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Flexibility of reinforcement biases and reaction times in competitive zero-sum games 

 

SUMMARY 

In competitive zero-sum games with mixed equilibria, two rational players should make 

each of their game choices randomly, with no contingencies between their choices. 

However, people often deviate from this equilibrium by following a reinforcement 

heuristic of repeating moves that won on the previous round (win-stay) and avoiding the 

repetition of moves that did not win (lose-shift). In this thesis, I examine the flexibility of 

these reinforcement biases, and the speed of decision-making: under what circumstances 

do people make biased choices, and under what circumstances do people choose quickly or 

stop to deliberate? In Chapter 1, I review the current state of knowledge on how well 

people can produce or detect randomness, how reinforcement biases influence decision-

making, and how processing speeds might differ between different game situations. In 

Chapters 2 and 3 I present four experiments where I examined performance in the games 

Rock, Paper & Scissors (RPS; Chapter 2, Experiments 1 and 2) and Matching Pennies 

(MP; Chapter 3, Experiments 3 and 4). Surprisingly, I found no reinforcement biases in 

RPS, but consistent reinforcement biases in MP. Additionally, participants made slower 

decisions after losses when they succeeded in the game due to finding an appropriate 

strategy to exploit an opponent’s pattern (Chapter 2), but not when they succeeded no 

matter what they did (Chapter 3). In Chapter 4, I present two experiments (Experiments 5 

and 6) directly comparing performance in RPS and MP, designed to replicate the findings 

from Chapters 2 and 3, and examine why the previous studies only found reinforcement 
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biases in MP. The results of these two last experiments suggest that reinforcement biases 

differ between RPS and MP due to different cognitive demands, and that there is 

considerable variability in reinforcement biases both between individuals and between the 

two types of bias. In Chapter 5, I discuss the contributions of the findings on the wider 

literature on bias and randomness detection, the generality of the reinforcement biases, and 

present some suggestions for future studies. 
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CHAPTER 1: General Introduction 

1.1 Are People Bad at Being Random? 

Pattern recognition is crucial to survival. In a competitive environment, an 

individual must be able to notice the frequencies of events as well as possible 

contingencies between events to be able to maximize their rewards and minimize losses. 

That is, individuals must aim to exploit their opponents, and avoid being exploited. In 

order to avoid being exploited by an opponent, individuals should also be able to act 

unpredictably. That is, they should be able to recognize a situation where there is no 

pattern to the actions of the opponent and themselves avoid producing a pattern that the 

opponent could exploit. Falsely interpreting a random sequence of events as a pattern may 

lead to an attempt of exploiting that pattern, which, in turn, means that the player who 

drew the false inference would behave in a systematic way and open themselves up to 

exploitation. These dynamics can be formalized in two-player zero-sum games with a 

mixed strategy equilibrium (Nash, 1950) – that is, if both players are choosing each 

alternative randomly, with equal probability, neither have an incentive to change their 

strategy. However, this incentive changes when either player has any kind of bias or 

pattern to their strategy. Even outside competitive situations, at least some skill in 

deducing whether events in the environment are the result of some contingencies or simply 

random seems necessary for an organism. However, humans are rarely capable of fully 

“rational” behaviour: instead, we are boundedly rational (Arthur, 1994) and often rely on 

heuristics that may not lead to strictly optimal results (Gigerenzer et al., 1996). 

 Several early studies on subjective randomness indicated that people have problems 

in both producing and recognizing randomness (see Bar-Hillel & Wagenaar, 1991; 

Wagenaar, 1991, for reviews). In sum, when explicitly asked to produce “random” strings 
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of different elements, participants tend to produce too many alternations and avoid runs of 

a single element, even though a random process can and does produce such runs. Similarly, 

when asked to recognize “randomness” in different kinds of series presented to the 

participants, they often indicate strings with higher-than-chance probabilities of alternation 

as the most random (see Section 1.3). However, when comparisons were possible, there 

was little correlation in performance between randomness production tasks and 

randomness recognition tasks (Bar-Hillel & Wagenaar, 1991), suggesting that the biases in 

the two domains stem from different factors. In any case, at least for recognition tasks, it 

seemed that people had an idea of a prototypically “random” sequence as having few runs 

and more alternation than what an actual random process would produce. Bar-Hiller and 

Wagenaar (1991) proposed that the biased idea of what a “truly random” sequence would 

look like is in itself the reason people find it difficult to learn away from the bias. That is, 

if a person believes that random sequences do not have streaks in them, exposing that 

person to random sequences with streaks may be useless as they would interpret these 

sequences as non-random. Thus, subjectively, it would not be an experience of a random 

sequence that would break the person’s expectations and aid in learning about what true 

randomness would look like. 

 Ayton, Hunt and Wright (1989) and Rapoport and Budescu (Rapoport & Budescu, 

1992) noted several issues with the usual randomness production and recognition 

paradigms. First, studies of subjective randomness often contained explicit instructions 

regarding what randomness should look like, e.g. that a random string of letters would not 

likely contain recognizable English words or alphabetical sequences such as “ABC” 

(Baddeley, 1966). Instructions such as this may have been taken by participants as an 

explicit warning against producing patterns and thus lead to an alternation bias (Ayton et 
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al, 1989; Rapoport & Budescu, 1992). Second, the definition of a “random sequence” is 

itself questionable, as randomness is not strictly speaking a property of the sequence itself 

but of the process generating it, and only an infinite sequence would contain enough 

information about the stochasticity of the process. The randomness of a finite sequence 

could be tested in several different ways, none of which can overcome the aforementioned 

problem of the test requiring infinite sequences, which are impossible for people to either 

produce or observe (Ayton et al., 1989; Rapoport & Budescu, 1992). Third, it is difficult to 

incentivize participants to produce or detect the kinds of sequences that the experimenters 

consider sufficiently random without biasing the participants (Rapoport & Budescu, 1992). 

Fourth, production tasks especially are quite artificial, as there is seldom if ever a need for 

an individual to produce random sequences (at least without feedback; see Section 1.2), 

even if the judgment of whether an event was caused by chance alone or not may be 

common (Rapoport & Budescu, 1992). Thus, it may simply be that participants of 

randomness production experiments have failed simply because the way randomness 

production was operationalized in these studies is a skill that people rarely if ever practice. 

This suggestion was supported by an earlier study by Neuringer (1986), who had 

participants produce 60 sequences of 100 binary choices for a total of 6000 choices, either 

with or without feedback on the statistical properties of the sequences the participants had 

produced. Participants in the group who received feedback after the production of each 

sequence eventually learned to behave significantly more random-like than participants 

who did not receive any feedback. 

 Rapoport and Budescu (1992) proposed two-player (or dyadic) zero-sum games 

with a mixed strategy equilibrium as a better way of assessing people’s skills in producing 

random behaviour. As mentioned above, the mixed strategy equilibrium essentially leads 
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to a situation where two rational players should end up playing the game randomly. Thus, 

in a game paradigm, there is no risk of instructional biases (players can simply be told to 

play the game and try and win as much as they can), the participants can be incentivized 

more easily than in pure randomness production tasks, and the task is less artificial (there 

are plausible real-life situations where two parties in competition need to be able to act 

unpredictably). The mathematical issue of measuring randomness still applies to the zero-

sum game paradigm, and thus Rapoport and Budescu (1992) simply measured different 

indices of randomness as in earlier studies, by comparing participants’ behaviour to that of 

the expected behaviour of a Bernoulli process (i.e. a string of binary outcomes each with 

an independent probability of 50%). 

 In their study, Rapoport & Budescu (1992) compared the randomness of 

participants playing 150 rounds of a two-choice zero-sum competitive game (Matching 

Pennies) against one another to two control conditions: one where the participant was 

simply asked to produce a sequence that simulated the toss of a fair coin for 150 times, and 

one where the participant was asked to produce a binary sequence of 150 iterations that 

would then later be used as their moves in a series of rounds of the zero-sum game. Note 

that in each of these tasks the ideal results would look similar, but only the game condition 

provided trial-to-trial feedback (information of the opponent’s moves and outcomes of 

rounds). Assessing a number of statistical markers of random-like behaviour such as the 

distribution of choice types, the number of runs, the distribution of response patterns of 

different lengths (m-tuples), and the conditional probabilities of a response as a function of 

a prior response or responses, Rapoport and Budescu (1992) showed that participants in the 

competitive game condition consistently had either approximated randomness better than 

participants in the other conditions, or behaved equally non-randomly. The results thus 
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supported the notion that people’s difficulties in producing random sequences in prior 

experiments was significantly affected by the task design itself, and that the functional 

production of randomness (randomness in order to avoid exploitation in a competitive 

game) comes more naturally. 

 What about zero-sum games allows people to avoid deviations from randomness 

better than pure production tasks? Wagenaar (1991) suggested that a random process 

requires at least i) a fixed set of alternatives ii) a “memoryless” selection procedure and iii) 

a selection procedure with no preference for any of the alternatives (see also Bar-Hillel et 

al., 2014; Mehta et al., 1994). Wagenaar (1991) argued that people’s errors in randomness 

production tasks are due to having a memory that can not be simply turned off, and due to 

having preferences. That is, people might have initial preferences for certain kinds of items 

or patterns in their production of random sequences, and memory of their previous choices 

biases them towards avoiding items they chose previously as they try to achieve 

randomness (alternation bias). In response to Wagenaar (1991), Rapoport and Budescu 

(1992) argued that pitting players against one another interferes with the process that leads 

to deviations from randomness in pure production tasks. Specifically, they argued that 

game feedback (wins and losses) removes any preference the players may have, and that 

having to track the opponent’s moves interferes with the players’ memory of their own past 

moves (thus leading to a reduction in alternation bias). However, this claim is undermined 

by very clear and robust associations between prior outcome and subsequent choice as 

expressed by reinforcement learning principles. 

1.2 Reinforcement Biases 

In their simplest form, reinforcement learning principles can be viewed as a 

heuristic of repeating actions with positive outcomes (“win-stay”) and avoiding the 
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repetition of actions with negative outcomes (“lose-shift”). This is essentially the 

(simplified) logic of behaviourist principles of learning (c.f. Thorndike, 1911, law of 

effect).  In the context of games with mixed equilibria, win-stay and lose-shift represent 

examples of predictable performance that is non-random and hence exploitable. As such 

they represent suboptimal performance if an agent acts according to them regardless of the 

type of learning or game task they are faced with (see e.g. Achtziger & Alós-Ferrer, 2013; 

Achtziger et al., 2015; Alós-Ferrer & Ritschel, 2018; Scheibehenne et al., 2011; Wilke & 

Barrett, 2009; Wilke et al., 2014). Thus, outcome-dependent deviations from randomness 

are important to examine when measuring subjective randomness. Rapoport & Budescu’s 

(1992) analysis of how often a player repeated the opponent’s move from the previous 

round is essentially an analysis of the sum score of win-stay and lose-shift (hence stayshift) 

choices in their game task. The reason the two analyses are the same is because in 

Matching Pennies, a participant repeating the opponent’s move is either repeating a move 

that they matched in the previous round (i.e. won) and thus also repeating their own move, 

or repeating a move that they did not match in the previous round (i.e. lost) and thus also 

shifting from their own previous move (see Dyson, 2019, on isomorphism between 

different dependencies in zero-sum games). In this analysis, they found only 13 out of the 

66 participants in their dyadic condition had a significant bias towards repeating the 

opponent’s move. However, crucially, the analysis lacks a comparison group, as there was 

only one experimental group that played a game with trial-by-trial feedback. The feedback 

this group received was essentially created by the two players themselves as a dynamic, 

coupled system (see West & Lebiere, 2001). Thus, an aspect missing from Rapoport and 

Budescu’s (1992) examination is a test of the role of different types of feedback dynamics 

on the potentially present reinforcement effects. 
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West and Lebiere (2001) provided a simulated model of a Rock, Paper & Scissors 

game with two players that attempt to exploit each other’s predictable behaviour with a 

limited memory, and found it aligns to games played by actual people. By learning 

sequential dependencies and attempting to exploit them, the two players end up creating 

random-like behaviour. This is a plausible model of what may have happened with the 

players in Rapoport and Budescu’s (1992) experiment: it is likely that both human players 

tried to exploit any systematic behaviour they perceived on the other player’s part. This 

would, in turn, lead each player to change any pattern they previously had expressed as 

they noticed the opponent exploiting it (i.e. receiving negative feedback). In the long run, 

this could lead to both players adopting different kinds of patterns for short runs, followed 

by a change in the pattern caused by the opponent trying to exploit the pattern, and the 

cycle beginning again. This is a very specific type of feedback for the players to receive, 

and the fact that most players did not exhibit a stayshift bias in this game environment does 

not automatically mean that they would avoid it in a zero-sum game with an opponent that 

acted differently. Thus, this opens up the question of what kind of a dynamic is needed 

between the two players for them to avoid deviations from randomness. 

The role of the dynamic producing game feedback becomes apparent by looking at 

studies where that dynamism is removed. Such cases might be where the participants play 

zero-sum games against opponents that play completely randomly, with no learning or 

predictable reaction to the participant’s responses. In these experiments, the game task still 

has the properties highlighted by Rapoport and Budescu (1992) as important in reducing 

deviations from randomness, namely feedback and tracking the opponent’s actions. 

However, the task lacks an opponent that would punish a player for playing predictably, 

though it does not reward this predictability either. As a result, the expected number of 
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wins and losses for the player is equal no matter how they play. In two studies of rhesus 

monkeys playing a Matching Pennies (Lee et al., 2004) or a Rock, Paper & Scissors game 

(Lee et al.,, 2005) against a randomly playing computer opponent, the monkeys exhibited a 

stayshift bias. For human players, Scheibehenne et al. (2011) found that participants 

playing a binary choice game on a simulated slot machine (resembling a Matching Pennies 

game) exhibited a significant stayshift bias. This result was replicated in a similar paradigm 

by Wilke et al. (2014), who found that both habitual gamblers and non-gambling controls 

misapplied the stayshift rule when playing on a machine with random outcomes. Dyson et 

al. (2016) and Forder and Dyson ( 2016) provided similar results of human players playing 

Rock, Paper & Scissors against a computer opponent that played the game randomly, 

though the results of both papers show only a significant lose-shift bias but not a 

significant win-stay bias. 

Thus, it seems that people express a stayshift bias against an opponent that plays 

randomly. This suggests that a zero-sum game scenario in and of itself is not enough for 

people to discard this deviation from randomness. The fact that stayshift could 

theoretically be exploited does not reduce the bias. As such, stayshift could be considered 

an example of a trivial bias (see McKay & Efferson, 2010) in this context since the bias 

does not cause the players to lose any more than they would choosing any other strategy. 

The stayshift bias is then a bias only in the technical sense that it is not the theoretical 

optimal strategy, but neither does it lead to exploitation. An argument could be made that 

an agent would only change their strategy from an initially biased position if they are 

incentivized to do so. This incentive could be in the form of being exploited by an 

opponent that notices their bias (i.e. negative feedback), and/or if there is a pattern to the 

opponent’s play that could be exploited by adopting a different decision rule (i.e., positive 
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feedback). McKay and Efferson (2010) posit that a bias is non-trivial only if people 

express it even in situations where it actively leads to decreased success. This leads to the 

next question of how easily players learn away from the bias when incentivized. 

 Whether players can avoid reinforcement-based biases seems to depend greatly on 

the type of game task and the dynamics of the feedback. The evidence of a stayshift bias 

reducing due to negative feedback in competitive zero-sum games is somewhat mixed. In 

the above-mentioned studies of rhesus monkeys (Lee et al., 2004; Lee et al., 2005), the 

stayshift bias was reduced once the monkeys’ computer opponent started exploiting the 

monkeys’ biases. In other words, the monkeys seemed to start with an initial bias that 

could be exploited, and only reduced this bias when it in fact was exploited. Similarly, in a 

study of reinforcement biases in human participants, Ivan et al. (2018) found that 

participants did not exhibit a significant stayshift bias when playing Matching Pennies 

against a computer opponent that punished the players for predictability. Given that the 

stayshift bias has been commonly observed in earlier studies where participants played 

against randomly playing opponents, it would seem that the bias is an initial default (or, the 

result of random feedback) that is discarded once it starts leading to more losses than 

chance. 

 On the other hand, Scheibehenne et al. (2011) reported data suggesting a more 

nuanced pattern in human players. In their experiment, Scheibehenne et al. (2011) had 

participants choose to bet on one of two slot machines, one of which had a completely 

random binary pattern while the other one had a pattern that could either be exploited by a 

stayshift rule (win-stay and lose-shift) or the opposite shiftstay rule (win-shift and lose-stay) 

to varying degrees. This exploitability was achieved by manipulating the autocorrelation 

(likelihood of repetition or “clumpiness”) of the series the slot machine produced: 
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increased autocorrelation is exploitable by stayshift, whereas decreased autocorrelation is 

exploitable by shiftstay. Note that if a machine is exploitable by the shiftstay rule, applying 

the stayshift rule when playing will lead to increased negative feedback. When the non-

random slot machine could be exploited by the stayshift rule, the participants’ likelihood of 

choosing to bet on that machine increased throughout trials regardless of how strongly 

exploitable it was (i.e. how high the autocorrelation was). However, when the non-random 

slot machine could be exploited by the opposite shiftstay rule, participants only increased 

choices for this machine when it was highly exploitable (80% of the time, i.e. only 20% 

likelihood of repetitions), and for lower rates of exploitability they actually decreased their 

choices throughout trials. In sum, when participants played against the exploitable 

machines, their rate of optimal choices was much higher when the machine could be 

exploited with the stayshift rule than when it could be exploited with the shiftstay rule. 

Additionally, the rate of optimal choices for games played on the machine that could only 

be exploited with shiftstay rule, and thus punished stayshift responding, only increased 

above 50% of trials when the machine was highly exploitable (80% of the time). Lower 

levels of exploitability yielded chance or sub-chance optimal responding, suggesting that 

humans may need relatively strong negative feedback for their stayshift behaviour in order 

to learn away from it in the task. Wilke et al. (2014) provided a partial replication of these 

results with a similar design, finding that neither habitual gamblers or control participants 

increased their choice frequency on a negatively autocorrelated slot machine throughout 

several trials. This suggests that the bias is not completely trivial, as people seem to have 

difficulties learning away from it even when incentivized, or indeed noticing the incentive. 

The stayshift bias can also lead to suboptimal play choices in game situations that 

do not require the players to randomize their choices. In a direct test of the effect of 
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reinforcement, Achtziger et al. (2015) used a two-step binary choice task, where the 

optimal strategy after the first decision step, based on Bayesian updating, was either 

shiftstay or stayshift. For the case where the shiftstay rule was optimal, there was a direct 

conflict with the reinforcement heuristic of repeating winning moves. In the two-step task, 

the first decision is essentially random, but the outcome of that decision, whether a win or 

a loss, gives the participant information about the state of the world – that is, whether they 

are more likely to win by shifting or staying. The participants were made aware of all the 

probabilities of winning and losing in two different states of the world, but they could only 

deduce which state of the world they were in by making an initial choice. However, the 

knowledge of the outcome and the associated reward itself could override this information. 

In the situation where an initial loss suggested that stay was the subsequent optimal 

response, or an initial win informed them that they should shift, participants made the 

opposite, erroneous choice, on 58.3% of the trials on average. In the situation where the 

optimal responses aligned with stayshift, the error rate was only 9.29% on average. 

Additionally, participants were equally likely to make these errors regardless of whether 

the financial incentive for correct play was high or low. In a second experiment, Achtziger 

et al. (2015) removed the win and lose feedback and monetary reward from the initial 

decision, but still provided information that the participants could use the deduce the state 

of the world for the second decision. Here, the overall error rate fell significantly, from 

58.3% of suboptimal shiftstay responding in the first experiment to 25.1% in the second 

experiment. Additionally, participants now made significantly more optimal choices when 

financial incentives were high than when they were low, suggesting that concrete rewards 

may only encourage rational choices when reinforcement is inhibited. These results 

broadly replicate earlier studies using the same paradigm (Achtziger & Alós-Ferrer, 2013; 
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Charness & Levin, 2005), and again suggest that the stayshift bias is not trivial (see McKay 

& Efferson, 2010), as people seem to apply it in a situation where the exact opposite 

behavioural rule would be optimal. Given that in most games in the wild or in the lab, 

feedback, reward and information about a trial are intertwined (see Losecaat Vermeer & 

Sanfey, 2015) and immediately obvious to the player, the reinforcement bias is likely 

ubiquitous. 

More detailed work (e.g. Gruber & Thapa, 2016; Ivan et al., 2018) has also 

revealed potential differences between the flexibility of win-stay relative to lose-shift, with 

lose-shift being potentially a more automatic response that is normally suppressed in adults 

by executive functions. This fits together with Forder and Dyson’s (2016) findings of  

players exhibiting a lose-shift bias and also making faster decisions following losses than 

other outcome types: participants exhibited more cognitive control (Mackie et al., 2013) 

after wins than losses. In sum, a win-stay, lose-shift bias seems to be a kind of default 

decision rule in zero-sum games and other kinds of decision tasks for both humans and 

some animals. While human players may be able to learn away from the bias when 

incentivized, they may need very frequent negative feedback for their biased choices or an 

otherwise strong incentive to do so. Interestingly, people seem to be better at avoiding this 

reinforcement-based deviation from randomness when they are paired with opponents that 

will punish any kind of non-random play in a zero-sum game than when their opponent or 

the game simply only punishes the reinforcement bias. The bias does not seem to be a 

trivial bias, as human players seem unable to decrease the bias to the same degree that they 

can increase it when incentivized to do so, and less able to notice situations where 

decreasing the bias is optimal than situations where they should increase it. That is, there is 

some inflexibility in the stayshift bias, which may stem from it being an automatic process 
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(or a “System 1” process; see Evans, 2003, 2008, for reviews), but there are also some 

differences between the two types of bias in terms of flexibility. 

1.3 Link to Hot Hand & Gambler’s Fallacy 

 The stayshift bias may in more general terms be considered an example of positive 

recency, that is, the tendency to expect events of one type to follow each other in a 

sequence. In binary choice tasks, a bias towards staying after wins implies an expectation 

of the same choice-outcome pair (or the same game choice from an opponent), and a bias 

towards shifting after losses implies an expectation that the choice that would have yielded 

a win previously will yield a win now (or, again, the same game choice from an opponent). 

In tasks with more than two choice options, a bias towards staying after wins is equivalent 

to the bias in binary choice tasks, and a bias towards shifting after losses implies at least an 

expectation that the losing choice is unlikely to yield a win on the next round. A bias 

towards shifting after losses specifically to the choice that would have yielded a win in the 

previous round (myopic best reply or Cournot’s best response; see Alós-Ferrer & Ritschel, 

2018; Dyson, 2019) would imply positive recency more clearly, and there is some 

evidence of games with more than two options that players are biased in precisely this way 

(Dyson et al., 2016; Alós-Ferrer & Ritschel, 2018). The positive recency effect is 

commonly called the Hot Hand Fallacy, as in expecting a basketball player who has scored 

being more likely to score again i.e. having a “hot hand” (see Gilovich et al., 1985; see also 

Miller & Sanjurjo, 2018, suggesting the belief may not be a fallacy in the context of actual 

basketball games). The opposite, negative recency, is the tendency to expect that an 

outcome is less likely to be followed by another outcome of the same type. This bias is 

commonly called the Gambler’s Fallacy, as in a gambler expecting that after a run of the 

roulette ball landing on red, it should more likely land on black. The Gambler’s Fallacy is 
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observed in real-life gambling situations (Sundali & Croson, 2006), some prediction tasks 

(Barron & Leider, 2010), and in randomness production and detection tasks (alternation 

bias; see Section 1.1). 

The existence of both the Hot Hand and Gambler’s Fallacies raises the question of 

when people express these biases, as it would be logically impossible for one person to 

express both at the same time about the same outcome. Why, specifically, do most studies 

of different kinds of game tasks find biases consistent with the Hot Hand Fallacy so often? 

Ayton and Fischer (2004) noted that both fallacies have been previously been explained by 

an appeal to the representativeness heuristic (Gilovich et al., 1985). That is, the gambler’s 

fallacy has been explained as a result of people assuming that the global properties of 

randomness should also be apparent locally, in every part of a random string (Kahneman & 

Tversky, 1972). This leads to an assumption that every part of a random sequence should 

contain equal numbers of all possible outcomes, leading people to judge runs of one 

outcome as unrepresentative of randomness, and thus expect runs to end. Likewise, the Hot 

Hand Fallacy has been explained as a result of people judging a streak as unrepresentative, 

and thus deciding that the underlying process is not actually random, therefore expecting 

the streak to continue. As Ayton and Fischer (2004) note, this latter explanation raises the 

question as to why people would not judge that a roulette wheel has become “hot” when it 

has produced a streak of one type of outcome. Similarly, one could ask why participants 

playing zero sum games do not form a win-shift bias, as a streak of one type of choice by 

the opponent could be considered unrepresentative of randomness and thus likely to be 

followed by a loss if the player repeats their choice. 

Ayton and Fischer (2004) suggested that the relevant factor in whether exhibit 

positive or negative recency effects in interpreting or engaging with a sequence of events is 
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their prior knowledge of the type of process they are dealing with. People may reasonably 

assume that the results of a roulette wheel should be random, and that the results of an 

athlete scoring points are not random. Thus, people may interpret a streak of successes 

presented to them as indicating a deviation from noise that is likely to end soon if they are 

told the string represents e.g. roulette outcomes because there is no intentionality in a 

roulette wheel. On the other hand, the same streak of successes presented to them would 

indicate a deviation from noise that is likely to continue if they are told the string 

represents e.g. the scoring outcomes of an athlete, because an athlete is an intentional 

agent, and an intentional agent succeeding several times in a row indicates skill. 

Ayton and Fischer (2004) tested this prediction first with an experiment where 

participants were asked to forecast or gamble on outcomes on a simulated roulette wheel 

with binary outcomes. The participants also indicated their confidence of guessing the next 

outcome correctly on each round. Consistent with the notion that positive and negative 

recency effects depend on the assumptions people hold about the process, the participants 

exhibited negative recency in their guesses, but positive recency in their confidence. That 

is, they were more likely to predict that a streak of a certain outcome type on the roulette 

wheel to end, but they were more confident about a guess being correct when they had had 

a streak of correct guesses. In a second experiment, Ayton and Fischer (2004) asked 

participants to judge whether a sequence of binary outcomes presented to them was more 

likely to be caused by human skilled performance or chance (scoring in different sporting 

contexts or the outcomes of a roulette wheel, coin flip, or die throw). As predicted, when 

participants were presented with sequences with low alternation rates and more streaks, 

they were more likely to indicate that the sequence represented the results of human skilled 

performance. Sequences with high alternation rates were judged as more likely to represent 
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chance processes. Similar results were reported by Burns and Corpus (2004), who found 

that participants were more likely to predict a streak in a sequence of 100 equally 

distributed binary outcomes to continue if the sequence was described as a competitive 

situation or a noncompetitive situation with a skill component relative to a random 

situation. In a field study of actual roulette bets, Sundali and Croson (2006) found that 

players who exhibited a Gambler’s Fallacy about the actual outcomes of the roulette spin 

tended to also exhibit a Hot Hand Fallacy about their own betting success, suggesting the 

two biases are linked but relate to different properties of a task (the likelihood of an event 

vs. the likelihood of predicting that event correctly). 

If negative recency is common in situations where people assume the process 

producing a sequence to be random, but positive recency is common in situations where 

people assume the process to be non-random, this implies that players exhibiting a positive 

recency effect (the stayshift bias) in zero sum games more commonly assume the opponent 

to be playing non-randomly. This is not surprising in and of itself, however, positive 

recency effects have also been found in game situations where players are not playing 

against another human or computer player but e.g. playing on a simulated slot machine or 

predicting natural events (see Scheibehenne et al., 2011; Wilke & Barrett, 2009; Wilke et 

al., 2014). Positive recency effects seem to depend not only on what participants think of 

the process behind a sequence but also whether they encounter the sequence trial-by-trial, 

as in studies where participants play games, or by receiving information about a whole 

sequence (Barron & Leider, 2010; Tyszka et al., 2008). This helps explain the ubiquity of 

positive recency, i.e. reinforcement biases, in game choices. Based on the literature, 

positive recency effects seem to be a common trait of human cognition when predicting 

what will happen in a sequence. 
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1.4 Aims 

The aims of the experiments reported in this thesis were to examine the flexibility 

of reinforcement biases under different conditions, the predictors of biased behaviour, and 

the effect of positive and negative game outcomes on the impulsivity of game decisions. 

Experiments 1 and 2 (Chapter 2) addressed how well participants could play RPS against 

predictable computer opponents that required deviations from reinforcement-based 

decisions to beat, and the separate effects of different game outcomes on the likelihood of 

reinforcement biases. Experiments 3 and 4 (Chapter 3) addressed the effects of high and 

low win-rates and different trajectories of positive and negative outcomes (success slopes) 

on reinforcement biases, the players’ confidence of their choices, and their reaction times 

in MP. Experiments 5 and 6 (Chapter 4) examined behaviour in both RPS and MP, under 

both conditions of random and predictable opponent behaviour, in order to uncover the 

reasons for differences in biases between the game types, as well as conflicting results in 

the general literature. The experiments aimed to shed light on the differences between win-

stay and lose-shift responding in terms of flexibility, frequency, and impulsivity, and the 

factors that predict biased behaviour. 
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CHAPTER 2: Reinforcement Biases and Reaction Times in RPS 

2.1 General Introduction 

 In Experiments 1 and 2, I used the game Rock, Paper & Scissors (RPS) to examine 

reactions to different game outcomes against both exploitable and unexploitable opponents, 

under different value conditions. My aim was to examine participants' ability to exploit 

predictability and to act in a non-exploitable way in a non-predictable situation, and to see 

whether differences in reward structure affected these abilities. Specifically, the exploitable 

choice patterns chosen for the opponent were biased towards specific shifts and led to a 

situation where the optimal strategy against the opponent was not in alignment with 

reinforcement or myopic best reply. 

2.2 Experiment 1 

2.2.1 Introduction. 

2.2.1.1 Rock, paper, scissors and reinforcement. Assuming two rational players, 

the Nash Equilibrium (Nash, 1950) of RPS is achieved when both players use a mixed 

strategy, that is, when they make random choices with replacement from a flatly 

distributed set of options. This ensures that neither player has a recognizable pattern in 

their choices and no bias towards any of the choice options (e.g. overplaying rock). 

However, while RPS provides an environment where the production of random strings is 

considerably easier than in traditional non-game randomness production tasks (Rapoport & 

Budescu, 1992), the game structure simultaneously introduces the effects of trial-by-trial 

reinforcement into the task. The types of non-random choices people make in RPS seem to 

follow a similar pattern of reinforcement errors as seen in binary choice tasks (see e.g. 

Achtziger et al., 2015; Scheibehenne et al., 2011; Wilke et al, 2014). Previous studies of 

behaviour in RPS or similar three-choice games (Alós-Ferrer & Ritschel, 2018; Dyson et 
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al., 2016; Forder & Dyson, 2016; Wang et al., 2014) have found that people tend to follow 

a stayshift heuristic, with shifts being more likely after both losses and draws. The shifting 

rule could thus be more accurately called "lose/draw-shift" in the context of RPS (see Lee 

et al., 2004 for a similar strategy in monkeys). While a draw in the game is not strictly 

speaking a penalty, a player trying to maximize wins will of course prefer to not draw.   

It has been found that the magnitude of the win-stay bias, but not the lose/draw-

shift bias, can also be altered by different reward values, suggestive of varying degrees of 

cognitive control as a function of outcome. Cognitive control can be broadly defined as 

information prioritization in goal-driven behaviour (Mackie et al., 2013) - i.e. the decision 

does not happen automatically. It is thought as arising in situations of uncertainty or 

conflicting information in a task, and manifesting as increased reaction times (see 

Botvinick et al., 2001, for a comprehensive look into the conflict monitoring account of 

cognitive control). Forder & Dyson (2016) compared game situations with either an 

emphasis on wins (+2 points for a win, -1 for a loss) or losses (+1 for a win, -2 for a loss) 

to a baseline condition (+1 for a win, -1 for a loss), when participants played against an 

unexploitable (mixed strategy) opponent. It was found that reaction times for choices made 

after wins were longer than those for choices made after losses or draws. Additionally, the 

amount of lose-shift behaviour was similar for all conditions, but win-stay behaviour was 

increased when the value of a win was higher. It is worth noting here that the difference in 

behaviour was observed by simply manipulating a numerical score with no financial or 

other tangible incentive, suggesting that possibly evolutionary behavioural biases like the 

stayshift heuristic can manifest even in situations with no reward or anything "real" for the 

player to compete for. In other words, these effects may manifest as response simply to 

information about wins and losses, not specifically wins and losses tied to rewards. 
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Together, the results indicate an inflexibility of the lose/draw-shift bias and a flexibility of 

the win-stay bias, with slower responses following wins. Note that the longer deliberation 

time did not necessarily lead to more ”rational” choices, as the increase in win-stay 

behaviour when the scoring for wins was higher did not improve performance against the 

randomly playing opponent. 

Based on the results of Forder & Dyson (2016) it is not completely clear whether 

the differences in choice behaviour between the conditions were due to the asymmetry 

between the scores for wins and losses, or merely due to the higher value of wins: the win-

heavy condition (+2 points for a win, -1 for a loss), where participants made significantly 

more win-stay decisions than in the other conditions, had the highest point value for wins. 

It is thus possible that the value of losses or the difference in value between losses and 

wins played no part in increasing win-stay behaviour, and that win-stay behaviour only 

increased as a function of the value of wins. Therefore, in Experiment 1 I decided to 

examine player behaviour in two different conditions where the penalty and reward were 

equal to each other: a high value condition with +3 for a win and -3 for a loss, and a low 

value or baseline condition with +1 for a win and -1 for a loss (as per Forder & Dyson, 

2016). If players were incentivized to stay after a win simply due to a higher point value, I 

would expect to see more win-stay behaviour in the high value condition. 

2.2.1.2 RPS and exploitation. It should be noted that for RPS the stayshift bias has 

been observed only in cases where the players play against a computer opponent using a 

mixed strategy (Dyson et al., 2016; Forder & Dyson, 2016) or in competition with another 

human unlikely to have a steadily exploitable pattern of play (Alós-Ferrer & Ritschel, 

2018; Wang, Xu, & Zhou, 2014). What about situations where a player could reliably learn 

a winning strategy against the opponent? Studies showing frequent reinforcement errors 
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even when an optimal strategy could be learned through trial and error (Achtziger et al., 

2015; Scheibehenne et al., 2011; Wilke et al., 2014) differ from a typical RPS scenario. 

Firstly, the decision tasks in these studies are binary, in contrast to RPS, where the player 

always has three options. Secondly, the games are not two-player competitive games per 

se, even though the structure may otherwise be similar (i.e., clear definitions of outcomes, 

game played over several rounds, need for a strategy). Critically, the player and the game 

are not competing for points or for resources. Behaviour in a game that is explicitly framed 

as a zero-sum competition against another player may differ significantly from that in other 

types of games (see Bornstein et al., 2002; Goodie et al., 2012). 

   In a study examining participants' responses to different RPS strategies (Stöttinger 

et al., 2014) participants increased their rate of optimal responses to a frequency biased 

opponent (an opponent playing Rock more often than any other choice) quicker than to to 

an opponent whose moves were dependent on the player's previous move during a 100 trial 

training phase. Moreover, players had in general a higher proportion of optimal plays 

against the frequency-biased opponent than the player-dependent opponent averaged across 

the training phase.  The authors did not report the patterns of the participants' responses, 

but it's notable that the participants fared worse against the player-dependent opponent than 

the frequency-biased opponent. The stayshift rule could be beneficial against frequency-

biased opponents, as it naturally steers players to shift away from the moves that are least 

likely to win and towards repeating the move that wins most often. The player-dependent 

opponent strategy used during the training phase was a "one-ahead" strategy, where the 

opponent would choose an item that would have beaten the player's previous choice – 

similar to the stayshift rule, with shifts in specific directions after losses and draws and 

repetitions after wins. That is, both staying after wins and shifting after losses and draws 
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are likely beneficial. Against such an opponent, a player playing according to the stayshift 

strategy would not have a similar edge as they would against a frequency-biased opponent: 

even if shifting after losses or draws may lead to a winning move, the player repeating 

their winning moves likely leads to losses. It may be that the worse performance against 

the player-dependent opponent in Stöttinger et al. (2014) stemmed from a reliance on the 

stayshift heuristic. One way to measure the flexibility or inflexibility of the stayshift 

heuristic, then, is to pit human players against a computer opponent that is optimized to 

play against such a biased player, and examine the participants' decisions in comparison 

with their behaviour against a random opponent. 

2.2.1.3 Choosing a strategy. As mentioned above, the lose/draw-shift rule in RPS 

generally means more likely shifting after a loss or a draw. In the context of RPS, because 

there are three response, two types of shift behaviour are available across consecutive 

trials. I will call the two different forms of shifting in RPS downgrading and upgrading, 

respectively (after Dyson et al, 2016) - see Figure 2.1 for a schematic of the two forms of 

shifting. Downgrading is shifting to an item that would have lost to one's own previous 

choice, while upgrading is shifting to an item that would have won against one's own 

previous choice. 

The stayshift tendency could be seen as a shortcut towards a myopic best reply 

strategy (Alós-Ferrer & Ritschel, 2018), where decisions are made with the assumption 

that the opponent will repeat their choice irrespective of the preceding outcome – i.e. 

choosing the option that would have won in the previous round. This would mean 

downgrading after losses, upgrading after draws, and staying after wins.  The evidence for 

the myopic best reply strategy in three-choice games is mixed. In Dyson et al. (2016) and 

Forder and Dyson (2016), there is a general trend towards shifting after losses and draws, 
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but no reliable trend towards shifting significantly more often to the directions dictated by 

myopic best reply. On the other hand, Alós-Ferrer & Ritschel (2018) found a significant 

trend towards myopic best reply shifts in a slightly modified RPS game with two different 

magnitudes of losses instead of the typical loss and draw. The common trend across these 

studies was that players followed reinforcement: shift responses in general were more 

likely after non-win outcomes than stay responses. To create a strategy that would be hard 

for participants to learn via reinforcement, in Experiment 1, I decided on a simple self-

downgrade rule for the computer opponent. To formalize, the strategy can be explained in 

three rules (Dyson, 2019): 

(1) IF O(n) = r THEN O(n+1) = s 

(2) IF O(n) = s THEN O(n+1) = p 

(3) IF O(n) = p THEN O(n+1) = r 

where O = opponent's choice, n = number of trial, r = rock, p = paper, s = scissors. 

 

 

 

 

Figure 2.1. Schematic showing the cyclical nature of downgrading and upgrading in RPS. 

In downgrading, the shift is towards the item that would lose against the previous item; in 

upgrading, towards the item that would win against the previous item. 
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The optimal way of playing against the self-downgrade biased opponent is to 

downgrade after a win, upgrade after a loss, and stay after a draw. To formalize this for all 

item choices made by the player: 

(4) IF S(n) = r AND (n) = W THEN S(n+1) = s   (downgrade) 

(5) IF S(n) = r AND (n) = L THEN S(n+1) = p  (upgrade) 

(6) IF S(n) = r AND (n) = D THEN S(n+1) = r  (stay) 

(7) IF S(n) = p AND (n) = W THEN S(n+1) = r   (downgrade) 

(8) IF S(n) = p AND (n) = L THEN S(n+1) = s  (upgrade) 

(9) IF S(n) = p AND (n) = D THEN S(n+1) = p  (stay) 

(10)  IF S(n) = s AND (n) = W THEN S(n+1) = p   (downgrade) 

(11) IF S(n) = s AND (n) = L THEN S(n+1) = r  (upgrade) 

(12)  IF S(n) = s AND (n) = D THEN S(n+1) = s  (stay) 

where additionally to the above, S = self i.e. the player's choice, W = Win, L = Lose, D = 

Draw. Note that this set of rules is in contrast to the usual stayshift heuristic for wins and 

draws, and in contrast to myopic best reply for all outcomes. This makes the strategy well 

suited for examining the malleability of reinforcement-based decision-making. If players 

are driven by reinforcement, they should make more errors after wins and draws compared 

to losses, as the optimal choices after wins (i.e. downgrade) and draws (i.e. stay) are 

misaligned with reinforcement, unlike the optimal choice after losses (i.e. upgrade). 

 As the self-downgrade strategy amounts to a simple three-step sequence repeated 

over and over, I anticipated an opponent following this strategy all of the time would be 

trivial to exploit. This would lead to a situation where the participant would have very few 

if any losses or draws during a series of trials. Due to this, the strategic opponent would 
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have to have a degree of randomness to its play (as per Stöttinger et al., 2014). I decided 

that 70% of trials should follow the exploitable rule (similar to the training period in 

Stöttinger et al., 2014, which ranged from 60% to 80%). The remaining 30% of trials 

would consist of the computer opponent randomly picking, without replacement, from a 

flat distribution of the three potential choices. The choice to use sampling without 

replacement was made to ensure no accidental item biases on the opponents’ part. 

2.2.1.4 Metacognition and perception of the opponent. The fact that people have 

been found to engage in systematic behaviour in a random environment may also reflect a 

false belief of strategic advantage (see Section 1.3). That is, people may think that they are 

more likely to win, or that they have recognized a pattern in the opponent's behaviour even 

when there is none - a case of faulty metacognition, or an illusion of control (Langer, 

1975). The tendency toward stayshift behaviour in games may also be understood as a 

tendency to expect and/or perceive "random" sequences to be positively autocorrelated 

(Scheibehenne et al., 2011; Wolford et al., 2004). Thus, it seems plausible that an explicit 

belief of a randomly playing opponent being exploitable could form. Consequently, I 

decided to include a confidence measure to gauge participants' certainty of a win 

throughout the trials. Explicit representations of confidence have been shown to play an 

integral role in value- based choice processing in the vmPFC (De Martino et al.,, 2013) and 

to predict future value-based choices and changes of mind depending on whether 

confidence is high or low, respectively (Folke et al., 2016). Thus, a higher confidence of 

winning based on faulty inferences of the behaviour of an unexploitable opponent could be 

associated with biased play behaviour. 

However, the above-mentioned studies on confidence (De Martino et al., 2013; 

Folke et al., 2016) did not measure confidence in a competitive game context, where 
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success and failure may affect a person's confidence in a choice: rather, the choices were 

made between reward items with no competition or clearly defined success involved. 

