρ(θ), and that we perform
a single measurement E(m) with outcome m. Then the likelihood function will
be p(m|θ) = Tr[E(m)ρ(θ)], and by combining it with the prior p(θ) into the joint
density p(θ,m) = p(θ)p(m|θ) we can construct the uncertainty

ϵ̄mse =
d∑

i=1
wi

∫
dθdm p(θ,m) [gi(m) − θi]2 , (7.1)

where we recall that gi(m) is the estimator for the i-th parameter and wi ⩾ 0 its
relative importance.

In chapter 6 we saw that the uncertainty in equation (7.1) for the parameters
θ arises as a particular case of that in equation (6.3) for linear functions when we
choose the trivial transformation V = I, and provided that we restrict the estimation
to a single shot. For that reason, we can now complete the first step of our derivation
here, which is to perform a classical optimisation over all the possible estimators,
by simply applying the result of such optimisation in section 6.2.2 for V = I.

More concretely, let us rewrite equation (7.1) as ϵ̄mse = Tr[WΣmse], with W =
diag(w1, . . . , wd),

Σmse =
∫
dθdm p(θ,m) [g(m) − θ] [g(m) − θ]⊺ , (7.2)

and g(m) = (g1(m), . . . , gd(m)), and let us recall that, since W is a positive semi-
definite matrix, to minimise ϵ̄mse it suffices to lower bound Σmse in the matrix sense.
According to our discussion in section 6.2.2, this operation gives us that

Σmse ⩾ Σc
opt =

∫
dm p(m)Σ(m), (7.3)

where p(m) =
∫
dθp(θ)p(m|θ) and

Σ(m) =
∫
dθp(θ|m)θθ⊺ −

[∫
dθp(θ|m)θ

] [∫
dθp(θ|m)θ

]⊺
. (7.4)
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Now we observe that by integrating the outcomes in the first term of equation
(7.4), and expanding the posterior as p(θ|m) = p(θ)p(m|θ)/p(m) in its second term,
we can express Σc

opt as

Σc
opt =

∫
dθp(θ)θθ⊺ −

∫ dm

p(m)

[∫
dθp(θ)p(m|θ)θ

] [∫
dθp(θ)p(m|θ)θ

]⊺
. (7.5)

As we can see, the second term of this expression is reminiscent of the definition
for the classical Fisher information matrix in equation (3.20). This is the same
type of formal connection between Bayesian quantities and those belonging to the
asymptotic theory that we studied in section 3.3.5 for the single-parameter case, and
upon making the quantum part of the problem explicit we can exploit this formal
similarity as we did in that section to further lower bound Σc

opt.
Using equation (7.5) and p(m) =

∫
dθp(θ)p(m|θ) we can construct the scalar

quantity

u
⊺Σc

optu =
∫
dθp(θ)θ2

u −
∫
dm

[
∫
dθp(θ)p(m|θ)θu]2∫
dθp(θ)p(m|θ) , (7.6)

where θu = u⊺θ = θ⊺u and u is some real vector, and by inserting p(m|θ) =
Tr[E(m)ρ(θ)] in equation (7.6) we find that

u
⊺Σc

optu =
∫
dθp(θ)θ2

u −
∫
dm

Tr [E(m)ρ̄u]2

Tr [E(m)ρ] , (7.7)

with ρ =
∫
dθp(θ)ρ(θ) and ρ̄u =

∫
dθp(θ)ρ(θ)θu. We have thus arrived at an

expression where the second term has taken an analogous form to that of the single-
parameter classical Fisher information after having inserted the Born rule, and from
our derivation in section 3.3.5 we know that it is possible to bound this term following
the same steps of the proof that gives rise to the Braunstein-Caves inequality for
the Fisher information ([122, 124] and section 3.3.2).

If we follow this analogy and we introduce the Bayesian counterpart of the equa-
tion for the symmetric logarithmic derivative, that is, Suρ + ρSu = 2ρ̄u, then we
have that

∫
dm

Tr [E(m)ρ̄u]2

Tr [E(m)ρ] =
∫
dm

Re {Tr [E(m)Suρ]}√
Tr [E(m)ρ]

2

⩽
∫
dm

∣∣∣∣∣∣Tr [E(m)Suρ]√
Tr [E(m)ρ]

∣∣∣∣∣∣
2

=
∫
dm

∣∣∣∣∣∣Tr
 ρ

1
2E(m) 1

2√
Tr [E(m)ρ]

E(m) 1
2Suρ

1
2

∣∣∣∣∣∣
2

⩽
∫
dm Tr [E(m)SuρSu] = Tr

(
ρS2

u

)
≡ Ku, (7.8)

where, as in section 3.3.5, we have used the Cauchy-Schwarz inequality |Tr[X†Y ]|2 ⩽
Tr[X†X]Tr[Y †Y ] with

X = E(m) 1
2ρ

1
2√

Tr [E(m)ρ]
, Y = E(m) 1

2Suρ
1
2 . (7.9)



124

On the other hand, recalling that θu = ∑d
i=1 uiθi we can see that ρ̄u = ∑d

i=1 uiρ̄i,
with ρ̄i =

∫
dθp(θ)ρ(θ)θi. In turn, this allows us to express Su as Su = ∑d

i=1 uiSi,
with Siρ+ρSi = 2ρ̄i and Si being a Hermitian operator. Since our aim is to derive a
matrix inequality, we need to find a way of using the previous definitions to rewrite
Ku as Ku = u⊺Ku, where Kij = Tr(ρAij) is a matrix and Aij is some operator
associated with the product of Si and Sj. Given that the operators Si and Sj might
not commute, let us first decompose Aij as

2Aij =
(
Aij + A†

ij

)
+
(
Aij − A†

ij

)
, (7.10)

so that

u
⊺Ku = 1

2


d∑

i,j=1
uiujTr

[
ρ
(
Aij + A†

ij

)]
+

d∑
i,j=1

uiujTr
[
ρ
(
Aij − A†

ij

)] . (7.11)

If we were to take Aij = SiSj, then we would find that

u
⊺Ku = 1

2


d∑

i,j=1
uiujTr [ρ (SiSj + SjSi)] +

d∑
i,j=1

uiujTr [ρ (SiSj − SjSi)]


= 1

2


d∑

i,j=1
uiujTr [ρ (SiSj + SjSi)] + Tr

[
ρ
(
S2

u − S2
u

)]
= 1

2

d∑
i,j=1

uiujTr [ρ (SiSj + SjSi)] = Tr
(
ρS2

u

)
= Ku, (7.12)

and the same result would have been obtained should we had chosen Aij = SjSi or
the Hermitian version Aij = (SiSj + SjSi)/2 instead. Therefore, we can take K to
be a symmetric matrix with elements1

Kij = Tr [ρ (SiSj + SjSi)] /2. (7.13)

The combination of equations (7.3), (7.7), (7.8) and (7.13), which must be valid
for any u, finally gives us the chain of matrix inequalities

Σmse ⩾ Σc
opt ⩾ Σq =

∫
dθp(θ)θθ⊺ − K. (7.14)

The quantum inequality in equation (7.14) is the central result of this chapter.
Applying this result to the original measure of uncertainty in equation (7.1) we

find that the scalar version of our new bound in equation (7.14) is

ϵ̄mse ⩾
d∑

i=1
wi

[∫
dθp(θ)θ2

i − Tr
(
ρS2

i

)]
. (7.15)

Furthermore, by noticing that Tr(ρSi) =
∫
dθp(θ)θi and defining the uncertainties

∆θ2
p,i =

∫
dθp(θ)θ2

i −
[∫

dθp(θ)θi

]2
(7.16)

1See [142] for the analogous operation in the original derivation of the multi-parameter quantum
Cramér-Rao bound.
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and ∆S2
ρ,i = Tr (ρS2

i ) − Tr (ρSi)2 we may rewrite the bound in equation (7.15) as

ϵ̄mse ⩾
d∑

i=1
wi

(
∆θ2

p,i − ∆S2
ρ,i

)
, (7.17)

which is the multi-parameter version of our equivalent expression for a single para-
meter found in section 3.3.5.

7.2.2 Towards a shot-by-shot strategy for many parameters
In section 6.2.2 we saw that the classical inequality in equations (7.3) and (7.14)
can be saturated when the estimators are given by the averages over the posterior
probability, that is, gopt(m) =

∫
dθp(θ|m)θ. On the other hand, since the derivation

in equation (7.8) is formally identical to that in section 3.3.5 for the single-parameter
case, from our discussion there we know that the condition for the saturation of
the first inequality in equation (7.8) is that Tr[E(m)Suρ] is real, while the second
inequality is saturated if and only if

E(m) 1
2ρ

1
2

Tr [E(m)ρ] = E(m) 1
2Suρ

1
2

Tr [E(m)Suρ] . (7.18)

If [Si, Sj] = 0 for all i, j, then we may fulfil such conditions by constructing the
measurement scheme with the projections onto the common eigenstates of this set
of commuting operators. To verify it, let us first observe that

Su =
d∑

i=1
uiSi =

d∑
i=1

ui

∫
dm ci(m) |ψ(m)⟩⟨ψ(m)|

=
∫
dm cu(m) |ψ(m)⟩⟨ψ(m)| , (7.19)

with cu(m) = ∑d
i=1 uici(m) and {|ψ(m)⟩⟨ψ(m)|} being the common eigenstates of

{Si}. Then, by using E(m) = |ψ(m)⟩⟨ψ(m)| we find that

∫
dm

Tr [E(m)ρ̄u]2

Tr [E(m)ρ] =
∫
dm

Re {Tr [|ψ(m)⟩⟨ψ(m)|Suρ]}√
Tr [|ψ(m)⟩⟨ψ(m)| ρ]

2

=
∫
dm c2

u(m)Tr [|ψ(m)⟩⟨ψ(m)| ρ]

= Tr
(
ρS2

u

)
= Ku = u

⊺Ku, (7.20)

and, as a consequence, our matrix quantum bound in equation (7.14) is achieved.
The projective strategy based on {|ψ(m)⟩⟨ψ(m)|} can be thought of as if we were

employing the projective measurements that are optimal to estimate each parameter
in an independent fashion. Unfortunately, it is known that the optimal strategy for
Bayesian multi-parameter estimation is not necessarily based on those projectors
[53, 137], which is a manifestation of the fact that the quantum estimators {Si} do
not need to commute. When [Si, Sj] ̸= 0, one possibility would be to search for
the projective measurement that is simultaneously optimal for all the parameters.
This is precisely what Personick did for d = 2 in [137], where he derived a set of
equations for a new set of quantum estimators associated with the simultaneous
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strategy, and indeed it may be verified that these equations are generally different
from those satisfied by {Si}. Nevertheless, even if we can find the optimal projective
strategy, this might not be optimal in a global sense, since it can be shown [53] that
to achieve the optimal uncertainty predicted by Helstrom and Holevo’s fundamental
equations in section 3.3.1 we may need a multi-parameter strategy based on general
POMs. In summary, we conclude that we cannot always saturate our bound.

Despite these difficulties, our new tool can still be useful and informative. On
the one hand, the results based on it will be tight and fundamental whenever the
operators {Si} commute. If that happens, then the optimal single-shot measurement
can be calculated using our bound, and in that case it is possible to generalise our
shot-by-shot methodology in chapter 5 to the multi-parameter regime. In particular,
given µ identical and independent trials and the multi-parameter optimal single-shot
POM |ψ(mi)⟩⟨ψ(mi)| ≡ |ψ(si)⟩⟨ψ(si)| with outcome mi ≡ si in the i-th repetition,
the optimal estimators that take into account the information from all the repetitions
of this quantum strategy are g(s) =

∫
dθp(θ|s)θ, with s = (s1, . . . , sµ), and the

associated uncertainty can be expressed as

ϵ̄mse =
d∑

i=1
wi

∫
ds p(s)

{∫
dθp(θ|s)θ2

i −
[∫

dθp(θ|s)θi

]2
}
, (7.21)

where p(θ|s) ∝ p(θ)∏µ
j=1⟨ψ(sj)|ρ(θ)|ψ(sj)⟩. For d = 2, which is the case for one of

the scenarios that we will study, this error can be numerically calculated as a function
of µ using the two-parameter algorithm presented in section 6.2.3 and appendix C.2.

On the other hand, even if we cannot saturate our bound, it can be argued that
it is still better than any other multi-parameter bound for the error in equation
(7.1) that also ignores the potential non-commutativity of {Si}. This is because the
latter type of bound will necessarily be equal to or lower than our equation (7.15),
since the quantity

∫
dθp(θ)θ2

i − Tr (ρS2
i ) is the optimum for the estimation of θi

([6, 134, 180] and sections 3.3.4 and 3.3.5). The practical consequence of this is
that our result will produce bounds that can be tighter than proposals such as the
multi-parameter version of the Ziv-Zakai bound in [133]2. We leave for future work
to examine the relative tightness of our bound with respect to other alternatives
such as the multi-parameter Weiss-Weinstein bound [46] or the bound for complex
quantities that was derived by Yuen and Lax [180] when applied to real parameters.

Since the complexity of the calculations associated with our bound is similar
to that of the Fisher information matrix for general density operators3, with the
extra advantage of not having to invert K, we conjecture that the tool that we have
introduced may end playing a crucial role in analyses of multi-parameter metrology
whenever Helstrom and Holevo’s fundamental equations cannot be solved exactly in
problems with several parameters. The rest of this chapter is dedicated to demon-
strate its usefulness with concrete examples.

2In fact, this has already been demonstrated at the single-parameter level in section 5.4, where
we have found that the Ziv-Zakai and Weiss-Weinstein bounds [46, 56] are generally loose in optical
scenarios with a finite number of repetitions.

3In the single-parameter case this was first observed by Macieszczak et al. [111].
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7.3 Our methodology in action: results and dis-
cussion

7.3.1 Qubit sensing network
Our first example is the two-parameter qubit network that we studied in sections
6.3.3 - 6.3.5, which was prepared in the probe state |ψ0⟩ = [|00⟩ + γ(|01⟩ + |10⟩) +
|11⟩]/

√
2(1 + γ2), with real γ, and which upon interacting with the object that we

wish to study was transformed as |ψ(θ1, θ2)⟩ = U(θ1, θ2) |ψ0⟩ by the unitary operator
U(θ1, θ2) = exp(−iσzθ1/2) ⊗ exp(−iσzθ1/2) = exp[−i(σz,1θ1 + σz,2θ2)/2].

Let us start by performing the single-shot Bayesian analysis. Assuming that we
are working in the regime of moderate prior knowledge, so that we can use the flat
prior p(θ1, θ2) = 4/π2, when (θ1, θ2) ∈ [−π/4, π/4]×[−π/4, π/4], and zero otherwise,
we have that4

ρ = 4
π2

∫ π/4

−π/4
dθ1

∫ π/4

−π/4
dθ2 e− i

2 (σz,1θ1+σz,2θ2) |ψ0⟩⟨ψ0| e i
2 (σz,1θ1+σz,2θ2)

= 1
2π2(1 + γ2)


π2 2

√
2πγ 2

√
2πγ 8

2
√

2πγ π2γ2 8γ2 2
√

2πγ
2
√

2πγ 8γ2 π2γ2 2
√

2πγ
8 2

√
2πγ 2

√
2πγ π2

 , (7.22)

ρ̄1 = 4
π2

∫ π/4

−π/4
dθ1

∫ π/4

−π/4
dθ2 e− i

2 (σz,1θ1+σz,2θ2) |ψ0⟩⟨ψ0| e i
2 (σz,1θ1+σz,2θ2)θ1

= i(4 − π)
2
√

2π2(1 + γ2)


0 0 −πγ −2

√
2

0 0 −2
√

2γ2 −πγ
πγ 2

√
2γ2 0 0

2
√

2 πγ 0 0

 , (7.23)

and

ρ̄2 = 4
π2

∫ π/4

−π/4
dθ1

∫ π/4

−π/4
dθ2 e− i

2 (σz,1θ1+σz,2θ2) |ψ0⟩⟨ψ0| e i
2 (σz,1θ1+σz,2θ2)θ2

= i(4 − π)
2
√

2π2(1 + γ2)


0 −πγ 0 −2

√
2

πγ 0 2
√

2γ2 0
0 −2

√
2γ2 0 −πγ

2
√

2 0 πγ 0

 , (7.24)

where the columns are labelled as |00⟩, |01⟩, |10⟩ and |11⟩. In addition, by inserting
equations (7.22 - 7.24) in Siρ + ρSi = 2ρ̄i, and using a two-parameter extension of
the Mathematica algorithm in appendix B.2, we find that the independently optimal
quantum estimators are

S1 = 2 (4 − π)
π (1 + γ2)

(
γ√
2
σy ⊗ I + 1 − γ2

π
σx ⊗ σy

)
, (7.25)

4Unless otherwise indicated, all the analytical calculations of this chapter have been performed
using Mathematica.



