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Abstracts 
"

Bacillus thuringiensis (Bt) is a gram positive spore forming bacterium that has 

entomopathogenic properties. It has the ability to synthesize insecticidal proteins in the 

sporulation phase of its life cycle and package them as parasporal crystals. These so-called 

Cry proteins are known to have insecticidal activity against many insect orders including 

Hymenoptera, nematodes, Lepidoptera, Diptera and Coleoptera. This study aimed to 

understand the basis of the specificity of the Cry2A family of toxins against the diamondback 

moth Plutella xylostella. The Cry2A toxins were characterized and bioassayed against P. 

xylostella, the results of which were used to inform the design of hybrid and mutant proteins.  

These were used to establish the relationship between toxin sequence and function with 

respect to their activity against this insect. The results showed that both domain I and II of 

the Cry2A toxins influenced specificity towards P. xylostella and that different populations 

of this insect show dramatically different susceptibilities to individual Cry2A toxins. Two 

different expression systems were compared and whilst differences in yield and purity were 

observed, there were no differences in the specific activity of the expressed toxins. Finally, 

an attempt was made to interchange the activity of Cry2Ac against P. xylostella and the 

activity of Cry41Aa against human cancer cells through domain swaps. 
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AC: Adenylate cyclase 

APS: Ammonium persulfate 

BBMV: brush border membrane vesicle 

 Bp: base pairs 

BSA: Bovine Serum Albumin 

Bt: Bacillus thuringiensis 

°C: Degrees Celsius 

Chymo: chymotrypsin 

Cry: Crystal 

Cry2AcNT: Cry2Ac N-terminus 

Cry2AbNT: Cry2Ab N-terminus 

Cry2ADI: Domain I of Cry2A toxin  

Cry2AW/O DI: Cry2A toxin without domain I 

Cry2AW/O DII: Cry2A toxin without domain II 

Cry2AW/O DIII:  Cry2A toxin without domain III 

Cyt: Cytolytic 

KDa: Kilo Dalton 

DNA: Deoxyribonucleic Acid 

G: gram 

E.coli: Escherichia coli 

IPTG: IsopropyI β-D-1-thiogalactopyranoside 

L:  Litre 

LB:  Luria Broth 

LC50: Half maximal lethal concentration 

MW: molecular weight 

M: Molar concentration  
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OD: optical density   

ORF: open reading frame 

PAGE: Polyacrylamid Gel Electrophoresis 

PBS: Phosphate buffer saline 

PCR: Polymerase Chain Reaction 
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SoL: solubilised 

TBE: tris-borate EDTA 
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1. Introduction 
 

  Bacillus thuringiensis 
 

Bacillus thuringiensis (Bt) is a gram-positive and spore-forming bacterium. It is a member 

of the Bacillus cereus family which also include B. cereus, B. anthracis and B. mycoides 

(Rasko et al., 2005). It was first isolated by Japanese biologist Ishiwata in 1902 from diseased 

larvae of silkworm, Bombyx mori and formally described by Berliner in 1915 (Milner et al., 

1994). Also, Bt has been isolated from different ecological habitats such as soil, plant 

surfaces, stored crop products and insects, and also occurs naturally in the gut of caterpillars 

and several types of moths and butterflies (Madigan & Martinko, 2005). The Cry proteins 

are known to have insecticidal activity toward different insect orders including Lepidoptera, 

Diptera and Coleptera and Hymenoptra (Hofte and Whiteley, 1989, de Maaged et al., 

2001).in addition some of Cry toxins have shown activity against non-insect species 

particularly nematodes, mites and protozoa (de Maagd et al., 2001, Wei et al., 2003).   

 

Figure 1.1. Transmission electron micrograph of a sporulating Bt cell. δ-endotoxins Adapted from (deMaagd et 

al.,2001) 
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However, Bt is distinguishable from other member of B. cereus group due to its production 

of large crystalline inclusion bodies that contain entomocidal protein protoxins figure (1.1) 

(Asano et al.,1997). Such crystals consist of two kinds of δ-endotoxins called the crystal 

(Cry) protein family, named so because of their existence within the crystal, whereas the 

cytolysin (Cyt) protein family are named so because they have specified in vitro cytolytic 

activity (de Maagd et al., 2001; Crickmore et al., 1998). The third family of Bt toxin known 

as vegetative insecticidal proteins (Vips) which is produced from Bt during vegetative growth 

phase (Palma et al., 2014). 
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Figure 1.2. List of Bt toxins. Toxins listed according to their primary rank, the majority of Cry toxins belong to three 
domain Cry toxins family coloured with blue, two other toxins Bin and ETX/MTX2 like are coloured with pink and 
orange respectively. Those toxins colour in red belong to the parasporin class. Cry toxin highlighted with other 
colour indicated toxins are that are not currently classified into existing Cry toxin family (taken from Adang et al., 
2014). 
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  Bt toxins nomenclature 
 

Hofte and Whiteley (1989) introduced the first systematic nomenclature for toxins which was 

based on the spectrum of activity of proteins as well as their size and apparent relatedness to 

nucleotide and amino acid sequences (Hofte and Whiteley1989). Currently, the crystal toxins 

are classified based on amino acid sequence homology, where each protoxin acquired a name 

consisting of the mnemonic Cry (or Cyt) and four hierarchical ranks, consisting of number, 

capital letters, lower case letter and number depending on it place in phylogenetic tree. 

Protein with less than 45% identity differ in primary rank and 78%, 95%, and 100% identity 

differ in secondary, tertiary and quaternary rank respectively (Crickmore et al., 1998). 

 

1.2.1 Cry toxin 
 

Cry toxins are officially defined as proteins that have significant sequence similarity to 

existing toxins within the nomenclature or be a B. thuringiensis parasporal inclusion protein 

that exhibits pesticide activity, or some experimentally verifiable toxic effect to a target 

organism (Crickmore et al., 1998). However, the name of Cry toxin derives from the fact that 

it forms a parasporal crystal. Cry toxins family contain about 300 different crystal proteins, 

which have been classified to 74 different types of Cry proteins figure 1.2 (Crickmore et al., 

2016). Cry proteins are known to have insecticidal activity against different insect orders 

including Lepidoptera, Diptera and Coleptera and Hymenoptra, snail and human cancer cell 

figure1.3 (Palma et al., 2014). 
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Figure 1.3. Represents the host spectrum of Bt toxins (Cry and Cyt) based on its target specificity (taken from 
Palma et al., 2014). 

 

Comparing the Cry proteins has led to the location of shared sites that are critical in insect 

specificity and toxic function (Pigott and Ellar, 2007). Höfte and Whiteley (1989) generated 

alignments between 13 Cry protein sequences, showed high degree of diversity among the 

Cry proteins, and revealed the existence of five conserved blocks of amino acids that are 

prevalent in most Cry proteins. This was made up along with additional work done by (Adang 

et al., 2014) (Figure 1.4). Block 1 exists in domain I, blocks 4 and 5 are contained in domain 

III while blocks 2 and 3 span the junction between domains I and II and domains II and III 

respectively (Höfte and Whiteley, 1989). Cry toxins exist in long and short forms (130-

140kDa and 70kDa) and many three domains Cry proteins have the five conserved blocks. 
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The blocks indicate that the sequence of amino acid could play a critical role in toxin function 

or stability. The conserved blocks exist within the N-terminal part of the longer toxins, which 

is approximately of equal length with the shorter toxins. The C-terminal part has a protoxin 

domain that is absent within the toxins having smaller length and lacks any of the five 

conserved blocks (Pigott and Ellar, 2007).  

 

Figure 1.4. Represent different Bt Cry toxins. The lengths of Cry protoxins and position of the five conserved 
blocks are shown as colored inserts (taken from Adang et al., 2014). 
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The crystal structure of various three domain proteins have been solved using X-ray 

crystallographic techniques: these include Cry1Aa (Grochulski et al., 1995), Cry2Aa (Morse 

et al., 2001), Cry3Aa (Li et al., 1991), Cry3Bb (Galitsky et al., 2001), Cry4Aa (Boonserm et 

al. 2006), and Cry4Ba (Boonserm et al. 2005), and Cry8Ea1 (Guo et al. 2009). Figure (1.5) 

shows the structure of several three domain Cry toxins. 

 

Figure 1.5. Represents the structure of three domain Cry toxins (Cry1Aa, Cry2Aa, Cry3Aa and Cry4Ba).  Each 
domain indicated by colour, domain I shown in red, domain II in green and domain III in blue (taken from Pigott 
and Ellar, 2007). 

   

The three domain Cry toxins consist of three structural domains and share a high degree of 

topological similarity. The domain I N-terminal is composed of seven α-helix bundle that 
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exceeds 30Å in length and can span a hydrophobic cellular membrane (Pigott and Ellar 

2007). The central hydrophobic α-helix 5 is enclosed by 6 amphipathic helices (de Maagd et 

al., 2001). This domain I has a similar function to anther pore- forming bacterial toxins, later 

it was proven to be true that domain I is responsible for toxin membrane insertion and pore 

formation (Li et al., 1991). Domain II is composed of three antiparallel β-sheets, which are 

responsible for receptor binding and specificity (Schnepf et al., 1998). In the case of domain 

II there are three loops suggested to be involved in receptor binding (Adang et al., 2014). 

Domain III constitutes two anti-parallel β-sandwich sheets in a jellyroll topology. The two 

β-sheets have 5 β-strands, the internal sheet is attached to the second domain whereas the 

external sheet is exposed to solvent (George and Crickmore, 2012, Li et al., 1991). The third 

domain is involved in receptor binding and possibly pore formation, also it seems to have 

other function, which is maintaining the structural integrity of the toxin by protecting it from 

proteolysis (Deist et al., 2014).  The ETX_MTX2 family includes 11 members that were 

classified under distinct primary rankings in the nomenclature: Cry15, Cry23, Cry33, Cry38, 

(Coleoptera), Cry51 (Coleoptera and Hemiptera), Cry60 (Diptera), Cry45 (Parasporin-4) and 

Cry64 (Parasporin-5) (human cancer cells). They all show features of the ETX/MTX2 family 

that include the MTX2 protein from Lysinibacillus sphaericus and the Clostridium 

perfringens epsilon toxin (Adang et al., 2014). However, they have a different structure from 

the three domain toxins, but are still believed to act via forming pores in the membranes of 

the target cells (Bokori-Brown et al., 2011). An example of the ETX/MTX structure is 

depicted in (figure 1.6).  

 



9"

"

 

Figure 1.6. Three dimensional structure of Cry51Aa1. The structure of Cry51Aa1 was solved at 1.65 Å resolution; 
PDB 4PKM.The secondary structure components include 5 helices and 15 β-strands presented in yellow and cyan 
respectively. The amphipathic β-hairpin is shown in magenta (Xu et al., 2015a). 
 
 
The Bin-like toxins are a class that is constituted of 13 toxins. Their name is derived from 

the fact that they resemble the two homologous components (Bin A and Bin B) of the 

mosquitocidal binary toxin from L. sphaericus. Although their molecular structure as well as 

their mechanism of action is unclear, there is some evidence that they form pores and that 

one of the components acts intracellular (Berry, 2012). (Figure1.7) represents the 3-D 

structure of Bin A and Bin B of L. sphaericus. More also, during the vegetative growth phase 

of Bt they synthesis an insecticidal protein which is further secreted into the growth medium. 

They constitute what is referred to as vegetative insecticidal proteins (Vips) and it has been 

to have activity against lepidopteron, coleopteran and some homopteran insects. They are 
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classified into Vip1, Vip2, Vip3 and Vip4 based on their amino sequence similarities. Vip1 

and Vip2 are known as the binary toxin and they show insecticidal activity against some 

coleopteran, whereas Vip3 toxins are active against lepidopteron. The host spectrum of the 

Vip4Aa1 toxin is still unknown to date (Palme et al., 2014).  

 

Figure 1.7. Three dimensional structure of Bin A and Bin B of L. sphaericus. Structural similarity between Bin A 
and Bin B composed of trefoil and pore-forming domains. Each molecule is approximately 100 Å long and 25-30 Å 
in diameter. α and β represent carbohydrate-binding molecules where the structural differences are suggested to be 
located (Colletier et al., 2016). 

 

1.2.2 Cyt Toxins 
"

Cyt toxins from B. thuringiensis are cytolytic to different insect and mammalian cells. They 

have been classified into three major classes Cyt1, Cyt2 and Cyt3. However, Cyt toxins 

produced by various strains of Bt and these toxins shown specific toxicity to Dipteran insects 

but are cytolytic to a broad range of cells including red blood cells in vitro (Promdonkoy and 
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Ellar, 2003). The structure of two members of this group, Cyt1Aa and Cyt2Ba have been 

elucidated and reveal a single domain three-layer alpha-beta protein with a unique fold 

(figure 1.8) (Cohen et al., 2008 and 2011). The mechanism of action is unclear and may be 

either pore forming (Promdonkoy and Ellar, 2000) or aggregation on the target cell surface 

leading to the destruction of the lipid bilayer in a detergent-like manner (Butko, 2003, 

Rodriguez-Almazan et al., 2011). 

 

Figure 1.8. Three-dimensional structure for toxin Cyt1Aa and activated Cyt2Ba monomer from PDB accession 
numbers 3RON [20] and 2RCI [66], respectively. Adapted from (Cohen et al., 2008 and 2011). 

 

1.2.3 Cry2A family of toxins 
"

The Cry2A proteins comprise a group of 11 small toxins with molecular weight between 61-

72kDa, and occur in cuboidal crystals produced by Bt (Donovan et al., 1988, Nicholls et al., 

1989, Dankocsik et al., 1990).  The Cry2A proteins are a subset of the Cry toxins that possess 
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the dual activity spectra to Dipteran and Lepidopteran insects (Donovan et al., 1988 and 

Yamamoto et al., 1981). However, the Cry2Aa toxin is highly toxic to both moth and 

mosquito.  

  Of the Cry2A proteins the only structure of Cry2Aa has been elucidated, it is composed of 

633-amino acids, the N-terminal region consists of 49- amino acids peptide which gets 

cleaved upon activation to be able to form a mature toxin (Morse et al., 2001). Moreover, the 

three domains structure of Cry2Aa protein has the same topology to those of the activated 

toxins of Cry3Aa (Li et al., 1991) and Cry1Aa (Grochulski et al., 1995), despite having little 

sequence identity to Cry2Aa (20% of Cry3Aa and 17% of Cry1Aa). 

 On the basis of modeling studies using Cry2Aa, Morse et al. (2001) suggested that 

proteolytic activation of the toxin may involve the cleavage of 49 N-terminal amino acids 

resulting in the exposure of residues consisting of a potentially binding toxin-receptor 

surface. 

 

   Parasporins: Anti-cancer toxins  
 

 Mizuki et al (1999) reported a non-insecticidal parasporal inclusion isolated from Bt strains 

that ware cytotoxic to human cancer cells (Mizuki et al., 1999 and Ohba et al., 2000). There 

are a great number of Bt strains with no known insecticidal activity. However, much work 

done by Mizuki et al. (1999), screen a large number of Bt strains to investigate their cytocidal 

activity against human leukemia T-cell and their hemolytic activity against sheep 

erythrocytes (Mizuki et al., 1999). Out of 1684 strains with no hemolytic activity, 42 strains 

were shown to have cytotoxic activity against MOTL-4, and they did not show significant 
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insecticidal activity when tested against 11 insect species of five orders: Lepidoptera, 

Diptera, Orthoptera, Dictyoptera and Isoptera. The three selected strains namely 84-HS-1, 

89-T-26-17 and 90-F45-14 were non-insecticidal, non-hemolytic and were found to be 

cytocidal to Leukemia T cell and other human cancer cells and the first two strains were able 

to discriminate between Leukemia and normal T-cell with a preferential activity against the 

cancer line (Mizuki et al., 1999 and Ohba et al., 2009). Researches have provided evidence 

that Bt strains with parasporin activities are common in Bt natural populations occurring in 

Japan, Vietnam, Canada, Caribbean, Malaysia and India (Ohba et al., 2009 and Gonzalez et 

al., 2011).  To date 19 parasporins have been discovered and placed in the list of parasporins 

by the committee of parasporin and they have been classified this toxin into six main classes 

based on the primary amino acid sequence of protoxins, namely parasporin 1(PS1), 

parasporin 2 (PS2), parasporin 3(PS3), parasporin 4 (PS4), parasporin 5 (PS5) and parasporin 

6 (PS6) (http://parasporin.fitc.pref.fukuoka.jp/intro.html). Moreover, like other Cry toxin a 

novel parasporin is assigned a four rank name based on the degree of sequence identity to 

previously identified toxins (Crickmore et al., 1998). Out of all six parasporins, parasporin 3 

is the topic of this research.  

1.3.1 Parasporin-3 (Cry41Aa) 
"

Parasporin-3, also known as Cry41Aa is an 88kDa protein produced by Bt strain A1462 

discovered within Japanese soil. Once solubilised and activated through proteolytic cleavage 

in a comparable way to insecticidal Cry proteins, it generated a 64kDa product that was 

cytotoxic to human tumour cell lines HL60 (myeloid leukaemia cells) and HepG2 

(Hepatocellular carcinoma) (figure 1.9) although non-toxic to Jurkat, HeLa, and mammalian 
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non-cancerous cell lines (Yamashita et al., 2005). Moreover, it was viewed that the cytocidal 

consequences of treatment by means of activated Cry41Aa on HepG2 cells - principally cell 

inflammation and lysis - resemble the outcome of insecticidal Cry proteins on pest mid gut 

epithelial cells (Yamashita et al., 2005). 

Cry41Aa is encoding by an operon of three open reading frames orf1, 2 and 3, they are 

located and oriented in the same direction. In addition, all orfs had putative ribosome binding 

sites; ORF1 consists of a protein with a predicted molecular weight of 19 KD and has no 

recognized role. ORF2 contains a protein with an approximate molecular weight of 93 KD, 

which has a cytocidal activity against human cancer cells. ORF 3 is contain a protein with 

molecular weight of 82 KD, it involves in crystallization and expression (Yamashita et al., 

2005). Cry41Aa is the most closely related parasporin to the insecticidal Cry toxins, although 

it does contain a C-terminal beta-trefoil ricin domain not normally found in insecticidal Cry 

proteins. The five preserved blocks are found in ORF 2 that demonstrate tough homology 

with the insecticidal Cry proteins proposing that Cry41Aa contains the three-domain 

arrangement feature of insecticidal Cry proteins (Ohba et al., 2009). Cry41Aa has the 

narrowest activity spectrum among the PS proteins. It is cytotoxic to HepG2 and HL60 cells 

but harmless to numerous other tumour-cell lines which suggests that Cry41Aa contains an 

inherent specificity to these lines. The configuration resemblance between Cry41Aa and 

connected insecticidal Cry proteins together with the comparable cytocidal consequences on 

objective cells cause, to assume that Cry41Aa “destroys particular tumour cells through a 

receptor-mediated system comparable to that of Cry proteins of insecticidal nature” 

(Yamashita et al., 2005). Exploring the specificity of Cry41Aa to tumour-cell lines might 

have possible applications in cancer treatment (Ohba et al., 2009).  
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Figure 1.9. Cytotoxicity spectra and levels of PS-3. The cytotoxic effect of proteinase K activated PS-3 was tested on 
several mammalian cell lines using MTT cell viability assay and EC

50
s were determined. P2 and P3 represent 

Cry41Aa1 and Cry41Ab1 respectively (Yamashita et al., 2005). 
 

  Mode of action of Bacillus thuringiensis Cry toxins: 
 

There are a number of models to explain the ability of Cry toxins to kill particular insects. 

The general accepted model was proposed by Knowles and Ellar, and is known as the colloid-

osmotic lysis model (Knowles and Ellar, 1987).  

Their study was based on the experiment carried out on three domain Cry toxins on 

lepidopteran larvae. First, the Bt crystals are ingested by insect larvae, then solubilized in the 

alkaline environment of the insect’s gut. Research done by Angus, (1954) showed the 

importance of alkaline environment for solubilisation (Angus, 1954). The findings were 
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confirmed by Du et al, (1994) where only the insects with digestive juice able to solubilize 

the crystal were susceptible to Cry toxin (Du et al., 1994, Jurat-Fuentes and Crickmore, 

2017). The protoxin is cleaved by mid gut proteases to the toxic core, activated toxins bind 

to a specific receptor in the gut brush border membrane. Following toxin-receptor interaction, 

toxin oligomerization occurs. In vitro studies demonstrated that oligomerization of 

monomeric Cry toxins requires interaction with cell membrane (Gϋereca and Bravo, 1999). 

Following oligomerization, the toxin inserts itself into membrane, causes nonspecific pores 

in the membrane of the target cells. The presence of pores promotes changes in membrane 

potential, ion imbalance, influx of water, cell swelling, colloid-osmotic lysis of gut cells, and 

larval death (Knowles and Dow, 1993). There are many studies that aim to clarify the 

mechanism of toxicity, including receptor toxin complexes as well as revealed crystal 

structure of Cry toxins. Some of the main models are explained below. 

1.4.1 The Bravo model 
"

The Bravo model based on experiments done with Cry1Ab and Manduca sexta, and 

suggested that the binding of Cry1Ab requires two different receptors, aminopeptidase N 

(APN) and cadherin–like protein (Bt-R1) (Bravo et al.,2004). The model proposes 

sequentially binding of activated monomers to these receptors. This study was based on 

Immunoprecipitation experiments which showed that initial Cry1Ab toxin binding to Bt-

R1followed by binding to APN. Binding to (BT-R1) promotes the cleavage of helix α-1 of 

domain I by membrane-associated proteases, which leads to the formation of oligomer toxin 

which then bind to APN, which then drives the toxin into detergent-resistant membrane 

(DRM) where toxin insertion occurs resulting in formation of pores and subsequent cell lysis 



17"

"

and death (figure1.10). APN was observed in samples immunoprecipitated purified 

oligomeric toxin structure, whereas cadherin (Bt-R1) was detected in samples 

immunoprecipitated with the monomeric Cry1Ab, which proposed that the interaction of two 

receptors happened sequentially with different structural states of the toxin to promote its 

efficient membrane insertion (Bravo et al., 2004). Supportive data comes from Gomes et al., 

2002 who showed that Cry1Ab oligomer was toxic against M. sexta (Gomes et al., 2002). 

However, it’s insertion into membrane vesicles was more efficient compared to the 

monomeric Cry1Ab, indicating that the oligomerization process is necessary for the insertion 

of the toxin into the target cell membranes (Rausell et al., 2004b). 

 

 

Figure 1.10. The mode of action of Cry1A toxin according to Bravo model. The mode of action of Cry toxins involved 
several steps (1) crystal solubilization;(2) protoxin proteolytic activation; (3) monomer binding to Bt-R1 and cleavage of helix a-
1; (4) pre-pore oligomeric structure formation; (5) oligomer binding to APN and mobilization to DRM; (6) pore formation in DRM 
(Bravo et al., 2004). 
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1.4.2 The Zhang model 
"

The second mode of action of Cry toxins proposed by Zhang et al. (2005) suggested that the 

death of the cell is associated with the binding of the monomeric form of Cry1Ab toxin to a 

respective receptor BT-R1which provokes toxicity. However, the interaction of  toxin with 

the cell membrane does not cause lytic pores and does not led to cell death, but was linked 

to Mg2+-dependent signal cascade pathway (Zhang et al., 2005). 

The study of the model was carried out using Cry1Ab and undifferentiated ovarian cell of 

cabbage looper Trichoplusia ni. This cells line named (S5) was engineered to stably express 

cadherin BT-R1 receptor on cell surface. Western blot experiment demonstrated that, it was 

the only monomer form of the toxin that is incorporated into the membrane expressing BT-

R1 receptors, but the oligomeric form of Cry1Ab was detected in membrane of both 

susceptible and non-susceptible cells. Furthermore, blocking the interaction of the cadherin 

binding site prevented toxicity and cell death but not incorporation of oligomeric toxin to cell 

membrane. In addition, the toxin oligomers remain incorporated for several generations 

without any toxic effect (Zhang et al., 2005).  

Zhang et al., (2005) showed that the toxin binding Cry1Ab to cadherin receptor BT-R1 

receptor still occurred in the presence of EDTA and EGTA chelators, but EDTA prevented 

subsequent cell death. Adding Mg2+ to susceptible cells pre-exposed to EDTA restored 

Cry1Ab and microscopic findings showed that removal of this cation 

prevented swelling of susceptible cells. Apparently binding of Cry1Ab to cadherin receptor 
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BT-R1, required for cytotoxicity, is associated with Mg2+ dependent signal cascade pathway 

(Zhang et al., 2005). 

Zhang et al, (2006) proposed that the mode of action, which includes adenylyl cyclase (AC), 

protein Kinase A (PKA) signaling pathway, as demonstrated in (figure 1.11), in this proposed 

model he suggested that, the binding of Cry1Ab toxin to cadherin receptor (BT-R1) 

stimulates a G protein –coupled receptor (GPCR) and adenylyl cyclase, resulting in an 

increase in the level of cAMP and activation of protein kinase A (PKA), all these have been 

shown to disturb the host cell's  structural and functional integrity resulting to its death (Zhang 

et al., 2006). Induction of the adenylyl cyclase protein kinase A pathway is manifested by 

sequential cytological changes that include membrane blebbing, appearance of ghost nuclei, 

cell swelling, and lysis (Zhang et al., 2006).  

