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Abstract 

Birds constitute a vital component of tropical rainforests, filling a wide range of functional roles 

spanning from predation to seed dispersal to pollination. Tropical mountains are typified by high 

bird diversity, and provide a unique opportunity to examine changing intertrophic functional 

relationships within relatively small distances. However, the relationships between birds and 

their food resources along tropical elevational gradients are poorly understood. This thesis 

investigates various components of bird alpha- and beta-diversity along an elevational gradient 

in Papua New Guinea. It then focuses on an important tropical feeding guild (frugivores) and 

relates observed bird diversity patterns to those of fruits found along the gradient, 

concentrating on the functional relationships between them. Within a single (lowland) 

elevational band, bird beta-diversity was found to be very low. With increasing elevation on a 
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tropical mountain, high bird beta-diversity and declining alpha-diversity did not seem to be 

driven by direct climatic effects. Functional and phylogenetic declines with increasing elevation 

may be driven in large part by a loss of large frugivores towards upland forest, corresponding to 

a decrease in large fruits at high elevations. Indeed, frugivorous birds at high elevations 

preferentially selected smaller fruits than those at lower elevations when given a choice, 

suggesting a close functional connection between frugivorous birds and the fruits they disperse. 

This research highlights the importance of functional diversity in maintaining intertrophic 

dynamics, and demonstrates the need to think beyond the species or even habitat level when 

considering measures to best protect biodiversity in a way that maintains these dynamics. By 

focusing on the relatively undisturbed forests of New Guinea, this research has demonstrated 

the importance of intertrophic functional connections which may have been lost in more 

degraded habitats.  
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 1 1.1 Introduction 

 

CHAPTER 1  

 

General introduction  

 

“The forests of New Guinea are everywhere 

grand and luxuriant… and we cannot consider 

the collections yet made as affording more 

than very imperfect samples of the treasures 

they contain”  

- Alfred Russel Wallace, 1879  

 

1.1 Introduction  

As human populations continue to expand, it is an unfortunate coincidence that the most 

biodiverse parts of the planet are also some of its most threatened. For example, tropical 

rainforests harbour the majority of the planet’s terrestrial diversity, but are under huge pressure 

from encroaching agriculture and resource exploitation: forest area across the tropics decreased 

by 7.8% from 1990 to 2010 (Kim et al. 2015). Knowing how most effectively to protect the 

remaining tropical forests relies on a better understanding of the networks of connections that 

make up these immensely complex ecosystems. One way of quantifying this complexity is by 

measuring functional traits of species that relate to the ways in which they interact with their 

environment. Indeed, an understanding of species’ functional roles and their importance in 

structuring intertrophic relationships may be more useful in terms of protecting habitats than 

simply knowing which species are present. With this in mind, large regions of undamaged forest 

whose functional relationships remain intact constitute a vital, and diminishing, study resource. 

The tropical island of New Guinea is one such region. This thesis explores functional diversity 

patterns of birds, the dominant vertebrate taxon in New Guinea, and their relationships with 

the forests they inhabit, in order to understand the processes driving bird diversity and their 

importance in maintaining ecosystem functions.  

 

1.2 Species diversity on elevational gradients  

While the latitudinal gradient in species richness is well recognised by naturalists and has been  
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studied extensively over many years (e.g. Fischer 1960, Stevens 1989, Gaston 2000, Kissling et 

al. 2012), elevational trends in species diversity are perhaps more complex and have received 

less attention. Nevertheless, different taxa are known to display contrasting patterns of diversity 

with elevation (McCain and Grytnes 2010, Guo et al. 2013). A number of meta-analyses have 

helped to reveal such patterns for a number of groups, which are briefly summarised here.  

Rahbek (2005) found that most plant studies displayed mid-elevational peaks in species richness, 

challenging the earlier idea that plant richness generally decreases with elevation (Stevens 

1992). Among insects, meta-analyses on elevational diversity patterns are generally lacking. 

Ants, however, are known to follow varying patterns in species richness, ranging from mid-

elevational peaks to monotonic declines with elevation (Szewczyk and McCain 2016).  In 

Neotropical regions a pattern of decreasing diversity and abundance with elevation, including a 

pronounced drop off above 1,500 m, was noted by Longino et al. (2014). Moth diversity was 

shown to follow similar patterns of low plateaus or low elevation peaks followed by decreasing 

diversity in sites across South East Asia (Beck and Kitching 2009). Vertebrate taxa, in a number 

of meta-analyses conducted by Christy McCain, also show a variety of different patterns 

(summarised in McCain and Grytnes 2010). Non-volant mammals showed a clear trend of mid-

elevational peaks in species richness (McCain 2005), while bats showed a more mixed picture, 

displaying both mid-elevation peaks and decreasing richness patterns with elevation (McCain 

2007a). Reptiles showed a range of patterns, although decreasing species richness with 

elevation was most commonly observed (McCain 2010). Finally, birds were found to display the 

most even spread of elevational diversity patterns of all taxa studied, with all of the 

aforementioned patterns (decreasing richness with elevation; low elevational plateau followed 

by a decrease, low elevation peak followed by a decrease and mid-elevational peak) represented 

almost equally (McCain 2009, McCain and Grytnes 2010).  

A number of hypotheses have been proposed to attempt to explain the various species richness 

patterns displayed by different taxa across elevational gradients. Explanatory factors can be 

broadly categorised into direct abiotic factors such as temperature, water availability, soil 

quality and available land area, and indirect factors mediated through interaction with other 

organisms – these include habitat complexity, food availability and competition for resources 

(Hodkinson 2005, McCain and Grytnes 2010). Additionally, a mid-domain effect has commonly 

been proposed to explain mid-elevational peaks in species richness, whereby increasing overlap 

of species ranges in the middle of environmental (e.g. elevational) gradients leads to higher 

species richness at such mid-domain “meeting points” (Colwell and Lees 2000, Cardelus et al. 

2005). In reality, diversity patterns with elevation are likely to reflect a complex interplay  
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between factors, whose relative importances differ depending on the taxon in question.  

In the case of birds, McCain (2009) concluded that temperature and wetness of the different 

mountains studied were broadly responsible for the differences between elevational trends 

recorded. In wet tropical regions specifically, the general trend seems to be one of 

monotonically decreasing species richness with increasing elevation, as catalogued by several 

studies from across the tropics (Terborgh 1977, Jankowski et al. 2013, Dehling et al. 2014, Sam 

et al. 2019). In all cases, aspects of the biotic environment were found to be important factors 

contributing to the observed patterns, including tree species composition (Jankowski et al. 

2013), habitat complexity (Jankowski et al. 2013, Sam et al. 2019) and food resources (Terborgh 

1977, Sam et al. 2019). These studies highlight the importance of intertrophic interactions in 

shaping species richness patterns in complex tropical rainforest ecosystems.  

 

1.3 Bird diversity: Patterns and processes  

Local species richness (conventionally termed alpha-diversity) is, of course, only one aspect 

contributing to biodiversity as a whole. Another important component is beta-diversity (or 

turnover) which describes the change in species composition between communities (Whittaker 

1960). Here, as with species richness, we see contrasting patterns depending on the taxon and 

environment under observation. The majority of studies investigating beta-diversity are focused 

either on broad regional-scale analyses (e.g. Qian et al. 2005, McKnight et al. 2007, Veech and 

Crist 2007, Zurita and Bellocq 2010, Tang et al. 2012) or on species’ more local-scale responses 

to environmental gradients (e.g. Jankowski et al. 2009, Swenson et al. 2011). However, data are 

lacking on the beta-diversity of species communities at local to intermediate scales within 

relatively homogenous habitats. Here spatial factors such as dispersal limitation may be more 

important than environment in constraining species ranges (Myers et al. 2013). Lowland 

rainforest, for example, makes up a large percentage of total global forest cover but remains 

relatively understudied in terms of beta-diversity patterns. The evidence that we do have, for 

example from herbivorous insects in New Guinea (Novotny et al. 2007) and plants in Latin 

America (Condit et al. 2002), seems to suggest that low beta-diversity is the norm in the absence 

of environmental gradients such as rainfall (Condit et al. 2002, Ruokolainen and Tuomisto 2002) 

and seasonality (Davidar et al. 2007). As a highly mobile taxon less constrained by dispersal 

limitation than most, we should expect birds to be characterised by especially low beta-diversity 

in homogenous lowland forests. Chapter 2 explores this relationship in comparison with the 

much more sessile woody plants.  
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Figure 1.1. Topographical map of New Guinea and surrounding islands (a). Green colour represents 

lowlands below 300 m above sea level (asl) and brown represents highlands above 1,000 m asl. 

Horizontal scale bar in km. Range maps are provided for the red-cheeked parrot Geoffroyus geoffroyi (b) 

and blue-collared parrot Geoffroyus simplex (c), showing distinct elevationally defined distributions for 

both species. Such distribution patterns are common across many New Guinean bird taxa. 

Topographical map created using ETOPO1 Global Relief Model by Amante and Eakins (2009). Bird 

illustrations and range maps from Pratt and Beehler (2015). Bird illustrations by John C Anderton.  

 

If beta-diversity patterns are driven primarily by environmental gradients, then tropical 

mountains form an ideal environment in which to study them. Here more than anywhere else 

on Earth climatic conditions change steadily and rapidly over relatively short distances (McCain 

2009), meaning ecologists can avoid the logistical problems imposed by conducting fieldwork at 

regional or continental scales. New Guinea is characterised by high topographical diversity 

(Figure 1.1a), meaning it is ideally suited to the study of elevational effects on alpha-and beta-

diversity patterns. The highest mountains of New Guinea’s Central Range extend above the 

treeline located at approximately 3,700 m above sea level (asl), meaning a full range of possible 

forest types are represented. Birds in New Guinea, as in other parts of the world, are known to 

display strong beta-diversity patterns with changing elevation (Diamond 1973, Sam et al. 2019). 

Pratt and Beehler (2015) note that many bird taxa in New Guinea, in some cases up to family 

level, are restricted either to lowland or highland forest, with a transition zone around 1,500 m 

a) 

b) c) 
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asl (Figure 1.1b+c). However, while 

elevational trends in bird species 

communities are relatively well known in 

parts of New Guinea, the community 

assembly processes driving observed 

species alpha- and beta-diversity patterns 

are not.  

Functional and phylogenetic approaches 

(see Box 1) may allow us to gain an 

understanding of the mechanisms 

responsible for observed patterns of alpha- 

and beta-diversity with changing elevation. 

Indeed, the importance of functional traits 

and phylogenetic relationships as means of 

revealing various aspects of ecosystems overlooked by a focus on species have been emphasised 

in recent decades (Petchey and Gaston 2002, Isaac et al. 2007, Kraft et al. 2008, Swenson et al. 

2012, Díaz et al. 2013, Newbold et al. 2014, Gagic et al. 2015, Voskamp et al. 2017, Cheesman 

et al. 2018). By contrasting taxonomic elevational diversity patterns with those of functional and 

phylogenetic diversity, we can start to understand whether, for example, species communities 

at a given elevation are constrained more by interspecific competition for resources or by abiotic 

environmental factors. The former (termed “niche differentiation”) should be represented as 

functional or phylogenetic over-dispersion, where interspecific competition for resources rather 

than the environment determines the limits of species’ coexistence, and species are 

consequently functionally and phylogenetically differentiated (Kraft et al. 2008). Conversely, 

functional or phylogenetic clustering may indicate “environmental filtering”, where abiotic 

filters restrict the range of traits that may be displayed in a community, and consequently 

coexisting species are more similar than expected by chance (Mouillot et al. 2007) (Figure 1.2). 

Environmental filtering should also manifest as higher than expected functional and 

phylogenetic turnover with increasing environmental divergence between sites (Siefert et al. 

2013). Chapter 3 uses a functional and phylogenetic approach to examine the evidence for each 

of these processes occurring in birds along an elevational gradient.  

While a focus on functional diversity may help us to understand community assembly processes 

in the broad sense, these processes alone may overlook some of the more specific mechanisms 

determining species occurrences at different sites. For example, abiotic environmental filtering 

Box 1. Definitions  

Functional Trait A morphological, behavioural or 

ecological feature of an organism that may be 

used to define its ecological role within a 

community. 

Functional Diversity The diversity of functional 

traits present in a community, forming a measure 

of the range of ecological niches that are filled. As 

such, it reflects the ability of a community to 

maintain its ability to function effectively, for 

example in the face of external pressures. 

Phylogenetic Diversity A measure of diversity  

that incorporates evolutionary relationships by 

accounting for phylogenetic distance between 

species. It reflects the taxonomic uniqueness 

present within a community, and its ability to 

produce evolutionarily unique solutions in 

response to change.  
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may be mediated through biotic factors such as habitat complexity and availability of food 

resources (Lebrija-Trejos et al. 2010, Best and Stachowicz 2014, Hanz et al. 2019). In a previous 

study along an elevational gradient in New Guinea, Sam et al. (2019) found insectivorous bird 

diversity to be driven primarily by food resources and habitat complexity. Frugivorous bird 

diversity, meanwhile, was shown to be related to fruit abundance on Mt Kilimanjaro (Ferger et 

al. 2014). When considering turnover between communities, a focus on individual traits (if they 

are related to ecosystem processes such as intertrophic interactions) has the potential to reveal 

information about the processes driving changes in community composition between sites. 

Chapters 4 and 5 use a trait-based approach to focus specifically on the relationships between 

frugivorous birds and fruits along an elevational gradient.  

 

 

Figure 1.2. Framework detailing the relationship between functional diversity and community assembly 

processes. When environmental filtering is stronger than niche differentiation, functional redundancy is 

high in the resultant assemblage and functional diversity increases slowly relative to species richness. If 

niche differentiation is stronger than environmental filtering, functional diversity increases more rapidly 

relative to species richness as species display a wide range of functional traits. Dashed lines represent 

intermediate cases. Figure adapted from Mouillot et al. (2007). Bird illustrations by John C Anderton and 

Szabolcs Kókay from Pratt and Beehler (2015).  

Environmental filtering 

Niche differentiation 
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1.4 Frugivory and seed dispersal  

The need for plants to disperse their seeds has intrigued biologists for many decades (Ridley 

1930). While there is still debate on the evolutionary mechanisms behind seed dispersal, it likely 

confers a combination of benefits to plants including escape from density-dependent effects of 

natural enemies of the parent plant (Janzen 1970, Connell 1971), avoidance of resource 

competition from parents or siblings (Howe and Smallwood 1982) and the colonisation of sites 

with conditions favourable to seedling growth and survival (Wenny and Levey 1998, Wenny 

2001). In turn seed dispersal is a key component in determining community assembly of plants 

(Chave et al. 2002, Levin et al. 2003). While plants have evolved numerous strategies to disperse 

their seeds, one of the most effective has proven to be through the evolution of fleshy fruits 

which are ingested by animals, allowing the dispersal of seeds via defecation or regurgitation. 

This mutualism dates at least as far back as the Carboniferous Period, from which there is 

evidence of cycad-like plants bearing fleshy fruits, presumably for dispersal by early reptiles 

(Howe 1986). Today seed dispersal by frugivores is widespread across the globe, although it is 

particularly prevalent in tropical regions (Snow 1981). Around 70 – 90% of tropical tree species 

are estimated to bear fleshy fruits that are primarily dispersed by vertebrate frugivores (Muller-

Landau and Hardesty 2005).  

Fruits have adapted to dispersal by a number of animal vectors including reptiles (Blake et al. 

2012), fish (Galetti et al. 2008) and even insects (Hanzawa et al. 1988), but by far the majority 

of fleshy-fruited seed dispersal is by birds and mammals (Howe and Smallwood 1982). These 

two taxa clearly differ in the way they forage for and consume fruit. Notwithstanding the 

primates, terrestrial mammals are generally nocturnal or crepuscular foragers and use primarily 

olfactory cues when searching for food. Meanwhile the majority of birds possess acute colour 

vision and a poor sense of smell (Roper 1999), and feed during the day. Additionally, mammals 

have teeth and masticatory apparatus enabling them to chew fruits and consume them 

piecemeal, while birds do not (Lomáscolo et al. 2008). Other than pecking, a bird’s only option 

when feeding on a fruit is to attempt to swallow it whole (Alcántara and Rey 2003). Birds (and 

bats) must also consider seed burden – the aerodynamic constraints imposed upon them by 

consuming seed “ballast” which is carried in the gut but does not provide any energy gain (Snow 

1971).  

It is logical to conclude that traits of the fruits consumed by mammals and birds should reflect 

the differing sensory abilities and physiological capabilities of each taxon. For example, we might 

expect mammals to preferentially feed on large fruits that provide maximum nutritional rewards 

for a given searching effort, and strong-smelling fruits that are easily located by olfaction. As 
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most mammals lack acute colour vision (Jacobs 1993), colour constraints are unlikely to be 

important for mammal-dispersed fruits. Therefore colours that impose fewer physical 

constraints on plants and are less attractive to seed predators are likely to be selected for 

(Schaefer and Schmidt 2004, Valenta et al. 2015, Valenta et al. 2018). Meanwhile, birds are likely 

to choose brightly coloured fruits that are easily visible against a background of foliage (Schaefer 

and Schmidt 2004). The limitations posed by gape size and limited ability to handle fruits should 

also affect the size of fruits selected by birds, imposing a maximum diameter for fruits selected 

by birds (Wheelwright 1985). According to the dispersal syndrome hypothesis (Van der Pijl 1969, 

Janson 1983, Gautier-Hion et al. 1985), fruit traits have evolved according to dispersal by 

different frugivore guilds. Thus we should expect to observe correlated evolution of 

combinations of relevant fruit traits in separate clades. However, some doubt exists on this 

adaptive hypothesis (Fischer and Chapman 1993). An alternative non-adaptive hypothesis 

suggests frugivore preferences match pre-existing combinations of fruit traits by a process called 

“ecological fitting” (Lomáscolo et al. 2008). Chapter 4 examines the evidence for adaptation of 

fruits to dispersal by birds and mammals.  

While between-guild comparisons are perhaps the most obvious way to explore the relationship 

between fruit and frugivore traits, differing morphological constraints and preferences within a 

single frugivore guild may also be important. One notable example that has already been 

mentioned is that of gape limitation in frugivorous birds. Wheelwright (1985) noted that the 

gape size of birds should have predictable effects on the sizes of fruits selected by them, as had 

previously been observed in certain predation interactions (Zaret 1980). He found that the mean 

and maximum size of fruits consumed by birds correlated with their gape size, while minimum 

fruit size did not – large-gaped birds still fed on small fruits (Figure 1.3). Such a trend has 

important implications for the evolutionary pressures on fruit size. It suggests that plants 

maximise their probability of dispersal by producing small fruits which are available to a wider 

range of avian dispersers than larger fruits. However, germination and seedling survival rates 

may be higher for large seeds (Foster 1986, Alcántara and Rey 2003), which of course require 

correspondingly large fruits. This means fruit size could face an evolutionary trade-off between 

seed dispersal likelihood and survivability (Wotton and Kelly 2011).  

If gape limitation is an important factor in determining which birds are able to feed on which 

fruits, then we might expect to see a correspondence between patterns of fruit size and 

frugivore gape size in a spatial context (Brodie 2017). Since Diamond's (1973) observations on 

the sizes of fruits preferred by different-sized New Guinean fruit doves, a number of studies 

have explored the concept of “trait matching” – that is, the covariation in functional trait 
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Figure 1.3. The relationship between gape width and sizes of fruits consumed by birds in the lower 

montane forests of Monteverde, Costa Rica. a) Maximal and minimal diameters of fruits included in the 

diets of 32 bird species are represented by black and grey circles respectively. b) Mean diameters of 

fruits consumed by birds are represented +/- 1 standard deviation (represented by vertical lines). Figure 

adapted from Wheelwright (1985).  

 

diversities across trophic levels (Dehling et al. 2014). While this concept has indeed been 

explored in relation to fruits and frugivores across environmental gradients (Burns 2013, Dehling 

et al. 2014, Bender et al. 2018), such an approach cannot tease apart the evolutionary 

mechanisms that might have led to the observed complementarity of traits. For example, we 

should expect to see preferences for particular fruit traits based on the bird community found 

at each site: if a site is characterised by having large fruits and large-gaped birds, are large fruits 

preferentially chosen here? An experimental approach may be necessary to resolve this 

question. As previously discussed, tropical elevational gradients are often characterised by high 

beta-diversity, which provides the potential for rapid changes in trait values with changing 

elevation. Chapter 5 explores whether elevational trends in fruit size and gape size are closely 

related by testing fruit trait preferences of bird communities at different elevations. New 

Guinea, which is characterised by a prominent avian frugivore guild (Pratt and Beehler 2015),  

a) 

b) 
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makes an ideal study location to answer this question.  

 

1.5 New Guinea and its avifauna  

The tropical island of New Guinea is located in the south-western Pacific Ocean to the north of 

Australia and east of the Malay Archipelago. With an area of approximately 786,000 km2 it is the 

world’s second largest island (after Greenland) and is also its highest, reaching almost 5,000 m 

above sea level at its highest point. Politically divided between the Indonesian states of Papua 

and West Papua to the west and the nation of Papua New Guinea to the east, geographically its 

major division is roughly perpendicular to this. A rugged central mountain range extends 1,900 

km west to east across the length of the island, bisecting lowland alluvial plains, broad river 

basins and smaller isolated mountain ranges to the north and south (Figure 1.1a). The island 

owes its topographical diversity in part to its complex geological history: originally part of the 

supercontinent of Gondwanaland and occupying the northern part of the Australian tectonic 

plate, New Guinea took its current mountainous form relatively recently during the Cenozoic Era 

with the convergence of the Australian and Pacific plates (Dow 1977, Baldwin et al. 2012). Its 

geological youth is today indicated by the presence of steep v-shaped valleys, cliffs, waterfalls 

and frequent landslides (Pieters 1982).  

New Guinea’s geological connection with Australia has had a strong influence on the fauna of 

the island. While the two landmasses are today separated by the shallow Arafura Sea and Torres 

Strait, they were connected as recently as 8,000 years ago before land bridges were submerged 

by rising sea levels after the last Pleistocene glaciation (Hudjashov et al. 2007). As a result of 

their shared history and frequent faunal exchange during glacial periods, New Guinea and 

Australia share a relatively large proportion of their vertebrate taxa, at least at broad taxonomic 

levels. In contrast, deep ocean channels to the west have maintained a permanent separation 

between Australia-New Guinea (termed “Sahul”) and South East Asian landmasses (termed 

“Sunda”) even during glacial maximum periods of low sea levels (Figure 1.4). As was noted by 

the 19th Century naturalist Alfred Russel Wallace (1860), this separation has led to relatively 

distinct faunas occurring in the two regions. For example, most placental mammal orders such 

as primates, carnivores and artyodactyls are absent from New Guinea, while monotremes and 

marsupial orders such as Diprotodontia (kangaroos and wallabies) are absent in Asia. A similar 

pattern can be observed in birds: lacking common Asian families such as pheasants, 

woodpeckers, trogons and bulbuls, New Guinea instead houses birds-of-paradise, bowerbirds 

and honeyeaters (Pratt and Beehler 2015).  
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Figure 1.4. South East Asia, the Malay Archipelago, New Guinea and Australia, highlighting areas where 

the ocean floor is less than 25 m (dark grey), 40 m (mid grey) and 130 m below the surface (light grey). 

Sea levels during the last glacial maximum are estimated to be 120 – 135 m lower than today’s levels 

(Clark and Mix 2002), forming the landmasses of Sunda and Sahul. The region in between, sometimes 

termed “Wallacea”, is characterised by deeper waters that have provided barriers to dispersal even 

during glacial periods. Map adapted from CartoGIS Services, The Australian National University (2019).  

 

A lack of large and diurnal mammals in New Guinea means that birds perhaps take on a relatively 

more important ecological role here than in many other parts of the tropics. For example, 

ecological niches such as diurnal frugivory are almost exclusively filled by birds in New Guinea 

(Fischer and Chapman 1993), whereas in most parts of the tropics primates and in some cases 

ungulates would also typically occupy these roles. New Guinea’s notable diversity of ground-

feeding birds, including several species each of cassowaries, megapodes and ground pigeons, 

also indicates the radiation of birds into typically mammalian niches (Pratt and Beehler 2015). 

All told, this makes New Guinea a unique and highly appropriate place in which to study birds 

L -25 
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and their ecological roles. This uniqueness is emphasised by a high level of endemism, despite 

the close biogeographical links with Australia. Of a total of 769 species and 110 families recorded 

in New Guinea, over 350 species and seven families – the satinbirds (Cnemophilidae), 

berrypeckers and longbills (Melanocharitidae), painted berrypeckers (Paramythiidae), 

berryhunters (Rhagologidae), ploughbills (Eulacestomatidae), ifrits (Ifritidae) and melampittas 

(Melampittidae) – are endemic (Beehler and Pratt 2016). Perhaps New Guinea’s most famous 

residents, the aforementioned birds-of-paradise (Paradisaeidae) are mostly confined here as 

well, with 36 of 41 species endemic to New Guinea and its surrounding islands.  

The unique and often spectacular nature of New Guinea’s bird fauna has long attracted 

naturalists to the island. Since the days of Wallace, a number of prominent figures, such as Ernst 

Mayr in the 1930s-50s and Jared Diamond from the 1970s-present have made important 

contributions to ecology and evolutionary biology based in part on their expeditions to New 

Guinea. However, compared to most other parts of the tropics it remains relatively 

understudied. This is probably due mainly to the difficulties involved in working there, with steep 

terrain and a lack of infrastructure such as roads making access difficult and preventing the 

establishment of major field centres for international research.  

The majority of bird species in New Guinea are forest specialists, inhabiting the broad swathe of 

rainforest and cloud forest that covers much of the island. Although it has come under increasing 

pressure in recent years from commercial logging, agriculture and extractive industries 

(Laurance et al. 2011, Bryan and Shearman 2015, Acosta and Curt 2019), New Guinean forests 

have so far escaped the large-scale destruction and degradation seen on similarly sized tropical 

islands such as Borneo, Sumatra and Madagascar. Consequently over 80% of its original forest 

remains intact, covering around 571,000 km2 or 72.7% of the total land area of the island (Abood 

et al. 2015, Bryan and Shearman 2015). This represents the third largest area of contiguous 

tropical forest in the world, after the Amazon and Congo basins. As a result of its relatively stable 

history, very few birds in New Guinea are considered threatened: the IUCN lists only 3 species 

as endangered and another 21 as vulnerable (http://www.iucnredlist.org), while no species are 

known to have gone extinct historically (Pratt and Beehler 2015). However, a lack of protected 

areas coupled with high rates of illegal logging and poor governance in both Indonesia and Papua 

New Guinea makes the future less secure for New Guinea’s avifauna (Laurance et al. 2011).  

 

1.6 Aims of this thesis  

In this thesis, I attempt to understand the processes responsible for driving avian alpha- and  
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beta-diversity patterns within a lowland rainforest site and along a continuously forested 

elevational gradient, while especially focusing on frugivorous birds and their functional 

relationships with fruit traits. To achieve this goal I use data collected during three separate field 

expeditions to Papua New Guinea from 2014 – 2017. The findings represent an original 

contribution to knowledge on various aspects of bird and plant diversity, as detailed below.  

In Chapter 2, I investigate woody plant and bird alpha- and beta-diversity across a 10,000 

hectare area of lowland rainforest – the Wanang Conservation Area (WCA). The site is located 

in the Madang Province of Papua New Guinea, in the Ramu river basin to the north of the island’s 

Central Range (Figure 2.1). The chapter focuses specifically on the topic of spatial scaling of 

diversity estimates for woody plants and birds. It asks to what extent a 50 hectare Forest 

Dynamics Plot located within the conservation area is able to provide a representation of the 

broader scale diversity across a relatively climatically homogenous region of rainforest, focusing 

on differences in the patterns observed between the two groups.  

Chapters 3 – 5 explore aspects of avian alpha- and beta-diversity along an elevational gradient 

located on the eastern slopes of Mt Wilhelm, at the northern edge of the Central Range (Figure 

3.1). The gradient is located close to the WCA and spans vertically from a similar elevation (200 

m asl) up to the treeline at 3700 m asl (Mt Wilhelm itself is Papua New Guinea’s highest 

mountain reaching a total height of 4,509 m). Study sites are separated by 500 m in elevation, 

giving a total of eight sites, the lower six of which (200 – 2,700 m) are used in this study. The 

highest two sites were omitted for logistical reasons. Chapter 3 focuses on bird diversity 

patterns with changing elevation along the gradient. It uses both functional trait and 

phylogenetic approaches in comparison with species patterns, in order to understand the 

processes responsible for structuring bird communities at different elevations.  

Chapters 4 and 5 then focus on a specific feeding guild (frugivores) and its functional relationship 

with its food source (fruits). Chapter 4 quantifies a number of fruit traits related to frugivory 

from fruiting plants surveyed along the gradient – size, proportion of seeds to pulp, colour and 

presentation – and assesses elevational changes in these traits. It then investigates the evidence 

for “fruit syndromes” – correlated evolution of fruit traits that indicate adaptation to different 

frugivore guilds. Chapter 5 focuses specifically on avian frugivory, using an experimental 

approach with artificial fruits. It assesses avian attack rates on artificial fruits of different sizes 

and colours across three elevations, in an attempt to answer the question: do birds select fruits 

in accordance with real fruit traits (size, colour) and bird traits (gape size) across the gradient? 

The answer to this question may reveal whether birds are able to act as a selection pressure on 

fruit traits across elevations.  
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Finally, Chapter 6 summarises the findings of each of the previous four chapters, before 

discussing the findings within a broader ecological context and suggesting avenues for further 

research. The implications of these findings are subsequently explored in the context of New 

Guinea and the conservation of its rainforests.  
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CHAPTER 2  

 

Spatial scaling of plant and bird diversity from 50 to 10,000 ha 

in a lowland tropical rainforest 

Chapter 2  

Abstract  

While there exist numerous studies of diversity patterns both within local communities and on 

a regional scale, the intermediate scale of tens to thousands of km2 is often neglected. Here we 

demonstrate whether woody plant and bird diversity measured within a 50 ha area provides an 

accurate representation of the surrounding 10,000 ha of forest in a lowland rainforest. Woody 

plants ≥ 5cm DBH (diameter at breast height) and bird communities were surveyed at two spatial 

scales: inside a 50 ha ForestGEO plot and in the surrounding 10,000 ha Wanang Conservation 

Area in northern Papua New Guinea. Plant surveys used 20 x 20 m plots and bird surveys used 

point counts. For each taxon, species richness was compared across the spatial scales using 

rarefaction. Beta-diversity was calculated across the pooled datasets using Chao-Jaccard and 

Bray-Curtis dissimilarity indices. Woody plant species richness was lower within 50 ha than 

10,000 ha, even when surveyed with identical sampling effort. In contrast, bird communities 

exhibited identical diversity and species accumulation patterns. The similarity in species 

composition (Chao-Jaccard) remained constant while the similarity in dominance structure 

(Bray-Curtis) decreased with increased distance between samples across the range from < 1 to 

13.8 km for both plant and bird communities. The similarity decay was more rapid in plants, but 

in both cases was slow. In summary, we reveal low to zero beta diversity on the spatial scale 

from 1 to 14 km in a lowland tropical forest, particularly for birds but also for woody plants. A 

50 ha plot provided a highly accurate representation of broader-scale diversity and community 

composition within 10,000 ha for birds, and a relatively good representation for woody plants. 

This suggests potential for wider generalization of data from ForestGEO plots that are almost 

always locally unreplicated, at least for those in lowland tropical forest.  