128

100 101 102 103

10-3

10-2

10-1

100

Figure 7.1: Mean square error in equation (7.21) based on a single-shot optimal
measurement (solid line) and quantum Cramér-Rao bound (dashed line) for the
two-parameter qubit network in the main text, with γ = 1 and a prior squared area
π2/4 centred around (0, 0). The solid line is the result of optimising the scheme in
a shot-by-shot fashion, and it is optimal at least for a single shot and for a large
number of them. In addition, note that ϵ̄cr = 1/µ when γ = 1.

S2 = 2 (4 − π)
π (1 + γ2)

(
γ√
2
I ⊗ σy + 1 − γ2

π
σy ⊗ σx

)
, (7.26)

which have been rewritten in terms of Pauli matrices to better visualise their struc-
ture. As a result, the single-shot bound in equation (7.15) is

ϵ̄mse ⩾
π2

48 − 2 (4 − π)2 [2 − (4 − π2) γ2 + 2γ4]
π4 (1 + γ2)2 , (7.27)

having chosen both parameters to be equally important (i.e., W = I/2).
As a first observation we note that equation (7.27) achieves its minimum value at

γ = ±1, so that ϵ̄mse ⩾ π2/48 − (4 − π)2/(2π2) ≈ 0.168. Given that ϵ̄prior = π2/48 ≈
0.206, we conclude that a single shot can improve our knowledge about (θ1, θ2) by
18% with respect to the prior uncertainty5.

Furthermore, since S1 and S2 commute, in this case there is a measurement that
achieves our single-shot bound. If we choose γ = 1, then

S1 = (4 − π)
π

√
2
σy ⊗ I, S2 = (4 − π)

π
√

2
I ⊗ σy, (7.28)

and thus we can construct an optimal strategy given by the common projectors
|s+, s+⟩, |s−, s−⟩, |s+, s−⟩, |s−, s+⟩, where |s±⟩ = (|0⟩ ± i |1⟩)/

√
2. We may then

5The improvement is defined as (ϵ̄prior − ϵ̄mse)/ϵ̄prior multiplied by 100% (see section 5.5).



129

calculate the uncertainty for µ trials in equation (7.21) using this measurement
in each shot, and the result of this operation has been represented in figure 7.1
with a solid line. The quantum Cramér-Rao bound, which in this case is simply6

ϵ̄cr = Tr(WF−1
q )/µ = (1 + γ2)2/(4µγ2), has also been included in the same figure as

the dashed line, and, as we can observe, the latter is approached by the Bayesian
error as µ grows. More concretely, the deviation of the asymptotic bound with
respect to the exact calculation reaches the threshold of ετ = 0.05 after µ = 5.05·102

repetitions (see 4.2.3 for the definition the relative error ετ ), and it further decreases
afer that point. Hence, our multi-parameter Bayesian strategy is optimal both for
a single shot and for a large number of trials, which is the same behaviour that we
found in the single-parameter protocols of chapter 5.

Remarkably, our result shows that this scheme does not require entanglement in
order to approach the optimal single-shot uncertainty, since the strategy presented
above (state plus POM) is local. That a local version of this scheme is optimal to
estimate the original parameters was also concluded in [33] from the analysis of its
asymptotic performance, and such result may also be recovered from our asymptotic
formalism in chapter 6. In other words, we have demonstrated that the fact that a
global strategy is not needed for this protocol is not only true asymptotically, but
also in the non-asymptotic regime when the scheme is implemented in a shot-by-shot
fashion with the optimal single-shot measurement.

7.3.2 Quantum imaging
The second scheme that we wish to examine is the discrete model of phase imaging
explored by Humphreys et al. [95] with the Cramér-Rao bound, and by Macchiavello
[50] using covariant measurements7. In the former the scheme is assumed to operate
in the asymptotic regime, while in the latter the calculation is carried out for a
single shot but in the absence of prior knowledge. On the contrary, our calculations
in this section assume an intermediate amount of prior information.

Consider a system with (d+ 1) optical modes, such that we encode a phase shift
θj with a local unitary U(θj) = exp(−ia†

jajθj) = exp(−iNjθj) in the j-th mode, for
1 ⩽ j ⩽ d, while the remaining mode j = 0 is employed as a reference that has been
calibrated in advance [33]. The creation and annihilation operators of the j-th mode
are a†

j and aj, respectively, and a schematic representation of this configuration can
be found in figure 7.2. Given this arrangement, a possible strategy is to follow a
global approach and prepare the probe as

|ψ0⟩ = 1√
d+ α2

(α |n̄ 0 · · · 0⟩ + · · · + |0 · · · 0 n̄⟩) , (7.29)

which is a generalised NOON state [57, 95] with a free parameter α that we take to be
real. In this context the resource operator is R = ∑d

j=0 Nj, so that the total amount
of resources per trial is given by the mean number of quanta, that is, ⟨ψ0|R|ψ0⟩ = n̄.

Let us first calculate the single-shot bound on the uncertainty associated with
an estimation problem based on this scheme and where d = 2, n̄ = 2, W = I/2

6To find this result, we first recall that the estimation of the original parameters is equivalent
to estimate a set of linear functions with the trivial transformation V = I, for which the geometry
parameter is G = 0 (see section 6.3.2), and equation (6.71) indicates that, in this case, the Cramér-
Rao bound is the expression given in the main text.

7See chapter 4 of [52] for an introduction to the concept of covariant measurement.
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Figure 7.2: Discrete model for phase imaging, where a collection of (d + 1) optical
modes are prepared in a (potentially entangled) state ρ0, an unknown parameter θj is
encoded in the j-th mode via the local unitary operator U(θj) = exp(−ia†

jajθj) and
this operation is repeated for d of them, and a (potentially global) measurement
scheme E(m) is implemented, with outcome m. As we saw in section 2.3.2, this
scheme is a particular case of the quantum sensing network model proposed by
Proctor et al. [33] and exploited in chapter 6.

and the prior probability is the same employed in the qubit case, and let us choose
α = 1, which is the balanced version of equation (7.29) [57]. With this configuration
we find that

ρ = 1
3

[
I + 2(λ1 + λ4)

π
+ 4λ6

π2

]
, (7.30)

and

ρ̄1 = 1
3π

(
2λ7

π
− λ2

)
, ρ̄2 = − 1

3π

(
2λ7

π
+ λ5

)
, (7.31)

where λi are Gell-Mann matrices8 [181]. Furthermore, introducing these results in
Skρ+ ρSk = 2ρ̄k we find that the quantum estimators are

S1 = 1
π

[
λ5 − (1 + π2)λ2

2 + π2 + λ7

π

]
, S2 = 1

π

[
λ2 − (1 + π2)λ5

2 + π2 − λ7

π

]
, (7.32)

8We recall that the Gell-Mann matrices are defined as [181]

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 ,

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =

1/
√

3 0 0
0 1/

√
3 0

0 0 −2/
√

3

 .
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and the single-shot error is bounded as

ϵ̄mse ⩾
π2

48 − 2 (4 + 3π2 + π4)
3π4 (2 + π2) ≈ 0.130. (7.33)

Unlike in the previous scenario, here [S1, S2] ̸= 0, which implies that the bound
does not provide a measurement to apply the shot-by-shot method in an optimal
way. However, it can still provide useful information. On the one hand, we can
study how close a given measurement can get. A numerical search by trial and error
has revealed an approximated set of projectors with a precision almost as good as
that given in equation (7.33). In particular, if we use

⟨φa| = (0.485 + 0.131i, 0.441 − 0.070i,−0.223 + 0.706i),
⟨φb| = (0.688,−0.208 − 0.432i,−0.270 − 0.472i),
⟨φc| = (0.509 + 0.118i,−0.284 + 0.700i, 0.396) (7.34)

as the measurement scheme, where the components are labelled as |2, 0, 0⟩, |0, 2, 0⟩,
|0, 0, 2⟩, then we have that9 ϵ̄mse ≈ 0.142.

On the other hand, we may also explore the precision scaling that the bound
is able to predict. In fact, recalling that the scaling associated with the global
strategy in equation (7.29) can also be achieved with a local strategy when we work
in the asymptotic regime [57], it would be desirable to establish whether the same
phenomenon can be observed for µ = 1 and a moderate prior.

To study this possibility, suppose we now have d parameters, W = I/d and a flat
prior of hypervolume (2π/n̄)d with n̄ ⩾ 4, so that the prior knowledge is moderate
and sufficient to avoid the periodicities associated with NOON states (see chapters 4
and 5 and, e.g., [119, 130, 156]). In addition, to simplify the calculation of the bound
in equation (7.15) let us relabel the components of the state in equation (7.29) as
β ≡ 1/

√
d+ α2 and β′ ≡ α/

√
d+ α2, so that β′ =

√
1 − dβ2, and the basis kets as

|0 . . . 0 n̄ 0 . . . 0⟩ = |0⟩0 ⊗ · · · ⊗ |0⟩j−1 ⊗ |n̄⟩j ⊗ |0⟩j+1 ⊗ · · · |0⟩d ≡ |uj⟩ . (7.35)

Using these definitions and the fact that∫ π
n̄

− π
n̄

dθj = 2π
n̄
,
∫ π

n̄

− π
n̄

dθj e±in̄θjθj = ±2iπ
n̄2 ,

∫ π
n̄

− π
n̄

dθj θj =
∫ π/n̄

−π/n̄
dθj e±in̄θj = 0 (7.36)

we find that

ρ =
(
n̄

2π

)d ∫ π
n̄

− π
n̄

dθ1 · · ·
∫ π

n̄

− π
n̄

dθd e−iN ·θ |ψ0⟩⟨ψ0| eiN ·θ

=
(
1 − dβ2

)
|u0⟩⟨u0| + β2

d∑
k=1

|uk⟩⟨uk| , (7.37)

and

ρ̄k =
(
n̄

2π

)d ∫ π
n̄

− π
n̄

dθ1 · · ·
∫ π

n̄

− π
n̄

dθd e−iN ·θ |ψ0⟩⟨ψ0| eiN ·θθk

= −iβ
√

1 − dβ2

n̄
(|uk⟩⟨u0| − |u0⟩⟨uk|) . (7.38)

9The uncertainty for this POM can be numerically calculated using the MATLAB algorithm in
appendix C.2.
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Next we need to solve Skρ + ρSk = 2ρ̄k. In section 5.2.2 we saw that if we
decompose ρ as ρ = ∑

i pi |ϕi⟩⟨ϕi|, then we can rewrite Sk as

Sk = 2
∑
ij

⟨ϕi| ρ̄k |ϕj⟩
pi + pj

|ϕi⟩⟨ϕj| , (7.39)

and by observing that ρ in equation (7.37) is already diagonal, equation (7.39) simply
becomes

Sk = −2iβ
√

1 − dβ2

n̄ [1 + β2(1 − d)] (|uk⟩⟨u0| − |u0⟩⟨uk|) . (7.40)

Inserting now the results for ρ and the quantum estimators Sk in equation (7.15)
we find the bound

ϵ̄mse ⩾
1
n̄2

[
π2

3 − 4β2(1 − dβ2)
1 + β2(1 − d)

]
, (7.41)

which achieves its minimum at β = 1/
√
d+

√
d (i.e., at α = d1/4). Thus

ϵ̄mse ⩾
1
n̄2

[
π2

3 − 4
(1 +

√
d)2

]
−→
d≫1

1
n̄2

(
π2

3 − 4
d

)
(7.42)

for the global strategy.
The bound in equation (7.42) is to be compared to a local protocol such as

ρref
0 ⊗ ρ

(1)
0 ⊗ · · · ⊗ ρ

(d)
0 , with ρ

(i)
0 = |ϕ(i)

0 ⟩⟨ϕ(i)
0 | in the pure case. A choice for |ϕ0⟩

capable of achieving the same asymptotic precision than the generalised NOON
state is [57]

|ϕ0⟩ =
[√

1 − n̄

N(d+ 1) |0⟩ +
√

n̄

N(d+ 1) |N⟩
]
, (7.43)

where N is a free parameter that can be varied while the total mean number of
quanta n̄ remains constant. The key idea is that this state can have arbitrarily
large local variances as N grows [56, 57, 114], so that it belongs to the family of
infinite-precision states that we examined in section 4.3.4. As a consequence, if we
only used asymptotic tools, then it would appear to be possible not only to equate
the performance of the global strategy, but to also supersede this and any other
protocol. Nevertheless, the following calculation shows that our Bayesian bound
produces a more physical result.

Given the local strategy in equation (7.43) and the flat prior of hypervolume
(2π/n̄)d that we are using, let us express the single-shot bound in equation (7.15)
as

ϵ̄mse ⩾
1
n̄2

[
π2

3 − f (N, n̄, d)
]
, (7.44)

where
f (N, n̄, d) ≡ n̄2

d

d∑
k=1

Tr(ρS2
k). (7.45)

Since the prior under consideration is separable (that is, p(θ) = p(θ1) · · · p(θd)), in
this case we have that ρ = ρref

0 ⊗ρ(1)⊗· · ·⊗ρ(d) and ρ̄k = ρref
0 ⊗ρ(1)⊗· · ·⊗ρ̄(k)⊗· · ·⊗ρ(d).

In turn, the individual quantum estimators take the form Sk = Iref ⊗ I ⊗ · · · ⊗
S(k) ⊗· · ·⊗ I, and the calculation of the optimal single-shot uncertainty for the local
estimation of several phases is effectively reduced to the single-parameter calculation

f (N, n̄, d) = n̄2 Tr(ϱS2), (7.46)
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where ρ(k) ≡ ϱ and S(k) ≡ S are single-mode operators and ρ(k) and S(k) are identical
for all the modes. Performing calculations analogous to those in previous examples
(and also similar to those in chapter 5 for single-parameter NOON states), we find
that10

f (N, n̄, d) = 4n̄3 [(1 + d)N − n̄] [Nπ cos (Nπ/n̄) − n̄ sin (Nπ/n̄)]2

π2N6 (1 + d)2 , (7.47)

which presents two crucial properties:
a) if N → ∞, then f(N, n̄, d) → 0, so that

ϵ̄mse −→
N→∞

π2

3n̄2 = 1
d

d∑
i=1

∆θ2
p,i; (7.48)

b) if N = n̄, then f(N, n̄, d) = 4d/(1 + d)2, and

ϵ̄mse ⩾
1
n̄2

[
π2

3 − 4d
(1 + d)2

]
−→
d≫1

1
n̄2

(
π2

3 − 4
d

)
. (7.49)

From the first property it is clear that the local strategy in equation (7.43) cannot
produce an arbitrarily good precision by simply increasing N , which contrasts with
the performance of these states when one attemps to use the asymptotic theory
directly. An intuitive way of understanding this is to observe that the periodicity
associated with equation (7.43) is 2π/N ; consequently, the width where the value of
a given phase may lie needs to be smaller as N grows to avoid ambiguities, and thus
the limit N → ∞ is essentially equivalent to require that the unknown parameters
are practically localised before we perform the estimation. Since the prior knowledge
modelled by p(θ) is fixed by the situation under analysis, the high amount of prior
information required as N grows is not being provided, and the scheme is eventually
unable to extract more information beyond what we knew to start with. This type of
behaviour is well understood in single-parameter schemes [7, 56, 116–118, 130, 136],
and it complements our discussion about infinite-precision states in section 4.3.4.

The second property suggests that the global strategy is not required to get the
scaling that appears in equations (7.42) and (7.49), and that this is indeed the case
can be shown by verifying that it is possible to reach the bound associated with the
local strategy. Recalling that the form of the quantum estimators in the latter case
is Sk = Iref ⊗ I ⊗ · · · ⊗ S(k) ⊗ · · · ⊗ I, we see that this implies that each operator Sk

commutes trivially with the rest; consequently, we can always construct an optimal
strategy with local states and measurements as we did with the qubit network in
section 7.3.1. This means that the local imaging scheme can be employed to achieve
the scaling in equation (7.42) provided that we choose the prior judiciously and that
N is finite, and that a global strategy is not necessary in such case, just as the work
in [57] demonstrated for schemes operating in the asymptotic regime.

Importantly, note that while we know how to construct a measurement scheme
to implement the local strategy for any number of parameters, a strategy whose
uncertainty is close to the bound for the global scheme has been found only when
d = 2. We leave for future work to determine whether the scaling in equation (7.42)
can be also recovered by a global protocol such that µ = 1 and d > 2 and that
operates with a moderate amount of prior knowledge.

10The interested reader can find further details of this calculation in [144].
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7.4 Summary of results and conclusions

The method proposed in this chapter provides a framework to study realistic multi-
parameter schemes where the empirical data is limited and the prior knowledge is
moderate, extending in this way the approach introduced in chapter 5 for single-
parameter scenarios and completing our non-asymptotic methodology for quantum
metrology. Taking into account that we are starting to witness the experimental
implementation of multi-parameter protocols [174, 175], our proposal could play a
crucial role in the design of future experiments once other realistic effects such as
the presence of losses are included.

