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Abstract

This thesis focusses on the derivation and implementation of high-order compact finite

di↵erence schemes to price a variety of options under various stochastic volatility and

jump models, with the inclusion of further studies relating to the derivatives of options

and the practice of hedging.

First, we derive a implicit-explicit high-order compact finite di↵erence scheme for pri-

cing European options under the Bates model. The resulting scheme is fourth order

accurate in space and second order accurate in time. In the numerical study this scheme

is compared to both a second order finite di↵erence scheme and high-order finite element

methods, where it outperforms both in terms of convergence, computational speed and

required memory allocation. A numerical stability study is conducted which indicates

unconditional stability of the scheme.

Second, we introduce the practice of hedging and give examples of hedging strategies

created from a combination of option payo↵s, we show the important role the derivatives

of the option price play in forming profitable strategies. We go on to complete a study

of the convergence of derivatives of the option price, the so-called Greeks. We conduct

studies into Delta, vega and gamma hedging, where the derived high-order compact scheme

outperforms a second-order finite di↵erence method. Examples are provided to display how

this increase in computational e�ciency may assist financial practictoners.

Third, we extend the high-order compact scheme to price European options under the

stochastic volatility with comtemporaneous jumps model. The derived scheme is fourth

order accurate in space and second order accurate in time. We conduct numerical studies to

test the new high-order compact schemes convergence, computational speed and required

memory allocation against a second-order finite di↵erence scheme, where the results show

improvements in convergence at the expense of computational time. Further studies of

numerical stability indicate unconditional stability of the high-order compact scheme.
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Chapter 1

Introduction

This thesis focusses on the derivation and implementation of high-order compact (HOC)

finite di↵erence schemes to price a variety of options under various stochastic volatility and

jump models, with the inclusion of further studies relating to the derivatives of options and

the practice of hedging. In this introduction we give a brief historical background into the

derivatives markets, the use of options, pricing methods in the pre Black-Scholes era and

the impact of modern option pricing theory through to the creation of the sophisticated

pricing methods that form the basis of our research.

1.1 The history of options

Records of forward contracts date back as far as 1750 B.C, with clay tablets from Mesopot-

amia. Modern derivative markets featured in the 16th century onwards, with examples,

in Europe connecting Antwerp via Amsterdam to London, and in America, in the cities

of Chicago and New York [40, 45]. With the introduction of the transatlantic cable con-

necting Europe and America in 1866, the practice of international arbitrage of securities

became possible [45]. An option arbitrageur, S.A. Nelson, describes an active intercontin-

ental arbitrage market, with trading on both options and securities [65]. At this time up

500 messages per hour crossed the Atlantic between the London and New York markets

via cable companies. With messages displaying at their destination in less than a minute.

Late 19th century Europe had many active option exchanges [48]. The di↵erent op-

tion exchanges in Europe at the time were named by H. Deutsch [24, 45]. The London

Stock Exchange, the Continental Bourse, the Berlin Bourse, and the Paris Bourse are

all mentioned and the potential for trading arbitrage options between these exchanges is

discussed [45].
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Technological advances over the 20th century have led to expansion of the global

options markets and granted access to the average investor. Despite the majority of

options transactions being executed electronically, there still remains an options presence

in trading pits, with the CBOE in Chicago being at the centre of the options universe.

Advances are still occurring, in 2014 trading in options on VIX futures expanded to 24

hours a day [64] and most major countries now have options markets and exchanges on

products including; commodities, weather and stocks.

1.2 Financial Background and Terminology

Options are a type of financial derivative which allow market participants to take a soph-

isticated view on the market dynamics a↵ecting the future price of a single, or group of,

assets. There are numerous types of options traded on today’s financial markets, including

but not limited to; European options, American options, Asian options and similar exotic

options. We now introduce the general definition of a financial option.

Definition 1.1 (European Call/Put):

A European Call/Put represents a contract between the writer (party which sells the

option) and the holder (party which buys the option). The contract o↵ers the buyer the

right, but not the obligation, to buy (Call) or sell (Put) an underlying asset S (e.g. a

commodity or a stock) at an agreed fixed strike price K > 0 on a specific date T > 0. The

pay-o↵ at time T of the European Call/Put is thus

C(S, T ) = max(S �K, 0) for a Call and P (S, T ) = max(K � S, 0) for a Put

where S 2 ⌦ := [0,1[

It is clear from this definition that an option price cannot be negative, as the holder

has only the obligation, but not the right, to buy the underlying asset. It also alludes to

the versatility of options as a tool for market participants to take a view on the direction

and size of movements, whether this be for speculative or hedging purposes. To express

this usefulness we give an example of each scenario

Example 1.1 (Speculation on a stock):

An investor predicts, based on new balance sheet information, that the price of a specific

stock S will fall. He chooses to buy a European Put on the stock at strike price K, which
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is above the price the investor expects the stock to be at, once this news has been factored

in and at expiry time T . The option is purchased for a price, denoted by P

0

. The payo↵

for a European Put is P (S, T ) = max(K � S, 0), giving the investor a profit equal to

max(K � S, 0) � P

0

and a maximum loss of P
0

, regardless of how the stock is valued at

expiry time, T . Alternatively and based on the same information, the investor may have

chosen to sell the stock directly, with the stock valued at price K. In both scenarios it

is possible, through miscalculation or market drivers outside the scope of the investors

model, that the stock price rises, in the second scenario the investors has loss equal to

S

T

� K. By selling the stock directly, it is highly likely the investor will su↵er a much

greater loss, as the options on a stock have a much lower price than the stock itself. In the

investors expected scenario, the stock price has fallen and is below strike price K and the

di↵erence between using the stock directly and the options strategy equals P

0

. As noted,

with the value of stocks being higher than options in absolute terms, the di↵erence between

the profit of both strategies declines, whereas in the alternative case the investor is exposed

to an unlimited potential loss when the stock is sold directly. Herein lies the security that

options provide, and one reason for their popularity among speculators.

In the above example is is worthwhile to note, that if the speculator is willing to use

the balance of a margin account for the designated trade and depending on the dynamics

of the particular stock, they may be able to purchase numerous options to leverage their

capital investment. Still with a fixed maximum loss, leveraging o↵ers speculators another

advantage associated with options as opposed to directly buying or selling the stock.

Example 1.2 (Hedging for profit forecasting):

At the upcoming shareholders annual general meeting a publicly listed airline is due to

o↵er profit guidance over a 3 year time horizon. A major component in this calculation

is the price of jet fuel. While it is possible for the CFO to base calculations on projected

forward prices, to assure shareholders the airline decides to minimise exposure to the oil

market and use current high oil production to its advantage by purchasing a number of

European calls to cover a large proportion of the expected required quantity of jet fuel. In

this scenario, in the event of drops in production leading to sudden price spikes within the

oil markets, the airline is able to use its right to purchase jet fuel at the agreed upon strike

price K, and hence is assured that one potential risk to profitability is mitigated. The cost

associated with insuring against this risk is given by the value of the European call options

and is classed as an initial investment. If the jet fuel price does not increase above K, the

airline is able to decline the right to use the options and may purchase jet fuel at lower
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prices, foregoing the initial cost of the options. It is clear that in this instance maintaining

a fair price for the options is of importance and the company must be able to value the

options accurately.

E�cient hedging of risk using options is used in many industries, with other possible

applications including, currency exchange risk and crop or commodity producers. A fur-

ther application of hedging with mathematical grounding involves using the ‘so called’

Greeks, which denotes the derivatives of the option with respect to parameters a↵ecting

the stock price. Here an option trader may mitigate exposure to certain characteristics of

financial markets by forming a portfolio of di↵erent options and or stock positions. The

calculations involved in forming and maintaining these portfolios often require achieving

an accurate value of the option price at the tails, far from the current asset price. This

search for accuracy provides a topic of research interest for both academics and market

participants.

To allow further flexibility as a market instrument, the properties of options are not

limited to the European variety. One such example is the American option.

Definition 1.2 (American Call/Put):

An American Call/Put represents a contract between the writer (party which sells the

option) and the holder (party which buys the option). The contract o↵ers the buyer the

right, but not the obligation, to buy (Call) or sell (Put) an underlying asset S (e.g. a

commodity or a stock) at an agreed fixed strike price K > 0 at any time t, such that

0 < t < T . The pay-o↵ at time t of the American Call/Put is thus

C(S, t) = max(S
t

�K, 0) for a Call and P (S, t) = max(K � S

t

, 0) for a Put

where S 2 ⌦ := [0,1[, 0  t < T

An American style option allows investors the possibility to exercise the option during

the whole life of the option, so at any point up to the expiration date instead of just at

the expiration date. This change has distinct advantages for speculators who are now able

to capture profit as soon as the asset price moves favourably. With the ability to gain

instantaneous profits, option markets feature participants, who neither speculate or hedge

but simply trade and profit from the options themselves.
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Example 1.3 (Options trading):

A proprietary trading firm employs options traders, focussing on the power markets. The

traders looks to profit from day trading the global options markets, meaning they only

enter positions with the intention of closing them by the end of that days trading. The

firms weather forecasting model suggests a localised storm pattern is due to e↵ect energy

production that day. The traders use this information to buy short-dated American call

options on the power markets, with value C

0

. If the forecasting model is correct and energy

supply is reduced it is likely the options price will increase and the traders will be able to

profit from the intraday move. In the outcome where the model is incorrect and the desired

shortfall in energy does not occur, the trader exits the option at current market price. The

resulting profit or loss of this trade will be C

⌧

� C

0

.

When options trading over a short term horizon, the trader must account for the inclu-

sion of exchange commissions or broker fees. This is the fee associated with maintaining

the marketplace or facilitating the trade between the holder and writer of the option, these

fees can be a significant factor when options are used for speculation as often positions

will be entered and exited over short horizons.

Having defined European and American options, we omit definitions for the multitude

of other options which are traded in financial markets across the globe as they are outside

of the scope of this thesis. We do, however, give a notable mention to fixed-strike Asian

options, which share the qualities of a European option. However, where the final price of

the asset S is substituted for an average price taken over the duration of the option. This

leads to the pay-o↵ at time fixed time T , where C(S, T ) = max(A(0, T )�K, 0) for a Call

and P (S, T ) = max(K � A(0, T ), 0) for a Put, at fixed strike K and with A(0, T ) defined

as,

A(0, T ) =
1

T

Z

T

0

S(t)dt.

The price of an Asian option is path-dependent, which leads to a volatile marketplace

as di↵erent investors hold di↵erent views over the outlook of the underlying asset. Asian

options are one example of the complicated pricing problems associated with financial

derivatives. They o↵er an insight into the many types of options, all with di↵ering qualities

suited to particular types of investor.

For the purpose of this thesis, we will study European options. As many index options

are European style they are an important research topic, where improvements in pricing

will o↵er potential benefits to a large proportion of financial market participants.
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1.3 Early mathematical modelling of options

The price of an option represents a profile of the behaviour of the underlying asset. Having

defined options economically and described the importance of options within the financial

world, we now discuss the methods mathematicians have used to e↵ectively model the price

of options. In the previous definitions, the price of an option is only defined at expiration

date T > 0. However, in order to e↵ectively perform hedging trades with options it is

critical to know the current fair price, a pursuit which has inspired many option pricing

formulas and models.

The fair price of an option is determined by stochastically modelling the price move-

ment of the underlying asset. It can be seen when looking at the chart of a stock price that

the value of an underlying asset drifts through periods of stability and instability. Price

changes can occur suddenly as a result of factors including; balance sheet publications,

related central bank policy or broad currency fluctuations. The impact of these factors

can have both positive or negative implications on the asset price, with the direction and

magnitude of movement determined by the factors a↵ect on the expected future perform-

ance of the stock. Clearly the future price of the underlying is the subject of uncertainty,

mathematical models of this uncertainty are typically achieved through the application of

the Wiener process.

The concise definition of this stochastic process underlying Brownian motion was given

by Wiener [83], and yields the so-called Wiener process.

Definition 1.3 Wiener process/Brownian motion/Bachelier Process

A stochastic process X(t), t 0 is said to be a Brownian motion process if

(i) X(0) = 0;

(ii) {X(t), t > 0} has stationary and independent increments;

(iii) for every t > 0, X(t) is normally distributed with mean 0 and variance �

2

t

The first mathematical explanation of the phenomenon of Brownian motion was given

by Bachelier [4] in a doctoral thesis discussing speculation on the Paris stock exchange.

In this paper, Bachelier interprets Brownian motion as the limit of random walks. The

concept of Brownian motion to display the movement of an underlying asset if often

described within the confines of a stochastic di↵erential equation.

Definition 1.4 Stochastic di↵erential equation

A stochastic di↵erential equation is an intergral of the form



7

X(t)�X(0) =

Z

t

0

µ(X(s), s)ds+

Z

t

0

�(X(s), s)dW (s), (1.1)

where the second integral term denotes an Itô Integral and X is a vector of n 2 N+� 1

random variables and W is a vector of n Wiener processes. The vector µ(X(t), t) 2
Rn⇥1 denotes the drift and �(X(t), t) 2 Rn⇥n the correlation matrix between the Wiener

processes. A widely used alternative notation for (1.1) is

dX(t) = µ(X(t), t)dt+ �(X(t), t)dW (t).

1.3.1 Bachelier’s theory of speculation

In an early example of mathematicians interest in option pricing, Bachelier introduces

a model where the price of the underlying is assumed to be normally distributed [4],

and describes how using combinations of futures and options could alter the risk-reward

profile. Bachelier’s examples include modern hedges such as bull spreads and call-back

spreads [45]. The fundamental principle of this work was an equilibrium consideration

which mirrors the more recent concept of an e�cient market hypothesis. The price on the

underlying asset can be described by the following stochastic di↵erential equation.

dS(t) = �dW (t),

with the price of the underlying asset S and the volatility of the underlying asset �, W is

a Wiener process. We see this equation does not feature a drift term, as in (1.1), this is a

consequence of the omission of a parameter describing non-zero interest rates.

Bachelier, also introduced a formula, for the price of a European call option C, given

by

C(S, T ) = (S �K)�(d
1

) + �

p
T'(d

1

),

where d

1

= S�K

�

p
T

, with the price of the underlying asset S, the strike price K, time to

expiration in years T , the volatility of the underlying asset �, the cumulative normal

distribution function �(x) = 1p
2⇡

R

x

�1 e

�t

2

/2 dt and the standard normal density function

'(x) = 1p
2⇡

e

� 1

2

x

2

.

Bachelier’s assumption of a normal distribution for the asset price is limiting, albeit

easy to work with. However, the assumption of a normal distribution overlooks the small

prospect of asset prices turning negative as a result of a significant negative move [70].



8

This is not suitable for assets with limited liability features, such as stocks, and thus is

clearly not applicable.

Further, Bachelier’s assumption of constant variance dependent on the length of the

time interval, disregards the fact that volatility itself appears to be volatile and therefore

should not be proportional to the length of the time interval [70, 27, 75].

Despite these drawbacks, the Bachelier thesis remains an important piece of literature.

It o↵ered an introduction to mathematicians looking at the financial derivatives market

and has led to many naming him “the founder of mathematical finance and the father of

modern option pricing theory”, R. Cont, p.213, 2004 [20].

1.3.2 Sprenkle’s warrant prices and indicators of expectation

Featuring in a revision of another doctoral thesis, we now look to the work of Sprenkle,

[79], who created a model based on the assumption that asset prices were log-normally

distributed and where the drift and volatility of the asset price are constant over time but

relative to the asset price and not in absolute terms, an example of geometric Brownian

motion.

Definition 1.5 Geometric Brownian motion

Let W (t) be a Wiener Process, then the solution of

dX(t) = µX(t)dt+ �X(t)dW (t) for t > 0

is a geometric Brownian motion X(t) with constant drift µ 2 R and constant volatility

� 2 R for time t 2 [0, T ].

We have E[dX(t)] = µX(t)dt and V[dX(t)] = �

2

X(t)2dt, as the expected value and

variance, respectively.

Sprenkle modelled asset prices with the stochastic di↵erential equation,

dS = µSdt+ �SdW,

where µ is the rate of return of the underlying asset, � is the volatility of the rate of return

and dW is a Wiener process.

This model ruled out the possibility of negative asset prices, consistent with limited

liability. With the inclusion of positive drift in the underlying asset Sprenkle derived an

option pricing formula, where C is the value of a European call option
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C(S, T ) = Se

µT

N(d
1

)� (1�A)KN(d
2

),

where d

1

= ln(S/K)+(⇢+�

2

/2)T

�

p
T

, d
2

= d

1

� �

p
T and A is the adjustment for the degree of

market-risk aversion.

This formula requires the estimation of numerous parameters, including the the degree

of risk aversion, A, and the average growth of return, ⇢, for which a clear process is not

defined and market derived parameter information is not readily available.

1.4 Modern mathematical modelling of options

Using the concept of geometric Brownian motion to model the behaviour of the underlying

asset, a major breakthrough was achieved through the realisation that the option price

was explicitly connected to that of the underlying asset through a hedging strategy. The

derivation of this model requires a number of mathematical frameworks to be discussed.

We begin by defining an Itô process [55].

Definition 1.6 Itô Process

An Itô Process is a generalised Wiener Process with expected value a(x, t) and standard

deviation b(x, t). It has the form

dX(t) = a(X(t), t)dt+ b(X(t), t)dW (t).

The drift and variance of the process are functions of (X,t) and can change over time.

We now state the Lemma of Itô, which is useful in obtaining partial di↵erential equa-

tions from stochastic di↵erential equations.

Lemma 1.1 One-dimensional Lemma of Itô

Let V : R⇥R
+

! R be a function, where V is twice continuously di↵erentiable in the first

variable and continuously di↵erentiable in the second variable. Furthermore let S(t) be an

Itô process with drift f(S(t), t) and standard deviation g(S(t), t),

dS(t) = f(S(t), t)dt+ g(S(t), t)dW (t).

Then

dV (S(t), t) =

✓

@V (S(t), t)

@S

+
@V (S(t), t)

@t

+
1

2

@

2

V (S(t), t)

@S

2

g

2(S(t), t)

◆

dt

+
@V (S(t), t)

@S

g(S(t), t)dW (t)
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holds. This means that V (S(t), t) is again an Itô process with drift

@V (S(t), t)

@S

f(S(t), t) +
@V (S(t), t)

@t

+
1

2

@

2

V (S(t), t)

@S

2

g

2(S(t), t)

and standard deviation
@V (S(t), t)

@S

g(S(t), t).

We now state the definition of a partial di↵erential equation (PDE), which is an equa-

tion involving two or more independent variables, an unknown function and partial deriv-

atives of the unknown function with respect to the independent variables. In this thesis

we study a particular family of PDEs, namely parabolic PDEs, these are often used to

describe time-dependent phenomena, including heat conduction, particle di↵usion, and in

our case the pricing of financial derivatives.