 

Key Words: Beta-diversity, community composition, dissimilarity, forest dynamics plot, lowland 

rainforest, rarefaction, spatial scale, species richness  
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2.1 Introduction  

Diversity patterns are scale-dependent (Willis and Whittaker 2002, Rahbek 2005, Jackson and 

Fahrig 2015), and various processes seem to determine diversity at different spatial scales 

(Rahbek and Graves 2001, Rahbek 2005, Reif et al. 2008). For example, Lennon et al. (2001) 

found that patterns of British bird species richness when measured at a scale of 10 km were 

statistically unrelated to those measured at a scale of 90 km. Inconsistency in methodologies 

make the study of diversity across spatial scales and taxa difficult (Whittaker et al. 2001, Barton 

et al. 2013) meaning the responses of different taxa to environmental heterogeneity have been 

little explored (Whittaker et al. 2001, Soininen et al. 2007, Barton et al. 2013). For instance, 

although the nature of the data obtained by surveys of plant and bird communities using 

vegetation plots and bird point counts respectively is essentially identical, comprising the list of 

all individuals from a defined area often between 0.05 and 1 ha, the two taxa are rarely studied 

simultaneously (but see Schulze et al. 2004).  

Forest dynamics plots provide an effective means of assessing long term changes in biodiversity 

patterns of vegetation mapped in a great detail but on a relatively small spatial scale of 15 – 50 

ha (Condit 1995). The Forest Global Earth Observatory (ForestGEO) now comprises a global 

network of such plots (Anderson-Teixeira et al. 2015). The comprehensive inventories of all 

woody plants ≥1 cm diameter at breast height (DBH) in these plots quantify plant species 

diversity in a standardised manner for forests across the tropics (Ashton 1995, Condit 1998). The 

detailed spatially explicit information on plants in forest dynamics plots presents an opportunity 

for complementary surveys of animal communities, including birds, which has not been used so 

far. Interestingly, most of the ForestGEO plots lack complementary estimates of plant diversity 

for the surrounding wider areas of 10 – 100 km2, relying thus on extrapolation of species 

diversity patterns across wider spatial scales (Kochummen and LaFrankie 1990, Lee et al. 2002, 

Kenfack et al. 2007). Systematic quantitative surveys of biodiversity within tens to hundreds of 

km2 of relatively homogeneous habitats, such as lowland rainforests, are rare, compared to local 

community data on the one hand and data on regional floras and faunas on the other (e.g. 

Novotny et al. 2006, Basset et al. 2012).  

This study aims to fill two gaps in rainforest biodiversity studies by (i) providing detailed spatially-

explicit data on community composition of birds within a 50 ha ForestGEO plot, thus matching 

similarly detailed information on plants, and (ii) examining the plant and bird data from the 50ha 

plot in the context of the surrounding 10,000 ha of lowland rainforest, focusing on the alpha and 

beta diversity patterns. Evidence for the level of beta-diversity in lowland tropical forest systems 

in particular is varied and often conflicting (Condit et al. 2002, Novotny et al. 2007, Kraft et al. 
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2011), with little consensus over whether such patterns are driven primarily by environmental 

factors, spatial factors such as dispersal limitation or by local stochastic processes (Veech and 

Crist 2007, Kraft et al. 2011, De Cáceres et al. 2012, Myers et al. 2013, Yang et al. 2015). By 

including data from both plants and birds and thus incorporating a broad trophic range, this 

study aims to provide a more complete picture of spatial diversity patterns than those produced 

by studies focusing on plants alone. Such studies currently comprise the vast majority of data 

from forest dynamics plots (e.g. Hubbell and Foster 1983, Condit et al. 1996, Plotkin et al. 2001, 

Lee et al. 2002, Volkov et al. 2005, 2009, Kenfack et al. 2007, Metz 2012, Chen et al. 2016). As 

such, this study is additionally the first to our knowledge to specifically assess the suitability of 

forest dynamics plots as a monitoring tool for assessing bird diversity.  

 

2.2 Methods  

2.2.1 Study site  

The Wanang Conservation Area (WCA) comprises 10,770 ha of primary lowland rainforest in the 

Middle Ramu region of Madang Province, northern Papua New Guinea. The forest is classified 

as tropical, wet mixed evergreen (Paijmans 1976). The climate, with an average temperature of 

25.8˚c and annual precipitation of 4,000 mm (Vincent et al. 2015), has a mild dry season from 

July to September. Although a lowland site, the topography is variable and comprises steep 

ridges separated by a network of streams and rivers. The sample sites range in elevation 

between 80 and 250 m above sea level (asl), encompassing the full topographical range of the 

WCA. The 50 ha forest dynamics plot (FDP), part of the global ForestGEO network (Anderson-

Teixeira et al. 2015), is located centrally within the WCA (Figure 2.1), and comprises a 1,000 x 

500 m rectangle divided into 1,250 individual 20 x 20 m plots. Its location was selected in part 

to encompass as fully as possible the topographical range of the WCA, with elevation ranging 

from 90 to 180 m asl.  

2.2.2 Vegetation surveys  

Plants in the FDP were surveyed using a standard methodology for ForestGEO plots (see 

Anderson-Teixeira et al. 2015). That is, all free-standing trees with DBH ≥ 1cm were tagged, 

mapped, measured and identified to species level. Only woody plants ≥ 5 cm DBH were included 

in the present analysis. The WCA was surveyed by a regular grid comprising 43 sites 1.5 km apart, 

fitted to the conservation area using ArcGIS 10.02 (Figure 2.1). Each sample location included a 

single 20 x 20 m plot, mirroring the sample design of the FDP. All plant stems with DBH ≥ 5 cm 
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were measured and identified within each plot. Data collection took place from 4 October to 17 

December 2014 in the WCA and from 2010 to 2012 in the FDP. In addition to species 

composition, in each plot we collected data on canopy height, canopy closure, total tree basal 

area, number of stems and plot elevation. Canopy closure was calculated in Matlab version 

2015a (Mathworks 2015) by measuring the mean percentage cover of foliage in four canopy 

photos from each 20 x 20 m plot, using code developed by Korhonen & Heikkinen (2009) 

(Appendix Figure A2.1). In the field, sample points were located using GPS (Garmin GPSmap 62s).  

 

 

Figure 2.1. WCA map with 43 sampling locations and FDP represented by a rectangle adjacent to 

sampling location 13. Left and bottom insets display sampling design within WCA and FDP (respectively) 

for both woody plant and bird surveys and top left inset shows the geographic position of WCA within 

New Guinea Island. Bird surveys at sampling locations 1, 20 and 36 were omitted due to logistical 

constraints.  
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2.2.3 Bird surveys  

Bird surveys were based on point counts. The FDP was surveyed using a regular grid of 169 points 

separated by 80 m along the horizontal and vertical lines parallel to the plot boundaries (Figure 

2.1). Each point was used for one point count. Bird surveys in the WCA used the same 1.5 km 

grid as the vegetation surveys. 40 sample locations were sampled by eight point counts 

separated by 150 m, with the first point count being coterminous with the 20 x 20 m plot of the 

vegetation survey (Figure 2.1). This gave a total of 320 individual point counts.  

Point counts followed the same protocol for both sets of surveys. Counts took place between 

06.00 and 10.30 am, lasted 10 minutes and started after an interval of a few minutes following 

arrival at each point to minimise the effects of disturbance caused by arrival (Bibby et al. 2000). 

All individual birds seen or heard were recorded together with an estimate of their distance from 

the observer. Only birds estimated to be within 40 m of the observers were included in the 

analysis. In an effort to minimise multiple counts of the same individual, multiple conspecifics 

were recorded only if the observer could be sure they were different individuals (e.g. two birds 

singing simultaneously). Point counts were always conducted by two or three observers, one of 

whom was present across all surveys to minimize the effects of observer bias. During each point 

count, an audio recording was made using an Olympus LS-5 Linear PCM digital recorder. This 

enabled later identification of misidentified or poorly heard individuals. Field work took place 

from October 2014 to January 2015 in the WCA and from February to March 2015 in the FDP. 

Both surveys took place during the rainy season to minimise the effects of seasonal differences.  

2.2.4 Data analysis  

For both woody plants and birds, species richness for the FDP and WCA were compared using R 

version 3.4.2 (R Core Team 2013) and package iNEXT for rarefaction and extrapolation of species 

richness (Hsieh et al. 2016). For plants, 40 individual 20 x 20 m plots from within the FDP were 

selected to enable comparison of equivalent sampling effort with the WCA (Figure 2.1). Sample-

based rarefaction and extrapolation curves for both plant and bird datasets were created using 

Hill numbers (with q = 0), i.e. species richness unbiased by abundances of individual species 

(Chao et al. 2014). A bootstrap method based on 999 random permutations of the data enabled 

the construction of confidence intervals and comparison of overlap at the maximum point for 

which sampling effort was equal (40 samples for plants; 169 samples for birds). In addition, the 

Chao 1 richness estimator (Chao et al. 2005) was calculated for each dataset to give an estimated 

value of asymptotic species richness.  
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For analysis of both plant and bird beta-diversity, data from the FDP and WCA were pooled. 

Plant beta-diversity was analysed using the 40 20 x 20 m plots from the FDP selected for the 

species richness analysis, providing a range of pairwise distances between plots from 0.1 to 1.12 

km (Figure 2.1). When combined with the WCA plots, the maximum distance between plots was 

13.8 km. For birds, individual sample locations combining eight point counts each were used as 

data points for the WCA. This data structure was mirrored in the FDP by creating four sets of 

eight adjacent point counts (spaced 160 m apart; Figure 2.1) used as equivalents of the WCA 

sample locations. The Bray-Curtis dissimilarity index and the Chao variant of the Jaccard 

dissimilarity index were then calculated for each pair of sample locations, using the “vegan” 

package in R (Oksanen et al. 2018). The choice of one abundance-based index (Bray-Curtis) and 

one presence-absence index (Chao-Jaccard) enabled us to explore the dominance effect by 

comparing the relative importance of common versus rare species in dictating overall 

community turnover. The community dissimilarity was correlated with distance by plotting the 

Bray-Curtis and Chao-Jaccard matrices against a between-site distance matrix, using a Mantel 

test (9999 permutations) with Pearson’s correlations.  

In order to determine the relative importance of spatial and environmental variables in 

determining woody plant and bird community composition, we used Canoco 5 (Smilauer and 

Leps 2014) to perform a Principal Coordinates of Neighbouring Matrices (PCNM) analysis using 

Canonical Correspondence Analysis (CCA) for the woody plant dataset and Redundancy Analysis 

(RDA) with forward selection for the bird community dataset.  Based on the length of the first 

Detrended Correspondence Analysis axis, Canoco 5 recommends either a unimodal (CCA) or 

linear (RDA) method. The PCNM approach enabled us to separate the effect of space predictors 

(represented by spatial eigenfunctions corresponding to spatial relationships among the 

sampling sites) from the effect of primary (environmental) predictors (Legendre and Legendre 

2012). The analysis included nine steps: primary predictor test, primary predictor selection by 

CCA, principal coordinate analysis (PCoA), PCNM for all predictors, PCNM selection, spatial 

effects analysis, primary predictor effects analysis, joint effects analysis and removal of spatial 

effects (Smilauer and Leps 2014). Elevation of vegetation plots was tested as the environmental 

primary predictor of woody plant composition. In the case of bird community composition we 

included the following potential predictors in the analysis: canopy closure, tree basal area, total 

DBH of small (5 – 10 cm DBH) and large stems (> 40 cm DBH), diversity of trees (Simpson Index) 

and elevation of sampling location. Elevation was averaged over eight sample points for a given 

sampling location.  
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Figure 2.2. Woody plant (a) and bird (b) species richness represented by rarefaction curves for WCA 

(black triangle) and FDP (black circle). Solid lines show interpolated rarefaction curves. Dashed lines 

represent extrapolated rarefactions exceeding our sampling effort. Shaded areas represent ± 95% 

confidence intervals. Species accumulation was calculated for plants across 20 x 20 m botanical plots, 

for a total of 43 (WCA) and 40 (FDP), and for birds by individual point count for a total of 320 (WCA) and 

169 (FDP) points.  

 

2.3 Results  

2.3.1 Species richness of woody plant community 

We recorded a total of 4,060 individual woody plants ≥ 5 cm DBH, representing 379 species, 

across both surveys. A total of 2,119 individual woody plants ≥ 5 cm DBH were recorded across 

the 43 sample locations of the WCA survey, representing a total of 317 species. The 40 plots 

taken from the FDP survey contained 1,941 individual woody plants ≥ 5 cm DBH from 279 

species.  A total of 217 species (57.3%) were present in both surveys. 68.5% of species and 90% 

of individuals found in the WCA were also present in the FDP, while 77.8% of species and 94.1% 

of individuals found in the FDP were present in the WCA. The rarefaction curves from both 

surveys do not appear to approach an asymptote, suggesting greater sampling effort is 

necessary in order to achieve accurate species richness estimates (Figure 2.2). Nevertheless, the 

Chao 1 richness indicator estimated asymptotic species richness values of 403 (WCA) and 339.1 

(FDP). From observed and extrapolated species richness (Figure 2.2) a clear separation can be 

observed between species rarefaction curves for the two surveys. The lack of an overlap of 95% 

confidence intervals for the plant data indicates a significantly higher species richness across the 

WCA than in the FDP. However, despite the difference in species richness, woody plants from 

the two surveys show very similar dominance structure patterns (Figure 2.3).  

 

(a) (b) 
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Figure 2.3. Woody plant (a) and bird (b) rank dominance for WCA (dashed line) and FDP (solid line). 

Curves show the percentage of all individuals represented by each species. N (plants) = 317 species 

(WCA) and 279 species (FDP). N (birds) = 86 species (WCA) and 82 species (FDP).  

 

The results described above are supported by a comparison of the WCA dataset (40 plots) and 

the full FDP dataset (1,250 plots). The total species richness (452 species) in the latter dataset 

covering the entirety of the FDP is higher due to a strikingly more intense sampling effort. 

Nevertheless, the WCA dataset still comprises 53 (16.7%) unique species (7.3% of individuals) 

that did not occur in the full FDP dataset.  

2.3.2 Species richness of bird community  

We recorded a total of 6,389 individual birds of 93 species across both surveys. This included 

4,976 individuals of 86 species from the 320 point counts in the WCA and 1,420 individuals of 

82 species from the 169 point counts in the FDP. Community composition was similar between 

the two surveys. A total of 79 species (84.9%) were present in both surveys. 91.9% of species 

and 99% of individuals from the WCA were also present in the FDP, while 96.3% of species and 

99.6% of individuals found in the FDP were present in the WCA. In contrast to plants, rarefaction 

curves showed no significant difference between the two datasets (95% CI) for 169 point counts, 

the highest sample size available for both WCA and FDP (Figure 2.2). This overlap persisted even 

(a) 

(b) 
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when using 84% confidence intervals (Appendix Figure A2.2), a technique which has been shown 

to robustly mimic 0.05 pairwise statistical tests when comparing species richness values 

(MacGregor-Fors and Payton 2013). Moreover, unlike woody plants, rarefaction curves for both 

bird survey datasets closely approach an asymptote (Figure 2.2). Extrapolation using the Chao 1 

richness indicator produced estimated asymptotic species richness values of 91 (WCA) and 83.9 

(FDP). Species rank abundance curves (Figure 2.3) are similar in shape for the two surveys, 

although the most common species represented a higher proportion of records at WCA (Pitohui 

kirhocephalus, 10.9% of records) than the FDP (Meliphaga sp., 7.6%).  

 

 

Figure 2.4. Pair-wise relationships of beta diversity indices and geographical distances between sampling 

sites. The relationship is shown for woody plants (a, b) and birds (c, d). We used two dissimilarity 

indices: Chao-Jaccard (a, c) and Bray-Curtis (b, d). Linear approximation with shaded area representing 

standard error was used for significant relationships (Mantel test, p < 0.05).  

 

2.3.3 Beta-diversity  

We found a non-significant (although marginal) relationship between pairwise distance and 

dissimilarity in plant community composition when measured using the Chao-Jaccard 
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dissimilarity index (Mantel test, 9999 permutations, r = 0.09, p = 0.07; Figure 2.4a). When using 

the Bray-Curtis index, the dissimilarity of plant communities significantly increased with 

geographic distance (Mantel test, 9999 permutations, Mantel r = 0.14, p = 0.03; Figure 2.4b). 

Similarly, when using the Chao-Jaccard dissimilarity estimator, we did not record a significant 

relationship between bird community dissimilarity and inter-site distance across the pooled 

WCA/FDP sample locations (Mantel test, 9999 permutations, Mantel r = 0.03, p = 0.3; Figure 

2.4c). However, measuring beta diversity with the Bray-Curtis index did show a positive 

relationship between community dissimilarity and distance (Mantel test, 9999 permutations, r 

= 0.13, p = 0.03; Figure 2.4d).  

 

 

Figure 2.5. Canonical correspondence analysis (CCA) ordination diagram showing composition of woody 

plants (centroids with plant species codes) and influence of elevation as a primary predictor after the 

effect of space was filtered out (total variation = 10.079, axis 1 eigenvalue = 0.236, axis 2 eigenvalue = 

0.195). The diagram displays 50 species with the highest fit value. Elevation was positively correlated 

with the first ordination axis (correlation coefficient = 0.43) and negatively correlated with the second 

ordination axis (-0.36). Species optima of several woody plant species (e.g. Callicarpa pentandra, Ficus 

arfakensis, Ficus variegata and Melicope elleryana) were found in plots located at higher elevations, i.e. 

on ridges. Other species such as Drypetes lasiogynoides, Ficus drupacea, Gymnacranthera paniculata, 

Pometia pinnata and Prunus schlechteri responded negatively to elevation and tended to occur more in 

valleys. Full species names for the species codes displayed are provided in Appendix Table A2.1.  
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2.3.4 Effect of environmental variables  

A significant proportion of variation in woody plant species composition was explained by 

elevation of sampling locations (CCA; F = 1.6, p < 0.01, 22% of explained variation; Figure 2.5). 

Spatial structure of sampling locations, however, acounted for larger proportion of explained 

variation (77.1%). The primary (elevation) and space predictors shared 0.9% of explained 

variation and together they explained 9% of the total variation.  

 

 

Figure 2.6.  Redundancy analysis (RDA) ordination diagram showing composition of bird community 

(species arrows) in relation to elevation and canopy closure after the effect of space was filtered out 

(total variation = 9792.023, axis 1 eigenvalue = 0.121, axis 2 eigenvalue = 0.042). The 40 species with the 

highest fit value are displayed. Canopy closure was positively correlated with first ordination axis 

(correlation coefficient 0.47) and negatively with second ordination axis (-0.56). Elevation was positively 

correlated with the second ordination axis (0.36) and less so with first ordination axis (0.25). Number of 

individual trees was also a significant predictor of bird composition, but omitted from this diagram for 

ease of viewing. Common species (e.g. Toxorhamphus novaguineae, Coracina boyeri, Cicinnurus regius 

and Ptilinopus coronulatus) had highest abundances in sampling locations of lower elevation. Leptocoma 

aspasia and Macropygia amboinensis on the contrary tended to be more abundant at sampling sites of 

higher elevation. Simultaneously, the analysis distinguished species that avoided dense sites with high 

canopy closure (e.g. Cacatua gallerita, Leptocoma aspasia, Lonchura tristissima, Tanysiptera galatea and 

Trichoglossus haematodus). The only species that preferered sites with high values of canopy closure 

were Gerygone palpebrosa and Symposiachrus guttula. Full species names for the species codes 

displayed are provided in Appendix Table A2.2.  
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Forward selection found canopy closure, number of individual trees within plots and elevation 

to be the significant primary predictors of bird community composition across the pooled 

datasets (RDA; canopy closure: F = 2.6, p < 0.01; number of trees: F = 2.0, p = 0.01, elevation: F 

= 2.0, p = 0.03; Figure 2.6). The primary predictors accounted for 40.3% of explained variation, 

whereas space accounted for 51.0% of explained variation (8.7% of explained variation was 

shared between primary and space predictors). All predictors explained 29.9% of the total 

variation. 

 

2.4 Discussion  

The scale-dependent nature of diversity patterns has long been recognised in the field of ecology 

(Arrhenius 1921, Connor and McCoy 1979, Shmida and Wilson 1985, Huston 1999, Gaston 2000, 

Rahbek 2005). Studies exploring this relationship tend to draw a distinction between “local” 

diversity, determined mostly by species niche differentiation and direct inter-specific 

interactions, and “regional” diversity determined by species pools and evolutionary dynamics. 

However, few studies have focused on the species diversity patterns on spatial scales between 

these two extremes, within tens to thousands of km2 within relatively uniform habitats. This 

study relates diversity patterns of woody plants and birds on this intermediate scale, 

represented here by 100 km2 of a lowland rainforest, to the local patterns within a 50 ha forest 

plot.  

2.4.1 Differences between plants and birds  

The magnitude of bird species diversity and the rate of species accumulation with increasing 

sample size within the Wanang FDP was almost perfectly mirrored by that within the 10,000 ha 

WCA. The overlap in species composition between the data sets from 50 ha and 10,000 ha was 

also very high, suggesting that for bird diversity the FDP is representative of the wider area. 

Conversely, plant species richness was shown to be significantly higher across the WCA than 

within the selected plots from the FDP, although plant diversity within 50 ha still represented 

88% of the species richness within 10,000 ha.  

Bird species composition did not show any trends over the 10,000 ha area, i.e. there was no 

increase in Chao-Jaccard dissimilarity with increasing distance between the compared pairs of 

samples. However, there was a slow but significant change in the community composition taking 

account of species abundances with distance. This pattern, in combination with the relatively 

large proportion of variability in species composition explained by environmental variables, 

suggest that most of the variability in bird communities is fine-grained, within 1 km distances 
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and in response to vegetation structure and terrain. The contrasting results of the two indices 

suggest that any variability over the scale explored in this study is primarily driven by relatively 

few common species. Dissimilarity in woody plant species composition and community 

composition showed similar patterns to those of birds. Woody plants displayed a marginal but 

still non-significant increase in species dissimilarity with distance, while community dissimilarity 

accounting for species abundances was significant and similar to that of birds.  

The difference in compositional dissimilarity patterns between plants and birds, while subtle, 

may be attributable to different ecological processes acting on the two taxa at the scale explored 

in this study. It is posited that dispersal limitation is a significant causal factor of species 

aggregation in tropical forest trees (Seidler and Plotkin 2006, Myers et al. 2013), with non-animal 

dispersed tree species appearing particularly dispersal-limited across spatial scales (Seidler and 

Plotkin 2006, Beaudrot et al. 2013). Meanwhile, evidence from tropical forest dynamics plots 

points to abiotic environmental filtering also being an important driver of tropical tree species 

distributions, at least at small (< 1 km) scales (Plotkin et al. 2002). However, our results suggest 

that distance between sampling locations likely accounts for a larger proportion of variability in 

woody plant species composition than environmental characteristics. As a highly mobile taxon, 

birds are less restricted in their dispersal than plants (Soininen et al. 2007), especially in 

unfragmented lowland habitats such as the one studied here (Van Houtan et al. 2007). Although 

the results of this study suggest bird species composition is related to habitat structure at fine 

scales, it shows very little variation across the (relatively environmentally homogenous) broader 

scale of the WCA. Taken together, these observations suggest that dispersal limitation, perhaps 

driven primarily by limited dispersal of non-fleshy fruited (i.e. non-bird dispersed) trees, is a key 

factor in explaining the distribution differences observed between the two taxa. However, a 

current lack of studies on lowland rainforest beta-diversity at this scale limits scope for 

comparative assessment.  

2.4.2 Other studies  

On comparing two separate 100 ha plots located within a 650 ha reserve in the Ecuadorian 

Amazon, Blake (2007) found bird species composition to be almost identical between plots, the 

only major variation being in individual species’ distributions and abundances, reflecting small-

scale differences in habitat structure and availability between plots. In a broader analysis of plots 

across French Guiana, Thiollay (2002) found that despite having sparse local populations, the 

vast majority of bird species had wide range sizes, thus masking any general determinant of 
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community structure. Species turnover between sites was found to be 29% on average, for inter-

site distances 15 – 320 km, i.e. far higher than the distances analysed in this study.  

In an analysis of plant beta-diversity from sites across Panama, Ecuador and Peru, Condit et al. 

(2002) showed that in the range of pairwise distances represented here (approximately 0 – 15 

km), percentage of shared plant species between plots decreased in all three regions. In both 

Ecuador and Peru this decrease tended to level off beyond around 20 km, suggesting that in 

these cases local- and intermediate-scale variation plays a more important role in determining 

plant community composition than broader scale patterns. In a tropical dry forest in southern 

Mexico, Gallardo-Cruz et al. (2010) demonstrated a similar pattern of decreasing plant 

community similarity with increasing distance, in this case within a range of 0 – 6 km.  

2.4.3 Summary  

The results of this study and those described above highlight the varying importance of so-called 

intermediate-scale patterns in determining overall community composition for different taxa, 

and therefore in determining optimal sampling regimes. The relative homogeneity of bird 

communities across the WCA suggests that bird species richness and community composition 

across 10,000 ha of lowland rainforest may be accurately estimated by sampling within a 50 ha 

plot. This result is particularly notable given the lack of previous studies on birds in ForestGeo 

plots. Meanwhile, limiting plant surveys to 50 ha may miss a certain proportion of the broader 

community, due to the higher influence of local-scale variation on overall community 

composition in woody plants. However, the observed low beta-diversity of both woody plants 

and birds across the WCA provides support for the use of the ForestGeo Plot as a means of 

representing wider biodiversity for both taxa. Extending the study of intermediate-scale 

diversity patterns to important rainforest taxa such as insects will be necessary if we are to gain 

a fuller picture of biodiversity across spatial scales in lowland rainforests.  

 

  



 29 Chapter 3 

 

CHAPTER 3  

 

Comparing facets of avian alpha- and beta-diversity along a 

tropical elevational gradient provides insights into community 

assembly processes  

Chapter 3  

Abstract  

Elevational patterns of bird species diversity are relatively well-studied, although less is known 

about the effects of elevation on other aspects of avian diversity. Functional and phylogenetic 

diversity, when compared with species patterns, have the potential to reveal information about 

the processes shaping community assembly both within and between elevations. We collected 

species, trait and phylogenetic data for bird communities spanning a tropical elevational 

gradient to determine whether elevational trends in taxonomic alpha- and beta-diversity were 

reflected by functional and phylogenetic trends. We then used null model analyses in order to 

infer what these comparisons reveal about community assembly mechanisms at the within- and 

between-site scales. Functional and phylogenetic alpha-dispersion (defined as functional and 

phylogenetic diversity relative to species diversity) decreased unimodally with elevation, and 

were characterised by lower than expected values (indicative of environmental filtering of bird 

communities) at all but the lowest elevation. Meanwhile, increasing species turnover (beta-

diversity) with increasing distance between elevations was not mirrored by functional and 

phylogenetic turnover. Furthermore, functional and phylogenetic dissimilarity of bird 

communities were lower than expected for most between-site combinations. These results 

suggest that environmental filtering does not occur between elevations, and that the direct 

climatic effects of increasing elevation cannot alone account for the turnover observed in bird 

species communities. Indirect effects such as food availability may be more important. Finally, 

functional traits showed a strong phylogenetic signal, indicating that phylogenetic diversity may 

provide an effective proxy for functional diversity in the bird communities studied here.  

 

Key Words: Elevation, functional diversity, phylogenetic diversity, community assembly, beta-

diversity, birds, environmental filtering, niche differentiation, phylogenetic signal  
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3.1 Introduction  

The focus on species as the principal metric by which diversity is quantified has come under 

scrutiny in recent years (McGill et al. 2006, Kraft et al. 2008, Villéger et al. 2012). It is now 

recognised that adherence to taxonomic diversity alone may mask underlying information which 

could be more useful for ecosystem functioning – for example, the health of an ecosystem or its 

resilience in the face of change (Elmqvist et al. 2003, Petchey and Gaston 2006). Increased focus 

on functional and phylogenetic diversity has helped to broaden the general definition of 

diversity and encompass such ideas (e.g. Faith 1992, Petchey and Gaston 2002, 2006, Violle et 

al. 2007, Devictor et al. 2010, Meynard et al. 2011, Silva and Brandão 2014, Maire et al. 2015).  

Functional diversity may be defined as the diversity of morphological, physiological and 

ecological traits present in a community (Tilman 2001, Petchey and Gaston 2002, Devictor et al. 

2010). As such, it reflects the ability of a community to maintain its functional capacity in the 

face of external pressures, such as habitat degradation or climate change (Folke et al. 2004, 

Meynard et al. 2011). In contrast, phylogenetic diversity encompasses the evolutionary 

relationships within a community accounting for phylogenetic distance between species (Crozier 

1997, Hardy and Senterre 2007). It therefore reflects the evolutionary history and subsequent 

taxonomic uniqueness present within a community, and thus its ability to produce evolutionarily 

unique solutions in response to change (Forest et al. 2007, Meynard et al. 2011, Voskamp et al. 

2017). It is commonly assumed that phylogenetic diversity may provide a reliable proxy for 

ecosystem function. Indeed, it has been hypothesised that protecting phylogenetic diversity may 

act to preserve the effective functioning of ecosystems (Webb et al. 2002). However, several 

studies have found very weak or no evidence for such a correlation, making such an assumption 

risky (Swenson et al. 2012, Purschke et al. 2013, Mazel et al. 2018). One way of testing this 

assumption is by measuring the phylogenetic signal in trait data (Blomberg et al. 2003, 

Münkemüller et al. 2012). If functional traits are strongly phylogenetically conserved, the use of 

phylogenetic diversity as a proxy for functional diversity is justified (Webb et al. 2002, Cavender-

Bares et al. 2009, Swenson 2011, Baraloto et al. 2012). Such an approach could be useful in 

situations where functional trait values are not easily obtained or impossible to measure 

accurately, but where species’ phylogenetic relationships are known.  

An emerging area in which functional and phylogenetic diversity may prove especially useful is 

in disentangling the processes responsible for structuring of ecological communities (Kraft et al. 

2008). The relative importance of different deterministic (niche-based) and neutral community 

assembly processes has been a topic of ongoing debate in recent years (Hubbell 2001, McGill 

2003, Grime 2006, Thompson and Townsend 2006, Mouillot et al. 2007, Kraft et al. 2008, Vellend 
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et al. 2014). By contrasting taxonomic diversity patterns with those of phylogenetic and 

functional diversity, it is possible to make inferences about the relative importance of these 

processes in structuring communities (Mouillot et al. 2007, Emerson and Gillespie 2008, Kembel 

2009, Spasojevic and Suding 2012, Purschke et al. 2013). Two niche-based processes in particular 

have been inferred in this way by previous studies. One is niche differentiation or limiting 

similarity, which should manifest as functional over-dispersion due to competition between 

coexisting species (Stubbs and Wilson 2004, Kraft et al. 2008). Conversely, functional clustering 

or under-dispersion may occur as a consequence of environmental filtering, in which barriers 

imposed by the abiotic environment limit the range of traits that may be expressed within it 

(Maaß et al. 2015, Seymour et al. 2015).  

