
   
 

  

   

 A University of Sussex MPhil thesis  

 Available online via Sussex Research Online:  

 http://sro.sussex.ac.uk/   

 This thesis is protected by copyright which belongs to the author.   

 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

 
When referring to this work, full bibliographic details including the aut
hor, title, awarding institution and date of the thesis must be given  

 Please visit Sussex Research Online for more information and further details   



 

 

 

 

 

University of Sussex 

 

 

Investigating Evolutionary Rate Variation in Bacteria 

 

 

Bethany Gibson 

 

 

 

 

 

Submitted for the degree of Master of Philosophy 

November 2019 

 
 

 

 

 



Declaration 

I hereby declare that this thesis has not been and will not be, submitted in whole or in 

part to another University for the award of any other degree.  



 

University of Sussex 

Bethany Gibson, MPhil thesis 

Investigating Evolutionary Rate Variation in Bacteria 

 

 

Abstract 

 

Rates of molecular evolution are known to vary between species and across all 

kingdoms of life. Here we explore variation in the rate at which bacteria accumulate 

mutations (accumulation rates) in their natural environments over short periods of 

time. We have compiled estimates of the accumulation rate for over 34 species of 

bacteria, the majority of which are pathogens evolving either within an individual host 

or during outbreaks. Across species we find that accumulation rates vary by over 3700-

fold. We investigate whether accumulation rates are associated to a number potential 

correlates including genome size, GC content, measures of the natural selection and 

the time-frame over which the accumulation rates were estimated. After controlling 

for phylogenetic non-independence, we find that the accumulation rate is not 

significantly correlated to any factor. Furthermore, contrary to previous results we find 

that it is not impacted by the time-frame of which the estimate was made. We 

conclude that much of the rate variation is probably explained by variation in the 

generation time. We attempt to estimate doubling times of bacteria in the wild using a 

new method. We estimate the DT for five species of bacteria for which we have both 

an accumulation and a mutation rate estimate. We also infer the distribution of DTs 

across all bacteria from the distribution of the accumulation and mutation rates. Both 

analyses suggest that DTs for bacteria in the wild are substantially greater than those 

in the laboratory, that they vary by orders of magnitude between different species of 

bacteria and that a substantial fraction of bacteria double very slowly in the wild. 
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1.AIMS 

 

The goal of this of thesis is to investigate why molecular evolutionary rates vary across 

bacterial species. Evolutionary rates are known to vary across all kingdoms of life, 

including plants and animals. However, for bacteria, this topic remains relatively 

unexplored.  This work aims to unravel the potential correlates of the accumulation 

rate in bacteria which will aid our understanding of bacterial evolution in general.  

 

I first collect all available accumulation rate estimates from the literature and then to 

see if they correlate to several factors, including genome size, GC content, measures of 

natural selection and the time-frame over which the accumulation rates are measured. 

Secondly, I investigate whether another factor, generation time, can explain the 

variation in accumulation rates. To do this a new method is developed to estimate the 

generation time of bacteria in the wild. For this I need two sources of information: The 

accumulation rate and the mutation rate. Thus, further to collecting accumulation 

rates, I also collect mutation rates from the literature. I estimate doubling times for 

five species of bacteria and also the distribution of doubling times across all bacteria.  

 

 

2. INTRODUCTION 

 

Knowledge about the rates at which mutations arise and genomic change occurs is 

crucial to understanding how organisms evolve and adapt and how molecular 

evolution proceeds. Evolutionary rates are known to vary extensively across species in 

both prokaryotes and eukaryotes and this variation will in part be associated with 

species characteristics and biology. Disentangling the factors that influence 

evolutionary rates have been explored in many animal and plant systems (e.g.  

(Bromham 2002; Smith & Donoghue 2008; Welch et al. 2008; Lanfear et al. 2010), but 

not so much in bacteria (though see Rocha et al. 2006; Weller & Wu 2015; Duchêne et 

al. 2016). Here we investigate variation in the rate at which bacteria accumulate 
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mutations through time in their natural environment over short time periods of a few 

months to a thousand years. We refer to these as accumulation rates to differentiate 

them from the mutation rate, the rate at which mutations occur, and the substitution 

rate, the rate at which mutations fix in a species. These rates of accumulation are 

commonly estimated using temporarily sampled data (Drummond et al. 2003), or 

concurrent samples from a population with a known date of origin (e.g. from fossil 

dates or co-speciation events). They vary by orders of magnitude from species such as 

Mycobacterium leprae  with an accumulation rate of 8.6x10-9  (Schuenemann et al. 

2013) to species such as Campylobacter jejuni with a rate of 3.23x10-5 (Wilson et al. 

2009).  

 

It remains unclear why the rate as which mutations accumulate varies so much 

between bacteria. The accumulation rate per year must ultimately depend upon the 

rate of mutation per year and the probability that a mutation reaches sufficient 

frequency in the population to be sampled. If some mutations are caused by DNA 

replication, as seems likely in most organisms, then the mutation rate per year is a 

function of the mutation rate per generation and the generation time. The probability 

that a mutation reaches a certain frequency in the population depends upon natural 

selection, biased gene conversion and the effective population size. We consider each 

of these explanations in turn. 

 

It has previously been shown that the time-frame over which an accumulation rate is 

estimated can impact the estimate of evolutionary rate  - they tend to be  lower when 

measured over longer time-frames  (Ho & Larson 2006; Ho et al. 2011; Duchene et al. 

2014; Biek et al. 2015; Duchêne et al. 2016). This effect is usually attributed to the 

inefficiency of purifying selection to remove slightly deleterious mutations over shorter 

time periods or problems with reliably estimating rates when the sequences are 

saturated. This pattern is evident in bacteria (Rocha et al. 2006; Biek et al. 2015; 

Duchêne et al. 2016), however the evidence for the pattern is weak. In the most 

extensive analysis to date (Duchêne et al. 2016) the negative correlation between the 

accumulation rate and time-frame was a consequence of just two species which had 

been sampled over a long time-period. Furthermore, the authors removed datasets 
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which showed no significant accumulation of mutations through time. This will have 

biased their analysis towards finding a negative correlation between the accumulation 

rate and sampling time-frame, because species with slow accumulation rates will be 

removed from the analysis if they are sampled over short-time frames, because they 

have not had enough time to accumulate significant numbers of substitutions.  

 

Here we revisit the question of whether the accumulation rate is slow in species 

sampled over longer time-frames. We do this by comparing the rate of accumulation 

within species across different sampling times. We find little evidence for an 

association and consequently move on to explore other potential correlates of the 

accumulation rate. This includes 1) the mutation rate per generation, and 2) the 

effectiveness of selection. However, we find little evidence that these factors are 

responsible for the variation in the accumulation rate. This suggests that generation 

time might be a major factor.  

 

Although, the generation time, or doubling rate, of bacteria has been measured in the 

lab for many species, relatively little is known about the DT of bacteria in their natural 

environment. For example,the bacterium Escherichia coli can divide every 20 minutes 

in the laboratory under aerobic, nutrient-rich conditions. But how often does it divide 

in its natural environment in the gut, under anaerobic conditions where it probably 

spends much of its time close to starvation? And what do we make of a bacterium, 

such as Syntrophobacter fumaroxidans, which only doubles in the lab every 140 hours 

(Harmsen et al. 1998). Does this reflect a slow doubling time in the wild, or our 

inability to provide the conditions under which it can replicate rapidly? 

 

Estimating the generation time is difficult for most bacteria in their natural 

environment and very few estimates are available. The doubling time (DT) for 

intestinal bacteria has been estimated in several mammals by assaying the quantity of 

bacteria in the gut and faeces. Assuming no cell death Gibbons & Kapsimalis (1967) 

estimate the DT for all bacteria in the gut to be 48, 17 and 5.8 hours in hamster, guinea 

pig and mouse respectively. More recently Yang et al. (2008) have shown that the 

doubling time of Pseudomonas aeruginosa is correlated to cellular ribosomal content 
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in vitro and have used this to estimate the DT in vivo in a cystic fibrosis patient to be 

between 1.9 and 2.4 hours.  

   

We investigate what we can infer about the generation time in bacteria using a new 

method that uses two sources of information. First, the accumulation rate. If we 

assume that all mutations in the wild are neutral, an assumption that we show to be 

relatively unimportant for this method, in the discussion, then the accumulation rate is 

an estimate of the mutation rate per year, uy. Second, we can estimate the rate of 

mutation per generation, ug, in the lab using a mutation accumulation experiment and 

whole genome sequencing, or through fluctuation tests. If we assume that the 

mutation rate per generation is the same in the wild and in the lab, an assumption we 

discuss further below, then if we divide the accumulation rate per year in the wild by 

the mutation rate per generation in the lab, we can estimate the number of 

generations that the bacterium goes through in the wild and hence the doubling time 

(DT = 8760 x ug / uy , where 8760 is the number of hours per year). 

 

In summary, we investigate why the rate of accumulation varies between bacterial 

species; we consider a number of explanations including the time-frame over which 

the estimates have been sampled, variation in the mutation rate and the efficiency of 

natural selection. We also attempt to estimate the generation time of bacterial in the 

wild, as a means to investigate whether variation in the generation time is a potential 

explanation for the variation in the rate of accumulation. 