Definition 1.7 Linear second-order parabolic PDE

A linear second-order parabolic PDE is an equation of the form

f

@u

@⌧

+ a

@

2

u

@x

2

+ b

@

2

u

@y

2

+ c

@u

2

@x@y

+ d

@u

@x

+ e

@u

@y

= g in ⌦⇥ ⌦
⌧

with initial condition u

0

= u(x, y, 0), where ⌦ ⇢ R and ⌧ > 0, the equation is sub-

ject to suitable boundary conditions. The coe�cients a, b, c, d, e, f and g are functions of

(x, y, ⌧) 2 ⌦⇥⌦
⌧

and subject to the condition a(x, y, ⌧), b(x, y, ⌧), c(x, y, ⌧), d(x, y, ⌧), e(x, y, ⌧) 2
C

2(⌦) for any ⌧ 2 ⌦
⌧

.

1.4.1 The Black-Scholes Equation

It was Black, Scholes [11] and independently Merton [62] who realised that the expected

return of the option price should be the risk free rate and that by holding a certain amount

of stock, referred to as the Delta, the option position could be dynamically completely

hedged allowing for an equation which omitted the expected rate of return.

The Black-Scholes model describes the motion of an underlying asset S with a geo-

metric Brownian motion at time t > 0. In the method pioneered by Sprenkle, we have the

stochastic di↵erential equation,

dS(t) = µS(t)dt+ �S(t)dW (t),

where µ is the constant drift, � is the constant volatility of the asset S and dW is a Wiener

process.
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However, it was the use of Lemma 1.1, in combination with standard arbitrage ar-

guments which allowed for the derivation a PDE and led to success of the Black-Scholes

paper. This derivation can for example be found in [84] and is shown in Appendix A.

The resulting Black-Scholes equation, in the case of no-dividends, is written as

@V

@t

+
�

2

S

2

2

@

2

V

@S

2

+ rS

@V

@S

� rV = 0 (1.2)

where, the variable S 2 R�0

denotes the asset price, which is assumed to have constant

volatility � > 0 over time. The risk-less interest rate is given by r � 0. To complete this

problem, suitable final and boundary conditions are applied and a computational domain

is chosen. The selection of lower bound is trivial, where S = 0. However, the upper bound

must be artificially chosen, such that S

max

> 0 is su�ciently large to model the asset

price, resulting in spatial domain ⌦ = [0, S
max

].

The final condition for a European Call option, with strike price K > 0, is

V (S, T ) = max(S �K, 0).

This model may be applied to the variety of di↵erent options discussed in Section 1.2,

simply by altering the final condition. In the special case of European options, (A) has a

closed-form solution. For the price of a call option, C, the formula is

C(S, T ) = S

0

�

 

rT + �

2

T

2

+ ln S

0

K

�

p
T

!

�Ke

�rT�

 

rT � �

2

T

2

+ ln S

0

K

�

p
T

!

,

where S

0

is the initial price of the asset, �(x) represents the cumulative distribution

function of a standard normal variable and T is the amount of time until the option

expires.

The success of the Black-Scholes formula is widely known, earning both Fischer Black

and Myron Scholes Nobel prizes for their contributions. In the period following their

publication, research in the area of option pricing intensified and as practitioners began to

use the model to compute option prices, situations arose where the calculated prices did

not match the financial market reality. Black-Scholes formula is only valid in circumstances

where the asset price dynamics are described by a continuous-time di↵usion process, with

the sample path being continuous and of probability equal to 1 [63]. This indicates that

if the asset price dynamics are not to able to be represented by a stochastic process with

a continuous sample path, solutions from the Black-Scholes equation are not valid. In

circumstances where the price processes feature large jumps, continuous-time models fail
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to explain the reason for the jumps occurrence, in these instances better suited models are

those featuring jump-di↵usion [82].

1.4.2 Jump-di↵usion models

Merton [63] pioneered the field of jump-di↵usion models in the context of financial in-

struments, by allowing the underlying dynamics to have random jumps, which in turn

reproduced more realistic tails behaviour for related log-returns. The approach first sug-

gested by Merton was the catalyst for the development of what has become to be known

as jump-di↵usion type models. In these models, the idea of sudden and unexpected events

are inbuilt because of the inclusion of random noise defined by a Poisson process [42].

Definition 1.8 Poisson Process

Let {⌧
i

}
i�1

be a sequence of exponential random variables with rate �. Let T
n

=
P

n

i=1

⌧

i

.

Then the Poisson process {N
t

}
t�0

is defined as

N

t

=
X

n�1

1
t�T

n

,

where the intensity � is the expected number of jumps per unit time.

Definition 1.9 Compound Poisson Process

Let {Q
i

}
i�1

be a sequence of independent or identically distributed random variables ex-

ponential random variables and {N
t

}
t�0

be a Poisson process with intensity parameter �.

Then the compound Poisson process {Y
t

}
t�0

is defined by

Y

t

=

N

t

X

i=1

Q

i

,

with jump intensity �, If N
t

= 0, then Y

t

is defined as Y

t

=
P

0

i=1

Q

i

= 0.

Merton’s Jump model

Merton models the behaviour on the underlying asset using the following stochastic dif-

ferential equation

8

>

<

>

:

S|
t=0

= S

0

> 0,

dS
t

= (µ� �k)S
t

dt+ �S

t

dW
t

+ S

t

dQ
t

, 0 < t  T,

(1.3)

where {W
t

}
0tT

is a Brownian motion and {Q
t

}
0tT

is a compound Poisson process,

which takes the form
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Q

t

=

N

t

X

i=1

(Y
i

� 1).

Y

i

=
S

T

i

S

T

i�1

> 0, i 2 N,

is the ratio of the price linked to the i� th jump on the time path of the asset price, which

occurs at the random time T
i

> 0. Merton assumes that the random variables {Y
i

}
i2N are

i.i.d and additionally independent of both W

t

and N

t

, with N

t

being a Poisson process of

intensity � > 0 . Furthermore, it is assumed that,

V

i

= log Y
i

N(m, �

2)

with probability density

f

V

(y) =
1

�

p
2⇡

e

� (y�m)

2

2�

2

, y 2 R.

Following pricing arguments it follows that,

E[Q
t

] = �kt, 0  t  T,

k = E[Y
i

� 1] = e

m+

�

2

2 � 1.

In (1.3), we defined a compensated variant of Q
t

, which is a martingale. Therefore, the

asset price can be modelled using the equation,

S

t

= S

0

exp{�W
t

+ (µ� �k � 1

2
�

2)t}
N

t

Y

i=1

Y

i

, 0  t  T.

Before describing any further properties of the Merton model, it is important to remember

that such jump-di↵usion models are not complete. In this Merton model, it is clear that

there are multiple potential choices which can be used to define a martingale measure, for

example the measure Q� P , leads to the discounted price e

�rt

S

t

, which is a martingale.

Using this martingale, Merton describes the dynamics of the asset price under Q as,

S

t

= S

0

exp{�W
t

Q + (r � �k � 1

2
�

2)t}
N

t

Y

i=1

Y

i

, 0  t  T.

This leads to a closed form solution, limited to jumps of Gaussian type and only valid in

the specific case of European options. The price of a European call option can be written

as, where C

BS

is the Black-Scholes price of a European call option,
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C

M

(⌧, x) =
1
X

j=0

exp��⌧

(�⌧)j

j!
C

BS

(⌧, x
j

,�

j

), (1.4)

where �

2

j

= �

2 + j�

2

⌧

and x

j

= x exp{jm + j�

2

⌧

� �⌧e

m+

�

2

2 + �⌧}. If � = 0 in (1.4) then

C

M

(⌧, x) = C

BS

(⌧, x).

Merton’s jump model allows for the existence of sudden and unpredictable events

present in financial markets. These are often caused by financial data releases, global

conflicts, political tensions and natural disasters. These types of events cannot be taken

into account by models based only on a Brownian type of noise, where behaviour is char-

acterised using continuous trajectories.

Additionally, allowing the underlying dynamics to have random jumps reproduced the

observed behaviour in the tails for related log-returns. Further research on this topic has

led to a range of complex models, using jump processes to model the dynamics of asset

prices [12, 58, 25, 21].

1.4.3 Stochastic volatility models

Focussing back on the Black-Scholes model, despite it’s clear successes, it features limita-

tions which in reality do not match the observed price movements of assets. Firstly, the

assumption of constant volatility and drift is only suited to short time periods, meaning

the formula is inaccurate when looking at longer dated maturities. Secondly, the assump-

tion that asset prices increase gradually over time does not allow for the possibility of

extended bear markets. These factors may be overcome by using an Itô process.

The inclusion of time dependent deterministic drift and volatility allows for a more

realistic model, where the value of options with longer dated maturities may be calculated

more accurately. The Black-Scholes models assumption of constant volatility has lead to

another notable measure, the Black-Scholes implied volatility. In financial markets it is

noted, that when comparing the value of options on the same underlying asset, across

di↵erent maturities and strike prices, the calculated volatilities of the options using the

Black-Scholes model form a smile or skew pattern [23]. This feature has become a gauge

used by many practitioners to predict future volatility in the financial markets.

These considerations have led to further adaptations and mathematical models which

better fit the financial markets, including stochastic volatility models.
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Definition 1.10 Stochastic volatility model

There are a range of stochastic volatility models with varying methods of explaining the

evolution of the volatility from t > 0, with a given initial volatility �(0) > 0. These models

are based on a two-dimensional stochastic di↵usion process with two Brownian motions,

correlated by ⇢, i.e.

dW (1)(t)dW (2)(t) = ⇢dt

with stochastic volatility �(t), we have

dS(t) = µS(t)dt+
p

�(t)S(t)dW (1)(t),

d�(t) = a(�(t))dt+ b(�(t))dW (2)(t),

where µ is the drift of the asset, a(�(t)) and b(�(t)) denote the drift and di↵usion coe�cient

of the stochastic volatility.

Stochastic volatility models have a two-dimensional stochastic process. In order to

derive PDEs in this situation we must use the two-dimensional Lemma of Itô.

Lemma 1.2 Two-dimensional Lemma of Itô

Let X(t) be a two-dimensional Itô process, i.e.

dX(t)� a(X(t), t)dt+ b(X(t), t)dW (t)

with X(t) = (X(1)(t), X(2)(t))> , W (t) = (W (1)(t),W (2)(t))>,

a(X(t), t) = (a
1

(X(t), t), a
2

(X(t), t))> and b(X(t), t) = (b
1

(X(t), t), b
2

(X(t), t)).

Further we have g : Rn⇥[0,1) ! Rp with g 2 C

2(Rn⇥[0,1)). Then Y (t) = g(X(t), t)

is again an Itô process and for k = 1, . . . , p we have

dY (t)(k) =
@g

k

@t

(X(t), t)dt+
@g

k

@x

1

(X(t), t)dX(t)(1) +
@g

k

@x

2

(X(t), t)dX(t)(2)

+
1

2

2

X

i,j=1

@

2

g

k

@x

i

@x

j

(X(t), t)dX(t)(i)dX(t)(j),

where dW (t)(1)dW (t)(2) = hdW (t)(1), dW (t)(2)idt with hdW (t)(1), dW (t)(2)i being the cor-

relation between dW (t)(1) and dW (t)(2). Therefore dtdt = 0, dW (t)(1)dt = 0 as well as

dtdW (t)(1) = 0 holds.
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Scott, Hull and White [51, 52] generalised the model to allow stochastic volatility, this

adaptation was shown to better explain the prices of currency options [61]. These papers

did not o↵er closed form solutions to their models and require extensive use of numerical

techniques to solve two-dimensional PDEs [53].

Heston’s closed-form solution for options with stochastic volatility

Heston [47] o↵ered a model of stochastic volatility which moves away from those based on

the Black-Scholes formula. Heston’s model provides a closed-form solution for the price

of a European call option, where the asset is correlated to the volatility and is capable

of adaptions to incorporate stochastic interest rates, which makes it more suited to bond

options and currency options.

Using the definition of a stochastic volatility model, the Heston model has variance

following the square root process used by Cox, Ingersoll, and Ross (1985) [21].

d�(t) = �(t)(✓ � �(t))dt+ v�(t)dW (2)(t),

where µ is the drift of the asset,  denotes the mean reversion speed, v the volatility of

the volatility and ✓ the long run mean of �.

Applying the two-dimensional lemma of Itô, Lemma 1.2 yields a second order parabolic

PDE that has to be solved for the asset price S, the volatility �, the time 0  t  T with

T > 0 and subject to final and boundary conditions dependent on the particular option

being priced. The derivation of the PDE from the stochastic equation above can be found

in Appendix B.

The Heston PDE is

@V

@t

+
1

2
�S

2

@

2

V

@S

2

+ ⇢v�S

@

2

V

@S@�

+
1

2
v

2

�

@

2

V

@�

2

+ rS

@V

@S

+ (✓ � �)
@V

@�

� rV = 0,

with r > 0 is the riskless interest rate and  = 

⇤ + �

0

, with �(S,�, t) = �

0

� the market

price of volatility risk and ✓ = 

⇤
✓

⇤



⇤
+�

0

as the long run mean of �.

The Heston PDE holds where S 2 [0, S
max

] with designated S

max

> 0, � 2 [�
min

,�

max

]

with 0  �

min

< �

max

and t 2 [0, T [ with T > 0, after imposing artificial boundary

conditions for S and � in a classical manner.

In the special case related to risk-neutral pricing of European options a closed-form

solution is given. This is achieved by first converting the problem into characteristic

functions, then using the Fourier inversion formula for probability distribution functions

to find a more numerically robust form.
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The characteristic function solution, subject to the terminal condition f

f

(x, v, T ;�) =

e

i�x, is given by

f

f

(x, v, t;�) = e

C(T�t;�)+D(T�t;�)v+i�x

,

where

C(⌧ ;�) = r�i⌧ +
✓

�

2

⇢

(+ �� ⇢��i+ d)⌧ � 2 ln



1� ge

d⌧

1� g

��

,

D(⌧ ;�) =
+ �� ⇢��i+ d

�

2



1� e

d⌧

1� ge

d⌧

�

,

g =
+ �� ⇢��i+ d

+ �� ⇢��i� d

,

d =

r

(⇢��i� + �)2 � �

2(2± �i

2
� �

2).

The inclusion of a closed form formula is particularly useful for practitioners looking

to calibrate the model to market prices, as during the calibration process the repricing of

many options is usually required in order to find the optimal parameters.

Stochastic volatility models account for the markets observed long term implied volat-

ility smile or volatility skew [69]. The shape of this “smile” is dependent on the correlation,

⇢, between the Weiner process a↵ecting �

t

and dW
t

, When ⇢ = 0, i.e. (�
t

)
t�0

and (W
t

)
t�0

are independent, the implied volatility pattern forms a “smile”. Whereas if ⇢ < 0 or ⇢ > 0

the implied volatility curve forms a downward or upward volatility skew, respectively.

Stochastic volatility models pronounced implied volatility profile, however, does not

feature for short-term maturities, as the e↵ect of stochastic volatility becomes apparent

in longer time scales. For short-term maturities the performance of stochastic volatility

models is similar to that of the Black-Scholes model [60].

Furthermore, the positiveness of �
t

requires the use of a square root, Cox, Ingersoll

and Ross, process. The CIR process, as in the case of Ornstein-Uhlenbeck processes, is

mean reverting and yields nonlinear di↵usion. Given these properties it is clear that a suc-

cessful combination of the qualities of jump-di↵usion models, introduced in Section 1.4.2

and stochastic volatility models would yield a model capable of a more accurate market

representation [3].

1.4.4 Stochastic volatility models with jumps

There are two ways to add jumps to stochastic volatility models, the first being to introduce

jumps into the volatility process. One can use a positive Lèvy process to drive the volatility
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�

t

this allows for positive, mean-reverting volatility processes featuring realistic dynamics,

whilst avoiding non-linear models, i.e. Omstein-Uhlenbeck processes [37]. An example

using this method is the model of Barndo↵-Nidsen and Shephard [6].

The second method is to add jumps into the returns and in the evolution of volatility.

By adding an independent jump component to the returns of a di↵usion-based stochastic

volatility model, we can improve the short-maturity behaviour of implied volatility without

having an adverse impact on long-term smiles. This combination is famously achieved in

Bates’ model.

Bates’ stochastic volatility with jumps model

The stochastic volatility with jump-di↵usion, SVJ, model introduced by Bates [7] inserts

proportional log-normal jumps into the Heston stochastic volatility model. The model is

formed by coupled stochastic di↵erential equations describing the behaviour of the asset

value, S, and its variance, �, given by

dS(t) = µ

B

S(t)dt+
p

�(t)S(t)dW
1

(t) + S(t)dJ,

d�(t) = (✓ � �(t))dt+ v

p

�(t)dW
2

(t),

for 0  t  T and with S(0),�(0) > 0. Here, µ
B

= r � �⇠

B

is the drift rate, where r � 0

is the risk-free interest rate. The jump process J is a compound Poisson process with

intensity � � 0 and J+1 has a log-normal distribution p(ỹ) with the mean in log(ỹ) being

� and the variance in log(ỹ) being v

2, i.e. the probability density function is given by

p(ỹ) =
1p
2⇡ỹv

e

� (log ỹ��)

2

2v

2

.

The parameter ⇠
B

is defined by ⇠

B

= e

�+

v

2

2 � 1. The variance has mean level ✓,  is the

rate of reversion back to mean level of � and v is the volatility of the variance �. The two

Wiener processes W
1

and W

2

have correlation ⇢.

In Bates’ model the shape of the volatility skew is determined on short-term intervals

by the introduction of asymmetric jumps and in long-term intervals by the introduction

of negative correlation between returns and volatility movements. The separation of these

patterns allows practitioners to calibrate the model to fit both short maturities, through

adjustment of the jump parameters, and longer maturities through the remaining para-

meters.

The inclusion of jump terms in the model means that rather than obtaining a PDE for

the solution of the option price, we yield a partial integro-di↵erential equation (PIDE). A
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PIDE is a functional equation involving an unknown function f(x
1

, x

2

, . . . ) , depending on

independent variables x

1

, x

2

, . . . , together with both di↵erential and integral operations

on f . Specifically In the case of Bates’ model we have a linear second-order parabolic

PIDE. For details of the derivation of the PIDE from Bates’ model, we refer to Appendix

C.

Definition 1.11 Linear second-order parabolic PIDE

A linear second-order parabolic PIDE is an equation of the form

f

@u

@⌧

+a

@

2

u
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2

+b

@

2

u

@y

2

+c

@u

2

@x@y

+d

@u

@x

+e

@u

@y

+

Z

⌧

0

k(x, y, ⌧, z, u(x, y, ⌧))dz = g in ⌦⇥⌦
⌧

with initial condition u

0

= u(x, y, 0), where ⌦ 2 R and ⌧ > 0, the equation is sub-

ject to suitable boundary conditions. The coe�cients a, b, c, d, e, f and g are functions of

(x, y, ⌧) 2 ⌦⇥⌦
⌧

and subject to the condition a(x, y, ⌧), b(x, y, ⌧), c(x, y, ⌧), d(x, y, ⌧), e(x, y, ⌧) 2
C

2(⌦) for any ⌧ in ⌦
⌧

.