At the broader level, comparing patterns of taxonomic, functional and phylogenetic beta-

diversity along environmental gradients has been suggested as another means of revealing the 

contributions of neutral versus deterministic community assembly processes (Stegen and 

Hurlbert 2011, Swenson et al. 2011, Villéger et al. 2012). Higher than expected functional 

turnover relative to species turnover between sites is indicative of environmental filtering, as 

changes in underlying environmental conditions lead to directional functional responses 

(Villéger et al. 2012). Moreover, this effect should be stronger between more environmentally 

divergent sites. Therefore, along environmental gradients with steadily changing climatic 

conditions we should expect a positive functional distance–decay relationship to indicate the 

presence of deterministic environmental filtering (Siefert et al. 2013).  

The majority of the above mentioned studies are primarily concerned with plant and 

invertebrate communities. Meanwhile, comparatively little attention has been given to bird 

community assembly, particularly along elevational gradients (but see Dehling et al. 2014). Birds 

form an important functional component of tropical ecosystems, particularly in New Guinea 

where large predatory and seed-dispersing terrestrial mammals are largely absent (Mack 

1998a). While bird communities have been studied in the context of an elevational gradient in 

New Guinea (Sam and Koane 2014, Sam et al. 2019), little is known of the ecological mechanisms 

responsible for the observed community patterns along the elevational gradient and whether 

these processes vary with elevation. This knowledge will be important if we are to effectively 

understand mechanisms driving bird species distributions and taxonomic diversity patterns.  

This study proposes to measure taxonomic, phylogenetic and functional alpha- and beta-

diversity of birds along an elevational gradient in Papua New Guinea, in order to answer a 

number of questions: i) Do functional and phylogenetic trends correlate closely with taxonomic 

trends? ii) What do the differences in alpha- and beta-diversity patterns reveal about community 
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assembly processes acting along the gradient? iii) How closely are functional traits 

phylogenetically conserved? The choice of a tropical elevational gradient is well-suited to this 

task because tropical mountains are characterised by rapid turnover in climatic and 

environmental conditions within a relatively small area, as well as high overall species diversity. 

In combination, these factors produce an ideal environment in which to study the differences 

between taxonomic, phylogenetic and functional patterns both within and between elevations 

(Dehling et al. 2014).  

 

3.2 Methods  

3.2.1 Study site  

The study took place along the north-eastern slopes of Mt Wilhelm (4,509 m), in the northern 

watershed of the Central Range of Papua New Guinea (Figure 3.1). The study area, located in 

the Usino-Bundi district of southern Madang province, comprises six study sites separated by 

vertical intervals of 500 m ranging from 200 – 2,700 m above sea level (asl) (5o 44’ S, 145o 20’ E; 

5o 49’ S, 145o 09’ E). The sites form part of a complete elevational rainforest transect which 

continues up to the tree line at 3,700 m asl, spanning a total of 30 km and 3,500 m in elevation 

(Sam and Koane 2014, Sam et al. 2019) (the highest two sites were omitted from the present 

study for logistical reasons). The habitats within the surveyed sites could be described as lowland 

alluvial forest (200 m asl), foothill forest (700 and 1,200 m asl) and lower montane forest (2,200 

and 2,700 m asl) (Paijmans 1976). Average annual precipitation in 3,288 mm in the lowlands 

(200 m), rising to 4,400 mm at 3,700 m, with a distinct condensation zone around 2,200 and 

2,700 m (Sam et al. 2019). Mean annual temperature decreases from 24.9o C at 200 m to 14.3o 

C at 2,700 m at a near constant rate of 0.42o C per 100 vertical metres.  

3.2.2 Bird surveys  

Bird surveys took the form of point counts. At each elevation site, we surveyed a 2,250 m 

transect comprising 16 points on three separate days. Each point was separated by 150 m in 

order to avoid making multiple records of individual birds. Transects predominantly followed 

those of Sam et al. (2019), and were selected to represent a range of microhabitats found at 

each site (e.g. ridges, valleys and creeks) while minimising deviation from the elevation 

represented. Surveys began at sunrise (approximately 05.30 am) and were completed by 11.00 

am. Individual point counts lasted 15 minutes each, and commenced a few minutes after arriving 

at a point to reduce the effects of disturbance caused by arrival (Bibby et al. 2000). All birds 
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estimated to be seen or heard within a radius of 50 m were counted. To minimise multiple 

counts of one individual, we followed the protocol of Sam and Koane (2014): we only counted 

multiple conspecifics if two or more individuals could be heard singing simultaneously or from 

clearly different locations within a period of a few seconds. Point counts were always conducted 

by at least two observers. Points were located using Garmin GPSmap 62S handheld GPS units. 

Audio recordings of all point counts were made using an Olympus LS-5 Linear PCM digital 

recorder to enable later identification of any species not identified in the field. Point counts took 

place between February and July 2016.  

 

 

Figure 3.1. Map of the Mt Wilhelm elevational gradient in Papua New Guinea (red rectangle in insert), 

including the survey sites included in this study (200 – 2,700 m asl). Vegetation cover is displayed for a 2 

km wide buffer zone surrounding the transect line. Figure used with permission from Sam et al. (2019).  

 

3.2.3 Trait selection  

The selection of traits to use in bird functional diversity analyses is subjective and there is still 

little consensus over the “correct” suite of traits to include in order to adequately represent 

birds as a functional group. We selected traits to represent a balance between morphological 

and behavioural aspects of avian ecology and to provide proxy measurements for a wide range 

of ecological functions that birds provide (see Table 3.1). The original list of traits was longer 

than the final list included here (see Appendix 3.1). In order to reduce redundancy in the suite 
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of traits used, we compared trait values using Pearson’s correlations and removed any traits that 

showed values of positive or negative correlations higher than 0.7 (Appendix Figure A3.1).  

Bird morphological traits (mass, bill width, Kipp’s distance) for the species recorded were 

retrieved from a global database of avian functional traits (Pigot et al. in press). Additionally, a 

number of measurements were taken from museum specimens of birds collected from the Mt 

Wilhelm study sites themselves (Natural History Museum of Denmark, University of 

Copenhagen, March 2018), to ensure the trait values used adequately represented local 

assemblages. Traits related to feeding guild and diet used data from Sam et al. (2017), who 

analysed the diets of Mt Wilhelm bird species by using emetic tartar to induce regurgitation. In 

that study, food sources were broadly categorised into fruit, nectar, seeds, invertebrates and 

vertebrates, and their relative volumes in regurgitated material were used to categorise a 

primary and secondary (if present) food source for each species. Information on foraging 

substrate used by birds was taken from Pratt and Beehler (2015), and from our own 

observations. Using all sources stated above, we were able to obtain trait information on 184 

species (96% of species recorded by us and 65% of bird species so far detected from the Mt 

Wilhelm gradient).  

 

Table 3.1. Traits included in bird functional diversity analyses. Kipp’s distance is defined as the distance 
between the tip of the longest primary and the first secondary feather measured on the folded wing. Bill 
width is defined as the width at the anterior edge of the nostrils (Pigot et al. 2016). Categorical traits 
with a number of levels were summed to 1 for analyses; for example an obligate frugivore scored 1 for 
fruit and 0 for all other food types, while a bird with both fruit and nectar in its diet scored 0.5 for each 
and 0 for the other three food types.  

Trait Type Provides ecological information on:  

Mass  Continuous Range size and dispersal ability; resource quantity required 

Kipp's Distance  Continuous Flight performance; vertical niche within forest strata  

Bill Width  Continuous 

Dietary niche; type and size of food resource used  

Food Source  Fruit Categorical 

Nectar Categorical 

Seeds Categorical 

Invertebrates Categorical 

Vertebrates  Categorical 

Foraging Substrate  Water Categorical 

Vertical niche within forest strata; type of food resource used  

Ground Categorical 

Vegetation Categorical 

Air  Categorical 
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3.2.4 Phylogenetic information 

In order to assess phylogenetic information on the bird species recorded along the gradient, we 

used the BirdTree global avian phylogeny developed by Jetz et al. (2012). This project represents 

the first attempt to produce a complete phylogeny of all 9,993 known extant bird species 

(Rubolini et al. 2015, García-Navas et al. 2018) and is based on two backbone taxonomies: those 

produced by Ericson et al. (2006) and Hackett et al. (2008). We used the BirdTree online platform 

(http://birdtree.org) to obtain phylogenetic information on bird species from the Mt Wilhelm 

gradient by subsetting the global phylogeny to include only the species present in our dataset.  

3.2.5 Data analysis  

All analyses were performed in R version 3.5.2 (R Core Team 2013). Because we were not able 

to obtain trait information from 5 species and lacked phylogenetic information for a further 2 

species (Appendix Table A3.1), we subset our bird dataset to include only those species for which 

full trait and phylogenetic data were available. This subset was then used for all subsequent 

analyses using functional and phylogenetic data. The full dataset including all bird species was 

used only for calculating species alpha and beta-diversity.  

Fitting generalised linear models  

To test for changes in different variables with elevation, we created GLMs (variable ~ elevation) 

with selected error distributions. In each case we tested whether or not a polynomial 

relationship was significantly better than a linear relationship and refitted accordingly.  We then 

checked models for over-dispersion and again refitted if necessary. For each test we additionally 

performed a Shapiro-Wilk test of normality on residuals (Shapiro and Wilk 1965). If residuals did 

not conform to a normal distribution, we refitted the model with values transformed as x = ln(x 

+ 1). Finally, we performed significance tests based on the deviance between the null (~ 1) and 

final models.  

Species alpha- and beta-diversity  

Species alpha diversity was calculated as both total observed number of species (species 

richness) and using the Chao 1 richness estimator (Chao et al. 2005), which predicts asymptotic 

species richness given a hypothetical complete sampling effort. Species dissimilarity between 

elevations (beta-diversity) was calculated using the Bray-Curtis index between all possible 

elevation pairs, for a total of 15 pairwise comparisons. In addition, for each elevational pairwise 

comparison we separated beta-diversity into “nestedness” (loss of species between sites) and 
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“turnover” (replacement of species between sites) components using the “beta.pair.abund” 

function from the betapart package (Baselga et al. 2018).  

Changes in traits with elevation  

We calculated community weighed means (CWM) for each trait at every site and tested their 

relationship with elevation. Because Food Source and Foraging Substrate are categorical traits 

(Table 3.1), we calculated CWM for each of their levels, rescaled them to a relative value (the 

sum of all levels being equal to one) at each site, and subsequently tested the relationship of 

each level individually with elevation.  

Functional alpha-diversity  

Functional traits were first weighted such that categorical traits measured as a number of 

variables were not artificially inflated in importance (Laliberté and Legendre 2010). Gower’s 

distance (Gower 1971) was used to measure interspecific functional dissimilarity, as it has been 

shown to be tolerant of the inclusion of qualitative traits (Mouchet et al. 2008, Legendre and 

Legendre 2012). Using the function “gowdis” in the package FD (Laliberté et al. 2015), we 

created a species dissimilarity matrix from the species and trait datasets. Functional diversity 

was then calculated as Mean Pairwise Distance (MPD) within the community at each elevation 

(within-site MPD), using the “ses.mpd” function from the picante package (Kembel et al. 2010, 

2018). We performed a null model analysis to test changes of MPD while accounting for species 

richness. A null distribution of MPD values was created by randomizing the species names in the 

dissimilarity matrix 999 times, while maintaining species occupancy rates and species richness 

for all sites along the gradient. We then calculated the Standardised Effect Size (SES) which 

measures the relationship between observed and expected MPD values using the following 

formula: SES =
(VARo – VARs)

VARsd
 where VARo is the observed value, VARs the mean simulated value, 

and VARsd the standard deviation of all simulated values.  

Phylogenetic alpha-diversity  

We produced 1,000 Markov Chain Monte Carlo (MCMC) trees using the Hackett et al. (2008) 

taxonomic backbone, which is the most recent high-level avian taxonomy available (Voskamp et 

al. 2017). We then used the “MaxCladeCred” function from the phangorn package (Schliep 2011) 

to obtain a maximum clade credibility (MCC) tree – i.e. the single tree with the highest possible 

product of clade probabilities from the MCMC subset (García-Navas et al. 2018) (Appendix 

Figure A3.2). Next, we used the “cophenetic.phylo” function from the ape package (Paradis et 
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al. 2018) to convert the MCC tree into a dissimilarity matrix. From this point, we calculated 

within-site MPD and null model analyses in the same way as for functional trait data, but in this 

case “distance” represented phylogenetic rather than functional distance between species.  

We calculated all functional and phylogenetic analyses using two approaches: presence-absence 

weighted (in which each species provided a single data point for each trait) and abundance-

weighted (taking species’ relative abundances into account).  

Functional and phylogenetic beta-diversity  

In order to calculate functional and phylogenetic beta-diversity, we used the “comdist” function 

from the picante package to calculate MPD between all pairs of sites (between-site MPD). This 

enabled us to test for a possible functional or phylogenetic distance-decay relationship between 

sites. We calculated null model analyses and SES using the same methods as for functional and 

phylogenetic alpha-diversity. As above, all analyses were conducted using both presence-

absence weighted and abundance weighted data.  

Phylogenetic conservatism  

In order to detect any correlation between functional and phylogenetic patterns, we plotted the 

SES of functional diversity values of each site against that site’s SES for phylogenetic diversity. 

This was conducted for both within-site MPD and between-site MPD, to provide measures of 

phylogenetic conservatism at the scale of both alpha- and beta-diversity. Additionally, we used 

Blomberg’s K statistic (Blomberg et al. 2003) to test for the phylogenetic signal present in each 

of the three recorded continuous functional traits (body mass, bill width and Kipp’s distance), 

using the “multiPhylosignal” function in the picante package.  

 

3.3 Results  

We recorded a total of 5,245 individuals of 191 bird species across the six survey sites (Appendix 

Table A3.1). Observed species richness was very similar to that predicted by the Chao 1 richness 

estimator in all plots (Figure 3.2a), suggesting well sampled communities in all sites. The fitted 

model for species richness showed a decreasing trend with increasing elevation (GLMSpeciesDiversity: 

deviance = 12.62, DF = 1,4, p < 0.01; Figure 3.2b). Abundance-weighted diversity, measured 

using MPD, displayed unimodal and broadly decreasing trends with increasing elevation (Figure 

3.2b) for both functional (GLMFD: deviance = 0.003, DF = 2,3, p < 0.01) and phylogenetic diversity 

(GLMPD: deviance = 0.002, DF = 2,3, p < 0.01). Size-related traits, measured individually using 

CWMs, all showed unimodal decreasing trends with elevation (Figure 3.3, Appendix Table A3.2).  
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Figure 3.2. Overall bird alpha diversity patterns along the Mt Wilhelm elevational gradient. (a) 

Taxonomic diversity is represented as species richness (bars) and Chao 1 species richness estimates 

(squares; vertical lines represent 95% confidence intervals). Bars are divided into species unique to a site 

(dark grey) and those shared with at least one other elevation (light grey). (b) The relationship between 

species richness and elevation (left axis; blue line) is plotted alongside functional diversity (right axis, 

measured as within-site functional Mean Pairwise Distance; red line) and phylogenetic diversity (right 

axis, measured as phylogenetic MPD; green line). Grey bands represent 95% confidence intervals.  

 

 

Figure 3.3. Community weighted means (CWM) for each individual trait included in functional diversity 

analyses of Mt Wilhelm birds. Mean species mass (a), Kipp’s distance (b) and bill width (c) are 

represented by black circles, together with fitted line and 95% confidence intervals (represented by grey 

bands). Species diets show a significant elevational trend only for invertebrates (d). The only significant 

elevational trend in foraging strategy is a decrease in water-feeding birds with increasing elevation (e).  

a) b) c) 

d) e) 
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The proportion of insectivorous species increased with elevation (GLMFSinv: deviance = 0.16, DF 

= 1,4, p = 0.02). Foraging strategy showed little elevational variation (Figure 3.3, Appendix Table 

A3.2), with the only significant change being a decrease in aquatic-feeding birds with elevation 

(primarily attributable to a lack of kingfisher species occurring above 1,200 m, corresponding to 

a decrease in riparian habitat at higher elevations).  

Functional and phylogenetic diversity showed very similar trends with elevation after accounting 

for species richness (i.e. functional and phylogenetic dispersion) (Figure 3.4). Abundance-

weighted data in both cases show a general pattern of clustering, except at 200 m where both 

functional and phylogenetic diversity are similar to null expectations (Figure 3.4). Both patterns 

show the highest level of clustering at 1,700 m, and are significantly unimodal with elevation 

(GLMFD-SES: deviance = 6.71, DF = 2,3, p < 0.01 ; GLMPD-SES: deviance = 6.18, DF = 2,3, p < 0.01; 

Appendix Table A3.2). When considering presence-absence weighted data, the trend becomes 

significantly monotonically declining with elevation for both functional and phylogenetic 

dispersion (GLMFD-SES: deviance = 10.988, DF = 1,4 , p < 0.01 ; GLMPD-SES: deviance = 12.597, DF = 

1,4, p < 0.05; Appendix Table A3.2). In both functional and phylogenetic diversity, species were 

over-dispersed at 200 m and clustered only at the three highest elevations (Figure 3.4).  

 

 

Figure 3.4. Results of null model analyses showing bird functional (a) and phylogenetic (b) dispersion at 

each of the six survey sites. Black circles represent abundance weighted functional and phylogenetic 

dispersion (measured as standardised effect sizes of within-site MPD), with the fitted line displaying a 

unimodal decreasing trend with elevation. Grey circles represent functional and phylogenetic dispersion 

as above but presence-absence weighted – i.e. each species contributing equally to SES.MPD scores. 

Here the fitted line shows a monotonic decrease with elevation. SES values above the upper horizontal 

dotted lines indicate functional or phylogenetic over-dispersion (significantly higher than expected 

FD/PD given species diversity) while values below the lower dotted lines indicate significant functional 

or phylogenetic clustering (lower than expected FD/PD given species diversity).  
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Species beta-diversity showed a clear increase with increasing elevational distance between 

plots, which appears to be driven primarily by species turnover as opposed to nestedness (Figure 

3.5a), with  all relationships being significant (GLMBray-Curtis: F = 35.46, DF = 1,13, p < 0.01 ; 

GLMNestedness: F = 12.64, DF = 1,13, p < 0.01; GLMTunover: F = 32.78, DF = 1,13, p < 0.01; Appendix 

Table A3.2). In contrast, increasing elevational difference does not yield a significant increase in 

dissimilarity between plots for either functional (GLMFD-beta: deviance = 0.001, DF = 1,13, p = 0.07; 

Figure 3.5b) or phylogenetic data (GLMPD-beta: deviance = 0.001, DF = 1,13 , p = 0.06; Figure 3.5c). 

The lack of a distance-decay trend is also present in both functional and phylogenetic beta-

dispersion, represented by the SES of MPD between sites (GLMFD-betaSES: deviance = 2.50, DF = 

1,13, p = 0.21; GLMPD-betaSES: deviance = 1.70, DF = 1,13 p = 0.28; Appendix Figure A3.3, Appendix 

Table A3.2). A general trend of functional and phylogenetic clustering between sites is also 

apparent, with 10 out of 15 site pairs showing SES values significantly lower than random for 

both functional and phylogenetic data (Appendix Figure A3.3, Appendix Table A3.3). This pattern 

of under-dispersion includes all adjacent site pairs, with the exception of 200 – 700 m (Appendix 

Figure A3.4). This suggests that neighbouring sites are more functionally and phylogenetically 

similar than would be expected given species beta-diversity, a trend which is particularly 

apparent at 1,200 – 1,700 m, where a sudden and marked increase in species dissimilarity occurs 

(Appendix Figure A3.4).  

 

 

Figure 3.5. Taxonomic, functional and phylogenetic beta-diversity of birds along the Mt Wilhelm 

gradient. Taxonomic diversity (a) is measured as Bray-Curtis dissimilarity between sites (grey circles) and 

shows a positive distance-decay relationship with increasing distance between sites (black line). When 

separated into turnover and nestedness components, turnover also increases with distance (red line) 

while nestedness decreases with distance (blue line). Grey bands represent 95% confidence intervals. 

Functional (b) and phylogenetic (c) beta-diversity are measured as between-site MPD (grey circles), 

neither of which show a significant trend with increasing distance between sites.  
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Bird functional trait data showed a high level of evolutionary conservatism. SES values for 

phylogenetic diveristy show a strong positive correlation with those for functional diveristy both 

within sites (GLMWithinSites: deviance = 7.67, DF = 1,4, p < 0.01, Figure 3.6a) and between sites 

(GLMBetweenSites: deviance = 18.75, DF = 1,13, p < 0.01, Figure 3.6b). Additionally, individual 

continuous traits showed strong evidence of phylogenetic signal, measured using Blomberg’s K 

statistic (Blomberg et al. 2003). Phylogenetic signal was particularly strong for body mass (K = 

2.93, p < 0.01), although bill width (K = 1.6, p < 0.01) and Kipp’s distance (K = 1.61, p < 0.01) both 

also showed higher than expected phylogenetic signal under a Brownian motion model of 

evolution (K = 1).   

 

3.4 Discussion  

3.4.1 Overall diversity patterns  

We found bird species richness on Mt Wilhelm to decline linearly with increasing elevation. Such 

a trend is consistent with globally observed trends in bird species richness with increasing 

elevation (McCain 2009), including those observed in the study area (Sam et al. 2019). Overall, 

bird functional and phylogenetic diversity patterns also showed a decline with increasing 

elevation, but these patterns were unimodal, showing a relatively steeper initial decline before 

levelling out towards higher elevations. Thus, while initial species declines with elevation were 

accompanied by a corresponding loss in ecosystem function, at higher elevations any further 

loss of species had increasingly little functional impact. This suggests that lowland assemblages 

include phylogenetically distinct species with more unique trait combinations than those found 

at higher elevations, where phylogenetic and functional redundancy is more prevalent.  

3.4.2 Alpha-diversity patterns and community assembly  

When considering all individuals in communities, we found functional and phylogenetic diversity 

to be lower than expected, given species richness at all sites except 200 m. Such pattern suggests 

that variation in bird species traits is relatively constrained across most of the gradient, and does 

not show evidence of limiting similarity due to interspecific competition for resources. The 

results indicate a moderate effect of environmental filtering in structuring bird communities at 

all sites above 200 m. However, when considering presence-absence data, we found a slightly 

different pattern of monotonically decreasing functional and phylogenetic dispersion with 

elevation. In this instance only the highest three elevations showed lower functional and 

phylogenetic diversity than expected, while 200 m was functionally and phylogenetically over-

dispersed.  
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Figure 3.6. Relationship between functional and phylogenetic alpha- (a) and beta-diversity (b) patterns 

for Mt Wilhelm birds. (a) Standardised effect sizes of functional within-site MPD values are plotted 

against those of phylogenetic within-site MPD. Sites are represented by circles, with circle colour 

corresponding to elevation. (b) SES of functional between-site MPD are plotted against phylogenetic 

between-site MPD. Here each circle represents a single pairwise comparison between two elevations, 

with colour corresponding to the distance between the compared elevations. In both plots, the black 

line displays a significant positive correlation (grey bands represent 95% confidence intervals). 

Sites/pairwise comparisons below and to the left of the grey box are characterised by phylogenetic and 

functional clustering, while those inside the box are not significantly over- or under-dispersed.  

 

The discrepancy between abundance weighted and presence-absence weighted data suggest 

that the lower overall functional and phylogenetic dispersion observed in the former is likely 

driven primarily by relatively few common species with close phylogenetic relationships and 

similar trait values. Meanwhile, rare species seem to contribute a disproportionate amount to 

overall functional and phylogenetic diversity, especially at low and mid-elevations. These 

findings support previous research highlighting both the functional (Mouillot et al. 2013; fish 

and plants, Jain et al. 2014; plants, Leitão et al. 2016; fish, trees and birds) and phylogenetic 

(Isaac et al. 2007; mammals, Mi et al. 2012; plants) importance of rare species. A notable 

example of the functional importance of rare birds in particular has been observed in Pacific 

islands where the loss of rare large frugivores may lead to functional collapse of seed dispersal 

networks (Wotton and Kelly 2011).  

The general pattern of decreasing functional and phylogenetic dispersion with increasing 

elevation makes sense if we assume that colder and relatively harsher environments should 

impose stronger environmental filters than warmer ones (Graham et al. 2014). Tropical 

mountains such as Mt Wilhelm are characterised by rapid climatic turnover, with more than 10o 

C separating the highest and lowest sites in this study. The conditions at higher elevations may 
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present environmental filters which constrain the range of traits that may be expressed, 

whereas warmer environments may be characterised by more functionally and phylogenetically 

diverse assemblages (Machac et al. 2011, Hoiss et al. 2012, Graham et al. 2014, He et al. 2018). 

A similar trend was observed by Dehling et al. (2014), who studied frugivorous bird communities 

along an elevational gradient in the Peruvian Andes. They found that while lowland assemblages 

were functionally and phylogenetically dispersed, assemblages above 1,200 m asl were more 

clustered. However, in the area of study, Sam et al. (2019) found that bird species richness is 

driven more by habitat complexity and by abundance of food resources than by climate per se. 

This suggests that environmental filtering at mid and high elevations likely results from a 

reduction in physical niche space associated with simpler habitat structure and reduced food 

availability, rather than being directly imposed by species’ climatic tolerances. This is supported 

by the fact that the species lost with increasing elevation tend to be functionally unique. For 

example, many large-gaped frugivores are characterised by having a lowland distribution (Pratt 

and Beehler 2015), while highland assemblages lack equivalent species. Such a trend may be 

related to the higher availability of large fruits in lowland areas (Muñoz et al. 2017, also see 

Chapter 5 of this thesis).  

3.4.3 Beta-diversity patterns and community assembly  

At the broader scale of inter-elevation comparisons, we found functional and phylogenetic 

dissimilarity between sites to be broadly lower than expected, given the species dissimilarity. 

We also found no evidence of increasing functional and phylogenetic distance between sites 

with increasing vertical distance between them. This contrasts with species data which showed 

a strong vertical distance-decay relationship. Unlike within-site patterns, these data do not 

support environmental filtering, which we would expect to cause higher than expected 

functional differences between sites (Swenson et al. 2011). Furthermore, we should expect the 

effects of environmental filtering to be stronger with increased climatic distance between sites, 

leading to a positive functional distance-decay relationship (Siefert et al. 2013).  

When focusing on neighbouring pairs of sites separated by 500 m in elevation, a clear mid-

elevational shift in the bird community can be observed: species turnover is markedly higher 

between 1,200 m and 1,700 m than between any other pair of neighbouring sites. Indeed, these 

two elevations represent the respective upper and lower elevational limits of a large number of 

species along the gradient (Sam et al. 2019). However, this pattern of high turnover is not 

replicated by functional and phylogenetic data, both of which show a particularly low 

dissimilarity between these two elevations after accounting for the high level of species 
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dissimilarity. This suggests that species’ replacements with increasing elevation represent a non-

random subset of the overall species pool characterised by closer phylogenetic relationships and 

more similar trait values than expected under random replacement. This reinforces the idea that 

species turnover along the gradient is not primarily due to deterministic responses, for example 

to climatic factors, but may be explained in other ways.  

One possible explanation for the observed pattern is that lowland and highland bird 

assemblages have different evolutionary histories (Weir 2006). For example, it has been shown 

for certain New Guinean genera spanning large elevational ranges that highland lineages are 

more ancient (Jønsson et al. 2014, Garg et al. 2019), perhaps preventing the upward expansion 

of their lowland counterparts. Diamond (1973) noted a similar mid-elevational shift to that 

observed at Mt Wilhelm in several bird taxa across New Guinea and postulated that a number 

of genera may have undergone separate radiations in lowland and highland areas. He argued 

that competitive exclusion at mid elevations subsequently prevents the elevational overlap of 

the now distinct but closely related species. Indeed, the concept of separate radiations has been 

proposed as a reason for the differences observed in lowland and highland assemblage structure 

in South American birds (Weir 2006, Dehling et al. 2014). In our data and that of Sam et al. 

(2019), a total of 7 genera (Charmosyna, Ducula, Gerygone, Lonchura, Manucodia, Meliphaga, 

and Xanthotis) contain both species occurring between 200 m – 1,200 m and between 1,700 m 

– 2,700 m, but lack species spanning across 1,200 m – 1,700 m. The preponderance of closely 

related species across the elevational gradient is certainly consistent with the hypothesis that 

separate radiations may have occurred in highland and lowland assemblages, leading to 

phylogenetically and functionally similar species occurring in both.  

Another potential explanatory factor for the lower than expected functional beta-diversity along 

the elevational gradient concerns species’ ecological roles. The occurrence of a high proportion 

of generalist species with relatively wide individual niches should lead to functionally equivalent 

species occurring at different elevations. This should in turn manifest as low functional beta-

diversity, even if species turnover between sites is high. Although not on an elevational gradient, 

such a trend was observed by Villéger et al. (2012) among tropical estuarine fish communities. 

In our data, approximately one third of species display multiple values for each of the two 

behavioural traits of dietary niche and foraging substrate (60 and 63 species respectively). This 

relatively widespread dietary and habitat generalisation could in part account for the observed 

low functional beta-diversity, especially if the species involved are characterised by high 

individual abundances.  
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3.4.4 Phylogenetic conservatism   

We found both a strong correlation between bird phylogenetic and functional diversity and 

correspondingly high levels of phylogenetic signal in species trait data, suggesting a strong effect 

of evolutionary conservatism in dictating birds’ functional trait expression. This high degree of 

trait conservatism is unusual in birds, for which existing evidence is decidedly mixed (Böhning-

Gaese and Oberrath 1999, Gómez et al. 2010, Khaliq et al. 2015, Mazel et al. 2018), although it 

may be higher among birds in the tropics than elsewhere (Khaliq et al. 2015).  

The high degree of phylogenetic conservatism in bird traits also helps to explain the low 

functional turnover of birds along the gradient (Baraloto et al. 2012). The observed high 

incidence of congeneric species occurring in both lowland and highland assemblages means that 

closely related species are found across a wide elevational range. Because traits are conserved 

within genera, similar trait combinations are thus expressed across a similarly wide elevational 

range, despite changing climatic conditions along the gradient. If traits are related to the niches 

occupied by birds then this pattern naturally leads to functional similarity across elevations 

(Emerson and Gillespie 2008). The observed low functional dispersion in highland assemblages 

may also be attributable to phylogenetic conservatism if, despite the availability of unused 

functional nice space, highland assemblages are characterised by a lack of phylogenetically 

unique species.  

3.4.5 Summary  

This study found a number of differences between species richness and turnover patterns and 

those of functional and phylogenetic alpha- and beta-diversity. The results suggest that 

environmental filtering affects species assemblage structure at a local scale but not at the level 

of inter-elevation comparisons. The decelerating decline in bird functional and phylogenetic 

diversity with elevation relative to species richness, and the relatively slow functional and 

phylogenetic turnover between elevations, combine to suggest that increasing elevation (and 

decreasing temperature) alone is not enough to account for changes in bird communities 

observed along Mt Wilhelm. This supports the conclusions of Sam et al. (2019) who found the 

indirect effects of food availability and habitat complexity to be more important drivers of bird 

species richness than temperature alone along the same gradient. Meanwhile, phylogenetic 

conservatism of functional traits was strong for the bird communities studied, suggesting that 

phylogenetic diversity may provide an effective proxy for ecosystem function in tropical bird 

assemblages.  
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CHAPTER 4  

 

Fruit traits reflect adaptation to dispersers along an elevational 

gradient  

 

Abstract  

The relationship between fruiting plants and their frugivorous dispersers is a central component 

of tropical ecology. Tropical mountains form hotspots of global diversity and fruit traits have the 

potential to influence disperser communities across elevations. However, the ranges of traits 

expressed by fruits have rarely been explored in detail, especially along elevational gradients. 

