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Summary 

Humans are agents, we feel that we control the course of events on our everyday life. This 

refers to the Sense of Agency (SoA). This experience is not only crucial in our daily life, 

but also in our interaction with technology. When we manipulate a user interface (e.g., 

computer, smartphone, etc.), we expect that the system responds to our input commands 

with feedback, as we desire to feel that we are in charge of the interaction. If this interplay 

elicits a SoA, then the user will perceive an instinctive feeling of “I am controlling this”. 

Although research in Human-Computer Interaction (HCI) pursuits the design of intuitive 

and responsive systems, most of the current studies have been focussed mainly on 

interaction techniques (e.g., software-hardware) and User Experience (UX) (e.g., 

comfort, usability, etc.), and very little has been investigated in terms of the SoA i.e., the 

conscious experience of being in control regarding the interaction. 

In this thesis, we present an experimental exploration of the role of the SoA in interaction 

paradigms typical of HCI. After two chapters of introduction and related work, we 

describe a series of studies that explore agency implication in interaction with systems 

through human senses such as vision, audio, touch and smell. Chapter 3 explores the SoA 

in mid-air haptic interaction through touchless actions. Then, Chapter 4 examines agency 

modulation through smell and its application for olfactory interfaces. Chapter 5 describes 

two novel timing techniques based on auditory and haptic cues that provide alternative 

timing methods to the traditional Libet clock. Finally, we conclude with a discussion 

chapter that highlights the importance of our SoA during interactions with technology as 

well as the implications of the results found, in the design of user interfaces. 
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Chapter 1   Introduction 

Introduction  

1.1 Motivation  
“The interdisciplinary design science of human-computer interaction began by 

combining the data-gathering methods and intellectual framework of experimental 
psychology with the powerful and widely used tools developed from computer science.”          

(Shneiderman & Plaisant, 2005) 

Research on human-computer interaction (HCI) is rapidly developing and bringing novel 

metaphors that intuitively communicate humans with systems. According to Ben 

Schneiderman, “HCI’s paradigm birth came from the happy union of computing 

technologies with psychological research methods” (Shneiderman, 1980). This refers to 

theories that account for human behaviour in the design of user interfaces. Indeed, a large 

number of studies in HCI are dedicated to investigating user experience (UX). The latter 

refers to the user’s attitudes about using a system, which are considered for designing 

high quality user experiences (Hartson & Pyla, 2012). Different elements that shape UX 

can be evaluated through empirical methods related to performance measures (e.g., error 

or speed) and user satisfaction scales (e.g., comfort or enjoyability) to determine the 

usability of a system (Bevan, 1995, 2001).  

However, although HCI research aims to design intuitive systems that give users an 

experience of being in control (Shneiderman, 2004), the role of the sense of agency (SoA) 

in designing user interfaces has been little studied. The SoA refers to the experience of 

being the initiator of one’s own voluntary actions, through which we influence the world 

around us (Haggard, 2017). 
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This experience is particularly important in our agentive interactions with technology. 

For instance, when we manipulate a user interface (e.g., on a computer or smartphone), 

we expect the system to respond to our input commands as we want to feel we are in 

charge of the interaction. If this action-outcome interplay elicits a SoA, then the user will 

perceive an instinctive feeling of “I am controlling this”. In contrast, if a system does not 

support a SoA, then the user might feel discouraged from using it (Limerick et al., 2015) 

and lose self-attribution of his/her actions’ outcomes.  

Despite the increasing emergence of novel interaction paradigms (e.g., touchless systems 

and automation aids) that are being used in many critical situations (e.g., driving and 

surgery), current UX frameworks do not include the experience of agency as an element 

composing user interface design. Yet, many of these interaction scenarios require a high 

level of agency and responsibility. For instance, in autonomous driving or autopilot mode 

in aviation (where the system takes some decisions to assist the operator), it is important 

to provide users with the appropriate feeling of being in control so that they feel 

responsible for their own actions and the consequences of these (Berberian, 2019). 

Studying agency in this aspect can support the design of appropriate automation levels 

that do not disrupt users’ SoA (Coyle et al., 2012).  

In another example, touchless interaction is being employed in surgery applications 

(O'Hara et al., 2014), where surgeons can control imaging systems by gestural actions 

(not involving any physical contact at all). However, as it is an uncommon input modality 

(beyond typical keyboards and touchscreens), it is unclear if touchless interaction 

produces a SoA in users. In these critical situations (e.g., surgery, driving), if users do not 

experience agency and responsibility, they could diminish their self-attribution of an 

unfavourable outcome. 

While the SoA itself has been little studied in interaction with technology, HCI 

researchers do acknowledge the importance of designing systems that provide a feeling 

of being in charge of the interaction. For instance, Ben Schneiderman establishes in his 

eight golden rules of interface design that user interfaces should “support an internal locus 

of control” (Shneiderman, 2005). An internal locus of control refers to the belief that 

outcomes result from one’s own actions, while an external locus of control refers to the 

belief that outcomes are not a product of one's personal efforts (Lefcourt, 1991). 
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In this line, subjective scales to assess users’ degree of control have been employed 

(O’Brien et al., 2018). However, as the term “control” can be quite subjective, recent 

studies have measured SoA as a means of exploring users’ feeling of controlling a system. 

Measuring agency can give greater insights into how the experience of control is given 

by users’ perception that sensory outcomes from the system are produced by their own 

actions (Coyle et al., 2012; Limerick et al., 2015; Bergstrom-Lehtovirta et al., 2018). This 

is because the SoA is a well-studied phenomenon in the field of psychology and cognitive 

neuroscience and can be assessed using implicit methods (Haggard et al., 2002). Indeed, 

Limerick et al. suggest that “an interdisciplinary combination of HCI research and 

cognitive neuroscience to investigate the sense of agency can provide a rich and 

promising new research area that has the potential to inform both fields in novel ways” 

(Limerick et al., 2015). 

Measuring the SoA can provide relevant insights about the reliability of emerging 

interaction paradigms. For instance, research on multisensory experiences in HCI is 

pursuing the integration of all our senses in user interfaces (Obrist et al., 2017). Such 

integration means that the user not only interacts with systems via visual, auditory or 

tactile cues, but also through olfactory information (Obrist et al., 2014), for example,  in 

receiving olfactory notifications (Maggioni et al., 2018). The sense of smell is quite 

powerful in evoking emotions, suggesting a strong potential to improve user experiences 

by adding realism and immersion, for example, in virtual reality (VR). Therefore, 

exploring olfactory interfaces through agency measures could be useful to validate their 

applicability for HCI.  