Confidence may not follow success in a task linearly. In Stöttinger et al. (2014), 

participants' confidence ratings increased through trials against frequency-biased and 

player-dependent RPS opponents to a similar degree, despite players making a different 

number of optimal plays against these opponents. However, the increase in confidence was 

not simply a function of time spent playing but coincided with above-chance success in 

exploiting the opponent: participants exposed to a shift in opponent strategy that led to 

suboptimal performance also decreased their confidence ratings. The similar increase in 

confidence for different rates of above-chance performance may then have been simply 

due to all above-chance performance leading to a similar increase, or due to the 

participants being able to recognize a pattern even for the "harder" player-dependent 

opponents, but being less able to play optimally.   

 In Experiment 1, I predicted that participants' confidence would be correlated with 

their success in the game leading to overall higher confidence in the exploitable condition 

given successful exploitation, and that the correlation between confidence and win-rate 

would be higher in the exploitable opponent condition, where participants would be more 

likely to know that they are responsible for their wins. To further examine the possible 

false belief of a strategic advantage against the random opponent, I included as an 

exploratory measure an open-ended question about the opponent's pattern of play after 

each block. In addition to giving more insight on how people actually view the 

unexploitable, random opponent, the answers would also shed light on how the participants 

understood the exploitable opponent's behaviour. Strictly speaking, the exploitable 

opponent does not care about the participants' actions, but participants may still believe so. 
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I also included three short questionnaires, after Dyson et al. (2016) and Forder and 

Dyson (2016), measuring game engagement (Brockmyer et al., 2009), felt co-presence 

(Nowak & Biocca, 2003) and perceived anthropomorphism in the opponent (Epley et al., 

2008). The questionnaires were included to better understand the interpretations people 

make of the behaviour of unexploitable and exploitable computer opponents. As an 

additional exploratory measure, I also included the 60-item HEXACO personality 

questionnaire (Ashton & Lee, 2009) to examine whether certain traits might predict 

success in the game. Crucially, the questionnaire measures the Honesty/Humility trait, a 

construct similar to the Dark Triad traits (Lee & Ashton, 2014). These traits have been 

shown to correlate willingness to engage in risk-taking and impulsive behaviour (Crysel et 

al., 2013; De Vries et al., 2009), which could affect game outcomes. 

2.2.1.5 Hypotheses. To summarize, in Experiment 1, I examined patterns of play 

against both unexploitable (mixed strategy) and exploitable (self-downgrade) opponents. 

Players played against both types of opponents under two different value conditions. I 

examined player confidence on ten different occasions for each game block, and recorded 

reaction times for all decisions. My hypotheses were: 

 1) Players will be more likely to repeat an item choice after a win than after a loss 

or a draw in the high value condition (similar to Forder & Dyson, 2016) 

 2) Players will be generally more likely to shift after a loss or a draw than after a 

win (similar to Dyson et al., 2016; Forder & Dyson, 2016; Wang et al., 2014) 

 3) Consequently, players will make more optimal choices after losses compared to 

draws or wins against the exploitable opponent 

 4) Confidence will be generally higher when playing against the exploitable 

opponent 
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 5) The correlation between confidence and win-rate will be higher in the 

exploitable condition compared to the unexploitable condition 

 6) Reaction times after wins against the unexploitable opponent will be slower 

than reaction times after draws or losses (similar to Dyson et al., 2016; Forder & Dyson, 

2016) 

2.2.2 Method. 

2.2.2.1 Participants. Forty subjects (N = 40; 31 female; Mage = 21.13, SDage = 4.37) 

from the University of Sussex participant pool were recruited. Participants received course 

credit or £10 (their choice, unless course enrolment dictated they take the course credit) for 

their participation. Informed consent was obtained from all participants before testing, and 

the experiment was approved by the Sciences & Technology Research Ethics Committee 

(C-REC) at the University of Sussex (ER/JS753/1). 

2.2.2.2 Materials. 

2.2.2.2.1 Game trials. Static pictures of a white-gloved and a blue-gloved hand 

signaling Rock, Paper and Scissors poses were displayed center screen by the experiment 

program at approximately 6° x 6° each, with participants sat approximately 57 cm away 

from a 22" Diamond Plus CRT monitor (Mitsubishi, Tokyo, Japan). Stimulus presentation 

was controlled by Presentation 19 (build 03.31.15) and responses were recorded using a 

keyboard. 

2.2.2.2.2 Questionnaires. I administered four short questionnaires following the 

completion of each RPS block to assess participants' engagement with the game, the degree 

of anthropomorphism assigned to the computer opponent, and co-presence felt between the 

player and opponent. First, I measured game engagement per block using a modified Game 

Engagement Questionnaire (Brockmyer et al., 2009). I changed the items from present to 
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past tense (e.g. 'I lose track of time' became 'I lost track of time') and measured agreement 

on a 5-point Likert scale from 1 (“Strongly disagree”) to 5 (“Strongly agree”). I used 

sixteen of the original nineteen items: the items excluded from the modified version were 'I 

played longer than I meant to', ‘I felt like I just couldn’t stop playing’ and ‘I got really into 

the game’. As the number of game rounds was fixed, items relating to stopping playing did 

not fit; the last item was removed due to overlap with the other questionnaires. Second, I 

measured self-reported co-presence using items by Forder & Dyson (2016) and two 

modified items from scales by Nowak and Biocca (2003), using the same 5-point Likert 

scale as the GEQ. Third, I measured the degree of anthropomorphism attributed to the 

opponent on the basis of Epley et al. (2008), where five anthropomorphic states ('mind of 

its own', 'intentions', 'free will', 'consciousness', 'experienced emotion') and three non-

anthropomorphic states ('attractive', 'efficient', 'strong') were measured on an 11-point 

Likert scale, from 0 (“Not at all”) to 10 (“Very much”). See Appendix 1 for the items of the 

modified questionnaires. Fourth, I asked participants to write on a piece of paper, in their 

own words, what they thought the opponent’s strategy, if any, had been in the block. 

Finally, to explore possible personality effects, I administered the 60-item HEXACO self-

report questionnaire (Ashton & Lee, 2009) at the end of the experiment. With the exception 

of the writing prompt, the questionnaires were included in the experimental program. 

 2.2.2.3. Design and procedure. The experiment had a within-subjects 2x2 design 

with value (high, low) and opponent (unexploitable, exploitable) as factors. Each 

participant completed a block of 90 game trials for each four conditions (360 trials in total) 

in a semi-counterbalanced order across participants. The only constraint imposed on the 

counterbalancing orders were that no two consecutive blocks were allowed to be in the 
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same opponent condition; this was to avoid ceiling effects due to learning in the 

exploitable condition. 

 In the high value condition, the participants gained 3 points for a win and lost 3 

points for a loss; in the low value condition, they gained 1 point for a win and lost 1 point 

for a loss. In both conditions, a draw yielded 0. For the opponent, in the unexploitable 

condition, the computer opponent made each choice drawing randomly without 

replacement from an equal distribution (30 instances of R, P and S each). Note that this 

was slightly different from a true mixed strategy were the draws would be with 

replacement. I made this change in order to avoid any possibility of accidental item biases 

over the whole block caused by true randomness. In the exploitable condition, the 

computer opponent followed a self-downgrade rule for 70% of the trials (63 self-

downgrade trials), making choices drawn at random, without replacement, from an equal 

distribution for the rest (9 instances of R, P and S each). 

 At the beginning of each block, the experimental program informed participants 

how much their wins and losses would affect the score, based on the value condition of the 

block. Regardless of the opponent condition of the block, participants were also informed 

that their opponent would play in a certain way that would be revealed to them at the end 

of the experiment. Participants were instructed to try and win as many rounds as possible. 

 For each trial, the participant was first presented with three pictures of a hand in a 

white glove representing the three possible choices (Rock, Paper, Scissors), presented in 

the same order as the response buttons used. Upon pressing a response button, the program 

presented the participant with a picture representing the choices made by the participant 

and the computer opponent. This picture consisted of the white-gloved hand presenting the 

response the participant had chosen, and a blue-gloved hand presenting the opponent's 
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choice. This picture was presented for 500ms. Then, after a 500ms interval a text screen, 

presented for 1000ms, informed the participant if they had won, lost or drawn the trial. 

Finally, the scoreboard and trial counter, presented throughout the trials, were updated after 

another 500ms interval. 

 For every 9th trial of a block, after the participant had made their choice and before 

presenting the results, the program asked the participant to state their confidence of a win 

or a loss on a 5-point scale. The scale was from 1 for "extremely confident of win" through 

3 for "unsure either way" to 5 for "extremely confident of loss". These items were reverse 

coded in the final analyses. 

 At the end of each block, the participants responded to the modified Game 

Engagement Questionnaire, the modified co-presence questionnaire, the 

anthropomorphism questionnaire, and the open-ended question of what they thought the 

opponent’s strategy had been, if any. After the questionnaires, the participants were 

instructed to take a break before continuing with the experiment. After the final block, the 

participants filled out the 60-item HEXACO self-report personality inventory, after which I 

debriefed them and thanked them for their time. 

2.2.3 Results. 

2.2.3.1 Behavioural measures. 

 2.2.3.1.1 Item selection and outcome at trial n. I analysed proportions of item 

selection at trial n for each block using a three-way repeated measures ANOVA with 

opponent (unexploitable, exploitable), value (high, low) and item choice (rock, paper, 

scissors) entered as factors (see Table 2.1). In this and all subsequent analyses, I used 

Greenhouse-Geisser corrections to degrees of freedom whenever Mauchly's test indicated 

violations of sphericity. Due to using proportion data, main effects of the opponent and 
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value conditions were meaningless (the proportions sum to 1, leading to no variance; see 

Dyson et al., 2016; Forder & Dyson, 2016). I made the choice to use an ANOVA, despite 

its assumptions being violated due to using proportion data, partially to maintain similarity 

with prior studies in the area using the method and partially due to practical reasons (no 

statistical package offering a clear optimal solution to analysing multinomial proportion 

data available at the time). I will cover this issue in more depth in the general discussion 

for Chapter 2 (see Section 2.4). 

 

Table 2.1. Proportions of outcomes and item choices in Experiment 1 

 Unexploitable opponent  Exploitable opponent 

 Rock Paper Scissors Rock Paper Scissors 

High value 36.2% 

(1.1%) 

31.5% 

(1.0%) 

32.3% 

(1.2%) 

34.6% 

(0.9%) 

32.2% 

(0.9%) 

33.3% 

(1.0%) 

Low value 34.5% 

(1.3%) 

32.0% 

(1.3%) 

33.4% 

(2.1%) 

34.2% 

(1.1%) 

33.3% 

(1.0%) 

32.6% 

(1.2%) 

 Win Lose Draw Win Lose Draw 

High value 33.4% 

(0.7%%) 

34.6% 

(1.0%) 

32.0% 

(0.8%) 

48.9% 

(2.5%) 

23.7% 

(1.4%) 

27.4% 

(1.6%) 

Low value 33.5% 

(0.9%) 

33.7% 

(0.8%) 

32.8% 

(0.8%) 

49.9% 

(2.5%) 

23.5% 

(1.6%) 

26.6% 

(1.2%) 

Note: standard error in parentheses. 

 

 Participants did not differ in their item choice [F(1.61, 62.91) = 1.27, MSE = .03, p 

= .282, ƞp
2 = .03], nor did this differ according to value [F(2, 78) = 0.62, MSE = .01, p = 

.538, ƞp
2 = .02], or opponent [F(2, 78) = 1.04, MSE < .01, p = .358, ƞp

2 = .03]. There was 

no three-way interaction [F(1.58, 61.69) = 0.64, MSE = .01, p = .494, ƞp
2 = .02]. 
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I conducted the same analysis for outcome at trial n (win, lose, draw; see Table 

2.1). Here, there was a significant main effect for outcome at trial n [F(1.30, 50.55) = 

46.86, MSE = .03, p < .001, ƞp
2 = .55], and a significant interaction with opponent [F(1.17, 

45.71) = 36.09, MSE = .04, p < .001, ƞp
2 = .48], but not with value [F(2, 78) = 0.24, MSE 

= .01, p = .785, ƞp
2 = .01]. Neither was there a significant three-way interaction [F(1.71, 

66.49) = 0.30, MSE = .01, p = .705, ƞp
2 = .01]. Thus, the only factor driving the uneven 

distribution of wins, losses and draws was opponent condition. When playing against an 

unexploitable opponent, wins, losses and draws were distributed roughly uniformly 

(33.4%, 34.1% and 32.4% of trials, respectively), but participants won significantly more 

often when playing against an exploitable opponent (49.4%, 23.6% and 27.0%: Tukey's 

HSD; p < .05). The results suggest that on average, participants were able to apply the 

correct strategy against the exploitable opponent, but the degree of winning was not 

modulated by value. 

 2.2.3.1.2 First-order repetition effects. I analysed proportion data using the last 89 

trials in each block (the first trial having no history) using a four-way repeated- measures 

ANOVA, with opponent (unexploitable, exploitable), value (low, high), outcome at trial n 

(win, lose, draw) and player strategy at trial n+1 (stay, upgrade, downgrade) as factors. 

See Table 2.2 for distribution of player strategies across the four conditions. Due to using 

proportion data, main effects of the opponent and value conditions were meaningless (the 

proportions sum to 1, leading to no variance; see Dyson et al., 2016; Forder & Dyson, 

2016). See section 2.4 for further discussion on the methodological choice to use ANOVAs 

for proportion data. 
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Table 2.2. Proportions of choice types in Experiment 1 

 Low value  High value 

 Unexploitable Unexploitable 

 Win Lose Draw Win Lose Draw 

Stay 29.2% 

(2.9%) 

32.6% 

(2.8%) 

34.7% 

(2.9%) 

28.2% 

(3.0%) 

31.1% 

(2.2%) 

35.9% 

(2.6%) 

Upgrade 33.5% 

(2.3%) 

30.8% 

(2.0%) 

29.3% 

(1.9%) 

32.6% 

(2.1%) 

32.1% 

(1.8%) 

30.7% 

(1.9%) 

Downgrade 37.3% 

(2.6%) 

36.6% 

(2.4%) 

35.9% 

(2.2%) 

39.2% 

(2.6%) 

36.8% 

(2.0%) 

33.4% 

(2.3%) 

 Exploitable Exploitable 

 Win Lose Draw Win Lose Draw 

Stay 18.1% 

(3.0%) 

32.9% 

(2.9%) 

53.5% 

(3.6%) 

15.6% 

(2.4%) 

30.6% 

(2.6%) 

50.3% 

(3.9%) 

Upgrade 20.0% 

(2.7%) 

39.6% 

(3.0%) 

19.1% 

(2.0%) 

 20.7% 

(2.7%) 

39.4% 

(2.9%) 

22.1% 

(2.2%) 

Downgrade 61.8% 

(4.6%) 

27.5% 

(2.4%) 

27.3% 

(2.2%) 

 63.6% 

(4.2%) 

30.0% 

(2.1%) 

27.6% 

(2.4%) 

Note: standard error in parentheses. 

 

 The main effect of strategy at trial n+1 was significant [F(1.52, 59.24) = 7.73, MSE 

= .17, p = .003, ƞp
2 = .17], indicating that strategy at n+1 was not random. There was a 

significant interaction effect between opponent and player strategy at trial n+1 [F(2, 78) = 

6.77, MSE = .03, p = .002, ƞp
2 = .15], as well as outcome at trial n and strategy at trial n+1 

[F(1.93, 75.09) = 33.98, MSE = .13, p < .001, ƞp
2 = .47]. Further, there was a significant 

three-way interaction between opponent, outcome at trial n and strategy at trial n+1 

[F(2.13, 83.23) = 31.12, MSE = .08, p < .001, ƞp
2 = .44]. See Figure 2.2 for distribution of 

player strategies across the four conditions. The interactions between value and player 
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strategy at trial n+1 [F(2, 78) = 0.53, MSE = .04, p = .589, ƞp
2 = .01], value, opponent and 

player strategy at trial n+1 [F(1.74, 68.03) = 0.45, MSE = .03, p = .611, ƞp
2 = .01] and 

between all four factors [F(2.95, 114.87) = 0.20, MSE = .03, p = .89, ƞp
2 = .01] were all 

non-significant, suggesting no effect of the value manipulation on behaviour, contrary to 

my hypotheses. 

In the unexploitable opponent condition, there were no significant differences 

between the proportions of reactions to different outcomes (Tukey’s HSD, p > .05 for all 

comparisons), contrary to my hypotheses and previous studies (Dyson et al., 2016; Forder 

& Dyson, 2016). For the exploitable opponent condition, the optimal win-downgrade 

responses were significantly more likely than other responses to wins, and the optimal 

draw-stay responses were significantly more likely than other responses to draws (Tukey’s 

HSD, p < .05 for each comparison). However, the proportion of the optimal lose-upgrade 

responses did not differ significantly from the stay or downgrade responses to losses 

(Tukey's HSD, p > .05 for both comparisons). The proportion of optimal responses to wins 

was not significantly different from optimal responses to draws (Tukey's HSD, p > .05), 

but the proportion of optimal responses to losses was lower than the proportions of optimal 

responses to both wins and draws (Tukey's HSD, p < 05 for both comparisons). Taken 

together, the results suggest participants were on average likely to respond optimally to 

both wins and draws against the exploitable opponent, but failed to respond optimally after 

losses. 

I further explored the exploitable data by categorizing participants’ win-rates as 

successful or failed based on a one-tailed one-sample proportions test, with a proportion of 

33.3% set as the null hypothesis, run separately for each participant in each block. Of the 

40 participants, 8 failed to reach a win percentage significantly higher than chance level on 
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both blocks, and 15 other participants failed on one block out of two (8 in the low value 

and 7 in the high value block). Thus, there were 24 successful participants in the low value 

block and 25 in the high value block. For the successful participants, percentages of 

optimal responding distributed across the three outcomes was similar to that of the entire 

sample (see Figure 2.3). Therefore, the reduction in optimal behaviour after loss seems to 

not have been driven by the unsuccessful participants. Rather, the participants who were 

unsuccessful at exploitation did not show strategic learning following any outcome, and 

instead behaved similarly to an overall MES trend in both conditions. 

 

 

 

 

Figure 2.2. Distributions of participants' strategic choices collapsed across the value 

conditions in Experiment 1. Error bars represent 95% CIs. Dashed line represents chance-

level responding. 
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Figure 2.3. Distributions of unsuccessful and successful participants' strategic choices in 

the exploitable condition in Experiment 1. Error bars represent SEs. Dashed line represents 

chance-level responding. 

 

 2.2.3.1.3 Reaction time analysis. I entered reaction time data for decision at trial 

n+1 into a three-way repeated measures ANOVA with opponent (unexploitable, 

exploitable), value (high, low) and outcome on trial n (win, loss, draw) entered as factors. 

Ten participants were excluded from this analysis due to having at least one average 

median reaction time (averaged across wins, losses and draws) that was at least twice the 

block average median (after Forder & Dyson, 2016). 

There was a significant main effect of outcome [F(2, 58) = 10.58, MSE = 108292, p < 

.001, ƞp
2 = .27] and of opponent [F(1, 29) = 5.09, MSE = 178580, p = .032, ƞp

2 = .15], but 

no significant main effect of value [F(1, 29) = 1.38, MSE = 202493, p = .250, ƞp
2 = .05]. 
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The interaction between value and opponent [F(1, 29) = 3.14, MSE = 426768, p = .087, ƞp
2 

= .10], the interaction between value and outcome [F(2, 58) = 1.88, MSE = 67234, p = 

.163, ƞp
2 = .06] and the three-way interaction of opponent, value and outcome [F(2, 58) = 

0.13, MSE = 118297, p = .875, ƞp
2 = .01] were non-significant. There was, however, a 

significant interaction effect between outcome and opponent [F(2, 58) = 3.88, MSE = 

73120, p = .03, ƞp
2 = .118, see Figure 2.4]. Post-hoc tests revealed the reaction times for 

game choices made after losses were significantly slower in the exploitable opponent 

condition compared to the unexploitable opponent condition (1257ms and 868ms, 

respectively; Tukey's HSD, p < .05), with no other differences in reaction times between 

the opponent conditions. For both opponent types, reaction times for wins were slower 

than reaction times for draws, replicating the results of Forder & Dyson (2016), suggesting 

more cognitive control for decisions made after wins against the unexploitable opponent. 

The marginal interaction effect between value and opponent type seems to have stemmed 

from an increase in reaction times (especially after wins) against the unexploitable 

opponent when value was high compared to when it was low (see Figure 2.4). There was 

also an increase in the variability of reaction times in the high value condition, suggesting 

that the value manipulation may have affected different participants to differing degree. 

 To further explore the relationship between reaction times and performance, I 

plotted individual win-rates (averaged across the two exploitable blocks) against the 

reaction time difference between decisions made after losses and wins in the exploitable 

condition. A significant positive correlation (r = .52, p < .005; see Figure 2.5) indicates that 

reaction times after losses in relation to wins increased as an individual participant’s win-

rate increased. 



 
56 
 

 
 

 

 

Figure 2.4. Means of average median reaction times in Experiment 1. Error bars represent 

95% CIs. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Correlation between win-rate and difference between average win and lose 

reaction times in the exploitable conditions in Experiment 1. A positive RT difference 

indicates slower post-error than post-success RTs. 
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 2.2.3.1.4 Mean confidence measure. I analysed mean confidence rates using a two-

way repeated measures ANOVA with opponent (unexploitable, exploitable) and value 

(high, low) entered as factors. There was a significant main effect of opponent [F(1, 39) = 

14.93, MSE = .58, p < .001, ƞp
2 = .28], no significant main effect of value [F(1, 39) = 0.13, 

MSE = .16, p = .726, ƞp
2 < .01], and no significant interaction [F(1, 39) = 0.46, MSE = .18, 

p = .501, ƞp
2 = .01]. Mean confidence rates were higher when playing against the 

exploitable opponent than when playing against the unexploitable opponent (see Table 

2.3). 

I examined the relationship between confidence ratings and individual win rates by 

first calculating z-transformed correlation coefficients based on the 10 data points for each 

player in each block. Each data point consisted of the reported confidence every 9 trials 

and the average win rate for the preceding 8 trials. Six participants had to be excluded due 

to having no variance in their reported confidence on one or more blocks. For the 

remaining thirty-four participants, I calculated an average correlation measure for each 

condition by averaging Fisher transformed individual correlation scores, with the averages 

inverse Fisher-transformed to produce a condition-level correlation (see Table 2.3). I 

entered the Fisher-transformed individual correlation coefficients into a two-way repeated 

measures ANOVA with opponent (unexploitable, exploitable) and value (low, high) entered 

as factors.  There was a significant main effect of opponent [F(1,33) = 4.51, MSE = .27, p 

= .041, ƞp
2 = .12], no significant main effect of value [F(1,33) = 1.91, MSE = .10, p = .174, 

ƞp
2 = .06], and no significant interaction [F(1,33) < 0.001, MSE = .192, p = .993, ƞp

2 < .01]. 

Participants had higher z-scores in the exploitable (M = .38, SE = .08) compared to the 

unexploitable (M = .20, SE = .05) conditions. The results suggest that confidence ratings, 

on average, more accurately tracked win-rates when playing against an exploitable 
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opponent, but note that the final condition-level correlations were all relatively low (all 

below .4). 

 

Table 2.3. Mean confidence measure (Likert, 1-5), n = 40, and correlation between 

confidence and win-rate in Experiment 1, n = 34 

Mean confidence (range: 1 – 5) 

 Unexploitable opponent  Exploitable opponent 

High value 3.1 (.1) 2.6 (.1) 

Low value 3.1 (.1) 2.7 (.1) 

Mean confidence measure / win-rate correlations (Fisher transformed z values) 

 Unexploitable opponent  Exploitable opponent 

High value .23 (.06) 

[ 0.22] 

.40 (.10) 

[0.38] 

Low value .16 (.07) 

[0.16] 

.33 (.09) 

[ 0.32] 

Note: standard error in parentheses. Inverse Fisher transformed z values in brackets. 

 

2.2.3.2 Questionnaire data. I entered the end-of-block questionnaire data into 

separate two-way ANOVAs, with the opponent (unexploitable, exploitable) and value 

(low, high) conditions entered as factors for each separate questionnaire analysis. See 

Table 2.4 for descriptive statistics. 

 2.2.3.2.1 Game engagement questionnaire. There were no significant main effects 

for opponent [F(1, 39) = 0.02, MSE = .14, p = .897, ƞp
2 = .00] or value [F(1, 39) = 1, MSE 

= .16, p = .323, ƞp
2 = .03], or a significant interaction effect [F(1, 39) = 0.73, MSE = .09, p 

= .397, ƞp
2 = .02]. Game engagement was similar across all blocks. 
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 2.2.3.2.2 Co-presence. There was a significant main effect of opponent [F(1, 39) = 

4.88, MSE = .47, p = .033, ƞp
2 = .11] but no significant main effect of value [F(1, 39) = 

0.57, MSE = .23, p = .457, ƞp
2 = .01],or a significant interaction effect [F(1, 39) = 0.10, 

MSE = .42, p = .756, ƞp
2 < .01]. Felt co-presence was higher in the unexploitable condition 

(M = 2.8, SE = .1) than in the exploitable condition (M = 2.6, SE = .1). 

 2.2.3.2.3 Anthropomorphism. There was a significant main effect of opponent 

strategy [F(1, 39) = 7.69, MSE = 2.49, p = .008, ƞp
2 = .17] and no significant main effect of 

value [F(1, 39) = 0.41 MSE = 1.36, p = .528, ƞp
2 = .01] or a significant interaction [F(1, 39) 

= 0.05, MSE = 2.06, p = .818, ƞp
2 < .01]. The perceived anthropomorphism of the opponent 

was higher in the unexploitable condition (M = 3.8, SE = .3) than in the exploitable 

condition (M = 3.1, SE = .3). 

 2.2.3.2.4 Free-form question. Data for majority of participants was lost due to filing 

error, with responses from only 16 participants remaining. Themes of responses were used 

as a basis for a short questionnaire to be used in Experiment 2 (see Appendix 2). 
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Table 2.4. Mean game engagement (range = 1 – 5), felt co-presence (range = 1 – 

5) and perceived anthropomorphism (range = 1 – 11) in Experiment 1 

 Game engagement 

 Unexploitable opponent Exploitable opponent 

High value 2.5 (0.1) 2.5 (0.1) 

Low value 2.4 (0.1) 2.5 (0.1) 

 Co-presence 

 Unexploitable opponent Exploitable opponent 

High value 2.8 (.1) 2.6 (0.1) 

Low value 2.8 (.2) 2.5 (0.1) 

 Anthropomorphism 

 Unexploitable opponent Exploitable opponent 

High value 3.7 (0.3) 3.0 (0.3) 

Low value 3.8 (0.4) 3.1 (0.3) 

Note: standard deviation in parentheses. 

 

2.2.3.2.5 HEXACO. I entered the six HEXACO factor scores for Honesty/Humility, 

Emotionality, Extraversion, Agreeableness, Conscientiousness and Openness as covariates 

into a two-way repeated measures ANCOVA, with individual win-rates as the dependent 

variable and the opponent (exploitable, unexploitable) and value (high, low) conditions as 

factors. My  aim in this analysis was to explore whether personality measures affected 

success in the learning task. I made the methodological choice of using an ANCOVA this 

way due to the suggestions made by Schneider et al. (2015) on the use of ANCOVAs in 

within-subjects designs. Specifically, Schneider et al. (2015) recommend that in within-

subjects designs, ANCOVAs should only be used to analyse the effects of the covariate 

itself and the covariate’s interactions with the within-subjects factors. Conversely, 

ANCOVAs should not be used to analyse the main effects of the within-subjects factors 

because the within-subjects main effect estimates can be distorted by covariate variance. 
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Thus, in this case an ANCOVA is not used to measure the “pure” effect of the independent 

within-subjects variables, controlling for the covariate, but to specifically measure the 

effect of the covariate on the dependent variable. The ANCOVA yielded no significant 

main or interaction effects for any of the personality measures (p > .05 for each effect).  

2.2.4. Discussion. In Experiment 1, my hypothesis that participants would be 

generally more likely to shift after a loss or a draw against unexploitable opponents was 

not supported by the behavioural data. The participants exhibited no stayshift bias in the 

form that it has been observed before against an unexploitable opponent in RPS (Dyson et 

al., 2016; Forder & Dyson, 2016), in studies using binary choice tasks (e.g. Achtziger et 

al., 2015; Scheibehenne et al., 2011; Wilke et al., 2014), or in animal studies (Lee et al., 

2005). According to Rapoport and Budescu (1992), players may more easily produce 

mixed-strategy behaviour in a competitive game situation in contrast to passive production 

tasks (see Neuringer, 1986; Terhune & Brugger, 2011). However, the participants in 

Rapoport and Budescu’s (1992) experiments only expressed such randomness when they 

were playing against each other. As two human players playing RPS would likely try to 

exploit one another, a cycle of attempts at exploitation could lead to randomness in the 

long run. This is in contrast to Experiment 1, where the unexploitable opponent never 

attempted to exploit the participant even if they expressed biases (see also Lee et al., 2005, 

for an instance of monkeys starting to approximate MES after a computer opponent started 

exploiting their predictability). Thus, the dynamics between the two players in Experiment 

1 and prior studies that showed a stayshift bias were likely very different than in studies 

pitting humans against each other (see West & Lebiere, 2001, for an exploration of a 

plausible model of how humans play). Nevertheless, unlike prior studies, the players in this 

study seem to have avoided following the stayshift rule to a significant degree.    
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The results from the exploitable condition were also contrary to my hypotheses. I 

expected that participants would be drawn to follow the stayshift rule and thus make less 

optimal choices against the opponent when the optimal strategy conflicted with this rule. 

Here, a majority of participants succeeded in learning to take advantage of the exploitable 

opponent as shown by a greater-than-chance average win-rate and non-random choices as 

function of the outcome of the previous round. However, the rate of optimal choices 

differed between outcomes, but not in the way that would support the notion of 

reinforcement biases. Players made more optimal choices after wins (62.7%) and draws 

(51.9%) relative to losses (39.5%). This was the case even though the optimal strategies 

after wins and draws were contrary to reinforcement (win-downgrade and draw-stay) 

whereas the optimal strategy after losses was not (lose-upgrade). It is worth noting here 

that participants in the exploitable condition had no significant differences in their rates of 

losses and draws  (low value: 23.47% and 26.58%; high value, 23.69% and 27.44%, 

respectively; Tukey's HSD; p < .05 for both). Thus, it is unlikely that the difference in 

performance between losses and draws was due to the players having had less chances to 

learn the optimal choice to be made after a loss. 

Further, all optimal moves in the experiment were counter to myopic best reply, 

which would dictate staying after wins, upgrading after draws and downgrading after 

losses. Thus, there is no confound with this strategy (see Alós-Ferrer & Ritschel, 2018). 

There is, however, a potential confound with decision inertia (Alós-Ferrer et al., 2016; 

Alós-Ferrer & Ritschel, 2018): the optimal stay response after draws may be easier for 

participants to adopt due to alignment with inertia, that is, the automatic tendency to repeat 

choices regardless of outcomes. Thus, the more optimal behaviour after draws compared to 

losses may stem from the optimal draw-stay rule aligning with inertia.  I decided to control 
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for this confound in Experiment 2 by introducing a different set of optimal responses. 

However, even if this confound would explain the differences in performance between 

losses and draws, the fact remains that participants made the most optimal responses after 

wins, where the optimal strategy (downgrade) was in conflict with reinforcement (stay), 

myopic best reply (stay) and inertia (stay), suggesting more strongly that specific outcomes 

mattered in terms of performance. 

Additionally, losses against the exploitable opponent also led to slower reaction 

times than losses against the unexploitable opponent. The difference between lose and win 

reaction times against the exploitable opponent was positively correlated with individual 

success rates, meaning higher win-rates led to more deliberation after losses compared to 

wins. On one hand, these results indicate post-error slowing (Rabbitt & Rodgers, 1977) 

which should reduce the likelihood of errors (Dutilh et al., 2012). On the other hand, 

decisions following losses gave rise to worse rather than better performance - there was no 

cognitive benefit of the longer decision time. However, this may only seemingly be a 

contradiction. Dutilh et al. (2012, p. 463) describe post-error slowing as follows: "people 

adaptively change their response thresholds to a possibly non-stationary environment—by 

becoming more daring after each correct response and more cautious after each error, 

people reach an optimal state of homeostasis that is characterized by fast responses and 

few errors". If people become more cautious after errors (in the case of Experiment 1, 

losses against the exploitable opponent), this cautiousness is not guaranteed to lead to 

optimal performance. Participants may have taken losses, especially when they should 

have won (i.e. they recognized the specific way in which the opponent was exploitable, but 

the opponent then made a random move) as signs of something in the opponent's behaviour 
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having changed, which may have led to more exploratory (random) behaviour (Wilson et 

al., 2014).   

 The value manipulation in Experiment 1 yielded no effects on decision-making. As 

changes in game choices have previously been observed with simple point manipulations 

with no monetary reward (Forder & Dyson, 2016), this lack of effect was not necessarily 

due to the lack of monetary reward. The lack of behavioural change may simply reflect the 

fact that the rewards and penalties were symmetrical. Forder & Dyson (2016) observed an 

effect of a score-based value manipulation were the penalties and rewards were different in 

absolute numerical value (e.g., +2 vs. -1). In Experiment 1, the rewards and penalties were 

of different magnitudes in the two conditions, but these magnitudes were always equal 

within the condition (e.g., +3 vs. -3). To more strongly incentivize the participants, in 

Experiment 2 I replaced the high value condition with a monetary incentive condition. The 

value and opponent conditions in Experiment 1 had a marginal interaction effect, with a 

trend towards longer reaction times in the unexploitable, high value condition. This trend 

was most pronounced for win reaction times, perhaps reflecting participants thinking 

longer when value is high and especially when they have won in a seemingly random 

game. It also seems that there was more variability in reaction times in the high value 

condition: this may be another sign that the value manipulation in its present form was too 

weak to affect all players and may have had an effect on behaviour in only some 

participants.  

 Participants in Experiment 1 were on average more confident of winning against 

the exploitable opponent, consistent with appropriately different meta-cognitive 

understanding about the two types of opponent. However, confidence measures did not 

only reflect higher win-rates in the exploitable condition: additionally, the correlation 
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between win-rate and confidence was higher in the exploitable condition. This suggests 

that the participants’ confidence ratings tracked win-rates more accurately against the 

exploitable opponent, further suggesting that perceived exploitability may independently 

affect the appraisals of the likelihood of winning participants make as the game goes on. 

 Finally, the participants rated the unexploitable opponent as more anthropomorphic 

and more present than the exploitable opponent. It seems then that quasi-randomness is 

considered more human-like. In their written descriptions and in debriefing, several 

participants expressed that the unexploitable opponent felt hard to play against, or that it 

seemed to change strategy whenever the player was on a winning streak. It seems 

reasonable that the exploitable opponent would seem less human-like, as it would not 

correct as a result of a participant successfully exploiting it. It may be that the 

unexploitable strategy may seem “responsive” simply due to the fact that it avoids 

situations where it seems the opponent is “allowing” the player to win for an extended 

period of time. This, however, does not seem to reflect as biased behaviour against the 

opponent. 

2.3 Experiment 2 

2.3.1 Introduction. In Experiment 1, I found no evidence of inflexible following of 

reinforcement principles in choices in RPS, regardless of whether the players were playing 

against an unexploitable opponent or an opponent who could be exploited. On average, 

losing led to the most suboptimal game choices when playing against the exploitable 

opponent even though losses were the only case in Experiment 1 where a reinforcement-

aligned decision was the optimal one (i.e., lose-shift versus win-shift or draw-stay). The 

rate of optimal choices after losses against the exploitable opponent was significantly 

lower than the rate of optimal choices after wins or draws, and further did not differ 
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significantly from the rate of either suboptimal game choice after losses. This effect did not 

seem to be due to the rarity of losses relative to draws. It is notable that the rate of optimal 

decisions made after wins was not significantly different from the rate of optimal decisions 

after draws, even though for a participant successfully exploiting the exploitable opponent, 

wins would be more common than both draws and losses, which had roughly equal 

probability. Participants should thus have had equal opportunities to learn the optimal 

choice to make after both draws and losses. The difference between the rate of optimal play 

between draws and losses would imply that losses specifically affect decision-making in a 

way draws don't (e.g., Dixon, MacLaren, Jarick, Fugelsang & Harrigan, 2013; Ulrich & 

Hewig, 2017). Additionally, the reaction times for decisions made after losses were longer 

in the exploitable condition compared to the unexploitable condition. Taken together, the 

results suggest that losses against an exploitable opponent led to more deliberation but also 

less optimal play, possibly reflecting exploratory behaviour. I predicted this trend in 

reaction times would continue in Experiment 2. 

 However, there was a potential confound in the way the optimal strategy against the 

exploitable opponent was set up in Experiment 1 that may account for the observed 

differences in optimal responding between losses and draws: if and when there was a draw, 

the optimal choice was to stay, and if and when there was a loss, the optimal response was 

to upgrade. While both of these responses were in conflict with reinforcement and myopic 

best reply, the stay response after draws was aligned with inertia (Alós-Ferrer & Ritschel, 

2018). The participants may have fared better after draws not because draws have a 

different effect on behaviour from losses, but simply because alignment with inertia makes 

the decision easier. To control for this, In Experiment 2, I changed the exploitable 

opponent's strategy from a self-downgrade rule to a self-upgrade rule while keeping the 
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number of trials and the likelihood of following the rule consistent with Experiment 1. The 

self-upgrade rule leads to a different set of optimal choices for the player: the optimal 

move after wins is upgrading, the optimal move after draws is downgrading, and most 

importantly the optimal move after losses is staying. To formulate: 

(13) IF S(n) = r AND (n) = W THEN S(n+1) = p  (upgrade) 

(14) IF S(n) = r AND (n) = L THEN S(n+1) = r (stay) 

(15) IF S(n) = r AND (n) = D THEN S(n+1) = s (downgrade) 

(16) IF S(n) = p AND (n) = W THEN S(n+1) = s  (upgrade) 

(17) IF S(n) = p AND (n) = L THEN S(n+1) = p (stay) 

(18) IF S(n) = p AND (n) = D THEN S(n+1) = r (downgrade) 

(19) IF S(n) = s AND (n) = W THEN S(n+1) = r  (upgrade) 

(20) IF S(n) = s AND (n) = L THEN S(n+1) = s (stay) 

(21) IF S(n) = s AND (n) = D THEN S(n+1) = p (downgrade) 

where S = self, n = number of trial, W = win, L = lose, D = draw, r = rock, p = paper and s 

= scissors. 

 The optimal choices are again all in conflict with myopic best reply. Additionally, 

the optimal choices following wins and losses are in conflict with reinforcement, but the 

optimal choice after losses is aligned with inertia. If the suboptimal performance after 

losses but not after draws in Experiment 1 was due to the optimal stay response to draws 

being aligned with inertia and thus easier to learn, one should expect to see better 

performance after losses and worse performance after draws in Experiment 2. If, on the 

other hand, the effect on performance was due to something fundamental about the 

experience of loss causing the players to either fail to learn the optimal strategy or to 

suspect the opponent has changed their strategy and thus play in a more exploratory 
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manner, one should expect a replication of Experiment 1. I will assess this with a cross-

experiment comparison in addition to analysing the results of Experiment 2 separately, as a 

significant difference in one data set and a non-significant difference in another data set 

might not be significantly different from each other (Gelman & Stern, 2006). 

 Additionally, to make the difference between high and low value in my 

manipulation clearer, I changed the value manipulation from points to a monetary reward 

to offer a stronger incentive in Experiment 2. In economic decision tasks, a monetary 

incentive tends to shift behaviour closer to equilibrium strategies and optimal choices 

(Smith & Walker, 1993). However, this may not be the case with the present task, as 

monetary incentives may also make reinforcement stronger and thus reinforcement errors 

more common (Achtziger et al., 2015). Given that the stayshift bias is specifically a 

tendency to follow reinforcement, I expected to see more of it in the unexploitable 

condition when incentive is offered. Additionally, given that the optimal choices for rounds 

following wins and losses in the exploitable condition will be in conflict with 

reinforcement, I expected less optimal choices in the exploitable condition when the 

incentive is offered. 

Participants were on average more confident against the exploitable opponent in 

Experiment 1. Given that the correlation between confidence ratings made throughout the 

block and the win-rate on the 9 trials preceding each confidence rating was higher in the 

exploitable condition, confidence ratings may reflect participants’ beliefs of exploitability, 

in addition to their success. In Experiment 2, I included an additional measure of 

confidence by asking the participants to rate to what extent they thought their results in 

each block were dictated by luck as opposed to skill. I expected participants would 

associate their results in the exploitable condition more to skill than luck. 
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Finally, to have a better understanding of the reasons behind the considerable 

individual differences in rates of optimal play in Experiment 1 (with only 17 out of 40 

participants successfully exploiting the exploitable opponent on both blocks; see Figure 

2.3), I added a working memory (WM) task to Experiment 2 (the Operation Span task; 

after Turner & Engle, 1989; Unsworth et al., 2005). Whether the successful participants 

understand the actions of the strategic opponent as a sequence of different items or, in an 

arguably more complex way, as a set of contingencies between the outcome of the previous 

trial and the next item (see formulae 13-21), it seems plausible that the participants' 

performance relies to some degree on their WM capacity. I hypothesized that the 

participants' rate of optimal play against the exploitable opponent would be predicted by 

their WM capacity. Additionally, I predicted that a lower WM capacity would predict a 

better approximation of randomness against the random opponent, as temporarily reduced 

WM capacity predicts better performance when participants are asked to produce random 

sequences (Terhune & Brugger, 2011). As Terhune & Brugger (2011) also found evidence 

that participants with high levels of executive control also predicted better production of 

random sequences, I also added a flanker task (Eriksen & Eriksen, 1974) to measure 

executive control. I hypothesized that higher rates of executive control would correlate 

with fewer deviations from randomness in the unexploitable condition. 

To summarize, in Experiment 2, I again examined patterns of play against both 

unexploitable (mixed strategy) and exploitable (self-upgrade) opponents. Players played 

against both types of opponents under two different payoff conditions (monetary incentive 

vs. no incentive). I examined player confidence on ten different occasions for each game 

block, and recorded reaction times for all decisions. Additionally, I asked participants to 

rate after each block how much, on a scale from 0% to 100%, they thought their results 



 
70 
 

 
 

were a result of skill or luck. After the game rounds, participants’ WM capacity and level 

of executive control were tested. The main aim of Experiment 2 was to control for a 

confound brought on by the optimal strategy against the exploitable opponent in 

Experiment 1 

2.3.1.1 Hypotheses. My hypotheses were:   

1) If the trend of suboptimal play after losses but not wins would continue in 

Experiment 2, this would support the notion that losses but not draws lead to suboptimal 

behaviour in the task. If the trend were to reverse, it would support the notion that 

alignment with inertia may make an optimal response easier to learn even if it is in 

misalignment with reinforcement. 