Here we present fruit trait data from a community of fruiting plants along an elevational gradient 

in Papua New Guinea, focusing on the relationship between elevation and four fruit traits 

related to dispersal by frugivores: diameter, seed to pericarp ratio, colour and presentation (i.e. 

location of displayed fruits on the trunk or on the branches). Additionally we use phylogenetic 

information to test the “dispersal syndromes” hypothesis: that combinations of fruit traits have 

evolved in accordance with the preferences and sensory abilities of different frugivore guilds. 

We found fruit diameter to be lower at higher elevations, while seed to pericarp ratio did not 

change with elevation. Fruit colour showed few strong elevational trends, although colours 

typically attributed to attracting avian dispersers were more prevalent at higher elevations. The 

proportion of ramiflorous species (bearing fruits from branches) increased with elevation. All 

fruit traits except presentation showed little evidence of phylogenetic signal. Finally, we found 

fruits displaying colours attributed to mammal frugivory to be larger than “bird colour” fruits. 

We also found evidence for the correlated evolution of fruit size and colour, in support of the 

dispersal syndromes hypothesis.  

 

Key Words: Fruit traits, elevation, dispersal syndromes, frugivory, gape limitation, phylogeny  

 

4.1 Introduction  

It has long been known that the ability of a plant to disperse its seeds constitutes an important  
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factor determining its survival (Janzen 1970, Connell 1971, Howe and Smallwood 1982, Beckman 

and Rogers 2013). In response, fruits have evolved into a variety of different forms in order to 

maximise seed dispersal ability in differing environments. In tropical regions for example, an 

estimated 70 – 90% of plant species have evolved fleshy fruits which are adapted to dispersal by 

vertebrate frugivores (Muller-Landau and Hardesty 2005). The frugivory mutualism thus has 

important implications for the evolution of fruit traits in tropical plants – traits related to 

accessibility and potential attractiveness to frugivores are of clear importance in determining 

potential fitness. An obvious example relates to fruit size: it is known that while larger seeds 

confer evolutionary advantages related to seedling survival (Mack 1998b, Pizo et al. 2006, Lopes 

Souza and Fagundes 2014), a plant’s animal dispersers are limited in the maximum size of seed 

they can consume. This sets an upper limit on the size of fruits a plant can produce if it is to be 

successfully dispersed (Wheelwright 1985).  

One area in which the study of tropical fruit traits related to dispersal may prove particularly 

informative is on mountains. Elevational gradients in the tropics are characterised by steady but 

rapid changes in climatic conditions across relatively small geographical distances. This typically 

leads to high species turnover of both plant species and their potential dispersers, and a 

corresponding high turnover of functional traits along tropical elevational gradients. The 

interaction between elevation and fruit trait profiles thus has the potential to influence local 

assemblages of frugivorous species occurring at different elevations (Burns 2013, Dehling et al. 

2014, Bender et al. 2018) and, by trophic cascade effects, whole ecosystems. Nevertheless, while 

changes in many plant functional traits across elevational gradients are well studied (Swenson 

and Enquist 2007, Swenson et al. 2011, Hulshof et al. 2013, Read et al. 2014, Asner et al. 2017), 

surprisingly little is currently known about how fruit traits change with elevation on a community 

scale (but see Chen et al. 2016, Lu et al. 2019). On one hand this is understandable – data on 

fruit traits are often less readily available than for other plant characteristics. Fruits may be 

physically difficult to reach, and most plants fruit only intermittently and for relatively short 

periods. However, if we are to fully understand the functional roles of plants in tropical forests 

then knowledge of fruit traits is key.  

Of course, individual fruit traits do not exist in isolation. Numerous studies have attempted to 

detect the presence of “dispersal syndromes” – combinations of fruit traits occurring together 

more frequently than expected by chance, based on the differing sensory and fruit-handling 

abilities of frugivore guilds (Gautier-Hion et al. 1985, Herrera 1992, Fischer and Chapman 1993, 

Lomáscolo et al. 2008, 2010, Flörchinger et al. 2010). For example, birds have acute colour vision 

and are generally unable to handle fruits with their limbs, meaning gape size commonly limits 
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the maximal size of fruits they can consume (Wheelwright 1985, Alcántara and Rey 2003). 

Mammals are typically larger than birds and have teeth and forelimbs able to manipulate fruits, 

meaning they can consume and disperse larger fruits. However, outside of the simian primates, 

mammals generally lack colour vision and rely more on olfactory cues to find fruits (Nevo et al. 

2018). If trait matching occurs between fruits and their frugivore dispersers, we may expect to 

observe evidence of dispersal syndromes related to fruit colour and size. Bird-dispersed fruits 

should be smaller than mammal-dispersed fruits and should display colours that contrast 

strongly with a background of bark and foliage (Schmidt et al. 2004, Lomáscolo et al. 2008). 

Mammal-dispersed fruits may be more dully coloured, as visual contrast is of limited importance 

for primarily nocturnal mammalian foragers. As mammals are not gape-limited, mammal-

dispersed fruits may also be larger on average than bird-dispersed fruits, and should display a 

greater range of sizes.  

Current evidence for dispersal syndromes is varied, with some studies supporting the hypothesis 

(e.g. Lomáscolo et al. 2008, 2010) and others rejecting it (e.g. Fischer and Chapman 1993). An 

alternative non-adaptive hypothesis is phylogenetic inertia, whereby fruit size and colour are 

determined by the size and colour of ancestral species, and frugivores disperse fruits according 

to pre-determined preferences for certain combinations in a process known as ecological fitting 

(Janzen 1985, Jordano 1995, Flörchinger et al. 2010). If dispersal syndromes occur based on trait 

combinations selected for by dispersers, then we should expect to see evidence of correlated 

evolution of the traits in question, and the appearance of these traits independently in different 

clades. Meanwhile the phylogenetic inertia hypothesis should predict phylogenetic clustering of 

these traits, indicative of shared evolutionary histories.  

In this study, we use a fruit trait dataset from a continuously forested elevational gradient in 

Papua New Guinea to answer the following questions: i) How do four key fruit traits related to 

dispersal by vertebrates (diameter, seed to pericarp ratio, colour, presentation of fruits on 

branches versus the trunk) change with elevation? ii) Can fruits along the elevational gradient 

be categorised into dispersal syndromes based on size and colour? iii) To what extent are fruit 

traits phylogenetically conserved? New Guinea lacks primates and thus has an exclusively 

nocturnal mammalian fauna, meaning the prominent frugivores can be divided fairly neatly into 

a diurnal avian guild and a nocturnal mammalian one comprising bats, marsupials and rodents. 

This makes a New Guinean elevational gradient an ideal location to study the adaptations of 

fruits to dispersal by varying frugivore taxa.  
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4.2 Methods  

4.2.1 Study site  

The study was conducted along the north-eastern slopes of Mt Wilhelm (4,509 m), in the 

northern watershed of the Central Range of Papua New Guinea. The study area is located in the 

Usino-Bundi district of southern Madang province and comprises six study sites separated by 

500 m elevation, ranging from 200 – 2,700 m above sea level (asl) (5o 44’ S, 145o 20’ E; 5o 49’ S, 

145o 09’ E). The sites represent the lower portion of a complete rainforest transect spanning 

from the lowland floodplains of the Ramu River to the treeline at 3700 m asl (Sam et al. 2019). 

The habitats at the surveyed sites range from lowland alluvial forest (200 m asl) through foothill 

forest (700 and 1,200 m asl) to lower montane forest (2,200 and 2,700 m asl) (Paijmans 1976). 

Mean annual temperature recorded using data loggers decreases from 24.9o C at 200 m to 14.3o 

C at 2,700 m. Average annual precipitation measured by local weather stations is 3,288 mm at 

200 m asl, rising to 4,400 mm at 3700 m asl, with a distinct condensation zone around 2,500 – 

2,700 m asl (Sam and Koane 2014, Marki et al. 2016, Sam et al. 2019).  

4.2.2 Data collection  

Fruit surveys  

We collected data on fruiting plants and their fruits using transect surveys (March – July 2016). 

10 transects were created at each elevation, each 20 m wide and 500 m in length. This provided 

a total of 10 hectares of sampled area per elevation. Surveyors walked the transect route, 

searching carefully for any fruiting woody plants or fallen fruits. Fruiting plants were recorded 

only if the base of the stem occurred at least partially within the transect. When a fruiting plant 

was located, we collected data on plant location, diameter at breast height (DBH), growth form 

and taxonomy (identifying to species level where possible). When necessary, leaf voucher 

specimens were collected and photographs of stems taken to allow subsequent detailed 

identification. We also collected information on the method of fruit presentation: either 

cauliflorous (fruiting directly from the stem) or ramiflorous (fruiting from the branches). In the 

case of fallen fruits encountered on the ground, we located the most likely source plant using 

binoculars when necessary. In most cases this was not difficult as the plant was still displaying 

fruits. To calculate canopy closure, canopy photographs were taken vertically from breast height 

at intervals of 20 m along each transect using a Panasonic Lumix DMC TZ55 camera.  

We collected up to 10 ripe fruits at random from each fruiting plant we encountered. In cases 

where fewer than 10 ripe fruits were reachable, we collected as many as safely possible. In cases 
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where fruits were completely unreachable we estimated mean fruit length and width and the 

colour of ripe fruits, using binoculars when needed.  

Fruit measurement  

We measured fruits as soon as possible after their collection to ensure that fruit traits were 

recorded before the onset of decomposition. Fruit dimensions were measured to the nearest 

0.1 mm using digital calipers. Fruit diameter was defined as the secondary (longest orthogonal 

to the primary) axis, regardless of the fruit’s morphological characteristics such as stem location 

or the orientation of seeds. Fruits were weighed using digital scales to the nearest 0.01 g. Fruit 

colour was defined subjectively using the basic colour categories of “red”, “orange”, “yellow”, 

“green”, “blue”, “purple”, “pink”, “brown”, “black” and “white”. For bicoloured fruits, only the 

dominant colour (covering > 50% of the fruit surface) was used in analyses. After fruit measure- 

ments were made, a subset of up to five fruits from each fruiting plant sample were dissected 

and the seeds removed. The number of seeds in each fruit was recorded, as was the total seed 

weight and pericarp weight (using digital scales as above). This enabled a broad calculation of 

“seed to pericarp ratio”, as the proportion of fruit weight attributable to seed weight.  

4.2.3 Analyses  

To enable interspecific analyses of fruit traits across elevations, we first calculated the mean 

trait values per species at each elevation. For species occurring across multiple elevations we 

calculated separate mean values for each elevation at which it was recorded, to allow for any 

potential intraspecific variation in fruit traits depending on elevation. In addition, we calculated 

fruit traits weighted by number of individual fruiting plants at each elevation.  

Analyses of fruit traits across elevations  

We used generalised linear models (GLMs) to test for the effect of elevation on a number of fruit 

traits, for both species and abundance weighted data, in R version 3.5.2 (R Core Team 2013). 

The GLM for fruit diameter used Gaussian error distributions and included plant DBH as a fixed 

effect. The GLM for the proportion of fruit weight attributable to seed weight used binomial 

error distributions. To test the effect of elevation on the proportion of fruiting plants bearing 

fruits of different colours and different presentation types, we used separate GLMs for each 

colour and for each presentation type, using binomial error distributions. We additionally tested 

for the effect of elevation on fruit colours when grouped into two “types” (see “Fruit 

Syndromes” below), again using a GLM with binomial error. Tukey pairwise comparisons 

(calculated using the “emmeans” function in emmeans package; Lenth et al. 2018) were used to  
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adjust p-values during multiple comparisons.  

Canopy closure  

Canopy closure was assessed in Matlab version 2019b (Mathworks 2019) by measuring the 

mean percentage cover of foliage in 60 canopy photos from each elevation, using code 

developed by Korhonen and Heikkinen (2009).  

Phylogenetic analyses  

For phylogenetic analyses of fruit traits, we used a global phylogeny adapted by Smith and 

Brown (2018) from GenBank release 218 (ftp://ftp.ncbi.nlm.nih.gov/genbank) and Open Tree of 

Life synthetic tree (taxonomy version 3; https://tree.opentreeoflife.org/about/synthesis-

release/v9.1). The phylogeny was subjected to hierarchical analysis with individual phylogenies 

constructed for major clades, and using a backbone provided by Open Tree of Life version 9.1. 

The adapted phylogeny used here (labelled “ALLOTB”) can be found at 

https://github.com/FePhyFoFum/big_seed_plant_trees/releases. We used the “prune.sample” 

function in the R package picante (Kembel et al. 2010) to subset this global phylogeny to include 

only species found in our dataset from the Mt. Wilhelm study sites.  

To determine whether the categorical traits of colour and presentation were clustered or 

randomly distributed across the phylogeny, we used a null model analysis. We first calculated 

the mean phylogenetic distance (MPD) between individuals of each colour and of each 

presentation type, and then compared this to a distribution of values generated by shuffling the 

tip labels across the phylogeny 999 times. We then assessed the deviation of observed and null 

values. Null models were implemented using functions in the package picante. For the 

continuous traits of fruit diameter and seed proportion, we used Pagel’s lambda (λ) (Pagel 

1999a) to test for phylogenetic signal in the trait data. Pagel’s λ uses phylogenetic data to assess 

whether a trait has evolved independently of phylogeny (low phylogenetic signal) or if it 

conforms to an evolutionary model expected under Brownian motion (high phylogenetic signal) 

(Molina-Venegas and Rodríguez 2017).  

Fruit syndromes  

The fruit syndrome hypothesis predicts correlated evolutionary change in fruit size and colour 

according to dispersal guild (Lomáscolo et al. 2008). To test the hypothesis that fruit traits 

corresponding to dispersal by birds and mammals evolved together, we first divided fruits into 

binary size and colour categories corresponding to each dispersal syndrome. Fruits were divided 

by colour into “Type A” (green, brown, orange or yellow) and “Type B” (red, black, blue, purple, 
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pink or white), according to Janson's (1983) classification. Fruits were divided by size based on 

mean fruit diameter for all fruiting plant species recorded in our data. We performed Pagel’s 

likelihood ratio test of binary correlations (Pagel 1994, 1999b), using the subset of fruiting plant 

species for which phylogenetic data was available, on the two binary categories of colour (Type 

A vs. Type B) and size (large vs. small), using the “fitPagel” function in the package phytools 

(Revell 2012, 2019). Pagel’s test compares the goodness of fit of a model of correlated evolution 

to one of independent evolution, taking into account phylogenetic branch lengths.  

To test whether Type A fruits were larger overall than Type B fruits (regardless of phylogeny), 

we performed a Mann-Whitney U test (Mann and Whiney 1947) using fruit diameter per fruiting 

plant as the response variable. To test whether variation in fruit diameter was greater for Type 

A fruits than for Type B fruits, we used a Fligner-Killeen test, which is a non-parametric test for 

assessing the homogeneity of variances (Fligner and Killeen 1976).  

 

 

Figure 4.1. Effect of elevation on four fruit traits related to dispersal by frugivores, weighted by plant 

species. a) Mean fruit diameter per fruiting plant species is represented by squares, with error bars 

displaying 95% confidence intervals (CIs). Letters above points denote significant differences after 

adjusting for multiple comparisons using Tukey pairwise tests. b) Mean proportion of fruit weight 

attributable to seed weight for fruiting plant species at each elevation, with 95% CIs. c) Proportion of 

fruiting plant species displaying fruits of each colour (top to bottom: white, black, brown, purple, blue, 

green, yellow, orange, red and pink) at each elevation. d) Proportion of fruiting plant species bearing 

cauliflorous fruits (white bars), ramiflorous fruits (dark grey bars) and a combination of both 

presentation types (light grey bars) at each elevation.  
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4.3 Results  

We collected and measured ripe fruits from a total of 1,062 fruiting plants across all elevations, 

representing 167 species and morpho-species (Appendix Table A4.1). Of these, 83 species were 

sufficiently identified to be used in phylogenetic analyses. Outside of phylogenetic analyses, we 

used data from all fruiting plant species and morpho-species.  

Mean fruit diameter showed a significant decrease towards higher elevations when weighted 

both by species (p < 0.01; Figure 4.1a) and individual fruiting plants (p < 0.01; Appendix Figure 

A4.1a). Fruit diameter was also positively correlated with fruiting plant DBH (p < 0.01; Appendix 

Figure A4.2). The mean proportion of fruit mass attributable to seeds did not change with 

elevation (p = 0.86; Figure 4.1b). Fruit colour showed differing patterns depending on whether 

weighted by species or individual, although most colours were represented at all or nearly all 

elevations. Five colours (red, orange, green, black and white) were represented at all elevations 

(Figure 4.1c, Appendix Figure A4.1c). Using species-weighted data, most individual fruit colours 

did not show strong elevational trends (Table 4.1, Appendix Table A4.2), although green fruits 

peaked at 700 m and purple fruits at 2,700 m. In contrast, fruit colour divided by type showed a  

 

Table 4.1. Results of generalised linear models testing the effect of elevation on fruit diameter, seed to 

pericarp ratio, fruit colour and presentation type for fruiting plant species along the elevational 

gradient. Significant (p < 0.05) individual pairwise interactions between elevations are presented, after 

correcting for multiple comparisons using Tukey pairwise comparisons. Significance values for all 

pairwise comparisons are displayed in full in Appendix Table A4.2.  

Parameter Category Deviance p-value Significant Pairwise Interactions 

Fruit Diameter 2338.1 <0.01 700-2700; 1200-2700 

Seed Proportion 1.89 0.86 None 

Colour Red 9.89 0.08 None 

 Orange 11.99 0.03 None 

 Yellow 21.69 <0.01 None 

 Green 21.79 <0.01 700-1700; 700-2200 

 Blue 8.62 0.13 None 

 Purple 45.47 <0.01 700-2700; 1700-2700; 2200-2700 

 Pink 37.13 <0.01 1700-2200 

 Brown 18.35 <0.01 None 

 Black 15.68 <0.01 1700-2700 

  White 2.7 0.75 None 

Colour Type 35.73 <0.01 700-2700; 1200-2700; 1700-2700 

Presentation Cauliflorous 36.79 <0.01 None 

 Ramiflorous 55.09 <0.01 200-700; 200-1200; 200-1700;  

        200-2200; 200-2700; 700-2700  
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Figure 4.2. Phylogenies of the 83 fruiting plant species for which phylogenetic data was available, 

including data on the predominant colour of fruits from each species (a) and the presentation method of 

fruits (b). Blue squares in (b) represent ramiflorous fruiting species, while orange squares are 

cauliflorous species. Species without squares attributed to them indicate a combination of ramiflory and 

cauliflory within a single species. Genera represented by more than two species are displayed to the 

right.  

 

significant trend – the proportion of species bearing Type B coloured fruits increased with 

elevation (p < 0.01). Fruit presentation similarly showed a clear trend with elevation: less than 

40% of fruiting species were exclusively ramiflorous at 200 m, increasing to 100% at 2,700 m (p 

< 0.01; Figure 4.1d). We observed a similar increase with elevation in individual-weighted data 

(p < 0.01; Appendix Figure A4.1d). Finally, canopy closure showed a significant decreasing 

trend with increasing elevation (p < 0.01; Appendix Figure A4.3).  

Phylogenetic analysis on the categorical traits of fruit colour and presentation showed broadly 

contrasting patterns. Of all fruit colours, null model analysis found only brown fruits to be 

significantly phylogenetically clustered (SES.MPD = -2.21, p = 0.03), while purple fruits showed 

a near-significant pattern (SES.MPD = -1.36, p = 0.07). All other colours showed patterns that did 
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not differ from random expectations (Figure 4.2a, Appendix Table A4.3). Fruit presentation 

however showed evidence of significant phylogenetic clustering: cauliflorous fruits were 

clustered significantly more than expected under null models (SES.MPD = -7.12, p < 0.01; Figure 

4.2b). For the continuous traits of fruit diameter and seed to pericarp ratio, we found little 

evidence of phylogenetic clustering. Fruit diameter showed a low phylogenetic signal (λ = 0.29, 

p = 0.02), while seed to pericarp ratio showed a similarly low, although in this case non-

significant, result (λ = 0.32, p = 0.34).  

Both phylogenetic and non-phylogenetic analysis revealed significant relationships between 

fruit colour and size. We observed a significant phylogenetic association between large and small 

fruits and Type A and Type B coloured fruits respectively (likelihood ratio = 14.33, p < 0.01; 

Appendix Figure A4.4), showing evidence of correlated evolution of fruit colour and size. 

Regardless of phylogeny, we found Type A coloured fruits to have significantly greater median 

diameter than Type B fruits (medianType A = 14.06 mm, medianType B = 10.2 mm, W = 6026, p < 

0.01; Figure 4.3), and to show a greater variation in size (Fligner-Killeen median χ2 = 18.04, p < 

0.01; Figure 4.3). The mean diameters of each fruit type were 17 mm (Type A) and 12.8 mm 

(Type B).  

 

 

Figure 4.3. Relationship between fruit “type” and fruit diameter for all fruiting plant species and 

morpho-species recorded along the Mt Wilhelm gradient. Type A fruits include green, yellow, orange 

and brown fruits. Type B fruits include red, pink, purple, blue, black and white fruits (Janson 1983). Grey 

boxes span the first and third quartiles of fruit diameter and the horizontal line within each box 

represents the median diameter. Vertical lines indicate maximum and minimum observations falling 

within 1.5 times the interquartile range. Remaining observations are displayed as black circles.  
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4.4 Discussion  

In this study we investigated four fruit traits relevant to dispersal by vertebrate frugivores (fruit 

diameter, seed to pericarp ratio, colour and presentation) along an elevational gradient in Papua 

New Guinea. To our knowledge this represents the first comprehensive summary of fruit traits 

across a fruiting plant community spanning a forested tropical elevational gradient. We also 

used data from fruit colour and size to test evidence in support of the dispersal syndromes 

hypothesis.  

4.4.1 Fruit traits and elevation  

Diameter  

We found mean fruit diameter to decrease towards higher elevations, after a plateau between 

200 and 1,200 m. Seed to pericarp ratio of fruits did not change across elevations, suggesting a 

similar decrease in seed volume per fruit towards higher elevations. Our result mirrors a trend 

observed by Almeida-Neto et al. (2008), who found fruit diameter to be lower at higher 

elevations among 135 forest communities in the Brazilian Atlantic rainforest. A number of 

potential factors could explain the observed pattern: i) A decrease in productivity with 

decreasing temperature at higher elevations limits the production of large fruits. ii) Fruit size is 

constrained by plant size, which in turn decreases with elevation. iii) Denser canopies at low 

elevations lead to lower light conditions on the forest floor, presenting a stronger evolutionary 

advantage to large-seeded plants (Foster 1986, Walters and Reich 2000). iv) A lack of large-

gaped frugivores at high elevations prevents the seed dispersal of large-fruited plants. These 

hypotheses are not mutually exclusive and our data likely reflect a combination of factors; here 

we briefly discuss each one.  

As temperature decreases monotonically with elevation, we may expect a similarly steady 

decrease in fruit diameter if productivity is a dominant factor in determining seed size. However, 

Almeida-Neto et al. (2008) found that differences in fruit diameter with elevation were primarily 

not attributable to temperature: low-elevation communities had greater mean fruit diameter 

than did higher-elevation communities with identical annual temperature values (i.e. those from 

warmer areas). Coupled with the observation from our data that fruit size does not follow a 

monotonic decrease with elevation, the evidence suggests that productivity alone cannot 

account for the pattern in fruit diameter observed here. Regarding the question of whether fruit 

size is constrained by plant size, we found fruit diameter to be positively correlated with fruiting 

plant DBH. However, elevation still explained changes in fruit size after accounting for DBH.  
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Canopy closure decreased towards higher elevations, allowing more light to reach the forest 

floor. While this supports the hypothesis that lower light levels at low elevations could promote 

the need for larger seeds, it is difficult to explicitly attribute seed size to differing light levels 

without conducting controlled experimental studies. Previous such studies have found weak 

evidence for the interaction (e.g. Leishman and Westoby 1994). Furthermore, in a survey of seed 

weight across the Neotropics (Rockwood 1985), elevation was not found to affect seed weight 

in 6 out of 7 plant families. While we found no elevational change in the mean total seed weight 

per fruit, we lack data on individual seed size, meaning our data cannot fully resolve this issue.  

The relationship between disperser size and fruit size is complex and it is difficult to determine 

a cause-effect relationship between the two: does a lack of large fruits at high elevations prevent 

large frugivores from feeding effectively, or does a lack of large-gaped dispersers at high 

elevations prevent large-fruited species from establishing? While it may prove impossible to 

untangle cause and effect with the current evidence, the association between fruit size and 

frugivore size is clear. Indeed, trait matching between fruits and frugivore dispersers has been 

noted by a number of studies (Burns 2013, Dehling et al. 2014, Muñoz et al. 2017, Bender et al. 

2018). Our data, showing a low-elevation plateau in fruit diameter followed by a decline towards 

high elevations, is consistent with a change in the frugivore community observed between 

lowland and highland forest. In the area of study, Sam et al. (2019) noted a mid-elevational shift 

in which many large-gaped frugivores such as the Papuan hornbill Rhyticeros plicatus and the 

majority of pigeon species are confined to forests from 200 – 1,200 m, a trend also recorded in 

Chapter 3 of this thesis. Furthermore, the relative importance of frugivory by mammals, which 

are not gape-limited and may consume larger fruits than birds, declines with elevation. McCain 

(2007a, 2007b) recorded a decrease in mammal species diversity with increasing elevation in 

Papua New Guinea, and a relative decline in mammalian (especially bat) frugivory rates with 

elevation was observed in the study area (Chapter 5). Such a trend has also been noted in other 

regions (Almeida-Neto et al. 2008).  

Colour  

There were few clear trends in specific fruit colours along the elevational gradient. Nevertheless, 

some colours showed significant variation in prevalence between elevations: the proportion of 

species bearing green fruits peaked at 700 m, while purple and black fruits showed a peak at 

2,700 m. Although no relationship is apparent between fruit colour and specific avian colour 

preferences along the gradient (Chapter 5), the dispersal syndrome hypothesis would predict a 

higher prevalence of “bird syndrome”- coloured fruits (red, pink, purple, blue, black, white) with 
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the increased relative importance of avian frugivory at higher elevations. Such a trend was 

indeed observed in this study. Fruit colour may also reflect an adaptation to abiotic factors 

(Burns 2015, Valenta et al. 2018). Anthocyanins, which are pigments responsible for blue, deep 

red, purple and black colours in fruit, additionally serve an important role in protecting plants 

from abiotic stressors such as photo-oxidation, heat and drought. Thus their presence in other 

plant tissues and in fruits may be coupled, meaning fruit colours characterised by high 

anthocyanin content could be simply a by-product of this effect (Stournaras and Schaefer 2017). 

Indeed, Zoratti et al. (2015) found anthocyanin concentrations in berries to increase with 

elevation and light intensity, suggesting that high light levels favour their production. Such a 

pattern could explain the prevalence of purple and red fruits at higher elevations in our study 

sites, where the canopy is more open and a greater proportion of the forest receives direct 

sunlight. Additionally, fruits reflecting light mainly in the ultraviolet part of the spectrum are 

more protected from ultraviolet radiation (Hakala-Yatkin et al. 2010), which could provide an 

adaptive explanation in particular for the prevalence of purple fruits at 2,700 m where the 

canopy is most open.  

Presentation  

We found elevation to have a significant effect on the presentation method of fruits. Cauliflorous 

fruits were relatively common at 200 m but steadily declined with elevation and were absent at 

2,700 m. Such a pattern is consistent with a decline in mammalian frugivory with increasing 

elevation. Unlike birds, which approach fruits from the air and typically require a branch on 

which to perch while feeding, arboreal mammals may easily access fruit presented on the main 

stem of a fruiting plant. Bats, meanwhile, are known to preferentially forage on fruits borne 

away from foliage, including cauliflorous fruits (Whittaker and Jones 1994). Mammalian diversity 

in New Guinea is known to peak at low to mid elevations, especially bat diversity which drops 

rapidly with elevation (McCain 2007a, 2007b). Indeed, frugivory rates by bats in particular show 

a sharp decrease above mid elevations in the area of study (Chapter 5). It should be noted 

however that cauliflory also showed significant phylogenetic clustering in this study, meaning 

the effects of phylogenetic inertia cannot be discounted in structuring the observed patterns. 

Nevertheless, as with fruit diameter, the decrease in cauliflory with elevation suggests a 

relatively greater importance of avian frugivores at higher elevations, as observed by Almeida-

Neto et al. (2008).  

4.4.2 Fruit syndromes  

Our results support the dispersal syndrome hypothesis. Across elevations, we demonstrated a  
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clear relationship between fruit “type” (groups of colours commonly attributed to dispersal by 

either mammals or birds) and fruit diameter. We found Type A fruits (brown, green, yellow and 

orange) to be larger than Type B fruits (red, pink, purple, blue, black and white) and to show a 

greater variation in diameter. Both of these factors are consistent with adaptation to dispersal 

by mammalian versus avian frugivores. Gape limitation sets an upper limit on the size of fruits 

that birds can consume, while mammals more commonly consume fruits piecemeal (Lomáscolo 

et al. 2008). Additionally, mammalian frugivores are larger on average than birds and have wider 

digestive tracts (Sallabanks and Courtney 1992). Therefore we should expect mammal-dispersed 

fruits to be larger on average than bird-dispersed fruits, while showing a greater range in sizes 

due to the greater range of feeding techniques employed by mammals (Howe 1986) and the 

lack of a lower size limit on consumable fruits.  

The association between fruit colour type and diameter was shown to occur in separate clades 

across the phylogeny of fruiting plants, suggesting correlated evolution of size and colour type. 

This is despite very little evidence of phylogenetic clustering of individual fruit colours. Indeed, 

specific fruit colours are known to be evolutionarily labile. In a wide-ranging study of avian 

frugivory in a subtropical Andean forest, Ordano et al. (2017) found only weak phylogenetic 

effects on fruit chromatic contrast and conspicuousness of fruiting displays. A similarly broad 

study on fruit traits in the Brazilian Atlantic forest found no significant phylogenetic signal in fruit 

colour, although it was present in several other fruit traits (Cazetta et al. 2012). Stournaras et al. 

(2013) found little indication of phylogenetic constraints on fruit colour at local and global scales, 

despite fruit colour being limited by other factors such as chemical constraints. The fact that 

individual fruit colours are spread randomly across the phylogeny, but that colour still correlates 

with fruit size at the broader level of “fruit type”, supports the hypothesis that fruit colours have 

adapted independently to dispersal by different frugivore guilds. Thus we can discount the 

hypothesis of phylogenetic inertia as a means of explaining observed fruit colour/size 

combinations.  

4.4.3 Summary  

This study is the first to measure a range of fruit traits relevant to dispersal by frugivores across 

a community of fruiting plants along a tropical elevational gradient. Fruit traits such as size, 

colour and presentation are undoubtedly important in determining frugivory by different guilds. 