However, since agency measures have emerged from the field of cognitive neuroscience, 

they can be limited to simple and controlled experiments that might not be suitable for 

interactive and visual environments typical in HCI (e.g., in VR). For instance, the 

intentional binding (IB) paradigm provides an implicit measure of the SoA, linking 

agency experience and perception of time (Haggard et al., 2002). This paradigm can 

require high visual attention to timing cues that subjects employ to report the time at 

which events occur (e.g., a small on-screen clock). Therefore, when used in situations 

involving relevant visual information (e.g., VR and on-screen tasks) this measure might 

not be suitable. However, by increasing the research on agency within HCI, we might be 

able not only to use existing paradigms to evaluate SoA but also adapt or develop novel 

measures of agency that can be more suitable for interactive tasks in our field. 
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In this thesis, we want to highlight the importance of including agency measures within 

UX in HCI research. We believe that studying the SoA is crucial to better understand how 

people interact with technology, in the context of not only causality (e.g., the relationship 

between actions and outcomes) but also responsibility. This thesis therefore aims to 

examine how measuring the SoA using implicit measures such as the IB paradigm can 

give broader insights into user feeling of control in HCI. Improving the user’s SoA can 

potentially result in more engaging commercial devices and software. In order to achieve 

this goal, we explore the role of the SoA in novel HCI paradigms involving the human 

senses (including mid-air haptic and olfactory interfaces) as well as measures of agency 

that could be more suitable for interactive tasks. The overarching research aim is achieved 

through the following research questions, which are distributed among three main 

chapters of this thesis (see Table 1.1). 

1.2 Objectives and Research Questions 
RQ1: Is a SoA experienced in touchless interaction? 
The first research question explores whether a typical action performed in touchless 
systems (a click gesture) produces users’ SoA. It is not clear if touch interaction where 
the user presses buttons and touches screens is perceived as clearer compared with mid-
air gestures. Therefore, this research question explores whether a feeling of control is 
perceived when performing a voluntary action that does not involve physical contact or 
limit or tactile feedback in comparison with a physical button press. 

RQ2: What type of feedback produces greater SoA in mid-air interfaces? 
The second research question is dedicated to comparing different types of feedback 
commonly employed in mid-air interfaces (visual, auditory and mid-air haptic feedback) 
in order to determine what type of action’s outcome produces a greater SoA.  

RQ3: Do emotions produced by odours modulate the SoA? 
The third research question aims at exploring how emotions produced by exposure to 
different scents (pleasant, unpleasant and neutral) modulate the SoA. Following literature 
suggesting that the SoA is influenced by emotions induced by vision, audio and touch, 
this research question aims to contribute to the literature of SoA by including the sense 
of smell for agency modulation.  

RQ4: Does a positive odour increase the SoA? 
Based on prior studies suggesting that a positive emotion (produced via visual, auditory 
and tactile information) enhances the SoA, the fourth research question investigates 
whether a positive odour produces a higher SoA compared with a negative odour.  
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RQ5: Can the IB paradigm be measured using a non-visual timing stimulus? 
The fifth research question examines different non-visual timing stimuli to measure IB. 
Since typical timing methods are based on visual information, this research question 
explores whether an IB effect is observed when using auditory and tactile stimuli in 
comparison with traditional visual stimuli. 

RQ6: Do non-visual timing stimuli reduce lack of engagement? 
The sixth research question investigates whether auditory and haptic timing stimuli are 
more emotionally arousing than visual timing stimuli. We argue that visual information 
in the form of a rotating clock on screen might be tiring or tedious, and therefore this 
research question explores the use of timing stimuli perceived through non-visual senses 
to compare subjective reports of emotion. 

Table 1.1 shows how the research questions are distributed in the different chapters of 
this thesis specifying the main objectives. 

Research Question Objectives Chapter 

RQ1: Is a SoA 
experienced in touchless 
interaction? 
RQ2: What type of 
feedback produces greater 
SoA in mid-air interfaces? 

• Implement a reliable gestural action 
using optical finger tracking. 

• Compare IB observed in gestural and 
physical actions.  

• Compare and contrast different types of 
system feedback (visual, auditory and 
haptic) as a response to gestural and 
physical actions.  

Chapter 3 

RQ3: Do emotions 
produced by odours 
modulate the SoA? 

RQ4: Does a positive 
smell increase the SoA? 

• Explore elicitation of emotion (positive, 
negative and neutral) through odorants. 

• Compare IB elicited by the different 
emotions induced by odorants. 

• Validate emotion activation through 
self-report scales. 

• Assess olfactory stimulation through 
activation of physiological responses 
(skin resistance). 

Chapter 4 

RQ5: Can the IB 
paradigm be employed 
using a non-visual timing 
stimulus? 
RQ6: Do non-visual 
timing stimuli reduce lack 
of engagement? 

• Develop novel timing techniques based 
on auditory and haptic cues that do not 
require visual information. 

• Explore whether IB is observed with 
audio and haptic timing cues. 

• Compare audio and haptic timing with 
traditional visual timing techniques in 
terms of self-reported emotion. 

Chapter 5 

Table 1.1 Research questions and objectives and their distribution in each chapter. 
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1.3 General Overview 
We start our exploration by reviewing the literature on SoA and its emerging implication 

within HCI in Chapter 2. In Chapter 3, we explore agency in mid-air interfaces. In 

physical interaction (e.g., keyboards and touchscreens), it is easy to perceive that we are 

controlling a system as it involves touching objects (e.g., pressing a button or tapping a 

screen). However, in mid-air interaction where the main interplay involves gestures, 

agency could be challenging. Today, touchless interfaces are being employed in critical 

applications, in which the user is able to manipulate digital content without physically 

touching controls and simply mimicking the movements we would make with actual 

objects, for example, making a click gesture to simulate a button press (Saffer, 2008). 

However, even when a touchless input command is accompanied by sensory feedback to 

confirm an action, the fact of not perceiving any physical limit could affect our feeling of 

control. Inspired by recent research showing that differences in interaction techniques can 

significantly affect the experience of control (Limerick et al., 2015), we explore in this 

chapter whether users perceive agency in touchless interfaces and what kind of feedback 

is more suitable in this interaction modality.  

To investigate this, we conducted two studies measuring IB via the Libet clock method. 

In the first study, we compared IB in physical and gestural input modalities preceding 

visual and auditory feedback. Then, in the second study we added haptic feedback 

(vibrotactile and mid-air) to explore what type of interaction input/feedback elicits higher 

SoA. In the results, we found that both physical and gestural actions elicit a binding effect 

only when receiving auditory or haptic feedback (i.e., a system confirmation of a 

touchless action) unlike visual feedback. This work was published at CHI 2017. DOI: 

10.1145/3025453.3025457 

Following the line of mid-air systems, in Chapter 4, we explore agency in olfactory 

interfaces and how emotions evoked by odorants influence IB. Olfactory interfaces are 

becoming increasingly popular in HCI, covering areas such as VR (Barfield & Danas, 

1996) and automotive applications (Yoshida et al., 2011). Our sense of smell is often 

considered poor compared with other senses, and thus our interaction with technology is 

dominated by visual, auditory and haptic interfaces. However, olfactory information is 

quite powerful in evoking and modulating emotions, memories and mood, suggesting a 

strong potential to improve user experiences (Obrist et al., 2014). 
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Following evidence that the SoA is modulated by affective information (visual, auditory 

and somatosensory), in Chapter 4, we explore if agency is affected by a powerful sense 

that is strongly connected to our emotions: the sense of smell. To explore this, we 

conducted a study where IB was measured while subjects were presented with scents to 

evoke different emotions (positive, negative and neutral). Our results show that SoA 

increased when subjects were exposed to positive scents compared with the neutral and 

negative scents. These findings can provide a major benefit in the design of olfactory 

interfaces. For instance, presenting multisensory affective cues in form of scents might 

represent a positive effect towards user interfaces improving users’ SoA, and increasing 

thus potential applications. 

