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Summary

Motivated by their appearance in the physical sciences, scattering resonances of the three-
dimensional Dirac operator perturbed by a real-valued, smooth, compactly supported,
electric potential are studied. The potentials are 4×4 matrix-valued, multiplication oper-
ators. Under a prescribed mapping, the cut-off full resolvent is extended meromorphically
from the physical half-plane to the whole complex plane. The poles that lie in the un-
physical plane are defined as resonances for the perturbed Dirac operator.

This thesis presents basic properties of the free and full Dirac resolvents and
introduces the resonances that the latter creates. Particular attention is paid to the
resonances appearing at the threshold points when the full resolvent is studied near these
limits.

The scattering matrix is analysed as a mapping between solutions of the Dirac
eigenvalue problem and then used to establish the Birman-Krĕın formula, which relates
the trace difference between functions of the full and free Dirac operators. In turn, a
Poisson wave trace formula in the distributional sense is established via an upper bound
counting function and factorization of the scattering matrix determinant.

Both trace formulas are generalized such that resonances appearing at the thres-
hold points are considered. Finally, under further restrictions on the potential, the exist-
ence of infinitely many Dirac resonances is proved as an application of our trace formulas.
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Chapter 1

Introduction

1.1 Resonances in the physical sciences

In physical scattering processes between two subatomic particles, we can for simplicity,

consider three outcomes: the two particles could first bind to form a new and stable

composite particle, secondly collide and scatter apart, or finally bind together for a short

time before decaying into smaller particles.

In the final case, the short-lived composite particle is considered a scattering

resonance if the lifetime τ is typically of order 10−23 seconds or less. Experimentally,

resonances are identified with a large cross-sectional peak at a characteristic energy ξ and

associated half-height width Γ (see Figure 1.1). Here the cross section, σ, is a measure

of the effective area for scattering to occur and, in the case for resonances, is typically

modelled by a Breit-Wigner distribution. This can be written as

σ(E) =
1

2π

Γ

(E − ξ)2 + (Γ/2)2
,

where E is the laboratory energy.

Since resonances are characterized by a peak energy ξ and lifetime τ ∝ Γ−1, it

is useful to denote them by the complex number ρ = ξ − iΓ/2. This is motivated by the

following observation in quantum mechanics. The motion of a quantum particle of mass

m > 0 under the influence of a potential V is described by the wavefunction φ(x, t) that

solves the time-dependent Schrödinger equation

i
∂

∂t
φ(x, t) = HV φ(x, t),
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E

σ

Γ

ξ

Figure 1.1: Idealized cross section profile for a scattering process, plotted against labor-

atory energy E. The resonance corresponds to the energy peak ξ with width Γ.

where HV = H0 + V = −∆ + V = −
∑3

i=1
∂2

∂x2i
+ V is the perturbed Schrödinger operator

on L2(R3). This is analogous to solving Newton’s second law of motion in classical mech-

anics. Furthermore if φ0(x) = φ(x, 0) ∈ L2(R3) solves the time-independent Schrödinger

equation, HV φ0 = ξφ, then we have

φ(x, t) = e−itξφ0(x).

The quantum mechanical interpretation of |φ(x, t)|2 is the probability density of finding

the particle at position x and at time t. Moreover
∫

Ω |φ(x, t)|2 dx is the probability of

locating the particle inside Ω at a given t. If instead we consider a resonance state where

φ0 /∈ L2(R3) then the evolved state is written as

φ(x, t) = e−it(ξ−iΓ/2)φ0(x)

such that
|φ(x, t)|2

|φ0(x)|2
= e−Γt.

Hence for increasing values of time, the Breit-Wigner model suggests that the probability

density of the resonant state decreases exponentially. In practice it has decayed in 10−23

seconds or less.

Despite their short lives, resonances play a central role in particle physics. In

fact many of the subatomic particles discovered as a result of scattering experiments are

indeed resonances. Like their stable counterparts, they may possess well defined properties

such as mass, electric charge and quantum spin. Amongst the high energy hadrons, these
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include the delta baryons and rho mesons (see for instance [50, section 3.5]). The Feynman

diagram in Figure 1.2 demonstrates the creation of a delta baryon resonance as a result of

a pion-proton scattering process before separating back into its two constituent particles.

More generally, resonances have been studied in various applications from atomic

physics and quantum chemistry. These range from Stark and Zeeman effects (see [7, 13])

to numerical models of chaotic scattering (see [26, 49])

∆++

pp

π+π+

Figure 1.2: Feynman diagram of a pion (π+) - proton (p) scattering process which tem-

porarily creates a delta baryon resonance (∆++).

1.2 Resonances in mathematical physics

As described in the previous section, resonances are metastable states with a well defined

energy and rate of decay. These physical attributes can be encapsulated mathematically

as generalizations of eigenvalues with energies that can scatter to infinity (see for instance

[88]). Such studies of resonances using the spectral properties of the system can be con-

ducted with numerous methods. These include perturbations of eigenvalues, or studies of

various mathematical objects such as the cut-off resolvent, the extended scattering mat-

rix, or even the zeta function. See [54], [12], [67], and [22] respectively for examples of

these studies. Despite the numerous definitions and approaches to studying resonances,

the following two key questions are often explored:

1. Existence: Do resonances exist for a given Hamiltonian and class of potentials?

2. Counting: If resonances do exist, then how many are there? In particular, is it

possible to establish upper and lower bounds?

The answers to these problems are richly studied in the case of Schrödinger operators.

One important area of research stems from the method of complex scaling. This sees the
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previously selfadjoint Hamiltonian, HV , modified by a complex parameter θ to a family of

non-selfadjoint operators, HV (θ), such that HV = HV (0). Then Im θ > 0 has the effect of

rotating the essential spectrum of HV about the origin. This framework is based upon the

work of Aguilar and Combes [2] and Balslev and Combes [3] for 2- and N -body operators

respectively. This led Simon [69] to identify resonances of HV as the eigenvalues of HV (θ)

in what is known as the Aguilar, Balslev, Combes and Simon (ABCS) theory. A key

implementation of semiclassical analysis towards resonances was provided by Helffer and

Sjöstrand [32]. The relationship between this and ABCS theory was established by Helffer

and Martinez [31].

An interesting application of these techniques is to the shape resonance model

originally proposed by Gamow [25] and Gurney and Condon [30]. Consider a quantum

particle of energy, E, supposedly trapped inside a potential well, V , of maximum energy

Vmax where Vmax > E. Assuming lim|x|→∞ V (x) = 0, then by quantum tunnelling effects,

the particle will travel through the so-called classically forbidden region and eventually

escape the well. This model has been used to study alpha particle emission from unstable

nuclei. Notable works in this area include the contributions by Combes et al. [18] who

proved the existence of shape resonances near the real axis, and Sigal [68] who provided

bounds on shape resonance lifetimes.

The task of approximating resonance energies E and widths Γ can be achieved

by the so-called complex absorbing potential (CAP) method. Here the full semiclassical

Hamiltonian is perturbed further by a bounded, complex-valued potential that encom-

passes the bounded support of V and absorbs the diverging part of the solution. The

benefits of this are twofold; resonances can then be analysed as bound states and numer-

ical calculations can be considered in finite domains. Despite the CAP method being used

extensively in the physical sciences (see for instance [56]), it was not until Stefanov [78]

that a rigorous justification was given for its usage.

An alternative approach to studying resonances that this thesis considers exclus-

ively is via the so-called cut-off resolvent ρ(HV −λ2)−1ρ. Given ρ is a compactly supported

bump function, we consider the meromorphic extension of the cut-off resolvent from the

physical λ =
√
z upper half-plane, across the real line, to C. In the lower unphysical plane,

the first bump function enables us to consider the resolvent as a mapping from L2
comp(R3)

to L2
loc(R3). The second bump function therefore ensures the resultant mapping is back

to L2
comp(R3). The isolated poles of ρ(HV − λ2)−1ρ in the unphysical plane are in turn
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defined as resonances.

In this framework Melrose [52] proved the existence of infinitely many reson-

ances for odd dimension d ≥ 3 and V ∈ C∞0 (Rd;R). Here C∞0 (Ω;R) denotes the set

of real-valued functions with compact support inside Ω and differentiable to any order.

This remarkable result has since been extended to more general classes of potentials (see

Sá Barreto and Zworski [63, 64]). Later Smith and Zworski [77] proposed an alternative

proof by considering the trace of the difference of Schrödinger heat semigroups (see Hitrik

and Polterovich [35, 36] for the heat trace asymptotics). In this thesis (see chapter 7) we

prove a similar result for Dirac operators perturbed by potentials with diagonal elements

in C∞0 (R3,R).

Other notable results include the class of complex-valued potentials introduced

by Christiansen [16] that have no associated resonances. We also mention here the work of

Sjöstrand [72, 73] who presented an alternative trace formula valid for any dimension and

lower resonance number bounds using the complex scaling framework. Later Nédélec [57,

58] used similar methods to obtain lower bounds for matrix-valued Schrödinger operators.

Answering questions on resonance existence and number bounds employs some

key results that are interesting in their own right. For instance, the expansion of the full

resolvent near the threshold is used to study resonances (or half-bound states) at that

point. However these expansions were originally used to study the asymptotic behaviour

of e−itHV and can be applied to other aspects of scattering theory such as reflection and

transmission coefficients (see for instance [10] and references therein). In chapter 3 we

establish the exact form of the full Dirac resolvent near the threshold points. Along with

our development of the scattering matrix (see chapter 4), these will be used to prove our

two trace formulas.

Motivated by the work of Lifshits [48] in crystal lattice fields, the trace formula

attributed to Birman and Krĕın [9] relates the trace difference between suitable functions

of two selfadjoint operators HV , H0 and the spectral shift function (see also [39]). Fur-

thermore if HV −H0 is trace class then it can be shown that the spectral shift function

is related to the scattering matrix in a simple manner (see for instance [83] or [62]). Our

first trace formula in this thesis is presented in chapter 5 with our interpretation of the

Birman-Krĕın trace formula for the full and free Dirac operators, DV and D0, respectively.

This naturally leads to the Poisson wave trace formula whose first incarnation is
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attributed to Lax and Phillips [45]. Initially developed for compactly supported obstacle

scattering cases in R3, the original trace formula was also limited to large values of the

time-like parameter t. However it was later generalised to lower values of t by Bardos et al.

[6], to higher odd dimensions by Menzala and Schonbek [53], and for all t 6= 0 by Melrose

[51] when applied to resonances. A new approach developed by Zworski [84] based on the

scattering matrix determinant provided a new proof that was valid for all t ∈ R. The

Poisson wave trace formula is instrumental to Melrose’s proof in [52] as well as the lower

bounds on resonance number by Sjöstrand and Zworski [75, 76]. Our Poisson wave trace

formula (and second trace formula) is proved in chapter 6 and, similar to the Schrödinger

case, is instrumental to our proof for the existence of infinitely many Dirac resonances in

chapter 7.

We finish this section by citing a few review publications. A qualitative introduc-

tion to the ABCS theory and its application to the shape resonance model can be found

in [34]. Simon [70] provides a rigorous overview on complex scaling whilst a review of

its implementation in the physical sciences can be found in [55]. The reader is directed

to Dyatlov and Zworski [23] (see also [88]) for an in-depth analysis of resonances in the

cut-off resolvent framework, as well as [17, 81] and the notes by Sjöstrand [74]. In the same

framework, Hislop [33] highlights and proves some of the fundamental theorems whereas

the short surveys by Zworski [85, 86] provide motivation for these studies.

1.3 Resonances in relativistic quantum mechanics

The afore-mentioned work on resonances in section 1.2 are based upon perturbations of

the Schrödinger operator. However the theory is incomplete since Schrödinger’s equation

ignores the intrinsic quantum spin of a particle and fails completely in the relativistic

regime where particle energies are far greater than its rest mass.

One attempt to solve the latter issue was with the Klein-Gordon equation, a

second order differential equation in both temporal and spatial coordinates. However as

spin was again not considered, this was applicable only to spinless particles such as pions.

Further problems arise from the Klein-Gordon equation in the form of negative energy

solutions and the possibility of negative probability densities.

The conundrum was finally solved by Dirac [21] with his celebrated equation
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now named in his honour. By considering a wave equation with first order derivatives,

the relativistic motion of massive spin−1
2 particles such as electrons and protons could be

analysed. The Dirac equation had the extra benefit of overcoming the negative probability

densities observed in the Klein Gordon equation and, more significantly, provided further

theoretical justification of negative energy solutions. Indeed we now interpret these solu-

tions as anti-particles, the mirror image of the subatomic particles we see except for an

opposite electric charge. For instance the electron and positron are antiparticles of each

other.

Therefore to study resonances whilst incorporating the special theory of relativity

on spin−1
2 particles, perturbations of the Dirac operator are considered. However despite

the rich variety of research on Schrödinger resonances, there exists limited studies in

extending these results to the relativistic setting.

Amongst the first studies of three-dimensional Dirac operators were Weder [82]

and Šeba [66] who adapted the complex scaling method for Schrödinger operators to associ-

ate Dirac resonances with eigenvalues of the complex scaled perturbed Dirac Hamiltonian.

The microlocal approach initially developed by Helffer and Sjöstrand [32] was extended to

the Dirac operator by Parisse [59, 60] who proved the existence of shape resonances in the

semiclassical limit near the real axis. We also mention the work of Khochman [38] who

established a local trace formula via complex scaling and consequently obtained upper

bounds on resonance numbers. Note that this approach does not guarantee the existence

of resonances. In the spirit of Sjöstrand [73] and Nédélec [57], Kungsman and Melgaard

[43] considered Dirac Hamiltonians perturbed by a smoothly decaying scalar potential.

This led to the existence of resonances near the potential extrema, and furthermore to a

lower bound on their number.

Balslev and Helffer [4] presented an extended limiting absorption principle for

Dirac operators that provides continuation properties of the resolvent and scattering mat-

rix. These ideas, which extend from similar properties for Schrödinger operators with

short range potentials by Balslev and Skibsted [5], are used to study local analyticity

properties of Dirac resonances.

More recently, inspired by the work of Stefanov [78] for Schrödinger operators,

Kungsman and Melgaard [41] likewise rigorously established the CAP method for the

Dirac operator. As in the non-relativistic case, it was shown in the semi-classical limit that



8

resonances near the real axis coincide with eigenvalues of the CAP adjusted Hamiltonian,

and vice versa. The study was extended to clusters of resonances by the same authors in

[42].

We also mention Kungsman and Melgaard [44] who used the Dirac cut-off re-

solvent to define resonances and subsequently obtained a Poisson wave trace formula.

However it is assumed there that the threshold points ±m are not resonances.

1.4 Thesis overview

We study the Dirac operator D0 perturbed by an electric potential V . The goal of this

thesis is to develop the necessary theory and establish for suitable V , two new trace

formulas for the Dirac operator and their relationship to Dirac resonances. To achieve

this we introduce a change of variable that allows us to define resonances as poles of the

cut-off Dirac resolvent. The work is generalised such that the threshold points may also be

resonances. Under our transformation, aside from these threshold points, we assume that

resonances of the Dirac operator reside in the lower complex plane. As far as the author

is aware, this method has not been previously used to study Dirac resonances. The work

in chapters 3, 5, 6 and most of chapter 4 is new in the context of Dirac operators, and

culminates with our two trace formulas. A significant application of these trace formulas

is presented in chapter 7 whereby the existence of infinitely many resonances is proved.

Again this is a new result and, along with the work from the preceding chapters, can be

found in [15]. This thesis is divided into the following chapters:

In chapter 2, the Dirac operator is introduced before we develop fundamental

properties of the free and full Dirac resolvents including their holomorphic and mero-

morphic continuations to the whole k-plane respectively. Assumption 2.4.1 summarises

the properties of V that we use throughout the thesis, and from which we define resonances

in Definition 2.4.3.

We derive properties of the full Dirac resolvent near the threshold points, ±m,

in chapter 3. The purpose of this analysis is so that we may account for the possibility of

resonances at these points in our trace formulas.

In chapter 4 we define the scattering matrix, S±(k), as a mapping between the

incoming and outgoing solutions to the Dirac eigenvalue problem. We prove that it can
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be written as the sum of the identity operator and a trace class operator, and furthermore

establish a series of properties for detS±(k) including its logarithmic derivative.

The first of our two trace formulas is derived in chapter 5 where we use the

properties of the scattering matrix to form our Birman-Krĕın trace formula. This follows

from a series of resolvent and trace estimates. The threshold resonances are treated

explicitly by employing the main result of chapter 3.

In chapter 6 we prove our second trace formula. The Poisson wave trace formula

relates resonances to the trace difference of the wave groups. Its construction depends

upon the determinant of the scattering matrix, an upper bound on resonance number

inside a disc of radius R > 0, and the main result of chapter 5.

We present an immediate application of our trace formulas in chapter 7. Under

further restrictions on V in Assumption 7.1.1 we prove that there exists infinitely many

resonances of the perturbed Dirac operator.

In chapter 8 we summarize the key findings of this thesis and suggest a few open

questions that could be studied as an extension to our work. Finally in the Appendix,

numerous results used in this thesis from complex analysis, spectral theory, and Fredholm

theory are listed.
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Chapter 2

Resonances of the Dirac operator

We begin by recalling some basic properties of the Dirac operator in sections 2.1 and 2.2.

Their proofs can be found in [79]. For convenience, we use the natural units c = ~ = 1

throughout this thesis. The Dirac operator forms part of the celebrated Dirac theory,

describing the relativistic motion of spin−1
2 particles of mass m > 0 free from the influence

of any external forces. It was derived formally by Dirac [21] as a result of his attempts to

linearise the energy-momentum relation E =
√
p2 +m2 before substituting the quantum

energy and momentum operators,

E → i∂t, pj → −i∂j ,

where ∂t = ∂/∂t, ∂j = ∂/∂xj for j = 1, 2, 3. In quantum field theory, all particles obeying

the Dirac equation (or fermions) are interpreted as quantised excitations of a fermionic

field. This framework forms the basis of the Standard Model of particle physics.

In section 2.3 we define the resolvent of the free Dirac operator and its integral

kernel under the transformation z 7→ k(z) =
√
z2 −m2. This change of variable provides

a new interpretation of the resolvent, thus enabling us to study the subsequent properties

of the Dirac resolvent and its associated resonances. This includes establishing its far field

behaviour and proving its holomorphic extension from the upper physical half-plane to C.

Finally in section 2.4 we define the resolvent of the Dirac operator perturbed

by an electric potential V . For the remainder of the thesis we assume that V satisfies

the conditions set forth in Assumption 2.4.1. We subsequently prove how the cut-off

resolvent extends meromorphically to C, with the poles leading directly to our definition

of resonances of the perturbed Dirac operator.
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2.1 The Dirac operator

The Dirac equation may be written as

i∂tψ(x, t) = D0ψ(x, t).

The wavefunction ψ(x, t) is a complex-valued, n-dimensional vector (or spinor) and, writ-

ten in its original form,

D0 = −i
3∑
j=1

αj∂j +mβ = −iα · ∇+mβ, α = (α1, α2, α3),

is the Dirac operator. The n-by-n matrices αj and β satisfy the relations

αjαk + αkαj = 2δjkIn, j, k = 1, 2, 3,

αjβ + βαj = 0n, j = 1, 2, 3,

β2 = In,

(2.1)

where δjk, In, and 0n are the Kronecker delta, the n-by-n identity matrix, and the n-by-n

null matrix respectively. It can be shown that the dimension n must be even and at least

equal to 4. In this thesis we assume that n = 4 and for brevity use I to denote the identity

matrix. Consequently D0 and any given scalar perturbation V such that DV = D0 +V are

4-by-4 matrix operators. In addition, the wavefunction ψ(x, t) is a 4-component column

vector

ψ(x, t) = (ψj(x, t))1≤j≤4 ∈ C4.

For completeness we write the ‘standard representation’ of matrices αj and β:

αj =

02 σj

σj 02

, β =

I2 02

02 −I2

, j = 1, 2, 3,

where the Pauli matrices σ = (σ1, σ2, σ3) are defined

σ1 =

0 1

1 0

, σ2 =

0 −i

i 0

, σ3 =

1 0

0 −1

.
Although several choices of αj and β exist for n = 4 (see for instance Thaller [79]), this

study is not dependent upon any particular representation, only that the relations in (2.1)

hold.

We consider the selfadjoint Dirac operator D0 acting in the Hilbert space H =

L2(R3)4 endowed with the inner product

〈φ , ψ〉 =

∫
R3

4∑
j=1

φ(x)ψ(x) dx, φ = (φj)1≤j≤4, ψ = (ψj)1≤j≤4.
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The domain of D0 is the first order Sobolev space H1(R3)4 with norm

‖ψ‖H1(R3)4 =
√
‖ψ‖2

L2(R3)4
+ ‖∇ψ‖2

L2(R3)4
,

‖ψ‖2L2(R3)4 =
4∑
i=1

‖ψi‖2L2(R3), ‖∇ψ‖2L2(R3)4 =
3∑
j=1

4∑
i=1

‖∂jψi‖2L2(R3).