Pre-treatment of S5 cells with PKA inhibitors prevented these phenotypic changes of cells 

and protected them from Cry toxin action. In addition, inhibition of Gαs (NF449) and AC 

(ddADP) resulted in lack of cAMP production and reduced the Cry1Ab cytotoxicity while 

the activator (FSK) and potentiator (pCPT-cAMP) of cAMP sensitized the cells and 

enhanced cytotoxicity (Zhang et al., 2006). 
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Figure 1.11. The Zhang model for mode of action of Cry toxin – Mg
2+ 

dependent signal cascade pathway: It 
implicates AC/PKA signalling pathway. It states that monomeric form of the toxin is required in binding to cadherin 
receptor. The binding induces coupled G protein which in turn activates adenylyl cyclase and a rise in cytoplasmic 
cAMP. cAMP levels activate protein kinase A which phosphorylates target proteins resulting the disruption of 
channels and eventual cell death (Zhang et al., 2006). 

 

  Plutella xylostella 
"

The diamondback moth (DBM) Plutella xylostella, is the most destructive insect pest of 

crucifers crops. In 1953, the diamondback moth was the first insect to develop resistance to 

DDT (Ankersmit, 1953, Johnson, 1953). In addition, several countries reported that 

diamondback moth developed resistance to every synthetic insecticide used towards it in the 

field (Talekar and Shelton 1993). However, P. xylostella is one of the most cosmopolitan 

species of Lepidoptera and is found wherever crucifer crops are grown (Talekar and Shelton, 

1993), and it is reported as the first insect   to show resistance to insecticidal toxin from 

Bacillus thuringiensis (Tabashnik et al., 1990). Control failure and insecticidal resistance are 

widespread especially in countries that have tropical climates for instance Southeast Asia, 

Central America, the Caribbean, and the southeastern United States. The economical 
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production of crucifers crops seems to be impossible in some of these areas (Metcalf et al., 

1980).  However, the use of natural enemies of P. xylostella, such as larval parasitoids, as 

biological control agents is often hampered by the indiscriminate use of insecticides in futile 

attempts to overcome resistance (Lim, 1986). Insecticidal B. thuringiensis toxins were 

therefore highly useful as a substitute for broad-spectrum synthetic insecticides as they 

provided efficient control of P. xylostella with minimal non-target effects on parasitoids and 

predators (Sastrosiswojo and Sastrodihardjo, 1986). P. xylostella resistance to B. 

thuringiensis toxin is now widespread in the field (Ferre and Van Rie, 2002, Sayyed et al., 

2005, Tabashnik et al., 1990) and thus there is a great risk that unwise use of insecticides will 

lead to the selection of multiply resistant pest populations. 

Furthermore, an estimated cost of managing this pest was around U.S. $1 billion (Talekar 

and Shelton, 1993), but recently in 2012 the cost of managing the diamondback moth with 

the loss of crops as updated was approximately between U.S. $4 - U.S. $5 billion per year 

(Zalucki et al., 2012). 

 

1.4.3 Life cycle of Plutella xylostella 
"

Diamondback moth (Plutella xylostella) has four stages in its life cycle adult, egg, larva and 

pupa (Talekar and Shelton, 1993). The development time of each stage is dependent on 

temperature (Sarnthoy et al., 1989, Golizadeh et al. 2007). Also, the host crop can affect 

development rate (Hoy et al. 1988). Adults moths are active at dusk and at night, and mating 

occurs at dusk and they start mating in the same day that adults emerge, females lay their 
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eggs a short time after mating, and the perfect time for laying eggs before midnight around 

7:00 and 8:00 PM (Talekar and Shelton, 1993).  

Single female can lay up to 356 eggs in their life cycle, and they are laid on both the upper 

and lower leaf surfaces but preferably on the lower surface away from direct sunlight and 

where there is protection from the wind and the rain, the normal life length for the adults 

around two weeks but they can live for seven or eight weeks (Shrivastava and Dhaliwal, 

2014). According to Capinera (2015), the life expectancy for an adult males and females of 

diamondback moth is about 12 and 16 days. The number of generations varies from 13 to 16 

per year (Talekar and Shelton, 1993, Gautam et al., 2018).  Eggs are small, oval, flattened 

and yellow to pale green, eggs start hatching around five to six days under normal field 

conditions (Talekar and Shelton, 1993). 

Larvae of diamondback moth have four instars and they need a maximum time to complete 

development from 9 to 30 days. The early stage larvae are small, colourless to yellow, and 

have a dark head capsule, mid to later stage of larva is green (Shrivastava and Dhaliwal, 

2014). The duration of completing the development of the four larvae instars depends on 

temperature (Liu et al., 2002; Golizadeh et al., 2007). 

The pupae are yellow to green and it can be seen in a loose silk cocoon, usually found on the 

lower or outer leaves. The duration of complete development of the pupae is around 4 to 15 

days. Once the pupal period is over, the DBM has gone through complete metamorphosis, 

adult will emerge between 1:00 and 4:00 PM with a peak at 2:00 PM and they feed on dew 

and water drops and soon starts mating and begins the cycle all over again (figure 1.12) 

(Talekar and Shelton, 1993). The general colour of the moth is brownish grey; the female is 



23"

"

usually paler than the male.  The inner borders of the forewings are whitish; when united on 

the dorsal area, the wings form the typical diamond   shaped markings. The sexes are 

identified by the anal abdominal segment; in males it is divided longitudinally in the ventral 

area, whereas in females it is not divided (figure 1.13) (Carlos R and Carlos C, 1986). 

 

Figure 1.12. Represent the life cycle of diamondback moth showing the four stages for Plutella xylostella, adult, 
eggs, larvae and pupa. Each picture was taken from the lab. 
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Figure 1.13. (A) Adult ventral abdominal segment for Male and Female of diamondback moth (Carlos R and Carlos 
C etal.1986). (B) Picture taken from the lab showing the difference between male and female. 

 

1.5.2 Control of Plutella xylostella 
"

The control of Plutella xylostella is more necessary now than ever before considering the fact 

that this insect pest has affected crops, such as cabbage, cauliflower, broccoli, brussel sprouts 

etc. In more than 100 countries across the global (Gautam et al., 2018). This has therefore 

resulted in high economic loss in many countries that depend on agriculture as a major source 

of income generation. Farmers have, for the past 30 years, relied on the use of synthetic 

(chemical) insecticides for the control of the P. xylostella. but the ease of resistance to these 

chemicals, which introduction led to the stoppage of the control methods that were in use 

previously, has stimulated interest for the search for a newer, more effective, and reliable 

methods for the control of P. xylostella (Talekar and Shelton, 1993).  Therefore, here we 

would review some of the old methods that have been used in the past for the control of P. 

xylostella populations and the current practices that are in use at the moment. These, for the 

A" B"
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purpose of clarity, we classified into two namely; cultural and the scientific methods for P. 

xylostella population control. 

1.5.2.1 Cultural control methods 
"

Some of the cultural practices that have been used in the past and some of which are being 

reintroduced today for the control of P. xylostella populations are as follows: 

1. Pre-season clean-up 

This method involves removal of all plant debris and weeds from the greenhouse. 

This is because many pests, including P. xylostella are found on other crops or 

broadleaf weeds. Therefore, it is very important to avoid growing other crops next to 

the greenhouse and also prevent the growth of broadleaf weeds near them (Gautam 

et al., 2018). 

2. Balanced use of fertilizers 

The balanced use of fertilizers has been found to play important role in the control of 

insect pest growth for instance, fertilizer applications method that favor the use of 

nitrogen surplus has been shown to cause excessive growth of aphids and other pests 

whereas, the application of potassium at desired levels has been shown to reduce the 

growth of insect pests (Gautam et al., 2018). 

3. Pinching and pruning 

This practice involves the pinching-off, of damage plant parts, flower and spotted 

leaves probably containing insect larvae or egg deposits in the greenhouse. These 

plant debris are placed immediately in a closed container before being disposed-off. 
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This practice is effective in reducing the pest populations of all targeted insects 

including P. xylostella (Gautam et al., 2018). 

4. The use of trap crops 

This is a method that has found common applications before the advantage of modern 

organic insecticides (Talekar and Shelton, 1993). The practice involves the use of 

economically less important plant that are highly desired by P. xylostella within a 

commercial cabbage field. The desired crop, e.g. mustard (Brassica hirta) or rape (B. 

juncea) attract the P. xylostella thus sparing the commercially important crops such 

as cabbage, brussel sprouts etc. from being attacked by the pest with the advent of 

insecticidal resistance, this has found, application in developing countries (Gautam et 

al., 2018, Talekar and Shelton, 1993).  

1.5.2.2 Scientific control methods 
"

The scientific control methods mainly consist of the use of both chemical and biological 

insecticides in the field, and the use of biological control in reducing the populations of P. 

xylostella in the field. 

1. Chemical insecticides 

This method has been the most prevalent in use for the control of P. xylostella in 

the past 50 years (Gautam et al., 2018). Therefore, the over reliance on this 

method for insect control led to a lot of abuse in its usage, whereas application 

rates, decreased effectiveness and eventual breakdown of control efficiency. 

Farmers increased the dosage to over 25 times its required dose, which led to 

decrease effectiveness and cases of insect resistance (Kalra et al., 1997). Some of 
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the chemical insecticides that have been used in the past for the control of P. 

xylostella are organochlorines, organophosphate, carbamates, synthetic 

pyrethroids (Gautam et al., 2018). 

2. Biological insecticides 

The biological insecticide, which is derived from Bt, has found application in the 

control of P. xylostella, mostly, because of their environmentally friendlier nature, 

high level of specificity and lack of toxicity to other useful organisms in the 

environment.  This method still finds application in the control of P. xylostella as 

many new combinations and genetic engineering approaches are being used to 

develop insecticides from Bt, despite many cases of resistance of P. xylostella to 

Bti products being reported (Sarfraz and Keddie, 2004). 

3. Biological control 

The biological control method employed the fact that at all stages of development 

of the P. xylostella from egg to adult. It is being attacked by numerous parasitoids 

and predators with parasitoids being the most widely studied. Therefore, the 

biological control strategy introduced the growth of a population of predators that 

do not feed on cabbage but rather P. xylostella such as birds and spiders to control 

the population of P. xylostella in the field. In addition, parasitoids which feed in 

the eggs such as Trichogrammatiodea, larva belong to Diadegma and Cotesia 

genera are used to halt the growth of P. xylostella hence reducing their 

populations in the field (Talekar and Shelton, 1993). In addition, mating 

disruption methods which may be classified under biological control is utilized in 

the control of P. xylostella populations. The female diamondback moth secretes 
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sex pheromone which consist of three components, (Z-11-16: OAC), (Z-11-16: 

OH) and (Z-11-16: Ald), that attracts male diamondback moth. Therefore, this 

pheromone is synthetically produced and sprayed in the field to disrupt the males 

from mating with the female as a population control strategy (Ando et al., 1979, 

Chisholm et al., 1979, Chow et al., 1977 and Talekar and Shelton, 1993). 

 

 

  Mechanism of resistance of Cry toxin in Plutella xylostella 
 

Resistance to Cry toxins and other insecticides by Plutella xylostella mainly occur due to 

their intensive use over time (Sarfraz and Keddie, 2004). Intensive use of synthetic 

insecticides in the control of Plutella xylostella led to the elimination of natural enemies and 

have more reliance on the insecticides and subsequent development of resistance. Also, the 

fact that Plutella xylostella are migratory in nature and hence they can move into a new region 

where the control agent is not available, hence farmers then have to rely on insecticides 

leading to more resistance. Farmers may also attempt to grow crops with the use of 

conventional insecticides due to market pressure resulting from the need of pest free crops 

hence leading to more reliance on insecticides and hence resistance (Sayyed et al.,2002, 

Chapman et al.,2002). More also, the fact there are several steps involved in processing the 

crystal toxin into an activated toxin may increase the possibility of insect populations to 

develop various means of resistance to these toxins (Schnepf et al.,1998).     

Genetic diversity plays significant role in the development of resistance to Bt, this is because 

insect population maintained in the laboratory have a considerably low level of genetic 
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diversity compare to the field population, probably due to exclusion of many factors such as 

dilution of resistance due to mating with susceptible populations, absence of fitness costs as 

a result of environmental factors and absence of natural enemies such as prey and predators 

found in the field (Schnepf et al.,1998).  Plutella xylostella was the first insect known to 

develop resistance to Bt in the field (Schneph et al., 1998). Resistance, which is directly 

proportional to the amount of formulated Bt product (Dipel) used in this treatment can 

develop in theory as a result of blockage of any of the various steps involved in processing 

the toxin (figure 1.14) as previously mentioned by different mechanisms highlighted below. 

Altered activation of Cry toxins by midgut proteases has been reported to result in a lack of 

activation of the toxin and hence no toxicity against the insect (Li et al., 2004, Oppert et al., 

1997). Sequestration of the toxin, which could be either glycolipid moieties (Ma et al., 2011) 

or esterases (Gunning et al., 2005), by the induction of elevated immune response, which all 

result in reduced binding of the toxin to insects’ gut membranes resulting in lack of toxicity 

(Schnepf et al.,1998). The binding of Cry toxins to BBMV has been associated with mutation 

in toxin receptors (Ferre and Van Rie, 2002, Heckel et al., 2007) such as ABCC2. It was 

proposed that Cry1Ab and Cry1Ac could bind to the ABCC2 protein in its open state where 

some hydrophobic surfaces of the channel are exposed to the outside and at the same 

hypothesised that this binding interaction could facilitate membrane insertion of the toxin 

oligomer (Gahan et al., 2010). Therefore, it is of note to state that among all mechanism of 

toxin resistance outlined above, the most common resistance mechanism in lepidoptera is the 

reduction in toxin binding to midgut cells, which may result from mutation in different toxin 

receptors such as CAD (cadherins), ALP (alkaline phosphatases) or APN (aminopeptidases) 
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and ABCC2 transporter depending on the specific insect species (Gahan et al., 2001, Jurat-

Fuentes et al., 2004). 

other factors that could result in lack of activity of the toxin apart from the resistance 

mechanisms outlined above, which have to do with the bioassay procedures and hence affect 

the rate of toxins interaction or uptake by insect resulting in low activity are intraspecies 

variation in toxin susceptibility which seemed to occur between test colonies obtained from 

different parts of the world, a variation of 1-2 orders of magnitude, even among insects from 

the same geographical region or colony may vary by 1 order of magnitude between cohorts 

or successive generations (Frankenhuyzen, 2009).  The larval age may also influence the 

susceptibility of Cry toxins to the insect population in question as it is generally discovered 

that susceptibility decreases with an increase in the larval age (McNeil and Dean, 2011). 

Reduced amount of toxin on the leaf during leaf- dip bioassay as a result of evaporation of 

the toxin or its drying out due to atmospheric oxygen leading to reduce or no toxin to be 

ingested by the insect, which may be mistaken for insect resistance.  
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Figure 1.14. Schematic representation of different mechanisms of resistance to Cry toxin described in lepidopteran 
insects (Pardo-Lopez et al., 2013).   

 

  Determining the specificity of Cry toxins: 
 

Amongst the methods used for the qualitative assessment of Cry toxins is specificity 

determination. This is because the knowledge of the specificity of a toxin against particular 

insects can help us understand which regions of a toxin are important for individual target 

insects. Therefore, the specificity of crystal proteins is defined as the range of species or taxa 

that it affects whereas the range of toxins that affects the species is known as corollary. This 

information was compiled by van Frankenhuyzen (2009) to review the specificity of various 

toxins against different orders of insects utilizing published results from the literature and 

considering the following criteria: (i) the method of toxin preparation was not considered to 

have altered the results from the published data. (ii) Crystals toxins were considered active 

when they evoked a response at any concentration and inactive when they failed to response 
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at the highest concentration. (iii) Toxins are classified as active in case of contrasting results. 

Lastly, the review is based on the current knowledge of the crystals proteins at the time and 

calcified across orders and within as follows.     

1.7.1 Determination the specificity of Cry toxin across orders 
"

Order specificity was examined across toxin families at the secondary rank and summarized 

in (figure1.15). It appears that, the number of crystal proteins showing cross-order activity 

has increased considerably since the publication of the first classification by Höfte and 

Whiteley (1989). However, they distinguished four main pathotypes based on order 

specificity: Lepidoptera specific (CryI, now Cry1), Coleoptera-specific (CryIII, now Cry3), 

Diptera-specific (CryIV, now Cry4, Cry10, Cry11; and CytA, now Cyt1A), and CryII (now 

Cry2), the only family known at that time to have dual (Lepidoptera and Diptera) specificity. 

Cross-order activity is now apparent in 15 of the 87 pesticidal crystal protein families (not 

counting the 5 cancer-cell active parasporin families) as depicted in (figure 1.15). 
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Figure 1.15. Specificity of Cry and Cyt toxin families (secondary rank) across orders. Toxin families are indicated as 
being active with black fill, not active with white fill, possibly active grey fill, or not tested. Toxin families for which 
no bioassay data are available are not shown (Cry1L, 7C, 8H, 18B, 18C, 21B, 24A, 25A, 26A, 28A, 30D, 42A, 50A, 
52A, 53A, 54A, Cyt1C), (van Frankenhuyzen, 2009). 

 

 1.7. 2 Determination the specificity of Cry toxin within orders: 
"

Van Frankenhuyzen (2009) assigned the specificity within orders for three main species of 

insects, lepidoptera, diptera, and coleoptera, also other insect orders were grouped together 
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in this project we focused on the Cry2A toxins so for that reason we show orders that Cry2A 

toxins appeared to be active to. 

1. Lepidoptera 

In 1182 bioassays, about 59 holotype toxins have been tested against 71 species. 

These species susceptibility spectra are depicted in (figure 1.16) by rows. However, 

the toxins, which show specificity toward this order of insects from group of Cry2A, 

were (Cry2Aa, Cry2Ab, Cry2Ac, Cry2Ae and Cry2Af). P. xylostella was the most 

commonly tested species (9.8% of complete bioassays), followed by Spodoptera 

exigua (8.7%), Heliothis virescens (6.4%), Manduca sexta (5.9%), Trichoplusia ni 

(5.3%), Ostrinia nubilalis (5.1%), Helicoverpa armigera (4.8%), Heliothis zea 

(4.0%) and Bombyx mori (3.9%) as shown in (Figure 1.16). 
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 Figure 1.16. Activity spectrum of Cry and Cyt holotype toxins that were tested against species of 
Lepidoptera. Black dots show active toxins, plain dots show non-active toxin, possibly active indicated by 
a question mark (Van Frankenhuyzen, 2009). 
 

 

From the above figure, three of the Cry2A toxins (Cry2Aa, Cry2Ab and Cry2Ac) were tested 

against most of the insects within this order, Cry2Aa was active against most of the species 

of Lepidoptera, including P. xylostella which is the insect that used in this project and does 

not show any activity against Spodoptera frugiperda, Agrotis ispilon, and Artogeia rapae. 

However, Cry2Ab found to be active against ten species of lepidoptera, but non-active toward 
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P. xylostella, and in the case of Cry2Ac and Cry2Ae were stated in this review to be non-

active against P. xylostella, Cry2Af was tested against one insect species Helicoverpa 

armigera. Activity spectra of the 59 tested holotype toxins are represented by columns in 

(figure 1.17). Toxins in the Cry1, Cry2 and Cry9 families accounted for 96.2% of all 

bioassays, with Cry1 and in particular Cry1A toxins accounting for, respectively, 80% and 

36.6%. The broadest range of toxins was tested against P. xylostella (43 toxin types), which 

was one of only 12 species that were tested against 15 toxins or more as indicated in (figure 

1.17) below. 

 

Figure 1.17. Permissiveness of the most frequently tested species as indicated by the proportion of toxin 
types that    displayed toxicity (Van Frankenhuyzen, 2009). 
 
 

The Cry1Ac protein was tested against the biggest amount of species (56) and tested against 

15 or more species only 14 toxins figure 1.18 below. However, among the Cry2A group it 

appears that Cry2Aa is more active than Cry2Ab, as shown in the (figure 1.18) below. 
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Figure 1.18. Activity rang of holotype toxins that were tested against at least 15 species as indicated by the 
proportion of species that were susceptible (Van Frankenhuyzen, 2009).  

 

1.7.3 Determination of domain/domains responsible for the specificity of 
Cry2A toxins: 

"

The current focus of Cry2A toxin research is towards the identification of the region that 

confers specificity to Dipteran and Lepidopteran insects. Cry2Aa is largely considered to 

have dual specificity for the orders Lepidoptera and Diptera. The direct comparison between 

the amino acid alignments of Cry2Aa and Cry2Ab can be used in understanding why the 

toxicity spectrum of Cry2Ab and Cry2Aa differ. Experiments involving homologue-scanning 

mutagenesis helped in ascertaining the responsible amino acids for conferring the specificity 

differences between Lepidopteran and Dipteran orders (Hofte and Whiteley, 1989, Liang and 

Dean, 1994). 

 Hofte and Whiteley (1989) created hybrids through homologue scanning mutagenesis and 

domain swaps, and substitution of Cry2Ab residues into Cry2Aa as depicted in (figure 1.19).  
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Hybrids with increasing amounts of Cry2Ab at the N terminus were created and the chimeric 

proteins tested against Manduca sexta and Aedes aegypti to measure the established toxicity 

change compared to the usual results of Cry2Aa. Additionally, hybrids with increasing 

amounts of Cry2Aa at the N-terminus were created. Markedly, there was the generation of 

72 hybrid Cry2Aa/Cry2Ab proteins in total. Based on the bioassay data for the hybrids 15, 

14,7, and 6, it was postulated that hybrids 13 and 5 boundaries bordered minimum required 

Cry2Aa amino acids number that is necessary to confer toxicity to Aedes aegypti. However, 

it was considerably lower than the usual levels of toxicity thereby suggesting that other amino 

acids may contribute significantly to the Dipteran specificity.  

 

Figure 1.19. Cry2Aa (shaded bar), Cry2Ab (non-shaded bar), and hybrid gene products (combination of the two 
patterns) and their toxicities to A. aegypti and M. sexta. All of the toxicities are relative to that of Cry2Aa (value of 
1); a fivefold difference in toxicity is considered significant. The bar at the top of the figure is a diagram depicting a 
FASTP alignment of the Cry2Aa and Cry2Ab polypeptides; vertical lines represent differences between the two, and 
arrows above the bar denote the locations of non-conservative changes. Vertical broken lines show locations of the 
hybrid junctions determined by restriction mapping (hybrids 1, 9, 10, and 11) and DNA sequence analysis (hybrids 
2 to 4, 6, 8, 12 to 14, and 513). The dotted lines extend upwards to the alignment diagram to show where the junctions 
are located with regard to the amino acid differences that exist between the two polypeptides (Widner and Whiteley, 
1990). 
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Another study done by Liang and Dean (1994), who investigated the region responsible for 

specificity for Cry2A against mosquito larvae and gypsy moth larvae by the creation of 

hybrids between Cry2Aa and Cry2Ab. Cry2Aa possesses insecticidal activity against 

lepidopterian and dipteran insects while Cry2Ab is active against lepidopterian and non-

active against dipteran insect.  

In an attempt to find the specificity region of Cry2A against lepidopterian and dipteran 

insects, the putative domain II of Cry2Aa was substituted by domain II of Cry2Ab. They 

used the sequence alignment for the toxic domains of Cry proteins done by Hodgman and 

Ellar (1990). Domain II of Cry2Aa was aligned between amino acid 278 and amino acid 487, 

encoded by the naturally existing NheI- NarI fragment of the Cry2Aa gene. The DNA fragment-

encoding domain II of Cry2Ab (also aligned between amino acids 278 and 487) was amplified and 

they introduced the NheI and NarI sites into the fragment ends by PCR. Using this technique, they 

generated a recombinant gene DL105 as depicted in (figure 1.20). 

 

Figure 1.20. Replacement of domain II of Cry2A with domain II of Cry2Ab. The filled bar indicates DNA from 
Cry2Aa, the open bar from Cry2Ab. Gene DL103 is a wild-type Cry2Aa gene. Gene DL105 is a recombinant gene 
which had domain I and domain III of Cry2Aa origin and domain II of Cry2Ab origin (Taken from Liang and Dean, 
1994). 
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 Two restriction sites were introduced, which is MIuI and XhoI into both Cry2Aa wild type 

(DL103) and the hybrid created (DL105) which divide the domain II of both genes into 

three regions as shown in (figure 1.22). 

 

 

Figure 1.22A. MIuI and Xhol sites introduced into DL103 and DL105. MIuI and Xhol almost equally divide domain 
M into three regions, which have been named (from N-terminal to C-terminal) regions 1, 2, and 3, Nhel and Narl are 
naturally occurring sites bordering domain II of Cry2Aa. B. Homologue-scanning mutagenesis of domain II of 
Cry2Aa. Letters in parentheses indicate the origin of each region in domain II of each mutant. A. Cry2Aa origin; B, 
Cry2Aborigin (Taken from Liang and Dean, 1994). 

 

 These are named region 1, region 2 and region 3 and comprised of amino acids 278-340, 

341-412, and 413-487, respectively. They made six chimeric proteins in total (table 1.23) by 

changing one or two regions of domain II of Cry2Aa with that of Cry2Ab.  

The following shows the six multiple hybrids generated from chimeric-scanning mutagenesis 
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involving substitution between the three fragments created between the domain II of Cry2Aa 

and that of Cry2Ab, and their toxicities against both Aedes eagypti and Lymantria dispar. 

 

 

Table 1.1. Showing mutagenesis done to Cry2 toxins, measuring the lethal concentration and infection dose to A. 
aegytpi and L.dispar respectively. Letters indicate the origin of each of the three regions- A= Amino acid section taken 
from Cry2Aa, B= Amino acid section taken from Cry2Ab. Protein marked Cry2Ab is made wholly of Cry2Ab 
residues, protein marked DL105 is a Cry2Aa with the three regions of domain II substituted by Cry2Ab residues 
(Taken from Liang and Dean, 1994). 