The application of our method to physical schemes such as a sensing network of
qubits or a phase imaging protocol has revealed, in addition, important information
about the role of entanglement for the estimation of several parameters, which com-
plements our study of functions of those parameters in chapter 6. On the one hand,
we have demonstrated that the simultaneous estimation of two parameters using a
qubit network can be performed optimally with a local strategy when the number
of trials is low and we are working in the intermediate prior information regime. On
the other hand, we have seen that the scaling provided by the generalised NOON
state can be recovered using a local scheme when µ = 1 and the prior knowledge is
moderate. That is, we have shown that the fact that entanglement is not needed to
achieve the optimal uncertainty using these schemes is not only true in the asymp-
totic regime, but also in more realistic configurations. We expect this result to have
important consequences in future developments of multi-parameter schemes.

From a theoretical perspective, the most important result of this chapter is the
derivation of a multi-parameter Bayesian bound on the single-shot estimation error.
The Bayesian nature of this new tool guarantees that the prior information will
be correctly taken into account, and we have demonstrated that our bound can
be saturated in some circumstances. Moreover, if that is the case, then we can
implement our proposal of performing theoretical metrology analyses by repeating
the single-shot optimal strategy, which is one of the central ideas of this thesis.

To derive our bound we have separated the classical optimisation from the manip-
ulations associated with the quantum part of the problem, as we did in section 3.3.5
for the single-parameter case. Alternatively, we could have started by constructing
the scalar quantity u⊺Σmseu, and then we could have instead employed any of the
alternative single-parameter proofs available in the literature (see [6, 111, 134] and
our review in section 3.3.4) to show that u⊺Σmseu ⩾

∫
dθp(θ)θ2

u − Tr(ρS2
u), from

where equation (7.15) follows. Note, however, that in that case the classical and
quantum optimisations would be performed simultaneously.

Among all the bounds that neglect the interference between optimal quantum
strategies for different parameters due to their lack of commutativity, our result is ar-
guably the preferred option, since it recovers the true optimum in the limit of a single
parameter and gives the true multi-parameter optimum when {Si} commute. Fur-
thermore, our analysis of the qubit network have revealed that the multi-parameter
Cramér-Rao bound can be recovered as an asymptotic limiting case of our bound, a
transition that we have characterised using the method in section 4.2.3. Combining
these observations with the fact that its calculation is relatively simple, we may
conclude that our approach provides a reasonable balance between approaching the
exact result and having a tractable problem, and while some care is needed when
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we use this tool to enquire about fundamental limits, it may be sufficient in many
practical cases, as our examples with qubits and optical modes demonstrate.

The results of this chapter have appeared in [144]

Bayesian multi-parameter quantum metrology with limited data, Jesús Rubio
and Jacob Dunningham, arXiv:1906.04123 (2019).
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Chapter 8

A look to the future

8.1 Current limitations and the future of non-
asymptotic metrology

Non-asymptotic quantum metrology, as we have defined it in this thesis, was born
out of the necessity of applying metrology techniques to situations with a limited
amount of experimental data and a potentially moderate amount of prior knowledge,
both of which generally lie outside of the scope of the theory based on the Fisher
information and the Cramér-Rao bound. At the heart of our approach lies the idea of
developing an alternative way of doing quantum metrology by relying less on formal
approximations and more on the identification of the physically relevant quantities.
Nevertheless, our methodology is only the first iteration towards the completion of
this task, and despite the wealth of new results that we have uncovered using our
formalism, there are still potentially important upgrades for our methods.

One of the crucial tasks that we identified in chapters 5 and 7 as a potential
upgrade is to extend our methods to cover experiments that not only operate in
the regime of limited data, but that are also affected by the presence of noise. In
the next section we will carry out a first simple analysis of an optical scheme with
photon losses, and we will highlight important features to be explored in future work
when these two realistic effects are taken into account in a combined fashion.

Another interesting possibility for future work would be to implement in the
laboratory those schemes that have been optimised using our shot-by-shot ap-
proach in chapters 5 and 7. Let us illustrate how we would proceed with a single-
parameter example. Given an experimental arrangement whose information is sum-
marised in the quantum probability p(m|θ) = Tr[E(m)ρ(θ)], and given a moder-
ate amount of prior knowledge encoded in p(θ), the first step is to find the op-
timal single-shot strategy that reaches the minimum of the square error ϵ̄mse =∫
dθdmp(θ)p(m|θ)[g(m) − θ]2, which can be achieved by means of the single-shot

quantum optimisation reviewed and exploited in chapter 5 and in sections 3.3.4, 3.3.5
and 8.2. This process will provide us with either the optimal POM E(m) ≡ eopt

m

for a given state, the optimal state ρopt
0 for a given measurement, or a state and

measurement that are both optimal. Although this is the same step that initiated
our theoretical study of chapter 5, it is also the point where theory and experiment
diverge. Our aim was to study the fundamental behaviour of schemes that operate
with a limited amount of data, and as such the uncertainty that we have calculated
has been averaged over both the parameter and the measurement outcomes. How-
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ever, in a real-world experiment we will have a concrete string of outcomes, and
according to our discussion in section 3.2, the experimental error needs to be based
on a figure of merit that depends on such outcomes, that is, in equation (3.8) after
having chosen the square error. Whether we know how to implement eopt

m or how to
prepare ρopt

0 is a question beyond the scope of our method, although we note that
our study with genetic algorithms in section 5.5 demonstrates that the shot-by-shot
strategy may be made feasible with current technology.

It is also important to note that the amount of resources per trial, given by ⟨R⟩
with resource operator R (section 3.1), has been assumed to be small. While this
assumption guarantees that our results are relevant for and applicable to sensing
fragile systems [18–23, 25], it excludes other applications where a still finite but
larger number of resources per trial may be allowed even if the data is still limited.
As we saw in chapter 1, this is the case, in particular, for remote sensing [27–31].
Fortunately, increasing ⟨R⟩ does not alter the foundations of our methodology, and
our methods can also be applied in those cases by simply using matrices with larger
dimensions for the numerical simulation of the physical system under consideration.

In terms of theoretical progress, our hybrid method based on selecting the op-
timal estimator and the asymptotically optimal quantum strategy opens the door to
revisiting quantum metrology protocols that have been optimised using the Fisher
information and the Cramér-Rao bound, which are the majority. More concretely,
we could perform a non-asymptotic analysis such as those in chapters 4 and 6 to
determine which of the results found by other authors in the context of the asymp-
totic theory could be carried over to and exploited in the non-asymptotic regime.

Importantly, the hybrid method relies on the existence of an asymptotic approx-
imation that coincides with the quantum Cramér-Rao bound. A weaker possibility
would be returning to

∫
dθp(θ)F (θ)−1/µ as a more general approximation for the

matrix error Σmse, and attempting to use such expression as a guide to select the
quantum strategy by comparing different protocols, provided that F (θ) is never sin-
gular. Although the generality associated with the quantum Cramér-Rao bound is
lost in this way, by renouncing to such generality and considering the measurement
scheme explicitly we might no longer need to restrict our attention to pure states
and commuting generators, since these assumptions were precisely introduced as a
simple way of having that F (θ) = Fq for a single copy [99]. Nonetheless, we recall
that the problems associated with the existence of some useful asymptotic approx-
imation do not affect any other form of Bayesian estimation where the quantum
strategy is selected in a different way, including schemes without an asymptotic ex-
pansion at all (this was the case, for instance, of the qubit network with a maximally
entangled state studied in chapter 6).

From a technical point of view, a current limitation is that associated with
the calculation of the Bayesian uncertainty for quantum sensing networks. Due
to the numerical difficulties discussed in section 6.2.3, our non-asymptotic analyses
of multi-parameter schemes with µ > 1 (chapters 6 and 7) have been restricted to
configurations with two natural parameters, i.e., d = 2. Therefore, developing meth-
ods to overcome this challenge may have a major impact in the long run, since we
expect a plethora of new effects arising from the interplay between different amounts
of data and the richer set of possibilities for inter-sensor correlations that emerges
when d ⩾ 3. Some ideas in this direction include the modification of our algorithm
in appendix C.2 such that the integrals associated with the unknown parameters
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are also performed with Monte Carlo techniques, or perhaps employing some other
quantum bound whose calculation is simple enough to study cases where both µ
and d are unrestricted. One potential candidate fulfilling the latter requirement is
the multi-parameter quantum Ziv-Zakai bound in [133], although, according to our
discussions in sections 3.3.3, 5.4 and 7.2.2, we cannot expect the results derived
using this type of tool to be fundamental in general.

To conclude this brief exploration of what the future of our methodology might
look like, let us recall that the most general approach to the problem of quantum
parameter estimation is that based on the equations for the optimal strategy dis-
covered by Helstrom and Holevo [6, 53–55], which we reviewed in section 3.3.1. That
method, which amounts to optimising the uncertainty in a direct fashion, is arguably
more fundamental than using bounds that only work in certain regimes, and, in a
way, we might see our contribution in this thesis as a bridge between both worlds
that has been carefully built by focusing on the physical aspects of the problem,
as opposed to following a more abstract approach. As a consequence, any future
refinements of our methods should move us closer to the true optima predicted by
Helstrom and Holevo’s Bayesian theory.

8.2 The effect of photon losses
Following our previous discussion, let us perform an initial test of the application of
our method to noisy scenarios. Dorner et al. [182] studied and solved the problem
of photon losses in interferometry using the Fisher information, and here we fol-
low the configuration described in that work. Suppose we consider another Mach-
Zehnder interferometer with initial state |ψ0⟩ = ∑2

k=0 ck |k, 2 − k⟩ and where the
unknown phase shift ϕ is now encoded in the first arm with the unitary transform-
ation exp(−iN1ϕ), where Ni = a†

1a1. In addition, the photon losses in such arm are
modelled using a fictitious beam splitter with transmissivity η. In that case, the
transformed state is [182]

ρ(ϕ) = e−iN1ϕ

( 2∑
l=0

Kl,a1 |ψ0⟩⟨ψ0|K†
l,a1

)
eiN1ϕ, (8.1)

where Kk,a1 = (1 − η)l/2ηN1/2al
1/

√
l! are Kraus operators.

We need to find the state |ψ0⟩ that is optimal for a given amount of loss. Since
for this initial test we are interested in analysing the specific proposal in [182] and
this work is based on the Fisher information, we will simply select the initial probe
that has the largest Fq, and we will follow the methodology in chapter 5 to find the
Bayesian bound based on repeating the optimal single-shot strategy of this state.
However, note a potentially better result could be found by optimising the single-
shot bound instead. We leave this possibility for future work.

To represent a realistic amount of loss we can choose η = 9/10, and the com-
ponents of the state with the largest Fq for this value are c0 = 3/

√
19, c1 = 0 and

c2 =
√

10/19. Hence, equation (8.1) becomes

ρ(ϕ) = 1
190


1 0 0 0
0 90 0 27

√
10 ei2ϕ

0 0 18 0
0 27

√
10 e−i2ϕ 0 81

 , (8.2)
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Figure 8.1: Mean square error based on the optimal single-shot strategy (solid line)
and quantum Cramér-Rao bound (dashed line) for a two-photon state whose Fisher
information is optimal (see [182]) that is fed to a Mach-Zehnder interferometer with
photon losses in its first arm, with η = 0.9, ϕ̄ = π/4 and W0 = π/2.

where the columns are labelled as |0, 0⟩, |0, 2⟩, |1, 0⟩ and |2, 0⟩, respectively.
The next step is to calculate the optimal single-shot strategy. Assuming that

the prior p(ϕ) is a flat density of width W0 = π/2 and centred around ϕ̄ = π/4,
we can calculate ρ =

∫
dϕp(ϕ)ρ(ϕ), ρ̄ =

∫
dϕp(ϕ)ρ(ϕ)ϕ and insert the results into

Sρ+ ρS = 2ρ̄ to find the optimal quantum estimator

S = 1
76π


19π2 0 0 0

0 19π2 0 −24
√

10
0 0 19π2 0
0 −24

√
10 0 19π2

 . (8.3)

Using the eigenspaces of S we may construct the projective measurement |s1⟩ =
(− |0, 2⟩ + |2, 0⟩)/

√
2, |s2⟩ = (|0, 2⟩ + |2, 0⟩)/

√
2, |s3⟩ = |1, 0⟩ and |s4⟩ = |0, 0⟩.

However, note that, in this case, the optimal single-shot POM is not unique due to
the degeneracy of one of the eigenvalues of S.

Finally, we calculate the mean square error in equation (5.1) using this optimal
single-shot measurement. The result has been represented in figure 8.1 as a solid line,
which also includes the quantum Cramér-Rao bound as a dashed line (the latter can
be obtained using the expression for the Fisher information Fq provided in [182]).
As we can see, the Bayesian error is very close to the quantum Cramér-Rao bound,
although a perfect convergence cannot be observed because the mean square error
crosses the bound when µ ≈ 4 · 102.

It may be verified that the reason for this discrepancy is that the classical Fisher
information associated with the chosen POM is no longer parameter-independent,
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and it only achieves the quantum Cramér-Rao bound for certain values of ϕ. As
such, and recalling our discussion about the asymptotic regime in chapter 4, this
implies that, in this case, the true asymptotic approximation is

∫
dϕp(ϕ)/[µF (ϕ)],

and not 1/(µFq). Remarkably, this is unlike for the ideal schemes in chapter 5. Thus
this phenomenon sets the scene for a future study about the fundamental limits that
we may expect when the data is scarce and there is a certain amount of noise1.

On the other hand, if we were to look at this result from a more practical point
of view, then we could conclude that a reasonable amount of photon losses does
not alter substantially our findings for ideal schemes, since we have verified that
after µ = 103 repetitions the relative error between the Bayesian uncertainty and
the quantum Cramér-Rao bound in figure 8.1 is just ε = 0.02. Nevertheless, a
deeper investigation including other sources of noise, new probe states and realistic
measurements is required in order to construct a complete picture of the effect of
noise when the available data is limited.

8.3 A more fundamental perspective

While quantum metrology and quantum estimation theory are, in a sense, frame-
works with an eminently pragmatic purpose, it is well known that they can also be
used in a more fundamental way to construct uncertainty relations of a generalised
type [6, 143]. In fact, we have already encountered a manifestation of this connection
in section 2.3.1, where we reviewed a path to arrive at the quantum Cramér-Rao
bound for pure states from a Mandelstam-Tamm uncertainty relation (see [91]).

Suppose we look at the quantum Cramér-Rao bound as a generalised uncertainty
relation. The results in this thesis have demonstrated the advantages of treating this
bound as a limiting case of a more general theory, such that the former only emerges
when certain conditions are fulfilled. If we follow this logic, then it is natural to
enquire whether it would be possible to construct some sort of uncertainty relation
that incorporates both the effect of the prior information and a finite number of
shots. That a generalised uncertainty relation can be constructed with Bayesian
quantities was in fact shown by Helstrom [6] using the sine error in equation (3.5)
for a single shot, while Braunstein et al. [143] considered several copies of the probe
state within the context of the Cramér-Rao bound. In view of this, by constructing
an uncertainty relation that combines both features we would be able to extend the
scope of uncertainty relations in quantum mechanics to cover scenarios where the
data is limited and only a moderate amount of prior information is available.