By standard derivative pricing arguments for the Bates model, we obtain the PIDE
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@V

@S

+ (✓ � �)
@V

@�

� (r + �)V

+ �

Z

+1

0

V (Sỹ, v, t)p(ỹ) dỹ = 0, (1.5)

which has to be solved for S,� > 0, 0  t < T and subject to a suitable final condition,

e.g. V (S,�, T ) = max(K � S, 0), in the case of a European put option, with K denoting

the strike price.

Under additional restrictions, closed form solutions to (1.5) can be obtained by Fourier

methods (e.g. [20]). In general, however, one has to rely on numerical methods for option

pricing under the Bates model. Moreover, in the case of American options, which feature

an additional early exercise right. One has to solve a free boundary problem, consisting of

a PIDE and an early exercise constraint for the option price. In this instance, numerical

approximations are well suited to solving the problem.

Du�e, Pan and Singleton’s SVCJ model

Studies of the volatility smiles implied by S&P 500 index options have shown that, while

o↵ering an improvement on solely jump or stochastic volatility models, stochastic-volatility

models with jumps in returns are not fully able to produce the “smirk” seen in historical

option prices [8, 5].
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In an e↵ort to overcome these shortcomings Du�e, Pan and Singleton proposed models

which featured jumps in both returns and volatility [25]. These models allow jumps to

be simultaneous, or have correlated stochastic arrival intensities and are named the SVCJ

and SVJJ models, respectively.

The SVCJ model particularly can be seen as an extension of Bates’ model and describes

the behaviour of the asset value, S, and its variance, �, by the coupled stochastic di↵erential

equations,

dS(t) = µ

S

S(t)dt+
p

�(t)S(t)dW
1

(t) + S(t)dJS

,

d�(t) = (✓ � �(t)) + v

p

�(t)dW
2

(t) + dJ�

,

for 0 6 t 6 T and with S(0),�(0) > 0. Here, µ
S

= r � �⇠

S

is the drift rate, where r > 0

is the risk-free interest rate. The two-dimensional jump process (JS

, J

�) is a compound

Poisson process with intensity � > 0. The distribution of the jump size in variance is

assumed to be exponential with mean �. In respect to jump size z� in the variance process,

J + 1 has a log-normal distribution p(zS , z�) with the mean in log zs being � + ⇢

J

z

�, i.e.

the probability density function is given by

p(zS , z�) =
1p

2⇡zS��
e

� z

�

�

� (log z

S���⇢

J

z

�

)

2

2�

2

.

The parameter ⇠
s

is defined by ⇠

s

= e

�+

�

2

2 (1��⇢

J

)�1�1, where ⇢
J

defines the correlation

between jumps in returns and variance, � is the jump size log-mean and �

2 is the jump

size log-variance. The variance has mean level ✓,  is the rate of reversion back to mean

level of � and v is the volatility of the variance �. The two Wiener processes W
1

and W

2

have constant correlation ⇢.

By standard derivative pricing arguments for the SVCJ model, we obtain the PIDE
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Z

+1

0

V (S.zS ,� + z

�

, t)p(zS , z�) dz�dzS = 0,

which has to be solved for S,� > 0, 0  t < T and subject to a suitable final condition,

e.g. V (S,�, T ) = max(K � S, 0), in the case of a European put option, with K denoting

the strike price.

The addition of jumps to the volatility process in the SVCJ model allows for a degree

of volatility of volatility su�cient to produce the implied volatility smiles observed in

the previous studies [26]. However, as a result of the inclusion of jumps in the volatility

process, a far higher analytical and computational cost is required than that of Bates’

model.
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We have seen, that for some option pricing models closed-form solutions are available

for vanilla payo↵s (see e.g. [25]) or at least approximate analytic expressions, see e.g. [9]

and the literature cited therein. In general, however, one has to rely on numerical methods

for pricing options.

1.5 Numerical Methods

For approximating the PDEs or PIDEs arising from option pricing, we can employ at least

four di↵erent classes of numerical methods [1]. These include; finite di↵erence methods,

finite volume methods, spectral methods and finite element methods.

Finite di↵erence methods are a popular choice, mainly for their simplicity. However,

in cases where mesh adaptivity is important it can be di�cult to control and minimise the

numerical error (see e.g. [81] and the references therein).

Finite volume methods are more suited to hyperbolic PDEs, however, can be applied

for Asian options when, as the option approaches maturity, the PDE becomes close to

hyperbolic [86].

Spectral methods are Galerkin methods using Fourier series with high degree polyno-

mials. They are best suited to problems with constant coe�cients of the PDE, examples

of their use can be seen in [50].

Finite element methods are complex, however, they are very flexible with regards to

mesh adaptivity. In cases where key di�culties with implementation can be overcome they

o↵er a powerful tool for financial problems [86].

We employ both finite element and finite di↵erence methods and now introduce these

methods in further detail.

1.5.1 Finite element method

The finite element method is a numerical technique, which performs finite element analysis

of a physical phenomenon as described by a PDE [56]. The PDE is often referred to as

the strong form, while the integral form is referred to as the weak form. The weak form

of the problem is obtained by Green’s Theorem.

Definition 1.12 Green’s Theorem

Green’s first formula states that

Z

⌦

(�u)v +

Z

⌦

ru ·rv =

Z

�

(@
n

u)v,
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where ⌦ is the domain in R2 and � is boundary of the domain, where suitable boundary

conditions are defined, with �
D

denoting a Dirichlet boundary and �
N

denoting a Neumann

boundary.

To explain we consider a widely used two-dimensional elliptic PDE, the Laplace equation.

�U = r2

U =
@

2

U

@x

2

+
@

2

U

@y

2

= 0, defined on ⌦ 2 R2 (1.6)

We set the domain ⌦ = (0, 1)2 and choose only homogeneous Dirichlet boundary con-

ditions, with U(@⌦) = 0 and @⌦ = {(x, y)kx = 0, 1 or y = 0, 1}. This is the strong

formulation. We now apply Green’s theorem, where (1.6) is multiplied by a trial function,

v(x, y).

v�U = vr2

U = 0

Integrating over the domain ⌦ and using integration by parts, gives

Z

⌦

vr2

U =

Z

⌦

r(vrU)�
Z

⌦

rv ·rU. (1.7)

Using Gauss’ theorem on r(vrU), we get

Z

⌦

r(vrU) =

Z

@⌦

v

|{z}

v|
@⌦

=0

rU · n̂ dS = 0,

where dS refers to an infinitesimal line segment. (1.7) now reduces to

Z

⌦

vr2

U = �
Z

⌦

rU ·rv

hence, giving the final weak formulation as,

�
Z

⌦

rU ·rv = 0

This process enables the order of continuity, which is required for the unknown function

U(x, y) to be reduced by one. In the previous di↵erential equation, we required U(x, y) to

be di↵erentiable at least twice, however in the integral equation U(x, y) is only required

to be once di↵erentiable. This holds for higher multi-dimensional functions, where the

derivatives are replaced by gradients and/or divergence [56].

The weak form is discretised, with the domain being split into small pieces which are

called elements. The corner point of each element is called a node, see Figure 1.1. The

unknown functional U(x, y) is computed at the nodal points while interpolation functions

must be defined for the purpose of interpolating the values inside the element, using
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nodal values. These interpolation functions, �(x, y), are also commonly known as ansatz

functions. We are now able to reduce the unknown functional U(x, y) to

Û(x, y) =

nen

X

i=1

Û

i

�

i

(x, y),

with nodal basis

Û(x
j

, y

j

) =
nen

X

i=1

Û

i

�

i

(x
j

, y

j

) = Û

j

,

where nen is the number of nodes in the element and �

i

and U

i

are the interpolation func-

tions and the unknowns related to node (i), respectively. We now define our approximation

Û , trial function v and rewrite the weak form as

Û(x, y) =

nen

X

i=1

Û

i

�

i

(x, y), v(x, y) =

nen

X

j=1

v

j

�

j

(x, y) and a(U, v) =

Z

⌦

rU ·rv

Combining these expressions into a(U, v) and further manipulation yields,
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To solve this equation, it is written in compact form v

T

AÛ = 0 with v = [v
1

v

3

. . . v

nen

]T ,

Û = [Û
1

Û
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. . . Û
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.

Boundary conditions are now applied, with Û = 0 at the boundary and the linear system

is solved through methods such as the Conjugate gradient method.
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Figure 1.1: Typical finite element discretisation, a triangular grid of a rectangle

The order of the finite element method, is dependent on the interpolation functions

chosen. Typical examples are linear, polynomial or cubic Lagrangian polynomials, giving

order 1, 2 and 3, respectively. The choice of desired order is important as when the order

of method is increased the number of unknowns in the numerical model increases. This

leads to a greater computational time and can be prohibitive for financial applications

where speed is important.

1.5.2 Finite di↵erence method

The finite di↵erence approximations for derivatives are one of the simplest and oldest

methods to solve di↵erential equations. The finite di↵erence method works by supplanting

the region that the independent variables in the PDE are defined on by a finite grid (mesh)

of points at which the dependent variable is approximated [17]. The partial derivatives

in the PDE are approximated at each grid point using neighbouring values obtained by

Taylor’s theorem.

Theorem 1.13 Taylor’s Theorem

Let U(x) have n continuous derivatives over the interval (a, b). Then for a < x

0

, x

0

+h < b,

U(x
0

+ h) = U(x
0

) + h

@U(x
0

)

@x

+
h

2

2!

@

2

U(x
0

)

@x

2

+ · · ·+ h

n�1

(n� 1)!

@

n�1

U(x
0

)

@x

n�1

+O(hn).

The conventional interpretation of Taylor’s theorem is that if the value of U is known,

and we know the values of its derivatives at point x

0

then it is possible to find its value

at the (nearby) point x
0

+ h. If we discard the term O(hn), we obtain an approximation

to U(x
0

+ h), with error O(hn).

To explain further we again refer to the Laplace equation (1.6), where



25

@

2

U

@x

2

+
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U

@y

2

= 0, defined on ⌦ 2 R2

The computational domain, ⌦, is discretised by implementing constant grid spacings,

�x and �y, in the x and y directions respectively. We then index grid points by (i, j)

in the normal manner and the denote the approximate value of U at grid point (i, j)

as u

(i,j)

. Figure 1.2 displays a uniform rectangular grid in the x and y directions, with

�x = �y = h defined. The value of u is known at the boundary points, we are required

to find u at the interior grid points.

(i,j)
j

j+1

j-1

i i+1i-1�x

�y

Figure 1.2: Typical finite di↵erence discretisation

Each partial derivate in (1.6) is replaced by a central FD approximation, leaving,

u

i+1,j

� 2u
i,j

+ u

i�1,j

�x

2

+
u

i,j+1

� 2u
i,j

+ u

i,j�1

�y

2

= 0,

which can be rearranged to give,

u

i,j

=
u

i+1,j

+ u

i�1,j

+ u

i,j+1

+ u

i,j�1

4
.

with leading truncation error ⌧
i,j

= h

2

6

(u
xxxx

+ u

yyyy

) +O(h4).

For higher-dimension systems, or systems with mixed derivative terms Taylor’s theorem

is applied in a similar manner. To increase the order of the system a larger stencil must

be used, this leads to a high computational cost and adds the additional complication

of ghost points, (points which are required in the stencil but are located outside of the

domain).

1.5.3 High-order compact finite di↵erence method

In recent years, high-order accurate compact finite di↵erence methods have been increas-

ingly used for numerically solving PDEs [43, 44, 77, 78, 57, 10]. These schemes exploit the
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smoothness of solutions to elliptic and parabolic PDE problems in order to achieve high-

order numerical convergence rates, typically larger than two in the spatial discretisation,

while generally having good stability properties. This class of methods is also attractive

since they o↵er a means to obtain high accuracy solutions with less computational costs.

The computational stencil for HOC methods is composed of the desired point and its eight

neighbouring points, see Figure 1.3.

We consider (1.5.2), on a square domain ⌦ = (0, 1)⇥(0, 1) with �x = �y. The domain

⌦ is divided uniformly with lines {(x
i

, y

j

) : x
i

= i

h

, y

j

= j

h

, i, j = 0, 1, . . . , J}, where
h is the spacial mesh-size. Using the notation �

2

x

, �2
y

to denote the second-order central

di↵erence with respect to x, y, respectively:
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.

By the Taylor series expansion, omitting the subscripts i, j, we get for every su�ciently

smooth u,
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and (1.5.2) becomes,
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Mixed derivatives are computed in a similar manner with the application of Taylor’s

theorem, this process is continued until the desired order is achieved.

(i,j)
j

j+1

j-1

i i+1i-1�x

�y

Figure 1.3: Nine-point compact stencil

1.5.4 Time-stepping scheme

Having introduced the di↵erent discretisation techniques we now introduce the time-

stepping scheme. For the discretisation in time there are numerous possibilities. Popular
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one-step methods include the Explicit or Implicit Euler time discretisation or the Crank-

Nicolson type time discretisation, while two-step methods include the alternating direction

implicit method (ADI). Focussing on one-step methods, the Implicit and Explicit Euler

methods are both first-order in time, while the Crank-Nicolson type time discretisation

has been shown to converge with order two [84], allowing for high-order convergence to be

achieved without loss of computation speed, often prohibitive to financial type problems.

To introduce these schemes, we consider the two-dimensional heat equation, which can

be spatially discretised using either finite elements or finite di↵erences, on both simple

and compact stencils. For the case of this introduction we will focus on a standard finite

di↵erence approach.

The two-dimensional heat equation is a second order parabolic PDE which refers to

the solution regarding the temperature U(x, y, t) in a thin plate as a function of time and

position, with initial temperature and the boundary conditions of the plate given. We

have
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with 0  x  1 and 0  y  1, and with U(x, 0, t), U(x, 1, t), U(0, y, t), U(1, y, t) and

U(x, y, 0) given.

Explicit Euler

First looking at the Explicit, forward, Euler method, we discretise the LHS of (1.8) in

time with time step �t = T/m = k, leaving the first order finite di↵erence approximation,

given by
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Discretising the RHS of (1.8) using a second order central finite di↵erence approxim-

ation, with �x and �y indicating the node spacing in both spatial directions, we have
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The implementation of the Explicit Euler is simple, as each time-step is computed us-

ing known values. However, the disadvantage of this scheme is, that it is only stable if

2��t

min((�x)

2

,(�y)

2

)

 1, which imposes a restriction on the step-size needed to ensure conver-

gence.

Implicit Euler

The Implicit, backward, Euler method, is similar but has the benefit of being uncondi-

tionally stable. To develop this scheme we refer again to (1.8). We discretise the LHS in

time with time step �t = T/m = k, leaving the first order finite di↵erence approximation,

given by
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Then discretising the RHS of (1.8) using a second order central finite di↵erence ap-

proximation, with �x and �y indicating the node spacing in both spatial directions, we

have
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Rearranging gives,
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Which has to be solved through an equation of the form Ax = b, where b is a linearised

list of the known solution at time-step k, x is the unknown solution at time-step k+1 and

A is the sti↵ness matrix holding the equations. To solve for the unknown x the inverse of

A must be computed, which requires the use of further numerical methods.

Crank-Nicolson

The Crank-Nicolson scheme is the average of the Explicit and Implicit Euler schemes

and is unconditionally stable, hence allowing large time steps to be taken while retaining

stability. To develop this scheme we refer again to (1.8). We discretise the LHS in time

with time step �t = T/m = k, leaving the first order finite di↵erence approximation,

given by
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Then discretising the RHS of (1.8) using a second order central finite di↵erence ap-

proximation, with �x and �y indicating the node spacing in both spatial directions, we

have
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As in the case of the fully implicit method, we again are required to solve through an

equation of the form Ax = b. Where typically A is an (n�1)2⇥ (n�1)2 block-tridiagonal

matrix, with blocks that are (n�1)⇥(n�1). The structure of the matrix A, allows for this

calculation to be achieved with reduced computational costs. Widely applicable methods

include a form of LU factorisation, where through Gaussian elimination a square matrix

A is separated into a lower triangular matrix L and an upper triangular matrix U . This

multiplication may also include a permutation matrix P , which may be left-multiplied by

A in order to rearrange the rows of A. LUP factorisation can be achieved for all square

matrices and is numerically stable [67].

To solve Ax = b, one first factorises A using LUP factorisation to give PA = LU ,

hence LUx = Pb. The solution is then computed in two stages, first, we must solve the

equation Ly = Pb for y and second, we must solve the equation Ux = y for x. Both

of these steps can be completed directly due to the triangular structure of L and U by

forward and backward substitution. The above procedure can be repeatedly applied at

each time-step and as the matrix A is not dependent on t, we only require a single LU

decomposition of A.

1.6 Overview of the thesis

In this section we give an overview of the current literature regarding numerical methods

for option pricing, before laying out the structure of the thesis, with a summary of each

chapter and the contributions to knowledge. In each instance we state specifically the
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roles of the author in the published works, which are the basis of each chapter and this

thesis.

1.6.1 Numerical methods for option pricing

In the introduction we have given an overview of the classical models for pricing financial

options, from the model of Bachelier [4], through to the model of Black and Scholes [11]

and the more recent models which have been proposed to alleviate the shortcomings of

their predecessors. Each model considers an underlying asset following a form of Brownian

motion, while some models incorporate a second Brownian motion process for the volatility

of the underlying asset.

We have shown that for some option pricing models closed-form solutions are available.

In general, however, one has to rely on numerical methods for pricing options. The

mathematical literature for pricing options using numerical methods is vast, however,

much of this is focussed on option pricing models with a single risk factor, leading to

partial di↵erential equations in one spatial dimension, e.g. variants of the the Black-Scholes

model. In many of these cases authors rely on standard finite di↵erence methods to solve

the pricing problem [81, 76]. For one-dimensional models with jump-di↵usion we refer to

[20, 26, 13, 72, 73].

Once we focus on option pricing models with more than one risk factor, e.g. in

stochastic volatility models, which involve solving partial di↵erential equations in two

or more spatial dimensions, there are fewer works, e.g. [54] where di↵erent e�cient meth-

ods for solving the American option pricing problem for the Heston model are proposed.

Other approaches include finite element-finite volume [86], multigrid [19], sparse wavelet

[50], FFT-based [71], spectral [85], hybrid tree-finite di↵erence [14] methods and operator

splitting techniques [49, 30, 33, 46, 31].

For problems which additionally include jumps in the underlying’s process, and require

the solution of PIDE in two or more spatial dimensions, there are even fewer works. We

mention [74, 80] who propose an implicit-explicit time discretisation in combination with

a standard, second-order finite di↵erence discretisation in space for option prices under

both the SVCJ and Bates models, [38] discusses and analyses an explicit discretisation for

options priced with the Bates model. A method of lines algorithm for pricing American

options under the Bates model is presented in [18]. An alternative approach is discussed

in [15], where the authors combine tree methods and finite di↵erences in a hybrid scheme

for the Bates model with stochastic interest rates.