 

 

 

 

Protein 

 

Domain II 

Origin 

LC50 of Aedes aegypti (95% 

confidence interval) (ng/ml) 

ID50 of L. dispar (95% 

confidence interval) (ng) 

DL103 AAA 65.5 (41.1-100) 102 (77-100) 

DL105 BBB >105 305 (226-418) 

DL111 ABB ND ND 

DL112 BAA 1.23x105 (2.82x104-8.33x105) 126 (85.7-187) 

DL113 BAB 1.50x105 (1.05x105-1.02x106) 88.7 (58-129) 

DL114 ABA ND ND 

DL115 BBA >105 3200 (1340-51900) 

DL116 AAB 52.2 (25.7-107) 90.6 (57.7-136) 
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The bioassay was conducted and the data in table 1.23 indicates that the wild type Cry2Aa 

was toxic against Aedes aegypti larvae, and show some activity toward Lymantria dispar, but 

Cry2Ab was less active about three times than Cry2Aa against Lymantria dispar larvae. The 

research done by Dankocsik et al. (1990) who used the mixes of spores and crystal, they gain 

a similar ratio of toxicities of these two wild-type toxins. When domain II of Cry2Aa was 

substituted by domain II of Cry2Ab, the hybrid protein (Hybrid105) was three times less 

toxic to Lymantria dispar than wild-type Cry2Aa and showed a similar toxicity to wild-type 

Cry2Ab. As with wild-type Cry2Ab, it did not show any mosquitocidal activity even at higher 

concentration of 100 100µg/ml. These results indicated that the specificity regions of Cry2Aa 

against L. dispar larvae and A. aegypti larvae are both located in domain II.  All mutants they 

created by switching regions inside domain II displayed different behavior. Though DL116 

was as active as wild-type Cry2Aa against the larva of both insects, DL115 has lost its 

toxicity to both insects. DL112 and DL113 showed similar toxicity to both insects. While 

they remained as toxic to L. dispar larvae as wild-type Cry2Aa, their toxicities against A. 

aegypti larvae were both reduced by about 2000-fold. Therefore, the result from this 

experiment showed that the specificity region of Cry2A for A. aegypti larvae was located 

within both region 1and 2 within these amino acids (307-382), this result supported by 

Widner and Whiteley (1990) who discovered the specificity region of Cry2A against A. 

aegypti within these amino acids (304- 382). However, their data shows switching region 1 

from Cry2Aa to Cry2Ab did not affect protein stability, crystal-forming ability, or L. dispar 

toxicity (DL112 and DL113) but did affect the A. aegypti toxicity indicates that the difference 

in region 1 (amino acids 278-340) between Cry2Aa and Cry2Ab is related only to 

mosquitocidal activity. However, region 2 of Cry2Aa was also needed in order to produce an 
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active toxin against the mosquito.  Also, they found the specificity region against gypsy moth 

larvae located in region 2 of domain II of Cry2 (Liang and Dean, 1994). 

Recent work carried out by Shu et al., 2016 to study the relationship between sequence and 

function involved the creation of chimeric genes between Cry2Aa and Cry2Ad through the 

creation of single crossover recombinants by the technique of template change PCR reaction 

(TC-PCR). The hybrid created involve changing domain I of Cry2Ad with Cry2Aa, changing 

domain III of Cry2Ad with Cry2Aa and making some few amino acid changes within domain 

II in each case and testing them against four insects O. furnacalis, C. suppressalis, H. 

armigera and P. xylostella. they found that hybrids involving change in domain I and III of 

Cry2Ad and Cry2Aa respectively do not result in any change in activity relative to the wild 

type whereas, specific amino acid change in domain II give rise to differing activity each 

specific to some particular insects. For instance, changing amino residues 410 and 411 is 

specific to O. furnacalis, and changing three amino acids 430,433 and 439 is specific for C. 

suppressalis and H. armigera, finally changing at position 443,446 and 447 is specific for P. 

xylostella. This confirmed that involvement of domain II in various insects’ specificities as 

speculated by previous researches (Shu et al., 2016).    

Another research was done by Shu et al., 2017 to identify and characterize cry2 gene in a 

collection of 300 Bt strains led to the discovery of a novel cry toxin known as Cry2Aa17, 

whose domain I resembled that of Cry2Ab, domain II and III resembled Cry2Aa (figure 

1.22). The toxicity profile of this novel toxin was determined through bioassay against Aedes 

aegypti and Spodeptera exigua respectively. It was found that the toxicity profile against 

these two insects resembled those of Cry2Ab thus implicating domain I in specificity 

determination. This led to hybrid creation between Cry2Aa and Cry2Ab and testing them 
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against Aedes aegypti mosquito, which then confirmed the involvement of domain I in 

toxicity determination (Shu et al., 2017). 

More, recent work carried out by (Joseph unpublished) on Aedes aegypti found that the 

toxicity of Cry2A toxins was associated with the N-terminal 49 amino acids. He went further 

to screen the N-terminal sequence in order to locate the specific residues involved in this 

activity through bioinformatics and mutagenesis. It was then discovered that only four amino 

acids (E, R, T, D) located at positions 27, 43, 44, and 45 respectively were responsible for 

the activity of Cry2A toxins against Aedes aegypti, as he showed that changing the amino 

acids QKNN of Cry2Ab, which is known to possess no activity against Aedes aegypti, found 

in these locations to ERTD coverts Cry2Ab in to an active toxin against this insect (Joseph 

unpublished).  

 

 
Figure 1.23: Domain configurations of the Cry2A toxins. Each toxin is split into the three domains identified from 
crystallographic studies of Cry2Aa (Morse et al., 2001). Figure taken from (Shu et al., 2017). 
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  Aims and Objectives  
 

The objective of this research is to understand the nature of the specificity in Bacillus 

thuringiensis toxins against Plutella xylostella which belongs to the order Lepidoptera and 

also to attempt to convert an insecticidal toxin into an anticancer toxin and vice versa. To do 

this, literature reviews, data collection, growing of Plutella culture, growing of bacterial 

culture, DNA and Protein sequences analysis using bioinformatics tools such as Neb Cutter, 

Gen Bank, Expasy, Clustal Omega etc. and theory applications will be carried out. 

 

• To investigate the toxicity of Cry2A toxins against Plutella xylostella by carrying out 

a comprehensive set of bioassays to obtain reliable toxicity data on the larvicidal 

activities of Cry2A family against Plutella xylostella. 

• Use the bioassay results to create hybrids to allow us to better understanding the 

basis of specificity against Plutella xylostella and identify associations between 

toxin sequence and activity. 

• To create an improved expression system (using Bt) in order to produce larger 

amounts of purer toxin. 

• Attempt to understand any population-dependent differences in susceptibility through 

toxin activation and binding assays. 

• Attempt to convert an insecticidal toxin into a cancer toxin and vice versa. 

"

"

"
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2. Materials and methods 
"

2.1 The insect population 
"

• Gen-88 population 

Gen-88 is a population susceptible to Cry1Ac, and adapted to artificial diet. Gen-88 was 

obtained from Dr. Ben Raymond, centre for ecology and hydrology (Oxford, UK) and 

maintained in the lab on a sterile artificial Hoffman’s diet at 25°C under 16h photophase. 

• SBT population 

The SBT population is a susceptible population, named after the placed that it was collected. 

The name of the farm is “Sitio Boa Terra” Jaboticabal, Sao Paulo, Brazil. The collection date 

was 5th of July 2010. It was collected from cabbage plants in an area with no history of 

insecticide application. For insect rearing, the methodology used was as described by Barros 

and Vendramim (1999).  

• NO-QA population 

This insect population is originally from Hawaii collected from a watercress farm in Pearl 

City on the Island of Oahu, in the year 1989. It is a highly resistant population having been 

selected with Cry1Ac many times. 

2.2 Bacterial strains and plasmids 
 

Bacteria species and reagents for this study were provided by the Crickmore Laboratory of 

the School of Life Sciences, at the University of Sussex. 



47"

"

2.2.1 Bacterial strains 
"

1) A-Bacillus thuringiensis 
 
 
 

 

 

 

 

 

 

 

 

 

 

1)  -Bacillus thuringiensis 

 

 

 

2)-Escherichia coli 

 

 

 

NO Strain Toxin 

1 pGEM Cry2Aa 

2 pEB Cry2Aa9 

3 pEB Cry2Aa17 

4 pEB Cry2mAa17 

5 pEB Cry2Ab4 

6 pEB Cry2Aab29 

7 pGEM Cry2Ab-916 

8 pGEM Cry2Ab 

9 pGEM Cry2Ac 

11 pGEM Cry2Ad 

12   pEB Cry2Ah 

13 pEB Cry2Ax 

NO Strain Application 

1 IPS78/11 A crystal minus strain of Bacillus thuringiensis subsp 
israelensis used as a    host for expression  

NO Strain Application 

1 DH5∝            host for transformation 

2 BL21              host for expression 
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2.2.2. Plasmids 
"

• pGEM T-easy plasmid 

This plasmid was used for cloning and expression and it was obtained from (Promega.USA).  

• pSV27B40B plasmid 

This plasmid is a Bt- shuttle vector was modified from vector pSV2, which was derived from 

pBR322 vector and used for expression in Bt (Crickmore and Ellar 1992, Crickmore et al., 

1994).  

• pEP plasmid 

   The pEB cloning/expression vector using BamHI and SalI (Shu et al., 2016). 
 
 
• pBL plasmid 

  It is the phagemid pBLUESCRIPT (Strata gene) it consists of an f1 phage origin of DNA 

replication (Sikorski and Hieter, 1989). 

2.3 Buffers/Solution 
"

• 10 x TBE buffer: 108g of Tris, 55g of Boric Acid, 40 ml of EDTA and 2 l of distilled 

water. 

• 10 x SDS Running buffer: 7.6g Tris, 36g Glycine, 2.5g SDS and distilled water to 

250ml. 

• Resolving gel buffer (RGB): 18.18g Tris, 0.4g SDS and distilled water to 100ml, pH 

8.8. 
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• Stacking gel buffer (SGB): 6.06g Tris, 0.04g SDS, distil water to 100ml, pH 6.8 

• 2 x protein gel sample loading buffer: 2g SDS, 6mg EDTA, 20mg BPB, 5ml RGB, 

50 ml Glycerol and distilled water to 100ml. 

• DNA gel sample loading buffer: 0.05% bromophenol blue, 40% sucrose, 0.1M EDTA 

pH 8.0 and 0.5% SDS. 

• Coomassie Brilliant Blue stain: methanol, distilled water, acetic acid (10:9:1 V/V/V) 

and Coomassie Brilliant Blue G 250 (0.25% W/V). 

• De- staining: methanol, distilled water and acetic acid (10:9:1 V/V/V).  

• PBS: 80 g of NaCl, 2 g of KCl, 14.4 g of Na2HPO4, 2.4 g of KH2PO4, 1 l of dH2O, 

pH 7.4  

• M.E.T buffer (250mM mannitol, 5mM EGTA, 17mM Tris-HCL) pH 7.5 

• Dry blotting buffer: 39mM Glycine, 48mM Tris, 0.037% SDS, 20% Methanol. 

• PBS/Tween: 50ml 10XPBS, 450ml water, 100 µl Tween20.  

• ECL:   10 ml of 100 mM Tris pH 8.5, 3 µl of H2O2, 25 µl of 14.7 mg/ml p-coumaric 

acid, 50 µl of 88.6 mg/ml luminol." 

•  Binding buffer: PBS with 0.1% Tween 20 and 0.1% BSA, pH 7.4.    



2.4 Reagent and Enzymes 
"

The following reagents were purchased from Thermo Fisher Scientific methanol, 1-

butanol, acetic acid, sucrose, magnesium chloride and glycine. SDS, acrylamide/bis-

acrylamid 30%, TEMED, Tris base, Tris-HCL, Brilliant Blue G, Bromophenol Blue, B-

mercaptoethanol, BSA fraction V, chloramphenicol, mannitol, EGTA, p-coumaric acid, 
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luminol, hydrogen peroxide, chymotrypsin and lysozyme were obtained from Sigma. 

Enzymes were purchased from New England Biolabs DpnI, HindIII, SacI, BSAI, XbaI, 

also Blue Protein standard, DNA ladder 1Kb and T4 ligase. Hae III was purchased from 

Promega. HCl, NaOH, ethanol, Ponceaus S and Coomassie Blue stain were obtained 

from AnalaR BDH. Agarose and LB broth buffered capsules were from Melford 

Biolaboratories. Triton X-100 was from BDH chemical Ltd (Poole England). Gel Red 

nucleic acid was from Biotium.   

2.5 Antibodies 
"

• Anti-rabbit IgG (whole molecule)-peroxidase antibody produced in goat. 

Affinity isolated antibody, SIGMA (A0545).  

• Primary antibody which is anti Cry2A antibody, was provided by Dr. Crickmore 

lab. 

2.6 Experimental protocols 
"

Design of PCR primers for amplification of DNA fragments: 

The primers used to create hybrids were obtained from Eurofins Genomics. 

Cry2- domain I 

Forward primer 5’P-ATGAATAATGTATTGAATAAYGGAAG- 3’ 

Reverse premier 5’P-TTTAAATAACGACCAGATRGAKACATA- 3’ 

PGEM Cry2 without domain I 

Forward primer 5’- TATCAAAGCCTTCTAGTATCTTCYG- 3’ 

Reverse primer   5’ -ATAAAATTCCTCCTTAATCGAATTC- 3’   
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Cry2Ac-domain III 

Forward primer 5’P- AATAATATCTATGACACTCATGAAAATG- 3’ 

Reverse primer    5’P- TTAATAAAGTGGTGGAAGATTAGTTG- 3’ 

PGEM Cry2Ac without domain III 

Forward primer 5’-GGTTTGAGTGAATCACTAGTGAATTC- 3’ 

Reverse primer    5’-TTTTCTGTTATGCACTGTTACAAG- 3’ 

Cry2Ab-domain III 

Forward primer 5’P- AATAATATCCATGCTGTTCATGAAAATG- 3’ 

Reverse primer    5’P- TTAATAAAGTGGTGAAATATTAGTTG- 3’  

pSVP27B40B 

XbaI Forward primer 5’P-TTCTAGATGAATAATGTATTGAATARYGG-3’  
 
B40B Reverse primer 5’-TCAAAGCTTAATAAAGTGGTGRAAG-3’ 

HindIII Reverse primer 5’-TCAAAGCTTAATAAAGTGGTGRAAG-3’ 

 Cry2ADII 

Forward primer 5’P-TATCAAAGCCTTCTAGTATCTTCYG- 3’ 

Reverse primer 5’P-TTTTCTGTTATGCACTGTTACAAG-3’ 

PGEM Cry2Ab without domain II 

Forward primer 5’-AATAATATCCATGCTGTTCATGAAAATG- 3’ 

Reverse primer 5’- TTTAAATAACGACCAGATRGAKACATA-3’ 

Cry41AaDI 

Forward primer   5’P-)TACAGCGCAGATGTAAGGGATG -3’ 

Reverse primer 5’P-)AAGTCCCGGATCATACGTTGG -3’ 
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Cry41AaDIII 

Forward primer 5’P- GATTTGAACAATATAATATCACAGTATAG- 3’ 

Reverse primer 5’P-AGTGGTTAAGCCAATACCCATAC -3’ 

 

2.6.1 The reaction conditions for PCR amplification were set as 
follows 
"

 The initial warming of lid at 98C° for 4 minutes, initial denaturation at 95C° for 2 minutes, 

denaturation at 95C° for 20 seconds, annealing of the primers at 50C° or 51C° for 20 seconds 

(depending on the primer’s optimum annealing temperature), elongation at 72C° for 2 

minutes or 45 seconds (depending on length of amplicon) and final extension at 72C° for 3 

minutes. The cycle from initial denaturation to primer extinction was set to repeat for 30 

cycles after which the sample was cooled to 4 C°. 

In table below the PCR reaction mix is shown 

Component Amount 

PfuUltra Hotstart 2x Master Mix 25.0 µl 

Forward Primer (10ng/µl) 1.0 µl 

Reverse Primer (10ng/µl) 1.0 µl 

Template DNA (10ng/µl) 1.0 µl 

dH2O 22.0 µl 

Total Volume: 50 µl 

 
"

"
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2.6.2 Agarose Gel Electrophoresis  
"

In this study 1% agarose concentration was used: 0.3 g of Agarose Low EEO was added to 

30 ml of 1x TBE (Tris-Borate-EDTA) and heated until completely dissolved. The mixture 

was allowed to cool then 1.5 µl of a 1 in 3 dilution of Gel Red was added before pouring the 

solution onto a gel casting tray. The gel was allowed to cast, then 5 µl of purified product 

was added to 1 µl of loading buffer and a total of 6µl of each sample was loaded onto gel.  

1 Kb ladder (New England Biolabs) was used as a marker depending on the desired fragment 

size. The gels were run at 120 Volt in 1x TBE buffer in electrophoresis chamber then the 

bands of amplified products were visualized under ultraviolet light and in some instances 

excised from the gel for further use and analysis. 

2.6.3 Column Purification of PCR products 
"

QIAquick PCR Purification Kit (QIAGEN) was used in order to separate the PCR products 

from the other components present in the mixture. 

A digestion with Dpnl enzyme was performed on the PCR products by adding 1µl Dpnl to 

each PCR product then incubating at 37C° for 30 minutes. 1x volume of PCR products was 

mixed with 5x volumes of PB buffer (chaotropic buffer). A QIAprep column was placed in 

2ml collection tube.  The sample was applied to the QIAprep column and centrifuge for 1 

min at 13, 000 rpm. the flow-through was discard and the QIAprep column was placed back 

to the same tube, 750 µl of Buffer PE was added to the bound DNA in the QIAprep column 

and centrifuged at 13,000 rpm for 1 min. flow-through was discard and the QIAprep column 

re-centrifuge for 1 min to remove any traces of buffer. The QIAprep column was placed in a 
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clean 1.5ml Eppendorf tube. To elute the DNA 30 µl of EB buffer (10Mm Tris-Cl, PH 8.5) 

was added to the centre of membrane, the column was left for 1 min after than centrifuged 

for 1min. The purified PCR product was analysed on 1% agarose gel. 

 

2.6.4 Gel purification using QIAprep kit   
  

PCR reaction mixes were run on 1% Agarose gel and required bands excised and purified. 

The excised bands were placed in a clean microcentrifuge tube and purified according to the 

QIAprep gel extraction kit protocol. According to this protocol three volumes of buffer QG 

was added to one volume of excised gel in microcentrifuge tube, the tubes were incubated at 

500C water bath for 10 minutes with inverting the tube 4-6 times to enhance dissolution. 

After the excised gel completely dissolved then the tubes were centrifuged for 30 seconds at 

13.000rpm. Supernatant was applied from microcentrifuge tube to the QIAprep2.0 spin 

column by pipetting, then it was centrifuged for 30 seconds at 13.000 rpm, the QIAprep2.0 

spin column was washed by adding 500µl of QG (solubilisation buffer) and centrifuged for 

30 seconds at 14.000 rpm and the flow-through was discarded, and the Qiaprep2.0 spin 

column was washed by adding 750µl of PE, centrifuged for 30 seconds and the flow-through 

was discarded, centrifuged for 1 minute at 14.000xg to remove residual wash buffer.  The 

QIAprep 2.0 column was placed in a clean 1.5ml Eppendorf tube. To elute the DNA, 30 µl 

of EB buffer (10Mm Tris-Cl, pH 8.5) was added to the centre of membrane, the column was 

allowed to stand for 1 min after then centrifuged for 1min at 13.000 rpm.  
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2.6.5 PCR ligation 
"

The ligation reaction was set up following the recommended ligation ratio of 1:3 to 1:5 of 

vector to insert in the right estimated proportion based on the intensity of their respective 

bands on a gel, plus 1µl of ligase buffer and 0.5µl of DNA Ligase then adding deionised 

water to make a total of 10µl. This left overnight at room temperature for ligation reaction to 

take place.  

The other ligation reaction that we later adopted in this work was the one using the Blunt/TA 

master mix reagent from New England BioLabs which proved to be much more efficient and 

time saving compare to the above ligation procedure. The protocols are as outlined below: 

1. The master mix was transferred to ice prior to reaction set up. The tube was mixed by 

finger flicking before use 

2. 20-100ng of the vector was combined with a 3- fold molar excess of insert and the 

volume was adjusted to 5µl with deionised water. 

3. 5µl of the Blunt/TA master mix was added to the above mixture by pipetting up and 

down 7-10 times or by finger flicking 

4. The above mixture was incubated at room temperature (250C) for 15 minutes and 

placed on ice 

The above ligation mixture was then used for transformation or stored at -200C for future 

use. 
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2.6.6 E.coli strain transformation 
"

We employed two methods (NEB-5α and DH5-α transformation) in this research for E.coli 

transformation. 

i. Microelectroporation method 

E. coli strains were grown on 25ml L-agar at 37oC overnight. The strains were then prepared 

by transformation by scraping a culture from the agar plate using a sterile toothpick into 

100ml L-broth and grown in a shaking incubator till it reached an OD of over 0.4. The cells 

were then harvested by centrifugation- the 100ml of broth containing the E. coli was spun at 

10,000rpm for ten minutes, the supernatant discarded and the pellet washed and re-suspended 

in 100ml of deionised water at 4oC. The re-suspended cells were centrifuged again at 

10,000rpm for a further ten minutes and the pellet re-suspended in approx 1ml of 4oC water, 

which was then transferred to a 1.5ml Eppendorf. The Eppendorf was centrifuged for 1min 

and the pellet re-suspended in 200µl of 4oC sterile water. 

50µl of the E. coli cell suspension was transferred to a small Eppendorf tube and stored on 

ice- 1µl of the ligated DNA was added and mixed before being transferred into a sterile 

electroporation cuvette and tapped to ensure the liquid cells settled on the bottom. The gene 

pulser was set to 1.8kV, 200Ohms and 25µF, the electroporation cuvette placed in it and a 

short electrical pulse was applied to the cells. The cells and 0.5ml of L-broth were mixed 

with a sterile Pasteur pipette and transferred into small glass bottles, before being left to rest 

for one hour at room temperature. 
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ii.  Heat shock method 

The protocol outlined below is the one specified by the New England BioLab for 

transformation using this method. The protocol is as follows: 

i. A tube containing 50µl of NEB 5-α competent E. coli cells was thawed on ice 

for 10 minutes 

ii. 2µl of the ligation mixture was added to the 50µl NEB 5-α competent E. coli 

cells above and carefully flick the tube 4-5 times to mix the cells and DNA. It 

was not vortexes 

iii. The mixture was placed on ice for 30 minutes without mixing 

iv. The above mixture was then heat shocked at exactly 420C for exactly 30 

seconds without mixing. 

v. It was then placed on ice for 5 minutes 

vi. 950µl of recovery media (SOC) maintained at room temperature was added to 

the mixture 

vii. It was then placed on a shaker maintained at 370C, 250 rpm and was allowed to 

rotate for 1 hour 

viii. 500µl of the above was poured on an ampicillin plate that was warmed at 370C 

and the plate was placed in an incubator maintained at 370C overnight. 
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2.6.7 Picking transformation colonies 
"

Successful transformants were identified as colonies. White colonies were picked using a 

toothpick and streaked onto ampicillin (100µg/ml) L-agar plates. Plates were incubated 

overnight at 370C. 

2.6.8 Harvesting of the transformed colonies 
"

Bacteria cells were scraped from the plate, then QIAprep kit was used by re-suspending it in 

250µl of buffer P1 in Eppendorf tube and thoroughly mixed. 250µl of buffer P2 was added 

to the mixture and inverted 5-6 times until the solution became clear. Followed by, 350µl of 

N3 (neutralising buffer) and mixed immediately and thoroughly by inverting the tube 4–6 

times. The mixture was centrifuged for 10 minutes at 13,000 rpm and supernatant transferred 

to a column in an Eppendorf tube. This was spun for 30 seconds, and the flow-through was 

discarded. 500µl of PB buffer was added to bound DNA and spun for 30 seconds. The column 

was then washed again by adding 750µl of PE buffer and centrifuging for 30–60 seconds, 

discarding the flow-through and then spun again for a further 1 minute. The QIAprep column 

was transferred to a clean 1.5 Eppendorf tube and 50µl of EB buffer (10 mM Tris Cl, pH 8.5) 

was added to elute DNA and could rest for 1 minute. The column was spun for a minute and 

purified plasmids DNA were collected. The above procedure was done for E.coli transformed 

colonies, but in case of Bt colonies the cells was re-suspended in P1 buffer mentioned in step 

one is add together with lysozyme (5mg/ml) and the mixture was incubated  for 30 minutes 

at 37 0C followed by the other steps. 
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2.6.9 Digestion of extracted plasmid DNA with restriction enzymes 
"

Restriction digestion using HaeIII enzyme was performed on the plasmids thus extracted to 

verify the integration of the correct insert.  2µl of purified plasmid DNA was digested by 

adding 0.5µl HaeIII restriction enzyme, 1 µl of corresponding buffer and 6.5 sterile distilled 

was added to make a final volume of 10 µl. The reaction mixes were then incubated in water 

bath at 370C for 30 minutes. Then run on a 1% agarose gel for comparison with the predicted 

banding profile produced by NEB cutter software.  

2.6.10  Verification of mutation 
"

To confirm presence of the correct mutation purified DNA from colonies after transformation 

into DH5α E.coli and IPS78/11 Bt were sent for sequencing in Eurofins Genomic. This was 

done using the primers below. 

Cry2A-DI-II 5’ CTTAATGCAGATGAATGGGG 3’ 

Cry2A-DII-III 5’ GATTGTAACTATTTCCATTCCCTC 3’ 

2.6.11  Expression and Harvesting of the Cry2 Toxins from E. coli 
(BL21) 
"

Cells were plated out on agar plates with ampicillin (100µg/ml) and incubated at 370C and 

left overnight. Then scraped from 100µg/ml ampicillin impregnated agar plates using a sterile 

loop into 500ml L-broth with 500µl of 100 mg/ml ampicillin. This was carried out over a 

flame to prevent contamination from the air and the bacteria left to incubate for three hours 

in a 370C shaking incubator till an OD (optical density) 600nm of 0.4-0.6 was obtained by 
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using a spectrophotometer with pure L-broth as a base (A600=0). 250µl 1M IPTG (Isopropyl 

β-D-1-thiogalactopyranoside) was added to stimulate expression of the toxin from a T7 

promoter.  

