
   

 

A University of Sussex PhD thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



Analysing and Bounding Numerical Error in

Spiking Neural Network Simulations

James Paul Turner

Ph.D. Computer Science

University of Sussex

April 2019



Acknowledgements

I would first like to dearly thank and dedicate this study to my parents, Sue

and Tony. This thesis would not have been possible without them. Thank you!

I would also like to thank my supervisors, Professor Thomas Nowotny and

Doctor Luc Berthouze, for their brilliant advice, ad hoc white-board math

sessions, admirable patience and continuous enthusiasm throughout the

project. Thank you!

This study was funded by a doctoral scholarship from the School of

Engineering and Informatics, at the University of Sussex.

Declaration

I hereby declare that this thesis has not been, and will not be, submitted in

whole or in part to another University for the award of any other degree.

Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1



JAMES PAUL TURNER

PH.D. COMPUTER SCIENCE

UNIVERSITY OF SUSSEX

ANALYSING AND BOUNDING NUMERICAL ERROR

IN SPIKING NEURAL NETWORK SIMULATIONS

This study explores how numerical error occurs in simulations of spiking neu-

ral network models, and also how this error propagates through the simulation,

changing its observed behaviour. The issue of non-reproducibility in parallel

spiking neural network simulations is illustrated, and a method to bound all

possible trajectories is discussed. The base method used in this study is known

as mixed interval and affine arithmetic (mixed IA/AA), but some extra modi-

fications are made to improve the tightness of the error bounds.

I introduce Arpra, my new software, which is an arbitrary precision range

analysis library, based on the GNU MPFR library. It improves on other imple-

mentations by enabling computations in custom floating-point precisions, and

reduces the overhead rounding error of mixed IA/AA by computing in extended

precision internally. It also implements a new error trimming technique, which

reduces the error term whilst preserving correct boundaries. Arpra also imple-

ments deviation term condensing functions, which can reduce the number of

floating-point operations per function significantly. Arpra is tested by simulat-

ing the Hénon map dynamical system, and found to produce tighter ranges than

those of INTLAB, an alternative mixed IA/AA implementation.

Arpra is used to bound the trajectories of fan-in spiking neural network sim-

ulations. Despite performing better than interval arithmetic, the mixed IA/AA

method used by Arpra is shown to be inadequate for bounding the simula-

tion trajectories, due to the highly nonlinear nature of spiking neural networks.

A stability analysis of the neural network model is performed, and it is found

that error boundaries are moderately tight in non-spiking regions of state space,

where linear dynamics dominate, but error boundaries explode in spiking regions

of state space, where nonlinear dynamics dominate.
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Chapter 1

Introduction

Computer simulations are valuable tools for understanding the behaviour of

complicated natural systems. They make predictions and help us form hypothe-

ses, without the need for expensive or impossible experiments. Computing these

models on computers, however, means accepting a small amount of imprecision

in our results. This imprecision comes from things like rounding errors when

performing floating-point arithmetic on computers, truncation errors when us-

ing approximate numerical methods like Euler integration, and even errors in

input data from measuring instruments. Although small, when accumulated

over time, these errors often influence the overall behaviour of the software,

sometimes with dramatic effect. In a famous example, unchecked rounding er-

ror caused havoc at the Vancouver Stock exchange. The gradual accumulation

of rounding errors, between January 1982 to November 1983, was causing stocks

to loose around 25 points per month, according to the Wall Street Journal and

the Toronto Star [1]. Another more deadly example of rounding error disaster

involved the failure of a Patriot surface-to-air missile defence system [2], allow-

ing a Scud missile to pass through intact, resulting in the death of 28 military

personnel. Such occurrences have spurred a lot of interest in analysing how

various error sources will propagate through computer programs. In the soft-

ware tester’s case, they need to know how these errors change the behaviour of

the software, and determine how reliable the resulting output is. In this study,

we are specifically interested in how numerical error changes the behaviour of

spiking neural network simulations (henceforth SNN simulations), modelled as

non-linear dynamical systems.

Large non-linear dynamical systems are rarely simple enough to solve an-

alytically, so theorists must instead resort to numerical approximation; they

test their hypotheses by simulating them using computers. Simulations like

these often involve binary representation and arithmetic of real numbers, us-
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ing the Floating-Point Unit (FPU) of a processor, implementing the IEEE-754

standard for binary floating-point arithmetic [3], [4]. In such a representation,

the arithmetic operations are of an imperfect accuracy, and also the arbitrary-

precision input and intermediate values must be transformed in a lossy manner

to fit inside a finite size binary word, often leaving a small error in each com-

puted result. This error is cumulative, meaning a simulation’s trajectory may

be perturbed a little further off-course after each and every successive floating-

point operation. The simulation trajectory is also sensitive to the order that

the floating-point instructions are executed, since rounding of computed values

removes the associativity of operations like addition and multiplication. Loss of

associativity is especially problematic in multi-threaded and General Purpose

Graphics Processor Unit (GPGPU) code, which utilises multiple FPUs simulta-

neously, all operating on the same data, with no guarantee on the order which

they will begin or finish an operation. To further complicate matters, it is often

the case that there are subtle differences in the way floating-point arithmetic is

implemented across architectures [5], and additional differences in the way com-

pilers optimise floating-point arithmetic code [6]. For the reasons given above,

it can be difficult to, for instance, predict the divergence of a simulation’s tra-

jectory from the mathematically ‘correct’ trajectory, or even to test the validity

of a GPGPU simulation’s output against that of a reference implementation on

another architecture.

This study aims to apply current floating-point error testing techniques to

investigate numerical error in realistic SNN simulations, in serial and paral-

lel computer architectures. Specifically, this study will investigate how both

rounding and truncation errors propagate through the computation, and will

also evaluate the effectiveness of the chosen Affine Arithmetic method for this

problem. In the remaining sections of this chapter, the first section introduces

SNN simulations, and the results reproducibility problem. The next section

reviews how real numbers are represented digitally, and discusses the approx-

imate nature of this representation. The following section reviews numerical

error, and what factors can influence it. The final two sections review range

analysis methods which can be used to bound the worst-case numerical error in

a dynamical systems simulation.

1.1 Spiking Neural Network Simulations

This project started out of necessity to verify the results of an SNN simulation

library, called GeNN (GPU enhanced Neural Networks) [7], against the results

of a standard CPU implementation. GeNN is a code generation framework

which generates C++ / CUDA source code for simulating realistic simulations

6



of neural circuits. It makes use of the massive pool of processor cores on mod-

ern NVIDIA Compute Unified Device Architecture (CUDA) GPU devices [8] to

execute simulation code in parallel, much faster than the equivalent serial sim-

ulation. One of the difficulties of multi-threaded programming is that there is

no guarantee on the order which a pool of threads will finish working in. This is

a problem because reordering floating point instructions can influence rounding

error propagation, due to the loss of associativity in floating-point arithmetic.

An example of where instruction reordering seems to affect a GeNN simu-

lation’s trajectory is in the summation of input currents for neurons. During

the neuron model integration phase, each neuron is executed as an independent

thread, running on its own core of a CUDA GPU device. Although large, the

finite pool of memory and processing resources on a CUDA device often means

that not all of the neurons of a complete model network can be simulated at

the exact same moment, and must instead be pipelined into the CUDA device

in groups called ‘blocks’ [8]. The neuron CUDA blocks are organised such that

the threads of neurons which project and receive synapses from the same source

neuron groups are always simulated at, or around, the same time.

Next, after the dynamics of the neuron model have been simulated, each

thread makes a check to determine whether or not its neuron has exceeded

the spike threshold potential. If that is the case, the thread records its index

number of the neuron into an array, which is then transmitted to target neuron

groups during the subsequent spike propagation phase. In order to ensure that

each thread can execute independently, in parallel, without being bogged down

waiting for other threads, it is important to allow each thread to record the index

number of its spiking neuron immediately. This means that the index number of

neurons is recorded in the same order that each thread finishes its work, rather

than having threads waiting patiently for all lower indexed threads to integrate

their neurons and record their spikes before recording their own. As a result, the

order of the list of neuron indices which is transmitted to postsynaptic neuron

groups cannot be predicted, even between runs of the same simulation on the

same CUDA device, as figure 1.1 illustrates.

Finally, in the spike propagation phase of the simulation, which transmits

presynaptic neuron spikes to postsynaptic neuron targets, each postsynaptic

neuron computes a sum of input currents from all spiking presynaptic neurons,

weighted by the conductance of each corresponding synapse. The unpredictable

order that incoming spike lists are populated, in conjunction with the rounding

error incurred by each floating-point addition, means that the total input current

for a given neuron could be different with each identical simulation run. The

effects of summand ordering are discussed later, but suffice it to say that this

variance is enough to cause the actual membrane potential values in identical
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Figure 1.1: Different spike list order for the same simulation on the same GPU,
due to unpredictable thread finishing order. A star indicates a GPU core with
a spiking neuron. In the first run (above), thread c finishes and writes its index
to the spike list first, followed by thread f , then a. On the second run (below),
thread a finishes and writes its index to the spike list first, then c, then f .

simulations to vary slightly between runs on identical hardware. This effect

is shown empirically in the experiments of chapter 2. This divergence can be

worrying for researchers from non-computational backgrounds, who may wonder

whether or not this a bug in the software or hardware. How can these researchers

be reassured that their simulations are operating within expected boundaries,

given their results are varying across simulations in identical environments, let

alone the variance from different hardware and software environments?

Before making any claims on the reliability of results in GPU simulations, we

must first compute the error bounds of all results in an equivalent simulation

using range analysis methods, as discussed later. To determine these error

bounds, with or without deterministic summation orders, all rounding error

of the computation must be taken into consideration. The following sections

describe how real numbers are represented on computers, how the rounding

error of an operation is computed, and how these rounding errors propagate

through subsequent operations.

1.2 Number Representation

There are a few ways to represent real numbers on computers. We will consider

two of them; fixed-point and floating-point representations. Error calculation

and floating-point rounding modes are also discussed.
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1.2.1 Fixed-Point Numbers

Perhaps the most obvious way of representing real numbers on a computer is

to store them using a set of integer variable types, with a different order of

magnitude being represented by each variable type. For example, one might

have an integer variable x which represents a real number f of the form:

f = x · bk. (1.1)

where b is the base of the number system, and k is some constant exponent,

which defines the base-b order of magnitude that the variable will represent. This

is known as a fixed-point number system. Another way of describing this system

is that the constant k defines the location of the radix point inside the integer

variable being used to represent the real numbers. Fixed-point arithmetic, as

used by the SpiNNaker neuromorphic hardware project [9], can be performed

quickly and easily with existing integer arithmetic hardware. However, the

low relative range of any given fixed-point variable type makes it unsuitable in

simulation software in general, where arithmetic operands can be many orders

of magnitude apart.

A possible solution to this problem would be to use multiple fixed-point vari-

able types in numerical code. For instance, one might store variables that are

usually of low-magnitude in a fixed-point format with k = −3, but store usually

higher-magnitude numbers in fixed-point formats with k = 3. However, such a

strategy does not make efficient use of memory for variables whose magnitude

varies greatly; integer overflow occurs when values are large but k is small, and

the fixed-point format is not as precise as it could be when values are small but

k is large. One could take this strategy further by using structures of multiple

fixed-point types to represent each variable, where each type stores digits of

different significance. Whilst this approach guarantees certain precisions across

a predetermined range of values, it is inflexible and can be memory inefficient,

since the number of fixed-point types used to store each variable must be deter-

mined in advance, and using more fixed-point types per variable requires more

memory. As a reasonable compromise, the floating-point format is often used

for real-valued variable representation in numerical simulations instead.

1.2.2 Floating-Point Numbers

The floating-point number system works around these problems by allowing the

exponent k to vary as the number changes magnitude. The catch is that there

is now more data to store per number, since k now also needs to be recorded,

in addition to x. However, if f becomes too large or too small for x, then

9



k is dynamically incremented or decremented to accommodate. Thus, in the

floating-point number system, a number f ∈ F ⊂ R can be specified with:

f = s · be

s ∈ [1, b).
(1.2)

where b is the base, and e ∈ [emin, emax] is the bounded variable exponent. s

is known as the significand of the floating-point number, which holds exactly p

significant digits, and is always normalised. For most floating-point numbers,

known as ‘normal’ numbers, the significand is normalised to within the interval

[1, b) to ensure the real number space is represented uniformly at each value

of exponent. The ‘subnormal’ numbers are an exception to this rule; for num-

bers with the lowest value of exponent, emin, the significand is normalised to

within the wider interval [0, b) to fill the space between zero and the lowest rep-

resentable normal number. Without this so-called gradual underflow, any input

number below the smallest representable normal number would be said to have

underflowed - i.e. is too small to be represented - and would be flushed to zero,

resulting in a large round-off error.

A floating-point number is encoded as a binary word as follows: the first

part is a single bit representing the sign of the number, where zero indicates

a positive number, and one indicates a negative number. The next part is

a sequence of bits, interpreted as a signed integer, representing the variable

exponent. The third part is a sequence of bits representing the significand as a

normalised fixed-point number. Since the first bit of the significand is always

one for normal numbers, a single extra bit of precision can be gained by reading

the significand with an implicit leading one bit, rather than storing it explicitly.

Subnormal numbers are an exception to this rule because the first bit of a

number’s significand is not necessarily one. The leading bit, which need not be

stored for normal numbers, must now be stored explicitly. Although losing one

bit of significand in subnormal numbers costs half of their relative precision,

gradual underflow guarantees that the rounding error is still well below that of

an actual underflow error.

There have been many floating-point implementations in the past, with vary-

ing precision and accuracy. A common problem with running and verifying

numerical simulation software was that the data resulting from a simulation

on one architecture could be completely unlike the data from the same sim-

ulation running on another architecture. Even when run on the very same

machine, a simulation compiled with one compiler could produce very different

results from the same simulation compiled with another compiler. In an effort

to standardise floating-point arithmetic across architectures and software, the
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original IEEE-754 standard [3] was drafted in 1985, henceforth referred to as

IEEE-754-1985. It defined standard binary data formats for floating-point num-

bers, including the 32 bit single-precision and 64 bit double-precision formats,

respectively corresponding to the float and double types in the C-like pro-

gramming languages. For the single-precision format, p = 24. Not counting the

implicit leading one, this means that 23 bits are used for the single-precision

significand, 8 bits are used for the signed integer exponent, and the remaining

bit determines the number’s sign. For the double-precision format, p = 53, so

the significand uses 52 bits, the exponent uses 11 bits, and the sign is held in

the remaining bit.

1.2.3 Approximation Error

Because the representation of real numbers is discrete and approximate, small

errors are introduced into the computation whenever the FPU and math library

are utilised. These errors can appear both when the simulation input data is

converted into its floating-point representation, and also whenever the data is

operated on by the arithmetic hardware and software. When storing a real

number in computer memory, if the number can not be exactly represented as

a floating-point number, it is necessary to round it to another nearby number

which can be exactly represented.

There are three widely used ways to measure numerical error [10]; the first of

the measurements are absolute error (1.3) and relative error (1.4), given below,

where f is the computed floating-point value, and r is the exact value. (1.4)

assumes that r is non-zero.

errorabs(f, r) = |f − r| (1.3)

errorrel(f, r) =

∣∣∣∣f − rr
∣∣∣∣ (1.4)

In words, the absolute error is a measure of how different a floating-point number

is from what it is supposed to be, while the relative error is a measure of the

absolute error relative to the magnitude of the exact number. Here, the relative

error is more useful to us because it recognises that, for example, an error of

0.001 may be more significant when the actual value is 0.005, and less significant

when the actual value is 0.5.

The other error measure determines correctness of a floating-point number

in terms of units in last place (ULP) of f ’s significand:

errorULP(f, r) =
∣∣∣s− r

be

∣∣∣ bp−1, (1.5)
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Figure 1.2: Floating-point approximations f of real numbers r, such that b = 2.
The top shows an example where errorULP(f, r) = 1 and |r| ≥ 2e, in which
one better approximation of r exists. The bottom shows an example where
errorULP(f, r) = 1 and |r| < 2e is a power of two, in which two better approxi-
mations exist.

where e and s are respectively the exponent and significand of f , and p is the

precision of f , or the number of digits in s. The ULP measurement is helpful

because it can tell us, given a floating-point approximation f to a real number r,

whether or not a better approximation exists. For example, if errorULP(f, r) = 1

and |r| ≥ be, then we know that there is one better approximation of r directly

adjacent to f , since f is one ULP away from both of its neighbours in this case.

This is illustrated in the top of figure 1.2. However, if errorULP(f, r) = 1 but

|r| < be, there are b better approximations of r, because the spacing between

floating-point numbers - thus the distance of one ULP - is multiplied by b at

each power of b. Therefore, one must be careful when interpreting errorULP if

f is at or near a power of b. The bottom of figure 1.2 illustrates this issue.

1.2.4 Rounding Modes

IEEE-754-1985 also introduced the requirement that basic arithmetic operations

(addition, subtraction, multiplication, division and square root) be computed

to infinite precision, and that the result then be rounded to the nearest rep-

resentable floating-point number. In the event that the number is equidistant

between two valid floating-point numbers, the result would then be rounded

to the number with an even least significant bit (LSB), since this introduces

less bias, on average, than always rounding upwards or downwards does. The

IEEE-754-1985 name for this rounding behaviour is ‘round to nearest’. By com-

puting basic arithmetic results to infinite precision, and then rounding using the

‘round to nearest’ mode, one can guarantee that the error is never greater than
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0.5 ULP, which corresponds to a relative error somewhere in the interval:

[
b−p

2
,
b1−p

2
]. (1.6)

The variance in relative error corresponding to 0.5 ULP error is observed due

to a phenomenon called ‘wobble’, where the relative distance from the next

highest floating-point number falls slowly from each power of b onwards, before

rising sharply at the next power of b. This reflects the change in space between

floating-point numbers at different values of e. The upper bound of the relative

error for exactly rounded operations is also known as the ‘unit roundoff’, denoted

u, and is often used in rounding error analysis.

u =
b1−p

2
(1.7)

This number is equal to half the distance between one and the next highest

floating-point number.

In addition to the ‘round to nearest’ rounding mode, IEEE-754-1985 defines

three other rounding modes. The ‘round toward 0’ mode, as the name implies,

truncates the trailing digit of a non-representable number, rounding it towards

zero. The final two modes, named ‘round toward +∞’ and ‘round toward −∞’,

always round up and down, respectively. These other rounding modes can result

in higher relative errors of up to 2u, but are useful in certain situations. For

example, ‘round toward +∞’ and ‘round toward −∞’ are used in the interval

arithmetic error bounding technique, discussed later. Note that any form of

rounding, including all IEEE-754 rounding modes discussed above, inevitably

removes the associative and commutative properties of basic arithmetic, since

digits of lower significance are removed or rounded in all intermediate quantities.

As a result, the order in which floating-point operations are performed can play

a significant role in how error is propagated in an algorithm. With the floating-

point number system and the IEEE-754 standard discussed, we can now discuss

how the approximate nature of the system, as well as varying levels of IEEE-754

compliance from hardware vendors and software developers, affects the results

of realistic neural network simulations.

1.3 Numerical Error

1.3.1 Absorption and Cancellation

When two numbers of very different orders of magnitude are added or sub-

tracted, something peculiar may occur; the operation may simply output the
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high-magnitude operand. This is due to a phenomenon called ‘absorption’,

where a low-magnitude operand x is said to be ‘absorbed’ into a high-magnitude

operand y.

For the ‘round to nearest’ rounding mode, this occurs when x moves y less

than halfway towards an adjacent floating-point number. Since the result is

closer to y than it is that adjacent number, the result is rounded back to y

(remember that the distance between floating-point numbers changes at each

power of b, as figure 1.2 illustrates). Furthermore, if the LSB of y is even,

absorption will also occur when x moves y exactly halfway towards an adjacent

floating-point number, due to the tie-breaking behaviour discussed earlier. As

an example of absorption in ‘round to nearest’ mode, consider a floating-point

system with b = 10 and p = 3. We need to compute x+ y, where x = 0.004 and

y = 1.

x = 0.004 = 4.00 · 10−3

y = 1 = 1.00 · 100
(1.8)

With equation (1.7), we know that half the distance between y and the next

highest floating-point number is:

u =
101−p

2
= 0.005. (1.9)

Since x < u, we know that the result x+ y = 1.004 is less than halfway towards

the next floating-point number 1.01. Thus the result is rounded back down to

1, as illustrated in the top of figure 1.3.

For the directed rounding modes: ‘round toward +∞’, ‘round toward −∞’

and ‘round toward 0’, absorption occurs when x moves y less than the whole

distance towards an adjacent floating-point number, and the rounding direction

is of opposite sign to x. In this case, the result is always rounded back to y if it

is not equal to or greater than that adjacent number, no matter how close it is.

For example, using the same floating-point system from above, we will compute

x+ y, rounding towards −∞, where x = 0.009 and y = 1.

x = 0.009 = 9.00 · 10−3

y = 1 = 1.00 · 100
(1.10)

Although x is greater than half the distance towards the next floating-point

number 1.01, the addition result 1.009 is still rounded back to y because the

rounding direction is towards −∞, as the bottom of figure 1.3 illustrates.

A related source of error is ‘cancellation’, which is observed when two num-

bers of similar magnitude are subtracted, resulting in a number at or close to
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Round to Nearest

y+x1

Round toward -�

y y+x2

y+x1y y+x2

Figure 1.3: The absorption phenomenon. Red and blue arrows respectively
indicate numbers that are rounded down and up. For ‘round to nearest’ (top),
y+x1 is rounded back down to y, while y+x2 is rounded up to the next floating-
point number. For ‘round toward -∞’ (bottom), both sums are rounded back
down to y.

zero. Goldberg [10] defines two types of cancellation: benign and catastrophic.