31

More recently, high-order finite di↵erence schemes (fourth order in space) have been

proposed for solving partial di↵erential equations arising from stochastic volatility models.

In [28] a high-order compact finite di↵erence scheme for option pricing in the Heston model

is derived. This approach is extended to non-uniform grids in [29], and to multiple space

dimensions in [32].

We propose to further the literature by applying HOC finite di↵erences to the Bates

and SVCJ models. With current literature limited to standard second order schemes, we

see an opportunity for significant improvements in computational e�ciency, in a model

which is highly regarded and frequently used in industry.

From an industry perspective, we anticipate traders will utilise our high-order scheme

to enhance pricing models, through more accurate pricing on coarser grids. For example,

this will better enable rapid computation of an option’s Delta for strategies which require

frequent re-hedging.

The challenge of this proposal includes the algebraically demanding derivation of HOC

schemes, which is often why these schemes are tailored to rather specific problems. In the

literature they were originally proposed for the numerical approximation of problems, such

as the Poisson or the heat equation and it is only gradually over the last two decades that

progress has been made to extend this approach to more complex, and multi-dimensional

or nonlinear, problems.

1.6.2 Thesis structure and contributions to knowledge

Chapter 2 is based on the article ‘High-order compact finite di↵erence scheme for option

pricing in stochastic volatility jump models’ published in the Journal of Computational

and Applied Mathematics, is the collaborative work of Bertram Düring, and Alexander

Pitkin [35]. While Düring proposed the study of this model and provided guidance and

valuable advice for the work on this manuscript, the paper is primarily the original work

of Alexander Pitkin and nearly all the results, including ideas, analysis and simulations,

were obtained by Alexander Pitkin.

The originality of the work presented in this chapter consists in proposing a new

implicit-explicit high-order compact finite di↵erence scheme for option pricing in Bates

model. To the best of this author’s knowledge it presents the first high-order scheme for

this highly popular option pricing model. It combines a —suitably adapted— version of

the high-order compact scheme from [28] with an explicit treatment of the integral term

which matches the high-order, inspired by the work of Salmi et al. [74]. The new compact
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scheme is fourth order accurate in space and second order accurate in time. We validate

the stability of the scheme numerically and compare its performance to both standard

finite di↵erence methods and finite element approaches. The new scheme outperforms a

standard discretisation based on a second-order central finite di↵erence approximation.

Compared to the finite element approach, it is very parsimonious in terms of memory

requirements and computational e↵ort, since it achieves high-order convergence without

requiring additional unknowns —unlike finite element methods with higher polynomial

order. At the same time, the new HOC scheme is very e�cient, requiring only one initial

LU -factorisation of a sparse matrix to perform the option price valuation. It can also

be useful to upgrade existing implementations based on standard finite di↵erences in a

straightforward manner to obtain a highly e�cient option pricing code.

Chapter 3 is based on the article ‘E�cient hedging in Bates model using high-order

compact finite di↵erences’ published in Recent Advances in Mathematical and Statistical

Methods for Scientific and Engineering Applications, is the collaborative work of Bertram

Düring, and Alexander Pitkin [34]. While Düring provided guidance and valuable advice

for the work on this manuscript, the paper is primarily the original work of Alexander

Pitkin and nearly all the results, including ideas, analysis and simulations, were obtained

by Alexander Pitkin.

The originality of the work presented in this chapter consists of the evaluation of

the hedging performance of the numerical option pricing scheme derived in Chapter 2.

Through a series of experiments we compare the scheme’s hedging performance to stand-

ard finite di↵erence methods. Furthermore we present examples of hedging strategies,

involving combinations of options and their underlying assets. Throughout the results it

is shown that the new scheme outperforms a standard discretisation, based on a second-

order central finite di↵erence approximation.

Chapter 4 is based on the article ‘High-order compact finite di↵erence scheme for option

pricing in stochastic volatility with contemporaneous jump models’ published in Progress

in Industrial Mathematics at ECMI 2018, is the collaborative work of Bertram Düring,

and Alexander Pitkin [36]. While Düring proposed the study of this model and provided

guidance and valuable advice for the work on this manuscript, the paper is primarily the

original work of Alexander Pitkin and nearly all the results, including ideas, analysis and

simulations, were obtained by Alexander Pitkin.

The originality of the work presented in this chapter consists in proposing a new

implicit-explicit high-order compact finite di↵erence scheme for option pricing in the SVCJ
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model, derived by Du�e, Pan and Singleton [25]. To the best of this author’s knowledge

it presents the first high-order scheme for this complex option pricing model. It involves a

suitably adapted version of the high-order compact scheme introduced in Chapter 2 with

an explicit treatment of the double integral term which matches the high-order. The new

compact scheme is fourth order accurate in space and second order accurate in time. We

validate the stability of the scheme numerically and compare its performance to a standard

finite di↵erence approach. The new scheme outperforms a standard discretisation based

on a second-order central finite di↵erence approximation in terms of convergence.
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Chapter 2

High-order compact finite

di↵erence scheme for option

pricing in stochastic volatility

jump models

The evolution in option pricing models has been motivated by the desire to achieve a

model with enough calibration flexibility to produce the observed market prices, which

across the broad variety of financial assets is a vast challenge.

The publication of the widely successful Black-Scholes model [11] led to a period of

intense research into pricing financial derivatives. Of the numerous research papers pub-

lished since, many have helped to alleviate the shortcomings of this model and to produce

an ever more accurate representation of observed option prices.

Two key advances were bought about with by the jump di↵usion model of Merton

[63] and models including stochastic volatility, notably by Heston [47]. These two models

individually compensate for many of the market observed option price characteristics, such

as jumps in the price of the underlying asset and observed volatility smiles featured across

stock and currency market option prices, however, it was thought a combination of both

models had potential to yield the desired model with vast calibration o↵erings.

Bates’ model [7] adds jumps into the returns and in the evolution of volatility. It is a

quasi market standard for option pricing and as closed form solutions are only available

under certain assumptions, a prime candidate for the application of e�cient numerical

methods. In this chapter we shall apply numerical methods to Bates’ model with the
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intention of deriving a pricing algorithm which o↵ers high-order convergence, through

application of the HOC finite di↵erence stencils, introduced in Section 1.5.3.

This chapter is organised as follows. In the next section we recall Bates’ model for

option pricing and the related PIDE. Section 2.2 is devoted to a variable transformation

for the problem. The new scheme is derived in Section 2.3. The smoothing of the initial

condition and the discretisation of the boundary conditions are discussed in Section 2.4.

In Section 2.5 we state the finite element formulation which we use for the numerical com-

parison experiments. In Section 2.6 we present numerical convergence and stability results

and investigate and compare the e�ciency of the scheme to other methods. Section 2.7

summarises this chapter.

2.1 Bates’ model

Bates’ model introduced in Section 1.4.4 is a stochastic volatility model which allows

for jumps in returns [7]. Within this model the behaviour of the asset value, S, and its

variance, �, is described by the coupled stochastic di↵erential equations,

dS(t) = µ

B

S(t)dt+
p

�(t)S(t)dW
1

(t) + S(t)dJ,

d�(t) = (✓ � �(t))dt+ v

p

�(t)dW
2

(t),

for 0 6 t 6 T and with S(0),�(0) > 0. Here, µ
B

= r � �⇠

B

is the drift rate, where r > 0

is the risk-free interest rate. The jump process J is a compound Poisson process with

intensity � > 0 and J+1 has a log-normal distribution p(ỹ) with the mean in log(ỹ) being

� and the variance in log(ỹ) being v

2, i.e. the probability density function is given by

p(ỹ) =
1p
2⇡ỹv

e

� (log ỹ��)

2
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.

The parameter ⇠
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is defined by ⇠

B

= e
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2

2 � 1. The variance has mean level ✓,  is the

rate of reversion back to mean level of � and v is the volatility of the variance �. The two

Wiener processes W
1

and W

2

have correlation ⇢.

By standard derivative pricing arguments for the Bates model, we obtain the PIDE
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V = 0, (2.1)

which has to be solved for S,� > 0, 0  t < T and subject to a suitable final condition,

e.g. V (S,�, T ) = max(K � S, 0), in the case of a European put option, with K denoting
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the strike price. For clarity the operators L

D

V and L

I

V are defined as the di↵erential

part (including the term �(r + �)V ) and the integral part, respectively.

2.2 Transformation of the equation

Using the transformation of variables

x = logS, ⌧ = T � t, y =
�

v

and u = exp(r + �)V,

we obtain
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which is now posed on R⇥ R+ ⇥ (0, T ), with

L

I

V = �

Z 1

0

V (Sỹ, v, t)p(ỹ) dỹ.

Applying the same transformation to the intergral term, L
I

,

exp(r + �)L
I

V = �

Z

+1

0

u(xỹ, y, ⌧)p(ỹ) dỹ.

Now by setting z = log ỹ, ũ(z, y, ⌧) = u(ez, y, ⌧) and p̃(z) = e

z

p(ez) we have

exp(r + �)L
I
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0

u(xỹ, y, ⌧)p(ỹ) dỹ = �

Z
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�1
ũ(x+ z, y, ⌧)p̃(z) dz.

The problem is completed by the following initial and boundary conditions:

u(x, y, 0) = max(1� exp(x), 0), x 2 R, y > 0,

u(x, y, t) ! 1, x ! �1, y > 0, t > 0,

u(x, y, t) ! 0, x ! +1, y > 0, t > 0,

u

y

(x, y, t) ! 0, x 2 R, y ! 1, t > 0,

u

y

(x, y, t) ! 0, x 2 R, y ! 0, t > 0.

2.3 Implicit-explicit (IMEX) scheme

Following the idea employed by Salmi, Toivanen and von Sydow in [74, 80], we accom-

plish the implicit-explicit discretisation in time by means of the IMEX-CN method. This

method is an adaptation of the Crank-Nicholson method, whereby an explicit treatment is

added for the integral operator. To achieve high-order convergence we adapt the HOC fi-

nite di↵erence scheme developed in [28] to implicitly approximate the di↵erential operator,

while we evaluate the integral explicitly using the Simpson’s rule to match the high-order

accuracy of the high-order compact scheme.
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2.3.1 High-order compact scheme for the di↵erential operator

Following the discretisation employed in [28], we replace R by [�R
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Convection-Di↵usion problem

We introduce the HOC discretisation for the convection-di↵usion problem with Laplacian

operator,
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(2.3)

We construct a fourth-order compact finite di↵erence scheme with a nine-point compu-

tational stencil using the eight nearest neighbouring points around a reference grid point

(i, j), following the approach in [28]. The idea behind the derivation of the HOC scheme

is to operate on the di↵erential equations as an auxiliary relation to obtain finite di↵er-

ence approximations for high-order derivatives in the truncation error. Inclusion of these

expressions in a central di↵erence approximation increases the order of accuracy while

retaining a compact computational stencil.

Introducing a uniform grid with mesh spacing h = h

1

= h

2

in both the x- and y-

directions, the standard central di↵erence approximation to equation (2.3) at grid point

(i, j) is
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where �
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, respectively) denote the first and second order central di↵erence

approximations with respect to x (with respect to y). The associated truncation error is

given by

⌧

i,j

=
1

24
vyh

2 (u
xxxx

+ u

yyyy

) +
1

6
⇢vyh

2 (u
xyyy

+ u

xxxy

) +
1

12
(2r � vy � 2�⇠

B

)h2u
xxx

+
1

6

(✓ � vy)

v

h

2

u

yyy

+O(h4). (2.5)



38

For the sake of clarity the subindices j and (i, j) on y

j

and u

i,j

(and its derivatives) are

omitted from here. Di↵erentiating (2.3) with respect to x and y, respectively, yields,
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Di↵erentiating equations (2.6) and (2.7) with respect to y and x, respectively, and adding

the two expressions we obtain
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By di↵erentiating equation (2.3) twice with respect to x and twice with respect to y and

adding the two expressions, we obtain
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We now substitute equations (2.6)–(2.9) into (2.5) to yield a new expression of the

error term ⌧

i,j

that only consists of terms which are either O(h4) or O(h2) multiplied by

derivatives of u which can be approximated to O(h2) within the compact stencil.
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Inserting (2.10) in (2.4) we obtain the following O(h4) approximation to the partial

di↵erential equation (2.3),
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The fourth-order compact scheme (2.11) considered at mesh point (i, j) involves the nearest

eight neighbouring meshpoints. Associated to the shape of the computational stencil, we

introduce indexes for each node from zero to eight,
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With this indexing the scheme (2.11) is defined by
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When multiple indexes are used with ± and ⌥ signs, the first index corresponds to the

upper sign.

Extension to the parabolic problem

To extend the above approach to the parabolic problem we replace f(x, y) in (2.3) by

the time derivative. We consider the class of two time step methods. By di↵erencing

at t

µ

= (1 � µ)t
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, where 0  µ  1 and the superscript n denotes the time

level, we yield a set of integrators including the forward and backward Euler scheme, for
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Where multiple indexes are used with ± and ⌥ signs, the first index corresponds to the

upper sign. The Crank-Nicolson scheme is used by setting µ = 1/2, yielding a scheme

which is second-order accurate in time and fourth-order accurate in space.
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2.3.2 Integral operator

After the initial transformation of variables we have the integral operator in the following

form,
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Simpson’s rule

To estimate the integral we require a numerical integration method of high order to match

our finite di↵erence scheme, we choose to use the composite Simpson’s rule, defined as
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each interval has length mesh-size h/2. Equation (2.12) can now be written as,
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This computation is calculated explicitly at each time-step by the matrix-vector equation,
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The integral operator L

I

is estimated over (x
min

, x

max

) using Simpson’s rule. The

tails could be discarded as they are assumed to be of negligible value for su�ciently small

(large) choice of x
min

(x
max

). A direct result of this approach would be the necessity

to compute the option price over a wider domain than practically relevant. To alleviate

this issue we assume that the option price follows the payo↵ function outside of the range

(x
min

, x

max

), and approximate the tails by the following integrals

Z 1

x

max

ũ(⇣, y, ⌧)p̃(⇣) d⇣ ⇡
Z 1

x

max

max(1� exp(⇣), 0)p̃(⇣) d⇣,

Z

x

min

�1
ũ(⇣, y, ⌧)p̃(⇣) d⇣ ⇡

Z

x

min

�1
max(1� exp(⇣), 0)p̃(⇣) d⇣.

The value of the first of these integrals is trivial as the payo↵ function for the Put

option is zero in the region (x
max

,+1). We estimate the second integral using Simpson’s

rule on an equal-sized adjacent equidistant grid to our original grid.

2.3.3 Time discretisation for IMEX method

Having set the framework for the discretisation of the operators L

D

and L

I

, we now

introduce the implicit-explicit method,

8
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◆
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2.4 Initial condition and boundary conditions

2.4.1 Initial condition

The initial condition is given by the transformed payo↵ function of the Put option,

u(x,�, 0) = max(1� exp(x), 0), x 2 R, � > 0.

To maintain the order of the scheme we smooth this function around zero, this follows from

[59] which states that we cannot expect to achieve fourth order convergence if the initial

condition is not su�ciently smooth. In [59] suitable smoothing operators are defined in
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the Fourier space. Since the order of convergence of our HOC scheme is four we follow

[32] and select the smoothing operator �
4

, given by its Fourier transform

�

4

(!) =

✓

sin (!/2)

!/2

◆

4



1 +
2

3
sin2 (w/2)

�

.

This leads to the smoothed initial condition

ũ

0

(x
1

) =
1

h

Z

3h

�3h

�

4

⇣

x

h

⌘

u

0

(x
1

� x) dx.

As h ! 0, this smoothed initial condition converges to the original initial condition. The

results in [59] prove high-order convergence of the approximation to the smoothed problem

to the true solution of (2.2).

Note that in [28] a Rannacher style smoothing start-up [68] is used with four fully

implicit quarter time steps. In our experiments with the HOC scheme we notice no benefit

by employing such a start-up, and use the Crank-Nicolson time stepping throughout. Since

the coe�cients in (2.2) do not depend on time, we are required to build up the discretisation

matrices for the new scheme only once. They can then be LU -factorised once, and the

factorisation can be used in each time step, leading to a highly e�cient scheme.

2.4.2 Boundary conditions

We impose artificial boundary conditions as follows. Due to the compactness of the scheme,

the Dirichlet boundary conditions are considered without introduction of numerical error

by imposing

u

n

�N,j

= 1� e

rt

n

�Nh

, u

n

+N,j

= 0, j = 0, ...,M.

At the other boundaries we impose homogeneous Neumann boundary conditions, these

require more attention as no value is prescribed, therefore, they must be set by extrapola-

tion from values in the interior. Here the introduction of numerical error must be negated

by choice of an extrapolation formulae of order high enough not to a↵ect the overall order

of accuracy. We choose the following extrapolation formulae:

u

n

i,0

= 4un
i,1

� 6un
i,2

+ 4un
i,3

� u

n

i,4

+O(h4), i = �N + 1, ..., N � 1,

u

n

i,M

= 4un
i,M�1

� 6un
i,M�2

+ 4un
i,M�3

� u

n

i,M�4

+O(h4), i = �N + 1, ..., N � 1.

2.5 A finite element method for comparison

In addition to standard, second-order finite di↵erence methods we will compare our new

scheme to di↵erent finite element methods. In this short section we briefly state the

variational formulation of the PIDE problem.



45

We can rewrite the equation for the di↵erential operator L
D

in divergence form,

u

⌧

� div (Aru) + b ·ru = 0,

where the coe�cients A and b are given by

A =
1

2
vy

2

4
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5
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2
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2
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(✓�vy)

v

� v

2

3

5

.

To solve this problem using finite elements we produce a variational formulation, which

requires multiplying by suitable test functions � and integrating over the domain ⌦.

Mirroring the approach defined in Section 2.3, we employ an IMEX discretisation with

the integral operator, L
I

, being computed using the Simpson’s rule. We have the following

Crank-Nicholson scheme,

✓
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⌦
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� dxdy +
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2.6 Numerical experiments

In our numerical experiments we compare the performance of two finite di↵erence schemes,

a standard, second-order central di↵erence scheme and the new HOC scheme, against two

variants of the finite element approach presented in the previous section, using Lagrange

elements with linear (p = 1) and quadratic (p = 2) polynomial basis functions on quadri-

lateral meshes. While a finite element method with cubic basis functions (p = 3) would be

expected to give a similar numerical convergence order as the HOC scheme, the number

of degrees of freedom would increase substantially, and make this approach less viable, see

also comments below in Section 2.6.1.

Both finite di↵erence schemes are implemented in C++. For our numerical experiments

with finite elements we use the FEniCS FEM solver. FEniCS is a popular open-source

platform which allows users quickly to obtain e�cient FEM code for solving partial dif-

ferential equations. The code is written in Python 3.5 and utilises the inbuilt packages of

NumPy and SciPy to improve e�ciency.