The operator D0 is itself essentially selfadjoint on C∞0 (R3)4. In the above we have used

the notation for 4-component complex-valued spaces

L2(R3)4 = L2(R3)⊗ C4 = L2(R3)⊕ L2(R3)⊕ L2(R3)⊕ L2(R3).

The spaces H1(R3)4 and C∞0 (R3)4 are defined similarly. For brevity we may write L2 =

L2(R3)4 and H1 = H1(R3)4 when the context is clear. The spectrum of D0, denoted

spec(D0), is

spec(D0) = (−∞,−m] ∪ [m,∞),

and is absolutely continuous. The resolvent set C \ spec(D0) is denoted ρ(D0).

2.2 Eigenvalues, eigenspaces and diagonalization of the free

Dirac operator

Manipulating D0 in momentum space enables us to treat it as a matrix multiplication

operator. This permits easier computations of the spectrum of D0, particularly when it is

diagonalizable. To do this we introduce the Fourier transform

(Fψ)(p) = f̂(p) =
1

(2π)3/2

∫
R3

e−ip·xψ(x) dx,

acting upon a suitable integrable function ψ uniquely extended to L2(R3)4 = L2(R3, dx)4.

We also introduce the concept of unitary equivalence,

Definition 2.2.1 Let A,B be linear operators in a Hilbert space H with domains Dom(A)

and Dom(B) respectively. If U is a unitary operator, then A and B are unitarily equivalent

provided U(Dom(A)) = Dom(B) and UAU−1 = B.

In the momentum space (FL2(R3, dx)4) = L2(R3, dp)4, the free Dirac operator

D0 acts as a multiplication matrix in the form

(FD0F
−1)(p) = α · p+mβ. (2.2)
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For each p, this is a 4× 4 Hermitian matrix with eigenvalues given by

λ1,2 = −λ3,4 =
√
|p|2 +m2 =: λ(p),

and the projections onto the corresponding eigenspaces given by

Π±(p) =
1

2

(
I ± α · p+mβ√

|p|2 +m2

)
. (2.3)

Introducing

U =
(m+ λ(p))I4 +mβα · p√

2λ(p)(m+ λ(p))
,

then it can be shown that D0 and βλ(p) are unitarily equivalent under the unitary trans-

formation UF . In the standard representation, this diagonalizes the free Dirac operator,

UFD0(UF )−1(p) = βλ(p).

2.3 Resolvent of the free Dirac operator

To study resonances associated with the Dirac operator, the work in this thesis centres on

switching from the spectral parameter z to the variable

k(z) =
√
z2 −m2. (2.4)

This is motivated by writing the free resolvent, defined on ρ(D0), as

(D0 − z)−1 = (D0 + z)(−∆ +m2 − z2)−1, (2.5)

since D2
0 = −∆ + m2 by the anticommutation relations (2.1). Writing k2 = z2 −m2, we

then recognise

R00(k) := (−∆− k2)−1

as the free resolvent of the three-dimensional Laplacian operator (see for instance [23]).

By using the parameter k we can then take advantage of the Laplace resolvent and its

properties.

This change of variable has the effect of mapping ρ(D0) to a pair of half-planes

in the k variable. Since we choose the branch of the square root such that Im k > 0, then

ρ(D0) maps to the upper (or physical) half-plane. The lower half-plane will be named

unphysical.
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We note here that the mapping k cancels any negative sign of the spectral para-

meter z. Therefore for the inverse map k 7→ z(k), we use the negative prefactor to restore

this negativity and write z = ±
√
k2 +m2.

We are now in a position to define the free resolvent via the k parameter

Definition 2.3.1 Let Im k > 0. Then the resolvent of the free Dirac operator is defined

by

R±0 (k) := (D0 ∓
√
k2 +m2)−1 : L2(R3)4 → L2(R3)4.

We clarify our notation here when k ∈ R \ {0}. In this case Balslev and Helffer

[4] proved that the following limits, rewritten in the k-plane, exist

R±0 (k) = lim
ε→0+

(D0 ∓
√
k2 +m2 − iε)−1,

R±0 (−k) = lim
ε→0+

(D0 ∓
√
k2 +m2 + iε)−1,

(2.6)

where ε > 0 (Indeed Balslev and Helffer [4] prove in detail when these limits exist in terms

of the uniform operator topology on weighted Sobolev spaces). This is analogous to the

limiting absorption principle for free Laplacians (see [1] for exact details on the weighted

Sobolev spaces that these exist):

R00(λ) = lim
ε→0+

(−∆− λ2 − iε)−1, R00(−λ) = lim
ε→0+

(−∆− λ2 + iε)−1,

where again ε > 0. It can then be shown for Im k > 0 that the resolvent acting on

u ∈ S (R3), the Schwartz space of rapidly decreasing functions, can be written

R±0 (k)u(x) =

∫
R3

G±0 (k;x− y)u(y) dy

with integral kernel

G±0 (k;x) =

(
i
α · x
|x|2

+ k
α · x
|x|

+ βm±
√
k2 +m2

)
eik|x|

4π|x|
. (2.7)

Since L2
comp and L2

loc are not Hilbert nor Banach spaces, it is necessary to clarify

what is meant by the notion of holomorphic and meromorphic operator-valued functions

between such spaces. Suppose Ω ⊂ C is an open set. A holomorphic function with

bounded values in B(L2
comp, L

2
loc) is a function A(z) with values in the space of linear

bounded operators L2
comp → L2

loc such that ρ1A(z)ρ2 is holomorphic for ρ1, ρ2 ∈ C∞0 (R3).

It is assumed that such bump functions are contained in L2
comp and L2

loc.
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Similarly an operator-valued function A(z) is a meromorphic function on Ω if it

is holomorphic on Ω \ S, where S ⊂ Ω is discrete, and such that if z0 ∈ S, then near z0

we have

A(z) =

J∑
j=1

Aj
(z − z0)j

+B(z),

with Aj : L2
comp → L2

loc (bounded in the sense ρ1Ajρ2 is bounded for all ρj as above) of

finite rank, and B(z) holomorphic with values in B(L2
comp, L

2
loc) for z in a neighbourhood

of z0. The integer J is assumed finite to signify poles of finite order.

We note in the following and indeed the rest of the thesis that C will denote a

positive constant whose numerical value is not important. Furthermore C may correspond

to different values from line to line.

Theorem 2.3.2 The free Dirac resolvent defined in Definition 2.3.1 is a holomorphic

family of operators in the upper half-plane with operator norm

‖R±0 (k)‖L2→L2 ≤
|
√
k2 +m2 +m|
|k|2

, Im k > 0. (2.8)

It continues analytically to the entire family of operators by the mapping

R±0 (k) : L2
comp(R3)4 → L2

loc(R3)4.

Moreover for any ρ ∈ C∞0 (R3) where diam(supp ρ) < L is finite, we have the estimates

‖ρR±0 (k)ρ‖L2→Hj ≤ C〈k〉jeL(Im k)− , j = 0, 1, (2.9)

where (x)− = max{−x, 0} and 〈x〉 =
√

1 + |x|2.

Proof. We begin by stating the following estimate for the free cut-off Laplacian resolvent

(see for instance [23, section 3.1])

‖ρR00(λ)ρ‖L2(R3)→Hj(R3) ≤ C(1 + |λ|)j−1eL(Imλ)− , j = 0, 1, 2. (2.10)

Then by the standard resolvent norm for selfadjoint operators (see Theorem A.2.1) and

assuming Im k > 0 (or equivalently z ∈ ρ(D0)) we have

‖R±0 (k)‖ = sup
µ∈spec(D0)

1

|µ− z(k)|
=

1

| ±m∓
√
k2 +m2|

≤ |m+
√
k2 +m2|
|k|2

.

From the integral kernel in (2.7), it is clear that if Im k < 0, then the exponential term

will deem G±0 (k;x− y) to be only locally in L2(R3)4.



16

To estimate the cut-off resolvent norm we use (2.5) to write

‖ρR±0 (k)ρ‖L2→Hj = ‖ρ(D0 + z)R00(k)ρ‖L2→Hj

= ‖ρ(−iα · ∇+mβ)R00(k)ρ+ zρR00(k)ρ‖L2→Hj

= ‖ − iα · ∇ρR00(k)ρ+ iα · (∇ρ)R00(k)ρ+ (mβ + z)ρR00(k)ρ‖L2→Hj

≤ ‖∇ρR00(k)ρ‖L2→Hj + C(1 +mβ + |z|)‖ρR00(k)ρ‖L2→Hj

≤ ‖ρR00(k)ρ‖L2→Hj+1 + C〈k〉‖ρR00(k)ρ‖L2→Hj .

For j = 0 we then have from (2.10)

‖ρR±0 (k)ρ‖L2→L2 ≤ CeL(Im k)− +
C〈k〉

(1 + |k|)
eL(Im k)− ≤ CeL(Im k)− ,

whereas j = 1 gives us

‖ρR±0 (k)ρ‖L2→H1 ≤ C(1 + |k|)eL(Im k)− + C〈k〉eL(Im k)− ≤ C〈k〉eL(Im k)− .

The asymptotic behaviour of the free resolvent is captured in the following the-

orem.

Theorem 2.3.3 Let f ∈ S (R3) and suppose k ∈ R \ {0}. If x = rθ then

R±0 (k)f(rθ) =
eikr

4πr

[
βm±

√
k2 +m2 + kα · θ

] ∫
R3

e−ik〈θ,y〉f(y) dy +O
(
r−2
)

as r →∞.

Proof. Writing
√

1 + s = 1 + s/2− s2/8 +O
(
s3
)
, we have the expansion

|x− y| = |x|

√
1− 2〈x,y〉

|x|2
+
|y|2
|x|2

= r

(
1 +

1

2

(
|y|2

r2
− 2〈θ,y〉

r

)
+O

(
r−2
))

= r − 〈θ,y〉+O
(
r−1
)
,

where we have used x/|x| = θ and |x − y| =
√
|x− y|2 =

√
〈x− y,x− y〉. This

expansion is used to write

eik|x−y| = eik(r−〈θ,y〉)eO(1/r) = eik(r−〈θ,y〉) (1 +O
(
r−1
))
.

We also have

|x− y|−1 =
1

|x|
√

1− 2〈x,y〉/|x|2 + |y|2/|x|2

=
1

r

(
1− 1

2

(
|y|2

r2
− 2〈θ,y〉

r

)
+O

(
r−2
))

=
1

r

(
1 +
〈θ,y〉
r

)
+O

(
r−3
)
,



17

where 1/
√

1 + s = 1− s/2 + 3s2/8 +O
(
s3
)
. Then for p ∈ N we write

|x− y|−p =
1

rp

[
1 +
〈θ,y〉
r

+O
(
r−2
)]p

=
1

rp

[
1 + p

〈θ,y〉
r

]
+O

(
r−(p+2)

)
.

We will use these expansions to rewrite the free resolvent kernel (2.7) in powers of r.

Component-wise we have

eik|x−y|

4π|x− y|
=
eik(r−〈θ,y〉)

4πr
+O

(
r−2
)

α · (x− y)

|x− y|2
eik|x−y|

4π
=
α · θ
4πr

eik(r−〈θ,y〉) +O
(
r−2
)

α · (x− y)

|x− y|3
eik|x−y|

4π
= O

(
r−2
)
.

Hence we obtain for f ∈ S (R3) and r →∞

R±0 (k)f(rθ) =
eikr

4πr

[
βm±

√
k2 +m2 + kα · θ

] ∫
R3

e−ik〈θ,y〉f(y) dy +O
(
r−2
)
.

2.4 The perturbed Dirac operator and resonances

Define M4(C) as the set of complex-valued 4 × 4 matrices. In this thesis we consider

electric potentials V in M4(R) that act by multiplication. In particular we assume the

following

Assumption 2.4.1 Let V : R3 → M4(R) be a smooth, compactly supported Hermitian

matrix potential acting by multiplication.

We do not consider perturbations by a magnetic vector potential. We write the

Dirac operator perturbed by a scalar potential V satisfying Assumption 2.4.1 as

DV = D0 + V.

By the Kato-Rellich theorem (see for instance [34, chapter 13]), DV is a selfadjoint oper-

ator in L2(R3)4 with domain H1(R3)4. The spectrum of DV is composed of an essential

spectrum specess(DV ) which coincides with spec(D0), and its eigenvalues (or discrete spec-

trum, specd(DV )) are located within (−m,m) (see [8]). Under the transformation z 7→ k(z)

defined in (2.4), any eigenvalues residing in (−m,m) map to wholly imaginary points {iE′j}

where 0 < E′j < m.
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Under the assumptions of the previous section regarding the meromorphy of

functions from L2
comp(R3)4 to L2

loc(R3)4, we define the full resolvent of the perturbed

Dirac operator and its meromorphic extension.

Theorem 2.4.2 Let V satisfy Assumption 2.4.1. Then the perturbed resolvent

R±V (k) := (DV ∓
√
k2 +m2)−1 : L2(R3)4 → L2(R3)4,

defined for Im k > 0 is a meromorphic family of operators with a finite number of poles,

corresponding to the eigenvalues of DV . It extends to a meromorphic family of operators

for k ∈ C

R±V (k) : L2
comp(R3)4 → L2

loc(R3)4.

Similar to the limits in (2.6), it was proved in [4] that if k ∈ R \ {0} then on

suitable weighted Sobolev spaces the following exist where ε > 0,

R±V (k) = lim
ε→0+

(D0 + V ∓
√
k2 +m2 − iε)−1,

R±V (−k) = lim
ε→0+

(D0 + V ∓
√
k2 +m2 + iε)−1.

Proof of Theorem 2.4.2. We divide the proof into 3 steps.

1. First we show that R±V (k) is a family of meromorphic operators when Im k > 0.

To this end write

(DV ∓
√
k2 +m2)R±0 (k) = I + V R±0 (k), (2.11)

and choose k where Im k is sufficiently large such that by (2.8),

‖V R±0 (k)‖ ≤ ‖V ‖‖R±0 (k)‖ < 1.

Then by the Neumann series theorem, (−1)V R±0 (k) is invertible

(I + V R±0 (k))−1 =

∞∑
n=0

(−V R±0 (k))n.

We can therefore invert (2.11) so that

R±V (k) := (D∓
√
k2 +m2)−1 = R±0 (k)(I + V R±0 (k))−1. (2.12)

Suppose ρ ∈ C∞0 (R3) such that ρV = V on suppV . For Im k > 0 then ρR±0 (k) :

L2(R3)4 → H1(suppV ;C4) (and likewise V R±0 (k)) is a compact operator on L2 by the
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Rellich-Kondrachov theorem (see for instance [24, section 5.7]). Then by analytic Fred-

hom theory (see Theorem A.3.1), R±V (k) is a meromorphic family of operators in the upper

k-plane.

2. To show the meromorphy of R±V (k) in C, again assume ρ ∈ C∞0 (R3) such that

ρV = V on suppV and consider

(I − V R±0 (k)(I − ρ))(I + V R±0 (k)) = I + V R±0 (k)ρ− V R±0 (k)(I − ρ)V R±0 (k).

Since (I − ρ)V R±0 (k) = 0 by the assumptions on ρ then

(I − V R±0 (k)(I − ρ))(I + V R±0 (k)) = I + V R±0 (k)ρ. (2.13)

Again by the arguments above choose Im k � 1 such that ‖V R±0 (k)ρ‖ < 1. Application

of the Neumann series theorem means that (−1)V R±0 (k) is invertible and hence we may

invert (2.13)

(I + V R±0 (k))−1 = (I + V R±0 (k)ρ)−1(I − V R±0 (k)(I − ρ)),

which we use to rewrite (2.12)

R±V (k) = R±0 (k)(I + V R±0 (k)ρ)−1(I − V R±0 (k)(I − ρ)). (2.14)

By (2.9), ρR±0 (k)ρ : L2(R3)4 → H1(suppV ;C4) and therefore ρR±0 (k)ρ is compact on

L2(R3)4 by the Rellich-Kondrachov theorem. Since V = V ρ is bounded then V R±0 (k)ρ =

V ρR±0 (k)ρ is also compact on L2(R3)4. In turn by the analytic Fredholm theorem, we

have a meromorphic continuation of (I + V R±0 (k)ρ)−1 to C.

3. We now show that

(I + V R±0 (k)ρ)−1 : L2
comp(R3)4 → L2

comp(R3)4.

Let χ, χ̃ : L2
comp(R3) → L2

comp(R3) where χρ = ρ and χ̃χ = χ. Then for Im k � 1,

(I + V R±0 (k)ρ)−1 exists as a Neumann series. Hence

(I + V R±0 (k)ρ)−1χ = (I + V R±0 (k)ρ)−1χ̃(I + V R±0 (k)ρ)(I + V R±0 (k)ρ)−1χ

= (I + V R±0 (k)ρ)−1(I + V R±0 (k)ρ)χ̃(I + V R±0 (k)ρ)−1χ

= χ̃(I + V R±0 (k)ρ)−1χ,

(2.15)

as required. Given also that

I − V R±0 (k)(I − ρ) : L2
comp(R3)4 → L2

comp(R3)4,

we combine these with the form of R±V (k) in (2.14) to obtain the meromorphy of R±V (k)

for k ∈ C as a family of operators L2
comp(R3)4 → L2

loc(R3)4.
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We now define resonances of the perturbed Dirac operator and their multiplicities.

Definition 2.4.3 Let V satisfy Assumption 2.4.1. Then,

1. The poles of the meromorphic extension of R±V (k) coincide with the poles of (I +

V R±0 (k)ρ)−1 and are referred to as (scattering) resonances of DV . The two sets

of resonances are denoted by R±, with their union denoted R := R− ∪R+.

2. If k is a resonance of DV then the multiplicity mR(k) is defined by

mR(k) := dim span{A±j (L2
comp)}1≤j≤J , (2.16)

where

R±V (ζ) =
J∑
j=1

A±j
(ζ − k)j

+A±(ζ, k), (2.17)

and A±(ζ, k) is holomorphic for ζ near k.

Summary

In this chapter, we have introduced the Dirac operator and presented some of its basic

spectral properties. Under our change of variable we have rewritten the free and full Dirac

resolvents and shown that the free cut-off Dirac resolvent continues analytically from the

upper k half-plane to C. Moreover the same extension for the full cut-off resolvent is

meromorphic and the poles have in turn been defined as resonances of the perturbed

Dirac operator.
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Chapter 3

Resolvent near threshold energies

In this chapter we study the full resolvent R±V (k) near k = 0. In section 3.1 we obtain the

expansion resembling (2.17) and determine how the operators in each term act. We will

use this expansion to analyse the threshold resonances in chapter 5 when we construct

our Birman-Krĕın trace formula. Moreover we study the exact form of the operator A±

in section 3.2 with a summary of all results presented in Theorem 3.2.5.

3.1 Expansion of the full resolvent near 0

We define the following spaces that the operators in the first two terms of the resolvent

expansion in (3.1) map into.

Definition 3.1.1 Define the following spaces

V± := {v± ∈ H1(R3)4 | (DV ∓m)v± = 0},

U± := {u± ∈ H1
loc(R3)4 | (DV ∓m)u± = 0},

and the orthogonal projection Π± : L2(R3)4 → L2(R3)4 which maps L2(R3)4 functions into

V±.

Theorem 3.1.2 The full resolvent R±V (k) : L2
comp(R3)4 → L2

loc(R3)4 near k = 0 can be

expressed

R±V (k) = ∓Π±
k2

(
√
k2 +m2 +m) +

iA±
k

√√
k2 +m2 +m+B±(k), (3.1)
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where k 7→ B±(k) is holomorphic near 0, and the operators Π± : L2(R3)4 → V±, A± :

L2
comp → L2

loc satisfying (DV ∓m)Π± = (DV ∓m)A± = 0 are symmetric.

Proof. We divide the proof into 4 steps.

1. For Im k > 0 and assuming |k| � {E′j}, where {E′j} is the set of eigenvalues of

DV mapped onto the positive imaginary axis, then the first result of Theorem 2.3.2 and

analyticity of k near 0 suggests the decomposition

R±V (k) = ∓Ã±
k2

(
√
k2 +m2 +m) + i

A±
k

√√
k2 +m2 +m+B±(k), (3.2)

where A±, Ã± : L2
comp(R3)4 → L2

loc(R3)4 are finite rank operators and B±(k) is holo-

morphic near k = 0. The ∓ coefficients will be apparent in the final step of this proof

when we show that Ã± = Π±.