Chapter 5 consists of exploring novel methods to measure the SoA using different sensory 

modalities. The motivation for exploring alternative measures of agency arose for two 

main reasons: (1) In Chapter 3, we found reduced SoA for an action that caused visual 

feedback presented at the same time as a Libet clock was shown on screen. The Libet 

clock method involves relevant visual attention as it requires subjects to pay attention and 

report its position. Thus, presenting additional visual stimuli can produce divided 

attention and therefore affect measurements. This suggests that current visual timing 

stimuli methods to measure agency are limited in scenarios that involve relevant visual 

information (e.g., in VR). (2) In Chapter 4, we found that a different sense (the sense of 

smell) beyond the typical senses involved in HCI (vision, audio and touch) can serve as 

a medium to convey information and produce an effect on agency. Given that the 

traditional Libet clock method involves relevant visual demand, we wanted to explore 

whether different senses can be used to measure perception of time in the IB paradigm.  

To do so, we developed two novel timing techniques based on auditory and haptic cues 

that provided a reference for reporting the time at which events occurred (actions and 

outcomes). We demonstrate that these techniques effectively offer modality variants for 

agency measurements in an IB task, thus addressing visual demand. This work was 

published at CHI 2018. DOI: 10.1145/3173574.3174115 

Finally, in Chapter 6 we conclude by highlighting the main contributions of this thesis 

and the importance of agency measures in HCI as well as the importance of preserving 

user responsibility when designing user interfaces. 
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Chapter 2   Literature Review 

Literature Review  

2.1 The Sense of Agency 
“The feeling of making something happen.” 

(Haggard, 2017) 
The sense of agency (SoA) refers to the experience of being the initiator of one’s own 

voluntary actions and through them influencing the world around us (Beck et al., 2017). 

Georgieff and Jeannerod defined this phenomenon as a “who” system that permits the 

identification of the agent of an action and thus differentiates the self from external agents 

(Georgieff & Jeannerod, 1998). The SoA has also been suggested to reflect the experience 

that links our free decisions (volition) to their external outcomes, i.e., a result of action-

effect causality where the match between the intended and actual result of an action 

produces a feeling of controlling the environment (Synofzik et al., 2013), such as happens 

when we press the light switch and perceive the light coming on (e.g., I did that) or when 

we press a key on the keyboard and the computer responds with a visual effect on screen 

(e.g., I control this). 

With these two interrelated visions of agency, Synofzik et al. drew a marked distinction 

between the feeling of agency (FoA) and the judgement of agency (JoA) (Synofzik et al., 

2008). While the FoA is a non-conceptual feeling of being an agent based on the 

comparison between predicted and actual sensory events, the JoA is a conceptual 

interpretative judgement of being an agent or not. Studies that investigate the FoA, for 

example, make a direct comparison between predicted and actual action-outcome. On the 

other hand, studies that investigate the JoA might test whether a certain event was caused 

by the subject or by the computer (Synofzik et al., 2008).  
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The JoA has been previously explored in HCI, particularly in relation to joint action and 

human-robot interaction in studies in which humans and machines share a goal (Limerick 

et al., 2015). However, the FoA has been more commonly investigated in recent research 

focused on an interplay of input commands and system feedback; that is, in experiments 

that explore how the experience of controlling a system is given by users’ perception that 

sensory outcomes from the system are produced by their own actions. Since in this thesis 

we particularly focus on an interplay of input and output channels, from Chapter 3 (where 

the main studies are described), we use “SoA” to refer to the FoA as a phenomenon 

serving to explore the action-outcome relation in HCI. 

The concept of agency has been extensively investigated in fields such as philosophy, 

psychology and neuroscience (De Vignemont & Fourneret, 2004). A wide range of 

studies have provided relevant understanding of agency mechanisms in mental disorders. 

For example, lack of agency is associated with schizophrenia (Mellor, 1970) and 

delusions of control (Frith, 1992). Patients with these disorders do not feel they are in 

control of their own actions and sometimes their thoughts (Mellor, 1970). Indeed, studies 

comparing SoA in patients with schizophrenia and healthy individuals has provided 

relevant understanding of the brain mechanisms underlying agency (Haggard, 2017).  

It has been suggested that “we experience a clear feeling (or ‘buzz’) of agency during 

everyday actions” (Haggard, 2017). Because the brain mechanisms that produce this 

experience are quite efficient, our SoA may be considered unnoticed. However, our SoA 

becomes clearer when it is disrupted. For instance, if I try to switch the light on when the 

room is dark, but the switch fails, I will experience a mismatch between my expectations 

and the actual result of my action, and therefore my SoA is lost; that is, the experience of 

being in control is suddenly interrupted (Haggard, 2017).   

This example reflects the importance of agency experience in interaction with systems. 

If the experience of control is suddenly interrupted while using a certain technology (e.g., 

a smartphone, a car, an industrial machinery or an aircraft), the user might lose self-

attribution of his/her own actions’ outcomes. For this reason, the SoA is gaining 

increasing attention from the field of HCI aiming to advance our understanding of the 

role of agency experience in interactions involving technology. Developing user 

interfaces and interaction techniques that increase user’s SoA will support an internal 

locus of control – a key rule for user interfaces (Shneiderman, 2005), promoting the 

experience that a system’s outcomes result from one’s own actions rather than from 
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external factors. In the next section, we describe the two common theories that explain 

the origination of agency. 

2.2 Origination of Agency: Predictive and Postdictive Models 
Currently, two theories explain the origination of the SoA based on predictive and 

postdictive accounts (Synofzik et al., 2013). The predictive model relies on internally 

generated predictions and expectations of an action’s consequences, whereby the SoA 

arises when matching predicted and actual sensory results (Blakemore et al., 2002). The 

postdictive model relies on retrospective reflection, whereby the SoA arises after 

perceiving the action’s outcome (Wegner, 2003; Maeda et al., 2012). Here, the perception 

of causation (relationship between action and outcome) is a result of post-action 

information. 

One example that supports the predictive theory is the comparator model  (Figure 2.1) 

(Frith et al., 2000; Wolpert & Flanagan, 2001; Blakemore et al., 2002), which consists of 

a computation model that explains the motor control system. This model starts with a goal 

that enables a desired state. Then, a movement is generated which updates the state of the 

motor system and generates sensory feedback. Based on this initial information, an 

estimated state is generated and constantly compared with the desired state. Crucially, 

within the motor command stage, a predictive component uses an “efference copy” that 

anticipates both changes in the motor system and sensory consequences resulting from 

those changes.  