2) More stayshift behaviour in the high value, unexploitable condition 

3) Less optimal choices in the high value, exploitable conditions 

3) In the exploitable condition, win-rate will correlate positively with the difference 

between reaction times after wins and losses 

4) Reaction times after wins will be slower in the unexploitable condition compared 

to the exploitable condition 

5) Average confidence ratings will be higher in the exploitable than in the 

unexploitable condition 

6) Ratings of skill will be higher in the exploitable than in the unexploitable 

condition 

7) The correlation between confidence and win-rate will be higher in the 

exploitable than in the unexploitable condition 

8) WM capacity will be positively correlated with success against the exploitable 

opponent 
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9) WM capacity will be negatively correlated with approximation of randomness 

against the unexploitable opponent 

10) Level of executive control will be positively correlated with approximation of 

randomness against the unexploitable opponent 

2.3.2 Method. 

 2.3.2.1 Participants. Forty subjects (N = 40; 28 female; Mage = 22.95, SDage = 5.53) 

from the University of Sussex participant pool were recruited. Participants received a flat 

£10 reward for their participation and an average of £2 extra for performance (see Design 

and Procedure, section 2.3.2.3). Informed consent was obtained from all participants before 

testing, and the experiment was approved by the Sciences & Technology Research Ethics 

Committee (C-REC) at the University of Sussex (ER/JS753/2). 

2.3.2.2 Materials. 

 2.3.2.2.1 Game trials. The stimuli and experimental set-up were identical to 

Experiment 1. 

 2.3.2.2.2 Working memory task. I used a short, modified version of an operation 

span (OSPAN) task (after Turner & Engle, 1989; Unsworth et al., 2005) to asses 

participants' working memory. The Presentation version of the task I used was obtained 

from Neurobehavioral Systems online resources (Neurobehavioral Systems, n.d., b). In the 

task, participants had to solve equations while memorizing a string of letters, with the list 

length (number of letters to recall) increasing gradually, starting at 2. The letters used were 

similar to those used by Unsworth, Heitz & Engle (2005) in their automated OSPAN task. 

Each trial started with an equation such as "5 + (1*2) = 7" presented on screen. Participants 

had to indicate whether the equation presented was correct or incorrect using the left and 

right arrow keys, respectively. After the participant had given their response, a letter was 
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immediately presented on screen for 1000ms, after which the next equation was presented; 

this continued until the list length at the current trial was reached, at which point the 

participant had to recall the string of letters in the correct order (responding using the 

keyboard). Participants completed three trials at a list length and proceeded to the next set 

of three trials at a longer list length, only if they had recalled the string correctly on at least 

two of the three trials. Participants were instructed to not guess the answers to the equation 

tasks and to try and be sure they get the answers right. Each participant completed a short 

training phase with a minimum of two trials at a list length of two; the training trials would 

repeat until the participant had at least 50% correct recall. 

 2.3.2.2.3 Executive control task. I used an arrow flanker task (based on Eriksen & 

Eriksen, 1974) to measure executive control. The Presentation version of this task I used 

was also obtained from Neurobehavioral Systems online resources (Neurobehavioral 

Systems, n.d., a). Participants used two keys on a keyboard to respond to a central arrow, 

pressing the left control key with their left index finger for arrows pointing left and the 

right control key with their right index finger for arrows pointing right. The central arrow 

(< or >) appeared directly at the location of a central fixation cross that was presented 

before each trial and was flanked by three arrows both to the left and right. The fixation 

cross was presented for 200ms, after which the central arrow and flankers on both sides of 

the central arrow were presented for 200ms. Each flanker was either a right- or left-facing 

arrow of the same size as the central arrow, approximately 3.4cm x 3.4cm. In congruent 

trials, each flanker was facing the same direction as the central arrow; in incongruent trials, 

some of the flankers were facing the opposite direction. After the stimulus presentation, 

participants had 500ms to respond before the initiation of the next trial. Participants 
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completed a total of 96 trials, divided into two blocks of 48 trials, with an even number of 

left and right central arrows and congruent and incongruent flankers in both blocks. 

 2.3.2.2.4 Questionnaires. I administered a short questionnaire following the 

completion of each RPS block to assess participants' interpretation of the opponent's 

behaviour and their own success in the game. Participants first indicated their attribution of 

their game results in the block to luck or skill by clicking on a point on a slider ranging 

from "100% luck" to "100% skill". The middle-point of this slider was scored as 0, with 

answers indicating more luck scored with negative and answers indicating more skill with 

positive values. Participants also responded to a short questionnaire about their 

interpretation of the opponents’ behaviour. This questionnaire was based on participants’ 

descriptions of the opponents’ strategies in Experiment 1 (see Appendix 2 for 

questionnaire and descriptive statistics). 

 2.3.2.3 Design and procedure. The general experimental design was identical to 

that of Experiment 1, with a 2x2 design with value (high, low) and opponent strategy 

(unexploitable, exploitable) as factors. In the high value condition, the participants gained 

10p for each point in the summed final score of the two high value blocks. If this summed 

final score was negative due to a high number of losses, the participants received no extra 

cash, and only received the £10 that was the baseline participation reward for all 

participants. The low value condition and the unexploitable opponent condition were both 

identical to Experiment 1. The exploitable opponents followed a self-upgrade rule for 70% 

(63) of the trials, making random choices from a flat distribution without replacement for 

the remaining 30% (27) trials, as in Experiment 1. 

At the beginning of each block, the experimental program informed participants 

whether they would be playing for money or points. Regardless of the strategy condition of 
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the block, participants were also informed that their opponent would play in a certain way 

that would be revealed to them at the end of the experiment. Participants were instructed to 

try and win as many rounds as possible regardless of whether they would be playing for 

money or for points. The procedure of the game trials was identical to that of Experiment 

1, with a confidence measure on every 9th trial. At the end of each block, participants 

completed the short skill / luck balance questionnaire and the short questionnaire about the 

opponent’s behaviour. After all blocks, the participants completed the flanker and 

automated OSPAN tasks, after which I debriefed them and paid them their participation 

reward plus any money they earned through success in the game. 

2.3.3 Results. 

2.3.3.1 Behavioural measures. 

 2.3.3.1.1 Item selection and outcome at trial n. I analysed proportions of item 

selection at trial n in each block as in Experiment 1 (see Table 2.5; see section 2.4 for 

further discussion on the methodological choice to use ANOVAs for proportion data.). 

There was a significant main effect of item [F(2, 78) = 5.94, MSE = .01, p = .004, ƞp
2 = 

.13], no two-way interaction between item choice and strategy [F(2, 78) = 0.22, MSE < 

.01, p = .804, ƞp
2 = .01] or item choice and value [F(2, 78) = 2.64, MSE = .01, p = .078, ƞp

2 

= .06], and no three-way interaction [F(2, 78) = 0.23, MSE < .01, p = .792, ƞp
2 = .01]. 

Participants were more likely to choose rock than paper or scissors (35.72%, 32.53% and 

31.76%, respectively; Tukey's HSD, p < .05 for both comparisons), in line with previous 

results (e.g. Xu, Zhou & Wang, 2013; Wang, Xu & Zhou, 2014; Dyson et al., 2016) and 

also the non-significant trend in Experiment 1. 

I conducted the same analysis for outcome at trial n (see Table 2.5). Here, there was 

a significant main effect of outcome [F(1.18, 46.13) = 28.27, MSE = .04, p < .001, ƞp
2 = 
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.42], a significant interaction between opponent and outcome [F(1.28, 49.85) = 25.58, 

MSE = .03, p < .001, ƞp
2 = .40], no significant interaction between value and outcome [F(2, 

78) = 0.58, MSE = .01, p = .564, ƞp
2 = .02] and no significant three-way interaction 

[F(1.55, 60.52) = 0.73, MSE = .01, p = .454, ƞp
2 = .02]. As in Experiment 1, the only factor 

behind the differences between the distributions of wins, losses and draws was whether the 

opponent was exploitable or not. As in Experiment 1, the distribution of wins, losses and 

draws was roughly uniform against the unexploitable opponent (33.8%, 34.2% and 32.1%, 

respectively) and there was a significant majority of wins against the exploitable opponent 

(47.4%, 26.2% and 26.4%, respectively), indicating that the participants on average 

succeeded in exploiting the opponent. Overall, the item selection and outcome results 

replicate Experiment 1. 

 

Table 2.5. Proportions of outcomes and item choices in Experiment 2 (estimated marginal 

means). 

 Unexploitable opponent Exploitable opponent 

 Rock Paper Scissors Rock Paper Scissors 

High value 37.1% 

(1.1%) 

32.4% 

(1.5%) 

30.6% 

(1.0%) 

36.4% 

(0.9%) 

32.6% 

(0.9%) 

31.0% 

(0.7%) 

Low value 34.6% 

(1.1%) 

33.0% 

(1.3%) 

32.4% 

(1.5%) 

34.8% 

(0.9%) 

32.1% 

(0.9%) 

33.1% 

(0.8%) 

 Win Lose Draw Win Lose Draw 

High value 33.2% 

(0.9%) 

34.7% 

(1.0%) 

32.2% 

(0.8%) 

47.8% 

(2.8%) 

26.8% 

(1.6%) 

25.4% 

(1.5%) 

Low value 34.3% 

(0.7%) 

33.7% 

(0.8%) 

32.0% 

(0.8%) 

46.9% 

(2.6%) 

25.7% 

(1.5%) 

27.4% 

(1.7%) 

Note: standard error in parentheses. 
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2.3.3.1.2 First-order repetition effects. I analysed proportion data as in Experiment 

1 (see section 2.4 for further discussion on the methodological choice to use ANOVAs for 

proportion data). See Table 2.6 for descriptives.  

 

Table 2.6. Proportions of choice types in Experiment 2 (estimated marginal means). 

 Low value  High value 

 Unexploitable Unexploitable 

 Win Lose Draw Win Lose Draw 

Stay 34.6% 

(3.0%) 

33.4% 

(2.7) 

37.0% 

(2.4%) 

35.0% 

(3.5%) 

32.3% 

(2.5%) 

39.7% 

(2.2%) 

Upgrade 34.5% (2.4) 29.6% 

(2.2%) 

34.0% 

(1.9%) 

35.5% 

(2.9%) 

29.1% 

(2.0%) 

28.8% 

(1.5%) 

Downgrade 30.9% 

(2.3%) 

37.0 

(2.4%) 

29.0% 

(2.3%) 

29.5% 

(2.5%) 

38.5% 

(2.2%) 

31.5% 

(1.9%) 

 Exploitable Exploitable 

 Win Lose Draw Win Lose Draw 

Stay 21.3% 

(3.5%) 

44.9% 

(3.4%) 

23.0% 

(2.3%) 

20.2% 

(3.4%) 

47.4 (3.8%) 26.0% 

(2.9%) 

Upgrade 57.7% 

(4.7%) 

26.5% 

(2.1%) 

28.9% 

(3.0%) 

 58.2% 

(4.9%) 

24.5% 

(2.3%) 

25.1% 

(2.4%) 

Downgrade 21.0% 

(2.7%) 

28.6% 

(2.4%) 

48.2% 

(3.2%) 

 21.7% 

(2.8%) 

28.0% 

(2.5%) 

48.9% 

(3.6%) 

Note: standard error in parentheses. 

 

 

The main effect of player strategy at trial n+1 was not significant [F(1.48, 57.84) = 

0.34, MSE = .15, p = .646, ƞp
2 = .01]. However, there were significant interactions between 

opponent and player strategy at trial n+1 [F(2, 78) = 9.91, MSE = .03, p < .001, ƞp
2 = .20] 
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and between outcome at trial n and player strategy at trial n+1 [F(2.34, 91.26) = 18.327, 

MSE = .14, p < .001, ƞp
2 = .32], indicating that player choices of staying, upgrading and 

downgrading were affected by the outcomes of previous trials as well as opponent 

exploitability, as expected based on Experiment 1. Further, there was a significant three-

way interaction between opponent, outcome at trial n, and player strategy at trial n+1 

[F(1.93, 75.26) = 25.14, MSE = .12, p < .001, ƞp
2 = .39], replicating Experiment 1. There 

was no significant interaction between value and player strategy at trial n+1 [F(1.67, 

65.03) = 0.73, MSE = .04, p = .464, ƞp
2 = .02]. There was also no significant three-way 

interaction between opponent, value and player strategy at trial n+1 [F(2, 78) = 0.05, MSE 

= .03, p = .947, ƞp
2 < .01], no significant three-way interaction between value, outcome and 

player strategy at trial n+1 [F(3.34, 130.27) = 1.09, MSE = .02, p = .359, ƞp
2 = .03], and no 

four-way interaction [F(2.51, 97.90) = 0.25, MSE = .04, p = .825, ƞp
2 < .01]. 

 In the unexploitable condition, there were no significant differences between player 

strategy as a function of outcome (Tukey's HSD; all p's > .05), consistent with Experiment 

1. In the exploitable condition, the optimal choices of upgrade following a win, stay 

following a loss, and downgrade after a draw were all significantly more likely than either 

of the suboptimal choices for each outcome (Tukey's HSD; p < .05 for all comparisons). 

However, there were no significant differences in rate of optimal play between outcome 

types (Tukey's HSD; all p's > .05). This was contrary to Experiment 1, where the rate of 

optimal play after losses was significantly lower than for wins or draws. See Figure 2.6 for 

the distribution of different strategies. 

As an exploratory analysis, I categorized participants in the exploitable blocks as 

failed or successful similar to Experiment 1. Out of the 40 participants, 10 failed to reach a 

win-rate significantly higher than chance on both blocks, with a further 12 failing on one of 
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the blocks (5 for the high value block and 7 for the low value block). Thus, there were 25 

successful participants in the high value block and 23 in the low value block. As in 

Experiment 1, the trend in the data for the successful participants was similar to that of the 

whole sample (see Figure 2.7). The unsuccessful participants played essentially randomly, 

with no strategic learning observable after any outcome. 

 To assess whether exploiting the opponent was equally challenging in Experiments 

1 and 2, I conducted a three-way mixed ANOVA on rates of optimal choices, with outcome 

(win, lose, draw) and value (low, high) entered as repeated measures factors and 

experiment entered as the grouping variable (see Table 2.7). There was a significant main 

effect of outcome [F(2, 156) = 22.59, MSE = .06, p < .001, ƞp
2 = .23], no significant main 

effect of value [F(1, 78) = 0.04, MSE = .04, p = .841, ƞp
2 < .01], andno significant main 

effect of experiment [F(1, 78) = 0.02, MSE = .17, p = .889, ƞp
2 < .001]. The interaction 

between experiment and outcome was non-significant but marginal [F(2, 156) = 2.86, MSE 

= .11, p = .061, ƞp
2 = .04]. The interaction between experiment and value [F(2, 156) = 0.24, 

MSE = .04, p = .625, ƞp
2 < .01], and the three-way interaction between experiment, value 

and outcome [F(2, 156) = 0.32, MSE = .02, p = .724, ƞp
2 < .01] were both non-significant. 

Participants made the most optimal choices after wins (60.3%), followed by draws (50.2%) 

and then losses (42.8%), with all pairwise comparisons being significant at the p < .05 

level (Bonferroni).   

 However, interpreting the results is not straightforward due to the main interaction 

of interest, the interaction between experiment and outcome, being marginal (p = .061), 

combined with the fact that due to low per-experiment sample size, the between-subjects 

analysis is underpowered. At face value, the non-significant interaction would suggest that 

the difference in effects between the experiments was itself not significant (see Gelman & 
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Stern, 2012), and the rate of optimal choices for the outcomes was similar for the two 

experiments. However, looking at specifically the rates of optimal choices following 

losses, there is a clear numerical trend of higher rates of optimal choices in Experiment 2 

(see Table 2.7). Moreover, looking at only the participants who had an above-chance win-

rate in Experiments 1 and 2 (compare Figures 2.3 and 2.7), successful participants in 

Experiment 2 seem to have been slightly more successful after losses than successful 

participants in Experiment 1. 

 

 

 

 

 

 

Figure 2.6. Distributions of participants' strategic choices collapsed across the value 

conditions in Experiment 2. Error bars represent SEs. Dashed line represents chance-level 

responding. 
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Figure 2.7. Distributions of unsuccessful and successful participants' strategic choices in 

the exploitable condition in Experiment 2. Error bars represent SEs. Dashed line represents 

chance-level responding. 

 

Table 2.7. Mean proportions of optimal play after different outcomes in Experiments 1 and 

2 

  Experiment 1  Experiment 2 

  Win Lose Draw  Win Lose Draw 

High value 63.6% 

(4.6%) 

39.4% 

(3.4%) 

50.3% 

(3.7%) 

 58.2% 

(4.6%) 

47.4% 

(3.4%) 

48.9% 

(3.7%) 

Low value 61.8% 

(4.7%) 

39.6 

(3.2%) 

53.5% 

(3.4%) 

  57.7% 

(4.7%) 

44.9% 

(3.2%) 

48.2% 

(3.4%) 

 Note: standard error in parentheses. 
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2.3.3.1.3 Reaction time analysis. I analysed median reaction times for decisions 

made after wins, losses and draws as in Experiment 1, with a three-way repeated-measures 

ANOVA (see Table 2.8). Seven participants were excluded from this analysis due to 

having at least one average median reaction time (averaged across wins, losses and draws) 

that was at least twice the block average median (averaged across all participants in that 

block; after Forder & Dyson, 2016).  Degrees of freedom were corrected using 

Greenhouse-Geisser estimates whenever Mauchly's test indicated a violation of sphericity. 

 

Table 2.8. Average median reaction times (milliseconds) in Experiment 2, N = 33 

 Unexploitable opponent  Exploitable opponent 

 Win Lose Draw Win Lose Draw 

High value 964 (116) 748 (81) 689 (65) 862 (144) 979 (126) 845 (102) 

Low value 759 (73) 601 (61) 532 (46) 759 (105) 867 (101) 632 (63) 

Note: standard error in parentheses. 

 

There was a significant main effect of outcome [F(1.33, 42.49) = 3.76, MSE = 

377965, p = .048, ƞp
2 = .11] and of value [F(1, 32) = 6.71, MSE = 361628, p = .014, ƞp

2 = 

.17], but no significant main effect of opponent [F(1, 32) = 4.05, MSE = 286353, p = .053, 

ƞp
2 = .11]. The interaction between opponent and outcome was significant [F(1.31, 42.03) 

= 4.13, MSE = 274917, p = .038, ƞp
2 = .11]. The interaction between value and opponent 

[F(1, 32) = .04, MSE = 469004, p = .848, ƞp
2 < .01], the interaction between value and 

outcome [F(1.56, 49.88) = .19, MSE = 175362, p = .774, ƞp
2 < .01], and the three-way 

interaction between opponent, value and outcome [F(1.60, 51.28) = .33, MSE = 198782, p 

= .673, ƞp
2 = .01] were non-significant. 
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As in Experiment 1, the reaction times after losses in the exploitable condition were 

significantly slower than in the unexploitable condition (923 ms and 675 ms, respectively; 

Tukey's HSD; p < .05). Within the unexploitable condition, reaction times for wins were 

slower than reaction times for draws (862 ms and 611 ms, respectively; Tukey's HSD; p < 

.05), replicating Forder & Dyson (2016). However, this was not the case within the 

exploitable condition, where there were no significant differences between outcomes (see 

Figure 2.8). Contrary to Experiment 1, reaction times in the high value condition were 

overall higher than reaction times in the low value condition. 

As in Experiment 1, to further explore the relationship between reaction times and 

performance, I plotted individual win-rates (averaged across the two exploitable blocks) 

against the reaction time difference between decisions made after losses and wins in the 

exploitable condition. A significant positive correlation (r = .633, p < .001; see Figure 2.9) 

indicates that reaction times after losses in relation to wins increased as a function of an 

individual participant’s win-rate, replicating Experiment 1. 

To address the differences in results between the two experiments, I ran a cross-

experiment comparison on RT similar to the cross-experiment comparison on rates of 

optimal choices. I entered outcome (win, lose, draw), value (low, high) and opponent 

(unexploitable, exploitable) as repeated measures factors and experiment as the  between-

groups factor in a four-way mixed ANOVA. Here, there was a significant main effect of 

experiment [F(1, 61) = 5.12, MSE = 784392, p = .027, ƞp
2 = .08]. However, there were no 

significant interactions between experiment and any of the other factors: outcome [F(1.53, 

93.48) = 0.08, MSE = 239002, p = .880, ƞp
2 < .01]; value [F(1, 61) = 1.68, MSE = 285973, 

p = .200, ƞp
2 = .03]; opponent [F(1, 61) = 0.01, MSE = 235117, p = .913, ƞp

2 = .00]. The 

three-way interactions between experiment, outcome, and opponent [F(1.45, 88.70) = 1.13, 
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MSE = 194929, p = .312, ƞp
2 = .02]; experiment, outcome, and value [F(1.79, 109.32) = 

1.21, MSE = 115690, p = .298, ƞp
2 = .02], and experiment, value, and opponent [F(1, 61) = 

1.92, MSE = 448925, p = .170, ƞp
2 = .03] were all non-significant. There was also no 

significant four-way interaction [F(2, 122) = 0.43, MSE = 139787, p = .654, ƞp
2  < .01]. 

This suggests that there was a slight overall reaction time difference between the two 

experiments but that this was not driven by different RTs in any specific condition, after 

any specific game outcomes, or by differences in other interactions between the two 

experiments. Participants had overall slower mean reaction times in Experiment 2 (770 ms) 

compared to Experiment 1 (624 ms), but it is not clear why this was so: this may simply be 

an effect of slightly different participant samples. 

 For the within-subjects factors, there was a main effect of opponent [F(1, 61) = 

8.74, MSE = 235117, p = .004, ƞp
2 = .13],  value [F(1, 61) = 7.43, MSE = 235117, p = .005, 

ƞp
2 = .11], and outcome [F(1.53, 93.48) = 11.38, MSE = 239002, p < .001, ƞp

2 = .16]. There 

were no significant interactions between value and outcome [F(11.79, 109.32) = 0.30, MSE 

= 115690, p = .720, ƞp
2 < .01], value and opponent [F(1, 61) = 1.24, MSE = 448925, p = 

.270, ƞp
2 = .02], or a three-way interaction between the within-subjects factors [F(2, 122) = 

0.05, MSE = 139787, p = .952, ƞp
2 < .01]. . Participants in the two experiments had overall 

slower mean reaction times under high value (750ms) compared to low value (644ms) 

conditions. The only significant interaction was between opponent and outcome [F(1.45, 

88.70) = 6.65, MSE = 178066, p = .005, ƞp
2 = .10]. Lose reaction times were significantly 

slower against the exploitable (848 ms) compared to the unexploitable (617 ms) opponent 

(Tukey’s HSD, p > .05). Win reaction times in the unexploitable condition were higher 

than both draw and lose reaction times (Tukey’s HSD, p > .05 for all comparisons). 
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Figure 2.8. Average median reaction times collapsed across the value conditions in 

Experiment 2. Error bars represent 95% CIs. 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Correlation between win-rate and difference between average win and lose 

reaction times in the exploitable conditions in Experiment 2. A positive RT difference 

indicates slower post-error than post-success RTs. 
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 2.3.3.1.4 Mean confidence measure. I analysed mean confidence rates were 

analysed using a two-way repeated measures ANOVA with opponent (exploitable, 

unexploitable) and value (high, low) conditions entered as factors (see Table 2.9). There 

was no significant main effect of strategy [F(1, 39) = 1.68, MSE = .526, p = .202, ƞp
2 = 

.04], no main effect of the value condition [F(1, 39) = 0.94, MSE = .16, p = .338, ƞp
2 = .02] 

and no two-way interaction [F(1, 39) = 0.75, MSE = .21, p = .387, ƞp
2 = .02]. Unlike in 

Experiment 1, the participants' confidence seems to not have varied between the 

unexploitable and exploitable conditions, but the numerical trend was in the same direction 

as in Experiment 1 (see Table 2.9). 

I examined the relationship between win-rate and player confidence as in 

Experiment 1, by calculating Fisher transformed correlation coefficients for reported 

confidence and the proportion of wins on the eight trials before each confidence 

measurement, individually for each player in each block (see Table 2.9). I then examined 

the variance in the strength of this association using a two-way repeated measures ANOVA 

with the Fisher transformed coefficients as the dependent variable, and opponent 

(unexploitable, exploitable) and value (high, low) entered as factors. Eight participants had 

to be excluded due to having no variance in their reported confidence on one or more 

blocks, making it impossible to calculate a correlation. There was no significant main 

effect of opponent [F(1, 31) = 0.21, MSE = .20, p = .650, ƞp
2 < .01], no significant main 

effect of value [F(1, 31) = 0.15, MSE = .09, p = .706, ƞp
2 < .01], and no significant 

interaction [F(1, 31) = 0.89, MSE = .17, p = .353, ƞp
2 = .03]. The results thus differ from 

Experiment 1, where there was a significant effect of opponent on the correlation between 

confidence and win-rate, with participants' confidence being more highly correlated with 
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win-rates against the exploitable opponent. Note also that the correlations between 

confidence and win-rate in Experiment 2 were essentailly zero, unlike in Experiment 1 (see 

Tables 2.3 and 2.9). 

 

Table 2.9. Mean confidence measure (Likert, 1-5), N = 40, and correlation between 

confidence and win-rate in Experiment 2, N = 33 

Mean confidence (range: 1 – 5) 

 Unexploitable opponent  Exploitable opponent 

High value 2.83 (.10) 3.04 (.13) 

Low value 2.96 (.07) 3.04 (.13) 

Mean confidence / win-rate correlation (Fisher transformed z-scores) 

 Unexploitable opponent  Exploitable opponent 

High value -.00 (.07) 

[-.00] 

 

 -.11 (.09) 

[-.006]  
Low value -.05 (.06) 

[-.05] 

-.02 (.06) 

[-.02] 

Note: standard error in parentheses. Inverse Fisher transformed z values in brackets. 

 

2.3.3.2 Other measures. 

2.3.3.1.4 Perception of luck vs. skill. I analysed participants' ratings of their 

attribution of game results to luck or skill using a two-way repeated measures ANOVA 

with opponent (exploitable, unexploitable) and value (high, low) entered as factors. There 

was a significant main effect of opponent [F(1, 39) = 28.97, MSE = 2695.83, p < .001, ƞp
2 

= .43]. There was no significant main effect of value [F(1, 39) = 0.42, MSE = 1626.51, p = 

.520, ƞp
2 = .01], and no significant an interaction effect [F(1, 39) = 0.10, MSE = 1679.89, p 

= .757, ƞp
2 < .01]. Players gave responses indicating significantly more skill than luck 
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driving the results when playing against the exploitable opponents (M = 26.7, SE = 7.4) 

than when playing against unexploitable opponents (M = -17.5, SE = 6.6). 

The correlations between the luck/skill measure and average confidence were r = 

.08, p = .618 (unexploitable, low value), r = .13, p = .420 (unexploitable, high value), r = 

.49, p < .001 (exploitable, low value) and r = .26, p = .109 (exploitable, high value), 

suggesting that the average confidence measure and the luck/skill measure mostly reflect 

different things. 

 2.3.3.1.5 Working memory and optimal choices. I analysed the effect of working 

memory span on the rate of optimal choices against the exploitable opponent at trial n+1. 

The span variable used was the last list length where the participant had correct recall on at 

least two of the three trials for that span length. Three participants were excluded due to an 

overall accuracy less than 85% on the distractor task in the OSPAN (as per Unsworth et al., 

2005). A further three participants were excluded due to having failed the memory span 

task on the first trial. For the remaining thirty-four participants, I entered the rate of 

optimal choices on trial n+1 into a two-way repeated measures ANCOVA with value 

(high, low) and outcome at trial n (win, lose, draw) entered as factors and working memory 

span entered as the covariate (mean-centered). This analysis again followed the suggestion 

of Schneider et al. (2015) to use ANCOVAs in within-subjects designs to only examine the 

main and interaction effects of the covariate and not to correct for the covariate (see also 

Section 2.2.3.2.5). There was no significant main effect of memory span [F(1, 32) = 0.88, 

MSE = .18, p = .355, ƞp
2 = .03], no significant interaction between memory span and value 

[F(1, 32) = 1.61, MSE = .05, p = .214, ƞp
2 = .05], no significant interaction between 

memory span and outcome [F(2, 64) = 0.85, MSE = .05, p = .431, ƞp
2 = .03] and no 

significant three-way interaction [F(2, 64) = 0.14, MSE = .02, p = .868, ƞp
2 < .01]. See 
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Figure 2.10 for the relationship between memory span and optimal choices collapsed 

across outcome type. 

 

 

Figure 2.10. Relationship between WM capacity and optimal choices for the low and high 

value exploitable blocks in Experiment 2. 

 

2.3.3.1.6 Deviation from randomness. I analysed the effect of executive control on 

deviation from randomness when playing against the unexploitable opponent. The 

executive control variable was the difference between the median reaction times for the 

congruent and incongruent flanker trials. I calculated deviation from randomness by 

deducting the rate of each move type (stay, upgrade, downgrade) from 33.3%. I entered 

this variable as the dependent variable into a two-way repeated measures ANCOVA with 

value (high, low) and outcome (win, lose, draw) entered as factors and the executive 

control variable entered as the covariate (mean-centered). This ANCOVA was again 

conducted per the recommendations of Schneider et al. (2015), to examine only the main 

effect and interactions of the covariate. Executive control had no significant main effect 

[F(1, 38) = 2.41, MSE = .01, p = .129, ƞp
2 = .06], no significant interaction with value [F(1, 
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38) = 1.39, MSE < .01, p = .245, ƞp
2 = .04], no significant interaction with outcome [F(1, 

38) = 0.83, MSE < .01, p = .439, ƞp
2 = .02], and no significant three-way interaction [F(2, 

76) = 0.28, MSE < .01, p = .756, ƞp
2 < .01]. 

  I then ran the same ANCOVA using working memory span as the covariate (mean-

centered). Six participants were excluded from the analysis (see above). There was no 

significant main effect of memory span [F(1, 32) = 0.08, MSE = .01, p = .782, ƞp
2  < .01], 

no significant interaction between memory span and value [F(1, 32) = 0.13, MSE < .01, p 

= .717, ƞp
2 < .01], no significant interaction between memory span and outcome [F(2, 64) = 

0.29, MSE < .01, p = .749, ƞp
2 = .02] and no three-way interaction effect [F(2, 64) = 0.70, 

MSE < .01, p = .500, ƞp
2 = .02]. 

2.4 General Discussion 

In Experiments 1 and 2, I failed to replicate the win-stay, lose-shift effect observed 

in previous studies of people playing RPS against an unexploitable opponent (Dyson et al., 

2016; Forder & Dyson, 2016) and in previous studies using different binary choice 

paradigms (Scheibehenne et al., 2011; Wilke et al., 2014; Achtziger et al., 2015). 

Remarkably, participants managed to do this even without any attempts at exploitation 

from the computer opponent’s side. That is, they would not experience more losses if they 

played predictably. Rapoport and Budescu (1992) found that in a competitive binary choice 

game between two human players, players can achieve a mixed strategy but this likely has 

to do with the dynamics between two players who would most likely attempt to exploit 

each other (see also West & Lebiere, 2001). In my experiments, it seems that no such 

mutual attempts at exploitation were needed to rid participants of reinforcement errors. 

 Carryover effects are a possible candidate for explaining the non-replication. As the 

optimal strategy against the exploitable opponent in both experiments involved choices in 
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conflict with reinforcement, it may be that this helped participants play according to mixed 

strategy against the unexploitable opponent and avoid reinforcement errors. However, this 

explanation leaves open the bigger question of how participants were able to learn to avoid 

reinforcement errors at all, as they seem quite robust. For example, Scheibehenne et al. 

(2011) showed that when participants were able to examine the patterns produced by two 

slot machines before making their choices, they still made stayshift decisions even when 

they could have achieved above-chance win-rates by following a shiftstay rule. 

Experiment 1 also showed that performance was non-optimal following loss against 

exploitable opponents. The motivation for changing the exploitable opponent's strategy in 

Experiment 2 was to assess whether the suboptimal performance against the exploitable 

opponent on trials immediately following a loss in Experiment 1 was due to losses 

themselves, or due to the specific optimal response in Experiment 1 being unintuitive or 

hard to learn.  The finding that participants in Experiment 1 made more optimal choices 

after both wins and draws compared to losses was surprising given that the losses were the 

only case where the optimal choice aligned with reinforcement. Additionally, for a 

successful participant, wins were more likely than draws or losses, but draws and losses 

were both equally likely. This should theoretically have allowed the participants to learn 

what to do after draws and losses equally well unless the optimal choice for one of these 

outcomes was in one way or another more difficult to make, or unless the outcome of loss 

had some specific effect on decision making. However, the optimal stay response after 

draws in Experiment 1, while in conflict with reinforcement, was aligned with inertia, 

which may make choosing the option more likely (Alós-Ferrer et al., 2016; Alós-Ferrer & 

Ritschel, 2018). To disentangle the effects of the non-win outcomes themselves from the 

effects of inertia and reinforcement, in Experiment 2, the stay response was the optimal 
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response to be made after a loss against the exploitable opponent. Consequently, the 

exploitable opponent in Experiment 2 played according to a self-upgrade rule (contrast to 

the self-downgrade rule in Experiment 1; see Figure 1), leading to a similar cyclical pattern 

as in Experiment 1. 

Analysing the choice behaviour in Experiment 2 on its own, there were no 

statistically significant differences in the rates of optimal play after different outcomes. 

although the trend was similar to that in Experiment 1, with most optimal responses made 

after wins, followed by draws and then losses. At first blush, this would appear different 

from the pattern of data in Experiment 1 that suggests that both the nature of the outcome 

and the type of the subsequent strategy contributed to performance. While a cross-

experiment comparison strictly speaking yielded no significant differences in rates of 

optimal play as a function of outcome between the two experiments, the interaction 

between experiment and outcome was marginal (F > 2.8). Moreover, looking only at the 

participants with above-chance win-rates in both experiments (see Figures 2.3 and 2.7), it 

seems that successful participants in Experiment 2 were better able to make optimal 

decisions after losses than participants in Experiment 1. This effect may not have reached 

significance due to low power compounded by the fact that participants could be clearly 

split into two sub-groups of successful and unsuccessful learners in both experiments. 

 Despite problems in interpreting the results, it seems that reinforcement did not 

affect performance against the exploitable opponents in expected ways, and this is 

regardless of whether the difference between experiments in optimal choices following 

losses is a true effect or not. The participants made optimal choices most likely after wins 

in Experiment 1, where the optimal choice after wins did not align with reinforcement. In 

Experiment 2, there was no overall difference in the rate of optimal choices following 
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different outcomes, i.e. success on average was not dependent on whether the optimal 

strategy aligned with reinforcement.,  Further, assuming the marginal difference between 

the experiments in rates of optimal behavioural after losses is a true effect, it would seem 

that participants' choices were more optimal when the optimal choice after a loss was 

contrary to reinforcement and in alignment with inertia than when it aligned with 

reinforcement. If this effect is assumed to be null, it would similarly follow that whether 

the optimal choice aligned with reinforcement did not matter in terms of learning. 

The trend of more successful performance after losses in Experiment 2 suggests 

that alignment with inertia may have helped participants apply the optimal decision rule 

(similarly to e.g. Alós-Ferrer & Ritschel, 2018; Scheibehenne et al., 2011). Experiment 1 

finding more optimal decisions following draws than losses, when the optimal choice after 

draws aligned with inertia and the optimal choice after losses did not, also lends support to 

this interpretation. This interpretation would also suggest inertia being a stronger driver of 

decisions than reinforcement, as the lower rates of success in both of the aforementioned 

comparisons were in situations where the optimal choice aligned with reinforcement. 

However, the results of Experiment 2 in and of themselves do not fully support this 

interpretation, as there were no overall differences in rates of optimal choices after any 

outcome type. Moreover, looking only at the successful participants in Experiment 2, the 

rate of optimal choices after draws and losses is similar despite differences in alignment 

with inertia and reinforcement. Thus, it may be that the type of outcome still matters in 

addition to whether the optimal choice aligns with inertia or reinforcement, with draws 

leading to less of a difference than losses. 

In general, nothing in the behavioural results suggests a stayshift bias against either 

the unexploitable or the exploitable opponent; even the participants who were 
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unssuccessful in exploiting the exploitable opponent were on average playing randomly 

rather than mistakenly following reinforcement and thus losing more. This result is 

puzzling: how and why did participants not make the kinds of reinforcement-biased 

stayshift choices I would have expected? One could argue that the task structure of the 

experiments may have made reinforcement errors in general unlikely. As the exploitable 

opponent played according to a set of rules that would lead it to play according to a 

repeating, cyclical pattern 70% of the time, participants may have noticed the pattern and 

started acting in accordance to a higher-order model of the game. That is, becoming aware 

of the pattern may have allowed participants to avoid reinforcement errors due to them no 

longer focusing as much on single trials but a longer frame of several trials. Losses and 

draws may then have led to less optimal choices due to them being a signal to the 

participants that something about the pattern might have changed. However, this 

explanation does not hold for the unexploitable condition, where I saw no evidence of a 

stayshift bias either: taken at face value, the results would seem to imply that people avoid 

the stayshift bias in RPS.. 

A limitation inherent in the main behavioural analyses of Experiments 1 and 2 is 

the use of an ANOVA to analyse proportional response data. I conducted these analyses in 

line with analyses in the published literature, e.g. Dyson et al. (2016) and Forder and 

Dyson (2016), both of whom had similar designs with similar variables of interest. Further, 

Stöttinger et al. (2014) also analysed proportion data of RPS choices using ANOVAs, and 

Wilke and Barrett (2009), Wilke et al. (2014), and Scheibehenne et al. (2011) seem to have 

used an ANOVA or linear regression on at least some of their proportion data analyses. 

However, while this statistical choice may show up in peer-reviewed articles, it is not 

without issues. The use of ANOVAs on proportional data is problematic, as the dependent 
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variable is bounded and due to the properties of proportional data, the variances are 

unlikely to be equal between two conditions if the proportions of those conditions are 

different, thus violating the assumptions of ANOVA (Jaeger, 2009). The choice I made to 

use an ANOVA was, primarily, a practical one. The ideal analysis for the kinds of 

comparisons I wished to make would have been a multinomial logistic generalized linear 

mixed model for repeated measures (see Jaeger, 2008). However, a usable multinomial 

model approach was not readily available for either SPSS or R after extensive search. For 

example, the lme4 package of R allowed for creating such a model but not directly 

comparing the proportions of three different categorical decision types, which would have 

been crucial for this chapter. As a beta regression would demand excluding participants 

who had a probability of 0 or 1 on any of the possible decision types in any condition, it 

would not have been optimal for the purposes of these studies, given the already low 

sample size. 

Given these statistical limitations, comparisons of high probabilities against low 

probabilities in the analyses in Chapter 2 are subject to increased Type I error rates (Jaeger, 

2008). A little over one third of all the different mean proportions of choice types in 

Experiments 1 and 2 (12 out of 36 means in Experiment 1, 15 out of 36 means in 

Experiment 2) fell below .3, considered the lower range of acceptable mean proportions in 

terms of maintaining homogeneity of variance (Jaeger, 2008). No mean probabilities in 

these analyses were above .7, considered the upper range (Jaeger, 2008). The majority of 

the proportions below .3 were in the exploitable conditions – understandably, as this is 

where the participants could learn an optimal rule and follow it. However, in the cross-

experiment comparison of optimal choices as a function of the outcome of the previous 

trial, none of the sample proportions for any condition were outside of this range (see 
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Table 2.7). This is also true if comparing the rates of optimal choices after different 

outcome types in the two experiments separately. Therefore, I argue that the issue of 

heterogenous variances was less of a problem to the interpretation of these, the most 

crucial analyses. Looking at the standard errors of the variables, it also seems that at least 

in the aforementioned cases the analysis did not produce estimates of “impossible values” 

(i.e. a 95% CI that would go above 100% or below 0%). Thus, while the approach was not 

ideal, the important results are not uninterpretable. Moreover, whatever the issues caused 

by this approach, the results are at least comparable to the results of other published work 

using the same non-ideal approach to percentage data (see above). 

In both experiments alone and in the cross-experiment analysis, manipulating the 

value of wins and losses in RPS failed to produce effects on choice behaviour or overall 

performance, whether value was manipulated as a difference in scoring (Experiment 1) or 

through a monetary incentive (Experiment 2). The cross-experiment comparison revealed a 

general effect of the value manipulation on reaction times, with overall slower reaction 

times in high value conditions, regardless of whether the value manipulation was score-

based or monetary. It is unclear why participants would spend more time on their decisions 

in the high value conditions, but whatever the reason, this does not seem to have reflected 

on their behaviour otherwise. This is in contrast to Forder & Dyson (2016), who found 

changes in game choice behaviour in different non-monetary value conditions, but no 

effect of the value manipulation on reaction times. However, in Forder & Dyson (2016), 

the value manipulation emphasized either wins or losses: a greater point penalty for a loss, 

or a greater point reward for a win. Win-stay behaviour specifically was increased when the 

reward for a win was greater than the penalty for a loss (or vice versa). In Experiment 1, on 

the other hand, rewards and penalties were always of the same magnitude. 
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However, this difference between the design of Experiment 1 and Forder & Dyson 

(2016) fails to explain the non-effect on performance in Experiment 2, where value was 

manipulated with a financial incentive. Specifically, the participants could only gain but 

not lose, in the sense that a score below zero (indicating more than a third of trials lost) did 

not lead to a financial penalty, but a score above zero led to reward. A financial incentive 

should have led to an increased number of reinforcement errors (Achtziger et al., 2015). 

There are known issues with a blocked design such as the one employed in Experiments 1 

and 2 when it comes to financial incentive, namely, a block with financial incentive can 

lead to a loss of motivation in a subsequent block without such incentive (Ma et al., 2014). 

However, in Experiment 2, one would assume this would have led to a more pronounced 

difference in performance between the value conditions when playing against the 

exploitable opponent, not a dilution of the effect. The counterbalancing of the conditions 

was so that no two exploitable or unexploitable blocks would be played immediately 

following each other, but there were no other constraints. The order of the value conditions 

was fully counterbalanced, and there was only one block of each of the four types ((high 

value, low value) x (exploitable, unexploitable)). Thus, a dilution of the effect due to order 

effects would be possible only if, in addition to the effect highlighted by Ma et al. (2014), 

the opposite to that effect were also the case - that is, only if a lack of financial incentive in 

a block could lead to a loss of motivation in a subsequent block with financial incentive. 