A benign cancellation is where both operands of the subtraction are known up-

front. Since both operands are trusted to be accurate, we can be assured that

the result of the subtraction is relatively accurate. On the other hand, a catas-

trophic cancellation is one where the accuracy of the operands is not known

when the subtraction takes place. For a trivial example, take the following

matrix: (
a b

c d

)
(1.11)

and assume that ad ≈ bc. Now if we compute the determinant of this matrix,

the subtraction ad − bc will be a catastrophic cancellation because of the er-

rors inflicted on the two products ad and bc before the subtraction. Only the

most significant figures of each product can be assumed to be correct, and these

cancel each other out when subtracted, leaving only the least significant digits

– i.e. the digits that were most likely to have been corrupted by the multipli-

cation roundings. Thus, whilst cancellation introduces no more error than any

other IEEE-754 subtraction instruction, it makes previous rounding errors in a

computation more prominent, relative to the final result. Cancellation is most

significant when the absolute sum of all values is much less than the sum of

absolute values. ∣∣∣∣∣
n∑
i=1

x[i]

∣∣∣∣∣�
n∑
i=1

∣∣x[i]∣∣ (1.12)

Higham [11], [12] explores rounding error in detail, and explains how a sum-

mation can be ordered in such a way as to minimise the total rounding error

committed. For example, by summing a list of positive numbers in ascending
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order, one can alleviate the effect of absorption. This works because the lower

magnitude numbers are summed first, allowing them to grow big enough inside

a partial sum to not be absorbed by higher numbers later, rather than simply

being absorbed early without contributing. The argument is similar for negative

number sums, where summing in descending order allows low-magnitude num-

bers to accumulate without being absorbed early by lower negative numbers.

The benefit of ascending or descending order is lost when both positive and

negative numbers are present in the sum. Since both the lowest negative and

the highest positive numbers can be high-magnitude, neither ordering prevents

absorption. Ordering the summands in ascending absolute value can help reduce

rounding error here, since low-magnitude summands, both positive and negative,

are always summed before higher magnitude summands. However, this is not

always the case. For example, with the following binary floating-point numbers,

summing them in ascending absolute value order is actually worse than summing

them in descending absolute value order.

x1 = 2−p−1

x2 = 1− 2−p

x3 = −1

(1.13)

With ascending absolute value ordering, s1 = x1 +x2 is rounded upwards, while

s2 = s1 + x3 is exact. However, with descending absolute value ordering, both

additions s1 = x3 + x2 and s2 = s1 + x1 are exact, and no rounding error is

incurred. Furthermore, if equation (1.12) holds, ordering arbitrary summands

in ascending absolute value may increase the risk of catastrophic cancellation,

since each addition is more likely to contain near equal magnitude, but opposite

signed, operands.

Another summation method tested by Higham [11] is ‘pairwise summation’,

also known as ‘cascade summation’, which is a method designed to minimise

rounding error. With pairwise summation, all input numbers are paired up

together and summed, the results of which are subsequently paired up and

summed again, until the base case where only one number remains. The reason

this works is that any given summand is only a part of a maximum of log2(n)

addition operations, as opposed to the recursive summation method, where a

given value, including its error, may be a part of up to n−1 addition operations.

Unlike the summation ordering modifications discussed above, this modification

is trivial to implement, and could lower the summation error from a factor of

n to a factor of log2 n. It is worth noting that the pairwise summation scheme

is still susceptible the effects of catastrophic cancellation. Adding partial sums

of positive values to similar-magnitude partial sums of negative values can still
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result in nasty catastrophic cancellations.

1.3.2 The size of δt

Another source of excessive numerical error in simulations emerges with an

inappropriate choice of integration step size δt. Numerical integration is about

approximating a continuous function by integrating its derivative in discrete

steps. Because the integration is discretised, the approximated solution cannot

completely follow the curve of the exact solution. The difference between the

approximate solution and the exact solution is known as the truncation error.

When numerically integrating a model on a computer, the overall error is a

combination of rounding error from the computer, and truncation error from

the integration method. The combination of these two error sources is called

the numerical error.

Intuitively, one might suppose that a simple way to reduce the truncation

error of a simulation is to integrate using a smaller step size. For example, one

might integrate a model system using a time step δt = 0.1 ms instead of δt = 0.5

ms, but this will only get you so far. The more time steps per unit of time,

the more floating-point operations, or FLOPS, and the bigger the round-off

error can potentially become [13]. Choosing the optimum δt size is a trade-

off; too small and the rounding error from floating-point arithmetic dominates

the result, yet too big and the truncation error of the method overpowers the

result, and it does not make sense to spend hours debugging and fixing bad

rounding errors when truncation error is clearly the bigger issue. One must use

rounding error evaluation techniques, discussed later, to characterise the error

whilst systematically varying δt in order to find the sweet spot, where numerical

error is minimised.

On the subject of δt, after integrating a single time step, the näıve user

might be tempted to iterate t by doing:

t = t+ δt. (1.14)

However, this may cause problems. For example, consider a simulation with

δt = 0.1. The number 0.1 is impossible to represent in a base-2 floating-point

system, so repeated accumulation of δt eventually desynchronises t from the

actual simulated time. This could cause problems in real-time applications,

such as dynamic clamp neuroscience experiments, where precise timing may be

essential. Furthermore, a sufficiently long simulation may cause t to overflow if

the exponent range of t is too small. If the total simulated time is small, and

the floating-point format is large, then these problems will not occur, but they

become more likely for longer simulations and smaller floating-point formats.

17



There is a simple solution to this problem; keep an additional variable i, which

holds the integer step number, incremented by one at every iteration, where t

can be found by simply calculating:

t = i · δt. (1.15)

Alternatively one could store t as a fixed-point number, which can then be cast

to a floating-point type as and when required. However, this approach has prob-

lems when adaptive step size integration methods use used, so all approaches

should be considered carefully.

1.3.3 Software and Hardware Compliance

As of IEEE-754-1985, the only floating-point operations that are required to

be exactly rounded are the basic (+,−, /, ∗,
√

) operations and floating-point

conversion functions. Later, in 2008, the revised IEEE-754 standard [4], hence-

forth IEEE-754-2008, included the ‘fused multiply-add’ (FMA) function in this

list, which is discussed below. However, many popular mathematical functions,

collectively known as the elementary transcendental functions, have yet to be

included proper. Instead, IEEE-754-2008 merely recommends that hardware

vendors and software developers support correct rounding for these functions.

The elementary transcendental functions include the trigonometric, log and ex-

ponential functions. Because IEEE-754-2008 only recommends, and does not

require, that these functions be implemented with correct rounding, there can

be notable differences across architectures, and even across compilers and math

libraries on the same architecture. This poses a problem when verifying the

results of a simulation, such as one running on a CUDA device with the CUDA

runtime library version 6.0, against a reference implementation on another plat-

form, such as x86 64 with the GNU Compiler Collection (GCC) and the GNU

Lib C (glibc) standard C library.

Floating-point arithmetic was quite inaccurate during the first few versions

of the CUDA architecture. In fact, versions 1.0 through 1.2 of the CUDA archi-

tecture barely implemented the IEEE-754 standard at all. Only single-precision

floating-point numbers were supported, subnormal numbers were flushed to

zero, and very few operations were correctly rounded [5]. Version 1.3 intro-

duced some IEEE-754-2008 compliance for double-precision numbers, but was

very slow, and single precision remained inadequate. The results of GeNN [7]

simulations for these CUDA architecture versions would be completely incorrect

with respect to the results of a simulation on another fully IEEE-754 compli-

ant architecture. Fortunately, recognising the potential of CUDA devices for

GPGPU applications, NVIDIA have since fully adopted IEEE-754-2008 compli-
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ance for all architectures of version 2.0 and greater. All of the CUDA runtime

library’s basic arithmetic functions, including fused multiply-add, are correctly

rounded in both single-precision and double-precision, and the elementary tran-

scendental functions are all rounded to within around 2 ULP of the correctly

rounded result [8]. In addition, CUDA also provides so-called ‘device intrinsics’,

which are functions that correspond to a construct of special high-speed arith-

metic circuits inside each CUDA core, collectively called the Special Function

Unit (SFU). The intrinsics in the SFU relax the IEEE-754 correct rounding

constraints in return for faster operation speed. The CUDA runtime library

version 7.0’s elementary transcendental functions may very well be more ac-

curate than the corresponding functions in the glibc library, used by GCC on

Linux, given that the error bounds for many of the glibc maths functions, such

as the exponential function, have not even been entered into the glibc manual

[14]. This poses problems for the numerical analyst who wishes to verify CUDA

simulation results, such as those from a GeNN simulation, against a reference

x86 64 and glibc implementation.

Another verification problem emerges when the other architecture, on which

the reference implementation runs, adheres to an older floating-point standard

than the target CUDA architecture [6]. For example, many current lab work-

station CPUs only adhere to the older IEEE-754-1985 standard, whereas all

CUDA devices with architectures of version 2.0, or higher, adhere to the newer

IEEE-754-2008 standard. The newer version introduced the requirement that

the FMA operation, given below, be included in the group of basic arithmetic

operations that are required to be computed as if to infinite precision, and then

rounded correctly, according to the selected IEEE-754 rounding mode.

FMA(a, b, c) = ab+ c (1.16)

On an IEEE-754-2008 FPU, executing the FMA operation is more accurate

than executing both the product and sum instructions separately. Since an

FMA instruction counts as one operation, it is only rounded once. This means

that the relative error is bounded by u, and the absolute error is:

|(ab+ c)(1 + δ1)− FMA(a, b, c)|, (1.17)

where |δ1| ≤ u. Doing the operations separately, just as an IEEE-754-1985 FPU

would need to do, means having two roundoff steps; calculating the product of

a and b, rounding, and then adding this intermediate result with c, rounding

again. The final result has a potentially larger absolute error of:

|(ab(1 + δ1) + c)(1 + δ2)− FMA(a, b, c)|, (1.18)
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where |δ1| ≤ u and |δ2| ≤ u.

FMA instructions have only recently been shipped as standard with Ad-

vanced Micro Devices (AMD) and Intel processors, respectively starting with

the ‘Bulldozer’ [15] and ‘Haswell’ [16] architectures. Even on CPU architectures

which support the FMA instruction, there is still no guarantee that a given com-

piler will make use of them yet. For instance, FMA may not be used by older

compiler releases which are not fully compliant to the IEEE-754-2008 standard.

As a result, there can be variation in the results of algorithms amenable to the

FMA optimisation, such as the dot product, if compiled by different compilers,

or for architectures which implement different IEEE-754 revisions. For maximal

confusion, the AMD Bulldozer architecture actually implements a different FMA

instruction scheme (FMA4) from that of the Intel architectures, from Haswell

onwards (FMA3), although the newer AMD ‘Piledriver’ architecture supports

both FMA3 and FMA4 for compatibility reasons. Thankfully, the FMA3 and

FMA4 instruction schemes are both faithful to the IEEE-754-2008 standard in

the sense that they both round FMA operations to the nearest floating-point

number. As a result, an FMA operation should produce identical results on

CUDA architecture version 2.0 onwards, AMD Bulldozer architecture onwards,

and Intel Haswell architecture onwards, but one should expect results to differ

when using architectures and compilers which do not support correctly rounded

FMA operations.

A further issue with comparing results against implementations on older

architectures is that the precision of the intermediate values in a calculation

cannot be guaranteed. In older Intel 32-bit x86 architectures, floating-point

operations were performed on x87 coprocessor chips, which were later integrated

into x86 CPU chips. The registers inside an x87 floating-point unit are 80 bits

wide, corresponding to IEEE-754 ‘extended-precision’, with 15 bits used for the

exponent, 64 bits for the significand and the remaining bit used for the sign.

The issue is that there are only so many of these extended registers, and so the

result of a floating-point operation might be kept in these extended precision

registers, rounded once to extended-precision, or it might be flushed to memory

to make way for the next x87 instructions, rounded a second time to regular

double or single-precision [6]. This double rounding behaviour may or may not

happen at the compiler’s discretion, depending on how registers are allocated.

On the more recent CPUs, starting from the Intel Pentium 4 and the AMD

Athlon 64, the x87 arithmetic instructions have been superseded in favour of

the Streaming SIMD Extensions 2 (SSE2) floating-point arithmetic instructions,

which use standard IEEE-754 single and double-precision registers instead. As

before, running the test and reference simulation implementations on sufficiently

modern processor architectures should be enough to avoid this problem.
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To summarise, there may be many reasons why the trajectory of an SNN

simulation may differ from that of a reference implementation on a different

processor architecture. Floating-point instructions may be reordered as a result

of the non-determinism in the GPU’s thread scheduling mechanism, resulting in

different results for the same operation on the same operands. The integration

step δt, and the way that time is incremented with it, can cause excessive

error if not chosen correctly in user-side code. Comparing a dynamical systems

simulation to a reference implementation on a somewhat old architecture is

likely to give different results than those of the GPU implementation.

There are IEEE-754-2008 compliant mathematical libraries which imple-

ment FMA, and even exactly rounded elementary transcendental functions,

with floating-point numbers that will always remain in a predictable precision.

GNU MPFR [17] is an arbitrary-precision example of such an library. It al-

lows us to verify dynamical systems models containing transcendental functions

against an exactly rounded reference CPU simulation, providing the effects of

non-deterministic thread scheduling are accounted for. Although this tells us

what the simulation trajectory should be in a fully IEEE-754-2008 compliant

floating-point implementation with exactly rounded transcendental functions, it

does not tell us much about how bad the error could be in the worst-case, and

how much it resembles the exact solution, in terms of correct significant digits.

It is also unclear exactly how high the precision needs to be raised in order to

produce the correct result. Rump’s example [18], [19] is a calculation in which

the significant digits in the answer are very similar when computed from single-

precision up to quadruple-precision, even though all of the computed results

has no significant digits in common with the exact result. This would leave an

unwitting user content that a solution is correct, given that the significant digits

are similar for each of the tested precisions, even though the computed result

has no significant digits in common with the exact result. Therefore, we need

an easy way to measure the worst-case numerical error bounds of a dynamical

systems simulation, in arbitrary precisions. We now explore some options.

1.4 Interval Arithmetic

In order to determine the error bounds of numerical algorithms, such as SNN

simulations, one can use a so-called ‘range analysis’ method, such as Interval

Arithmetic (IA). In this method, all real-valued variables are replaced with

intervals, represented by a lower and upper bound.

In interval arithmetic (IA), each of the floating-point variables are replaced

with an interval variable x̄ = [xa, xb] containing, at any given moment, the

lowest and highest value that the variable can possibly take, assuming a worst-
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case rounding error occurs after each floating-point operation. An alternative,

but equivalent, representation is the centre-radius form x̄ = [(xc − xr), (xc +

xr)]. The bounds of each interval variable begin initialised as the same real

input value, and gradually widen by plus and minus the absolute error of each

successive floating-point operation, such that the exact value of a given variable

is guaranteed to be somewhere within its representative interval.

1.4.1 Interval Functions

The basic arithmetic operations (+,−, ∗, /) for these interval types are defined

as follows.

[a, b] + [c, d] = [(a+ c), (b+ d)]

[a, b]− [c, d] = [(a− d), (b− c)]

[a, b][c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

[a, b]

[c, d]
=

[
min

(
a

c
,
a

d
,
b

c
,
b

d

)
,max

(
a

c
,
a

d
,
b

c
,
b

d

)] (1.19)

Note that division by an interval containing zero is undefined. Other interval

operators can be defined, as long as they preserve the invariant that the upper

and lower interval bounds of a result are always respectively the highest and

lowest value that can possibly be returned by the operation. For the floating-

point versions of these interval operations, rounding error can be accounted for

by ensuring that the upper bound of the result interval is rounded up using the

IEEE-754 ‘round toward +∞’ mode, and the lower bound is rounded down with

the IEEE-754 ‘round toward −∞’ mode. Other error sources can be accounted

for in this way. If this is done consistently for every arithmetic operation, we

can keep track of the total rounding error boundaries in a computation. IA can

be considered a zeroth-order range analysis method, since the lower and upper

bounds of a range are constant values [xa, xb] = [(xc − xr), (xc + xr)].

1.4.2 The Dependency Problem

IA, however, turns out to be a poor choice for long chained computations, such

as numerical integration of dynamical systems. For these kinds of computa-

tions, the biggest put-off is that the boundaries obtained by IA are often very

conservative. In multiple dimensions, IA tends to include regions of state space

which are impossible to reach in a simulation run, since the orientation of the

bounding box is fixed to that of the axes. The reason for this is the lack of

correlation information encoded with this representation. This is known as the

dependency problem [20]. If an interval variable appears more than once in an
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Figure 1.4: A dynamical system of variables X and Y , whose intervals exhibit
the wrapping effect, where the computed error box ‘wraps’ the reachable error
box. The dynamics of this system may not allow the trajectory to enter the
green area, corresponding to worst-case error bounds of both X and Y according
to interval arithmetic.

arithmetic expression, IA treats the second occurrence as if it were a separate

independent variable, even though they are in fact the same. Using subtraction

as an example, if x̄ = [1, 2], we have such things as:

x̄− x̄ = [(1− 2), (2− 1)] = [−1, 1] (1.20)

even though the result should clearly be [0, 0]. Arithmetic expressions may be

rewritten such that a variable only appears once on the right hand side, but

this is usually not possible for complicated expressions. Due to the dependency

problem, a phenomenon known as the ‘wrapping’ effect [21], [22] is observed.

For instance, in a system of two variables, the error intervals of those variables

collectively form a box – or a hypercube, in higher dimensional systems – in

which the exact solution lies. In a dynamical system, due to the tight inter-

dependency of the system’s variables, it may be impossible to reach a point in

phase space corresponding to the worst-case rounding error for all variables –

shown as the green area in figure 1.4. The true box of reachable states could in

fact be rotated in phase space – demonstrated by the white box in figure 1.4 –

where the reachable error box’s sides are not orthogonal to the axes, in contrast

with the computed worst-case error box. For instance, it could be that the point

(x, y) lies at the middle of an edge of the green bounding box. However, (x, y)

can never lie at two edges due to the linear correlation that exists between x

and y. Instead, (x, y) can only ever lie within the white diamond-shaped region.

The green bounding box is said to ‘wrap’ the white diamond-shaped region of

actually reachable states.
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1.4.3 Discrete Dynamics

Interval arithmetic is made yet more complicated when discrete ‘events’ are

used within a dynamical system, forming so-called hybrid systems. An SNN

simulation often uses events to record a spike event to the spike list whenever

a threshold criterion is satisfied. In addition to recording the spike, the model

neuron’s variables are usually reset to some subthreshold baseline level, cre-

ating discontinuities in the differential equations. This causes problems when

the event threshold criteria is met for only part of an interval variable. If the

upper bound of a neuron’s membrane potential variable exceeds the threshold

potential, but not the lower bound, then should a spike be propagated to the

rest of the network? Should the neuron’s state variables be reset? One solution

would be to hold the upper bounds of the neuron’s variables immediately below

the threshold values when the threshold criterion is passed, rather than reset-

ting them to the baseline level, and then to set the lower bounds of the neuron

variables to the baseline values, if they are not already lower. This ensures that

the neuron variables remain single continuous intervals, rather than diverging

into two intervals separated by a threshold condition. This still does not deal

with the issue of when to propagate the spike to the rest of the network when

only the upper bound of a neuron variable is superthreshold. Therefore, IA,

though fast and ‘correct’, is only useful for calculating worst-case error bounds

for short numerical algorithms with few correlated variables. To get more ac-

curate bounds in long computations with many correlations, a better interval

representation, such as affine arithmetic, can be used instead.

1.5 Affine Arithmetic

Another range analysis method, known by the name Affine Arithmetic (AA)

[23], [24], is a variant of IA which represents intervals as first-order polynomials.

AA is a variant of IA, in the sense that an AA variable (henceforth an affine

range), encodes the minimum and maximum value that a variable may take at

any given moment. It avoids the problems of IA by encoding all correlations

of one variable with all other variables within its interval representation. Each

affine range is a first-order polynomial, such that the constant term x̂c repre-

sents the centre value of the interval, in a similar manner to the centre-radius

representation in IA, but with n other terms x̂[i]ε[i] (henceforth deviation terms)

instead of one.

x̂ = x̂c + x̂[1]ε[1] + ...+ x̂[n]ε[n]

ε ∈ [−1, 1]
(1.21)
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These n deviation terms each represent a linear correlation with another vari-

able. The values of all noise symbols ε[i] are unknown, and they collectively

represent the uncertainty in the interval. If they were known, then the exact

error-free solution of a computation can be determined by simply substituting

them into the above formula. Affine ranges x̂ and ŷ are at least partially cor-

related if ∃i > 0 : |x̂[i]| > 0 ∧ |ŷ[i]| > 0. In other words, two affine ranges are

correlated if they have any non-zero deviation symbols in common. This means

that the dependency problem and wrapping effect of standard IA is no longer

an issue. For example, returning to the IA subtraction example again (1.20),

where x̂ = 1.5 + 0.5ε[1] equivalently, we now have:

x̂− x̂ = (1.5 + 0.5ε[1])− (1.5 + 0.5ε[1]) = 0 (1.22)

as required. Since x̂ is the same variable, and entirely correlated with itself, both

occurrences of x̂ share the deviation term x̂[1]ε[1], which is allowed to cancel in

the subtraction. This can happen with any affine forms which share the same

deviation terms. Any numerical error from a function is simply appended to

the resulting range as a new deviation term x̂[k]ε[k], where k is an unused noise

symbol number. The radius of an affine range is the sum of all absolute deviation

coefficients in the interval:

x̂r =

n∑
i=1

|x̂[i]|. (1.23)

1.5.1 Affine Functions

Since affine ranges are all first-order polynomials, AA can be considered a first-

order range analysis method, where the error bounds are linear in ε. Any linear

function of one or more affine ranges may be expressed exactly as another affine

range; the general form of a linear univariate function in AA is:

f̂1(x̂, α, γ, δ) = (αx̂c + γ) + (αx̂[1])ε[1] + ...

+ (αx̂[n])ε[n] + δε[k],
(1.24)

and the general form of a linear bivariate function is:

f̂2(x̂, ŷ, α, β, γ, δ) = (αx̂c + βŷc + γ) + (αx̂[1] + βŷ[1])ε[1] + ...

+ (αx̂[n] + βŷ[n])ε[n] + δε[k],
(1.25)

where k is an unused noise term number. Multivariate functions can be con-

structed easily in a similar manner.