Although we leave for future work the detailed exploration of this possibility and
of its potential consequences, we would like to illustrate what our non-asymptotic
methodology has to say about this line of thought. To achieve that goal, let us
consider a scenario where the parameter that we wish to estimate is the elapsed
time from the evolution of a two-level system, which we denote by t. If the system
is prepared in the pure state ρ0 = (I + σx)/2, the parameter is encoded as ρ(t) =
e−iKtρ0eiKt and the generator is K = (E/ℏ)σz, with energy E, then the quantum

1We draw attention to the fact that the explanation for the discrepancy in figure 8.1 provided
in this section complements the initial test with photon losses in our publication [168], where such
explanation was not explicitly identified.
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Fisher information is

Fq = 4
(
⟨ψ0|K2|ψ0⟩ − ⟨ψ0|K|ψ0⟩2

)
= 4

[
Tr(ρ0K

2) − Tr (ρ0K)2
]

= 4E2

ℏ2 , (8.4)

so that the value of the quantum Cramér-Rao bound is

ϵ̄cr = 1
µFq

= ℏ2

4µE2 . (8.5)

If we are working in the asymptotic regime, then ϵ̄mse ≳ ϵ̄cr, so that we can write

E2 ϵ̄mse ≡ E2∆t2 ≳
ℏ2

4µ, (8.6)

which indeed has the form that we would expect for an uncertainty relation.
To saturate this bound, first we need a measurement for which F (t) = Fq, where

F (t) is the classical Fisher information. We can verify by a direct calculation that a
POM that satisfies such condition is |s±⟩⟨s±| = (I± σy)/2. In particular, given that
the transformed state is

ρ(t) = exp (−iEtσz/ℏ) ρ0 exp (iEtσz/ℏ)

= 1
2 [I + cos (2Et/ℏ)σx + sin (2Et/ℏ)σy] , (8.7)

where we have used the fact that exp(iAσz) = cos(A)I + isin(A)σz, and that the
single-shot likelihood function for the aforementioned POM is

p(s±|t) = ⟨s±|ρ(t)|s±⟩ = 1
2 [1 ± sin (2Et/ℏ)] , (8.8)

we find that

F (t) = 1
p(s+|t)

[
∂p(s+|t)

∂t

]2

+ 1
p(s−|t)

[
∂p(s−|t)

∂t

]2

= 4E2

ℏ2 = Fq, (8.9)

as desired. Furthermore, from our findings in chapter 4 we know that to reach
the Cramér-Rao bound we also need to select a region of the parameter domain
where the likelihood does not contain ambiguous information. Assuming a flat
prior in such region, we have seen that one way of identifying the intrinsic width2

Wint is to examine the maxima of the posterior probability p(t|s) ∝ p(s|t), where
s = (s1, . . . , sµ) are the outcomes of µ repetitions of the experiment. Figure 8.2.i
shows the result of this operation, and upon its inspection we conclude that Wint =
πℏ/(2E) if one of the boundaries of our prior probability is (2k+ 1)πℏ/(4E), where
k is an integer. The final requirement to achieve the Cramér-Rao bound is to repeat
the experiment a large number of times.

We shall now compare this bound with our shot-by-shot method, which requires
us to calculate the single-shot optimal POM. Suppose that we write our flat prior
as3 p(t) = 1/W0, for t ∈ [a0, a0 +W0], and zero otherwise, where a0 = πℏ/(4E) and

2We recall that we have defined the intrinsic width as the largest width that a flat prior can
have while the likelihood function still presents a unique absolute maximum after many repetitions
(see chapter 4).

3This form is more convenient to take into account the fact that the intrinsic width depends
here on the origin of the prior.
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Figure 8.2: i) Posterior probabilities for random simulations of 1, 5, 20 and 100
trials, a flat prior, the POM |s±⟩⟨s±| = (I ± σy)/2 and the state ρ0 = (I + σx)/2.
In (ii) we have represented the mean square error for the previous configuration
and prior widths W0 = πℏ/(2E) (solid line) and W0 = πℏ/(4E) (dash-dotted line),
while the dashed line is the quantum Cramér-Rao bound, which in this section plays
the role of a generalised uncertainty relation. We draw attention to the fact that
while the prior information alters the precision in the regime of limited data, both
Bayesian schemes converge to the same asymptotic optimum.

W0 = Wint = πℏ/(2E). In that case, and recalling that the quantum estimator S is
given by Sρ+ ρS = 2ρ̄, with ρ =

∫
dt p(t)ρ(t) and ρ̄ =

∫
dt p(t)ρ(t)t, we find that

S = πℏ
2E

(
I − 2σy

π2

)
. (8.10)

The projectors of this operator are precisely the POM elements that we have ex-
amined in the previous paragraph, that is, |s±⟩⟨s±| = (I ± σy)/2. Hence, for this
arrangement we have that the same measurement scheme that is optimal asymp-
totically is also optimal for a single-shot. Adapting the shot-by-shot uncertainty in
section 5.2.1 to our present case we conclude that the error to be calculated is

ϵ̄mse =
∫
ds p(s)

{∫
dt p(t|s)t2 −

[∫
dt p(t|s)t

]2
}
, (8.11)

where the posterior is p(t|s) = p(t)p(s|t)/p(s), the likelihood for µ trials is p(s|t) =∏µ
i=1⟨si|ρ(t)|si⟩ and p(s) =

∫
dt p(t)p(s|t).

The result of the previous calculation has been represented as the solid line of
figure 8.2.ii, while the quantum Cramér-Rao bound is the dashed line. As we can
see, the asymptotic bound underestimates the precision when the number of repeti-
tions is low, since our shot-by-shot uncertainty is lower in such regime. The reason
for this discrepancy is that the latter is taking into account a certain amount of
prior information, which is consistent with the qualitative picture that our results
in previous chapters have revealed. The novelty here is that we are looking at the
quantum Cramér-Rao bound as a generalised uncertainty relation. Since the prior
knowledge that goes into the mean square error is precisely taking into account the
requirements to saturate the Cramér-Rao bound, one way of interpreting this result
is to conclude that an uncertainty relation that does not include the combined effect
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of the prior information and a finite number of trials might be losing important
information about the fundamental limits of the scheme under analysis. This con-
jecture, should it be confirmed, might have important consequences for our basic
understanding of uncertainty relations.

8.4 Summary of results and conclusions
Our non-asymptotic methodology promises to open new and exciting lines of future
research. On the practical side, the next natural step is to include the effect of noise
within our formalism, and a first initial test of this possibility has been carried out
using a lossy interferometer. This calculation has revealed that while our method
may be applied to such scenario, there are also important differences with respect
to the ideal case. Regarding the technical limitations that we have found for the
numerical calculation of Bayesian quantities, we have identified the extension of our
algorithms to cases with d ⩾ 3 natural parameters as a key step, so that we can
keep exploring the interesting interplay that we have uncovered between correlations
and a limited amount of data. Finally, we have explored the possibility of using our
methodology in a more fundamental context, and we have conjectured the potential
existence of generalised uncertainty relations that include the combined effect of a
limited amount of data and a moderate prior knowledge, illustrating this idea by
applying our shot-by-shot method to the problem of estimating the elapsed time
from the evolution of a quantum system.



144

Chapter 9

Conclusions

Every journey has a final destination, and it is time for us to reach ours. Our
particular journey started with the realisation that, ultimately, the success of science
as a method to understand the world stems from the solid foundation provided by
the empirical facts that we are able to identify. Our ability to extract information
from reality is thus crucial, and this is precisely where quantum metrology enters
the scene as one of our best frameworks to enhance our ways of communicating with
nature, which is achieved via measurements that in this case rely on the quantum
properties of matter and light.

Unfortunately, nature does not always provide us with as much information as
we would like to have, and this has two fundamental consequences. On the one hand,
it means that the amount of empirical data that a certain experiment is allowed to
extract might be very limited. On the other hand, the available prior knowledge
will in many cases be moderate at best, since the prior information is essentially
a manifestation of what we learned from either previous experiments or theories
whose validity is grounded on empirical evidence.

Given that many quantum protocols are currently devised assuming either an
abundance of measurement data, or a very good prior information, or perhaps both,
it was crucial to revisit the techniques of quantum metrology and extend them such
that they could be efficiently and reliably applied to scenarios where the previous
limitations are present. This is exactly what the research in this thesis has achieved.

The path that we have followed to solve this problem has led us to a new method-
ology that has opened the door to an alternative way of doing quantum metrology,
and that promises to play a central role in any future study of non-asymptotic pro-
tocols designed for scenarios with a limited amount of data. That this is likely to
be the case has in fact been demonstrated through many surprising new results that
have emerged from the application of our methods to specific metrology schemes.

One of the systems that we have studied in more depth is the Mach-Zehnder
interferometer, which is a paradigmatic scheme in the context of optical interfero-
metry. Here the goal is to provide a good estimate for a parameter that represents
the difference of optical phase shifts between the arms of the interferometer. Fo-
cusing our attention on state-of-the-art probe states that can be constructed with
operations such as displacements of the vacuum or squeezing, we have first shown
that the number of repetitions and the minimum amount of prior knowledge that
are needed for the asymptotic theory to be meaningful crucially depend on the
specific properties that a given probe has. For example, given a fixed amount of
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prior knowledge, we have found that while common probes such as coherent states
might require a small number of trials to reach the performance predicted by the
asymptotic theory, more exotic cases such as the squeezed entangled state present
a much slower convergence. The crucial observation is that the latter promises a
great precision-enhancement with respect to coherent states when we only look at
the asymptotic theory, and yet the coherent state beats the squeezed entangled state
when the data is limited and we perform a standard photon-counting measurement.
The general conclusion is that the ordering of states in terms of their performance is
dramatically affected by the number of times that the experiment is repeated, and
thus maximising the Fisher information might not always be the best approach.

The previous idea has been put on a more solid basis by means of our shot-
by-shot optimisation method, that is, by repeating the quantum strategy that is
optimal for a single shot. Remarkably, while this is a fully Bayesian approach that
in principle does not rely on the Fisher information, our method sometimes recovers
the predictions of the latter, either in the limit of a large number of repetitions,
or in the limit of a narrow prior for a single shot. A crucial finding derived from
this approach is the evidence for the existence of a trade-off between the asymptotic
and non-asymptotic uncertainties. In particular, we have found that increasing
the amount of photon correlations within each of the modes of the interferometer
might be detrimental if the experiment is operating with a limited amount of data,
despite the fact that these correlations are known to be extremely useful once we
have reached the asymptotic regime. More surprisingly, the calculation of a state
with less intra-mode correlations but a certain amount of mode entanglement has
proven to be a better choice to keep the precision high in both the asymptotic
and non-asymptotic regimes, even when the asymptotic theory indicates that mode
entanglement only provides a limited advantage. As a consequence, our results
indicate that we should pay more attention to the amount of data as a feature that
might alter our assessment of the role of correlations in quantum metrology.

On the other hand, we have shown that our shot-by-shot approach is a useful
tool to generate precision bounds that, at least for repetitive experiments, have a
certain fundamental character, and we have demonstrated that our bounds can be
tighter than other proposals in the literature such as the quantum versions of the
Ziv-Zakai and Weiss-Weinstein bounds. Interestingly, our bound for the NOON
state is also its true fundamental limit, since we have shown that, in this case,
general collective measurements are not better than simply repeating the single-
shot optimal strategy. On a more practical note, our bounds have proven to be
very useful to assess how close to the precision limits that we have calculated the
uncertainty associated with practical measurements can be. For example, we have
found that while measuring quadratures and a measurement based on counting
photons are, for ideal schemes, equally precise when the scheme operates in the
asymptotic regime, the former is closer to our bounds when the number of repetitions
is small. In addition, by combining our method with a genetic algorithm we have
provided sequences of operations to generate probes that not only have a good
performance in the regime of limited data, but that may also be implemented in the
laboratory with current technology. In other words, our non-asymptotic analysis of
the Mach-Zehnder interferometer has revealed new theoretical properties about the
interplay between amount of data, prior information and photon correlations that
were previously unknown, and it has also provided specific procedures that may be
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relevant in real-world implementations of our protocols when these operate in the
non-asymptotic regime.

Given our aim of bringing quantum metrology techniques closer to the reality of
experimental practice, our methodology would not have been complete if we had not
addressed multi-parameter metrology problems, since many practical applications
require the estimation of several pieces of information. In this context, we have
chosen to focus on the design of quantum sensing networks, which is a model for
distributed sensing. The implementation of this type of configuration might involve
large distances between the quantum sensors that form the network (this is the case,
e.g., in a network of satellites), and this makes the construction and maintenance
of these quantum networks potentially challenging. For that reason, it was crucial
to identify strategies that can perform optimally even when the available resources
are limited, including both the number of times that the protocol can be run and
the amount of correlations between the sensors that we may have. The presence
of several parameters provides, in addition, a set of possibilities to enhance the
protocol that is larger than in the single-parameter case, and it is useful to split the
problem in two parts. The first of them involves the estimation of properties that
have been locally encoded in each sensor. Applying our shot-by-shot method we have
shown that, in that case, entanglement between sensors is not required to achieve the
optimal precision that a network of qubits could provide. In addition, we have found
that neither is entanglement necessary to benefit from the precision-enhancement
associated with a quantum imagining protocol when the latter is compared to the
individual estimation based on Mach-Zehnder interferometers. Remarkably, this
is the same conclusion that had been reached previously in the literature in the
context of the asymptotic theory. Therefore, our result has effectively extended such
conclusion to the regime of limited data and a moderate amount of prior knowledge.

The second part of the problem of quantum sensing networks involves the estima-
tion of properties that are modelled by arbitrary functions of several locally-encoded
parameters. For that reason, we may say that such functions represent global prop-
erties of the network. It was known that entanglement sometimes enhances the
performance of the schemes designed for this specific problem notably, but the situ-
ations where this had been shown were mostly limited to considering a single func-
tion. Here we have been able to go a step further. In particular, we have considered
linear but otherwise arbitrary functions, and we have solved the asymptotic estima-
tion problem completely for the particular case of sensor-symmetric networks, which
can be seen as a generalisation of the symmetric configurations that are typically
utilised in optical interferometry. These asymptotic solutions were then employed
as a guide to perform our non-asymptotic analysis, and we have shown that the
amount of inter-sensor correlations that is optimal crucially depends on the number
of repetitions and the prior information that it is being assumed, which is exactly
the same type of phenomenon that we had uncovered for the Mach-Zehnder interfer-
ometer. For example, we have found that if the vectors formed with the components
of functions are clustered around the direction associated with maximally entangled
states, then these probes will be the best choice for a small number of trials and a
vague prior, while only a moderate amount of positive correlations will be required
to achieve the asymptotic optimum. Taking into account that the same type of beha-
viour has been established both for single-parameter and multi-parameter schemes,
which were, in addition, based on physically different systems, our results suggest
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that the interplay between correlations, amount of data and prior knowledge is in
fact a more general feature, so that we may expect it to also arise in other estimation
problems. It appears that if we could learn how to control the aforementioned inter-
play in practice, then we would have at our disposition a remarkably large amount
of unexplored possibilities to enhance non-asymptotic quantum protocols.

If we look at our results from a more fundamental point of view, then we can see
that two very satisfactory features of the methodology that we have developed are its
unified character and consistency. Indeed, the path that we have followed has effect-
ively transformed an initial collection of techniques - many of them already known
but often treated as if they were unrelated to each other - into a unified framework
that offers a much broader perspective. We have seen that, for us, the first question
to be asked before we start the optimisation of our protocols is what is the physically
meaningful quantity that we should employ to assess the uncertainty, and whether
we choose to rely on bounds or on any other technique is mostly related to which
tools generate more tractable calculations. Our formalism then follows naturally
from this point of view: given a measure of uncertainty that we wish to use with a
class of protocols based on repetitive experiments, we can either optimise the system
in a shot-by-shot fashion, which is arguably the most general and fundamental pos-
sibility for our particular case, or we can follow a weaker approach and only require
that the protocol performs optimally as the data accumulate. We have shown that
these simple but powerful ideas can be applied to both single-parameter and multi-
parameter cases, and we have even derived a new multi-parameter quantum bound
during the process of adapting our methods to the latter case. We can conclude
that, as we announced in the introduction, we have proposed, constructed, explored
and exploited a non-asymptotic quantum metrology.
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[160] R. Nichols, L. Mineh, Jesús Rubio, J. C. F. Matthews, and P. A. Knott.
Designing quantum experiments with a genetic algorithm. Quantum Science
and Technology, 4(4):045012, 2019.

[161] R. Bhatia. Matrix analysis. Graduate texts in mathematics; 169. Springer,
New York, N.Y., 1997.

[162] R. A. Horn. Matrix analysis. Cambridge University Press, 1985.
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Appendix A

Supplemental material

A.1 Other measures of uncertainty in estimation
theory

The fact that different measures of uncertainty inform us about different aspects
of some estimation problem is well known, both in classical [9] and quantum [183]
scenarios. Among all the available options, in the literature of quantum metrology
one typically finds a clear distinction between frequentist and Bayesian uncertainties
[7, 109], which in practice are associated, respectively, with a high amount of prior
information, in which case we say that they are local, and with a low amount of
prior knowledge, meaning that they are global [43, 112]. However, we can also find
studies including both local and global tools without introducing the former dis-
tinction [130]. In addition, it is common to associate the idea of fixed but unknown
parameters with the frequentist approach, while Bayesian metrology is seen as if
we were giving a random description of such parameters [7]. Nevertheless, Bayesian
uncertainties also admit parameters that are fixed but unknown, as our discussion
in section 3.2 and the work in [109] show.

In view of this, a more transparent picture of the different types of uncertainty
and how they should be used in metrology has a great potential in terms of estab-
lishing meaningful comparisons between optimal protocols. This is precisely one of
the key advantages of the three-step method to construct uncertainties that we have
proposed in the main text1.

Interestingly, shortly after the development of our three-step construction (which
we originally published in [136] in the context of the algorithm in section 4.2.4), a
related approach was proposed by Li et al. [109]2. The authors of [109] classified
the uncertainties in terms of frequentist and Bayesian quantities, and, within each
group, in terms of random and fixed parameters. This allowed them to analyse the
mathematical relationships between uncertainties, and to establish which bounds
are satisfied by different errors.