We measure the convergence, computational time, number of unknowns and the memory

usage for each method. As a separate study we compare the stability of the new HOC

finite di↵erence scheme against a standard, second-order central di↵erence scheme.
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Figure 2.1: Price of a European put option under Bates’ model.

Figure 2.1 shows the price of a European put option plotted against the volatility
p
�

and the asset price S. The default parameters used for the numerical experiments are

given in Table 2.1.

Parameter Value

Strike Price K = 100

Time to maturity T = 0.5

Interest rate r = 0.05

Volatility of volatility v = 0.1

Mean reversion speed  = 2

Long-run mean of � ✓ = 0.01

Correlation ⇢ = �0.5

Jump Intensity � = 0.2

Table 2.1: Default parameters for numerical simulations associated with Bates’ model.
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2.6.1 Numerical convergence

We perform a numerical study to evaluate the rate of convergence of the schemes. We refer

to both the l

2

-error ✏
2

and the l1-error ✏1 with respect to a numerical reference solution

on a fine grid with h

ref

= 0.025, which is experimentally chosen by the limits of computer

memory. With the parabolic mesh ratio k/h

2 fixed to a constant value we expect these

errors to converge as ✏ = Ch

m for some m and C which represent constants. From this we

generate a double-logarithmic plot ✏ against h which should be asymptotic to a straight

line with slope m, thereby giving a method for experimentally determining the order of

the scheme.

We compare the new HOC scheme to the finite element approach from Section 2.5

(with polynomial orders p = 1, 2) and a standard, second-order central finite di↵erence

scheme. The second-order finite di↵erence scheme requires a Rannacher style start-up [68]

which involves starting by four quarter fully implicit Euler steps to combat stability issues

[41].

These numerical convergence results are included in Figure 2.2 for the l

2

-error ✏
2

and

Figure 2.3 for the l1-error ✏1. The numerical convergence orders are estimated from the

slope of a least squares fitted line.

We observe that the numerical convergence orders are consistent with the theoretical

order of the schemes. We note that the finite element approach with p = 2 achieves a rate

close to three whereas the new HOC scheme has convergence rates close to four. With a

finite element method with cubic basis functions (p = 3) one would be able to match the

fourth order of the HOC scheme, but only at the expense of solving a much larger system,

due to the much larger number of degrees of freedom for p = 3. For example, on a mesh

with h = 0.05 the cubic finite element method would employ 58081 degrees of freedom,

almost ten times more than the HOC scheme on the same mesh.

2.6.2 Computational e�ciency comparison

We conduct an e�ciency comparison between the new high-order scheme, a standard

second-order discretisation and the finite element method with polynomial basis order

p = 1 and p = 2. The finite element methods employ quadrilateral meshes to allow for

better comparison with the finite di↵erence methods.

We compare the computational time to obtain a given accuracy, taking into account

matrix setups, factorisation and boundary condition evaluation. The timings depend ob-

viously on technical details of the computer as well as on specifics of the implementation.
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Figure 2.2: l
2

-error in European put option price under Bates’ model taken at mesh-sizes

h = 0.4, 0.2, 0.1, 0.05.

Care was taken to implement both finite di↵erence schemes in an e�cient and consistent

manner, using standard libraries where possible, to avoid unnecessary bias in the results.

Direct comparison of computational times with the Python based FEM schemes are di�-

cult, but still give an indication what can be achieved with a standard ‘black-box’ solver.

All results were computed on the same laptop computer (2015 MacBook Air 11”).

Since the coe�cients in (2.2) do not depend on time, we are required to build up the

discretisation matrices for the new scheme only once (twice for the second-order scheme

with Rannacher start-up). The new scheme requires only one initial LU -factorisation

of a sparse matrix. This factorisation is then employed in each time step, leading to a

highly e�cient scheme. Further e�ciency gains are obtainable by parallelisation or GPU

computing.

The results are shown below in Figure 2.4. The mesh-sizes used for this comparison

are h = 0.4, h = 0.2, h = 0.1 and h = 0.05, with the reference mesh-size used being

h

ref

= 0.025. From this comparison it is clear to note that the HOC scheme achieves

higher accuracy with less computational time at all mesh-sizes. The improvement in

computational time over the second-order finite di↵erence scheme can be partly attributed
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Figure 2.3: l1-error in European put option price under Bates’ model taken at mesh-sizes

h = 0.4, 0.2, 0.1, 0.05.

to the absence of the Rannacher start-up which requires the additional construction and

factorisation of a sparse matrix populated with coe�cients for the implicit Euler steps.

The finite element method with p = 1 has comparable results for both computational

time and l

2

-error to the second-order finite di↵erence scheme, however, for p = 2 the

computational time for the finite element method increases substantially with the size of

the linear system to be solved.

Table 2.2 summarises more detailed results of the numerical comparison. The number

of degrees of freedom for all schemes are shown in the third column. The standard finite

di↵erence scheme and the linear FEM use the same number of unknowns. It is noticeable

that the HOC scheme, unlike the high-order FEM approach with p = 2, achieves high-

order convergence without requiring additional unknowns. As a result the HOC scheme

is very parsimonious in terms of computational e↵ort and memory requirements.

The memory requirements are an important factor in numerical computations. Direct

comparisons of memory usage between the C++ implementations of the finite di↵erence

schemes and the ‘black box’ FEniCS FEM approaches are not viable. Moreover, FEniCS

allocates already a rather large amount of memory at the coarsest mesh with h = 0.4.
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Figure 2.4: Computational speed comparison for pricing algorithms for Bates’ model taken

at mesh-sizes h = 0.4, 0.2, 0.1, 0.05.

Hence, rather than looking at total memory used, we report the memory usage at

each subsequent refinement as the extra memory required to the base mesh size h = 0.4.

The results demonstrate both the improvements of the HOC scheme over the second-order

alternative and also the greater memory required to achieve comparable convergence with

the finite element methods.

2.6.3 Numerical stability analysis

To assess the stability of the scheme we present a numerical stability analysis. We propose

to test to what extent the parabolic mesh ratio k/h2 impacts the convergence of the scheme.

If the e↵ect is minimal this will allow numerically regular solutions to be obtained without

restriction on the time step-size. We proceed to compute numerical solutions for varying

values of the parabolic mesh ratio k/h

2 and the mesh width h, then plot these against the

associated l

2

-errors to detect stability restrictions depending on k/h

2. This numerical test

1Rather than total memory usage, increases in memory usage at each subsequent refinement from the

base mesh size h = 0.4 are given for each scheme.
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Scheme h DOF l

2

-error l1-error time (s) memory (kB)

HOC

0.4 121 3.6201 1.6891 0.016 6916

0.2 441 0.4728 0.2063 0.130 +1060

0.1 1681 0.0230 0.0168 1.106 +5536

0.05 6561 0.0022 0.0009 21.145 +18284

FEM (p = 2)

0.4 441 6.5837 2.3944 1.294 123128

0.2 1681 1.0438 0.3737 3.304 +1780

0.1 6561 0.1522 0.0581 23.426 +8268

0.05 25921 0.0225 0.0088 300.019 +40828

FD

0.4 121 14.8087 3.0653 0.036 6948

0.2 441 3.9321 0.8913 0.191 +1772

0.1 1681 0.8751 0.1806 1.715 +8384

0.05 6561 0.1758 0.0364 28.706 +23064

FEM (p = 1)

0.4 121 5.5209 2.4373 1.072 123276

0.2 441 1.8816 0.7876 1.462 +192

0.1 1681 0.3846 0.1166 4.727 +2052

0.05 6561 0.0940 0.0354 49.171 +8176

Table 2.2: Performance results for the HOC, second-order FD and FEM (p = 1, 2) schemes

for Bates’ model. Comparison for computational time and memory usage between the

finite di↵erence schemes (HOC and second-order) and the FEM schemes (p = 1, 2) are

only indicative since implementations are di↵erent1.
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Figure 2.5: Contour plot of the l

2

-error for the HOC scheme for Bates’ model.

is performed for both the high-order and the second-order schemes, with the results shown

in Figure 2.5 and Figure 2.6 respectively. We use default parameters from Table 2.1, and

vary the parabolic mesh size from 0.1 to 1 in increments of 0.1. Note the di↵erence in the

error scales between the two schemes.

For both schemes the error increases gradually as the parabolic mesh ratio and h are

increased. We note that for the second-order scheme the contour plot of the error may

indicated some mild condition on the time stepping, the e↵ect being stronger for larger

mesh size h. The high-order scheme also features a mild dependence on the parabolic

mesh ratio. Although there is no apparent stability restriction, it appears that values

of the parabolic mesh ratio below and close to 0.5 are most useful. We attribute this

dependence of the scheme to the parabolic mesh ratio as a consequence of the implicit-

explicit nature of the scheme. For the present option pricing problem, the restriction on

the time stepping for the new scheme is not severe, since the discretisation matrices do

not change in time (the coe�cients in the partial integro-di↵erential equation (2.2) do

not depend on time). Hence, the sparse matrix factorisation is performed only once, and

additional time steps do not require additional factorisations to solve the problem.
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Figure 2.6: Contour plot of the l
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-error for second-order scheme for Bates’ model.

2.6.4 Feller Condition

To further test the robustness of the new HOC scheme, we examine the convergence rates

achieved when the Feller condition, 2✓ � v

2, is not satisifed for the Cox-Ingersol-Ross

(CIR) volatility process [21].

We use the default parameters defined in Table 2.1, with exceptions for long-run vari-

ance mean ✓ and volatility of volatility v, which we alter to test the condition as shown

in Table 2.3.

✓ v Condition

0.04

0.7 2✓ < v

2

0.4 2✓ = v

2

0.1 2✓ > v

2

Table 2.3: Parameters for di↵erent regimes of the Feller condition.

We study the l

2

and l1 -error associated with each condition. The results are shown

in Table 2.4, the l
2

-error numerical convergence rates, obtained from a least squares fitted

line as explained earlier, are 4.0, 3.9 and 3.9 for v = 0.7, 0.4 and 0.1, respectively. As a



54

consequence we can confirm the new HOC scheme performs well irrespective of the validity

of the Feller condition.

Condition h l

2

-error l1-error

2✓ < v

2

h = 0.2 2.3342 0.1930

h = 0.1 0.0473 0.0057

h = 0.05 0.0096 0.0011

2✓ = v

2

h = 0.2 1.3593 0.1429

h = 0.1 0.0289 0.0052

h = 0.05 0.0057 0.0010

2✓ > v

2

h = 0.2 0.9436 0.1906

h = 0.1 0.0394 0.0123

h = 0.05 0.0043 9.05 ·10�4

Table 2.4: Numerical convergence results for HOC scheme for Bates’ model with varying

Feller condition.

2.7 Summary of chapter

We have derived a new HOC finite di↵erence method for option pricing in stochastic

volatility jump models. Numerical experiments confirm high-order convergence in the

option price without stability restrictions. The method is based on an implicit-explicit

scheme in combination with HOC finite di↵erence stencils for solving the partial integro-

di↵erential equation. It can be implemented in a highly e�cient manner and can be used

to upgrade existing finite di↵erence codes. Compared to finite element methods, it is very

parsimonious in terms of memory requirements and computational e↵ort, since it achieves

high-order convergence without requiring additional unknowns (unlike finite elements with

higher polynomial order).



55

Chapter 3

E�cient hedging in Bates model

using high-order compact finite

di↵erences

Market practitioners who trade derivatives will a�rm that hedging is a crucially important

aspect of pricing. If a contract is purchased but not hedged, it can be sold at any price,

even the correct one, and still result in a loss. This means that the price of the contract

is the cost of the hedge, plus any margin, and the profit/loss resulting from the trade will

depend on the hedge being completely e↵ective.

Hedging techniques typically involve the use of complicated financial instruments

known as derivatives, of which the two most common are options and futures. With

these instruments, it is possible to develop trading strategies which allow for a loss in one

investment to be negated by a profit in a derivative.

In Chapter 2 we have derived and tested a HOC finite di↵erence scheme for pricing

options in stochastic and volatility jump models. We propose that the high-order conver-

gence displayed in the option price will o↵er an improvement in the hedging properties

required by market practitioners.

In this chapter we evaluate the hedging performance of the numerical option pricing

scheme derived in Chapter 2 through a series of experiments. We will compare the scheme’s

hedging performance to standard finite di↵erence methods. Furthermore we will present

examples of hedging strategies, involving combinations of options and their underlying

assets. Throughout the results it is shown that the new scheme outperforms a standard

discretisation, based on a second-order central finite di↵erence approximation.

This chapter is organised as follows. In the next section we recall the transformed
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Bates PIDE, which was presented in Section 2.1 for the case of European put options.

Here we introduce initial and boundary conditions suitable for a European call option and

produce convergence results for this case using the new HOC scheme, and a comparative

second-order discretisation. In Section 3.2, we give examples of popular option trading

strategies, including straddles and spreads, which are created through a combination of

long or short put and call options. Section 3.3 is devoted to the computation of the so-

called Greeks and further evidence of the scheme’s hedging performance is given through

examples of hedged portfolios. Section 3.4 summarises this chapter.

3.1 The Bates PIDE for a European call option

By standard derivative pricing arguments for the Bates model, we obtain the PIDE
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which has to be solved for S,� > 0, 0  t < T and subject to a suitable final condition of

V (S,�, T ) = max(S �K, 0), in the case of a European call option, with K denoting the

strike price.

Through the following transformation of variables
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ũ(x+ z, y, ⌧)p̃(z) dz, (3.1)

which is now posed on R⇥R+⇥(0, T ), with ũ(z, y, ⌧) = u(ez, y, ⌧) and p̃(z) = e

z

p(ez). The

problem is completed by suitable initial and boundary conditions, which for a European

call option are:

u(x, y, 0) = max(exp(x)� 1, 0), x 2 R, y > 0,

u(x, y, t) ! 0, x ! �1, y > 0, t > 0,

u(x, y, t) ! 1, x ! +1, y > 0, t > 0,

u

y

(x, y, t) ! 0, x 2 R, y ! 1, t > 0,

u

y

(x, y, t) ! 0, x 2 R, y ! 0, t > 0.
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3.1.1 Numerical approximation

We discretise (3.1) by replacing R by [�R

1

, R

1

] and R+ by [L
2

, R

2

] with R

1

, R

2

> L

2

> 0.

We consider a uniform grid Z = {x
i

2 [�R

1

, R

1

] : x
i

= ih

1

, i = �N, ..., N} ⇥ {y
j

2
[L

2

, R

2

] : y
j

= L

2

+ jh

2

, j = 0, ...,M} consisting of (2N + 1)⇥ (M + 1) grid points with

R

1

= Nh

1

, R
2

= L

2

+Mh

2

and with space step h := h

1

= h

2

and time step k. Let un
i,j

denote the approximate solution of (3.1) in (x
i

, y

j

) at the time t
n

= nk and let un = (un
i,j

).

To compute the numerical solution of (3.1) we use the implicit-explicit HOC scheme

presented in Chapter 2. Whereby, adjustments are made to fit the case of a European call

option. In Section 2.3.2, we discretised the integral operator for a European put option

by making assumptions based on the value of the payo↵. For the case of a European call

option, we assume that the option price follows the payo↵ function outside of the range

(x
min

, x

max

), and approximate the tails by the following integrals

Z

x

min

�1
ũ(⇣, y, ⌧)p̃(⇣) d⇣ ⇡

Z

x

min

�1
max(exp(⇣)� 1, 0)p̃(⇣) d⇣.

Z 1

x

max

ũ(⇣, y, ⌧)p̃(⇣) d⇣ ⇡
Z 1

x

max

max(exp(⇣)� 1, 0)p̃(⇣) d⇣,

The value of the first of these integrals is trivial as the payo↵ function for the Call

option is zero in the region (�1, x

min

). We estimate the second integral using Simpson’s

rule on an equal-sized adjacent equidistant grid to our original grid.

Below we present Figure 3.1, which shows the price of a European call option plot-

ted against the volatility
p
� and the asset price S. The default parameters used for

the numerical experiments are consistent with those used in Chapter 2 and displayed in

Table 2.1.

3.1.2 Numerical convergence

We perform a numerical study to evaluate the rate of convergence of the HOC scheme

against a second order standard finite di↵erence discretisation. In an identical approach

to that used in Chapter 2, we refer to both the l
2

-error ✏
2

and the l1-error ✏1 with respect

to a numerical reference solution on a fine grid with h

ref

= 0.025. With the parabolic mesh

ratio k/h

2 fixed to a constant value we expect these errors to converge as ✏ = Ch

m for

some m and C which represent constants. From this we generate a double-logarithmic

plot ✏ against h which should be asymptotic to a straight line with slope m, thereby giving

a method for experimentally determining the order of the scheme.

These numerical convergence results are included in Figure 3.2 for the l

2

-error ✏
2

and

Figure 3.3 for the l1-error ✏1. The numerical convergence orders are estimated from the
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Figure 3.1: Price of a European call option under Bates’ model.

slope of a least squares fitted line.

We observe that the numerical convergence orders are consistent with those achieved

for the European put option, seen in Chapter 2, and match the theoretical order of the

schemes, with the new HOC scheme achieving convergence rates close to four.

3.2 Option trading strategies

The main uses of options are speculation, arbitrage and hedging. Some trades can be

considered as a means for speculation, some as hedging strategies and others as a means to

exploit arbitrage opportunities in the markets. In this section we focus on two speculative

strategies, which are composed on multiple options and o↵er traders a di↵erent market

risk profile to that of a call or put option individually.

3.2.1 Straddles

Straddles are composed of two options, a put and a call, both with the same expiry date

and both written on the same underlying asset. In the case of a regular straddles, the

options are stuck at-the-money, i.e. with strike prices equal to the current market price of

the underlying asset. It is possible to be long or short straddles by taking long positions
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Figure 3.2: l
2

-error in European call option price under Bates’ model taken at mesh-sizes

h = 0.4, 0.2, 0.1, 0.05.

in the call and put, or short positions in both the call and the put, respectively.

The position diagrams are shown in Figure 3.4, and from these it is clear to understand

how straddles are useful, for one they are non-directional, meaning the payo↵ depends on

the magnitude of the price change of the underlying, not whether it was up or down.

Trading Example 1 — Long straddle

A publicly listed company XYZ is due to report quarterly earnings in two weeks time.

An options trader anticipates increased volatility in the stock price in the build up the

earnings announcement but is unable to predict whether the stock price will see a positive

or negative movement.

The trader decides to enter a regular long straddle position, this involves putting on

long positions in both put and call options with strike price equal to the current market

price of XYZ. The trader will exit the position before the market closes on the day before

the earning announcement. Importantly, as the trader is trading European options and

intends to exit the position before maturity, they choose a liquid option contract, with

time to maturity T = 0.5, this ensures there will be open interest in the contract when the
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Figure 3.4: Payo↵ for long and short straddle strategies
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trader decides to exit the position. The price of the straddle is 8.61, with current implied

volatility relatively low at 10%.