Using (1.25), we define the addition, subtraction and negation of affine ranges
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as follows.

x̂+ ŷ = f̂2(x̂, ŷ, 1, 1, 0, 0)

x̂− ŷ = f̂2(x̂, ŷ, 1,−1, 0, 0)

−x̂ = f̂1(x̂,−1, 0, 0)

(1.26)

1.5.2 Multiplication and Division

As a consequence of affine ranges being represented as first-order polynomials, all

nonlinear functions must be approximated to the first order to be representable

in AA. Addition, subtraction and scalar multiplication are all linear, and thus

need no approximation. Multiplication of non-scalar affine ranges, however, is

a nonlinear operation, since the multiplication of two first-order polynomials

introduces quadratic terms in ε.

x̂ŷ = (x̂cŷc) +

n∑
i=1

(x̂cŷ[i] + ŷcx̂[i])ε[i] + (

n∑
i=1

x̂[i]ε[i])(

n∑
i=1

ŷ[i]ε[i]) (1.27)

Although tighter approximations are known, according to [23], the quadratic

final term in (1.27) can be trivially approximated using the product of the radii

of x̂ and ŷ:

(x̂rŷr)ε[k], (1.28)

where k is an unused noise symbol number and x̂r is defined as in equation (1.23).

This leaves us with the following definition of affine arithmetic multiplication.

x̂ŷ = (x̂cŷc) +

n∑
i=1

(x̂cŷ[i] + ŷcx̂[i])ε[i] + (x̂rŷr)ε[k] (1.29)

Division is defined as the product of x̂ and the inverse of ŷ.

x̂

ŷ
= x̂ · 1

ŷ
= x̂ · ˆinv(ŷ) (1.30)

Since the multiplication of two affine ranges needs to be approximated linearly

in order to be representable, it is often the case that AA multiplication, and

consequently division, produces ranges that are wider than those computed with

plain IA. For example, let x̂ = 1+3ε[1] and ŷ = 2+5ε[2]. Converting x̂ and ŷ into

intervals respectively gives x̄ = [−2, 4] and ȳ = [−3, 7]. With IA multiplication,

we have x̄ȳ = [−14, 28]. However, with the trivial AA multiplication defined

in equation (1.29), we have x̂ŷ = 2 + 6ε[1] + 5ε[2] + 15ε[3]. The AA result has

a range of [−24, 28], which is noticeably wider than the IA result. This is a

known weakness of the AA method, and is most likely to occur when operands
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are weakly or not correlated with each other, since AA only has the advantage

when operands have shared noise symbols to cancel out. We will return to this

topic later.

1.5.3 Transcendental Functions

The affine arithmetic inverse function inv is a univariate nonlinear function,

which must be approximated linearly, as does exp, log and all the other elemen-

tary transcendental functions. Whilst sqrt is not a transcendental function, it is

approximated in an identical manner, and so is mentioned here. There are two

methods given in [23] with which one can approximate these functions with; the

Chebyshev and Min-Range approximations.

Our goal is to determine the α, γ and δ arguments of function (1.24), cor-

responding to the best linear approximation to the true function f(x) on the

input range [xa, xb] = [(x̂c−x̂r), (x̂c+x̂r)]. However, do we mean to say that the

best approximation minimises the error, or do we mean to say that it minimises

the range of the result? If we are to minimise the error, then the Chebyshev

approximation should be used. If we are to minimise the resulting range, then

the Min-Range approximation is more appropriate. The following procedures

assume that f is twice-differentiable, and that its second derivative does not

change sign in [xa, xb]. Periodic functions, such as sin and cos, require special

treatment, and are not discussed here.

Chebyshev Approximation

For the Chebyshev approximation, the idea is to find α, γ and δ, such that

the difference between f̂1 and f is minimised in [xa, xb]. The slope α of the

approximation is:

α =
f(xb)− f(xa)

xb − xa
. (1.31)

To find the offset γ and error δ of the approximation, an additional step is

necessary; we must first find the point xp within the input range, where the

function’s slope is equal to the approximation’s slope. To do that, we solve a

differential equation for xp.
df(x)

dx

∣∣∣∣
xp

= α (1.32)

With xp, we now know the points of maximal difference between αx and f(x).

Since f ′′ does not change sign in [xa, xb], these points are xa, xb and xp. We
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now compute the differences f(x)− αx for x ∈ {xa, xb, xp}.

da = f(xa)− αxa
db = f(xb)− αxb
dp = f(xp)− αxp
dlo = min(da, db, dp)

dhi = max(da, db, dp)

(1.33)

Finally, the offset γ and error δ are computed as follows.

γ =
dlo + dhi

2

δ =
dhi − dlo

2

(1.34)

The Chebyshev approximation of the exponential function is illustrated in the

top panel of figure 1.5. Note the blue bounding polygon contains exp(x) com-

pletely for all x ∈ [xa, xb].

The Chebyshev approximation is the ideal option, since AA is best when as

much correlation information can be preserved, and as little approximation er-

ror introduced, as possible. However, Chebyshev approximation suffers from the

‘overshoot’ and ‘undershoot’ phenomenon, where the range [(ŷc− ŷr), (ŷc + ŷr)]

of the computed result ŷ = f̂1(x̂, α, γ, δ) is bigger than if it were computed in

IA [23]. This is especially problematic when approximating over larger input

ranges. You can clearly see undershoot in the top panel of figure 1.5; the ap-

proximation evaluated at xa is negative, however the real exp function should

never be negative. To prevent overshoot and undershoot, the Min-Range ap-

proximation should be used.

Min-Range Approximation

At the expense of some correlation information, thus a larger independent error

term δ, one can find a function f̂1 which approximates f as tightly as plain IA

does. Like the Chebyshev approximation, our goal is to find the α, γ and δ

arguments of f̂1 in equation (1.24).

To find α, we first find the point xq ∈ [xa, xb] such that |f ′(x)| is minimised.

That is to say that we want the point in the input range with the mildest

slope, be it positive or negative. Given our earlier assumption that the second

derivative does not change sign in the input range, this point must either be xa
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Figure 1.5: Chebyshev (top) and Min-Range (bottom) approximations of exp(x)
over the interval [xa, xb] = [3, 6]. For both plots, the red line is exp, the blue
line is the approximation αx+γ and the light blue region represents αx+γ± δ.
Notice how the light blue regions completely cover exp over [xa, xb]. Also note
that, although the bounding region in the Chebyshev approximation is tighter
than that of the Min-Range one, its region is partly negative.
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or xb. The slope α of our approximation is the slope at this point:

α =
df(x)

dx

∣∣∣∣
xq

. (1.35)

For the exp example, in the bottom panel of figure 1.5, α is the slope at xa.

The points of maximal difference between αx and f(x) are xa and xb. We now

compute these differences.

da = f(xa)− αxa
db = f(xb)− αxb
dlo = min(da, db)

dhi = max(da, db)

(1.36)

The offset γ and error δ terms are computed in the same manner as in the

Chebyshev method, equation (1.34).

As illustrated in figure 1.5, the Min-Range method, in the bottom panel, does

not exhibit the same undershoot that the Chebyshev method does, in the top

panel. Despite this, the blue approximation region of the Min-Range method

is clearly bigger than that of the Chebyshev method. This is because, in this

example, much of the correlation information has been lost in the approximation.

Consequently, the AA bounds of the Min-Range method begin to look more

like the axis-aligned boxes of regular IA. Like undershoot and overshoot in the

Chebyshev approximation, this issue is usually only critical for larger input

ranges.

With a basic understanding of how floating-point arithmetic works, how

numerical error is caused and how it affects numerical simulations, we may now

discuss the technical issues which motivate this study. In the following chapter,

we see how the non-deterministic thread scheduling of GPU devices is enough

to change the behaviour of SNN simulations.
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Chapter 2

Motivation

As stated in the introduction, the main motivation behind this study is to de-

termine the worst-case error boundaries of SNN simulations on GPU hardware.

This is important because researchers from non-computational backgrounds

might expect be able to reproduce their experiment results exactly (bitwise

reproducibility), but non-deterministic parallel arithmetic hardware can pro-

duce data that is different, even if only slightly, in each simulation run. How

reliable are the results if the program is not behaving as expected?

This also has important practical implications, because it implies that one

can not use bitwise reproducibility of results as a criterion in software testing.

If, after a software update, a result differs slightly from previous runs, it is

impossible to tell whether the difference indicates a high likelihood that a bug

has been introduced or whether it just originates from the variability of repeated

simulation runs. In order to be able to use testing during software development,

we need predictions on how much variability to expect between runs and when

a deviation becomes significant enough to indicate the presence of a bug.

We now discuss an instance of a spiking neuron model that illustrates this

phenomenon - i.e. whose state can vary across different runs on parallel hard-

ware.

2.1 Non-Determinism in Limit Cycles

In order to demonstrate the problem, an instance of the popular Izhikevich

neuron model [25] is used. The Izhikevich neuron model is defined as follows,

where V is the membrane potential in millivolts and U is the spike recovery
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variable.

dV

dt
= 0.04V 2 + 5V + 140− U + I

dU

dt
= a(bV − U)

if V ≥ 30, then

 V ← c

U ← U + d

(2.1)

In the above definition, the a parameter determines the time scale of spike re-

covery, and b determines how sensitive the recovery dynamics are to changes

in membrane potential. The remaining parameters affect the discrete spike dy-

namics, with c being the baseline voltage that V is reset to, and d determining

the spike recovery dynamics due to slower rectifying currents. The dynamics of

the Izhikevich model are unstable about the spiking threshold. Because of this,

there is a possibility that this instability can amplify perturbations in trajecto-

ries which pass near the threshold boundary, where small perturbations can push

some trajectories superthreshold, whilst other trajectories remain subthreshold.

Such a situation is demonstrated by simulating a single Izhikevich neuron

10 times for 7500 milliseconds, in steps of h = 0.25 milliseconds, with forward

Euler integration. The parameters of the model are set to the ’typical’ values

[25] of a = 0.02, b = 0.2, c = −65 and d = 2.0. A fixed input current of 3.8

µA/cm
2

is applied to push the neuron just above firing threshold, and into a

stable limit cycle. An additional 10 constant currents are drawn from a normal

distribution with 0 mean and 0.5 standard deviation. These constant currents

are summed together in randomised order at the start of each iteration, to

simulate parallel input current summation in GeNN simulations, and the result

is added to the base input current. The results of the ten runs are plotted

in figure 2.1. Although the simulation trajectories start identically, note how

the phase and amplitude of spikes has diverged noticeably towards the end of

the simulation. This effect is purely a result of non-determinism in the current

summation ordering.

Note that the Izhikevich neuron model defined in equation (2.1) will always

converge to a stable fixed point in the absence of external input, assuming

its parameters are tuned to exhibit quiescent behaviour. When the neuron is

not spiking, any prior perturbation to the model’s trajectory will immediately

begin to disappear. Because the prior experiment set-up is essentially flooding

the neuron with input current, and not allowing the trajectories to converge on

a stable fixed point, the perturbations quickly become apparent. However, in

simulations of real neural circuits, this chronic saturation of neurons is unlikely

to occur for long periods. An exception to this rule would be intrinsically spiking
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Figure 2.1: This plot shows 10 simulation runs of an identical Izhikevich neuron,
receiving 10 fixed input currents that are summed in a randomised order. Note
how the phase and amplitude of spiking varies slightly between runs, due to
the different input current values obtained by the non-deterministic summation
order of the identical set of input currents. Note also that the input current is
constantly superthreshold, and the neuron state trajectory is never allowed to
converge to a stable fixed point.
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neurons, which have been configured to always be superthreshold in the absence

of inhibitory input. Although the resulting limit cycle dynamics may be stable,

there is nothing driving the limit cycle’s phase to convergence.

While this example may appear a little contrived, it is easy to imagine that

in simulations with millions of neurons, there is always a neuron that is in this

regime. Once spike times have moved noticeably, the effects may or may not

propagate further through the network. If they do, this can lead to measurable

difference in global results, especially in dynamically rich recurrent neural net-

works. We now explore trajectory perturbation in a more realistic SNN model.

2.2 Non-Determinism in Realistic Simulations

Earlier in this study, the trajectory perturbation due to non-deterministic sum-

mation order was thought to be far greater than it actually turned out to be.

However, it was later found that a large part of the observed perturbations was

caused by issues in GeNN [7] with the random number generator seed fixing

mechanism, and GPU-side memory initialisation, which have since been fixed.

In many cases, realistic SNN simulations can be a little more stable than the

contrived example given in the previous section, with more stable fixed points,

and therefore more opportunities for perturbed simulation trajectories to con-

verge on.

To demonstrate this, a large ’pulse-coupled neural network’ (PCNN) of n =

10000 neurons is simulated on an NVIDIA Tesla K40c GPU using GeNN. The

network is built entirely from Izhikevich neurons, with 0.8n = 8000 neurons

providing excitatory positive current to a random subset of the network, while

0.2n = 2000 neurons provide an inhibitory negative current to a random subset

of the network. Excitatory neurons are subject to a random normally distributed

input current at each step, with mean of zero and standard deviation of five.

Inhibitory neurons are subject to normally distributed noisy current with a

mean of zero and a standard deviation of two. Each neuron randomly projects

synapses to at most 0.1n = 1000 other neurons within the network. The random

number generator seed is fixed in all upcoming experiments, to demonstrate

purely the effect of non-determinism in parallel simulations alone. The complete

network is integrated for 1000 milliseconds using the forward Euler scheme, in

steps of h = 1 millisecond. Note that it is possible to reduce the total numerical

error per unit of simulated time by using higher-order integration methods,

which may in turn allow larger time steps to be taken. Euler steps of one

millisecond are instead used here, since they are more typical for Izhikevich

neuron simulations.

The mean and standard deviation of membrane potential for the first five
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excitatory neurons from 50 identical parallel runs of the PCNN simulation are

plotted in the left and centre columns of figure 2.2, respectively. From these

plots, the divergence between simulation trajectories is no more apparent than

that seen in the previous contrived experiment, despite the additional com-

plexity of the model. Although small perturbations appear during high spiking

activity, the trajectories immediately converge back during the more stable sub-

threshold dynamics, since none of the neurons are intrinsic spikers.

In order to confirm that all trajectory perturbation is a consequence of par-

allel execution alone, and not a hidden software or hardware issue, an identical

serialised model is also simulated on the GPU, and the standard deviations of

the first five excitatory neurons are plotted in the right hand column of figure

2.2. As discussed previously, GeNN simulations transfer spikes between neu-

ron populations using spike list structures, which are filled in the order that

the neuron threads finish in. It follows that if one were to fix the order that

spike lists are populated, assuming all random number seeds are fixed, then all

perturbations should disappear. Indeed, this is what we see. This means that

the problem of bounding numerical error in parallel GPU simulations of SNN

models is reduced to bounding the error of the equivalent serial simulation, and

adding the worst-case error of the non-deterministic current summations.

The experiments in this chapter have shown that small numerical perturba-

tions are enough to distort both the phase and amplitude of neuronal spiking

in SNN simulations. They further show that, while this distortion is more ap-

parent in small specially constructed toy problems, there is still potential for it

to occur in larger and more realistic SNN models.

Although rather specific prerequisite conditions must be met before signifi-

cant trajectory divergence becomes likely, the possibility is ever present in par-

allel simulations. In theory, any model with sufficient activity, simulated for

long enough, can diverge in a significant manner by chance. This could be an

issue in networks which require precise spike timing to function correctly. Given

the initial conditions of the simulation, how can one predict when such a tra-

jectory divergence will occur, if at all, and what would happen to the network’s

behaviour if it did? Even if it does not, there are still the smaller perturbations

which cause minor mismatches between resulting datasets. We need a way to

compute the upper and lower bounds of these simulation trajectories to ensure

that researchers know how much divergence should be expected, allowing them

to make appropriate adjustments to their simulation and analysis methods. In

the following chapter, I introduce my Arpra library for arbitrary-precision range

analysis that addresses these issues.
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Figure 2.2: This plot shows the mean and standard deviation of membrane
potential trajectory for the first five excitatory neurons of an Izhikevich PCNN
simulation, computed with parallel and serial current summation order. Respec-
tively, the left and the centre column shows the mean and standard deviation
of trajectories computed in the parallel simulation. The right column shows
the standard deviation of trajectories computed in the equivalent serial simula-
tion. Note how the system is stable enough such that, although the trajectories
diverge from time to time, the perturbations are not enough to cause a signifi-
cant divergence, and trajectories eventually converge back. Also note how the
serialisation of input current summation is enough to completely prevent the
trajectory divergence.
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Chapter 3

The Arpra Library

In this chapter I will introduce a new software tool kit I have developed, named

the Arpra library [26], which stands for arbitrary-precision range analysis. Arpra

is a fully open source library, written in C, and is compatible with all UNIX-like

systems, including Linux, BSD and Mac. It is licensed under the terms of the

GNU Lesser General Public version 3 license (LGPL-3.0), which not only allows

Arpra to be used freely for personal and academic reasons, but also allows it

to be linked into commercial applications as a shared or static library. It uses

the GNU autotools build system, enabling fast and simple configuration and

installation. Arpra implements a modified version of mixed IA/AA range anal-

ysis, described in [23] and [27], and implemented in INTLAB [28]. Arpra uses

GNU MPFR [17] as its floating-point back end, which has many advantages over

standard hardware floating-point implementations, as we shall see. Therefore,

a basic understanding of MPFR will be required to explain the Arpra library’s

features.

This chapter will first discuss the MPFR back end, including its internal

operation and its advantages. Following this, the Arpra library itself will be

discussed, including its internal operation, its improvements over the standard

AA method, and its error bounding performance over standard IA.

3.1 The MPFR Library

The GNU MPFR library [17] is a base-2 software implementation of the IEEE-

754-2008 standard for floating-point arithmetic [4], with correct rounding for all

implemented functions. It allows significands of arbitrary precision, and allows

unbounded choice of exponent range, up to the maximum of the signed integer

type which MPFR was configured to use. Like the Arpra library, it is free,

open source and licensed under the terms of the GNU LGPL-3.0 license. In
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addition, it has a comprehensive test suite, ensuring reliability and full IEEE-

754 conformance.

Being a software implementation of floating-point arithmetic, it has the ad-

vantage of operating identically on any system, no matter which CPU architec-

ture, operating system and compiler is present. Consequently, all computation

results are fully reproducible. However, it is important to note that MPFR is

an idealised floating-point arithmetic implementation. As discussed in the in-

troduction, hardware and software vendors can be rather inconsistent with their

conformance to the IEEE-754 standard, so results obtained with MPFR are not

always reflective of floating-point implementations in general. In this section,

the internals of MPFR are discussed, as are the advantages of using MPFR over

a regular hardware floating-point arithmetic implementation.

3.1.1 Number Representation

As mentioned, MPFR is a software implementation of floating-point arithmetic,

outlined in [17]. This means that floating-point numbers are represented and op-

erated on without utilising the processor’s FPU. In fact, the FPU is not needed

by MPFR, since floating-point numbers are represented purely by integral data

types. The representation is similar to that of standard hardware floating-point

types, except that each component is stored as a separate field in a C structure

named __mpfr_struct, aliased as mpfr_t.

typedef struct {

int _mpfr_prec;

int _mpfr_sign;

int _mpfr_exp;

unsigned *_mpfr_d;

} __mpfr_struct;

typedef __mpfr_struct mpfr_t[1]

Aliasing __mpfr_struct as mpfr_t[1] is a C hack which allows one to define

a pointer type mpfr_t to a __mpfr_struct, such that the pointed memory

is pre-allocated on the stack. The precision of each mpfr_t variable is stored

explicitly in the _mpfr_prec field. The sign and exponent are respectively

stored in _mpfr_sign and _mpfr_exp fields, while the significand is stored

inside _mpfr_d. Positive one in _mpfr_sign indicates a positive number,

while negative one indicates a negative number.

One of the many strengths of MPFR is its ability to store the significand

of each variable with its own unique precision. The significand is stored in
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the _mpfr_d field as an array of ‘limbs’. These limbs are implemented by the

GMP arbitrary precision arithmetic library (see [29] and references therein),

and are the basis for MPFR’s arbitrary precision functionality. The length of

a GMP limb array depends on the precision of the MPFR number, found in

the _mpfr_prec field. For instance, assuming 32-bit unsigned integers, an

mpfr_t variable with 53 bits of precision would need an array of at least two

limbs to store the significand in. The remaining 11 bits are disregarded. MPFR

significands store the leading bit explicitly, which is always one. Furthermore,

MPFR significands are interpreted as being in the interval [0.5, 1), unlike most

base-2 hardware floating-point significands, which are interpreted as being in

the interval [1, 2). This means that the exponent field of an MPFR number is

always one greater than that of the equivalent floating-point number in common

hardware implementations. For example, assuming a limb size of four bits,

the significand 1.001011010 will be represented in an mpfr_t with ten bits of

precision as follows:

_mpfr_d = ((1, 0, 0, 1), (0, 1, 1, 0), (1, 0,�,�))2, (3.1)

where � is an unused significand bit.

The ability to individually assign arbitrary precisions to MPFR variables

at will is useful in several ways. For instance, it allows us to test a simula-

tion run in multiple precisions, and potentially to adapt to accuracy constraints

when numerically integrating a dynamical system through stable or unstable

regions of state space. It even allows us to reduce ‘overhead’ rounding error

in range analysis methods such as AA, for example in the computation of the

approximation parameters α, γ, and δ for AA transcendental functions. An-

other strength of the MPFR library is its vast selection of IEEE-754-compliant

arithmetic functions, which are discussed next.

3.1.2 Functions

The MPFR library [17] implements all standard arithmetic operations, including

FMA, and all of the elementary transcendental functions as suggested by the

IEEE-754-2008 floating-point standard [4]. All of the functions implemented in

MPFR are rounded correctly, including the transcendental functions. That is

to say that all functions behave as if to compute the result in infinite precision,

and then round it to the correct floating-point number according to the selected

IEEE-754 rounding mode, at some arbitrarily user-defined precision. This is

another advantage of using MPFR; most current hardware implementations do

not follow the suggestion of correctly rounding their transcendental functions,

only their standard arithmetic operators.
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Almost all MPFR arithmetic functions follow a common schema, analogous

to their equivalent mathematical expressions z = f(x) and z = g(x, y). The

following dummy functions illustrate this schema.