The errors that Li et al. identify for Bayesian metrology with fixed parameters
are equivalent to those that we have presented in section 3.2 (and in our work

1Nonetheless, note that our selection of uncertainties in section 3.2 has been motivated by the
practical requirements of our problem, and it does not include important alternatives such as the
use of entropic uncertainty relations [172, 184, 185].

2However, both our work [136] and [109] are based on the square error and a single parameter,
while the discussion in section 3.2 is more general.
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[136]). The other groups are useful to understand the origin of the paradoxes that
can emerge when bounds that are only valid for certain quantities are misapplied
[109]. Still, notwithstanding the merits of this extended classification, it can be
argued that our three fundamental categories provide a simpler perspective without
a practical loss of generality.

For example, let us take the case of random parameters. In these schemes the
experiment is repeated ν times, such that we make µ observations per repetition, and
the random component appears because the unknown parameters can have different
values in each repetition [109]. The deviation function in this situation is [186]

1
ν

ν∑
i=1

D [g(mi),θi] . (A.1)

According to our discussion, a theorist that is designing the experiment needs a
probability with information about outcomes and parameters. Suppose we have the
distribution of the different values that the random parameters can acquire. The
parameters may change when we rerun the experiment, but they remain fixed while
we are generating the measurement outcomes mi during the i-th repetition [109]. If
θi represents the fixed but unknown values of that trial, then we know how likely is
the appearance of each of the possible values that they could have acquired in that
particular iteration, and thus we can encode the information about their random
distribution in the prior p(θi), provided that nothing else is known. Combining this
with the likelihood p(mi|θi), and noticing that the previous argument is identical
for all the iterations of the experiment, we find the error

1
ν

ν∑
i=1

∫
dθidmi p(θi,mi) D [g(mi),θi] . (A.2)

Finally, by noting that the previous expression sums the same numerical uncertainty
ν times, we conclude that equation (A.2) is formally identical to equation (3.10).
That is, we arrive to the known result that we can model either random or fixed
but unknown parameters with the same mathematics in the context of a theoretical
study, even when they are physically different situations. The crucial observation
is that the previous analysis is simply a combination of ν scenarios, each of them
belonging to our third type of uncertainty in section 3.2.

The case of frequentist uncertainties is more subtle. Frequentist metrology is
based on the error [7, 43, 109]∫

dm p(m|θ) D[g(m),θ]. (A.3)

As noted in [9], this is the error to be employed when we do not have access to a
set of specific outcomes but we do know θ, which in principle is a different type of
problem. However, it can be shown [7, 104, 112, 130] that if certain assumptions
are fulfilled in a local region of the parameter domain, often combined with an
asymptotic requirement of many repeats or copies, then the quantity in equation
(A.3) can be made useful for parameter estimation in a wide range of practical cases.
Its key advantage is that the related calculations are generally more tractable than
the alternatives, but, at the same time, it can be argued that it is also physically
unsatisfactory. To see why, note that p(θ) does not appear in equation (A.3), and yet
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knowledge about the local region of interest is precisely the type of prior information
that is best represented with a prior probability.

Furthermore, our calculations in previous chapters strongly suggest that, for
metrology protocols, the local regime emerges naturally from the Bayesian error
in equation (3.10) whenever the appropriate conditions are fulfilled, which is in
agreement with other studies that also connect Bayesian and non-Bayesian quantities
in quantum metrology [113]. From a formal perspective, this behaviour is a more
general feature of estimation problems, and it is not limited to metrology [128]. In
other words, we can recover the same local simplicity without sacrificing conceptual
consistency and rigour, and thus there is no need to switch frameworks and use
equation (A.3) even if we only want to work in that regime. These are our reasons
to exclude equation (A.3) from the list of basic measures of uncertainty, a choice
that differs from the path generally followed [7, 43, 109] (with exceptions such as
the work in [130]).

A final question is whether some of these uncertainties could be associated with
the errors that are directly measured in the laboratory [109]. Since our quantities
are constructed out of probabilities, by virtue of the law of large numbers we know
that a necessary condition is to have access to a very large amount of measure-
ments, provided that the probabilities describe repetitive experiments. We saw an
example of this when we revisited the use of the error propagation formula for phase
estimation in a Mach-Zehnder interferometer (see section 2.3.1). Otherwise, the
previous quantities cannot be experimentally accessed, and they merely summarise
information based on either our theoretical analysis (equations (3.9) and (3.10)) or
on empirical outcomes (equation (3.8)). The regime of limited data involves, by
definition, scenarios with a low number of measurements; consequently, while our
results could be implemented in practice, the uncertainties involved in their design
are of a theoretical nature.

In conclusion, it may be argued that the uncertainties examined in the classi-
fication of section 3.2 can be sufficient to accommodate a wide range of practical
scenarios, including not only the cases with random parameters or a low amount of
prior information, but also those with a high amount of prior knowledge (i.e., that
work in the local regime) or that involve fixed parameters.

A.2 How large the prior width can be such that
the use of a quadratic error is justified?

A good experiment should be arranged such that the uncertainty ϵ̄ decreases as
a function of the number of observations µ. If the parameter to be estimated is
periodic and we use the sine error

ϵ̄ = 4
∫
dθdm p(θ,m) sin2

[
g(m) − θ

2

]
(A.4)

(see section 3.2), then the former statement implies that the greatest value acquired
by ϵ̄ in equation (A.4) is given by

ϵ̄(µ = 0) = 4
∫
dθ p(θ) sin2

(
g − θ

2

)
. (A.5)
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Furthermore, equation A.5 is simplified as

ϵ̄(µ = 0) = 4
W0

∫ W0

0
dθ sin2

(
g − θ

2

)
(A.6)

after using the uniform prior in equation (4.12) with θ̄ = W0/2, and the minimum
of equation (A.6) is achieved when the estimator g satisfies cos(g − W0) = cos(g),
which for one period implies that g = W0/2. Hence,

ϵ̄(µ = 0) = 4
W0

∫ W0

0
dθ sin2

(
W0

4 − θ

2

)
= 2

[
1 − 2

W0
sin

(
W0

2

)]
. (A.7)

If we now expand equation (A.7) up to second order in W0, we find that

ϵ̄(µ = 0) ≈ W0
2

12 , (A.8)

which is the prior that we would have found using the square error directly.
According to figure A.1.i, which compares equations (A.7) and (A.8) as a function

of the width W0, the approximation starts to fail in a notable way when W0 ≈
π. Given that in chapter 4 we calculated the mean square error for NOON, twin
squeezed vacuum and squeezed entangled states with W0 = π/2, and that W0 = π/3
was employed with both the previous states and for a coherent beam, we can say
that the approximation is reasonable for these configurations when µ = 0. Moreover,
|g(m) − θ| will not be greater than W0 for µ > 0, and thus a similar reasoning could
be applied to the comparison of equations (A.4) and (4.1). The only scheme for
which this approximation is cruder is the coherent state with prior width W0 = π.

A more powerful argument to refine such threshold is also possible. First we
observe that the approximation 4 sin2{[g(m) − θ] /2} ≈ [g(m) − θ]2 relies on the
quantity |g(m) − θ|/2 being small, where, as we have seen, |g(m) − θ|/2 ⩽ W0/2.
The minimum requirement that is natural to impose is that the variable for which
the Taylor expansion is calculated (i.e., |g(m) − θ|/2) is slightly smaller than 1 at
most, which is always the case if the width of our experiment satisfies that W0 ≲ 2.
In principle this would still be a crude approximation if we were interested in the sine
function itself. However, the sine error is then integrated over all the possible values
for θ and m = (m1, . . . ,mµ). This implies that |g(m) − θ|/2 ∼ 2 when W0 ∼ 2 only
for a few combinations of values, and the weight of those cases will decrease as the
joint probability p(θ,m) accumulates more data. We conclude then that W0 ≲ 2
is a reasonable estimation for the range of validity of the mean square error in a
problem with a periodic parameter. Note that this condition has the same order of
magnitude than the estimation found in [156], where the authors argued that the
width of their Gaussian prior had to be π/2 or less, and it is a better estimation
than the one obtained in the previous paragraphs.

From the previous discussion we see that only the calculation of the first few
shots could be potentially misleading if we use the mean square error. To show
that this is not the case for the type of schemes analysed in the main text, let us
estimate explicitly the error of the Taylor expansion for some of the schemes in
chapter 5. First, using Taylor’s theorem we have that sin2(x) = x2 − x4cos(2ε)/3,
where ε ∈ [0, x] [110]. The first term is the approximation that we want to use, while
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Sine error
Square error

Figure A.1: i) Comparison between the prior uncertainty (µ = 0) given by a periodic
error function and that associated to the mean square error as a function of W0.
Most of our results in Section 4.3 are calculated using the values W0 = π/2 and
W0 = π/3; (ii) Mean square error based on the optimal single-shot strategy (solid
line) and bounds for the approximation error after having expanded the sine error
up to second order (shaded area) for (a) the coherent state, (b) the NOON state,
(c) the twin squeezed vacuum state, (d) the squeezed entangled state, and (e) the
twin squeezed cat state, with n̄ = 2, θ̄ = 0 and W0 = π/2. This figure shows that
the mean square error is a suitable approximation for the mean sine error when we
are in the regime of moderate prior knowledge.

the second term represents the error of this approximation. Using the fact that the
cosine is bounded between −1 and 1, the Taylor error can be estimated with

∆ϵ̄ = 1
12

∫
dθdm p(θ)p(m|θ) [g(m) − θ]4 , (A.9)

and knowing that the optimal phase estimator is the average of the posterior prob-
ability p(θ|m) ∝ p(θ)p(m|θ), we can rewrite equation (A.9) as

∆ϵ̄ = 1
12

∫
dθ′p(θ′)

∫
dm p(m|θ′)∆ϵ̄(m), (A.10)

where
∆ϵ̄(m) = ⟨θ4⟩ − 4⟨θ⟩⟨θ3⟩ + 6⟨θ⟩2⟨θ2⟩ − 3⟨θ⟩4 (A.11)

and we have used the notation ⟨□⟩ =
∫
dθp(θ|m)□. This is precisely the three-step

decomposition introduced in section 4.2.4 to obtain the mean square error and, as
such, we can compute ∆ϵ̄ numerically in the same way.

This calculation is shown in figure A.1.ii, where the graph in the middle of the
shaded areas is ϵ̄mse for 1 ⩽ µ ⩽ 10 and W0 = π/2 and the boundaries are given by
±∆ϵ̄. We can see that the Taylor error bounds for the twin squeezed cat state, the
squeezed entangled state and the twin squeezed cat state, which constitute the basis
of our main results in chapter 5, do not overlap for any value of µ. Therefore, all the
comparisons made between these probes are valid. That the twin squeezed cat state
and the coherent state overlap for µ = 1, 2, 3 is not surprising, since their respective
mean square errors also do (see figure 5.2.i), and the same observation hold for the
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NOON state and the squeezed entangled state when µ = 2. On the other hand, the
shaded area of the NOON state overlaps slightly with the top shaded area of the twin
squeezed vacuum state when µ = 1. It is important to appreciate that the shaded
areas are bounds for the Taylor error, and it is not guaranteed that the uncertainties
for these two states actually coincide. However, even if they did, it would simply
constitute another instance where the role of inter-mode and intra-mode correlations
is altered in the regime of limited data, since a state with path entanglement that is
beaten by a state with a large amount of intra-mode correlations in the asymptotic
regime would reach the same uncertainty than the latter for a single shot.

Finally, we also notice that the approximation will become even better as W0
decreases, which is the case for the other prior widths that we have explored. Hence,
we can conclude that the results that arise from the use of the mean square error as
an approximation for the mean sine error in the regime of moderate prior knowledge
are generally valid.

A.3 Calculation details of some results in optical
interferometry

This appendix presents the derivation of some auxiliary results employed in chapters
4 and 5 for the non-asymptotic study of the Mach-Zehnder interferometer.

First we will verify that UBSD1(α) |0, 0⟩ = |α/
√

2,−iα/
√

2⟩. Using [83]

exp (X) f (Y ) exp (−X) = f [exp (X)Y exp (−X)] , (A.12)

where X and Y are operators, we have that

UBSD1(α)U †
BS = exp

(
−iπ2Jx

)
exp

(
αa†

1 − α∗a1
)

exp
(
i
π

2Jx

)
= exp

[
α
(
e−i π

2 Jxa†
1ei π

2 Jx

)
− α∗

(
e−i π

2 Jxa1ei π
2 Jx

)]
. (A.13)

In addition,

UBSa1U
†
BS = a1 + (−iπ/2) [Jx, a1] + (−iπ/2)2

2! [Jx, [Jx, a1] ] + . . . =

= a1 + i (π/4) a2 − (π/4)2

2! a1 + . . .

=
[
1 − (π/4)2

2! + . . .

]
a1 + i [(π/4) + . . .] a2

= cos (π/4) a1 + isin (π/4) a2 = (a1 + ia2) /
√

2 (A.14)

after combining the Baker-Campbell-Hausdorff formula [89]

ezXY e−zX = B + z[X, Y ] + z2

2! [X, [X, Y ] ] + . . . , (A.15)

with the commutation relations [ai, aj] = [a†
i , a

†
j] = 0, [ai, a

†
j] = δij (see section

2.2.2). Finally, by noticing that

exp
(

−iπ2Jx

)
|0, 0⟩ =

∞∑
k=0

(−iπ/4)k

k!
(
a†

1a2 + a1a
†
2

)k
|0, 0⟩ = |0, 0⟩ , (A.16)
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and taking into account equations (A.12) and (A.14), we arrive at

UBSD1(α) |0, 0⟩ =
[
UBSD1(α)U †

BS

]
UBS |0, 0⟩

= exp
{(

α√
2
a†

1 − α∗
√

2
a1

)
+
[

(−iα)√
2
a†

2 − (−iα)∗
√

2
a2

]}
|0, 0⟩

= D1
(
α/

√
2
)
D2

(
−iα/

√
2
)

|0, 0⟩

= |α/
√

2,−iα/
√

2⟩, (A.17)

as we expected.
On the other hand, we need to find the likelihood function p(n1, n2|θ) = ||a(n1, n2|θ)||2

associated with the probability amplitude

a(n1, n2|θ) = ⟨n1, n2|e−i π
2 JxeiN2ϕe−iJzθ |ψNOON⟩ = ⟨n1, n2|Φ(θ)⟩, (A.18)

where |Φ(θ)⟩ = e−i π
2 JxeiN2ϕe−iJzθ |ψNOON⟩, ϕ is a known phase shift and |ψNOON⟩ =

(|N, 0⟩ + |0, N⟩)/
√

2. The transformation associated with the phase shifts is

eiN2ϕe−iJzθ |ψNOON⟩ = 1√
2
[
e−iNθ/2 |N, 0⟩ + eiN(2ϕ+θ)/2 |0, N⟩

]
, (A.19)

since
eiNix |ni⟩ =

∞∑
k=0

(ix)k

k! Nk
i |ni⟩ =

∞∑
k=0

(ixni)k

k! |ni⟩ = einix |ni⟩ . (A.20)

Furthermore, from

UBSa2U
†
BS = a2 + (−iπ/2) [Jx, a2] + (−iπ/2)2

2! [Jx, [Jx, a2] ] + . . . =

= a2 + i (π/4) a1 − (π/4)2

2! a2 + . . .

= i [(π/4) + . . .] a1 +
[
1 − (π/4)2

2! + . . .

]
a2

= isin (π/4) a1 + cos (π/4) a2 = (ia1 + a2) /
√

2 (A.21)

and equations (A.14) and (A.19) we find that

|Φ(θ)⟩ = 1√
2N !

[
e−iNθ/2

(
e−i π

2 Jxa†
1ei π

2 Jx

)N
+ eiN(2ϕ+θ)/2

√
2N !

(
e−i π

2 Jxa†
2ei π

2 Jx

)N
]

|0, 0⟩

= 1√
2N+1N !

[
e−iNθ/2

(
a†

1 − ia†
2

)N
+ eiN(2ϕ+θ)/2

(
−ia†

1 + a†
2

)N
]

|0, 0⟩

= 1√
2N+1

N∑
k=0

√
N !

k!(N − k)!
[
(−i)N−k e−iNθ/2 + (−i)k eiN(2ϕ+θ)/2

]
|k,N − k⟩

=
√

2
2N

N∑
k=0

√
N !

k!(N − k)! cos [N (θ + ϕ) /2 + (2k −N) π/4] |k,N−k⟩.(A.22)

Hence,

a(n,N − n|θ) =
√

2N !
2Nn!(N − n)! cos [N (θ + ϕ) /2 + (2k −N) π/4] , (A.23)
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where we have used that NOON states have a definite number of photons.
If ϕ = 0, then equation (A.23) generates the probability density

p(n,N − n|θ) = 2N ! cos2 [Nθ/2 + (2n−N)π/4]
2Nn!(N − n)! (A.24)

that we employed in chapter 4, while for ϕ = −π/4 and N = 2 we have that

p(n, 2 − n|θ) = cos2 [θ + (2n− 3)π/4]
n!(2 − n)! , (A.25)

which is the result examined in chapter 5.