Otherwise, a decrease in performance in the low value exploitable block after having 

already completed the high value exploitable block would show as an overall difference in 

performance between the value conditions in the predicted direction. A more likely 

explanation, then, is that given the task structure (see above), reinforcement errors in 

general unlikely, and thus the incentive could not increase them. 
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The working memory capacity measure used in Experiment 2 did not predict 

performance, contrary to my expectations. It may be that the learning occurring in the task 

follows a reinforcement learning rule without a need for working memory as such (see 

Collins & Frank, 2013, for an investigation of the relationship between working memory 

and reinforcement learning). Another option is that the participants learned the exploitable 

opponent's pattern in the simplest terms as a three-step sequence (Rock-Paper-Scissors), 

necessitating such a low working memory capacity that practically all participants were 

able to learn it if they were motivated enough or paid attention to the correct details in the 

game. The reason for individual differences in rates of optimal play against the exploitable 

opponent are still somewhat an open question. Moreover, neither working memory nor 

executive control predicted deviations from randomness in the unexploitable condition to a 

significant degree (contra Terhune & Brugger, 2011). Given the result that the participants 

were, on a group level, not significantly biased towards any type of move following any 

type of outcome, it may simply be that there wasn't much deviation for the covariates to 

predict. 

Analysing the reaction time data for the experiments together revealed two overall 

significant findings. First, when playing against the unexploitable opponent, players 

reacted more slowly after wins compared to draws and losses. Second, reaction times after 

losses were slower when playing against the exploitable opponent than when playing 

against the unexploitable opponent.  Lose reaction times also increased in relation to win 

reaction times as a function of individual win-rates against the exploitable opponent in 

both experiments, further indicating post-error slowing as a function of performance or 

perceived exploitability of the opponent. The lack of an overall significant post-error 

slowing trend in the exploitable condition is likely explained by the wide range of rates of 
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successful exploitation between individuals. Together, these results suggest that post-error 

slowing (see Dutilh et al., 2012) or speeding (see Verbruggen et al., 2017) depends on 

success rate and/or perceived exploitability.  When the win-rate is around chance level and 

the opponent cannot be exploited, participants were slower to make decisions after wins; 

when the win-rate increases and/or the opponent can be exploited, reaction times after 

losses slow down. Experiments 1 and 2 could not control for the confound between 

exploitability of opponent and frequency of losses, and thus the post-error slowing may be 

caused wholly or in part by losses being a rare event (see Dutilh et al., 2012) rather than 

perceived exploitation per se (I will directly explore this option in Chapter 3 using fixed 

rather than variable win-rates).  Note, however, that reaction times after draws did not 

differ between the exploitable and unexploitable conditions, even though the 

aforementioned confound also applies to draws, suggesting that frequency alone is not 

enough to explain slowing in response to a non-win outcome. Participants in Experiment 2 

also indicated, on average, believing that their outcomes against the unexploitable 

opponent were more due to luck, and that their outcomes against the exploitable opponent 

were more due to skill, implying a different understanding of the task structure between the 

conditions that could play a role in post-error slowing. Note that Verbruggen et al. (2017) 

found post-error speeding in an explicit gambling task, whereas much of the research 

finding post-error slowing (see e.g. Danielmeier & Ullsperger, 2011; Dutilh et al., 2012; 

Notebaert et al., 2009) have been conducted using tasks where the participants could 

reasonably believe are skill-dependent, such as different versions of a flanker task. 

However, the increased reaction times after losses does not seem to have translated 

into more optimal choices after losses. Thus, longer decision times may be a necessary but 

not sufficient condition regarding the initiation of cognitive control and the revision of 
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performance. The results may reflect surprise at a loss in the exploitable condition; losses 

in the exploitable condition are going to be a rarer event for the participants overall, and 

increasingly so as their success increases. Moreover, participants with a completely 

accurate model of the exploitable opponent's pattern would only experience losses in the 

rare (30%) number of cases where the opponent strays from their pattern and makes a 

random choice, leading to an even more unexpected loss - the participant may feel they 

"should have won" and start questioning their model of the opponent. The fact that 

participants performed quite poorly after losses despite increased reaction times in the 

exploitable condition suggests that they may have engaged in more exploratory behaviour 

(Wilson et al., 2014), potentially assuming the opponent has changed the pattern of play.   

2.5 Conclusion 

In two experiments, contrary to prior studies, participants exhibited no win-stay, 

lose-shift bias when playing RPS against an unexploitable opponent. Neither working 

memory nor executive control predicted individual level deviations from randomness 

against the unexploitable opponent, but given the overall result of no significant bias away 

from random play, it may simply be that there was no deviation to predict. In both 

experiments, participants were, on average, able to learn to exploit an opponent that played 

according to a simple cyclical pattern for 70% of the time, making random choices 30% of 

the time. Whether the optimal choices against the exploitable opponent were in conflict 

with reinforcement or not did not seem to affect the participants’ performance, contrary to 

prior literature. There were clear individual differences in rates of optimal play, although it 

is unclear why some participants failed to learn to exploit the exploitable opponent. 

Working memory did not predict exploitation, although this might simply be because the 

task itself was not very demanding to memory as such; the individual differences may stem 
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from motivational factors. In both experiments, losses against the exploitable opponent led 

to slower reaction times than losses against the unexploitable opponent. Whether this is 

due simply to losses being a rare event against the exploitable opponent when the 

participant is exploiting successfully, or a combination of losses being rare and participants 

acknowledging that the opponent is exploitable, will be examined in Experiments 3 and 4. 
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CHAPTER 3: Reinforcement Biases, Confidence and Success 

3.1 General Introduction 

Contrary to the experimental hypotheses and previous research, Experiments 1 and 

2 found no evidence of reinforcement biases in RPS, regardless of whether participants 

were playing against unexploitable (pseudorandom) or exploitable opponents. Likewise, 

there was no evidence of changes in biased choice behaviour as a function of outcome 

value, expressed either as points or money. Reaction time analyses revealed an interaction 

between opponent exploitability and the trends of post-error slowing and speeding, but 

interpretation of this trend was hindered due to the confound between the variable rate of 

learning between individuals and, hence, the frequency of outcomes. Experiments 3 and 4 

looked more closely into reaction times and stayshift behaviour as a function of the order 

of outcomes, while controlling for individual variations in outcome frequency. 

Additionally, the experiments included a more thorough look into confidence as a function 

of fluctuating win-rates. The game task used was also changed from Rock, Paper, Scissors 

(RPS) to Matching Pennies (MP) to control for complexities in interpreting results from a 

game with an ambiguous outcome option (draw). 

3.2 Experiment 3 

3.2.1 Introduction. In Experiments 1 and 2 and in the context of RPS, participants 

had significantly slower reaction times for decisions following losses against the 

exploitable opponent compared to the unexploitable opponent, suggesting more cognitive 

control after losses in the condition where the players could actually affect their rate of 

wins.  Further, post-error slowing when playing against exploitable opponents was 

predicted by the rate of successful exploitation, as measured by the win-rate of individual 

participants. Consequently, the participants with the highest rates of post-error slowing 
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were also the participants with high win-rates (and thus a smaller number of losses). 

Contrary to this, playing against unexploitable opponents led to post-success slowing, with 

significantly higher reaction times for decisions made after wins compared to losses at the 

group level. As should be expected from the experimental design, participants also had 

lower rates of wins in the unexploitable condition. Even the highest individual win-rates 

achieved by chance in the unexploitable conditions (Experiment 1: 46.67%, Experiment 2: 

46.67%) were much lower than the highest win-rates achieved in the exploitable conditions 

(Experiment 1: 78.89%, Experiment 2: 83.33%). Thus, Experiments 1 and 2 cannot 

dissociate the potential effects of infrequent outcomes leading to post-error or post-success 

slowing (the orienting account of post-error slowing; see Danielmeier & Ullsperger, 2011; 

Notebaert et al., 2009) from the effects of the exploitability itself. That is, when 

participants lost a round, they could have slowed down because they had learned a strategy 

that they expected would lead to a win, or they could have slowed down simply as an 

automatic orienting reaction to infrequent losses.  To complicate matters, due to individual 

differences in learning, the range of win-rates in the exploitable condition (ranging from 

21.11% to 78.89% in Experiment 1 and from 21.11% to 83.33% in Experiment 2) was 

much wider than in the unexploitable condition where wins were driven by chance 

(ranging from 22.22% to 46.67% in Experiment 1 and from 14.44% to 46.67% in 

Experiment 2). This added noise in the exploitable conditions makes a true group-level 

comparison between the conditions difficult. To address these issues, Experiment 3 shifted 

to a design with fixed win-rates in different success slopes (see Ejova et al., 2013; 

Thompson et al., 1998). That is, participants in Experiment 3 were exposed to different 

conditions of specified win-rate trajectories that would be similar for each participant 

regardless of how they played, making it possible to create conditions where win-rate and 
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player skill were not co-dependent, and where within-subjects variation in win-rates was 

controlled. 

Experiment 3 also moved away from using RPS as the experimental paradigm in 

favour of the slightly simpler Matching Pennies (MP) game. MP is a dichotomous choice 

task where two players both choose a side of a coin, with one player winning if the choices 

match and their opponent winning if they mismatch.  This change was chosen due to 

several reasons. First, much of previous research showing consistent RL biases has been 

conducted using different variations of binary choice tasks (e.g. Scheibehenne et al., 2011; 

Wilke et al., 2011; Achtziger et al., 2015), however, these tasks have often included a 

financial incentive. Experiments 1 and 2 stemmed from the notion that reinforcement 

biases in RPS could be observed even without financial incentive (specifically lose-shift; 

Dyson et al., 2016; Forder & Dyson, 2016), but this result was not replicated. Furthermore, 

there were no RL biases with financial incentives (Experiment 2). As there are differences 

between the two game tasks (outlined below), replicating RL biases in MP is a first step 

towards understanding why Experiments 1 and 2 did not replicate previous findings. 

Second, due to the three-option nature of RPS, shifting in the game may be a more 

complex task for the decision-maker than staying. That is, in order to stay, one only needs 

to know what happened on the previous round and repeat that; in order to shift, one not 

only needs to know the specifics of the previous round but also choose between two 

directions of shifting. This was a key idea in Chapter 2. where I examined whether the ease 

of optimal responding following win was not a result of the positive outcome per se, but a 

result of the stay computation. Thus, interpretations of the relative frequency of shifting 

versus staying related to situations where shifts are more likely are not unequivocal. Since 

MP allows for only one type of shift, this issue is removed. Third, related to the former, 
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adopting a true mixed strategy in RPS would lead to roughly equal proportions of both 

types of shifts, meaning a total proportion of shifts twice as large as the proportion of stays. 

In Experiments 1 and 2, the results were interpreted from the viewpoint that the differences 

between types of shifts are meaningful – the myopic best response, for example, is never 

simply any shift but a shift in a specific direction (see Dyson, 2019). As before, since MP 

allows for only one kind of shift, such assumptions are not needed. Fourth, RPS allows for 

ambiguous outcomes (draws) whereas MP does not. While the data regarding draws can 

shed light on whether behaviour is affected differently by ambiguous outcomes relative to 

other more transparently negative outcomes (i.e. losses), it comes at the cost of less power 

for analysing separate outcome types when the number of trials is limited. It also adds 

ambiguity in defining what the experienced win-rate of the participant is from the first-

person perspective. That is, it is possible that draws are not treated as merely neutral 

outcomes in their own category, but e.g.as another type of loss (see Holroyd et al., 2006) or 

a type of “near-miss” (i.e. a win that just fell short; Dixon et al., 2013). This could lead to 

an experienced loss-rate significantly over chance level in a supposedly random situation 

of 1/3 wins, losses and draws each (i.e., 33.3% losses + 33.3% draws = 66.6% ‘negative’ 

outcomes). The results of Experiments 1 and 2 do not clearly support any single 

interpretation of draws and hint that the effect may be situational, similar to the effects of 

wins and losses. In Experiments 1 and 2, participants were generally more often able to 

apply the optimal strategy after draws than after losses, but the rate was still significantly 

lower from the rate of optimal choices after wins. Moreover, the reaction times for 

decisions following draws against the unexploitable opponent were similar to reaction 

times after losses against this opponent. However, the reaction times for losses differed 

between the two exploitability conditions, whereas the reaction times for draws did not. 
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These results cannot confirm any single interpretation of draws. In short, removing the 

ambiguous outcomes allows for better inferences about the effects of unambiguously 

positive and negative outcomes. 

 To address the specific issue of whether post-error slowing in a competitive game 

context simply follows from relatively infrequent losses in the case of successful 

exploitation, I included two conditions with overall above and below chance wins (hence 

continuous success and continuous failure, respectively). If the notion of post-error 

slowing being simply driven by the frequency of errors typically being low is correct 

(Danielmeier & Ullsperger, 2011), one would expect to see post-error slowing in 

conditions with a fixed above-chance win-rate (as in the exploitable conditions in 

Experiments 1 and 2) and no post-error slowing or even post-success slowing in conditions 

with a fixed below-chance win-rate (see Notebaert et al., 2009, for a manipulation of 

success rates in a visual decision task). Additionally, I included two conditions both with a 

chance-level (50%) overall win rate but with differently shifting success slopes: either a 

high win-rate followed by a low win-rate or vice versa (hence descending and ascending, 

respectively; see Figure 3.1 in section 3.2.2). These conditions were intended to roughly 

mimic either a situation where the player is at first exploiting an opponent who then 

“learns” to anticipate the player’s moves (descending), and a situation where the player is 

initially faring poorly but slowly ”learns” to exploit an opponent (ascending). The addition 

of these conditions allowed for testing not only for potential differences in post-error 

slowing due to outcome sequence in the absence of different outcome frequencies, but also 

for so-called illusion of control (Langer, 1974). The illusion of control refers to the general 

tendency of people to assume they have control over a random process. For the purpose of 

the present study, the most relevant kind of illusion of control is the increased confidence 
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in future success participants express as a function of previous success in a guessing task 

(Burger, 1986; Coventry & Norman, 1998; Langer & Roth, 1975). For this, I included 

three different measures of confidence in winning: 1) a per-trial prediction of a win or a 

loss, 2) a post-block prediction of future wins over 50 rounds and 3) a period at the end of 

each block where a participant could choose to play up to 24 extra rounds (self-terminating 

play; see Ejova et al., 2013). 

 The success slope method can only dissociate win-rates from player skill, but 

cannot dissociate win-rates from perceived exploitability. This is especially so if the 

participants themselves are playing in any systematic manner. For a participant expressing 

a bias, in a game condition where they are set up to experience a high win-rate, the 

deduction that the opponent is exploitable would be completely rational: the participant is, 

after all, playing according to some rule or pattern and achieving results. The interpretation 

of performance speed as a function of success slope is as follows. On one hand, finding no 

difference in post-error slowing between two different win-rates (high and low) in the 

present experiment would be evidence against the notion that the frequency of outcomes is 

the main factor in post-error slowing. On the other hand, finding a significant difference in 

post-error slowing would suffer from ambiguity as to whether it supports the importance of 

frequency, of perceived exploitability, or both. 

 A secondary reason for manipulating the participants’ win-rates and their 

trajectories was to examine the effects of different success slopes on stayshift behaviour. In 

Experiments 1 and 2, the random choices selected by the unexploitable opponent may at 

times have led to situations where participants experienced very high rates of wins or 

losses across several consecutive trials, which may have affected reliance on RL heuristics. 

Due to randomization, these effects will likely have been averaged out in any group level 
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analyses. The two conditions in Experiment 3 where a player goes from mostly losing to 

mostly winning or vice versa (ascending and descending) make it possible to examine how 

success slope change affects stayshift behaviour or other choice biases. That is, assuming 

that participants start off with a stayshift bias, what happens when they initially do well in 

the game but then start losing, or vice versa? In the former case, the participant could 

perceive this as them learning to exploit the opponent and thus increase the bias; in the 

latter, the participant could perceive this as the opponent learning to exploit them and thus 

decrease the bias. However, this effect on the stayshift bias could be balanced or even 

countered by the local win-rate in the first half of the block. The ascending and descending 

conditions, then, work as a test of the importance of early vs. late outcome trends in 

adopting or discarding the stayshift bias. Similarly, the two conditions with an overall 

above or below chance level of wins (continuous success and continuous failure) allow for 

inferences about the frequency of stayshift behaviour as a function of success. If 

participants start off with a bias towards stayshift, a condition that forces a majority of the 

trials to be wins for the participant could be perceived as exploitable and increase the 

stayshift tendency. Likewise, a condition with a majority of losses could be perceived as 

the opponent exploiting the player, would function as negative feedback for the stayshift 

approach, and could reduce the bias. In sum, this analysis allows for examining what kind 

of success slope leads to the most perceived exploitation/exploitability by the opponent by 

using the players’ rate of stayshift behaviour as a proxy. 

 The confidence measure used in Experiment 3 was also changed from the one used 

in Experiments 1 and 2. In Experiments 1 and 2, confidence was measured using a Likert-

scale response every 9th trial of each block. In Experiment 3, the response was changed 

into a dichotomous response where participants simply predicted whether they thought 



 
108 

 

 
 

they would win or lose after making their game choice. The measure was included on all 

trials to avoid an intermittent measure causing participants to erroneously think there was 

something special about the trials on which the measure was taken. As win-rates were 

controlled for each participant, the focus of the confidence analysis would be on situations 

where each participant had gone through a set number of wins and losses around halfway 

of each block and towards the end of the block (Play Points 1 and 2, respectively; see 

Figure 3.1 in section 3.2.2). Due to the win-rates being controlled, the rate at which 

participants’ predictions tracked previously experienced win-rates and the rate at which 

these predictions changed in response to changing win-rates could be more easily 

measured on the group level than in Experiments 1 and 2. 

Two new additional exploratory measures of confidence were included in 

Experiment 3: an off-line prediction of hypothetical future wins at the end of each block, 

and a period of optional trials (see Ejova et al., 2013, for a similar design). The former 

simply allowed for measuring confidence at the end of the block rather than rely on the 

predictions made during the block. This helps give an overall picture of how participants 

feel about their chances of winning after experiencing the whole block: whether they will 

weigh later successes or failures more. The latter allowed for measuring the association 

between experienced win-rates and confidence in an arguably more ecologically valid 

manner, by the number of extra rounds a participant was willing to play. 

As a way to assess individual differences in the tendency to assume agency even in 

random situations, which may explain variation in the confidence measures not explained 

by the experimental manipulations, I used the Locus of Control (LoC; Rotter, 1966), A 

study by Lange and Tiggeman (1981) showed that the LoC scale has a relatively good test-

retest reliability of .61, but also that it has a two-factor structure, with items loading onto a 
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general control factor and a political control factor. A similar factor structure was also 

found by Parkes (1985). For the purposes of the present study, the political control factor is 

theoretically not relevant. I chose to use the whole questionnaire (considering the items for 

the political control factor as filler items) and sought to replicate the factor structure in 

Lange and Tiggeman (1981) and Parkes ( 1985) before excluding any items from the 

analysis. 

 Finally, Experiment 3 did not include a financial incentive. The proximal reason for 

this was that the incentive in Experiment 2 failed to produce any effects on stayshift 

behaviour and simply made reaction times in general slower. More generally, however, if 

stayshift is assumed to be a kind of default heuristic decision rule that is simply easier for 

people to follow than other decision rules (Alós-Ferrer & Ritschel, 2018; Scheibehenne et 

al., 2011; Wilke et al., 2014), there is no theoretical reason to assume that the absence of 

monetary incentives would make people fully capable of avoiding the use of this rule. 

Decisions need to come from somewhere, and “hard-wired” RL biases are a plausible 

mechanism for an initial preference for one decision over another. Monetary incentives 

may have separate effects on reliance on RL heuristics (increasing reliance; Achtziger et 

al., 2015) and motivation on non-incentivized trials (reducing motivation; Ma et al., 2014), 

making inferences about differences between incentivized and non-incentivized conditions 

more difficult (see Read, 2005, for a general discussion of issues relating to interpreting the 

effects of incentives).  As one of the main aims of this series of experiments is examining 

how flexible or inflexible these supposedly default decision rules are, the experiments need 

to look at baseline performance without additional influences such as financial incentive. 

3.2.1.1 Hypotheses. My hypotheses for Experiment 3 were: 
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1) A replication of stayshift bias in Matching Pennies (as per e.g. Scheibehenne et 

al., 2011, Wilke & Scheibehenne, 2011, Achtziger et al., 2015) 

2) More stayshift behaviour in higher win-rate conditions 

3) Post-error slowing when win-rate is above chance, post-error speeding when 

win-rate is at or below chance 

4) More voluntary rounds played, higher confidence of winning during Play Point 2 

and higher off-line predictions of wins in the ascending win-rate condition than in the 

descending win-rate condition 

5) Overall more voluntary rounds played, higher confidence of winning during Play 

Point 2 and higher off-line predictions of wins in conditions with a higher overall win-rate 

3.2.2 Method. 

3.2.2.1 Participants. Fifty-two (44 female; Mage = 18.53; SDage = 1.05) were 

recruited from the University of Sussex participant pool. Six participants were excluded 

due to indicating having correctly guessed what the experimental manipulation was in 

debriefing, leading to a final sample of forty-six. Informed consent was obtained from all 

participants before testing, and the experiment was approved by the Sciences & 

Technology Research Ethics Committee (C-REC) at the University of Sussex 

(ER/BJD21/21). Participants received course credit as reward for participation. 

3.2.2.2 Materials. 

3.2.2.2.1 Game trials. During game trials, static pictures of one penny coins (depicting the 

choices made by the opponent and participant) were presented on screen by the experiment 

program at 12º × 6º, with participants sat approximately 57 cm away from a 22" Diamond 

Plus CRT monitor (Mitsubishi, Tokyo, Japan). Stimulus presentation was controlled by 

Presentation 19 (build 03.31.15) and responses were recorded using a keyboard. 
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3.2.2.2.2 Questionnaire. I used Rotter’s Locus of Control (LoC; Rotter, 1966) 

questionnaire to provide an assessment of the participants’ tendency to associate the 

outcomes of their actions to either themselves (internal LoC) or outside factors (external 

LoC). The questionnaire consists of 29 dichotomous choice questions (see Appendix 3).   

3.2.2.3 Design. The study was a 2x2 within-subjects design with early (success, 

failure) and late (success, failure) game outcomes as factors (see Figure 3.1). The order of 

the conditions was counterbalanced between participants. Each condition consisted of 84 

mandatory rounds of the game, followed by up to 24 optional rounds, leading to a 

maximum of 108 rounds per block. Win-rates ranged from 1/6 to 5/6 and were defined for 

consecutive bins of 6 trials separately; that is, for each bin, there was at least one and at 

most five wins. The order of wins and losses within each bin was randomized.   

Each condition had an initial win-rate of 3/6 for the first bin. During the first three 

bins, the win-rate either increased up to 5/6 (descending and continuous success) or 

decreased down to 1/6 (ascending and continuous failure), staying at this point for two 

bins. After this, the win-rates once again either increased (ascending and continuous 

failure) or decreased (descending and continuous success) for the next two bins, going 

back to 3/6 and staying at this point for two bins (Play Point 1; see Figure 3.1). Thus, the 

continuous success and descending conditions can be characterized by an initial upward 

trajectory that then descends back to chance level, and the continuous failure and 

ascending conditions can be characterized by an opposite downward trajectory that then 

rises back to chance level. After this return to baseline, the win-rates of the continuous 

success and ascending conditions increased up to 5/6 (late success) and the win-rates of the 

continuous failure and descending conditions decreased down to 1/6 (late failure) after two 

bins, staying at these points for the last three bins (Play Point 2; see Figure 3.1). For each 



 
112 

 

 
 

condition, this final win-rate would also continue for any extra rounds the participant opted 

to play (Play Point 3: see Figure 3.1). 

Thus, in the continuous success condition, the participant experienced an initial 

upward trajectory, followed by a descent to baseline, followed again by an upward 

trajectory (early success, late success); in the descending condition, the participant 

experienced an initial upward trajectory followed by a long downward trajectory through 

baseline to below-chance level (early success, late failure); in the ascending condition, the 

participant experienced an initial downward trajectory followed by a long upward 

trajectory to above-baseline (early failure, late success); and in the continuous failure 

condition, the participant experienced an initial downward trajectory, followed by a return 

to baseline, followed again by a downward trajectory (early failure, late failure). 

3.2.2.4 Procedure. At the beginning of the experiment, I explained the rules of the 

game and the structure of the experiment to each participant, allowing them to ask any 

questions about how to proceed. I instructed participants to try and maximize their score 

for each of the four blocks and told that the opponents in different blocks may play the 

game in different ways. After giving the general instructions, I left the room. The 

experiment program started each block with a reminder of the rules of the game, the 

response keys, the goal the participant should aim for, and the option of playing up to 24 

extra rounds. 

 Each round of the game began with the participant making a choice of heads or 

tails, with a screen prompt reminding them of the response keys (“Please choose HEADS 

[k] or TAILS [p]”). After this, the participant made a prediction of whether they were going 

to win or lose this round, again with a screen prompt reminding them of the response keys 

(“Please predict WIN [w] or LOSS [d]”). Participants were instructed to make the game 
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choice response using their right hand and the prediction response using their left hand. 

After the game choice and prediction, the program presented the choices made by the 

participant and the opponent depicted by pictures of either the heads or tails side of a 

penny coin for 2000ms. After this, the text WIN or LOSE was presented on screen for 

1000ms, and at the end of the 1000ms period the participants score updated and the next 

round started immediately. The score was increased by one point for each win and reduced 

by one point for each loss. 

 After 84 rounds, the program informed the participant that they could keep on 

playing for up to 24 rounds or quit at any point by pressing the space bar. The block ended 

when the participant either pressed space or played through the maximum number of 

optional rounds. At the end, the participant was asked to indicate how many rounds they 

thought they would win if they were to keep on playing for another 50 rounds. After 

recording the response, the program instructed the participant to take a short break before 

the next section. After four blocks, the participant responded to the locus of control 

questionnaire. After the questionnaire, the program instructed the participant to inform the 

experimenter that they had finished, after which I debriefed the participant and thanked 

them for their time. 
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Figure 3.1. The win-rate trajectories of the four experimental conditions in Experiment 3. 

Each dot represents a bin of 6 game rounds. 
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3.2.3 Results. 

3.2.3.1 Reinforcement biases. I analysed rates of win-stay and lose-shift responses wtwo 

ways: first, by comparing the overall rates of the specific decision type between conditions; 

second, by comparing the rates of individual participants who expressed a statistically 

significant bias towards win-stay or lose-shift (denoted by a binary variable) between 

conditions. I ran each analysis separately using a generalized linear mixed model (GLMM) 

with a logit link (as both the response variable per each trial and the variable indicating a 

significant bias were binary variables). I used the lme4 and emmeans packages in R, 

version 3.5.1. See Table 3.1 for descriptives. 

 The reason for running two types of analyses was as follows. A GLMM analysis of 

the overall rates of a specific response type can test for differences in response rates 

between conditions on the group level. It can also provide an estimate of the group-level 

likelihood of a response type in a given condition, which allows for comparing it against a 

baseline, thus allowing for testing if there is a group-level bias. However, the results of this 

analysis hides information about how common a biased response pattern is among 

individuals. Because of this, the analysis does not clearly tell whether potential differences 

in win-stay responding are due to individuals increasing or decreasing their biased 

behaviour in some conditions, or from simply more or less individuals exhibiting a bias in 

those conditions. A GLMM on a binary variable denoting whether an individual participant 

behaved in a biased way allows for examining these questions. 
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Table 3.1. Win-stay and lose-shift choices and likelihoods of individual participants 

having a win-stay or lose-shift bias (back-transformed estimated marginal means) in 

Experiment 3 

Success slope WS overall WS individual LS overall LS individual 

Cont. success 63.0% (2.7%) * 50.1% (9.8%) 58.7% (2.5%) * 34.1% (10.1%) 

Descending 58.8% (2.9%) * 32.7% (8.9%) 55.9% (2.3%) * 17.8% (7.3%) 

Ascending 60.6% (2.9%) * 50.1% (9.8%) 59.3% (2.3%) * 20.2% (7.9%) 

Cont. failure 63.8% (2.9%) * 41.2% (9.6%) 59.7% (2.2%) * 31.1% (9.7%) 

Note: standard error in parentheses.  Asterisks indicate that the expected percentage of 

decisions (50%) falls below the 95% CI of the estimated marginal mean of observed 

decisions. Likelihoods of individual biases based on results obtained using binary 

variables based on the z-test. 

 

3.2.3.1.1 Win-stay. I analysed the rate of win-stay behaviour by entering the 

proportion of stay decisions following wins into a GLMM with a logit link, with early 

(success, failure) and late (success, failure) outcome conditions and their interaction 

entered as fixed effects, and participants as random intercepts. The success conditions 

within early and late outcome conditions were fixed as the reference for all fixed effects. 

See Table 3.1 for back-transformed probabilities of win-stay behaviour by condition. 

There was no significant main effect of early outcomes (β = -0.10, SE(β) = 0.07, z 

= -1.56, p = .118), a significant main effect of late outcomes (β = -0.18, SE(β) = 0.06, z = -

2.77, p = .006) and a significant interaction effect (β = 0.32, SE(β) = 0.10, z = 3.07, p 

= .002) . A Tukey test of pairwise comparisons indicated that individuals’ probability of 

staying after wins in the descending condition (early success, late failure; M = 58.8%, SE = 

2.9%) was significantly lower than the continuous failure condition (early failure, late 
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failure; M = 63.8%, SE = 2.9%) and the continuous success condition (early success, late 

success; M = 63.0%, SE = 2.7%) with no other significant differences. For each condition, 

the lower end of the 95% confidence interval was higher than .5, indicating that 

participants overall exhibited a win-stay bias in each condition. 

To conduct an analysis of individual-level biases in different conditions, I first 

calculated a binary variable for each participant in each condition to denote whether they 

had a significant win-stay bias. I used a two-tailed one sample z-test of proportion on the 

rate of win-stay choices for each participant. I set P0 (the null hypothesis probability) at 

50% i.e. the rate of win-stay behaviour one would expect if a player were playing 

randomly. Specifically, this z-test used P0 in calculating the standard error for the 

probability (as opposed to the observed probability of each participant). I assigned this 

variable a value of 1 if the participant had a rate of win-stay choices significantly higher 

than 50% of all eligible trials, and a value of 0 if the participants’ rate of win-stay 

behaviour was significantly lower than 50% or did not differ from 50%.  I then entered the 

binary variable into the same GLMM as above. The model tested for both main effects and 

the interaction between the predictors. There were no significant main effects of early (β = 

-0.00, SE(β) = 0.48, z = 0.00, p = 1) or late outcomes (β = -0.73, SE(β) = 0.49, z = -1.47, p 

= .141) and no significant interaction (β = 0.37, SE(β) = 0.69, z = 0.54, p = .592), 

indicating that participants were not more likely to exhibit a win-stay bias in any condition 

compared to other conditions. 

Since the z-test is a normal distribution approximation for comparing percentages, 

it may not work perfectly when the number of trials or the number of “hits” or the 

occurrences of interest (in this case, stay decisions) is low (< 10). Since it could not be 

guaranteed that a participant would necessarily stay on any trial following a loss, I tested 
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the robustness of the result using an alternative variable. I calculated a binary variable 

using the more conservative exact binomial test instead of the z-test for the rates of stay 

decisions after wins for each participant separately, and entered this variable into the 

GLMM above. The results of this analysis did not differ meaningfully from the analysis 

that used the binary variable based on z-test results as the dependent variable. 

3.2.3.1.2 Lose-shift. I conducted the analyses for the rate of lose-shift choices and 

individual lose-shift bias using the same models as for win-stay (see Table 3.1). For the 

rate of individual lose-shift choices, there were no significant main effects of early (β = 

0.03, SE(β) = 0.08, z = 0.32, p = .749) or late outcomes (β = -0.12, SE(β) = 0.08, z = -1.51, 

p = .131), and no significant interaction (β = 0.13, SE(β) = 0.10, z = 1.32, p = .188) . For 

each condition, the lower end of the 95% confidence interval was higher than .5, indicating 

that participants on the whole exhibited a lose-shift bias in each condition. Similarly, for 

the binary lose-shift bias variable, there were no significant main effects of early (β = -

0.74, SE(β) = 0.55, z = -1.33, p = .181) or late outcomes (β = -0.58, SE(β) = 0.54, z = -

1.07, p = .287). There was a marginal interaction effect (β = 1.45, SE(β) = 0.78, z = 1.86, p 

= .064), but pairwise comparisons revealed no significant differences. The marginal 

interaction likely stemmed from the continuous success and continuous failure conditions 

having numerically higher likelihoods of individual bias than the ascending or descending 

conditions. In sum, the results suggest that on the individual level, participants were not 

significantly more likely to express a bias in any condition over others. The results of this 

analysis did not meaningfully change when using a binary variable calculated based on the 

more conservative exact binomial test, other than that the interaction effect was no longer 

marginal (p = .433). 
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3.2.3.2 Reaction time. I entered median reaction times (in milliseconds) for 

decisions at trial n+1 into a two-way repeated measures ANOVA with game outcome at 

trial n (win, lose) and experimental condition (continuous success, descending, ascending, 

continuous failure; see Figure 3.1) entered as factors. I made the choice to treat the 

conditions as a single factor instead of a 2x2 (early x late) due to the early/late distinction 

causing a confound with overall block win-rate. That is, the descending (early success, late 

failure) and ascending (early failure, late success) conditions both had an overall win-rate 

of 50% for the whole block, whereas the continuous success condition (early success, late 

success) had an overall win-rate of roughly 70% and the continuous failure (early failure, 

late failure) had an overall win-rate of roughly 30%. Due to this, a main effect of either the 

late or the early factor would be the same in terms of mean win-rate, rendering the analysis 

difficult to interpret. Eight participants with an average median reaction time more than 

two times the group average median in any block were excluded from the analysis (as in 

previous experiments; see Chapter 1), yielding a final sample of 38. I ran the analyses 

using the ez and emmeans package in R, version 3.5.1. Mauchly’s test indicated violations 

of sphericity, so I used the Greenhouse-Geisser correction for effects with violations. There 

were no main effects of experimental condition [F(2.24, 82.77) = 0.55, MSE = 87091, p 

= .598, ƞp
2 = .02], or outcome at trial n [F(1, 37) = 0.30, MSE = 17126, p = .585, ƞp

2  <.01], 

but there was a significant interaction [F(2.37, 87.56) = 3.24, MSE = 12651, p = .036, ƞp
2 

= .08]. However, Tukey’s test indicated no significant differences for any comparisons 

(every p > .05). The results suggest no post-error slowing as a function of win-rate 

trajectories or overall win-rate. See Table 3.2 for descriptive statistics. 
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Table 3.2. Average median reaction times (milliseconds) in 

Experiment 3, N = 38 

Success slope Win Lose 

Cont. success 448 (26) 463 (30) 

Descending 440 (26) 442 (26) 

Ascending 445 (27) 503 (46) 

Cont. failure 512 (61) 470 (39) 

Note: standard error in parentheses. 

 

 3.2.3.3 On-line confidence measures. I analysed on-line confidence ratings 

collected from Play Points 1 and 2 similarly to win-stay and lose-shift biases: by first 

running a GLMM on the overall rate of win predictions and then running the same model 

on a binary variable denoting whether a participant had made significantly overconfident 

predictions in relation to the actual win-rate they had experienced prior to that Play Point. I 

used the lme4 and emmeans packages in R, version 3.5.1.  See Table 3.3 for descriptives. 
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Table 3.3. Win prediction rates and likelihoods of individual participants having an 

overconfidence bias (back-transformed estimated marginal means) in Experiment 3 

Success 

slope 

PP1 overall PP1 biased PP2 overall PP2 biased 

Cont. 

success 

82.0% (3.2%) * 

[69.1%] 

21.0% 

(7.8%) 

83.7% (2.7%) * 

[66.7%] 

31.0% (8.4%) 

Descending 84.8% (2.8%) * 

[69.1%] 

23.6% 

(8.3%) 

78.9% (3.2%) * 

[55.6%] 

31.0% (8.4%) 

Ascending 73.0% (4.1%) * 

[31.0%] 

77.1% 

(8.2%) 

89.1% (2.0%) * 

[44.4%] 

85.4% (5.9%) 

Cont. failure 67.5% (4.6%) * 

[31.0%] 

63.1% 

(10.1%) 

56.0% (4.6%) * 

[33.3%] 

33.6% (8.7%) 

Note: standard error in parentheses. Expected win prediction rate in square brackets; 

expected win-rate is equal to the win-rate of all trials prior to that Play Point. Asterisks 

indicate that expected percentage of win predictions falls outside the 95% CI of the 

estimated marginal mean of observed win predictions. Likelihoods of individual biases 

based on results obtained using binary variables based on the z-test. 

 

 3.2.3.3.1 Play Point 1. To examine differences in rates of prediction, I entered 

win/lose predictions for the 12 game trials in Play Point 1 into a GLMM with a logit link 

function with win-rate prior to Play Point 1 (high, low) entered as a fixed effects and 

participants and a dummy variable denoting the first and second measures in both win-rate 

conditions entered as random intercepts. I collapsed the data across consistent success and 

descending conditions for high, and acrosss consistent failure and ascending condition for 
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low. The dependent variable had a value of 1 for win predictions and 0 for loss predictions. 

See Table 3.3 for back-transformed probabilities of predicting win in each condition. 

The high win-rate condition was fixed as the reference. There was a significant 

main effect of win-rate prior to Play Point 1 (β = -0.76, SE(β) = 0.11, z = -7.15, p < .001). 

There was an overall higher probability of an individual predicting wins in the high win-

rate (M = 83.4%, SE = 2.8%) compared to the low win-rate (M = 70.3%, SE = 4.1%) 

condition. In each condition, the hypothesized rate of win predictions (the rate of wins 

experienced in the condition prior to Play Point 1) fell below the 95% confidence interval 

of the estimated marginal mean of win predictions in the condition, suggesting overall 

over-confidence. However, the difference between the prior experienced win-rate and 

average predicted win-rate was greater in the low win-rate condition (see Table 3.3). 

 In order to test for individual level differences in expressing overconfident 

predictions, I calculated a binary variable for each participant, separately for each 

condition, to denote whether their rate of win predictions differed from the prior 

experienced win-rate. I calculated this variable similarly to the binary bias variables for 

reinforcement biases: by running a two-tailed z-test of proportion on the rate of win 

predictions the participant made, with the prior experienced win-rate (approximately 30% 

in the low win-rate condition and 70% in the high win-rate condition) entered as the null. I 

assigned the variable a value of 1 if the participant predicted significantly more wins than 

they had experienced and a value of 0 if they predicted significantly less wins than 

experienced or if there was no significant difference. I entered this variable into the same 

GLMM as before, with the high win-rate condition fixed as the reference. There was a 

significant main effect of win-rate (β = 2.09, SE(β) = 0.44, z = 4.74, p < .001). Individuals 

were overall more likely to have a bias in the low win-rate condition (M = 70.2%, SE = 



 
123 

 

 
 

7.5%) compared to the high win-rate condition (M = 22.5%, SE = 6.5%). To test for the 

robustness of this result, I conducted the same analysis using a binary variable calculated 

using the more conservative exact binomial test instead of the z-test for the win prediction 

rates of each participant separately. The results using this variable were similar to those 

obtained using the binary variable created based on the results of z-tests. 

In sum, all conditions had an overall significantly higher rate of win predictions 

than the prior experienced win-rate, with a greater difference between prior and predicted 

win-rates in the low win-rate conditions. Participants in the high win-rate condition 

predicted overall more wins, suggesting predictions tracked actual experienced win-rate to 

a degree. In terms of individual overconfidence, there were more individuals with a 

significant overconfidence bias in the low win-rate condition, while only a minority in the 

high win-rate condition exhibited a significant bias. 

 3.2.3.3.2 Play Point 2. To examine differences in rates of prediction, I entered the 

rate of win predictions during the 12 trials in Play Point 2 into a GLMM with a logit link 

function with early win-rate (high, low) and late win-rate (high, low) and their interaction 

entered as fixed effects, and participants as random intercepts. See Table 3.3 for back-

transformed probabilities of predicting wins in each condition. The high win-rate condition 

within both early and late outcome conditions was fixed as the reference for each fixed 

effect. There was a significant main effect of early (β = 0.47, SE(β) = 0.17, z = 2.77, p 

< .01) as well as late (β = -0.32, SE(β) = 0.15, z = -2.08, p < .05) outcome types and a 

significant interaction (β = -1.55, SE(β) = 0.22, z = -7.00, p < .001). A Tukey test of 

pairwise comparisons indicated that individuals’ probability of predicting wins differed 

significantly between all conditions (p < .05) except for the comparison between the 

continuous success (early success, late success) and descending (early success, late failure) 
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conditions.  The ascending condition (early failure, late success) had a higher win 

prediction rate than any other condition (M = 89.1%, SD = 2.0%), while the continuous 

failure condition (early failure, late failure) had a lower win prediction rate than any other 

condition (M = 56.0%, SD = 4.6%). Each condition had a win prediction rate significantly 

higher than the prior experienced win-rate in that condition (see Table 3.3). 

 To repeat the binary overconfidence bias variable analysis from Play Point 1, I 

calculated a similar variable for each participant for Play Point 2. The null hypothesis was 

the win-rate experienced prior to Play Point 2: 66.7% in the continuous success condition, 

55.6% in the descending condition, 45.6% in the ascending condition, and 33.3% in the 

continuous failure condition., I then entered the binary overconfidence bias variable into 

the GLMM from the prior analysis of Play Point 2. There was a significant main effect of 

early outcomes (β = 2.57, SE(β) = 0.59, z = 4.33, p < .001), no significant main effect of 

late outcomes (β = 0.00 , SE(β) = 0.49, z = 0.00, p = .999) and a significant interaction 

effect (β = -2.45, SE(β) = 0.76, z = -3.20, p < .01). A Tukey test of pairwise comparisons 

revealed that the ascending condition (early failure, late success) had a significantly higher 

likelihood of an individual being overconfident (M = 85.4%, SE 5.9%) than any other 

condition (p < .05 for all comparisons with the ascending condition), with no other 

significant differences between conditions (p > .05 for all other comparisons). Running the 

same analysis on a binary variable based on the more conservative exact binomial test, the 

results differed in that there was no significant interaction effect. However, the numerical 

trend of a notable difference between the ascending condition (M = 57.1%, SE = 7.9%) and 

the descending (M = 9.7%, SE = 4.6%), continuous success (M = 22.3%, SE = 6.7%) and 

continuous failure (M = 13.8%, SE = 5.4%) conditions remained. Pairwise comparisons 

(Tukey's HSD) also indicated a difference between the ascending condition and all other 
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conditions (p < .05 for all comparisons), with no other significant differences, when using 

this alternative calculation of bias. Thus, the ascending condition had both the overall 

highest win prediction rate in absolute terms during Play Point 2, and also the highest 

number of individual people predicting significantly more wins than they had experienced 

prior to Play Point 2. 