// Compute z = f(x) (rounding mode rnd)

int mpfr_1 (mpfr_t z, mpfr_t x, int rnd);

// Compute z = g(x, y) (rounding mode rnd)

int mpfr_2 (mpfr_t z, mpfr_t x, mpfr_t y, int rnd);

The first argument z is a pointer to the MPFR variable in which the result is

placed. The following arguments x and y are pointers to the operands. The

precision of the rounding is taken to be the precision of z when the function

is called, which may differ from that of x and y. This is useful for computing

intermediate variables in the computational overhead of range analysis methods.

The final argument rnd is the desired IEEE-754 rounding mode to which

the result is rounded. Although standard hardware IEEE-754 implementations

also must enable users to switch rounding modes dynamically, in practice this

is poorly implemented; the rounding mode FPU register affects floating-point

arithmetic globally, and changing it can be computationally expensive. Being

able to dynamically set the rounding mode of each MPFR function elegantly

avoids this issue.

Finally, each MPFR arithmetic function returns an integer ‘ternary value’,

which indicates whether the result required rounding, and, if so, in which di-

rection. This is also useful for range analysis methods, since it allows us to

determine whether or not extra independent error should be added to computed

ranges. If the result is exact, then extra error need not be applied.

Fast algorithms for the exact computation of the standard arithmetic oper-

ations (+,−, ∗, /,
√

) are already well known [30], so implementing them in the

MPFR library was relatively straightforward. However, the implementation of

the transcendental functions was less so, due to a problem known as the ‘Table

Maker’s Dilemma’ [31]. We discuss the implications of this problem next.

3.1.3 The Table Maker’s Dilemma

In general, computing the correctly rounded result of elementary transcenden-

tal functions is non-trivial, due to the Table Maker’s Dilemma [31], henceforth

TMD. Unlike the standard arithmetic operators, it is difficult to predetermine

the amount of precision required to represent intermediate values, in order to

produce correctly rounded results. Due to Lefèvre et al. [31] [32], there are

efforts to answer this question for the IEEE-754 single and double-precision
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floating-point formats, by determining the worst-case values where maximal in-

ternal precision is required, helping to design algorithms which correctly handle

corner cases. However, these results do not generalise to arbitrary-precision

floating-point arithmetic. Firstly, why is the TMD so problematic?

In order to demonstrate an instance of the TMD, consider a base-2 floating-

point number with p bits of precision. We need to compute some transcendental

function of this number, in some extended precision q, such as to ensure that

the final result is correctly rounded according to IEEE-754 ‘round to nearest’.

Assume that the significand of the computed result is one of the following:

s∞ = [{1.xxxx...xxx0}10000...0000]xxxx

t∞ = [{1.xxxx...xxx0}01111...1111]xxxx,
(3.2)

where digits inside the square brackets [ ] form the extended q-bit significand,

digits inside the curly braces { } form the final p-bit significand, and x indicates

arbitrarily-valued bits. How does one know whether or not q is enough bits

to compute a correct result? In the case of s∞, the extended q-bit significand

could either be rounded up or down, due to the lower significance bits outside

the square brackets being respectively high or low. If it is rounded upwards,

then s∞ becomes:

sq = [{1.xxxx...xxx0}10000...0001]. (3.3)

Then, after the final rounding, sq becomes:

sp = {1.xxxx...xxx1}. (3.4)

Conversely, if the extended significand is rounded downwards, then s∞ becomes:

sq = [{1.xxxx...xxx0}10000...0000]. (3.5)

After the final rounding, since ties are broken to even zero, sq becomes:

sp = {1.xxxx...xxx0}. (3.6)

A similar argument applies to t∞ in equation (3.2). So which is it then? How

do we know how big q would need to be before the tie can be broken?

It turns out, however, that in order to get a correctly rounded result that is

fast in the majority of cases, we do not need to know. One can simply increase

q until the TMD no longer occurs. This is the gist of a technique discussed by

Ziv, known as ‘Ziv’s strategy’ [33], originally proposed in [34]. According to
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section 2.5 of [17], Ziv’s strategy is used whenever a direct implementation of

a function is not possible. The idea is to try the computation with q slightly

larger than p, and to evaluate whether or not the TMD occurs in the result.

If it does not, we accept the rounded result as correct. If not, we increase q

by some factor and try again. Since the TMD does not occur in the majority

of cases, the first few loops of Ziv’s strategy are usually sufficient, and the

average computation time of the function is reasonably low. The occasional

nasty corner case is acceptable. The MPFR summation routine also makes

use of Ziv’s strategy. Having a correctly rounded summation routine is helpful

for determining the rounding error bound of recursive and pairwise summation

methods, as explained in the following section.

Now that a basic understanding of arbitrary-precision floating-point and

the MPFR library has been established, we can begin to discuss the internal

workings of the Arpra library itself.

3.2 Features of the Arpra Library

The Arpra library loosely follows the design philosophy of the MPFR library

[17], and implements mixed IA/AA [23] [27], with some extra modifications. In

this section, we discuss the implementation and various features of the Arpra

library, starting with how Arpra represents ranges.

3.2.1 Range Representation

Much like how the MPFR library represents floating-point numbers with C

structures, the Arpra library represents number ranges with C structures. The

elementary structure of an Arpra computation is known as an arpra_range.

typedef struct {

__mpfi_struct true_range;

__mpfr_struct centre;

__mpfr_struct radius;

__mpfr_struct *deviations;

unsigned *symbols;

unsigned nTerms;

unsigned prec;

} arpra_range_struct;

typedef arpra_range_struct arpra_range;

The true_range field is an MPFI interval representing the actual lower and
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upper bounds of the arpra_range. MPFI is an implementation of IA, written

by Revol and Rouillier [35], which also uses MPFR as its floating-point back

end. The centre and radius fields respectively hold the x̂c and x̂r of the

affine range x̂. Next, the deviations and symbols fields are respectively

pointers to an array of deviation coefficients and a corresponding array of noise

symbol numbers, which will be discussed next. The following field nTerms is

the number of non-zero deviation coefficients in x̂. Finally, prec is the precision

of x̂.

The radius field is a redundant variable which accumulates the absolute

value of all deviation terms in the arpra_range. Although the radius must

be known when computing the true_range field, this is the only time it is

used by Arpra internally. This field could in principle be removed, and the

computed radii discarded after use, saving the space of one MPFR number per

arpra_range instance in memory. As the time of writing, it is present in the

arpra_range structure for convenience.

In an AA implementation that accounts for rounding errors, a new deviation

term is typically added after each operation, meaning the number of active

noise symbols grows very quickly. Furthermore, noise symbols often only affect

a small subset of affine ranges in a computation. In an effort to reduce the

memory footprint of AA, Stolfi and de Figueiredo [23] suggested that rather

than allocating enough memory to store deviation coefficients for all active noise

symbols in a computation, a sparse representation should be used. The idea is

to store only the non-zero deviation coefficients inside the deviations array.

For each deviation coefficient, the corresponding noise symbol number is stored

at the same index of the symbols array, as in the following example.

deviations = (2.45, 1.03, 12.56, 3.12)

symbols = (1, 3, 4, 6)
(3.7)

The deviation terms stored in these arrays are sorted in order of increasing

noise symbol number, to reduce the complexity of indexing into them. In the

above example, note how at least six noise symbol numbers must exist globally:

(1, 2, 3, 4, 5, 6). However only the four symbols (1, 3, 4, 6) are actually stored in

the deviation term arrays, since the deviation coefficients of symbol numbers

(2, 5) are zero. Depending on the number of active noise symbols at a given

point in the computation, this could be far less computationally intensive than

the equivalent dense representation.

Each arpra_range must be initialised before use. This allocates the inter-

nal memory of the range, and initialises it to the Arpra equivalent of IEEE-754

not-a-number. When done with a range, the memory should be freed to prevent
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memory leaks. The following functions achieve this.

// Initialise z with default precision

void arpra_init(arpra_range *z);

// Initialise z with a given precision

void arpra_init2(arpra_range *z, unsigned prec);

// Free the memory used by z

void arpra_clear(arpra_range *z);

With the range representation discussed, we now proceed to discuss the general

structure of the mathematical functions implemented in Arpra.

3.2.2 Function Structure

As discussed earlier, univariate and bivariate AA functions are often extensions

of the generic functions f̂1 in (1.24) and f̂2 in (1.25), and thus have a similar

algorithm structure. A small exception is in multiplication, where the centre

value calculation is a product, rather than a linear sum. The Arpra library

implements two auxiliary functions: arpra_affine_1, corresponding to f̂1,

and arpra_affine_2, corresponding to f̂2.

// Compute alpha x + gamma +|- delta

void arpra_affine_1 (arpra_range *z,

arpra_range *x, mpfr_t alpha,

mpfr_t gamma, mpfr_t delta);

// Compute alpha x + beta y + gamma +|- delta

void arpra_affine_2 (arpra_range *z,

arpra_range *x, arpra_range *y,

mpfr_t alpha, mpfr_t beta,

mpfr_t gamma, mpfr_t delta);

As seen above, Arpra mathematical functions use a function schema similar to

that used by MPFR, with the result pointer followed by the operand pointers.

Algorithm 1 illustrates the structure of arpra_affine_1, whilst algorithm 2

illustrates the structure of arpra_affine_2. In these listings, the centre

and radius fields of an arpra_range structure are abbreviated c and r, the

symbols and deviations fields are abbreviated s and d, while the nTerms

and true_range fields are abbreviated n and t, respectively.

As specified in the Affine Arithmetic section, using these generic affine func-

tions, Arpra implements the plus, minus and negation operations, as well as the
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Algorithm 1 Auxiliary univariate function

1: procedure affine 1(ẑ, x̂, α, γ, δ)
2: if x̂ = NaN then . Check for NaN
3: ẑ ← NaN
4: return
5: else if x̂ =∞ then . Check for ∞
6: ẑ ←∞
7: return
8: end if
9: ẑ.c← α · x̂.c+ γ . Compute ẑc

10: if ẑ.c is inexact then
11: δ ← δ + 0.5 ULP(ẑ.c)
12: end if
13: ẑ.r ← 0
14: ẑ.n← 0
15: for xi← 1 to x̂.n do . Compute each ẑ[i]
16: ẑ.d[ẑ.n+ 1]← α · x̂.d[xi]
17: ẑ.s[ẑ.n+ 1]← x̂.s[xi]
18: if ẑ.d[ẑ.n+ 1] is inexact then
19: δ ← δ + 0.5 ULP(ẑ.d[ẑ.n+ 1])
20: end if
21: ẑ.r ← ẑ.r + |ẑ.d[ẑ.n+ 1]|
22: ẑ.n← ẑ.n+ 1
23: end for
24: ẑ.d[ẑ.n+ 1]← δ . Append new ẑ[i]
25: ẑ.s[ẑ.n+ 1]← a new noise symbol
26: ẑ.r ← ẑ.r + δ
27: ẑ.n← ẑ.n+ 1
28: end procedure
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Algorithm 2 Auxiliary bivariate function

1: procedure affine 2(ẑ, x̂, ŷ, α, β, γ, δ)
2: if (x̂ = NaN) ∨ (ŷ = NaN) then . Check for NaN
3: ẑ ← NaN
4: return
5: else if (x̂ = ∞) ∨ (ŷ =∞) then . Check for ∞
6: ẑ ←∞
7: return
8: end if
9: ẑ.c← α · x̂.c+ β · ŷ.c+ γ . Compute ẑc

10: if ẑ.c is inexact then
11: δ ← δ + 0.5 ULP(ẑ.c)
12: end if
13: ẑ.r ← 0
14: ẑ.n← 0
15: xi← 1
16: yi← 1
17: while (xi ≤ x̂.n) ∨ (yi ≤ ŷ.n) do . Compute each ẑ[i]
18: if only x̂ has next symbol then
19: ẑ.d[ẑ.n+ 1]← α · x̂.d[xi]
20: ẑ.s[ẑ.n+ 1]← x̂.s[xi]
21: else if only ŷ has next symbol then
22: ẑ.d[ẑ.n+ 1]← β · ŷ.d[yi]
23: ẑ.s[ẑ.n+ 1]← ŷ.s[yi]
24: else
25: ẑ.d[ẑ.n+ 1]← α · x̂.d[xi] + β · ŷ.d[yi]
26: ẑ.s[ẑ.n+ 1]← x̂.s[xi] = ŷ.s[yi]
27: end if
28: if ẑ.d[ẑ.n+ 1] is inexact then
29: δ ← δ + 0.5 ULP(ẑ.d[ẑ.n+ 1])
30: end if
31: ẑ.r ← ẑ.r + |ẑ.d[ẑ.n+ 1]|
32: ẑ.n← ẑ.n+ 1
33: end while
34: ẑ.d[ẑ.n+ 1]← δ . Append new ẑ[i]
35: ẑ.s[ẑ.n+ 1]← a new noise symbol
36: ẑ.r ← ẑ.r + δ
37: ẑ.n← ẑ.n+ 1
38: end procedure
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Chebyshev versions of the square root, natural exponential, natural logarithm

and inverse functions. These algorithms are all implemented as in [24]. Arpra

also implements Min-Range versions of the natural exponential and inverse func-

tions, with Min-Range square root and natural logarithm left for future work.

Multiplication, thus division, is handled specially by an algorithm nearly identi-

cal to algorithm 2, in which the centre value and deviation terms are computed

as in equation (3.14). With the univariate and bivariate affine auxiliary func-

tions defined, the general structure of an Arpra univariate and bivariate function

is respectively listed in algorithm 3 and algorithm 4. The compute_range and

trim_range functions will be discussed later in this section.

Algorithm 3 Univariate function structure

1: procedure univariate function(ẑ, x̂)
2: α, γ, δ ← choose affine parameters for function
3: affine 1(ẑ, x̂, α, γ, δ)
4: compute range(ẑ)
5: trim range(ẑ)
6: end procedure

Algorithm 4 Bivariate function structure

1: procedure bivariate function(ẑ, x̂, ŷ)
2: α, β, γ, δ ← choose affine parameters for function
3: affine 2(ẑ, x̂, ŷ, α, β, γ, δ)
4: compute range(ẑ)
5: trim range(ẑ)
6: end procedure

All Arpra functions check to see if the operand ranges x̂ and ŷ are real and

finite. That is to say that the operands are not the equivalent of IEEE-754

not-a-number (henceforth NaN), and that their range is not infinite. In Arpra,

a range is NaN if either or both of the true_range bounds are NaN, whereas

a range is infinity if either both of the true_range bounds are infinity, and

neither of them are NaN. If either of the operands are NaN or infinity, then

the function immediately sets the result ẑ to respectively NaN or infinity, and

then returns, allowing many unnecessary instructions to be skipped in such

cases. Next, the centre value ẑc and the deviation terms ẑ[i]ε[i] of the result ẑ

are computed, along with the new numerical error term. The absolute value

of the deviation coefficients are accumulated in the radius, rounding upwards.

Finally, the true_range field is computed and trimmed after the auxiliary

affine function calls in algorithms 3 and 4. Arpra implements a few tricks to

reduce the overhead error incurred due to the AA method. These tricks will be

discussed in the following sections.
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3.2.3 Rounding Errors

When computing ẑc and all ẑ[i], any error which occurs in these calculations must

be accumulated and appended to ẑ as a new deviation term. Therefore, we need

these to all be as accurate as possible, such as to keep the overhead rounding

error from AA minimal. The error itself is computed differently from how Stolfi

and de Figueiredo compute it in [23]. Their method involves computing the

terms three times; once with ‘round to nearest’ mode, again with ‘round toward

+∞’, and once more with round negative. The result computed in ‘round

to nearest’ mode is used as the term, whilst the maximum of the differences

between this and the two directed rounding results is taken to be the rounding

error. Consequently, the rounding error it incurs may be larger than 0.5 ULP.

Using the MPFR library, we need only compute terms once, and we can reduce

the incurred rounding error to a maximum of 0.5 ULP.

The Arpra library does this using extended precision intermediate variables,

unless it is possible to compute terms with a single correctly rounded MPFR

call. For example, if computing

ẑc = αx̂c + γ (3.8)

from f̂1, Arpra computes the whole expression with a single call of MPFR’s

correctly rounded FMA function mpfr_fma. However, if computing

ẑc = αx̂c + βŷc + γ (3.9)

from f̂2, high-precision intermediate variables for the products αx̂c and βŷc must

be used, such that the precision is high enough that the results do not need any

rounding. The two products are then summed together with the remaining

γ term. In order to compute an exact unrounded floating-point product, the

precision of the result must be at least the sum of the operands’ precisions.

For example, if the precision of x is 25, and the precision of y is 30, then

the result z = xy can be represented without rounding if its precision is at

least 55. With these exact unrounded products, one then calls the exactly

rounded mpfr_sum function, which guarantees that the whole expression is

evaluated with just one rounding at the end, and thus has a maximum error

of 0.5 ULP. We suggested adding a dot product function to the MPFR library

at the iRRAM/MPFR/MPC Workshop (2018), in order to simplify deviation

term and centre value calculations in Arpra functions of two or more operands.

With our thanks to the developers, the mpfr_dot function became available in

recent versions of MPFR, which combines the above computation into a single

function call.
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Arpra uses an internal auxiliary function to compute 0.5 ULP of an MPFR

number. Since significands in MPFR are normalised to within [0.5, 1), the ex-

ponent in an MPFR ULP calculation must be one less than the exponent in a

standard IEEE-754 implementation, whose significands are normalised to within

[1, 2). As such, 0.5 ULP of an MPFR number x̂ is computed as follows, where

x̂prec is the precision and x̂exp is the exponent.

ULP(x̂)

2
= 2x̂exp−x̂prec−1 (3.10)

This function is applied to the result of the term computation, and the resulting

0.5 ULP error is accumulated into a new deviation term, rounding upwards, but

only if rounding occurs. As discussed in the MPFR section, all MPFR functions

return a ternary value indicating whether or not the result is exact, and, if

not, the direction of rounding. We can use this value to conditionally include

rounding error, for each term, only if the ternary value indicates that rounding

has occurred, and exclude it if not, saving yet more overhead rounding error in

Arpra. This corresponds to lines 10-12 and 18-20 of algorithm 1, and also lines

10-12 and 28-30 of algorithm 2.

3.2.4 Arbitrary-Precision

As mentioned in the MPFR section, one of the strengths of MPFR is through

the user’s ability to dynamically set the precision of mpfr_t variables. Sim-

ilar to MPFR, Arpra allows users to dynamically change the precision of the

true_range field of arpra_range variables, which is useful for determin-

ing the effect of altering floating-point precision in a computation. In the

following discussion, the ‘working precision’, or simply the ‘precision’, of an

arpra_range shall refer to the precision of that range’s true_range field.

The working precision of an arpra_range is set during initialisation. If a

range is initialised using the arpra_init2 function, then its working precision

is set to the value of the precision argument. If the range is initialised with the

arpra_init function, then its working precision is determined by a global

‘default precision’ variable. The value of this default precision can be retrieved

and dynamically set by the user with the following functions.

// Retrieve the default precision

unsigned arpra_get_default_precision();

// Set the default precision

void arpra_set_default_precision(unsigned prec);
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One can also retrieve and dynamically set the working precision of a range that

has already been initialised by using the following functions.

// Retrieve the precision of a range

unsigned arpra_get_precision(arpra_range *x);

// Set the precision of a range

void arpra_set_precision(arpra_range *z, unsigned prec);

Setting the precision of a range using the above setter function is faster than

clearing and reinitialising it. Note, however, that setting it in this manner causes

the range to be reset to NaN. If one needs to change the precision of a range

without invalidating it, one can simply initialise a new range with the desired

precision, and then set the new range with the old one using the arpra_set

function.

Arpra also exploits arbitrary-precision internally when computing Cheby-

shev and Min-Range approximations for the transcendental functions. The

approximation parameters α, γ, δ, and all intermediate quantities, are all com-

puted in a global ‘internal precision’, separate from the precision of the operand

range. We can do this safely because only the true_range field is required

to be rounded to the specified working precision; all computations up until the

final rounding can be done in whichever precision one chooses, so it makes sense

to choose a higher one. As with the default precision, and the precision of in-

dividual ranges, the user is able to retrieve and dynamically set this internal

precision through Arpra function calls.

// Retrieve the internal precision

unsigned arpra_get_internal_precision();

// Set the internal precision

void arpra_set_internal_precision(unsigned prec);

Arpra also makes heavy use of arbitrary-precision floating-point internally.

In addition to the exact multiplication trick mentioned previously, Arpra ex-

ploits arbitrary-precision when computing the affine terms of ranges. The centre

value and deviation coefficients are all computed and stored in internal preci-

sion, rather than the working precision that the final true_range is computed

in. The global internal precision is not necessarily the same as the precision of a

given arpra_range. In fact, in practice, it should be set much higher, such as

to minimise the overhead error of the AA method. Because of this, extra care

is required when computing the true_range at the end of affine functions,

to ensure that the resulting range accurately bounds the computation in the
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specified precision.

To compute the true_range, we first compute the lower and upper bounds

zinternal = [(ẑc − ẑr), (ẑc + ẑr)] of the range in internal precision, rounding out-

wards. We then round these high precision bounds into the lower precision

true_range interval, again rounding outwards. This gives true_range in

our final working precision. To keep the deviation terms consistent, the er-

ror from rounding the internal precision zinternal into the working precision of

true_range must be accounted for. To do this, the maximum of the differences

between both lower bounds and between both upper bounds is accumulated with

the rounding error in the new deviation term. For instance, if zinternal = [0.5, 1.5]

and true_range = [0.45, 1.6], then 0.1 rounding error would be added to the

new deviation term. The procedure is listed in algorithm 5.