 
Figure 2.1 The comparator model (Frith et al., 2000). The sense of agency (SoA) 

arises when there is a sensory match between the predicted and actual state of an 
action. 
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Based on this information, a predicted state is generated which can then be compared 

both with the desired state and the actual state. According to this model, the SoA arises 

as a result of the comparison between predicted and actual states: if they match, we feel 

a SoA, and if they do not match, we do not. 

On the other hand, Daniel Wegner’s account suggests that the SoA arises from variable 

post-hoc inferences occurring not only during the action but also after the action has 

occurred, rather than as a result of motor preparation and cognitive anticipation. This 

model relies on three main principles that condition agency: priority, consistency and 

exclusivity (Wegner & Wheatley, 1999). According to this model, the SoA arises when 

(1) a conscious thought that precedes the action (priority) is consistent with the actual  

outcome of the action (consistency), and there is no other apparent cause of such outcome 

than one’s thought (exclusivity) (Wegner, 2002; Wegner, 2003). This view relies mainly 

on the accumulation of sensory evidence about our actions.  

Many studies have supported this postdictive explanation of agency. For instance, 

(Johansson et al., 2005) observed postdictive influence over subjects’ actions based on 

choice blindness. In this study, participants were asked to visually choose one option from 

among others. Then, the experimenters swapped the participants’ chosen option with a 

new one and presented this new option as their original choice. When participants were 

asked to explain the reason for their choice, they tried to justify why they chose the 

swapped option, even though it was clearly different to the original choice. 

Another example is an experiment conducted by (Takahata et al., 2012) in which 

participants were presented with rewarding and punishing outcomes by associating 

auditory stimuli with positive, neutral and negative monetary outcomes. The results 

showed that participants attributed an action to themselves depending on the outcome 

condition; they tended to misattribute the action when its effect produced a negative 

outcome. 

Although prior work found in the literature differs in its explanations about the initiation 

of SoA, both models (predictive and postdictive) are considered valid. Indeed, a number 

of studies have suggested that the SoA depends on a combination of both predictive and 

inferential processes (Moore & Haggard, 2008; Synofzik et al., 2013). One example is 

the cue integration model, which is explained in the next section. 
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2.2.1 Cue Integration and SoA 

Prior studies have suggested that “the challenges facing the agency processing system are 

comparable to those facing the perceptual system” (Moore & Fletcher, 2012). The 

perceptual system collects a combination of cues from different sources of sensory 

information (including vision, touch and audition) to resolve potential ambiguities. In this 

line, (Ernst & Bülthoff, 2004) divided this phenomenon into two strategies i.e., cue 

combination and cue integration. While cue combination accumulates information from 

different sensory sources (non-redundant signals) to disambiguate uncertainty, cue 

integration integrates information from different sensory sources (redundant signals) to 

find the most reliable estimate by reducing its variance as much as possible. Maximum-

likelihood estimation (MLE) (Kendall & Stuart, 1979) is often employed to integrate 

different sources of sensory information when the goal of sensory estimation is specified 

(Kendall & Stuart, 1979). 

For instance, (Ernst & Banks, 2002) manipulated the reliability of visual and haptic 

information in an object size discrimination task by adding noise. They found visual 

dominance when the reliability of haptic information was decreased (i.e., visual 

information was very reliable). On the contrary, they observed haptic dominance when 

the reliability of visual information was decreased (i.e., haptic information was very 

reliable). 

In line with this research, it has been proposed that the SoA is determined by the 

integration of various agency cues and the influence of those cues is weighted based on 

their reliability. For instance, (Moore et al., 2009) conducted a study showing that the 

influence of external cues to agency increased when the reliability of internal motoric 

signals was decreased (Moore & Haggard, 2008; Moore et al., 2009). This suggests that 

the SoA is determined not only by internal motoric signals based on perditions but also 

by a combination of internal signals and external cues which influence to determine the 

source of action is weighted by their reliability. 

The cue integration model has been suggested to better explain the origination of agency 

in comparison with alternative explanations such as the comparator model (Frith et al., 

2000; Wolpert & Flanagan, 2001; Blakemore et al., 2002), and the model proposed by 

(Wegner & Wheatley, 1999) which accounts apparently cannot explain illusory 

experiences of movement reported in previous studies (Desmurget et al., 2009). 
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According to (Moore et al., 2009), the presence of internal motoric cues can produce 

higher weighting than external cues to determine the source of action. That is, more 

weighted motor command signals will produce stronger prediction from the cue 

integration framework, resulting in illusory experiences of movement. Controversially, 

in the absence of such internal motoric cues, external cues become more reliable, having 

a higher weighting to determine the source of an action. That is, more weighted external 

signals can be sufficiently compelling to override internal motoric signals, resulting in 

experiences of not having moved although movement had actually occurred. 

Vision often tends to be dominant in weighting for certain estimates, producing the 

experience of agency in the absence of movement. Virtual reality (VR) is an example of 

an environment in which visual information is relevant and can be easily manipulated. 

For example, participants in a study by (Banakou & Slater, 2014) falsely attributed an 

action (speaking) to themselves. The experiment consisted of a virtual scene in which 

participants saw a life-size speaking avatar from the first-person perspective (1PP) 

through a virtual mirror. Participants also received thyroid cartilage vibrotactile 

stimulation synchronized with the avatar’s speech. Crucially, the movements of the 

avatar’s body and participants’ body were also synchronized to create the illusion of body 

ownership (the sense of “this is my own body”). The authors found that participants 

thought they were speaking the words when actually they were not. In a more recent VR 

study, it was found illusion of agency over walking in seated participants (Kokkinara et 

al., 2016).  

In these examples, external cues (the visual feedback of the speaking avatar and 

vibrotactile feedback in the thyroid cartilage) receive higher weighting, and therefore 

contributes more to the experience, than internal cues. These findings suggest that body 

ownership in immersive virtual reality (IVR) that involves relevant external cues might 

induce illusory SoA when agency is in fact entirely absent, namely, in the absence of 

prediction, priming or cause preceding the effect.  

The previously mentioned studies have provided relevant insights about the origination 

of agency to explore its modulation (e.g., through priming and IVR). Certainly, to study 

agency, methods to measure this phenomenon are crucial. In the next section, we provide 

an overview of the main methods employed to measure agency.  
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2.3 Implicit Measures of Agency 
The most common method to assess the SoA is based on explicit judgement, obtained by 

simply asking subjects whether they were the agent of a certain action. However, prior 

work has suggested that explicit human judgement can be subject to a number of cognitive 

biases, and therefore, strategies have been developed to implicitly measure the SoA; one 

example is the intentional binding (IB) paradigm (Haggard et al., 2002), which indicates 

a relationship between agency experience and perception of time. In this paradigm, the 

level of agency can be assessed as perceived differences in time between voluntary 

actions and their resultant outcomes. The IB paradigm employs a subjective report of time 

perception from subjects using a Libet clock. Next, we describe these implicit methods 

to assess the SoA. 