A.4 Multivariate Gaussian integrals
Here we summarise the standard calculation of the multivariate integrals in chapter
6, which also include those in chapter 4 when we take d = 1.

Let us denote the classical Fisher information matrix, which it is assumed to be
positive definite, by F (θ′) ≡ F ′, and its eigendecomposition by F ′ = ZF ′

DZ
⊺, with

F ′
D = diag(z1, . . . , zd). In addition, define the transformation θ − θ′ = Zy between

θ and y, with Jacobian det(Z) = 1. The first calculation is

G0 =
∫ ∞

−∞
dθ e− µ

2 (θ−θ′)⊺F ′(θ−θ′) =
∫ ∞

−∞
dy e− µ

2 y
⊺F ′

Dy

=
d∏

i=1

∫ ∞

−∞
dyi e− µ

2 y2
i zi =

(
2π
µ

) d
2 d∏

i=1

1
√
zi

=
[

(2π)d

det(µF ′)

] 1
2

, (A.26)

since
∫∞

−∞ dyi e− µ
2 y2

i zi = [2π/(µzi)]1/2. On the other hand,

G1,i =
∫ ∞

−∞
dθ e− µ

2 (θ−θ′)⊺F ′(θ−θ′)θi =
∫ ∞

−∞
dy e− µ

2 y
⊺F ′

Dy

θ′
i +

d∑
j=1

Zijyj


= G0 θ

′
i +

d∑
j=1

Zji

d∏
k=1

∫ ∞

−∞
dyk e− µ

2 y2
kzkyj = G0 θ

′
i (A.27)

where we have used that
∫∞

−∞ dyi e− µ
2 y2

i ziyi = 0. Finally,

G2,ij =
∫ ∞

−∞
dθ e− µ

2 (θ−θ′)⊺F ′(θ−θ′)θiθj

=
∫ ∞

−∞
dy e− µ

2 y
⊺F ′

Dy

(
θ′

i +
d∑

k=1
Zikyk

)(
θ′

j +
d∑

l=1
Zjlyl

)

= G0 θ
′
iθ

′
j +

d∑
k=1

(
θ′

iZjk + θ′
jZik

) d∏
m=1

∫ ∞

−∞
dym e− µ

2 y2
mzmyk

+
d∑

k,l=1
ZikZjl

d∏
m=1

∫ ∞

−∞
dym e− µ

2 y2
mzmykyl

= G0 θ
′
iθ

′
j +

(
2π
µ

) d
2 1
µ

d∑
l=1

ZilZjl

zl

1
√
zl

d∏
{k=1, k ̸=l}

1
√
zk

= G0

θ′
iθ

′
j +

[
(F ′)−1

]
ij

µ
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given that
∫∞

−∞ dyi e− µ
2 y2

i ziy2
i = [2π/(µzi)3]1/2.

Equations (A.26 - A.28) lead us to the results in equations (4.8), (4.10), (6.16)
and (6.18) in the main text.
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Appendix B

Numerical toolbox for quantum
interferometry

In this appendix we present a collection of algorithms that together allow to repro-
duce the numerical results for optical interferometry in chapters 4, 5 and 8. Most of
the codes are written in MATLAB, the only exception being the second algorithm
in appendix B.2, which has been developed in Mathematica.

B.1 Basic elements and initial states
Operators in the space of a single electromagnetic mode:

function [creat] = creation(dimension)
% Matrix representation of the creation operator, where ’dimension’ is
% the cutoff of the space.
creat=zeros(dimension,dimension);
for aa=1:dimension

for bb=1:dimension
if aa == (bb+1); creat(aa,bb)=sqrt(bb);
else; creat(aa,bb)=0;
end

end
end
creat=sparse(creat); end

function [id] = identity(dimension)
% Identity matrix
id=eye(dimension);
id=sparse(id); end

Optical elements:

function [j1] = j1schwinger(dimension)
% Matrix representation of the J1 operator (Jordan-Schwinger map).
j1=0.5*(kron(creation(dimension),creation(dimension)’) + kron(creation ↙
(dimension)’,creation(dimension)));
j1=sparse(j1); end
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function [j3] = j3schwinger(dimension)
% Matrix representation of the J3 operator (Jordan-Schwinger map).
j3=0.5*(kron(creation(dimension)*creation(dimension)’,identity ↙
(dimension))-kron(identity(dimension),creation(dimension)*creation ↙
(dimension)’));
j3=sparse(j3); end

function [v] = beam_splitter(dimension)
% Matrix representation of a 50:50 beam splitter.
v=expm(-1i*0.5*pi*sparse(j1schwinger(dimension)));
v=sparse(v); end

function [utheta] = phase_shift_diff(dimension, theta)
% Matrix representation of the unitary encoding of the unknown parameter
% ’theta’ (difference of phase shifts).
utheta=expm(-1i*theta*j3schwinger(dimension));
utheta=sparse(utheta); end

Initial probe states for a Mach-Zehnder interferometer:

function [zero] = vacuum(dimension)
% Vacuum state for a single mode.
temp=identity(dimension);
zero=temp(:,1);
zero=sparse(zero); end

function [displ] = displacement(dimension,alpha)
% Matrix representation of the displacement operator, where ’alpha’ is
% the amount of displacement.
displ=expm(alpha*creation(dimension)-conj(alpha)*creation(dimension)’);
displ=sparse(displ); end

function [squ] = squeeze(dimension,zeta)
% Matrix representation of the squeezing operator for a single mode,
% where ’zeta’ is the squeezing parameter.
squ=expm(0.5*(conj(zeta)*(creation(dimension)’)ˆ2-zeta*(creation ↙
(dimension))ˆ2));
squ=sparse(squ); end

function [initial_state] = initial_probe(state_sel)
% Common states in optical interferometry, where ’state_sel’ is a number
% from 1 to 5 labelling the quantum probes
%
% (1) Coherent state: |alpha/sqrt(2),-i*alpha/sqrt(2)>
% (2) NOON state: (|N,0>+|0,N>)/sqrt(2)
% (3) Twin squeezed vacuum state: S_a(z)S_b(z)|0,0>
% (4) Squeezed entangled state: N (|z,0> + |0,z>)
% (5) Twin squeezed cat state: [N S(z)(|alpha>+|-alpha>)]\otimes2
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%
% whose componentes are generated in the number basis of a Mach-Zehnder
% interferometer.
%
% The code is configured with the parameters
%
% (1) alpha=sqrt(2)
% (2) N=2
% (3) z=asinh(1)
% (4) z=log(2+sqrt(3))
% (5) alpha=0.960149, z=1.2145
%
% so that the nbar number of quanta that enters the interferometer is 2.
%
% The cutoff for the vectors are: (1) 20, (2) 2, (3) 50, (4) 60
% and (5) 50. These values are selected such that the numerical states
% are a reasonable approximation to the analytical kets.

% State parameters
nbar=2;
number=nbar; % Mean number of photons
alpha=sqrt(nbar); % Displacement parameter
zeta=asinh(sqrt(nbar/2)); % Squeezing parameter
zent=log(2+sqrt(3));

alphacat=0.960149; % Maximum Fisher information for the twin squeezed
zcat=1.2145; % cat state

%alphacat=1.09048; % Same Fisher information for the twin squeezed cat
%zcat=1.1025; % state and the squeezed entangled state

if state_sel==1
num_cutoff=20; % Cutoff for states

elseif state_sel==2
num_cutoff=number;

elseif state_sel==3 || state_sel==5
num_cutoff=50;

elseif state_sel==4
num_cutoff=60;

end
op_cutoff=num_cutoff+1; % Cutoff for operators

% Initial state
if state_sel==1

initial_temp=sparse(displacement(op_cutoff,alpha)*vacuum(op_cutoff));
initial_state=sparse(kron(initial_temp,vacuum(op_cutoff)));
initial_state=beam_splitter(op_cutoff)*initial_state;

elseif state_sel==2
initial_temp=sparse((creation(op_cutoff)ˆnumber)*vacuum(op_cutoff));
initial_state=sparse(kron(initial_temp,vacuum(op_cutoff))+kron(vacuum ↙

(op_cutoff),initial_temp));
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elseif state_sel==3
initial_temp1=sparse(squeeze(op_cutoff,zeta)*vacuum(op_cutoff));
initial_temp2=sparse(squeeze(op_cutoff,zeta)*vacuum(op_cutoff));
initial_state=sparse(kron(initial_temp1,initial_temp2));

elseif state_sel==4
initial_state=(kron(squeeze(op_cutoff,zent),identity(op_cutoff)) ↙

+kron(identity(op_cutoff),squeeze(op_cutoff,zent)))*kron(vacuum ↙
(op_cutoff),vacuum(op_cutoff));
elseif state_sel==5

initial_state=squeeze(op_cutoff,zcat)*(displacement ↙
(op_cutoff,alphacat)+displacement(op_cutoff,-alphacat))*vacuum(op_cutoff);

initial_state=kron(initial_state,initial_state);
initial_state=initial_state/sqrt((initial_state’*initial_state));

end
initial_state=initial_state/sqrt((initial_state’*initial_state)); end

B.2 Optimal quantum strategies for the square
error criterion

The following algorithm has been utilised to calculate the optimal single-shot strategies
in chapter 5:

1. The components cnm of |ψ0⟩ are numerically approximated in a finite space
of dimension dc per mode. For the coherent state this dimension is dc = 21,
and the number probability for this cutoff is pc ∼ 10−19; for the twin squeezed
vacuum state we have that dc = 51 and pc ∼ 10−17; dc = 61 and pc ∼ 10−5

for the squeezed entangled state; and dc = 51 and pc ∼ 10−10 for the twin
squeezed cat state. This is achieved via the code for generating initial states
in the previous appendix.

2. K and L are numerically generated using the formulas in equations (5.10) -
(5.13). This allows us to calculate ρ = ρ0 ◦ K and ρ = ρ0 ◦ L in the number
basis.

3. The basis of ρ and ρ̄ is changed as ρD = V†ρV and ρ̄D = V†ρ̄V , where the
columns of V are given by the eigenvectors |ϕi⟩ of ρ, (ρD)ij = piδij and (ρ̄D)ij =
⟨ϕi| ρ̄ |ϕj⟩. Only the eigenvectors |ϕi⟩ whose eigenvalues pi satisfy that pi ≳
10−12 are employed.

4. Now we can calculate the elements (SD)ij = ⟨ϕi|S |ϕj⟩ = 2(ρ̄D)ij/(pi + pj)
directly.

5. We return to the original basis using S = VSDV†.

6. Finally, we calculate the spectral decomposition of S, which gives us the es-
timates {s} and the projectors {|s⟩}.

Its implementation in MATLAB is:



174

function [Sopt,sopt,soptvec_columns,bayes_bound,rho,pk,psik,rhobar, ↙
rhobarnew] = mz_optimal_1trial(initial_state,phase_width,phase_mean)
% Optimal single-shot strategy, where ’initial_state’ is a pure state
% for the Mach-Zehnder interferometer, ’phase_width’ is the width of the
% parameter domain and ’phase_mean’ is its centre.
%
% This programme calculates:
%
% a) the optimal quantum estimator ’Sopt’
% b) the estimates ’sopt’ for the unknown parameter given by the
% spectrum of ’Sopt’
% c) the optimal projective measurement for a single trial given by
% the eigenvectors ’soptvec_columns’ of ’Sopt’
% d) the optimal single-shot mean square error ’bayes_bound’
% e) the zero-th quantum moment of the transformed density matrix ’rho’
% f) ’rho’ in its diagonal basis, denoted by ’pk’
% g) the matrix ’psik’ whose columns are the eigenvectors of ’rho’
% h) the first quantum moment of the transformed density matrix ’rhobar’
% i) ’rhobar’ in the eigenbasis of ’rho’, denoted by ’rhobarnew’

% Calculation of ’rho’ and ’rhobar’
index=1;
kvec=zeros(1,length(initial_state)ˆ2);
lvec=zeros(1,length(initial_state)ˆ2);
for x1=1:sqrt(length(initial_state))

for y1=1:sqrt(length(initial_state))
for z1=1:sqrt(length(initial_state))

for t1=1:sqrt(length(initial_state))
if (x1-1)-(y1-1)+(t1-1)-(z1-1)==0

K=phase_width;
L=phase_mean*phase_width;

else
comp_temp=(x1-1)-(y1-1)+(t1-1)-(z1-1);
exp_temp=exp(-1i*comp_temp*phase_mean/2);
sin_temp=sin(comp_temp*phase_width/4);
cos_temp=cos(comp_temp*phase_width/4);
K=4*exp_temp*sin_temp/comp_temp;
L=exp_temp*(4*phase_mean*sin_temp/comp_temp ↙

+1i*2*phase_width*cos_temp/comp_temp - 1i*8*sin_temp/comp_tempˆ2);
end
kvec(index)=K/phase_width;
lvec(index)=L/phase_width;
index=index+1;

end
end

end
end

kmat=sparse(vec2mat(kvec,sqrt(length(kvec))));
lmat=sparse(vec2mat(lvec,sqrt(length(lvec))));
initial_rho=kron(initial_state,initial_state’);
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rho=initial_rho.*kmat; rhobar=initial_rho.*lmat;
rho=full(rho); rhobar=full(rhobar);

% Eigenvalues and eigenvectors of ’rho’
[psik, pk] = eigs(rho,rank(rho));
psik=sparse(psik);
pk=sparse(pk);

pkvec=zeros(1,length(pk));
for x=1:length(pk)

pkvec(x)=pk(x,x);
end

% ’rhobar’ in the eigenbasis of ’rho’
rhobarnew=psik’*rhobar*psik;

% Optimal single-shot strategy: projectors and outcomes
Sopt_temp=zeros(length(pkvec),length(pkvec));
for a=1:length(pkvec)

for b=1:length(pkvec)
if pkvec(a)+ pkvec(b)>0

Sopt_temp(a,b)=2*rhobarnew(a,b)/(pkvec(a)+pkvec(b));
end

end
end

Sopt_temp=sparse(Sopt_temp);
Sopt=psik*Sopt_temp*psik’;
Sopt=full(Sopt);

[soptvec_columns, sopt_temp] = eigs(Sopt,rank(Sopt));
sopt=zeros(1,length(sopt_temp));
for x=1:length(sopt_temp)

sopt(x)=sopt_temp(x,x);
end
soptvec_columns=sparse(soptvec_columns);
sopt=sparse(sopt);
if imag(sopt)<1e-5; sopt=real(sopt);
else

error(’The estimates of the unknown parameter must be real. Check ↙
the cutoff in the intermediate calculations.’)
end

% Phase domain
phase=linspace(phase_mean-phase_width/2,phase_mean+phase_width/2,1000);

% Optimal single-shot mean square error
bayes_bound=trapz(phase,phase.*phase)/phase_width - trace(Sopt*Sopt*rho);
if imag(bayes_bound)<1e-10; bayes_bound=real(bayes_bound);
else

error(’The mean square error must be real. Check the cutoff ↙
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in the intermediate calculations.’)
end

end

The previous algorithm was extended in our work [168] to calculate the collect-
ive measurement that is optimal on µ copies of a NOON state (see section 5.3.6).
However, a more economic alternative using Mathematica is:

(* Optimal single-shot mean square error for collective POMs on ’mu’ ↙
copies of a NOON state *)

(* Number of copies *)
Clear[mu]
mu = 4; (* ’mu’ must be greater than or equal to 2 *)

(* Transformed density matrix *)
Clear[nbar, rhotemp, rhotheta]
nbar = 2;
rhotemp[theta_] := N[ {{1/2, Exp[-I*nbar*theta]/2}, ↙
{Exp[I*nbar*theta]/2, 1/2}}];
rhotheta[theta] = KroneckerProduct[rhotemp[theta ], rhotemp[theta ]];
Do[rhotheta[theta ] = KroneckerProduct[rhotemp[theta ], ↙
rhotheta[theta ]], {j, mu - 2}]; (* ’j’ is the index of repetition *)

(* Prior probability *)
Clear[priorwidth, priormean, a, b, prior]
priorwidth = Pi/2.;
priormean = 0;
a = priormean - priorwidth/2;
b = priormean + priorwidth/2;
prior[theta_] := 1/(b - a);

(* Calculation of ’rho’ and its diagonal form*)
Clear[rho, rhodiag]
rho = Integrate[prior[theta]*rhotheta[theta], {theta, a, b}];
rhodiag = DiagonalMatrix[Eigenvalues[rho]];

(* Calculation of ’rhobar’ and its form in the eigenbasis of rho*)
Clear[rhobar, change, rhobardiag]
rhobar = Integrate[prior[theta]*rhotheta[theta]*theta, {theta, a, b}];
change = Transpose[Eigenvectors[rho]];
rhobardiag = Inverse[change].rhobar.change;

(* Optimal quantum estimator *)
Clear[rhosupp, rhobarsupp, Sopt]
rhosupp = rhodiag[[1 ;; MatrixRank[rho], 1 ;; MatrixRank[rho]]];
rhobarsupp = rhobardiag[[1 ;; MatrixRank[rho], 1 ;; MatrixRank[rho]]];
Sopt = LyapunovSolve[rhosupp/2., rhosupp/2., rhobarsupp];

(* Optimal single-shot mean square error *)
Clear[emse]
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emse = Round[NIntegrate[prior[theta]*thetaˆ2, {theta, a, b}] ↙
- Tr[Sopt.Sopt.rhosupp], 10.ˆ(-7)]

0.0428159 (* Result for mu = 4 *)

Furthermore, we notice that the single-shot calculation for a lossy interferometer
in section 8.2 was carried out with a similar version of the Mathematica code above.