2. The property (DV ∓ m)Ã± = (DV ∓ m)A± = 0 follows from the identity I =

(DV ∓
√
k2 +m2)R±V (k), using the decomposition (3.2), and equating the coefficients of

k−α where α = {1, 2}:

I = (DV ∓
√
k2 +m2)R±V (k)

= (DV ∓m)

[
∓Ã±
k2

(
√
k2 +m2 +m) + i

A±
k

√√
k2 +m2 +m

]

∓ (
√
k2 +m2 −m)

[
∓Ã±
k2

(
√
k2 +m2 +m) + i

A±
k

√√
k2 +m2 +m

]
+ (DV ∓

√
k2 +m2)B±(k).

The denominators for the terms containing the prefactor (
√
k2 +m2 −m) cancel:

1

k2
(
√
k2 +m2 −m)(

√
k2 +m2 +m) = 1,

1

k
(
√
k2 +m2 −m)

√
±(
√
k2 +m2 +m) =

√
±1

√
(
√
k2 +m2 −m),

and we therefore require the stated property.

3. To show symmetry of Ã± and A±, set ψ, φ ∈ L2
comp(R3)4 and 0 < t� E′j so that
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we have by selfadjointness of R±V (it)

∓2m〈Ã±ψ , φ〉 = ∓ lim
t→0

(
√
m2 − t2 +m)〈Ã±ψ , φ〉

= lim
t→0

〈
−t2

(
R±V (it)− A±

t

√√
m2 − t2 +m−B(it)

)
ψ , φ

〉
= lim

t→0
〈−t2R±V (it)ψ , φ〉 = lim

t→0
〈ψ ,−t2R±V (it)φ〉

= lim
t→0

〈
ψ ,−t2

(
R±V (it)− A±

t

√√
m2 − t2 +m−B(it)

)〉
= ∓ lim

t→0
(
√
m2 − t2 +m)〈ψ, Ã±φ〉 = ∓2m〈ψ, Ã±φ〉,

(3.3)

and

i
√

2m〈A±ψ , φ〉 = lim
t→0

i

√
(
√
m2 − t2 +m〈A±ψ , φ〉

= lim
t→0
〈it

(
R±V (it)± Ã±

(it)2
(
√
m2 − t2 +m)−B±(it)

)
ψ , φ〉

= lim
t→0

it〈ψ ,

(
R±V (it)± Ã±

(it)2
(
√
m2 − t2 +m)−B±(it)

)
φ〉

= lim
t→0

it〈ψ , iA±
it

√√
−t2 +m2 +mφ〉 = i

√
2m〈ψ ,A±φ〉.

4. Finally we explore the properties of Ã±. First Ã± : L2(R3)4 → L2(R3)4 is a

bounded operator by Theorem 2.3.2 and so (3.3) holds for all ψ, φ ∈ L2(R3)4. As we have

also seen, (DV ∓m)Ã± = 0 and so the range of Ã± is contained in V± as per Definition

(3.1.1). To show that indeed Ã± = Π± then for any v± ∈ V±, φ ∈ L2
comp(R3)4 and

|t| � {E′j} we have by using (DV ∓m)v± = 0,

〈v± , φ〉 = 〈R±V (it)
[
(DV ∓m)∓ (

√
m2 − t2 −m)

]
v± , φ〉

= ∓(
√
m2 − t2 −m)〈[
±Ã±
t2

(
√
m2 − t2 +m) +

A±
t

√√
m2 − t2 +m+B±(it)

]
v± , φ

〉
−−→
t→0

〈Ã±v± , φ〉.

Theorem 3.1.3 For the free Dirac resolvent kernel in (2.7) we list the following useful

relations

G±0 (k;x− y) =

[
iα · (x− y)

|x− y|2
+ k

α · (x− y)

|x− y|
+ βm±

√
k2 +m2

]
eik|x−y|

4π|x− y|
,

G±0 (0;x− y) =

[
iα · (x− y)

|x− y|2
+m(β ± I)

]
1

4π|x− y|
,

∂kG
±
0 (k;x− y) =

[
imβ ± i

√
k2 +m2 +

k

|x− y|

(
iα · (x− y)± 1√

k2 +m2

)]
eik|x−y|

4π
,
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∂kG
±
0 (0;x− y) = (β ± I)

im

4π
.

Proof. The first relation was introduced in (2.7) and setting k = 0 immediately gives the

second. For ∂kG
±
0 (k;x− y) we have

∂kG
±
0 (k;x− y) =

[
iα · (x− y)

|x− y|2
+ k

α · (x− y)

|x− y|
+ βm±

√
k2 +m2

]
∂k

eik|x−y|

4π|x− y|

+

[
α · (x− y)

|x− y|
± ∂k

√
k2 +m2

]
eik|x−y|

4π|x− y|

=

[
iα · (x− y)

|x− y|2
+ k

α · (x− y)

|x− y|
+ βm±

√
k2 +m2

]
i|x− y|eik|x−y|

4π|x− y|

+

[
α · (x− y)

|x− y|
± k√

k2 +m2

]
eik|x−y|

4π|x− y|

=
eik|x−y|

4π

[
− α · (x− y)

|x− y|2
+ iβm± i

√
k2 +m2 +

α · (x− y)

|x− y|2

+
k

|x− y|

(
iα · (x− y)± 1√

k2 +m2

)]
,

which provides us with the third relation after cancelling the |x − y|−2 terms. Again

setting k = 0 we obtain ∂kG
±
0 (0;x− y) for the final result.

Theorem 3.1.4 Let A± be defined as Theorem 3.1.2. Then the image of A± is not

contained in L2(R3)4 but in U±. Moreover if u± ∈ U± and V satisfies Assumption 2.4.1

then u± = R±0 (0)g± where g± = (D0 ∓m)u± = −V u± ∈ L2
comp(R3)4.

Proof. We divide the proof into 3 steps.

1. Injectivity of R±0 (k) on L2
comp(R3)4 (the left inverse being D0∓

√
k2 +m2) implies

for k near 0

R±V (k) = R±0 (k)

(
C±
k2

(
√
k2 +m2 +m) +

D±
k

√√
k2 +m2 +m+ E±(k)

)
, (3.4)

where C±, D±, E±(k) : L2
comp(R3)4 → L2

comp(R3)4 and E±(k) is holomorphic near k = 0.

This form resembles the identity in (2.14). Let ψ ∈ L2
comp(R3)4. Then we have the

expansion

i
√

2mA±ψ = i

[√√
k2 +m2 +mA±ψ

]
k=0

=

[(
kR±V (k)± Π±

k
(
√
k2 +m2 +m)− kB±(k)

)
ψ

]
k=0

+
∑
j=1

kj

j!
∂jk

[(
kR±V (k)± Π±

k
(
√
k2 +m2 +m)− kB(k)

)
ψ

]
k=0

.

(3.5)
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If we consider only the coefficients of k0 and use (3.4) then the first term on the right-hand

side of (3.5) becomes[
kR±V (k)ψ

]
k=0

=

[
R±0 (k)

(
C±
k

(
√
k2 +m2 +m) +D±

√√
k2 +m2 +m

)
ψ

]
k=0

=

[∫
R3

(
√
k2 +m2 +m)

(
iα · (x− y)

|x− y|2
+m(β ± I)

)
eik|x−y|

4π|x− y|
(D±ψ)(y) dy

]
k=0

+

[∫
R3

√√
k2 +m2 +m

α · (x− y)

|x− y|2
eik|x−y|

4π
(C±ψ)(y) dy

]
k=0

.

Taking the limit we find that (3.5) becomes

i
√

2mA±ψ = 2m

∫
R3

(
iα · (x− y)

|x− y|2
+m(β ± I)

)
(D±ψ)(y)

4π|x− y|
dy

+
√

2m

∫
R3

α · (x− y)

|x− y|2
(C±ψ)(y)

4π
dy +

∑
j=1

kj

j!
∂jk
[
kR±V (k)ψ

]
k=0

,

where
∫
R3(D±ψ)(y)/|x − y| dy is not in L2(R3)4. We now show that this term does not

cancel from the remaining derivative terms in the Taylor expansion. Hence for any m ∈ N

km

m!
∂mk

[
kR±V (k)ψ

]
k=0

=
km

m!
∂mk

[
R±0 (k)

(
C±
k

(
√
k2 +m2 +m) +D±

√√
k2 +m2 +m

)
ψ

]
k=0

+O (k).

Equating terms of order k0, we see no term containing D± as k → 0 since we see from the

first relation in Theorem 3.1.3 that ∂jkR
±
0 (k) = O (k) for j = 0, . . . ,m.

2. We now show that the range of A± lies in U±. For all k ∈ C, where (D0 ∓
√
k2 +m2)R±V (k) : L2

comp → L2
comp we have

R±V (k) = R±0 (k)(D0 ∓
√
k2 +m2)R±V (k), (3.6)

and again expand as in (3.5) for ψ ∈ L2
comp(R3)4 such that by using (3.6) and collecting

k0 terms we have

i
√

2mA±ψ =
[
kR±0 (k)(D0 ∓

√
k2 +m2)R±V (k)ψ

]
k=0

+
∑
j=1

kj

j!
∂jk
[
kR±V (k)ψ

]
k=0

. (3.7)

Taking the non derivative term in (3.7), collecting k0 terms and taking the limit we simply

have [
kR±0 (k)(D0 ∓

√
k2 +m2)R±V (k)ψ

]
k=0

= i
√

2mR±0 (0)(D0 ∓m)A±ψ,
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whilst for each j ≥ 1 derivative we have by collecting k0 terms:

kj

j!
∂jk
[
kR±V (k)ψ

]
k=0

=
kj

j!
∂jk

[
∓Π±

k
(
√
k2 +m2 +m)ψ

]
k=0

+O (k)

= ∓k
j

j!

[
(∂j−1
k k−1)∂k(

√
k2 +m2 +m)

(
j

j − 1

)
Π±ψ

]
k=0

= ∓(−1)j
[

k

(
√
k2 +m2 +m)

Π±ψ

]
k=0

= 0.

Hence (3.7) simplifies to

A±ψ = R±0 (0)(D0 ∓m)A±ψ. (3.8)

This together with the property (DV ∓m)A± = 0 from Theorem 3.1.2 is enough to satisfy

Definition 3.1.1 that the range of A± lies in U±.

3. Let u± ∈ U±. By (3.8), we write u± = R±0 (0)g± ∈ U± where g± = (D0 ∓m)u± ∈

L2
comp(R3)4. Proving g± = −V u± follows from Definition 3.1.1 and the result from the

previous step: 0 = (DV ∓m)A± = (D0 ∓m)A± + V A±.

3.2 Exact form of the full resolvent

In this section we find, for completeness, an explicit form of the operator A±. To achieve

this we analyse the far field behaviour of functions in V± before determining how they

differ from those in U±. This enables us to find a relationship between elements in V± and

U±, and moreover, ascertain that there is only one unique element of U±. Since the image

of A± is contained in U±, this will form our basis for the image of A±.

Theorem 3.2.1 Let v± ∈ V± and assume V satisfies Assumption 2.4.1. Then,

1. v± = R±0 (0)f± where f± = (D0 ∓m)v± = −V v± ∈ L2
comp(R3)4 and

∫
R3 f± = 0.
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2. Uniformly in ω ∈ S2 and locally uniformly in y ∈ R3,

v±(y + rω)

=
i

4πr3

3

3∑
i,j=1

αiωiωjb
±
j (v±)−

3∑
j=1

αjb
±
j (v±)


+
m(β ± I)

4πr2

∑
j

b±j (v±)ωj +
3m(β ± I)

8πr3

∑
j,k

(B±jk(v±)− 2b±j (v±)yk)ωjωk

+
m(β ± I)

8πr3

−∑
j

B±jj(v±) + 2
∑
`

b±` (v±)y`

+O
(
r−4
)
, r → +∞,

(3.9)

where

b±j (v±) =

∫
R3

xj(D0 ∓m)v±(x) dx, B±jk(v±) =

∫
R3

xjxk(D0 ∓m)v±(x) dx.

(3.10)

3. For r > 0 and locally uniformly in y ∈ R3 then

I±v (r,y) :=

∫
S2
v±(y + rω) dω = O

(
r−4
)
,

Ĩ±v (r,y) :=

∫
S2

(α · ω)v±(y + rω) dω = O
(
r−2
)
,

(3.11)

as r →∞.

Proof. We divide the proof into 4 steps.

1. Using (3.6) we have by equating k−2 factors

Π± = R±0 (0)(D0 ∓m)Π±, (D0 ∓m)Π± : L2
comp → L2

comp.

The range of this operator lies in V± by Theorem 3.1.2. If we set f± = (D0 ∓ m)v± ∈

L2
comp(R3)4 then v± = R±0 (0)f± is in the range of Π±. Again by Theorem 3.1.2 we have

(DV ∓m)Π± = 0 and so we see that f± = (D0 ∓m)v± = −V v±.

2. Let r > 0 and ω ∈ S2 so rω ∈ R3. Using the second relation in Theorem 3.1.3 we

then write for v± = R±0 (0)f± ∈ V±

v±(y + rω) = R±0 (0)f±(y + rω)

=
1

4π

∫
R3

(
−iα · (x− (y + rω))

|x− (y + rω)|2
+m(β ± I)

)
f±(x)

|x− (y + rω)|
dx,

where the −1 factor occurs due to the fact that the second relation in Theorem (3.1.3) is

with respect to y and not x as is the case here. Writing x− (y+ rω) = −r[ω− (x−y)/r]
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we have

v±(y + rω) =
i

4πr2

∫
R3

α · [ω − (x− y)/r]

|ω − (x− y)/r|3
f±(x) dx+

m(β ± I)

4πr

∫
R3

f±(x)

|ω − (x− y)/r|
dx.

(3.12)

Next we consider Taylor expansions of the denominators on the right-hand side of (3.12).

Since (1 + s)−1/2 = 1− s/2 + 3s2/8 +O
(
s3
)

and 〈ω ,ω〉 = 1 then

1

|ω − (x− y)/r|
=

1√
1− 2〈ω ,x− y〉/r + |x− y|2/r2

= 1 +
〈ω ,x− y〉

r
− |x− y|

2

2r2
+

3〈ω ,x− y〉2

2r2
+O

(
r−3
)
.

Hence the second term on the right-hand side of (3.12) is

1

r

∫
R3

f±(x)

|ω − (x− y)/r|
dx

=
1

r

∫
R3

f±(x)

[
1 +
〈ω ,x− y〉

r
− |x− y|

2

2r2
+

3〈ω ,x− y〉2

2r2

]
dx+O

(
r−4
)
.

(3.13)

We use the previous expansion to write

1

|ω − (x− y)/r|3
=

[
1 +
〈ω ,x− y〉

r
+O

(
r−2
)]3

= 1 + 3
〈ω ,x− y〉

r
+O

(
r−2
)
.

For the first term on the right-hand side of (3.12) we therefore have

1

r2

∫
R3

α · [ω − (x− y)/r]

|ω − (x− y)/r|3
f±(x) dx

=
1

r2

∫
R3

α · [ω − (x− y)/r]

[
1 +

3〈ω ,x− y〉
r

]
f±(x) dx+O

(
r−4
)
.

(3.14)

Bringing together (3.13) and (3.14) with (3.12) we see that

v±(y + rω) =
m(β ± I)

4πr

∫
R3

f±(x) dx+O
(
r−2
)
. (3.15)

By definition v± ∈ L2(R3)4 but due to the prefactor r−1 we have that 1
r

∫
R3 f±(x) dx /∈

L2(R3)4. We therefore require ∫
R3

f±(x) dx = 0. (3.16)

3. Equation (3.16) greatly simplifies our expansion of v±(y + rω) in (3.12). To

expand the first term on the right-hand side of (3.12) we use (3.14) to write

1

r2

∫
R3

α · [ω − (x− y)/r]

|ω − (x− y)/r|3
f±(x) dx

=
1

r2

∫
R3

α · [ω − (x− y)/r]

[
1 +

3〈ω ,x− y〉
r

]
f±(x) dx+O

(
r−4
)

=
3

r3

∫
R3

∑
i,j

αiωiωjxjf±(x) dx− 1

r3

∫
R3

∑
i

αixif±(x) dx+O
(
r−4
)
.
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Hence by (3.10) we obtain the first and second terms on the right-hand side of (3.9)

i

4πr2

∫
R3

α · [ω − (x− y)/r]

|ω − (x− y)/r|3
f±(x) dx =

i

4πr3

3
∑
i,j

αiωiωjb
±
i (v±)−

∑
i

αib
±
i (v±)


+O

(
r−4
)
.

To expand the second term on the right-hand side of (3.12) consider first (3.13)

1

r

∫
R3

f±(x)

|ω − (x− y)/r|
dx

=
1

r

∫
R3

f±(x)

[
〈ω ,x− y〉

r
− |x− y|

2

2r2
+

3〈ω ,x− y〉2

2r2

]
dx+O

(
r−4
)

=
1

r2

∫
R3

f±(x)
∑
i

ωixi dx− 1

2r3

∫
R3

f±(x)
∑
i

[
x2
i − 2xiyi

]
dx

+
3

2r3

∫
R3

f±(x)
∑
i,j

[ωixiωjxj − 2ωixiωjyj ] dx+O
(
r−4
)
,

and by (3.10)

m(β ± I)

4πr

∫
R3

f±(x)

|ω − (x− y)/r|
dx

=
m(β ± I)

4πr2

∑
i

b±i (v±)ωi −
m(β ± I)

8πr3

[∑
i

B±ii (v±)− 2
∑
i

yib
±
i (v±)

]

+
3m(β ± I)

8πr3

∑
i,j

[
B±ij (v±)− 2yib

±
j (v±)

]
ωiωj +O

(
r−4
)
,

which provides us with the remaining explicit terms on the right-hand side of (3.9).

4. To show (3.11) we note that∫
S2
ωj dω = 0,

∫
S2
ωjωk dω =

4π

3
δjk,

∫
S2
ωjωkω` dω = 0,

where δjk is the Kronecker delta. For I±(r,y) the spherical integrals of all terms on the

right-hand side of (3.9) either cancel or are equal to zero up to the power r−4. Explicitly

we have ∑
j

b±j (v±)

∫
S2
ωj dω = 0,

whilst we have cancellation amongst the r−3 terms. This occurs since the first 2 terms on

the right-hand side of (3.9) cancel. Moreover writing

3m(β ± I)

8πr3

∑
i,j

[
B±ij (v±)− 2b±i (v±)yj

] ∫
S2
ωiωj dω

=
3m(β ± I)

8πr3

∑
i,j

[
B±ij (v±)− 2b±i (v±)yj

](4π

3
δij

)

=
m(β ± I)

2πr3

[∑
i

B±ii (v±)− 2
∑
i

yib
±
i (v±)

]
,
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cancels the final two r−3 terms on the right-hand side of (3.9). For Ĩ±(r,y) we retain only

one term,

Ĩ±v (r,y) =

∫
S2

∑
i

αiωiv(y + rω) dω

=
∑
i,j

αi

∫
S2
ωi

[
m(β ± I)

4πr2
b±j (v±)ωj

]
dω +O

(
r−4
)

=
m(β ± I)

3r2

∑
i

αib
±
i (v±) +O

(
r−4
)
.

Therefore Ĩ±(r,y) = O
(
r−2
)

as r →∞.

Theorem 3.2.2 Let v ∈ V±, φ ∈ L2
comp(R3;R4) and set u± := R±0 (0)φ ∈ L2

loc(R3)4. Then

the following limit, independent of y ∈ R3 exists:

〈v±, u±〉0 := lim
R→∞

∫
B(y;R)

v±(x)u±(x) dx = −i〈H±v , φ〉+m(β ± I)〈K±v , φ〉, (3.17)

where we define

H±v (y) :=
1

4π

∫ ∞
0

Ĩ±v (r,y) dr, K±v (y) :=
1

4π

∫ ∞
0

rI±v (r,y) dr. (3.18)

Proof. We divide the proof into 2 steps.

1. We first show locally uniformly in y,y′ ∈ R3 and for large R that

∂yj

∫
B(y′;R)

[
−iα · (x− y)

|x− y|2
+m(β ± I)

]
v±(x)

|x− y|
dx = O

(
r−1
)
. (3.19)

Indeed using the fundamental theorem of calculus, ∂yjr = ωj , and x = y′ + rω we have

∂yj

∫
B(y′;R)

v±(x)

|x− y|

[
−iα · (x− y)

|x− y|2
+m(β ± I)

]
dx

= ∂yj

∫
S2

∫ R

0

v±(y′ + rω)

|y′ + rω − y|

[
−iα · (y′ + rω − y)

|y′ + rω − y|2
+m(β ± I)

]
r2 dr dω

= R2

∫
S2
ωj

v±(y′ +Rω)

|y′ +Rω − y|

[
−iα · (y′ +Rω − y)

|y′ +Rω − y|2
+m(β ± I)

]
dω

= R2

∫
S2
ωjv±(y′ +Rω)

−iα · (y′ − y +Rω)

|y′ − y +Rω|3
dω

+m(β ± I)R2

∫
S2
ωj

v±(y′ +Rω)

|y′ − y +Rω|
dω.