3.2.3.4 Locus of control. To form a baseline assessment of the participants' 

tendency to associate outcomes to themselves or outside influences, I calculated an internal 

vs. external locus of control score for each participant based on the items loading onto the 

general control factor to be used as a covariate for Play Point 3 and the off-line prediction 

measure (see below). Based on studies by Lange and Tiggeman (1981) and Parkes (1985), 

the locus of control questionnaire measures two distinct factors: a general control factor 

relating to an individual’s tendency to associate outcomes in their life to either their own 

agency, hard work, ability etc. rather than luck, the actions of others, or fate; and a political 

control factor, relating to an individual’s beliefs about control over political institutions and 

world events. For the purposes of the present study, only the former is theoretically 

relevant. For this factor, Parkes (1985) lists items 2, 4, 5, 9, 10, 11, 15, 16, 18, 23 and 25 of 

the questionnaire, whereas Lange and Tiggeman (1981) list items 5, 9, 11, 13, 15, 16, 18, 

25, and 28 (see Appendix 3.1 for items). To calculate a sum score of the relevant items, I 

first ran a single-factor maximum-likelihood exploratory factor analysis (EFA) using all of 

the items listed by both Parkes (1985) and Lange and Tiggeman (1981). I excluded items 

with loadings below .40 and ran the EFA again with the remaining items until all items had 

loadings at or above the threshold. Items 5, 10, 15, 18, 25 and 28 remained for the final 

sum variable. These items had an acceptable reliability: Cronbach’s α = .68. 
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3.2.3.5 Additional confidence measures. I analysed the number of extra rounds 

played in Play Point 3 (self-terminating play) and the number of extra rounds the 

participants predicted they would win at the end of the block as additional confidence 

measures. I analysed these measures first on their own in an ANOVA, then with the added 

covariate of the LoC measure in an ANCOVA. I used the ANCOVA only to interpret the 

effects of the covariate; I interpreted main effects only from the ANOVA without the added 

covariate, in accordance with the recommendations of Schneider et al. (2015) on the use of 

ANCOVAs in repeated-measures designs. I used the ez and emmeans packages in R, 

version 3.5.1.  See Table 3.4 for descriptives. 

 

Table 3.4. Extra rounds and off-line predictions of future wins in 

Experiment 3 

Success slope Extra rounds Off-line prediction 

Cont. success 10.9 (1.6) 27.9 (1.7) 

Descending 8.4 (1.6) 15.7 (1.0) 

Ascending 12.4 (1.6) 21.8 (1.7) 

Cont. failure 8.2 (1.6) 9.3 (1.0) 

Note: standard error in parentheses. 

 

 

3.2.3.5.1 Play Point 3. I measured the amount of self-terminating play as the total 

number of extra rounds played (ranging from 0 to 24). I entered this variable into a two-

way repeated measures ANOVA with early (success, failure) and late (success, failure) 

overall outcomes as the within-subjects factors. See Table 3.4 for descriptive statistics. 
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There was no significant main effect of early outcomes [F(1,45) = 0.38, MSE = 47.98, p 

= .540, ƞp
2 < .01], a significant main effect of late outcomes [F(1,45) = 4.53, MSE = 

110.78, p = .039, ƞp
2 = .09], and no significant interaction effect [F(1,45) = 0.37, MSE = 

85.74, p = .548, ƞp
2 < .01]. In late success conditions, participants played significantly 

more extra rounds (M = 11.6, SE = 1.3) than they did in late failure conditions (M = 8.3, 

SE = 1.4). In the ANCOVA with the locus of control measure as the covariate, there was no 

significant main effect of the locus of control measure, and no interactions with it and the 

within-subject factors (every p > .05). 

 3.2.3.5.2 Off-line prediction. I analysed the off-line prediction measure regarding 

how many rounds participants thought they would win if they were to keep on playing for 

another 50 rounds in the same manner as the number of extra rounds played.  See Table 3.4 

for descriptives. In the ANOVA, there was a significant main effect of early outcomes 

[F(1,45) = 35.97, MSE = 50.13, p < .001, ƞp
2 = .44], a significant main effect of late 

outcomes [F(1,45) = 76.04, MSE = 91.91, p < .001, ƞp
2 = .63] and no interaction effect 

between early and late outcomes (F < 1). Participants had higher future win predictions in 

the early success conditions (M = 21.8, SE = 1.1) than in the early failure conditions (M = 

15.5, SE = 0.9). Likewise, participants had higher future win predictions in the late success 

conditions (M = 24.826, SE = 1.307) than in the late failure conditions (M = 12.5, SE = 

0.9). In the ANCOVA with the locus of control measure as covariate, there was no 

significant main effect of the locus of control measure [F(1,44) = 1.35, MSE = 130.89, p 

= .252, ƞp
2 = .03] and no significant interaction effects for the locus of control measure 

(every p > .05). 
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 3.2.4. Discussion. In Experiment 3, participants played Matching Pennies (MP) 

against a computer opponent and experienced four different predetermined success slopes 

(with differing overall win-rates) in four separate blocks of games. I examined 

reinforcement biases, reaction times, and different measures of confidence as a function of 

success slopes and win-rates. 

 There was a general trend of both win-stay and lose-shift biases regardless of the 

success slope condition. Thus, the results replicate the general trend from earlier research 

using binary choice zero-sum games (see e.g. Achtziger et al., 2015; Scheibehenne et al., 

2011; Wilke & Scheibehenne, 2011), but not the results of Experiments 1 and 2. The results 

did not support my initial hypothesis that stayshift responding would increase with win-

rate. My hypothesis here was based on the idea that if players start with an initial bias but 

keep losing at above-chance levels, this could be interpreted as negative feedback for the 

response pattern. Crucially, stayshift responding in the continuous success condition (early 

success, late success), with an overall win-rate of roughly 70%, did not differ significantly 

from stayshift responding in the continuous failure condition (early failure, late failure), 

with an overall win-rate of roughly 30%. The condition where the participant is winning 

the least could reasonably be considered the one condition that participants would 

experience as the most exploiting, and should thus cause the most reduction in stayshift, 

but this does not seem to be the case. The continuous success condition did not have a 

higher rate of stayshift responding than any other condition, and the continuous failure 

condition did not have a lower rate of stayshift responding than any other condition. Win-

stay responding in the descending condition (early success, late failure; M = 58.77%, SE = 

2.90%) was significantly lower than in the continuous failure condition (early failure, late 

failure; M = 63.84%, SE = 2.92%). It is unclear why only these two conditions would 
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differ from each other, and why the effect would be in this direction, as the continuous 

failure condition had a lower win-rate. One could argue that a success slope with actual 

large shifts in win-rate could be considered more realistic scenarios of exploiting an 

opponent or being exploited by them than a success slope that stays above or below 

chance-level most of the time. However, this would imply that the ascending condition 

(early failure, late success) should cause an increase in stayshift responding, but the 

ascending condition did not differ significantly from any other condition. In sum, the one 

small but statistically significant difference observed here does not fit neatly with any 

explanation when all of the results are taken into account. Additionally, the likelihood of an 

individual expressing a win-stay or lose-shift bias was similar between all conditions. Thus, 

the results suggest that the effect of manipulated win-rates or win-rate trajectories on 

reinforcement biases is likely negligible. 

Why did participants not increase their rate of stayshift behaviour when that biased 

pattern of play should have been rewarded by conditions where it seemingly led to high 

win-rates, or vice versa? This would seem to imply that win-rates significantly higher or 

lower than chance are not strong enough feedback to affect reinforcement biases. Yet it is 

obvious that people can learn from such feedback - people increase their rate of stayshift 

behaviour when the game task actually is exploitable by that strategy i.e. when it leads to 

wins (Scheibehenne et al., 2011). The question, then, is more specifically: why did the 

feedback in the current experiment not allow for players to “learn”? In hindsight, this may 

be caused by the way the conditions were set up, leading to feedback that was too noisy for 

the participants. Imagine a player who starts playing, and initially has a stayshift bias. The 

player observes that they are winning/losing more than would be expected by chance. 

However, the player is also making choices that do not follow the stayshift rule (a bias does 



 
130 

 

 
 

not equal to rote following of a rule on every round). On the rounds that the player does 

not follow the rule, they are still equally likely to win/lose. Over several rounds, this makes 

the feedback ambiguous: everything the player does yields positive/negative feedback. In 

contrast, a hypothetical opponent that simply behaved in a way that would be specifically 

weak to exploitation by a participant with a stayshift bias would yield the player increased 

wins only when the player made stayshift decisions and not in other situations. Thus, in the 

present experiment, both increased positive and increased negative feedback may have 

been pulling players into several directions, leading them to eventually play the game 

relatively similarly in all situations, i.e. defaulting to stayshift when nothing can be learned 

(see Lee et al., 2004; Lee et al., 2005). 

 There was no post-error slowing in any condition, and no other reaction time 

effects. If the “infrequent outcomes” notion of post-error reaction time changes (see 

Danielmeier & Ullsperger 2011) were correct for the present game task, one should expect 

post-error slowing in the continuous success condition and post-success slowing in the 

continuous failure condition. The numerical trend pointed in this direction, but the 

difference was over all very small: given the differences in design between Experiment 3 

and Experiments 1 and 2, the effect should have been larger in Experiment 3 due to 

controlling the win-rates of each participant.  It thus seems that something else than or in 

addition to high or low win-rates is needed to account for these reaction time differences in 

games. One possibility is that these differences occur when participants are winning at 

above-chance rates an opponent they perceive as exploitable with a clear pattern, which the 

participants may not have been able to do even in the high win-rate condition (see above). 

However, the additional win prediction measures taken between game responses and 

feedback may also explain the lack of post-error slowing, as introducing delays between 
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response and feedback may mask the slowing down or decrease it by preventing 

impulsivity. Introducing delays can also reduce lose-shift but not win-stay responding 

(Gruber & Thapa, 2016), which may explain why the win-stay bias was stronger in 

Experiment 3 than in Experiments 1 and 2. 

To measure how confidence updated as the game goes on, I measured the 

participants’ predictions of the round outcome on each round of the game and compared 

the percentage of “win” predictions to the actual experienced win-rate during two separate 

12-round periods: one after 42 rounds out of 84 (Play Point 1) and the second after 72 

rounds out of 84 (Play Point 2). During Play Point 1, participants in both high and low 

win-rate conditions were predicting overall more wins than they had experienced prior to 

that point. The rate of win predictions was higher in the high win-rate conditions, 

suggesting that the predictions tracked actual prior win-rates to some degree. The 

likelihood of a participant exhibiting a statistically significant bias was much higher in the 

low win-rate condition, suggesting that the average overconfidence in the high win-rate 

condition was caused by a smaller number of people with over-confident predictions. 

Why did a majority of players in the low win-rate conditions (ascending and 

continuous failure) of Play Point 1 seem to predict wins above their prior win-rate? The 

bias was not only common in terms of rates of individuals being overconfident, but 

relatively high: the participants predicted on average over twice as many wins as they had 

experienced previously. Only a minority of participants had an overconfidence bias in the 

high win-rate conditions (descending and continuous success). Due to the way individual 

biases were defined, this result could be argued to simply stem from participants predicting 

high wins in both conditions, which would only show up as bias in the low win-rate 

condition. However, since the overall rate of win predictions was higher in the high win-
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rate conditions, it seems that win-rate did have an effect on predictions, and this was not a 

case of participants simply predicting above-chance wins at the same rate in both 

conditions. It may be that a low win-rate in a game the participants assume is random may 

more likely induce a Gambler’s Fallacy, whereas the high win-rate could more likely 

induce a Hot Hand Fallacy (see Section 1.3). That is, the participants could be making 

overconfident predictions in the two conditions for different reasons. The hot hand fallacy, 

characterized by an expectation of a continuing streak is observed when people believe the 

cause of the streak to be a non-random process, whereas the gambler’s fallacy, 

characterized by the opposite expectation of a streak ending is observed when the streak is 

believed to be caused by a random process (see e.g. Ayton & Fischer, 2004; Burns & 

Corpus, 2004; Gronchi & Sloman, 2008; Tyszka et al., 2008). Due to the way the 

conditions are structured, conditions of early success may be more likely to lead to a 

perceived covariation between behaviour and outcome. On the other hand, the early failure 

conditions would cause the player to lose no matter what they do, making it more likely for 

them to conclude that the process generating the outcomes is random, and that thus they 

should start winning at some point. 

 After Play Point 1, the trajectories diverged, leading to four different success 

slopes. In the continuous success (early success, late success) and continuous failure (early 

failure, late failure) conditions, the prior win-rate trend continued. In the ascending (early 

failure, late success) and descending (early success, late failure) conditions it reversed. 

Based on the prediction rates in Play Point 2, participants were still overconfident in 

general (i.e. predicting more wins than they had previously experienced). However, the 

ascending condition had both the overall highest win prediction rate, and the highest 

likelihood of individual participants being overconfident. This is in line with the hypothesis 
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that the ascending condition would induce more illusion of control than the descending 

condition, replicating Ejova et al. (2013) and Matute ( 1995). The result does not align with 

some earlier studies of the illusion of control (see Burger, 1986; Langer, 1975; Langer & 

Roth, 1975; see also Thompson et al., 1998, for a review), where the most common 

observation was that participants had an illusion of control in descending success slope 

conditions. As Ejova et al. (2013) note, this is most likely due to differences in 

measurement and certain methodological issues. For example, Langer & Roth (1975) used 

participants’ estimates of how many times they had succeeded in a guessing task as a 

measure of inferred control, whereas the present experiment relied on predictions about 

future successes. 

 Another issue Ejova et al. (2013) point out is earlier uses of measures where 

participants are directly asked to what degree they believe they can anticipate future events 

(e.g. Burger, 1986). A question like this could mask the fact that participants may believe 

in being able to anticipate events not due to their skills but e.g. them being “lucky”. 

Measuring participants’ predictions of whether they will succeed or fail is a less direct 

method, but it avoids the issue of memory effects. This method cannot dissociate whether 

participants believed in skill or luck, but seems to produce results similar to more 

contemporary studies on illusion of control (Ejova et al., 2013; Matute, 1995). The fact that 

participants did not vary much in their rate of predictable stayshift behaviour between 

conditions also fits better with the notion that participants may have simply felt lucky 

(participants who indicated having believed the game was rigged were excluded from the 

analyses). 

Note that the results of Play Point 2 cannot be fully explained by either the overall 

block win-rates or the local win-rates during the 12 trials in Play Point 2. The overall win 
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prediction rate in the ascending condition was higher than in the continuous success 

condition (and all other conditions). This was despite the overall win-rate prior to Play 

Point 2 of the ascending condition being lower than that of the continuous success 

condition (44.44% vs. 66.66%, respectively). The local win-rate during Play Point 2, 

however, was identical between these conditions (83.33% in both conditions), suggesting 

that the win prediction rates during Play Point 2 are not simply short-sighted responses to 

the win-rate the participant has been experiencing within the last few trials. The number of 

individuals with a bias was roughly 33.3% in conditions other than the ascending, where 

roughly 80% of the participants expressed a bias (see Table 3.3). The ascending condition 

may be an exception among the conditions as its trajectory most closely resembles that of a 

player actually learning to exploit an opponent, i.e. “becoming better at the game”. Ejova 

et al. (2013) also suggested that participants in an ascending win-rate condition may think 

they are becoming better at the game, while noting that it is also possible that the 

overconfident prediction of wins is the norm, and that only in a descending condition do 

participants discard this overconfidence. The results of Experiment 3 actually support both 

the notion of general overconfidence and a special effect of the ascending condition. It is 

unclear why the rate of win predictions in Play Point 2 was lower in the continuous success 

condition than in the ascending condition, since the former never fell below chance-level 

wins locally. Once again, it may be that the nature of the continuous success condition, 

where anything is reinforced, paradoxically makes the interpretations participants make of 

the opponent more uncertain. This is in contrast to the ascending condition, which 

reinforce participants’ play patterns more slowly after an initial state of failure, potentially 

giving a stronger signal of an opponent that can be exploited in a specific way. However, if 
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this is the case, it is not reflected as increased stayshift behaviour – it may thus simply be 

that participants are more likely to consider the ascending condition as the most “lucky”. 

Finally, the results from the additional confidence measures (self-terminating play 

and the off-line prediction measure) indicated an effect of late success on self-terminating 

play, and an effect of both early and late success on off-line predictions of success. 

Participants were more likely to play extra rounds in late success conditions, and predicted 

higher wins in both late and early success conditions. Note that the latter analysis suffers 

from some ambiguity, as averaging over late or early success conditions in effect means 

creating an average prediction score for the average between a 50% win-rate condition 

(ascending or descending) and an above-chance win-rate condition that ends with high 

wins (continuous success). This means that both main effects on the off-line prediction 

score could still be mainly driven by late outcomes. The fact that the ascending condition 

did not stand out in these analyses undermines the notion of its specialty: there is a 

disconnect between participants’ confidence in Play Point 2 and their confidence of future 

wins. Nevertheless, it is worth noting that despite having no extra financial incentive, 

participants did continue playing a very simple game in predictable ways, validating the 

self-terminating play measure. 

In sum, the results of Experiment 3 do replicate several earlier studies, but are 

inconclusive as to why participants were overconfident in different situations, and why the 

rate of stayshift behaviour varied the way it did. The difference in win-rates between 

conditions both globally and locally (during Play Point 2) is a potential confound to some 

of the analyses. Would participants still have made overconfident predictions in the 

ascending condition if Play Point 2 saw a return to a local 50% win-rate? How much of the 

effect is caused by whether the rate of wins prior to any given Play Point was increasing or 
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decreasing? I attempted to address the win-rate confound in Experiment 4, along with 

replicating the results of Experiment 3. 

3.3 Experiment 4 

 3.3.1 Introduction. Experiment 4 was an attempt to replicate the results of 

Experiment 3, while correcting for some of the potential confounds in Experiment 3. In 

Experiment 4, I still used different win-rate trajectories, but this time each trajectory had an 

overall win-rate of 50%, ensuring that any potential differences in behaviour would be 

solely due to the order of wins and losses and not their rate. Additionally, Play Points 1 and 

2 both had a local win-rate of 50%, thus maintaining the effect of local win-rates constant 

for each analysis. 

The success slope conditions used in Experiment 4 consisted of a descending, 

ascending and a baseline (or flat) success slope condition. The descending and ascending 

conditions resembled the similarly named conditions from Experiment 3, with slightly 

modified slopes (see Figure 3.2). Most importantly, the success slopes now end, in Play 

Point 2, with a local 50% win-rate in each condition to address the issue of local high and 

low win-rates in Experiment 3. Alterations were made to the ascending and descending 

slopes to ensure that the slopes prior to and after Play Point 1 were mirror images of each 

other, and that the overall win-rate both prior to and after Play Point 2 was 50% in both 

conditions. This was done while ensuring that win-rate prior to Play Point 1 was above-

chance in the descending condition and below-chance in the ascending condition, and vice 

versa for the win-rate of the trials between Play Points 1 and 2. The flat condition was 

included as a control for Play Points 1 and 2, with the win-rates prior to each Play Point 

being 50% in this condition. Additionally, I included a condition with no fixed Play Points, 

an overall win-rate of 50%, and a fully randomized order of wins and losses to function as 
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an additional control condition for the effect of success slopes. Outside of these 

amendments, the design of Experiment 4 and the measures included were identical to that 

of Experiment 3 (see section 3.2). 

3.3.1.1 Hypotheses. My hypotheses for Experiment 4 were: 

1) A replication of a win-stay and lose-shift bias in all conditions (as per 

Experiment 3) 

2) No post-error slowing in any condition (as per Experiment 3) 

3) Highest rates of win predictions in the ascending condition (as per Experiment 3) 

4) Initial overconfidence during Play Point 1 in the ascending condition will be 

higher than in the descending condition (as per Experiment 3) 

3.3.2 Method. 

3.3.2.1 Participants. Fifty-five participants (N = 55; 46 female; Mage = 19.60; SDage 

= 1.33) were recruited from the University of Sussex participant pool. Recruitment was 

continued until there were six viable participants for each eight counterbalancing orders of 

the experimental conditions (see section 3.3.2.3): seven of the fifty-five participants were 

excluded due to indicating having correctly guessed what the experimental manipulation 

was in debriefing. Informed consent was obtained from all participants before testing, and 

the experiment was approved by the School of Psychology at the University of Sussex 

(ER/BJD21/26). Participants received course credit as reward for participation. 

3.3.2.2 Materials. 

3.3.2.2.1 Game trials. Static pictures of one penny coins (depicting the choices 

made by the participant and the computer opponent) were presented on screen at 12º × 6º, 

with participants sat approximately 57 cm away from a 22" Diamond Plus CRT monitor 

(Mitsubishi, Tokyo, Japan). The experiment was coded in Matlab (The MathWorks Inc., 
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Natick, MA) using the Psychophysics Toolbox extension (version 3; Brainard, 1997; 

Kleiner, Brainard & Pelli, 2007; Pelli, 1997), and responses were recorded using a 

keyboard. 

3.3.2.2.2 Questionnaires. At the end of the experiment, participants filled out the 

LoC measure previously used in Experiment 3 (Rotter, 1966). The 10-item Big Five 

Inventory (Rammstedt & John, 2007) and the Ego Resiliency scale (Block & Kremen, 

1996) were included as additional covariate measures along with other studies run in the 

lab at the time, but were not considered important for the purposes of the present 

experiment. For the LoC, I used items 5, 10, 15, 18, 25 and 28 to form a sum score, per the 

results of the EFA I ran for the LoC data from Experiment 3. The LoC was used as in 

Experiment 3, as a covariate for the Play Point 3 and off-line prediction measure analyses. 

3.3.2.3. Design. The study was a within-subjects design with four different success 

slope conditions with a 50% win-rate each: three conditions where the win-rates were 

manipulated to follow a certain trajectory (see Figure 3.2), and one condition where wins 

were random but fixed at 50% globally across the block. Therefore, at the end of each 

condition, all participants would have experienced an overall win rate of 50%. The order of 

the conditions was counterbalanced between participants so that there were eight 

counterbalancing orders in total. In four of these, the changing trajectory conditions 

(ascending and descending) followed each other and the control conditions (baseline and 

random) followed each other, starting with either the changing trajectory conditions or the 

control conditions. For the other four counterbalancing orders, a changing trajectory 

condition followed a control condition, followed then by a control condition and a 

changing trajectory condition, or vice versa. Each block consisted of 84 mandatory rounds 

of the game, followed by up to 24 optional rounds, leading to a maximum of 108 rounds 
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per block, as in Experiment 3. Win-rates in the trajectory manipulation conditions ranged 

from 1/6 to 5/6 and were defined for consecutive bins of 6 trials separately; that is, for each 

bin, there was at least one and at most five wins. The order of wins and losses within each 

bin was randomized for each participant.   

The descending trajectory started with an initial win-rate of 4/6 in the first bin, 

followed by two bins at 5/6, then one bin at 4/6, and one bin at 3/6, leading to an average 

win-rate of 70% across these five bins. After this, the win-rate would remain at 3/6 for the 

following two bins (Play Point 1). Following this, the win-rate would then begin to 

descend, with the first bin after Play Point 1 at 2/6, then two bins at 1/6, then one bin at 

2/6, and one bin at 3/6, leading to an average win-rate of 30% across these five bins. After 

this, the win-rate would again remain at 3/6 for two bins (Play Point 2). For the ascending 

trajectory, the five bins before and after Play Point 1 were simply swapped. For both the 

descending and the ascending trajectory, the average win-rate before Play Point 2 and the 

overall average win-rate were thus all 50%. 

For the baseline trajectory, the win-rate fluctuated around the baseline of 50%, 

never going above 4/6 or below 2/6, with Play Points 1 and 2 being identical to the other 

two trajectory conditions. During Point 3 win-rates were held at 50% for the 24 optional 

rounds (3 wins per 6 trials). The random condition had no trajectory. The overall win-rate 

of the block up until Play Point 3 was fixed at 50%, with win and lose trials fully 

randomized for the 84 trials. To maintain similarity between the other conditions, trials at 

Play Point 3 were fixed to follow the trend in the trajectory conditions, with bins of 6 trials 

each having 3 randomly allocated wins. This condition was included as a control for 

reaction time, reinforcement bias, self-terminating play and off-line confidence measures, 

having the same overall win-rate but no trend to the occurrence of wins and losses. This 
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allowed me to better differentiate the potential effects of patterns in wins and losses from 

the frequency of wins and losses. 

3.3.2.4. Procedure. The experimental procedure for the game trials and instructions 

given to participants were identical to Experiment 3. After finishing all their game rounds, 

participants filled out the three questionnaires used, after which I debriefed them and 

thanked them for their time. 
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Figure 3.2. The win-rate trajectories of the experimental conditions in Experiment 4. Each 

dot represents a bin of 6 game rounds. 

 

3.3.3 Results. 

3.3.3.1 Reinforcement biases. I analysed win-stay and lose-shift biases in two 

ways, following Experiment 3: first, by comparing overall percentages of win-stay and 

lose-shift behaviour in each condition, and second, by using independent samples z-tests of 

proportion to calculate a binary variable for each participant in each condition denoting 
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whether they had a significant bias in any direction. I analysed these measures with a 

GLMM with a logit link, with the experimental condition (descending, ascending baseline, 

random) entered as the within-subjects factor and participants entered as a random effect. 

The random condition was fixed as reference for both analyses. I predicted an overall trend 

of win-stay and lose-shift, as in Experiment 3. I used the lme4 and emmeans packages in R, 

version 3.5.1. See Table 3.5 for descriptives. 

 

Table 3.5. Win-stay and lose-shift decisions and likelihoods of individual participants 

having a win-stay or lose-shift bias (back-transformed estimated marginal means) in 

Experiment 4 

Success 

slope 

WS overall WS individual LS overall LS individual 

Descending 63.2 (2.3) * 35.69% (9.37%) 55.79 (2.39) * 21.89% (7.89%) 

Ascending 63.5 (2.3) * 44.43% (9.93%) 55.02 (2.39) * 19.56% (7.43%) 

Baseline 58.0 (2.4) * 27.46% (8.41%) 55.24 (2.39) * 11.42% (5.38%) 

Random 62.7 (2.3) * 44.43% (9.93%) 54.41 (2.40) 21.88% (7.89%) 

Note: standard error in parentheses. Asterisks indicate that the expected percentage of 

decisions (50%) falls below the 95% CI of the estimated marginal mean of observed 

decisions. Likelihoods of individual biases based on results obtained using binary 

variables based on the z-test. 

 

 

 3.3.3.1.1. Win-stay. For the overall rate of win-stay decisions, the model indicated 

no significant differences between the random condition and the descending condition (β = 

-0.02, SE(β) = 0.07, z = 0.30, p = .764) or the ascending condition (β = 0.03, SE(β) = 0.07, 

z = 0.47, p = .637), but there was a significant difference between the random and the 

baseline conditions (β = -0.20, SE(β) = 0.07, z = -2.97, p = .003). Tukey-corrected pairwise 



 
143 

 

 
 

comparisons yielded similar results, and also indicated a significant difference between the 

descending and baseline conditions (p < .05) and between the ascending and baseline 

conditions (p < .01). All other comparisons were non-significant (p > .05 for all). The 

baseline condition had a significantly lower rate of win-stay behaviour (M = 58.0%, SE = 

2.4%) than the other conditions (see Table 3.5). The lower confidence level of the 95% 

confidence interval for win-stay was above 50% in each condition as in Experiment 3. 

 For the binary individual bias variable, the model indicated no significant 

differences between the random condition and the descending condition (β = - 0.36, SE(β) 

= 0.48, z = -0.56, p = .578), the ascending condition (β = -0.17, SE(β) = 0.48, z = 0.00, p = 

1) or the baseline condition (β = -0.75, SE(β) = 0.50, z = -1.51, p = .131). Tukey-corrected 

pairwise comparisons yielded similar results and indicated no other significant differences 

(p > .05 for all comparisons; see Table 3.5 for back-transformed likelihoods of individual-

level bias). The results of this analysis did not change if I replaced the binary variable 

based on the z-test with a binary variable based on the more conservative exact binomial 

test. The results replicate the results of Experiment 3 in that there was a significant bias in 

each condition, with no difference between condition in the likelihood of an individual 

expressing a significant bias. The result of the baseline condition having the lowest rate of 

win-stay behaviour does not align with the results of Experiment 3, as there the lowest rate 

of win-stay behaviour was in the descending condition. 

 3.3.3.1.2. Lose-shift. For the rate of lose-shift decisions, the model indicated no 

significant differences between the random condition and the descending condition (β = 

0.06, SE(β) = 0.07, z = 0.85, p = .398), the ascending condition (β = 0.03, SE(β) = 0.07, z 

= 0.37, p = .711) or the baseline condition (β = 0.03, SE(β) = 0.07, z = 0.51, p = .612). 

Tukey corrected pairwise comparisons yield similar results and found no other pairwise 
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differences (p > .05 for all). The lack of significant difference in lose-shift across the four 

conditions was also consistent with Experiment 3. The lower confidence level of the 95% 

confidence interval for lose-shift was above 50% in each condition except the random 

condition (see Table 3.5). This is in slight contrast to Experiment 3, where an overall lose-

shift bias was observed in each condition. The numerical trend is similar for Experiment 3 

and the present experiment, with lower rates of lose-shift than win-stay responding, and 

lose-shift responding thus being closer to chance. 

 For the binary individual bias variable, the model again indicated no significant 

differences between the random condition and the descending condition (β = 0.00, SE(β) = 

0.53, z = 0.00, p = 1), the ascending condition (β = -0.14, SE(β) = 0.53, z = -0.27, p = .790) 

or the baseline condition (β = -0.78, SE(β) = 0.57, z = -1.37, p = .172). Tukey corrected 

pairwise comparisons yield similar results and found no other pairwise differences (p > .05 

for all). The results of this analysis did not change if I replaced the binary variable based 

on the z-test with a binary variable based on the more conservative exact binomial test. The 

results replicate Experiment 3, with no differences in the rates of individuals expressing a 

lose-shift bias between conditions, and the likelihood of an individual lose-shift bias being 

numerically lower than that of an individual win-stay bias (see Table 3.5). 

3.3.3.2 Reaction times. I entered median reaction times for decisions at trial n+1 in 

each condition into a two-way repeated measures ANOVA with the experimental condition 

(ascending, descending, baseline, random) and outcome at trial n (win, lose) entered as 

factors. Five participants were excluded from the analysis due to a block median reaction 

time more than two times the block average median reaction time in one block, leading to a 

final sample size of 43 for the reaction time analysis. I used the ez and emmeans packages 

in R, version 3.5.1. Mauchly’s test indicated violations of sphericity, and I used the 
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Greenhousse-Geisser correction for effects with violations. There was no significant main 

effect of condition [F(3,126) = 0.26, MSE = 81324, p = .857, ƞp
2 < .01] and no significant 

main effect of outcome type [F(1,42) = 1.15, MSE = 12245, p = .289, ƞp
2 = .03], but there 

was a significant interaction effect [F(2.49, 104.74) = 3.71, MSE = 10394, p = .020, ƞp
2 

= .08]. However, Tukey corrected pairwise comparisons found no significant pairwise 

differences (p > .05 for all comparisons), suggesting no post-error slowing and no overall 

reaction time differences between conditions (see Table 3.6 for descriptive statistics) as in 

Experiment 3. The numerical trend was towards post-error slowing in the ascending 

condition and post-error speeding in the descending and baseline conditions. 

 

Table 3.6. Average median reaction times (milliseconds) in 

Experiment 4, N = 43 

Success slope Win Lose 

Descending 478 (34) 448 (39) 

Ascending 463 (32) 497 (40) 

Baseline 519 (36) 464 (29) 

Random 457 (34) 457 (34) 

Note: standard error in parentheses. 

 

3.3.3.3 On-line confidence measures. I analysed on-line confidence measures as in 

Experiment 3, with separate analyses for overall rates of win predictions and a binary 

overconfidence bias variable. See Table 3.7 for descriptives. 
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Table 3.7. Win prediction rates and likelihoods of individual participants having an 

overconfidence bias (back-transformed estimated marginal means) in Experiment 4 

Success slope PP1 overall PP1 individual PP2 overall PP2 individual 

Descending 76.2% (4.2%) 

[70.0%] 

17.5% (7.7%) 69.0% (5.0%) * 

[50.0%] 

26.4% (8.9%) 

Ascending 60.0% (5.5%) * 

[30.0%] 

73.1% (9.7%) 71.7% (4.8%) * 

[50.0%] 

37.5% 

(10.1%) 

Baseline 74.7% (4.4%) * 

[50.0%] 

31.0% (10.2%) 65.4% (5.3%) * 

[50.0%] 

29.0% (9.3%) 

Note: standard error in parentheses. Expected win prediction rate in square brackets; 

expected win-rate is equal to the win-rate of all trials prior to that Play Point. Asterisks 

indicate that expected percentage of win predictions falls outside the 95% CI of the 

estimated marginal mean of observed win predictions. Likelihoods of individual biases 

based on results obtained using binary variables based on the z-test. 

 

3.3.3.3.1 Play Point 1. I entered win prediction rates from the 12 trials in Play Point 

1 into a GLMM with a logit link function, with the experimental condition (ascending, 

descending, baseline) entered as the predictor and with participants entered as a random 

effect. I excluded the random success slope condition from this analysis as it had no such 

subsections with controlled win-rates as the other conditions. The model fixed the baseline 

condition as reference. The model indicated no significant difference between the baseline 

condition and the descending condition (β = 0.08, SE(β) = 0.23, z = 0.58, p = .559) and a 

significant difference between the baseline condition and the ascending condition (β = -

0.68, SE(β) = 0.14, z = -4.85, p < .001). Tukey corrected pairwise comparisons for back-
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transformed estimated marginal means yielded similar results, and also indicated a 

significant pairwise difference between the descending and ascending conditions (p 

< .001). The ascending condition had a lower win prediction rate (M = 60.0%, SE = 5.5%) 

than the baseline condition (M = 74.7%, SE = 4.4%) or the descending condition (M = 

76.2%, SE = 4.2%), consistent with the ascending condition having the lowest actual win-

rate of the three conditions. I assessed overall bias as in Experiment 3, by checking if the 

participants’ average predictions in Play Point 1 matched with the win-rate they had 

experienced prior to Play Point 1. The 95% confidence interval for the prediction rates 

contained the prior experienced win-rate in the descending condition but not in the 

ascending or baseline conditions. In both the ascending and baseline conditions, the lower 

confidence level of the observed win prediction rate was above the prior expected win-rate. 

This result indicates that participants were overall over-predicting wins in these conditions 

(see Table 3.7), but probability-matching in the descending condition, the condition with 

the highest win-rate prior to Play Point 1. This is in contrast to Experiment 3, where 

participants over-predicted wins during Play Point 1 in the descending condition as well. 

Overall, the data point to a rough approximation of probability matching when win-rates 

are high, but general over-confidence when win-rates are low. 

I calculated the individual level overconfidence bias variable as in Experiment 3, 

with a two-sided independent samples z-test of proportion: participants with win prediction 

rates significantly higher than predicted were classified as having an overconfidence bias. 

The null hypothesis probabilities were 30% for the ascending condition, 70% for the 

descending condition and 50% for the baseline condition. In the GLMM on individual 

level bias, the descending condition did not differ significantly from the baseline (β = -

0.75, SE(β) = 0.56, z = -1.34, p = .181), but the ascending condition did (β = 1.80, SE(β) = 
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0.60, z = 2.99, p = .003). Tukey corrected pairwise comparisons yielded similar results, and 

additionally found a significant difference between the ascending and descending 

conditions (p < .001). The ascending condition had a significantly higher likelihood for an 

individual to make overconfident predictions (M = 73.1%, SE = 9.7%) than the descending 

condition (M = 17.5%, SE 7.7%) or the baseline condition (M = 31.0%, SE = 10.2%). I 

conducted the same analysis using a binary variable calculated using the more conservative 

exact binomial test instead of the z-test for the win prediction rates of each participant 

separately. Here, the difference between the ascending and baseline conditions was non-

significant. There was still a numerical trend of the highest likelihood of individual 

overconfidence bias in the ascending condition (M = 46.8%, SE = 11.9%) compared to the 

descending (M = 16.3%, SE = 7.7%) and baseline (M = 31.0%, SE = 10.2%) conditions. 

Together, the results indicate that the ascending condition had both the highest general win 

prediction rate and the highest number of participants making over-confident predictions, 

in line with the results of Experiment 3.  

 3.3.3.3.2 Play Point 2. I analysed the rate of win predictions during Play Point 2 

similarly to Play Point 1. The model fixed the baseline condition as reference, and 

indicated no significant differences between the baseline and descending conditions (β = 

0.16, SE(β) = 0.14, z = 1.14, p = .256) but a significant difference between the baseline and 

ascending conditions (β = 0.29, SE(β) = 0.14, z = 2.07, p = .038), with the ascending 

condition having a higher win prediction rate (M = 71.7%, SE = 4.8%) than the baseline 

condition (M = 65.4%, SE = 5.3%). However, Tukey corrected pairwise comparisons for 

back-transformed estimated marginal means found no significant pairwise differences for 

any of the comparisons (p > .05 for all). In each of the conditions, the lower confidence 

level of the observed win prediction rate was above the prior experienced win-rate (see 
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Table 3.7). The finding of overall overconfidence matches Experiment 3, but the finding 

that the ascending condition did not differ significantly from the descending condition is 

contrary to the hypotheses, and to the results of Experiment 3. 

 I calculated and analysed the binary overconfidence bias variable similarly to Play 

Point 1 (the null hypothesis of the z-test was 50% for each condition). The model fixed the 

baseline condition as reference, and found no difference between the baseline and the 

descending condition (β = -0.13, SE(β) = 0.52, z = -0.26, p = .797) or the baseline and the 

ascending condition (β = 0.38, SE(β) = 0.51, z = 0.76, p = .451). Tukey-corrected pairwise 

comparisons yielded similar results and indicated no other significant differences (p > .05 

for all comparisons). I conducted the same analysis using a binary variable calculated using 

the more conservative exact binomial test instead of the z-test for the win prediction rates 

of each participant separately. The z-test and binomial test categorized participants 

identically, so the results of the analysis were also identical. Again, this result differs from 

the results of Experiment 3, where participants were much more likely to have a bias in the 

condition most closely matching the ascending condition of Experiment 4. This is likely 

due to differences in the construction of win-rate trajectories between Experiments 3 and 4, 

since blocks with high local win-rate in Experiment 4 descended prior to Play Point. The 

numerical trend was still in the direction of the ascending condition having the highest 

likelihood of individual biases, but the difference between this condition and the others is 

noticeably smaller than it was in Experiment 3. See Table 3.7 for back-transformed 

likelihoods of individual participants making overconfident predictions. 

3.3.3.4 Additional confidence measures. I analysed the number of extra rounds 

played in Play Point 3 (self-terminating play) and the number of extra rounds the 

participants predicted they would win at the end of the block as in Experiment 3; first on 
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their own, then with the LoC measure as covariate, interpreting only the effects of the 

covariate from the ANCOVA (see Schneider et al., 2015). 

3.3.3.4.1 Play Point 3.  I entered the number of extra rounds played into a one-way 

repeated measures ANOVA with the experimental condition (descending, ascending, 

baseline, random) entered as the factor; see Table 3.8 for descriptive statistics. I expected 

to replicate the results of Experiment 3, with more voluntary rounds played for the 

ascending than the descending win-rate condition. Contrary to the expectation, there was 

no main effect of the experimental condition [F(3,141) = .32, MSE = 51.36, p = .809, ƞp
2 

< .01], suggesting that participants played similar numbers of extra rounds in each 

condition (grand mean = 11.7). Further, the result suggests that the differences in self-

terminating play between the conditions in Experiment 3 were driven primarily by the 

trend in win-rate towards the end of the block, as blocks ending in a high local win-rate 

had a higher average number of extra rounds played. The ANCOVA with the LoC measure 

added as the covariate found no significant main effect for the covariate or interactions 

(every p > .05).   

 3.3.3.4.2 Off-line prediction. I analysed the number of trials participants predicted 

they would win if they were to keep on playing for another 50 rounds similarly to self-

termination of play (see above). See Table 3.8 for descriptive statistics. I predicted that 

participants in the ascending condition would predict more wins (as per the main effect of 

late outcomes in Experiment 3). Mauchly’s test indicated violations of sphericity, and I 

used the Greenhouse-Geisser correction for effects with violations. Contrary to my 

expectations, there was no significant main effect of experimental condition [F(2.42, 

113.81) = 0.20, MSE = 31.53, p = .862, ƞp
2 < .01], suggesting no differences in off-line win 

predictions between conditions (grand mean = 19.2). Further, the result suggests that the 
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effects of both early and late outcomes on off-line win predictions in Experiment 3 were 

mostly due to differences in overall win-rates (absent in Experiment 4, as each block had a 

win-rate of 50%) or the local trend during Play Point 2. The ANCOVA with the LoC 

measure added as the covariate found no significant main effect for the covariate or 

interactions (every p > .05). 

 

Table 3.8. Extra rounds and off-line predictions of future wins in 

Experiment 4 

Trajectory Extra rounds Off-line prediction 

Descending 11.9 (1.5) 18.9 (1.1) 

Ascending 10.8 (1.5) 19.0 (1.2) 

Baseline 12.0 (1.3) 19.4 (1.1) 

Random 12.1 (1.4) 19.5 (1.1) 

Note: standard error in parentheses. 

 

3.4. General Discussion 

In two experiments, I examined reinforcement biases, reaction times and different 

measures of confidence in different series of Matching Pennies games with manipulated 

success slopes. In general, the results suggest that participants do not increase their 

stayshift responding even if they achieve a high win-rate with this initial bias, nor do they 

increase it in success slope conditions that mimic learning (the ascending condition; see 

Matute, 1995; Ejova et al., 2013). In Experiment 3, the descending condition had 

significantly lower rates of win-stay behaviour than the continuous success condition (and 

numerically lower than any other condition), and in Experiment 4, the baseline condition 
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had significantly lower rates of win-stay behaviour than all other conditions. Taken at face 

value, these results would fit with the notion that the win-stay response is modulated more 

easily than the lose-shift response (see Forder & Dyson, 2016; Scheibehenne et al., 2011, 

pp. 330-331). However, it is unclear why the modulation would have happened the way it 

did here. The reduction in win-stay (but not lose-shift) behaviour in neither experiment 

seems to be because of negative feedback, as in Experiment 3, win-stay was higher in the 

condition with more negative feedback, and in Experiment 4, total negative feedback was 

the same in each condition. Moreover, it does not seem to be clearly caused by a specific 

type of success slope either, as the descending condition of Experiment 3 is quite different 

from the baseline condition of Experiment 4, and the descending condition of Experiment 

3 showed no such reduction in win-stay behaviour. In sum, there is no obvious explanation 

that would cover both of these observed reductions in win-stay.   