 

 

 

3. MATERIALS AND METHODS 

 

3.1 Data collection 

We compiled estimates of the accumulation rates from the literature (Appendix 1). For 

some species we obtained multiple estimates and in most analyses we use the average 

of these (Appendix 2). We also compiled estimates of the mutation rate from the 

literature and only used estimates that came from a mutation accumulation 
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experiment with whole genome sequencing. If we had multiple estimates of the 

mutation rate, we summed the number of mutations across the mutation 

accumulation experiments and divided this by the product of the genome size and the 

number of generations that were assayed (Appendix 3). The genome size and GC 

content for each species is the average of all complete genomes on NCBI for each 

species. Nucleotide diversity estimates were calculated using orthologous sequence 

alignments for each species which were constructed using ODoSE ((Vos et al., 

2013),http://www.odose.nl) and in-house scripts written in Python 

(https://www.python.org) (Appendix 2). Lab Doubling times were taken from (Vieira-

Silva & Rocha 2010) (Appendix 2). 

 

We recalculated the accumulation rates in two cases in which the number of 

accumulated mutations had been divided by an incorrect number of years: E. coli 

(Reeves et al. 2011) and Helicobacter pylori (Kennemann et al. 2011). For E. coli, we 

reestimated the accumulation rate using BEAST by constructing sequences of the SNPs 

reported in the paper and the isolation dates. For, Helicobacter pylori we use two 

groups of strains in which strains were sampled from a patient at 0, 3 and 16-years; in 

both cases the 3-year and 16-year strains appear to form a clade to the exclusion of 

the 0-year strain because they share some common differences from the 0-year strain 

(Kennemann et al. 2011). We do not know when the 3-year and 16-year strains 

diverged, but assuming a molecular clock we can estimate the as follows: if the 

number of substitutions that have accumulated between the common ancestor of the 

3-year and 16-year strain and each of the two strains are S3 and S16 respectively then 

the rate of accumulation can be estimated as (S16-S3)/(13 years x genome size) (Figure 

1.). Using the number of substitutions reported by (Kennemann et al. 2011) in their 

figure 1 we have estimated the accumulation rate to be 5 x 10-6 (for isolates NQ1707 

and NQ4060) and 5.9 x 10-6 (for NQ1671 and NQ4191).  
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Figure 1. Estimating the accumulation rate for strains from Kennamann et al. 2011 

 

We excluded some accumulation rate estimates for a variety of reasons. We only 

considered accumulation rates sampled over an historical timeframe of at most 1500 

years. Most of our estimates of the accumulation rate are for all sites in the genome, 

so we excluded cases in which only the synonymous accumulation rate was given. We 

also excluded accumulation rates from hypermutable strains. Accumulation and 

mutation rate estimates used in the analysis are given in supplementary tables S1 and 

S2 respectively. 

 

3.2 Testing for phylogenetic inertia 

To estimate phylogenetic signal in the accumulation rates and all other traits we 

generated phylogenetic trees for the 34 species for which we have accumulation rate 

estimates (Appendix 5). 16S rRNA sequences were downloaded from the NCBI genome 

database (https://www.ncbi.nlm.nih.gov/genome/) and aligned using MUSCLE (Edgar 

2004) performed in Geneious version 10.0.9 (http://www.geneious.com, Kearse et al., 

2012). From these alignments, maximum likelihood trees were constructed in RAxML 

(Stamatakis 2014) and integrated into the tests of Pagel (1999) and Blomberg et al. 

(2003) to the accumulation rates and all other traits implemented in the phylosig 

function in the R package phytools v.0.6 (Revell 2012). Phylogenetic independent 

0-year strain

3-year strain

16-year strain

Divergence time unknown

S3

S16

13 years
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contrasts were carried out according to the method of Felsenstein (1985) using the pic  

function in ape v.4.1 (Paradis et al. 2004).  

 

All statistical analyses were performed in R (https://cran.r-project.org).  

 

3.3 Divergence as a function of time 

The accumulation rate is expected to decrease as more divergent sequences are 

sampled because natural selection will remove deleterious genetic variation over time. 

To investigate this phenomenon quantitatively we used a transition matrix to explicitly 

calculate the distribution of allele frequencies t generations after a mutation was 

introduced into a haploid population. In the transition matrix the first column 

represents the population when the mutation is first introduced. If there are N strains 

(or chromosomes) in the population then there are N+1 rows, where the first row 

represents loss of the mutation and the N+1th row, fixation. The first column is 

therefore (0,1,0,0,0…0). To this column we apply selection and drift. If the fitness of 

the wildtype is 1 and the fitness of the mutant is 1-s then the frequency after selection 

is 𝑓"(𝑓, 𝑠) = (1 − 𝑠)𝑓/(1 − 𝑠𝑓) where f the frequency before selection. To calculate 

the effects of drift we use the binomial distribution. Hence the probability density of x 

copies of the mutation in generation t is 

 

𝑃(𝑁, 𝑥, 𝑠, 𝑡) = ∑ 𝐵(𝑁,123
453 𝑥, 𝑖, 𝑠)𝑃(𝑖, 𝑡 − 1)      (1) 

 

where B(N,x,i,s) is the binomial distribution taking into account the effects of selection 

 

𝐵(𝑁, 𝑥, 𝑖, 𝑠) = 1!
8!(128)!

9𝑓′( 4
1
, 𝑠);

8
91 − 𝑓′( 4

1
, 𝑠);

128
    (2) 

 

By applying equation 1 we can work out the probability density of a mutation 

introduced in the first generation in subsequent generations; i.e. we calculate P(x,2) 

for all x from 0 to N, and then P(x,3) for all x from 0 to N…etc). The ith column and jth 

row represent the probability of observing a mutation introduced as a single copy at 
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generation 1, in j copies in the ith generation. The chance that a sequence sampled in t 

generations in the future is different to the ancestral can be calculated thus 

 

𝐷(𝑁, 𝑠, 𝑡) = ∑ ∑ 𝑃(𝑁, 𝑥, 𝑠, 𝑣) 8
1

1
853

>
?53       (3) 

 

If we have two strains diverging from each other, then the overall divergence, 

assuming that mutations do not occur at the same site, which is reasonable for low 

levels of divergence, is twice this. We are interested in how selection affects the rate 

of accumulation and so we need to divide by the accumulation rate for neutral 

mutations, which is equivalent to dividing equation 3 by t: 

 

𝐴(𝑁, 𝑠, 𝑡) = 2𝐷(𝑁, 𝑠, 𝑡)/2𝐷(𝑁, 0, 𝑡)       (4) 

 

In reality, not all deleterious mutations are subject to the same strength of selection so 

we sampled mutations from a gamma distribution; calculated P(x,s,t) for each and 

then averaged across mutations. We sampled 100 mutations for each set of 

parameters governing the distribution of fitness effects. 𝐴(𝑁, 𝑠, 𝑡) is expected to scale 

in N generations, something we have confirmed; i.e. 𝐴(𝑁, 𝑠, 𝑡) = 𝐴(𝑧𝑁, 𝑠, >
D
). We 

initially constructed a transition matrix with 100 strains to study the pattern from 0 to 

4N generations, but then subsequently investigated the pattern in more depth within 

the first 0.1N generations by constructing a transition matrix with 1000 strains and the 

first 0.01N generations. 

 

3.4 Estimating doubling times 

We estimated the DT of individual species and the distribution across species using the  

formula DT = 8760 x ug / uy , where ug is the mutation rate per generation as estimated 

from a mutation accumulation experiment, uy is the mutation rate per year estimated 

from the accumulation rate, and 8760 is the number of hours per year. The estimate of 

the standard error associated with our estimate of the doubling time was obtained 

using the standard formula for the variance of a ratio: V(x/y) = 

(M(x)/M(y))2(V(x)/M(x)2+V(y)/M(y)2) where M and V are the mean and variance of x 
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and y. The variance for the accumulation rate was either the variance between 

multiple estimates of the accumulation rate if they were available, or the variance 

associated with the estimate if there was only a single estimate. The variance 

associated with the mutation rate was derived by assuming that the number of 

mutations was Poisson distributed. 

 
To infer the distribution of DTs across bacteria we fit log-normal distributions to the 

accumulation and mutation rate data by taking the loge of the values and then fitting a 

normal distribution by maximum likelihood using the FindDistributionParameters in 

Mathematica. Normal Q-Q plots for the accumulation and mutation rate data were 

produced using the qqnorm function in R version 1.0.143. In fitting these distributions, 

we have not taken into account the sampling error associated with the accumulation 

and mutation rate estimates. However, these sampling errors are small compared to 

the variance between species: for the accumulation rates the variance between 

species is 3.9 x 10-11 and the average error variance is an order of magnitude smaller at 

3.6 x 10-12; for the mutation rate data, the variance between species is 7.5 x 10-18 and 

the average variance associated with sampling is more than two orders of magnitude 

smaller at 1.8 x 10-20. Note that we cannot perform these comparisons of variances on 

a log-scale because we do not have variance estimates for the log accumulation and 

mutation rates. 