The L-broth left overnight at 250C in the shaking incubator. The solution was then 

centrifuged (JA10) for 10 minutes at 10000 rpm and the pellet re-suspended in 30ml of de-

ionised water and transfer to 50 ml plastic beaker. The sample was sonicated for 4 X 1 minute 

intervals with 1-minute rest then transfer cells to 50 ml centrifuge tube and centrifuged 

(JA25.50) for 30 minutes at 15,000 rpm. The pellet was re-suspended in 1ml of de-ionised 

water then re-sonicated using a smaller tip for 4 minutes at 20 second intervals. This was 

then centrifuged and the pellet re-suspended in 1ml of de-ionised water. In this stage, the 

crystals should be released from the cell and cell debris removed by using light microscopy 

to determine the purity of the sample also, use it to observe the size and level of expression 

of toxin crystals. 

 

2.6.12  Expression and Harvesting of the Cry2 Toxins from Bt 
(IPS78/11) 
"

Cells were plated out on agar plates with chloramphenicol (6µg/ml) and incubated at 30°C 

for three days. Then sporulated cells were scraped from the chloramphenicol plates using a 

sterile wire loop into 30 ml of sterile distilled water. The cells were lysed by sonicating it at 

full power for 4 minutes (1minute on, 1 minute off).  This was then centrifuged (JA25.50) at 

10000rpm for 10 minutes at 4°C and the supernatant was discarded, and the obtained pellet 

were re-suspended in 1ml of de-ionised water 
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2.6.13  Protein analysis by SDS-PAGE 
"

 7.5% SDS gels (Sodium Dodecyl Sulphate-Polyacrylamide Gel) were used throughout. The 

glass plates cleaned with ethanol and the bottom of the plates sealed with 200µl of 1% 

agarose gel (composed of 0.3g of Agarose in 30ml SDS running buffer) The resolving gel, 

consists of 18.18g Tris, 0.4g SDS in 100ml of distilled water at pH 8.8. It was made in a 

sterile glass bottle and pipetted into glass plates and a butanol water mix was added to prevent 

oxygen inhibition of resolving gel and allowed to set before finally adding Stacking gel 

solution. 

 

 

 

 

 

Once set, the butanol solution was removed and the gel washed with water, before adding 

the stacking gel. A ten-well comb was washed with ethanol and added immediately 

afterwards and the gel left to set for another 30 minutes. Once set, the comb was removed 

and the gel transferred to the electrophoresis apparatus, where it was washed in SDS running 

buffer, made by diluting 100ml of 10xSDS running buffer (7.6g Tris; 36g Glycine; 2.5g SDS 

and water up to 500ml) in 400 ml of de-ionised water. Then sample were mixed 1:1 with 

sample loading buffer in the presence of B-mercaptoetanol, boiled for 4 minutes then spun 

SDS Resolving Gel Components Volume added (µl) 

Water 2ml 

RGB 1ml 

Acrylamide stock 1ml 

400mg/ml APS (Ammonium Persulphate) 8 µl 

TEMED 4 µl 
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for 30 second. The supernatant of each sample was loaded on to a gel which composed of 

two parts (stacking and resolving). Electrophoresis was carried out at 200V for 35 minutes 

in MiniPROTEAN®"II"Electrophoresis cell (Bio-Rad) using tris-glycine running buffer. Gels 

were later stained with Coomassie Blue for 20 min then de-stained until clear visualisation 

of the bands of interest. The fragment sizes were estimated using a protein ladder (New  

England BioLabs). 

 

 

 

 

 

 
 

2.6.14  Protein concentration  
"

Two methods were used to measure the protein concentration in this study. The first method 

was the Bradford method, which was used to measure the concentration of the Plutalle 

xylostella midgut juice protein and the densitometry method using Image J software to 

measure the Cry toxins concentration. The concentration of protein toxin was determined by 

running equal volumes of all proteins on SDS PAGE gel along with some known 

concentrations of BSA as a standard. Using Image J software, the concentration of the protein 

bands was measured as a peak shown as area under the curve, Excel program was used to 

SDS Stacking Gel Components Volume Added (µl) 

Water 2x585 µl 

SGB 500 µl 

Acrylamide stock 333 µl 

400mg/ml APS (Ammonium Persulphate) 4 µl 

TEMED 2 µl 
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plot a graph of area under the curve versus the concentration of the known BSA standard. 

Then the concentration of the Cry toxin protein was determined using the equation of the line 

or by extrapolation. However, for determination of the concentration of the proteins present 

in BBMV extracts used in western blot and ligand blot experiments, Bradford method was 

applied using a Bio-Rad Protein Assay Kit (Bio-Rad) with BSA used as the standard. The 

concentration of each sample was determined by comparing its absorbance against a BSA 

standard curve.  

2.6.15  Solubilisation and activation of crystal protein 
"

Crystal protein were solubilised in 50mM sodium hydroxide (NaoH), the mixture was 

incubated in water bath at 370C for 1 hour, before being spun for 1 minute at 13000 rpm. The 

supernatant was then collected, treated with chymotrypsin (1mg/mL) of PBS buffer and 

incubated for 10 minute at 370C. Solubilised and activated samples were then spun for 1 

minute at 13000 rpm and protease inhibitor was added.    

2.6.16  Preparation of P. xylostella Midgut Protease 
"

The P. xylostella midgut proteases were prepared by dissecting 20 midguts from third instar 

larvae of P. xylostella and midgut tissues were homogenized with 200µL of phosphate-

buffered saline (PBS) buffer (50 mM, pH 7.4) and centrifuged at 25000g for 10 min at 4 °C. 

The supernatants, which contained midgut proteases, were labeled as P. xylostella midgut 

juice (PxMJ). PxMJ was stored at −80 °C until used. Protocol from (Xu et al., 2016). 
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2.6.17  Preparation of BBMV from dissected midguts of 
lepidopteran larvae 
"

Protocol from Dr. Juan Luis Jurat Fuentes as modified from (Wolfersberger et al., 1987). 

Dissected guts were thawed and weighed. Typically, to about 1 gram, 13 ml of ice cold MET 

buffer (250mM mannitol, 5mM EGTA, 17mM Tris-HCL) pH 7.5 with 1 tablet Roche 

Complete proteinase inhibitors to 100ml was added. It was homogenized at 30 sec + 30 sec 

rest +30 sec using electric homogenizer, speed 30, this was followed by 7 strokes in a 15 ml 

glass Dounce homogenizer. Then 13 ml of ice cold 24mM MgCl2 +250mM sucrose was 

added to the homogenate and placed on ice for 30 min. It was centrifuged at 1600 x g x15 

min at 4°C (rotor JA20 at approx. 4.500 rpm), and the supernatant was collected and 

centrifuged at 20,000 x g x30 min at 4°C (rotor JA20 at approx. 15.000 rpm). The pellet was 

re-suspended in the half volume of MET buffer. 1 volume of ice cold 24mM MgCl2 +250mM 

sucrose was added, and allowed to stand on ice for 30 min, then centrifuged at 1600 x g x15 

min at 4 °C (rotor JA20 at approx. 4.500 rpm), the pellet was discarded and the supernatant 

was centrifuged at 20,000 x g x30 min at 4°C (rotor JA20 at approx. 15.000 rpm). The pellet 

obtained constitutes the BBMV preparation. This was then re-suspended in at least 2ml of 

PBS pH7.5 (depending on size of pellet). It was aliquoted in Eppendorf tube 200 µl, stored 

at -20°C for short term or -80°C for long term. 
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2.6.18  Western Blotting 
"

BBMV extracts were suspended in 1x SDS loading buffer and heated for 10 minutes in 

boiling water. 10-20µg of the extract was loaded in each well of a 7.5 % SDS-PAGE along 

with 5-10µg of activated chymotrypsin Cry2A toxin. Electrophoresis was carried out at 

180mA for 45 minutes. Transfer was carried out in semi-dry transfer apparatus using semi-

dry buffer (Tris-Base 48mM, Glycine 39 mM, Methanol 20%, SDS 0.04%) and nitro-

cellulose membrane cut to gel measurements. Transfer sandwich was created using filter 

paper (pre-soaked in transfer buffer), nitro-cellulose membrane, and SDS-PAGE gel covered 

with another filter paper. Transfer was ran at 100mA for 1 hour. Nitro-cellulose membrane 

was stained using reversible Ponceau S stain (0.1g Ponceau S, 5mL acetic acid in 100mL 

ddH2O) to confirm transfer onto to the membrane. Membrane was then washed with 1x PBS, 

then was blocked for 40 min at room temperature in 10ml of 1x PBS containing 2% tween 

and 5µl of anti-Cry2A antibody with constant shaking. Membrane was then washed with 1x 

PBS-T (1 litre 1x PBS, 200µL Tween-20) for 5 minutes 3 times, then membrane was 

incubated with 0.5µg/mL of secondary antibody in 5% blocking solution (0.5g skimmed 

milk, 10mL PBST) for 1 hour. Again, the membrane was washed with 1x PBS-T for 5 

minutes 3 times before addition of 10mL ECL solution (5mL solution 1 250mM Luminol, 

90mM P-coumaric acid, 1M Tris-HCL pH 8.5 and 5mL solution 2, 32µL of H2O2 (30%), 

1M Tris-HCL pH 8.5). Membrane was developed using the signal (UVP ChemStudio 

imaging system). 
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2.6.19  Binding assays of Cry2Ac and Cry2Ab toxins to BBMVs 
 

 
Protocol from (Wang et al., 2018) was and further modified according to the experiment. 

20 or 10 ug of BBMVs from P. xylostella were incubated with increasing concentrations of 

Cry2Ab and Cry2Ac respectively, in a final volume of 100ul of binding buffer (PBS with 

0.1% Tween 20 and 0.1%BSA, pH 7.4) for 1 h at room temperature. Binding reactions were 

stopped by centrifugation for 10 min at 18,000xg after which the BBMV pellet containing 

the bound toxin was washed with 0.1 ml of ice-cold binding buffer twice. A control of the 

highest concentration of toxins without BBMVs was also included to monitor toxin 

precipitation. Pellets were solubilized in 10ul of sample buffer, heat-denatured for 10 min at 

100 °C, and loaded for SDS-PAGE.  

 

2.6.20  Maintenance of Plutella xylostella population on cabbage 
plant (Brassica pekinensis) 
"

Pupa and Chinese cabbage leaves (Brassica pekinensis) were placed in plastic cage with net 

fitted around it until adults emerge. The emerging adults were fed with honey diluted in water 

by soaking cotton wall in the honey then placing it in a small petri dish inside the cage and 

adding more of the honey when required. The adult moth remains in the cage and mate, after 

which they began laying eggs on the cabbage leaves, the eggs are maintained at 27°C and 

70% relative humidity, with 16 hours light and 8 hours dark. When the eggs hatched and the 

larvae had reached to the second instar larvae, bioassays were preformed and the remaining 

larvae were then be placed in plastic boxes, which contained non-organic cabbage (spring 

green) washed as out line in section 2.6.22. This was added or changed as required. When 
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the larvae started pupating, pupae were picked and placed into a small petri dish (labelled 

and dated) these were stored in the fridge sealed with cling film, pupae were stored in the 

fridge for up to 15 days after which they were used. 

2.6.21  Leaf Dip Bioassay 
"

Leaf disc dip bioassay as described by Sayyed et al (2000) was used, in which cabbage leaf 

discs (5cm in diameter) were cut with a metal punch and then dipped in to a toxin solution 

for about 10 seconds and then removed to dry for 1 hour. The toxin solution consists of 30ml 

deionised water and 15µl Triton x100, which is a detergent that increases the binding of the 

toxin to the leaf. Ten larvae of Plutella xylostella at the second instar stage were placed in 

5cm petri dish, which is, has three 42.5mm No1 Whatman filter papers soaked in 600µl de-

ionised water. The larva was allowed to feed on the leaves treated with 200ul in 1.8ml of the 

triton X 100, and mortality was assessed after 3 days.  

In case there is no sufficient amount of toxin, 125µl of toxin was applied to each leaf by using 

paintbrush. But in this case, the toxin is prepared by centrifuging the toxin using table 

microcentrifuge at 14,000 rpm for 1 minute, then remove the supernatant and re-suspend the 

pellet in a mixture of water and triton x 100 same volume as that of the supernatant removed. 

Any further dilution required after the above, is done using a mixture of triton x100 and 

water. The leaf was then left to dry, and when it was completely dried, ten second instar larva 

placed in petri dish and kept at 23°C. 
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2.6.22  Preparation of cabbage for larval feeding 
"

Non –organic cabbage bought from store (Spring Green), and was washed by soaking in a 

container full of water with approximately 10 ml of bleach added. This was then left to stand 

for 10 minutes. After which, it was washed with tap water and then dried by wiping with 

tissue paper. Once dried the cabbage is ready for use, it was stored in the refrigerator for later 

use. 

2.6.23 Growing cabbage plant for bioassay 
    

The cabbage plant was grown pots full of organic soil, by placing two Chinese cabbage seeds 

in each pot. This was then stored in an incubator maintained at 23°C and 60% humidity, 

regular watering to avoid dryness. 
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3. Identification of domain/domains that determine Cry2A 
specificity against Plutella xylostella 

!

!

3.1 Introduction 
 

Many researchers who aim to understand the region or amino acid residues responsible for 

the specificity of Cry toxins start by creating hybrids through domain swaps. This helps to 

identify the domain that could be responsible for specificity, and later they narrow down to 

specific amino acid residue(s) that may be responsible for the specificity of such Cry toxin 

(Höfte and Whiteley, 1989, Widner and Whiteley, 1990, Liang and Dean, 1994). 

The results of previous homologue-scanning mutagenesis experiments identified the 

functional regions of the putative specificity region of Cry2A. As substitutions of residues 

278-340 resulted in a loss of dipteran-specificity in Cry2Aa and substitution of residues 307- 

382 conferred Dipteran-specificity in Cry2Ab, the boundary of this putative Dipteran-

specificity region falls between amino acids 307-340 (Widner and Whiteley, 1990; Morse et 

al., 2001). Furthermore, Liang and Dean, (1994) identified region 2 in domain II in Cry2Aa 

responsible for high activity against mosquito (Aedes aegypti) and Gypsy Moth (Lymantria 

dispar), however Cry2Ab had no activity against Aedes aegypti but possessed a relatively 

low activity against Lymantria dispar. They divided the domain II of both toxins using two 

restriction enzyme namely MluI and XhoI by taking advantage of the naturally occurring 

NheI and NarI sites that borders the putative domain II."The result showed that amino acids 

278-412 are required for Cry2Aa activity against mosquito and Gypsy Moth, which defined 
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domain II as the specificity determining region. However, another work done by student in 

our lab (Joseph, 2019) shows that the N-terminal of Cry2A is required for activity against 

mosquito (Aedes aegypti).     

In this chapter we wanted to determine which domain/domains of Cry2A toxins is/are 

responsible for specificity against diamondback moth, Plutella xylostella. There are a lot of 

contradictory results from the literature available, with some reports claiming that a given 

Cry2A toxin kills an insect and others stating that it does not. We found this to be the case 

with Cry2Aa and Cry2Ab in P. xylostella. According to Pan et al., (2014) and Lin et al., 

(2007), who carried out bioassays using Cry2Ab30 and Cry2Ab10 against a susceptible 

population of P. xylostella, each was found to be toxic with LC50 values of 0.0103µg/ml and 

90 µg/ml, respectively. Whereas, another researcher reported that Cry2Ab had no any activity 

against P. xylostella (Frankenhuyzen et al., 2009), whilst Zhao (2001) stated that Cry2Ab 

has low activity against the same insect. Moreover, in the case of Cry2Aa toxin several works 

have been done to assess the toxicity of the toxin against different populations of P. 

xylostella, the result of the bioassays showed that Cry2Aa was toxic (Frankenhuyzen et al., 

2009; Tabashnik et al.,1996; Ibargutxi et al, 2005). While, some studies carried out by 

different researchers using the same toxin and insect reported that Cry2Aa has low level of 

toxicity against P. xylostella (Monnerat et al., 2015 and Zago et al., 2013). Therefore, it was 

important to test all of the wild type Cry2A toxins that we had in the lab to be able to establish 

our own bioassay data. We carried out bioassays after which we were able to find which 

among them were or were not active against P. xylostella. Based on these results, we carried 

out informed hybrid creation through domain swaps to be able to identify which part of 

Cry2A toxins is responsible for activity against P. xylostella. 
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3.2 Results 
"

3.2.1 Confirmation Cry2A toxin identity and expression 
"

The following, Cry2A toxins used in this research (Cry2Aa9, Cry2Aa17, mCry2Aa17, 

Cry2Ab4, Cry2Ab29, Cry2Ah1, and Cry2Ax) were provided and confirmed through DNA 

sequencing by the Institute of Plant Protection, Chinese Academy of Agricultural Sciences 

and were introduced into E. coli BL 21 strain by a previous student (Nicholas Stevens, 2015). 

The rest of Cry2 toxins (Cry2Aa2, Cry2Ab-916, Cry2Ab Cry2Ac, Cry2Ad and Cry2Ba) were 

confirmed by sequencing the N-terminus using a pGEM T7 primer.  In addition, SDS-PAGE 

was running for the Cry2A toxins that we used in this research along with a known protein 

marker to be able to confirm the position of the proteins. A gel showing a selection of these 

toxins is depicted in (figure 3.1).  

 

Figure 3.1. SDS-PAGE of the expression of Cry2A toxins. The position of the Cry proteins is indicated with arrows 
(1) protein Marker, (2) Cry2Ac, (3) Cry2Ab29, (4) Cry2Aa9, (5) Cry2Aa17, (6) Cry2Ab4, (7) Cry2Ba, and (8) 
mCry2Aa17.  
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Figure 3.1 indicated that, all Cry2A toxins that were cloned in E. coli were expressed but 

Cry2Ab4 which showed a lower level of expression. Furthermore, it is clear from the gel that 

all Cry2A toxins have a molecular weight between 58 and 72 kDa, and all the Cry2A toxins 

appeared at the expected molecular weight except Cry2Ac which had a lower than expected 

molecular weight. The plasmid DNA containing the cry2Ac gene was extracted and 

sequenced with the aim of confirming the identity of this Cry2Ac since it gives us a lower 

molecular weight, we therefore sent it for sequencing to confirm if it is the exact molecular 

weight or there is any error. Three primers were used to enable us to sequence the entire gene 

of cry2Ac. 

T7 forward primer: 5′-TAATACGACTCACTATTAGGG-3′ 

Cry2F forward primer: 5′-TATTACCTTTATTTGCACAGGCA-3′ 

SP6 reverse primer: 3′-ATTTAGGTGACACTATAG-5′ 

We used the sequence of Cry2Ac1 from database as a template to help in filling the gaps 

when overlaps among the sequence received were identified. So, after we identify these 

regions where there are differences between the Cry2Ac we obtained from our sequencing 

result and the Cry2Ac1 sequence from database we carried out multiple sequence alignment 

between Cry2Ac1 from the database and Cry2Ac from our lab as shown in figure 3.3A. 

 

Figure 3.2. Schematic representation the region at which three primers sequenced and the nucleotide positions at 
which they started and stopped along the cry2A gene. 
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Figure 3.3A. Multiple sequence alignment of pGEM Cry2Ac from our lab and Cry2Ac1 from database. The DNA 
sequence from database display as Cry2Ac1. 
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 The differences found based on the sequence alignment presented diagrammatically in figure 

3.3A above are detailed in table 1, with these differences being verified and resolved 

accordingly.     

     

 

 

 

 

 

 

 

 

 

 

 
 Table 1. Showing nucleotide differences between our cry2ac and the database cry2Ac1 and their relative positions. 
These differences are classified as either verified or not verified. 

 

The table above, which shows areas of differences between our Cry2Ac and that of the data 

base was carefully studied to see if these are real differences or a case of error in the 

sequencing process, and fortunately, they were all verified by checking the raw sequencing 

data (chromatogram), as the entire sequence of the Cry2Ac1 from the data base was 

Position 2Ac1 Our 2Ac Verified 

8 C A Yes 

  549-550 CA AC Yes 

569 G A Yes 

 642 A T Yes 

676 C A Yes 

 706-708 CAC ACT Yes 

716 C A Yes 

977 T G Yes 

1146 A G Yes 

1464 A C Yes 

1560 C A Yes 



76"

"

efficiently covered by the sequence received from the sequencing results, which made the 

verification easier. Thus, we conclude that our Cry2Ac is essentially the same as Cry2Ac1 

from the database. In addition, we carried out multiple amino acids sequence alignment 

between Cry2Ac from our lab and other Cry2A (Cry2Aa and Cry2Ab) to be able to know 

why Cry2Ac is shorter than that the rest of Cry2A toxins on the gel, shown in figure 3.3B 

below.  

 

Figure 3.3B. Multiple amino acids sequence alignment of Cry2Ac from our lab, Cry2Aa, Cry2Ab and Cry2Ac1, 
from database.  
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From the amino acids alignment result between Cry2Ac and other Cry2A toxins it could be 

seen that Cry2Ac has only 623 amino acids residues, whereas Cry2Aa and Cry2Ab have 633 

amino acids residues, this accounts for 10 amino acids (1kDa) difference, which cannot be 

visualised in SDS-PAGE gel system. Therefore, it is more likely that the physical properties 

of Cry2Ac cause it to run differently.  

3.2.2 Control experiment for E.coli contaminants 
"

After running the different Cry2A toxins on the gel we saw other proteins appear on the gel 

as shown in (figure 3.1). To ensure that, these other proteins do or not interfere in the toxicity 

of our toxin, we decided set up a control consisting of BL21contining pGEM plasmids in 

which Cry2Ab genes were cloned in the wrong orientation for expression. We 

electrophoresed these recombinants on SDS-PAGE gel to observe expression and then tested 

them toward P. xylostella (figure 3.4). It is obvious that from the gel there is no expression 

of the crystal protein as can be seen by the absence of any band in that position compared to 

Cry2Ac toxin used as positive control. To get the same concentration as Cry2Ac we 

compared equal volumes of samples prepared in the same way. For example, we worked out 

volume of samples that contains 400µg/ml Cry 2Ac and then use the same volume of control-

1 and control-2. 
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Figure 3.4. SDS-PAGE analysis of controls Cry2A along with the expressed Cry2Ac as a positive control. (1) Marker, 
(2) control-1, (3) control-2, (4) Cry2Ac and the arrow in the right indicate the position of the Cry2A toxin band.!!
  

Therefore, we carried out a qualitative bioassay using Cry2Ac toxin and E.coli proteins 

(control 1and control 2)   against P. xylostella to prove  that these have no interference with 

bioassay result  against this insect (figure 3.5).""

"

Figure 3.5. Evaluation of the level of activity of E.coli proteins against Plutella xylostella. The result for two E.coli 
proteins (control 1 and control 2) respectively, Cry2Ac as a positive control and water +triton x100 as a negative 
control. Percentage mortality was recorded in three different experiments after a period of three days. 
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 It appears from the bioassay data that the two Control samples (control 1 and control 2) had 

no activity against P. xylostella, as the percentage mortality was 0%, in contrast the Cry2Ac 

the one that expressed and show high activity against P. xylostella as shown in bioassay data. 

This confirmed that the E. coli contaminants had no activity against both SBT and NO-QA 

populations of P. xylostella.  

 

3.2.3 Result of bioassay for Cry2A toxins against Geneva-88, SBT 
and NO-QA populations of Plutella xylostella 

The leaf dip bioassay experiment was carried out for all the available Cry2A toxins against 

a population of P. xylostella (Geneva-88) susceptible to Cry1Ac, following the method 

described in the materials and methods section. This showed that some of the toxins were 

toxic while others appeared to show little or no toxicity, the result is illustrated in (figure 3.6) 

below. 

 

Figure 3.6. Evaluation of the level of toxicity of different Cry2A against Plutella xylostella Geneva-88 population. 
Percentage mortality recorded in three different experiments after a period of three days, the concentration of all 
Cry2A samples 400 µg/ml, water +tritonx100 as a negative control. 
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Figure 3.6 bioassay data showed that among those Cry2A toxins that were toxic against P. 

xylostella G88, Cry2Ac showed the highest level of toxicity, followed by Cry2Aa17, 

Cry2Aa9 Cry2Ax, Cry2Ab-916 and Cry2Ad whereas Cry2mAa17, which is a mutant of 

Cry2Aa17, and Cry2Ab29 showed the least level of toxicity, Cry2Ah and Cry2Ba did not 

have any activity. Thereafter, we used two different populations of P. xylostella since we lost 

the previous population (G-88). The SBT population which is a Cry1Ac susceptible 

population from Brazil, and the NO-QA population that is highly resistant to Cry1Ac, and 

test different Cry2A against them to see if we could gain the same result as G-88 population, 

but we focused on three Cry2A toxins namely: Cry2Aa, Cry2Ac and Cry2Ab, due to insect 

limitations and based on the fact that it may give a significant difference between Cry2Aa, 

Cry2Ac and Cry2Ab, and the previous bioassay results are contradictory in the literature for 

this reason we concentrate in these ones.  We carried out bioassay against the two populations 

of P. xylostella SBT and NO-QA using Cry2Aa, Cry2Ab and Cry2Ac. The results from the 

bioassay conducted against these two different populations is shown in (figure 3.7). 
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Figure 3.7. Evaluation of the level of toxicity of different Cry2A proteins against two different populations of Plutella 
xylostella (SBT and NO-QA). Percentage mortality was recorded in three different experiments after a period of 
three days, the concentration of all Cry2A samples was 400 µg/ml, water +tritonx100 as a negative control. 