Likewise, the single case of overall chance-level lose-shift responding in the 

random condition of Experiment 4 is not easily explained by the properties of the 

condition. It is specifically in conditions with random opponent behaviour and thus random 

outcomes that previous studies have observed lose-shift responding (Dyson et al., 2016; 

Forder & Dyson, 2016; Lee et al., 2004; Lee et al., 2005). Note, however, that lose-shift in 

all conditions across the two experiments was closer to chance than win-stay, and the one 

condition that did not reach significance was not significantly different from the others. In 

other words, this result may not need explaining other than statistical noise. Moreover, in 

both experiments, the likelihood of an individual participant expressing a win-stay or lose-

shift bias was not significantly affected by the experimental conditions. It thus seems that 

the bias is generally quite stable in the people who actually express it, at least in the binary 

choice task, even without financial incentives. Note also that participants were more likely 
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to express a win-stay than a lose-shift bias, and that in no condition did the likelihood of 

individuals expressing either bias significantly exceed 50% (the highest back-transformed 

mean of individuals with a win-stay bias: M = 50.07%, SE = 9.81, in Experiment 3). This 

suggests that the overall bias observed in the experiments was driven at most by roughly 

half the sample. This also means that the number of participants expressing both types of 

biases will necessarily be as low or lower than the number of people with a lose-shift bias, 

suggesting that a “true” stayshift bias may be quite rare – though the opposite shiftstay bias 

is clearly not as common or strong, as this would have shown in the group average data. 

This raises some questions about the suggested evolutionary origins of the stayshift bias 

and its status as a default decision rule (Scheibehenne et al., 2011; Wilke et al., 2014; 

Wilke & Barrett, 2009), as a sizable portion of the samples in Experiments 3 and 4 had no 

such bias. 

Neither fixed win-rates nor success slopes seemed to affect median reaction times 

as a function of wins and losses. Participants exhibited no post-error slowing in any of the 

conditions in Experiments 3 and 4. The numerical trend in Experiment 3 was in the 

predicted direction, with higher lose than win reaction times in the continuous success 

condition, and the opposite trend in the continuous failure condition. The trend in 

Experiment 4 suggested post-error speeding in the baseline and descending conditions, but 

post-error slowing in the ascending condition. There is a potential methodological issue 

here masking a larger effect that may reach significance, as the delay introduced by the win 

prediction measures in these experiments may have masked slowing (see e.g. Ting et al., 

2019, for a demonstration of delays in choice eliminating reaction time differences). The 

lack of any large reaction time differences could also be caused by a task switching effect: 

the participants have to constantly switch between game decisions and predictions of the 
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outcomes of those decisions. Task switching can lead to notable slowing for the trials 

following a switch, as well as more errors on those trials (see Monsell, 2003, for a review). 

Since essentially every game trial in the current experiment save the first trial in each block 

followed a switch, the slowing caused by this may mask any slowing that would have been 

caused by other factors. While no decision in Experiments 3 and 4 could be considered an 

“error”, the fact that task switching can increase errors suggests it may also have affected 

e.g. stayshift behaviour in these experiments. This issue will be addressed in Chapter 4. 

The on-line confidence results from Experiment 4 did not fully align with the 

results of Experiment 3. The difference in win prediction rates during Play Point 1 was 

partially replicated, with participants overall predicting higher win-rates when the prior 

win-rate was high (descending) than when it was low (ascending). However, unlike in 

Experiment 3, the predicted win-rate in the high early win-rate condition (descending) was 

not significantly higher than the actual prior experienced win-rate in that condition. As in 

Experiment 3, the likelihood of individuals having an overconfidence bias in Play Point 1 

was higher in the ascending than in the descending condition (the latter of which did not 

differ from baseline). However, while participants in Experiment 3 had the highest 

incidence of overconfidence bias and the highest overall rate of win predictions in the 

ascending condition during Play Point 2, this result did not replicate in Experiment 4. In 

Experiment 4, there was simply a general trend of overconfident win predictions in each 

condition during Play Point 2, and no significant differences in rates of biased participants 

between conditions. Although the numerical trend favoured the ascending condition, the 

likelihood of individual participants having an overconfidence bias was over twice as high 

in Experiment 3 (see Tables 3.3 and 3.7). Thus, while the general trend of group-level 

overconfidence replicated, the effect of success slopes on confidence in Experiment 3 did 
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not find support in Experiment 4. This suggests that the local win-rate during Play Point 2 

in Experiment 3 played a large role in win predictions and eliminating this confound in 

Experiment 4 thus eliminated the effect. 

An additional possibility is that participants were sensitive not only to prior 

experienced win-rate but also the trend in win-rate prior to Play Point 2. That is, in 

Experiment 3, in the ascending condition, participants were experiencing an upward trend 

in win-rate prior to Play Point 2 (contrast Figures 3.1 and 3.2). However, the design of 

Experiment 4 was slightly different: here, participants had experienced wins above chance 

after Play Point 1, but the win-rate was on a downward trend towards Play Point 2 (where 

it stabilised into 50%). Unlike the notion that local win-rate was the only crucial factor, the 

notion that local trend explains the results of Play Point 2 would also fit with the results of 

Play Point 1 in both experiments. That is, in the conditions where Play Point 1 followed a 

low win-rate, the trend was upward towards Play Point 1 (where it stabilised into 50% in 

both experiments), and this resulted in a higher rate of win predictions and higher rates of 

individual-level overconfidence. Likewise, participants may have been over-predicting 

wins prior to Play Point 2 when it followed a high win-rate, but reduced this as the trend 

turned downwards before Play Point 2. 

Similarly to the results of Play Point 2, the results of the additional confidence 

analyses in Experiment 4 indicated no differences between conditions for self-terminating 

play or the off-line prediction measure. This suggests that the differences between 

conditions observed in Experiment 3 were due to differences in overall win-rate between 

the conditions and/or the local high win-rate in the late success conditions. Specifically, in 

Experiment 3, self-terminating play was predicted only by late outcomes (with more extra 

rounds played in late success conditions), whereas the off-line prediction of wins was 
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affected by both early and late outcomes. However, as noted earlier, this dual main effect 

on the off-line predictions is confounded by the fact that the main effects of early or late 

outcomes in Experiment 3 necessarily compared the average of a 50% win-rate condition 

and an above-chance win-rate condition to the average of a 50% win-rate condition and a 

below-chance win-rate condition. Taken together with the results of the on-line confidence 

measures, these results suggest that both trial-to-trial predictions and decisions to keep on 

playing are highly dependent on local trends, whereas off-line predictions seem to be more 

sensitive to longer trends. 

3.5 Conclusion 

In sum, Experiments 3 and 4 replicated a general trend towards stayshift on the 

group level, while indicating that the number of individuals who actually have both a win-

stay and a lose-shift bias was quite small. Additionally, neither increased win-rates nor 

success slopes mimicking learning seem to increase the rate of the bias or lead to post-error 

slowing. When it comes to the illusion of control, the clearest trend within Experiments 3 

and 4 is that people may be generally slightly overconfident given their prior experienced 

win-rates, but also that the overconfidence in the aggregate data may be at times driven by 

a minority of participants. The results also suggest that participants react to local trends in 

win-rates in a logical way, such that at times their overconfidence seems to be a rational 

reaction to an upward trend in win-rate. Due to the potential interruption effect of the trial-

to-trial confidence measures on reaction times and potentially stayshift behaviour, 

Experiment 5 will remove the confidence measures and attempt to replicate the results of 

the previous four experiments. The questions still stand: why did participants in 

Experiments 1 and 2 not express a stayshift bias, given its ubiquity and replication in 

Experiments 3 and 4, and why did increased win-rates not induce post-error slowing? 
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CHAPTER 4: Comparing RPS and MP 

4.1 General Introduction 

In Experiments 1-2 (Chapter 2), I observed no stayshift bias in RPS (a three-option 

choice task). In Experiments 3-4 (Chapter 3), I observed biased stayshift behaviour in MP 

(a binary choice task), with more win-stay than lose-shift behaviour. Thus, the results of 

Experiments 3-4 align with prior studies of reinforcement biases in binary-choice tasks 

(see e.g. Achtziger et al., 2015; Scheibehenne et al., 2011). However, the results from 

Experiments 1 and 2 do not align with prior studies on reinforcement biases in RPS (Dyson 

et al., 2016; Forder & Dyson, 2016) reporting a lose-shift but not a win-stay bias. It is 

currently unclear why this result was not replicated in Experiments 1 and 2. 

More broadly, the experiments reported in the previous chapters and prior studies 

converge in arguing for a difference in the rates of win-stay and lose-shift behaviour 

between two simple game types (MP and RPS). In Experiments 5 and 6, I attempted to 

firstly replicate the results of the previous chapters, and secondly to examine further the 

differences between the two game types in terms of the flexibility of win-stay and lose-shift 

biases. In Experiment 5, participants played both RPS and MP with manipulated win-rates 

(as per Chapter 3), winning either 33% of the time or 50% of the time, with the outcomes 

distributed randomly across blocks. I focused on manipulated win-rates in order to test if 

the lack of post-error slowing in Experiments 3-4 when win-rates were above-chance was 

simply caused by a disruption by the additional confidence task, and if the baseline win-

rate of each game type may have an effect on stayshift behaviour.  In Experiment 6, 

participants played both game types against both unexploitable and exploitable computer 

opponents (as per Chapter 2). Specifically, the exploitable opponents in Experiment 6 were 

opponents with above or below chance autocorrelation in their choices, but with no 
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specific pattern of shifts in the case of the negatively autocorrelated patterns, unlike the 

exploitable opponents in Experiments 1-2. Increased or decreased autocorrelation in an 

opponent’s choice patterns can be exploited by either increasing or decreasing stayshift 

behaviour, respectively. Given the differences in rates of win-stay and lose-shift between 

the game types, this design allowed for testing whether participants would also learn at 

different rates, or find it easier to increase a specific response type in one game over 

another. 

In sum, the aim of Chapter 4 was to compare behaviour in RPS and MP within the 

same samples, in order to address the differences in design between Chapters 2 and 3, and 

help identify some of the factors behind the differences between the two game types. 

Specifically, Experiment 5 attempted to replicate the results observed in MP with fixed 

win-rates (Chapter 3) as well as extend this paradigm to RPS. Experiment 6 attempted to 

replicate in the results observed in RPS with exploitable and unexploitable opponents 

(Chapter 2) as well as extend this paradigm to MP. Comparing the two game types in the 

same paradigm allowed me to eliminate any potential effects any differences in e.g. the 

chosen method of randomization of outcomes or opponent choices (randomization of a flat 

distribution of opponent choices in Experiments 1-2 and randomization of a flat 

distribution of outcome types in Experiment 4) in the experimental designs of the previous 

chapters may have had on results. 

4.2 Experiment 5 

4.2.1 Introduction. Taken together, the results of Experiments 1-4 seem to support 

a difference in the rates of reinforcement biases between RPS and MP. The result of a win-

stay bias in MP but no such bias in RPS has some support from earlier RPS studies (Dyson 

et al., 2016; Forder & Dyson, 2016) that found no reliable win-stay trend, and earlier 



 
159 

 

 
 

studies using different binary choice tasks (similar to MP) finding a general stayshift bias  

(Achtziger et al., 2015; Scheibehenne et al., 2011; Wilke et al., 2014). However, there are 

also studies of RPS (Lee et al., 2005, in monkeys) or RPS-like games (Alós-Ferrer & 

Ritschel, 2018, in human players) that have found a win-stay bias as well. Thus, there is 

some precedence of binary choice games and three-choice games differing in terms of 

reinforcement biases, but it is not fully clear why, and the literature is conflicting. In 

Experiment 5, I attempted to replicate this finding and test whether the baseline win-rate of 

binary or three-choice zero sum games might affect the expression of reinforcement biases. 

Given an equal number of rounds and assuming roughly flat distributions of each 

outcome type, a participant playing RPS would experience fewer wins than a participant 

playing MP or a similar two-response game (33.33% vs. 50.00%). Thus, repeating prior 

winning moves in RPS simply “leads” to fewer wins than in MP purely due to the structure 

of the game. Further, while the distribution of outcomes in both games is flat, this may not 

be how RPS is perceived, based on event-related potential (ERP) literature and the neural 

interpretation of draws as measured by feedback-related negativity (FRN). Specifically, the 

FRN response to neutral outcomes (draws) seems to be similar to the response to losses 

(Holroyd et al., 2006). This would imply that from the reinforcement learning system’s 

perspective, the typical situation in RPS does not actually contain an equal number of wins 

and losses, but rather 1/3 positive outcomes (wins) and 2/3 negative outcomes (losses and 

draws). Therefore, a possible explanation for the lack of a reliable win-stay trend in 

Experiments 1-2 and in earlier RPS experiments where players experienced roughly equal 

distributions of outcomes (Dyson et al., 2016; Forder & Dyson, 2016) could be that the 

win-stay response, being more flexible, is sensitive to the frequencies of outcomes. In the 

typical situation of flatly distributed outcomes in MP, a participant using a win-stay rule 
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would be rewarded for the use of this rule more often than a participant using a similar rule 

in RPS. It may be that win-stay is a heuristic people initially hold but that is more likely 

discarded in RPS than in MP due to less frequent wins using the rule – in other words, the 

reinforcement rule of win-stay is simply not itself reinforced as much. The results of 

Experiment 3 yielded no support for this hypothesis in MP, but the results of those 

experiments may be confounded by a task-switching effect due to the confidence measures 

used on each round (see Monsell, 2003). 

The aim of the present study was to examine the effects of game type (RPS or MP) 

and outcome frequencies on the win-stay heuristic. To replicate previous results from 

Experiments 1 and 2 (RPS) and Experiments 3 and 4 (MP), I included blocks of games 

where participants played RPS or MP with the game outcomes fixed so that each 

participant would experience a flat distribution of all outcome types, randomized across the 

block, leading to 1/3 of each outcome type in RPS and 1/2 of each outcome type in MP. 

This would serve as a test of the baseline biases of both games against each other. It is 

unclear why Experiments 1-2 failed to find any reinforcement biases in the RPS conditions 

where opponent responding was random and outcomes were on average at chance-level, 

unlike in prior studies of biases in RPS (Dyson et al., 2016; Forder & Dyson, 2016; Lee et 

al., 2005). Given different randomization methods and general designs between the RPS 

(Experiments 1-2) and MP (Experiments 3-4) experiments reported here, Experiment 5 

served to eliminate these as potential explanations for differences in bias. 

To test the hypothesis that the win-stay heuristic is sensitive to the frequency of 

wins with unexploitable opponents, I included two other conditions where the expected 

win frequencies of RPS and MP were switched, leading to a block of MP where a 

participant would experience 1/3 win trials and 2/3 lose trials (as in standard RPS), and a 
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block of RPS where a participant would experience 1/2 win trials and 1/2 of lose and draw 

trials in total (as in standard MP; see Table 4.1). A main effect of win frequency in absence 

of other effects would indicate that the win-stay heuristic is sensitive to wins; a main effect 

of game type in absence of other effects would similarly indicate that the difference in the 

use of reinforcement rules between the games is due to some other difference between the 

games, such as the presence of a third option in RPS. While the results of Chapter 3 do not 

give much reason to assume an effect of manipulated win-rates at least in MP, a final 

replication of the results of Chapter 3 in both game types without task interruptions and 

using identical methods is relevant. Additionally, this allows for checking whether 

manipulated win-rates that are randomized rather than presented in fixed success slopes (as 

they were in Chapter 3) produce different kinds of behaviour in participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1. Distribution of outcomes in the experimental conditions 

in Experiment 5 

  Win Lose Draw Total 

RPS      

 50.00% Win-rate 45 23 22 90 

 33.33% Win-rate 30 30 30 90 

MP      

 50.00% Win-rate 45 45 NA 90 

 33.33% Win-rate 30 60 NA 90 
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The present study was run without financial incentive for two primary reasons. 

First, in order to maintain similarity between previous experiments in order to be able to 

compare the results; and second, because an incentive could compromise the interpretation 

of results. Achtziger et al. (2015) showed that in a Bayesian updating binary choice task, a 

higher monetary incentive produced a correlation between feedback-related negativity 

(FRN) amplitudes and reinforcement error rates – that is, the rate of stayshift decisions 

when the opposite decision rule (i.e. shiftstay) would yield better results in the task. 

Monetary incentives may also affect FRN amplitudes on trials with no financial incentives 

if both trial types are carried out during the same experiment (Ma et al., 2013). This would 

make comparing an incentivized and a non-incentivized condition in a within-subjects 

design difficult. Given these issues and that my primary aim was to examine how reliance 

on reinforcement rules may differ between the two game types (MP vs. RPS) or between 

situations with different win frequencies, leaving financial incentives out of the equation 

seemed like the best option. Given that reinforcement biases were observed in Experiments 

3-4 and in Dyson et al. (2016) and Forder & Dyson (2016), all without financial incentive, 

it seems that money is not necessary for reinforcement-based deviations from randomness 

in zero-sum games. Additionally, as the win-stay heuristic specifically seems to be 

sensitive to changes even in non-monetary outcome value in contrast to the lose-shift 

heuristic (Forder & Dyson, 2016), it may be that at least some of the instances of win-stay 

bias observed in the literature may be due to incentives/value rather than the heuristic 

being a default decision rule. 

In an attempt to resolve inconsistencies between the observations of post-error 

speeding/slowing across Chapters 2 and 3, I also examined reaction times as a function of 

outcome type. Post-error slowing was observed in Experiments 1 and 2 as a function of 
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win-rate in the exploitable condition. This was in contrast to the unexploitable conditions 

in Experiments 1 and 2, where win-rates were on average at chance-level, showing post-

error speeding. The modulation of reaction times as a function of outcome failed to 

replicate in Experiments 3 and 4, with no post-error slowing or speeding in any condition, 

despite participants in Experiments 3-4 experiencing both chance-level and above-chance 

win-rates (as in Experiments 1-2). In Experiment 5, I wanted to re-test post-error reaction 

time effects without the intervening confidence measurement that was included in 

Experiments 3-4 after each game choice, which introduced a delay and may have thus 

eliminated reaction time effects. A delay between response and outcome feedback may 

reduce post-error slowing compared to tasks with no such delay (Dudschig & Jentzsch, 

2009; Jentzsch & Dudschig, 2009; see also Danielmeier & Ullsperger, 2011). If response 

interruptions in Experiments 3 and 4 (relative to Experiments 1 and 2) were the cause of 

eliminating RT differences as a function of outcome, then using a fixed and no-delay 

design in Experiment 5, I expected to see post-error slowing in the conditions with a higher 

win-rate in the present experiment, and post-error speeding in the lower win-rate 

conditions. 

 4.2.1.1 Hypotheses. My hypotheses for Experiment 5 were: 

 1) Win-stay bias more common than lose-shift bias in MP (as per Experiments 3-4) 

 2) An overall lose-shift bias in RPS (as per Dyson et al., 2016; Forder & Dyson, 

2016) 

 3) An overall win-stay bias in MP (as per Experiments 3-4) 

 4) Post-error speeding in conditions with chance or below-chance level of wins 

5) Post-error slowing in the one condition with above-chance level of wins (RPS 

with 50% win-rate) 
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4.2.2 Method. 

4.2.2.1. Participants. Forty-eight (48) participants (38 female; Mage = 19.69, SDage 

= 1.94) were recruited from the University of Sussex participant pool. Informed consent 

was obtained from all participants before testing, and the experiment was approved by the 

School of Psychology at the University of Sussex (ER/JS/753/9). Participants received 

course credit as reward for participation. None of the participants had taken part in 

Experiments 1-4. 

4.2.2.2 Materials. Static photographs of gloved hands making the Rock, Paper and 

Scissors gestures and static pictures of one penny coins were presented on screen as per 

Experiments 1-2 and Experiments 3-4, respectively. Participants sat approximately 57 cm 

away from a 22" Diamond Plus CRT monitor (Mitsubishi, Tokyo, Japan). Stimulus 

presentation was controlled by MATLAB 2016 (The MathWorks, Inc.) with the 

Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997), and responses were 

recorded using a keyboard. 

4.2.2.3 Design. The study followed a 2x2 within-subjects design, with game type 

(RPS, MP) and win-rate (33.33%, 50%) as factors. The order of the four different 

conditions was fully counterbalanced among participants leading to 24 unique orders of the 

four conditions. I continued data collection until each of the 24 counterbalancing orders 

had two participants. Each condition consisted of 90 rounds of a game and the number of 

wins, losses and – in the case of RPS – draws was fixed based on the win-rate condition, 

and the order of occurrence of each outcome type was randomized within each condition 

(see Table 4.1). 

Due to the blocks consisting of 90 rounds, the RPS condition with a 50% win-rate 

had a slightly uneven distribution of losses and draws: 45 wins, 23 losses and 22 draws. I 
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did not consider this a major issue for analysing the data due to the fact that the number of 

non-win outcomes was still 50% and that the difference was very minor. 

4.2.2.4 Procedure. At the beginning of the experiment, I explained the rules of the 

game and the structure of the experiment to each participant, allowing them to ask any 

questions about how to proceed. I instructed participants to try and maximize their score for 

each of the four blocks, and informed them that they would be playing against four separate 

opponents, one per each block. I also informed participants that there were no strict time 

limits to making choices, but that given the number of rounds they would be playing, they 

should not worry too much about a single choice. After giving the general instructions, I left 

the room. The experiment program started each block by informing the participant of the 

number of rounds and the type of game they would be playing in the block, followed by 

reminder of the rules of the game and the scoring. 

 Regardless of game type, each round began with the participant being prompted to 

make a choice, with no time limit to the decision-making. After the game choice was made 

there was a 500ms interval, after which the program presented the choices made by the 

participant and the opponent for 1000ms. After this, the text WIN, LOSE or DRAW was 

presented on screen for 1000ms, after which the participant’s score was updated and the 

next round started after an  interval of 1000ms. The score was increased by one point for 

each win and reduced by one point for each loss, with draws having no effect on the score. 

 After finishing all the game rounds, the experiment program informed the 

participant that the experiment was finished. I then debriefed the participant and thanked 

them for their time. 
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4.2.3 Results. 

4.2.3.1 Reinforcement biases. Win-stay and lose-shift behaviour was analysed as in 

Experiments 3 and 4, with separate GLMMs first for the overall rate of a choice type, then 

with the same analysis on a binary variable denoting whether a participant had a significant 

bias. I analysed both game types within each model, as comparing the effects of win-rates 

regardless of game type, as well as examining the interaction between game type and win-

rate, was crucial to one of the questions Experiment 5 is asking: do the baseline win-rates 

of RPS and MP lead to different rates of reinforcement biases? 

This approach leads to potential main effects of game type that are “significant but 

not interesting”.1 That is, a statistically significantly higher rate of e.g. overall win-stay 

behaviour in MP than in RPS does not imply that participants are more biased towards 

win-stay in MP, as the baseline for bias is different in the two game types. However, 

splitting the analysis into two separate GLMMs, one per game type, would lead to issues I 

argue are greater: namely, they would prevent examining interaction effects or the main 

effect of win-rate regardless of game (the latter would then require four different models). 

Testing for an interaction effect with two separate models would require complicated 

equivalency tests, but these become unnecessary if the game types are included in the same 

model with an interaction term. Thus, one model is clearly more parsimonious. 

 

 

 

 

 
1Note that this issue does not apply to the analysis of the binary individual bias variables. 
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Table 4.2. Win-stay and lose-shift decisions and likelihoods of individual participants 

having a win-stay or lose-shift bias (back-transformed estimated marginal means) in 

Experiment 5 

Game Win-rate WS overall WS individual LS overall LS individual 

RPS 50.0% 32.5% 

(2.5%) 

[33.33%] 

16.1%  

(6.9%) 

75.0% 

(2.0%) * 

[66.7%] 

25.3%  

(9.1%) 

 33.3% 33.4% 

(2.6%) 

[33.3%] 

12.1%  

(5.7%) 

74.1% 

(2.0%) * 

[66.7%] 

22.7%  

(8.6%) 

MP 50.0% 67.6% 

(2.4%) * 

[50.0%] 

50.2% 

(10.9%) 

53.1% 

(2.3%) 

[50.0%] 

17.8%  

(7.5%) 

 33.3% 74.4% 

(2.2%) * 

[50.0%] 

71.7%  

(9.3%) 

51.4% 

(2.3%) 

[50.0%] 

13.5%  

(6.3%) 

Note: standard error in parentheses. Expected probabilities in square brackets. Observed 

probabilities are back-transformed using the emmeans package. Asterisks indicate that 

the expected rate of a strategy type falls below the 95% CI for the observed rate. 

Likelihoods of individual biases based on results obtained using binary variables based 

on the z-test. 

 

4.2.3.1.1 Win-stay. I analysed the proportion of win-stay behaviour using a GLMM 

with a logit link function with game type (RPS, MP) and win-rate (33.3%, 50.0%) entered 

as predictors and participants entered as random effects. The model tested for both main 

effects and the interaction between the predictors. The model fixed the MP and 50% 

conditions as reference for their respective analyses and for the interaction. There was a 



 
168 

 

 
 

significant main effect of game type (β = -1.47, SE(β) = 0.07, z = -21.94, p < .001) and of 

win-rate (β = 0.33, SE(β) = 0.08, z = 4.37, p < .001), as well as a significant interaction 

effect (β = -0.29, SE(β) = 0.11, z = -2.75, p = .006). Pairwise comparisons (Tukey) 

revealed significant differences between all conditions except for the comparison between 

the two RPS conditions (p < .001 for all other comparisons). See Table 4.2 for back-

transformed probabilities. The difference between rates of win-stay behaviour between the 

RPS and MP conditions was to be expected even if participants exhibited no bias in either 

condition, given the different baseline levels for the two games (where completely random 

choice in RPS would lead to roughly 1/3 win-stay decisions whereas in MP it would lead to 

roughly 1/2 win-stay decisions). The rate of win-stay behaviour differed in the two MP 

conditions, with the 50.0% win-rate condition (M = 67.6%, SE = 2.4%) having a 

significantly lower rate of win-stay decisions than the 33.3% win-rate condition (M = 

74.4%, SE = 2.2%). Notably, the rate of overall win-stay behaviour was non-biased in both 

RPS conditions, with the expected rate of 33.3% falling within the 95% CI, but both MP 

conditions had a significant win-stay bias, replicating the results of previous experiments. 

This suggests that win-stay behaviour is rarer in RPS than in MP. However, it does not 

seem that the effect is driven by a lower baseline win-rate in RPS, since this would imply 

that lowering the win-rate in MP should decrease win-stay behaviour as well. The results 

suggest the opposite, as the overall rate of win-stay in MP was lower when the win-rate 

was higher.  

To examine differences in the likelihoods of individual win-stay bias between the 

conditions, I calculated a binary variable by testing each individual participant’s proportion 

of win-stay behaviour in each condition against the game-specific chance level with a two-

tailed one-sample z-test of proportion. I assigned this variable a value of 1 for participants 
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whose proportion of win-stay behaviour was significantly higher than the baseline (50% 

for MP, 33.3% for RPS), and a value of 0 for participants with either a non-significant 

difference or a significantly lower proportion of win-stay choices.  I then entered this 

variable as the dependent variable in the same GLMM as above. See Table 4.2 for 

probabilities of individual bias. There was a significant main effect of game type (β = -

1.66, SE(β) = 0.57, z = -2.90, p = .004), a marginal main effect of win rate (β = 0.92, SE(β) 

= 0.53, z = 1.75, p = .08), and no significant interaction (β = -1.26, SE(β) = 0.79, z = -1.59, 

p = .111). The likelihood of participants expressing a win-stay bias was higher for MP (M 

= 61.0%, SE = 5.6% than for RPS (M = 14.1%, SE = 5.2%); a substantial difference. The 

marginal effect of win-rate was in the direction of higher rates of biased individuals in the 

33% win-rate condition (M = 41.9%, SE = 5.8%) than in the 50% win-rate condition (M = 

33.2%, SE = 7.2%). Thus, in addition to overall rates of win-stay behaviour, the trend of 

individual-level bias was also contrary to the hypothesis that lower win-rates decrease win-

stay behaviour. I also conducted the same analysis using a binary variable calculated using 

the more conservative exact binomial test instead of the z-test for the rates of stay 

decisions after wins for each participant separately. The results of this analysis did not 

differ from the earlier analysis other than that the effect of win-rate was no longer marginal 

but p = .21. The numerical trend of a higher likelihood of win-stay biases in the 33.3% 

win-rate condition (M = 39.0%, SE = 6.2%) than in the 50% win-rate condition (M = 

33.1%, SE = 7.3%) remained. 

In sum, the overall rate of win-stay responding was significantly higher than what 

would be expected from completely random responding in MP but not in RPS. The 

likelihood of individuals expressing a statistically significant win-stay bias was higher for 

MP than for RPS, and the likelihood of individual-level bias in RPS was in general very 
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low (under 20% in both win-rate conditions). This supports the notion arising from prior 

studies in this thesis and elsewhere that win-stay biases are generally more common for 

MP than for RPS. The findings that win-stay responding increased in MP when win-rate 

was lower than chance and that the marginal effect of win-rate on individual bias 

suggesting a higher likelihood of individual bias in the 33.3% win-rate condition,support 

flexibility in win-stay, but these results do not align with the results of the previous 

experiments. 

4.2.3.1.2 Lose-shift. I analysed overall rates of lose-shift behaviour using a GLMM 

analysis identical to the one I used for win-stay. There was a significant main effect of 

game type (β = 0.97, SE(β) = 0.08, z = 11.93, p < .001), no significant main effect of win 

rate (β = -0.07, SE(β) = 0.57, z = -1.19, p = .24), and no significant interaction (β = 0.02, 

SE(β) = 0.11, z = 0.22, p = .83). The rate of lose-shift behaviour was significantly higher in 

RPS (M = 74.5%, SE = 1.8%) than in MP (M = 52.3%, SE = 2.2%). As for win-stay, a 

difference between the rates of lose-shift behaviour was expected even assuming fully 

random play given different baselines (66.7% for RPS and 50.0% for MP). However, there 

was a significant lose-shift bias in RPS, with the expected rate falling under the 95% CI for 

the observed rate, but no such bias in MP. See Table 4.2 for back-transformed 

probabilities. 

I then ran the GLMM again with a binary variable coding for individual bias, 

similarly to the win-stay analysis (see Table 4.2). There was no significant main effect of 

game type (β = 0.45, SE(β) = 0.55, z = 0.81, p = .416), no significant main effect of win-

rate (β = -0.33, SE(β) = 0.57, z = -0.57, p = .569), and no significant interaction (β = 0.18, 

SE(β) = 0.79, z = 0.23, p = .816). The results of this analysis did not change when I 

replaced the dependent variable with a binary bias variable that was based on the more 
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conservative exact binomial test. In general, the likelihood of individuals expressing a lose-

shift bias was relatively low for both game types (under 30% in all conditions), with a 

numerical trend toward higher incidences of bias in RPS. 

In sum, the results suggest no effect of win rate on lose-shift behaviour. Moreover, 

the results do not indicate a difference between RPS and MP in the likelihood of people 

adopting a lose-shift bias, but nevertheless a significant overall lose-shift bias in the RPS 

conditions but not the MP conditions. It thus seems that while the number of people with 

the bias was similarly low for the two games, the biased participants expressed a stronger 

bias in RPS compared to MP. This replicates the findings of Experiments 3-4, with 

individuals with a lose-shift bias being a minority in MP and there being no differences 

between win-rate conditions in rates of individual lose-shift bias. Further, the result 

replicates the finding of an overall lose-shift bias in RPS (see Dyson et al., 2016), unlike 

Experiments 1-2. However, this overall bias in RPS was driven by a minority of biased 

individuals, unlike the win-stay bias in MP. 

 4.2.3.2 Reaction times. I analysed median reaction times (in milliseconds) for 

decisions at trial n+1 separately for the two game types. I made the choice to separate the 

games for this analysis in order to see if the reaction time trend for wins, losses and draws 

in RPS from Experiments 1 and 2 would replicate (as there are no draws in MP, this 

analysis could not be conducted in one model). I entered median reaction times into a two-

way repeated measures ANOVA with win rate (33.33%, 50.00%) and outcome at trial n 

(MP: win, lose; RPS: win, lose, draw) as factors for both separate analyses. Four 

participants were excluded due to having at least one block average median reaction time 

that was at least twice the group block average median (as in previous experiments), 

yielding a final sample of 44 participants for the reaction time analysis. 
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Table 4.3. Reaction times on trial n following wins, losses and draws on trial n-1 

(milliseconds) in Experiment 5, N = 42 

Game Win-rate Win Lose Draw 

RPS 50.00% 553 (44) 482 (41) 444 (28) 

 33.33% 636 (63) 518 (39) 432 (24) 

MP 50.00% 428 (20) 375 (18) N/A 

 33.33% 391 (17) 364 (16) N/A 

Note: standard error in parentheses. 

 

For MP, there was no main effect of win-rate [F(1,43) = 1.79, MSE = 13993, p = 

.188, ƞp
2 = .04], a significant main effect of outcome [F(1,43) = 35.82, MSE = 2024, p < 

.001, ƞp
2 = .45], and a significant interaction effect [F(1,43) = 5.92, MSE = 1234, p = .019, 

ƞp
2 = .12]. Post hoc comparisons revealed there were no differences within win reaction 

times or within lose reaction times between the two win-rate conditions (Tukey’s HSD, p > 

.05 for all comparisons).  Win reaction times were slower than lose reaction times for all 

comparisons except for the comparison between wins in the 33.3% win-rate block (391ms) 

and lose reaction times in the 50.0% win-rate block (375ms; p < .05 for all other win-lose 

comparisons). The interaction effect seems to have been driven by this lack of difference 

for one win-lose RT comparison. In general, the results indicate post-error speeding in both 

win frequency conditions and no overall effect of win frequency on RTs (see Table 4.3). 

 For RPS, Mauchly’s test indicated violations of sphericity, and I used the 

Greenhouse-Geisser correction for effects with violations. The two-way repeated measures 

ANOVA found no significant main effect of win-rate [F(1,43) = 0.77, MSE = 111248, p = 

.386, ƞp
2 = .02], a significant main effect of outcome [F(1.58, 67.71) = 14.55, MSE = 
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47889, p < .001, ƞp
2 = .25], and no significant interaction effect [F(1.46, 62.89) = 1.88, 

MSE = 35545, p = .170, ƞp
2 = .04]. Pairwise comparisons for the outcome condition 

revealed a significant difference between win and lose reaction times and win and draw 

reaction times (Tukey’s HSD, p < .05 for both comparisons) and a marginal difference 

between lose and draw reaction times (Tukey’s HSD, p = .07). Win reaction times (595ms) 

were slower than lose (500ms) or draw (438ms) reaction times, again indicating post-error 

speeding irrespective of overall win rate. Note also the numerical trend of longer reaction 

times in RPS compared to MP, similar to Experiments 1-2 compared to Experiments 3-4. 

 4.2.4 Discussion. Experiment 5 serves as a direct comparison between RPS and 

MP with respect to win-stay and lose-shift responding. A critical observation was that 

stayshift behaviour in RPS and MP under fixed chance level win-rates (33.3% wins, 50% 

wins, respectively) differed, as hypothesized. In general, there was an overall win-stay bias 

in MP but not RPS, and an overall lose-shift bias in RPS but not in MP. The results thus 

replicate earlier RPS studies (Dyson et al., 2016; Forder & Dyson) but not Experiments 1-2 

in terms of reinforcement biases in RPS. The results also broadly replicate Experiments 3-4 

in terms of the win-stay bias in MP being stronger than the lose-shift bias. 

There was a significant difference in win-stay choices between the win-rate 

conditions in MP, but no such differences in RPS, and no differences in lose-shift choices 

between the win-rate conditions for either game type. Moreover, the significant difference 

observed between the win-rate conditions in MP was such that the rate of win-stay was 

lower when the win-rate was higher (50%). Similarly to the results of Experiments 3 and 4, 

this suggests that win-stay may vary more than lose-shift, but the bias does not simply 

increase through increased wins. Here, participants significantly increased their rate of win-

stay in the only condition where the win-rate was lower than the baseline for the game. 
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Moreover, the marginal effect of win-rate on individual-level bias also seemed to suggest 

higher likelihoods of individuals adopting a win-stay bias when win-rate was lower. Taken 

at face value, these results could indicate that win-stay behaviour increases when a 

participant is losing more than they feel they should, but no such pattern was observed in 

similar situations in Experiments 3 and 4. In Experiment 3, the rate of win-stay responding 

was lower in the 50% win-rate descending condition than in both the 70% and 30% win-

rate continuous success and continuous failure conditions. On the other hand, Experiment 

4 had four conditions each with a 50% win-rate in different slopes or randomly distributed, 

and win-stay responding was lowest in the condition where the participants experienced an 

almost flat success slope with local win-rates remaining at 50% most of the time (even 

though Experiment 4 also contained a condition with a similar success slope to that of the 

descending condition in Experiment 3). Thus, each of Experiments 3-5 have shown 

variability in win-stay but not lose-shift, but there is no clear pattern to the variability of 

win-stay in these experiments, suggesting the variability in the experiments reported in this 

thesis may simply be statistical noise, or a result of some complex interaction that the 

present experiments are unable to examine. 

There was also a trend towards post-error speeding in each condition, contrary to 

my hypothesis of finding less post-error slowing specifically in the higher win-rate 

conditions. This result is inconsistent with Experiments 3 and 4. Based on this, it seems 

likely that the additional task of responding to the confidence measures in Experiments 3 

and 4 on each trial of the game (not present in Experiment 5) may have interrupted the task 

and thus any RT effects. However, the trend of post-error speeding in the MP conditions in 

Experiment 5 suggests that the interruption in Experiments 3-4 likely did not mask post-

error slowing but rather post-error speeding (see Dudschig & Jentzsch, 2009; Jentzsch & 
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Dudschig, 2009). The trend observed in Experiment 5 matches with the trend observed in 

Experiments 1-2 in the unexploitable condition, where participants were on average 

winning at the baseline chance rate of the game (RPS). Note again that only the RPS x 

50.00% condition in Experiment 5 had an above-chance win-rate, which nevertheless does 

not seem to have translated into post-error slowing due to losses becoming a rarer event 

(see e.g. Danielmeier & Ullsperger, 2011) and/or the participant perceiving the opponent 

as more exploitable. In Experiments 1 and 2, post-error slowing was predicted by the win-

rate in the exploitable condition, but participants in these experiments could achieve win-

rates much higher than 50.00% of the trials (up to 78.89% in Experiment 1 and 83.33% in 

Experiment 2). Thus, the manipulation in Experiment 5 may not have been strong enough 

to induce post-error slowing. If that is the case, however, this at the very least does not 

support a linear relationship between success rate and reaction times in situations where 

participants cannot do anything to increase their win-rate. A higher win-rate, and one that 

is achieved via lawful behaviour, may be needed to induce post-error slowing. 

 The overall biases in the two games seem to have stemmed from different numbers 

of people actually expressing a bias. For the win-stay bias, there was both a significant 

overall bias to choose win-stay in MP but not in RPS, as well as a higher likelihood for an 

individual to have a win-stay bias in MP than in RPS . For the lose-shift bias, there was a 

significant overall bias to choose lose-shift in RPS but not in MP . However, the likelihood 

of individuals having a lose-shift bias did not differ significantly between MP and RPS . 

Despite only a minority of the sample expressing the lose-shift bias on an individual level, 

these individuals had a strong enough lose-shift bias for it to show up as a significant 

overall bias in RPS. These results are somewhat complicated in terms of assessing the 

flexibility or lack thereof of the two types of reinforcement bias. In terms of participants 
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actually adopting a bias, there seems to be more variability for win-stay than lose-shift. 

However, for the minority of participants who did adopt a lose-shift bias, the strength of 

this bias seems to have been different based on game type, suggesting that something in 

RPS causes lose-shift choices to be more frequent compared to the baseline than in MP. 

This, further, suggests some flexibility in the strength of the lose-shift bias, if not the 

likelihood of the bias itself. Further, the results of Experiment 5 support my inference from 

the results of Experiments 3-4 that a true stayshift bias (with both biased win-stay and lose-

shift responding) is relatively rare, given the low likelihood of individuals expressing the 

lose-shift part of the bias. 

These differences in reinforcement biases between the games also seem to be the 

result of factors other than their baseline win-rates, and thus there is something else about 

the games that cause these differences. If the baseline win-rates were the main factor 

behind the differences in player biases between the games, participants in similar win-rate 

conditions should have expressed similar biases regardless of game type. Specifically, 

participants in the 50.0% win-rate RPS condition (mimicking the baseline win-rate of MP), 

compared to the 33.3% win-rate RPS condition, should have had higher rates of win-stay 

choices and/or a higher likelihood of having an individual level win-stay bias. Similarly, 

participants in the 33.3% win-rate MP condition (mimicking the baseline win-rate of RPS), 

compared to the 50.0% win-rate MP condition, should have had higher rates of lose-shift 

choices and/or a higher likelihood of having an individual level lose-shift bias. One 

possibility is simply that the addition of one more choice type in RPS affects choice 

probabilities in favour of shifting after losses; participants may e.g. underestimate the 

likelihood that an opponent would repeat their choice after winning due to more than one 

shift option. Alternatively, the participant may be less likely to have a win-stay bias in RPS 
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because the amount of information to track in RPS is greater than in MP due to more 

choice and outcome options, and this may reduce the biasing effects of memory (as argued 

by Rapoport & Budescu, 1992). 

  A second possibility (that will be explored in Experiment 6) is that the rate of 

autocorrelation (i.e. the rate of repetition) in the games affects the differences in win-stay 

and lose-shift biases (see Scheibehenne et al., 2011; Wilke et al., 2014, for examples of 

manipulating autocorrelation). That is, assuming an opponent that does not have an item 

bias, the baseline likelihood of e.g. a tails following a tails in MP is 50%, but the baseline 

likelihood of e.g. a rock following a rock in RPS is 33.33%. While this does not matter in 

terms of what the equilibrium strategy is because the likelihoods for repetition and 

different types of shifts are always equal assuming a non-biased opponent, it may matter in 

terms of how participants perceive the game task. As repeating one’s own move after a win 

is optimal if and only if the opponent is also more likely to repeat their move in that 

situation, perceiving the opponent as more likely to repeat their moves in MP than in RPS 

may increase win-stay behaviour in MP. Manipulating the win-rate in the present 

experiment did not directly manipulate autocorrelation, as the randomization of outcomes 

across the blocks caused no systematic reward to any choice strategy. That is, while 

participants may have won more or less than expected in a given condition, this did not 

translate to the opponent repeating their moves more or less often. Directly manipulating 

autocorrelation by increasing or decreasing the rate of repetitions from its baseline rate 

would, on the other hand, affect the opponent’s exploitability. In the case of decreased 

autocorrelation (less response repetition), following the stayshift rule would cause the 

players to lose more often than expected by pure chance. Conversely, in the case of 

increased autocorrelation (more response repetition), following the stayshift rule would 
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cause the players to win more often than expected by pure chance. As McKay and Efferson 

(2010) have pointed out, to test if a supposed cognitive bias can actually be meaningfully 

called a bias, one should see if the bias shows up in situations when reducing the bias 

would actually lead to better performance. Therefore, Experiment 6 examined behaviour 

under different conditions of autocorrelation in a final examination of the variability and 

flexibility of standard reinforcement learning heuristics. 