 

4. RESULTS 

 

4.1 Across species 

We compiled estimates of the accumulation rate for 34 species of bacteria. These vary 

by over 3700-fold (Figure. 2.), but the majority of species accumulate mutations at 

rates of between 1x10-6 and 2x10-6 per site per year. In the sections below, we 

investigate what might cause this variation by looking for variables which correlate to 

the accumulation rate. Because the accumulation rate varies over orders of 

magnitude, all analyses were performed on the log of the accumulation rate. In such 

an analysis it can be important to correct for phylogenetic non-independence if there 

is a phylogenetic inertia. To investigate this we tested for phylogenetic inertia by 
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inferring the phylogeny of our species using the 16S rRNA and then using the tests of 

Pagel (1999) and Blomberg, Garland and Ives (2003). We find that the accumulation 

rates show phylogenetic inertia using Pagel’s l but not Bloomberg et al.’s K , and some 

of our other variables also show inertia including genome size and GC content, but not 

all (Table 1).  

 

 

Trait l p value  K  p value  

Mutation Rate 0.88 0.026 0.5 0.009 

Accumulation 
Rate 

0.68 0.001 0.0005 0.37 

Genome size 1 <0.001 0.38 0.001 

GC content 1 <0.001 0.79 0.001 

𝜋𝑁/𝜋𝑆 0.000062 0.99 0.0077 0.108 

Lab DT  0.8 0.003 0.08 0.279 

 
Table 1. Tests of phylogenetic signal. Pagel’s  l (Pagel 1999) and Blomberg et al.’s K (Blomberg 
et al. 2003).  
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Figure 2. Distribution of accumulation rate estimates for 34 species of bacteria.  

 

4.2 Sampling time 

The time-interval over which evolutionary rates are measured is thought to impact 

rate estimates so that they become slower when measured over longer time-frames 

(Ho et al. 2011; Biek et al. 2015; Duchêne et al. 2016). This is as we might expect if a 

substantial fraction of mutations are mildly deleterious, since they would appear over 

a short time-scale, but ultimately be removed by natural selection. Evidence for this 

effect comes from observation that the relative rate at which non-synonymous and 

synonymous mutations accumulate in bacterial genomes declines as a function of time 

(Rocha et al. 2006; Balbi & Feil 2007).  
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We test whether the accumulation rate estimates scale negatively with sampling time, 

defined here as either the time-interval over which isolates were temporally sampled 

or the divergence time separating concurrent sequences. Sampling time varies from 1 

year to just over 1500 years. We find a highly significant negative relationship between 

accumulation rate and sampling time (Figure 3.) (r = -0.38, p = 0.0016) across all 

species for all studies, but this appears to be largely contributed by four points 

associated with two species, Yersinia pestis and Mycobacterium leprae. It is not clear 

whether Y. pestis and M. leprae have low rates because this is a feature of their 

evolution, irrespective of the time frame over which they were sampled, or because 

they have been sampled over long time frames. For several species there are multiple 

estimates of the accumulation rate.  If we control for any species effects by 

considering the correlation between the accumulation rate and the sampling time-

frame within these 12 species using ANCOVA, we find no correlation (slope = 0.022, p = 

0.79) (Figure. 3). Furthermore, we find no relationship between the relative rates at 

which non-synonymous and synonymous mutations accumulate and the time-frame 

over which the accumulation rate estimate was made (r = 0.2, p = 0.53), although for 

most datasets the accumulation rate was not calculated for the two types of site 

separately. In conclusion, we do not find strong evidence for a sampling time effect. 

 

 

 

 

 

Figure 3. The accumulation 

rate vs sampling time.   

 

Sampling Time (years)

Ac
cu

m
ul

at
io

n 
R

at
e

(m
ut

at
io

ns
/s

ite
/y

ea
r)

1e
−0

8
1e
−0

7
1e
−0

6
1e
−0

5

1 10 100 1000



  

 

14 

 
 

 

Figure 4. The accumulation rate vs sampling time split for the 12 species for which we have 
multiple estimates.  
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a distribution of fitness effects (DFE), modelled as a gamma distribution, in which all 

mutations are either effectively neutral, or deleterious. We find, as expected, that the 

rate of accumulation declines. However, it is evident that it will be difficult to detect 

differences in accumulation rate unless accumulation rates are sampled over a very 

short time frame (<0.1N generations, where N is the population size) and a much 

longer time frame (Figure 5). This is because within a restricted time frame there is 

very little difference in accumulation rate. 

 

 
Figure 5. The expected relationship between the accumulation rate at selected sites relative to 
neutral sites and sampling time. In panels A and B the shape parameter of the gamma 
distribution is varied 0.25 (top line), 0.50 (middle) and 0.75 (bottom); in panels C and D the 
mean strength of selection, multiplied by N, is varied from 10 (top), 100 (middle) and 1000 
(bottom). Panels A and C show the relative accumulation rate over the first 0.1N generations, 
panels B and D over the first 4N generations. 
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4.3 Mutation rate  

The rate at which bacteria accumulate mutations through time will be in part be 

determined by the rate at which mutations occur per unit time. If some mutations are 

caused by DNA replication then the mutation rate per year will depend upon the 

mutation rate per generation and the generation time. We test each of these 

components in turn.  

 

Unfortunately, it is difficult to directly test for a relationship between the accumulation 

rate and the mutation rate per generation because only five species in our dataset 

have estimates of both these rates. The correlation between the accumulation rate 

and mutation rate per generation is 0.07 (p=0.9), but with such little information it is 

difficult to determine whether a correlation exists. However, it is potentially possible 

to test the relationship between the accumulation rate and the mutation rate per 

generation indirectly because some genomic traits correlate to the mutation rate per 

generation. For instance, genome size is inversely correlated to the mutation 

rate/site/generation (Drake 1991; Lynch 2010; Lynch, Matthew S. Ackerman, et al. 

2016) . We find a negative relationship between the mutation rate and genome size (r= 

-0.68, p= <0.001), although this is mostly driven by Mesoplasma florum (Appendix 6.) 

and the correlation is weaker when we remove M.florum (r = -0.39, p= 0.053). 

 

A negative correlation between genome size and the accumulation rate has been 

previously observed for a range of viruses and bacteria (Lynch 2010; Biek et al. 2015) 

and we also find a strong negative correlation between the accumulation rate and 

genome size (Figure 6a) (r =  -0.43 , p=0.01) which becomes stronger  when the 

obvious outlier B. aphidicola is excluded (r = -0.57, p = <0.001). The relationship is also 

negative, but loses significance, if we control for phylogeny using phylogenetic 

independent-contrasts (PICs) after excluding low variance comparisons and 

B.aphidicola (r=-0.27, p=0.23) (Figure. 6b). 10 comparisons were considered low 

variance as their standard deviations were <0.21.  
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Figure 6. a) The accumulation rate vs genome size. The outlier, Buchnera aphidicola, is 
highlighted in red b) phylogenetic independent contrasts for the accumulation rate vs genome 
size.  
 

Genomic base composition may also correlate to the mutation rate per generation. GC 

content is known to vary greatly across bacterial species from less than 20% to over 

70%. The origins of this variation remain unresolved. There is evidence that it is not 

solely a consequence of mutation bias (Hildebrand et al. 2010; Hershberg & Petrov 

2010) and that biased gene conversion may be a factor (Lassalle et al. 2015). Given 
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and GC content (r=0.473, p=0.0094), although this is lost when we account for 

phylogenetic non-independence (r=0.32, p=0.168).  

 

We observe a negative correlation between GC content and the mutation rate (r=-

0.59, p = 0.0016) (Appendix 7.), and we also find a strong negative correlation between 

the accumulation rate and the GC-content (r = -0.53 p= 0.001; Fig. 6a). Again, B. 

aphidicola is a conspicuous outlier and if removed the correlation is stronger (r = -

0.613, p=<0.001).  This negative relationship is maintained and is almost significant for 

phylogenetic independent-contrasts (-0.390, p=0.072) after exclusion of B.aphidicola 

and low variance points (Figure. 7b).  

 

 
Figure 7. a) The accumulation rate vs GC content. The outlier, Buchnera aphidicola, is 
highlighted in red. b) phylogenetic independent contrasts for the accumulation rate vs GC 
content.  
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because larger genomes have potentially more deleterious mutations and this leads to 

more effective selection on the mutation rate (Lynch 2010; Lynch 2017). GC-content 

could be related to the mutation rate either through its correlation to genome size, a 

correlation for which there is no clear explanation, or because GC-content is a crude 

measure of how far a genome is from its equilibrium GC-content; if the mutation 

pattern is AT-biased then increasing GC-content increases the mutation rate (Krasovec 

2017). 

 

4.4 Effectiveness of selection 

Selection and biased gene conversion will affect the probability that a mutation 

spreads to fixation in a population. Accumulation rates are estimated by excluding 

sites which are inferred to have been recombined and hence biased gene conversion is 

unlikely to explain the variation. In contrast, purifying selection will act to reduce the 

number of deleterious mutations surviving in populations, leading to a reduction in the 

accumulation rate. How effective selection is at exerting its effects depends on the 

power of random genetic drift, i.e. the effective population size. We can potentially 

measure the effectiveness of selection by considering the ratio of the nucleotide 

diversity at non-synonymous and synonymous sites (𝜋N/𝜋S); populations with more 

efficient selection should have lower values of 𝜋N/𝜋S. We consider the efficiency of 

selection using two sources of data; the ratio of the number of non-synonynous to 

synonymous polymorphisms, pN/pS, for the strains used to estimate the accumulation 

rate and 𝜋N/𝜋S in the species as a whole. We find no correlation between pN/pS in 

the strains to estimate the accumulation rate (r=0.07, p =0.84) but we have only nine 

data-points. We find an almost significant correlation for the species wide 𝜋N/𝜋S and 

the accumulation rate (r= -0.35, p=0.062) but none if we control for phylogenetic 

inertia. (r = -0.1, p=0.65).  