2.3.1 The Libet Clock and the Intentional Binding Paradigm 
In 1982, Benjamin Libet studied the timeline regarding (i) brain neural activity, namely, 

the “readiness potential” (RP), (ii) the conscious experience of executing a motor 

movement (free will) and (iii) the actual motor movement (a wrist extension). To this 

end, he proposed the use of the Libet clock (Figure 2.3A), which provides a measure for 

the subjective awareness of free will “W” (i.e., the time at which awareness of the wish 

to act first appears) (Libet et al., 1983). It consists of a clock with a dot that rotates 

clockwise once every 2560ms (a speed approximately 25 times faster than that of a 

conventional clock). The marked numbers around the perimeter are thus equivalent to 

about 40ms each.  

 

Figure 2.2 Libet’s experiment (left). The readiness potential (RP), obtained by EEG, 
arises before the conscious awareness of free will (W) subjectively reported by 
subjects using a Libet clock on screen. Then, W arises before the actual wrist 

movement recorded by EMG (right). 



 

Chapter 2 - Literature Review 

15 

During Libet’s study, subjects were presented with this clock through an oscilloscope 

timer. Readiness potential was measured via an electroencephalogram (EEG) using 

electrodes placed at various points on the scalp. The action consisted of a wrist movement 

and was detected via an electromyograph (EMG) which recorded subjects’ muscle 

movements through electrodes on the skin. Finally, free will (W) was measured using the 

Libet clock and by asking subjects to note the position of the dot when they were first 

aware of the urge to act (Libet, 1999; Obhi & Haggard, 2004).  

The timeline of events during this experiment showed that the intention of movement is 

first generated by a brain process over which we have no control, as at that moment we 

are not consciously aware. Subsequently, the subjective experience of free will emerges 

and finally the actual motor movement occurs (see Figure 2.2). 

With this method, Libet provided important evidence on the origination time of conscious 

will. His view suggests that the volitional process (i.e., RP occurrence) arises 

unconsciously at about 500ms before the actual action; however, the subjective 

experience of free will (i.e., reported by subjects using the Libet clock) emerges about 

200ms before the actual motor movement (see Figure 2.2). This suggests that free will 

does not initiate a voluntary act, but it could control the performance of the act (i.e., it can 

veto the act) (Libet, 1999; Schultze-Kraft et al., 2016). Some researchers have suggested 

that free will could be better described as “free won’t” because this process seems to have 

more to do with the decision to execute an action or not before the action itself occurs 

(Obhi & Haggard, 2004; Schultze-Kraft et al., 2016). In summary, Libet’s finding 

suggests that free will follows the onset of RP rather than precedes it. However, this has 

been subject of debate within the literature (Danquah et al., 2008). 

Subsequently in 2002, Patrick Haggard adapted the Libet clock to incorporate it in the IB 

paradigm (Haggard et al., 2002). He used the Libet clock to measure the temporal binding 

between a voluntary action (button press) and its sensory outcome (a tone), demonstrating 

that actions and outcomes reciprocally attract each other in subjective awareness. As 

shown in Figure 2.3(b) –right, subjects perceive delayed awareness of a voluntary action 

(action binding) whilst anticipated awareness of its outcome (outcome binding) relative 

to single judgement errors. That is, people tend to perceive voluntary actions and their 

outcomes as close in time (Haggard et al., 2002; Ebert & Wegner, 2010). The summation 

of these two components (total binding) is thus associated to the experience of agency. 

The higher the total binding, the higher the SoA (Ebert & Wegner, 2010; Moore & 
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Haggard, 2010). A Libet clock on screen (Figure 2.3(a) – left) is used to measure subjects’ 

time perception. Subjects report the clock position (the dot location) at the moment of 

their voluntary action (a button press) and its outcome (the resultant tone). 

As shown in Figure 2.3(b), two baseline and two active conditions are employed to 

calculate action and outcome binding. In baseline conditions, only one event occurs – 

either action or outcome. In active conditions, both action and outcome occur. During the 

task, both actual time (dot position on the Libet clock logged by the system) and perceived 

time (dot position on the Libet clock reported by subjects) of the action and outcome are 

recorded.  

 
Figure 2.3 The intentional binding (IB) paradigm. (a) left: The Libet clock, right: 
The IB effect. (B) Measurement conditions (baseline and active). (c) IB calculation 

formulas relative to single-event judgement errors. 
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The errors are calculated using the difference between perceived and actual time. 

Following this, IB is calculated through the formulas shown in Figure 2.3(c).  

This temporal binding can be depicted as the bi-directional limitation of Bayesian causal 

inference (Eagleman & Holcombe, 2002):  “If two events occur closer together in time, 

it is more likely they will be perceived as causally related. Therefore, if two events are 

known to be causally related, they are more likely to occur closer in time” (Hume & 

Beauchamp, 2000; Buehner, 2005). The IB effect is generally observed when actions are 

voluntary (e.g., self-paced voluntary keypress); moreover, for involuntary actions (e.g., 

twitches caused by transcranial magnetic stimulation (TMS)) the opposite effect is 

observed; that is, temporal repulsion rather than attraction is observed between a passive 

action and its outcome. Nevertheless, a recent study revealed outcome binding for 

involuntary actions based on learning and association (Khalighinejad & Haggard, 2016).  

The IB paradigm has been suggested to provide a viable implicit measure of the SoA 

(Moore & Haggard, 2010; Moore & Fletcher, 2012). Since explicit judgement of agency 

can be subject to cognitive biases (Chambon et al., 2012; Sidarus et al., 2013; Haggard, 

2017; Sidarus et al., 2017), some researchers have compared and contrasted implicit 

agency using the IB paradigm with explicit agency via self-report (Obhi & Hall, 2011). 

One limitation of the IB paradigm, however, is that it requires significant visual attention 

as it relies on subjects’ observation of the Libet clock, which is usually small in size to 

keep subjects’ attention. For example, in the study by (Coyle et al., 2012) it was “100 

pixels in diameter and displayed on a screen with a resolution of 1920 x 1080 pixels”. An 

alternative implicit measure of the SoA is the interval estimation method (Ebert & 

Wegner, 2010), which does not requires relevant visual information.  