 

Figure 3.7 indicates that Cry2Aa, Cry2Ab, and Cry2Ac were all toxic against the SBT 

population of P. xylostella. In the case of the NO-QA population both Cry2Aa and Cry2Ac 

were toxic but Cry2Ab showed virtually no activity against this population. From all bioassay 

results it is obvious that some Cry2A toxins have different levels of activity against different 

population of P. xylostella. However, more bioassays were done to be able to establish LC50 

values as shown in Table2. 
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Toxin Population  LC50 (µg/ml) 95% Confidence 
limits (µg/ml) 

                       
Cry2Aa 

SBT 171.318 130.621-233.769 

NO-QA 191.737 167.265-223.364 

Cry2Ab SBT 204.910 197.962-237.010 

                       
Cry2Ac 

SBT 156.558 106.636-241.649 

NO-QA 88.929 45.771-167.508 

 

Table 2. Shows the LC50 for Cry2A toxins against the SBT and NO-QA populations of Plutella xylostella. 

 

Tables 2 summarises the value of lethal concentration that can kill 50% of insects (LC50) of 

Cry2A toxins against SBT and NO-QA populations of P. xylostella larvae. The level of 

toxicity of Cry2A were determined using SPSS software (statistical package for social 

science). Cry2Ac had the highest activity followed by Cry2Aa and Cry2Ab in the case of the 

SBT population, for NO-QA the Cry2Ac toxin also has a significant activity, followed by 

Cry2Aa. 

 3.3. Hybrid creation through domain swapping 
"

Based on the result of bioassay data depicted in (figure3.7), we were able to discover that 

Cry2Ac and Cry2Aa were the most toxic toxins to the two populations of P. xylostella tested, 

whereas Cry2Ab was the one with no toxicity against NO-QA population but toxic toward 

SBT population. Therefore, since Cry2Ac and Cry2Aa toxins were toxic to both populations 

we decided to create hybrids between Cry2Ac and Cry2Ab by towards understanding which 
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of the domain(s) were responsible for their specificity against NQ-QA population of P. 

xylostella (figure 3.8).  

" 

Figure 3.8. Schematic representation of the various hybrids created through domain swap. Cry2Ac represents the 
toxic protein, whereas Cry2Ab represents non-toxic protein.  

 

Some previous study has implicated domain II to be responsible for specificity (Morse et al., 

2001). In addition, recent work carried out to identify Cry2A genes in a collection of 300 

strains of Bacillus thuringiensis, led to the identification of a novel toxin (Cry2Aa17) which 

is a natural hybrid comprising of the Cry2Ab sequence in domain I and Cry2Aa sequence in 

domain II and III. When the toxicity profile of this toxin was assessed against Aedes aegypti, 

it was discovered that the toxicity profile matched those of Cry2Ab, thus implicating domain 

Cry2AcAbAb 
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I in specificity determination (Shu et al., 2017). Therefore, we created hybrids through 

domain swaps involving all three domains. Our first task in this part of the research was to 

create hybrids between Cry2Ac and Cry2Ab through various domain swaps with the aim of 

identifying the domain that could be implicated in the specificity and/ or activity of Cry2A 

group of toxins against P. xylostella. Therefore, we started by creating hybrids involving 

domain I, swapping between these two important Cry2A toxins based on the data from Shu 

et al., (2017) which showed that domain I could influence the specificity of Cry2A. After 

this domain III and domain II were created. 

3.3.1. Creation of Domain I and III hybrids between Cry2Ac and 
Cry2Ab 

"

To create hybrids through domain swapping,"primers were designed (Table 3) using the 

primer select programs, and alignment between the all three domains sequences of Cry2Ac 

and Cry2Ab was conducted using Clustal Omega. The alignment results were used to design 

the forward and reverse primers for domain I amplification (figures 3.9 and 3.10). 

 

Figure 3.9. Alignment results between Cry2Ac and Cry2Ab showing the forward and reverse primer for domain I 
amplification indicated by arrow and degenerate base indicated by blue colour.!
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Figure 3.10. Alignment results between Cry2Ac and Cry2Ab showing the forward and reverse primer for domain 
III amplification indicated by arrow.!

!

The strategy used for the creation of the hybrids involved the design of primers, which could 

amplify only domain I of one of the Cry2A toxin known to be active against the insect and 

the Domains II and III along with the pGEM plasmid of the other Cry2A which is non active. 

The two DNAs are then ligated together and introduced into E.coli after which the 

transformants were screened and protein grown from them as described in the materials and 

methods section. The plasmid diagram shows the strategy for the design of the creation of 

the hybrids through domain swaps as showing in (figure 3.11).        
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Figure 3.11. Schematic representation explaining the process of creating hybrids through domain I swap. 

Cry2A DI pGEMCry2A W/O DI 

pGEMCry2A hybrid 
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Domain I was amplified using Cry2A domain I forward primer and Cry2A domain I reverse 

primer, then we amplified pGEMCry2A without domain I which has domain II and domain 

III with the plasmid but without domain I, and this portion was also amplified using, 

Cry2ADIIF forward primer and pGEM reverse primer as depicted in (figure3.11). 

The primers used for the amplification of the various domains, also used for the creation of 

the hybrids are depicted in table 3. In the primer that used to amplify domain I forward 

(Cry2ADIF) there is one area replaced with Y and for domain I reverse there are two areas 

replaced with R and K, we made these primers degenerate to allow these primers to bind 

DNA nucleotide in different Cry2A toxin. 
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  Table 3. Show list of primers used to create hybrids through domains swap. 

 

 

 

 

 

 

 

 

 

NO Oligo Name Sequence (5′-3′) Modification 

1 Cry2DIF ATGAATAATGTATTGAATAAYGGAAG 5′-PHO 

2 Cry2DIR TTTAAATAACGACCAGATRGAKACATA ′PHO 

3 Cry2DIIF TATCAAAGCCTTCTAGTATCTTCYG  

4 pGEMR ATAAAATTCCTCCTTAATCGAATTC  

5 Cry2AcDIIIF AATAATATCTATGACACTCATGAAAATG 5′-PHO 

6 Cry2ADIIIR TTAATAAAGTGGTGGAAGATTAGTTG 5′-PHO 

7 Cry2AbDIIIF  AATAATATCCATGCTGTTCATGAAAATG 5′-PHO 

8 Cry2AbDIIIR    TTAATAAAGTGGTGAAATATTAGTTG 5′-PHO 

9 pGEMDIIIF GGTTTGAGTGAATCACTAGTGAATTC  

10 2ACDIIR TTTTCTGTTATGCACTGTTACAAG  



89#

#

 

Figure 3.12. Schematic representation for forward and reverse primers used in PCR to create hybrids with domain 
I swap. Both primers were phosphorylated (Cry2ADIF and Cry2ADIR) to facilitate ligation of 5′ phosphate group 
with the free 3′ OH group on the amplified plasmid. 

 

 

Figure 3.13. Schematic representation for forward and reverse primers used in PCR to create hybrids with domain 
III swap. 

 

The PCR (PFU ultra 6kb) reaction was performed on pGEM Cry2A plasmid, and the 

amplified products were digested with DpnI to remove methylated template DNA, purified 

using QIAquick kit and electrophoresed on 1% agarose gels to prepare them for ligation. This 

is indicated in (figure 3.14) for domain I amplification.  
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Figure 3.14. Confirmation of presence of amplified PCR products: Lane (1) Marker, lane (2) Cry2Ac domain I, 

lane (3) Cry2Ab domain I, lane (4) pGEM2Ac w/o domain I and lane (5) pGEM2Ab w/o domain I.  

 

According to (figure 3.14) the size of the amplified products presents in the gel for Cry2A 

domain I was (789bp) and pGEM Cry2Ac without domain I, position on the gel was 

consistent with expected sizes (4125bp). The PCR products were then purified, the amplicons 

were ligated, and the circularized plasmid used to transform into NEB-5 competent E. coli 

cells. The transformed colonies were streaked on an ampicillin plate and extracted plasmid 

DNA later digested with HaeIII restriction enzyme to be able to know which of the colonies 

contain the right transformants. These colonies were electrophoresed on an agarose gel and 

the fragments obtained were compared to those generated using NEB cutter. Those colonies 

that appeared to have the right fragments were further digested with BsaAI to confirm if the 

inserted fragments were in the right orientation, this is because the domain I of Cry2A genes 

has no HaeIII restriction digest site, hence HaeIII cannot be used to confirm the orientation 

of the gene in domain I fragment.  
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For those hybrids involving domain II and III swapping, the second digestion was done by 

using the SacI restriction enzyme (figure 3.23 and 3.29).  

 

#

Figure 3.15. DNA banding pattern after HaeIII digest. Gel A shows Cry2AcAbAb clones and Gel B shows 

Cry2AbAcAc DNA clones digested with HaeIII restriction enzyme. The correct colonies are indicated by arrows.!

 

Figure 3.15 shows that the colonies 2 and 4 from gel A and colonies 1, 2, 3, and 6 from gel 

B have the correct plasmids were compared with the fragments generated from NEB cutter 

prediction as indicated in (figure 3.16). Hence, they were further digested with BsaAI to 

determine which have the insert in the right orientation as shown in (figure 3.17). 
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Figure 3.16. This illustrates the plasmid of pGEM2Ac and table lists the expected fragments digested with HaeIII 
restriction enzyme. Taken from NEB cutter website. 

 

 

Figure 3.17. DNA banding pattern after digested with BSaAI restriction enzyme to confirm which of these inserts 
have the right orientation. Gel A is showing Cry2AcAbA clones digested with BSaAI restriction enzyme and gel B is 
showing Cry2AbAcAc clones digested with the same restriction enzyme the right colonies indicated by arrow. 

 



93#

#

Figure 3.17 shows that from gel A both colonies 2 and 4 seem to have the inserts in the right 

orientation after the BsaAI restriction digest. Hence, they were both sent for sequencing, from 

which it was confirmed through sequence alignment with the construct that (Cry2AcAbAb) 

colony 2 from gel A and colony 3 that represent (Cry2AbAcAc) from gel B have the correct 

plasmids. The right hybrids through domain I swap were created, based on the alignment 

result we can confirm that domain I from the sequencing result (Cry2AcAbAb) is a match 

with Cry2Ac before the junction and after the junction between domain I and domain II, 

indicated by a red line as represented in (figure 3.19), the sequence matches Cry2Ab. Also, 

for the hybrid (Cry2AbAcAc) is matching with Cry2Ab before the junction but after the 

junction between domain I and II the sequence matches Cry2Ac (figure 3.20). Therefore, 

these hybrids were subsequently introduced to BL21 for the expression of their proteins.##

  

Figure 3.18. Restriction fragments generated from NEB cutter digested with BsaAI restriction enzyme. Shows A 
orientation represented by arrow pointing towards the right direction, and table (2) shows B orientation represented 
by arrow pointing towards the left direction. 
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Figure 3.19. Alignment of predicted sequence of pGEM (Cry2AcAbAb) and the sequence of Cry2Ac and Cy2Ab. 
The sequence of the DNA obtained from the transformed DH5 and the expected sequence of the Cry2Ac and Cry2Ab 
were aligned using Clustal Omega software. The vertical line indicates the junction between domain I and II. 

 

#

Figure 3.20. Alignment of predicted sequence of pGEM (Cry2AbAcAc) and the sequence of Cry2Ac and Cy2Ab. The 
sequence of the DNA obtained from the transformed DH5 and the expected sequence of Cry2Ac and Cry2Ab were 
aligned using Clustal Omega software. The vertical line indicates the junction between domain I and II. 
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3.3.2. Creation of hybrids through domain III swapping 
#

The hybrids used (pGEMCry2AcAcAb) and (pGEMCry2AbAbAc) were utilized to create 

another hybrid to ensure the swapping of domain III. PCR (PFU ultra 6kb) was performed 

on pGEM Cry2A plasmid, and the amplified products were digested with DpnI, purified and 

electrophoresed on 1% agarose gel. 

 

Figure 3.21. Confirmation of presence of amplified PCR products. Lane (1) Marker, lane (2) pGEM2Ac plasmid w/o 
domain III, lane (3) pGEM2Ab plasmid w/o domain III and lane, lane (4) Cry2Ac domain III (5) Cry2Ab domain 
III. 

 

The amplified PCR products present in the gel (figure 3.21) show the position on gel 

consistent with the expected size of the products, which is (495bp) for Cry2Ac and Cry2Ab 

domain III and pGEM without domain III about (4505bp). The amplicons were ligated, and 

the circularized plasmid used to transform into NEB-5 competent E. coli cells. Extracted 

plasmid DNA was digested with HaeIII restriction enzyme (figure 3.22) as well as a second 

digestion by using SacI restriction enzyme to be able to know which colonies have the insert 

in the right orientation as shown in (figure 3.23) and sequencing was carried out to confirm 

the presence of correct constructs as shown in (figure 3.25 and 3.26).############# 
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Figure 3.22. DNA banding pattern after HaeIII digest. Gel A shows Cry2AbAbAc clones and Gel B shows 
Cry2AcAcAb clones digested with HaeIII restriction enzyme. The correct colonies are indicated by arrows. 

 

Figure 3.22 shows that colony 1, 3, and 4 for 2AcAcAb hybrid (Gel A) and for 2AbAbAc 

DNA (Gel B) hybrid colony 3 and 5 have the correct insert with the right transformants when 

compared with the fragments generated from NEB cutter prediction as indicated in (figure 

3.31). Hence, they were further digested with SacI as shown in (figure3.24). 

 

Figure 3.23. DNA banding pattern after digested with SacI restriction enzyme to confirm which of these inserts have 
the right orientation. Gel A is showing Cry2AbAbAc DNA colonies digested with SacI restriction enzyme and gel B 
is showing Cry2AcAcAb clones digested with the same restriction enzyme the right colonies indicated by arrow. 
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Figure 3.23 shows that colony 1 from gel A and colony 3 from gel B seems to have the inserts 

in the right orientation after the SacI restriction digest and the bands were compared with 

predicted size generated from NEB cutter (figure 3.24). Hence, they were both sent for 

sequencing, and were all confirmed through sequence alignment as shown in (figure 3.25 and 

3.26). 

 

Figure 3.24. Taken from NEB cutter website, this illustrates expected fragments when the hybrids digested with SacI 
restriction enzyme for domain III swap.!Table 1 Shows A orientation the correct orientation, and table2 shows B 
orientation the incorrect orientation. 

 

 

Figure 3.25. Alignment of the sequence received from sequencing result of pGEM(Cry2AbAbAc) and the original 
sequence of Cry2Ac and Cy2Ab. The sequence of the DNA obtained from DH5 and the sequence of Cry2Ac and 
Cry2Ab were aligned using Clustal Omega software. The red line indicates the junction between domain II and III. 

#
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Figure 3.26. Alignment of the sequence received from sequencing result of pGEM(Cry2AcAcAb) and the sequence 
of Cry2Ac and Cy2Ab. The sequence of the DNA obtained from DH5 and the sequence of Cry2Ac and Cry2Ab were 
aligned using Clustal Omega software. The red line indicates the junction between domain II and III. 

 

3.3.3 Creation of hybrids through domain II swapping 
#

To create hybrids with domain II swap the same primers listed in Table 3 were used and we 

used the PCR amplification products which when ligated could produce the required hybrids. 

For instance, in creating the hybrid Cry2AbAcAb we amplified 2AbAcAc without domain 

III and ligated it to 2Ab domain III to give rise to the hybrid 2AbAcAb. PCR (PFU ultra 6kb) 

was performed, and the amplified products were digested with DpnI, purified and 

electrophoresed on 1% agarose gel to prepare them for ligation. (Figure 3.27) indicates the 

purified PCR products for domain II swaps.    
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Figure 3.27. Confirmation of presence of amplified PCR products. Lane (1) Marker, lane (2) Cry2Ac domain III, 
lane (3) pGEMCryAcAb2Ab w/o domain III plasmid, lane (4) Cry2Ab domain III and lane (5) pGEM 
Cry2AbAcAc w/o domain III plasmid.  

 

The amplified PCR products present in the gel in (figure 3.27) were consistent with the 

expected size for Cry2Ac and Cry2Ab domain III, also for pGEM Cry2A without domain III 

is around 4505bp. The amplicons were ligated and plasmid from resulting clones digested 

with HaeIII restriction enzyme (figure 3.28). A second digestion using SacI as shown in 

(figure 3.29) and sequencing were carried out to confirm the presence of right constructs as 

shown in (figure 3.30 and 3.31).  

 

Figure 3.28. DNA banding pattern after HaeIII digest. Gel A shows Cry2AcAbAc clones and Gel B shows 
Cry2AbAcAb clones digested with HaeIII restriction enzyme. The correct colonies are indicated by arrows. 
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The DNA colonies with the right plasmids were compared with the fragments generated from 

NEB cutter prediction as indicated previously in (figure 3.16). Hence, they were further 

digested with SacI to be able to know which ones had the insert in the right orientation (figure 

3.29). 

 

Figure 3.29.  DNA banding pattern after digested with SacI restriction enzyme to confirm which of these inserts have 
the right orientation. Gel A is showing Cry2AcAbAc clones digested with SacI restriction enzyme and gel B is 
showing Cry2AbAcAb clones digested with the same restriction enzyme the right colonies indicated by arrow. 

 

From the above (figure 3.29) the DNA gel A and B shows colony 1 and 4 from gel A and 

colony 3 from gel B seems to have the inserts in the right orientation after the SacI restriction 

digest. Hence, they all three were sent for sequencing, and were all confirmed through 

sequence alignment with their respective constructs to have the right sequences. 
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Figure 3.30.  Alignment of the sequence received from sequencing result of pGEM(Cry2AbAcAb) and the original 
sequence of Cry2Ac and Cy2Ab: the sequence of the hybrid DNA and the sequence of the Cry2Ac and Cry2Ab were 
aligned using Clustal Omega software, the red line indicated to the junction between domain II and III. 

  

 

Figure 3.31. Alignment of the sequence received from sequencing result of pGEM(Cry2AcAbAbc) and the original 
sequence of Cry2Ac and Cy2Ab: the sequence of the hybrid DNA and the sequence of the Cry2Ac and Cry2Ab were 
aligned using Clustal Omaga software, the red line indicated to the junction between domain II and III. 
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Next, all the confirmed constructs were introduced into BL21 E. coli for the expression of 

their respective proteins. These were then grown, the hybrid proteins ware harvested, and a 

7.5 % protein SDS-PAGE was performed to confirm the presence of the hybrid toxins along 

with the wild type as can be seen in (Figure 3.32) the gel below shows the six hybrids (from 

4-6 in the gel)  created through various domain swaps between the two Cry toxins. 

 

Figure 3.32. SDS-PAGE analysis of the various hybrid toxins created indicated by number compered their size with 
the wild type Cry2Ab and Cry2Ac. (1) Marker, (2) Cry2Ac, (3) Cry2Ab, (4) Cry2AcAbAb (5) Cry2AbAcAc, (6) 
Cry2AcAbAc, (7) Cry2AbAcAb, (8) Cry2AcAcAb and (9) Cry2AbAbAc. 

 

Figure 3.32 clearly shows that all the hybrid proteins created through the various domain 

swaps were expressed as can be seen by the presence of the various bands indicated by the 

arrow. The toxicity level of all Cry2A hybrids were assessed by bioassay towards two 

different populations of P. xylostella SBT and NO-QA. The qualitative bioassay results to 

evaluate the level of toxicity of the various hybrids created on SBT and NO-QA populations 

of P. xylostella is shown in (figure 3.33 and 3.34). 
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Figure 3.33. Evaluation of the level of toxicity of various hybrids created through domain swap between Cry2Ab and 
Cry2Ac against SBT population of Plutella xylostella. Cry2Ac as a positive control and water +tritonx100 as a 
negative control Percentage mortality was recorded in three different experiments after a period of three days. The 
concentration of each toxin was 400 µg/ml.  

 

The results of the bioassays show that all the hybrids demonstrated activities against the SBT 

population of P. xylostella, which confirms that the hybrids were functional. 

 

Figure 3.34. Evaluation of the level of toxicity of various hybrids created through domain swap between Cry2Ab and 
Cry2Ac against NO-QA population of Plutella xylostella. Cry2Ac as a positive control and water +tritonx100 as a 
negative control Percentage mortality recorded in three different experiments after a period of three days. The 
concentration of Cry2Awas 400 µg/ml. Hybrids involve Cry2Ab in domain I, II and III  
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Figures 3.34 illustrate that the level of toxicity of various hybrids against the NO-QA 

population of P. xylostella. Some of the hybrids show slight activity against the NO-QA 

population, but less than the bench mark of 10% set out for significance hence they are still 

considered as non-active except the hybrid which involve Cry2Ac in domain I and II, Cry2Ab 

in domain III (Cry2AcAcAb).  Cry2Ab is non-toxic to this population but Cry2Ac is toxic 

when the hybrid has Cry2Ac in domain I and II, that is convert the toxicity to non-toxic one 

which Cry2Ab. From this result it is clear that domain I and domain II, but not domain III 

influences the toxicity toward the NO-QA population of P. xylostella. 

 

3.3.4 Hybrids creation through N-terminal swapping 
#

Previous work (Joseph unpublished) on Aedes aegypti, found that toxicity was associated 

with the N-terminal 49 amino acids in Cry2A toxins. He created hybrids between Cry2Ac 

which was toxic to A. aegypti and Cry2Ab, which was non-toxic, through swapping only the 

N-terminal 49 amino acids part from domain I of the toxic Cry2Ac to non-toxic Cry2Ab 

(figure 3.35). The result was that Cry2Ac lost its toxicity when it had Cry2Ab at the N-

terminus, and Cry2Ab gained toxicity when it had Cry2Ac at the N-terminal. Therefore, the 

level of toxicity of these hybrids were tested against two different populations of P. xylostella 

to find out if the result would be the same or different from A. aegypti. 
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Figure 3.35. Schematic representation of hybrids created through domain swap. Cry2Ac represents toxin, whereas 
Cry2Ab represent non-toxic protein.  

 

 

Figure 3.36 Evaluation of the level of toxicity of hybrids created through N-terminal swap between Cry2Ab and 
Cry2Ac against the NO-QA and SBT populations of Plutella xylostella.  Cry2Ac as a positive control and water 
+tritonx100 as a negative control, Percentage mortality recorded in three different experiments after a period of 
three days. The concentration of all toxins was 400 µg/ml.  

 

According to (figure 3.36), it appears that adding Cry2AcNT to Cry2Ab may have had slight 

effect in increasing activity, and adding Cry2AbNT to Cry2Ac have had slight effect in 

decreasing activity. we decided to create another hybrid consisting of Cry2Ac at the N-

terminal portion of domain I and domain II, and Cry2Ab in the remaining parts to see whether 
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this N- terminal 49 amino acids association with domain II was enough to determine 

specificity for this reason Cry2AcNTAbAcAb was made (figure 3.37). 

#

    Figure 3.37 Schematic representation of hybrid formed between N-terminal and domains II of Cry2Ac, and 
Cry2Ab. 

 

 To create this hybrid (Cry2AcNTAbAcAb) the following primers were used. Some were 

phosphorylated to allow ligation of the 5′ phosphate group with the free 3′ OH group on the 

amplified plasmid.   

Table 4. Show list of primers used to create hybrids between N-terminal and domain II. 

NO Oligo 

Name 

Sequence Modification  

1 Cry2A 

DII F 

5’-TATCAAAGCCTTCTAGTATCTTCYG-3’ 5′-PHO 

2 Cry2A 

DII R 

5’-TTTTCTGTTATGCACTGTTACAAG-3’ 5′-PHO 

3 Cry2Ab 

w/o DII 

F 

5’-AATAATATCCATGCTTGTTCATGAAAATG- 

3’ 

 

4 Cry2Ab 

w/o DII 

R 

5’-TTTAAATAACGACCAGATRGAKACATA-3’  
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PCR (PFU ultra 6kb) was performed on pGEM Cry2A plasmids, the amplified products 

digested with DpnI, purified using gel purification methods, then run on 1% agarose gel to 

prepare them for ligation. 

 

 

Figure 3.38. Confirmation of presence of amplified PCR products: PCR products was digested with DpnI, purified 
using QIAquick kit and run on 1% agarose gel along with the template and 1kb ladder (Marker) for size 
confirmation. Lane (1) Marker, lane (2) cry2Ac domain II, lane (3) Cry2AcNTAb w/o domain II, lane (4) the same 
sample in lane 3 but diluted 1:5. 

 

The amplified PCR products which presented in (figure 3.38) were consistent with the 

expected size of Cry2Ac domain II and for pGEM Cry2AcNTAb without domain II. The 

amplicons were ligated, transformed into E.coli, digested with HaeIII restriction enzyme, and 

sequencing carried out to confirm the presence of the right constructs as shown in (figure 

3.39).  
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Figure 3.39 DNA banding pattern after HaeIII digest:  DNA minprep was conducted after each transformation step 
using QIAquick kit, digested with HaeIII then run on 1% agarose gel along with the marker. Gel is showing 
Cry2AcNTAbAcAb DNA colonies digested with HaeIII restriction enzyme, the right colonies number (1,3 and 5) 
indicated by arrow. 

The DNA was then sequenced for final confirmation, and according to (figures 3.40 and 3.41) 

the right hybrids were created. We can also clearly see this from the alignment of the 

sequencing result and the sequence of Cry2Ab and Cry2Ac. 