 

4.5 Lifestyle 

We examined whether there are differences in the accumulation rate for bacteria with 

different lifestyles. Most of our species are pathogens and among these we divided 

them into obligate pathogens and opportunistic pathogens. We find that the 

accumulation rates do not differ significantly between these two groups (t-test, 
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p=0.488). We further carried out an analysis controlling for phylogenetic non-

independence by comparing sister pairs of species. We find no evidence that they are 

significantly different (paired sample t-test, p=0.947). Thus, lifestyle does not seem to 

have any clear impact on the accumulation rate.  

 

4.6 All factors  

We further carried out a multivariate analysis where we included all our variables into 

a multiple regression (apart from our estimates of DTs in the wild). When we consider 

the raw values, only genome size comes out as significant (p= 0.0153) and when we 

consider the phylogenetic independent contrasts lab doubling times and	𝜋N/𝜋S come 

out as marginally significant with similar effect sizes (Standardized regression 

coefficient = -0.095, p=0.080 and 1.01, p = 0.063 respectively); this suggests that 

accumulation rates may be higher in species with short lab DTs and smaller Ne. 

 

4.7 Generation time 

It is likely that the accumulation rate should correlate negatively with generation time 

(or doubling time) because species with shorter generation times will accumulate 

more DNA replication errors per unit time.  Eukaryotes appear to display this 

generation time-effect (Bromham 2002; Smith & Donoghue 2008; Welch et al. 2008; 

Lanfear et al. 2010) and this is also evident in bacteria (Weller and Wu 2015) although 

see  (Maughan 2007). Furthermore, the accumulation rate may also increase in 

populations that are rapidly expanding, for instance during epidemic disease, because 

of a reduction in generation time (Cui et al. 2013).  

 

However, we find no relationship between the accumulation rate and the doubling 

time, as measured in the lab (r=-0.483, p =.0.60 for raw values and r = -0.298, p =  0.21 

for phylogenetic independent contrasts). Other genomic features also correlate to lab 

doubling times  (Vieira-Silva and Rocha 2010) but we find no correlation between the 

accumulation rate and 16s gene copy number (r= 0.044, p= 0.802 for raw values and r= 

0.126, p= 0.565 for phylogenetic independent contrasts) and tRNA abundance (r= -

0.085,p= 0.63 for raw values and r= 0.156, p = 0.47 for phylogenetic independent 
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contrasts). This may be because lab doubling times do not reflect what occurs in the 

wild but they might relate to some aspect of bacteria life history.  

 

Unfortunately, there are very few estimates of the DT of bacteria in their natural 

environment. However, we can use an indirect method to potentially estimate the DT. 

If we assume that the mutation rate per generation is the same in the lab and in the 

wild, and that all mutations are neutral, then dividing the accumulation rate per year 

by the mutation rate per generation in the lab, yields an estimate of the number of 

generations per year, and hence the DT.  

 

The accumulation rate in the wild and the mutation rate in the lab have been 

estimated for 34 and 26 bacterial species respectively (Tables A2, A3); we only 

consider mutation rate estimates from mutation accumulation experiments, since 

estimates from fluctuation tests are subject to substantial sampling error and 

unknown bias, and we exclude estimates from hypermutable strains. For five species, 

Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus 

and Vibrio cholerae, we have both an accumulation and a mutation rate estimate and 

hence can estimate the DT. Amongst these five species we find our DT estimates vary 

from 1.1 hours in V. cholerae to 25 hours in Salmonella enterica (Table 2). In all cases 

the estimated DT in the wild is greater than that of the bacterium in the lab. For 

example, E. coli can double every 20 minutes in the lab but we estimate that it only 

doubles every 15 hours in the wild.  

 

In theory, it might be possible to estimate the DT in those bacteria for which we have 

either an accumulation or mutation rate estimate, but not both, by finding factors that 

correlate with either rate and using those factors to predict the rates. Unfortunately, 

we have been unable to find any factor that correlates sufficiently well to be usefully 

predictive. As mentioned it has been suggested that the mutation rate is correlated to 

genome size in microbes (Drake 1991) but, the current evidence for this correlation is 
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Species 
Accumulation 
rate per site 
per year 

Mutation rate 
per site per 
generation 

DT (hr) 
(SE) 

Lab DT 
(hr) Ratio AR 

Ref 
MR 
Ref 

Escherichia coli 1.44 x 10-7 2.54 x 10-10 15 (7.7) 0.33 45 1 6 
Pseudomonas 
aeruginosa 3.03 x 10-7 7.92 x 10-11 2.3 

(0.77) 0.5 4.6 2 7 
Salmonella enterica 2.50 x 10-7 7.00 x 10-10 25 (7.9) 0.5 50 3 8 
Staphylococcus 
aureus 2.05 x 10-6 4.38 x 10-10 1.87 

(0.98) 0.4 4.7 4 9 

Vibrio cholerae 8.30 x 10-7 1.07 x 10-10 1.1 
(0.26) 0.66 1.7 5 10 

 
Table 2. Doubling time estimates (hours) for those species for which we have both an estimate 
of the accumulation and mutation rate. Accumulation rate (AR) references – 1) (Reeves et al. 
2011); 2)  (Markussen & Marvig 2014; Marvig et al. 2013); 3) (Duchêne et al. 2016; Zhou et al. 
2014; Okoro et al. 2012; Hawkey et al. 2013; Mather 2013); 4) (Stinear et al. 2014; Baines et al. 
2015; Ward et al. 2014; Holden et al. 2013; Uhlemann et al. 2014; Alam et al. 2015; Smyth et 
al. 2010; Harris et al. 2010; Gray et al. 2011; Nübel et al. 2010; Young et al. 2012); 5) (Mutreja 
et al. 2011; Duchêne et al. 2016). Mutation rate (MR) references – 6) (Lee et al. 2012); 7) 
(Dettman et al. 2016); 8) (Lind & Andersson 2008); 9) (Long et al. 2018); 10) (Sung et al. 2012). 
 

 

very weak, and depends upon the estimate from Mesoplasma florum (r =-0.68, p < 

0.001 with M. florum and r = -0.39, p= 0.053 without M. florum) (Appendix 6.) (Lynch, 

Matthew S Ackerman, et al. 2016). However, we can use the accumulation and 

mutation rate estimates to estimate the distribution of DTs across bacteria if we 

assume that there is no phylogenetic non-independence in the mutation and 

accumulation data, an assumption we address below. We can estimate the distribution 

of DTs by fitting distributions to the accumulation and mutation rate data, using 

maximum likelihood, and then dividing one distribution by the other. We assume that 

both variables are log-normally distributed, an assumption which is supported by Q-Q 

plots with the exception of the mutation rate per generation in Mesoplasma florum, 

which is a clear outlier (Figure 8.). We repeated all our analyses with and without M. 

florum. 
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Figure 8. Normal Q-Q plots for the log of (A) accumulation and (B) mutation rate data. The 
main plot in B includes all twelve mutation rate estimates and the insert excludes Mesoplasma 
florum estimate. 
 

If the accumulation and mutation rate data are log-normally distributed then the 

distribution of DT is also log-normally distributed with a mean of loge(8760) + mg – my 

and a variance of vg + vy – 2Cov(g,y), where 8760 is the number of hours per year and 

mg, my, vg and vy are the mean and variance of the lognormal distributions fitted to the 

mutation (subscript g) and accumulation (subscript y) rates. Cov(g,y) is the covariance 

between the accumulation and mutation rates. We might expect that species with 

higher mutation rates also have higher accumulation rates, because the accumulation 

rate is expected to depend on the mutation rate, but the correlation between the two 

will depend upon how variable the DT and other factors, such as the strength of 

selection, are between bacteria. The observed correlation between the log 

accumulation rate and log mutation rate is 0.077, but there are only five data points, 

so the 95% confidence intervals on this estimate encompass almost all possible values 

(-0.86 to 0.89). We explore different levels of the correlation between the 

accumulation and mutation rates; it should be noted that Cov(g,y) can be expressed as 

Sqrt(vg vy) Corr(g,y) where Corr(g,y) is the correlation between the two variables.  

 

The distribution of DTs in the wild inferred using our method is shown in Figure 8. We 

infer the median doubling time to be 7.04 hours, but there is considerable spread 
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around this even when the accumulation and mutation rates are strongly correlated 

(Figure 8A); as the correlation increases so the variance in DTs decreases, but the 

median remains unaffected. The analysis suggests that most bacteria have DTs of 

between 1 and 100 hours but there are substantial numbers with DTs beyond these 

limits. For example, even if we assume that the correlation between the accumulation 

and mutation rate is 0.5 we infer that 10% of bacteria have a DT of faster than one 

hour in the wild and 4.2% have a DT slower than 100 hours in the wild. If we remove 

the Mesoplasma florum mutation rate estimate from the analysis the median doubling 

is slightly lower at 6.16 hours, but there is almost as much variation as when this 

bacterium is included; at a correlation is 0.5 we infer that 12% of bacteria have a DT 

faster than one hour in the wild and 3.5% have a DT slower than 100 hours.  