Therefore the range of traits displayed by fruits has the potential to influence disperser 

communities at different elevations, and by extension seed dispersal and ultimately plant 

community assembly across elevational gradients. The shifting distributions of plants and 
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frugivores resulting from climate change has the potential to disrupt these relationships, and 

should be a focus of further study (Mokany et al. 2014).  
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CHAPTER 5  

 

Bird preferences for fruit size, but not colour, vary in 

accordance with fruit traits along a tropical elevational gradient  

Chapter 5  

Abstract  

Birds constitute one of the most important seed-dispersal agents globally, especially in the 

tropics. The feeding preferences of frugivorous birds are therefore potentially of great ecological 

importance. A number of lab-based and observational studies have attempted to ascertain the 

preferences of certain bird species for certain fruit traits. However, relatively little attention has 

been paid to community-wide preferences of frugivorous birds and the potential impact this 

may have on fruit traits on a broader scale. Here we used artificial fruits of different colours 

(green, purple and red) and sizes (19 mm, 13 mm and 7 mm diameter) to investigate community-

wide fruit trait preferences of birds at three sites along an elevational gradient in Papua New 

Guinea. We recorded attack rates on artificial fruits as visible impressions made by a bird’s beak 

during a feeding attempt. We also measured the sizes and colours of real fruits at each site, and 

the abundance and gape widths of frugivorous birds, allowing for comparisons between bird 

feeding preferences and bird and fruit traits. The total number of attacks on artificial fruits at 

each elevation showed a strikingly similar pattern to that of understory frugivore abundance. 

Red and purple fruits were universally preferred to green, and attacked at similar rates to one 

another, regardless of elevation, and despite strong elevational patterns in real fruit colour. 

However, elevation had a significant effect on fruit size preferences. A weak, non-significant 

preference for large fruits was recorded at 700 m, while medium fruits were strongly preferred 

at 1,700 m and small fruits at 2,700 m. These patterns mirror those of both real fruit size and 

bird gape width along the gradient, suggesting the potential for selective pressure of birds on 

fruit size at different elevations.  

 

Key words: Fruit size, fruit colour, seed dispersal, frugivory, artificial fruits, elevation, gape 

width, abundance  
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5.1 Introduction  

Seed dispersal is a key factor determining tree community assembly (Levin et al. 2003, 

McConkey et al. 2012, Harrison et al. 2013). It is estimated that 70 – 90% of tropical tree species 

bear fleshy fruits that are primarily dispersed by vertebrate frugivores (Muller-Landau and 

Hardesty 2005, Chen et al. 2016), and that birds represent the majority of these frugivores in 

most tropical regions (Willson et al. 1989, McConkey and Drake 2002, Corlett 2017). Feeding 

preferences of birds thus have the potential to be a significant selective pressure on the 

evolution of fruit traits (Lord 2004, Eriksson 2016), as seed dispersal is known to be related to 

plant fitness (Howe and Smallwood 1982, Beckman and Rogers 2013, Snell et al. 2019). However, 

the preferences of birds for different fruit traits in different environments is poorly known.  

Birds are known to select fruits visually, primarily using cues such as colour and size (Corlett 

2011, Schaefer and Ruxton 2011, Duan et al. 2014). According to zoological classifications of fruit 

syndromes, bird-dispersed fruits are typically categorised as brightly coloured (Janson 1983, 

Gautier-Hion et al. 1985, Lomáscolo et al. 2008). However, it is not fully understood why birds 

choose certain fruit colours over others. Some evidence points to fruit colour cues signalling high 

nutritional reward (Schaefer et al. 2008, 2014, Cazetta et al. 2012). Alternatively, an important 

factor may simply be conspicuousness, i.e. fruits that contrast against a background of foliage 

are more likely to be noticed by birds (Schmidt et al. 2004, Ordano et al. 2017, Nevo et al. 2018). 

Direct selection for specific colours based on innate preferences of birds has found little support 

(Willson et al. 1990).  

Fruit size preferences of birds may similarly represent a combination of a choice and physical 

limitations. Unlike mammalian frugivores, birds usually swallow fruits whole (Lomáscolo et al. 

2008), meaning their gape size limits the maximal diameter of fruits they can consume 

(Wheelwright 1985, Corlett 1998, 2017). This imposes an upper limit on the size of seed that a 

given bird can disperse, although not a lower limit (Wheelwright 1985). Nevertheless, there is 

some evidence suggesting that larger birds tend to preferentially feed on larger fruits (Sobral et 

al. 2010a, 2010b, Burns 2013, Chen and Moles 2015). The matching of traits in this way (e.g. fruit 

size and bird body/gape size) has recently gained attention for its apparent importance in 

structuring species interaction networks, particularly mutualistic ones such as frugivory (Dehling 

et al. 2014, González-Castro et al. 2015, Garibaldi et al. 2015, Muñoz et al. 2017, Bender et al. 

2018).  

Determining the importance of fruit traits attractive to birds is a major challenge due to the 

covariation of traits in uncontrollable ways (Levey and Grajal 1991). The use of artificial fruits is 
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one way to independently manipulate fruit traits. Analyses using artificial fruits have been 

largely limited to laboratory experiments in which birds feed on gelatine- or dough-based fruits 

under artificial conditions (Willson et al. 1990, Levey and Grajal 1991, Sallabanks 1993, Puckey 

et al. 1996, Duan et al. 2014). However, it is known that birds under laboratory conditions may 

exhibit unnatural feeding behaviours (Alves-Costa and Lopes 2001). Additionally, the existing 

studies were generally limited to a few individuals of one to four focal bird species, which limits 

their broader applicability. If we are to understand the evolutionary implications of bird feeding 

preferences on a community level, experiments need to be conducted at the community scale.  

Field-based approaches using artificial fruits constructed from waterproof modelling clay offer 

a solution to this problem. Birds readily attack these fruits but rarely swallow them (Alves-Costa 

and Lopes 2001). Fruits may thus be deployed in the field for a number of days and exposed to 

the entire frugivore community. Furthermore, the marks left in the fruits reveal some 

information about the feeding behaviour of the birds that attempted to eat them. The fruits are 

easy to produce in large numbers and traits such as size and colour can be precisely and 

individually manipulated. Few studies have used artificial modelling clay fruits in this way (Alves-

Costa and Lopes 2001, Galetti et al. 2003, Cazetta et al. 2012, Vollstädt et al. 2017), and to our 

knowledge none have used them to experimentally test avian frugivore preferences of fruit 

traits (especially size) across environmental gradients.  

Tropical mountains provide an opportunity to study bird preferences for fruit traits in different 

natural environments. Plant and bird communities are known to change with elevation, as do 

their traits (Swenson et al. 2011, Dehling et al. 2014). For example, the mean body size and 

abundance of avian frugivores are known to reduce with increasing elevation (Terborgh 1977, 

Sam et al. 2017), while mean fruit size and fruit colour similarly show changing patterns with 

elevation (Guo et al. 2013, Zoratti et al. 2015, Lu et al. 2019, Chapter 4 of this thesis).  

Here we attempt to determine avian frugivore preferences for fruit size and colour at different 

elevations (low, mid and high: 700, 1,700 and 2,700 m above sea level, respectively) along a 

tropical elevational gradient in Papua New Guinea. This is made possible by determining the 

number of feeding attempts on artificial modelling clay fruits of different size (small, medium 

and large: 7 mm, 13 mm and 19 mm diameter respectively) and colour (green, purple and red). 

We compare this to the relative size and colour prevalence of real fruits, and the gape width of 

frugivorous birds present at each site. We hypothesise that: i) Birds prefer fruit sizes and colours 

that are naturally common at a given elevation, and preferences reflect bird gape limitation ii) 

The number of feeding attempts on artificial fruits decreases with increasing elevation because 
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a relatively higher abundance of frugivores, which we expect in lowlands, should naturally lead 

to higher rates of frugivory (Smith and McWilliams 2014).  

 

5.2 Methods  

5.2.1 Study sites  

We conducted the study along the north-eastern slopes of Mt Wilhelm (4,509 m), in the 

northern watershed of the Central Range of Papua New Guinea (Appendix Figure A5.1). The 

study area is located in the Usino-Bundi district of southern Madang province and comprises 

three study sites separated by 1,000 m elevation, ranging from 700 – 2,700 m above sea level 

(asl) (5o 43.6’ S, 145o 15.5’ E; 5o 48.9’ S, 145o 09.3’ E). The sites represent part of a complete 

rainforest transect running from the lowland floodplains of the Ramu River to the treeline (Sam 

and Koane 2014). The habitats at the surveyed sites range from foothill forest (700 m asl) to 

lower montane forest (2,700 m asl) (Paijmans 1976). Mean annual temperature recorded using 

data loggers decreases from 21.97o C at 700 m to 14.34o C at 2,700 m. Average annual 

precipitation measured by local weather stations is 3,288 mm in the lowlands, rising to 4,400 

mm at the tree line, with a distinct condensation zone around 2,500 – 2,700 m asl (Sam and 

Koane 2014, Marki et al. 2016, Sam et al. 2017, 2019).  

5.2.2 Artificial fruit exposures  

Spherical artificial fruits (hereafter “fruits”) were prepared from non-toxic modelling clay (Koh-

I-Noor Hardtmuth, Ceske Budejovice, Czech Republic; Sam et al. 2015) in three different colours 

(green, red and purple) and three different sizes (19 mm, 13 mm and 7 mm diameter – hereafter 

“large”, “medium” and “small” respectively), giving a total of nine unique size/colour 

combinations. Colours and sizes were selected based on the observed prevalent characteristics 

of ripe fruits at each of the three survey sites. At each site, 180 artificial fruits of each colour/size 

combination were simultaneously exposed in six clusters of 30 fruits, during August and 

September 2017. This gave a total of 1,620 exposed fruits at each elevational study site (30 fruits 

* 6 clusters * 3 colours * 3 sizes). Each fruit cluster was exposed on a separate individual host 

tree. Host trees were ca. 10 m apart from each other, with fruits placed between two and three 

metres above the ground. Fruits were attached to the host tree using florist’s wire. The fruits 

were no closer than 10 cm to each other, and no further than 1 m from the end of the branch 

(Ferger et al. 2016). Host trees were selected based on two criteria: having enough branches to 

allow the attachment of 30 fruits within the required height, and not currently displaying any 
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fruits of their own or showing evidence of recent fruiting (e.g. decaying fruits on the ground). A 

minimum of 10 m separated each fruit cluster.  

Fruits were checked for evidence of potential attack 72 hours after initial exposure. At this point, 

any damaged or removed fruits were replaced. After a further 72 hours, the fruits were again 

checked and removed, giving a total of 144 hours (six days) of exposure time (and thus 1620 * 2 

surveys = 3,240 surveyed fruits per elevation). During both the intermediate check and the final 

collection, any bitten, pecked or removed fruits were noted, including attacked fruits that had 

fallen to the ground. The taxonomic identity of the attacker was ascertained based on 

characteristics of the impressions left in the modelling clay (Alves-Costa and Lopes 2001). These 

were categorised broadly as: bird, arboreal mammal, bat, and arthropod. For bird-attacked 

fruits, additional information was collected on the feeding technique attempted by the attacker, 

based on physical characteristics of the impressions left on the fruit (see below for details).   

We assigned categories to all bird-attacked fruits (Appendix Figure A5.2): i) Held: These fruits 

had clearly been grasped on opposite sides, suggesting the attacker was capable of swallowing 

the fruit. ii) Intermediate: These fruits showed imprints of upper and lower mandibles but whose 

maximal distance apart was less than the fruit’s diameter.  iii) Pecked: These fruits showed only 

a single hole, characteristic of pecking.  

5.2.3 Bird surveys  

Bird abundance data was collected using point counts (February – July 2016). At each of the 

three elevations, we surveyed a 2,250 m transect comprising 16 points separated by 150 m. 

Transects predominantly followed those of Sam and Koane (2014). Surveys began at sunrise 

(approximately 05.30 am) and were completed by 11.00 am. We replicated the surveys of all 

points three times, on three different days. Individual point counts lasted 15 minutes and 

commenced a few minutes after arriving at a point to minimise the effects of disturbance caused 

by arrival (Bibby et al. 2000). We recorded all birds seen or heard within a radius of 50 m. To 

minimise multiple counts of one individual, we followed the protocol of Sam and Koane (2014): 

that is, we only counted multiple conspecifics if two or more individuals could be heard singing 

simultaneously or from clearly different locations within a period of a few seconds. Points were 

located using Garmin GPSmap 62S handheld GPS units.  

For the analytical purposes of this study, we considered only species richness and abundance of 

obligate frugivores that are known to feed primarily in the forest understory. Obligate frugivores 

are known to form a disproportionately important component of plant-frugivore networks in 

tropical forests (Palacio et al. 2016, de Assis Bomfim et al. 2018). First, birds were classified into 
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feeding guilds based on data from Sam et al. (2017), who analysed the diets of Mt Wilhelm bird 

species by using emetic tartar to induce regurgitation. Birds were classified as understory 

frugivores based on information on foraging height from Pratt and Beehler (2015) and our own 

observations.  Gape width measurements were taken from museum specimens of birds 

collected from the Mt Wilhelm study sites and stored in the Natural History Museum of 

Denmark, University of Copenhagen. Gape width (defined as the distance between the points 

where the two mandibles join at the base of the beak) was measured on male and female adult 

birds to the nearest 0.1 mm using digital calipers.  

5.2.4 Fruit surveys  

Data on size and colour of real fruits at each elevation were collected using transect surveys of 

fruiting woody plants (March – July 2016). We created 10 transects at every elevational study 

site, each measuring 20 * 500 m, to give a total of 10 hectares surveyed per elevation. We 

collected fruits (both from branches and fallen onto the ground) from all fruiting trees present 

within the transects. We identified fruiting plants to species level where possible. Collected fruits 

were measured along their secondary axis, giving a measure of mean fruit diameter per 

individual plant. The secondary axis was used because this represents the minimal dimensions 

restricting possible dispersal by gape-limited frugivores such as birds (Mazer and Wheelwright 

1993). Each collected fruit was photographed, and its colour noted. For bicoloured fruits, both 

colours were noted, although only the most dominant colour (covering > 50% of the fruit’s 

surface) was used in analyses.  

5.2.5 Data analysis  

All data analyses were performed using R version 3.5.2 (R Core Team 2013). To test the 

hypothesis that preferences of birds for certain fruit traits would differ depending on elevation, 

we modelled the proportion of attacked fruits as a function of fruit size, fruit colour, elevation 

and their interactions using a generalised linear model (GLM) with binomial error structure and 

a logit link. Backwards elimination procedure was then used to sequentially simplify the model 

for each variable that was not significant. The importance of the eliminated variable was 

determined using likelihood ratio tests. Parameters of the final model were considered 

significant at p < 0.05 and Tukey pairwise comparisons (“emmeans” function in package 

emmeans; Lenth et al. 2018) were used to adjust p-values during multiple comparisons.  

In order to test the effect of elevation on the proportion of fruits held in the beak by birds and 

thus their potential seed dispersal success, we used a GLM with binomial error structure to 
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investigate the effect of fruit size, fruit colour, elevation and their interactions on the proportion 

of fruits that had been “held” only (as defined above) while excluding those not held (i.e. 

“pecked” + “intermediate attack”). As above, backwards elimination and likelihood ratio tests 

were used to select an appropriate model, and Tukey pairwise comparisons were used to adjust 

p-values during multiple comparisons. We used ‘held’ as a response variable in our model.  

Data analysis on bird and fruit characteristics was carried out as follows:  

1) To determine the differences in frugivore gape size across elevations, we used a GLM with 

Gaussian error distributions; gape size of each recorded species was our response variable. 

To characterise the effects of elevation on the upper limit of gape size, we used a linear 

quantile regression, using the quantreg package in R (Koenker et al. 2019). We selected the 

95th quantile to approximate the upper limit of gape width. In addition, we compared 

community-weighted mean gape size across elevations using a separate GLM with Gaussian 

error distributions using abundance-weighted data in which the response variable was 

individual gape size.  

2) To determine the variation in fruit size across elevations, we used a GLM with Gaussian error 

distributions; mean fruit diameter per fruiting plant species was our response variable. We 

again used quantile regression (selecting the 95th quantile) to approximate the upper limit of 

fruit diameter. As with gape size, we performed a separate GLM with Gaussian error 

distributions using data weighted by abundance of individual fruiting plants.  

3) To determine the abundances of natural fruit colours represented in this study (green, purple 

and red) across elevations, we used three separate GLMs, each with binomial error 

distributions. The three response variables were the proportion of all individual fruiting 

plants that bore green, purple and red fruits respectively.  

4) To determine the differences in understorey frugivore abundances across elevations, we 

used a GLM with Poisson error distributions; understorey frugivore abundance at each point 

was our response variable.  

 

5.3 Results  

We exposed a total of 9,720 artificial fruits along the whole elevation gradient, during which 510 

fruits were attacked by birds and 241 fruits were attacked by other taxa: arboreal mammals (83 

fruits), bats (30) and arthropods (128) (Appendix Table A5.1). Eleven fruits were missing entirely 

and were excluded from analyses.  
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Figure 5.1. Mean proportion of artificial fruits (per 30-fruit cluster) showing evidence of bird feeding 

attempts across elevations (a), fruit colour (b) and for fruit sizes at each elevation (c). Overall attack 

rates on different-sized fruits were similar across the gradient, so not displayed here. Error bars 

represent 95% confidence intervals in all cases. Letters above bars denote the significance of multiple 

comparisons between attack rates, after adjusting using Tukey pairwise comparisons. In part (c), dark 

grey bars represent large fruits, light grey bars represent medium fruits and white bars represent small 

fruits; Letters represent significantly different attack rates on fruits of each size category at a given 

elevation (lower case), and between each elevation for a given size category (upper case).  

 

Avian attack rates on fruits were significantly lower at 700 m in comparison with attack rates at 

1,700 m and 2,700 m, but attack rates at 1,700 m and 2,700 m were similar (Figure 5.1a; Table 

5.1). Along the whole gradient, purple and red fruits were attacked more than green fruits, but 

similarly to each other (Figure 5.1b, Table 5.1). Elevation had little to no effect on the relative 

attack rates by birds on different coloured fruits (p = 0.15; Table 5.1). Green fruits were 

consistently the least attacked (Figure 5.1b). Purple fruits were significantly more attacked than 

red fruits only at 1,700 m (p = 0.05). There was similarly little interaction between colour and 

size of attacked fruits, although this interaction was near-significant (p = 0.06; Table 5.1). Green 

fruits were again least attacked across size categories, and attack rates on green fruits did not 

differ with fruit size. Attack rates on purple and red fruits were similar for all fruit sizes.  

Considering data from along the whole gradient, there was no difference between attack rates 

of different sized fruits (p = 0.28). However, elevation in its interactions with fruit size had a 

significant effect on the number of attacked fruits (Table 5.1). Birds showed no preference in 

relation to fruit size at 700 m asl and attacked medium sized fruits significantly more often than 

small and large fruits at mid-elevations (1,700 m). Finally, small fruits were attacked significantly 

more often than large fruits at 2,700 m (p = 0.03), with medium fruits showing an intermediate 

attack rate (Figure 5.1c).  
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Table 5.1. Results of generalised linear model (GLM) for bird attack rates on artificial fruits including 

fixed effects of fruit size (L = large, M = medium, S = small), fruit colour (G = green, P = purple, R = red) 

and elevation (m), and their interactions. Deviance values are presented for each fixed effect and each 

pairwise/triple interaction between effects. Estimate and standard error of multiple comparisons are 

presented for fixed effects and interactions that were significant at p < 0.05. p-values for multiple 

comparisons are adjusted using Tukey pairwise comparisons. Significant results are presented in bold. 

Results of the GLM for the subset of fruits held in the beak by birds are in Appendix Table A5.2.  

.  

Parameter Deviance P value Multiple Comparisons Estimate SE Adjusted p-value 

Size 2.56 0.28         

Colour 123.22 <0.01 G vs. P -1.38 0.14 <0.01 

   G vs. R -1.2 0.15 <0.01 

      P vs. R 0.18 0.1 0.16 

Elevation 48.28 <0.01 700 vs. 1700 -0.79 0.13 <0.01 

   700 vs. 2700 -0.61 0.13 <0.01 

      1700 vs. 2700 0.19 0.11 0.18 

Size:Colour 9.25 0.06         

Size:Elevation 25.1 <0.01 700:L vs. 700:M 0.51 0.25 0.1 

   700:L vs. 700:S 0.3 0.24 0.41 

   700:M vs. 700:S -0.21 0.26 0.71 

   1700:L vs. 1700:M -0.48 0.17 0.01 

   1700:L vs. 1700:S 0.16 0.19 0.67 

   1700:M vs. 1700:S 0.64 0.17 <0.01 

   2700:L vs. 2700:M -0.18 0.2 0.64 

   2700:L vs. 2700:S -0.49 0.19 0.03 

      2700:M vs. 2700:S -0.31 0.18 0.21 

Colour:Elevation 6.71 0.15         

Size:Colour:Elevation 7.1 0.53         

 

When restricting attack rates only to fruits that were held in the beak (indicating potential 

dispersal), we found the interaction between fruit size and elevation to again be the most 

important interaction, although in this case it was marginally significant overall (p = 0.05). 

Multiple comparisons of “held” fruit size within elevations showed a pattern similar to that of 

overall attack rates, but with some noteworthy differences. At 700 m, holding rates did not differ 

between fruit sizes. Medium fruits were held significantly more than large fruits at 1,700 m, but 

at a similar rate to small fruits. At 2,700 m, small fruits were held significantly more than medium 

fruits, which were in turn held significantly more than large fruits (Figure 5.2; Appendix Table 

A5.2).  

Mean gape width of understory frugivore species showed a decreasing, although non-

significant, trend with elevation (p = 0.27; Appendix Table A5.3). This decrease appears to be 

primarily driven by a significant loss of large-gaped frugivores with increasing elevation (95th 

percentile, p = 0.04; Figure 5.3a). Meanwhile, community-weighted mean gape size decreased 
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Figure 5.2. Mean proportion of differently sized artificial fruits per 30-fruit cluster held in the beak by 

birds at three elevations. Dark grey bars represent large fruits, light grey bars medium fruits and white 

bars small fruits. Error bars represent 95% confidence intervals. Letters above bars denote the 

significance of multiple comparisons between grabbing rates, after adjusting using Tukey pairwise 

comparisons. Letters represent significantly different grabbing rates on fruits of each size category at a 

given elevation (lower case) and between each elevation for a given size category (upper case).  

 

 

significantly with elevation (Appendix Figure 5.3a). The mean diameter of fruits per fruiting plant 

species decreased steadily and significantly with increasing elevation (p < 0.01; Figure 5.3b, 

Appendix Table A5.3), and again appears to be driven primarily by a decrease in maximal rather 

than minimal fruit size (95th percentile, p < 0.01). Mean fruit diameter weighted by individual 

fruiting plant also showed a significant decrease with elevation (Appendix Figure A5.3b). The 

relative abundances of plants naturally bearing green and purple fruits changed significantly 

with elevation (p < 0.01), although this was not the case for plants bearing red fruits (p = 0.52, 

Appendix Table A5.3). Plants bearing green fruits were most common at 700 m (Figure 5.4a), 

while those bearing purple fruits were most common at 2,700 m (Figure 5.4b). At 1,700 m, plants 

bearing red fruits showed the highest abundance of the three fruit colours included in this study 

(Appendix Figure A5.4c).  

Elevation had a significant effect on the abundance of frugivorous understory birds (p < 0.01; 

Figure 5.5, Appendix Table A5.3). Indeed, understory frugivore abundance showed a markedly 

similar pattern to that of overall attack rates on artificial fruits (Figure 5.1a, Figure 5.5). As with 

attack rates, frugivore abundance was highest at 1,700 m and 2,700 m, and significantly lower 

at 700 m.  
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Figure 5.3. Gape widths of understory frugivores (a) and fruit diameter of fruiting plants (b) at each of 

three elevations. (a) Mean adult gape width of each obligate frugivorous bird species recorded at an 

elevation is represented by black circles (N = 8 species at 700 m, 10 at 1,700 m and 7 at 2,700 m). The 

diagonal blue line represents the 95th linear quantile. (b) Black circles here denote the mean diameter of 

ripe fruits (as measured along a fruit’s secondary axis) for a given plant species at each elevation. The 

overall elevational mean fruit diameter, weighted evenly per plant species, is denoted by blue 

diamonds, with error bars representing 95% confidence intervals. As with gape width, the diagonal blue 

line represents the 95th linear quantile. Letters denote statistically significant differences in overall mean 

fruit diameter between elevations (p < 0.05), after adjusting using Tukey pairwise comparisons. 

Community-weighted mean values of frugivore gape width and fruit diameter are displayed in Appendix 

Figure A5.3.  

 

5.4 Discussion  

The variation in ornithochoric fruit traits (e.g. size, colour) across climatic gradients has received 

increased attention in recent years (Chen et al. 2016, Lu et al. 2019), but our understanding 

about the changes in bird preferences remains poor. This is the first study that experimentally 

showed that birds prefer smaller fruits (7 mm diameter vs 13 and 19 mm fruits) at higher 

elevations, intermediate sized fruits (13 mm) at mid-elevation and have no size preference at 

lower elevations. Birds preferred red and purple fruits to green fruits, and their colour 

preferences did not shift with elevation. We found that frugivory rates increased with elevation, 

in contrast to a previous study in Tanzania by Ferger et al. (2016) that showed a decrease in  
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Figure 5.4. Relative abundance of fruiting plants at each elevation for the fruit colours represented in 

this study, represented as a proportion of the total number of fruiting trees at each elevation. Mean 

proportions are displayed for green (a), purple (b) and red (c) fruits. Error bars represent 95% 

confidence intervals. Letters above bars denote significant differences between elevations (p < 0.05), 

after adjusting using Tukey pairwise comparisons.  

 

 

Figure 5.5. Abundance of frugivorous birds occurring in the understory at each elevation, measured as 

the mean abundance of obligate understory frugivores recorded (seen or heard) per point count. Error 

bars represent 95% confidence intervals. Letters above bars denote the significance of multiple 

comparisons, after adjusting using Tukey pairwise comparisons.  
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frugivory rates with elevation. However, both studies found that frugivory rates increase with 

frugivore abundance. Therefore, contrasting patterns between studies could be because of 

contrasting frugivore abundances across elevation gradients in New Guinea compared to 

Tanzania, or variation in habitat types (dry forests vs rainforests) where the experiments were 

conducted.  

In our study, we report community-level preferences for fruit traits among a dispersal guild 

(frugivorous birds) and relate them to the actual traits of fleshy fruits present at three sites along 

an elevational gradient in tropical Papua New Guinea. In total we exposed 9,720 artificial fruits 

of which 510 fruits were attacked by birds and 241 fruits were attacked by other taxa (arboreal 

mammals, bats and arthropods). The attack rate of 5.3% by birds and 2.5% by other taxa after 

six days is comparable to results of other studies. In large forest fragments of Brazilian Atlantic 

forests, birds were responsible for attacks on 5% of artificial fruits after 96 hours (Galetti et al. 

2003). In central Amazonia, birds feeding attempts were recorded on 10% of fruits in 6 days 

(Arruda et al. 2008).  A higher proportion of attacks was detected in a continuous Brazilian forest, 

where birds pecked ca. 11% of fruits after 3 days (Alves-Costa and Lopes 2001). Similarly to the 

above-mentioned studies, we found a significant effect of colour and habitat on the number of 

attacks on the fruits.  

5.4.1 Overall attack rates  

We recorded lower overall attack rates on fruits at 700 m than at higher elevations. Considering 

that frugivory increases with increasing frugivore abundance (Smith and McWilliams 2014), such 

a trend initially seems to contradict existing data suggesting that frugivorous bird abundance 

generally decreases with increasing elevation (Terborgh 1977, Sam et al. 2017). However, the 

placement of artificial fruits within a few metres of the ground means this study specifically 

provides a representation of understory frugivory. Data from the same sites surveyed in this 

study show that abundances of avian obligate frugivores foraging within the understory only 

(i.e. excluding canopy feeders) actually correlates closely with frugivory rates recorded between 

elevations. This data suggests that at lower elevations, the forest canopy hosts the majority of 

frugivory interactions, whereas understory frugivory becomes relatively more important as 

elevation increases and the canopy becomes more open (Sam et al. 2019).  

5.4.2 Fruit colour and elevation  

Overall, we found that birds attacked red and purple fruits more often than green fruits. 

However, attack rates on red and purple fruits were not significantly different from one another. 
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A preference for red over green fruits has been commonly recorded by studies on avian frugivory 

(Janson 1983, Wheelwright and Janson 1985, McPherson 1988, Arruda et al. 2008, Lomáscolo 

et al. 2008, Amico et al. 2011, Duan et al. 2014). Data on purple fruits is less easy to ascertain, 

as purple fruits are commonly combined with other colours such as black and blue in such 

studies. This study is therefore to our knowledge the first to explicitly compare relative 

preferences of birds for purple fruits.  

Unlike fruit size, elevation did not affect the attack rates on different coloured fruits. 

Furthermore, bird colour preferences did not correspond with the colour of the most common 

fruits at each elevation. This suggests that birds are exerting little selective pressure on fruit 

colour at a community level, and that other factors are more important than frugivory in 

determining fruit colour.  

 

That our results show little preference between purple and red fruits regardless of elevation and 

fruit size suggests a lack of innate preferences between these colours at the community level. 

We also observed universally low attack rates on green fruits, including no preference at 700 m 

where green fruits are relatively common. However, it should be noted here that the abundance 

of green fruits in lowlands may reflect a higher abundance of mammalian frugivores (such as 

bats) at these elevations. Indeed, our data found a higher attack rate by mammals on green 

fruits at 700 m (2.7%) than any other colour/elevation combination (Appendix Table A5.1). 

Nevertheless, green fruits contrast less with a background of foliage than red or purple fruits, 

and as primarily visual foragers birds are likely to see red or purple fruits more clearly against 

such a background (Nevo et al. 2018). Our data are therefore consistent with a stochastic 

explanation for fruit colour choice; i.e. birds randomly selecting fruits that are most noticeable 

to them. This finding lends support to the hypothesis that noticeability is the most important 

factor in determining fruit colour choice of bird communities, as has been demonstrated for 

certain species (Schmidt et al. 2004).  

The lack of evidence for selective pressure by dispersers suggests that other factors are likely to 

account for the differences in fruit colours observed between elevations. For example, many 

plant traits (including fruit traits) are known to show evidence of phylogenetic signal, whereby 

closely related plants may display similar traits regardless of environmental factors or selection 

pressures between trophic levels (Jordano 1995, Blomberg et al. 2003). However, fruit colour 

specifically has been shown by several studies to be evolutionarily labile (Cazetta et al. 2012, 

Stournaras et al. 2013, Ordano et al. 2017), perhaps due to the high versatility of the biosynthetic 

pathways for plant pigments (Rausher 2008). Alternatively, fruit colour may reflect an 
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adaptation to abiotic, rather than biotic factors (Burns 2015, Valenta et al. 2018). Anthocyanins, 

which are responsible for blue, purple and red colours in fruit, have been found to vary as a 

function of decreasing latitude and increasing elevation (Zoratti et al. 2015), suggesting that high 

light levels favour their production. Such a pattern could explain the prevalence of purple and 

red fruits at higher elevations in our study sites, where the canopy is more open, and a greater 

proportion of the forest receives direct sunlight.  

5.4.3 Fruit size and elevation  

We found avian community-level fruit size preferences to be consistent with a decreasing trend 

in frugivorous bird gape size with elevation, suggesting community-scale trait matching. We also 

found an association between fruit size preferences and the diameter of actual fruits along the 

elevational gradient, suggesting a potential selective effect of frugivores’ fruit size preferences 

on fruit diameter. To our knowledge, this study constitutes the first experimental evidence of 

bird preferences for fruit size on a community scale.  