The position has potential for positive payo↵ on a move in stock price, regardless

of direction. The trader will make a profit if the value of the strategy is greater than

the cost of the initial price of the options, plus commission. The potential profit in

this instance is unlimited. Table 3.1 shows potential values of the straddle before the

earning announcement with T = 0.47, at various prices in the underlying asset and levels

of volatility. The trader will achieve a profit, before commissions, if the price of the

underlying is outside the range 99.29 —101.71 at volatility 10% and be guaranteed a

profit on the strategy at all prices if volatility is greater than 11%.

� = 0.1 � = 0.2 � = 0.3

Straddle Price of XYZ Straddle Price of XYZ Straddle Price of XYZ

11.18 94 13.69 94 17.11 94

9.85 96 12.93 96 16.68 96

8.93 98 12.46 98 16.42 98

8.49 100 12.28 100 16.38 100

8.93 102 12.46 102 16.42 102

9.85 104 12.93 104 16.68 104

11.18 106 13.69 106 17.11 106

Table 3.1: Volatility, price of XYZ and respective straddle price with T = 0.47, K = 100.

From the example above it is evident that the structure and variety of option contracts

allow for market participants to trade not only the price, but specific characteristics of the

underlying asset. The value of a straddle contract, as described above, is not dependent

on the direction of movements in the price of the underlying asset, but rather on the

magnitude. It is also positively correlated to increases in the volatility of the underlying

asset, as can be seen in Figure 3.5, which further displays how changes in the volatility

and the underlying will a↵ect the payo↵.

It is the decision of the trader to find a strategy or combination of strategies with

a suitable risk profile. For example in the case of a short straddle strategy, the writer

is exposed to unlimited losses either side of the strike price, even in a market with low

volatility. However, a trader may limit the exposure to such losses a trader by entering a
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Figure 3.5: Price of long straddle with strike K = 100, T = 0.5

butterfly spread.

3.2.2 Butterfly Spread

A butterfly spread is an options strategy combining bull and bear spreads, with a fixed

risk and capped profit, see the position diagram in Figure 3.6. Butterfly spreads use four

option contracts with the same expiration but three di↵erent strike prices. An out-the-

money strike price, an at-the-money strike price, and an in-the-money strike price. The in

and out-the-money options, with the higher and lower strike prices are the same distance

from the at-the-money options. If the at-the-money. Puts or calls can be used to form

a butterfly spread and di↵erent combinations lead to di↵erent types of butterfly spread,

each designed to profit from changes in volatility.

Trading Example 2 — Long Butterfly

An investor believes, based on fundamental analysis, that a publicly traded stock XYZ,

which is currently trading at 100 with implied volatility of 20%, will not move significantly

over the next several months. To benefit from this prediction they choose to implement

a long call butterfly spread, which will profit if the price stays where it is. The investor
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Figure 3.6: Payo↵ for long and short butterfly strategies, options strike K = 90, 100, 110

writes two call options on XYZ at a strike price of 100, and also goes long two additional

call options, one at 90 and the other at 110, all with the same maturity T = 0.5.

The investors realised profit will be dependent on the asset price at maturity and will

of course take into account the combined premium paid for the butterfly position, which is

3.13. Figure 3.7 displays the price surface of the Butterfly, at di↵erent levels of volatility

and for prices of XYZ. Table 3.2 gives a selection of potential profit outcomes when the

position reaches maturity, we see the investor will be profitable, before commissions, within

the range 93.131 — 106.869.

Price of XYZ Profit

85 -3.13

90 -3.13

95 1.90

100 6.90

105 1.90

110 -3.13

115 -3.13

Table 3.2: Price of XYZ at expiry and associated profit of butterfly spread

As an alternative strategy the investor may decide to exit the butterfly before expiry

by closing the open positions, this will be dependent on liquidity in the options market.
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Figure 3.7: Price of long butterfly, consisting of options with strike K = 90, 100, 110 and

T = 0.5

Taking the midpoint in time, with T = 0.25, Table 3.3 shows how the implied volatility

of XYZ may influence this decision. If the implied volatility has dropped to 10% the

strategy is profitable, before commissions, between 94.67— 105.33. Likewise, if the implied

volatility has remained at 20% the butterfly strategy is profitable between 95.30 — 104.70.

In contrast if the implied volatility has risen to 30% the butterfly will be unprofitable for

all values of XYZ.

A consequence of the early exit strategy is the lower potential maximum return the

investor may receive compared to holding the position to expiry. This displays an interest-

ing characteristic of the butterfly strategy, where profits grow with time at, and around,

the strike and decay with time in the tails. The investor must make the decision to hold

or exit based on their perception of market sentiment with regard to XYZ and whether

the butterfly position still remains the optimum use of capital.

It is clear from this example that the premium paid to enter the position is key, and

when purchasing multiple options market participants require an accurate pricing model

that can be calibrated to fit across a wide array of strikes, volatility, maturities and payo↵

conditions. Furthermore, in OTC markets where liquidity is scarce, it is important for
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� = 0.1 � = 0.2 � = 0.3

Price of XYZ Profit Price of XYZ Profit Price of XYZ Profit

85 -2.8592 85 -2.1366 85 -1.7230

90 -2.3359 90 -1.4545 90 -1.3456

95 0.1643 95 -0.1041 95 -0.7166

100 2.7295 100 0.7728 100 -0.3389

105 0.1643 105 -0.1041 105 -0.7166

110 -2.3359 110 -1.4545 110 -1.3456

115 -2.8592 115 -2.1366 115 -1.7230

Table 3.3: Price of XYZ at T = 0.25 and associated profit of butterfly spread for given

volatility.

market participants to be able to price e�ciently as many arbitrage algorithms exist, which

will take the other side of mis-priced option orders.

During the process of trade selection a market participant will assess which conditions

will lead to the position becoming profitable, we have seen in the examples above that

certain strategies react di↵erently to changes in volatility, require the underlying asset to

remain near or move away from the strike price, or become more or less profitable as time

elapses. The quantities driving these changes are measurable and can be evaluated by

studying the option price surface, these quantaties are known as the Greeks.

3.3 The Greeks

The so-called Greeks are the partial derivatives of the option price with respect to inde-

pendent variables or parameters. These quantities represent the market sensitivities of

options. Practitioners use these quantities to gain an insight into the e↵ects of di↵er-

ent market conditions on an options price and furthermore to develop hedging strategies

against unfavourable changes in a portfolio of assets.
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Figure 3.8: Delta of European put option priced under Bates’ model with parameters:

Strike K = 100, time to expiry T = 0.5.

3.3.1 Delta

Delta measures the sensitivity of the option price with respect to the price the underlying

asset, i.e.

� =
@V

@S

.

Delta hedging is a common strategy employed by options traders, an options strategy

that aims to hedge the risk associated with price movements in the underlying asset, by

o↵setting long and short positions. This strategy allows a trader to profit from potential

shifts in volatility or the option duration, however to be fully hedged a trader must adapt

their portfolio by managing the position in the underlying. In this instance the higher

order convergence of our scheme may be of use to traders.

We propose that the higher-order convergence achieved in the option price will also

be represented in the Delta of the option, and as a consequence we will achieve a better

hedge.

We calculate the Delta from the option price V

n

i,j

⇡ V (S
i

,�

j

, t

n

). To maintain the

order of the scheme we use the following fourth-order approximation formula with the



67

10
-1

h

10
-4

10
-2

10
0

l 2
 e

rr
o

r

4

2

HOC  (order 3.8)

2
nd

 order (order 2.2)

Figure 3.9: Convergence of l
2

-error of Delta of a European put option priced under Bates’
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Figure 3.8 shows the resulting Delta of a European put option. Through the numerical

convergence method used to study the convergence observed in the call option in Sec-

tion 3.1.2, we examine the convergence of the Delta with respect to a numerical reference

solution. The results are seen in Figures 3.9 and 3.10. We also observe here that the

numerical convergence order agrees well with the theoretical order of the schemes, with

the new HOC scheme achieving convergence rates between three and four.

Hedging Example 1 — Delta-neutral portfolio

We construct a Delta-neutral portfolio ⇧ = P ��S to measure the accuracy of the hedge,

the value of this portfolio should not be a↵ected by any change in the underlying asset.

We conduct the test on a fine reference grid with mesh-size h
ref

= 0.025, then we compare

the performance of each subsequent mesh-size. For comparative purposes this test is also

conducted using the second-order scheme central di↵erence scheme.

We now examine the percentage error introduced into the value of each portfolio in

comparison to the reference grid. This test is conducted by moving the asset price up
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Figure 3.10: Convergence of l1-error of Delta of a European put option priced under

Bates’ model with parameters: Strike K = 100, time to expiry T = 0.5.

Mesh Size HOC 2nd order

h = 0.4 5.7649 10.3354

h = 0.2 0.3505 2.2765

h = 0.1 0.0083 0.5598

h = 0.05 7.33 · 10�4 0.1137

Table 3.4: Percentage error in the value of the Delta-hedged portfolio for a move down in

the underlying.

or down by a fixed amount. The results for this experiment are shown in Table 3.4 and

Table 3.5, with the parameters given in Table 2.1. We observe that the high-order scheme

o↵ers a better delta hedge, even on a coarser grid.

3.3.2 Vega

Vega measures the sensitivity of the option price with respect to changes in the volatility

of the underlying asset, with the volatility given by the square root of the variance,
p
�,

i.e.

Vega =
@V

@(
p
�)

.
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Mesh Size HOC 2nd order

h = 0.4 4.6914 6.4067

h = 0.2 0.2980 1.0895

h = 0.1 0.0074 0.2417

h = 0.05 7.86 · 10�4 0.0493

Table 3.5: Percentage error in the value of the Delta-hedged portfolio for a move up in

the underlying.

We examine whether the higher-order convergence achieved in the option price will also be

represented in the vega of the option. Vega is calculated from the option price V (S,�, t),

while the order of the scheme is maintained by using a fourth-order approximation formula.

Vega =
@V

@(
p
�)

=
@y

@(
p
�)
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Through the standard numerical convergence method defined in Section 3.1.2, we ex-

amine the convergence of vega with respect to a numerical reference solution.

The results of these experiments are seen in Fig. 3.12 and Fig. 3.13. We observe here

that the experimentally determined convergence rates match well the theoretical order of

each scheme. The errors at coarse grid, h = 0.4, are comparable, while on finer grids the

high-order compact scheme gives orders of magnitude better accuracy on the same grids,

achieving convergence rates of about fourth order.

As with all financial trading, options are subject to risk and managing this risk is key to

success. One method of managing risk is to establish a hedge against the implied volatility

of the underlying asset. This is achieved by creating a vega neutral option position, which

will be not be sensitive to fluctuations in volatility.

Hedging Example 2 — Hedging vega

An investment fund holds a long position in a non dividend paying stock, XYZ, which

is currently trading at $135. The investment fund wishes to secure an income from the

position and writes some put options for XYZ with strike $100. The investment fund now

has a position with negative vega. To hedge this vega risk the investment fund creates a
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Figure 3.11: Vega of European put option priced under Bates’ model with parameters:

Strike K = 100, time to expiry T = 0.5.
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Figure 3.13: Convergence of l1-error of the vega of a European put option priced under

Bates’ model with parameters: Strike K = 100, time to expiry T = 0.5.

Scheme Mesh-size Percentage

error

Scheme Mesh-size Percentage

error

HOC 0.4 33.3138 2nd-order 0.4 62.0312

HOC 0.2 6.7519 2nd-order 0.2 33.0638

HOC 0.1 0.6251 2nd-order 0.1 7.4073

HOC 0.05 0.0400 2nd-order 0.05 1.5364

Table 3.6: Percentage error in vega hedge ratio

ratio vertical put spread by buying put options with strike $150, creating a payo↵ diagram

as shown in Fig. 3.14.

We propose that using the HOC scheme the investment fund can utilise the high-order

convergence in vega to achieve a more accurate vega hedge when constructing the ratio

spread. To measure this we compare the ratio used for each mesh size, h, with the fine

reference grid and examine the resulting percentage error.

The results for the high-order scheme and those for a comparative second-order scheme

are shown in Table. 3.6. The high-order scheme significantly outperforms the second-order

scheme at all mesh-sizes, suggesting that when entering a large position the HOC scheme

will lead to a significant improvement in the vega hedge.
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3.3.3 Gamma

Gamma is the second derivative of the option price with respect to the underlying asset.

Gamma measures the rate of change in an option’s delta, providing information on the

convexity of the option’s value in relation to the price of the underlying asset,

� =
@

2

V

@S

2

.

We calculate gamma using the option price V (S,�, t). To maintain the order of the

scheme we use a fourth-order approximation formula.
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Figure 3.15: Gamma of European put option priced under Bates model’ with parameters:

Strike K = 100, time to expiry T = 0.5.

We conduct a numerical study to evaluate the rate of convergence of gamma, following

the approach defined in Section 3.1.2. The results of these experiments are seen in Fig. 3.16

and Fig. 3.17.

The HOC scheme achieves convergence rates between three and four for the l

2

- and

l1-errors, respectively. This is an improvement on the second-order scheme and suggests

that the high-order scheme is beneficial when developing trading strategies which involve

a gamma hedge.

Hedges of gamma risk are often accompanied by a delta hedge, with delta being the

first derivative of the option price with respect to the underlying asset. A delta hedged

portfolio is not subject to risk owing to a change in the price of the underlying asset, the

gamma hedge is a re-adjustment of this delta hedge.

Delta-gamma hedging strategies often require frequent adjustments and hence are subject

to high trading costs. However, if executed correctly they can enable the holder to exploit

positions with positive theta, meaning the position is profitable over short time durations.
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Hedging Example 3 — Hedging gamma

An analyst at an investment fund looks to create a strategy with positive theta against

the funds currently held assets. They choose a ratio write spread, which involves writing

options at a higher strike price than they are purchased. The analyst is wary of the

positions risk related to move in the underlying asset and hence adjusts the ratio of short

to long options to eliminate the net gamma.

The resulting position will have a delta value which must be hedged before the analyst

can assess any profitability from the positive theta of the spread. The delta of the two

option positions long and short is totalled and if positive or negative underlying assets are

sold or bought, respectively.

The resulting theta is calculated and if positive the analyst can recommend the strategy

as a short term trade for the investment fund.

We propose that using the HOC scheme the investment fund can utilise the high-order

convergence in gamma to achieve a more accurate gamma hedge ratio. To measure this

we compare the ratio used for each mesh size, h, with the fine reference grid and examine

the resulting percentage error.

The results for the high-order scheme and those for a comparative second-order scheme

are shown in Table. 3.7. The high-order scheme o↵ers better results at all mesh-sizes, this

improvement is particularly important in hedged positions which require repeat computa-

tion and regular adjustments.

Scheme Mesh-size Percentage

error

Scheme Mesh-size Percentage

error

HOC 0.4 14.8885 2nd-order 0.4 25.1112

HOC 0.2 2.3323 2nd-order 0.2 6.3482

HOC 0.1 0.1281 2nd-order 0.1 1.3304

HOC 0.05 0.0081 2nd-order 0.05 0.2674

Table 3.7: Percentage error in gamma hedge ratio

3.4 Summary of chapter

We have introduced the practice of hedging and given examples of strategies which are

commonly used in today’s derivative markets. Using the new HOC finite di↵erence method
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for option pricing in stochastic volatility jump models developed in Chapter 2, we have con-

ducted numerical experiments to compare the scheme’s hedging performance to standard

finite di↵erence methods. We confirm high-order convergence in the so called ‘greeks’, the

partial derivatives of the option price with respect to the underlying, with our experiments

focussing on the Delta, vega and gamma of the option.

To further demonstrate the hedging properties of the new scheme, we give an example

of a Delta hedged portfolio , which provides clear evidence that the high-order scheme

is valuable for industry professionals seeking to calculate the relevant Delta accurately

and requiring fastest computational time. We also include examples of trading strategies

involving both the vega and gamma of the option, which confirm gains in the convergence

and computation time. We believe this to be another tool which may be utilised by market

participants attempting to achieve a more accurate hedged position.
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Chapter 4

High-order compact finite

di↵erence scheme for option

pricing in stochastic volatility with

contemporaneous jump models

In any option pricing model based on the concept of a fundamentally arbitrage-free en-

vironment, invariably a compromise is made between the analytical and computational

amenability of pricing and estimation. As a result of this compromise, a series of assump-

tions are made on the behavioural distribution of the underlying asset in an attempt to

yield closed-form or nearly closed-form expressions for the price of derivatives [25].

The Black-Scholes model [11] made assumptions, including a constant volatility of

the underlying asset in order to achieve a closed form solution for the price of European

options. Where this assumption proved inconsistent with observed market prices, the

stochastic volatility model proposed by Heston [47], was able to achieve a nearly closed-

form expression for the price of European options, whilst o↵ering the market observed

variable volatility of the underlying asset.

To further this model to better reflect observed market prices, Bates added a jump-

di↵usion component [7], this inclusion had the e↵ect of imposing far greater analytical

and computational complexity and removing any closed-form expression except in highly

restricted pricing cases. However, allowing the underlying asset to have jumps in returns,

let the model generate large movements in the underlying asset capable of recreating

market crashes, such as the Black Monday crash of 1987.
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Despite Bates’ addition of jumps in returns to the stochastic volatility model of Heston,

Bates [8], and additionally Bakshi, Cao, and Chen [5] found that the sole addition of jumps

in returns was not able to explain the historical shifts in volatility smiles implied by options

on the S&P 500 index.

To fill the gap between the required volatility of volatility needed to reflect observed

prices and the di↵usive stochastic volatility featured in Bates’ model, Du�e, Pan and

Singleton proposed an ODE-based approach [25], which was based on the classification

scheme of Dai and Singleton [22]. This approach allowed for stochastic-volatility models

featuring correlated jumps in both returns and volatility, however, this was at the expense

of any attempt to yield a closed-form or nearly closed-form expression for the option price.

The Du�e, Pan, Singleton model lets jumps in returns and volatility be either sim-

ultaneous, or have correlated stochastic arrival intensities, these models are named the

SVCJ and SVJJ models, respectively. The SVCJ model in particular can be seen as an

extension of the Bates model, and importantly both models the option price is given as

the solution of a PIDE, see e.g. [20], for which we have shown HOC finite di↵erences to

be a suitable numerical method, see Chapter 2.

In this chapter we propose to extend the HOC implicit-explicit scheme derived for

Bates’ model in Chapter 2 to the SVCJ model. The derived scheme is fourth order

accurate in space and second order accurate in time, and o↵ers the first case of high-order

convergence for this industry standard option pricing model.

This chapter is organised as follows. In the next section we recall the SVCJ model for

option pricing, we discuss the implementation of the implicit-explicit scheme and note the

adaptations to the previously derived scheme for option pricing under the Bates model.

Section 4.2 is devoted to the numerical experiments, where we assess the performance of

the new scheme. Section 4.3 o↵ers a discussion in selection preference between the Bates

and SVCJ models, where we comment on previous studies findings and relate these to

recent market developments with a view to aiding financial practitioners in determining

model selection. Section 4.4 summarises.