 

 
 

Figure 9. The distribution of DTs amongst bacteria inferred assuming different levels of 
correlation between the accumulation and mutation rates - orange r = 0, purple r = 0.5 and red 
r = 0.75. We also show the distribution of lab DTs (green histogram) from a compilation of over 
200 species made by Vieira-Silva and Rocha (2010). In panel A we include all mutation rate 
estimates and in panel B we exclude the mutation rate estimate for Mesoplasma florum. 
 

To investigate how robust these conclusions are to statistical sampling, we 

bootstrapped the accumulation and mutation rate estimates, refit the log-normal 

distributions and reinferred the distribution of DT. The 95% confidence intervals for 

the median are quite broad at 3.4 to 14.2 hours (3.1 to 11.3 hours if we exclude M. 

florum). However, all bootstrapped distributions show substantial variation in the DT 
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with a substantial fraction of bacteria with long DTs and also some with very short DTs 

(Figure 10).  

 

Here, we have assumed that there is no phylogenetic inertia within the accumulation 

and mutation rate estimates. As stated above to test whether this is the case we 

constructed a phylogenetic tree using 16S rRNA sequences and applied the tests of 

Pagel (1999) (Pagel 1999) and Blomberg et al. (2003) (Blomberg et al. 2003). Both the 

accumulation and mutation rate data show some evidence of phylogenetic signal. For 

the accumulation data, Pagel’s l = 0.68 (p = 0.001) and Blomberg et al.’s K = 0.0005 (p 

= 0.35); and for the mutation rate data Pagel’s l = 0.88 (p = 0.026) and Blomberg et 

al.’s K = 0.5 (p = 0.009). We also find some evidence that the data depart from a 

Brownian motion model using Pagel’s test (i.e. l is significantly less than one) for the 

accumulation data (p<0.001) but not the mutation rate data (p = 0.094); i.e. the 

accumulation rates are more different than we would expect from their phylogeny and 

a Brownian motion model. A visual inspection of the data suggests that the 

phylogenetic signal is largely contributed by species that are closely related, rather 

than deeper phylogenetic levels (Figure 11A, B) and species for which we have 

accumulation and mutation rate estimates are interspersed with one another on the 

phylogenetic tree (Figure 11C). It therefore seems unlikely that phylogenetic inertia 

will influence our results. 

 

It is of interest to compare the distribution of DTs in the wild to the distribution of lab 

DTs (Figure 9). The distributions are different in two respects. First, the median lab DT 

of 3 hours is less than half the median wild DT of 7.04 hours (6.16 hours without M. 

florum); the two are significantly different (p = 0.012 with M. florum and p = 0.016 

without M.florum, inferred by bootstrapping each dataset and recalculating the 

medians). Second, many more bacteria are inferred to have long DTs in the wild than 

in the lab. 
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Figure 10. DT distributions inferred by bootstrapping the accumulation and mutation rate data 
and refitting the log-normal distributions to both datasets. Each plot shows 20 bootstrap DT 
distributions assuming different levels of correlation between the accumulation and mutation 
rates - orange r = 0, purple r = 0.5 and red r = 0.75. A, B and C include all mutation rate 
estimates and D,E, and F show the analysis after removal of the Mesoplasma florum mutation 
rate estimate.  
 

 

5. DISCUSSION  

 

The rate at which bacteria accumulate mutations over short timeframes of 1 to 1500 

years varies by three orders of magnitude. The rate of accumulation must depend on 

the mutation rate per year and the strength of natural selection, and in turn the 

mutation rate per year is likely to depend on the mutation rate per generation and the 
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generation time, assuming that at least some mutations are a consequence of 

replication errors. Potentially, variation in any of these factors - the mutation rate per 

generation, the generation time and the strength of selection - could be responsible 

for the variation in the accumulation rate.  

 

Unfortunately, we find no very clear correlate of the accumulation rate; the 

accumulation rate is significantly correlated to the GC-content and genome size, but 

neither factor is significant when we control for phylogeny. There is a hint that both 

lab DT and the effective population size may be important since these emerge as 

marginally significant in a multiple regression of all factors when we control for 

phylogeny. The lack of any clear correlate may be a result of the size of our dataset; we 

have data from just 34 species and many of the accumulation rates are estimated with 

considerable error. It is likely that the number of data-points will increase considerably 

over the coming years and a more powerful analysis will be possible. 

 

It has previously been shown that the accumulation rate is correlated to the timeframe 

over which the accumulation rate is measured (Duchêne et al. 2016). This relationship 

is expected given that deleterious mutations can segregate in a population, but these 

are ultimately removed from the population. However, in the study of Duchenne et al. 

(2016) the relationship was largely a consequence of two data-points which were 

sampled over a very long time period, and Duchenne et al. excluded datasets in which 

there was significant increase in the accumulation of mutations with time. This would 

bias them towards finding a negative correlation between the accumulation rate and 

sampling time, because bacteria with slow accumulation rates would be excluded if 

they had been sampled over a short period of time because they wouldn’t show 

significant evidence of mutation accumulation. We found no evidence of a relationship 

between the rate of accumulation and sampling time within bacterial species 

suggesting that sampling time and accumulation rate are not correlated over the time-

frames being considered. This is perhaps not surprising because our theoretical 

analysis suggests that differences in accumulation rate are only likely to be apparent if 

some bacteria are sampled over very short and very long time frames. The relationship 
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Figure 11. A) 16s rRNA phylogeny and mutation rate estimates for 24 species of bacteria (two 

species are excluded because of erroneous positioning on the phylogeny - see Figure A4 for 

details). B) 16s rRNA phylogeny and accumulation rate estimates for 34 species of bacteria. C) 

16s rRNA phylogeny combining species for which we have an estimate of the mutation rate 

and or accumulation rate. Coloured dots indicate which kind of information each species 

provides - red = accumulation rate, green = mutation rate and blue = both a mutation rate and 

an accumulation rate. 
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is very likely to exist but we have been unable to detect it and it is clearly not 

responsible for most of the variation in the accumulation rate. 

 

We find only very weak evidence that the accumulation rate is correlated to the 

doubling time, as measured in the lab. However, this is perhaps not surprising. Few 

bacteria probably double at anything like their lab measured rates in their natural 

environment. We have recently estimated the DT of 5 bacterial species indirectly. We 

have used estimates of the rate at which bacteria accumulate mutations in their 

natural environment and estimates of the rate at which they mutate in the laboratory 

to estimate the DT for these 5 bacteria and infer the distribution of DTs across 

bacteria. We estimate that DTs are generally longer in the wild than in the lab, but 

critically we also infer that DTs vary by several orders of magnitude between bacterial 

species and that many bacteria have very slow DTs in their natural environment. 

 

The method, by which we have inferred the DT in the wild, makes three important 

assumptions. We assume that the mutation rate per generation is the same in the lab 

and in the wild. However, it seems likely that bacteria in the wild will have a higher 

mutation rate per generation than those in the lab for two reasons. First, bacteria in 

the wild are likely to be stressed and this can be expected to elevate the mutation rate 

(Bjedov et al. 2003; Galhardo et al. 2007; Foster 2007; Maclean et al. 2013; 

Shewaramani et al. 2017). Second, if we assume that DTs are longer in the wild than 

the lab then we expect the mutation rate per generation to be higher in the wild than 

in the lab because some mutational processes do not depend upon DNA replication. 

The relative contribution of replication dependent and independent mutational 

mechanisms to the overall mutation rate is unknown. Rates of substitution are higher 

in Firmicutes that do not undergo sporulation suggesting that replication is a source of 

mutations in this group of bacteria (Weller & Wu 2015), but see Maugham (2007). 

However, rates of mutation accumulation seem to be similar in latent versus active 

infections of M. tuberculosis, suggesting that replication independent mutations might 

dominate in this bacterium (Ford et al. 2011; Lillebaek et al. 2016). 

 

The second major assumption is that the rate at which mutations accumulate in the 
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wild is equal to the mutation rate per year; in effect, we are assuming that all 

mutations are effectively neutral, at least over the timeframe in which they are 

assayed (or that some are inviable, but the same proportion are inviable in the wild 

and the lab). In those accumulation rate studies, in which they have been studied 

separately, non-synonymous mutations accumulate more slowly than synonymous 

mutations; relative rates vary from 0.13 to 0.8, with a mean of 0.57 (Table A3). There is 

no correlation between the time-frame over which the estimate was made and the 

ratio of non-synonymous and synonymous accumulation rates (r = 0.2, p = 0.53). We 

did not attempt to control for selection because the relative rates of synonymous and 

non-synonymous accumulation are only available for a few species, and the relative 

rates vary between species. However, we can estimate the degree to which more 

selection against deleterious non-synonymous accumulations in the wild causes the DT 

to be underestimated as follows. The observed rate at which mutations accumulate in 

a bacterial lineage is  

 

μobs = α μtrue δi + (1-α)(1-β) μtrue δs + (1-α) β μtrue δn,                                     (5) 

 

where α is the proportion of the genome that is non-coding and β is the proportion of 

mutations in protein coding sequence that are non-synonymous. δx is the proportion 

of mutations of class x (i = intergenic, s = synonymous, n = non-synonymous) that are 

effectively neutral. α and β are approximately 0.15 and 0.7, respectively, in our 

dataset. Although there is selection on synonymous codon use in many bacteria 

(Hershberg & Petrov 2008), selection appears to be weak (Sharp et al. 2005) we 

therefore assume that δs = 1. This implies, from the rate at which non-synonymous 

mutations accumulate relative to synonymous mutations, that δn = 0.6. A recent 

analysis of intergenic regions in several species of bacteria has concluded that 

selection is weaker in intergenic regions than at non-synonymous sites, we therefore 

assume that δi = 0.8 (Thorpe et al. 2017). Using these estimates suggests that selection 

leads us to underestimate the true mutation rate per year in the wild by ~27%; this in 

turn means we have over-estimated the DT by ~37%, a relatively small effect. To 

investigate how sensitive this estimate is to the parameters in equation 1, we varied 

each of them in turn (Table 3). We find that the observed mutation rate is most 
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sensitive to selection on synonymous codon use, because if there is selection on 

synonymous codon use this also affects our estimates of selection at non-synonymous 

sites and in intergenic. For example, if selection on synonymous codon use depressed 

the synonymous accumulation rate by 0.5 this would lead to an underestimate of the 

mutation rate of 63%, which would in turn have led to a 2.7 fold over-estimate of the 

DT. 