Since v±(x) = O
(
|x|−2

)
then the two terms above on the right-hand side are O

(
R−2

)
and O

(
R−1

)
respectively. Then (3.19) holds true locally uniformly in y,y′ and implies
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that ∫
B(y;R)

[
−iα · (x− y)

|x− y|2
+m(β ± I)

]
v±(x)

|x− y|
dx

=

∫
B(y′;R)

[
−iα · (x− y)

|x− y|2
+m(β ± I)

]
v±(x)

|x− y|
dx+O

(
R−1

)
.

2. For each fixed y′ ∈ R3 where x− y = rω and φ ∈ L2
comp(R3)4 we have

−i〈H±v , φ〉+m(β ± I)〈K±v , φ〉

= lim
R→∞

1

4π

∫
R3

∫ R

0

∫
S2

[
−iα · rω

r2
+m(β ± I)

]
v±(y + rω)

r
r2 dω drφ(y) dy

= lim
R→∞

1

4π

∫
R3

∫
B(y;R)

[
−iα · (x− y)

|x− y|2
+m(β ± I)

]
v±(y + rω)

|x− y|
dxφ(y) dy

= lim
R→∞

1

4π

∫
R3

∫
B(y′;R)

[
−iα · (x− y)

|x− y|2
+m(β ± I)

]
v±(y + rω)

|x− y|
dxφ(y) dy +O

(
R−1

)
= lim

R→∞

1

4π

∫
B(y′;R)

v±(x)

[∫
R3

(
iα · (x− y)

|x− y|2
+m(β ± I)

)
φ(y)

|x− y|
dy

]
dx

= lim
R→∞

∫
B(y′;R)

v±(x)u±(x) dx = 〈v± , u±〉0.

Theorem 3.2.3 The spaces V± and U± are related by

V± =

{
v± ∈ U± :

∫
R3

(D0 ∓m)v±(x) dx = 0

}
, (3.20)

and we define the multiplicity

m̃R(±m) := dim(U±/V±) = {0, 1}. (3.21)

Moreover if u± ∈ U± then

u± +
m
√

2m

4π
(β ± I)A±V

∫
R3

(D0 ∓m)u± ∈ V±. (3.22)

Proof. We divide the proof into 2 steps.

1. Clearly V± ⊂ U±. Theorem 3.2.1 indicates that 0 =
∫
R3 f± =

∫
R3(D0 ∓ m)v±

which gives rise to (3.20). However the method leading to the expansion (3.15) can also

be applied to u± ∈ U± in which case the 1/r term is non-zero. This leads to (3.21).

2. Extending the notation in Theorem 3.2.2 and analogous to that in Theorem 3.2.1,

set u± = R±0 (0)g± such that g± = (D0 ∓m)u± = −V u± ∈ L2
comp(R3)4. If ρ ∈ C∞0 (R3)

such that ρ = 1 on suppV then we consider the Taylor expansion of u±:

u± = R±V (k)ρ(DV ∓
√
k2 +m2)

∑
j=0

kj

j!
[∂jkR

±
0 (k)g±]k=0. (3.23)



32

Justification for inserting the bump function ρ follows from (2.11). Since (3.23) is holo-

morphic on the left-hand side, then the poles on the right-hand side must cancel. Then

collecting k0 terms in the non-derivative term (3.23) becomes

R±V (k)ρ(DV ∓
√
k2 +m2)

[
R±0 (k)g±

]
k=0
−−−→
k→0

0,

since (DV ∓m)u± = 0. Next consider the first derivative term on the right-hand side of

(3.23). Collecting k0 terms again and using the final relation in Theorem 3.1.3 we have

kR±V (k)(DV ∓
√
k2 +m2)

[
∂kR

±
0 (k)g±

]
k=0
−−−→
k→0

iA±(DV ∓m)
√

2m

∫
im

4π
(β ± I)g±.

This remaining term lies in the range of U±. From (3.23) we note that any further k0

terms will be mapped into Π±. Hence

u± +
m
√

2m

4π
(β ± I)A±(DV ∓m)

∫
g± ∈ V±.

To obtain (3.22) we show that

(β ± I)(D0 ∓m)

∫
R3

g±(y) dy = (β ± I)(−iα · ∇+ βm∓m)

∫
R3

g±(y) dy = 0,

which follows from α · ∇x
∫
R3 g±(y) dy = 0 and (β ± I)(β ∓ I) = β2 − I = 0 by the

conditions in (2.1).

Theorem 3.2.4 The operator A± has the explicit form

A± = m̃R(±m)(w± ⊗ w±),

where w± is the unique element of U± satisfying

w±(x) = − 1√
2m

h

|x|
+O

(
|x|−2

)
, h = (1, 1, 1, 1)>. (3.24)

Proof. We divide the proof into 2 steps.

1. Let v± ∈ V±, ψ ∈ L2
comp(R3)4 and ρ ∈ C∞0 (R3) such that ρV = V and ρψ = ψ. If

t� E′j then we write

〈v± , ψ〉 = 〈R±V (it)(DV ∓
√
m2 − t2)v± , ψ〉

= 〈[(DV ∓m)∓ (
√
m2 − t2 −m)]v± , R

±
V (it)ψ〉

= ∓(
√
m2 − t2 −m)〈v± , R±0 (it)(D0 ∓

√
m2 − t2)R±V (it)ψ〉,
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where we have used (DV ∓m)A± = 0 from Theorem 3.1.2. Explicitly we write

〈v± , ψ〉

= ∓(
√
m2 − t2 −m)

∫
R3

v±(x)

∫
R3

[
iα · (x− y)

|x− y|2
+ it

α · (x− y)

|x− y|
+ βm±

√
m2 − t2

]
× e−t|x−y|

4π|x− y|
(D0 ∓

√
m2 − t2)R±V (it)ψ(y) dy dx.

Let rω = x− y where r > 0, ω ∈ S2. Hence

〈v± , ψ〉

= ∓(
√
m2 − t2 −m)

∫
R3

lim
R→∞

∫ R

0

∫
S2
v±(y + rω)

×
[
−iα · ω(1 + rt) + r(βm±

√
m2 − t2)

] e−tr
4π

(D0 ∓
√
m2 − t2)R±V (it)ψ(y) dω dr dy

= ∓(
√
m2 − t2 −m)

∫
R3

lim
R→∞

∫ R

0

[
−iĨ±v (r,y)(1 + rt) + r(βm±

√
m2 − t2)I±v (r,y)

]
× e−tr

4π
(D0 ∓

√
m2 − t2)R±V (it)ψ(y) dr dy,

where we have used (3.11). We proceed with the expansion ex =
∑

j=0 x
j/j!. For conver-

gence we require for ∫ ∞
0

rαI±v (r,y) dr,

∫ ∞
0

rβ Ĩ±v (r,y) dr,

that α < 3 and β < 1 by (3.11). If we introduce

J±v (y) := − 1

4π

∫ ∞
0

r2I±v (r,y) dr,

and use (3.18) we write

〈v± , ψ〉

= ∓(
√
m2 − t2 −m)

4π

∫
R3

lim
R→∞

∫ R

0

[
−iĨ±v (r,y) + r(βm±

√
m2 − t2)I±v (r,y) (1− rt)

]
× (D0 ∓

√
m2 − t2)R±V (it)ψ(y) dr dy +O

(
t3/2
)

= ∓(
√
m2 − t2 −m)

∫
R3

[
−iH±v (y) + (βm±

√
m2 − t2)

(
K±v (y) + tJ±v (y)

)]
× (D0 ∓

√
m2 − t2)R±V (it)ψ(y) dy +O

(
t3/2
)
.

(3.25)

From (3.1) we note

∓(
√
m2 − t2 −m)R±V (it) = Π± ∓ iA±

√√
m2 − t2 −m+O

(√
m2 − t2 −m

)
,
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such that we rewrite (3.25) as

〈v± , ψ〉 = −i〈H±v , (D0 ∓
√
m2 − t2)Π±ψ〉

− i〈H±v , (∓i)
√√

m2 − t2 −m(D0 ∓
√
m2 − t2)A±ψ〉

+ (βm±
√
m2 − t2)〈K±v , (D0 ∓

√
m2 − t2)Π±ψ〉

+ (βm±
√
m2 − t2)〈K±v , (∓i)

√√
m2 − t2 −m(D0 ∓

√
m2 − t2)A±ψ〉

+ t(βm±
√
m2 − t2)〈J±v , (D0 ∓

√
m2 − t2)Π±ψ〉

+ t(βm±
√
m2 − t2)〈J±v , (∓i)

√√
m2 − t2 −m(D0 ∓

√
m2 − t2)A±ψ〉

+O
(√

m2 − t2 −m
)
.

Collect
√√

m2 − t2 −m terms, let t→ 0 and use (3.17) so that we have

0 = −i〈H±v , (D0 ∓m)A±ψ〉+m(β ± I)〈K±v , (D0 ∓m)A±ψ〉

= 〈v± , R±0 (0)(D0 ∓m)A±ψ〉0 = 〈v± , A±ψ〉0.
(3.26)

2. We now concentrate on (3.26) which suggests that we have some form of orthogon-

ality between v± ∈ V± and A±ψ ∈ U± on the inner product defined by (3.17). Trivially

if m̃(±m) = 0 then the sets U± and V± coincide exactly and we imply A± = 0. Now

consider when m̃(±m) = 1. Existence and uniqueness of the element w± defined in (3.24)

follow the arguments as in the proof of Theorem 3.2.3. The range of A± is contained in

the span of w±. As A± is symmetric (see Theorem 3.1.2) we have for some c ∈ C

A± = c(w± ⊗ w±).

The constant c can be determined by inserting w± into (3.22):

V± 3 w± +
√

2m
m

4π
(β ± I)A±V

∫
R3

g̃±(x) dx, (3.27)

where we have set g̃± = (D0 ∓m)w± ∈ L2
comp(R3)4 and w± = R±0 (0)g̃± ∈ L2

loc(R3)4. To

determine
∫
R3 g̃±(x) dx we expand w± as in the proof of Theorem 3.2.1. Analogous to

(3.15) we obtain

w±(x) =
m(β ± I)

4πr

∫
R3

g̃±(x) dx+O
(
r−2
)
. (3.28)

Unlike the case for v± ∈ V±, the first term on the right-hand side is non-zero since we

have shown that we require a r−1 term for w±. Comparing the r−1 terms in (3.24) and

(3.28) we have

− h√
2m

=
m(β ± I)

4π

∫
R3

g̃±(x) dx,
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or ∫
R3

g̃±(x) dx = − 4π

m
√

2m
(β ± I)−1h. (3.29)

Insert (3.29) into (3.27) and using A±V h = cw± we find

V± 3 w± − cw±,

or c = 1.

Summary

In this chapter, we constructed the full resolvent of the Dirac operator near the threshold

points. In section 3.1 we proved the basic properties of Theorem 3.1.2 and why that form

exists. In section 3.2 we studied the exact form of the operator A±. The final result is

summarized below and will be used in the proof for our Birman-Krĕın trace formula in

chapter 5 when dealing with threshold resonances.

Theorem 3.2.5 Let V satisfy Assumption 2.4.1 and assume mR(±m) > 0. Then near

k = 0 we have the decomposition for the full resolvent

R±V (k) = ∓Π±
k2

(
√
k2 +m2 +m) +

m̃R(±m)

k
(w± ⊗ w±)

√√
k2 +m2 +m+B±(k),

where k → B±(k) is holomorphic near k = 0, Π± is the orthogonal and symmetric projec-

tion defined in Definition 3.1.1, and the multiplicity m̃R(±m) and w± are defined respect-

ively by (3.21) and (3.24).
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Chapter 4

The Dirac scattering matrix

In this chapter we introduce some concepts from scattering theory that will be used

throughout the remainder of this thesis. The key ingredient is the scattering operator

that maps between the initial and final states of a system perturbed by a potential V . In

general there are two main approaches to scattering theory; the inverse problem assumes

that the scattering operator is known and hence used to determine V . If, on the contrary,

V is known, then studying the direct problem determines the scattering operator. Since

we have outlined the properties of V in Assumption 2.4.1 we use the latter approach here.

In section 4.1 we introduce the concept of scattering states and the scattering

operator for the Dirac system. These standard definitions and results can be found in [79]

and references therein. With this in mind, in section 4.2 we define the scattering matrix,

S±(k), as a mapping between incoming and outgoing terms of the solutions to the Dirac

eigenvalue problem

(DV ∓
√
k2 +m2)w± = 0. (4.1)

We finish the chapter by proving several properties of S±(k) and detS±(k) which will be

used later in the thesis.

4.1 Scattering states

Standard arguments in spectral theory state that the Hilbert space H can be decomposed

into the orthogonal spectral subspaces H = Hpp ⊕Hcont where Hpp is the closure of the
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span of eigenvectors of DV and Hcont corresponds to scattering states. If ψ ∈ Hcont then

lim
T→∞

1

T

∫ T

0
‖χ(|x| < R)e−iDV tψ‖2 dt = 0,

where χ is the indicator function. If we consider a particle state ψ(t) passing through

the interaction region of the potential V , then we expect the external forces to affect the

direction that ψ(t) leaves the region of influence (see Figure 4.1). Our assumption that

V has compact support suggests that the state ψ(t) = e−iDV tψ may be approximated by

solutions of the free Dirac equation φ±(t) = e−iD0tφ±, φ± ∈ H as t→ ±∞:

lim
t→±∞

‖e−iDV tψ − e−iD0tφ±‖ = 0. (4.2)

We introduce the Møller wave operators

W± = s–lim
t→±∞

eiDV te−iD0t : H → Hcont,

that map the initial (W−) and final (W+) states to ψ(t). A key question in scattering

theory is whether these operators exist for a pair of Hamiltonians (H,H0). Indeed, under

our assumptions on V , W± exist for the pair (DV ,D0) and, moreover, the completeness

property in (4.2) holds (see [79]). Such a system is termed asymptotically complete and as

a consequence we can use the Møller operators to define the scattering operator

S := W ∗+W− : H → H,

that maps scattering states from t = −∞ to t = +∞. It can be shown that S commutes

with D0 and as a result, can be represented by the scattering matrix S±(k). In the next

section we explore further the properties of S±(k).

4.2 The scattering matrix and its properties

We first define the concepts of incoming and outgoing solutions. These will be used in the

definition of the scattering matrix. The reader should note these definitions and not to

confuse them with the ± notation introduced in section 2.3 for the sign of z.

Definition 4.2.1 Any solution u± to (DV ∓
√
k2 +m2)u± = f± where V satisfies As-

sumption 2.4.1, for k ∈ R \ {0} and f± ∈ L2
comp(R3)4 is outgoing if

u± = R±0 (k)g±, (4.3)
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ψ(t)

φ−(t)

φ+(t)

Figure 4.1: Schematic of a scattering process where the grey area indicates the support of

V . Outside this interaction region, as t → −∞ the state ψ(t) is approximated by φ−(t)

and likewise by φ+(t) as t→∞.

holds for some g± ∈ L2
comp(R3)4. Similarly u± is incoming if u± = R±0 (−k)g± provided

k ∈ R \ {0} and some g± ∈ L2
comp(R3)4 exists.

Using (2.12) we can rewrite (4.3) such that

u± = −R±V (k)V e−ik〈• ,ω〉 = R±0 (k)g±,

g± = −(I + V R±0 (k))−1V e−ik〈• ,ω〉 ∈ L2
comp(R3)4.

(4.4)

To introduce the scattering matrix and provide motivation for its usage, we make

use of the following theorem:

Theorem 4.2.2 Let x = rθ ∈ R3. Then for k ∈ R \ {0} in distributional sense we have

e−ik〈x ,ω〉 ∼ 2πi

kr

[
e−ikrδ(θ − ω)− eikrδ(θ + ω)

]
, r →∞. (4.5)

Proof. Assume φ ∈ C∞(S2) and ω = (1, 0, 0). Since θ ∈ S2 then the scalar product

〈θ ,ω〉 = θ1 has stationary points at θ1 = ±1, corresponding to opposite poles. We assume

further that φ(θ) will have compact support at these poles. Then writing t = (t1, t2) ∈ R2

such that θ = (±
√

1− |t|2, t) we have

I(r) =

∫
S2
e−ikr〈θ ,ω〉φ(θ) dθ =

∑
±

∫
BR2 (0;1)

e∓ik
√

1−|t|2rφ(±
√

1− |t|2, t)J(t) dt,
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where J(t) = 1 + O
(
t2
)

and the summation is over each pole. Using the method of

stationary phase (see for instance [29, chapter I]) we therefore have as kr →∞

I(r) ∼ 2πi

kr

[
e−ikrφ(1, 0)− eikrφ(−1, 0)

]
+O

(
(kr)−2

)
=

2πi

kr

[
e−ikr

∫
S2
φ(θ)δ(θ − ω) dθ − eikr

∫
S2
φ(θ)δ(θ + ω) dθ

]
+O

(
(kr)−2

)
.

Hence we obtain (4.5) in distributional sense for the special case ω = (1, 0, 0),

ignoring the higher powers of 1/kr as r → ∞. In general any ω can then be constructed

as a sum of such functions.

We now introduce the scattering matrix which maps the incoming components

of w± solving (4.1) to the outgoing components.

Definition 4.2.3 Solutions to the eigenvalue equation

(DV ∓
√
k2 +m2)w±(x, k,ω) = 0,

where V satisfies Assumption 2.4.1, will be considered of the form

w±(x, k,ω) = e−ik〈x,ω〉 + u±(x, k,ω),

and the outgoing u± satisfies (4.3). If b±(x, k,ω) is the leading asymptotic term of

u±(x, k,ω) such that

u±(x, k,ω) = −2πi

kr
eikrb±(x, k,ω) +O

(
r−2
)
, (4.6)

then we define the absolute scattering matrix as

S±abs(k) : δ(θ − ω) 7→ −(δ(θ + ω) + b±(k,θ,ω)), (4.7)

which we normalize to define the scattering matrix

S±(k) : δ(θ − ω) 7→ δ(θ − ω) + b±(k,θ,−ω). (4.8)

To motivate the concepts of S±abs(k) and S±(k), we use the distributional form

presented in Theorem 4.2.2 and (4.6) to write the leading term of w±(x, k,ω) for r →∞

as

w±(x, k,ω) = e−ik〈x,ω〉 + u±(x, k,ω)

∼ 2πi

kr

[
e−ikrδ(θ − ω)− eikrδ(θ + ω)

]
+ u±(x, k,ω)

∼ 2πi

kr

[
e−ikrδ(θ − ω)− eikr(δ(θ + ω) + b±(x, k,ω))

]
.
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The eikr prefactor is due to (4.4) and Theorem 2.3.3. Then the absolute scattering

matrix maps the incoming terms (those containing the prefactor e−ikr) to the outgoing

terms (those containing eikr) above, thus leading to (4.7). Note that if V = 0 then

S±absf(θ) = −f(−θ) for suitable f . It is therefore more natural to consider an alternative

scattering matrix, S±(k), such that for V = 0, S±f(θ) = f(θ). This is our chosen

normalization of the absolute scattering matrix as defined in (4.8). These two notions of

the scattering matrix are therefore related by

S±(k) = −S±abs(k)J, Jf(θ) = f(−θ). (4.9)

Theorem 4.2.4 Let V satisfy Assumption 2.4.1. Then the scattering matrix can be writ-

ten as the operator

S±(k) = I −A±(k) : L2(S2)4 → L2(S2)4, (4.10)

where

A±(k) = ± ik
√
k2 +m2

4π2
E±(k)(I + V R±0 (k)ρ)−1V E±(k)∗,

E±(k,x,ω) = Π±(kθ)ρ(x)e−ik〈x,ω〉 : L2(R3)4 → L2(S2)4,

(4.11)

the projection Π±(kω) is defined in (2.3) and E±(k,x,ω) is the kernel of E±(k). Moreover

A±(k) is a trace class operator.

Proof. We divide the proof into 2 steps.

1. From (4.4) and Theorem 2.3.3 we write

u±(rθ, k,ω) = −R±0 (k)(I + V R±0 (k)ρ)−1V e−ik〈•,ω〉

= −e
ikr

4πr
(kα · θ +mβ ±

√
k2 +m2)

×
∫
R3

e−ik〈y,θ〉(I + V R±0 (k)ρ)−1V e−ik〈•,ω〉 dy +O
(
r−2
)
.