2.3.2 Interval Estimation  

The interval estimation method is also based on the idea that actions and outcomes are 

shifted towards each other, and shorter perceived intervals between action and outcome 

refer to a higher SoA (i.e., IB). However, this method consists of simply asking subjects 

to estimate the time interval in milliseconds between a voluntary action and its outcome 

(which is randomly varied). The error estimation is calculated by the difference between 

actual and reported time in milliseconds. The mean error is thus associated to IB; i.e., an 

underestimation of the intervals refers to higher SoA (Ebert & Wegner, 2010). Crucially, 

during a training stage, in which subjects are allowed to practice their interval estimation 
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with the feedback of the actual intervals, they are told that the possible delays between 

action and outcome have a large resolution, whereas during the actual experiment only 

reduced fixed intervals are presented. For instance, in the study by (Ebert & Wegner, 

2010; Coyle et al., 2012), the training stage involved delays ranging from 50ms to 950ms 

in intervals of 50ms (i.e., 50ms, 100ms, 150ms, 200ms, etc.), while in the actual 

experiment only three fixed intervals are presented (100ms, 400ms and 700ms) in a 

counterbalanced order. However, different ranges and fixed intervals have been 

employed depending on the aim of the study (Caspar et al., 2016). 

The benefit of this method is that it does not involve significant visual attention (as the 

Libet clock does) and requires only one measurement rather than two baseline and two 

active blocks of each action and outcome conditions (see Figure 2.3). This makes it 

suitable for studies involving a larger number of experimental conditions. However, the 

interval estimation method does not allow distinction between action binding and 

outcome binding. In other words, it is not possible to observe if the task produced higher 

anticipation of the outcome or a late awareness of the action. Having two separated values 

of action and outcome binding could be more informative for HCI, giving further 

evidence related to user input and system feedback. However, depending on the main 

objective of each study, both the IB paradigm and interval estimation can be employed 

as both methods have been extensively used within the literature. 

Moreover, apart from time perception, another approach that has been suggested to be 

related to the SoA is sensory attenuation. Prior studies have shown that changes in this 

phenomenon can be a marker of agency. Next, we present an overview of these studies. 

2.3.3 Somatosensory Attenuation  

Somatosensory attenuation (SA) refers to the softening of tactile sensations during self-

touch. This effect serves as a defence mechanism in humans and is generated by the 

central nervous system to distinguish between self-related signals (e.g., your own fingers 

scratching your neck) and non–self-related signals (e.g., a spider crawling up your neck) 

(Kilteni & Ehrsson, 2017). That is, since external signals can represent potential threats, 

they must be clearly distinguished from self-related signals. For instance, when we touch 

our arm with our own hand, the touch feels less intense than an identical touch generated 

by another person. This effect results from a brain prediction (the so called efference 
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copy) of the self-generated contact between our hand and arm, attenuating the expected 

sensation (Weiskrantz et al., 1971; Blakemore et al., 1999; Blakemore et al., 2000). 

Due to the fact that SA is related to the self, some studies have suggested that an 

attenuation of tactile perception can be a marker of agency (Blakemore et al., 1999). That 

is, this attenuation should be stronger when events are self-attributed (e.g., it was me) 

than when they are misattributed (e.g., it was not me). In this line, studies have explored 

whether lower intensity pain ratings (induced by heat or electrical stimulus) are associated 

with a greater IB effect. Although they found that SA is a result of free choice compared 

to instructed action (i.e., the intensity of the sensory consequences of voluntary action is 

lower), no clear effect on binding was found (Beck et al., 2017; Borhani et al., 2017).   

Indeed, in a study by Kilteni et al., a significant correlation between the strength of body 

ownership and the degree of somatosensory attenuation was observed. However, in 

conditions where somatosensory attenuation was modulated, a SoA was always 

experienced (Kilteni & Ehrsson, 2017). This finding suggests that attenuation occurs only 

for sensory predictions related to one’s own body and not for sensory events that are 

caused by motor actions. Therefore, somatosensory attenuation is unlikely to be a marker 

of agency, and thus “the exact relation between sensory attenuation and sense of 

instrumental agency remains unclear” (Haggard, 2017). 

Based on this evidence, in this thesis we explore agency by using the view related to 

perception of time rather to sensory attenuation. Indeed, recent studies that have 

investigated agency in HCI are mainly based on experiments that test subjects’ perception 

of the time that elapses between input modalities and system feedback.  We present an 

overview of these studies related to interaction with technology and user interfaces.  

2.4 Explicit Measures of Agency 
Measures of explicit agency are based on subjective judgement, commonly obtained by 

simply asking a subject whether he/she was the agent of certain action or not (e.g., “did 

you do that?”) (Haggard & Tsakiris, 2009), or subjective scales (e.g., rate your level of 

agency on a scale from 1 to 7). However, research on agency and decisions (Synofzik et 

al., 2008), has suggested that “explicit measures of the SoA are subject to a number of 

cognitive biases and are highly sensitive to task demands” (Khalighinejad & Haggard, 

2016). In other words, people’s decisions are often influenced by unconscious 

information, and the way we think we decide is different from the way the brain actually 
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decides for us. Prior studies have provided evidence of these biases in human judgement, 

by investigating the effect of subliminal primes on people’s decisions (Chambon et al., 

2012; Sidarus et al., 2013; Sidarus et al., 2017). Here, people tend to report more SoA 

when their decisions are actually influenced by external cues than when they resist an 

influencing prime (Wenke et al., 2010). Similar effects are observed in choice blindness, 

whereby people tend to retrospectively invent an experience of their own decision when 

this was clearly not the decision the brain originally made (Johansson et al., 2005). 

Crucially, these biases have also been found when comparing implicit and explicit 

measures of agency, suggesting that self-reports and IB may operate differently. For 

instance, (Strother et al., 2010) found that self-reports reflect reduced SoA while implicit 

measures indicate a high IB effect, suggesting that explicit agency and IB do not share a 

common mechanism.  

There exists a salient conflict between explicit and implicit measures of agency, 

especially when exploring agency in more complex and visual tasks such as in VR 

environments. The IB paradigm using the Libet clock mainly consists of simplistic 

desktop action/outcome tasks (e.g. button presses and tones), and can require relevant 

visual attention. This is a challenge in VR environments where users are exposed to visual 

information constantly and actions are more complex (e.g., full-body movements), 

making it difficult to implicitly assess agency and preventing actual applications. 

Therefore, studies on agency using VR setups are usually limited to using self-report 

questionnaires as a measure of the SoA.  

While the interval estimation method (Ebert & Wegner, 2010) could address this 

limitation (an implicit method that does not involve significant visual attention), its lack 

of distinction between action binding and outcome binding might be less informative for 

the action–feedback interactions common in HCI. That is, having these two measures 

provides broader evidence on how system modalities in HCI affect users’ SoA.  

In prior work, using the Libet clock method, (Limerick et al., 2015) found reduced SoA 

for speech input reflected in low outcome binding but not in action binding. In another 

example, in Chapter 3, we found no differences in action binding for gestural or physical 

input commands but found that outcome binding was higher for haptic feedback 

compared with visual feedback in touchless interaction. 
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Moreover, although the Libet clock has been considered a viable method to implicitly 

measure the SoA, it also involves limitations related not only to visual demand but also 

to tediousness, since a rotating stimulus might be monotonous due to the number of trial 

repetitions (usually 30), thus producing loss of engagement. This prevents more complex 

setups such as VR environments. 