Algorithm 5 Compute the bounds of a range

1: procedure compute range(ẑ)
2: T ← [(ẑc − ẑr), (ẑc + ẑr)] . Internal precision
3: ẑ.t← T . Working precision
4: δ ← max((T.lo− ẑ.t.lo), (ẑ.t.hi− T.hi))
5: ẑ.d[ẑ.n]← ẑ.d[ẑ.n] + δ
6: ẑ.r ← ẑ.r + δ
7: end procedure

We have discussed how arbitrary-precision can help us to minimise the over-

head rounding error caused by the AA method. However, since AA ranges

are essentially first-order polynomials, often with many deviation terms each,

a small amount of overhead rounding error is inevitable when computing the

true_range. Furthermore, approximation error from multiplication and the

transcendental functions can result in ranges that are wider than those computed

with plain IA, regardless of rounding error. To reduce the impact of these addi-

tional error sources, Arpra implements a modified version of the mixed IA/AA

method, which is discussed in the next section.

3.2.5 Mixed Trimmed AA/IA

After the arpra_affine functions, the true_range of the result ẑ is com-

puted. For vanilla AA, the true_range is simply the interval [(ẑc − ẑr), (ẑc +

ẑr)]. As a consequence, the rounding error from these bound calculations, in-

cluding that from the radius sum ẑr, and even the error incurred from range

linearisation, is included as bloat in the final true_range. In order to trim

some of this excess error, a method known as ‘mixed IA/AA’ can be used. This

method is described by Stolfi, de Figueiredo [23], and Rump [27], and has been

implemented in INTLAB [28].
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The idea of mixed IA/AA is to simultaneously compute AA and IA versions

of each range, and use the range information from either method to complement

that of the other. Specifically, when computing some AA function ẑ = f̂(x̂),

the IA version of that function z̄ = f̄(x̄) is also computed, where x̄ is the

true_range field of x̂. Arpra uses the MPFI library [35] for IA functions. After

that, the resulting true_range field of ẑ is taken to be the intersection of the

plain AA version of the true_range, described above, and the IA computed

range z̄.

true_range = [(ẑc − ẑr), (ẑc + ẑr)] ∩ z̄ (3.11)

Doing this consistently ensures that the true_range field of all resulting

ranges is never worse than when computing it with either AA or IA on its own.

In other words, if variable correlations causes an IA range to expand, the AA

range will compensate. Conversely, if approximation error causes an AA range

to expand, the IA range compensates. It should be emphasised that only the

true_range is modified; the centre and deviation terms remain the same.

Consequently, this method is only beneficial for computations involving the AA

transcendental functions and AA square root, since these are the only functions

that considers the true_range field of their input range.

However, one can do better than this. The Arpra library implements modi-

fied version of mixed IA/AA, which I will refer to as ‘mixed trimmed AA/IA’.

In this version, the true_range field is computed identically as above. How-

ever, if the AA result fully contains the z̄ range computed in IA, the new error

deviation term ẑ[k]ε[k] of the AA operation can also be trimmed a little, so long

as we maintain the condition that z̄ ⊆ [(ẑc − ẑr), (ẑc + ẑr)], and that ẑ[k] can

only be reduced to a minimum of zero. It is safe to do this because ẑ[k]ε[k] is

a brand new and independent deviation term, whose noise symbol number k

is not used elsewhere in the computation, so no correlation information is lost.

The full Arpra range trimming procedure is listed in algorithm 6.

Algorithm 6 Trim a range with mixed trimmed AA/IA

1: procedure trim range(ẑ)
2: ia← compute IA range
3: if ia ⊆ ẑ.t then . Trim error ẑ.d[ẑ.n]
4: δ ← min((ia.lo− ẑ.t.lo), (ẑ.t.hi− ia.hi))
5: ẑ.d[ẑ.n]← ẑ.d[ẑ.n]− δ
6: if ẑ.d[ẑ.n] < 0 then
7: ẑ.d[ẑ.n]← 0
8: end if
9: end if

10: ẑ.t← ẑ.t ∩ ia range . Intersect AA/IA ranges
11: end procedure
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3.2.6 Multiplication Linearisation

Another small optimisation can be found in the Arpra multiplication routine.

As mentioned earlier, multiplication of two affine ranges produces quadratic

deviation terms, which need to be linearised. The trivial linearisation error

estimate given in equation (1.28) is up to four times larger than the optimal

bound, according to [23], and is optimal only when x̂ and ŷ share no deviation

terms. In order to tighten the range of affine multiplication, a new error estimate

was discussed in [27], based on the ideas presented in [36].

Rather than simply multiplying the radii of the operands x̂ and ŷ, as in

equation (1.28), the error estimate ẑ[k] is computed as follows.

ẑ[k] = max

(
n∑
i=1

∣∣∣ẑ−[i]∣∣∣ , n∑
i=1

∣∣∣ẑ+[i]∣∣∣
)

+
∑
i<j

∣∣x̂[i]ŷ[j] + x̂[j]ŷ[i]
∣∣ (3.12)

where ẑ+ is the vector of all deviation coefficients ẑ[i] = x̂[i]ŷ[i], with negative

components set to zero, and ẑ− is the vector of all ẑ[i], with positive components

set to zero.

∀i ∈ {1, ..., n},

ẑ+[i] =

x̂[i]ŷ[i] if x̂[i]ŷ[i] > 0

0 otherwise

ẑ−[i] =

x̂[i]ŷ[i] if x̂[i]ŷ[i] < 0

0 otherwise

(3.13)

This gives our final equation for affine multiplication in Arpra.

x̂ŷ = (x̂cŷc) +

n∑
i=1

(x̂cŷ[i] + ŷcx̂[i])ε[i]

+

max

(
n∑
i=1

∣∣∣ẑ−[i]∣∣∣ , n∑
i=1

∣∣∣ẑ+[i]∣∣∣
)

+
∑
i<j

∣∣x̂[i]ŷ[j] + x̂[j]ŷ[i]
∣∣ ε[k]

(3.14)

In random experiments by Rump, in [27], this error estimate is found to

be around 2.06 times larger than the optimal bound. However, since the error

term is only dominant when the operand centres are small relative to the size

of their radii, the average error reduction is relatively low. Furthermore, since

only the error term ẑ[k]ε[k] is reduced by this method, which is trimmed later

anyway due to the mixed trimmed AA/IA method, its usefulness appears to be

questionable at first glance. It is nonetheless included and tested in Arpra.
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3.2.7 Term Reduction Functions

In long chained computations, it is often the case that many deviation terms are

accumulated in AA ranges. Since a new deviation term is added after practically

all mathematical functions, and are only removed in the unlikely event that the

deviation coefficient becomes exactly zero, an AA computation can often grind

to a halt after a short while, due to the computational overhead. No other AA

implementation handles this eventuality, to the author’s knowledge, despite the

existence of a solution discussed by Stolfi and de Figueiredo in [23].

In order to contend with this problem, one needs to implement a so-called

‘term condensing’ function, which sums the absolute value of selected deviation

coefficients into a new coefficient, corresponding to a new noise symbol ε[k], and

removes the old condensed terms. For example, if one has an AA range x̂, with

deviation terms (1.5ε[1], 8ε[2], 2ε[3],−4ε[4], 1ε[5]), one can reduce the ε[1], ε[3] and

ε[4] terms of x̂ in a new range ẑ, with just three deviation terms.

ẑ = x̂c + 8ε[2] + 1ε[5] + (|1.5|+ |2|+ | − 4|)ε[k] (3.15)

Although some of the correlation information in x̂ is potentially lost in ẑ, this

is a safe operation, since ε[k] is a new and independent noise symbol, and the

actual range ẑc ± ẑr of ẑ is not smaller than x̂.

Arpra provides three variants of term condense function. The first variant

condenses the last n deviation terms of an arpra_range. The second vari-

ant reduces all terms whose deviation coefficient magnitude is smaller than a

given threshold. The third variant reduces all terms whose deviation coefficient

magnitude is smaller than some given fraction of the range’s radius.

// Reduce last n terms

void arpra_reduce_last_n(arpra_range *z, unsigned n);

// Reduce terms smaller than absolute threshold

void arpra_reduce_small_abs(arpra_range *z, mpfr_t thr);

// Reduce terms smaller than relative threshold

void arpra_reduce_small_rel(arpra_range *z, mpfr_t thr);

The arpra_reduce_last_n function, listed in algorithm 7, can be con-

sidered a ‘lossless’ condensing function, if used correctly. That is to say that,

if the noise symbols in the last n deviation terms are not present in any other

arpra_range, this function is guaranteed to preserve all correlation informa-

tion when condensing terms. There are a number of situations in which the last

n terms of a range are independent. For instance, if only a single arpra_range
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is returned by any given function, then all noise symbols introduced by the in-

termediate computations in that function are guaranteed to be only present

in the returned range. When computing the condensed deviation coefficient,

Arpra uses MPFR’s correctly rounded sum function, minimising the rounding

error incurred by the operation.

Alternatively, one can use either arpra_reduce_small_abs, listed in al-

gorithm 8, or arpra_reduce_small_rel, listed in algorithm 9, if some loss

of correlation information is acceptable. These condensing functions can be con-

sidered ‘lossy’, since there is no direct control over which deviations terms are

condensed, and some of these terms may consequently be correlated ones. How-

ever, this matters less when the deviation coefficients are small. If the majority

of deviation coefficients are close to zero, with just a few coefficients contribut-

ing to the majority of the radius, then the loss of correlation information will

be minimal when these low magnitude terms are condensed.

Algorithm 7 Condense the last n terms

1: procedure reduce last n(ẑ, n)
2: if (ẑ.n = 0) ∨ (n = 0) then . Sanity check
3: return
4: else if n > ẑ.n then
5: n← ẑ.n
6: end if
7: sum← 0
8: i0 ← ẑ.n− n+ 1
9: for i← i0 to ẑ.n do . Condense last n terms

10: sum← sum+ |ẑ.d[i]| . Rounding towards +∞
11: end for
12: ẑ.d[i0]← sum . Append condensed term
13: ẑ.s[i0]← a new noise symbol
14: ẑ.n← i0
15: end procedure

In this section, we have discussed the key features of the Arpra library,

including its intrinsics, the mixed trimmed AA/IA model it implements, and

how arbitrary precision is utilised by it. The following section documents the

performance of Arpra, with regards to range correctness and tightness.

3.3 Accuracy of the Arpra Library

In order to test the accuracy of ranges computed by Arpra, compared to those

computed with IA, functions are tested on n = 100000 randomly generated

operand test cases. Tests are performed both for plain AA, and for mixed

IA/AA. The precision of all MPFI ranges is 24, corresponding to IEEE-754
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Algorithm 8 Condense terms smaller than absolute threshold

1: procedure reduce small abs(ẑ, thr)
2: if (ẑ.n = 0) ∨ (thr ≤ 0) then . Sanity check
3: return
4: end if
5: n← 0
6: for i← 1 to ẑ.n do . Move large terms to front
7: if ẑ.d[i] ≥ thr then
8: n← n+ 1
9: if i > n then

10: swap ẑ.d[n] and ẑ.d[i]
11: swap ẑ.s[n] and ẑ.s[i]
12: end if
13: end if
14: end for
15: reduce last n(ẑ, (ẑ.n− n)) . Condense small terms
16: end procedure

Algorithm 9 Condense terms smaller than relative threshold

1: procedure reduce small rel(ẑ, thr)
2: if (ẑ.n = 0) ∨ (thr ≤ 0) then . Sanity check
3: return
4: end if
5: thr ← thr ∗ ẑ.r . Condense small terms
6: reduce small abs(ẑ, thr)
7: end procedure
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single-precision numbers. Arpra’s working precision is set to 24, its internal

precision is set to 256, and all transcendental functions use the Chebyshev ap-

proximation method. Each operand range has a random centre value, and from

five to nine small deviation terms drawn from [−1, 1]. The corresponding IA

function from the MPFI library [35] is also computed on the true_range fields

of the operands. In all tests, the diameter of the Arpra result is computed, rel-

ative to that of the IA result. For testing purposes, a NaN result in IA is

considered equal to a NaN result in Arpra.

Univariate functions are tested once on each test case. Bivariate functions are

tested three times on each test case, with different correlation scenarios, in order

to determine how the strength of operand correlation affects the resulting range.

In the uncorrelated operands scenario, the noise symbol sets of the operands are

mutually exclusive. In the partially correlated operands scenario, the operands

have three noise symbols in common. In the correlated operands scenario, the

operands have p noise symbols in common, where p is the size of the smallest

noise symbol set of both operands. Ranges computed by univariate functions,

and bivariate functions of uncorrelated operands, are checked to ensure that

they are equal to, or fully contain, the computed IA ranges. This is the correct

behaviour, since AA should only be able to compute ranges tighter than IA does

when function operands are at least partially correlated. The results for plain

AA tests will be presented first, followed by the results for mixed IA/AA.

3.3.1 Plain AA Results

The relative diameters of results computed by plain AA univariate functions

are plotted in figure 3.1. Note that the ranges computed by these functions

are never of smaller diameter than those computed with IA. This is because

deviation term cancellation does not occur in univariate AA functions. Instead,

as expected, the results of nonlinear AA functions are often slightly larger than

the IA results, since the result includes error from its linear approximation.

The relative diameters of results from plain AA bivariate functions are plot-

ted in figure 3.2. These results clearly illustrate how deviation term cancellation

improves the resulting range, when the operands of a function are correlated.

Note how the distribution of relative diameters progressively spreads towards

zero as operand correlation increases. Results from the linear addition and sub-

traction functions can be represented by an AA range without approximation,

and take advantage of deviation term cancellation, leading to huge improve-

ments over IA results. Nonlinear function results incur approximation error,

and are often seen to be wider than IA results in the plot. However, devia-

tion term cancellation also can produce better results than IA, providing the
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Figure 3.1: Histogram plots of the relative result diameters of univariate AA
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logarithm and inverse. Note how nonlinear function results computed with plain
AA can often be larger than those computed with IA
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operands are correlated. Finally, as expected, the improved linearisation error

estimate for multiplication, given in equation (3.12), performs marginally better

than the estimate given in equation (1.28). This modest improvement is useful

enough to be included in the Arpra library.

3.3.2 Mixed IA/AA Results

The relative diameters of results computed by univariate mixed IA/AA functions

are plotted in figure 3.3. Note that these functions all compute ranges with a

relative diameter of one, and are thus equal in diameter to those computed in

IA. This is expected, since there can be no deviation term cancellation, and the

IA/AA range intersection step in algorithm 6 prevents the AA range from being

larger than the IA range.

The relative diameters of bivariate mixed IA/AA function results are plotted

in figure 3.4, for all three correlation scenarios. As expected, the relative diam-

eters of results computed from uncorrelated operands are all one, for the same

reason as in the previous paragraph. Also, as expected, the relative diameters

of results are successively lower, on average, in each correlation scenario, since

more deviation terms are able to cancel out.

What is perhaps unexpected in figure 3.4 is that multiplication using the al-

ternative linearisation error estimate from equation (3.12) is still better, on av-

erage, than multiplication using the trivial error estimate from equation (1.28),

for correlated operands. This is in spite of the error term trimming procedure,

given in algorithm 6, which one might expect to trim the oversized ranges of both

products back down to the same width. This occurs because ranges are only

trimmed when the AA range fully contains the IA range. Since deviation terms

can cancel out, due to correlation, the resulting range can still be smaller than

the IA range, even with the added linearisation error [23]. Consequently, range

trimming does not occur, and a small difference in diameter remains between

the two products.

In this chapter, we have presented this work’s main software contribution,

the Arpra library, and discussed its internal operation. We described Arpra’s

novel methods for computing correct rounding error, and exploiting arbitrary

precision floating-point arithmetic for its internal computations using the MPFR

library. We were introduced to Arpra’s novel mixed trimmed IA/AA method,

and deviation term condensing functions. Finally, we saw how ranges computed

by the three Arpra methods compare to those computed by IA when computing

common univariate and bivariate mathematical functions. The next step is to

test how it performs in real problems. We now proceed to testing Arpra on a

popular chaotic dynamical system known as the Hénon map in the next chapter.

59



100

102

104

z
=
x

+
y

100

102

104

z
=
x

−
y

100

102

104

(i)
 z

=
xy

100

102

104

(ii
) z

=
xy

0 1 2
Uncorrelated

100

102

104

z
=
x/
y

0 1 2
Part Correlated

0 1 2
Correlated

Bivariate Functions (AA)

Figure 3.2: Histogram plots of the relative result diameters of bivariate AA func-
tions. Shown from the top are results for addition, subtraction, multiplication
(i) with the trivial linearisation error estimate in equation (1.28), multiplication
(ii) with improved linearisation error estimate in equation (3.12), and division.
Shown from the left are computations with uncorrelated operands, partially cor-
related operands, and fully correlated operands. Note how nonlinear function
results computed with plain AA can often be larger than those computed with
IA, but not when operands are correlated or when the AA result representation
has zero internal error. Also note how the relative AA result diameter is lower,
on average, when operands are more correlated.

60



100

102

104
z

=
−
x

100

102

104

z
=

√ x

100

102

104

z
=
ex

100

102

104

z
=

ln
(x

)

0.0 0.5 1.0 1.5 2.0
100

102

104

z
=

1/
x

Univariate Functions (Mixed IA/AA)

Figure 3.3: Histogram plots of the relative result diameters of univariate mixed
IA/AA functions. Shown from the top are results for negation, square root,
exponential, logarithm and inverse. Note that the relative diameters for all n
tests are equal to one, indicating that the mixed IA/AA and IA results computed
by these functions are of identical diameter.

61



100

102

104

z
=
x
+
y

100

102

104

z
=
x
−
y

100

102

104

(i)
 z

=
xy

100

102

104

(ii
) z

=
xy

0 1 2
Uncorrelated

100

102

104

z
=
x/
y

0 1 2
Part Correlated

0 1 2
Correlated

Bivariate Functions (Mixed IA/AA)

Figure 3.4: Histogram plots of the relative result diameters of bivariate mixed
IA/AA functions. Shown from the top are results for addition, subtraction,
multiplication (i) with the trivial linearisation error estimate in equation (1.28),
multiplication (ii) with improved linearisation error estimate in equation (3.12),
and division. Shown from the left are computations with uncorrelated operands,
partially correlated operands, and fully correlated operands. Note that, unlike
the plain AA results, the mixed IA/AA results are never wider than the results
computed with IA.

62



Chapter 4

The Hénon Map

In this chapter, we test the performance of the Arpra library [26] on the sim-

ulation of a dynamical system with known stability properties and different

dynamical regimes. The Hénon map [37] is a two-dimensional discrete-time dy-

namical system, and is a reduced version of the three dimensional Lorenz system

[38]. It has trajectories ranging from stable limit cycles to chaotic attractors,

depending on the choice of parameters. In addition to evaluating Arpra, this

allows us to observe how system stability affects the growth of Arpra ranges.

The model was used by Rump and Kashiwagi in [27] to test the INTLAB

range analysis package for MATLAB, making it a good first benchmark to see

how the Arpra library compares. Unlike Arpra, the working precision of INT-

LAB is fixed to IEEE-754 double-precision, and computations do not benefit

from extended precision in internal calculations. Although INTLAB implements

the mixed IA/AA method discussed in chapter 3, it does not implement the error

term trimming technique used in the mixed trimmed IA/AA method. Further-

more, INTLAB does not implement any deviation term condensing functions,

so simulations can eventually become bogged down due to excessive memory

use.

The Hénon map is defined by the following equations, where xi and yi are the

state variables at the ith iteration, while α and β are the constant parameters.

xi+1 = 1− αx2i + yi

yi+1 = βxi
(4.1)

In the ‘classical’ Hénon map, α = 1.4 and β = 0.3, resulting in a chaotic

system. However, the system is also known to have a stable periodic orbit

below around α = 1.06, and is increasingly stable as α is reduced further. Note

that this model does not require transcendental functions to implement. As
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a consequence, besides a small amount of error introduced in multiplications,

very little approximation error is incurred by the AA method itself, with the

majority being the rounding error from floating-point arithmetic.

We begin by testing how well the Arpra library competes with the INTLAB

package, with Arpra using either the plain AA, mixed IA/AA or mixed trimmed

IA/AA methods. We then test to see how the radius of Arpra ranges change

as the internal precision increases. Finally, we see how Arpra performs as the

system becomes more chaotic. For the following experiments, β is fixed to 0.3.

Both x and y are initialised as ranges centred on zero with small initial radii of

0.00001. All simulations are run for n = 500 iterations, using version 0.1 of the

Arpra library [26], and version 11 of INTLAB [28].

4.1 Method Evaluation

We first test Arpra’s plain AA functionality against the INTLAB implemen-

tation of IA. That is to say that Arpra’s mixed IA/AA and range trimming

functionality is disabled for this experiment, to demonstrate only the improve-

ments of standard AA over IA. The α parameter of the Hénon map is set to

1.057, meaning the model is close to chaotic, but still locally stable. The results

of the AA and IA runs are plotted in figure 4.1.

From the plots we see that the ranges computed in IA almost immediately

explode to infinite width between iterations i = 30 to 40, despite the global

stability of the underlying model. In agreement with [27], we also see that

ranges computed with AA initially grow for a short while, but then shrink back

below their initial width as the trajectory converges to a periodic orbit.

Since Arpra is capable of more precise methods than just plain AA, it is

expected that ranges computed with these advanced methods should grow com-

paratively slower in unstable phase space, and also shrink faster in stable phase

space. Arpra implements the AA, mixed IA/AA and mixed trimmed IA/AA

range analysis methods. We will now evaluate these implemented methods

against the INTLAB implementation of the mixed IA/AA method, in order to

compare the tightness of ranges computed by each. For fairness, the working

precision and internal precision of Arpra are both set to 53, corresponding to

the IEEE-754 double-precision numbers used by INTLAB. As before, α = 1.057.

The radius differences between the INTLAB mixed IA/AA ranges and the three

Arpra methods’ ranges are plotted in figure 4.2.

As the left column of figure 4.2 shows, Arpra with the plain AA method per-

forms worse than INTLAB with the mixed IA/AA method, but only marginally.