Setting ω → −ω in accordance with (4.8), we write the Schwartz kernel of A±(k) by

comparing 1/r terms in (4.6):

b±(rθ, k,−ω)

=

(
− kr

2πi
e−ikr

)(
−e

ikr

4π
(kα · θ +mβ ±

√
k2 +m2)

)
×
∫
R3

e−ik〈y,θ〉(I + V R±0 (k)ρ)−1V eik〈•,ω〉 dy

= − ik
√
k2 +m2

4π2

1

2

(
kα · θ +mβ√
k2 +m2

+ I

)∫
R3

e−ik〈y,θ〉(I + V R±0 (k)ρ)−1V eik〈•,ω〉 dy
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= −(±1)
ik
√
k2 +m2

4π2
Π±(kθ)

∫
R3

e−ik〈y,θ〉ρ(y)(I + V R±0 (k)ρ)−1V ρ(y)eik〈•,ω〉 dy,

where (I + V R±0 (k)ρ)−1V = ρ(I + V R±0 (k)ρ)−1V by (2.15). This proves (4.10).

2. To prove for a given k, where k /∈ R± (see Definition 2.4.3), that A±(k) is a trace

class operator, we use (4.10) and (A.4) to write

‖A±(k)‖B1 ≤ CeC|k|‖E±(k)‖‖(I + V R±0 (k)ρ)−1‖
∑
j=1

sj [E±(k)]. (4.12)

Since k /∈ R±, then ‖(I + V R±0 (k)ρ)−1‖ is bounded. In addition we have for u ∈ L2(R3)4

‖E±(k)u‖L2(S2)4 ≤ CeC|k|‖u‖L2(R3)4 . (4.13)

To estimate sj(E±(k)) in (4.12) we denote by ∆ω the Laplace-Beltrami operator on S2 so

that by (A.4) we see

sj [E±(k)] ≤ sj [(I −∆ω)−`]‖(I −∆ω)`E±(k)‖L2(R3)4→L2(S2)4 . (4.14)

Evaluating sj [(I−∆ω)−`] follows from (A.10) on the two-dimensional surface of S2. Hence

sj [(I −∆ω)−`] ≤ Cj−`. (4.15)

Similar to (4.13) we also have

‖(I −∆ω)`E±(k)u‖L2(S2)4 ≤ (2`)!eC|k|‖u‖L2(R3)4 , (4.16)

where the (2`)! factorial is due to differentiating the exponential. Using (4.15), (4.16) and

Stirling’s approximation (see for instance [80, section 1.87]), n! ≤ Cnn alongside setting

the free parameter ` = (
√
j/e)/2, we estimate (4.14) as

sj [E±(k)] ≤ CeC|k|j−`(2`)! ≤ CeC|k|e−
√
j/C . (4.17)

We therefore conclude that the summation in (4.12) is finite and so A±(k) is a trace class

operator.

Theorem 4.2.5 Let V satisfy Assumption 2.4.1 and suppose k ∈ R \ {0}. Then for a

given g± ∈ C∞(S2)4 there exists a f± ∈ C∞(S2)4 and v± ∈ H1
loc(R3)4 such that

(DV ∓
√
k2 +m2)v± = 0,

v±(rθ) =
C

r

(
e−ikrg±(θ) + eikrf±(θ)

)
+O

(
r−2
)
.

Moreover we have

S±abs(k) : g±(θ) 7→ f±(θ),

S±(k) : −g±(−θ) 7→ f±(θ).
(4.18)
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Proof. For g± ∈ C∞(S2)4, we define

u±0 (x) :=

∫
S2
g±(ω)e−ik〈x,ω〉 dω,

ũ±0 (x) :=

∫
S2
g±(ω)(α · ω)e−ik〈x,ω〉 dω,

v±(x) := u±0 (x)−R±V (k)[V +mβ ∓
√
k2 +m2]u±0 (x) +R±V (k)kũ±0 (x).

Then D0u
±
0 = −kũ±0 +mβu±0 and so

(DV ∓
√
k2 +m2)u±0 = −kũ±0 +mβu±0 + V u±0 ∓

√
k2 +m2u±0 ,

which satisfies

(DV ∓
√
k2 +m2)v± = [DV ∓

√
k2 +m2]u±0 − [V +mβ ∓

√
k2 +m2]u±0 + kũ±0 = 0.

Using (4.5) and Theorem 2.3.3 we finally have

v±(rθ)

= u±0 (x)−R±V (k)[V +mβ ∓
√
k2 +m2]u±0 (x) +R±V (k)kũ±0 (x)

=

∫
S2
g±(ω)e−ik〈x,ω〉 dω

−
∫
S2
g±(ω)R±V (k)[V − kα · ω +mβ ∓

√
k2 +m2]e−ik〈•,ω〉 dω

∼
∫
S2
g±(ω)

(
2πi

kr

)(
e−ikrδ(θ − ω)− eikrδ(θ + ω)

)
dω

−
∫
S2
g±(ω)

eikr

4πr
(kα · θ +mβ ±

√
k2 +m2)(2π)3/2

F
[
(I + V R±0 (k)ρ)−1[V − kα · ω +mβ ∓

√
k2 +m2]e−ik〈•,ω〉

]
(kθ) dω +O

(
r−2
)

=
C

r

(
e−ikrg±(θ) + eikrf±(θ)

)
+O

(
r−2
)
, r →∞,

and so (4.18) holds.

Akin to Stone’s formula for the free Laplacian (4.21) (see also [11, section A.3]),

the next theorem describes the difference above and below spec(D0) of the cut-off free

resolvent. This will prove instrumental in proving the trace properties of detS±(k), the

determinant defined in (A.7).

Theorem 4.2.6 Let V satisfy Assumption 2.4.1 and assume ρ ∈ C∞0 (R3) such that V =

ρV on the support of V . Then the analytic extension of the free cut-off free resolvent

satisfies

[(ρR±0 (k)ρ− ρR±0 (−k)ρ)] = ± ik
√
k2 +m2

4π2
E±(k)∗E±(k), (4.19)
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where E±(k,x,ω) is defined in (4.11) and the projections Π±(kθ) are defined in (2.3).

Proof. We divide the proof into 2 steps.

1. We first prove the following useful relationships for the Schwartz kernel of the

free Laplacian resolvent satisfying (R00(λ)u)(x) =
∫
R3 G00(x − y;λ)u(y) dy. Assuming

Imλ > 0, z =
√
λ then

G00(x;λ) =
eiλ|x|

4π|x|
, (4.20)

G00(x;λ)−G00(x;−λ) =
iλ

8π2

∫
S2
eiλω·x dω, (4.21)

where ω ∈ S2 in (4.21). To prove (4.20), first let r = |k| and a = cos θ. Then consider∫
R3

eik·x

|k|2 − λ2
dk = 2π

∫ ∞
0

∫ 1

−1

ei|x|ra

r2 − λ2
r2 da dr =

2π

i|x|

∫ ∞
0

r

r2 − λ2
(ei|x|r − e−i|x|r) dr.

This can be rewritten so that the integral is considered over the whole real line and solved

by standard contour methods∫
R3

eik·x

|k|2 − λ2
dk =

2π

i|x|

∫ ∞
−∞

rei|x|r

r2 − λ2
dr =

2π2

|x|
ei|x|λ.

Finally we recognise that for suitable f , we have (R00(λ)f)(x) = (G00 ∗ f)(x), the con-

volution between the kernel and f . This follows from standard arguments that utilise the

fact that the Fourier transform acting upon a differential operator is akin to multiplication

by the momenta variable. Hence

G00(x;λ) =
1

(2π)3

∫
R3

eik·x

|k|2 − λ2
dk =

ei|x|λ

4π|x|
.

To prove (4.21), let ω = (r, θ, φ) ∈ S2 where r = 1 such that setting a = cos θ gives∫
S2
e−iλω·x dω = 2π

∫ π

0
eiλ|x| cos θ sin θ dθ = 2π

∫ 1

−1
eiλ|x|a da =

4π

λ|x|
sin(λ|x|).

Hence by (4.20)

G00(x;λ)−G00(x;−λ) =
1

4π|x|
(eiλ|x| − e−iλ|x|) =

i

2π|x|
(sin(λ|x|)) =

iλ

8π2

∫
S2
eiλω·x dω.
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2. Using (4.21) alongside (2.5), (2.2) and (2.3) we write for f ∈ L2(R3)4

[ρ(R±0 (k)−R±0 (−k))ρf ](x)

= ρ(x)
[
(D0 ±

√
k2 +m2) (R00(k)−R00(−k)) ρf

]
(x)

=
ik

8π2
ρ(x)(D0 ±

√
k2 +m2)

∫
S2
eikω·x

∫
R3

e−ikω·yρ(y)f(y) dy dω

=
ik
√
k2 +m2

8π2
ρ(x)

∫
S2
eikω·x

(
kα · ω +mβ√

k2 +m2
± I
)∫

R3

e−ikω·yρ(y)f(y) dy dω

= ± ik
√
k2 +m2

4π2

∫
S2
eikω·xρ(x)Π±(kω)

∫
R3

e−ikω·yρ(y)f(y) dy dω

= ± ik
√
k2 +m2

4π2
(E±(k)∗E±(k)f) (x).

Theorem 4.2.7 Let V satisfy Assumption 2.4.1. Then for k ∈ C the scattering matrix

S±(k) is meromorphic and whose poles coincide with the poles of R±V (k). Moreover

S±(k)−1 = S±(k)∗ = JS±(−k)J, Jf(θ) = f(−θ), (4.22)

and

(detS±(k))−1 = detS±(−k). (4.23)

Proof. We divide the proof into 3 steps.

1. We first prove S±(k)−1 = JS±(−k)J . For k ∈ R \ {0}, we have from (4.18)

that S±abs(−k) = S±abs(k)−1. Since R±V (k) extends in a meromorphic manner to C (see

Theorem 2.4.2) then by (2.14) and (4.11), S±(k) also extends meromorphically to C. The

poles of R±V (k) and S±(k) hence coincide. Since S±(k) = −S±abs(k)J from (4.9) then

−S±abs(k)−1 = JS±(k)−1 and so

S±(−k) = −S±abs(−k)J = −S±abs(k)−1J = JS±(k)−1J.

2. To prove S±(k)−1 = S±(k)∗, we note for k ∈ R that R±0 (k)∗ = R±0 (−k). Then

taking the adjoint of (4.10) we have

∓ 4π2

ik
√
k2 +m2

(S±(k)S±(k)∗ − I)

= E±(k)(I + V R±0 (k)ρ)−1V E±(k)∗ − E±(k)V (I + ρR±0 (−k)V )−1E±(k)∗

± ik
√
k2 +m2

4π2
E±(k)(I + V R±0 (k)ρ)−1V E±(k)∗E±(k)V (I + ρR±0 (−k)V )−1E±(k)∗

= E±(k)(I + V R±0 (k)ρ)−1V

[
ρR±0 (−k)ρ− ρR±0 (k)ρ
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± ik
√
k2 +m2

4π2
E±(k)∗E±(k)

]
V (I + ρR±0 (−k)V )−1E±(k)∗,

which is equal to zero by (4.19). Hence S±(k)−1 = S±(k)∗ as stated.

3. Finally to prove (4.23) we use (A.7) and (A.8) (with A1 = A±(k) and A2 =

A±(k)∗) so that (detS±(k))−1 = det(S±(k)∗). Using this and (4.22) we write

(detS±(k))−1 = det[JS±(−k)J ] = det[I − JA±(−k)J ] = det[I −A±(−k)],

where we used the second property in (A.8) for the last step.

Theorem 4.2.8 Let V satisfy Assumption 2.4.1. If ρ ∈ C∞0 (R3) such that ρV = V on

suppV , then the scattering matrix satisfies

Tr[S±(k)−1∂kS
±(k)] = TrF±(k) + TrF±(−k),

F±(k) = ∓ k√
k2 +m2

R±0 (k)(I + V R±0 (k)ρ)−1V R±0 (k),

F±(−k) = ± k√
k2 +m2

R±0 (−k)(I + V R±0 (−k)ρ)−1V R±0 (−k).

(4.24)

Proof. From Theorem 4.2.4 we use (A.8) and (A.9) continued analytically from small µ

until µ = 1 so that

detS±(k) = det
(
I − T±(k)

)
,

T±(k) = (I + V R±0 (k)ρ)−1V
[
R±0 (k)−R±0 (−k)

]
ρ : L2(R3)4 → L2(R3)4,

where we substituted in (4.19). Then

detS±(k) = det
[
(I + V R±0 (k)ρ)−1

(
(I + V R±0 (k)ρ)− V R±0 (k)ρ+ V R±0 (−k)ρ

)]
= det

[
(I + V R±0 (k)ρ)−1(I + V R±0 (−k)ρ)

]
.

Taking the logarithmic derivative and using the Jacobi determinant formula (see for in-

stance [27, section IV.1]) gives

∂k log detS±(k) = ∂k log det
[
(I + V R±0 (k)ρ)−1(I + V R±0 (−k)ρ)

]
= Tr

[ [
(I + V R±0 (k)ρ)−1(I + V R±0 (−k)ρ)

]−1

∂k
(
(I + V R±0 (k)ρ)−1(I + V R±0 (−k)ρ)

) ]
= −Tr

[
(I + V R±0 (−k)ρ)−1∂−k

(
V R±0 (−k)ρ

)]
+ Tr

[
(I + V R±0 (k)ρ)

(
∂k(I + V R±0 (k)ρ)−1

)]
,
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where we have used the trace cyclicity. We note that by the spectral theorem (see Theorem

A.2.3)

∂kρR
±
0 (k)ρ = ± k√

k2 +m2

∫
ρ(λ∓

√
k2 +m2)−2ρdE(λ) = ± k√

k2 +m2
ρR±0 (k)2ρ,

(4.25)

and, similarly,

∂−kρR
±
0 (−k)ρ = ∓ k√

k2 +m2
ρR±0 (−k)2ρ,

∂k(I + V R±0 (k)ρ)−1 = ∓
(

k√
k2 +m2

)
(I + V R±0 (k)ρ)−2V R±0 (k)2ρ.

Hence by trace cyclicity we have

∂k log detS±(k) = TrF±(k) + TrF±(−k),

F±(k) = ∓ k√
k2 +m2

R±0 (k)(I + V R±0 (k)ρ)−1V R±0 (k),

F±(−k) = ± k√
k2 +m2

R±0 (−k)(I + V R±0 (−k)ρ)−1V R±0 (−k),

where

R±0 (k)(I + V R±0 (k)ρ)−1V R±0 (k) = R±0 (k)ρ(I + V R±0 (k)ρ)−1V ρR±0 (k),

which follows from (2.15). We obtain the desired result by using the Jacobi determinant

formula once again

∂k log detS±(k) = Tr[S±(k)−1∂kS
±(k)].

Summary

In this chapter, we have, from basic principles, constructed the Dirac scattering matrix

as a mapping between the incoming and outgoing components of the solution to (4.1).

We have proved that it can be written as the sum of the identity operator and a trace

class operator. Moreover, we have shown that the logarithmic derivative of the scattering

matrix determinant is even in k. This will be directly used in obtaining our Birman-

Krĕın trace formula, and also in chapter 7 where we prove the existence of infinitely many

resonances.
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Chapter 5

The Birman-Krĕın trace formula

In this chapter we present the first of our two trace formulas for the Dirac operator. In

section 5.1 we prove that the difference between Schwartz functions of DV and D0 is trace

class. This leads to section 5.2 where our trace formula shows the relationship between

the trace difference and the scattering matrix. To calculate the contribution from the

threshold resonances, our main result from chapter 3 (Theorem 3.2.5) is employed.

5.1 Trace estimates of the resolvent

Theorem 5.1.1 Let V satisfy Assumption 2.4.1. Then

1. If ρ ∈ C∞0 (R3) such that ρV = V on suppV we have the following singular value

estimates

sj/α

[
ρ(D0 − i)−β

]
, sj/α

[
(D0 − i)−βρ

]
≤ Cj−β/3,

sj/α

[
ρ(DV − i)−β

]
, sj/α

[
(DV − i)−βρ

]
≤ Cj−β/3.

(5.1)

2. If z ∈ ρ(DV ) ∩ {| Im z| < 1} we have the trace estimates

∥∥(DV − z)−1(DV − i)−4 − (D0 − z)−1(D0 − i)−4
∥∥
B1 ≤


A(z), |Re z| < m,

B(z), |Re z| ≥ m,

A(z) = max
E∈spec(DV )

C

|Re z − E|2 + | Im z|2
, B(z) =

C

| Im z|2
.

(5.2)

3. If f ∈ S (R), then f(DV )− f(D0) is a trace class operator.
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Proof. We divide the proof into 4 steps.

1. For z ∈ ρ(D0) we first show for the free resolvent norm

‖(D0 − z)−1‖L2→L2 =
1

| Im z|
, |Re z| ≥ m,

‖(D0 − z)−1‖L2→L2 =
1√

|Re z −m|2 + | Im z|2
, |Re z| < m,

(5.3)

and, likewise, for the full resolvent norm, where z ∈ ρ(DV ),

‖(DV − z)−1‖L2→L2 =
1

| Im z|
, |Re z| ≥ m,

‖(DV − z)−1‖L2→L2 = max
E∈spec(DV )

1√
|Re z − E|2 + | Im z|2

, |Re z| < m.
(5.4)

We use these to show that

‖(D0 − i)−1‖L2→H1 , ‖(DV − i)−1‖L2→H1 ≤ C. (5.5)

For the L2 → L2 norms in (5.3) and (5.4) we use Theorem A.2.1. By the geometry of the

C plane, if |Re z| ≥ m then dist(spec(DV ), z) = dist(spec(D0), z) = | Im z|. Alternatively

for |Re z| < m, if E ∈ spec(DV ) is the nearest point to z ∈ ρ(DV ) then

1

dist(spec(DV ), z)
=

1√
| Im z|2 + |Re z − E|2

.

For (D0 − z)−1 then there are no discrete spectra in (−m,m) and we require E = m. In

this case we obtain the second estimate in (5.3). For the first estimate in (5.5) we use

(2.5) and the Laplacian resolvent norm estimates (see for instance [23])

‖R00(λ)‖ ≤ 〈λ〉k

|λ|| Imλ|
, Imλ > 0, 0 ≤ k ≤ 2,

to show that

‖(D0 − z)−1‖L2→H1 = ‖(D0 + z)(−∆− k2)−1‖L2→H1

≤ C

∑
j=1

|αj |+ |β|+ I

 ‖(−∆− k2)−1‖L2→H2

≤ C

∑
j=1

|αj |+ |β|+ I

 〈z〉2

| Im z|2
,

where |T | =
√
T ∗T is the absolute value of each element in T , 〈k(z)〉2 = 1 + |z2 −m2| ≤

C〈z〉2 and C| Im k| ≥ | Im z|. Set z = i to obtain the first bound in (5.5). To show

C| Im k| ≥ | Im z| we assume z = x+ iy and use the complex square root relation

√
z =

1√
2

[√
|z|+ Re z ± i

√
|z| − Re z

]
,
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so that

| Im k| = | Im
√

(x+ iy)2 −m2| = | Im
√
x2 − y2 −m2 + 2ixy|

=
1√
2

∣∣∣∣√√(x2 − y2 −m2)2 + (2xy)2 − (x2 − y2 −m2)

∣∣∣∣
=

1√
2

∣∣∣∣√√x4 + y4 +m4 + 2x2y2 − 2x2m2 + 2y2m2 − (x2 − y2 −m2)

∣∣∣∣
≥ 1√

2

∣∣∣∣√√x4 +m4 − 2x2m2 − (x2 − y2 −m2)

∣∣∣∣
=

1√
2

∣∣∣√x2 −m2 − (x2 − y2 −m2)
∣∣∣ =
|y|√

2
.

For the second bound in (5.5) we use (2.12) to write

‖(DV − z)−1‖L2→H1 = ‖(D0 − z)−1(I + V (D0 − z)−1)−1‖L2→H1 . (5.6)

As in the proof of Theorem 2.4.2, (I+V (D0−z)−1)−1 exists as a Neumann series provided

(2.8) is true for large |k|. Given (5.3) then there is a large enough z for this to occur. By the

Rellich-Kondrachov theorem, V (D0−z)−1 is compact on L2(R3)4 and in turn, application

of Theorem A.3.1 proves the meromorphic continuation of (I+V (D0− z)−1)−1 to the rest

of ρ(DV ). Set z = i and using the first bound in (5.5) on (5.6) proves the second bound

(5.5).