4.3 Experiment 6 

4.3.1 Introduction. In Experiment 5, I replicated in a single sample the finding that 

RPS and MP, two simple zero-sum competitive games, induce different kinds of 

reinforcement biases in players when the opponents cannot be exploited. Specifically, RPS 

was characterized by a lose-shift bias, whereas MP was characterized by a win-stay bias. 

These biases did not seem to stem from the kinds of win-rates that are typical to the games 

when the opponent is playing randomly (33.3% for RPS and 50.0% for MP). Instead, they 

might stem from the degree of baseline response repetition in these games (also 33.33% for 

RPS and 50% for MP), i.e. the autocorrelation of the opponents’ responses. In Experiment 

6, I attempted to test whether the difference in biases between the two game types would 

also lead to differences in learning when participants played against exploitable opponents 

that either supported (positive autocorrelation) or punished (negative autocorrelation) the 

biases. The stayshift heuristic in general is optimal when an opponent’s moves are 

positively autocorrelated, that is, when the likelihood of a repetition is greater than the 

likelihood of any type of shift: the opponent is more likely to repeat their choice no matter 

what, and thus repeating one’s own winning moves and shifting away from losing moves 

leads to a higher chance of winning. When the opponent’s moves are negatively 
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autocorrelated, that is, when the likelihood of a repetition is lower than the likelihood of 

any type of shift, the player should respond by using the opposite shiftstay rule. 

Scheibehenne et al. (2011) and Wilke et al. (2014) showed, in experiments using 

simulated (binary choice) slot machines with positive autocorrelation, negative 

autocorrelation and random patterns, that people have trouble detecting and exploiting 

negative autocorrelation unless it is quite high (up to 80% likelihood of alternation in a 

binary choice game). This suggested that the stayshift bias can be difficult to learn away 

from even when participants are incentivized to do so by the game structure. If it is the 

case that RPS and MP lead to different kinds of biases, this could also mean that players 

would have different kinds of difficulties when attempting to exploit an opponent with a 

negatively autocorrelated pattern. Additionally, the differences in biases could lead to 

differences in learning to exploit an opponent with a positively autocorrelated pattern. That 

is, if players tend towards a lose-shift bias in RPS, they may find it easier to increase their 

lose-shift responding relative to win-stay during positively autocorrelated conditions, and 

vice versa for MP. Scheibehenne et al. (2011) noted that their participants were better at 

applying the correct rule in their autocorrelation conditions after wins than after losses, 

consistent both with responses after wins being more flexible, but also with win-stay being 

the more common form of the bias in binary choice tasks. 

Note that in the typical experimental situation of an opponent playing randomly, 

the two games have different baseline rates of autocorrelation. In RPS, the likelihood of a 

repetition is 33.33%, whereas in MP it is 50%. Thus, increasing or decreasing the rate of 

repetition must happen relative to the baseline. In Experiment 6, I included three 

autocorrelation conditions for each game type: baseline, positive and negative. I decided on 

a conservative step of 16.67% percentage points for increases and decreases of the 
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repetition rate for both game types. This made it possible to create conditions for both 

game types where the modified repetition rate was the baseline repetition of the other game 

type: 50% in the positively autocorrelated RPS condition, and 33.3% for the negatively 

autocorrelated MP condition. By setting the conditions up like this, it was possible to 

compare two conditions with an identical likelihood of repetitions but a different game 

type in order to test the effect of the baseline autocorrelation in the two games. Does the 

33.3% likelihood of repetitions in a random RPS condition itself lead to increased lose-

shift specifically? Similarly, does the 50% likelihood of repetitions in a random MP 

condition lead to increased win-stay specifically? If the finding of different rates of win-

stay and lose-shift between the game types replicates, but the identical autocorrelation 

conditions do not resemble each other in terms of stayshift biases, it would suggest that 

RPS leads to different decision biases simply due to having three options (as the potential 

explanation of baseline win-rate was not supported by the results of Experiments 3-5). 

By using de facto exploitable opponent conditions where only a specific type of 

behaviour would lead to increased wins, this experimental set-up also allowed for a return 

to the analysis of post-error slowing against exploitable and unexploitable opponents (c.f. 

Experiments 1 and 2). I expected participants to exhibit post-error slowing in the positive 

but not the baseline or negative autocorrelation conditions, as based on Scheibehenne et al. 

(2011) and Wilke et al. (2014), participants should be most likely to be able to exploit the 

positively autocorrelated opponents. 

4.3.1.1 Hypotheses. My hypotheses for Experiment 6 were: 

1) An overall win-stay bias in MP but not in RPS in the baseline condition (per 

Experiment 5) 
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2) An overall lose-shift bias in RPS but not in MP in the baseline condition (per 

Experiment 5) 

3) Higher likelihood for individuals to adopt a win-stay bias in MP than in RPS in 

the baseline condition (per Experiment 5) 

4) Higher rates of optimal behaviour in the positively autocorrelated than the 

negatively autocorrelated conditions (per Scheibehenne et al., 2011; Wilke et al., 2014) 

5) Specifically higher rates of win-stay in MP and lose-shift in RPS in the 

positively autocorrelated conditions 

6) Post-error slowing in the positively and negatively autocorrelated conditions, 

modulated by win-rate (per Experiments 1-2) 

7) Post-error speeding in the baseline conditions (per Experiments 1-2 and 5) 

4.3.2 Method. 

4.3.2.1 Participants. Thirty-seven participants (N = 37, 32 female, Mage = 23.81, 

SDage = 4.35) from the University of Sussex participant pool and visiting students were 

recruited via posters, flyers and advertising in summer school workshops. Two participants 

were excluded after testing due to having later indicated that they had participated in 

earlier similar studies from the lab, leading to a final sample of 35. I was initially supposed 

to continue data collection until a sample of 48 viable participants, four for each of the 

counterbalancing conditions of the experiment (see below), were recruited, but had to stop 

due to time pressure. Each participant was paid a flat £6 reward for participation. Informed 

consent was obtained from all participants before testing, and the experiment was approved 

by the School of Psychology at the University of Sussex (ER/JS/753/12). 

4.3.2.2 Materials. The stimulus materials and their presentation were identical to 

those of Experiment 5. 
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4.3.2.3 Design. The experiment was 2x3 within-subjects design, with game type 

(RPS, MP) and level of autocorrelation (baseline, positive, negative) as factors. The 

conditions were counterbalanced so that an individual participant would first play through 

all three RPS blocks or all three MP blocks, followed by the three remaining blocks. The 

order of the autocorrelation conditions was always identical between the game types, and 

varied between the counterbalancing orders. There were 12 different counterbalancing 

orders (6 different permutations of the three autocorrelation conditions, and 2 different 

orders of the game type conditions). 

I defined the positivity or negativity of autocorrelation in relation to the baseline of 

each game type (33.3% for RPS and 50.0% for MP). That is, a positive autocorrelation 

condition always represented a likelihood of the opponent repeating their move that was 

higher than baseline. For both game types, I made the deviations from baseline in steps of 

16.7% points (see Table 4.4). Thus, the RPS baseline condition had a 33.3% likelihood of 

the opponent repeating their previous move; the RPS positive autocorrelation condition 

had a 50.0% likelihood; and the RPS negative autocorrelation condition had a 16.67% 

likelihood. Likewise, the MP baseline condition had a 50% likelihood of the opponent 

repeating their previous move; the MP positive autocorrelation condition had a 66.7% 

likelihood; and the MP negative autocorrelation condition had a 33.3% likelihood. 

Regardless of the condition, the first move the computer opponent made was 

randomized. After this, on each round, the opponent either repeated the previous move or 

shifted according to the likelihood of repetition in that condition. The likelihoods for 

different rounds were independent. For RPS, in the case of the opponent shifting, the 

likelihood of shifting in either direction (upgrade or downgrade) was 50%, and was 

independent for each case of a shift. 
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Table 4.4. Rate of repetition by the opponent conditions 

in Experiment 6 

Game Autocorrelation Repetition likelihood 

RPS   

 Positive 50.0% 

 Baseline 33.3% 

 Negative 16.7% 

MP   

 Positive 66.7% 

 Baseline 50.0% 

 Negative 33.3% 

 

 

4.3.2.4 Procedure. The experimental procedure and instructions to given to 

participants were identical to Experiment 5. After finishing all of the game blocks, I 

debriefed participants, thanked for their time and paid them the flat participation fee of £6. 

4.3.3 Results. 

 4.3.3.1 Win-rates. I analysed the success of the participants by entering the wins 

and non-wins from each trial into a GLMM with game type (RPS, MP) and autocorrelation 

(baseline, positive, negative) entered as within-subjects factors and participants entered as 

random effects. The win variable was a binary variable with a value of 1 for each win and a 

value of 0 for each loss or draw for each trial in the experiment. The model fixed the MP 

and baseline conditions as references. As in Experiment 5 (see section 4.2.3.1), I analysed 
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both game types within the same model in order to be able to test for interaction effects, 

which would be cumbersome to test with separate models on the two game types.  

 

Table 4.5. Win-rates and likelihood of individual above-chance win-rate (back-

transformed estimated marginal means) in Experiment 6  

Game Autocorrelation Win-rate overall Individual success 

RPS Positive 36.2% (0.9%) * 7.2% (4.6%) 

 Baseline 33.0% (0.89%) 1.5% (1.7%) 

 Negative 34.0% (0.9%) 5.1% (3.7%) 

    

MP Positive 55.9% (0.9%) * 17.2% (7.8%) 

 Baseline 48.8% (1.0%) 1.5% (1.7%) 

 Negative 50.6% (1.0%) 5.1% (3.7%) 

Note: standard deviation in parentheses. Asterisks indicate that the chance-

level win-rate falls below the 95% CI for the observed rate. Likelihoods of 

individual success based on results obtained using binary variables based on 

the z-test. 

 

 There was a significant main effect of game type collapsed across autocorrelation 

(β = -0.66, SE(β) = 0.05, z = -12.70, p < .001), with MP (M = 51.8%, SE = 0.6%) having a 

higher win-rate than RPS (M = 34.4%, SE = 0.6%), as expected given different baseline 

win-rates (33.3% for RPS and 50.0% for MP). The positive autocorrelation condition also 

differed significantly from the baseline autocorrelation condition (β = 0.28, SE(β) = 0.05, z 

= 5.57, p < .001), with higher average win-rates in the positive (M = 46.0%, SE = 0.7%) 
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compared to the baseline autocorrelation condition (M = 40.9%, SE = 0.7%). The negative 

autocorrelation condition did not differ significantly from the baseline autocorrelation 

condition (β = 0.07, SE(β) = 0.05, z = 1.39, p < .001). There was a marginal interaction 

effect between game type and the positive autocorrelation condition (β = -0.14, SE(β) = 

0.07, z = -1.93, p = .054) but no significant or marginal interaction between game type and 

the negative autocorrelation condition (β = -0.02, SE(β) = 0.07, z = -0.33, p = .741). The 

marginal interaction seems to have stemmed from a larger difference in win-rate between 

the baseline and positive autocorrelation condition in MP than in RPS (pairwise 

comparison significant only for MP, Tukey's HSD, p < .05). For both MP and RPS, the 

chance level win-rate of the game fell below the 95% CI of the observed win-rate only in 

the positive autocorrelation condition (see Table 4.5). Both the baseline and negative 

autocorrelation condition had chance-level win-rates, supporting the hypothesis that 

participants would perform better against opponents with a bias towards repeating their 

choices rather than alternating. The marginal interaction effect suggests participants may 

have been more successful against positively autocorrelated opponents in MP compared to 

RPS, which would lend support to the hypothesis that participants would find adopting a 

win-stay bias easier in MP than in RPS. 

 As a secondary test of success, I calculated a binary variable denoting above-

chance win-rates for each participant. I calculated this variable using a two-tailed one 

sample z-test of proportion, testing each participant’s win-rate against the chance level for 

each game (33.3% for RPS and 50% for MP). I assigned the variable a value of 1 if a 

participant had a win-rate significantly above chance and a value of 0 if the participant’s 

win-rate did not significantly differ from chance or was significantly below chance. I then 

entered this variable as the dependent variable into the same GLMM as above (see Table 
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4.5). Here, there was no significant main effect of game type (β = 0.00, SE(β) = 1.47, z = 

0.00, p = 1). The positive autocorrelation condition differed significantly from the baseline 

autocorrelation condition (β = 0.26, SE(β) = 1.16, z = 2.26, p = .024), with a higher 

likelihood of individual success in the positive (M = 12.2%, SE = 5.1%) than in the 

baseline autocorrelation condition (M = 1.5%, SE = 1.3%). The negative autocorrelation 

condition did not differ significantly from the baseline autocorrelation condition (β = 1.26, 

SE(β) = 1.23, z = 1.03, p = .305). There was no significant interaction between game type 

and the negative autocorrelation condition (β = 0.00, SE(β) = 1.73, z = 0.00, p = 1) or 

between game type and the positive autocorrelation conditon (β = -0.99, SE(β) = 1.64, z = -

0.60, p = .549). The results of this analysis did not change when I replaced the dependent 

variable with a binary bias variable that was based on the more conservative exact 

binomial test. 

 The results of the individual success analysis further support the hypothesis of 

participants performing better against opponents with a bias towards repeating rather than 

alternating. However, note that the likelihood of individual success was very low for all 

conditions (see Table 4.5), suggesting that a very small minority of participants were 

actually successfully exploiting even in the positive autocorrelation condition. The highest 

individual win-rates achieved in RPS were 54.4% (positive) and 44.4% (negative), and the 

highest win-rates in MP were 64.4% (positive) and 63.3% (negative). Note also the 

numerical trend with a higher rate of successful individuals in the positive autocorrelation 

condition for MP compared to RPS, with rates of successful individuals being equal 

between games for other autocorrelation conditions. This trend is non-significant, but is 

again in the hypothesized direction of more success in adopting a win-stay bias in MP than 
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in RPS (this trend was similar regardless of how the binary success variable was 

calculated). 

 4.3.3.2 Reinforcement biases. I analysed the rate of win-stay and lose-shift choices 

in a similar way to the analyses in Experiment 5, with separate with separate GLMMs first 

for the overall rate of a choice type, then with the same analysis on a binary variable 

denoting whether a participant had a significant bias. As in Experiment 5 (see section 

4.2.3.1), I used a single model in order to be able to examine interaction effects, which 

would be cumbersome to analyse if I had analysed the two game types in two separate 

models. See Table 4.6 for descriptives. 
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Table 4.6. Win-stay and lose-shift decisions and likelihoods of individual participants 

having a win-stay or lose-shift bias (back-transformed estimated marginal means) in 

Experiment 6 

Game Autocorr. WS overall WS individual LS overall LS individual 

RPS Positive 60.8% 

(4.5%) * 

[33.3%] 

63.0% 

(13.9%) 

75.5% 

(3.2%) * 

[66.7%] 

21.7% 

(8.8%) 

 Baseline 45.0% 

(4.7%) * 

[33.3%] 

33.3% 

(13.4%) 

70.3% 

(3.6%) 

[66.7%] 

21.7% 

(8.8%) 

 Negative 38.0% 

(4.5%) 

[33.3%] 

24.4% 

(11.4%) 

65.0% 

(3.9%) 

[66.7%] 

13.0% 

(6.5%) 

MP Positive 83.8% 

(2.6%) * 

[50.0%] 

93.8% 

(4.3%) 

56.8% 

(4.1%) 

[50.0%] 

39.7% 

(11.4%) 

 Baseline 69.1% 

(4.0%) * 

[50.0%] 

53.2% 

(14.8%) 

52.2% 

(4.1%) 

[50.0%] 

25.0% 

(9.5%) 

 Negative 58.6% 

(4.5%) 

[50.0%] 

28.7% 

(12.5%) 

42.1% 

(4.1%) 

[50.0%] 

4.3%   

(3.1%) 

Note: standard error in parentheses. Expected probabilities, under the null assumption 

of no bias, in square brackets. Asterisks indicate that the expected rate of a strategy 

type falls below the 95% CI for the observed rate. Likelihoods of individual biases 

based on results obtained using binary variables based on the z-test. 
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 4.3.3.2.1 Win-stay. I entered the rates of win-stay behaviour from each participant 

into a GLMM with a logit link, with game type (RPS, MP) and autocorrelation (baseline, 

positive, negative) entered as within-subjects factors and partdicipants entered as random 

effects. The model fixed the MP and baseline conditions as references. The model 

indicated a significant main effect of game type collapsed across autocorrelation (β = -

1.00, SE(β) = 0.09, z = -11.16, p < .001), with MP having a higher rate of win-stay (M = 

70.5%, SE = 3.6%) than RPS (47.9%, SE = 4.4%). The model also indicated that the 

baseline autocorrelation condition differed significantly from both the positive (β = 0.84, 

SE(β) = 0.09, z = 9.82, p < .001) and negative (β = -0.46, SE(β) = 0.08, z = -5.77, p < .001) 

autocorrelation conditions. The baseline autocorrelation condition (M = 57.1%, SE = 

4.3%) had a lower rate of win-stay behaviour than the positive autocorrelation condition 

(M = 72.3%, SE = 3.5%), and a higher rate than the negative autocorrelation condition (M 

= 48.3%, SE = 4.4%). There were no significant or marginal interaction effects (every 

p > .1). 

 As the expected rate of win-stay assuming players played randomly is different 

between the game types, the main effect of game type was to be expected. However, 

contrary to Experiment 5, the chance level of win-stay behaviour fell below the lower 95% 

CI of the observed rate for both MP and RPS. The negative autocorrelation condition had 

no overall win-stay bias for either game type (RPS: M = 38.0%, SE = 4.5%; MP: M = 

58.6%, SE = 4.5%), whereas the positive autocorrelation condition had an overall bias for 

both game types (RPS: M = 60.8%, SE = 4.5%; MP: M = 83.8%, SE = 2.6%). Since the 

rate of win-stay responding in the negative autocorrelation condition was neither 

significantly higher or lower than chance , the results support the notion that optimal 

responding is harder for participants in the face of an alternation bias. That is, the overall 
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pattern suggests a tendency toward the optimal response in the positive autocorrelation 

condition but not in the negative autocorrelation condition, where a below-chance level of 

win-stay responses would signal optimal play. It thus seems that participants on average 

had a bias in both game types in the baseline and increased or decreased their win-stay 

behaviour accordingly with positive or negative autocorrelation but did not reach a group-

level significant trend of optimal play in the negative autocorrelation condition. See Table 

4.6 for back-transformed probabilities. 

For the likelihoods of individual participants having a win-stay bias, the model 

indicated no significant main effect of game type (β = -0.82, SE(β) = 0.65, z = -1.26, p 

= .206). There was also no significant difference between the baseline and negative 

autocorrelation conditions (β = -1.04, SE(β) = 0.66, z = -1.57, p = .116), but there was a 

significant difference between the baseline and positive autocorrelation conditions (β = 

2.58, SE(β) = 0.78, z = 3.31, p < .001). There was no significant interaction between game 

type and the negative autocorrelation condition (β = 0.60, SE(β) = 0.93, z = 0.65, p = .518) 

or between game type and the positive autocorrelation condition (β = -1.35, SE(β) = 0.99, z 

= -1.37, p = .169). The positive autocorrelation condition had a significantly higher 

likelihood of an individual having a win-stay bias (M = 78.4%, SE = 8.0%) than the 

baseline autocorrelation condition (M = 43.2%, SE = 11.8%). Again, contrary to 

Experiment 5, there were no significant differences in the rates of win-stay bias based on 

game type (see Table 4.6 for back-transformed probabilities). There was, however, a 

numerical trend in the direction of a higher likelihood of individual win-stay biases in MP 

than in RPS for all conditions, consistent with Experiment 5, especially notable in the 

positive autocorrelation condition. The results of this analysis did not change meaningfully 

when I replaced the dependent variable with a binary bias variable calculated based on the 
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more conservative exact binomial test. All the numerical trends remained the same with 

this alternative bias variable as well. 

Overall, the results do not support MP specifically being characterized by a win-

stay bias (contra Experiment 5) and instead suggest a significant overall bias in both game 

types.  However, the numerical trend in the likelihoods of individual participants having a 

win-stay bias does match the notion of a win-stay bias being less frequent in RPS than in 

MP; this effect not reaching significance may be an effect of the low sample size. 

Participants increased and decreased their win-stay responding when it was optimal to do 

so, but due to an initial bias in the baseline condition, the rate of responding the negative 

autocorrelation condition was not significantly different from chance. 

4.3.3.2.2 Lose-shift. I analysed overall rates of lose-shift responding and the binary 

bias variable for lose-shift identically to win-stay (see Table 4.6). For overall rates of lose-

shift, the model indicated a main effect of game type (β = 0.78, SE(β) = 0.09, z = 8.59, p 

< .001). Here, the rate of lose-shift was higher in RPS (M = 70.3%, SE = 3.4%) compared 

to MP (M = 50.4%, SE = 3.9%), as expected based on the different rates of lose-shift 

behaviour even assuming players played randomly (50.0% for MP and 66.7% for RPS). 

There was also a significant difference between the baseline and positive autocorrelation 

conditions (β = 0.19, SE(β) = 0.08, z = 2.38, p = .017) and a significant difference between 

the baseline and negative autocorrelation conditions (β = 0.16, SE(β) = 0.13, z = -5.36, p 

< .001). There was no significant interaction between game type and the negative 

autocorrelation condition (β = 0.16, SE(β) = 0.13, z = 1.26, p = .20) or between game type 

and the positive autocorrelation condition (β = 0.08, SE(β) = 0.13, z = 0.581, p = .561). 

Overall, participants decreased their rate of lose-shift choices in the negative 

autocorrelation conditions (M = 53.5%, SE = 3.8%) compared to the baseline 
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autocorrelation conditions (M = 61.2%, SE = 3.7%), and increased the rate in the positive 

autocorrelation conditions (M = 66.2%, SE = 3.5%). Once again, contrary to Experiment 5, 

there was no overall significant lose-shift bias in either of the baseline conditions, 

indicating that on average neither game type led to an overall lose-shift bias. There was no 

bias in either of the negative autocorrelation conditions either, and a bias for RPS but not 

for MP in the positive autocorrelation condition. This fits with the notion of RPS being 

more conductive to the lose-shift rule, and participants finding it easier to increase its use 

in RPS compared to MP. 

For likelihoods of an individual participant having a lose-shift bias, there was no 

significant main effect of game type (β = -0.184, SE(β) = 0.607, z = -0.303, p = .762). 

There was also no significant difference between the baseline and positive autocorrelation 

conditions (β = 0.681, SE(β) = 0.590, z = 1,154, p = .249), but there was a significant 

difference between the baseline and negative autocorrelation conditions (β = -1.994, SE(β) 

= 0.792, z = -2.518, p = .012). There was also no significant interaction between game type 

and the negative autocorrelation condition (β = 1.38, SE(β) = 1.02, z = 1.36, p = .175) or 

between game type and the positive autocorrelation condition (β = -0.68, SE(β) = 0.85, z = 

-0.80, p = .424). In the negative autocorrelation conditions (M = 8.7%, SE = 4.0%), 

participants had a significantly lower likelihood of bias than in the baseline autocorrelation 

conditions (M = 23.4%, SE = 7.4%). There was a numerical trend toward a higher 

likelihood of individuals expressing a lose-shift bias in MP than in RPS in the positive and 

baseline autocorrelation conditions, but not in the negative autocorrelation condition. The 

results of this analysis did not change meaningfully when I replaced the dependent variable 

with a binary bias variable calculated based on the more conservative exact binomial test. 

All the numerical trends remained the same with this alternative bias variable as well. 
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Overall, the results do not seem to support RPS being characterized by an overall 

lose-shift bias contrary to MP, but participants were still better at increasing their rate of 

lose-shift responding in RPS than in MP when it was optimal. Participants increased and 

decreased their lose-shift responding when it was optimal to do so, but only reached a rate 

significantly different from baseline in the positive autocorrelation condition in RPS. The 

results suggest no overall bias in either game type in the baseline, and numerically lower 

likelihoods of people expressing a lose-shift bias than a win-stay bias. 

4.3.3.3 Reaction times. I analysed median reaction times for decisions at trial n+1 

as in Experiment 5, separately for the two game types using a two-way repeated measures 

ANOVA, with the autocorrelation condition (baseline, positive, negative) and outcome at 

trial n (MP: win, lose; RPS: win, lose, draw) as within-subjects factors for both separate 

analyses. Six participants were excluded due to having at least one block average median 

reaction time that was at least twice the block average median (as in previous experiments), 

yielding a final sample of 29 participants for the reaction time analyses. 

For RPS, Mauchly’s test indicated violations of sphericity, and I used the 

Greenhouse-Geisser correction for effects with violations. There was no significant main 

effect of the autocorrelation condition [F(1.46, 40.92) = 3.39, MSE = 268019, p = .058, ƞp
2 

= .11], a marginal main effect of outcome [F(2, 56) = 2.74, MSE = 68724, p = .073, ƞp
2 = 

.09], and no significant interaction [F(2.57, 71.83) = 0.26, MSE = 51631, p = .825, ƞp
2 < 

.01]. Contrary to my hypothesis, participants did not slow down after losses even in the 

exploitable conditions; the marginal trend of the effect of outcome was towards post-error 

speeding, not post-error slowing (see Table 4.7). 

For MP, Mauchly’s test indicated violations of sphericity, and I used the 

Greenhouse-Geisser correction for effects with violations. There was no significant main 
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effect of the autocorrelation condition [F(1.67, 46.65) = 0.32, MSE = 13383, p = .692, ƞp
2 

= .011], a significant main effect of outcome [F(1, 28) = 5.87, MSE = 6772, p = .022, ƞp
2 = 

.17], and a marginal interaction [F(2, 56) = 3.27, MSE = 2349, p = .054, ƞp
2 = .11]. 

Participants had faster lose (M = 353, SE = 132) than win (M = 383, SE = 157) reaction 

times, contrary to the hypothesis that opponent exploitability should lead to post-error 

slowing. The marginal interaction seems to have been driven by the difference between 

win and lose reaction times having been greater in the positive autocorrelation condition 

compared to the baseline or negative autocorrelation conditions. This trend even further 

suggests that exploitability in and of itself did not lead to post-error slowing, as the 

participants seem to have been most able to exploit the opponent in the positive 

autocorrelation condition, where lose reaction times were the lowest. See Table 4.7 for 

descriptive statistics. 

To repeat the analysis of correlation between post-error slowing and individual 

win-rates from Experiments 1-2, I calculated a Pearson correlations for the difference 

between an individual’s median lose and win reaction times and their win-rate separately 

for each of the positive and negative autocorrelation conditions. None of these correlations 

were statistically significant (every p > .05). This result likely stems from low overall and 

individual win-rates (see above) in the present experiment (c.f. Experiments 1-2). 
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Table 4.7. Average median reaction times (milliseconds) for choices on trial n+1 after 

different outcome types on trial n in Experiment 6, N = 29 

Game Autocorrelation Win Lose Draw 

RPS Positive 543 (61) 482 (60) 451 (54) 

 Baseline 509 (56) 403 (50) 434 (54) 

 Negative 666 (98) 601 (109) 583 (97) 

MP Positive 386 (32) 332 (25) N/A 

 Baseline 389 (34) 361 (28) N/A 

 Negative 373 (21) 365 (21) N/A 

Note: standard error in parentheses. 

 

4.4 General Discussion 

 In Experiments 5 and 6, I attempted to replicate the findings regarding reinforcement 

biases of the prior 4 experiments and examine potential reasons for them. Experiments 1-2 

found no evidence of either a win-stay or a lose-shift bias in RPS. In contrast, Experiment 3-

4 provided evidence for both biases in MP, with win-stay being more common. In 

Experiment 5, I compared behaviour in both game types in the same sample. Here, I 

replicated the results of earlier studies on RPS (Dyson et al., 2016; Forder & Dyson, 2016), 

suggesting the presence of only a lose-shift and no win-stay bias in RPS. I also found a win-

stay but no lose-shift bias in MP. Note that while Experiments 3 and 4 found both biases in 

the average data, lose-shift was numerically weaker in MP in both Experiment 3 and 

Experiment 4, and did not always reach significance. Moreover, the likelihood of an 

individual participant having a lose-shift bias in MP was quite low across Experiments 3 and 

4, and thus the result of no significant lose-shift bias in Experiment 5 is not entirely 
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surprising. The results of Experiment 5 thus broadly fit with Ivan et al.’s (2018) and Gruber 

and Thapa’s (2016) findings suggesting that both for humans and rats, the lose-shift response 

is distinct from the win-stay response, and that lose-shift is increased by cognitive demands 

and reduced by task delays. Assuming that MP has lower cognitive demands compared to 

RPS – fewer choice options for the player and fewer opponent choice alternatives to 

anticipate – this likely reduces lose-shift in MP and increases it in RPS. However, this does 

not explain why win-stay responding in RPS is rarer than in MP. 

Given that the likelihood of individuals having a lose-shift bias was not significantly 

affected by the game type in Experiment 5, and that the likelihood of a win-stay bias was 

higher in MP, the results of Experiment 5 suggest that people are simply less likely to have 

biases in RPS in general. If and when they did, however, the lose-shift bias seems to have 

been stronger, as reflected by the group-level rate of lose-shift behaviour being significantly 

above 66.67%. The fact that participants were overall less biased in RPS would fit with 

Rapoport and Budescu’s (1992) notion of working memory demands reducing deviations 

from randomness. It would thus seem, based on Experiment 5, that MP has higher rates of 

win-stay bias due less cognitive demands leading to more deviations from randomness, while 

simultaneously reducing the rate of lose-shift (Ivan et al., 2018). That is, higher memory 

demands of a game may induce lose-shift specifically while reducing other types of 

deviations from random play. 

Additionally, Experiment 5 found only post-error speeding, consistent with the 

notion that post-error slowing requires an increased win-rate caused by actually exploiting 

an opponent, the latter of which was absent in all conditions in Experiment 5. This further 

supports the notion of lose-shift being more automatic, as participants took less time to think 

after losses and when there was a trend in decisions following losses, it was towards shifting. 
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In sum, the results of Experiment 5 replicated the previously observed differences in 

reinforcement biases between the game types, while not supporting the notion that baseline 

win-rates would affect this.   

However, all of this is questioned by the results of Experiment 6. Here, the average 

data showed an overall win-stay bias but no overall lose-shift bias for both game types in 

the baseline condition, where the opponent could not be exploited in any way. This was 

contrary to my hypothesis of, based on prior experiments in this thesis and literature 

(Dyson et al., 2016; Forder & Dyson, 2016), that RPS specifically should have no overall 

win-stay bias. The results more fit with Alós-Ferrer and Ritschel’s (2018) findings of an 

overall win-stay bias in a three-option game that differed from RPS in not having a neutral 

outcome option. Moreover, when the opponent could be exploited by a participant making 

more stayshift choices, participants in both game types increased their win-stay responding, 

contrary to my hypothesis that participants would be less likely to do this in RPS given the 

initial lack of a win-stay bias observed previously. It must be noted at this point that 

Experiment 6 suffered from a lack of participants and data collection for Experiment 6 had 

to be cut before the planned sample of 48 participants had been collected, which could 

have prevented some effects from reaching significance. 

 The results of Experiment 6 did support the notion that participants had more 

difficulties in increasing lose-shift responding in MP than they did in RPS: the only case of 

participants overall making significantly more than chance lose-shift choices was in the 

positively autocorrelated RPS condition. While participants in both game types increased 

and decreased their rate of win-stay and lose-shift responding appropriately in the 

autocorrelation conditions, it seems that in only RPS did they actually reach an average 

level above statistical noise. However, note that this effect was again driven by a minority 
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of participants. The lose-shift rule thus seemed to be generally harder for participants to 

apply even when it was optimal (replicating Scheibehenne et al.’s, 2011 observations). The 

participants also increased and decreased their stayshift responding appropriately despite 

very few participants ever achieving above-chance wins: thus, the participants could 

clearly perceive the opponents’ exploitability, but the number of rounds or the increases in 

autocorrelation may have been too low to allow for higher win-rates. Moreover, the 

numerical trend was still in favour of the likelihood of individual win-stay biases being 

higher in MP compared to RPS even in the baseline condition (53.15% vs. 33.30%, 

respectively; see Table 4.6). However, the trend in lose-shift was also such that it was 

higher in MP than in RPS, though with a smaller difference (25.01% vs 21.72%, 

respectively). In sum, despite its limitations, the results of Experiment 6 still tentatively 

support a differentiation in win-stay and lose-shift biases, with the former being 

numerically more common among individuals in MP, and the latter being generally rarer 

than the former. This further supports the notion that a “true” stayshift bias is relatively 

rare. 

Finally, there seemed to be no post-error slowing as a function of opponent 

exploitability. In MP, there was a significant effect in the opposite direction of post-error 

speeding; for RPS, there was a marginal effect also in the direction of post-error speeding. 

This was contrary to my hypothesis of post-error slowing in the exploitable conditions (based 

on Experiments 1-2). Moreover, there were no significant correlations between individual 

win-rates and the difference between win and lose reaction times in the exploitable 

conditions, unlike in the exploitable conditions of Experiments 1-2. The result likely stems 

from low win-rates across the exploitable conditions: as mentioned above, while participants 

learned to exploit their opponents, few participants actually achieved above-chance wins. 
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For a descriptive comparison, the highest win-rate any individual participant achieved in 

RPS in Experiment 6 was 54.44% (in the positive autocorrelation condition), whereas the 

highest RPS win-rates in Experiments 1-2 were 78.89% and 83.33%, respectively. Thus, the 

likeliest explanation for the difference between the results of Experiments 1-2 and 6 is that 

win-rates simply need to be higher for participants to start slowing down after losses. Due 

to the methodological issues in Experiments 3-4 potentially masking RT effects, the present 

studies can not rule out the notion of post-error slowing being caused simply by infrequent 

errors (Danielmeier & Ullsperger, 2011). 

4.5 Conclusion 

 In sum, the results of Experiments 5 and 6 replicate some general patterns of 

reinforcement biases observed in the earlier experiments, but also provide conflicting results 

regarding the differences between the two game types. In general, responding after losses 

seems to be more random than responding after wins, despite shorter reaction times 

following losses. The reaction time results, taken together with the results of Experiments 1 

and 2, support the notion of high win-rates against exploitable opponents, rather than 

perceived exploitability in itself, being a key predictor of post-error slowing. The 

implications of these results will be discussed in more detail in Chapter 5. 
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CHAPTER 5: General Discussion 

5.1. Summary of Experiments 

 Across six experiments, I examined the expression of reinforcement biases (win-

stay and lose-shift, hence stayshift) and reaction time trends in two simple zero-sum 

competitive games, Rock, Paper, Scissors (RPS) and Matching Pennies (MP). Across the 

experiments, participants played both game types against different computer opponents. 

The experimental conditions varied in terms of win-rates, success slopes, and opponent 

exploitability. Here, I shall first summarize the results of each empirical chapter (Chapters 

2-4), and then discuss the results and their implications as a whole. 

 In Experiments 1 and 2 (Chapter 2), I examined players’ decisions and reaction 

times when playing against both unexploitable (randomly playing) and exploitable 

opponents in RPS. The exploitable opponents in Experiments 1-2 specifically had a 

predictable of play that consisted of cyclic shifting. The shifts were set up in such a way 

that the optimal strategy was a specific type of shift after wins in both experiments, thus 

misaligning with the win-stay bias. Additionally, the optimal choice after draws in 

Experiment 1 and after losses in Experiment 2 was to stay, further misaligning the optimal 

responses from the stayshift bias. The aim was to examine how well participants would 

play as a function of the prior outcome and whether the optimal move aligned with 

reinforcement or not. I failed to replicate the previous finding (Dyson et al., 2016; Forder 

& Dyson, 2016) of a lose-shift (and draw-shift) bias in RPS in the unexploitable 

conditions. The participants in Experiments 1 and 2 also exhibited no overall win-stay bias 

in the unexploitable condition: the participants had no outcome-dependent predictable 

pattern of play. Against exploitable opponents, the participants in both experiments made 

the most optimal choices after wins, despite the optimal strategy in both being a form of 
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win-shift, and despite the optimal strategies after losses and draws at times aligning with 

reinforcement rules. In the exploitable conditions, participants also exhibited post-error 

slowing as a function of how well they did against the opponents. However, this increased 

pausing before decisions following losses relative to wins did not seem to translate to 

better performance after losses, as both the overall sample and the subgroup of participants 

who reached an above-chance win-rate had the lowest rates of optimal decisions 

specifically on trials that followed a loss. 

 In Experiments 3-4 (Chapter 3), I examined players’ decisions, reaction times and 

confidence of future wins in a series of manipulated blocks of MP. None of the opponents 

in Experiments 3-4 had any set exploitable pattern of play: instead, they were set to allow 

the player to win a certain number of rounds in certain set orders (success slopes) no matter 

what the player did. The aim of the experiments was to examine whether changing win-

rates, without any pre-set pattern in the opponents’ moves, would lead to changes in 

stayshift responding or reaction times, and how participants’ confidence in wins developed. 

Overall, the results supported no clear effects of above or below chance win-rates 

(continuous success, continuous failure) or success slopes (ascending, descending) in MP 

affecting the biases. Specifically, the likelihood of an individual expressing either type of 

bias was not affected by the experimental conditions in either experiment, and the 

likelihood of an individual having a win-stay bias was greater than them having a lose-shift 

bias. In terms of overall responding, there was a significant overall win-stay bias for each 

condition, with a weaker but statistically significant lose-shift bias in all conditions except 

the random control condition in Experiment 4. The results regarding confidence following 

different success slopes in the early and late parts of a block, when controlled for in terms 

of the local win-rate at which player confidence was measured, suggested that the most 
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likely predictors of confidence at a given time was the local win-rate, and/or the local trend 

in win-rate prior to the measurement point. Participants were also generally overconfident 

across the experiments. Given very little variation in stayshift responding and much more 

variation in on-line confidence as a function of local win-rates and off-line confidence as a 

function of overall win-rates, this further suggests that confidence likely plays little role in 

stayshift biases. Finally, the experiments found no post-error slowing or speeding in any 

condition, but this result was confounded by a delay in game responses caused by the 

intervening confidence measures on each trial. 

Due to the differences in stayshift responding I observed between the two game 

types and conflicting literature on whether this should be expected, in Experiments 5-6 

(Chapter 4) I compared behaviour between the games within the same sample of 

participants and within the same experimental design. By comparing the two games within 

the same paradigm, I could also control for any potential effects of methodological 

differences between Experiments 1-2 and Experiments 3-4. Most critically, Experiments 5-

6 removed the confidence measures used in Experiments 3-4 to remove their potential 

confounding (interruption) effect on reaction times. The aim of Experiment 5 was to 

replicate the results regarding reinforcement biases from Experiments 1-4 under a design 

of fixed win-rates. Experiment 5 broadly replicated the previous findings of the win-stay 

bias specifically being more common in MP than the lose-shift bias on an individual level, 

and overall win-stay responding being above chance only in MP. Additionally, only a 

minority of participants had a lose-shift bias in either game type, with the overall rate of 

lose-shift responding being above chance only in RPS. Experiment 5 also found no support 

for the hypothesis that the differences in bias between the games were caused by the 

different baseline win-rates of the games (33.33% for RPS and 50.00% for MP). 
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Similarly, the aim of Experiment 6 was to again replicate the difference in biases 

between the two games, this time with both unexploitable and exploitable computer 

opponents. This design allowed for testing two separate questions. First, given differences 

in biases between the two game types, whether participants would also learn to increase or 

decrease stayshift responding differently when that was the optimal way of playing due to 

positively or negatively autocorrelated choice patterns from the opponents. Second, 

whether the difference observed between the game types could be explained in terms of the 

different baseline autocorrelation players would normally face in a typical experimental 

scenario with a randomly playing opponent. However, Experiment 6 did not replicate the 

previously observed difference between game types: here, the overall rate of win-stay 

responding was above chance for both game types. The results did lend some support to 

the hypothesized different rates of learning, as only in RPS was lose-shift responding 

above chance on the group level when lose-shift was the strategically optimal choice. In 

both game types, participants increased and decreased their rate of stayshift responding 

when it was optimal to do so (increased during positive autocorrelation, decreased during 

negative autocorrelation). However, the overall rate of either win-stay or lose-shift 

responding differed significantly from chance (in the appropriate direction) only in the 

positive autocorrelation conditions, supporting the hypothesis that learning is easier when 

the optimal strategy is aligned with reinforcement. Finally, both experiments found a trend 

of post-error speeding in all experimental conditions, suggesting that the null result of 

Experiments 3-4 likely stemmed from the methodological issues outlined above. Further, 

given the results of Experiments 1-2 showing post-error slowing as a function of win-rates 

in a context where participants achieved wins above 70% in RPS, the results of Experiment 

6, where win-rates where much lower (54.44% in RPS and 64.44% in MP at highest), 
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suggest that relatively high win-rates are needed for post-error slowing. The finding that 

the participants did increase or decrease lose-shift responding when it was optimal seems 

to suggest that the speeding after losses did not necessarily lead to suboptimal decisions. 