In light of this evidence, in this thesis we focussed on implicit measures of agency by 

measuring the IB effect using the Libet clock method, considering it more informative 

for HCI to obtain separate values for action and outcome binding. Moreover, we explored 

solutions to address current limitations of the Libet clock, such as visual demand and 

tediousness, by exploring timing stimuli through different senses.  

2.5 Agency in Human-Computer Interaction 
Due to the ubiquity of our interaction with systems (e.g., computers, smartphones and 

tablets) for work or leisure purposes, we usually do not think about our SoA during the 

interaction, and it may be unnoticed (Moore, 2016). However, a clear example that 

highlights the importance of our SoA in HCI is when this experience is disrupted. When 

there is a mismatch between expectations and the actual sensory feedback from the 

system, the user experiences a sudden interruption in the feeling of control. This can 

negatively affect acceptability (Berberian, 2019) and usability (e.g., poor game 

controllers may cause frustration (Miller & Mandryk, 2016)).  

For this reason, the SoA is gaining increasing attention from the field of HCI. Developing 

interaction techniques that increase user’s SoA will provide the feeling of “I did that” as 

opposed to “the system did that”, supporting thus a feeling of being in control. 

With the availability of methods to quantify the experience of agency, recent studies have 

provided evidence of agency modulation by interactions paradigms involving input 

commands and system feedback. Input modalities and system feedback play an important 

role in the SoA as they are crucial aspects to build the communication dialogue in HCI 

(Hornbæk & Oulasvirta, 2017).  
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2.5.1 Input Commands and System Feedback 

“A computer interface facilitates control. It provides a set of mechanisms by which a 
human can drive the belief of a system about a user’s intentions towards a desired state 

over a period of time.” (Williamson et al., 2009) 

Input modalities serve to translate user’s intentions into state changes within the system, 

while system feedback informs the user about the system’s current state. As shown in 

Figure 2.4, the separation between user’s intentions and computer state changes is known 

as the “gulf of execution” while the mismatch between the computer’s actual state and 

user’s expectations is known as the “gulf of evaluation” (Norman, 1986). The goal of 

HCI is to bridge these gaps (Limerick et al., 2015).  

During recent years, research in HCI has introduced a wide range of new interaction 

techniques involving input modalities beyond the traditional mouse & keyboard 

interaction. For instance, speech control is becoming increasingly popular through 

commercial products such as Apple Siri, Amazon Echo and Microsoft Cortana. Speech 

input gives users the capability to control devices from a distance with high quality 

recognition rates (e.g., 97.3%). In another example, body–touch input is becoming 

popular to control smartwatches. Today, the use of smartwatches is expanding, but due 

to the so called “fat finger problem” (Siek et al., 2005), touch input on a size-limited 

screen is challenging, and researchers are introducing a “Skinput” modality (Harrison et 

al., 2010) to overcome this problem. For instance, by tapping and sliding the finger 

against the arm (Zhang et al., 2016; Sridhar et al., 2017). 

These new kinds of input modalities enable distinct ways of bridging the gulf of execution 

as they involve different types of action initiation and sensory feedback (Limerick et al., 

2015), and they can thus affect the experience of control. In light of this, HCI researchers 

have investigated how emerging input modalities influence the SoA.  

 

Figure 2.4 Interaction loop input–feedback in HCI highlighting the gulf of execution 
and the gulf of evaluation. Diagram based on (Norman, 1986; Williamson et al., 

2009; Limerick et al., 2015). 
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For instance, Coyle et al. compared Skinput (Harrison et al., 2010) with traditional 

keyboard-based button press input to explore “what happens when the input modality 

changes” (Coyle et al., 2012). Skin-based input consisted of a small piezoelectric 

microphone placed on participants’ forearm so that a tap on the skin close to this sensor 

was recognized as a “button press” action. Both action modalities – Skinput and button 

press – were followed by audio feedback in response (a beep) and participants’ SoA was 

measured using the IB paradigm. Their results showed a significantly higher IB effect in 

the Skinput condition, suggesting that skin-based input elicits greater SoA than typical 

keyboard input. This finding suggests that a tap on the skin could be perceived as more 

responsive compared with a traditional button press.  

Possible explanations of increased SoA for Skinput modality include that (1) it is a self-

directed action that produces higher congruency between actual and internally predicted 

action–outcome, (2) it constitutes more meaningful multisensory feedback that involves 

self-touch (integration theory) and (3) there is a possible relationship between increased 

activity within the motor systems for both self-related actions and agency. For the field 

of HCI, these findings can support applications for on-body interfaces such as skin 

electronics (Wang et al., 2018) and bio-sensing research that aims to use the user’s skin 

as an “interactive canvas” (Harrison et al., 2011).  

In the same line of exploring different input modalities, Limerick et al. compared speech-

based input with traditional button press input (Limerick et al., 2015). Speech input 

consisted of asking participants to say the word “go” (voice command) as an action. Both 

input modalities – voice and button press – were followed by a beep outcome, and IB was 

measured. Their results showed reduced IB for the voice command, suggesting that 

speech input modality elicits lower SoA than traditional button press input. This finding 

interestingly suggests that this low feeling of control might contribute to the low uptake 

of speech interfaces for interactive applications despite their popularity and the 

availability of high accuracy voice recognition (e.g., 97.3% recognition rate). 

This research in HCI has provided interesting evidence that changes in interaction 

techniques can significantly affect the user’s experience of control. Limerick et al.’s 

research suggests that a system that evokes a low SoA will discourage users from using 

it, preventing widespread use of the system. On the other hand, the research from Coyle 

creates a large opportunity for on-body interaction systems. We need a similar 
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understanding of the SoA for other interaction techniques in order to improve user 

interface design and thus enable wider uptake of systems. 

In another example, (McEneaney, 2013) executed a series of experiments to demonstrate 

that the experience of agency not only applies in physical situations but also in HCI. They 

focused on answering the following question: “Are agency effects observed in desktop 

computing environments typical of HCI?” 

They based their studies on measuring perception of click responses through visual on-

screen stimuli and auditory feedback to compare human-initiated actions with computer-

controlled actions. Their results showed that an agency effect exists in typical HCI 

desktop computer environments, supporting the claim that user perception of on-screen 

events depends on agency cues. However, they also found that the perception in time of 

participants differed depending on whether an auditory effect followed a machine or 

human-initiated click action. 

2.5.2 Application of Agency Measures in Virtual Reality       

Prior research has explored agency in more complex actions (beyond desktop 

environments) using explicit judgements. These studies have revealed illusory agency in 

IVR using head-mounted displays (HMDs) (Gonzalez-Franco & Lanier, 2017), 

suggesting that people may attribute an action to themselves (i.e., illusory agency) even 

in the absence of key aspects of agency experience (i.e., prediction, priming or cause 

preceding effect). Immersed in virtual scenarios accompanied by visuomotor 

synchronous conditions to create a strong feeling of body ownership of an avatar seen 

from 1PP, participants self-reported agency of actions performed by the avatar, that were 

not performed in reality.  