This is because the mixed IA/AA method is only beneficial when transcendental

functions are used. Since only the Chebyshev and Min-Range approximations
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Figure 4.1: Range analysis of the Hénon map, computed by Arpra using plain
AA, and by INTLAB using IA. The left column shows the error bounds of the
variables x and y for the first 50 iterations. The right column shows the radii of
the ranges, in log scale, for all 500 iterations. α = 1.057 and β = 0.3. Note how
the IA ranges begin to explode at around i = 30, while the AA ranges shrink
after a short growth period.

65



0

2

4
x 

(u
ni

tle
ss

)

1e−6

Plain
AA

−1.0

−0.5

0.0
1e−11

Mixed
IA/AA

−4

−2

0
1e−5

Mixed trimmed
IA/AA

0 250 500
iteration (unitless)

0.0

0.5

1.0

1.5

y 
(u

ni
tle

ss
)

1e−6

0 250 500
iteration (unitless)

−3

−2

−1

0
1e−12

0 250 500
iteration (unitless)

−1.0

−0.5

0.0
1e−5
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of transcendental functions make use of the intersected IA/AA ranges, algebraic

functions, such as those used in the Hénon map, are not applicable. The re-

maining difference is due to the fact that, although the tighter mixed IA/AA

ranges do not affect the computation of subsequent ranges in algebraic systems,

they make for better quality output data than pure AA ranges do.

The middle column of figure 4.2 compares Arpra’s mixed IA/AA method to

the mixed IA/AA method of INTLAB. Here, the radius of ranges computed by

Arpra qualitatively matches those computed by INTLAB. On close inspection,

Arpra ranges have a marginally smaller radius than INTLAB ranges do. This

can be attributed to Arpra’s use of the improved multiplication error estimate

from equation (3.12), and also because Arpra computes correct rounding error

bounds as a function of ULP, as seen in equation (3.10).

In the right column of 4.2, we see the difference between Arpra’s mixed

trimmed IA/AA method and the mixed IA/AA method in INTLAB. Here,

Arpra outperforms INTLAB by a modest amount as the trajectory converges

to its stable orbit. It should be noted that the ‘trimmed’ aspect of Arpra’s

mixed trimmed IA/AA method is only advantageous when the new numerical

error terms from affine functions are large. As seen in algorithm 6, the new

error term cannot be trimmed to below zero. Therefore, if the new term is the

sum of tiny rounding errors alone, with no larger approximation error due to
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Figure 4.3: The radius difference between Hénon map ranges computed with the
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nonlinear functions, the mixed trimmed IA/AA method becomes ineffective. In

the next section, we see how increasing Arpra’s internal floating-point precision

affects the quality of computed ranges.

4.2 Internal Precision

As seen in chapter 3, Arpra also has the advantage of being able to dynamically

change the precision of its floating-point numbers to arbitrary values. The in-

ternal precision of Arpra is distinct from its externally facing working precision,

in order to reduce the overhead AA method error, yet maintain the effective

precision of the emulated floating-point type. To test how internal precision af-

fects range tightness, the Hénon map is simulated using Arpra’s mixed trimmed

IA/AA method. The working precision is set to w = 53, as before, but the

internal precision p is set to 64, 96 and 128 bits. Once again, α = 1.057. The

radii of the computed ranges with each internal precision value are compared

to those from when the internal precision is equal to the working precision, and

the differences are plotted in figure 4.3.

From the plot, we see that the small increase of internal precision to p = 64

decreases the radius of computed ranges slightly, but the further increase to

p = 96 has diminished effect, while the difference is negligible for p = 128.
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Rump’s example [18] [19] implies that it is non-trivial to determine how the

accuracy of floating-point arithmetic changes as the precision increases, since the

mapping from precision to accuracy is not continuous. It stands to reason that

ranges with many deviation terms, and those computed by nonlinear functions,

would benefit more from a higher internal precision than the Hénon map does.

Despite this, there is clearly a ceiling where the increases in accuracy begin

to plateau. This suggests that a more algorithmic way of finding the optimal

internal precision is possible. A potential solution, used by the MPFR library

[17] mentioned in chapter 3, is to use Ziv’s strategy [33] as a heuristic when

setting the internal precision. The idea would be to start at some base precision,

such as Arpra’s default working precision, and incrementally raise the internal

precision until the Table Maker’s Dilemma (TMD) [31] does not occur when

computing the true_range field of affine ranges. However, a problem with

this is that affine ranges are constantly changing, with deviation terms being

added, and sometimes removed, and the internal precision set by such a method

would need constant updating.

In the next section, we investigate how the stability of the Hénon map affects

the radius of computed ranges.

4.3 Chaotic Systems

Trajectories in chaotic dynamical systems are, by definition, highly sensitive

to perturbations in the initial state, and these perturbations can propagate in

unpredictable ways. As a result, ranges representing the state of these systems

can grow very wide, very quickly. The Hénon map is known to exhibit chaotic

behaviour with β = 0.3 and α approaching around 1.06. In this experiment, α

is set to 1.057, 1.058 and 1.059, to see how changes in the local stability of the

Hénon map affect the radius of computed ranges. As before, the mixed trimmed

IA/AA method is used. The radii of computed ranges are plotted for these α

values in figure 4.4.

In the left column, as we saw earlier, the radii of ranges computed in the

stable Hénon map initially grow, as the trajectory converges to its stable orbit,

but begin to shrink later once the stable orbit is reached. As α is increased, the

Hénon map enters a chaotic regime, and the small perturbations represented

by the affine ranges are amplified in unpredictable ways. This results in the

runaway growth of the bounding range we see in the centre and right columns

of figure 4.4. The rate of range growth is dependent on how sensitive to state

perturbations, or rather how chaotic, the system is; higher values of α result in

faster interval growth.

This effect poses a problem for analysing systems with singularities. For
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infinite width faster as the Hénon map becomes more unstable.

example, in range analysis methods such as IA and AA, dividing a range or a

scalar with a range which straddles zero is an invalid operation, just as division

by zero is invalid in real arithmetic. If one analyses a sufficiently chaotic system

involving division, it is likely that the computed ranges will quickly grow large

enough such that they inevitably straddle zero, and cause an invalid operation.

No matter how unlikely a singularity is for a given floating-point computation in

practice, the so-called ‘fundamental theorem of interval arithmetic’ must always

be satisfied. That is to say that the range computed by an operation must

contain the result for every single combination of operands inside the operand

ranges, including a zero divisor.

Another problem with chaotic systems is that, even if a singularity does not

occur, there remains the question of how useful the bounding ranges are when

they grow so fast. Although the AA method is behaving entirely correctly,

bounding all possible trajectories of a simulation, the likelihood that these worst

cases will ever occur in practice is vanishingly small. The AA method was

chosen early on in the project because the priority was to see exactly how bad

the worst cases of error is in a numerical simulation. In this way, any trajectory

divergence, no matter how severe, could be explained by this form of analysis.

A more conservative analysis of, for example, numerical software libraries or

safety-critical systems would see benefit in using this method over IA or plain

AA. However, if highly unlikely worst-case behaviour is of less concern, a more

statistical approach looking at the most likely deviations instead of the worst-
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case bounds might be more informative.

We now test the effectiveness of the deviation term condensing functions, for

reducing the computational overhead of the Arpra library.

4.4 Deviation Term Reduction

In Arpra, after 500 iterations of the Hénon map, the x and y affine ranges

each contain approximately 3500 deviation terms, which is enough to cause

noticeable slowdown, especially in longer iterative computations. Since INTLAB

is implemented in MATLAB, it is able to temporarily alleviate this bottleneck

by making use of the processor’s parallel vector instruction set, although it too

eventually becomes bogged down as well. Arpra, on the other hand, uses MPFR

arbitrary-precision floating-point numbers, which are implemented in software,

and therefore cannot make use of the special vector instructions of the processor.

In order to solve this issue, Arpra implements the deviation term condensing

functions, as discussed in chapter 3.

Among these functions is the lossless arpra_reduce_last_n function,

which is used to condense the last n deviation terms of an affine range, with the

assumption that their noise symbols are not shared with any other affine range

in use. Although it is considered lossless, this function can introduce additional

rounding error. To illustrate this, the Hénon map simulation is run for 500

iterations, condensing all independent terms in x and y after each iteration.

For this experiment, α = 1.057, and the internal precision is set to 128. The

difference between the radii of ranges condensed with arpra_reduce_last_n

and the radii of those computed without condensing is plotted in figure 4.5. We

can see that arpra_reduce_last_n has a small overhead cost, in terms of

radius growth, but the time and memory performance gains are significant. A

comparison of Arpra term condensing functions is given in table 4.1.

Despite the performance improvements due to arpra_reduce_last_n,

the number of deviation terms still grows linearly with each iteration. As a re-

sult, the computation will still eventually slow down, but much later. Another

possible lossless term condensing method, not implemented in Arpra, would in-

volve scanning affine ranges for deviation coefficients equal to zero, and removing

them. Such a coefficient can appear due to deviation term cancellation, or when

a new term is added with zero numerical error. Such a method would incur zero

overhead rounding error, since zero deviation coefficients do not contribute to

the range in any way.

As another solution, Arpra implements the arpra_reduce_small_abs

and arpra_reduce_small_rel functions. They condense all terms whose

deviation coefficient is less than some absolute value, or some fraction of the
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Figure 4.5: The difference between the radius of Hénon map ranges condensed
with arpra_reduce_last_n, and those computed without term condensing.
α = 1.057 and β = 0.3. Deviation term count is reduced considerably, at the
expense of minor radius growth.

range’s radius, respectively. Although arpra_reduce_small_abs allows

finer control of term condensing, which may be desirable in some applications,

here it makes sense to condense the deviation terms that are most weakly con-

tributing to the radius.

The following experiment tests the arpra_reduce_small_rel function

with various relative thresholds, calling the condensing routine on x and y after

each of the 500 Hénon map iterations, with α = 1.057 and 128 bits of internal

precision. The differences between the radii of condensed and non-condensed

ranges is plotted in figure 4.6.

What is immediately obvious from this plot is that, since correlation infor-

mation is not maintained by the lossy arpra_reduce_small functions, the

ranges begin to grow quickly in a manner not dissimilar to IA ranges. While

these functions are great for removing lesser deviation terms en masse, it is clear

that these functions should be used sparingly. Since earlier experiments have

shown that affine ranges shrink in stable system regimes, this suggests that small

term condensation should ideally occur when the system trajectory is sufficiently

stable, to minimise radius growth. Alternatively, the arpra_reduce_small

functions can be called at some given epoch in the iteration. In the next ex-

periment, we test the Hénon map with arpra_reduce_small_rel as before,

with α = 1.057 and 128 bits of internal precision, but this time term condensing

occurs after 50 iterations. The radii differences from non-condensed ranges are

plotted in figure 4.7.
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Figure 4.6: The difference between the radius of Hénon map ranges condensed
with arpra_reduce_small_rel after each iteration, and those computed
without term condensing. α = 1.057 and β = 0.3. The thresholds t used above
are 0.1 (blue), 0.2 (red) and 0.3 (green) multiplied by the radius r. Deviation
terms are condensed more aggressively than in arpra_reduce_last_n, but
at far greater expense in terms of radius growth.
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Figure 4.7: The difference between the radius of Hénon map ranges condensed
with arpra_reduce_small_rel after 50 iteration epochs, and those com-
puted without term condensing. α = 1.057 and β = 0.3. The thresholds t used
above are 0.1 (blue), 0.2 (red) and 0.3 (green) multiplied by the radius r. Note
that ranges do not explode if the arpra_reduce_small functions are used
sparingly.
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Method Run Time x Terms y Terms Mallocs Malloc Bytes
none 1m 36s 3502 3497 9,680,433 589,107,669
last n 3.5s 501 501 1,453,531 86,223,965

small (0.1r) 1.3s 7 7 1,033,419 60,897,173
small (0.2r) 1.3s 3 3 1,023,563 60,295,141
small (0.3r) 1.3s 2 2 1,021,365 60,160,837

Table 4.1: Performance comparison of deviation term condensing functions in
Arpra. The condense epoch for arpra_reduce_small_rel is 50 iterations.
Term counts are taken at the end of the computation. Heap memory allocation
information was obtained using Valgrind [39].

These ranges are clearly better than those in figure 4.6. Although the ranges

grow larger than the ones computed with arpra_reduce_last_n in figure

4.5, the number of active deviation terms is far lower. Table 4.1 shows the

time and memory performance of each term reduction strategy in Arpra. From

this data, we can see that the vast majority of deviation terms in the Hénon

map x and y ranges have magnitudes less than 10% of their radius. We also

see from these results that allowing the arpra_reduce_small functions to

periodically remove lesser deviation terms can greatly improve the time and

memory performance of the range analysis, but excessive use deteriorates the

quality of ranges. Using even smaller thresholds reduces this deterioration, but

less of the range’s deviation terms are merged. This may not be a problem in

computations which naturally produce many near-zero deviation terms. There-

fore, some combination of all term reduction strategies seems desirable, where

independent terms are condensed as they appear, but small terms are swept

away when appropriate.

In this chapter, we have demonstrated the features of the Arpra library by

analysing the popular Hénon map in both the stable orbit and chaotic regimes.

We found that AA performs well when analysing stable systems, but its useful-

ness is debatable for chaotic systems. We found that the mixed trimmed IA/AA

method used by Arpra marginally outperforms the mixed IA/AA method INT-

LAB uses, despite the lack of transcendental functions used in the Hénon map.

We showed the effectiveness of the internal precision feature of Arpra on the

Hénon map, and suggested a means of algorithmically tuning it to best make

the most of it. Finally, we tested the effectiveness of Arpra’s deviation term con-

densing functions, finding that overuse of the arpra_reduce_small methods

rapidly deteriorates range quality, while combining term reduction strategies sig-

nificantly improves computational performance. In the next chapter, we begin

the analysis of a nonlinear SNN model.
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Chapter 5

Spiking Neural Networks

A spiking neural network (SNN) model is distinct from the typical neural net-

work model one might find in the machine learning literature. Rather than

being a simple weighted sum of inputs, followed by some abstract activation

function, they are modelled realistically as systems of coupled differential equa-

tions, which are capable of exhibiting complex spiking dynamics. With these

models, computational neuroscientists can simulate anything from tiny periph-

eral neural circuits to vast cortical networks ‘in silico’, rather than investing time

and resources in empirical experiments. Furthermore, there has been growing

interest in the field of neuromorphic computing [9] [40] [41]. Here, realistic SNN

models are used for real-time classification problems, with the advantage being

that these models are more amenable to implementation on specially designed

power-efficient neuromorphic hardware.

The widespread use of SNN simulations in computational neuroscience re-

search and bio-inspired machine learning has prompted interest in the verifica-

tion of their results, including those run on parallel computers, such as high

performance computing clusters, and GPU hardware configurations. In this

analysis, we are interested in the upper and lower bounds of numerical error in

SNN simulations. As discussed in chapter 2, this problem is reduced to bound-

ing the numerical error of the equivalent serial implementation, and adding the

worst-case rounding error of non-deterministic input current summation. Before

analysis can begin, we must first define our SNN model. This will be the focus

of the following section.

5.1 Model Definitions

There are many different neuron and synapse models with which one can con-

struct a SNN simulation, each with varying degrees of abstraction. Some of
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the more popular models include the Izhikevich neuron model [25] and the

Hodgkin-Huxley type Traub-Miles [42] neuron model. In this study, we use the

Morris-Lecar neuron model [43], which is a reduced version of a Hodgkin-Huxley

conductance based model, and a slightly modified version of the Rall synapse

model [44].

The models used in this study are fully continuous. If hybrid systems such

as the popular integrate-and-fire neuron or the Izhikevich neuron model were to

be used, their discretised spiking dynamics (instantaneous spike detection and

voltage reset) can cause simulation trajectories to be partitioned into two or

more regions. This would require the capability to split affine ranges into smaller

sub-ranges, and the ability to merge these ranges as and when the trajectories

converge again. This is non-trivial, since modifying the range can invalidate the

correlation information. Because the Arpra library does not currently support

this, we require continuous models for our analysis. We begin by defining the

Morris-Lecar neuron model.

5.1.1 Morris-Lecar Neuron Model

The neuron model of choice in the following experiments will be the Morris-

Lecar model [43], due to its fully-continuous dynamics. This is as opposed to

models such as the Izhikevich neuron [25], which exhibit discrete spike threshold

dynamics. The Morris-Lecar model is a two-dimensional continuous dynamical

system, and is defined as follows:

dV

dt
=
I −GCaM∞(V )(V − VCa)−GKN(V − VK)−GL(V − VL)

C
dN

dt
=
N∞(V )−N
τN (V )

,

(5.1)

using the following auxiliary functions:

M∞(V ) =
1 + tanh(V−V1

V2
)

2

N∞(V ) =
1 + tanh(V−V3

V4
)

2

τN (V ) =
1

φ cosh(V−V3

2V4
)
.

(5.2)

Here, V represents the electrical potential across the neuron’s membrane, while

N represents the fraction of open rectifying K+ ion channels at a given time.

M∞ and N∞ are functions of V , and represent the steady state value for M

and N , respectively, where M is the fraction of open depolarising Ca2+ ion

channels. GCa, GK and GL are conductance values for calcium, potassium and
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leak channels, respectively, while VCa, VK and VL are their respective reversal

potentials. I represents current inputs from external sources, C is the cell

membrane capacitance, φ is the rate of the recovery process, and the V1, ..., V4

parameters determine the shape of the steady state activation curves for M and

N , and the N time scale.

The model is a reduction of a three-dimensional system describing a neuron

with Ca2+ spikes, in which dynamics for M are also integrated. Morris and

Lecar [43] assume that M reaches its steady-state of M∞(V ) very fast, and thus

can be modelled as instantaneous in equation (5.1). The Morris-Lecar model is a

reasonable compromise between realism and computational complexity, making

it a practical choice for a first analysis. In addition to the continuous neuron

model, we also need a continuously differentiable synapse model to transmit

neuronal spikes to other model neurons. This will be discussed in the following

section.

5.1.2 Modified Rall Synapse Model

The synapses of the SNN model are simulated using a model similar to the

standard Rall synapse [44], but with the additional constraint of being fully

continuous. A complete synapse model, constructed in the typical Rall style, is

a two-dimensional system that looks similar to the following:

dR

dt
= αθ(Vpre − Vthr)− βR

dS

dt
= γR− δS,

(5.3)

with θ being the Heaviside step function, defined as follows.

θ(x) =

0 if x < 0

1 otherwise
(5.4)

In the above definitions, R represents the amount of neurotransmitter released

into the synaptic cleft by the presynaptic neuron, while S represents the amount

of activated receptors in the postsynaptic neuron. The constant parameters α

and β respectively control the rate of presynaptic neurotransmitter release and

dispersal, whereas γ and δ respectively control the rate at which neurotrans-

mitter binds to and unbinds from the postsynaptic receptors. In the following

experiments, for simplicity, α = γ and β = δ. Finally, Vpre is the membrane

potential of the presynaptic neuron, and Vthr is the spiking threshold, above

which the presynaptic neuron is considered to be spiking.

In order for the modified Rall synapse models to interface with the Morris-
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Lecar neuron models, the receptor activation value S must be converted into

input current, which is accumulated in the I variable of equation (5.1). For a

single synapse, the incoming postsynaptic current Isyn is computed as follows.

Isyn = GsynS(Vsyn − V ) (5.5)

where Gsyn is the conductance of the postsynaptic ion channels, and Vsyn is the

reversal potential for synaptic current.

Note that the model is discontinuous, thanks to its use of θ in equation

(5.4). To construct a continuous synapse model, the Heaviside step function θ

in equation (5.3) is substituted with the sigmoid function σ, defined as follows.

σ(x) =
1

1 + e−kx
(5.6)

where k is the steepness of the synapse activation slope. This gives us a fully

continuous synapse model, suitable for analysis with Arpra. With the elemen-

tary neuron and synapse components of our model defined, we now define the

input spike model which will feed randomised input current into the network.

5.1.3 Poisson Input Spike Model

In order to create biologically plausible SNN models, randomised input spikes

are generated by dummy neuron models, henceforth Poisson neurons, which

are then propagated to the Morris-Lecar neuron models via the modified Rall

synapses. The goal is to create randomised input current for the SNN, but in

a way that imitates the natural input from synapses originating from upstream

neurons outside of the model.

Each Poisson neuron is modelled using a Poisson point process, and is defined

as follows.

P (N(h) = n) =
(0.001λh)n

n!
e−0.001λh (5.7)

where P (N(h) = n) is the probability of n spike events occurring within the next

hmilliseconds, and λ is the desired spike rate in Hertz. To simplify the model, we

chose h = ∆t, i.e. equal to the integration time step of the simulation, and the

probability of n > 0 spikes occurring is interpreted as the probability of a single

spike occurring within the next time step. Because neurons cannot produce

more than one spike within a small time step, this is a realistic approximation.

Since we only care about whether or not a spike occurs, equation (5.7) can be

simplified to the following.

P (N(h) = 0) = e−0.001λh (5.8)
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Let r be a uniform random variable in [0, 1], drawn at the start of each inte-

gration step for each Poisson neuron. Using equation (5.8), a Poisson neuron’s

membrane potential V is assumed to take one of two values for the next h mil-

liseconds, depending on whether or not r > e−0.001λh. If it is, V is set high to

20 millivolts, otherwise it is set low to −60 millivolts.

We now have the neuron, synapse and input models to construct a com-

plete SNN model. Earlier, we mentioned that performing range analysis on a

parallel SNN simulation is the same as analysing the equivalent serial model

and adding the maximal error bounds of parallel summation. These summation

error bounds are discussed in the following section.

5.1.4 Input Current Summation

As discussed in the introduction, there are a few methods one can use to min-

imise the rounding error of floating-point summation. One such method is

pairwise summation. In this method, all n summands are added in pairs, then

the resulting n/2 sums are added in pairs, and so on ad infinitum, until only

one value remains. This results in a sum with relative error on the order of

log2(n). Pairwise summation is also a good choice because the procedure is

highly amenable to parallel computation.