2. We next consider the singular value estimates on (D0 − i)−1 in (5.1). The proof

follows from (A.10) with m = 1, (A.6) and (5.5). If d·e denotes the ceiling function then

sdj/αe

[
ρ(D0 − i)−β

]
≤ ‖(−∆− 1)1/2ρ′(D0 − i)−1‖β

L2→L2

[
sdj/αβe

[
(−∆− 1)−1/2

]]β
≤ ‖ρ′(D0 − i)−1‖β

L2→H1

[
C

⌈
j

αβ

⌉−1/3
]β
≤ C ′j−β/3,

(5.7)

where ρ = (ρ′)β also satisfies V = ρ′V . A similar proof holds for sdj/αe[(D0 − i)−βρ]. For

the estimates involving (DV − i)−1 in (5.1) we prove by induction. The β = 0 case follows

immediately: sdj/αe[ρ((DV − i)−1)0] = sdj/αe[((DV − i)−1)0ρ] ≤ C. Assuming the estimate
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holds then we note by (A.5) and (A.6) that

sdj/2αe

[
β+1∑
k=1

ρ(DV − i)−β+k−2(−V )(D0 − i)−k
]

≤
β+1∑
k=1

sdj/2(β+1)αe

[
ρ(DV − i)−β+k−2(−V )(D0 − i)−k

]

≤
β+1∑
k=i

sdj/2(β+1)αe

[
ρ(DV − i)−β+k−2ρ(−V )ρ(D0 − i)−k

]

≤
β+1∑
k=1

sdj/4(β+1)αe

[
ρ(DV − i)−β+k−1

]
‖(DV − i)−1‖‖V ‖sdj/4(β+1)αe

[
ρ(D0 − i)−k

]

≤ C
β+1∑
k=1

⌈
j

4α(β + 1)

⌉(−β+k−1)/3 ⌈ j

4α(β + 1)

⌉−k/3
≤ Cj−(β+1)/3.

(5.8)

Rewriting using the second resolvent identity (see Theorem A.2.2), we have for general z

(DV − z)−β − (D0 − z)−β

=

β∑
k=1

[
(DV − z)−β+k−1(D0 − z)−k+1 − (DV − z)−β+k(D0 − z)−k

]

=

β∑
k=1

[
(DV − z)−β+k

[
(DV − z)−1 − (D0 − z)−1

]
(D0 − z)−k+1

]

=

β∑
k=1

[
(DV − z)−β+k

[
(DV − z)−1(−V )(D0 − z)−1

]
(D0 − z)−k+1

]
,

(5.9)

and hence

sdj/αe

[
ρ(DV − i)−β−1

]
≤ sdj/2αe

[
ρ(D0 − i)−β−1

]
+ sdj/2αe

[
β+1∑
k=1

ρ(DV − i)−β+k−2(−V )(D0 − i)−k
]

≤ Cj−(β+1)/3.

This completes the inductive proof. A similar argument holds for sj/α[(DV − i)−β−1ρ].

3. For (5.2) we prove the first inequality. The second inequality follows similarly.

First we write using (5.9)

(DV − z)−1(DV − i)−4 − (D0 − z)−1(D0 − i)−4

=
[
(DV − z)−1 − (D0 − z)−1

]
(D0 − i)−4 + (DV − z)−1

[
(DV − i)−4 − (D0 − i)−4

]
= −(DV − z)−1V (D0 − z)−1(D0 − i)−4 − (DV − z)−1

4∑
k=1

(DV − i)k−5V (D0 − i)−k,
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where we have used the second resolvent identity once again. Using the method in (5.8)

we estimate the singular value as

sj
[
(DV − z)−1(DV − i)−4 − (D0 − z)−1(D0 − i)−4

]
≤ sdj/2e

[
−(DV − z)−1V (D0 − z)−1(D0 − i)−4

]
+ sdj/2e

[
−(DV − z)−1

4∑
k=1

(DV − i)k−5V (D0 − i)−k
]

≤ ‖(DV − z)−1‖‖(D0 − z)−1‖‖V ‖sdj/2e[ρ(D0 − i)−4]

+ ‖(DV − z)−1‖
4∑

k=1

sdj/8e

[
(DV − i)k−5V (D0 − i)−k

]
≤ C

(
‖(D0 − z)−1‖+ 1

)
‖(DV − z)−1‖j−4/3.

Hence

∥∥(DV − z)−1(DV − i)−4 − (D0 − z)−1(D0 − i)−4
∥∥
B1

=
∞∑
j=1

sj
[
(DV − z)−1(DV − i)−4 − (D0 − z)−1(D0 − i)−4

]
≤ C

[
‖(D0 − z)−1‖+ 1

]
‖(DV − z)−1‖

∞∑
j=1

j−4/3,

where the summation is finite. It remains to use the estimates in (5.3) and (5.4) alongside

the assumption | Im z| < 1 to obtain (5.2).

4. To show the final part of the theorem, we write f(z) = (z − i)−4g(z) where

g ∈ S (R) since f ∈ S (R). Introduce also g̃ as an analytic extension of g satisfying

(A.12). Using the generalized Helffer-Sjöstrand formula in Theorem A.2.7 with N = 4

and z0 = i we write

‖f(DV )− f(D0)‖B1

=

∥∥∥∥ 1

πi

∫
C

[
(DV − z)−1(DV − i)−4 − (D0 − z)−1(D0 − i)−4

]
∂z g̃(z) dm(z)

∥∥∥∥
B1

= C

∫
{|Re z|≥m}

‖(DV − z)−1(DV − i)−4 − (D0 − z)−1(D0 − i)−4‖B1 |∂z g̃(z)| dm(z)

+ C

∫
{|Re z|<m}

‖(DV − z)−1(DV − i)−4 − (D0 − z)−1(D0 − i)−4‖B1 |∂z g̃(z)|dm(z).

It remains to use (5.2) and note that for N ≥ 4 in (A.12) of Theorem A.2.6 that this is

finite.
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5.2 The Birman-Krĕın trace formula for the Dirac operator

We now state and prove our first trace formula.

Theorem 5.2.1 Let V satisfy Assumption 2.4.1 and f ∈ S (R). If S±(k) is the scattering

matrix as outlined in Definition 4.2.3 then

Tr (f(DV )− f(D0)) =
1

2πi

∫ ∞
0

f(
√
k2 +m2) Tr

[
S+(k)−1∂kS

+(k)
]

dk

− 1

2πi

∫ ∞
0

f(−
√
k2 +m2) Tr

[
S−(k)−1∂kS

−(k)
]

dk

+
∑
Ej

mjf(Ej) +
1

2

∑
±
±m̃R(±m)f(±m),

(5.10)

where Ej are the eigenvalues of DV with associated multiplicity mj, and the resonance

multiplicity m̃R(±m) is defined by (3.21).

Proof. We divide the proof into 6 steps.

1. By the spectral theorem of selfadjoint operators (see Theorem A.2.3) and Stone’s

formula (see [11, section A.3]) we have

f(DV ) =

∫ −m
−∞

f(z) dE(z) +

∫ ∞
m

f(z) dE(z) +
∑

Ej∈specd(DV )

mjf(Ej)uj ⊗ ūj

=
1

2πi

∫ −m
−∞

f(z)
[
(DV − (z + i0))−1 − (DV − (z − i0))−1

]
dz

+
1

2πi

∫ ∞
m

f(z)
[
(D0 − (z + i0))−1 − (D0 − (z − i0))−1

]
dz

+
∑

Ej∈specd(DV )

mjf(Ej)uj ⊗ ūj ,

(5.11)

where Ej are the eigenvalues of DV with corresponding eigenvectors uj . We concentrate

first on the continuous part of the spectrum. By the final result of Theorem 5.1.1 we take

the trace difference between functions of the full and free Dirac operator and rewrite in

the k variable

4πiTr [f(DV )− f(D0)]

= −Tr

∫ −∞
∞

f(−
√
k2 +m2)

[
R−V (k)−R−V (−k)−R−0 (k) +R−0 (−k)

] k√
k2 +m2

dk

+ Tr

∫ ∞
−∞

f(
√
k2 +m2)

[
R+
V (k)−R+

V (−k)−R+
0 (k) +R+

0 (−k)
] k√

k2 +m2
dk.

(5.12)
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Using (2.14) introduce

B±(k) = ± k√
k2 +m2

(
R±V (k)−R±0 (k)

)
= ± k√

k2 +m2

(
−R±V (k)V R±0 (k)

)
= ∓ k√

k2 +m2

(
R±0 (k)(I + V R±0 (k)ρ)−1V R±0 (k)

)
+

Π±
k

(
√
k2 +m2 +m)√
k2 +m2

,

where we have used the second resolvent identity (see Theorem A.2.2) and made explicit

the threshold singularities of the full resolvent from Theorem 3.2.5. Note that the simple

pole there is cancelled by the k prefactor here, and that we do not include any contribution

from the opposite resonance. We similarly introduce B±(−k) such that

B±(k) = F±(k) +
Π±
k

(
√
k2 +m2 +m)√
k2 +m2

,

B±(−k) = F±(−k)− Π±
k

(
√
k2 +m2 +m)√
k2 +m2

,

F±(k) = ∓ k√
k2 +m2

(
R±0 (k)(I + V R±0 (k)ρ)−1V R±0 (k)

)
,

F±(−k) = ± k√
k2 +m2

(
R±0 (−k)(I + V R±0 (−k)ρ)−1V R±0 (−k)

)
.

(5.13)

Note that F±(k) and F±(−k) match the definitions in (4.24). We introduce f̃ ∈ S (C) as

an almost analytic extension of f satisfying (A.12). Hence if 0 < ε� m then we write

4πiTr[f(DV )− f(D0)]

=
∑
±
± lim
ε→∞

∫
R\[−ε,ε]

f(±
√
k2 +m2)

(
TrB±(k) + TrB±(−k)

)
dk

+
∑
±
± lim
ε→∞

∫
γ±(ε)

f̃(−
√
k2 +m2) TrB−(±k) dk

+
∑
±
∓ lim
ε→∞

∫
γ±(ε)

f̃(
√
k2 +m2) TrB+(±k) dk

+
∑
±
± lim
ε→∞

∫
∂Γ∓(ε)

f̃(−
√
k2 +m2) TrB−(∓k) dk

+
∑
±
± lim
ε→∞

∫
∂Γ±(ε)

f̃(
√
k2 +m2) TrB±(±k) dk,

(5.14)

using the notation (see also Figure 5.1)

Γ±(ε) = D(0; ε) ∩ C±, C± = {k ∈ C : ± Im k > 0},

γ±(ε) = {∂Γ±(ε) : ± Im k > 0},

where the positively orientated contours ∂Γ±(ε) enclose the open regions Γ±(ε), andD(0; ε)

is the open disc of radius ε centred at the origin. We number the terms on the right-hand

side of (5.14) from 1 to 5 and evaluate each in the remaining steps.
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ε

k

∂Γ+(ε)

∂Γ−(ε)

Figure 5.1: The contours ∂Γ+(ε) and ∂Γ−(ε) in the k plane. We have assumed that ε� m.

2. In this step we examine term 1 on the right-hand side of (5.14). The explicit

simple poles at the origin in (5.13) cancel and so we can take the limit ε → 0. By

employing (4.24) we show for term 1

lim
ε→∞

∫
R\[−ε,ε]

f(±
√
k2 +m2)

(
TrB±(k) + TrB±(−k)

)
dk

= lim
ε→∞

∫
R\[−ε,ε]

f(±
√
k2 +m2)

(
TrF±(k) + TrF±(−k)

)
dk

=

∫
R
f(±

√
k2 +m2) Tr

[
S±(k)−1∂kS

±(k)
]

dk.

By (4.24), the integrand is even in k and we evaluate the integral on [0,∞).

3. To examine the remaining integrals in (5.14) located near the origin, we use

Gohberg-Sigal theory (see Theorem A.3.2) to study the structure of F±(k) near this point.

To this end we have

I + V R±0 (k)ρ = U±1 (k)
(
Q±2 k

2 +Q±1 k +Q±0
)
U±2 (k),

where U±j are holomorphic and invertible. Furthermore the projection operatorsQ±j satisfy

(A.13) and

rankQ±2 = Tr Π± = mR(±m)− m̃R(±m), rankQ±1 = m̃R(±m).

Since the free and perturbed resolvents meromorphically extend from the upper k-plane to

all C (see Theorems 2.3.2 and 2.4.2), then we can apply the generalized argument principle

in (A.14) with

N0(I + V R±0 (k)ρ) = 2 Tr Π± + m̃R(±m), N0((I + V R±0 (k)ρ)−1) = 0,
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which count, with multiplicity, the number of zeros and poles of I+V R±0 (k)ρ respectively

(see Theorem A.3.2). Using the definitions in (5.13) we therefore have∮
TrF±(k) dk = ∓Tr

∮ (
k√

k2 +m2

)
R±0 (k)(I + V R±0 (k)ρ)−1V R±0 (k) dk

= −Tr

∮
∂k(I + V R±0 (k)ρ)(I + V R±0 (k)ρ)−1 dk

= −2πi (2 Tr Π± + m̃R(±m))

= −
∮

(2 Tr Π± + m̃R(±m))

k
dk,

where we have used (4.25). A similar argument holds for TrF±(−k). Hence near k = 0

we have

TrF±(k) = −1

k
[2 Tr Π± + m̃R(±m)] + ϕ±(k), (5.15)

where ϕ±(k) is holomorphic for Im k ≥ 0.

4. In this step we consider how terms 4 and 5 on the right-hand side of (5.14) behave

as we take the limit ε → 0. In fact we take one particular case below with the method

applicable to the remaining integrals. First write using Green’s formula (see for instance

[46, chapter 16])∣∣∣∣∣
∫
∂Γ+(ε)

f̃(−
√
k2 +m2) TrB−(k) dk

∣∣∣∣∣ =

∣∣∣∣∣2
∫

Γ+(ε)
∂k

[
f̃(−

√
k2 +m2) TrB−(k)

]
dm

∣∣∣∣∣
=

∣∣∣∣∣2
∫

Γ+(ε)

(
∂kf̃(−

√
k2 +m2)

)
TrB−(k) dm

∣∣∣∣∣,
where m denotes the Lebesgue measure on C and TrB−(k) defined by (5.13) and (5.15)

is analytic. Given

∂kf̃(−
√
k2 +m2) ≤ CN | Im k|N , ∀N ∈ N,

and TrB−(k) = O
(
k−1

)
, then∣∣∣∣ ∫

∂Γ+(ε)
f̃(−

√
k2 +m2) TrB−(k) dk

∣∣∣∣ ≤ CN εN−1

∣∣∣∣∣
∫

Γ+(ε)
dm

∣∣∣∣∣ = CN ε
N+1, ∀N ∈ N.

We conclude that this and indeed all contributions from terms 4 and 5 in the right-hand

side of (5.14) tend to 0 as ε→ 0.

5. For terms 2 and 3 in the right-hand side of (5.14), we use the indentation lemma

(see for instance [61]) to compute the integrals along circular arcs. Using (5.13) and (5.15)
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we have for term 2

lim
ε→0

∫
γ+(ε)

f̃(−
√
k2 +m2) TrB−(k) dk − lim

ε→0

∫
γ−(ε)

f̃(−
√
k2 +m2) TrB−(−k) dk

= lim
ε→0

∫
γ+(ε)

f̃(−
√
k2 +m2)

k

[
−(2 Tr Π− + m̃R(−m)) + Tr Π−

√
k2 +m2 +m√
k2 +m2

]
dk

− lim
ε→0

∫
γ−(ε)

f̃(−
√
k2 +m2)

k

[
(2 Tr Π− + m̃R(−m))− Tr Π−

√
k2 +m2 +m√
k2 +m2

]
dk

= −2πim̃R(−m)f(−m).

This completes the analysis on term 2 on the right-hand side of (5.14). Term 3 similarly

follows

lim
ε→0

∫
γ−(ε)

f̃(
√
k2 +m2) TrB+(k) dk − lim

ε→0

∫
γ+(ε)

f̃(
√
k2 +m2) TrB+(−k) dk

= 2πim̃R(−m)f(m).

6. Bringing together all the previous steps with (5.12) produces the first, second and

fourth terms on the right-hand side of (5.10). For the third term, it remains to bring back

the contribution from the discrete eigenvalues. This follows immediately from the form in

(5.11) since Truj ⊗ uj = 1.

Summary

In this chapter, we have brought together our resolvent expansion and scattering matrix

determinant from chapters 3 and 4 respectively to derive our first trace formula; a reinter-

pretation of the Birman-Krĕın formula. Using various trace estimates from section 5.1, we

proved in section 5.2 how the trace difference between Schwartz functions of D0 and DV

relate to the scattering matrix, the eigenvalues of DV and the threshold resonances. Our

Birman-Krĕın trace formula will be used in the proof of our Poisson wave trace formula

in chapter 6.
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Chapter 6

The Poisson wave trace formula

In this chapter we present our second trace formula. In preparation for this, we prove two

pre-requisite theorems in section 6.1. The first estimates an upper bound on the number

of resonances contained within a disc located at k = 0 of radius r > 0. In the second, a

factorization of detS±(k) in terms of Weierstrauss products is presented. In turn, these

results alongside the Birman-Krĕın formula (Theorem 5.2.1) are used to construct our

Poisson wave trace formula in section 6.2. This is valid in distributional sense for all t ∈ R

and, like the previous chapter, the threshold resonances are treated explicitly.

6.1 A resonance counting function and factorization of the

scattering matrix

As a reminder, the Dirac resonances occur as poles of the full resolvent, R±V (k), when

extended to C. As in Definition 2.4.3, the two sets of resonances are denoted R±, with

the total set of resonances formed by their union R := R− ∪R+. We will continually use

this notation for the remainder of the thesis.

Theorem 6.1.1 Let V satisfy Assumption 2.4.1 and assume ρ ∈ C∞0 (R3) such that ρV =

V holds. If we also define

H±(k) := det(I − (V R±0 (k)ρ)4),

then

|H±(k)| ≤ C exp(C|k|4). (6.1)
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Moreover the number of resonances inside the disc D(0; r) denoted

N(r) := #{k ∈ R : 0 < |k| ≤ r},

satisfies

N(r) ≤ Cr4. (6.2)

Proof. We divide the proof into 4 steps.

1. Recall from Definition 2.4.3 that the resonances of DV coincide with the poles of

(I + V R±0 (k)ρ)−1. Since we have

I − (V R±0 (k)ρ)4 =
(
I + V R±0 (k)ρ

) (
I − V R±0 (k)ρ+ (V R±0 (k)ρ

)2 − (V R±0 (k)ρ
)3

), (6.3)

and provided (V R±0 (k)ρ)4 ∈ B1, then the resonances where k 6= 0 correspond to the zeros

of H±(k) = det(I − (V R±0 (k)ρ)4). Using (A.3), (A.6) and Theorem A.2.4 we have

|H(k)±| ≤
∞∏
j=1

[
1 + ‖V ‖4L∞

(
sdj/4e

[
ρR±0 (k)ρ

])4]
. (6.4)

In the next two steps we will show that (V R±0 (k)ρ)4 ∈ B1 for Im k > 0 and Im k < 0

respectively.

2. To estimate the singular values of ρR±0 (k)ρ for Im k > 0, we argue as in (5.7) and

use (2.9) to write

sj
[
ρR±0 (k)ρ

]
≤ sj

[
(−∆− 1)−1/2

]
‖(−∆− 1)1/2ρR±0 (k)ρ‖L2→L2

≤ Cj−1/3〈k〉eC(Im k)− .

(6.5)

Then
∑

j sj [(ρ1R
±
0 (k)ρ1)4] converges. Back to (6.4) we find H±(k) for Im k > 0 is indeed

trace class

|H±(k)| ≤
∞∏
j=1

[
1 + Cj−4/3〈k〉4

]
≤
∞∏
j=1

exp[C〈k〉4j−4/3] = exp

C〈k〉4 ∞∑
j

j−4/3


≤ exp(C〈k〉4) ≤ C exp(C|k|4).

3. In estimating the singular value sj((V R
±
0 (k)ρ)4) for Im k < 0 we use (4.19). By

(A.3) and (A.5) plus the fact that ‖A‖ = ‖A∗‖ for bounded A (see for instance [40,

Theorem 3.9-2]), we obtain

sj [ρR
±
0 (k)ρ] ≤ sdj/2e[Ck

√
k2 +m2E±(k)∗E±(k)] + sdj/2e[ρR

±
0 (−k)ρ]

≤ CeC|k|sdj/2e[E±(k)]‖E±(k)‖L2(R3)4→L2(S2)4 + Csdj/2e[ρR
±
0 (−k)ρ].

(6.6)
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For the first term on the right-hand side of (6.6) recall (4.13) and (4.17) whereas the

second term can be estimated using (6.5). Hence

sj [(ρR
±
0 (k)ρ)] ≤ CeC|k|e−

√
j/C + Cj−1/3〈k〉. (6.7)

4. We now aim to estimate (6.7) depending upon the value of j. First let j ≤ 2C4|k|2,

then

sj [(ρR
±
0 (k)ρ)] ≤ CeC|k|,

since e−
√
j/C and j−1/2 are monotonically decreasing functions. Moreover, up to a con-

stant, the latter is greater which enables us to also estimate (6.7) for j > 2C4|k|2

sj [(ρR
±
0 (k)ρ)] ≤ Ce−C

√
j + Cj−1/3〈k〉 ≤ Cj−1/3〈k〉.