4.1 The SVCJ Model

The SVCJ model [25] is a stochastic volatility model which allows for jumps in both

volatility and returns. Within this model the behaviour of the asset value, S, and its
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variance, �, is described by the coupled stochastic di↵erential equations,

dS(t) = µ

S

S(t)dt+
p

�(t)S(t)dW
1

(t) + S(t)dJS

,

d�(t) = (✓ � �(t))dt+ v

p

�(t)dW
2

(t) + dJ�

,

for 0 6 t 6 T and with S(0),�(0) > 0. Here, µ
S

= r � �⇠

S

is the drift rate, where r > 0

is the risk-free interest rate. The two-dimensional jump process (JS

, J

�) is a compound

Poisson process with intensity � > 0. The distribution of the jump size in variance is

assumed to be exponential with mean �. In respect to jump size z� in the variance process,

J + 1 has a log-normal distribution p(zS , z�) with the mean in log zs being � + ⇢

J

z

�, i.e.

the probability density function is given by

p(zS , z�) =
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2⇡zS��
e

� z

�

�

� (log z
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The parameter ⇠
s

is defined by ⇠
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= e
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2

2 (1��⇢

J

)�1�1, where ⇢
J

defines the correlation

between jumps in returns and variance, � is the jump size log-mean and �

2 is the jump

size log-variance. The variance has mean level ✓,  is the rate of reversion back to mean

level of � and v is the volatility of the variance �. The two Wiener processes W
1

and W

2

have constant correlation ⇢.

4.1.1 Partial Integro-Di↵erential Equation

By standard derivative pricing arguments for the SVCJ model, we obtain the PIDE
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which has to be solved for S,� > 0, 0  t < T and subject to a suitable final condition,

e.g. V (S,�, T ) = max(K � S, 0), in the case of a European put option, with K denoting

the strike price.

Through the following transformation of variables

x = logS, ⌧ = T � t, y = �/v and u = exp(r + �)V
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which is now posed on R ⇥ R+ ⇥ (0, T ), with ũ(x, y, ⌧) = u(ex, vy, ⌧) and p̃(zx, zy) =

ve

z

x

p(ez
x

, z

y).

The problem is completed by suitable initial and boundary conditions. In the case of a

European put option we have initial condition u(x, y, 0) = max(1� exp(x), 0), x 2 R, y >

0.

4.1.2 Implicit-explicit high-order compact scheme

For the discretisation, we replace R by [�R

1

, R

1

] and R+ by [L
2

, R

2

] with R

1

, R

2

> L

2

> 0.

We consider a uniform grid Z = {x
i

2 [�R

1

, R

1

] : x
i

= ih

1

, i = �N, ..., N} ⇥ {y
j

2
[L

2

, R

2

] : y
j

= L

2

+ jh

2

, j = 0, ...,M} consisting of (2N + 1)⇥ (M + 1) grid points with

R

1

= Nh

1

, R
2

= L

2

+Mh

2

and with space step h := h

1

= h

2

and time step k. Let un
i,j

denote the approximate solution of (2.2) in (x
i

, y

j

) at the time t
n

= nk and let un = (un
i,j

).

For the numerical solution of the PIDE we use the implicit-explicit HOC scheme presen-

ted in Chapter 2. The implicit-explicit discretisation in time is achieved through an ad-

aptation of the Crank-Nicholson method, for which we shall define an explicit treatment

for the two-dimensional integral operator, L̃
I

.

The derivation of the finite di↵erence scheme for the di↵erential operator L̃
D

mirrors

that formed in Section 2.3, as does the implementation of initial and boundary conditions.

In order to form the SVCJ model the coe�cients used in the scheme are adjusted, with

constant ⇠
s

replacing ⇠

B

.

4.1.3 Two-dimensional integral operator

We will approach the integral operator L̃

I

for the SVCJ model in a similar manner to

that of Bates’ model. After the initial transformation of variables we have the integral

operator in the following form,

L̃

I

= �

Z

+1

�1

Z

+1

0

ũ(x+ z

x

, y + z

y

, ⌧)p̃(zx, zy) dzydzx,

We make a final change of variables ⇣ = x + z

x and ⌘ = y + z

y, with the intention of

studying the value of the integral at the point (x
i

, y

j

),

I =

Z

+1

�1

Z

+1

0

ũ(⇣, ⌘, ⌧)p̃(⇣ � x

i

, ⌘ � y

j

) d⌘d⇣ (4.2)

We numerically approximate the value of (4.2) over the rectangle (�R

1

, R

1

) ⇥ (L
2

, R

2

),

with these values chosen experimentally.
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I
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To estimate the integral we require a numerical integration method of high order to

match our finite di↵erence scheme. Given the positive results achieved in Chapter 2 using

the Simpson’s rule to compute the integral operator in Bates’ model, we take the decision

to utilise the two dimensional composite Simpson’s rule.

Definition 4.1 Two dimensional Simpson’s rule

The double integral

I =

Z

b

a

Z

d

c

f(x, y) dxdy

can be approximated by applying Simpson’s 1/3 rule twice, once for the x integration and

once for the y integration with N partitions for both the x and y values.
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With the error of the integral bounded by

h

4

180
(b� a)(d� c) max

⇣2[a,b],⌘2[c,d]
|f (4)(⇣, ⌘)|.

Allowing the integral in (4.3) to be evaluated using the two-dimensional Simpsons rule on

a equidistant grid in x, y with spacing �x = �y, with m

x

grid-points in (x
min

, x

max

) and

m

y

grid-points in (y
j

, y

max

), where each interval has length mesh-size h/2, we have
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Which, with f representing the integral in (4.3), has error bounded by
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To compute this sum in the case of Bates’ model, see Section 2.3.2, we computed the calcu-

lation explicitly at each time-step using a the matrix-vector equation, whereby a matrix is

created which holds the probability terms and the weights applied by the Simpson’s rule.

This is multiplied by a vector containing the option price solution from the current time

step u

t

. After the initial time-step we extend this further by incorporating the solution at

time-step u

t�1

, which resulted in a scheme that is second-order in time.

The decision to follow this approach was driven by the need for a high-order numerical

integration method. Had we required a second order method we may have chosen, for

example the trapezoidal rule, and have been able to follow the method of Salmi et. al,

which utilises the Toeplitz structure of the probability matrix [74]. Following this method
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it is possible to embed the Toeplitz matrix into a Circulant matrix, which may be de-

composed allowing a sequence of Fast Fourier Transforms (FFT) to compute the integral

in a fast and e�cient manner. The weights associated with the Simpson’s rule render

this approach unviable and hence lead to the creation of the dense matrix, a structure

which is purposefully avoided in algorithmic calculations, as the memory requirements

limit potential refinement in the pricing algorithm.

The complexity of this problem is intensified in the case of the two dimensional

Simpson’s rule, where we have a weight matrix W , with

W =

2
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The di�culty is compounded by the nature of a double integral problem, as these

weightings apply to a matrix of elements and not an individual element as was the case

in Bates’ model. Attempting to implement this method to our integral leads to the block

Toeplitz matrix T
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y

m

x

, which performs the integration over y.

T

m̄

y

m

x

=

0

B

B

B

B

B

B

@

T

0

T

1

. . . T

m

y

�1

T�1

T

0

. . . T

m

y

�2

...
. . .

. . .
...

T�(m

y

�1)

. . . T�1

T

0

1

C

C

C

C

C

C

A

The matrix T

m̄

y

m

x

is populated with Toeplitz blocks T

`

, containing elements T

k,`

,
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By defining Ī = (Ī
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When discretising the di↵erential operator L

D

we formed a uniform grid consisting

of (2N + 1) ⇥ (M + 1) grid points, with mesh size h

x

= h

y

. To discretise the integral

operator over this grid using the Simpson’s rule requires the use of the intermediate grid

points, leading to the introduction of mesh-size h/2, and the required values of u
i,j

to be

approximated at the intermediate points through interpolation.

We employ a standard measure for designing end-user algorithms based on the memory

requirements. We decide that requirements of over 4GB of RAM pose a significant barrier

to non-organisational users, additionally we impose a strict rule that one individual matrix

should not exceed half of this limit, which allows for a dense square matrix of order

(16000 ⇥ 16000). For Bates’ model, with a single integral, we required a dense matrix of

order (4N + 1)⇥ (2M + 1), rendering a value of N < 4000 acceptable, which we consider

not to be a significant limitation on the refinement of mesh size h. Comparatively, for

the SVCJ model, the required block Toeplitz matrix T

m̄

y

m

x

is a dense matrix of order

(8N2 + 1) ⇥ (2M2 + 1). When imposing the 2GB limit on this matrix we arrive at at

acceptable value of N  11, which clearly poses a significant barrier to reducing mesh-size

h, producing an accurate solution and achieving the mesh-size required to plot convergence

results.

We propose an alternative approach, where we avoid the construction of a dense matrix

through computation of the integral, as a product of the sums, at each time step. To ease

this calculation we choose R

1

, L

2

and R

2

experimentally, such that the value of the terms

on the boundary can be considered negligible. Hence,
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This computation imposes no additional memory demands on the algorithm, which is in

agreement with the requirement for an end-user algorithm.

4.2 Numerical Experiments

We perform numerical studies to evaluate the rate of convergence and computational

e�ciency of the scheme. For comparison we include the results of a second-order central

finite di↵erence scheme, which follows the implicit-explicit approach of the HOC scheme.

For a clear comparison of the e↵ect of Simpson’s rule in the HOC scheme, we evaluate the

numerical integration with the two-dimensional trapezoidal rule, calculated explicitly as a

product of the sums at each time step. The second-order finite di↵erence scheme requires

the inclusion of a Rannacher-style start up to combat stability issues [68].

The parameters for the numerical experiments, unless otherwise stated, are given in

Table 4.1.

Parameter Value

Strike Price K = 100

Time to maturity T = 0.5

Interest rate r = 0.05

Volatility of volatility v = 0.1

Mean reversion speed  = 2

Long-run mean of � ✓ = 0.01

Correlation ⇢ = �0.5

Jump Intensity � = 0.2

Jump size in returns log-variance �

2 = 0.16

Jump size in returns log-mean � = �0.5

Jump size in volatility mean ⌫ = 0.2

Table 4.1: Default parameters for numerical simulations associated with the SVCJ model.
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Figure 4.1: l

2

error in European put option price under the SVCJ model taken at mesh-

sizes h = 0.4, 0.2, 0.1, 0.05.

4.2.1 Numerical convergence

For our convergence study we refer to both the l
2

-error ✏
2

and the l1-error ✏1 with respect

to a numerical reference solution on a fine grid with h

ref

= 0.025. With the parabolic mesh

ratio k/h

2 fixed to a constant value we expect these errors to converge as ✏ = Ch

m for

some m and C which represent constants. From this we generate a double-logarithmic

plot ✏ against h which should be asymptotic to a straight line with slope m, thereby giving

a method for experimentally determining the order of the scheme.

The numerical convergence results are included in Figure 4.1. We observe that the

numerical convergence orders reflect the theoretical order of the schemes, with the new

HOC scheme achieving convergence rates near fourth order.

4.2.2 Computational e�ciency comparison

We compare the computational time of the two schemes, looking at the time to obtain a

given accuracy, taking into account matrix setups, factorisation and boundary condition

evaluation. The timings depend obviously on technical details of the computer as well as

on specifics of the implementation, for which care was taken to avoid unnecessary bias in
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Figure 4.2: l1 error in European put option price under the SVCJ model taken at mesh-

sizes h = 0.4, 0.2, 0.1, 0.05.

the results. All results were computed on the same laptop computer (2015 MacBook Air

11”).

The results are shown below in Table 4.2. The mesh-sizes used for this comparison are

h = 0.4, 0.2, 0.1 and 0.05, with the reference mesh-size used being h

ref

= 0.025.

The HOC scheme achieves higher accuracy, with a lower memory allocation, at all mesh

sizes. This is a direct consequence of our persistence to produce a scheme with low memory

demands, the second-order schemes increased demand is a result of the requirement of a

Rannacher start-up. This beneficial results in terms of memory usage are, however, at the

expense of computation time, where we attribute this increase in the HOC scheme as a

result of the extra computational cost associated with the Simpson’s rule as compared to

the trapezoidal rule.

In Figure 4.3, we include the results previously seen for the Bates model, see Chapter 2.

This indicates the increase in computation time between the two models. Financial prac-

titioners must base a decision of which model to implement on their requirements for

1Rather than total memory usage, increases in memory usage at each subsequent refinement from the

base mesh size h = 0.4 are given for each scheme.
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Scheme h l

2

-error l1-error time (s) memory (kB)

HOC

0.4 4.9321 1.5433 0.304 7096

0.2 0.4361 0.1864 5.713 +812

0.1 0.0394 0.0141 312.562 +4168

0.05 0.0022 0.0009 21180.171 +17008

FD

0.4 8.1927 2.0370 0.372 7144

0.2 1.9337 0.5820 3.592 +1420

0.1 0.4772 0.1441 102.554 +5552

0.05 0.1262 0.0347 3637.313 +23396

Table 4.2: Performance results for the HOC and second-order FD schemes for the SVCJ

model1.

faster computational time, against their preference for a model which o↵ers a more robust

calibration setup.

We do stress, however, that with access to higher memory allocation it would be

possible to achieve high-order convergence with a far reduced increase in computation

time. This may be achieved by solving the numerical integration through use of the

block-matrix structure described in Section 4.1.3 and computed through a matrix-vector

product.

4.2.3 Numerical stability analysis

To assess the stability of the scheme we present a numerical stability analysis. We propose

to test to what extent the parabolic mesh ratio k/h2 impacts the convergence of the scheme.

If the e↵ect is minimal this will allow numerically regular solutions to be obtained without

restriction on the time step-size. We proceed to compute numerical solutions for varying

values of the parabolic mesh ratio k/h

2 and the mesh width h, then plot these against

the associated l

2

-errors to detect stability restrictions depending on k/h

2. This numerical

test is performed for both the high-order and the second-order schemes, with the results

shown in Figure 4.4 and Figure 4.5 respectively. We use default parameters from Table 4.1,

and vary the parabolic mesh size from 0.1 to 1 in increments of 0.1. As was noted in

Section 2.6.3 we draw the readers attention to the di↵erence in the error scales between

the two schemes.

The second-order scheme shows a mild dependence on the time-stepping, with a
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Figure 4.3: Computational e�ciency comparison taken at mesh-sizes h = 0.4, 0.2, 0.1, 0.05.

stronger e↵ect for larger mesh size h. The HOC scheme also shows a mild condition

for larger mesh-size h, however this dissipates as h is reduced and on the finer meshes

there appears to be negligible dependence on the parabolic mesh ratio. As there is no

apparent stability restriction for the HOC scheme, we suggest parabolic mesh ratio at or

above 0.5 are most useful, as this has potential to partially counteract the time increase

seen in the HOC scheme.

The dependence of the parabolic mesh ratio we notice on coarser mesh sizes can be

attributed to the implicit-explicit nature of the scheme. However, as the restriction on

the time stepping for the new scheme is not severe, since the discretisation matrices do

not change in time (the coe�cients in the PIDE (4.1) do not depend on time). Hence,

the sparse matrix factorisation is performed only once, and additional time steps do not

require additional factorisations to solve the problem.

4.2.4 Feller Condition

We examine the robustness of the new HOC scheme for the SVCJ model with respect

to the Feller condition as we did for the Bates’ model in Section 2.6.4. We study the
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convergence rates achieved when the Feller condition, 2✓ � v

2, is not satisifed for the

Cox-Ingersol-Ross (CIR) volatility process [21].

We use the default parameters defined in Table 4.1, with exceptions for long-run vari-

ance mean ✓ and volatility of volatility v, which we alter to test the condition as shown

in Table 2.3.

We study the l

2

and l1 -error associated with each condition. The results are shown

in Table 4.3, the l
2

-error numerical convergence rates, obtained from a least squares fitted

line as explained earlier, are 3.6, 3.6 and 3.7 for v = 0.7, 0.4 and 0.1, respectively. This

leads us to confirm that the new HOC scheme performs well irrespective of the validity of

the Feller condition.

Condition h l

2

-error l1-error

2✓ < v

2

h = 0.2 3.6417 0.3623

h = 0.1 0.3435 0.0409

h = 0.05 0.0254 0.0031

2✓ = v

2

h = 0.2 2.0172 0.2683

h = 0.1 0.1392 0.0257

h = 0.05 0.0138 0.0024

2✓ > v

2

h = 0.2 0.7681 0.2748

h = 0.1 0.0722 0.0260

h = 0.05 0.0047 1.97 ·10�3

Table 4.3: Numerical convergence results for HOC scheme for the SVCJ model with

varying Feller condition.

4.3 Bates/SVCJ model selection

Both the SVCJ and Bates’ model o↵er high levels of calibration in comparison to standard

stochastic volatility models. Many research papers has been conducted on the di↵erences

of the Heston model to Bates’ model and the SVCJ model, with a focus on the calibra-

tion of the models parameters to observed market prices, particularly in times of market

turbulence [16].

These studies o↵er a range of results regarding the necessity of the inclusion of jumps

in returns, of jumps in volatility and furthermore the relationship between the jump pro-
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Figure 4.6: Time series of implied volatility as measured by the VIX2 from 1987-2003,

Cboe.

cesses. The studies of Bates [8] and Bakshi, Cao and Chen [5], o↵er contrasting opinions

on the inclusion of jumps, with the former concluding that the benefits are economically

small whereas the latter sees substantial benefits.

More recently, Broadie, Chernov and Johannes [16] conduct a study into model spe-

cification and risk premia, focussing on observed prices in futures options. They propose

that where previous studies were unable to agree on the benefits of jump processes is

related to di↵ering test statistics and limited time periods of the data collection. Historic-

ally large market shocks have been observed to be infrequent and the existence of a shock

within the data set will heavily determine the authors decision as to whether the inclusion

of jumps is warranted.

Broadie et.al. use a larger set of data from S&P 500 futures options, with data from

January 1987 to March 2003. This period features a range of market shocks, see Figure 4.6,

2VIX: On September 22, 2003, the Cboe made two key enhancements to the VIX methodology: Based

on S&P 500 Options Prices. The new VIX will be based on prices of S&P 500 (SPX) options. Previously,

the original-formula VIX was based on prices of the S&P 100 (OEX) Index Options, and Cboe will continue

to calculate and disseminate the original-formula index to be known as the Cboe S&P 100 Volatility Index

SM with the ticker VXO index.
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and encompasses the time-periods which feature in the studies of Bates, Bakshi, Cao and

Chen and the further studies of both Eraker and Pan [37].

The study of Broadie et.al. concludes that adding jumps to the Heston model improves

the cross-sectional fit by almost 50%, which gives further weight to the work of Bakshi,

Chao and Chen while o↵ering a contrasting view to that of Bates, Pan and Eraker. Over

the larger data set Broadie et.al. judge that Bates’ and the SVCJ model perform similarly

well. This is attributed to the importance of price jumps and stochastic volatility for

describing the time series of returns or for pricing options [16].