 

Figure 3.40. Alignment of the sequence received from sequencing result of pGEM(Cry2AcNTAbAcAb) and the 
original sequence of Cry2Ac and Cy2Ab: the sequence of the hybrid DNA and the sequence of the Cry2Ac and 
Cry2Ab were aligned using Clustal Omega software, the two red lines indicate the junction between domain I and 
II, then between domain II and III respectively in the desired hybrid.  
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Figure 3.41. Alignment of the sequence received from sequencing result of pGEM (Cry2AcNTAbAb Ab) and the 
sequence of Cry2Ac and Cy2Ab: the sequence of the hybrid DNA and the sequence of the Cry2Ac and Cry2Ab were 
aligned using Clustal Omega software, the red line indicated to the junction between N-terminus and domain I. 

 

The hybrid (Cry2AcNTAbAcAb) was introduced into BL21, grown after, then the protein 

was harvested using the method described in material and methods chapter, then run on SDS-

PAGE along with Cry2Ac and Cry2Ab wild type for size comparison as shown in (figure 

3.42). 

 

Figure 3.42. SDS-PAGE analysis of the hybrid toxin created comparing its size with the wild type Cry2Ab and 

Cry2Ac. (M) Marker, (1) Cry2Ab, (2) Cry2Ac, (3) Cry2AcNTAbAcAb. 
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Based on (figure 3.42), it is obvious that the hybrid protein created through domain swaps 

was well expressed as can be seen by the presence of the bands indicated by the arrow on the 

right side. 

The toxicity level of the hybrid was assessed by carrying out bioassay on the NO-QA 

population of P. xylostella. The qualitative bioassay results to evaluate the level of toxicity 

of the hybrids created on NO-QA population of P. xylostella is shown in (figure 3.43). 

 

Figure 3.43. Evaluation of the level of toxicity of hybrid created through N-terminal and domain II of Cry2Ac, and 
Cry2Ab against NO-QA population of Plutella xylostella. Cry2Ac as a positive control and water +tritonx100 as a 
negative control Percentage mortality was recorded in three different experiments after a period of three days, the 
concentration of all toxins of Cry2Awas 400 µg/ml. 

 

Figure 3.43 shows that the hybrid has little toxicity against NO-QA population of P. 

xylostella. Figure 3.34B had indicated that Cry2AcAcAb retained toxicity to NO-QA but this 

result indicated that more than just the N-terminal 49 amino acids of domain I is required.   
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3.4 Discussion 
#

This research, which focused on understanding the basis of specificity of Cry2A group of 

toxins against P. xylostella, started by carrying out bioassay studies of all the wild type Cry2A 

toxins available in our lab. This is because there are contradictory results in the literature and, 

we wanted to establish our own bioassay data. After these bioassays, we then created some 

hybrids through different domain swaps to be able to understand the domain/domains that 

is/are responsible for activity in this group of toxins.  

Based on the results we obtained from the bioassay we established that using the wild type 

toxins, Cry2Ac, Cry2Aa and Cry2Ab, were active against the SBT population of P. 

xylostella. Whereas, Cry2Ac and Cry2Aa toxins were active against the NO-QA population, 

Cry2Ab was non-active against the same population. In the case of Geneva- 88 the most toxic 

protein was Cry2Ac but unfortunately, we could not carry out further work with this 

population due to the fact that it was lost. Additionally, a review (Frankenhuyzen, 2009) 

indicated that Cry2Aa is toxic to P. xylostella. Moreover, a study conducted by Tabashnik et 

al., (1996) indicated that the NO-QA population has no-cross resistance to Cry2Aa toxins. 

All these results support our findings that Cry2Aa is toxic against to diamondback moth.  

In contrast, the findings of Monnerat et al. (1999), who tested various toxins of Cry1A, along 

with Cry2Aa, showed that Cry2Aa has lower activity with an LC50 of (54.515 µg/ml). This 

is contrary to our findings because we discovered that Cry2Aa is active against both 

populations of P. xylostella. However, (Liu et al., 2001) used different population of P. 

xylostella, LAB-PS (susceptible) and NO-QA and NO-95C (resistant). They discovered that 

Cry2Aa is less toxic to the susceptible population, suggesting there is no cross-resistance to 
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the resistance population. This result is similar to our findings which showed that the Cry2Aa 

toxin is active against the NO-QA population. Whilst research done by Zago et al. (2014) 

showed lower levels of Cry2Aa toxin resistance among several P. xylostella that had a history 

of low prior exposure to Cry2A containing products. This result supports our finding which 

shows that Cry2Aa has low level of resistance in case of SBT population of P. xylostella.  

Furthermore, previous work done by (Pan et al., 2014) claimed that Cry2Ab was significantly 

toxic against P. xylostella susceptible populations with LC50 (0.0103 µg/ml). Additionally, 

Lin et al., (2007) examined toxicity of the Cry2Ab toxin, and reported that it has high 

insecticidal activity against susceptible diamondback moths, with the value of LC50 was (90 

µg/ml), these results agreed with our findings, which showed that Cry2Ab was toxic towards 

SBT population. Some researchers who tested the toxicity of Cry2Ab against three different 

populations of P. xylostella, stated that Cry2Ab showed low level of toxicity (Zhao et al., 

2001). In contrast, a review by Frankenhuyzen (2009) reported that Cry2Ab and Cry2Ac had 

no insecticidal activity against P. xylostella. Our results showed that Cry2Ac is toxic against 

the SBT population of P. xylostella, which is contrary to what they reported. Hence, this 

justified why we carried out a fresh bioassay to be able to establish our baseline data. 

Since we found out which Cry2A toxins were active against our populations and those that 

were non-active, the next hurdle was try to find out which among the three domains of Cry2A 

toxins influences activity against these two populations of P. xylostella. We carried out 

domain swaps as shown in (figure 3.8), involving Cry2Ac toxin known to be active against 

NO-QA population, and another one known to be non-active Cry2Ab.  
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The results confirmed that domain I and domain II of Cry2Ac are required for activity to the 

NO-QA population as shown in (figure 3.34), but not the N-terminus from domain I alone or 

N-terminus along with domain II that conferred activity based on our findings, in (figure 3.36 

and 3.43).  

These results appeared similar to the findings of Liang and Dean (1994) who discovered that 

some sequences in domain II are responsible for activity against mosquitos (Aedes aegypti) 

and gypsy moth (Lymantria dispar), similar to our findings that sequences comprising 

domain I and II influenced activity of Cry2A toxins against NO-QA population of P. 

xylostella. These, strengthened the fact that some specific sequences could determine activity 

of the toxins against different insects. In addition, other research suggests that some residues 

in domain II not domain I or III responsible for activity against dipteran insects (Widner and 

Whiteley, 1990; Morse et al., 2001).  

This difference in toxicity witnessed from the three different populations of P. xylostella 

obtained from two different countries is not surprising because previous research has shown 

that even among Cry toxins that are toxic against an order of insect, there exists significant 

differences in their level of specificities and or toxicity. This is due to intraspecies variation 

in toxin susceptibility which seemed to occur between test colonies obtained from different 

parts of the world: a variation of 1-2 orders of magnitude, even among insects from the same 

geographical region or colony may vary by 1 order of magnitude between cohorts or 

successive generations (Frankenhuyzen, 2009).  

This might be the reason why our results appeared contradictory to others, because the 

bioassay was performed in different geographical locations, and research was performed in 
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different geographical locations that can affect the activity of Cry toxins to some insects. 

Moreover, the age of larvae could affect the result of bioassays. (McNeil and Dean, 2011) 

discovered that susceptibility decreased with decreasing larvae age. They might have used 

different population of P. xylostella from our population and that could lead to some variation 

in our bioassay results, hence, why they reported that this toxin is active but, in our case, not 

active. Therefore, differences in susceptibility of Cry toxins are population dependent as 

could be seen in research conducted by Ingber et al., (2017) who worked with two different 

populations of Lepidopteran insects which were Spodoptera frugiperda corn-strain and rice-

strain. These were tested on some Cry toxins, namely: Cry1Ab, Cry1Ac and Cry1F. In 

addition to these two strains, they created another hybrid between these two stains referred 

to as the rice-corn hybrid. Therefore, they carried out bioassays to compare the 

susceptibilities of these Cry toxins to the different strains of S. frugiperda, after which they 

discovered that all Cry toxins were active against only two strains; the corn-strain and the 

hybrid population. Most specifically Cry1F appeared to be much more active to these two 

strains. They discovered that these Cry toxins were non-active towards the rice-strain. These 

results are further confirmation of the fact that activity of Cry toxins are population 

dependent, in that these Cry proteins were toxic to the two populations of Spodoptera 

frugiperda but not the rice-strain population. 

 

 

!
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4. Comparative studies between E. coli and Bt expression 
systems for Cry2A toxins 

 

4.1 Introduction 
#

The idea behind this chapter was to see which expression system gave the best and clearest 

toxin, but also to check whether the expression system had any effect on activity. Based on 

the research done by Crickmore and Ellar, (1992) explaining the effects of the presence 

and/or absence of ORF2 using different vectors of Bacillus thuringiensis could have on the 

expression level of Cry2A toxin. This was achieved by inserting the Cry2Aa gene in different 

plasmid constructs using IPS78/11 Bacillus thuringiensis for expressing the Cry2Aa gene as 

shown in (figure 4.1), and they discovered that they got a high yield when they used a 

particular Bacillus thuringiensis expression system; clearly depicted in (figure 4.2) lane 6 

and 7 which showed the high level of expression of Cry2Aa, and the large amount of protein 

obtained compared to other lanes. These two lanes 6 and 7 correspond to vector constructs 

pSVP27B40B and pSVP27B40P shown in (figure 4.2). Based on these results (figure 4.2), it 

was concluded that these two vectors gave an efficient expression of the Cry2Aa toxin 

compared to the other vector constructs,# this showed the need for ORF2 for efficient 

expression.##Therefore, based on these findings from this study we decided to use the same 

plasmid pSVP27B40B to express different wild type cry2A genes and several hybrid cry2A 

genes to be able to find out if we could get a higher yield of cleaner toxin and to see whether 

there would be any difference in activity of Cry2A toxins against the two populations of 

Plutella xylostella.  
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Figure 4.1. Represents construction of different vectors and restriction sites introduced by site-directed mutagenesis. 
The fragments were cloned into shuttle vector pSV2 (Crickmore and Ellar, 1992). 

 

Below is the SDS gel as depicted by Crickmore and Ellar, 1992. 

  

 

Figure 4.2. Represents the SDS-PAGE analysis of different expression of Cry2Aa in IPS78/11 in different vectors. 
Lane (1) Marker, Lane (2) pSVB40BB plasmid, Lane (3) pSV2, Lane (4) pSVB40BXAse, Lane (5) pSVP27B40X, Lane 
(6) pSVP27B40B and Lane (7) pSVP27B40P (Crickmore and Ellar., 1992). 

 

           

 Furthermore, we would aim to carry out a binding assay towards finding if the activities of 

Cry2A toxins are related with their receptor binding ability. This is because we are using two 

different populations of P. xylostella to test for the activities of these toxins, and there may 

be high tendency of getting a toxin with differing toxicities to these populations and as such 

it will be very interesting to know if activity of toxins is related to their receptor binding 
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ability at all times. Various models that describe the different mechanisms of actions of Cry 

toxins to insects linked it to the ability of these toxins to bind to the receptors within the gut 

epithelium of these insects (Bravo et al., 2004). Therefore, the results would further shed 

more light if there may be other possible mechanism of action of the toxin in addition to the 

ones already proposed. 
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4.2 Results   
#

4.2.1 Preparation of pSVP27B40B plasmid for introducing cry2A 
genes  

 

In order to insert the various genes into pSVP27B40B, we create the restriction sites in pGEM 

plasmid to be able to excise Cry2A toxins genes, which has XbaI site upstream of the gene 

and HindIII sites downstream of the gene. Therefore, we need to have same two sites in 

pSVP27B40B plasmid to use it for the cloning, and interestingly it already has Hind III site, 

hence we need to introduce only the XbaI site. The same process was used to create these 

two restriction sites in pSVP27B40B that was used to insert the Cry2A toxin genes that have 

been removed from pGEM plasmid into pSVP27B40B to able be successfully insert the 

cry2A gene in to the pSVP27B40B plasmid.  

 We removed the Cry2Aa toxin gene that had been inserted into pSVP27B40B. We followed 

the technique used by Crickmore and Ellar, (1992) which involved the use of restriction sites 

to insert the gene. To remove the gene from the plasmid in order to create a site for inserting 

the new gene, the presence of restriction sites flanking the toxin genes are required as 

depicted in (figure 4.3).  
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Figure 4.3. Map of pSVP27B40B plasmid with the HindIII site, ORF a represent cry2Aa gene. it taken from NEB-
cutter web site 

 

From figure 4.3 above, it is obvious that pSVP27B40B plasmid had only one restriction site 

for HindIII downstream the cry2Aa gene, which appears as ORFa, and but it has no any 

restriction site detected upstream the gene. Therefore, artificial insertion of a restriction site 

upstream of the gene needs to be done in order to exchange cry2Aa genes in the plasmid. As 

shown in (figure4.1), the additional restriction site of XbaI was successfully introduced 

upstream the cry2Aa gene to this plasmid pSVP27B40BX. However, the location of XbaI 

restriction site should be in the right position to ensure that orf2 gene remains within the 

plasmid when the toxin gene is removed, because of the importance of orf2 gene in 

crystallization and expression of the Cry2A toxins (Crickmore et al., 1992). In order to 

incorporate an XbaI site into pSVP27B40B plasmid two primer were designed using PCR 

PRIMER SELECT program to be able to introduce the site in the plasmid using PCR. 
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No Oligo  Name Sequence Modification 

1 XbaI Forward 
primer 

5’-TTCTAGATGAATAATGTATTGAATARYGG-
3’ 

 

2 pSVP72B40B 
Reverse primer  

 

5’-TTCCTCCTTAAATATCTAGTTTTATAT-3’  

 

   Table 4.1.  Forward and reverse primers that were used to introduce the desired mutation. 

 

As appeared in table (1), we made the primer degenerate by replacing two bases which do 

not appear similar in all Cry2Aa toxins by RY to be able to introduce XbaI site in 

pSVP27B40B plasmid, also to be able to excised cry2Agenes from pGEM plasmid and use 

it to amplify the hybrid toxins as the different cry2A genes are degenerate at these two 

positions. In order to amplify the whole plasmid from where the primers bind to one point on 

the plasmid and replicate the DNA in opposite directions PCR (PFU ultra 6KB) reaction was 

performed on pSVP27B40BCry2Aa by using XbaI forward primer and pSVP27B40B reverse 

primer, the result was purified using gel purification method as described in chapter two 

(materials and methods), then run on 1% agarose gel (figure 4.4). 
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Figure 4.4. Confirmation of the presence of amplified PCR product. PCR product was purified and run on 1% 
agarose gel, lane (1) is pSVP27B40B plasmid containing Cry2Aa toxin gene and lane (2) is 1 Kb DNA marker for size 
comparison. 

 

Based on the figure 4.4 the size of amplified product presence in lane 1, size was consistent 

with the expected size (8570 kb). The amplified product was self-ligated prior to introduction 

to DH5α E.coli competent cells, once colonies of the electrotransformed DH5α cells was 

grown,  then they were harvested, and the DNA was miniprepped using QIAprep kit. This 

DNA was digested with HindIII and XbaI to be able to ensure that the PCR had successfully 

introduced the XbaI site, and to remove the cry2Aa gene from the plasmid. The verification 

of successful presence of restriction site was carried out by digestion with HindIII, after than 

XbaI and HindIII+ XbaI, at the same time, by comparing the size of the fragment (expected 

band) generated by NEB cutter program (figure 4.5) with the size of resultant bands, after 

digestion with the enzyme which were then run it on 1% agarose gel (figure 4.6). 
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Figure 4.5. Schematic representation of pSVP27B40BXba plasmid and localization of different restriction sites of 
XbaI and HindIII. B, C, and D sizes of different fragments generated by digestion of pSVP27B40Bplasmid with XbaI, 
HindIII and with both enzymes respectively. It taken from NEB cutter program. 

 

According to figure 4.5 (B and C), it is clear that when the plasmid is digested with HindIII 

the size of the band obtained from the gel was consistent to the predicted size (8570 kb), 

which is the size of the whole plasmid as shown in (figure 4.6). Similar result was obtained 

when the plasmid was digested with XbaI. However, to be able to confirm if the insertion of 

XbaI site was successful, the plasmid was digested with both enzymes giving two fragments 

with predicted sizes of 6458 bp and 2112 bp as shown in (figure 4.6). But due to overloading 

of the marker we cannot confirm the sizes of single digests but only one band from double 

digestion could be confirmed.  
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Figure 4.6. DNA banding pattern after digested with XbaI, HindIII and both enzymes. DNA was minipreped after 
transformation using QlAprep kit digested with XbaI and HindIII. Lane (1) 1kb DNA marker, lane (2) plasmid DNA 
digested with HindIII, lane (3) plasmid DNA digested with XbaI and lane (4) plasmid DNA digested with both 
enzymes. 

 

In order to clone cry2A genes, the new plasmid was cut with HindIII and XbaI, top band 

purified and run on 1% agarose gel to make sure we got the desired product. In this stage, the 

plasmid was ready for introducing various cry2A genes as shown in (figure 4.7).  

 

Figure 4.7. Purified DNA fragment of pSVP27B40B plasmid after digestion with both XbaI and HindIII. Lane (1) 
1Kb DNA marker and lane (2) purified fragment of pSVP27B40BXba plasmid. 
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4.2.2 Isolation and amplification of cry2A genes from pGEM 
plasmid 
#

We decided to extract all cry2A hybrid genes that were in pGEM plasmid and introduce them 

into the pSVP27B40BXba plasmid, in this case we needed to design primers to be able to 

introduce XbaI and HindIII either side of the amplified cry2A genes, table 2. 

 

Table 4.2.  Forward and reverse primers that were used to introduce the two restriction sites. The bases indicated 
by red are the start and stop codons respectively. 

 

For the forward primer we used the same one that was used to introduce XbaI site to the 

pSVP27B40B plasmid, hence the sequence for this primer was made degenerate due to some 

few dissimilarities between the sequences of cry2A genes. The forward primer enabled us to 

insert XbaI site upstream of start codon of cry2A gene, but for the reverse primer we designed 

a new primer which#has a mutation introduced, AAGCTT, giving rise to HindIII restriction 

site into the PCR product downstream of the cry2A gene (figure 4.8). 

NO Oligo 
name 

Sequence Modification 

1 XbaI 
Forward 
primer 

5’P-TTCTAGATGAATAATGTATTGAATARYGG-3’ 5’-PHO 

2  HindIII 
Reverse 
primer  

5’-TCAAAGCTTAATAAAGTGGTGRAAG-3’  
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Figure 4.8. Schematic representation of forward and reverse primers used in the PCR reaction to amplify Cry2A 
toxin genes from pSVB40B plasmid. 

 

According to (figure 4.8) the Cry2A and\ the hybrid genes were amplified from the pGEM 

plasmid using PCR (PFU ultra 6 KB program). The PCR amplified products were purified 

using QIAprep Spin Miniprep kit, then run on 1% agarose gel as shown in (figure 4.9).  

 

#

Figure 4.9. Confirmation of purified PCR products using QlAprep kit. Gel A lane (1) 1kb DNA marker, lane (2) 
Cry2Ac, lane (3) Cry2Ab, lane (4) Cry2AcNTAbAbAb, lane (5) Cry2AcAbAb, lane (6) Cry2AbAcAb, and lane (7) 
Cry2AbAbA. Gel B lane (1) 1Kb DNA Marker, lane (2) Cry2AbAcAc, lane (3) Cry2AcAbAc, and lane (4) 
Cry2AcAcAb.        
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It is clear that, from (figure 4.9) that the size of the amplified products present in the gel were 

consistent with expected size of size of the products which was (1876kb). After purification 

of the PCR, an enzyme digestion was performed, using both XbaI and HindIII restriction 

enzymes to expose the sticky ends of the PCR products to allow ligation of the gene into the 

digested pSVP27B40BXba plasmid. Afterwards, the digested PCR products were purified 

using column purification procedure and run again on 1% agarose gel as depicted in (figure 

4.10). 

 

       

Figure 4.10. Confirmation of purified PCR product digested with XbaI and HindIII restriction enzymes. Gel A lane 
(1) 1kb DNA marker, lane (2) Cry2Ac, lane (3) lane Cry2Ab, (4) lane Cry2AcNTAbAbAb, (5) lane Cry2AcAbAb, 
(6) lane Cry2AbAcAb, (7) Cry2AbAbAc and lane (8) pSVP27B40BX plasmid. Gel B lane (1) 1kb DNA marker, lane 
(2) Cry2AbAcAc, lane (3) Cry2AcAbAc and lane (4) Cry2AcAcAb. 

!
 The amplicons were ligated to pSVP27B40BXba plasmid, and the circularized plasmid was 

used to transform NEB-5 competent E.coli cells. Extracted plasmid DNA was digested with 

HaeIII restriction enzyme (figure4.12) to know which colonies have the right insert by 

comparing the size of fragments (expected band) taken from NEB cutter program in (figure 
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4.11). The right colonies were sent for sequencing, then the extracted DNA from these cells 

were introduced to Bt cells (IPS78/11) for expression. 

 

Figure 4.11. Illustrate table (1) and (2) with the differences in the size of the fragments between pSVP27Cry2Aa and 
pSVP27Cry2Ac respectively depicted by arrows.  Taken from NEB cutter website. 

 

Based on (figure 4.12), which showed the difference between pSVP27B40BCry2Aa and 

pSVP27B40Bcry2Ac after digestion with HaeIII enzyme, for Cry2Aa the difference in two 

fragments (1274bp) and (505bp), but for Cry2Ac the size is around (1779bp) with no 505bp 

band and the same result as Cry2Ac was obtained for Cry2Ab which holds for all the other 

hybrids. To confirm that, the digested DNAs were run on 1% agarose gel and the difference 

in the sizes of the digestion fragments were obvious in (figure 4.12). Showing the band 

around (1274 bp) and (505bp) for Cry2Aa and the band around (1779bp) for Cry2Ac and 

Cry2Ab. 
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Figure 4.12. Predicted HaeIII digestion profile of pSVP27B40BCry2Aa and pSVP27B40B, and the gel shows: DNA 
bands, when minpreped using QlAprep kit after transformation, then digested with HaeIII, and run on agarose gel. 

 

All the hybrids that were amplified from pGEM plasmid and introduced into 

pSVP27B40BXba plasmid were confirmed by sequencing, and using Clustal Omega 

software to align the DNA sequence, with the original sequence for the wild types that we 

used to create all the hybrids. All hybrids and wild type Cry2Ab and Cry2Ac that were 

successfully introduced into pSVP27B40B plasmid and further introduced into the 

accrystalliferrous Bt strain IPS78/11 for expression, and IPS78/11 transformants were grown, 

the proteins were harvested, and crystals were observed under a phase contrast microscope, 

after which they were run on 7.5% SDS-PAGE gel along with a protein marker (figure 4.13).    

 

1#########2#########3#######4 

1779bp 

505bp 

1274bp 
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Figure 4.13.  SDS-PAGE showing both the wild type and hybrid toxins expressed in Bt. The position of Cry2A 
proteins are indicated with arrow and these were compared with the standard protein marker. M (protein marker), 
lane (1) Cry2Ac, lane (2) Cry2Ab, lane (3) Cry2AcNTAbAbAb, lane (4) Cry2AcAbAb, lane (5) Cry2AbAcAb, lane 
(6) Cry2AbAbAc, lane (7) Cry2AbAcAc, lane (8) Cry2AcAbAc and lane (9) Cry2AcAcAb. 

 

 

According to (figure, 4.13) all Cry2A hybrids and wild type toxins, which were introduced 

into pSV27B40B plasmid were expressed. From the gel above, it is obvious that Cry2Ac, 

Cry2Ab, Cry2AcNT and Cry2AcAcAb were well expressed, whereas, Cry2AbAbAc was not 

well expressed but also Cry2AcAbAb and Cry2AbAcAb were expressed, but the level of 

expression was not good enough for bioassay. However, from the gel we could clearly realize 

that Cry2Ac, Cry2Ab and Cry2AcAcAb were well expressed, therefore we decided to use 

those Cry toxins that were well expressed in Bt to make comparison with those expressed in 

E.coli. Hence, both E.coli and Bt expressed samples were run on an SDS-PAGE gel shown 

below in (figure 4.14).    
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Figure 4.14. SDS-PAGE comparative analysis of Cry2A toxin expressed in E.coli BL21 and Bt IPS78/11. The position 
of Cry2A proteins are indicated with arrow and these were compared with the standard protein marker. M (protein 
marker), lane (1) Cry2Ab (E.coli), lane (2) Cry2Ab (Bt), lane (3) Cry2AcAcAb (E.coli), lane (4) Cry2AcAcAb (Bt), 
lane (5) Cry2AbAcAc (E.coli), lane (6) Cry2AbAcAc (Bt), lane (7) Cry2Ac (E.coli), lane (8) Cry2Ac (Bt). 

 

From the result above in (figure 4.14), it appears that the level of purity of the toxin was 

higher in Bt than E.coli expression system, based on the intensity of the band from the SDS-

PAGE gel. This is because those toxins expressed in Bt gave more clear bands with less 

contamination compared to those expressed in E.coli, based on the clarity of the various lanes 

observed from the gel. The next hurdle was to be able to assess the level of activity of these 

toxins expressed in these systems to see if there is any difference between them. We 

measured the concentration of some of these toxins as shown in (figure 4.15) and then carried 

out bioassay against the two different populations of P. xylostella, SBT and NO-QA.  
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Figure 4.15A. SDS-PAGE used in measuring the concentration of the proteins expressed in Bt using densitometry 
method: M is a protein marker, lane (1to3) BSA standards (500, 250 and 125) µg/ml respectively in gel A and B, lane 
(4) Cry2Ab, lane (5) Cry2Ac and lane (6) Cry2AcAcAb.  Gel B lane (4) Cry2AbAcAb, lane (5) Cry2AbAcAc. 