B.3 Other quantum bounds

B.3.1 Quantum Cramér-Rao bound

function [qcrb] = mz_qcrb(initial_state,mu_max)
% Quantum Cramer-Rao bound as a function of the number of trials, where
% ’initial_state’ is a pure state for the Mach-Zehnder interferometer
% and ’mu_max’ is the maximum number of repetitions.

% Number of repetitions
observations=1:1:mu_max;

% Space cutoff (for a single mode)
op_cutoff=sqrt(length(initial_state));

% Quantum Fisher information (pure states and unitary encoding)
expectation_n=initial_state’*j3schwinger(op_cutoff)*initial_state;
expectation_n2=initial_state’*j3schwinger(op_cutoff)ˆ2*initial_state;
qfi=4*(expectation_n2-expectation_nˆ2);

% Do we have information?
if qfi==0

disp(’The Quantum Fisher information is zero.’)
return

end

% Quantum Cramer-Rao Bound
qcrb=1./(observations*qfi);

end

B.3.2 Quantum Ziv-Zakai bound

function [qzzb] = mz_qzzb(initial_state,phase_width,mu_max)
% Quantum Ziv-Zakai bound as a function of the number of trials, where
% ’initial_state’ is a pure state for the Mach-Zehnder interferometer,
% ’phase_width’ is the width of the parameter domain and ’mu_max’ is
% the maximum number of repetitions.

% Space cutoff (for a single mode)



178

op_cutoff=sqrt(length(initial_state));

% Parameter domain
W=phase_width;
dim_theta=1000;
theta=linspace(0,W,dim_theta);

% Fidelity
fidelity=zeros(dim_theta,1);
for z=1:dim_theta

after_phase_shift=sparse(phase_shift_diff(op_cutoff,theta(z)) ↙
*initial_state);

fidelity(z)=abs(initial_state’*after_phase_shift)ˆ2;
end

% Quantum Ziv-Zakai Bound integrand
integrand=zeros(dim_theta,mu_max);
for runs=1:mu_max

for z=1:dim_theta
integrand(z,runs)=0.5.*theta(z).*(1-theta(z)./W) ↙

.*(1-sqrt(1-fidelity(z).ˆruns));
end

end
integrand=sparse(integrand);

% Quantum Ziv-Zakai Bound
qzzb=trapz(theta,integrand,1);

end

B.3.3 Quantum Weiss-Weinstein bound

function [qwwb] = mz_qwwb(initial_state,phase_width,mu_max)
% Quantum Weiss-Weinstein bound as a function of the number of
% trials, where ’initial_state’ is a pure state for the Mach-Zehnder,
% interferometer ’phase_width’ is the width of the parameter domain
% and ’mu_max’ is the maximum number of repetitions.

% Space cutoff (for a single mode)
op_cutoff=sqrt(length(initial_state));

% Parameter domain
W=phase_width;
dim_theta=1000;
h=linspace(0,W,dim_theta);

% Quantum Weiss-Weinstein Bound
find_supremum=zeros(mu_max,length(h));
qwwb=zeros(1,mu_max);
for runs=1:mu_max
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for z=1:length(h)
zeta=initial_state’*phase_shift_diff(op_cutoff,h(z))*initial_state;
zeta2=initial_state’*phase_shift_diff(op_cutoff,2*h(z)) ↙

*initial_state;
fid_function=abs(zeta)ˆ2;
find_supremum(runs,z)=h(z)ˆ2*(1-h(z)/W)ˆ2*fid_functionˆ(2*runs) ↙

/(2*fid_functionˆruns-2*(1-2*h(z)/W)*real(zetaˆ(2*runs)*conj(zeta2)ˆruns));
end
qwwb(runs)=max(find_supremum(runs,:));

end

end

B.4 Measurement strategies

function [outcomes,proj_columns] = mz_pom ↙
(state_choice,pom_choice,phase_width,phase_mean)
% Outcomes and POM elements of five projective measurement schemes:
%
% 1) Optimal single-shot POM
% 2) 50:50 beam splitter + photon counting
% 3) 50:50 beam splitter + measurement of quadratures rotated by pi/8
% 4) Undoing the preparation of the initial state + photon counting
% 5) 50:50 beam splitter + parity measurements
%
% where ’state_choice’ labels the initial state, ’pom_choice’ selects one
% of the previous measurement schemes, ’phase_width’ is the width of the
% phase domain and ’phase_mean’ is its centre.
%
% Some extra phase shifts that are assumed to be known have been added
% to 2) - 5) in order to make the strategy optimal when the prior is
% centred around zero.

% Space cutoff (for a single mode)
op_cutoff=sqrt(length(initial_probe(state_choice)));

if pom_choice==1
% 1) Optimal single-shot POM
[˜,outcomes,proj_columns,˜,˜,˜,˜,˜,˜]=mz_optimal_1trial(initial_probe ↙

(state_choice),phase_width,phase_mean);

elseif pom_choice==2
% 2) 50:50 beam splitter + photon counting

% Observable quantity (number of photons at each port)
observable=kron(creation(op_cutoff)*creation(op_cutoff)’,creation ↙

(op_cutoff)*creation(op_cutoff)’);
[proj_columns,outcomes_temp]=eig(full(observable));
outcomes=zeros(1,length(outcomes_temp));
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for x=1:length(outcomes_temp)
outcomes(x)=outcomes_temp(x,x);

end

% Extra phase shift
odd_shift=kron(identity(op_cutoff),expm(1i*(pi/2)*creation ↙

(op_cutoff)*creation(op_cutoff)’));
even_shift=kron(identity(op_cutoff),expm(1i*(pi/4)*creation ↙

(op_cutoff)*creation(op_cutoff)’));

if state_choice==1
optimal_shift=odd_shift;

else
optimal_shift=even_shift;

end

% Effect of the 50:50 beam splitter
proj_columns=optimal_shift’*beam_splitter(op_cutoff)*proj_columns;

elseif pom_choice==3
% 3) 50:50 beam splitter + measurement of quadratures rotated by pi/8

% Observable quantity
if state_choice==1

error(’The quadrature POM is not available for coherent states.’)
else

phasequad1=pi/8;
phasequad2=phasequad1;

end
quad1=(creation(op_cutoff)*exp(1i*phasequad1)+creation ↙

(op_cutoff)’*exp(-1i*phasequad1))/sqrt(2);
quad2=(creation(op_cutoff)*exp(1i*phasequad2)+creation ↙

(op_cutoff)’*exp(-1i*phasequad2))/sqrt(2);
observable=kron(quad1,quad2);
[proj_columns,outcomes_temp]=eig(full(observable));
outcomes=zeros(1,length(outcomes_temp));
for x=1:length(outcomes_temp)

outcomes(x)=outcomes_temp(x,x);
end

% Extra phase shift
optimal_shift=kron(expm(-1i*(pi/4)*creation(op_cutoff)*creation ↙

(op_cutoff)’),identity(op_cutoff));

% Effect of the 50:50 beam splitter
proj_columns=optimal_shift’*beam_splitter(op_cutoff)*proj_columns;

elseif pom_choice==4
% 4) Undoing the preparation of the initial state + photon counting
if state_choice==1
else
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error(’This POM is only available for coherent states.’)
end

% Observable quantity (number of photons at each port)
observable=kron(creation(op_cutoff)*creation(op_cutoff)’,creation ↙

(op_cutoff)*creation(op_cutoff)’);
[proj_columns,outcomes_temp]=eig(full(observable));
outcomes=zeros(1,length(outcomes_temp));
for x=1:length(outcomes_temp)

outcomes(x)=outcomes_temp(x,x);
end

% Extra phase shifts
optimal_shift=sparse(expm(-1i*pi*j3schwinger(op_cutoff)));

% Unitary transformations to undo the preparation of the state
bs=sparse(beam_splitter(op_cutoff)’);
cs_undo=sparse(kron(displacement(op_cutoff,sqrt(2)),identity ↙

(op_cutoff)));
combined=cs_undo*bs*optimal_shift;
proj_columns=combined’*proj_columns;

elseif pom_choice==5
% 5) 50:50 beam splitter + parity measurements

% Observable quantity (parity of the number of photons at each port)
paritya=sparse(kron(identity(op_cutoff),(-1)ˆ(full(creation ↙

(op_cutoff)*creation(op_cutoff)’))));
parityb=sparse(kron((-1)ˆ(full(creation(op_cutoff)*creation ↙

(op_cutoff)’)),identity(op_cutoff)));
observable=full(paritya*parityb);
[proj_columns,outcomes_temp]=eig(full(observable));
outcomes=zeros(1,length(outcomes_temp));
for x=1:length(outcomes_temp)

outcomes(x)=outcomes_temp(x,x);
end

% Extra phase shift
odd_shift=kron(identity(op_cutoff),expm(1i*(pi/2)*creation ↙

(op_cutoff)*creation(op_cutoff)’));
even_shift=kron(identity(op_cutoff),expm(1i*(pi/4)*creation ↙

(op_cutoff)*creation(op_cutoff)’));

if state_choice==1
optimal_shift=odd_shift;

else
optimal_shift=even_shift;

end

% Effect of the 50:50 beam splitter
proj_columns=optimal_shift’*beam_splitter(op_cutoff)*proj_columns;
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end

end

B.5 Prior information analysis
This algorithm generates the graphs in chapter 4 for the prior information analysis
of the Mach-Zehnder interferometer. A version of this code was also employed for
time estimation in section 8.3.

% Prior information analysis for single-parameter schemes
%
% This programme uses Bayes theorem to generate the posterior probability
%
% p(theta|m_1, ..., m_mu)
%
% for a flat prior and the likelihood function given by the Born rule.
% The initial state and the measurement scheme are those of a Mach-Zehnder
% interferometer, and they can be selected from the respective MATLAB
% functions in our interferometric toolbox by giving a value from 1 to 5
% for ’state_choice’ and ’pom_choice’.
%
% Important observations:
%
% - The prior is defined over all the parameter domain, so that the
% symmetries of the likelihood that enable us to find the intrinsic
% width can be visualised.
%
% - The variables ’prior_mean_1shot’ and ’prior_width_1shot’ are needed
% to specify the optimal single-shot POM, but they do not affect the
% other measurement schemes.
%
% - The results for the prior information analysis in chapter 4 are
% recovered when we remove the extra phase shifts in the second option
% of our MATLAB function mz_pom(.) and we select it. This is because
% the results in chapter 4 were obtained for a prior between 0 and W,
% while the POMs included in our sample of codes are those associated
% with a prior centred around zero (see chapter 5).
clear

% State and POM options (see the respective codes in previous sections)
state_choice=2;
pom_choice=2;

% Initial state
initial_state=initial_probe(state_choice);

% Space cutoff
op_cutoff=sqrt(length(initial_state));
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% Parameter domain
prior_mean=pi;
prior_width=2*pi; % Complete parameter domain
a=prior_mean-prior_width/2;
b=prior_mean+prior_width/2;
dim_theta=1000;
theta=linspace(a,b,dim_theta);

% Simulation of the unknown true value
index_real=160;

% Measurement scheme
prior_mean_1shot=0;
prior_width_1shot=pi/2;
[outcomes_space,proj_columns] = mz_pom(state_choice,pom_choice, ↙
prior_width_1shot,prior_mean_1shot);

% State after the phase shift, final state and amplitudes
amplitudes=zeros(length(outcomes_space),dim_theta);
for z=1:dim_theta

after_phase_shift=sparse(phase_shift_diff(op_cutoff,theta(z)) ↙
*initial_state);

for x=1:length(outcomes_space)
pom_element=proj_columns(:,x);
amplitudes(x,z)=sparse(pom_element’*after_phase_shift);

end
end

% Likelihood function (using the Born rule)
likelihood=amplitudes.*conj(amplitudes);

% Prior density function
prior=ones(1,dim_theta);
prior=prior/trapz(theta,prior);

% Updating via Bayes theorem
prob_temp=prior;
for runs=1:100

% Simulation of an interferometric experiment
prob_sim=likelihood(:,index_real);
cumulative = cumsum(prob_sim); % Cumulative function
prob_rand=rand; % Random selection
auxiliar=cumulative-prob_rand;

for x=1:length(outcomes_space)
if auxiliar(x)>0

index=x;
break

end
end
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% Posterior density function
prob_temp=sparse(prob_temp.*likelihood(index,:));
if trapz(theta,prob_temp)>1e-16

prob_temp=prob_temp./trapz(theta,prob_temp);
else

prob_temp=0;
end

% Posterior probability plots
if runs==1

plot(theta,prob_temp,’k-’,’LineWidth’,2.5)
hold on

elseif runs==2; plot(theta,prob_temp,’k-’,’LineWidth’,2.5)
elseif runs==10; plot(theta,prob_temp,’k-’,’LineWidth’,2.5)
elseif runs==100; plot(theta,prob_temp,’k-’,’LineWidth’,2.5)

hold off
end

end

% Plot specifications
grid
fontsize=21;
set(gcf,’units’,’points’,’position’,[250,50,550,400])
xlabel(’$\theta$’,’Interpreter’,’latex’,’FontSize’,fontsize)
ylabel(’$p(\theta | \textbf{\textit{m}})$’,’Interpreter’,’latex’, ↙
’FontSize’,fontsize)
xticks([0 pi/2 pi 3*pi/2 2*pi])
xticklabels({’0’,’\pi/2’,’\pi’, ’3\pi/2’,’2\pi’})
xlim([min(theta) max(theta)])
set(gca, ’FontSize’, fontsize,’FontName’,’Times New Roman’)

B.6 Mean square error for any number of trials

function [epsilon_trials]=mz_mse_trials(state_choice,pom_choice, ↙
prior_width,prior_mean,mu_max)
% Bayesian mean square error
%
% This programme calculates the mean square error as a function of the
% number of repetitions.
%
% To run it, we need to specify the variables ’state_choice’, which
% labels the initial state of a Mach-Zehnder interferometer; ’pom_choice’,
% which selects the measurement scheme; ’phase_width’, which is the
% width of a flat prior probability; ’phase_mean’, which is the centre
% of its domain; and ’mu_max’, which is the maximum number of trials.
%
% Note that this code relies on other MATLAB functions of our numerical
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% toolbox. The algorithm in this section has been exploited to calculate
% the mean square error for all the single-parameter cases treated in this
% thesis, including the ideal schemes for optical interferometry studied
% in chapters 4 and 5, the calculation of the Taylor error to verify the
% validity of our squared approximation in appendix A, our lossy analysis
% in chapter 8 and our analysis of the elapsed time, also in chapter 8.