Trait matching should predict sites with large-gaped birds to show higher attack rates on large 

fruits and vice-versa (Dehling et al. 2014). While this trend was apparent at higher elevations, 

we found only weak evidence of frugivores feeding preferentially on large fruits at 700 m. This 

is despite the diameter of the large artificial fruits being based on the mean diameter for real 

fruits measured at that elevation. There are a few possible explanations for this. Firstly, some of 

the largest fruits recorded at 700 m are likely to be mammal-dispersed rather than bird-

dispersed, meaning the mean size of bird-dispersed fruits could actually be lower than was 

measured. Secondly, our data show that while maximal frugivore gape size indeed decreases 

with increasing elevation, small-gaped frugivores are still present at low elevations. Thus, a lack 

of a clear community preference for large fruits at 700 m is consistent with the community 

displaying a wide range of gape sizes, even if large birds individually tend to preferentially select 

larger fruits (Burns 2013).  

If we are to consider the frugivory mutualism from the perspective of plants, the feeding 

behaviour employed by frugivores is important (Rey and Gutierrez 1996). A bird that swallows a 

fruit whole is far more likely to provide a seed dispersal function than the one that pecks it 

(Simmons et al. 2018). Dispersal of seeds results in lower density-dependent mortality of 

seedlings and thus is an important component of plant fitness (Howe and Smallwood 1982, 

Beckman and Rogers 2013). Therefore, fruit swallowing is likely to act as a positive selective 

pressure on fruit traits, whereas pecking is not. When considering a subset of artificial fruits that 

were held in the beak and thus potentially able to be dispersed, frugivore gape range and fruit 
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size preferences show a strikingly similar pattern across elevations. As maximal frugivore gape 

size decreases with increasing elevation, so too does the maximal size of fruits held in the beak, 

while the minimal gape size and minimal held fruit size (small) do not change. Our results 

therefore suggest that “community gape limitation” is a factor limiting maximal fruit size. In 

terms of selective pressure, an upper size limit of fruits is more important than a lower size limit 

in determining a plant’s chance of dispersal success. This mirrors the pattern of individual gape 

limitation, whereby large-gaped frugivores are able to disperse small fruits but not vice-versa 

(Wheelwright 1985).  

The patterns described here highlight a trade-off faced by fleshy-fruited plants in tropical forests 

that can be broadly considered in terms of “quality” versus “quantity”, representing the classic 

r/K selection spectrum (MacArthur and Wilson 1967). Large fruits allow the production of large 

seeds, which are associated with enhanced seedling survivorship at low light intensities such as 

those found on the forest floor (Foster 1986). Large seeds produce seedlings with greater vigour 

(Pizo et al. 2006, Lopes Souza and Fagundes 2014) and are more tolerant to predation by rodents 

and beetles (Harms and Dalling 1997, Mack 1998b). However, small fruits can be produced in 

greater numbers than large fruits for the same energy cost. Additionally, as our results 

demonstrate, having large fruits limits potential avian dispersal agents to only a subset of the 

bird community, whereas having smaller fruits does not (Wheelwright 1985, Muñoz et al. 2017). 

While large frugivores, typically having large range sizes, may provide “high quality” long-

distance dispersal (Wotton and Kelly 2012), limiting potential dispersers in this way represents 

a risky strategy for plants, especially at sites with naturally low abundances of large frugivores 

(such as high elevations).  

5.4.4 The use of artificial fruits  

Artificial fruits represent a useful tool for ascertaining feeding preferences of frugivorous birds 

at the community level without resorting to invasive techniques which may affect birds’ 

behaviour. However, there are a few limitations to the approach. Unlike lab-based studies, 

community-based approaches such as this do not identify individual feeding interactions, which 

would enable more direct functional comparisons between fruits and their dispersers. 

Additionally, our study, in common with others using similar methodologies, is limited by the 

placement of artificial fruits relatively close to the ground. This neglects information on the 

feeding preferences of canopy feeding frugivores, which form a very important component of 

avian frugivory especially in lowland rainforest (Shanahan and Compton 2001, Schleuning et al. 

2011). An extension of our experimental methodology to encompass canopy as well as 



 77 5.4 Discussion 

understory frugivory, while logistically difficult, would doubtless provide a more complete 

picture of avian community-level fruit preferences.  

5.4.5 Summary   

This study represents the first attempt to record community-wide preferences of frugivorous 

birds for fruit traits along an elevational gradient. We have shown that at the community scale, 

birds do not preferentially select artificial fruits corresponding to the colour of prevalent real 

fruits. This lack of a correspondence suggests that avian colour preferences are broad and 

inflexible and thus unlikely to be able to select for specific fruit colours. In contrast, we showed 

fruit size preferences of birds do correspond to real fruit size along the gradient, and that 

preferences are consistent with the gape limitation hypothesis. A result is that progressively 

smaller fruits are preferred with increasing elevation. Furthermore, this pattern extends to fruits 

held in the beak by birds and thus able to be dispersed, suggesting the potential for birds to act 

as a selective pressure on fruit size. This result demonstrates a trade-off for plants between 

maximising seed size and maintaining the likelihood of dispersal, especially at high elevations. 

Nevertheless, further experimental study is needed if we are to untangle explicitly whether a 

lack of large fruits at high elevations is a result of selection by birds or due to other factors such 

as environmental constraints.  
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CHAPTER 6  

 

General Conclusions  

 

6.1 Summary of findings  

The aims of this thesis were to understand the processes driving bird diversity patterns and their 

functional relationships with food resources and environment, in lowland and montane 

rainforests in New Guinea. Over the course of four chapters I have used a combination of 

observational and experimental methodologies across a lowland forest and an elevational 

gradient in order to address these aims, as detailed below.  

 In Chapter 2, I studied bird and woody plant beta-diversity across a 10,000 ha area of 

lowland rainforest in Papua New Guinea. Bird beta-diversity was very low: species 

composition did not change with increasing distance between sites from 0.25 – 14 km 

apart, while change in community composition (accounting for species abundances) 

increased marginally with inter-site distance. Species richness of birds was identical for 

a 50 hectare plot and the surrounding 10,000 ha of forest, suggesting that bird diversity 

at intermediate spatial scales is well-represented by local-scale diversity within this 

relatively climatically homogenous habitat. Plant species richness showed a more 

divergent pattern between spatial scales: local-scale richness was significantly lower 

than that recorded across the wider 10,000 ha area with similar sampling effort. Beta-

diversity of plants, however, showed a similar pattern to that of birds. Overall, bird 

community composition was shown to be driven by a combination of spatial and 

environmental factors, while for plants spatial factors were more important, reflecting 

a greater importance of dispersal limitation. Overall the results highlight the differing 

importance of local- and intermediate-scale patterns in determining wider diversity in 

different taxa, and suggest that intensively surveyed small-scale forest dynamics plots 

may be suitable for assessing wider-scale bird diversity in lowland habitats.  

 In Chapter 3, I investigated patterns of avian diversity along an elevational gradient on 

Papua New Guinea, focusing on the relationships between taxonomic, functional and 

phylogenetic diversity. High alpha-diversity at low elevations was matched by high 
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functional and phylogenetic diversity. However, while bird species richness decreased 

monotonically with increasing elevation, functional and phylogenetic diversity showed 

a unimodal trend, flattening out at higher elevations and showing functional and 

phylogenetic clustering. This suggests that mid and high elevation assemblages are 

driven more by environmental filtering than by niche-based processes. The loss of 

functional diversity with increasing elevation may be due in part to a loss of large 

frugivorous species outside lowland assemblages. Beta-diversity patterns, in contrast 

with alpha-diversity patterns, did not show evidence of environmental filtering 

occurring between communities. Functional and phylogenetic turnover were both lower 

than expected given species turnover and did not show a distance-decay relationship 

with increasing elevational distance between sites. Such a pattern may be explained by 

separate evolutionary histories of highland and lowland assemblages, or by widespread 

generalism in the traits measured. The close relationship between functional and 

phylogenetic trends indicated a strong influence of phylogenetic conservatism in 

determining the trait values expressed. This suggests that phylogenetic relationships of 

the bird communities studied may provide an effective proxy for ecosystem functioning, 

highlighting the importance of protecting phylogenetically distinct species.  

 In Chapter 4, I examined four fruit traits related to dispersal by frugivores (diameter, 

seed to pericarp ratio, colour and presentation) along the elevational gradient in Papua 

New Guinea, and tested for evidence of dispersal syndromes by studying the correlated 

evolution of fruit colour and diameter. Fruit diameter was lowest at higher elevations, 

while seed to pericarp ratio did not show an elevational trend. Fruit colours lacked 

strong elevational trends other than a peak in green fruits at 700 m and in black and 

purple fruits at 2,700 m. As a result overall, colours known to be attractive to birds were 

more prevalent at 2,700 m than at other elevations. Fruit presentation type showed a 

significant elevational trend: ramiflorous fruiting species increased from less than half 

of all species at 200 m to 100% of species at 2,700 m. Presentation showed evidence of 

phylogenetic signal, while all other fruit traits measured did not. A lack of phylogenetic 

signal in both fruit colour and diameter, coupled with significant phylogenetic and non-

phylogenetic associations between large/”mammal colour” fruits and small/”bird 

colour” fruits, provided evidence supporting the dispersal syndromes hypothesis.  

 In Chapter 5, I used a field experiment involving artificial fruit exposures to investigate 

fruit size and colour preferences of frugivorous bird communities at three sites along 
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the Mt Wilhelm elevational gradient. Bird preferences for fruit colour did not show an 

elevation-dependent trend and thus did not reflect prevalent fruit colours found at each 

elevation. Therefore it is unlikely that birds have a selective effect on specific fruit 

colours, which are likely to be driven more by environmental factors such as light 

availability. In contrast to colour, the sizes of fruits preferred by birds did change with 

elevation. All sizes were attacked similarly at 700 m asl, although large fruits were 

weakly preferred. At 1,700 m, medium-sized fruits were the most frequently attacked, 

and small fruits were preferred at 2,700 m. The fruit size preferences of birds, especially 

at the higher two elevations, thus correspond to the mean diameters of fruits recorded 

along the gradient, as described in Chapter 4. In addition, bird gape width showed a 

similar decreasing pattern with elevation as did fruit diameter, as a loss of large 

frugivores with increasing elevation limits the maximum gape sizes occurring at higher 

elevations. The results suggest that gape limitation at the community scale is a 

potentially important factor in limiting the sizes of fruits at higher elevations, and that 

birds may act as a selective pressure on fruit size along elevational gradients.  

 

6.2 Broader ecological context  

This thesis has explored a number of aspects relating to avian diversity on elevational gradients. 

The results shed light on the importance of incorporating a range of measures of diversity which 

a traditional focus on species richness may overlook. A casual glance at the bird communities 

recorded along the Mt Wilhelm transect seems to reveal a simple pattern of decreasing species 

richness with increasing elevation, in common with numerous other studies on tropical avian 

diversity (Terborgh 1977, Jankowski et al. 2013, Dehling et al. 2014, Ferger et al. 2014, Sam et 

al. 2019). However, this apparently simple pattern masks a complex array of processes occurring 

below the surface. Community turnover is marked by an abrupt shift at mid-elevations, with 

lowland assemblages defined predominantly by niche-based dynamics and those at higher 

elevations increasingly constrained by environmental conditions. Across elevations, qualitative 

differences in intertrophic interactions between birds and their food sources serve to add 

further complexity to the picture. Indeed, the loss or gain of certain functionally important 

species with changing elevation has the potential to create knock-on effects on ecosystem 

functioning, which may in turn inform our understanding of the changes in ecological processes 

occurring along elevational gradients.  

While birds in their interactions with other organisms perform a wide range of ecological  
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functions, the functional role that has received the most attention in this thesis is frugivory. The 

relationships between avian frugivores and their preferred fruit resources is of particular 

importance in the context of  tropical rainforests, where frugivores make up a higher proportion 

of bird species than in other biomes (Kissling et al. 2009) and where the majority of plant species 

bear fleshy fruits (Muller-Landau and Hardesty 2005). Seed dispersal by birds clearly represents 

a fundamentally important ecosystem service that dictates tropical forest community assembly, 

particularly in areas such as New Guinea where the mammalian frugivore guild is relatively 

depauperate.  

The evidence for dispersal syndromes found in this study suggests that birds have been 

instrumental in the evolution of fruit traits on Mt Wilhelm, as has been demonstrated elsewhere 

for certain groups of fruiting plants (Lomáscolo et al 2008, 2010). Furthermore, in the context of 

elevational gradients, this study has demonstrated that bird fruit preferences at the community 

level have the potential to have an evolutionarily selective effect on fruit size at different 

elevations. The prevalence of smaller-fruited plants at higher elevations may therefore at least 

in part reflect the inability of small highland bird species to disperse larger fruits. The converse 

effect, that is, the selection for smaller avian frugivores at higher elevations due to smaller 

average fruit size, is not necessarily discounted by our results, although the asymmetrical nature 

of gape limitation means that birds are likely to inherently pose a stronger selection pressure on 

fruit size than the other way round (larger-gaped birds may still survive by consuming fruits 

smaller than their gape size, while larger fruits cannot be dispersed if there are no dispersers 

with gapes large enough) (Simmons et al. 2018). Nevertheless, elevational migration, known to 

occur in some bird species in the study area (Sam and Koane 2014) may still serve to enable 

larger-fruited plants access to higher elevations via the digestive tracts of migrating birds.  

The association between frugivore gape size and fruit diameter observed at the community level 

in this study represents an extension to the concept of fruit-frugivore trait matching. Trait 

matching has been observed at the level of individual frugivory interactions by a number of 

studies (Dehling et al. 2014, Muñoz et al. 2017, Bender et al. 2018), including those focusing 

specifically on gape size and fruit diameter (Burns 2013), where it has also sometimes been 

termed “size coupling”. Such a matching of traits need not necessesarily translate to community-

scale effects – after all, high levels of generalism between birds and fruits could ostensibly serve 

to muddy the picture as more and more species are involved, and the frugivory mutualism has 

indeed been described as a “diffuse coevolution” characterised by generalised interactions 

(Levey 1987, Schleuning et al. 2011, Sankamethawee et al. 2011). This is particularly true in the 

tropics, where frugivore diversity and fruit availability are high year round (Chama et al. 2013), 
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and contrasts with other mutualistic interactions such as pollination, whose interaction 

networks show high levels of specialization (Maglianesi et al. 2014). Therefore the detection of 

fruit-frugivore trait matching at the community level here is notable, and suggests that the 

factors determining size-coupling between fruits and birds are occurring across scales.  

 

6.3 Study limitations and future research  

A limitation inherent to studies on functional diversity is the lack of a fully satisfactory way to 

represent the complexity of species’ functional niches using a finite set of traits (Voille et al. 

2007). Bias is always introduced in the process of selecting which traits to use and in their 

relative weighting, and a small variation at this stage may lead to a large difference in functional 

diversity values obtained (Petchey and Gaston 2006, Bernhardt-Romermann et al. 2008). While 

efforts have been made in this study to minimise the effects of bias and to select a range of traits 

that reflect as fully as possible the functional roles performed by birds, it is impossible to ensure 

that the traits used reflect the full breadth of ecological space occupied by the birds of Mt 

Wilhelm. It is also certainly the case, especially in an understudied avian fauna such as that 

encountered in New Guinea, that many relevant ecological and life history traits of many bird 

species are simply not well-known enough to enable their quantification in this way. For 

example, it has been proposed that clutch size may represent an important quantifiable trait 

relating to population demographics (Voille et al. 2007). However, data on clutch size was not 

available for the majority of species recorded on the Mt Wilhelm transect. This example 

demonstrates the importance of natural history in informing ecological research, particularly 

when attempting to define the ecological niches of species.  

The broader applicability of the findings of this study were also limited on a number of fronts by 

an inability to access the forest canopy. While a common limitation of studies undertaken in 

tropical rainforest, it nevertheless leaves open avenues for further research in cases where 

budget and time allow for improved methods of canopy access. For example, results of the fruit 

surveys undertaken in Chapter 4 were likely to have been biased towards fruits presented within 

easy visual distance of ground-based observers. It was frequently difficult to spot fruits high in 

the canopy, particularly at lower elevations (200 – 1,200 m) where the canopy is high and in 

many cases hidden from view behind understory foliage. If the fruit traits measured in this study 

vary in any consistent way between forest strata, then this observer bias could have resulted in 

skewed data with regards to the traits in question, especially at lower elevations. An additional 

advantage of improved visibility of canopy fruits is that it would allow the estimation of fruit 
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abundance at each elevation. This would allow the weighting of fruit traits by the relative 

abundance of fruits displaying these traits (rather than simply by the number of individual trees 

bearing these fruits), thus potentially better reflecting the actual prevalence of fruit traits at 

each elevation. It would also allow the estimation of fruit crop size and biomass at each 

elevation, which are factors known to be important components of frugivory interactions 

(Flörchinger et al. 2010, Albrecht et al. 2012). However, incorporating abundance measures into 

fruit trait data would also require year-round surveys, as fruit abundance is likely to be 

temporally variable (Ramírez and Kallarackal 2015), and a single snapshot of fruit abundance 

may be highly skewed by the chance occurrence of masting events.  

Canopy fruits may be better represented if surveys make use of technological solutions. For 

example, drones fitted with high-quality cameras have in recent years started being employed 

to survey forest canopies from above (Koh and Wich 2012), and in combination with ground-

based surveys in order to detect arboreal animals such as monkeys (Kays et al. 2019). While the 

relatively small size of fruits means that direct estimation of abundance is unlikely to be possible 

using this kind of survey, canopy imaging could potentially be used as a means of detecting 

important canopy fruiting trees that could then be focused on with subsequent careful ground-

based observations.  

Another aspect of this thesis that would have benefitted from access to the forest canopy is the 

experimental data on fruit trait preferences of birds presented in Chapter 5. As mentioned in 

the discussion of Chapter 5, the existing experimental setup neglects frugivory interactions 

occurring at mid and upper forest strata, due to the limitations imposed by conducting the 

experiments within 3 m of ground level. This is significant because many important avian 

frugivores, including the fruit doves and imperial pigeons in New Guinea, are predominantly 

canopy-feeding species (Pratt and Beehler 2015). Expanding the current setup in order to expose 

artificial fruits at higher strata would undoubtedly provide a more complete view of avian 

frugivory patterns with elevation than is currently available, and could be achieved using canopy 

access techniques. This would also potentially allow for assessments of niche separation within 

bird communities in a single forest by comparing relative frugivore preferences across forest 

strata.  

Notwithstanding the lack of canopy feeding data, this study has demonstrated the effectiveness 

of artificial fruits as a means of assessing avian feeding preferences, and further studies could 

expand on this methodology by manipulating artificial fruits to vary in a greater number of traits, 

for example incorporating fruit shape and smell. Additionally, the data on frugivory by non-avian 

frugivores, while touched on briefly here, could be expanded upon significantly. As proven in 
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this study, artificial fruits are attacked not only by birds but by a variety of mammals and insects. 

Further studies using artificial fruits could provide a more complete view of ecosystem-wide 

frugivory occurring across taxa, thus enabling better-informed ecological assessments of the 

changes in fruit traits observed across environmental gradients. Indeed, the data already 

obtained in this study could form a suitable starting point for such assessments.  

Finally, while artificial fruit exposures provide information on broad fruit trait preferences of 

bird communities at different elevations, the current study does not allow the individual-level 

trait matching of specific avian frugivore species with their preferred fruits, as seen in other 

studies previously mentioned (Burns 2013, Dehling et al. 2014, Bender et al. 2018). Direct 

observations of frugivory interactions would provide a better understanding of individual fruit-

frugivore relationships, helping to reveal the importance of aspects of frugivory such as gape 

limitation at a more granular level. This would also allow comparison of the processes dictating 

both individual-level and community-level trait matching. Such observations may be conducted 

either by conducting watches on target fruiting plant species or artificial fruit clusters, or 

remotely by means of camera traps. The relationship between trait matching and the observed 

functional diversity patterns at different elevations also requires further exploration, particularly 

considering functional beta-diversity of birds and fruits.  

 

6.4 Implications for conservation  

The results of this thesis highlight the complex relationships that birds share with their 

environment along elevational gradients. The presence of a bird at a particular elevation is likely 

to be a result of a combination of factors spanning from its evolutionary history to climatic 

tolerances, availability of spatial niches and food resources. In turn, birds may act as a powerful 

force in driving elevational trends in rainforest community assembly through processes such as 

seed dispersal. As I hope this thesis has demonstrated, an approach focusing on bird functional 

traits and those of their food resources has the ability to shed light on the factors affecting both 

bird communities and their intertrophic relationships.  

A clear example of the importance of functional traits on intertrophic dynamics concerns the 

relationship between bird gape size and fruit size. Along the Mt Wilhelm elevational gradient, a 

loss of large-gaped frugivores with elevation was strongly associated with a loss of large-fruited 

plants. The closeness of this relationship has potential implications for the conservation of both 

of these groups. It is known that large frugivores in tropical forests tend to have larger range 

sizes and thus larger area requirements than smaller species (Price et al. 1999). Additionally they 
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may be particularly attractive to hunters (Strahl and Grajal 1991), both for subsistence and – in 

the case of New Guinea – sometimes for feathers used in ceremonial activities (Mack and Wright 

1998). The combined result is that large frugivores tend to be more vulnerable to extinction 

from hunting and habitat fragmentation than smaller species (Dominy and Duncan 2005, Galetti 

et al. 2013, Vidal et al. 2013).  

As they stand, the forests of New Guinea are relatively intact. However, this may not remain the 

case for long – between 2002 and 2014, 7.3% of Papua New Guinea’s accessible forests (mostly 

in the lowlands) were logged or cleared, and 14.9 million hectares of remaining forest occurs 

inside logging concessions (Bryan and Shearman 2015). The continued degradation of lowland 

forest habitat could potentially have a severe impact on large frugivores in PNG’s lowlands. This 

could in turn create knock-on effects whereby a lack of large-gaped frugivores leads to 

inadequate dispersal of large-fruited plants that depend on them. Such a pattern is known to 

have occurred after the extinction of many frugivorous Pleistocene megafauna across the globe 

(Guimarães et al. 2008), and has been observed after more recent avian extinctions on 

Polynesian islands (McConkey and Drake 2002, Wotton and Kelly 2011) and in Brazil (Galetti et 

al. 2013). Therefore if seed dispersal services are to be maintained across New Guinea’s forests, 

the protection of large frugivores should form a focus of conservation efforts.  

Focusing on elevational gradients, the functional dynamics between fruits and frugivores may 

be an important factor to consider in the context of elevational range shifts under future climate 

change (Mokany et al. 2014). Surface temperatures across the tropical Pacific are projected to 

increase by 2 – 3o C by the end of the century (Lough et al. 2011) In addition, El Niño activity 

(which in New Guinea typically produces drought conditions) has increased over the past 50 – 

100 years (Vecchi and Wittenberg 2010). Here tropical mountains such as Mt Wilhelm stand to 

be particularly affected by rising temperatures and fluctuating rainfall, due to the strong 

temperature and precipitation gradient that exists across elevation in the tropics. Birds in the 

region are known to respond to changing climatic conditions by shifting their ranges across 

elevations (Sam and Koane 2014). However, as fundamentally more sessile organisms, plants 

are unlikely to react as quickly, potentially leading to a functional mismatch between fruits and 

frugivores (Nowak et al. 2019). From the data presented here, it is also clear that large-gaped 

frugivorous birds are less restricted in their fruit size requirements than are large-fruited plants 

on frugivore gape size. A shift or contraction of large-gaped frugivore species’ ranges away from 

the lowest elevations may lead to a similar pattern of reduced plant dispersal effectiveness in 

the lowlands as that described under scenarios of habitat degradation above.  
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At higher elevations, climate change scenarios predict that species will be forced towards the 

tops of mountains as their available niche space shifts (Freeman et al. 2018). As this thesis has 

shown, bird community assembly at mid and high elevations in New Guinea is primarily filtered 

by the environment, suggesting highland assemblages are especially vulnerable to any changes 

in environmental conditions such as rising temperatures. As species shift upwards, available land 

area decreases and populations may become more fragmented (Spehn and Körner 2005). 

Indeed, available habitat for some species may be lost altogether on lower mountain ranges 

where the mountaintops are already below the treeline. High mountains such as Mt Wilhelm 

may therefore become important refuges for increasing numbers of montane species in the 

future, and their protection should form another priority of conservation efforts.  

 

6.5 Concluding remarks  

The forests of New Guinea remain relatively unknown, and have undoubtedly yet to reveal many 

“treasures” to Wallace’s modern day counterparts. Their high species endemism and huge 

carbon reserves make them a vital global resource, although one that is facing a greater number 

of external pressures than ever before. In this thesis I have provided some insights into the 

factors affecting bird diversity across the island and their relationships with the forests they 

inhabit, both in lowland and montane environments. I hope that I have made some contribution 

towards better understanding and thus more effectively protecting New Guinea’s forests in the 

future.  
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Figure A2.1. Example of canopy photo analysis using Matlab 2015’s Image Processing Toolbox 

(Mathworks 2015) and code developed by Korhonen and Heikkinen (2009). The original photo 

(a) is converted into a black and white Bitmap image according to a threshold brightness value 

(b). The produced image (c) is assessed according to the relative proportion of black versus 

white pixels, defined as canopy closure. Canopy cover (d) was not assessed in the current 

study.  
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c) d) 
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Figure A2.2 Bird species richness as shown in Figure 2.2, in this case represented by rarefaction 

curves for WCA (black triangle) and FDP (black circle) with ± 84% confidence intervals (shaded 

areas). Solid lines show interpolated rarefaction curves. Dashed lines represent extrapolated 

rarefactions exceeding our sampling effort. Species accumulation was calculated by site 

(individual point count location) for a total of 320 (WCA) and 169 (FDP) sites.  

 

 

 

Table A2.1 Woody plant species names corresponding to species codes displayed in Figure 2.5. 

Morphospecies are presented in the cases of Cryptocarya sp.01 and Phaeanthus sp.01 where 

identification to species level was not possible.  

Species Code Species Name  

AlanVi Alangium villosum 

CallPent Callicarpa pentandra 

ClerIner Clerodendrum inerme 

CrypSp01 Cryptocarya sp.01 

CupnAcut Cupaniopsis acuticarpa 

CyatPolc Cyathocalyx polycarpa 

DecsRhod Decaspermum rhodoleucum 

DiosLoln Diospyros lolin 
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DrypLasi Drypetes lasiogynoides 

DysxBras Dysoxylum brassii 

DysxGaud Dysoxylum gaudichaudianum 

FicsArfk Ficus arfakensis 

FicsBotr Ficus botryocarpa 

FicsDrup Ficus drupacea 

FicsPung Ficus pungens 

FicsSemv Ficus semivestita 

FicsVari Ficus variegate 

GaleCelb Galearia celebica 

GarcLats Garcinia latissimi 

GardHans Gardenia hansemannii 

GnetGnem Gnetum gnemon 

GuioComs Guioa comesperma 

GymnPanc Gymnacranthera paniculata 

HibsPapu Hibiscus papuadendron 

LeucAust Leucosyke australis 

MacrAleu Macaranga aleuritoides 

MacrBifv Macaranga bifoveata 

MacrNeob Macaranga neobritannica 

MacrNovg Macaranga novoguineensis 

MacrQuad Macaranga quadriglandulosa 

MacrTanr Macaranga tanarius 

MelcEllr Melicope elleryana 

MeliPinn Meliosma pinnata 

MornCitr Morinda citrifolia 

PhaeSp01 Phaeanthus sp.01 

PicrJavn Picrasma javanica 

PlanFirm Planchonella firma 

PomtPinn Pometia pinnata 

PremObts Premna obtusifolia 

PrunSchl Prunus schlechteri 

RinrBeng Rinorea bengalensis 

RyprJavn Ryparosa javanica 
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SterShil Sterculia shillinglawii 

SterSchm Sterculia schumanniana 

TeijBogr Teijsmanniodendron bogoriense 

TernCher Ternstroemia cherry 

TimnTimn Timonius timon 

TricPhil Trichadenia philippinensis 

TricPlei Trichospermum pleiostigma 

VersCaul Versteegia cauliflora 

 

 

 

Table A2.2 Bird species names corresponding to species codes displayed in Figure 2.6. Two 

species from the genus Meliphaga are presented in the case of MeliSp. where it was usually 

not possible to distinguish between the two species.  

Species Code Species Name 

ArseInsu Arses insularis 

CacaGale Cacatua galerita 

CiciRegi Cicinnurus regius 

CoraBoye Coracina boyeri 

CoraMela Coracina melas 

CratMuri Crateroscelis murina 

DucuRufi Ducula rufigaster 

DucuZoea Ducula zoeae 

GallRufi Gallicolumba rufigula 

GeryPalp Gerygone palpebrosa 

LalaAtro Lalage atrovirens 

LeptAspa Leptocoma Aspasia 

LoncTris Lonchura tristissima 

MacrAmbo Macropygia amboinensis 

MachFlav Machaerirhynchus flaviventer 

MegaMagn Megaloprepia magnifica 

MeliMacr Melidora macrorrhina 

MeliSp. Meliphaga analoga / M. Aruensis 

MicrParv Microdynamis parva 



 122 Appendix: Chapter 2 

MinoDumo Mino dumontii 

PachSimp Pachycephala simplex 

PitoKirh Pitohui kirhocephalus 

PittEryt Pitta erythrogaster 

PittSord Pitta sordida 

PoecHypo Poecilodryas hypoleuca 

PomaIsid Pomatostomus isidorei 

ProbAter Probosciger aterrimus 

PseuFerr Pseudorectes ferrugineus 

PsitEdwa Psittaculirostris edwardsii 

PtilCoro Ptilinopus coronulatus 

PtilPerl Ptilinopus perlatus 

PtilPulc Ptilinopus pulchellus 

RhipRufd Rhipidura rufidorsa 

RhipThre Rhipidura threnothorax 

SeleMela Seleucidis melanoleucus 

SymaToro Syma torotoro 

SympGutt Symposiachrus guttula 

TanyGala Tanysiptera galatea 

ToxoNova Toxorhamphus novaeguineae 

TricHaem Trichoglossus haematodus 
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A3.1 Morphological Trait Measurement and Trait Selection  

Morphological traits in the global database were obtained from a combination of live mist-

netted birds and preserved museum skins. Traits were measured to the nearest 0.01 mm. 

Where possible, measurements were taken from at least four individuals per species (two 

from each sex; mean total = 8 individuals) (Pigot et al. 2016). Morphological traits included in 

preliminary analyses were: mass, bill culmen length, bill width, gape width, wing chord length, 

Kipp’s distance and tail length. Behavioural Traits were: food source, foraging substrate, 

foraging height, nest location and clutch size. The latter two traits were removed due to having 

a high number of missing values. Remaining traits (morphological and behavioural) were 

subjected to Pearson’s correlations (see figure S1 below for traits included in final analyses).  

 

 

 

Figure A3.1. Pearson correlation matrix for traits included in final functional diversity analyses. 

Green squares represent positive correlations between traits/trait levels and red squares 

represent negative correlations. Traits were excluded if they included correlations with 

multiple other traits above/below a threshold value of +/-0.7. Of the final traits included 

(mass, bill width, Kipp’s distance, food source and foraging substrate, only one correlation 

exceeded this threshold: Food (invertebrates) vs. Food (fruit) at -0.81: this was permitted 

because it is a within-trait correlation.  
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Figure A3.2. Maximum Clade Credibility (MCC) phylogenetic tree for all birds recorded at the 

Mt Wilhelm study sites. Phylogeny is based on the BirdTree global avian phylogeny of Jetz et 

al. (2012), using the Hackett et al. (2008) backbone. See Methods for more details.  
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Figure A3.3. Standardised Effect Size (SES) of functional (a) and phylogenetic (b) between-site 

Mean Pairwise Distance (MPD), analogous to dissimilarity, for birds recorded along the Mt 

Wilhelm gradient. Each black circle represents a single pairwise comparison between 

elevations. Functional and phylogenetic dissimilarity between elevations is broadly lower than 

expected given species dissimilarity, signified by 10 out of 15 pairwise comparisons falling 

below the lower dotted horizontal line in both cases. Neither type of diversity shows evidence 

of increasing dissimilarity with increasing elevational distance between plots. SES values for 

each individual elevational pairwise comparison are displayed in Table S3.  