 

Finally, although each study attempted to remove SNPs that had arisen by 

recombination, it is possible that some are still present in the data. Recombinant SNPs 

can have two effects. First, if they have recombined from outside the clade they inflate 

the accumulation rate estimate and hence lead to an underestimate of the DT. Second, 

if there is recombination within a clade, they affect the phylogeny and potentially lead 

to the root of the tree being estimated as younger than it should be. This will lead to 

an over-estimate of the DT. 

 

It is important to appreciate that our method estimates an average DT within a 

particular environment that the bacteria were sampled from. The bacterium may go 

through periods of quiescence interspersed with periods of growth. 

 

Despite the assumptions we have made in our method, our estimate of the DT of P. 

aruginosa of 2.3 hours in a cystic fibrosis patient is very similar to that independently 

estimated using the ribosomal content of cells of between 1.9 and 2.4 hours (Yang et 

al. 2008). There is also independent evidence that there are some bacteria that divide 

slowly in their natural environment. The aphid symbiont Buchnera aphidicola is 

estimated to double every 175-292 hours in its host (Ochman et al. 1999; Clark et al. 

1999), and Mycobacterium leprae doubles every 300-600 hours on mouse footpads 

(Shepard 1960; Rees 1964; Levy 1976), not its natural environment, but one that is 

probably similar to the human skin. Furthermore, in a recent selection experiment, 

Avrani et al. (2017) found that several E. coli populations, which were starved of 

resources, accumulated mutations in the core RNA polymerase gene. These mutations 

caused these strains to divide more slowly than unmutated strains when resources 

were plentiful. Interestingly these same mutations are found at high frequency in 
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δs δi δn 
mu obs/ 

mu true 

DT (if DT obs 

=10hrs) 

1 0.9 0.8 0.87 11.49 

"" "" 0.6 0.75 13.33 

"" "" 0.3 0.57 17.54 

"" 0.8 0.8 0.85 11.76 

"" "" 0.6 0.73 13.70 

"" "" 0.3 0.55 18.18 

"" 0.4 0.8 0.79 12.66 

"" "" 0.6 0.67 14.93 

"" "" 0.3 0.49 20.41 

0.5 0.45 0.4 0.43 23.26 

"" "" 0.3 0.37 27.03 

"" "" 0.15 0.28 35.71 

"" 0.4 0.4 0.43 23.26 

"" "" 0.3 0.37 27.03 

"" "" 0.15 0.28 35.71 

"" 0.2 0.4 0.4 25.00 

"" "" 0.3 0.34 29.41 

"" "" 0.15 0.25 40.00 

 

Table 3. Testing different parameter combinations to investigate how sensitive the doubling 
time estimate is to the parameters in equation 5. Each parameter is varied in turn. δi and δn 
are dependent on δs so they are halved when δs is halved.  
 

 

unculturable bacteria, suggesting that there is a class of slow growing bacteria in the 

environment that are adapted to starvation. 

 

Korem et al. (2015) have recently proposed a general method by which the DT can be 
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potentially estimated. They note that actively replicating bacterial cells have two or 

more copies of the chromosome near the origin of replication but only one copy near 

the terminus, if cell division occurs rapidly after the completion of DNA replication. 

Using next generation sequencing, they show that it is possible to assay this signal and 

that the ratio of sequencing depth near the origin and terminus is correlated to 

bacterial growth rates in vivo. Brown et al. (2016) have extended the method to 

bacteria without a reference genome and/or those without a known origin and 

terminus of replication. In principle, these measures of cells performing DNA 

replication could be used to estimate the DT of bacteria in the wild. However, it’s 

unclear how or whether the methods can be calibrated. Both Korem et al. (2015) and 

Brown et al. (2016) find that their replication measures have a median of ~1.3 across 

bacteria in the human gut. However, a value of 1.3 translates into different relative 

and absolute values of the DT in the two studies. Brown et al. (2016) show that their 

measure of replication, iRep, is highly correlated to Korem et al.’s (2015) measure, 

PTR, for data from Lactobacillus gasseri; the equation relating the two statistics is iRep 

= -0.75 + 2 PTR. Hence, when PTR = 1.3, iRep = 1.85 and when iRep = 1.3, PTR = 1.03. 

The two methods are not consistent. They also yield very different estimates for the 

absolute DT. Korem et al. (2015) show that PTR is highly correlated to the growth rate 

of E. coli grown in a chemostat. If we assume that the relationship between PTR and 

growth rate is the same across bacteria in vivo and in vitro, then this implies that the 

median DT for the human microbiome is ~2.5 hours. In contrast, Brown et al. (2016) 

estimate the growth rate of Klebsiella oxytoca to be 19.7 hours in a new-born baby 

using faecal counts and find that this population has an iRep value of ~1.77. This value 

is greater than the vast majority of bacteria in the human microbiome and bacteria in 

the Candidate Phyla Radiation, suggesting that most bacteria in these two 

communities replicate very slowly. These discrepancies between the two methods 

suggest that it may not be easy to calibrate the PTR and iRep methods to yield 

estimates of the DT across bacteria. 

 

How should we interpret our results for the five focal species in the context of what is 

known of their ecology? Vibrio cholerae displays the shortest DT of 1.1 hr. Vibrio 

species are ubiquitous in estuarine and marine environments (Reidl & Klose 2002). 
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They are known to have very short generation times in culture, the shortest being V. 

natriegens of just 9.8 minutes (G. 1961). In the wild they can exploit a wide range of 

carbon and energy sources, and as such have been termed “opportunitrophs” (Polz et 

al. 2006). Natural Vibrio communities do not grow at an accelerated rate continuously, 

but can exist for long periods in a semi-dormant state punctuated by rapid pulses of 

high growth rates (Blokesch & Schoolnik 2008), or blooms (Takemura et al. 2014), 

when conditions are favourable.  It has also been argued that the unusual division of 

Vibrio genomes into two chromosomes facilitates more rapid growth (Yamaichi et al. 

1999). By pointing to a very short DT in V. cholerae, our analysis is therefore consistent 

with what is known of the ecology of this species.  

 
Staphylococcus aureus is predominantly found on animals and humans and inhabits 

various body parts, including the skin and upper respiratory tract (Schenck et al. 2016). 

It can cause infection of the skin and soft tissue as well bacteraemia (John 2004). S. 

aureus exhibits a range of modes of growth, some of which may to allow it to survive 

stress and antimicrobials whilst in its host. For instance, small subpopulations can 

adopt a slow-growing, quasi-dormant lifestyle, either in a multicellular biofilm or as 

small colony variants (SCVs) or persister cells (Bui et al. 2017). Our short DT of 1.8 

hours suggests this is not the typical state for S. aureus in the wild, which is not 

surprising considering the incidence of SCVs in clinical samples is fairly low, between 1-

30% (Proctor et al. 2006).  

 

Pseudomonas aeruginosa can inhabit a wide variety of environments, including soil, 

water plants and animals. Like our other focal species, it is an opportunistic pathogen 

and can also infect humans, especially those with compromised immune systems, such 

as patients with cystic fibrosis (CF). In this context infection is chronic. Parallel 

evolution, the differential regulation of genes which allow it to evade the host immune 

system and resist antibiotic treatment during infection (Huse et al. 2010), and 

evidence of positive selection (Smith et al. 2006) suggests P. aeruginosa can adapt to 

the lungs of individuals with CF for its long-term survival. It is known to actively grow in 

sputum (Yang et al. 2008), where it utilises the available nutrition which supports its 

growth to high population densities (Palmer et al. 2005). Its ability to adapt and 



  

 

35 

actively grow in the CF sputum is consistent with its relatively short DT of 2.3 hours, 

especially considering this is the environment in which the accumulation rate was 

measured and matches that estimated by Yang et al 2008 (Yang et al. 2008). 

 

E. coli and S. enterica primarily reside in the lower intestine of humans and animals, 

but can also survive in the environment. Although E. coli is commonly recovered from 

environmental samples, it is not thought able to grow or survive for prolonged periods 

outside of the guts of warm blooded animals, except in tropical regions where 

conditions are more favourable (Winfiel & Groisman 2003), although some 

phylogenetically distinct strains appear to reproduce and survive  well in the 

environment (Oh et al. 2012). In contrast, Salmonella is also an enteric coloniser of 

cold-blooded animals, in particular reptiles, is better adapted than E. coli at surviving 

and growing in environmental niches. For example, Salmonella can survive and grow 

for at least a year in soil (Davies & Wray 1996), whereas E. coli can survive for only a 

few days (Bogosian & Sammons 1996). Although these secondary niches may play a 

greater role in Salmonella than in E. coli, it remains the case the growth rates in the 

environment will be much lower than those in a gut. Therefore, the increased tenacity 

of Salmonella in non-host environments compared to E. coli might help to explain the 

slower DT in this species. 