Despite this, many SNN simulation programs, including GeNN [7], use the

recursive summation procedure, in which summands are added one at a time

into a single cumulative sum. This variant of summation produces a sum with

relative error on the order of n. In the introduction, another method for re-

ducing summation error is discussed, this time using the recursive summation

procedure. In this method, summands are reordered before recursive summation

is performed, with the intention of reducing the rounding error of each interme-

diate addition result. However, since the order of input current summation in

a parallel SNN simulation is dependent on the order which presynaptic neuron

threads finish in, this method is not practical in this instance.

As a consequence, we are forced to assume that summand ordering is ar-

bitrary, and the rounding error bound we use must reflect this. Higham [11]

[12] provides a Wilkinson-type error bound En for the arbitrary order recursive

summation of n floating-point numbers, denoted x, listed below.

|S̃ − S| ≤ γn−1
n∑
i=1

|xi| = (n− 1)u

n∑
i=1

|xi|+O(u2) (5.9)

where γk = ku/(1− ku) for some constant k, and u is the unit roundoff.

However this bound is not the strongest we can get, and becomes very weak

as nu approaches 1. Thanks to Rump [45], the quadratic O(u) term in equation
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(5.9) can safely be removed, resulting in an improved error bound for recursive

summation.

|S̃ − S| ≤ (n− 1)u

n∑
i=1

|xi| (5.10)

This bound is simpler, tighter than the bound in equation (5.9), and is not

restricted by n. With the improved error bound, we construct a function which

sums n affine ranges and augments the resulting range with the extra recursive

summation error.

This recursive summation function works by summing the centre values of

the summand ranges using MPFR’s correctly rounded mpfr_sum function.

Next, each deviation coefficient in the result range is computed by summing

all deviation coefficients in the operand ranges with the matching noise symbol,

again using the mpfr_sum function. It then computes the recursive error bound

in the right hand side of equation (5.10) by multiplying (n− 1)u with the sum∑n
i=1 |x̂i| of absolute valued operand ranges. The absolute value of an affine

range |x̂i| is taken to be the boundary of x̂c ± x̂r with the highest magnitude.

The result is accumulated with other rounding errors in the new deviation term.

With our complete model defined, and our error bounding method for par-

allel input current summation explained, we can now begin our analysis with a

simple fan-in SNN model.

5.2 Results

In these experiments, our first model of choice is a simple fan-in network, in

which multiple Poisson neuron inputs project to a single Morris-Lecar neuron

via modified Rall synapses. This model is similar to the model in the first

experiment of chapter 2, but uses a less contrived input model, and has fully

continuous dynamics.

The parameters of the models in these experiments are defined as follows.

For the Morris-Lecar model, the parameters are set such that the neurons ex-

hibit class 1 excitability [43], meaning the frequency of generated spikes can be

arbitrarily low. The conductance values are GL = 2, GCa = 4 and GK = 8. The

reversal potentials are VL = −60, VCa = 120 and VK = −80. The remaining

parameters are V1 = −1.2, V2 = 18, V3 = 12, V4 = 17.4, φ = 1/15 and C = 20.

As for the synapse parameters, the conductance of each synapse is drawn

from a normal distribution with standard deviation 1 and mean 10/npre, where

npre is the number of presynaptic neurons. For excitatory synapses, Vsyn = 0,

Vthr = −50, α = 0.25, β = 0.15 and k = 106. For inhibitory synapses, Vsyn =

−80, Vthr = −50, α = 0.075, β = 0.035 and k = 106. Excitatory and inhibitory

synapse conductances Gsyn are normally distributed, with standard deviation
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1 and mean 150/npre, where npre is the number of neurons in the presynaptic

neuron group. All remaining parameters are determined on a per-experiment

basis.

We begin by testing how the Arpra library’s range analysis methods fare on

this model, compared to the IA method.

5.2.1 Comparison of Arpra and IA

In the first experiment, the AA, mixed IA/AA and mixed trimmed IA/AA

methods implemented by Arpra are compared to the IA method implemented

by the MPFI library [35]. 50 Poisson input neurons are used to stimulate the

model, each with a firing rate of λ = 20 Hertz. The modified Rall synapses

are all excitatory, and the random number generator seed, used to initialise

synaptic conductances, is fixed for all methods. The working precision of Arpra

and MPFI ranges is 53 bits, equivalent to IEEE-754 double-precision, while

Arpra’s internal precision is set to 64 bits. Arpra transcendental functions use

the Chebyshev approximation scheme. For Arpra AA methods, independent

deviation terms are merged each iteration with arpra_reduce_last_n, and

terms smaller than 0.3 times the radius are merged after 50 iteration epochs with

arpra_reduce_small_rel. The model is simulated for 500 milliseconds in

steps of h = 0.5 milliseconds, using forward Euler integration, and the results

for each method are plotted in figure 5.1.

Notice how IA ranges explode almost immediately, whereas Arpra ranges

maintain reasonable width for around 300 simulated milliseconds. The radii

difference of ranges computed by the three Arpra methods is noticeable, but

slight. Whilst these results are not what one might have hoped for, one might

argue that this is to be expected. The experiments of chapter 4 showed us that,

if a system is sufficiently unstable, even AA ranges eventually explode. But how

quickly do the ranges of each method grow in quieter networks?

One might expect ranges of all methods to grow slower in systems with

less instability, just as the Hénon map ranges did in chapter 4. In order to

investigate this, the same model is simulated for each range analysis method

with the 50 Poisson input neurons’ firing rate λ = 10 Hertz. The rest of the

model is identical to before. The results are plotted in figure 5.2.

As expected, figure 5.2 illustrates that the ranges computed by all methods

do indeed grow slower in quieter networks. Furthermore, the difference between

the radii of ranges computed by the three AA methods is more apparent, with

mixed trimmed IA/AA ranges maintaining reasonable range for about 60 it-

erations longer than the plain AA ranges do. However, the ranges computed

by Arpra will still explode eventually with this particular model. The ques-
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Figure 5.1: Fan in SNN model with high spiking activity. 50 Poisson neurons
project to the output Morris-Lecar neuron, each with a firing rate of λ = 20
Hertz. Arpra methods AA (green), mixed IA/AA (yellow) and mixed Trimmed
IA/AA (red) are compared to the MPFI [35] implementation of IA (blue).
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Figure 5.2: Fan in SNN model with moderate spiking activity. Each of the 50
Poisson input neurons has a firing rate of λ = 10 Hertz. Arpra methods AA
(green), mixed IA/AA (yellow) and mixed Trimmed IA/AA (red) are compared
to the MPFI [35] implementation of IA (blue).
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Figure 5.3: Fan in SNN model with repeating 200 milliseconds of input burst
and 200 milliseconds of rest. During the bursting input regime, the firing rate
of all 50 Poisson input neurons is λ = 10 Hertz. During the quiescent regime,
λ = 0 Hertz. The radii of ranges computed by AA, mixed IA/AA and mixed
trimmed IA/AA all shrink back to a baseline level in the absence of stimulus.

tion then becomes whether or not Arpra ranges can recover in a stable system

regime, after a period of growth in an unstable regime.

To test the recovery of Arpra ranges after growth periods in chaotic regimes,

the same model is simulated for 2000 milliseconds, and is stimulated with a

repeating pattern of 200 millisecond input spike bursts and 200 millisecond

rests. For the spike burst regime, the firing rate of the 50 Poisson input neurons

is set to λ = 10 Hertz, while the firing rate is set to λ = 0 Hertz for the rest

regime. The IA method is omitted, since IA ranges explode regardless of the

presence of a recovery period in the simulation. The results are plotted for the

three Arpra methods in figure 5.3.

These plots illustrate that, although the radii of Arpra ranges grow rapidly

during the spike burst regime, they also shrink equally rapidly in the quiescent

regime to a baseline of approximately 10−13 for V and 10−17 for N . This is

consistent with the behaviour of Arpra when iterating the stable Hénon map

in chapter 4, where range width begins to shrink as the stable limit cycle is

approached. Although this demonstrates that Arpra at least has the ability to

recover from moderate range explosion in chaotic regimes, the other results in

this section suggest that the scope of all three AA variants discussed here may
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Figure 5.4: Fan-in SNN simulation with number of Poisson input neurons and
firing rate varied from 0 to 24 inclusive. Each tile shows the mean radius width
of V or N over 500 simulated milliseconds, with warmer tiles indicating wider
mean radius. Black tiles indicate that the range explodes at some point during
the simulation.

be limited to the analysis of SNN models with relatively low spiking activity.

To demonstrate this, the same fan-in model is simulated a total of 625 times

for 500 milliseconds. Both the number of Poisson input neurons and their com-

mon firing rate are varied from 0 to 24 inclusive, in steps of 1. Random number

seeds for Poisson input generators and synaptic conductance values are not

fixed in this experiment. The average radius of both V and N is plotted for all

three Arpra methods in figure 5.4. Black tiles indicate that a range explodes

within the 500 milliseconds of simulated time. Otherwise, warmer tiles indicate

a higher average range width.

As these results illustrate, both increasing the number of Poisson input neu-

rons and increasing the spiking frequency of the inputs affects the average width

of ranges over the course of the simulation, but in unequal measure. In these sim-

ulations, ranges tend to begin exploding when input neuron spiking frequency

exceeds around 5 Hertz, while ranges can explode in models with as low as just

a single input neuron. This is because changing a shared firing rate for presy-

naptic neurons has a multiplicative effect on the number of spikes received by

the postsynaptic neuron, whereas changing the number of presynaptic neurons

only has an additive effect.

It now seems clear that simulated dynamical systems trajectories must have

local stability for a sufficiently high proportion of the simulation to be amenable
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for analysis using Arpra’s three AA methods. So how accurately do these meth-

ods bound the trajectories of simulations using real IEEE-754 floating-point

arithmetic?

5.2.2 How Tight are Arpra Bounds?

To test how well Arpra bounds the trajectories of floating-point SNN simula-

tions, a chaotic fan-in model is analysed for 500 milliseconds, in steps of h = 0.5

milliseconds, using Arpra’s mixed trimmed IA/AA method. The firing rate of

the n = 500 Poisson input neurons is set to λ = 10 Hertz, all synapses use the ex-

citatory parameters from the Model Definition section, and all random number

seeds are fixed. The same model is also simulated 1000 times using IEEE-754

floating-point arithmetic, using the MPFR library [17]. Arpra working precision

and MPFR precision is set to 53 while Arpra internal precision is set to 64. In

the floating-point simulations, incoming spike lists are randomised, to simulate

parallel summation of the input currents. The upper and lower bounds of the

floating-point trajectories are compared with the ranges computed by Arpra.

Furthermore, a stability analysis is performed on the Morris-Lecar neuron

model to determine whether the growth of Arpra ranges in unstable regimes is

reflective of the actual trajectory divergence in the floating-point computations.

The tangent space method is used for the stability analysis. In this method, the

local Lyapunov exponent is numerically estimated at each time step by evalu-

ating the Jacobian matrix at the average state vector of all 1000 floating-point

simulations, diagonalising this matrix, and then taking the largest Eigenvalue

as the local Lyapunov exponent. The global Lyapunov exponent of the trajec-

tory is obtained by averaging the local Lyapunov exponent over the complete

trajectory. The range analysis, floating-point trajectory bounds, and stability

analysis results are potted in figure 5.5.

As these results illustrate, the width of ranges computed with mixed trimmed

IA/AA grows consistently towards infinity, whilst the divergence of trajectories

computed in floating-point remains relatively constant throughout, diverging

slightly when spikes occur and converging back afterwards. While we saw in

chapter 2 that the trajectories of floating-point simulations will eventually di-

verge more visibly in such an unstable model, this did not occur within the time

it took for the Arpra ranges to explode in figure 5.5, and certainly not to the

same extent.

In chapter 4, we saw that affine ranges inevitably explode when analysing

chaotic systems, and this is reflected in these results. The global Lyapunov

exponent of the floating-point simulations’ average trajectory is 0.027, to three

decimal places, indicating that this trajectory is indeed unstable. We see that,
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Figure 5.5: Comparison of mixed trimmed IA/AA ranges and the trajectory
boundaries computed from 1000 floating-point simulations of a fan-in SNN
model, consisting of n = 500 Poisson input neurons, with λ = 10 Hertz spike
frequency, and excitatory synapses projecting to a single Morris-Lecar neuron.
The local Lyapunov exponent is plotted in the right hand column (in green) at
each time step.
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Figure 5.6: Comparison of mixed trimmed IA/AA ranges and the trajectory
boundaries computed from 1000 floating-point simulations of a fan-in model
with n = 500 Poisson input neurons, λ = 5 Hertz spiking frequency, and ex-
citatory synapses. The local Lyapunov exponent is plotted in the right hand
column (in green) at each time step.

although the Arpra ranges have brief recovery periods when the local Lyapunov

exponent falls below zero due to the absence of spiking dynamics, the ranges

resume growing when the local Lyapunov resurfaces above zero.

Since we already know from chapter 4 that Arpra ranges explode in chaotic

systems, what is perhaps of more interest is how tightly they bound floating-

point trajectories in stable systems. We will now perform the same analysis

on a similar model, where the spike frequency of the n = 500 Poisson input

neurons is λ = 5 Hertz. The model is simulated for 1000 simulated milliseconds,

in steps of h = 0.5 milliseconds. As before, MPFR floating-point is used to

simulate the model 1000 times with random input current summation order,

Arpra mixed trimmed IA/AA method is used for range analysis, and the tangent

space method is used to analyse system stability. The results of this quieter

model are plotted in figure 5.6.

Here we see again that the radii of Arpra ranges is allowed to recover fully

down to a baseline value in the absence of spiking dynamics. However, the

baseline radius of both V and N is still approximately three orders of magnitude

higher than the radius of trajectory divergence in the floating-point simulations.

A global Lyapunov exponent of −0.033, to three decimal places, confirms that
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Figure 5.7: Comparison of mixed trimmed IA/AA ranges and the trajectory
boundaries computed from 1000 floating-point simulations of an inhibitory fan-
in model with n = 500 Poisson input neurons, λ = 10 Hertz spiking frequency,
and inhibitory synapses. The local Lyapunov exponent is plotted (in green) at
each time step.

this model is stable, and local Lyapunov exponents remain below zero after the

Arpra range value bottoms out. Even still, the ranges are conservative.

To test whether near-threshold dynamics are to blame for the conservative

bounds, the same analysis is performed on yet another similar model, but this

time with inhibitory synapses, whose parameters are given in the Model Defi-

nitions section. As before, the model is advanced 1000 milliseconds, in steps of

h = 0.5. The input neuron firing frequency is set to λ = 10. By hyperpolarising

the output Morris-Lecar neuron in this way, one reduces the probability that an

Arpra range straddles the neuron’s firing threshold. The results of this analysis

are plotted in figure 5.7.

The global Lyapunov exponent of the average floating-point model trajectory

is −0.099, to three decimal places, indicating the model is not chaotic. As

the plots illustrate, although the Arpra ranges are thinner than those in 5.6,

they are still approximately two orders of magnitude wider than the divergence

seen empirically. This rules out near-threshold dynamics as the sole culprit

of range overestimation. So what else could be the cause? The fact that the

AA methods perform worst-case error bounding means that Arpra ranges will

always be slightly larger than the MPFR mean ± standard deviation ranges.
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Furthermore, the radius of an Arpra range, which is used when computing the

true range, is not rigorous. Since it is computed by summing the absolute value

of each deviation term, a small amount of extra rounding error is introduced.

Perhaps an even greater source of extra range width, however, comes from

function linearisation.

5.2.3 Nonlinear Dynamics Approximation

The difference between Arpra bounds and the trajectory bounds observed in

floating-point experiments could still be caused by a number of factors not yet

tested, such as rounding error due to low internal precision, or error associ-

ated with deviation term condensing (discussed in the next section). First and

foremost, it is important to remind ourselves that range analysis, by its very

definition, is a method for computing the theoretical worst-case error bounds of

a computation, and not necessarily the bounds that one may observe in practice.

Range analysis is conservative by design. Having said that, there are different

flavours of range analysis. We have already seen how much of an improvement

AA is over IA, but AA is a first-order range analysis method, and thus incurs

heavy approximation error whenever nonlinear functions are used. One solution,

and potential future work in Arpra, is to implement Taylor intervals, in which

ranges are represented using Taylor series polynomials. For now, however, we

focus on the linear mixed trimmed IA/AA method.

The Morris-Lecar neuron model in equation (5.1) uses the nonlinear func-

tions tanh and cosh, implemented in terms of arpra_exp, and division, imple-

mented using arpra_inv, which are both susceptible to overshoot and under-

shoot, as discussed in chapter 1. Because of this, one would expect there to be a

noticeable difference in the radius of Arpra ranges when different approximation

schemes are used. To determine how the error from nonlinear function approx-

imation affects Arpra ranges in SNN models, a fan-in network with 50 Poisson

input neurons, with λ = 10 Hertz firing rates, is simulated three times. In the

first run, arpra_exp and arpra_inv use the same Chebyshev approximation

scheme used up until now. In the second run, these functions use the Min-

Range approximation scheme. In the final run, functions use the Min-Range

scheme, but the approximation error term δ is set to zero, giving us a crude

demonstration of the effect linearisation error has on computed ranges. The

random number seeds for synapse conductance and Poisson generators is fixed,

and synapses are excitatory. The results are plotted in figure 5.8.

As the plots illustrate, the Min-Range function approximation scheme per-

forms only marginally better than the Chebyshev scheme, with ranges lasting

approximately ten simulated milliseconds longer before exploding. Whilst this
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may be surprising, this is not an unreasonable outcome. Although the Min-

Range approximation does not suffer from the overshoot and undershoot phe-

nomenon of the Chebyshev approximation, the additional range width resulting

from loss of correlation information can negate this benefit in certain problems.

What is more interesting, though, is the behaviour of Arpra ranges when no

approximation error is added to the new deviation term after a transcendental

function. Although the ranges initially grow to have a radius of about 10−2,

they subsequently cease growing and remain at this width for the remainder

of the simulation. As crude as the zero-error measurement is, it does seem

to suggest that one of the biggest cause of range growth in unstable systems

is that the range representation is of too low order. One can imagine that a

second order range analysis method would better approximate the exp function

using a quadratic curve, lowering the error term δ, and successively higher order

methods would further reduce δ. Arguably, nonlinear differential equations

allow us to model more interesting dynamical systems. While it is important

to recognise that the first-order AA range analysis methods may be an ideal

choice for first-order dynamical systems and linear algebra computations, we

may conclude here that AA is not a suitable choice for nonlinear dynamical

systems such as SNN models.

However, there are a few more features of Arpra that we can try, in order to

delay range explosion for as long as possible. We test the internal precision and

term condensing features of Arpra on SNN simulations in the following section.

5.2.4 Internal Precision and Term Condensing

As discussed in chapter 3, Arpra implements a few more tricks for reducing the

overhead rounding error of the AA methods, and minimising the computational

resources required for the analysis. The internal precision feature allows one to

control how precisely the range is represented internally, and how precisely the

intermediate values are computed, while the arpra_reduce functions allow

one to selectively condense sets of deviation terms, saving memory and boosting

the speed of the analysis.

We know from Rump’s example [18] [19] that the mapping between floating-

point precision and accuracy of the result is not continuous, so it is difficult

to determine how high the precision can go before the result stops changing, if

at all. However, we found in chapter 4 that moderately increasing the internal

precision offered a small improvement in range tightness, but further increases

to internal precision offered diminishing returns. We also know, due to the liter-

ature on the Table Maker’s Dilemma [31] [33], that there exists some precision

p for intermediate calculations, such that the final rounding of an Arpra range
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Figure 5.9: Difference in Arpra ranges computed with internal precision p = 64
(solid blue), p = 96 (solid yellow) and p = 128 (dashed green). The model is a
fan-in SNN model with n = 50 Poisson inputs firing at λ = 10 Hertz, connected
to a Morris-Lecar neuron with excitatory synapses. Note how the improvement
in range tightness has plateaued at p = 96, and coincides with ranges computed
with p = 128.

to the working precision is correct when the internal precision is at least p.

In figure 5.9, a fan-in SNN of n = 50 Poisson input neurons firing at λ = 10

Hertz is simulated with Arpra internal precision set to p = 64, p = 96 and p =

128 bits. Synapses are excitatory, and random number seeds are fixed. Just as

we saw for the Hénon map in figure 4.3, a small improvement of range tightness

is observed as p is raised to 96, but further increases of p have negligible effect.

Besides Ziv’s strategy [33], there is no known way to determine the minimum p

for which the result stops changing as p increases. However, in the experiments

of this study, p = 96 has been sufficient to prevent the majority of overhead

AA rounding error when analysing IEEE-754 double-precision computations.

So what is the optimal deviation term condensing strategy?

All Arpra analyses of SNN simulations in this chapter have made heavy use of

Arpra’s deviation term condensing routines. Without them, the analysis would

become intractable. For a single Arpra range, assuming we are integrating for

m time steps and that the number of deviation terms grows by some constant

k each step, we need to compute up to k + 2k + ... + (m − 1)k + mk terms

throughout the simulation. Ignoring constants, this gives us an asymptotic
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runtime complexity of O(km2), which is not ideal in longer simulations.

k

m∑
i=1

i = k
m(m+ 1)

2
= O(km2) (5.11)

The SNN simulations call arpra_reduce_last_n on V and N after each

integration step, which condenses all k new (independent) deviation terms into

one, thus reducing equation (5.11) to O(m2). The SNN simulations also call

arpra_reduce_small_rel every 50 iteration epoch, using a relative thresh-

old of trel = 0.3. This function condenses all deviation terms smaller than trelr,

with r being the range’s radius. No more than 1/trel (rounded down) terms can

remain after this call, since the absolute sum of the remaining high-magnitude

terms cannot exceed r. This effectively resets the number of active noise symbols

in a range to some threshold-dependent baseline each time it is used.

Given that the number of remaining deviation terms is bounded after the

application of arpra_reduce_small_rel, one might also consider a term

condensing function in which the number of deviation terms is reduced to some

given constant. Such a function would reduce terms in order from smallest to

largest, until the term number constraint is satisfied. Implementing this method

is left for future work, but it would likely have similar effectiveness to that of

the relative small term reduction method.