 

 

Figure A3.4. Taxonomic, functional and phylogenetic beta-diversity between neighbouring 

elevations. Taxonomic beta-diversity (a) is represented by Bray-Curtis dissimilarity, and shows 

a peak between 1,200 and 1,700 m. Functional (b) and phylogenetic beta-diversity (c) are 

represented by the Standardised Effect Size (SES) of between-site Mean Pairwise Distance 

(MPD), which reflects functional and phylogenetic dissimilarity after accounting for species 

dissimilarity between sites. Both show broadly lower dissimilarity than expected, with all 

comparisons other than 200 – 700 m falling below the lower dotted line. Functional and 

phylogenetic dissimilarity (after accounting for species dissimilarity) are lowest between 1,200 

and 1,700 m.  
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Table A3.1. List of bird species recorded by point counts at Mt Wilhelm, together with 

information on their primary food source(s) (from Sam et al. 2017) and the total abundance 

recorded of each species at each elevation. Latin and common English species names are 

given. Food sources are categorised as either Vertebrates (Ve), Invertebrates (In), Fruit (Fr), 

Grains/Seeds (Gr) or Nectar (Ne). Species for which we lacked trait data (n = 5) and 

phylogenetic data (n= 2), and were thus excluded from functional and phylogenetic analyses, 

are marked in red and blue text respectively.  

Latin Species Name English Species Name Food Source Elevation (m) 

    1 2 200 700 1200 1700 2200 2700 

Accipiter poliocephalus Grey-headed Goshawk Ve In     2  

Aceros plicatus Papuan Hornbill Fr  51 8 2    

Ailuroedus buccoides White-eared Catbird Fr In 4 5     

Alcedo azurea Azure Kingfisher In Ve 11      

Aleadryas rufinucha Rufous-naped Whistler In     25 12  

Amalocichla incerta Lesser Ground-robin In    8    

Amblyornis macgregoriae Macgregor's Bowerbird Fr       1 

Aplonis metallica Metallic Starling Fr In 8      

Arses insularis Rufous-collared Monarch In  24 16     

Artamus maximus Great Woodswallow In       6 

Astrapia stephaniae Stephanie's Astrapia Fr       6 

Butastur indicus Grey-faced Buzzard Ve      4  

Cacatua galerita Sulphur-crested Cockatoo Fr  66 20 4    

Cacomantis castaneiventris Chestnut-breasted Cuckoo In    6    

Cacomantis flabelliformis Fan-tailed Cuckoo In     16 4 7 

Cacomantis variolosus Brush Cuckoo In  10 7 1    

Caliechthrus leucolophus White-crowned Koel In  6      

Centropus bernsteini Lesser Black Coucal   12      

Ceyx lepidus Variable Kingfisher In   7     

Chaetorhynchus papuensis Pygmy Drongo In   4 15    

Chalcophaps stephani Stephan's Dove Fr   6 6    

Charmosyna josefinae Josephine's Lorikeet Ne      6  

Charmosyna papou Papuan Lorikeet Fr Ne    14 3 27 

Charmosyna placentis Red-flanked Lorikeet Ne Fr   19    

Charmosyna rubronotata Red-fronted Lorikeet Ne Fr 6  4    

Cicinnurus magnificus Magnificent Bird-of-paradise Fr   17 15    

Cicinnurus regius King Bird-of-paradise Fr In 16 20 2    

Cnemophilus loriae Loria's Bird-of-paradise Fr     1   

Collocalia esculenta Glossy Swiftlet In     1 58 11 

Collocalia vanikorensis Uniform Swiftlet In  4   3   

Colluricincla megarhyncha Little Shrike-thrush In  17 18 7    

Coracina boyeri Boyer's Cuckooshrike Fr In 8 3 4    

Coracina caeruleogrisea Stout-billed Cuckooshrike In    29 4   

Coracina longicauda Hooded Cuckooshrike In       3 

Coracina melas New Guinea Cuckooshrike In   2     

Coracina montana Black-bellied Cuckooshrike Fr In      1 

Coracina novaehollandiae Black-faced Cuckooshrike Fr In  1  16 1  
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Coracina papuensis White-bellied Cuckooshrike In  3      

Coracina tenuirostris Slender-billed Cicadabird In   4 2    

Corvus tristis Grey Crow Fr  1 20 7  2  

Cracticus cassicus Hooded Butcherbird In Ve 83 2     

Cracticus quoyi Black Butcherbird In  3      

Crateroscelis murina Rusty Mouse-warbler In  1 35 48    

Crateroscelis nigrorufa Bicoloured Mouse-warbler In   1  7   

Crateroscelis robusta Mountain Mouse-warbler In     4 20 30 

Cyclopsitta diophthalma Double-eyed Fig-parrot Fr Ne  6     

Dacelo gaudichaud Rufous-bellied Kookaburra In Ve 51 8     

Daphoenositta chrysoptera Varied Sittella In       1 

Daphoenositta miranda Black Sittella In       5 

Dicaeum geelvinkianum Red-capped Flowerpecker Fr Ne 4 34 30 47 2  

Dicrurus bracteatus Spangled Drongo In  39 18     

Drymodes superciliaris Northern Scrub-robin In   6     

Ducula chalconota Shining Imperial-pigeon Fr     3   

Ducula pinon Pinon Imperial-pigeon Fr  30 2     

Ducula rufigaster Purple-tailed Imperial-pigeon Fr  1      

Ducula zoeae Banded Imperial-pigeon Fr  17 15 31    

Eclectus roratus Eclectus Parrot Fr In 22 3     

Epimachus fastuosus Black Sicklebill Fr      1  

Epimachus meyeri Brown Sicklebill Fr       26 

Erythrura papuana Papuan Parrotfinch Fr    1    

Erythrura trichroa Blue-faced Parrotfinch Fr   4 2 11 16 1 

Eudynamys scolopaceus Asian Koel In   1 3    

Eugerygone rubra Garnet Robin In      4  

Eurystomus orientalis Asian Dollarbird In  2      

Gallicolumba beccarii Bronze Ground-dove Fr   1     

Gallicolumba rufigula Cinnamon Ground-dove Gr    7    

Geoffroyus geoffroyi Red-cheeked Parrot Fr Ne 31      

Gerygone chloronota Green-backed Gerygone In   17 7    

Gerygone chrysogaster Yellow-bellied Gerygone In  8 6 5    

Gerygone cinerea Mountain Gerygone In     2  2 

Gerygone ruficollis Brown-breasted Gerygone In     8 4 11 

Glycichaera fallax Green-backed Honeyeater In  11 1 2    

Grallina bruijni Torrent-lark In    2 1   

Gymnophaps albertisii Papuan Mountain-pigeon Fr       23 

Haliastur indus Brahminy Kite Ve In    2 1  

Harpyopsis novaeguineae New Guinea Eagle Ve    1 7   

Henicopernis longicauda Long-tailed Honey-buzzard Ve In   1    

Ifrita kowaldi Ifrit In      3 10 

Lalage atrovirens Black-browed Triller Fr In 44 5 4    

Loboparadisea sericea Yellow-breasted Satinbird Fr     2 2  

Lonchura spectabilis Hooded Munia Gr      12  

Lonchura tristissima Streak-headed Munia Gr  4      

Lophorina superba Superb Bird-of-paradise Fr     52   
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Lorius lory Black-capped Lory Fr Ne 31 17 10 16   

Machaerirhynchus flaviventer Yellow-breasted Boatbill In  1  3    

Machaerirhynchus nigripectus Black-breasted Boatbill In   10  18 6 10 

Macropygia amboinensis Brown Cuckoo-dove Fr  3 6 3  1 2 

Macropygia nigrirostris Black-billed Cuckoo-dove Fr   1 2    

Malurus alboscapulatus White-shouldered Fairywren In     5   

Manucodia ater Glossy-mantled Manucode Fr    4    

Manucodia chalybatus Crinkle-collared Manucode Fr     7   

Megalurus timoriensis Tawny Grassbird In Gr 2   6 12  

Megapodius affinis New Guinea Megapode Fr  2   1   

Melampitta lugubris Lesser Melampitta In     5  12 

Melanocharis crassirostris Spotted Berrypecker Fr In    12   

Melanocharis nigra Black Berrypecker Fr In 3 58 44    

Melanocharis striativentris Streaked Berrypecker Fr     11 1  

Melanocharis versteri Fan-tailed Berrypecker Fr In    8 17 3 

Melidectes belfordi Belford's Melidectes In Fr    7 16 80 

Melidectes rufocrissalis Yellow-browed Melidectes In Ne    83 3 10 

Melidectes torquatus Ornate Melidectes In Ne    4   

Melidora macrorrhina Hook-billed Kingfisher In Ve 7      

Melilestes megarhynchus Long-billed Honeyeater In Ne 12 41 43 14 1  

Meliphaga analoga Mimic Honeyeater In Fr 80 40 14    

Meliphaga orientalis Hill-forest Honeyeater In Ne      2 

Melipotes fumigatus Smoky Honeyeater In     25 4 29 

Microdynamis parva Dwarf Koel Fr  2  1    

Microeca flavovirescens Olive Flyrobin In  1 24 9 16 9 23 

Micropsitta pusio Buff-faced Pygmy Parrot Fr Ne 7 19 2    

Milvus migrans Black Kite Ve  2      

Mino dumontii Yellow-faced Myna Fr In 46 4     

Monarcha chrysomela Golden Monarch In  19      

Monarcha guttula Spot-winged Monarch In  2 14     

Monarcha manadensis Hooded Monarch In  3 2     

Myiagra alecto Shining Flycatcher In Fr 12      

Myzomela rosenbergii Red-collared Myzomela Ne In    40 49 12 

Nectarina aspasia Black Sunbird Ne In 10      

Neopsittacus musschenbroekii Yellow-billed Lorikeet Fr Ne     1 2 

Neopsittacus pullicauda Orange-billed Lorikeet Ne Fr    29 6 26 

Oreocharis arfaki Tit Berrypecker Fr     19 3  

Oreopsittacus arfaki Plum-faced Lorikeet Ne Fr     2 5 

Otidiphaps nobilis Pheasant Pigeon Fr In   2    

Pachycare flavogriseum Goldenface In   5     

Pachycephala hyperythra Rusty Whistler In   3 17    

Pachycephala leucogastra White-bellied Whistler In      13  

Pachycephala monacha Black-headed Whistler In     2   

Pachycephala schlegelii Regent Whistler In      13 42 

Pachycephala simplex Grey Whistler In  6 15  1  14 

Pachycephala soror Sclater's Whistler In     21   
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Pachycephalopsis poliosoma White-eyed Robin In    22    

Paradisaea minor Lesser Bird-of-paradise Fr In 52 59 55    

Paramythia montium Crested Berrypecker Fr       6 

Peltops blainvillii Lowland Peltops In  4  6    

Peltops montanus Mountain Peltops In   3  5  3 

Peneothello bimaculata White-rumped Robin In   5 27    

Peneothello cyanus Blue-grey Robin In     56 32 4 

Peneothello sigillata White-winged Robin In Fr     1 24 

Philemon buceroides Helmeted Friarbird Ne Fr 62 4  1   

Philemon meyeri Meyer's Friarbird Fr Ne 1 9 12    

Pitohui dichrous Hooded Pitohui Fr In  36 44 4   

Pitohui ferrugineus Rusty Pitohui In Fr 29 1     

Pitohui kirhocephalus Variable Pitohui In Fr  26 15 1   

Pitta erythrogaster Red-bellied Pitta In   3     

Podargus papuensis Papuan Frogmouth In Ve   3    

Poecilodryas hypoleuca Black-sided Robin In  8 20     

Pomatostomus isidorei New Guinea Babbler In  3 4     

Probosciger aterrimus Palm Cockatoo Fr  13 9     

Pseudeos fuscata Dusky Lory Fr      31  

Psittacella picta Painted Tiger-parrot Fr       4 

Psittaculirostris edwardsii Edwards's Fig-parrot Fr Ne 20 16 1    

Psittrichas fulgidus Pesquet's Parrot Fr    2    

Ptilinopus coronulatus Coroneted Fruit-dove Fr  2      

Ptilinopus iozonus Orange-bellied Fruit-dove Fr  17 15 11    

Ptilinopus magnificus Wompoo Fruit-dove Fr  5 4 1    

Ptilinopus ornatus Ornate Fruit-dove Fr   5     

Ptilinopus pulchellus Beautiful Fruit-dove Fr  39      

Ptilinopus rivoli White-bibbed Fruit-dove Fr     4 3 15 

Ptilinopus superbus Superb Fruit-dove Fr  32 5 1    

Ptiloprora guisei Rufous-backed Honeyeater Fr     20 4 42 

Ptiloprora perstriata Black-backed Honeyeater In Fr    2 13 39 

Ptilorrhoa caerulescens Blue Jewel-babbler In  4 8 19    

Ptilorrhoa leucosticta Spotted Jewel-babbler In   5    3 

Pycnopygius cinereus Marbled Honeyeater Ne In    16   

Reinwardtoena reinwardtii Great Cuckoo-dove Fr  1      

Rhagologus leucostigma Mottled Whistler Fr     7 1  

Rhipidura albolimbata Friendly Fantail In     32 31 24 

Rhipidura atra Black Fantail In     9 10  

Rhipidura brachyrhyncha Dimorphic Fantail In     16 16 10 

Rhipidura leucothorax White-bellied Thicket-fantail In  1      

Rhipidura maculipectus Black Thicket-fantail In   5 10    

Rhipidura rufidorsa Rufous-backed Fantail In  8      

Rhipidura rufiventris Northern Fantail In  15 2     

Rhipidura threnothorax Sooty Thicket-fantail In  11      

Saxicola caprata Pied Bushchat In     2 7  

Scythrops novaehollandiae Channel-billed Cuckoo Fr  2      
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Sericornis nouhuysi Large Scrubwren In     31 18 25 

Sericornis papuensis Papuan Scrubwren In     41   

Sericornis perspicillatus Buff-faced Scrubwren In     42 43 29 

Sericornis spilodera Pale-billed Scrubwren In   2     

Syma megarhyncha Mountain Kingfisher In Ve    2 1  

Syma torotoro Yellow-billed Kingfisher In  2 5 1 16 2  

Talegalla jobiensis Brown-collared Brush-turkey Fr In 3  1    

Tanysiptera galatea Common Paradise-kingfisher In   2     

Todiramphus macleayii Forest Kingfisher In   1     

Toxorhamphus novaeguineae Green-crowned Longbill In Ne 47 5     

Toxorhamphus poliopterus Grey-winged Longbill In Ne  37 70 41 23  

Tregellasia leucops White-faced Robin In Fr  10 11    

Trichoglossus haematodus Rainbow Lorikeet Ne Fr 67 35 22    

Xanthotis flaviventer Tawny-breasted Honeyeater In Ne 37 10 9    

Xanthotis polygrammus Spotted Honeyeater In Ne      14 

Zosterops minor Black-fronted White-eye In Fr  8 13 23 2 1 

 

 

 

 

Table A3.2. Summary tables of all GLM models. Each model was built following the same 

guidelines (see Methods) and significance was tested using deviance against a null model (~1). 

“DF” and “Res. DF” refer to degrees of freedom and residual degrees of freedom respectively. 

Deviance, F- and p-values are also displayed. Significant relationships are shown in bold.  

Dependent 
variable 

Data type Independent 
variable 

Error 
distribution 

Deviance DF Residual 
Deviance 

Res. 
DF 

F p-
value 

Species  
diversity 

- Elevation poisson 12.62 1 0.95 4 - <0.01 

Functional MPD abundance Poly(Eleva-
tion,2) 
 

gaussian <0.01 2 <0.01 3 - <0.01 

Phylogenetic 
MPD 

abundance Poly(Eleva-
tion,2) 
 

gaussian <0.01 2 <0.01 3 - <0.01 

SES of functional 
MPD 

abundance Poly(Eleva-
tion,2) 
 

gaussian 6.71 2 1.45 3 - <0.01 

SES of functional 
MPD 

presence-
absence 

Elevation 
 

gaussian 11 1 5.17 4 - <0.01 

SES of 
phylogenetic 

MPD 

abundance Poly(Eleva-
tion,2) 

gaussian 6.18 2 2.01 2 - <0.01 

SES of 
phylogenetic 

MPD 

presence-
absence 

Elevation gaussian 12.6 1 8.14 4 - 0.01 

Bray-Curtis total - Elevation 
difference 

quasibino-
mial 

2.3 1 0.86 13 35.46 <0.01 

Bray-Curtis 
turnover 

- Elevation 
difference 

quasibino-
mial 

2.78 1 1.14 13 32.78 <0.01 

Bray-Curtis 
nestedness 

- Elevation 
difference 

quasibino-
mial 

0.3 1 0.33 13 12.64 <0.01 

functional MPD 
between sites 

abundance Elevation 
difference 

gaussian <0.01 1 <0.01 13 - 0.07 
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phylogenetic 
MPD between 

sites 

abundance Elevation 
difference 

gaussian <0.01 1 <0.01 13 - 0.06 

SES of functional 
MPD between 

sites 

abundance Elevation 
difference 

gaussian 
 

2.49 1 20.49 13 - 0.21 

SES of 
phylogenetic 

MPD between 
sites 

abundance Elevation 
difference 

gaussian 
 

1.7 1 18.86 13 - 0.28 

SES of 
phylogenetic 

MPD 

abundance SES of 
functional 

MPD 

gaussian 7.67 1 0.52 4 - <0.01 

SES of 
phylogenetic 

MPD between 
sites 

abundance SES of 
functional 

MPD between 
sites 

gaussian 18.75 1 1.82 13 - <0.01  

 

Dependent variable Independent 
variable 

Error 
distribution 

Deviance DF Residual 
Deviance 

Res. 
DF 

F p-
value 

Mass Poly(Elevation,2) gaussian 0.34 2 0.01 3 - <0.01 

Kipp's Distance Poly(Elevation,2) 
 

gaussian 
 

0.17 2 0.03 3 - <0.01 

Bill Width Poly(Elevation,2) gaussian 
 

0.08 2 0.01 3 - <0.01 

Food Source - Fruit Elevation quasibinomial 0.08 1 0.01 4 2.96 0.16 

Food Source - Nectar Elevation quasibinomial 0.02 1 0.04 4 1.68 0.26 

Food Source - Seeds Elevation quasibinomial 0.01 1 0.07 4 0.57 0.49 

Food Source - 
Invertebrates 

Elevation quasibinomial 0.16 1 0.05 4 12.28 0.02 

Food Source - 
Vertebrates 

Elevation quasibinomial 0.08 1 0.05 4 6.86 0.06 

Foraging Substrate - 
Water 

Elevation quasibinomial 0.01 1 <0.01 4 74.54 <0.01 

Foraging Substrate - 
Ground 

Elevation quasibinomial 0.02 1 0.02 4 1.75 0.31 

Foraging Substrate - 
Vegetation 

Elevation quasibinomial 0.04 1 0.04 4 4.4 0.1 

Foraging Substrate - 
Air 

Elevation quasibinomial 0.02 1 0.11 4 0.91 0.39  
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Table A3.3. Results of null model analysis for functional (top table) and phylogenetic (bottom 

table) dissimilarity between pairs of elevations, measured using Mean Pairwise Distance 

(MPD). Observed MPD values are displayed for each pairwise comparison, together with the 

mean and standard deviation (SD) of MPD values obtained by randomising the tips of the trait 

dendrogram or phylogeny 999 times. The Standardised Effect Size (SES) is obtained by 

comparing observed values to those gained under null expectations. Negative SES values < -1.6 

are indicative of functional and phylogenetic dissimilarity being significantly lower than 

expected compared to null values.  

Elevation 
Pair (m)  Distance (m) Observed MPD 

Simulated MPD 
Mean 

Simulated MPD 
SD SES Significant 

200-700 500 0.154 0.157 0.014 -0.16 FALSE 

200-1200 1000 0.152 0.158 0.014 -0.381 FALSE 

200-1700 1500 0.153 0.159 0.012 -0.475 FALSE 

200-2200 2000 0.165 0.158 0.014 0.519 FALSE 

200-2700 2500 0.152 0.159 0.013 -0.468 FALSE 

700-1200 500 0.123 0.155 0.017 -1.839 TRUE 

700-1700 1000 0.119 0.158 0.013 -3.044 TRUE 

700-2200 1500 0.131 0.158 0.013 -1.974 TRUE 

700-2700 2000 0.120 0.158 0.014 -2.808 TRUE 

1200-1700 500 0.112 0.157 0.014 -3.196 TRUE 

1200-2200 1000 0.124 0.158 0.015 -2.275 TRUE 

1200-2700 1500 0.113 0.158 0.015 -3.107 TRUE 

1700-2200 500 0.111 0.155 0.017 -2.547 TRUE 

1700-2700 1000 0.103 0.156 0.016 -3.239 TRUE 

2200-2700 500 0.112 0.154 0.018 -2.32 TRUE 

       
Elevation 
Pair (m)  Distance (m) Observed MPD 

Simulated MPD 
Mean 

Simulated MPD 
SD SES Significant 

200-700 500 0.138 0.142 0.012 -0.275 FALSE 

200-1200 1000 0.138 0.142 0.012 -0.347 FALSE 

200-1700 1500 0.133 0.144 0.01 -1.002 FALSE 

200-2200 2000 0.136 0.144 0.011 -0.713 FALSE 

200-2700 2500 0.138 0.144 0.011 -0.581 FALSE 

700-1200 500 0.112 0.14 0.013 -2.038 TRUE 

700-1700 1000 0.104 0.143 0.011 -3.665 TRUE 

700-2200 1500 0.113 0.143 0.011 -2.674 TRUE 

700-2700 2000 0.113 0.144 0.011 -2.826 TRUE 

1200-1700 500 0.099 0.142 0.012 -3.591 TRUE 

1200-2200 1000 0.11 0.143 0.013 -2.603 TRUE 

1200-2700 1500 0.11 0.144 0.012 -2.908 TRUE 

1700-2200 500 0.099 0.141 0.014 -2.956 TRUE 

1700-2700 1000 0.096 0.142 0.014 -3.336 TRUE 

2200-2700 500 0.107 0.141 0.015 -2.257 TRUE 
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Figure A4.1.  Effect of elevation on four fruit traits related to dispersal by frugivores, here 

weighted by plant individual. a) Mean fruit diameter per fruiting plant is represented by 

squares, with error bars dispalaying 95% confidence intervals. Letters above points denote 

significant differences after adjusting for multiple comparisons using Tukey pairwise tests. b) 

Squares here represent the mean proportion of fruit weight attributable to seed weight for 

fruiting plants at each elevation, with 95% confidence intervals. c) Proportion of individual 

fruiting plants displaying fruits of each colour (top to bottom: white, black, brown, purple, 

blue, green, yellow, orange, red and pink) at each elevation. d) Proportion of fruiting plants 

bearing cauliflorous fruits (white bars) and ramiflorous fruits (dark grey bars) at each elevation.  
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Figure A4.2. Relationship between plant diameter at breast height (DBH) and fruit diameter for 

all plant species recorded along the elevational gradient. Each circle represents mean DBH and 

fruit diameter values for a single species. The x-axis is log-transformed for display purposes. 

The blue line represents a line of best fit, with grey bars representing 95% confidence intervals. 

R2 is 0.064.  
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Figure A4.3. Relationship between elevation and canopy closure at each site along the 

elevational gradient. Black squares represent mean canopy closure, determined using 60 

canopy photos taken at each elevation. Original photos (example top right) were converted 

into black and white images (bottom right) using the Image Processing Toolbox from Matlab 

version 2019a (Mathworks 2019), with code developed by Korhonen & Heikkinen (2009). 

Canopy closure is defined as the percentage of black pixels in the subsequent image. Vertical 

lines represent 95% confidence intervals. Letters denote significant differences between 

elevations.  
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Figure A4.4. Visualisation of data used in Pagel’s likelihood ratio test between the fruit traits of 

colour (left phylogeny) and size (right phylogeny). Each trait is represented by two binary 

states: species are divided by colour into those displaying “Type A” (green, yellow, orange and 

brown) fruits (blue circles) and “Type B” (red, pink, purple, blue, black and white) fruits (red 

circles). Species are divided by mean diameter into “large-fruited” species (blue circles) and 

“small-fruited” species (red circles).  
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Table A4.1. List of fruiting plant species and morpho-species recorded at each elevation, 

together with information on fruit traits. Species means are displayed for fruit diameter and 

for the proportion of fruit weight attributable to seeds. NA values are given where seeds could 

not easily be separately weighed (e.g. compound fruits). Presentation types include 

cauliflorous (C), ramiflorous (R) and “C+R” (species with individuals displaying either 

presentation type). NA values are given for species for which individuals displayed both types 

of presentation simultaneously. The mode fruit colour is also listed for each species.  

Elevation species Fruit Diameter Seed Proportion Presentation Colour 

200 m Aglaia sp. 1 21.4 0.453 NA orange 

200 m Allophylus cobbe 6.47 0.398 C red 

200 m ANNONACEAE sp. 1 13.98 0.537 C black 

200 m Artocarpus lakoocha 7.23 NA C yellow 

200 m Casearia clutiifolia 16.05 0.405 NA orange 

200 m Erythrospermum candidum 9 0.269 NA green 

200 m Ficus congesta 38 0.325 C brown 

200 m Ficus sp. 5 20.16 0.209 C green 

200 m Ganalium sp. 1 22.07 0.431 R black 

200 m Harpullia ramiflora 22.33 0.078 C red 

200 m Leea indica 11.17 0.191 C+R black 

200 m Litsea collina 14.26 0.494 NA red 

200 m Micromelum minutum 5.9 0.361 NA orange 

200 m Myristica sp. 3 20.5 0.14 NA yellow 

200 m Myristica sp. 4 19.5 0.452 NA brown 

200 m Pittosporum sinuatum 11.5 NA R red 

200 m Psychotria leptothyrsa 11.94 0.25 R red 

200 m Psychotria sp. 1 5.53 0.459 R white 

200 m Psychotria sp. 2 12.92 0.176 R white 

200 m SAPINDACEAE sp. 1 25.63 0.594 C+R red 

200 m Wenzelia dolichophylla 35.23 0.14 NA orange 

700 m Aglaia sp. 2 13.83 0.593 R red 

700 m ANNONACEAE sp. 2 9.43 0.442 R red 

700 m Archidendron aruense 19.3 0.115 C orange 

700 m Archidendron sp. 1 27.1 0.071 C red 

700 m Ardisia imperialis 6.5 0.455 R purple 

700 m Ardisia sp. 2 11.06 0.494 R green 

700 m Ardisia sp. 1 10.88 0.3 R green 

700 m Clerodendrum sp. 1 9.8 0.574 R black 

700 m Cryptocarya sp. 1 11.27 0.513 R green 

700 m Cupaniopsis acuticarpa 20.98 0.376 R orange 

700 m Cupaniopsis sp. 1 13.7 0.155 R green 

700 m Ficus badiopurpurea 5.1 0.235 R green 

700 m Ficus bernaysii 18.8 0.31 C green 

700 m Ficus hahliana 15.4 0.217 C green 

700 m Ficus morobensis 39.55 0.129 C brown 

700 m Ficus pungens 6.56 0.367 C brown 

700 m Ficus saccata 18.3 0.125 NA orange 
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700 m Ficus sangumae 13.8 0.218 C red 

700 m Ficus sp. 3 29.83 NA R brown 

700 m Ficus sp. 4 47.05 0.259 C green 

700 m Ficus wassa 14.7 0.318 C red 

700 m Glochidion angulatum 5.8 0.211 R green 

700 m Gymnacranthera paniculata 20.85 0.095 R orange 

700 m Harpullia longipetala 23.63 0.216 C+R orange 

700 m Harpullia sp. 1 24.5 0.068 R green 

700 m Harpullia sp. 2 20.16 0.03 C green 

700 m Homalanthus novoguineensis 5.9 0.125 R red 

700 m Kibara sp. 2 9.7 0.482 R black 

700 m LAMIACEAE sp. 1 8.2 0.286 R red 

700 m Leucosyke australis 14.7 0.255 R white 

700 m Leucosyke sp. 1 10.57 NA R white 

700 m Magnolia tsiampacca 13.7 0.691 R orange 

700 m Medinilla crassinervia 17.76 0.415 C+R purple 

700 m Melastoma sp. 1 9.3 NA R red 

700 m Myristica subalulata 5.47 0.467 R orange 

700 m Pandanus kaernbachii 7.85 0.152 R orange 

700 m Pittosporum sinuatum 9.2 NA R red 

700 m Planchonella sp. 1 61.32 0.562 R black 

700 m Popowia pisocarpa 13.51 0.235 C+R black 

700 m Psychotria micrococca 6.78 0.339 R white 

700 m Sterculia schumanniana 26.73 0.174 R green 

700 m Syzygium gonathantum 50.1 0.246 R red 

700 m Syzygium sp. 1 27.6 0.239 R red 

1200 m Aglaia tomentosa 12.37 0.276 R green 

1200 m Annesijoa novoguineensis 19.58 0.085 R yellow 

1200 m ANNONACEAE sp. 3 11.77 0.153 R purple 

1200 m Ardisia imperialis 6.89 0.68 R black 

1200 m Ardisia lanceolata 14.5 0.293 R pink 

1200 m Ardisia sp. 2 10.76 0.43 R red 

1200 m Ardisia sp. 1 9.85 0.684 R red 

1200 m Areca sp. 1 10.51 0.733 R red 

1200 m Caryota rumphiana 14.23 NA C black 

1200 m Cyclophyllum brevipes 7.3 0.417 R blue 

1200 m Cyrtandra erectiloba 12.45 0.561 R white 

1200 m FAGACEAE sp. 1 17.81 NA R black 

1200 m Garcinia maluensis 28.8 0.533 R orange 

1200 m Harpullia longipetala 18.73 0.563 NA red 

1200 m Harpullia sp. 3 13.22 0.582 C red 

1200 m Kibara sp. 1 9.06 0.478 R black 

1200 m Magnolia tsiampacca 24.93 NA R green 

1200 m Medinilla crassinervia 15.1 NA C green 

1200 m Melastoma sp. 1 16.15 0.32 R pink 

1200 m Myristica fatua 58.4 0.028 R orange 
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1200 m Myristica filipes 65.9 0.225 R brown 