 

!!!!!!!!!!!!!!!!!!!!!! 

The concentration of proteins was found as follows for Cry2Ab (272.34 µg/ml), Cry2Ac 

(932.22 µg/ml), Cry2AcAcAb (575.83 µg/ml), Cry2AbAcAb (375.25 µg/ml) and 

Cry2AbAcAc (209.54 µg/ml). 

The qualitative bioassay result to evaluate the level of toxicity of the toxins expressed in Bt 

compared to the toxins expressed in E.coli on SBT and NO-QA populations of P. xylostella 

is shown in (figures 4.16 and 4.17). 
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Figure 4.16. Evaluation of the level of toxicity of Cry2A wild type toxins and hybrids toxin expressed in Bt and the 
one expressed in E.coli against SBT populations of Plutella xylostella. Percentage mortality recorded in three 
different experiments after a period of three days, the concentration of all Cry2A toxins were 400ug/ml and Triton 
X100 +distilled water used as a control. 
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Figure 4.17. Evaluation of the level of toxicity of Cry2A wild type toxins and hybrids toxin expressed in Bt and the 
one expressed in E.coli against NO-QA populations of Plutella xylostella. Percentage mortality recorded in three 
different experiments after a period of three days, the concentration of all Cry2A toxins were 400ug/ml and Triton 
X100 +distilled water used as a control. 
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 From the two graphs (figure 4.16 and 4.17), it could be observed that there was no significant 

difference in terms of activity for the toxins expressed in either E.coli or Bt  expression 

system, implying that the system of expression used does not affect the activity of the toxin 

against the populations of insect in question. This could be seen as a further confirmation of 

the result that was obtained from the control experiment in the previous chapter, showing 

that the presence of some contaminants in E.coli expressed toxin does not affect the activity 

of the toxins.  

 

4.3 Activation of Cry2A toxins expressed in Bt using chymotrypsin 
and mid gut juice of Plutella xylostella 

 

This section seeks to understand the possible difference in binding as well as to establish if 

there is possible difference in activation among Cry2A toxins. Chymotrypsin was used as 

reference protease for activation of these toxins because it has been established that activation 

using chymotrypsin does mimic what actually happened in the insect midgut (Xu et al., 

2016). From our results we showed that a given Cry2A toxin, for instance Cry2Ab, could 

show different activity towards different populations of Plutella xylostella. This led us to 

investigate whether this difference in activity to different populations of Plutella xylostella 

by a given Cry2A toxin was related to the ability of the toxin to bind to the midgut of the 

population of Plutella xylostella under study. Therefore, we decided to carry out binding 

assay of Cry2A toxins against the two populations of the insect to be able to understand if 

the activity of the toxin towards a particular population of the insect has to do with its binding 

ability and to find out if differences in activation could associated with differences in activity. 
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As part of the procedure for the binding assay, the toxin had to be activated using a protease. 

Therefore, we decided to carry out an activation of Cry2A toxins using chymotrypsin and 

mid gut juice of both populations Plutella xylostella.  

The toxins that were used as representatives of this group of toxins were Cry2Aa, Cry2Ab 

and Cry2Ac. Since we know that Cry2Aa and Cry2Ac toxins are toxic against both SBT and 

NO-QA population of Plutella xylostella, whereas Cry2Ab is toxic towards SBT population 

but non-toxic against NO-QA population. Therefore, we will study the activation pattern of 

these toxins with chymotrypsin and midgut juice to see whether this pattern associates with 

specificity, and when this is established then the activated forms of the toxins would be used 

to investigate their binding with BBMW of the two populations of Plutella xylostella. All 

Cry2A toxins used in this study were expressed in Bt, because we were able to get a clean 

toxin. In order to activate Cry2A toxins, the crystals were solubilized using NaOH buffer, 

then we activated Cry2Aa and Cry2Ac by adding 9µl of chymotrypsin to 1µl of the toxin for 

final concentration of 1mg/ml of chymotrypsin, but for Cry2Ab whose yield was low 

compared to Cry2Aa and Cry2Ac, 5µl of the toxin was add to 5µl of chymotrypsin for a final 

concentration 1mg/ml. These were all incubated for 5 minutes at 370C.  
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The solubilized and activated samples were run in 7.5 SDS-PAGE gel as shown in (figure 

4.18). 

#  

Figure 4.18. SDS- PAGE gel showing an activation of Cry2Aa, Cry2Ac and Cry2Ab by chymotrypsin: the final 
concentration of chymotrypsin +Cry2A toxins in all the lanes is 1mg/ml.   

 

From the gel above (figure 4.18), it appears that the molecular weight of a complete digestion 

of Cry2Aa toxin by chymotrypsin is around 55 KDa as indicated by arrow in the gel, whereas 

Cry2Ac and Cry2Ab have their complete digestion bands around 48 KDa each (figure 4.18) 

A or B respectively. 

 We then carried out the activation of these three toxins, Cry2Ac, Cry2Aa and Cry2Ab using 

the midgut juice of prepared from both populations of Plutella xylostella using the procedure 

described in the material and methods chapter. The midgut juice of Plutella xylostella 

obtained from both populations were diluted 1 in 5 and 1 in 10 with PBS buffer before adding 

each to the Cry2A toxins as incubating toxin with undiluted midgut juice lead to complete 
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degradation of the toxin. The SDS-PAGE gel obtained from this activation is shown in (figure 

4.19) for SBT population, and (figure 4.20) for the NO-QA population respectively. 

 

Figure 4.19. SDS-PAGE gel showing an activation of Cry2Aa, Cry2Ac and Cry2Ab by midgut juice of SBT 
population of P. xylostella.  Cry2A toxins were solubilized for 1hour at 37°C in 50 mM sodium hydroxide and 
activated with (MJ) mid gut juice of SBT population using different dilutions for 5 minutes at 37 °C, the samples 
were run on 7.5 % SDS gel. (SOL) indicates solubilized protein.  

!

From the above gel (Figure 4.19) for the activation of Cry2Ac, 2Aa and 2Ab using the midgut 

juice of SBT population of Plutella xylostella, it could be observed that there was no obvious 

activation of the toxin by the midgut juice in the case of Cry2Aa ( lanes 3, and 4), and Cry2Ac 

( lanes 9 and 10), whereas it appears to be digestion of the toxin by the midgut juice in the 

case of Cry2Ab (lanes 6 and 7), where the toxin was digested from around 58 KDa to 48 

KDa by midgut of SBT population of Plutella xylostella. The bands indicated by asterisk in 

the gel are from the midgut juice of the insect. 
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The gel showing the activation of the toxins by the mid gut juice of NO-QA population of 

Plutella xylostella is shown in (figure 4.20) below. 

!

Figure 4.20A. SDS-PAGE gel showing an activation of Cry2Aa, Cry2Ac and Cry2Ab by mid gut juice of NO-QA 
population of P. xylostella. Cry2Atoxins were solubilized for 1hour at 37°C in 50 mM sodium hydroxide  and 
activated with (MJ) mid gut juice of NO-QA population using different dilution for 5 minutes at 37 °C, the samples 
were run on 7.5 % SDS gel. (SOL) indicate solubilized protein.  

From above gel (figure 4.20A) it appears that there was no digestion of the toxins by the 

midgut juice of NO-QA population of Plutella xylostella in the case Cry2Ac (lanes 9 and 

10), whereas there was digestion of Cry2Ab by the mid gut juice (lanes 6 and 7), but for 

Cry2Aa due to the low concentration of the solubilized toxin we could not conclude the result 

from the gel, hence we repeated the SDS gel for only Cry2Aa toxin as shown in (figure 

4.20B).  The bands indicated by asterisk appeared to come from the midgut juice as they are 

absent in solubilized toxins, to confirm that we ran the solubilized toxin along with the 

midgut juice of both populations of P. xylostella as shown in (figure 4.21).  

It seems that from (figure 4.20B) there was no digestion of the Cry2Aa toxin by the midgut 

juice of NO-QA population of Plutella xylostella (lanes 4 and 5) the band indicated by arrow 
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(MJ) come from the midgut juice. 

 

Figure 4.20B. SDS-PAGE gel showing an activation of Cry2Aa by mid gut juice of NO-QA population of P. xylostella. 
Cry2Atoxins were solubilized for 1hour at 37°C in 50 mM sodium hydroxid and activated with (MJ) mid gut juice 
of NO-QA population using different dilution for 5 minutes at 37 °C, the samples were run on 7.5 % SDS gel. (SOL) 
indicate solubilized protein and (SOL-un) indicate undiluted solubilized protein. 

 

Therefore, it appears that the midgut juice obtained from the two populations of Plutella 

xylostella gave the same pattern of activation as regards the three Cy2A toxins, Cry2Aa, 

Cry2Ac and Cry2Ab used in this study, this could confirm that there is no correlation between 

how the toxin is cleaved and its specificity. 

 

Figure 4. 21. SDS-PAGE gel showing solubilized Cry2Aa toxin run along with mid gut juice for both populations of 
p.xylostella. Lane (1 and 4) protein marker, lane (2 and 5) solubilized Cry2Aa, lane (2) mid gut juice for SBT 
population and lane (6) mid gut juice for NO-QA population. 
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4.4 Binding assay for Cry2A toxins against BBMV of SBT and NO-
QA populations of Plutella xylostella 
#

The binding assay was carried out for two representatives of Cry2A toxins, Cry2Ac and 

Cry2Ab as these were the two toxins that were used to create the hybrids and they showed 

different activity to NO-QA population of Plutella xylostella in this study. The binding assay 

will help us to find out if the difference in activity of a given toxin to two different populations 

of the same insect witnessed in this study in the case of Cry2Ab, which appeared to be toxic 

against SBT population of Plutella xylostella and non-toxic to NO-QA population, has to do 

with binding and/or non-binding of the toxin to the receptors of the insect. The binding assay 

was carried out following a method described by Wang et al., (2018), as described in the 

materials and methods chapter of this project. The gels obtained from the western blot 

analysis are depicted in (figure 4.22 and 4.23). 

 

Figure 4.22. Western blot analysis showing binding assay of Cry2Ac and Cry2Ab toxins to BBMVS of NO-QA 
population of Plutella xylostella. 
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Figure 4.22 A, showed that there is binding interaction between Cry2Ac and the BBMV of 

NO-QA lane 1 showing a band at around 48 KDa corresponding to the molecular weight of 

the activated form of the toxin, which was used in the binding assay. Lane 2, corresponds to 

the BBMV preparation only, which shows no any band thus indicating the purity of the 

BBMV preparations and further showing that any binding interaction observed is solely 

between the activated toxin and the BBMV. Lane 3, showed the activated form of Cry2Ac 

given the same treatment as lane 1 but this time with no BBMV, to confirm there is no 

precipitation of the toxin and to show that the band in Lane 1 is as a result of binding 

interaction between Cry2Ac and the BBMV of the NO-QA population of Plutella xylostella. 

Lane 4 showed only the activated form of Cry2Ac and a validation of the results seen from 

the other lanes. Therefore, the results showed that there is binding between Cry2Ac and the 

BBMV of the NO-QA population of P. xylostella indicating that this toxin binds to the 

receptors within the midgut epithelium of NO-QA population of Plutella xylostella. 

 The binding assay between Cry2Ab and the BBMV of NO-QA population of Plutella 

xylostella in (figure 4.22 B) gave similar results as with the binding of Cry2Ac with the NO-

QA population. 

Therefore, the binding assay of these toxins, Cry2Ac and Cry2Ab to the SBT population of 

this insect is shown in (figure 4.23). 
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Figure 4.23 Western blot analysis showing binding assay of Cry2Ac and Cry2Ab toxins to BBMVS of SBT 
population of Plutella xylostella. Samples were rune on 7.5% SDS-PAGE. 

 

Figure 4.23 A, shows the binding assay of Cry2Ac to the BBMV of SBT population of P. 

xylostella and indicates that there is binding interaction between Cry2Ac and the BBMV of 

SBT (lane 1) giving a band at around 48 KDa corresponding to the molecular weight of the 

activated form of the toxin, which was used in the binding assay. Lane 2, corresponds to the 

BBMV preparation only, which gave no band thus, indicating the purity of the BBMV 

preparations and further showing that any binding interaction observed could solely be 

between the activated toxin and the BBMV of SBT population of the Plutella xylostella. Lane 

3, showed the activated form of Cry2Ac given the same treatment as lane 1 but this time with 

no BBMV, this is to confirm that there is no precipitation of the toxin and to show that the 

band in Lane 1 is as a result of binding interaction between Cry2Ac and the BBMV of the 

SBT population of Plutella xylostella. Lane 4 showed only the activated form of Cry2Ac and 
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a validation of the results seen from the other lanes (1, 2 and 3). Therefore, the results showed 

that there is binding between Cry2Ac and the BBMV of the SBT population of Plutella 

xylostella indicating that Cry2Ac binds to the receptors within the midgut epithelium of SBT 

population of Plutella xylostella. 

Figure 4.23 B, shows the binding assay between Cry2Ab and the BBMV of SBT population 

of Plutella xylostella and it appeared to give similar results as with the binding of Cry2Ac 

with the same population of the insect.  
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4.5 Discussion 
#

This chapter involved comparative studies between E.coli and Bt expression system in terms 

of toxin yield and activity against the two different populations of P.xylostella. 

Different strategies have been used in the past to improve the yield and activity of Cry 

proteins. For instance, Park et al., (1999) showed that the combination of Cyt1 promoter and 

Cry3A STAB mRNA referred to as (Cyt1AP/STAB) led to the enhancement of protein 

synthesis in different Cry proteins, the level of which depends on the Cry protein in question. 

In addition, it has also been shown that co-expression of Cry2Aa toxin with a P20 helper 

protein resulted in a high yield of toxin and an increased activity against E. kuehniella and A. 

aegypti larvae respectively, also prevent the early degradation of the toxin within the insect 

mid gut (Elleuch et al., 2016). The aim in this chapter was to compare two expression 

systems.  

To achieve this, we adopted the work of Crickmore and Ellar, (1992) who showed the 

importance of orf2 gene for the efficient expression and formation of crystal in Cry2Aa by 

constructing a vector called pSV27B40B where the orf2 gene is situated upstream of the 

cry2A gene. Therefore, we used two restriction enzymes, XbaI and HindIII, to excise the gene 

from the vector and replaced it with our wild type and hybrid toxin genes, these were then 

expressed in Bt. 

The level of expression of the toxins was higher in the E.coli expression system compared to 

the Bt expression system because of using the equal volume of product shown in (figure 

4.14). Though, the Bt expressed toxin appeared to be clearer on the gel. This is seen most 
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clearly in the hybrid toxin Cry2AbAcAc expressed in E.coli lane 5 and Bt lane 6 in (figure 

4.14). 

The result obtained by Kumar and Udayasuriyan (2004) who cloned two insecticidal crystal 

genes of Bt namely: Cry2Aa and Cry2Ab, from new isolates of Bt 22-4 and 22-11 

respectively by fusing the genes of both toxins down stream of Cry2Aa promoter and orf1 + 

orf2 sequences. They discovered low level of expression of both toxins in recombinant Bt 

strain whereas high level of expression of these genes, Cry2Aa and Cry2Ab, was achieved 

in the recombinant E.coli strain. This result is similar to ours in the sense that in (figure 4.14), 

the toxins expressed in E.coli expression system appeared to give a higher yield and hence 

expression levels compared to when same toxins were expressed in Bt expression system. 

Clearly, in our case it does not correspond to an activity. They explained the reason why they 

had a low level of expression of Cry2Aa /Cry2Ab in Bt, to be as a result of gene fusion 

brought about by the introduction of Xho restriction enzyme site just before the start codon, 

which displaced the Shine Dalgarno (SD) sequences (GGAGG) to 14 bp upstream of the start 

codon (ATG). Whereas, they discovered that in the wild type Cry2Aa/ Cry2Ab the Shine 

Dalgarno sequence was found to be highly conserved and is 8 bp upstream from the start 

codon. It was reported that the relative distance of the Shine Dalgarno sequence from the 

start codon determines the effectiveness of translation, the closer to the start codon (Kumar 

and Udayasuriyan, 2004).  

 

The activities of the two differently expressed toxins were tested on two different populations 

of P. xylostella through bioassay as shown in (figure 4.16) for SBT population and (figure 
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4.17) for NO-QA populations. The bioassay results, which were presented on a graph, 

showed that there was no difference in activity between the toxin expressed in E.coli and Bt 

in both the two populations of P. xylostella. This showed that the expression system does not 

play a role in activities of these toxins against the two populations of P. xylostella in this 

instance. 

Though the E.coli expressed toxins seem to look clearer on the gel compared to the Bt 

expressed toxin (figure 4.14), this does not influence their activities against the insect. Hence, 

a further insight into the fact that the presence of some other contaminants on the E.coli 

expressed toxins do not interfere with their activities as demonstrated in the control 

experiment depicted in (figure 3.3) in chapter three. 

This clearly showed that different systems could be used to improve the yield and purity of 

different toxins expressed on a particular system but the system of expression used might not 

affect the activity of the toxin as shown in (figure 4.16and 4.17) respectively.  

We showed from our results that a given Cry2A toxin, for instance Cry2Ab, showed different 

activity towards the two populations of Plutella xylostella, whereas Cry2Ac showed the same 

activity. This led us to investigate if this difference in activity towards the two populations 

of Plutella xylostella by Cry2Ab toxin has to do with the ability of the toxin to bind to midgut 

of the population of Plutella xylostella or not. Therefore, we carried out binding assay of 

Cry2A toxins against the two populations to understand this, starting with their activation by 

chymotrypsin and midgut protease. The results which is displayed in (Figure 4.19), and it 

showed that both Cry2Ac and Cry2Ab were activated by chymotrypsin to a 48 KDa protein 

similar to what was obtained by previous researchers, who activated Cry2Ab with the same 
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protease (Xu et al., 2016), who reported obtaining a 50 KDa band protein on complete 

digestion. The difference, which could be as a result of the different gel used and the 

experimental conditions. More also, the results indicated that midgut preparations from both 

SBT (figure 4.19, lanes 6 and 7) and NO-QA (figure 4.20, lanes 6 and 7) populations of P. 

xylostella activated Cry2Ab to protein of around 48 KDa similar to what was obtained in 

(Figure 4.19) when activated by chymotrypsin. However, it appears from our results that 

Cry2Ac is not activated by midgut proteases from both population of P. xylostella (figure 

4.19, lanes 9 and 10) and the NO-QA population of P. xylostella (figure 4.20, lanes 9 and 

10). Therefore, this may suggest that Cry2Ab and Cry2Ac have different mechanisms of 

activation by the two populations of P. xylostella though each of them is being activated the 

same way by chymotrypsin as could be seen in the amino acids sequence comparison 

between Cry2Ac and Cry2Ab depicted in figure (4.24) 

 

 Figure 4.24. Multiple amino acids sequence alignment for Cry2Ac, Cry2Ab and Cry2Aa showing the cleavage site 
of chymotrypsin indicated by arrow. 

 

 The (figure 4.24) above showed that both Cry2Aa and Cry2Ab have Leu amino acid at 

position 144, a position which was shown by early study to be the cleavage site for 

chymotrypsin and P. xylostella midgut juice in Cry2Ab (Xu et al., 2016). Hence, this explain 

why both Cry2Ac and Cry2Ab yield similar results on activation by chymotrypsin. However, 

this does not explain the differences in activation by the midgut juice of the two populations 
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of P. xylostella, which could mean that Cry2Ab and Cry2Ac have different activation sites 

with regard to two population of P. xylostella.  

The activation results for Cry2Ab as regards to SBT population agrees with Morse 

hypothesis, who stated that the activation of Cry2Aa toxin led to the removal of the N-

terminus 49-amino acids fragment resulting in the exposure of the residues comprising the 

putative receptor binding surface (Morse et al, 2001). But, this does not hold in case of the 

NO-QA population as Cry2Ab appeared to be non-toxic to this population. 

More also, Cry2Aa and Cry2Ac were all activated by chymotrypsin to 48 KDa fragment 

which agreed with Morse’s hypothesis, but when each of these toxins was activated by 

midgut juice from both insect populations there was no any activation. This suggest that with 

regards to SBT and NO-QA population of P. xylostella, Cry2Aa and Cry2Ac do not agree 

with the hypothesis put forward by Morse et al., (2001). Therefore, this clearly showed that 

differences in activation of Cry2A toxins is not associated with activity because Cry2Ab 

which is activated to a 48 KDa protein is active to SBT population of the insect. Nevertheless, 

Cry2Ac and Cry2Aa, which are not activated at all also were active to both insect 

populations. 

The results from the binding assay of Cry2Ab and Cry2Ac to the two populations of P. 

xylostella depicted in (figure 4.21 and 4.22) showed that both Cry2Ab and Cry2Ac bind to 

the BBMV preparations from both SBT and NO-QA populations of the insect. Therefore, 

this results might suggest the fact that, the activity of the toxins in the case of Cry2Ab, which 

appeared to be active against SBT population of the insect but not NO-QA population, is not 

related to its ability to bind to the receptors in the midgut epithelium of the insect since 



148#

#

Cry2Ab is able able to bind to BBMV preparations from both populations of the insect. Our 

results are similar to findings by Li et al., (2004), who showed that both Cry 1Ab and Cry 

IAc bind to BBMV preparations from resistant and susceptible populations of Ostrinia 

nubilalis with the same binding affinity, despite the fact that they are two populations of the 

same insect with different activities to these toxins. Therefore, both our results and those of 

Li et al., (2004) indicate that the activity of a Cry toxin to an insect population may not 

necessarily be connected with its ability to bind to the receptors of the insect as there may be 

other mechanisms for susceptibility not necessarily involving receptor binding. 

 There appeared to be agreement also between our results and those of Ballester, et al., (1999) 

who analysed the competitive binding assay of four Cry toxins, Cry1Aa, Cry1Ab, Cry1Ac 

and Cry1Af of Bt in a susceptible and resistance strains of P. xylostella from Philippines, 

Hawaii, and Pennsylvania, part of which findings showed that the binding of Cry1Aa to its 

binding site in the NO-QA and PEN populations of P. xylostella does not relate to its toxicity 

to these insect populations. More also, findings by Wolfersberger, (1990) who studied the 

binding affinity of Cry1Ab and Cry1Ac on the BBMV preparations from P. xylostella and 

discovered that there is an inverse relationship between the binding of these two toxins to the 

insect receptors and their toxicities, further buttressed this point. In addition, Luo et al., 

(1999) found that there is no association between binding and toxicity, different insecticidal 

Cry toxins Cry1Ac, Cry1Ca and Cry1Bb have ability to bind similarly to the BBMV form S. 

exigua and S. frugiperda, but they have different toxicity toward both insects, their results 

showed that Cry1 toxin binding is necessary but not sufficient for toxicity. Also Ocelotel et 

al., (2015) was found that the specific binding of Cry1Ac to the BBMV from resistant and 
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susceptible larvae of Pectinophora gossypiella was similar, this suggest that this binding is 

not sufficient to confer susceptibility to Cry1Ac. 

Therefore, both our results and those of Li et al. (2004), Ballester, (1999) and Wolfersberger, 

(1990) indicate that, the activity of a Cry toxin to an insect population may not necessarily 

be connected with its ability to bind to the receptors of the insect or that the binding of the 

Cry toxin to the receptor in these instances is not sufficient enough to elicit toxicity. This is 

because some toxins may require additional binding to one or more receptors for activity 

which may be absent in some insects or population of insects as the case maybe. In addition, 

there may be other mechanisms for toxin activity not necessarily involving receptor binding 

or that the assay cannot actually measure binding to actual receptors but may just be 

measuring non-productive binding to BBMV.  

 

 

 

 

 

 

!
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5. Comparative studies between an insecticidal toxin Cry2Ac 
and an anticancer toxin Cry41Aa. 