% Seed for the random generator
rng(’shuffle’)

% Initial state
initial_state=initial_probe(state_choice);

% Space cutoff
op_cutoff=sqrt(length(initial_state));

% Parameter domain
a=prior_mean-prior_width/2;
b=prior_mean+prior_width/2;
dim_theta=1250;
theta=linspace(a,b,dim_theta);
num_steps=125;
step=round(dim_theta/num_steps);
if step-round(step)˜=0

disp(’Error: dim_theta divided by num_steps must be an integer.’)
return

elseif num_steps<3
disp(’Error: the approximation for the external theta integral needs ↙

three rectangles at least.’)
return

end

% Monte Carlo sample size
tau_mc=1250;

% Measurement scheme
[outcomes_space,proj_columns] = mz_pom(state_choice,pom_choice, ↙
prior_width, prior_mean);

% State after the phase shift, final state and amplitudes
amplitudes=zeros(length(outcomes_space),dim_theta);
for z=1:dim_theta

after_phase_shift=sparse(phase_shift_diff(op_cutoff,theta(z)) ↙
*initial_state);

for x=1:length(outcomes_space)
pom_element=proj_columns(:,x);
amplitudes(x,z)=sparse(pom_element’*after_phase_shift);

end
end

% Likelihood function
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likelihood=amplitudes.*conj(amplitudes);
disp(’The likelihood function has been created.’)
if (1-sum(likelihood(:,1)))>1e-7

error(’The quantum probabilities do not sum to one.’)
end

% Prior probability
prior=ones(1,dim_theta);
prior=prior/trapz(theta,prior);

% Bayesian inference
epsilon_bar=0;
for index_real=1:step:dim_theta

epsilon_n=zeros(1,mu_max); % Preallocate vector
epsilon_n_sum=zeros(1,mu_max);
for times=1:tau_mc

% Prior density function
prob_temp=prior;
for runs=1:mu_max

% (Monte Carlo) Interferometric simulation
prob_sim1=likelihood(:,index_real);
cumulative1 = cumsum(prob_sim1); % Cumulative function
prob_rand1=rand; % Random selection
auxiliar1=cumulative1-prob_rand1;

for x=1:length(outcomes_space)
if auxiliar1(x)>0

index1=x;
break

end
end

% Posterior density function
prob_temp=sparse(prob_temp.*likelihood(index1,:));
if trapz(theta,prob_temp)>1e-16

prob_temp=prob_temp./trapz(theta,prob_temp);
else

prob_temp=0;
end

% Experimental square error
theta_expe=trapz(theta,prob_temp.*theta);
theta2_expe=trapz(theta,prob_temp.*theta.ˆ2);
epsilon_n(runs)=theta2_expe-theta_expeˆ2;

end

% Monte Carlo sum
epsilon_n_sum=epsilon_n_sum+epsilon_n;

end
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% Monte Carlo approximation for the Bayesian error
epsilon_average=epsilon_n_sum/(tau_mc);
epsilon_bar=epsilon_bar+epsilon_average*prior(index_real) ↙

*(theta(2*step)-theta(step));
end
epsilon_trials=epsilon_bar;

The numerical precision for our calculation of ϵ̄mse(µ) can be estimated using the
identity ∫

dθp(θ)θ2 =
∫
dθ′p(θ′)

∫
dm p(m|θ′)

∫
dθp(θ|m)θ2, (B.1)

where the right hand side is to be calculated numerically (with a code analogous to
that presented above) and to be compared to the analytical solution for the left hand
side. We have found that our numerical results for the Mach-Zehnder interferometer
are valid up to the third significant figure.
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Appendix C

Numerical toolbox for
multi-parameter metrology

C.1 Multi-parameter prior information analysis

% Two-parameter prior information analysis
%
% Prior information analysis for a qubit sensing network. The basic logic
% of the method parallels that for the single-parameter case (see appendix
% B.5 and chapter 6 for more details).

% Initial parameters
prior_mean1=pi;
prior_mean2=prior_mean1;
prior_width1=2*pi;
prior_width2=2*pi;
mu_max=100;

% True values for the unknown parameters
theta1_real=1;
theta2_real=2;

% Initial state
gamma_par=1; % Local strategy
%gamma_par=0; % Maximally entangled strategy
%gamma_par=0.530696; % Asymptotically optimal strategy
%gamma_par=0.3343605926149827; % Balanced startegy
initial_state=sparse([1 gamma_par gamma_par 1])’/sqrt(2+2*gamma_parˆ2);

% Generators
sigmaz=sparse([1 0; 0 -1]);
g1=kron(sigmaz,identity(2))/2;
g2=kron(identity(2),sigmaz)/2;

% Asymptotically optimal local POM (F = F_q, chapter 6)
proj1=sparse([-1 -1 1 1])’/2;
proj2=sparse([1 1 1 1])’/2;



189

proj3=sparse([1 -1 -1 1])’/2;
proj4=sparse([-1 1 -1 1])’/2;
proj_columns=[proj1’;proj2’;proj3’;proj4’]’;

% Optimal single-shot POM (chapter 7)
% proj1=sparse([1i 1 1 -1i])’/2;
% proj2=sparse([-1i 1 1 1i])’/2;
% proj3=sparse([1i -1 1 1i])’/2;
% proj4=sparse([-1i -1 1 -1i])’/2;
% proj_columns=[proj1’;proj2’;proj3’;proj4’]’;

% Parameter domain
dim_theta=200;
a1=prior_mean1-prior_width1/2;
b1=prior_mean1+prior_width1/2;
theta1=linspace(a1,b1,dim_theta);
a2=prior_mean2-prior_width2/2;
b2=prior_mean2+prior_width2/2;
theta2=linspace(a2,b2,dim_theta);

% State after encoding the parameters, final state and amplitudes
amplitudes=zeros(size(proj_columns,2),dim_theta,dim_theta);
amplitudes_sparse=zeros(dim_theta,dim_theta,size(proj_columns,2));
for z1=1:dim_theta

for z2=1:dim_theta
after_encoding=sparse(expm(-1i*(g1*theta1(z1)+g2*theta1(z2)))) ↙

*initial_state;
for x=1:size(proj_columns,2)

povm_element=proj_columns(:,x);
amplitudes_temp=sparse(povm_element)’*sparse(after_encoding);
amplitudes(x,z1,z2)=amplitudes_temp;
amplitudes_sparse(z1,z2,x)=amplitudes_temp;

end

% The second method of generating the amplitudes is included in
% order to use sparse later in the code.

end
end

% Likelihood function
likelihood=amplitudes.*conj(amplitudes);
if (1-sum(likelihood(:,1,1)))>1e-7

error(’The quantum probabilities do not sum to one.’)
end
likelihood_sparse=amplitudes_sparse.*conj(amplitudes_sparse);
if (1-sum(likelihood_sparse(1,1,:),3))>1e-7

error(’The quantum probabilities do not sum to one.’)
end

% Prior probability
prior=ones(dim_theta,dim_theta);
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prior=prior/trapz(theta2,trapz(theta1,prior));

% Simulation of the true values for the unkonwn parameters
for y=1:dim_theta

if theta1(y)>theta1_real || theta1(y)==theta1_real
index_real1=y;
break

end
end

for y=1:dim_theta
if theta2(y)>theta2_real || theta2(y)==theta2_real

index_real2=y;
break

end
end

% Bayesian simulation
outcomes=zeros(1,mu_max);
for runs=1:mu_max

% Simulation of the experimental outputs
prob_sim=likelihood(:,index_real1,index_real2);
cumulative1 = cumsum(prob_sim); % Cumulative function
prob_rand=rand; % Random selection
auxiliar=cumulative1-prob_rand;

for x=1:size(proj_columns,2)
if auxiliar(x)>0

index=x;
break

end
end

outcomes(runs)=index;
end

% Prior density function
prob_temp=prior;
for runs=1:mu_max

% Updated posterior density function
ytemp=outcomes(runs);

likesimulated=likelihood_sparse(:,:,ytemp);
prob_temp=sparse(prob_temp.*likesimulated);
prob_norm=sparse(trapz(theta2,trapz(theta1,prob_temp,1),2));
if prob_norm>1e-16

prob_temp=prob_temp/prob_norm;
else

prob_temp=0;
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end
prob_temp=sparse(prob_temp);

end

% Plot of the posterior
contour(theta1’,theta2’,prob_temp,’LevelStep’,0.1,’Fill’,’on’)
xticks([0 pi/4 pi/2 3*pi/4 pi 5*pi/4 3*pi/2 7*pi/4 2*pi])
xticklabels({’0’, ’\pi/4’, ’\pi/2’, ’3\pi/4’, ’\pi’, ’5\pi/4’, ’3\pi/2’, ↙
’7\pi/4’,’2\pi’})
yticks([0 pi/4 pi/2 3*pi/4 pi 5*pi/4 3*pi/2 7*pi/4 2*pi])
yticklabels({’0’, ’\pi/4’, ’\pi/2’, ’3\pi/4’, ’\pi’, ’5\pi/4’, ’3\pi/2’, ↙
’7\pi/4’,’2\pi’})
xt = get(gca, ’XTick’);
fontsize=32;
set(gca, ’FontSize’, fontsize,’FontName’,’Times New Roman’);
yt = get(gca, ’YTick’);
set(gca, ’FontSize’, fontsize,’FontName’,’Times New Roman’);
grid

C.2 Multi-parameter mean square error for any
number of trials

% Mean square error for the estimation of two linear functions
%
% The estimation scheme is a quantum sensing network with two qubits.
%
% Note that we use the trapezoidal rule ’trapz’ for the inner parameter
% integrals because these have peaked integrands, while Simpson’s Rule
% ’simps’ is a better choice when this problem does not arise, which is
% the case for the outer parameter integrals.
clear

% Initial parameters
prior_mean1=pi/4;
prior_mean2=pi/4;
prior_width1=pi/2;
prior_width2=pi/2;
mu_max=1;

% Weighting matrix
WD=[1 0; 0 1]/2;

% Transformation representing the original parameters
%K=[1 0; 0 1];

% Transformation representing two linear functions
V=[2/sqrt(4+piˆ2) 2/sqrt(5); pi/sqrt(4+piˆ2) 1/sqrt(5)];
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% Combination of linear transformation and weighting matrix
G=V*WD*V’;

% Initial state
gamma_par=1; % Local strategy
%gamma_par=0; % Maximally entangled strategy
%gamma_par=0.530696; % Asymptotically optimal strategy
%gamma_par=0.3343605926149827; % Balanced startegy
initial_state=sparse([1 gamma_par gamma_par 1])’/sqrt(2+2*gamma_parˆ2);

% Generators
sigmaz=sparse([1 0; 0 -1]);
g1=kron(sigmaz,identity(2))/2;
g2=kron(identity(2),sigmaz)/2;

% Asymptotically optimal local POM (F = F_q, chapter 6)
proj1=sparse([-1 -1 1 1])’/2;
proj2=sparse([1 1 1 1])’/2;
proj3=sparse([1 -1 -1 1])’/2;
proj4=sparse([-1 1 -1 1])’/2;
proj_columns=[proj1’;proj2’;proj3’;proj4’]’;

% Optimal single-shot POM (chapter 7)
% proj1=sparse([1i 1 1 -1i])’/2;
% proj2=sparse([-1i 1 1 1i])’/2;
% proj3=sparse([1i -1 1 1i])’/2;
% proj4=sparse([-1i -1 1 -1i])’/2;
% proj_columns=[proj1’;proj2’;proj3’;proj4’]’;

% Parameter domain
dim_theta=100;
dim_theta_out=20;
a1=prior_mean1-prior_width1/2;
b1=prior_mean1+prior_width1/2;
theta1=linspace(a1,b1,dim_theta); % Inner parameter integrals
theta1_out=linspace(a1,b1,dim_theta_out); % Outer parameter integrals
a2=prior_mean2-prior_width2/2;
b2=prior_mean2+prior_width2/2;
theta2=linspace(a2,b2,dim_theta);
theta2_out=linspace(a2,b2,dim_theta_out);

% Monte Carlo sample size
tau_mc=200;

% State after encoding the parameters, final state and amplitudes
amplitudes=zeros(size(proj_columns,2),dim_theta,dim_theta);
amplitudes_sparse=zeros(dim_theta,dim_theta,size(proj_columns,2));
for z1=1:dim_theta

for z2=1:dim_theta
after_encoding=sparse(expm(-1i*(g1*theta1(z1)+g2*theta1(z2)))) ↙

*initial_state;
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for x=1:size(proj_columns,2)
povm_element=proj_columns(:,x);
amplitudes_temp=sparse(povm_element)’*sparse(after_encoding);
amplitudes(x,z1,z2)=amplitudes_temp;
amplitudes_sparse(z1,z2,x)=amplitudes_temp;

end

% The second method of generating the amplitudes is included in
% order to use sparse later in the code.

end
end

% Likelihood function
likelihood=amplitudes.*conj(amplitudes);
if (1-sum(likelihood(:,1,1)))>1e-7

error(’The quantum probabilities do not sum to one.’)
end
likelihood_sparse=amplitudes_sparse.*conj(amplitudes_sparse);
if (1-sum(likelihood_sparse(1,1,:),3))>1e-7

error(’The quantum probabilities (sparse version) do not sum to one.’)
end

% Prior probability
prior=ones(dim_theta,dim_theta);
prior=prior/trapz(theta2,trapz(theta1,prior));
prior_out=ones(dim_theta_out,dim_theta_out);
prior_out=prior_out/trapz(theta2_out,trapz(theta1_out,prior_out));

% Bayesian mean square error
epsilon_out=zeros(dim_theta_out,dim_theta_out);
for index_out1=1:dim_theta_out

for index_out2=1:dim_theta_out

% Matching outer and inner parameter indices
for y=1:dim_theta

if theta1(y)>theta1_out(index_out1) || ↙
theta1(y)==theta1_out(index_out1)

index_real1=y;
break

end
end

for z=1:dim_theta
if theta2(z)>theta2_out(index_out2) || ↙

theta2(z)==theta2_out(index_out2)
index_real2=z;
break

end
end

epsilon_n1=zeros(1,mu_max);
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epsilon_n2=zeros(1,mu_max);
epsilon_n_offdia=zeros(1,mu_max);
epsilon_n_sum=zeros(1,mu_max);
for times=1:tau_mc

% Prior density function
prob_temp=sparse(prior);
for runs=1:mu_max

% (Monte Carlo) Outcome simulation
prob_sim=likelihood(:,index_real1,index_real2);
cumulative = cumsum(prob_sim); % Cumulative function
prob_rand=rand; % Random selection
auxiliar=cumulative-prob_rand;

for x=1:size(proj_columns,2)
if auxiliar(x)>0

index_mc=x;
break

end
end

% Posterior density function
likesimulated=likelihood_sparse(:,:,index_mc);
prob_temp=sparse(prob_temp.*likesimulated);
normalisation=sparse(trapz(theta2,trapz ↙

(theta1,prob_temp,1),2));
if normalisation>1e-16

prob_temp=prob_temp/normalisation;
else

prob_temp=0;
end
prob_temp=sparse(prob_temp);

% Bayes estimator for the first parameter
theta_expe1=trapz(theta1,trapz(theta2,prob_temp,2) ↙

.*theta1’,1);
theta2_expe1=trapz(theta1,trapz(theta2,prob_temp,2) ↙

.*theta1’.ˆ2,1);
epsilon_n1(runs)=theta2_expe1-theta_expe1ˆ2;

% Bayes estimator for the second parameter
theta_expe2=trapz(theta2,trapz(theta1,prob_temp,1) ↙

.*theta2,2);
theta2_expe2=trapz(theta2,trapz(theta1,prob_temp,1) ↙

.*theta2.ˆ2,2);
epsilon_n2(runs)=theta2_expe2-theta_expe2ˆ2;

% Off-diagonal terms (the covariance matrix is symmetric)
theta2_offdia=trapz(theta1,trapz(theta2,prob_temp ↙

.*theta2,2).*theta1’,1);
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epsilon_n_offdia(runs)=theta2_offdia-theta_expe1 ↙
*theta_expe2;

end

% Monte Carlo sum with transformation and weighting matrices
epsilon_n_sum=epsilon_n_sum+G(1,1)*epsilon_n1+G(2,2) ↙

*epsilon_n2+2*G(1,2)*epsilon_n_offdia;
end

% Monte Carlo approximation
epsilon_average=epsilon_n_sum/(tau_mc);
for runs_out=1:mu_max

epsilon_out(index_out1,index_out2,runs_out) ↙
=epsilon_average(runs_out);

end
end

end

% Outer integral
epsilon_trials=zeros(1,mu_max);
for runs_out=1:mu_max

epsilon_temp=epsilon_out(:,:,runs_out);
epsilon_trials(runs_out)=simps(theta2_out,simps(theta1_out,prior_out ↙

.*epsilon_temp));
end

% Observations
observations=1:1:mu_max;

% Fisher information matrix
F11=4*(initial_state’*g1ˆ2*initial_state-(initial_state’ ↙
*g1*initial_state)ˆ2);
F12=4*(initial_state’*g1*g2*initial_state-(initial_state’ ↙
*g1*initial_state)*(initial_state’*g2*initial_state));
F21=4*(initial_state’*g2*g1*initial_state-(initial_state’ ↙
*g2*initial_state)*(initial_state’*g1*initial_state));
F22=4*(initial_state’*g2ˆ2*initial_state-(initial_state’ ↙
*g2*initial_state)ˆ2);
F=[F11 F12; F21 F22];

% Quantum Cramer-Rao bound
qcrb=trace(G/F)./(observations);

% Save results
%save(’qnetwork_results.txt’,’observations’,’epsilon_trials’,’qcrb’, ↙
’-ascii’)
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