  

In summary, the availability of accumulation and mutation rate estimates allows us to 

infer the DT for bacteria in the wild, and the distribution of wild DTs across bacterial 

species. These DT estimates are likely to be underestimates because the mutation rate 

per generation is expected to be higher in the wild than in the lab, and some 

mutations are not generated by DNA replication. Our analysis therefore suggests that 

DTs in the wild are typically longer than those in the lab, that they vary considerably 

between bacterial species and that a substantial proportion of species have very long 

DTs in the wild. This then would explain why accumulation rates vary so widely, there 

is a very large variance in DTs. 
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6. CONCLUSION 

 

We wanted to assess the factors that potentially correlate with the accumulation rate 

in bacteria to investigate whether we could explain the variation in the accumulation 

rate found across different species. In total we collected accumulation rate estimates 

for 34 species of bacteria, which were mostly pathogens evolving either within 

individual hosts or during an outbreak. These estimates varied 3700-fold and the time-

frame over which they were measured was between 1-1500 years. There are several 

factors that could be responsible for this huge variation including the mutation rate, 

natural selection and the time-frame over which rates are measured. Whilst genome 

size and GC content, which are proxies for the mutation rate per generation, showed a 

significant relationship with accumulation rate, after controlling for phylogenetic non-

independence this relationship was lost. Similarly, a measurement for the 

effectiveness of selection, 𝜋N/𝜋S, revealed an almost significant correlation to the 

accumulation rate, which was again lost when we control for phylogeny. No 

correlation was found between pN/pS for the strains used to estimate the 

accumulation rate and the accumulation rate.  

 

Surprisingly, we find little evidence that the sampling time correlates with the 

accumulation rate. We find a significant negative correlation between sampling time 

and the accumulation rate, however this appears to be mainly driven by two species, 

Yersinia pestis and Mycobacterium leprae, which were sampled over relatively long 

time frames. 

 

One final factor that should influence the accumulation rate is generation time. We 

find no relationship between lab doubling times and the accumulation rate. However, 

to further this analysis we developed a method to estimate doubling times  in the wild. 

We estimate this value for five species of bacteria and also the distribution of DTs 

across all bacteria. Both suggest that DTs for bacteria in the wild are considerably 

longer than those in the laboratory. Furthermore, they vary by orders of magnitude 

between different species and it appears that many species double very slowly in the 

wild. In conclusion, no one factor tested here stands out as a clear candidate for 
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explaining the variation in the accumulation rates of bacteria. We can, however, 

suggest that due to the large variation seen in bacterial doubling times in the wild this 

could be the major factor driving the variation in the accumulation rate across species.  
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8. APPENDIX 
 
8.1 Appendix 1. 81 estimates of the rate at which bacteria accumulate mutations 
per site per year (the accumulation rate) for 34 species of bacteria.  
 
 

 
 
Species  

 
 
subgroup 

 
Accumulation 
Rate (x10-7) 

 Included/ 
excluded/ 
recalculated 

 
Reason for 
exclusion/recalculation  

 
 

Reference 
Acinetobacter 
baumannii 

 GC1 15.00 Included  (Holt et al. 2016) 

Acinetobacter 
baumannii 

GC2 24.70 Included  (Schultz et al. 2016) 

Bordetella 
pertussis 

  2.24 Included  (Bart et al. 2014) 

Buchnera 
aphidicola 

  1.10 Included  (Moran et al. 2009) 

Buchnera 
aphidicola  

  0.09 Excluded Very long divergence (50 
million years) 

(Tamas et al. 2002) 

Burkholderia 
dolosa 

  3.28 Included  (Lieberman et al. 
2011) 

Campylobacter 
jejuni 

  323.00 Included  (Wilson et al. 2009) 

Chlamydia psittaci   174.00 Included  (Read et al. 2013) 
Clostridium difficile   3.20 Included  (Didelot et al. 2012) 
Clostridium difficile 27 1.70 Included  (Steglich et al. 2015) 
Clostridium difficile 027/BI/NAP1 1.88 Included  (He et al. 2013) 
Enterococcus 
faecium 

ST17/ST252 15.00 Included   (Howden et al. 
2013) 

Escherichia coli   1.44 Recalculated Unsure about the 
rationale related to 

timepoints used in the 
calculation. We 

recalculated by running 
SNP alignment through 

BEAST 

(Reeves et al. 2011) 

Helicobacter pylori   410.00 Excluded SNPs might be 
recombinant 

(Falush et al. 2001) 

Helicobacter pylori   29.35 Excluded Upper limit on estimate of 
the divergence time is 

arbitrary 

(Morelli, Didelot, et 
al. 2010) 

Helicobacter pylori   138.00 Excluded Synonymous rate (Didelot et al. 2013) 
Helicobacter pylori   54.5 Recalculated Cannot be sure that 3yr 

isolates are a direct 
descendant of 0yr isolates 

 (Kennemann et al. 
2011) 

Klebsiella 
pneumoniae 

CC258 
Clade1 

2.56 Included  (Duchêne et al. 
2016) 

Klebsiella 
pneumoniae 

CC258 
Clade2 

2.99 Included  (Duchêne et al. 
2016) 

Legionella 
pneumophilia 

  1.39 Included  (Sánchez-Busó et al. 
2014) 

Mycobacterium 
abscessus 

subsp 
abscessus 

3.63 Included  (Bryant et al. 2013) 

Mycobacterium 
abscessus 

subsp 
massiliense 

0.95 Included  (Bryant et al. 2013) 

Mycobacterium 
bovis 

  0.34 Included  (Biek et al. 2012) 

Mycobacterium 
leprae 

  0.09 Included   (Schuenemann et al. 
2013) 

Mycobacterium 
tuberculosis 

  0.49 Included  (Bos et al. 2014) 

Mycobacterium 
tuberculosis 

  1.80 Included  (Ford et al. 2011) 

Mycobacterium 
tuberculosis 

  1.14 Included  (Walker et al. 2013) 
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Mycobacterium 
tuberculosis 

  1.93 Included  (Duchêne et al. 
2016) 

Mycobacterium 
tuberculosis 

  1.00 Included  (Roetzer et al. 2013) 

Mycobacterium 
ulcerans 

  0.63 Included   (Vandelannoote et 
al. 2017) 

Mycoplasma 
gallisepticum 

  102.00 Included  (Delaney et al. 2012) 

Neisseria 
gonorrhoeae 

  2.50 Included  (Grad et al. 2014) 

Neisseria 
meningitidis 

  0.61 Included  (Duchêne et al. 
2016) 

Pseudomonas 
aeruginosa 

DK2  3.95 Included  (Marvig et al. 2013) 

Pseudomonas 
aeruginosa 

DK1  2.11 Included  (Markussen & 
Marvig 2014) 

Pseudomonas 
aeruginosa  

DK2  4.30 Excluded Synonymous rate (Yang et al. 2011) 

Pseudomonas 
aeruginosa  

  154.50 Excluded Hypermutator strains (Feliziani et al. 2014) 

Renibacterium 
salmoninarum 

  3.80 Included  (Brynildsrud et al. 
2014) 

Salmonella 
enterica 

Kentucky 5.35 Included  (Duchêne et al. 
2016) 

Salmonella 
enterica 

Typhi H58 1.78 Included  (Duchêne et al. 
2016) 

Salmonella 
enterica 

paratyphi A 1.94 Included  (Zhou et al. 2014) 

Salmonella 
enterica 

Agona 0.93 Included  (Zhou et al. 2013) 

Salmonella 
enterica 

Typhimurium 
Lineage II 

1.90 Included  (Okoro et al. 2012) 

Salmonella 
enterica 

Typhimurium 
Lineage I 

3.90 Included  (Okoro et al. 2012) 

Salmonella 
enterica 

Typhimurium 3.35 Included  (Hawkey et al. 2013) 

Salmonella 
enterica 

Typhimurium 3.40 Included  (Mather 2013) 

Salmonella 
enterica  

Enteritidis 100.00 Excluded Hypermutator strain (Klemm et al. 2016) 

Shigella 
dysenteriae 

Sd1 8.70 Included  (Njamkepo et al. 
2016) 

Shigella sonnei   6.00 Included  (Holt et al. 2012) 
Staphylococcus 
aureus 

ST93 4.50 Included  (Stinear et al. 2014) 

Staphylococcus 
aureus 

ST239 16.00 Included  (Baines et al. 2015) 

Staphylococcus 
aureus 

CC398 16.80 Included  (Ward et al. 2014) 

Staphylococcus 
aureus 

 ST22 13.00 Included  (Holden et al. 2013) 

Staphylococcus 
aureus 

USA300 12.20 Included  (Uhlemann et al. 
2014) 

Staphylococcus 
aureus 

USA300 12.50 Included  (Alam et al. 2015) 

Staphylococcus 
aureus 

ST239 32.50 Included  (Smyth et al. 2010) 

Staphylococcus 
aureus 

ST239 33.00 Included  (Harris et al. 2010) 