In summary, taking the quartic power we have

sj [(ρR
±
0 (k)ρ)4] ≤

(
sdj/4e[ρR

±
0 (k)ρ]

)4 ≤

CeC|k|, j ≤ 2C4|k|2,

Cj−4/3〈k〉4, j > 2C4|k|2.

Substitute into (6.4) and we have

|H±(k)| ≤
∏

j≤2C4|k|2
(1 + CeC|k|)

∏
j>2C4|k|2

(1 + Cj−4/3〈k〉4).

Evaluating ∏
j≤2C4|k|2

(1 + CeC|k|) ≤ (2CeC|k|)2C4|k|2 ≤ CeC|k|3 ,

and ∏
j>2C4|k|2

(1 + Cj−4/3〈k〉4) ≤
∏

j>2C4|k|2
exp(Cj−4/3〈k〉4) ≤ CeC|k|4 ,

proves (6.1). It remains to insert (6.1) into Jensen’s formula (see Theorem A.1.3) to obtain

(6.2)

log(2)N(r) ≤ 1

2π

∫ 2π

0
log | exp(|2Creiθ|4)|dθ ≤ C|r|4,

where log(2)N(r) ≤ N(r)
∫ 2r
r

1
t dt ≤

∫ 2r
0

n(t)
r dt.

Theorem 6.1.2 (Scattering matrix factorization) Let V satisfy Assumption 2.4.1.

Then the scattering matrix determinant may be written

detS±(k) = (−1)m̃R(±m)eg(k)P±(−k)

P±(k)
, (6.8)

where

P±(k) :=
∏

kj∈R±\{0}

E4(k/kj)
mR(kj), Ep(k) := (1− k) exp

(
p∑
`=1

k`/`

)
,

g(k) = a3k
3 + a1k.
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Proof. We divide the proof into 4 steps.

1. First we shall use the following bound on the determinant of the scattering matrix

outside the union of discs surrounding each resonance

| detS±(k)| ≤ CeC|k|12+ε ,

k /∈
⋃

kj∈R±

D(kj ; 〈kj〉−4−ε), ε > 0, |z| > r0.
(6.9)

Indeed by Theorems A.2.4 and 4.2.4 we write

|detS±(k)| = | det(I −A±(k))| ≤
∞∏
j=1

(1 + sj [A
±(k)])

≤
∞∏
j=1

(
1 + eC|k|‖E±(k)‖‖(I + V R±0 (k)ρ)−1V ‖sj [E±(k)]

)
.

(6.10)

Using (2.9), (6.3) and the second part of Theorem A.2.4 we have

‖(I + V R±0 (k)ρ)−1‖ ≤
3∑
j=0

‖ − V R±0 (k)ρ‖j
L2→L2‖(I − (V R±0 (k)ρ)4)−1‖

≤ CeC|k| det(I + |ρR±0 (k)ρ|4)

|det(I − (ρR±0 (k)ρ)4)|
.

(6.11)

The numerator of the right-hand side of (6.11) can be estimated in the same vein as (6.1),

namely

det(I + |ρR±0 (k)ρ|4) ≤ C exp(C|k|4).

To estimate the denominator of (6.11), we can apply Cartan’s minimum modulus theorem

(see Theorem A.1.7):

| det(I − (ρR±0 (k)ρ)4)| ≥ Ce−C|k|4+ε ,

k /∈
⋃

kj∈R±

D(kj ; 〈kj〉−4−ε), ε > 0, |z| > r0.
(6.12)

On the same set, we insert Equations (4.13), (4.17), (6.11), and (6.12) into (6.10) to find

| detS±(k)| ≤
∞∏
j=1

[
1 + CeC|k|

4+ε
e−
√
j/C
]

=
∏

j≤4C4|k|2(4+ε)

[
1 + CeC|k|

4+ε
e−
√
j/C
] ∏
j>4C4|k|2(4+ε)

[
1 + CeC|k|

4+ε
e−
√
j/C
]
.

By the same arguments as in the last step of the proof for Theorem 6.1.1 we estimate

∏
j≤4C4|k|2(4+ε)

[
1 + CeC|k|

4+ε
e−
√
j/C
]
≤ C

∏
j≤4C4|k|2(4+ε)

[
eC|k|

4+ε
]
≤ CeC|k|12+ε ,
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whilst for j > 4C4|k|2(4+ε) ≤
√
j/2 we have

∏
j>4C4|k|2(4+ε)

[
1 + CeC|k|

4+ε
e−
√
j/C
]
≤

∏
j>4C4|k|2(4+ε)

exp
(
Ce−C

√
j
)
≤ C.

This concludes the proof of (6.9).

2. The zeros of H±(k) defined in Theorem 6.1.1 coincide with the non-zero reson-

ances of DV . However (4.23) implies that zeros of detS±(k) when Im k > 0 correspond

to the resonances of DV when Im k < 0. By the Weierstrass factorization theorem (see

Theorem A.1.5) we then obtain (6.8). The genus of Ep is equal to 4 due to (6.2) plus The-

orems A.1.4 and A.1.5. Note that (−1)m̃R(±m) appears due to the cancellation between

(−k)m̃R(±m) and (k)m̃R(±m) when accounting for zeros at the origin (see (A.2)).

3. Next we show that g(k) is a polynomial. By virtue of the estimate (6.2), then

(A.1.6) and (A.1.7) imply that

e−C|k|
4+ε ≤ |P (±k)| ≤ eC|k|4+ε . (6.13)

We use this alongside (6.8) and (6.9) so that

|eg(k)| = |detS±(k)| |P±(k)|
|P±(−k)|

≤ CeC|k|12+ε , (6.14)

on the set defined in (6.9). The upper bound of resonance number in (6.2) implies for

ε > 0 that we have a sequence rj → ∞ such that the circles ∂D(0; rj) do not intersect

circles around a resonance at k. That is for all j

∂D(0; rj) ∩
⋃

kj∈R±

D
(
kj ; 〈kj〉−4−ε) = ∅.

The maximum modulus principle (see Theorem A.1.1) implies that the estimate in (6.14)

holds on the circles rk and thus everywhere as rk →∞. Since |eg(k)| ≤ CeRe g(k) by (6.14)

we have Re g(k) ≤ C|k|12+ε. For the entire function g, we apply the Borel–Carathéodory

theorem (see Theorem A.1.2) such that

|g(k)| ≤ C|k|12+ε,

which implies g is a polynomial of maximum order 12.

4. To show that g is a polynomial of degree no greater than 3, we first show that

|detS±(k)| ≤ C exp(C|k|3), Im k ≥ 0, |k| > C, (6.15)
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where |k| is sufficiently large to avoid the eigenvalues of DV . By retracing the steps from

(6.10) onward and estimating ‖(I + V R±0 (k)ρ)−1‖ ≤ C for Im k > 0, |k| ≥ C, we have

|detS±(k)| ≤
∞∏
j=1

(
1 + C‖E±(k)‖‖(I + V R±0 (k)ρ)−1‖sj [E±(k)]

)
≤
∞∏
j=1

(
1 + CeC|k|e−

√
j/C
)

=
∏

j≤2C4|k|2
(1 + CeC|k|e−

√
j/C)

∏
j>2C4|k|2

(1 + CeC|k|e−
√
j/C)

≤ CeC|k|3 ,

which proves (6.15). Insert into (6.14) for Im k > 0, |k| ≥ C whilst using (6.13) we have

|eg(k)| ≤ CeC|k|4+ε .

As in the previous step this suggests that g is a polynomial of degree no greater than

4. However (4.23) implies exp(−g(k)) = exp(g(−k)), or that g is an odd polynomial:

g(k) = a3k
3 + a1k.

6.2 The Poisson wave trace formula for the Dirac operator

In this section we state and prove our second trace formula.

Theorem 6.2.1 Let V satisfy Assumption 2.4.1. Then in distributional sense on Rt,

2t4 Tr(cos(t
√
D2
V −m2)− cos(t

√
D2

0 −m2))

= t4
∑
±

∑
kj∈R±

±m(kj) e
−i|t|kj + 2t4

∑
Ej

mj cos(tkj),

where in accordance with (2.16) and (3.21) we have the multiplicities

m(k) =


mR(k), k 6= 0,

m̃R(k), k = 0,

and Ej are the eigenvalues of DV with multiplicities mj.

Proof. We divide the proof into 7 steps.

1. By the relations in Theorem 6.1.2 we first show that

∂5
k log detS±(k) =

∑
kj∈R±\{0}

mR(kj)∂
4
k

(
1

k + kj
− 1

k − kj

)
. (6.16)
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Indeed by recalling the properties of P±(k) from Theorem 6.1.2 then

∂5
k log detS±(k)

= ∂5
k

[
log

(
eg(k)P±(−k)

P±(k)

)]
= ∂5

k [g(k) + logP±(−k)− logP±(k)]

=
∑

kj∈R±\{0}

mR(kj)∂
5
k

[
log

(
1 +

k

kj

)
+

4∑
`=1

1

`

(
− k

kj

)`
− log

(
1− k

kj

)
−

4∑
`=1

1

`

(
k

kj

)`]

=
∑

kj∈R±\{0}

mR(kj)∂
4
k

[
1

k + kj
− 1

k − kj

]
.

2. Let u(t) = 2t4 Tr
[
cos
(
t
√
D2
V −m2

)
− cos

(
t
√
D2

0 −m2
)]
∈ D ′(R) and φ ∈

C∞0 (R). Then

〈u, φ〉 =

∫
2t4 Tr

[
cos

(
t
√

D2
V −m2

)
− cos

(
t
√

D2
0 −m2

)]
φ(t) dt

=

∫
t4 Tr

[
eit
√

D2
V −m2

+ e−it
√

D2
V −m2 − eit

√
D2
0−m2 − e−it

√
D2
0−m2

]
φ(t) dt

=
√

2πTr

[∑
±
t̂4φ

(
±
√

D2
V −m2

)
−
∑
±
t̂4φ

(
±
√

D2
0 −m2

)]

=
√

2πTr [f(DV )− f(D0)],

where

f(z) = t̂4φ(
√
z2 −m2) + t̂4φ(−

√
z2 −m2). (6.17)

Using Theorem 5.2.1 we obtain

1√
2π
〈u , φ〉 =

1

2πi

∫ ∞
0

f(
√
k2 +m2) Tr

(
S+(k)−1∂kS

+(k)
)

dk

− 1

2πi

∫ ∞
0

f(−
√
k2 +m2) Tr

(
S−(k)−1∂kS

−(k)
)

dk

+
∑
Ej

mjf(Ej) +
1

2

∑
±
±m̃R(±m)f(±m).

To aid later calculations we label these terms as

1√
2π
〈u , φ〉 = A+B + C +D,

A =
1

2πi

∫ ∞
0

f(
√
k2 +m2) Tr

(
S+(k)−1∂kS

+(k)
)

dk,

B = − 1

2πi

∫ ∞
0

f(−
√
k2 +m2) Tr

(
S−(k)−1∂kS

−(k)
)

dk,

C =
∑
Ej

mjf(Ej), D =
∑
±
±1

2
m̃R(±m)f(±m).

(6.18)

3. Consider first the continuous part of the spectrum. Define h(k) := φ̂(k) so that
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∂4
kh(k) = t̂4φ(k). Then

2πiA =

∫ ∞
0

f(
√
k2 +m2) Tr

[
S+(k)−1∂kS

+(k)
]

dk

=
1

2

∫
R
f(
√
k2 +m2)∂k log detS+(k) dk

=
1

2

∫
R

[
t̂4φ(k) + t̂4φ(−k)

]
∂k log detS+(k) dk

=
1

2

∫
R

[
∂4
kh(k) + ∂4

kh(−k)
]
∂k log detS+(k) dk

=
1

2

∫
R

[h(k) + h(−k)] ∂5
k log detS+(k) dk,

where the surface terms disappear since h ∈ S (R). Using (6.16) then

2πiA =
1

2

∫
R

[h(k) + h(−k)]
∑

kj∈R+\{0}

mR(kj)∂
4
k

[
1

k + kj
− 1

k − kj

]
dk

=
∑

kj∈R+\{0}

mR(kj)

2

∫
R
∂4
k [h(k) + h(−k)]

[
1

k + kj
− 1

k − kj

]
dk

=
∑

kj∈R+\{0}

mR(kj)

2

∫
R

[
t̂4φ(k) + t̂4φ(−k)

] [ 1

k + kj
− 1

k − kj

]
dk.

Explicitly we have

2πiA =
∑

kj∈R+\{0}

mR(kj)

2
√

2π

[ ∫
R

∫
R
e−itkφ(t)t4

(
1

k + kj
− 1

k − kj

)
dt dk

+

∫
R

∫
R
eitkφ(t)t4

(
1

k + kj
− 1

k − kj

)
dt dk

]
=

∑
kj∈R+\{0}

mR(kj)

2
√

2π

[ ∫
R

(∫ ∞
0

e−i|t|kt4φ(t) dt+

∫ 0

−∞
ei|t|kt4φ(t) dt

+

∫ ∞
0

ei|t|kt4φ(t) dt+

∫ 0

−∞
e−i|t|kt4φ(t) dt

)(
1

k + kj
− 1

k − kj

)
dk

]
.

Hence

2πiA =
∑

kj∈R+\{0}

mR(kj)

2
√

2π

[ ∫
R

∫
R
e−i|t|kt4φ(t)

(
1

k + kj
− 1

k − kj

)
dt dk

+

∫
R

∫
R
ei|t|kt4φ(t)

(
1

k + kj
− 1

k − kj

)
dtdk

]
.

(6.19)

To utilise Jordan’s lemma (see for instance [61, chapter 19]) and obtain semi-circular arcs

that produce closed loops, we note that we require Im k < 0 and Im k > 0 for the first

and second terms on the right-hand side of (6.19). Since we defined the resonances to lie

in the lower k-plane, then we remove half of the terms in (6.19). Define

C1(R) = [−R,R] ∪ {Reiθ | θ ∈ (π, 2π)}, C2(R) = [−R,R] ∪ {Reiθ | θ ∈ (0, π)},
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where C1(R) and C2(R) are both orientated positively. Hence

2πiA =
∑

kj∈R+\{0}

mR(kj)

2
√

2π
lim
R→∞

[∫
R

∫
C1(R)

e−i|t|k

k − kj
t4φ(t) dk dt

+

∫
R

∫
C2(R)

ei|t|k

k + kj
t4φ(t) dk dt

]

= 2πi
∑

kj∈R+\{0}

mR(kj)

2
√

2π

∫
R

[
e−i|t|kj + ei|t|(−kj)

]
t4φ(t) dt

=
2πi√

2π

〈 ∑
kj∈R+\{0}

mR(kj)t
4e−i|t|kj , φ

〉
.

4. We follow the same method as in the previous step to find

B = − 2πi√
2π

〈 ∑
kj∈R−\{0}

mR(kj)t
4e−i|t|kj , φ

〉
.

5. For the discrete spectra we write using (6.17)

C =
∑
Ej

mjf(Ej) =
∑
Ej

mj

[
t̂4φ(

√
E2
j −m2) + t̂4φ(−

√
E2
j −m2)

]
=
∑
Ej

mj√
2π

∫
R
t4
(
e−itkj + eitkj

)
φ(t) dt

=
1√
2π

〈∑
Ej

2mjt
4 cos(tkj) , φ

〉
.

6. For the threshold resonances we similarly use (6.17) to write

D =
∑
±
±1

2
m̃R(±m)f(±m) =

1√
2π

〈∑
±
±m̃R(±m)t4 , φ

〉
.

7. Insert the results from the previous steps into (6.18) to obtain the desired result.

Summary

In this chapter, we have obtained the second of our trace formulas; a Poisson wave trace

formula for the Dirac operator. The proof was dependent on our Birman-Krĕın trace

formula as well as two other theorems from section 6.1. The first concerned a resonance

counting function that estimated the upper bound of resonances inside a circle centred

at the origin. The second pre-requisite is a factorization of the scattering matrix, made

possible by the fact that zeros of detS±(k) coincide with the resonances of DV . Our
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Poisson wave trace formula in section 6.2 holds in distributional sense for all t and relates

the trace difference between cosine operator-valued functions of DV and D0 to the sum of

all resonances and eigenvalues of DV . In chapter 7 we will use a less general version of

our Poisson wave trace formula to prove that infinitely many resonances exist in certain

circumstances.
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Chapter 7

Existence of infinitely many

resonances

This chapter presents a significant application of our trace formulas from chapters 5 and

6. Under certain conditions we prove that there exists infinitely many resonances of the

perturbed Dirac operator. As a prerequisite we use an asymptotic expansion of the Dirac

scattering phase in section 7.1 and show its relationship to an amended version of our

Poisson wave trace formula. We then prove by contradiction in section 7.2 that under

further assumptions on V we have infinitely many resonances.

7.1 The Dirac scattering phase

We use asymptotics of the Dirac scattering phase accredited to Bruneau and Robert [14].

We therefore further restrict our class of real-valued potentials to satisfy

Assumption 7.1.1 Let V : R3 →M4(R) take the form

V =

V+I2 0

0 V−I2

,
where I2 is the 2× 2 identity matrix.

Theorem 7.1.2 Let V satisfy Assumptions 2.4.1 and 7.1.1. Also, define the scattering
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phase, σ±(k), by

σ′±(k) :=
1

2πi
∂k log detS±(k).

Then in the far field limit there exists a sequence aj such that

σ′+(k)− σ′−(k) ∼
∞∑
j=1

aj(V )

k2(j−1)
, k →∞.

Moreover around t = 0 we have the expansion

σ̂′+(t)− σ̂′−(t) = C1δ(t) +
∑
j=2

Cj |t|2j−3, (7.1)

where

C1 = −2
√

2πγ2(V ), Cj = (−1)j
√

2π
γ2j(V )

(2j − 3)!
, j ≥ 2,

γ2(V ) =
1

2π2

∫
R3

[(
V+ − V−

2

)2

+ (V+ − V−)− 2

(
V+ + V−

2

)2
]

(x) dx.

Proof. We divide the proof into 2 steps.

1. From [14, Theorem 2.1] we have the asymptote of the Dirac scattering phase in

the spectral parameter. Since z → ±∞ corresponds to k → ∞, then changing variable

gives

σ′±(k) ∼ ∓ k√
k2 +m2

∑
j=1

γj(V )
[
±
√
k2 +m2

]2−j

∼ −γ1(V )k ∓ γ2(V )− γ3(V )

k
∓ γ4(V )

k2
+ . . . .

If a2j(V ) = −2γ2j then we obtain as required

σ′+(k)− σ′−(k) ∼
∑
j=1

a2j(V )

k2(j−1)
, k →∞. (7.2)

2. Write k = ακ, t = βτ and κτ = 1 so that as κ → ∞, then τ → 0. Then we take

the Fourier transform of (7.2) (see [37, section 7.3]) so that we have as τ → 0,

σ̂′+(βτ)− σ̂′−(βτ) =
1√
2π

∫
R

(
σ′+(ακ)− σ′−(ακ)

)
e−iακβτ d(ακ)

∼
∑
j=1

a2j(V )√
2π

∫
R

e−iακβτ

(ακ)2(j−1)
d(ακ)

=
√

2πa2(V )δ(βτ) +
∑
j=2

a2j(V )

√
π

2

(−i)2(j−1)(βτ)2(j−1)−1

(2(j − 1)− 1)!
sgn(βτ).

Let β = 1 and use aj(V ) = −2γ2j(V ). Hence

σ̂′+(t)− σ̂′−(t) ∼ −2
√

2πγ2(V )δ(t) +
√

2π
∑
j=2

(−1)j
γ2j(V )

(2j − 3)!
|t|2j−3, t→ 0.



69

In the following theorem we use a less general result of Theorem 6.2.1 whereby

we do not use the prefactor t4. Hence the trace formula in this instance would hold in

distributional sense on R \ {0}. Only minor changes to the proof of Theorem 6.2.1 are

required to show that the trace formula still holds.

Theorem 7.1.3 Let V satisfy Assumptions 2.4.1 and 7.1.1. Near t = 0, the less general

distributional trace formula in Theorem 6.2.1 on R \ {0} satisfies

2 Tr

[
cos(t

√
D2
V −m2)− cos(t

√
D2

0 −m2)

]
− T (t)

= −4πγ2(V )δ(t) + 2π
∑
j=2

(−1)j
γ2j

(2j − 3)!
|t|2j−3,

(7.3)

where T (t) = 2
∑

Ej
mj cos(tkj) +

∑
±±m̃R(±m).