1200 m Myristica sp. 1 16.38 0.519 R orange 

1200 m Myristica sp. 2 19.8 0.319 R brown 

1200 m Myristica subalulata 27.5 NA R brown 

1200 m Planchonella macropoda 43.2 0.318 R black 

1200 m Prunus dolichobotrys 24.9 NA R orange 

1200 m Rapanea involucrata 10.3 0.469 R red 

1200 m RUBIACEAE sp. 1 9.45 0.255 R purple 

1200 m RUBIACEAE sp. 2 11.42 0.461 R white 

1200 m RUBIACEAE sp. 3 9.84 0.088 R purple 

1200 m RUBIACEAE sp. 3 10.48 0.271 R blue 

1200 m RUBIACEAE sp. 3 10.57 0.27 R purple 

1200 m SOLANACEAE sp. 1 29 0.524 NA orange 

1200 m Solanum sp. 1 12.93 NA R orange 

1200 m Solanum sp. 2 15.3 0.647 R red 

1200 m Terminalia sp. 1 31.1 0.688 R green 

1200 m ULMACEAE sp. 1 5.03 NA R white 

1200 m Ziziphus angustifolia 12.71 0.568 R purple 

1700 m Ardisia sp. 4 26.3 NA R pink 

1700 m Canarium sp. 1 9.8 0.224 R black 

1700 m Chisocheton sp. 1 33.4 0.198 R red 

1700 m Ficus arfakensis 16.85 0.413 R brown 

1700 m Ficus hahliana 20.83 0.343 C+R red 

1700 m Ficus sangumae 12.43 0.428 C yellow 

1700 m Ficus subulata 4.4 0.147 R yellow 

1700 m Ficus trachypison 14.15 0.324 R orange 

1700 m Ficus trichocerasa 12.25 0.202 C+R red 

1700 m Ficus wassa 9.8 0.24 C+R red 

1700 m Kibara coriacea 10.23 0.421 R purple 

1700 m Lepidopetalum comesperma 9.8 0.478 R green 

1700 m Melicope elleryana 17.4 0.026 R brown 

1700 m Myristica filipes 44.3 NA R brown 

1700 m Osmoxylon sp. 1 1.43 NA R orange 

1700 m Osmoxylon sp. 2 5.7 0.625 R black 

1700 m Piper interruptum 7.47 NA R red 

1700 m Piper macropiper 2.40 NA R brown 

1700 m Piper recessum 6.78 NA R yellow 

1700 m Piper sp. 1 8.5 NA R red 

1700 m Piper sp. 2 9.2 NA R red 

1700 m Piper sp. 3 10.4 NA R orange 

1700 m Pittosporum sp. 1 10.54 0.62 R orange 

1700 m Psychotria micrococca 9.85 0.548 R white 

1700 m Psychotria sp. 3 4.6 0.5 R white 

1700 m RHAMNACEAE sp. 1 10.2 0.507 R black 

1700 m RUBIACEAE sp. 4 4.01 0.511 R white 

1700 m Saurauia conferta 29.67 NA R green 
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1700 m Smilax nova-guineensis 13 0.326 R black 

1700 m Sterculia schumanniana 15.54 0.548 R black 

1700 m Tabernaemontana pandacaqui 10.2 NA R red 

1700 m VITACEAE sp. 1 2.28 NA R purple 

1700 m Xanthophyllum papuanum 10.6 0.376 R brown 

2200 m ANNONACEAE sp. 1 28.9 0.126 R green 

2200 m Ardisia sp. 2 9 0.346 R pink 

2200 m Ardisia sp. 1 7.42 0.234 R black 

2200 m Astronidium sp. 1 12.8 0.173 R white 

2200 m Cayratia trifolia 9.50 0.26 R black 

2200 m Cyrtandra erectiloba 10.7 NA R green 

2200 m Decaspermum alpinum 5.05 0.588 R orange 

2200 m Decaspermum forbesii 5.2 0.25 R orange 

2200 m Embelia cotinoides 12.5 NA R pink 

2200 m Ficus iodotricha 41.84 NA C red 

2200 m Ficus microdictya 19.8 NA NA brown 

2200 m Ficus sangumae 15.55 0.292 C+R pink 

2200 m Ficus sp. 1 16.05 0.139 R green 

2200 m Ficus sp. 2 22.35 0.26 R red 

2200 m Ficus wassa 7.48 0.4 C+R pink 

2200 m Hydriastele sp. 1 14.22 0.493 C+R red 

2200 m Ichnocarpus frutescens 9.4 0.267 R black 

2200 m Kibara coriacea 10.73 0.653 R black 

2200 m Maesa haplobotrys 3.97 0.333 R brown 

2200 m Medinilla crassinervia 5.2 NA C+R white 

2200 m Medinilla lorentziana 5.5 0.25 R brown 

2200 m Melastoma sp. 2 7.5 0.429 R green 

2200 m Melicope sp. 1 16.58 0.018 R yellow 

2200 m Myrsine womersleyi 5.35 0.366 R purple 

2200 m Osmoxylon sp. 1 1.39 NA R orange 

2200 m Pandanus sp. 1 9.42 0.043 C+R red 

2200 m Piper celtidiforme 12.8 NA R orange 

2200 m Piper macropiper 3.75 NA R red 

2200 m Piper sp. 5 7.1 NA R orange 

2200 m Pittosporum sp. 1 7.74 NA R red 

2200 m Polyosma cunninghamii 8.1 0.125 R black 

2200 m Psychotria murmurensis 5.2 NA R orange 

2200 m Scaevola oppositifolia 5.65 0.5 R black 

2200 m Smilax nova-guineensis 10.2 0.438 R brown 

2200 m Timonius sp. 1 31.4 NA R red 

2200 m Tinospora cordifolia 5.6 0.364 R yellow 

2200 m Tripetalum cymosum 34.25 0.222 R red 

2200 m Zehneria mucronata 6.4 0.154 R brown 

2700 m Ardisia sp. 1 5.78 0.224 R black 

2700 m Ardisia sp. 3 5.63 0.348 R black 

2700 m Bhesa archboldiana 3.6 0.6 R red 
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2700 m Breynia cernua 6.6 0.435 R black 

2700 m Decaspermum alpinum 9.3 NA R red 

2700 m Elaeocarpus nymanii 14.16 0.806 R green 

2700 m Eurya tigang 9.2 NA R purple 

2700 m Glochidion sp. 2 4.3 0.375 R red 

2700 m Glochidion sp. 1 4.22 0.397 R red 

2700 m Kibara coriacea 11.12 0.516 R black 

2700 m Kibara sp. 3 19.08 0.267 R red 

2700 m Maesa edulis 4.17 0.4 R red 

2700 m Myrsine involucrata 3.96 0.405 R purple 

2700 m Myrsine womersleyi 7.01 0.429 R purple 

2700 m Palmeria sp. 1 7.87 0.448 R red 

2700 m Piper sp. 4 16.2 NA R orange 

2700 m Polyosma cunninghamii 8.63 0.42 R purple 

2700 m Prunus oligantha 13.16 0.481 R red 

2700 m Prunus sp. 1 14.7 0.453 R black 

2700 m Psychotria multicostata 9.99 0.299 R white 

2700 m RUBIACEAE sp. 1 7.8 NA R orange 

2700 m Saurauia sp. 1 12.01 0.291 R green 

2700 m Solanum sp. 1 8.6 0.625 R red 

2700 m Steganthera sp. 1 9.24 0.631 R black 

2700 m Streblus glaber 5.6 0 R green 

2700 m Streblus sp. 1 7.43 0.379 R black 

2700 m Zygogynum haplopus 5.22 0.295 R black 

2700 m Zygogynum oligostigma 15.25 NA R red 

 

 

 

Table A4.2. Results of Tukey pairwise comparisons from generalised linear models testing the 

effect of elevation on different fruit traits (left column). Estimate and standard error values are 

displayed, together with z ratios and p values adjusted for multiple comparisons. Significant 

comparisons are displayed in bold.  

Parameter Elevation Pairs Estimate SE z-ratio p-value 

Fruit Diameter 200 - 700 -0.885 2.76 -0.321 1 

 200 - 1200 -1.672 2.81 -0.594 0.99 

 200 - 1700 4.148 2.89 1.436 0.71 

 200 - 2200 4.819 2.81 1.713 0.52 

 200 - 2700 7.781 2.99 2.605 0.1 

 700 - 1200 -0.787 2.3 -0.342 1 

 700 - 1700 5.032 2.39 2.101 0.29 

 700 - 2200 5.703 2.3 2.475 0.13 

 700 - 2700 8.665 2.51 3.448 <0.01 

 1200 - 1700 5.819 2.46 2.363 0.17 

 1200 - 2200 6.49 2.37 2.734 0.07 
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 1200 - 2700 9.452 2.58 3.667 <0.01 

 1700 - 2200 0.671 2.46 0.272 1 

 1700 - 2700 3.633 2.66 1.366 0.75 

  2200 - 2700 2.962 2.58 1.149 0.86 

Seed Proportion 200 - 700 0.178 0.599 0.298 1 

 200 - 1200 -0.342 0.611 -0.559 0.99 

 200 - 1700 -0.202 0.662 -0.305 1 

 200 - 2200 0.175 0.648 0.271 1 

 200 - 2700 -0.34 0.645 -0.527 1 

 700 - 1200 -0.52 0.51 -1.019 0.91 

 700 - 1700 -0.381 0.57 -0.668 0.99 

 700 - 2200 -0.003 0.554 -0.005 1 

 700 - 2700 -0.518 0.55 -0.942 0.94 

 1200 - 1700 0.139 0.582 0.239 1 

 1200 - 2200 0.517 0.567 0.912 0.94 

 1200 - 2700 0.002 0.563 0.004 1 

 1700 - 2200 0.378 0.621 0.608 0.99 

 1700 - 2700 -0.137 0.617 -0.223 1 

  2200 - 2700 -0.515 0.603 -0.854 0.96 

Colour Type: A 200 - 700 -0.883 0.452 -1.954 0.37 

 200 - 1200 -0.231 0.486 -0.475 1 

 200 - 1700 -0.671 0.428 -1.566 0.62 

 200 - 2200 0.087 0.455 0.192 1 

 200 - 2700 1.222 0.539 2.268 0.21 

 700 - 1200 0.652 0.381 1.709 0.53 

 700 - 1700 0.213 0.304 0.699 0.98 

 700 - 2200 0.97 0.341 2.843 0.05 

 700 - 2700 2.105 0.446 4.716 <0.01 

 1200 - 1700 -0.439 0.353 -1.244 0.81 

 1200 - 2200 0.319 0.386 0.826 0.96 

 1200 - 2700 1.453 0.481 3.02 0.03 

 1700 - 2200 0.758 0.309 2.451 0.14 

 1700 - 2700 1.892 0.422 4.481 <0.01 

  2200 - 2700 1.134 0.45 2.521 0.12 

Colour Type: B 200 - 700 0.883 0.452 1.954 0.37 

 200 - 1200 0.231 0.486 0.475 1 

 200 - 1700 0.671 0.428 1.566 0.62 

 200 - 2200 -0.087 0.455 -0.192 1 

 200 - 2700 -1.222 0.539 -2.268 0.21 

 700 - 1200 -0.652 0.381 -1.709 0.53 

 700 - 1700 -0.213 0.304 -0.699 0.98 

 700 - 2200 -0.97 0.341 -2.843 0.05 

 700 - 2700 -2.105 0.446 -4.716 <0.01 

 1200 - 1700 0.439 0.353 1.244 0.81 

 1200 - 2200 -0.319 0.386 -0.826 0.96 

 1200 - 2700 -1.453 0.481 -3.02 0.03 
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 1700 - 2200 -0.758 0.309 -2.451 0.14 

 1700 - 2700 -1.892 0.422 -4.481 <0.01 

  2200 - 2700 -1.134 0.45 -2.521 0.12 

Colour: Red 200 - 700 0.995 0.491 2.026 0.33 

 200 - 1200 0.737 0.517 1.426 0.71 

 200 - 1700 0.029 0.425 0.068 1 

 200 - 2200 0.172 0.447 0.386 1 

 200 - 2700 0.362 0.467 0.776 0.97 

 700 - 1200 -0.258 0.476 -0.541 0.99 

 700 - 1700 -0.966 0.374 -2.585 0.1 

 700 - 2200 -0.823 0.398 -2.064 0.31 

 700 - 2700 -0.633 0.421 -1.504 0.66 

 1200 - 1700 -0.708 0.407 -1.74 0.51 

 1200 - 2200 -0.565 0.43 -1.314 0.78 

 1200 - 2700 -0.375 0.451 -0.833 0.96 

 1700 - 2200 0.143 0.313 0.458 1 

 1700 - 2700 0.333 0.341 0.977 0.93 

  2200 - 2700 0.19 0.368 0.516 1 

Colour: Orange 200 - 700 -0.506 0.613 -0.824 0.96 

 200 - 1200 -0.443 0.651 -0.681 0.98 

 200 - 1700 -0.257 0.594 -0.432 1 

 200 - 2200 -0.19 0.621 -0.306 1 

 200 - 2700 1.54 0.896 1.719 0.52 

 700 - 1200 0.062 0.475 0.131 1 

 700 - 1700 0.249 0.394 0.632 0.99 

 700 - 2200 0.316 0.433 0.73 0.98 

 700 - 2700 2.046 0.778 2.631 0.09 

 1200 - 1700 0.187 0.45 0.414 1 

 1200 - 2200 0.253 0.485 0.523 1 

 1200 - 2700 1.984 0.808 2.455 0.14 

 1700 - 2200 0.067 0.406 0.165 1 

 1700 - 2700 1.797 0.763 2.355 0.17 

  2200 - 2700 1.73 0.784 2.208 0.23 

Colour: Yellow 200 - 700 19.14 3926.92 0.005 1 

 200 - 1200 1.176 1.247 0.943 0.94 

 200 - 1700 -0.554 0.792 -0.699 0.98 

 200 - 2200 0.977 1.023 0.954 0.93 

 200 - 2700 19.048 3919.62 0.005 1 

 700 - 1200 -17.964 3926.92 -0.005 1 

 700 - 1700 -19.694 3926.92 -0.005 1 

 700 - 2200 -18.163 3926.92 -0.005 1 

 700 - 2700 -0.092 5548.34 0 1 

 1200 - 1700 -1.73 1.056 -1.639 0.57 

 1200 - 2200 -0.199 1.239 -0.161 1 

 1200 - 2700 17.872 3919.62 0.005 1 

 1700 - 2200 1.53 0.779 1.965 0.36 
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 1700 - 2700 19.602 3919.62 0.005 1 

  2200 - 2700 18.071 3919.62 0.005 1 

Colour: Green 200 - 700 -1.738 0.777 -2.236 0.22 

 200 - 1200 -0.522 0.87 -0.6 0.99 

 200 - 1700 0.034 0.829 0.041 1 

 200 - 2200 0.021 0.865 0.024 1 

 200 - 2700 -0.388 0.847 -0.458 1 

 700 - 1200 1.216 0.541 2.246 0.22 

 700 - 1700 1.772 0.471 3.761 <0.01 

 700 - 2200 1.759 0.532 3.305 0.01 

 700 - 2700 1.35 0.503 2.682 0.08 

 1200 - 1700 0.556 0.613 0.908 0.94 

 1200 - 2200 0.543 0.661 0.821 0.96 

 1200 - 2700 0.134 0.638 0.21 1 

 1700 - 2200 -0.013 0.605 -0.022 1 

 1700 - 2700 -0.422 0.58 -0.728 0.98 

  2200 - 2700 -0.409 0.63 -0.649 0.99 

Colour: Blue 200 - 700 0.554 16245 0 1 

 200 - 1200 -20.124 12246 -0.002 1 

 200 - 1700 0.952 16048 0 1 

 200 - 2200 0.628 16133 0 1 

 200 - 2700 0.462 16232 0 1 

 700 - 1200 -20.678 10674 -0.002 1 

 700 - 1700 0.398 14883 0 1 

 700 - 2200 0.074 14975 0 1 

 700 - 2700 -0.092 15082 0 1 

 1200 - 1700 21.077 10371 0.002 1 

 1200 - 2200 20.753 10502 0.002 1 

 1200 - 2700 20.586 10655 0.002 1 

 1700 - 2200 -0.324 14760 0 1 

 1700 - 2700 -0.49 14869 0 1 

  2200 - 2700 -0.166 14961 0 1 

Colour: Purple 200 - 700 -16.139 1657.35 -0.01 1 

 200 - 1200 -17.314 1657.35 -0.01 1 

 200 - 1700 -15.253 1657.35 -0.009 1 

 200 - 2200 -16.329 1657.35 -0.01 1 

 200 - 2700 -18.449 1657.35 -0.011 1 

 700 - 1200 -1.175 0.734 -1.601 0.6 

 700 - 1700 0.886 0.926 0.957 0.93 

 700 - 2200 -0.19 0.782 -0.243 1 

 700 - 2700 -2.31 0.648 -3.563 <0.01 

 1200 - 1700 2.061 0.836 2.465 0.13 

 1200 - 2200 0.985 0.674 1.463 0.69 

 1200 - 2700 -1.135 0.512 -2.214 0.23 

 1700 - 2200 -1.076 0.879 -1.224 0.83 

 1700 - 2700 -3.196 0.762 -4.192 <0.01 
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  2200 - 2700 -2.12 0.579 -3.66 <0.01 

Colour: Pink 200 - 700 0.554 9853.38 0 1 

 200 - 1200 -19.552 7427.74 -0.003 1 

 200 - 1700 -18.253 7427.74 -0.002 1 

 200 - 2200 -20.725 7427.74 -0.003 1 

 200 - 2700 0.462 9845.47 0 1 

 700 - 1200 -20.106 6474.4 -0.003 1 

 700 - 1700 -18.807 6474.4 -0.003 1 

 700 - 2200 -21.279 6474.4 -0.003 1 

 700 - 2700 -0.092 9147.67 0 1 

 1200 - 1700 1.299 0.93 1.397 0.73 

 1200 - 2200 -1.173 0.665 -1.763 0.49 

 1200 - 2700 20.014 6462.36 0.003 1 

 1700 - 2200 -2.472 0.772 -3.202 0.02 

 1700 - 2700 18.715 6462.36 0.003 1 

  2200 - 2700 21.187 6462.36 0.003 1 

Colour: Brown 200 - 700 0.144 0.894 0.161 1 

 200 - 1200 0.034 0.943 0.036 1 

 200 - 1700 -0.954 0.777 -1.227 0.82 

 200 - 2200 0.021 0.865 0.024 1 

 200 - 2700 18.048 2377.37 0.008 1 

 700 - 1200 -0.11 0.788 -0.14 1 

 700 - 1700 -1.098 0.578 -1.899 0.4 

 700 - 2200 -0.124 0.692 -0.179 1 

 700 - 2700 17.904 2377.37 0.008 1 

 1200 - 1700 -0.987 0.652 -1.515 0.65 

 1200 - 2200 -0.013 0.754 -0.018 1 

 1200 - 2700 18.014 2377.37 0.008 1 

 1700 - 2200 0.974 0.532 1.831 0.45 

 1700 - 2700 19.001 2377.37 0.008 1 

  2200 - 2700 18.027 2377.37 0.008 1 

Colour: Black 200 - 700 -0.11 0.54 -0.204 1 

 200 - 1200 0.519 0.63 0.823 0.96 

 200 - 1700 1.138 0.584 1.948 0.37 

 200 - 2200 0.904 0.603 1.499 0.67 

 200 - 2700 -0.308 0.538 -0.572 0.99 

 700 - 1200 0.629 0.524 1.199 0.84 

 700 - 1700 1.248 0.468 2.665 0.08 

 700 - 2200 1.013 0.491 2.063 0.31 

 700 - 2700 -0.198 0.409 -0.484 1 

 1200 - 1700 0.619 0.57 1.086 0.89 

 1200 - 2200 0.385 0.589 0.653 0.99 

 1200 - 2700 -0.827 0.523 -1.581 0.61 

 1700 - 2200 -0.234 0.54 -0.434 1 

 1700 - 2700 -1.446 0.466 -3.1 0.02 

  2200 - 2700 -1.212 0.49 -2.475 0.13 
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Colour: White 200 - 700 1.211 0.797 1.52 0.65 

 200 - 1200 0.799 0.802 0.996 0.92 

 200 - 1700 0.799 0.663 1.205 0.83 

 200 - 2200 0.785 0.707 1.11 0.88 

 200 - 2700 1.119 0.798 1.403 0.73 

 700 - 1200 -0.413 0.839 -0.492 1 

 700 - 1700 -0.413 0.707 -0.584 0.99 

 700 - 2200 -0.426 0.749 -0.569 0.99 

 700 - 2700 -0.092 0.835 -0.111 1 

 1200 - 1700 0 0.713 0 1 

 1200 - 2200 -0.013 0.754 -0.018 1 

 1200 - 2700 0.321 0.84 0.382 1 

 1700 - 2200 -0.013 0.605 -0.022 1 

 1700 - 2700 0.321 0.708 0.452 1 

  2200 - 2700 0.334 0.75 0.445 1 

Presentation:  200 - 700 0.055 0.472 0.116 1 

Cauliflorous 200 - 1200 1.77 0.714 2.478 0.13 

 200 - 1700 0.999 0.475 2.1 0.29 

 200 - 2200 1.09 0.517 2.106 0.28 

 200 - 2700 19.817 2363.89 0.008 1 

 700 - 1200 1.715 0.651 2.633 0.09 

 700 - 1700 0.944 0.374 2.522 0.12 

 700 - 2200 1.035 0.426 2.428 0.15 

 700 - 2700 19.762 2363.89 0.008 1 

 1200 - 1700 -0.771 0.653 -1.18 0.85 

 1200 - 2200 -0.68 0.685 -0.993 0.92 

 1200 - 2700 18.048 2363.89 0.008 1 

 1700 - 2200 0.091 0.43 0.212 1 

 1700 - 2700 18.819 2363.89 0.008 1 

  2200 - 2700 18.728 2363.89 0.008 1 

Presentation:  200 - 700 -2.133 0.498 -4.287 <0.01 

Ramiflorous 200 - 1200 -3.041 0.592 -5.139 <0.01 

 200 - 1700 -2.361 0.474 -4.982 <0.01 

 200 - 2200 -2.341 0.494 -4.739 <0.01 

 200 - 2700 -3.608 0.605 -5.967 <0.01 

 700 - 1200 -0.908 0.482 -1.884 0.41 

 700 - 1700 -0.228 0.326 -0.699 0.98 

 700 - 2200 -0.208 0.355 -0.586 0.99 

 700 - 2700 -1.475 0.497 -2.965 0.04 

 1200 - 1700 0.68 0.457 1.486 0.67 

 1200 - 2200 0.7 0.478 1.465 0.69 

 1200 - 2700 -0.568 0.592 -0.96 0.93 

 1700 - 2200 0.02 0.321 0.063 1 

 1700 - 2700 -1.247 0.474 -2.632 0.09 

  2200 - 2700 -1.268 0.494 -2.567 0.11 
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Table A4.3. Results of phylogenetic null model analysis on individual fruit colours (top) and 

presentation types (bottom). Standardised effect sizes (SES) were obtained for each colour and 

presentation type by comparing the observed mean phylogenetic distance (MPD) between 

species displaying the trait with a null value obtained by randomising the tips of the phylogeny 

999 times. Negative SES values indicate phylogenetic clustering, while positive values indicate 

phylogenetic evenness. Significant results (p < 0.05) are displayed in bold.  

Colour 
N Observed MPD 

Randomised  
MPD Mean Randomised MPD SD Standardised Effect Size p-value 

Red 16 241.5 239.73 9.28 0.19 0.54 

Orange 17 243.05 239.46 8.97 0.40 0.62 

Yellow 5 242.55 239.27 21.57 0.15 0.48 

Green 9 232.21 240.18 13.85 -0.58 0.23 

Blue 1 NA NA NA NA NA 

Purple 5 210.87 239.26 20.84 -1.36 0.07 

Pink 3 228.09 236.6 36.73 -0.23 0.25 

Brown 12 213.91 239.16 11.43 -2.21 0.03 

Black 11 259.85 238.72 13.1 1.61 1 

White 4 209.53 240.1 24.33 -1.26 0.11 

       

Presentation 
N Observed MPD 

Randomised  
MPD Mean Randomised MPD SD Standardised Effect Size p-value 

Cauliflorous 13 161.48 238.92 10.88 -7.12 <0.01 

Ramiflorous 63 245.65 239.50 2.52 2.44 1 
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Figure A5.1. Location of the elevational gradient of Mt. Wilhelm in Papua New Guinea (a) and 

the study sites along the gradient (b).  

 

 

  

 

Figure A5.2. Photographs of artificial fruits showing evidence of attack by different taxa: 

arboreal mammals (a), bats (b), arthropods (c) and birds (d-f). Bird-attacked fruits are 

subdivided into: (d) “held” fruits that had been grasped on both sides (both sides shown here), 

(e) “intermediate attack” fruits showing imprints from a single feeding attempt whose 

maximum distance was less than the fruit’s diameter and (f) “pecked” fruits showing small 

individual holes characteristic of pecking.   

 

a) b) c) 

d) e) f) 
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Figure A5.3. Community-weighted mean understory frugivore gape widths (a) and fruit 
diameter of fruiting plants (b) at each of the three elevations. Black squares denote mean 
values, weighted by species’ relative abundances. Average values for each individual fruiting 
plant from which fruit was collected were used to calculate the mean across all individual 
plants. Error bars represent 95% confidence intervals. Letters above points denote statistically 
significant differences between elevations (p < 0.05).  
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Figure A5.4. Relative abundance of real fruiting plants at each elevation for the fruit colours 

represented in this study, represented here as a proportion of the total number of plants 

bearing fruits of those three colours. Mean proportions are displayed for green (a), purple (b) 

and red (c) fruits. Error bars represent 95% confidence intervals. Letters above columns denote 

statistically significant differences between elevations (p < 0.05).  

 

 

 

 

a 

b 

c 

b 

c 

a 

b 

a 

a 

P
ro

p
o

rt
io

n
 o

f 
fr

u
it

in
g 

p
la

n
ts

 
P

ro
p

o
rt

io
n

 o
f 

fr
u

it
in

g 
p

la
n

ts
 

P
ro

p
o

rt
io

n
 o

f 
fr

u
it

in
g 

p
la

n
ts

 

Elevation (m)  

a) 

b) 

c) 



 151 Appendix: Chapter 5 

Table A5.1. Attack rates on artificial modelling clay fruits, divided by frugivore type and 

elevation. “Category” describes the fruit colour/size combination: L = large, M = medium, S = 

small; G = green, P = purple, R = red. Numbers in columns represent the number of artificial 

fruits showing evidence of a feeding attempt by members of the taxon in question, out of a 

total of 360 (180 * 2 exposures) for each elevation/colour/size combination. For example, at 

700 m, 9 out of 360 exposed large green fruits showed evidence of attempted frugivory by 

birds.  

  Category Birds Arboreal Mammals Bats Arthropods All taxa 

700 m LG 9 15 3 7 34 

  MG 5 2 7 9 23 

  SG 5 0 1 4 10 

  LP 17 0 3 3 23 

  MP 10 5 7 14 36 

  SP 12 2 2 10 26 

  LR 18 1 3 6 28 

  MR 12 2 1 8 23 

  SR 16 2 0 9 27 

  700 m Total 104 29 27 70 230 

1700 m LG 6 3 0 1 10 

  MG 10 1 0 0 11 

  SG 8 1 0 3 12 

  LP 25 1 0 1 27 

  MP 59 1 1 17 78 

  SP 31 1 0 8 40 

  LR 34 17 0 0 51 

  MR 32 2 0 1 35 

  SR 17 0 0 6 23 

  1700 m Total 222 27 1 37 287 

2700 m LG 6 1 0 0 7 

  MG 5 10 0 0 15 

  SG 11 0 0 3 14 

  LP 19 4 0 6 29 

  MP 28 1 0 1 30 

  SP 40 1 0 0 41 

  LR 24 5 2 7 38 

  MR 25 3 0 3 31 

  SR 26 2 0 1 29 

  2700 m Total 184 27 2 21 234 

All Elevations Total 510 83 30 128 751 
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Table A5.2. Results of generalised linear model for the subset of bird attack rates in which 

artificial fruits were held in the beak, including fixed effects of fruit size, fruit colour and 

elevation and their interactions. We present deviance values for each fixed effect and each 

pairwise/triple interaction between effects. Estimate and standard error of multiple 

comparisons are displayed for fixed effects and interactions that were significant at p ≤ 0.05. P-

values for multiple comparisons are adjusted using Tukey pairwise comparisons. Significant 

results are displayed in bold.  

Parameter Deviance P value Multiple Comparisons Estimate SE Adjusted p-value 

Size 34.15 <0.01 L vs. M -0.61 0.24 0.03 

   L vs. S -1.08 0.22 <0.01 

      M vs. S -0.47 0.19 0.03 

Colour 91.07 <0.01 G vs. P -1.98 0.25 <0.01 

   G vs. R -1.45 0.26 <0.01 

      P vs. R 0.53 0.15 0.00 

Elevation 54.04 <0.01 700 vs. 1700 -1.42 0.23 <0.01 

   700 vs. 2700 -0.97 0.25 <0.01 

      1700 vs. 2700 0.45 0.17 0.02 

Size:Colour 9.25 0.06         

Size:Elevation 9.43 0.05 700:L vs. 700:M -0.16 0.56 0.96 

   700:L vs. 700:S -0.93 0.49 0.14 

   700:M vs. 700:S -0.77 0.46 0.21 

   1700:L vs. 1700:M -0.82 0.27 <0.01 

   1700:L vs. 1700:S -0.72 0.27 0.02 

   1700:M vs. 1700:S 0.1 0.22 0.90 

   2700:L vs. 2700:M -0.85 0.38 0.07 

   2700:L vs. 2700:S -1.6 0.35 <0.01 

   2700:M vs. 2700:S -0.75 0.26 0.01 

Colour:Elevation 6.59 0.16         

Size:Colour:Elevation 14.23 0.08         
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Table A5.3. Results of generalised linear models for obligate understory frugivore abundance 

and gape width, and for real fruit size and relative abundances of real green, purple and red 

fruits at the three study sites. Elevation was the single fixed effect included in each GLM, for 

which deviance values are displayed here. Estimate and standard error of multiple 

comparisons between elevations are displayed when the effect of elevation was significant at 

p ≤ 0.05. P-values for multiple comparisons are adjusted using Tukey pairwise comparisons. 

Significant results are displayed in bold.  

Parameter Deviance P value Multiple Comparisons Estimate SE Adjusted p-value 

Frugivore Abundance  15.01 <0.01 700 vs. 1700 -0.58 0.15 <0.01 

   700 vs. 2700 -0.37 0.16 0.05 

      1700 vs. 2700 0.21 0.14 0.29 
              

Frugivore Gape Width 98.63 0.27         
(species weighted)             

Frugivore Gape Width 3128.8 <0.01 700 vs. 1700 6.95 0.78 <0.01 
(abundance weighted) 

  700 vs. 2700 8.6 0.81 <0.01 

      1700 vs. 2700 1.66 0.7 0.05 
              

Fruit Size 1741.4 <0.01 700 vs. 1700 5.35 2.55 0.09 
(species weighted) 

  700 vs. 2700 9.95 2.58 <0.01 

      1700 vs. 2700 4.61 2.87 0.24 

Fruit Size 6530.1 <0.01 700 vs. 1700 4.29 0.88 <0.01 
(abundance weighted) 

  700 vs. 2700 9.67 0.93 <0.01 

      1700 vs. 2700 5.39 0.8 <0.01 
              

Fruit Colour: Green 15.35 <0.01 700 vs. 1700 1.36 0.34 <0.01 

   700 vs. 2700 1.32 0.34 <0.01 

      1700 vs. 2700 -0.04 0.4 0.99 

Fruit Colour: Purple 157.11 <0.01 700 vs. 1700 2.9 0.81 <0.01 

   700 vs. 2700 -2.21 0.45 <0.01 

      1700 vs. 2700 -5.11 0.74 <0.01 

Fruit Colour: Red 1.32 0.52         
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