Staphylococcus 
aureus 

ST239 37.90 Included  (Gray et al. 2011) 

Staphylococcus 
aureus 

ST225 20.00 Included  (Nübel et al. 2010) 

Staphylococcus 
aureus 

MSSA 27.20 Included  (Young et al. 2012) 

Streptococcus 
agalactiae 

CC1 6.40 Included  (Da Cunha et al. 
2014) 

Streptococcus 
agalactiae 

CC17 5.60 Included  (Da Cunha et al. 
2014) 
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Streptococcus 
agalactiae 

CC19 9.30 Included  (Da Cunha et al. 
2014) 

Streptococcus 
agalactiae 

CC23 7.50 Included  (Da Cunha et al. 
2014) 

Streptococcus equi   5.22 Included  (Harris et al. 2015) 
Streptococcus 
pneumoniae 

 PMEN1 15.70 Included  (Croucher et al. 
2011) 

Streptococcus 
pyogenes 

 Emm M1 8.06 Included  (Nasser et al. 2014) 

Streptococcus 
pyogenes 

 emm12 11.00 Included  (Davies et al. 2015) 

Treponema 
pallidum 

  6.60 Included  (Arora et al. 2016) 

Vibrio cholerae   9.60 Included  (Duchêne et al. 
2016) 

Vibrio cholerae   8.30 Included  (Mutreja et al. 2011) 
Vibrio cholerae    2.35 Excluded Synonymous rate (Feng et al. 2008) 
Yersinia pestis   0.07 Included  (Morelli, Song, et al. 

2010) 
Yersinia pestis   0.20 Included  (Bos et al. 2011) 
Yersinia pestis   0.16 Included  (Duchêne et al. 

2016) 
Yersinia pestis   0.23 Included  (Duchêne et al. 

2016) 
Yersinia 
pseudotuberculosis 

ST19 3.87 Included  (Williamson et al. 
2017) 

Yersinia 
pseudotuberculosis 

ST43 5.63 Included  (Williamson et al. 
2017) 

Yersinia 
pseudotuberculosis 

ST9 20.10 Included  (Williamson et al. 
2017) 

Yersinia 
pseudotuberculosis 

ST42 3.57 Included  (Williamson et al. 
2017) 

Yersinia 
pseudotuberculosis 

ST14 8.67 Included  (Williamson et al. 
2017) 
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8.2 Appendix 2. Species trait data, including Accumulation Rate,  Genome size, GC 
content, Lab Doubling Time and pN/pS. 
 

Species Accumulation 
Rate (x10-7) 

Genome 
Size (Mb) 

GC Content 
(%) 

 

Lab Doubling 
Time (Hours) 

pN/pS 

Acinetobacter 
baumannii 

19.90 4.036992 39 NA 0.0485 

Bordetella pertussis 2.24 4.115152 68 3.8 0.4604 
Buchnera aphidicola 1.10 0.591579 25 NA 0.0539 
Burkholderia dolosa 3.28 6.409090 67 1.7 NA 
Campylobacter jejuni 323.00 1.676753 30 1.5 0.0855 
Chlamydophila 
psittaci 

174.00 1.169811 39 2 0.1631 

Clostridium difficile 2.26 4.218256 29 1.1 0.1002 
Enterococcus 
faecium 

15.00 3.014847 38 NA 0.0772 

Escherichia coli 1.44 5.094524 51 0.5 0.0399 
Helicobacter pylori 54.50 1.625146 39 2.4 0.0413 
Klebsiella 
pneumoniae 

2.78 5.634122 57 NA 0.0688 

Legionella 
pneumophila 

1.39 3.430028 38 3.3 0.0959 

Mycobacterium 
abscessus 

2.29 5.029509 64 4.5 0.0864 

Mycobacterium bovis 0.34 4.360061 66 NA 0.5790 
Mycobacterium 
leprae 

0.09 3.268135 58 NA NA 

Mycobacterium 
tuberculosis 

1.27 4.404328 66 19 0.6491 

Mycobacterium 
ulcerans 

0.63 5.805760 66  NA 

Mycoplasma 
gallisepticum 

102.00 0.969961 32 1 0.1221 

Neisseria 
gonorrhoeae 

2.50 2.210647 52 0.58 0.2409 

Neisseria 
meningitidis 

0.61 2.189071 52 0.72 0.1070 

Pseudomonas 
aeruginosa 

3.03 6.619300 66 0.5 0.1052 

Renibacterium 
salmoninarum 

3.80 3.155250 56 24 NA 

Salmonella enterica 2.82 4.818012 52 0.4 0.0585 
Shigella dysenteriae 8.70 4.520555 51 NA 0.4294 
Shigella sonnei 6.00 5.099185 51 0.53 0.4655 
Staphylococcus 
aureus 

20.50 2.853610 33 0.4 0.0834 

Streptococcus 
agalactiae 

7.20 2.067505 36 1.8 0.1185 

Streptococcus equi 5.22 2.140494 42 2.1 0.1043 
Streptococcus 
pneumoniae 

15.70 2.115491 40 0.5 0.1117 

Streptococcus 
pyogenes 

9.53 1.836517 39 0.4 0.1195 

Treponema pallidum 6.60 1.138605 53  NA 
Vibrio cholerae 8.95 4.104331 47 0.2 0.0687 
Yersinia pestis 0.16 4.749424 48 1.25 0.6856 
Yersinia 
pseudotuberculosis 

8.37 4.783753 47 0.5 0.1216 
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8.3 Appendix 3. Mutation rate per site per generation estimates from Mutation 
accumulation with whole genome sequencing experiments for 26 species of bacteria.  
 
 

Species Mutation 
rate/site/generation 
(x10-10) 

Reference 

Agrobacterium tumefaciens 2.92 (Sung et al. 2016) 
Arthrobacter sp 3.18 (Long et al. 2018)  
Bacillus subtilis 3.28 (Sung et al. 2015) 
Burkholderia cenocepacia 1.33 (Dillon et al. 2015) 
Caulobacter crescentus 3.46 (Long et al. 2018) 
Colwellia psychrerythraea 8.38 (Long et al. 2018 
Deinococcus radiodurans 4.99 (Long et al. 2015) 
Escherichia coli 2.54 (Long et al. 2016)  
Flavobacterium sp 3.91 (Long et al. 2018 
Gemmata obscuriglobus 2.38 (Long et al. 2018)  
Janthinobacterium lividum 1.22 (Long et al. 2018) 
Kineococcus radiotolerans 3.9 (Long et al. 2018) 
Lactococcus lactis 16.6 (Long et al. 2018)  
Mesoplasma florum 97.8 (Sung et al. 2012) 
Micrococcus sp 3.18 (Long et al. 2018)  
Mycobacterium smegmatis 5.27 (Kucukyildirim et al. 2016) 
Pseudomonas aeruginosa 0.792 (Dettman et al. 2016) 
Rhodobacter sphaeroides 1.17 (Long et al. 2018) 
Ruegeria pomeroyi 1.39 (Sun et al. 2017) 
Salmonella enterica 7 (Lind & Andersson 2008) 
Staphylococcus aureus 4.38 (Long et al. 2018)  
Staphylococcus epidermidis 7.4 (Sung et al. 2016) 
Teredinibacter turnerae 11.4 (Senra et al. 2018) 
Vibrio cholerae 1.07 (Dillon et al. 2016) 
Vibrio fischeri 2.07 (Dillon et al. 2016)  
Vibrio shilonii 2.29 (Strauss et al. 2017) 

 
 
 
 
 
8.4 Appendix 4.  dN/dS values for 8 species of bacteria 
 
 

Species dN/dS  Reference 

Buchnera aphidicola  0.125 (Moran et al. 2009) 
Burkholderia dolosa 1 (Lieberman et al. 2011) 
Helicobacter pylori 0.14 (Didelot et al. 2013) 
Mycoplasma gallisepticum 0.2 (Delaney et al. 2012) 
Pseudomonas aeruginosa DK1 0.56 (Markussen & Marvig 2014) 
Pseudomonas aeruginosa DK2 0.66 (Marvig et al. 2013) 
Pseudomonas aeruginosa DK2 0.79 (Yang et al. 2011) 
Salmonella enterica Agona  0.67 (Zhou et al. 2013) 
Salmonella enterica Paratyphi A  0.8 (Zhou et al. 2014) 
Salmonella enterica Typhimurium 0.52 (Hawkey et al. 2013) 
Staphylococcus aureus (ST225) 0.77 (Nübel et al. 2010) 
Streptococcus equi 0.6 (Harris et al. 2015) 
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8.5 Appendix 5. 16s rRNA tree for the 34 species of bacteria for which we have an 
accumulation rate. The tree was used in phylogenetic analyses.  
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8.6 Appendix 6. The mutation rate/site/generation vs genome size for 26 species of 
bacteria.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table S2. The mutation rate/site/generation vs genome size for 26 species 
of bacteria.  
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8.7 Appendix 7. The mutation rate/site/generation vs GC content for 26 species of 
bacteria.  
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8.8 Appendix 8. 16s rRNA phylogenies for species for which we have a mutation 
rate estimate. When all 26 species are included  for the mutation rate data (A) 
Flavobacterium sp and the Alphaproteobacteria are erroneously positioned with the 
gram positive bacteria.  This is resolved after exclusion of Flavobacterium sp and 
Gemmata obscuriglobus. (B). 
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