Proof. Similar to the proof of Theorem 6.2.1, we use

u(t) = 2 Tr

[
cos(t

√
D2
V −m2)− cos(t

√
D2

0 −m2)

]
− T (t),

plus φ ∈ C∞0 (R) and f(z) = φ̂(
√
z2 −m2) + φ̂(−

√
z2 −m2) to write

1√
2π
〈u, φ〉 =

∫ ∞
0

f(
√
k2 +m2)σ′+(k) dk −

∫ ∞
0

f(
√
k2 +m2)σ′−(k) dk

=

∫ ∞
0

[φ̂(k) + φ̂(−k)]σ′+(k) dk −
∫ ∞

0
[φ̂(k) + φ̂(−k)]σ′−(k) dk

=

〈∫ ∞
0

e−iktσ′+(k) dk, φ

〉
+

〈∫ ∞
0

eiktσ′+(k) dk, φ

〉
−
〈∫ ∞

0
e−iktσ′−(k) dk, φ

〉
+

〈∫ ∞
0

eiktσ′−(k) dk, φ

〉
=

〈∫
R
e−iktσ′+(k) dk, φ

〉
−
〈∫

R
e−iktσ′−(k) dk, φ

〉
= 〈(σ̂′+ − σ̂′−), φ〉,

where (4.24) dictates that σ′±(k) is even. Then using (7.1) we obtain (7.3) as required.

7.2 Existence of infinitely many resonances

We now reach our final theorem which establishes the required conditions for the existence

of infinitely many resonances associated with DV . This result is an application of our two

trace formulas and is inspired by Melrose [52] and his result for Schrödinger resonances.
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Theorem 7.2.1 Let V satisfy Assumptions 2.4.1 and 7.1.1 such that γ2(V ) 6= 0 and

γ2j(V ) 6= 0 for at least one j ≥ 2. Then there exists infinitely many scattering resonances

of the perturbed Dirac operator.

Proof. We divide the proof into 2 steps.

1. We first prove that there are exists at least one resonance. By contradiction we

assume that there are a finite number of eigenvalues and that the only resonances are at

z = ±m. Then ∑
kj∈R+

mR(kj)e
−i|t|kj −

∑
kj∈R−

mR(kj)e
−i|t|kj = 0. (7.4)

Incidentally (7.4) is also zero if resonances in R+ and R− at kj with equal multiplicit-

ies cancel out but this automatically implies that there exists at least two resonances.

Inserting (7.4) into the Poisson wave equation in Theorem 6.2.1 we therefore have

2 Tr[cos(t
√
D2
V −m2)− cos(t

√
D2

0 −m2)]− T (t) = 0,

where T (t) is defined in Theorem 7.1.3. It also implies that

0 = −4πγ2(V )δ(t) + 2π
∑
j=2

(−1)j
γ2j(V )

(2j − 3)!
|t|2j−3.

For any small t > 0 the delta distribution is equal to zero but for any γ2j(V ) 6= 0, j ≥ 2

the right-hand side is not zero and hence gives a contradiction. Therefore there exists at

least one resonance not at z = ±m.

2. Next assume that there are only a finite number of resonances. Then rearranging

the Poisson wave equation in Theorem 6.2.1, the right-hand side of

2 Tr

[
cos(t

√
D2
V −m2)− cos(t

√
D2

0 −m2)

]
− T (t)

=
∑

kj∈R+

mR(kj)e
−i|t|kj −

∑
kj∈R−

mR(kj)e
−i|t|kj ,

(7.5)

is finite (possibly zero). Then we may continuously extend (7.5) to t = 0 such that the

right-hand side is equal to or between −
∑

kj∈R−mR(kj) and
∑

kj∈R+
mR(kj). However

this contradicts (7.3) which is not continuous at t = 0 due to γ2(V ) 6= 0 and the delta

distribution. We therefore conclude that there are infinitely many resonances.
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Summary

In this chapter, we have applied our trace formulas to prove that it is possible to have

infinitely many resonances. With further restrictions on the potential, we found a far

field asymptotic expansion of the scattering phase. Using its Fourier transform, we then

studied how the Poisson wave trace formula, when restricted to R \ {0}, behaves as t→ 0.

Further considerations in this limit were then used to prove the existence of infinitely

many resonances associated with the perturbed Dirac operator.
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Chapter 8

Concluding Remarks

Motivated by their appearance in the physical sciences, mathematical resonances have been

studied extensively using Schrödinger operators. Numerous methods have been utilised

to study their existence and number bounds. One drawback of Schrödinger operators

is that they do not account for relativistic effects. This can be corrected by instead

considering Dirac operators. However the literature concerning Dirac resonances is limited

in comparison with the non-relativistic case.

To this end, in this thesis we have studied resonances of the Dirac operator

perturbed by a smooth, compactly supported electric potential. They are defined as poles

of the cut-off full resolvent when extended from the physical k half-plane to C. The author

is not aware of Dirac resonances being studied in this manner previously.

By considering our change of variable, we have had to construct from first prin-

ciples various concepts such as operator resolvents, the scattering matrix, and how reson-

ances are linked to the bigger picture. This enabled us to prove our Birman-Krĕın and

Poisson wave trace formulas that explicitly deal with any threshold resonances on a sep-

arate basis. Finally we applied our trace formulas to prove that it is indeed possible to

have infinitely many resonances associated with the perturbed Dirac operator.

8.1 Future work

This thesis leads to various open questions which could be addressed as extensions to this

work
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• An immediate question is whether our proof for the existence of infinitely many

Dirac resonances (see chapter 7) can be amended to avoid using our less general

Poisson wave trace formula. This could for instance follow the method described

by Smith and Zworski [77] who expand further on scattering phase asymptotics and

factorization of the scattering matrix determinant.

• The dimensionality was fixed to R3. For Schrödinger operators it is an interesting

observation that many results concerning resonances hold for odd dimension d ≥ 3,

with generalized proofs that hold for all of those dimensions. Different considerations

are necessary for the d = 1 and even d cases. One would expect that a similar

generalization would hold for Dirac operators. It would also be interesting if our

result on the existence of infinitely many resonances holds if we increase from 4, the

n× n dimension of the Dirac operator.

• Throughout the thesis, we have consistently assumed favourably smooth properties of

the potential. For the Schrödinger case, this too was initially considered for proving

the existence of infinitely many resonances. However the proof was later amended

to hold true for more general classes of potentials. With respect to this thesis, this

would require reworking large sections of our work to allow this. Likewise, studying

the effect of a magnetic potential on Dirac resonances would also require a major

recalculation of our work.

• It would stand to reason that any open questions on resonances of the Schrödinger

operator would also be open for the Dirac operator. One area still under investigation

in the former case is whether there exists an optimal, lower bound on resonance

number for smooth, compactly supported potentials. In the Schrödinger case only

partial results have been obtained with restrictive conditions imposed on V (see for

instance [33, section 5.4]).
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Appendix

A.1 Entire functions

All theorems in this section are used to define properties of detS±(k) in chapter 6. For

any given analytic function, Theorem A.1.1 describes how its maximum can be found on

the boundary of a compact region whereas Theorem A.1.2 shows how such a maximum

can be bounded by its real part. Both theorems can be found in [80, chapter V].

Theorems A.1.3 to A.1.5 culminate in a product description for an entire function

with growth restrictions on its zeros. These have been adapted from [19, chapter XI] and

[47, chapters 2 and 4]). See also section 4.3 of the latter reference for a proof of Theorem

A.1.6.

Theorem A.1.7 provides a lower bound for holomorphic functions on a disc

D(0;R) that excludes the family of internal discs centred at the zeros of f (see for in-

stance [80, section 8.71]).

Theorem A.1.1 (Maximum modulus theorem) Let f be a non-constant analytic

function on a bounded region Ω ⊂ C. If |f(z)| ≤M on ∂Ω then |f(z)| < M on all interior

points of Ω.

Theorem A.1.2 (Borel–Carathéodory theorem) Let f be analytic on a closed disc

D(0;R) ⊂ C. Then for 0 < r < R

sup
|z|=r
|f(z)| ≤ 2r

R− r
sup
|z|≤R

Re f(z) +
R+ r

R− r
|f(0)|.

Theorem A.1.3 (Jensen’s formula) Let f be holomorphic in Ω ⊂ C with zeros {aj}j
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inside the disc D(0;R) of radius R centred at the origin. If f(0) 6= 0 then∫ R

0

n(t)

t
dt =

1

2π

∫ 2π

0
log |f(Reiθ)| dθ − log |f(0)|,

where n(t) counts the zeros of f inside D(0; t).

Theorem A.1.4 (Hadamard factorization theorem) Let f be an entire function

with zeros {z1, z2, . . .}. If the zero counting function satisfies n(r) ≤ rp for r > r0 then

the summation
∞∑
j=1

1

|zj |p+1
, (A.1)

is finite.

Theorem A.1.5 (Weierstrauss factorization theorem) Let {zk : zk 6= 0}∞k=1 satisfy

|zk| → ∞, k → ∞. Suppose also pk ∈ N and r > 0 such that (A.1) is finite. Then the

function

P (z) =

∞∏
k=1

Epk

(
z

zk

)
,

is entire and the Weierstrauss factors, En, for n ∈ N are defined

En(z) =


(1− z), n = 0,

(1− z) exp

 n∑
j=1

zj

j

, n 6= 0.

Moreover let f be an entire function with zeros {zj : zj 6= 0}, repeated according to its

multiplicity, and such that f(0) is a zero of multiplicity m ≥ 0. Then there exists an entire

function g and sequence of integers {pk} such that

f(z) = zmeg(z)
∞∏
k=1

Epk

(
z

zk

)
. (A.2)

Theorem A.1.6 Let p be the smallest integer such that (A.1) is finite. Then the growth

order for a Weierstrauss product is also equal to p.

Theorem A.1.7 (Minimum modulus theorem) Let P (z) be a canonical product of

order p with zeros {zj}. Then for ε > 0

log |P (z)| ≥ −|z|p+ε, z /∈
⋃
{zj}

D(zj ; 〈zj〉−p−ε), |z| ≥ r0.
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A.2 Spectral theory

Theorems A.2.1 to A.2.3 concern standard results in spectral theory (see for instance [34]

and [65]). We then introduce the concept of singular values and trace class operators. The

details for the properties listed from (A.3) to (A.9) can be found in [71, chapters 1 and 3]

and also [28, chapter VII]).

We direct the reader to [27, chapter V, section 5.1] for proofs of the estimates in

Theorem A.2.4. Weyl’s asymptotic counting law for eigenvalues of the Laplace-Beltrami

operator on compact Riemannian manifolds in Theorem A.2.5 can be found in [11, section

A.3].

Finally Theorems A.2.6 and A.2.7 are generalized versions of almost analytic

extensions and the Helffer-Sjöstrand formula (see for instance [20, chapter 8] and [87,

section 14.3] respectively).

Theorem A.2.1 Let A be a selfadjoint operator. Then if λ ∈ ρ(A), we have the resolvent

norm

‖(A− z)−1‖ =
1

dist(λ, spec(A))
.

Theorem A.2.2 The following are known as the first and second resolvent identities

respectively.

1. Let A be a linear operator on a Hilbert space H. Then for z, ζ ∈ ρ(A),

(A− z)−1 − (A− ζ)−1 = (z − ζ)(A− z)−1(A− ζ)−1.

2. Let A and B be closed operators whereby z ∈ ρ(A) ∩ ρ(B). Then

(A− z)−1 − (B − z)−1 = (A− z)−1(B −A)(B − z)−1.

Theorem A.2.3 (Spectral theorem of selfadjoint operators) Let H be a selfadjoint

operator on a Hilbert space H. If f(λ) is a complex-valued function and u ∈ H such that∫
|f(λ)|2 d〈E(λ)u ,E(λ)u〉 <∞,

then we have the operator

f(H) =

∫
f(λ) dE(λ).
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Next we consider the singular values of compact operators. For a compact op-

erator C, then its singular values, sj [A] where ‖A‖ = s1[A] ≥ s2[A] ≥, . . . are defined as

the non-zero eigenvalues of |C| := (C∗C)1/2. Moreover if C1, C2 and B are compact and

bounded operators respectively then

sj [BC1] ≤ ‖B‖sj [C1], (A.3)

sj [C1B] ≤ ‖B‖sj [C1], (A.4)

sj+k+1[C1 + C2] ≤ sj+1[C1] + sk+1[C2], (A.5)

sj+k+1[C1C2] ≤ sj+1[C1]sk+1[C2]. (A.6)

An operator is trace class (denoted B1) if its trace norm

‖A‖B1 =
∑
j=1

sj(A),

is finite. In that case, if {vk} is an orthonormal basis in the Hilbert space, H, the trace of

A is defined

TrA :=
∑
k=1

〈vk, Avk〉.

Moreover if A is trace class and B is a bounded operator, then the trace satisfies

Tr(AB) = Tr(BA).

If A is a trace class operator, then we define the determinant of I −A as

det(I −A) =
∞∏
j=1

(I − λj(A)), (A.7)

where λj are the eigenvalues of A counted with multiplicity. Denoting A1, A2 and B as

trace class and bounded operators respectively then we have the following properties

det[(I −A1)(I −A2)] = det(I −A1) det(I −A2),

det(I −A1B) = det(I −BA1).
(A.8)

Furthermore for small values of µ then

det(I − µA) = exp

− ∞∑
j=1

µj
Tr[Aj ]

j

. (A.9)

Theorem A.2.4 Let A ∈ B1. If λ ∈ C is such that the inverse (I − λA)−1 exists, then

|det(I − λA)| ≤
∞∏
j=1

(1 + |λ|sj(A)),

‖(I − λA)−1‖ ≤ det(I +
√
A∗A)

|det(I − λA)|
.
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Theorem A.2.5 (Weyl law) Let (M, g) be a compact n-dimensional Riemannian man-

ifold and suppose that −∆M is the Laplace-operator on M . Furthermore denote the (dis-

crete) spectrum as

spec(−∆M ) = {0 = z0 < z1 ≤ z2 ≤ . . .},

with corresponding eigenfunctions ψj that form an orthonormal basis in L2(M). Then the

counting function for the eigenvalues of −∆M satisfies

#{zj ∈ spec(−∆M ) : zj ≤ r} ∼
volg(M)

Γ(n/2 + 1)(4π)n/2
rn/2,

or equivalently

zj ∼
volg(M)

Γ(n/2 + 1)(4π)n/2
j2/n.

Using Theorem A.2.5 where n is the number of dimensions of (M, g), it can then

be shown that

sj [(−∆M + I)−m/2] ≤ Cj−m/n. (A.10)

Theorem A.2.6 (Almost analytic extension) Let f ∈ S (R) and χ ∈ C∞0 ((−1, 1))

such that χ ≡ 1 on [−1/2, 1/2]. Assume also z = x+ iy such that ∂z = (∂x+ i∂y)/2. Then

f̃(x+ iy) :=
1√
2π
χ(y)

∫
R
χ

(
yλ

1 + x2

)
f̂(λ)eiλ(x+iy) dλ ∈ C∞(C) (A.11)

is an almost analytic extension of f to C satisfying

f̃
∣∣
R = f, supp f̃ ⊂ {z : | Im z| ≤ 1},

∂z f̃ ≤ CN
| Im z|N

〈x〉2(N+1)
, ∀N ∈ N.

(A.12)

Proof. For y = 0 on the real line, then f̃ = f as required. The cut-off function χ outside

of the integral in (A.11) ensures the support of f̃ is restricted to {| Im z| ≤ 1}. For the

final property in (A.12) we calculate

∂z

∫
R
χ

(
yλ

1 + x2

)
f̂(λ)eiλ(x+iy) dλ

=

(
i

2
− xy

(1 + x2)

)
1

(1 + x2)

∫
R
χ′
(

yλ

1 + x2

)
λf̂(λ)eiλ(x+iy) dλ

=

(
i

2
− xy

(1 + x2)

)
yN

(1 + x2)N+1

∫
R
χ′N

(
yλ

1 + x2

)
λN+1f̂(λ)eiλ(x+iy) dλ

≤ C|1 + y| |y|N

〈x〉2(N+1)

∫
suppχ′N

χ′N

(
yλ

1 + x2

)
λN+1f̂(λ)e−λy dλ

≤ CN
|y|N

〈x〉2(N+1)
,
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where we have assumed | Im z| ≤ 1 and used

χ′N

(
yλ

1 + x2

)
=

(
yλ

1 + x2

)−N
χ′
(

yλ

1 + x2

)
∈ C∞0 ((−1, 1)).

For χ′(y)
∫
R χ
(

yλ
1+x2

)
f̂(λ)eiλ(x+iy) dλ we use the substitution

χ

(
yλ

1 + x2

)
= (1 + x2)−NχN

(
yλ

1 + x2

)
,

and note that χ′(y) ≤ CN |y|N in the assumed range of Im z. This completes the proof.

Theorem A.2.7 (Generalized Helffer-Sjöstrand formula) Let H be a selfadjoint

operator on a Hilbert space H. Suppose f ∈ S (R) such that f(z) = (z− z0)−Ng(z) where

Im z0 > 0 and g ∈ S (R) has analytic extension g̃. Then

f(H) =
1

π

∫
C

(H − z)−1(H − z0)−N∂z g̃(z) dm(z),

where m denotes the Lebesgue measure on C.

Proof. Let u, v ∈ H and Q = 1
π

∫
C(H−z)−1(H−z0)−N∂z g̃(z) dm(z). Then using Theorem

A.2.3 we have

〈Qu , v〉 =
1

π

∫
C
∂z g̃(z)

∫
spec(H)

1

(t− z)
1

(t− z0)N
d〈E(t)u , v〉 dm(z)

=

∫
spec(H)

g(t)

(t− z0)N
d〈E(t)u , v〉

=

∫
spec(H)

f(t) d〈E(t)u , v〉 = 〈f(H)u , v〉,

as required.

A.3 Fredholm theory

Theorem A.3.1 (see for instance [87, section D.4]) is used to prove the meromorphic con-

tinuation of R±0 (k) and R±V (k) from the upper k plane to C. To study the structure of

F±(k) near k = 0 in Theorem 5.2.1 we use the method described in Theorem A.3.2 (see

[28, chapter XI]).

Theorem A.3.1 (Analytic Fredholm theory) Let U ⊂ C be a connected open set and

suppose {A(z)}z∈U is a holomorphic family of Fredholm operators. If A(z0)−1 exists at
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some point z0 ∈ U , then {A(z)−1}z∈U is a meromorphic family of operators with poles of

finite rank.

Theorem A.3.2 (Gohberg-Sigal theory) Let A(λ) be a family of meromorphic Fred-

holm operators. If µ ∈ Ω ⊂ C and

A(λ) =
J∑
j=1

Aj
(λ− µ)j

+A0(λ),

with A0(λ) holomorphic near µ and zero Fredholm index, then there exists operators U1,2(λ)

and Qk, 1 ≤ k ≤ K such that near µ,

A(λ) = U1(λ)

 K2∑
k=−K1

(λ− µ)kQk

U2(λ), k ∈ Z.

Here U1,2(λ) are holomorphic and invertible near µ whilst Qk are disjoint projection op-

erators satisfying

rank(I −Q0) <∞, rankQk = 1, k > 0. (A.13)

Moreover if
∑K

j=0Qk = I, then the inverse satisfies

A(λ)−1 = U2(λ)−1

 K2∑
k=−K1

(λ− µ)−kQk

U1(λ)−1,

and we have
1

2πi
Tr

∮ [
A(λ)−1∂λA(λ)

]
dλ = Nµ(A)−Nµ(A−1), (A.14)

where the positively orientated contour is around the single pole µ of A(λ)−1∂λA(λ), and

Nµ(A) and Nµ(A−1) count, with multiplicity, the number of zeros and poles of A respect-

ively.
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[9] M. S. Birman and M. G. Krĕın. On the theory of wave operators and scattering

operators. Dokl. Akad. Nauk SSSR, 144:475–478, 1962. 5
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[18] J.-M. Combes, P. Duclos, M. Klein, and R. Seiler. The shape resonance. Commun.

Math. Phys., 110:215–236, 1987. 4

[19] J. B. Conway. Functions of a complex variable I. Springer, 1978. 74

[20] M. Dimassi and J. Sjostrand. Spectral asymptotics in the semi-classical limit. Cam-

bridge University Press, 1999. 76

[21] P. A. M. Dirac. The quantum theory of the electron. P. Roy. Soc. Lond. A: Math.

Phys. Eng. Sci., 117:610–624, 1928. 6, 10

[22] S. Dyatlov and C. Guillarmou. Pollicott–Ruelle resonances for open systems. Ann.
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[73] J. Sjöstrand. A trace formula and review of some estimates for resonances. In Micro-

local analysis and spectral theory, pages 377–437. Springer, 1997. 5, 7
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