 
5.1 Introduction 

 
The main plan for the work described in this chapter was to try to interconvert an anticancer 

toxin known as parasporin-3 (Cry41Aa) and an insecticidal toxin (Cry2Ac). Generally, it is 

believed that, Bacillus thuringiensis has acquired insecticidal activity in the course of co-

evolution with insects through a host-parasite relationship. Many believe, however, that Bt 

as a species is a more versatile environmental bacterium, but not an obligate pathogen of 

insects (Argolo-Filho and Loguercio, 2013). This is supported by evidence in natural 

environments, because many Bt isolates possess no insecticidal activity, and it was observed 

that the number of those isolates that have no known insecticidal activity outnumber those 

ones that possess an insecticidal activity (Ohba et al., 1996, Mizuki et al., 1999). Among 

such Cry proteins which have no known insecticidal activity is Cry41Aa also known as 

parasporin-3, this is one among six different parasporins which are PS-1, PS-2, PS-3, PS-4, 

PS-5, and PS-6. The first one is parasporin-1 (Cry31Aa1) which has been found to be very 

toxic to different cancer cell lines particularly HeLa and HL-60 cell lines (Katayama et al., 

2007). Parasporin-2 (Cry46Aa1) has been linked to cytotoxic activity against HepG2, HL-

60, Sawano, Jurkat and MOLT-4 cell lines (Ito et al., 2004, Ohba et al., 2009). Parasporin-3 

(Cry41Aa1) shows cytotoxic effect against only two cancer cell lines, HL-60 (myeloid 

leukaemia cancer) and HepG2 (liver cancer) (Ohba et al., 2009). Parasporin-4 (Cry45Aa1) 

when treated with pepsin produces a 27 KDa fragment which was highly cytotoxic towards 

CACO-2, Sawano, MOLT-4, TCS, and HL-60 cells (Okumura et al., 2011). Parasporin-5 
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(Cry64Aa) has been shown to exhibit cytotoxic activity against different mammalian cell 

lines, however is showing that the toxin has a cytocidal effect against 7 out of 18 mammalian 

cell lines such as (MOLT-4, HepG2, TCS, HeLa, COS7, Vero, and Sawano cells) and low to 

no cytotoxicity to the others (Ekino et al., 2014). Parasporin-6 (Cry 63Aa) has been shown 

to exhibit toxicity against HepG2 and HeLa cells. But our main interest here is parasporin-3, 

Parasporin-3 (PS3) also known as Cry41Aa, is a three-domain Cry protein, activated by N-

and C- terminal digestion (Ohba et al., 2009). It has a typical three-domain structure with 

five block sequences commonly conserved in the non-insecticidal Cry proteins. It consists of 

825 amino acid residues with a deduced molecular weight of 93,689, having low homology 

with insecticidal Cry proteins. Proteolytic digestion is required for activation of Cry41Aa: 

the 81 KDa precursor is converted to the 64 KDa toxic moiety by proteolytic processing of 

both N- and C-terminal regions (Okassov et al., 2015, Ohba et al., 2009). Krishnan et al., 

(2017) reported that the ricin domain which is an additional amino acid sequence found in 

C-terminal of Cry41Aa was not involved in Cry41Aa toxicity. They also proposed that 

Cry41Aa is a pore-forming toxin and does not induce apoptosis. However, they detected 

morphological changes as well as membrane damage when the HepG2 cells were treated 

with activated Cry41Aa. Sequence comparison of Cry41Aa and insecticidal toxins led to the 

identification of loop 3 in domain II of Cry41Aa, which in insecticidal Cry toxins was 

previously shown to play a major role in receptor binding (Pacheco et al., 2009). This 

exposed loop region, was shown to be important for the activity of Cry41Aa against HepG2 

cells (Krishnan et al., 2017). More work on Cry41Aa by Domanska, (2016)!revealed that 

exposure to Cry41Aa gave rise to permeability of the membrane, which made the detection 

of both large and small size cytotoxic markers possible. Formation of channels in planar lipid 
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bilayers and biological membranes was induced by Cry41Aa, which activity on HepG2 cells 

was also inhibited by pre-treatment with EGTA. In addition, treatment of susceptible cells 

with Cry41Aa led to the activation of p38 MAPK, whose activity inhibition could not rescue 

cell viability (Domanska, 2016).  The idea that parasporins may be fundamentally different 

to insecticidal Cry toxin, perhaps interacting with their target in different way. This forms 

the main aim of this chapter, which is trying to interconvert an anticancer toxin and an 

insecticidal one to test whether or not they are fundamentally different. We attempted to 

achieve the aim of this study by creating hybrids between Cry41Aa and an insecticidal toxin 

Cry2Ac, we used Cry2Ac as a representative of Cry2A toxins because based on our bioassay 

result it has a high activity to P.xylostella  . 

 

 

 

 

 

 

 

 

 

 

 

 



153#

#

5.2 Result 
#

5.2.1 Determination of Cry41Aa and Cry2Ac structures through structural 
prediction 

#

The structures of three domain toxins were determined from previous literature by (Morse et 

al., 2001). For the Cry2 toxins, it is only the structure of Cry2Aa that has been elucidated, 

therefore, we used Cry2Aa as a template to model the structure of Cry2Ac. The regions of 

Cry41Aa from domain I to domain III were all previously modelled out by PhD student 

(Elhigazi et al., 2019). 

The sequence showing the location of all the three different domains is depicted in (figure 

5.1 and 5.2) below.  

 
 
Figure 5.1. Represent the location of domain I, domain II and III in Cry41Aa toxin: domain I indicated by orange 
color, domain II indicated by black color and domain III indicated by green color. N terminal indicated by black 
color and ricin domain by red (Elhigazi et al. 2019).   
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Figure 5.2. Represent the location of domain I, domain II and III in Cry2Ac toxin: Domain I indicated by orange 
color, domain II indicated by black color and domain III indicated by green color. 
 
!!

5.2.2. Design of hybrids 
#

In order to create different hybrids between Cry41Aa and Cry2Ac, we used two plasmids 

pGEMCry2Ac plasmid for Cry2Ac and pBS41Aa plasmid for Cry41Aa as shown in (figure 

5.3). 

 
 

Figure 5.3. Plasmids used to create hybrid through domain swap (constructed using snap gene program). A Plasmid 
(pBS41Aa) encoding Cry41Aa. B plasmid (pGEM 2Ac) encoding Cry2Ac gene, both plasmids have ampicillin 
resistance gene.   
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We decided to exchange domains of Cry2Ac with that of Cry41Aa as shown in (figure 5.4), 

first we started by creating a hybrid which contains Cry41Aa domain I and Cry2Ac domain 

II and III   in order to form hybrid (pGEMCry41Aa2Ac2Ac), based on research done by Shu 

et al., (2017) who found that domain I of Cry2Aa responsible for the specificity of the toxin 

against A.aegypti larvae. As well as this domain I we want to move domain III from Cry41Aa 

into Cry2Ac to form (pGEMCry2Ac2Ac41Aa), as our previous result in chapter three 

showed that domains I and II, were responsible for P.xylostella specificity, final hybrid was 

to swap an insecticidal toxin domain II Cry2Ac into an anticancer toxin Cry41Aa domain I 

and III (Cry41Aa2Ac41Aa), due to domain II having a known role in specificity, Also, the 

result from previous homology-scanning mutagenesis experiment showed that the specificity 

region of Cry2A for A.aegypti larvae was located in domain II with both region 1 and 2 within 

these amino acids (307-382) and the specificity region against gypsy moth larvae located in 

region 2 of domain II of Cry2 (Liang and Dean, 1994). This result supported by Widner and 

Whiteley (1990) who found the specificity region of Cry2A against A.aegypti within these 

amino acids (304- 382).  

 

 
Figure 5.4. Schematic representation various created hybrids through domains swap between insecticidal toxin 
Cry2Ac and anticancer toxin Cry41Aa. 
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5.2.3 Creation of the hybrids through domain swap between Cry2Ac and 
Cry41Aa  

#

In order to create hybrids through domains swapping as shown in (figure 5.5), primers were 

designed using primer select program, and these are listed in table (5.1) and were used for 

the PCR amplification products which were ligated to give the required hybrids. The PCR 

program (PFU ultra 6kb) was used, and the amplified products were mixed with 1µL of DpnI 

enzyme and incubated for 1 hour to digest parental/template strand. This was run on 1% 

agarose gel in order to prepare them for ligation, the gel below (figure 5.6) indicates the 

purified PCR products. The plasmid diagram showing the strategy for the design of the 

creation of the hybrids through domain swaps is shown in (figure 5.5). 
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Figure 5.5. Schematic representation a design for creation hybrids through domain swap by using two plasmids pGEM Cry2Ac and pBSCry41Aa.

pGEMCry2Ac W/O DI Cry41Aa DI 

pGEM41Aa2Ac2Ac 
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Domain I was amplified using Cry41Aa domain I forward and Cry41Aa domain I reverse, 

then we amplified pGEMCry2Ac without domain I which has domain II and domain III with 

the plasmid but without domain I, and this portion was also amplified using, Cry2ADIIF 

forward primer and pGEM reverse primer as depicted in (figure 5.5). 

The primers used for amplification of various domains and creation of different hybrids, 

which design strategy is shown in (table 5.5). 

 
 
 

 
The table 5.1. Showing forward primers and reverse primers used to create hybrids through domain swap. 

 

N

O 

Oligo Name Sequence (5’-3’) Modificatio

n 

1 Cry41Aa DIF 
 

5’-!TACAGCGCAGATGTAAGGGATG -3’ 5’-PHO 

2 Cry41Aa DIR 
 

5’-!AAGTCCCGGATCATACGTTGG -3’ 5’-PHO 

3 Cry2ADIIF 5’-TATCAAAGCCTTCTAGTATCTTCCG-3  

4 pGEMR 5’-ATAAAATTCCTCCTTAATCGAATTC-3  

5 Cry41Aa DIIIF 5’- 
GATTTGAACAATATAATATCACAGTATAG
- 3’ 
 

5’-PHO 

6 Cry41Aa 

DIIIR 

5’-AGTGGTTAAGCCAATACCCATAC -3’ 5’-PHO 

7 pGEM2ADIII

F 

5’- GGTTTGAGTGAATCACTAGTGAATTC -
3’ 

 

8 Cry2Ac DIIR 5’- TTTTCTGTTATGCACTGTTACAAG -3’  
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Figure 5.6. Confirmation of presence of amplified PCR products: PCR products was digested with DpnI, purified 
using Qiaquick kit and run on 1% agarose gel along with 1kb ladder (Marker) for size confirmation. Lane (M) 
Marker, lane (1) Cry41Aa domain I and (3) pGEMCry2Ac w/o domain I. 
 
 
The amplified PCR products present in (figure 5.6) and the size of amplified products present 

in the gel was consistent with an expected size (795 bp) for Cry41Aa domain I and pGM2Ac 

without domain I (4262 bp). The amplicons were ligated Cry41Aa domain I and 

pGEMCry2Ac domain II and III, used to transform E.coli, colonies minpreped and plasmid 

was digested with HaeIII restriction enzyme as well as the sequencing were carried out to 

confirm the presence of right constructs as shown in (figure 5.7). 

 

Figure 5.7. DNA minprep after each transformation step using QIAquick kit, digest with HaeIII then run on 1% 
agarose gel along with the marker. Gel is showing M (DNA marker), lane (1) DNA templateCry2Ac, lane (2) DNA 
template Cry41Aa, lane (C1) digested Cry2Ac with HaeIII and lane (C2) Cry41Aa2Ac2Ac DNA colony digested 
with HaeIII restriction enzyme. 
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Figure 5.7 shows that from the gel colony C2 seems to have the right plasmid when compared 

with the fragment generated from NEB cutter prediction as depicted in (figure 5.8). Hence, 

was sent for sequencing from which it was confirmed through sequence alignment with the 

expected construct. 

 Figure 5.8. This illustrate the pGEMCry2Ac plasmid and the location of different restriction sites of HaeIII, table 
lists of the expected fragments digested with HaeIII restriction enzyme. Table (A) and (B) showed the differences in 
the size of the fragments between pGEMCry2Ac and pGEMCry41AaAcAc respectively depicted by yellow color. It 
taken from NEB cutter website. 
 

5.2.4 Creating hybrids (Cry2Ac2Ac41Aa) and (Cry41Aa2Ac41Aa) 
$

The amplified PCR products present in (figure 5.9) and the size of amplified products present 

in the gel was consistent with an expected size (4431bp) for pGEM2Ac without domain III 

and (594 bp) for Cry41Aa domain III. Domain III was amplified using primer Cry41Aa 

domain III forward and Cry41aA reverse, then we amplified pGEMCry2Ac without domain 

III using pGEMCry2A forward and Cry2A domain II reverse, the amplicons were ligated 

Cry41Aa domain III with pGEM2Ac domain I and domain II. In order to create hybrid 

involving domain II Cry2Ac, and domain I and III Cry 41Aa we amplified Cry41Aa2Ac2Ac 

without domain III and ligated with Cry41Aa domain III (figure 5.9). The primers used for 
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the amplification of the hybrid Cry41Aa2Ac2Ac are Cry41Aa domain III forward and 

Cry41Aa domain III reverse, whereas the ones used for the amplification of Cry41Aa2Ac2Ac 

without domain III, pGEM2A domain III forward and Cry2Ac reverse.     

 
 

 

Figure 5.9. Confirmation of presence of amplified PCR products: PCR products was digested with DpnI, purified 
using QIAquick kit and run on 1% agarose gel along with 1kb ladder (Marker) for size confirmation. Lane (M) 
Marker, lane (1) pGEM Cry2Ac w/o domain III, lane (2) Cry41Aa domain III and lane (3) pGEM 41Aa 2Ac2Ac w/o 
DIII. 
 
 
Circularized plasmid used to transform to E.coli, colonies minpreped and plasmids DNA was 

digested with HaeIII restriction enzyme to be able to know which of the colonies contain the 

right plasmid (figure 5.10). These colonies were electrophoresed on 1% agarose gel and the 

fragments obtained were compared to those generated using NEB cutters. 
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Figure 5.10. DNA minprep after each transformation step using QIAquick kit, digest with HaeIII then run on 1% 
agarose gel along with the marker. Gel (A) is showing M (marker), lane (1) DNA template, lane (2) 
pSBCry41Aa2Ac41Aa colony digested with HaeIII restriction enzyme, lane (3) and lane (4) same samples with less 
concentration. Gel (B) lane (1) Marker, (2) pGEM2Ac2Ac41Aa digested with HaeIII and lane (3) the same sample 
with less concentration. 
 
Figure 5.10 shows that, colony 2 from gel A and colony 1 from gel B appears to have the 

correct plasmids when compared with the fragment generated from NEB cutter prediction as 

depicted in (figure 5.11). hence, thy were sent for sequencing, and were all confirmed through 

sequence alignment with their respective constructs to have the right sequence for the hybrid 

pBSCry41Aa2Ac41Aa, but for pGEMCry2AcAc41Aa hybrid was not successfully formed. 

 

Figure 5.11. This illustrate the pBSCry41Aa2Ac41Aa and pGEM2Ac2Ac41Aa plasmid and the location of different 
restriction sites of HaeIII, table lists of the expected fragments digested with HaeIII restriction enzyme. Table (A) 
and (B) showed the differences in the size of the fragments between pSBCry41Aa2Ac41Aa and pGEM2Ac2Ac41Aa 
respectively. Taken from NEB cutter website. 
 

!
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Next, the confirmed construct (Cry41Aa2Ac2Ac) was introduced into BL21 E.coli for 

expression of the encoded protein. This was grown, the hybrid protein was harvested, and a 

7.5 % SDS-PAGE was performed to confirm the presence of the hybrid toxin along with the 

wild type (figure 5.12). 

 
 

Figure 5.12. SDD-PAGE analysis of the wild type and hybrid toxins created indicated by number compered their 
size with the wild type Cry2Ac and Cry41Aa (M) protein marker, (1) Cry2Ac, (2) Cry41Aa, (3) Cry2Ac different 
sample and (4) Cry41Aa2Ac2Ac. 
 
 
 
 
As can be seen in the (figure 5.12)  the hybrid (pGEMCry41Aa2Ac2Ac) was not expressed, 

this could be as a result of misfolding of the protein. When we sent the DNA for sequencing 

for confirmation after HaeIII digest, we received the sequencing result and we discovered 

that the hybrid which involve domain I and III Cry41Aa and domain II Cry2Ac 

(Cr41Aa2Ac41Aa) also the hybrid involves domain III Cry41Aa and domain I and II Cry2Ac 

(Cry2Ac Ac 41Aa) had not been successfully created and so no expression studies were 

undertaken.  
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5.3 Discussion 
$

This work which involved the interconversion of an anti-cancer toxin and an insecticidal 

toxin because we want to understand the functional relationship between the two toxins and 

how that translates into their activities against either insects or cancer cells. We attempted 

this through creating hybrids involving domains swaps between an anti-cancer toxin 

(Cry41Aa) and an insecticidal toxin (Cry2Ac), this was attempted to create three hybrids 

which was depicted in (figure 5.5), but unfortunately when we sent the DNA sample for 

sequencing, the sequencing result showed that there was no formation of two of the hybrids. 

We tried changing various reaction conditions for both the PCR and the primer but it still 

failed to work, and this fail could be as a result of the reaction condition or primers design, 

but due to the time constraints we could not continue with this work. Hence, we stopped at 

this point, but previous research carried out by (Elhigazi et al., 2019) showed that swap 

between an anticancer toxin and insecticidal toxin is possible. The author exchanged loop3 

between Cry41Aa and Cry1Ac which is an insecticidal toxin, and they discovered that 

Cry1Ac containing loop3 of Cry41Aa did not show anti-cancer activity. Furthermore, 

Cry41Aa hybrid containing loop3 of Cry1Ac failed to form stable protein, hence the activity 

could not be determined, and this failure to form a stable protein could be as a result of miss 

folding the protein. Considering that both the two Cry toxins in question have three domains 

structure, it was hoped that hybrid formation between the two toxins should not be too 

problematic 
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6. General discussion 

  
This study was carried out basically to understanding the basis of specificity of the of Cry2A 

group of toxins against P. xylostella. Firstly, we carried out bioassay studies of all the wild 

type Cry2A toxins available in our lab because there are contradictory results in the literature.  

Therefore, we wanted to establish a more comprehensive and reliable bioassay data. Based 

on the results we obtained from the bioassay we established that the wild type toxins, Cry2Ac, 

Cry2Aa and Cry2Ab, were active against the SBT population of P. xylostella. Whereas, 

Cry2Ac and Cry2Aa toxins were active against the NO-QA population, while Cry2Ab was 

non-active against the same population.  

 After these bioassays, we then created some hybrids through different domain swaps to be 

able to understand the domain/domains that is/are responsible for activity in this group of 

toxins toward P. xylostella. Cry2Ab was active against SBT but not NO-QA population of 

P. xylostella, which could mean that differences in susceptibility of Cry toxins are population 

dependent as was observed by Ingber et al., (2017) who worked with two different 

populations of lepidopteran insects which were Spodoptera frugiperda corn-strain and rice-

strain.  

In the case of Geneva- 88 population, Cry2Ac appeared to be the most active protein but 

unfortunately, we could not carry out further work with this population due to the fact that it 

was lost.  
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Previous studies have shown that Cry2Aa is active against P. xylostella similar to the result 

we obtained here as regards the two populations of P. xylostella used in this study (Tabashnik 

et al., 1996, Monnerat et al., 1999, Zago et al., 2014) 

Furthermore, previous studies also showed that Cry2Ab was active against P. xylostella (Pan 

et al., 2014, Lin et al., 2007, Zhao et al., 2001). These results partially agreed with our 

findings, which showed that Cry2Ab was active towards SBT population.  

In contrast, a review by Frankenhuyzen (2009) reported that, Cry2Ab and Cry2Ac had no 

insecticidal activity against P. xylostella. But our results showed that Cry2Ac is toxic against 

the all three populations of P. xylostella, which is contrary to what they reported. Hence, this 

justified why we carried out a fresh bioassay to be able to establish our baseline data. 

Since we have established which Cry2A toxins were active against our populations and which 

were non-active, the next aspect of the study is to examine which of the three domains of 

Cry2A toxins influences activity against these two populations of P. xylostella. We carried 

out domain swaps as shown in (figure 3.9), involving a Cry2Ac toxin known to be active 

against NO-QA population, and another one known to be non-active, Cry2Ab. The results 

confirmed that both domain I and domain II of Cry2Ac are required in the hybrid for activity 

to the NO-QA population as shown in (figure 3.34), but not the N-terminus alone or N-

terminus along with domain II that conferred activity based on our findings, in (figure 3.36 

and 3.43).  

These results partially agreed with the findings of Liang and Dean (1994) who discovered 

that some sequences in domain II are responsible for the specificity of Cry2Aa against 

mosquitos (Aedes aegypti) and gypsy moth (Lymantria dispar). These, therefore, affirm the 
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fact that some specific sequences could determine activity of the toxins against different 

insects. In addition, other research suggests that some residues in domain II not domain I or 

III responsible for the specificity of Cry2Aa against dipteran insects (Widner and Whiteley, 

1990; Morse et al., 2001).  

We carried out comparative studies between E.coli and Bt expression system in terms of 

toxin yield and activity against the two different populations of P. xylostella. Though, we 

intend to compare two expression systems in terms of better yield and/or activity.  

The results showed that the level of purity of the toxins was higher in Bt expression system 

compared to E.coli expression system as shown in (figure 4.14). Though, the Bt expressed 

toxin appeared to be clearer on the gel. This is seen most clearly in the hybrid toxin 

Cry2AbAcAc expressed in E.coli lane 5 and Bt lane 6 (figure 4.14). 

The activities of the differently expressed toxins were tested on two different populations of 

P. xylostella through bioassay as shown in (figure 4.16) for SBT population and (figure 4.17) 

for NO-QA populations. The bioassay results showed that there was no difference in activity 

between the toxin expressed in E.coli and Bt in both the two populations of P. xylostella. 

This showed that the expression system does not play a role in activities of these toxins 

against the two populations of P. xylostella in this instance. 

Though the E.coli expressed toxins seem to look clearer on the gel compared to the Bt 

expressed toxin (figure 4.14 ), this does not influence their activities against the insect. 

Hence, a further insight into the fact that the presence of some other contaminants on the 

E.coli expressed toxins do not interfere with their activities as demonstrated in the control 

experiment depicted in (figure 3.3) in chapter three. 
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This clearly showed that different systems could be used to improve the purity of different 

toxins expressed on a particular system but the system of expression used might not affect 

the activity of the toxin as shown in (figure 4.16and 4.17) respectively.  

Furthermore, we considered the relationship between toxin-receptor binding and activity 

because our results showed that Cry2Ab was active towards SBT but not NO-QA population 

of Plutella xylostella, whereas Cry2Ac showed activity against both populations. Hence the 

need to investigate if this difference in activity towards the two populations of Plutella 

xylostella by Cry2Ab toxin has to do with the ability of the toxin to bind to midgut of the 

population of Plutella xylostella or not. Therefore, we carried out binding assay of Cry2A 

toxins against the two populations to understand this, starting with their activation by 

chymotrypsin and the midgut protease. The results which is displayed in (Figure 4.19), and 

it showed that both Cry2Ac and Cry2Ab were activated by chymotrypsin to a 48 KDa protein 

respectively as observed by a previous study (Xu et al., 2016), though they reported obtaining 

a 50 KDa band protein on complete digestion. More also, the results showed same pattern of 

activation for Cry2Ab by both the two populations of P. xylostella and chymotrypsin whereas 

Cry2Ac and Cry2Aa were activated by chymotrypsin but not obviously activated by midgut 

extract of either of the two populations of P. xylostella. 

The activation results for Cry2Ab as regards to SBT population agrees with Morse’s 

hypothesis, who stated that the activation of Cry2Aa toxin leads to the removal of the N-

terminus 49-amino acids fragment resulting in the exposure of the residues comprising the 

putative receptor binding surface (Morse et al., 2001). But, this does not hold in case of the 

NO-QA population as Cry2Ab has no activity against this population. 
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Cry2Aa and Cry2Ac, which were both activated by chymotrypsin to a 48 KDa protein agreed 

with Morse’s hypothesis but not when activated by midgut juice from both insect populations 

as there was not any obvious activation.  

Therefore, this clearly showed that differences in activation of Cry2A toxins is not associated 

with activity because Cry2Ab which is activated to a 48 KDa protein is active to SBT, but 

not NO-QA population of the insect. Nevertheless, Cry2Ac and Cry2Aa, which were not 

activated at all appeared to be active to both insect populations. 

The results from the binding assay of Cry2Ab and Cry2Ac to the two populations of P. 

xylostella depicted in (figure 4.22 and 4.23) showed that both Cry2Ab and Cry2Ac bind to 

the BBMV preparations from both SBT and NO-QA populations of the insect. Therefore, 

this result might suggest the fact that the activity of the toxins, in the case of Cry2Ab, which 

appeared to be active against SBT population of the insect but not NO-QA population, is not 

related to its ability to bind to the insect receptors.  

These findings agree with that of Li et al., (2004), who demonstrated that both Cry1Ab and 

Cry1Ac bind to BBMV preparations from resistant and susceptible populations of Ostrinia 

nubilalis with the same binding affinity despite the fact that, they are only active to the 

susceptible population.  

Previous binding studies also demonstrated similar scenario with the results we obtained 

from our binding studies (Ballester, et al., 1999, Wolfersberger, 1990, Luo et al., 1999, 

Ocelotel et al., 2015). 
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Therefore, both our results and those of Li et al. (2004), Ballester, (1999) and Wolfersberger, 

(1990), Luo et al., (1999), Ocelotel et al., (2015) indicate that the activity of a Cry toxin to 

an insect population may not necessarily be connected with its ability to bind to the receptors 

of the insect or that the binding of the Cry toxin to the receptor in these instances is not 

sufficient enough to elicit toxicity. This is because some toxins may require additional 

binding to one or more receptors for activity which may be absent in some insects or 

population of insects as the case maybe. In addition, there may be other mechanisms for toxin 

activity not necessarily involving receptor binding or the assay may not be detecting 

productive binding. 

We also attempted to convert an anti-cancer toxin into an insecticidal toxin to understand the 

functional relationship between the two toxins and how that translates into their activities 

against either insects or cancer cells. We created hybrids through domain swaps between an 

anti-cancer toxin (Cry41Aa) and an insecticidal toxin (Cry2Ac). Unfortunately, the 

sequencing results showed that there was no formation of hybrids in two of our constructs. 

Several attempts at recreating these hybrids failed and due the time constraints we could not 

continue with this work. Previous study carried out by (Elhigazi et al., 2019) demonstrated 

that a swap between an anti-cancer toxin and insecticidal toxin is possible. The authors 

exchanged loop3 between Cry41Aa which is an anti-cancer toxin and Cry1Ac which is an 

insecticidal toxin, and they discovered that Cry1Ac containing loop3 of Cry41Aa does not 

show anti-cancer activity. Furthermore, Cry41Aa hybrid containing loop3 of Cry1Ac failed 

to form stable protein and as such the activity could not be determined. The inability to form 

a stable protein could be as a result of protein misfolding or instability of the various structure 

of the two combining protein.  



171$

$

Therefore, it is recommended that this work be continued by designing new primers and 

consider changing the PCR reaction conditions and the amount of both template DNAs, the 

primers, and buffers involved in the PCR reaction. 

More also, it is recommended that the hybrids between Cry2Ac and Cry2Ab be tested on 

more populations of P. xylostella to see if the specificity determining residues could be 

further reduced to a particular domain or some amino acid motifs. 

It is recommended that bioassay for the solubilized toxin, chymotrypsin activated toxins, and 

toxins activated by the midgut of the populations of P. xylostella be carried out to work out 

the mechanism of action of Cry2A toxins against P. xylostella. 
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