This is not to dispute that jumps in volatility, albeit not to the same degree do o↵er an

important addition to an option pricing model, both by further explaining the time series of

returns [16] and secondly as their inclusion alleviates concerns over model misspecification,

which was cause enough for Bates to suggest adding jumps in volatility [8].

In recent years, partly due to the emergence of algorithmic trading, jumps in both

prices and volatility have become commonplace in financial markets. Algorithms have

been blamed for exacerbating large moves, through programming which is focussed on

following trends and in some cases following the behaviour of other algorithms [2]. The

VIX index between 2003-2019, see Figure 4.7, shows frequent spikes occurring, which

appear to be increasingly common after the 2008 financial crash and o↵ering further weight

to the argument for the SVCJ models benefit to current financial practitioners.

For optimal model selection, these studies and developments suggest that the SVCJ

model is a clear choice. However, as we have shown in our numerical experiments, see

Table 4.2, the computational demands imposed by the SVCJ model in terms of time or

required memory allocation are a potential barrier to financial practitioners demanding

the fastest computation time. While Bates’ model o↵ers a drastically faster alternative

and an important improvement on purely stochastic volatility models, allowing Bates’

model to serve as a highly e↵ective model for option pricing.

For financial practitioners, model selection must also be based on their chosen mar-

kets dynamics, as with notable di↵erences in the trading patterns of commodity futures,

currency and stocks, variations should be expected in the performance of option pricing

models. However, using either of the established quasi market-standard Bates’ and SVCJ

models, allows for excellent calibration to fit observed data while the HOC scheme presen-

ted in this thesis o↵ers a robust, e�cient and e↵ective numerical method for the option

price computation.
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Figure 4.7: Time series of implied volatility as measured by the VIX index from 2003-2019,

Cboe.

4.4 Summary of chapter

We have derived a new HOC finite di↵erence method for option pricing under the SVCJ

model. Numerical experiments confirm high-order convergence in the option price without

stability restrictions and confirm the scheme’s acceptance of the Feller condition. The

numerical method is based on an implicit-explicit scheme in combination with HOC finite

di↵erence stencils for solving the partial integro-di↵erential equation. The two-dimensional

jump term adds a complexity to the option pricing model, while the requirement of a high-

order double numerical integration method increases the scheme’s demand for memory and

the computational time required to achieve high-order convergence.

As the availability of computer memory improves it should be expected that alternative

methods will become possible for the solution of the double integral problem using high-

order numerical integration methods, allowing for faster computational times, comparable

to those seen for the HOC scheme for Bates’ model, as shown in Chapter 2. We also note

the opportunity for parallelisation in the problem and the potential for ADI methods to

again improve computation time.

We finished by discussing what drives financial practitioners choices in selecting either
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the Bates’ or the SVCJ model. Focussing on the studies of Bates, Bakshi et.al, Pan, Eraker

and Broadie et.al, we discuss the contradictory views of these studies and associate their

findings with recent market developments and the emergence of algorithmic trading as

the main liquidity provider in financial markets. We note the di↵erence in computational

time as an important driver in the selection process, with the HOC scheme for Bates’

model o↵ering pricing approximately 103 times faster when used on a fine grid (mesh-size

h = 0.05), and up to 40 times faster on a coarse grid (mesh-size h = 0.2).
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Chapter 5

Conclusion

This thesis is concerned with the derivation and implementation of high-order compact

finite di↵erence methods to solve the PIDEs arising from a class of option pricing models,

stochastic volatility with jump models.

In Chapter 2, we employed standard derivative pricing arguments for the Bates model,

to obtain the PIDE
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V (Sỹ, v, t)p(ỹ) dỹ = 0, (5.1)

which has to be solved for S,� > 0, 0  t < T and subject to a suitable final condition,

e.g. V (S,�, T ) = max(K � S, 0), in the case of a European put option, with K denoting

the strike price.

We transform the variables in 5.1, as an introductory step in the derivation of an

implicit-explicit scheme based on the high-order finite di↵erence method introduced by

Düring et.al for option pricing in the Heston model [28].

The implicit-explicit scheme combines the treatment of the derivative operator using

HOC finite di↵erence stencils, with our chosen fourth order numerical integration method,

the Simpson’s rule, for the integral operator.

The scheme is completed with necessary smoothing of the initial condition, which

in this example is the payo↵ of a European put option. This follows from [59], where

it is proposed that a su�ciently smooth initial condition is required to yield high-order

convergence. The resulting scheme uses a Crank-Nicolson time discretisation and is fourth

order in space and second order in time.

In the results section we conduct numerical experiments to assess the convergence and

computational e�ciency of the new HOC scheme. In order to form a comparative study
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we introduce a second-order finite di↵erence method discretisation and both second and

high-order finite element formulation.

The results confirm the theoretical order of the scheme, with convergence of order 4

in both the l

2

and l1 norms, which are estimated from the slope of a least squares fitted

line. This is is to the best of the author’s knowledge the first high-order scheme for this

highly popular option pricing model.

Compared to finite element methods, it is very parsimonious in terms of memory

requirements and computational e↵ort, since it achieves high-order convergence without

requiring additional unknowns (unlike finite elements with higher polynomial order).

At the same time, the new HOC scheme is very e�cient, requiring only one initial

LU -factorisation of a sparse matrix to perform the option price valuation. It can also

be useful to upgrade existing implementations based on standard finite di↵erences in a

straightforward manner to obtain a highly e�cient option pricing code.

For trading professionals, the new HOC scheme o↵ers the ability to more accurately

compute option prices, in faster time and with less memory requirements. These improve-

ments will allow both individuals and institutions more confidence in their ability to o↵er

tighter market spreads, in more varied and volatile market conditions, and lead to an

increase in volume across options markets globally.

In Chapter 3 we introduce the practice of hedging, a key use of financial derivatives.

We confirm high-order convergence for the HOC scheme with initial condition the payo↵

of a European call option. This allows us to study examples of hedging strategies, which

are commonly used in today’s derivative markets. We focus on the straddle and butterfly

strategies, where a trader buys and sells a combination of options to form a payo↵ which

is hedged to certain changes in the underlying asset.

In the results section we again use the HOC finite di↵erence method for option pricing

in stochastic volatility jump models developed in Chapter 2, to conduct numerical experi-

ments to compare the scheme’s hedging performance to standard finite di↵erence methods.

We confirm high-order convergence in the so called ‘greeks’, the partial derivatives of the

option price with respect to the underlying, with our experiments focussing on the Delta,

vega and gamma of the option.

To further demonstrate the hedging properties of the new scheme, we give an example

of a Delta hedged portfolio, which provides clear evidence that the high-order scheme

is valuable for industry professionals seeking to calculate the relevant Delta accurately

and requiring fastest computational time. We also include examples of trading strategies
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involving both the vega and gamma of the option, which confirm gains in the convergence

and computation time. We believe this to be another tool which may be utilised by market

participants attempting to achieve a more accurate hedged position.

In Chapter 4, we implement standard derivative pricing arguments for the SVCJ model,

to obtain the PIDE
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which has to be solved for S,� > 0, 0  t < T and subject to a suitable final condition,

e.g. V (S,�, T ) = max(K � S, 0), in the case of a European put option, with K denoting

the strike price.

We follow the same transformation of variables we applied in Chapter 2 to equation

(5.2). We complete the HOC finite di↵erence scheme with a suitable adaption to the

derivative operator to fit the SVCJ model. The complexity of the SVCJ model is entwined

in it’s double integral for the jump term, where the underlying asset now features correlated

jumps in both returns and volatility.

We attempt to implement the numerical integration in the manner suggested in [74],

however, we find the memory requirements of the two-dimensional Simpson’s composite

rule are prohibitive to reduction of the mesh-size required to form an accurate pricing

algorithm. In order to combat the memory allocation issue we compute the integral

directly at each time-step, which removes the requirement to store a dense matrix and

allows for the algorithm to fit within the pre-imposed 4GB RAM limit.

We conduct numerical experiments, which confirm high-order convergence in the op-

tion price without stability restrictions and confirm the scheme’s acceptance of the Feller

condition. This is to the best of the author’s knowledge the first high-order scheme for

this complex option pricing model.

We discuss what drives financial practitioners choices in selecting either Bates’ or the

SVCJ model, with a focus on recent market developments. To aid financial practitioners

in determining model selection we compare the computational time of the two schemes,

with the HOC scheme for Bates’ model o↵ering pricing approximately 103 times faster

when used on fine grids, and up to 40 times faster on coarse grids.

For further research we consider the American option pricing problem for Bates’ model,

which will require solving a free boundary problem involving the PIDE (5.1). This can

in principle be approached by combining the HOC scheme presented in this paper with
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standard methods like projected successive overrelaxation (PSOR) or penalty methods.

The key challenge, however, will be to retain high-order convergence of the scheme in view

of limited regularity across the free boundary.

As a second extension, and with Moore’s law in mind, as the availability of computer

memory improves over the coming years it should be expected that alternative methods

will become possible for the solution of the double integral problem using high-order nu-

merical integration methods, allowing for progressively faster computational times. We

also note the opportunity for parallelisation in the problem and the potential for a combin-

ation with high-order alternating direction implicit methods [33] methods and with sparse

grids methods [46, 31], which along with providing an interesting research topic also o↵er

potential for improved computation time and further memory e�ciencies.
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male Supérieure, Sér, 3 (17), 21-88, 1900. (English Translation:- In: The Random

Character of Stock Market Prices, P.H. Cootner, (ed.) pp.17–78, MIT Press, Cam-

bridge, Mass., 1964.)

[5] G. Bakshi, C. Cao, and Z. Chen. Empirical performance of alternative option pricing

models, Journal of Finance, 52, 2003-2049, 1997.

[6] O.E. Barndor↵-Nielsen and N. Shephard. Non-Gaussian Ornstein-Uhlenbeck based

models and some of their uses in financial economics, Journal of the Royal Statist-

ical Society, 63, 167-241, 2001.

[7] D.S. Bates. Jumps and stochastic volatility: Exchange rate processes implicit Deutsche

mark options, Rev. Financ. Stud. 9, 637-654, 1996.

[8] D.S. Bates. Post-’87 Crash fears in S&P 500 futures options, Journal of Econometrics

94, 181-238, 2000.

[9] E. Benhamou, E. Gobet and M. Miri. Time Dependent Heston Model, SIAM J. Finan.

Math. 1, 289-325, 2010.



101

[10] G. Berikelashvili, M.M. Gupta, and M. Mirianashvili. Convergence of fourth or-

der compact di↵erence schemes for three-dimensional convection-di↵usion equations,

SIAM J. Numer. Anal., 45, 443-455, 2007.

[11] F. Black and M. Scholes. The pricing of options and corporate liabilities.

J. Polit. Econ. 81, 637-659, 1973.

[12] T. Bollerslev, R.F. Engle and D.B. Nelson. Arch Models. In: Handbook of Econo-

metrics, Volume IV, D.L McFadden et al. (eds) pp.2960–3038, Elseuier Science B.V,

North Holland, 1994.

[13] M. Briani, R. Natalini and G. Russo. Implicit-explicit numerical schemes for the

jump-di↵usion processes, Calcolo 44, 33-57, 2007.

[14] M. Briani, L. Caramellino and A. Zanette. A hybrid approach for the implementation

of the Heston model, IMA J. Manag. Math. 28(4), 467-500, 2017.

[15] M. Briani, L. Caramellino, G. Terenzi and A. Zanette. On a hybrid method us-

ing trees and finite-di↵erences for pricing options in complex models. Preprint,

arXiv:1603.07225, 2016.

[16] M. Broadie, M. Chernov and M. Johannes. Model Specification and Risk Premia:

Evidence from Futures Options, J. Of Finance, 62 (3), 1453-1490, 2007.

[17] D.M. Causon and C.G. Mingham. Introductory Finite Di↵erence Methods for PDEs,

Ventus, Academic Press, 2010.

[18] C. Chiarella, B. Kang, G. Meyer and A. Ziogas. The evaluation of American option

prices under stochastic volatility and jump-di↵usion dynamics using the method of

lines. Int. J. Theor. Appl. Finan. 12, 393, 2009.

[19] N. Clarke and K. Parrott. Multigrid for American option pricing with stochastic

volatility. Appl. Math. Finance 6(3), 177-195, 1999.

[20] R. Cont and P. Tankov. Financial Modelling with Jump Processes, Chapman &

Hall/CRC, Boca Raton, FL, 2004.

[21] J.C. Cox, J. Ingersoll and S. Ross. A theory of the term structure of interest rates.

Econometrica, 53, 385-407, 1985.

[22] Q. Dai, K.J. Singleton. Specification Analysis of A�ne Term Structure Models, The

J. Finance, 55 (5), 1943-1978, 2002.



102

[23] E. Derman and I. Kani. Riding on a smile, Risk, 7 (2), 32-39, 1994.

[24] H. Deutsch. Arbitrage in bullion, coins, bills, stocks, shares and options, 2, E�ngham

Wilson, London, 1910.

[25] D. Du�e, J. Pan and K. Singleton. Transform analysis and asset pricing for a�ne

jump-di↵usions, Econometrica, 68(6), 1343-1376, 2000.

[26] D. Du�e. Numerical Analysis of Jump Di↵usion Models: A Partial Di↵erential Equa-

tion Approach, Technical Report, Datasim, 2005.

[27] S.R. Dunbar, Stochastic Processes and Advanced Mathematical Fin-

ance [online], viewed 9th Sept 2019, < http://www.math.unl.edu/ sdun-

bar1/MathematicalFinance/Lessons/BrownianMotion/Definition/definition >.
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Appendix A

Derivation of the Black-Scholes

partial di↵erential equation

In this appendix we show the derivation of the PDE of the Black-Scholes model from [84].

Recalling the Black-Scholes model we have,

dS(t) = µS(t)dt+ �S(t)dW (t), (A.1)

where µ is the constant drift, � is the constant volatility of the asset S and dW is a Wiener

process. With the use of Lemma 1.1, we have

dV =

✓
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dW. (A.2)

If we now create a portfolio P with structure P = V � ↵S, we get

dP = dV � ↵dS. (A.3)

Substituting (A.1) and (A.2) into (A.3), we have

dP = �S
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dt.

To create a risk-free portfolio ⇧ we may choose ↵ = @V

@S

. Hence, without arbitrage

d⇧ = r⇧dt

follows, and we have
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Through comparing these two equations and the use of ⇧ = V � @V
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S, we now obtain the

Black-Scholes partial di↵erential equation, where
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Appendix B

Derivation of the Heston partial

di↵erential equation

In this appendix we show the derivation of the PDE from the Heston model, as seen in

[39]. Recalling the Heston model we have,

dS(t) = µS(t)dt+
p

�(t)S(t)dW (1)(t),

d�(t) = �(t)(✓ � �(t))dt+ v�(t)dW (2)(t),

with correlation ⇢, such that dW (1)(t)dW (2)(t) = ⇢dt.

To derive the PDE from the Heston model, we first form a portfolio of one option

V = V (S,�, t), � units of the asset S and � units of another option U = U(S,�, t). This

value of this portfolio is

⇧ = V +�S + �U

with ⇧ = ⇧
t

. By assuming the portfolio is self-financing, the change in the portfolio value

is

d⇧ = dV +�dS + �dU (B.1)

By applying the two-dimensional lemma of Itô, Lemma 1.2, and di↵erentiating with

respect to the variables t, S and �, we have
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We continue by applying Itô’s Lemma to U, before substituting these two expressions into

(B.1), yielding,
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In order for the portfolio to be hedged against movements in the underlying asset and

against moves in volatility, the final two terms in (B.2) must be zero, hence we have

� = �
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and � = ��

@U

@S

� @V

@S

.

Furthermore, the portfolio must earn the risk-free rate r. Therefore, d⇧ = r⇧dt. Combin-

ing these results with the values of � and � gives the change in the value of the risk-free

portfolio as

d⇧ =

⇢

@V

@t

+
1

2
�S

2

@

2

V

@S

2

+
1

2
v

2

�

@

2

V

@�

2

+ ⇢v�S

@

2

V

@S@�

�

dt

+ �

⇢

@U

@t

+
1

2
�S

2

@

2

U

@S

2

+
1

2
v

2

�

@

2

U

@�

2

+ ⇢v�S

@

2

U

@S@�

�

dt

which can be written as d⇧ = (A+ �B)dt. Hence, we have

A+ �B = r(V +�S + �U).

Substituting for � and re-arranging gives (B.3), which enables further manipulation.
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(B.3)

The left-hand side of (B.3) is a function of V only, and the right-hand side if a function

of U only. We can therefore write (B.3) as a function f(S,�, t) of S, � and t. Heston,

specified that we set this function as f(S,�, t) = �(✓ � �) + �(S,�, t), where �(S,�, t)

is the price of volatility risk. Substituting f(S,�, t) into the left-hand side of (B.3), then

substituting for B, and rearranging produces the Heston PDE expressed in terms of the

price S
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This is Equation (6) of Heston [47], which can yield closed-form solutions under certain

restrictions. To achieve this, Heston assumes that the characteristic function for the

logarithm of the terminal asset price, x = lnS
T

, are of the form

f(�;x, v) = exp(C(⌧,�) +D(⌧,�)v
0

+ i�x)

where C and D are coe�cients and ⌧ = T � t is the time to maturity.
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Appendix C

Derivation of the Bates partial

intergro-di↵erential equation

In this appendix we show the derivation of the PIDE from Bates’ model, as seen in [20].

Recalling Bates’ model we have,

dS(t) = µ

B

S(t)dt+
p

�(t)S(t)dW
1

(t) + S(t)dJ, (C.1)

d�(t) = (✓ � �(t))dt+ v

p

�(t)dW
2

(t), (C.2)

We allow the no-arbitrage arbitrage condition to fix the drift of the risk neutral process:

under the risk neutral probability µ = r � �, and apply Itô’s Lemma to (C.1) to obtain

the equation for the log-price x(t) = lnS(t).

dx(t) = (r � �⇠

B

)dt+
p

�(t)dW
1

(t) + dJ

To obtain the PIDE, we follow the method of Heston [47] as described in Appendix B, by

first computing the characteristic function of the continuous component of xc(t) of x(t).

Letting
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and applying Itô’s Lemma to M(t) = f(x,�, t), yields
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Next, since f(x,�, t) is a martingale, by setting the drift term in (C.3) to zero, we obtain
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Finally, we convert back to the asset price S = e

x(t) and since jump terms are homogeneous

and independent from the continuous part, we can add the integral describing the jump-

term with Gaussian distribution and obtain Bates’ PIDE for the price of an option V .
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Appendix D

Code

The codes for the C++ implementation of the high-order compact and second-order fi-

nite di↵erence schemes utilised in Chapter 2 are available online through Mendeley Data

http://dx.doi.org/10.17632/964tyzmwrn.1 [66]. The implementation requires both GSL2.1

or higher and UMFPACK libraries.
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