5.2 Flexibility and Variability of Reinforcement Biases 

In sum, the results of the six experiments provide conflicting information about 

how strong the stayshift bias is in the baseline experimental situation where an opponent 

cannot be meaningfully exploited. Table 5.1 provides a summary of the presence of 

different biases in the six experiments in the overall group data. The table includes only the 

most clearly “random” conditions of each experiment. Experiment 3 is excluded from this 

table as it had only different success slope conditions with no randomized condition (see 

section 5.4 for further discussion on the differences in randomization between the 

experiments). Note that there was an overall lose-shift bias in MP in Experiments 3-4 in all 

of the conditions not included in the table. However, this bias was of a smaller magnitude 

than the win-stay bias, that is, lose-shift responding in Experiments 3-4 was consistently 

closer to chance on the group level than win-stay responding. Taken together with the low 

number of individuals in both game types expressing a lose-shift bias across Experiments 

3-6, the explanation for the inconsistency in the results regarding a group-level lose-shift 

bias is likely that the bias is simply rare on an individual level. The results thus suggest that 

participants across the experiments were responding more randomly after losses than they 

were after wins. This seems to have been the case both for the random and quasi-random 

conditions across experiments: the fixed win-rate and success slope conditions of 

Experiments 3-5, as well as the exploitable conditions in Experiments 1, 2 and 6. In 

Experiments 1-2, participants had the least optimal responses for decisions made 

immediately following a loss. In Experiment 6, the rate of overall lose-shift responding 
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was significantly different from chance only in the positively autocorrelated RPS 

condition, whereas the rate of overall win-stay responding reached a significant bias in 

both games. Moreover, the likelihood of individual participants expressing a lose-shift bias 

when it was optimal was numerically lower than the likelihood of individuals expressing a 

win-stay bias in Experiment 6. 

 

Table 5.1. The presence of overall (group-level) win-stay and lose-shift biases in the 

six experiments in the random/unexploitable conditions 

Game Experiment Randomization WS LS 

RPS 1 Randomized flat distribution of 

opponent choices 

No bias No bias 

 2 Randomized flat distribution of 

opponent choice 

No bias No bias 

 5 Randomized flat distribution of 

outcomes 

No bias Bias 

 6 Fully random opponent choice Bias Bias 

     

MP 4 Randomized flat distribution of 

outcomes 

Bias No bias 

 5 Randomized flat distribution of 

outcomes 

Bias No bias 

 6 Fully random opponent choice Bias No bias 

 

 

 This overall trend of more random responding after losses marks a clear difference 

between the two parts of the stayshift bias. If lose-shift is generally less common, and 

people tend to respond more randomly after losses than they do after wins, calling the bias 

“win-stay, lose-shift” is a misnomer. The finding of low rates of lose-shift responding 
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further supports Ivan et al.’s (2018) notion of lose-shift as an impulsive response that is, 

under normal circumstances, suppressed by executive functions in adults. As mentioned in 

the general discussions for Chapters 3 and 4, the number of people expressing both bias 

types is logically at most the number of individuals expressing the lose-shift bias, which 

was a minority in each of the experiments (3-6) that assessed individual-level biases. This 

also matches with the observations by Rapoport and Budescu (1992), who found that a 

minority of their participants playing MP against each other had a stayshift bias. Further, 

this result replicates Scheibehenne et al.’s observation (2011) that lose-shift responding, 

even when participants were incentivized to engage in it by a positively autocorrelated 

pattern in the game task, was less frequent overall than win-stay responding (i.e. 

responding after losses was more random). If a true stayshift bias is very rare, considering 

reinforcement biases as they are observed in humans as an expression of the Hot Hand 

Fallacy or a positive recency effect (as seen in Scheibehenne et al., 2011; Wilke & Barrett, 

2009; Wilke et al., 2014) loses support. A positive recency effect on the expectations 

players have of their opponents’ choices would mean that players should expect repetitions 

in general, which would show up as roughly equal rates of win-stay and lose-shift (as both 

are optimal assuming the opponent is going to repeat their choice). 

 Why is win-stay more common than lose-shift, and why is responding after losses 

more likely to be random? A potential explanation for is that the two reinforcement rules 

are differentially aligned with decision inertia (see e.g. Alós-Ferrer & Ritschel, 2018), i.e. 

simply the preference for repeating actions. The response of staying after winning a round 

is action in accordance to both immediate reinforcement and decision inertia, but shifting 

after losses aligns only with reinforcement and goes against inertia. Note that inertia on its 

own would fail to explain why group-level lose-shift behaviour was so rarely different 
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from simply random. That is, if an individual-level lose-stay bias (aligning with inertia) 

were common, it should also manifest as below-chance lose-shift behaviour, which was not 

the case for any of my experimental conditions except for the exploitable condition of 

Experiment 2, where lose-stay was the optimal choice 70% of the time (note that this effect 

did not replicate in Experiment 6). For experimental conditions where there was no optimal 

strategy (i.e. the differently formulated random conditions; see Table 5.1), there was never 

a group-level lose-stay bias. The finding that responding after losses tends to be more 

random than responding after wins makes sense under the assumption that the effects of 

inertia and reinforcement are additive: if they draw the player in different directions, the 

end result is less bias in any direction. Thus, reinforcement matters in terms of biases, but 

reinforcement is not the only factor driving behavioural tendencies. 

 The interplay of reinforcement and inertia would also explain why participants in 

Experiment 6 seem to have found it easier to increase their rates of win-stay than their lose-

shift behaviour when that was the optimal thing to do, and were less able to exploit an 

opponent that could be exploited with the opposite win-shift and lose-stay strategies. That 

is, when win-stay is optimal, both inertia and reinforcement are already by default nudging 

players towards the optimal decision; when lose-shift is optimal, there is still an inherent 

conflict between inertia and reinforcement. When win-shift is the optimal decision rule, 

both inertia and reinforcement are nudging the player in the wrong direction; but when 

lose-stay is optimal the situation is similar to when lose-shift is optimal, with inertia and 

reinforcement pulling in different directions. This may explain both the difference in biases 

after specific outcomes as well as differences in learning optimal responses to specific 

outcomes. However, it is unclear why Experiments 1 and 2 seem to suggest that lose-stay 

may be easier for participants to learn in RPS than a specific kind of lose-shift strategy 
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(one that goes against myopic best reply). This result would seem to imply that inertia is a 

stronger driver of responses after losses than reinforcement, but no other result in my 

experiments supports this notion. The interplay between inertia and reinforcement also 

does not help explain the differences in biased responding observed between two-choice 

and three-choice games: I will return to this later in this section. 

 An important and consistent finding in my experiments was that while the win-stay 

bias was more common than the lose-shift bias on an individual level, it was still relatively 

rare for most of the experimental conditions throughout the experiments. The highest 

likelihood of individuals expressing a win-stay bias, 71.7%, was observed in Experiment 5 

in the MP condition where win-rates had been manipulated to be only 33.3% but random. 

This is a high rate, but it was also in an unusual unexploitable condition due to the 

manipulated win-rate, and the results of the experiment suggested increased win-stay 

behaviour as a function of win-rate. For unexploitable conditions where win-rates had not 

been manipulated to be above or below the normal baseline of a game,  the highest 

likelihood of individuals expressing the bias (observed in the baseline MP condition of 

Experiment 6) was essentially a coin-flip: 53.2%. This raises questions about how, for all 

the baseline random conditions where I tested individual-level biases, such a large 

proportion of the participants did not have a win-stay bias. Given hypotheses about the 

evolutionary roots of the stayshift bias (see Scheibehenne et al., 2011; Wilke & Barrett, 

2009;  Wilke et al., 2014), it is interesting that neither win-stay or lose-shift biases reached 

a large majority on the individual level (unless an experimental manipulation caused the 

game to deviate from baseline in some way). Scheibehenne et al. (2011, pp. 332) 

specifically reported that “most participants” in their experiment tended to use a stayshift 

decision rule. However, this statement seems to be based on a collapsing over win-stay and 
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lose-shift responses (as Scheibehenne et al., 2011, also noted that lose-shift was less 

frequent than win-stay). More critically, their paper does not report an actual analysis of 

individual-level biases.  Thus, the more correct claim would be that most of the 

participants’ responses, rather than most participants’ responses, were biased towards 

stayshift. A crucial property of the experiments reported in this thesis is the analysis of 

individual-level biases and differentiating between win-stay and lose-shift. By doing this, 

the experiments are able to show that there is considerable variation in reinforcement 

biases both between individuals and between the two different types of reinforcement bias. 

The experiments reported here are unable to answer conclusively the question of 

what caused the variation between individuals. Based on the results of Experiment 2, it 

does not seem that individual differences in working memory or executive control would 

predict these differences. Specifically, working memory span did not predict the rate of 

optimal decisions on trials immediately following any outcome type in the exploitable 

condition of Experiment 2, and executive control did not predict fewer deviations from 

randomness unlike I had hypothesized (based on Terhune & Brugger, 2011). Further, the 

biases do not seem to emerge as a function of different success slopes participants may 

experience as a function of random chance in the long run, based on Experiments 3-4. 

Based on Experiment 5, there is some evidence suggesting that random variation of win-

rates that participants experience in random games could increase or decrease biased 

responding, but this effect was only observed for MP. Individual differences in sensitivity 

to reinforcement are a potential candidate as an explanation for the variance. That is, the 

FRN, an ERP linked to reinforcement learning (Holroyd & Coles, 2002), has been shown 

to be increased in people with higher rates of reinforcement-based errors (Achtziger et al., 

2015). However, this effect was mediated by financial incentive, only appearing under high 
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compared to low financial incentives (Achtziger et al., 2015). Given the lack of financial 

incentives in most of the experiments presented in this thesis, and a lack of effects of 

financial incentives in Experiment 2 where they were offered, it seems that reinforcement 

biases appear even without financial incentives, but not uniformly across participants. 

Wilke et al. (2014) found that habitual gamblers were more prone to the stayshift bias – 

however, their study included a financial incentive as well. Further, even if the participants 

expressing biases in the present experiments happened to be habitual gamblers (gambling 

background was not checked during recruitment), it would still be unclear whether 

gambling tendencies are predicted by more sensitivity to reinforcement or vice versa. 

When it comes to the variation between the different reinforcement bias types, it 

seems that biases were simply rarer in RPS than in MP on the individual level, in addition 

to being more inconsistent in RPS than in MP on the group level (see Table 5.1). This 

effect does not seem to have been driven either by win-rates or the rates of repetition or 

alternation inherent in the games in the baseline scenario of a randomly playing opponent. 

Thus, by elimination, the effect is most likely caused by RPS simply having more choice 

and/or outcome options than MP, meaning a player needs to track more information. This 

aligns with Rapoport and Budescu’s (1992) and Wagenaar’s (1991) argument that higher 

demands for working memory reduce deviations from randomness by lessening the effects 

of prior trials on decisions. Additionally, given that a lose-shift bias was more consistently 

observed in RPS than in MP in Experiments 5-6, it seems that lose-shift may work in 

different ways from win-stay, increasing as a function of working memory load (see 

Gruber & Thapa, 2016; Ivan et al., 2018). The lower rates of win-stay responding and more 

consistent lose-shift responding in RPS compared to MP may also stem from shifting in 

RPS being more salient due to more shift options than in MP. In either case, it seems that 
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the presence or absence of reinforcement biases in people’s behaviour is dependent on the 

type of decision task and the amount of options and information the participants have 

available to them. Given that even the extremely simple addition of one more choice and 

one more outcome type seems to be enough to reduce the likelihood of a win-stay bias, it 

would follow that the bias is likely quite minimal in more complex competitive scenarios. 

However, if the lose-shift bias increases as a function of cognitive demands, it may be 

more common in even more complex scenarios. 

While all of the above suggests variability in terms of the stayshift bias, there is a 

consistency in the results in that whenever there was a trend towards a bias based on a 

game’s outcome on the previous trial, it was in the direction of win-stay and/or lose-shift. 

That is, the overall rates of responding never showed a significant win-shift or lose-stay 

bias in any of the six experiments reported here. This indicates that while reinforcement 

biases may have been rare on an individual level, biases against reinforcement were 

consistently rarer and/or weaker than reinforcement biases (or, in the cases of no overall 

bias, equally rare and/or weak). Further, based on the results of Experiment 6, these biases 

are not trivial (see McKay & Efferson, 2010), given that participants could increase 

reinforcement-based responding to reach a group-level significant bias, but were less 

capable of decreasing it when incentivized to do so. Thus, the results support win-stay and, 

to a lesser degree, lose-shift being default decision rules, which many people at least in 

samples consisting mostly of Western university students were able to avoid in zero-sum 

games with mixed equilibria. 

Based on my results, I would urge researchers to be cautious about interpreting 

group average statistics about biased decisions in absence of individual-level bias analyses. 

If we wish to understand cognitive biases and their potential implications on learning, on 
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human rationality, or on understanding our evolutionary history, we need to know how 

common “irrational” behaviour truly is among our samples, let alone the general 

population. Aggregate statistics of responses to a task may imply a bias, but these statistics 

may mask the existence of very different patterns of responses (see e.g. Worthy et al., 

2012, on an examination of two qualitatively different approaches to a gambling task). This 

also applies to research more generally in the field of cognitive biases and learning outside 

of the realm of specifically reinforcement biases: in any task, the average of what people 

do does not necessarily describe what most people do. 

 Moreover, given my observations of differences in the incidence of different types 

of bias as a function of game type, it is important not to draw strong conclusions of how 

reinforcement biases would affect behaviour in very different task environments. 

Understanding and predicting such biases requires knowledge of the factors that affect 

them in different ways and recognizing those factors in different tasks: memory demands 

or the number of choices, the interaction of inertia and reinforcement (and myopic best 

reply), and most likely several other things. Still, given that reinforcement biases are 

clearly not trivial, and that they can appear even without financial incentives, they likely 

affect several areas of competitive action and learning at least for a sub-population of 

people. Thus, the interplay of reinforcement and inertia likely affects more complex 

competitive areas such as competitive sport or gaming. Due to increased cognitive 

demands, it may be that lose-shift becomes the more common bias: a potential area for 

more research. 

5.3 Reinforcement Biases and Speed of Responding 

A key question behind the reaction time analyses in the experiments following 

Experiments 1-2 was whether post-error slowing was dependent on simply win and loss 
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frequencies or the exploitability of the opponent (see Danielmeier & Ullsperger, 2011; 

Dutilh et al., 2012). That is, would participants slow down after losses in a context of high 

win-rates simply as a response to infrequent losses regardless of whether there was a 

winning strategy, or only after losses against opponents that the participants had learned to 

exploit? Due to a task interruption effect in Experiments 3-4 that tested high win-rates 

without opponent exploitability, the results lack a clear comparison between high win-rates 

under exploitable and unexploitable conditions. However, the reaction time patterns 

observed in the rest of the experiments support the role of high win-rates (and thus 

infrequent losses) as a driver of post-error slowing. 

In the experiments where play responses were not interrupted with additional 

prompts to the participants (Experiments 1-2, 5-6), I observed post-error slowing only in 

situations where opponents could be exploited and the participants were able to exploit 

them to a high degree, that is, in Experiments 1-2. Specifically, this post-error slowing was 

predicted by an individual’s win-rate, with higher win-rates predicting post-error slowing. 

In all situations across Experiments 1-2 and 5-6 where win-rates were on average at 

chance, either due to being fixed (Experiment 5) or due to randomized opponent choices 

(quasi-random in Experiments 1-2, fully random in Experiment 6), participants exhibited 

post-error speeding. Additionally, in Experiment 5, when win-rates were above chance in 

the fixed 50% win-rate RPS condition, participants also exhibited post-error speeding. In 

Experiment 6, even when participants could exploit the opponent, there was a significant 

post-error speeding effect. However, as mentioned in Chapter 4, participants in Experiment 

6 achieved lower win-rates than participants in Experiments 1-2 on the individual level, the 

highest RPS win-rate in Experiment 6 having been 54.44% and the highest RPS win-rates 

in Experiments 1-2 having been 78.89% and 83.33%, respectively. Thus, it seems that win-
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rates need to be relatively highly above chance for post-error slowing to occur (see also 

Figures 2.5 and 2.9 in Chapter 2). 

 Interestingly, participants in Experiment 6 increased and decreased lose-shift 

responding appropriately even though reaction times were faster after losses. Thus, the 

more impulsive decisions made after losses did not fully prevent participants from 

learning. However, the rate of lose-shift responding changed less than that of win-stay 

responding: participants’ responses after losses were generally more random than their 

responses after wins. This quick responding following losses may be the factor that 

prevented greater rates of learning. It could also explain the puzzling finding of post-error 

slowing in Experiments 1-2 co-occurring with the participants making the least optimal 

choices after losses. That is, the participants may have initially not paid much attention to 

what to do after losses and responded impulsively. After learning the optimal response after 

wins and achieving a high win-rate, losses became a rare event causing participants to 

pause, but as they had not learned the appropriate the strategy, responding was suboptimal. 

Another possibility is that after learning an optimal strategy and achieving a high win-rate, 

participants were more likely to find losses (caused by the exploitable opponents in 

Experiments 1-2 at times making random moves) as a sign of a change of pattern, and thus 

engaged in exploratory behaviour. 

 Assuming that longer reaction times are a marker of increased cognitive control 

(see Botvinick et al., 2001; Mackie et al, 2013), the results of the six experiments do not 

support the notion that this potential increased cognitive control helps people make better 

choice in all situations, as whether a choice is “good” or not is highly contextual. When the 

game opponents could not be exploited, participants were generally quicker in their 

responses after losses than after wins and also less likely to express the lose-shift bias than 
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the win-stay bias on an individual level. This would normatively be considered a positive – 

the participants are playing closer to the mixed equilibrium strategy, despite shorter 

reaction times and thus assumedly less cognitive control. Likewise, more predictable win-

stay responding (at least in MP) despite longer reaction times after wins suggests that 

assumedly increased cognitive control did not allow participants to play randomly in 

situations where they could not exploit the opponent. When opponents could be exploited 

in Experiment 6, participants increased or decreased their rate of win-stay responding 

more, coinciding with higher reaction times after wins. However, in Experiments 1-2 the 

participants engaged in post-error slowing yet made the most optimal choices after wins, 

again suggesting a dissociation. 

 Finally, two separate findings suggest that random responding after losses was not 

dependent on reaction times. First, the same trend of more random responding after losses 

than wins was observed in Experiments 1-2 and 6 when the participants could in fact 

exploit the opponents, despite differences in reaction time trends between these 

experiments. Second, despite no reaction time differences between decisions made after 

wins and losses in Experiments 3-4 due to task interruption, the participants in these 

experiments had a similar trend of reinforcement biases in MP as the participants in 

Experiments 5-6, with a higher likelihood of win-stay than lose-shift responding. In sum, 

either increased reaction times are not a reliable marker of cognitive control, or they are 

but cognitive control does not always predict more optimal responding even in situations 

where there is one single choice option (rather than a distribution of choice options) that 

participants should choose in order to be optimal. The optimality of play decisions seems 

to depend on the prior outcome and the optimal decision rule's alignment with 

reinforcement and inertia, separate from how quickly participants respond. Thus, the link 
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between reaction times an optimal responding seems to be highly contextual. Again, my 

results underline the contextual nature of cognitive phenomena; slowing may be a sign of 

increased cognitive control only under specific circumstances. 

5.4 Limitations and Ideas for Future Studies 

 There were design differences in the “random” opponents of the experiments that 

contained a “random” condition (Experiments 1-2, 4-6; see Table 5.1), with only 

Experiment 6 having a random condition with each trial having truly independently equal 

probabilities of any choice type by the opponent. In Experiments 1 and 2, the random 

opponent condition consisted of an opponent sampling without replacement from a flatly 

distributed set of the choice options. Sampling without replacement from a flat distribution 

was also how the exploitable opponents in Experiments 1-2 made their random choices for 

the trials during which they did not follow the predictable rule (30% of the trials). This 

decision was made in order to minimize the risk of any item biases in the random 

opponent’s choices, but the design may have led to local item biases in the random blocks 

for individual participants. However, if individual participants noticed these potential item 

biases in the random opponent and attempted to exploit them, this should have led to an 

increase in win-stay behaviour (repeat the move that the opponent is weak against due to 

their bias) and at the very least no reduction in lose-shift behaviour (as losing against an 

item-biased opponent should lead to a shift to the item the opponent is biased towards 

playing). If participants tracked the number of every move type the opponent had produced 

and then pre-emptively started overplaying the choice option that the opponent had been 

least likely to produce, this may have led to local increases in overall stay behaviour in the 

latter half of the block. This could have thus increased the rate of lose-stay choices and 

thus reduced the bias in the aggregate data. However, note that this design for the random 
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opponent was identical to the design used by Dyson et al. (2016) and Forder & Dyson 

(2016), who reported a significant bias towards lose-shift in RPS (with a similar analysis 

method as the one used in Experiments 1 and 2). Thus, the design of the random opponent 

in and of itself does not seem to explain the lack of reinforcement biases in Experiments 1 

and 2. The more plausible explanation would seem to be, based on Experiments 5 and 6, 

that the lose-shift bias is simply relatively rare among individuals in general regardless of 

game type, and thus may simply have failed to reach group-level significance in 

Experiments 1 and 2. Likewise, for the minority of random choices made by the 

exploitable opponents in Experiments 1-2, it does not seem that this could explain 

suboptimal responding after losses, as responding was more random after losses 

consistently across the experiments regardless of randomization method. 

 In Experiments 4 and 5, the random conditions were defined in terms of win-rate. 

This decision was made as the questions addressed in these two experiments necessitated 

controlled win-rates; in the random conditions, the win-rates were kept at chance-level. 

Thus, the randomization was conducted by randomizing a sequence consisting of equal 

numbers of each of outcome type for these conditions, equal to sampling without 

replacement from a flatly distributed set. Thus here, like in Experiments 1 and 2, the design 

choice may have led to situations where wins or losses (or draws) were clustered, but it is 

unclear how this could have led to noticeable changes in stayshift behaviour. As the general 

results of Experiment 3 and 4 suggested very little effect on reinforcement biases from 

different success slopes, any concern over the way in which outcomes in Experiments 4 

and 5 were randomised seems unwarranted. 

 Experiment 6, the most direct test of the flexibility of biased responding in RPS and 

MP, suffered from a small sample due to time constraints. It was the only experiment 
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reported here with independent equal probabilities for each choice the random opponents 

made, and also the only experiment that reported a significant win-stay bias in RPS 

(similarly to Alós-Ferrer & Ritschel, 2018). It is unclear how the methodological difference 

between Experiment 6 and the other experiments could cause the anomalous (among the 

six experiments) observation of a win-stay bias in RPS. It is unlikely that the difference 

would be caused by slight fluctuations in win-rate in the random condition, as this was the 

case in Experiments 1-2 as well. Moreover, the randomization of Experiments 5 would 

have caused slight fluctuations in the randomness of the random opponents’ responses as 

well, as the responding happened as a function of what the participant chose in order to 

ensure a flat distribution of outcomes. This suggests that fluctuations in the opponents’ 

response distribution also did not cause win-stay responding in RPS. However, the 

randomization in Experiment 5 did lead to a dynamic between the participants’ and the 

opponents’ choices, unlike in Experiment 6, though this contingency was not something 

the participants could in any way exploit. It is possible that some subtle effect of both the 

outcomes and the opponents’ responses being completely independent of the participants’ 

choices may increase win-stay responding in RPS, but why or how this would happen is 

unclear based on the present experiments. One should also note that the smaller sample 

size in Experiment 6, in addition to more cells in its analyses than in the other experiments, 

may give rise to false positives or false negatives – the anomalous observation may simply 

be an error caused by a small sample. In either case, future studies could assess the effects 

of different randomization methods and thus slight differences in the dependencies 

participants may observe and their effects on the emergence of reinforcement biases. 

 The reaction time analyses reported here only differentiated between decisions 

made after wins, losses and draws. They did not differentiate, however, between different 
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decision types – that is, they do not tell us about the speed of stay or shift responses. This 

decision was made due to practical concerns about statistical power and to maintain 

similarity between the analyses. The decision was informed by the results of Forder and 

Dyson (2016), who found no differences between reaction times for decisions based on 

whether they aligned with reinforcement or not, and only found a main effect of outcome 

types. Due to this analysis method, all of the interpretations presented here about the 

connection between reaction times and reinforcement biases are indirect. It is possible that 

e.g. post-error speeding combined with more random responding after losses masks a 

pattern of lose-shift responses specifically being even faster than lose-stay responses. 

Likewise, it may be that slow responses after wins were driven by extremely slow win-stay 

responses. Alós-Ferrer and Ritschel (2018) found results that support this alternative 

interpretation. Specifically, in an RPS-like game, they found that reaction times for win-

stay were faster than reaction times for any type of win-shift, and that the reaction times for 

lose-shift, specifically in the direction of the myopic best reply (or Cournot’s best reply: 

see Dyson, 2019) were faster than for other decisions following losses. Given that Alós-

Ferrer and Ritschel (2018) used a modified RPS-like game with no draws but instead wins 

and losses of different magnitudes, it is not clear whether this difference between their 

findings and those of Forder and Dyson (2016), who used a standard RPS game, is due to 

methodological differences or something else. In either case, future studies could assess 

reaction times in both RPS and MP, against both randomly and non-randomly playing 

opponents, to further the understanding of when biased responses are fast or slow. 

 The analyses of player confidence from Experiments 1-4 allowed no inferences 

other than that players were slightly more confident overall when playing against 

exploitable opponents (Experiments 1-2) and that players were generally slightly 
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overconfident about their wins (Experiments 3-4). Given the way the analyses were run, 

they cannot clearly answer questions about the relationship between individual confidence 

and reinforcement biases on a trial-by-trial basis. As biased lose-shift responding was quite 

rare among both RPS and MP, and biased win-stay responding was more common at least 

in MP, a simple hypothesis for future studies would be that participants are more confident 

about reinforcement-based responding after wins than after losses. An analysis on this level 

would also help answer the question of whether individuals with strong stayshift biases are 

more confident, or whether they make the reinforcement-based responses automatically 

with confidence being separate from the likelihood of responding in a certain way. 

In all of the experiments reported here, participants were not informed about the 

types of opponents they were playing against or whether to expect opponents playing 

randomly. Participants were simply informed that each of the opponents in the different 

blocks was a different opponent and that they might play the game differently from one 

another. In each experiment, the participants were also told that they should try and 

maximize their score, which would increase with each win and decrease with each loss 

(with draws, in the case of RPS conditions, having no effect on the score). These decisions 

were made to avoid expectancy effects and to maintain similarity between experiments: the 

aim was to have each experimental condition work as a separate learning task, with 

participants having to figure out if the opponent could be exploited or not. This approach 

could not eliminate any prior assumptions the participants may have had about zero-sum 

games. During debriefings throughout the six experiments, for example, a few participants 

indicated having chosen to try and ignore their score, outcomes, or the opponents’ choices 

completely in order to play in a way that they assumed was the “correct” one. One 

participant in Experiment 6 indicated having decided to simply choose one option 
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repeatedly in MP, expressing that they believed this was the “correct” way to act in a 

random game as their choices would not matter in the end. Another participant in 

Experiment 6 indicated having often repeated their decision in order to “prove it was 

right”. Thus, some participants may have avoided learning in conditions where learning 

would have been possible. 

 In the case of participants making repeated choices of only one item rigidly, the 

participant would be an outlier in terms of having both a high win-stay and a lose-stay bias 

as defined by statistical analyses, while clearly also having a choice pattern that is 

qualitatively different from what is usually meant by these biases. However, excluding 

participants like this from the data would be problematic, and neither repeated single-item 

responding nor participants reporting potentially irrational beliefs about the games were 

part of the exclusion criteria. Excluding these participants would be problematic as the aim 

of the six experiments was specifically to examine behaviour that could be considered 

irrational (reinforcement biases) – excluding certain types of irrationality but not others 

would be counterproductive if the experiments are to give a general picture of how 

common reinforcement biases are. Moreover, one can easily imagine similar, potentially 

irrational and idiosyncratic prior beliefs about MP or RPS (rather than lower-level 

properties of e.g. the reinforcement learning system or working memory) leading to 

reinforcement biases as well. 

This is not to say that participants simply making one response type across several 

blocks may not have been simply unmotivated; only that discerning this is not without 

problems. However, for the specific case of single-item responding inflating the rate of 

win-stay and reducing the rate of lose-shift in the overall data, these “straight-liners” seem 

to not have been the primary cause for the differences between the two reinforcement bias 
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types. There were a total of zero participants staying after wins or losses for 100% of the 

time in the unexploitable conditions of Experiments 1-2, a total of one throughout the 

conditions of Experiment 3, a total of three throughout the conditions of Experiment 4, a 

total of two throughout the conditions of Experiment 5, and a total of one in the random 

conditions of Experiment 6 (the aforementioned participant who indicated having behaved 

this way because they thought it was correct). In sum, these participants were such a 

minority that they could not have driven the effects observed here. In any case, future 

studies could also move towards a direction of examining individual differences in beliefs 

about zero-sum games specifically and testing whether in fact only participants with 

irrational beliefs also play irrationally, rather than the stayshift bias emerging regardless of 

e.g. a statement of a belief in the games being random. Other possible individual 

differences to measure could be gambling propensity and general sensitivity to 

reinforcement on the neural level (see section 5.1). 

 Another limitation for the current studies is caused by the within-subjects design. 

As each participant went through each experimental condition in an experiment, there may 

be carry-over effects from one condition to another. The conditions were counter-balanced 

in each experiment to mitigate this issue, and the experiment instructions emphasized to 

the participants that each block they played would be against a different game opponent 

that may play the game differently from the other opponents. However, these design 

decision in and of themselves may have led to the dilution of some effects. For example, it 

is possible that win-stay or lose shift biases are very common (or rare) in the initial stages 

of a participant getting used to the game task, and then decrease (or increase) as the 

participants play through a total of several hundreds of game trials.  As the main variable 

of interest regarding reinforcement biases was the rate of win-stay or lose-shift choices 
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throughout a block of trials, the analyses I have reported cannot detect temporal effects 

within a block. There is some evidence from the prior literature against the notion of 

changing rates of reinforcement biases as more rounds are played: Wilke and Barrett 

(2009) found no significant differences in stayshift responding as a function of time in a 

series of 100 trials of a binary choice task. However, the measure used by Wilke and 

Barrett (2009) combined rates of win-stay and lose-shift into one single measure, and there 

was a non-significant trend towards a decrease as a function in this measure. It is possible 

that this trend was due to an increase in either win-stay or lose-shift: however, it could not 

be due to a selective decrease in either without a slightly larger increase in the other. Thus, 

there is tentative evidence that the difference between win-stay and lose-shift is not due to 

participants decreasing their use of either rule as a function of time, but there is a 

possibility of an increase of either win-stay or lose-shift or a large decrease in one 

accompanied by a smaller decrease in the other. 

 Relatedly, the present experiments did not examine higher-order repetition effects, 

i.e. the relationship between a player’s previous moves on their next decision. The focus of 

my studies was the stayshift heuristic, its predictors and its effects on learning. Dyson et al. 

(2016) found that different forms of shifts in RPS were more likely to lead to continued 

shifting rather than staying or random choices when playing against unexploitable 

opponents. Given that Dyson et al. (2016) found that shifting was also more likely 

following losses or draws, their results supported a notion of continued or cyclic biased 

decisions following outcomes other than wins. The present results cannot answer the 

question of whether this was the case with the minority of participants who exhibited a 

lose-shift bias, but this opens up possibilities for future experiments. Given the earlier 

finding of cyclic shifting on average, and a finding in the present experiments of only a 
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handful of participants with a lose-shift bias, future studies could delve deeper into the 

dynamic of these biased participants. In addition to analyses of individual-level biases, 

future studies should examine whether the temporal patterns in rates of win-stay or lose-

shift are different between biased and non-biased participants. To assess the 

aforementioned issues with longer-term temporal effects (carryover from one block to the 

next), an experiment could simply consist of several blocks of e.g. 90-120 rounds of a 

single game type with a fully randomly playing computer opponent in each block. 

Researchers could then test not only for differences in temporal trends between biased and 

non-biased participants (and potential individual differences behind these biases), but also 

whether a potential temporal increase or decrease carries from one computer opponent to 

the next. 

 The majority of the present experiments, with the exception of Experiment 2, did 

not examine the effects of financial rewards on reinforcement biases. Additionally, the 

incentive in Experiment 2 may have been too weak to bring out an effect. However, based 

on the results reported in this thesis, biases based on reinforcement and/or inertia seem to 

happen without financial incentives for succeeding in the experimental task. This suggests 

firstly that these biases may simply be a general function of learning and very flexible to 

abstract rewards, and secondly that experiments in cognitive bias in games may not 

absolutely require such incentives (see Read, 2005). To fully examine the effects of 

concrete rewards on biases, researchers should not only conduct studies comparing the 

effects of low and high rewards, but also comparing the effects of rewards to behaviour 

that is not financially incentivized. As discussed above, it is possible that the participants 

most likely to express biases on an individual level may be individuals highly sensitive to 

reward in general; it is not clear whether the rate of individuals with a bias would increase 
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or not with added financial incentive. In order to understand the potential larger 

implications of reinforcement biases outside of the laboratory, researchers need to be 

careful in examining all the factors that increase or decrease such biases. 

5.5 Conclusion 

The results of the six experiments replicate some earlier findings but also provide 

some conflicting results. The results suggest a difference in reinforcement-based biased 

responding between RPS and MP, likely stemming from higher memory demands in the 

former leading to less win-stay and potentially more lose-shift responding. The results 

suggest that at least in samples consisting mostly of young, Western university students, 

reinforcement biases in zero-sum games on the individual level are relatively rare, with 

lose-shift biases being less likely than win-stay biases. This further suggests that a true 

win-stay, lose-shift bias was very rare among my participants, and thus future studies 

should take care to examine biased responding separately for different outcomes. Overall 

group-level biases did not replicate consistently, likely stemming from the low frequency 

of individuals with biases in any of the experiments, suggesting for future studies that 

assessing reinforcement biases on an individual level may give clearer results.  However, 

there was never an overall trend in the opposite direction of lose-stay or win-shift, 

suggesting that reinforcement-based biases are more common. 

Moreover, reinforcement biases are not trivial, as overall participants were better at 

exploiting their opponents when the opponents could be exploited by increasing 

reinforcement-based responding rather than decreasing it. This was true more for win-stay 

than lose-shift, again highlighting the difference between the two. The difference between 

the two bias types likely stems from the inherent difference in the roles of reinforcement 

and inertia in relation to wins and losses: after a win, inertia and reinforcement are aligned, 
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whereas after losses they are in conflict. Due to this difference, it seems incorrect to 

consider reinforcement biases an instance of a positive recency effect (i.e. the Hot Hand 

Fallacy) as that would imply roughly equal win-stay and lose-shift responding. Future 

experiments should address potential individual differences such as beliefs about zero-sum 

games or reward sensitivity as predictors of the high variability between people. Moreover, 

the non-triviality of the biases is emphasised by the fact that I observed biased responding 

even in the absence of any financial rewards. This suggests that the biases are a general 

behavioural tendency, and opens up potential future studies dissociating the effects of 

rewards from the base level of biased responding. 

The results support the notion of post-error slowing in zero-sum games happening 

only when losses are a rare event. Whether participants slowed down or not also does not 

seem to have been a predictor of whether they made choices optimally even when they 

could exploit an opponent. A common trend of post-error speeding when win-rates were 

low and/or opponents were making their choices randomly, combined with often more 

random responding after losses, seems to imply normatively “better“ decisions after losses 

despite quicker reaction times. For optimal behaviour after wins, there was a similar 

dissociation, with participants being generally better at exploiting opponents on rounds 

following a win despite differences in reaction time trends between different exploitable 

conditions across the experiments. Future experiments could delve deeper into the specific 

speed of reinforcement-biased responding and other types of responding under 

unexploitable and exploitable conditions to illuminate what predicts learning or impulsive 

decisions. 

In sum, the results show substantial variance and relative infrequency in a 

supposedly common cognitive bias, and dissociations both between two types of biased 
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responding that are often considered a single property and between decision impulsivity 

and “optimal“ decisions. The results call for caution against assumptions of reinforcement 

biases being ubiquitous, but also demonstrate that if and when people are biased, the biases 

do not simply disappear when people are incentivized to act against the bias. 
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APPENDICES 

Appendix 1 

 

Anthropomorphism questionnaire items (from Epley, Akalis, Waytz, & Cacioppo, 

2008). 

 

“My opponent had a mind of its own” 

“My opponent had intentions” 

“My opponent had free will” 

“My opponent had consciousness” 

“My opponent experienced emotions” 

“My opponent was attractive” 

“My opponent was efficient”   

“My opponent was strong” 
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Game Engagement Questionnaire (GEQ) items (from Brockmyer et al., 2009). 

“I lost track of time” 

“Things seemed to happen automatically” 

“I felt different” 

“I felt scared” 

“The game felt real” 

“If someone would have talked to me, I wouldn’t have heard them” 

“I got wound up” 

“Time seemed to kind of stand still or stop” 

“I felt spaced out” 

“I wouldn’t have answered if someone talked to me” 

“I couldn’t tell that I was getting tired” 

“Playing seemed automatic” 

“My thoughts went fast” 

“I lost track of where I am” 

“I played without thinking about how to play” 

“Playing made me feel calm” 
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Modified co-presence questionnaire items (from Nowak & Biocca, 2003 and Forder & 

Dyson, 2016). 

From Nowak & Biocca (2003): 

“My opponent was intensely involved in our game” 

“My opponent seemed to find our game stimulating”    

From Forder and Dyson (2016): 

“I felt as though my opponent had a strategy that was based on the moves I was making”    

“I felt as though my opponent had a strategy that was based on the moves it was making”    

“My opponent exhibited a human-like strategy”    

“I felt like my opponent was somehow cheating”    

“I found this game of RPS rewarding to play”     
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Appendix 2 

 

 

Experiment 2 questionnaire items and descriptive statistics. 

 Unexploitable Exploitable 

 Low value High value Low value High value 

“I think the opponent was responding to 

my moves” 

6.700 

(2.662) 

6.500 

(2.864) 

4.700 

(3.172) 

5.300 

(3.421) 

“I think the opponent played according to 

a pattern” 

5.675 

(2.787) 

5.125 

(2.794) 

8.275 

(2.909) 

8.275 

(2.773) 

“I think my opponent was somehow 

cheating” 

3.225 

(2.626) 

3.350 

(2.905) 

2.300 

(2.066) 

2.825 

(2.541) 

“I think my opponent changed their 

strategy at some point during the block” 

6.900 

(2.872) 

5.775 

(2.869) 

6.350 

(3.527) 

6.675 

(3.075) 

“I think my opponent could predict what I 

was doing” 

6.225 

(2.833) 

5.600 

(3.241) 

4.225 

(2.806) 

4.400 

(2.816) 

“I think my opponent was playing 

randomly” 

3.800 

(2.452) 

3.800 

(2.594) 

2.825 

(2.171) 

2.550 

(1.663) 

Note: standard devation in parentheses. 
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Appendix 3 

Rotter’s Locus of Control Scale 

 

For each question select the statement that you agree with the most 

 

1. a. Children get into trouble because their parents punish them too much. 

b. The trouble with most children nowadays is that their parents are too easy with them. 

 

2. a. Many of the unhappy things in people's lives are partly due to bad luck. 

b. People's misfortunes result from the mistakes they make. 

 

3. a. One of the major reasons why we have wars is because people don't take enough 

interest in politics. 

b. There will always be wars, no matter how hard people try to prevent them. 

 

4. a. In the long run people get the respect they deserve in this world. 

b. Unfortunately, an individual's worth often passes unrecognized no matter how hard he 

tries. 

5. a. The idea that teachers are unfair to students is nonsense. 

b. Most students don't realize the extent to which their grades are influenced by accidental 

happenings. 

 

6. a. Without the right breaks one cannot be an effective leader. 
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b. Capable people who fail to become leaders hive not taken advantage of their 

opportunities. 

 

7. a. No matter how hard you try some people just don't like you. 

b. People who can't get others to like them don't understand how to get along with others. 

 

8.a. Heredity plays the major role in determining one's personality 

b. It is one's experiences in life which determine what they're like. 

 

9. a. I have often found that what is going to happen will happen. 

b. Trusting to fate has never turned out as well for me as making a decision to take a 

definite course of action. 

10. a. In the case of the well prepared student there is rarely if ever such a thing as an 

unfair test. 

b. Many times exam questions tend to be so unrelated to course 

work that studying in really useless. 

 

11. a. Becoming a success is a matter of hard work, luck has little or nothing to do with it. 

b. Getting a good job depends mainly on being in the right place at the right time. 

 

12. a. The average citizen can have an influence in government decisions. 

b. This world is run by the few people in power, and there is not much the little guy can do 

about it. 
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13.a. When I make plans, I am almost certain that I can make them work. 

b. It is not always wise to plan too far ahead because many things turn out to be a matter of 

good or bad fortune anyhow. 

 

14. a. There are certain people who are just no good. 

b. There is some good in everybody. 

 

15. a. In my case getting what I want has little or nothing to do with luck. 

b. Many times we might just as well decide what to do by flipping a coin. 

 

16. a. Who gets to be the boss often depends on who was lucky enough to be in the right 

place first. 

b. Getting people to do the right thing depends upon ability. Luck has little or nothing to do 

with it. 

 

17.a. As far as world affairs are concerned, most of us are the victims of forces we can 

neither understand, nor control. 

b. By taking an active part in political and social affairs the people can control world 

events. 

 

18. a. Most people don't realize the extent to which their lives are controlled by accidental 

happenings. 

b. There really is no such thing as "luck." 
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19. a. One should always be willing to admit mistakes. 

b. It is usually best to cover up one's mistakes. 

 

20.a. It is hard to know whether or not a person really likes you. 

b. How many friends you have depends upon how nice a person you are. 

 

21. a. In the long run the bad things that happento us are balanced by the good ones. 

b. Most misfortunes are the result of lack of ability, ignorance, laziness, or all three. 

 

22. a. With enough effort we can wipe out political corruption. 

b. It is difficult for people to have much control over the things politicians do in office. 

 

23. a. Sometimes I can't understand how teachers arrive at the grades they give. 

b. There is a direct connection between how hard 1 study and the grades I get. 

 

24. a. A good leader expects people to decide for themselves what they should do. 

b. A good leader makes it clear to everybody what their jobs are. 

 

25. a. Many times I feel that I have little influence over the things that happen to me. 

b. It is impossible for me to believe that chance or luck plays an important role in my life. 

 

26. a. People are lonely because they don't try to be friendly. 

b. There's not much use in trying too hard to please people, if they like you, they like you. 
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27. a. There is too much emphasis on athletics in high school. 

b. Team sports are an excellent way to build character. 

 

28. a. What happens to me is my own doing. 

b. Sometimes I feel that I don't have enough control over the direction my life is taking. 

 

29. a. Most of the time I can't understand why politicians behave the way they do. 

b. In the long run the people are responsible for bad government on a national as well as on 

a local level. 

 

Scoring: 

 

One point for each of the following: 

 

2.a, 3.b, 4.b, 5.b, 6.a, 7.a, 9.a, 10.b, 11.b, 12.b, 13.b, 15.b, 16.a, 17.a, 18.a, 20.a, 21.a, 22.b, 

23.a, 25.a, 26.b, 28.b, 29.a. 

 

A high score = External Locus of Control 

A low score = Internal Locus of Control
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