Figure 5.10 illustrates how range quality varies with trel set to 0.1, 0.2 and

0.3. Besides trel, The SNN model is identical to that from the last experiment.

Arpra’s internal precision is set to p = 64. Surprisingly, although range fit is

generally looser when any of the term condensing strategies are used than when

none are used, ranges are generally tighter when a higher relative threshold is

used. This is in contrast with the Hénon map example, in figure 4.7, where

a lower relative threshold produced tighter ranges. This could be because the

majority of important correlation information is lost when using all three relative

thresholds, and the overhead rounding error of having slightly more deviation

terms outweighs the error from lost correlation information due to the merging

of more terms, but this requires further investigation.

This concludes our analysis of SNN models with Arpra. In this chapter,

we used Arpra to analyse more realistic SNN models, each consisting of Morris-

Lecar neurons, our continuous modified Rall synapses and our simplified Poisson

input neurons. We explain how the maximum error bounds of parallel recursive

summation can be computed, based on the work of Higham [11] and Rump

[45]. We compared the IA method with Arpra’s AA, mixed IA/AA and mixed

trimmed IA/AA methods when analysing SNN models, and found that the

Arpra maintained tighter ranges for longer than IA did in unstable dynamics.
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We found that mixed trimmed IA/AA performed marginally better than mixed

IA/AA, which in turn performed marginally better than plain AA, and ranges

from all three Arpra methods converged back to a tight baseline width whenever

the simulation dynamics become sufficiently stable, unlike IA ranges. We found

that Arpra ranges are predictably quite conservative estimates of actual floating-

point computations, and demonstrate how much of the added range width is

linearisation error, due the presence of non-linear functions in the SNN model.

Finally, we test the internal precision and deviation term condensing features of

Arpra, and find comparable results to those from chapter 4. In the next chapter,

we summarise our findings, state our conclusions and discuss the implications

of this study.
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Chapter 6

Discussion

The goal of this project was to compute boundaries for the numerical error of

spiking neural networks (SNN) on massively parallel hardware. In the pursuit

of this goal, the Arpra library for arbitrary-precision range analysis was devel-

oped, which, unlike other AA packages, builds on the standard AA method by

exploiting extended internal floating-point precision to produce tighter bound-

ing ranges. It also features the novel mixed trimmed IA/AA method, improved

affine multiplication and three novel term reduction functions. This library is

tested against an alternative AA implementation, from the INTLAB [28] pack-

age, using the Hénon map as a benchmark. After having confirmed the cor-

rectness and accuracy of the Arpra library, we proceeded to analyse a realistic

fan-in SNN model involving the Morris-Lecar neuron model [43], with Poisson

process spike generators and a slightly modified Rall synapse model [44].

In this chapter, we begin by summarising the results of this study, and

drawing our conclusions. We then discuss some alternative methods, which

perhaps may have been more suitable for this study in retrospect. Finally, we

end by discussing some different problem domains which Arpra’s mixed trimmed

IA/AA method might be more suited to.

6.1 Summary and Conclusions

In chapter 2, we demonstrated the issue of results reproducibility for SNN sim-

ulations on parallel hardware using the popular Izhikevich neuron model [25].

In the first experiment, we saw how randomising the summation order of in-

put currents is sufficient to cause noticeable divergence in identical simulations,

even when computed on the same software and hardware environment. Despite

the simplicity of this experiment, we can clearly see how the phase of spiking

is affected, as well as the shape of the spikes themselves. Although flooding
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a single neuron to saturation with input current may be a little contrived, it

is suggestive that similar effects are likely to appear in the dynamics of more

complex SNN models.

In order to see a more realistic example, we simulated a larger pulse-coupled

neural network (PCNN), with comparatively less stimulating current per neu-

ron. We again found noticeable divergence in the simulated trajectories, which

completely disappeared when the order of input current summation was fixed.

Although this divergence was not catastrophic in this particular experiment,

the example shows that the risk of catastrophic trajectory divergence is ever

present in parallel SNN simulations. The few times that it does occur may very

well be the times that cause the most harm.

Accordingly, it is the authors opinion that all researchers who do compu-

tational studies should be made aware of this phenomenon, no matter what

their background of expertise is. Ideally, researchers should also be provided

with a means of computing, or at the very least estimating, the boundaries

of the trajectory divergence possible in their computations. This is particu-

larly important today and for the foreseeable future, with the advent of high

performance massively parallel compute architectures. The adoption of this

computing paradigm is speeding up, but education on the differences to more

familiar sequential compute architectures lags behind. Information on the exis-

tence and nature of numerical errors is perceived as confusing and inaccessible

at best, or boring and inconsequential at worst. This attitude will only change

if the tools for analysing the problem - i.e. range analysis - are simple to use,

computationally tractable, and compute bounds tight enough to be useful.

In chapter 3, I presented Arpra [26]; my arbitrary-precision range analysis

library that aims to meet these requirements. We examined the MPFR library

[17] for correctly rounded arbitrary-precision floating-point arithmetic, which

is the foundation on which Arpra was built. Towards the ease of use require-

ment, we described how Arpra adopts a similar function schema to MPFR, in

which all functions function(z, x, y) are written very similarly to how one

would write the corresponding equation z = x op y. Towards the computational

tractability requirement, we discussed the core AA method, and discuss several

modifications which aim to improve the tightness of computed ranges while

minimising the computational complexity. These include the extended internal

precision mechanism, a method for computing the exact overhead rounding er-

ror in terms of the unit in last place (ULP), the improved multiplication routine

mentioned in [27], the mixed IA/AA extension with error term trimming, and

finally the three deviation term condensing routines. We tested the main arith-

metic functions implemented in Arpra, and found that they compute ranges

at least as tight as ranges computed with IA, and potentially far tighter when
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operands are correlated.

In chapter 4, we put Arpra through its paces by analysing the Hénon map,

as an example of a dynamical system which is known to have regular and chaotic

regimes. The Hénon map is a simple two-dimensional discrete dynamical system

with no transcendental operations, which can be tuned to exhibit dynamics

ranging from chaotic to stable limit cycles, depending on the chosen value of

the parameters α and β. Using a stable Hénon map with α = 1.057 and β = 0.3,

we compared Arpra to another range analysis package known as INTLAB [28],

which implements the IA and mixed IA/AA methods. Here we first saw that the

width of Arpra AA ranges eventually collapses towards zero when the system

is not chaotic, whereas INTLAB IA ranges will continue to grow regardless due

to the dependency problem and the resulting wrapping effect.

We saw that Arpra’s plain AA method seemed to perform marginally worse

than the mixed IA/AA method of INTLAB, even though the Hénon map does

not involve transcendental functions, for which the mixed IA/AA method was

specifically designed. This is likely because the tighter INTLAB ranges used

in the plot were intersections of AA and IA ranges, whereas the plotted Arpra

ranges computed with plain AA had to be derived from the centre and radius,

and were thus looser. This suggested that the mixed IA/AA method is still

useful even in algebraic computations, since although the tighter IA/AA range

intersections are not used in the computation itself, they can still be used for

plotting purposes, for example. We found that the performance of the mixed

IA/AA methods in Arpra and INTLAB are qualitatively the same, with Arpra

very slightly superior likely due to its use of the improved multiplication rou-

tine and rounding errors in terms of ULP. Finally, we saw that Arpra ranges

computed with the mixed trimmed IA/AA method were modestly slimmer by

around 10−5 units than those computed with mixed IA/AA by INTLAB just

before the ranges converged on the stable limit cycle.

Arpra’s mixed trimmed IA/AA method was also tested on the Hénon map

with higher α values, and we found that Arpra ranges will eventually explode

like the IA ranges did when the system becomes sufficiently unstable. Since

trajectories can diverge rapidly in chaotic systems, the ranges representing those

conditions can also grow rapidly. Besides the fact that wide ranges are less useful

as error bounds, another problem is that an invalid operation such as division

by zero is more likely to occur with wider ranges. Even if the range is still tight

enough to be useful, if any part of the range becomes invalid, then the entire

range becomes invalid.

We also tested the internal precision feature of Arpra and found that in-

creasing it only yielded a modest improvement in range tightness, and further

precision increases gave diminished returns. In theory, one could compute the
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optimum internal precision algorithmically, using Ziv’s strategy [33], for in-

stance. However, given that the number of deviation terms in Arpra ranges is

in constant flux, this procedure would need to be performed quite regularly.

Finally, Arpra’s deviation term reduction strategies were tested. A small

overhead error cost was demonstrated when using the arpra_reduce_last_n

routine, even though no correlation information was lost. However, the benefits

were an approximate 85% reduction of deviation terms and a large decrease in

both the runtime and memory usage. We saw even more aggressive reduction

of deviation terms using the lossy arpra_reduce_small_rel routine, at the

cost of correlation information, with a 99.9% reduction of deviation terms using

the relative threshold 0.1. However, since so much correlation information is

lost, it was found that this routine should be used sparingly, and in combina-

tion with other term reduction strategies. In these experiments, increasing the

relative threshold used by arpra_reduce_small resulted in looser ranges.

However, the converse was true in the SNN simulations of chapter 5. Perhaps

this was because certain condensed deviation terms, no matter how small, may

have been more important than the larger deviation terms at that point in the

computation. While this requires more investigation, it would suggest that the

best relative threshold to use is highly problem dependent.

In chapter 5, we analysed the numerical error boundaries of a fan-in SNN sim-

ulation using the Arpra library for arbitrary-precision range analysis. We spec-

ified how parallel SNN simulations can be analysed by proxy, using equivalent

serial SNN simulations and adding the worst-case error bounds for arbitrarily or-

dered input current summation. Since the AA method does not handle discrete

range partitioning gracefully, Arpra cannot perform range analysis on computa-

tions involving conditional branching without added complexity. Consequently,

the SNN model was constructed using the fully continuous Morris-Lecar neuron

model, and a slightly modified Rall synapse with continuous neurotransmitter

release dynamics. Although the modified neurotransmitter release function from

equation (5.6) is continuous, its slope was set very steep in these simulations.

As a result, heavy linearisation error can be incurred if the input range straddles

the transition from low to high neurotransmitter release. This illustrates a gen-

eral obstacle for analysing hybrid dynamical systems with AA. One either has

to approximate discrete functions with continuous ones, or implement functions

for splitting and joining affine ranges while respecting correlation information,

where either option has the potential to noticeably increase the overhead error

in computed ranges.

For the first few experiments, we compared the AA, mixed IA/AA and

mixed trimmed IA/AA methods of Arpra with the plain IA method and found

that, whilst Arpra vastly outperforms IA in all cases, AA ranges still tend to
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explode when spiking activity is high. We saw successive improvements in range

tightness with each AA variant, and saw that these improvements became more

pronounced as the spiking activity of the analysed model increases. We also

found that AA range width can fully recover after periods of growth due to rapid

spiking, providing the network becomes sufficiently quiescent afterwards. These

results suggest that the AA variants are only suitable for analysing SNN models

in which few spikes are expected to occur, but we can make some predictions of

which model modifications will decrease range quality the most. For instance,

we showed that when populations of neurons with similar firing rates project

excitatory synapses to other neurons in a fan-in manner, the quality of ranges

is more sensitive to the mean presynaptic firing rate than it is to the number

of presynaptic neurons, since the former has a multiplicative effect on the total

spike count whereas the latter has only an additive effect.

The next experiments tested how tightly the Arpra mixed trimmed IA/AA

ranges bounded the trajectories of actual floating-point SNN simulations. It

also examined how the local stability of the state vector affected range growth

in Arpra and trajectory divergence in floating-point. We found that the ranges

grow rapidly as the local Lyapunov exponent rises above zero, corresponding

to the occurrence of neuronal spikes in the simulation, while floating-point tra-

jectories only diverged slightly. We also saw that recovery of Arpra ranges

occurred when the local Lyapunov exponent sank below zero, corresponding to

the subthreshold neuronal dynamics, but were still approximately two orders

of magnitude wider than the interval which bounds the observed floating-point

trajectories. Whilst this does not bode well for the AA methods when analysing

such models, one can still use Arpra range growth to infer high-risk points of

divergence in actual simulations. The floating-point trajectories diverge when

the local Lyapunov exponent is high, and this is reflected in the sharp growth

of Arpra ranges, which might be useful to the user in itself. However, given the

tendency of Arpra ranges to completely explode in unstable systems, the extent

of its utility for bounding simulated trajectories in SNN models is in doubt.

Here, we feel compelled to repeat that, while the computed ranges appear

loose compared to the interval of trajectory divergence observed in practice, the

Arpra library is behaving correctly. Arpra obeys the fundamental theorem of

interval arithmetic. It computes the worst-possible-case error boundaries of all

computations, no matter how extreme, and never compromises in the interest

of range tightness. It is conservative by design. With that said, why is it that

the divergence of actual floating-point computations is so low relative to the

bounds computed by Arpra?

Rounding errors are certainly not random. However it stands to reason that

floating-point rounding errors incurred using IEEE-754 ‘round to nearest’ mode
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are a somewhat even mixture of positive and negative. If one were to make the

simplifying assumptions that rounding errors are uniformly distributed in some

constant interval [−k, k], and these rounding errors are independent, then the

central limit theorem states that a floating-point number containing n rounding

errors should be normally distributed about a mean somewhere near the centre

of the corresponding Arpra range, with a standard deviation of k
√
n. With

such a low likelihood of the worst-case occurring, it now seems reasonable to

expect the extra padding in Arpra ranges. Artificially constructing a worst-case

for parallel input current summation to test Arpra with is surprisingly difficult.

According to Higham [12], constructing the best-case summation ordering in-

volves arranging summands such that the magnitude of each successive partial

sum is minimised, which is known to be NP-hard. Presumably, to construct

the worst-case summation ordering, one would arrange summands such that

the magnitude of each partial sum is maximised, which would also be NP-hard.

Instead, the worst-case summation ordering was approximated by arranging

summands in order of decreasing magnitude, but preliminary tests showed little

additional trajectory deviation.

In our experiments, the internal precision of Arpra was varied to determine

the improvement of Arpra range tightness in the SNN simulation. As was the

case in the Hénon map experiments in chapter 4, we saw that increasing the

internal precision resulted in a moderate improvement in range tightness, with

further increases having negligible effect. Although the range improvement from

each optimisation in Arpra is modest on its own, when taken together they can

noticeably improve the tightness, thus usefulness, of Arpra ranges. One may

suppose that these improvements are only relevant in the analysis of short and

high accuracy computations, such as in the verification of numerical algorithm

packages. However, the effects also tend to become visible when the dynamics

of the computation are borderline unstable. For instance, in the method ex-

periments of chapter 5, figure 5.2, we see that successive improvements to the

core AA method resulted in ranges that remained tight, and thus useful, for

successively longer.

Given the fact that, even in unstable systems, the width of ranges computed

with Arpra remains at a usable tightness for a reasonable amount of time before

exploding, Arpra is still a useful tool for examining the short-term trajectory

divergence in chaotic systems. One could even simply reset Arpra ranges to

zero width in known stable regimes, or before points of specific interest. Arpra

performs very well in most linear computations. It also performs reasonably well

in sufficiently stable nonlinear computations, although performance degrades

quickly as range width increases. In figure 5.8 of chapter 5, we saw the dramatic

effect that removing the linearisation error had on range growth, suggesting that
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a sizeable portion of affine range width in SNN simulations is a consequence

of heavy linearisation error in transcendental functions. One solution is to use

higher order range representations. We discuss alternative methods and suitable

problem domains for Arpra in the following section.

6.2 Reflection and Implications

Although the AA method performs well when analysing linear computations,

and reasonably well when analysing certain nonlinear computations, its per-

formance begins to decline as the nonlinear dynamics begin to dominate the

computation. Since AA can be considered a first-order range analysis method,

consisting of linear functions of the centre and deviation terms, the logical pro-

gression for range analysis would be to allow higher-order terms in the range

representations. For instance, one might approximate the exponential function

with quadratic deviation terms, which would incur third-order approximation

error instead of second-order. One could even go further, and allow up to nth-

order deviation terms, with n+ 1 order approximation error. These ideas were

proposed by Berz et al [46] [47], under the name ‘Taylor methods’. They were

subsequently used to successfully model near-Earth object trajectories in space,

given intervals of initial conditions [48].

Whilst the computational complexity of such an analysis may become a lim-

iting factor for how high n can go in practice, implementing such functionality

would unlock the analysis of a far greater space of problems. Given the accu-

racy of Arpra in linear computations, it seems reasonable to expect comparable

accuracy in the analysis of an nth-order computation with an nth-order Taylor

polynomial method in Arpra. For these reasons, a high-priority future mile-

stone for the Arpra project will be the implementation and testing of arbitrary-

precision Taylor method range analysis techniques, to a user-determined order.

One may suggest an alternate method such as trigonometric polynomials might

be suitable, but results due to Nedialkov et al [49] seem to suggest that Taylor

polynomials are the optimal approximation choice.

Whilst the calculation of worst-case error bounds may be important when,

for instance, predicting if a near-Earth asteroid is on a collision course, a more

relaxed ‘average-case’ error bounding may be sufficient in some cases. To achieve

this, one would resort to statistical methods. One such method is known as

‘discrete stochastic arithmetic’ (DSA) [50] [51] [13], implemented in the CADNA

library [52]. This method roughly consists of running the computation n times,

usually three, using randomised IEEE-754 rounding modes for each floating-

point operation. This is claimed to give a reasonable approximation of the error

boundaries one actually observes in practice. It should be emphasised that
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CADNA and the DSA method attempt to solve a different problem to what

Arpra and the range analysis methods intend to solve. The stochastic nature

of the DSA method means that it does not obey the fundamental theorem of

interval arithmetic. The DSA boundaries are not guaranteed to contain all

possible trajectories of a computation, but instead computes something more

like the expected range of trajectories. Whilst this kind of analysis has its uses,

it cannot be relied upon when rigorous worst-case boundaries are required. For

instance, the analysis of flight control software would not be an appropriate

problem for DSA, and would instead be handled by more comprehensive static

analysis software using range analysis methods, such as the Astrée static analysis

package [53].

These comprehensive analysis packages are often proprietary and expensive,

which rules out their use in the analysis of open source numerical software.

Arpra [26], on the other hand, is open source and freely available under the

terms of the GNU lesser general public license version 3.0. Arpra also has

the advantage of being built on top of the arbitrary-precision MPFR library,

and benefits from arbitrary floating-point precision and correct rounding for all

arithmetic functions in all software and hardware environments. So if it is not

suitable for the analysis of SNN models and other highly nonlinear computa-

tions, then what else might it be used for?

Stolfi and de Figueiredo [23] give plenty of examples where the AA method is

useful, such as function root finding and global optimisation. Besides the many

examples listed there, Arpra has many more uses, such as for the verification

of serial and parallel numerical libraries, both proprietary and otherwise. Open

source libraries often lack tight accuracy bounds for functions in their documen-

tation, with a notable example being the GNU standard C library [14] (glibc).

Given the improved performance of Arpra in linear computations, due to the ex-

tended internal precision and other features, the analysis of software like glibc

and many linear algebra packages could be prime use cases for Arpra. Fur-

thermore, although Arpra is not ideal for analysing realistic chaotic or highly

nonlinear SNN simulations, it would likely be perfectly suited for analysing

complex artificial neural networks, whose dynamics are usually less nonlinear

and less unstable. Even before higher-order Taylor methods are implemented in

Arpra, there is still quite a large space of problems that Arpra is very well suited

to, and further work by the Arpra project will examine these opportunities in

greater detail.

As for simulations that are a little more stable, Arpra provides several ODE

steppers to assist in the analysis of these models. Besides the forward Euler

method, Arpra also provides steppers for the trapezoidal rule, the Bogacki-

Shampine 3(2) method [54], the Dormand-Prince 5(4) method [55] and the
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Dormand-Prince 8(7) method. For all Arpra steppers, the user may select which

precision in which all of the method’s constants are pre-computed. As mentioned

in chapter 1, the choice of integration step size and method has non-trivial con-

sequences in terms of incurred numerical error. If either a low step value or a

high-order integration method is chosen, then, while truncation error may be

reduced, rounding error may be increased due to the higher number of floating-

point operations per unit time compared to using a high step size or low-order

integration method. Arpra will be useful here in determining a decent trade-off

between truncation error and rounding error for a simulation.

In any case, one of the main goals of this study was to highlight the potential

for computed trajectories in massively parallel software to diverge in unexpected

ways. Some take-home messages to consider for parallel SNN simulations are

that, while the probability of trajectory divergence is low in fairly quiet SNN

models, the possibility is always there, and one should be prepared for it. This

is especially true as models become larger and more chaotic, with longer lists of

input currents to sum, and simulation trajectories that lurk ever closer, on av-

erage, to the firing threshold. Pairwise input current summation may alleviate

the issue somewhat, and the algorithm is highly amenable to parallel compu-

tation. As parallel compute architectures continue to increase in popularity,

rather than measuring simulation reproducibility in terms of bitwise identical-

ity of results, researchers should instead begin to consider reproducibility in

terms of statistical metrics and qualitative simulation behaviour.

Recent studies have begun to take reproducibility seriously in biological sim-

ulations [56] [57] [58], which was sparked by an ongoing more general debate on

what it should mean for computational results to be called reproducible [59].

The Association for Computing Machinery (ACM) currently define three main

classes of verifiability [60]. The result is said to be ‘repeatable’ if the same team,

using the same experimental set-up, can produce the same result. A result is

‘replicable’ if another team can produce the result with the same experimental

set-up. Finally, a result is said to be truly ‘reproducible’ if another team can

produce the result using a different experimental set-up.

While it is great that reproducibility of SNN simulation results is taken more

seriously these days, little attention is still paid to reproducibility on parallel

compute architectures. Researchers from all disciplines who perform computa-

tional studies are often obsessed with the concept of bitwise reproducibility in

their results. They expect the exact same bit pattern in their output when sim-

ulating models using the exact same compute environment, and presume any

variance to be caused by software bugs and faulty hardware. However, with the

advent of massively parallel compute architectures, this study has exposed how

this is simply no longer a reasonable expectation.
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