According to the cue integration model, the visual information shown in VR provides 

stronger external cues (it is very reliable), and therefore contributes more to the 

experience, than internal motoric signals. This generates the opportunity to provide the 

user with experiences that are close to those in reality, contributing to the quality of 

interaction (which can have a major benefit in VR training simulators). IVR has a strong 

potential to produce both psychological and physiological responses by inducing the 

feeling of body ownership. For instance, it can cause changes in body representation 

(Normand et al., 2011; Kilteni et al., 2012; Banakou et al., 2013) and  interpersonal 

attitudes (Peck et al., 2013) or affect psychological states (De la Peña et al., 2010). This 
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suggests that there is huge room for studying agency by taking advantage of VR 

environments. Indeed, studying agency in IVR can be crucial, as in these scenarios, users 

commonly pose a virtual representation of their own body (avatar), often producing action 

misattributions due to delays or tacking issues common in tasks involving touchless 

interaction (e.g., gestural actions).  

In this line, prior attempts have been made to explore agency in IVR. For example, (Kong 

et al., 2017) investigated if mere observation of a virtual avatar’s movements can elicit 

implicit SoA by inducing the feeling of body ownership. However, their setup is a replica 

of a desktop IB task (using the traditional Libet clock), which involves visual demand 

and thus prevents actual VR applications. Nonetheless, their results suggest that the VR 

experience led to a stronger binding effect and that this effect may differ from explicit 

judgement of agency.  

However, although this finding opens opportunities to investigate implicit measures of 

agency in IVR, further research is needed to develop suitable methods to assess implicit 

agency in more visual scenarios and more complex tasks such as gestural actions. 

2.6 Touchless Systems  
Interactive systems that use a touchless approach typically require no physical contact 

with a surface or object, avoiding the constraints of ordinary interaction paradigms (e.g., 

mouse & keyboard). These systems often rely on gesture-tracking technologies to detect 

mid-air gestures. The most common approaches rely on optical technology (Zhang, 2012; 

Taylor et al., 2016) and EMG (Nuwer, 2013; McIntosh et al., 2016). However, more 

recent devices offer higher resolution of gesture-sensing based on radar  (Lien et al., 2016) 

and sonar (Nandakumar et al., 2016) technologies.  

Taking advantage of their properties, touchless systems are being deployed to perform 

interactions in many critical situations such as surgery and dashboard control. Touchless 

manipulation of medical images allows surgeons to maintain the sterile environment 

required in surgery, without the help of assistants (O'Hara et al., 2014). Another example 

is driving, and today there are many dashboard panels that allow users to control car 

elements from a distance (Asley, 2014). The use of gesture recognition and proximity to 

manipulate car controllers releases the user’s visual channel, promoting safer driving.  

Although mid-air, gesture-based devices may have a wide range of capabilities, most 

radar, sonar or optical tracking-based gestures typically share common characteristics 
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with mice and tablets. In both approaches, the main interplay consists of pointing and 

clicking actions (Wigdor & Wixon, 2011). In these mid-air gesture interaction systems, 

pointing is represented by hand tracking, and clicking is represented by “activation 

gestures” (Wigdor & Wixon, 2011), which define the intention to communicate with the 

system (Golod et al., 2013). These gestures must be natural and intuitive, but uncommon, 

so that they are not performed accidentally (Cadoz, 1994). Following this, the user 

expects a confirmation of the activation, namely, a perceptible response from the system. 

This refers to “system attention” (Baudel & Beaudouin-Lafon, 1993), which is attained 

through multisensory feedback. Feedback is important in touchless systems as there is no 

physical contact with an object (e.g., floating images or virtual keyboards). However, it 

is not necessary to physically touch an object to have the perception of a button press if 

it is associated with an effect in response. 

2.6.1 Visual, Audio and Haptic Feedback 

Touchless interaction can be helped by sensory effects in order for the user to perceive 

system attention. This can be achieved by providing users with multisensorial feedback, 

i.e., visual, auditory and haptic (Golod et al., 2013). For instance, (Freeman et al., 2016) 

added light, audio and tactile displays to help users know “where to gesture”. (Markussen 

et al., 2014) implemented a gestural typing system assisted by visual feedback through a 

virtual keyboard. (Liu et al., 2015) added visual hand-cursors on screen to make users 

know the state of the bare-hand postures and gestures, and (Wu & Rank, 2015) explored 

different audio feedback designs for hand gestures to encourage immersion in games. In 

a later work, they found that in-air gestures with responsive audio feedback leads to 

higher immersion and enjoyment in video games (Wu & Rank, 2015).		Finally,	(Müller 

et al., 2014) developed a technique to “touch” and manipulate sound in mid-air by 

combining audio, visual and tactile feedback. 

A common criticism of touchless systems is that users lack haptic feedback for action 

confirmation. However, mid-air haptic feedback is a recent technique to make the user 

aware of system attention in touchless interaction. Airwave (Gupta et al., 2013), 

UltraHaptics (Carter et al., 2013) and AIREAL (Sodhi et al., 2013) are examples of 

emerging systems that can provide this missing tactile feedback in mid-air with bare 

hands. This technology allows users to perceive tactile sensation even in the absence of 

physical objects. Based on this approach, (Monnai et al., 2014) proposed a system to 

interact with floating images, using not only visual feedback (through light beams), but 
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also mid-air haptic feedback through ultrasound in order to create the sensation of 

touching a virtual screen. In a more recent work, (Makino et al., 2016) introduced a 

system to clone real objects into virtual ones. It consisted of floating images that replicate 

the haptic properties of real objects using ultrasound, providing realistic touch interaction 

in mid-air without wearable devices. 

The above examples represent complex systems of touchless input commands with 

different kinds of feedback. However, the role of agency experience during interaction 

with these systems has not been investigated. In other words, it is unclear if adding tactile 

feedback helps users feel a SoA when interacting with touchless systems. 

Another field in which the SoA has recently gained attention is artificial intelligence (AI). 

Today, many intelligent systems are automated, implying that actions are performed by 

computers and machines rather than by users, which can significantly affect the 

experience of control. In the next section, we present an overview of research involving 

SoA and automation, highlighting the effect of assisted interaction on users’ 

responsibility.  

2.7 Agency and Automation  
“The increasing level of automation tends to distract operators from action outcomes, 

decrease their sense of control and therefore disrupt their overall performance.” 
(Berberian, 2019) 

Automated systems can make our life easier. For instance, autonomous driving and 

automation aids in aviation help the operator to take control and make decisions. 

However, the intervention of increasing automation between operators and systems 

means that users lose details of the interaction, decreasing their feeling of control, which 

raises the question, “Who is in control now?” (Berberian et al., 2012). 

Studies have suggested that although the feeling of control can be affected by automation 

levels, giving assistance improves user performance, which in turn produces a positive 

effect on the experience of agency (Wen et al., 2015; Inoue et al., 2017). This suggests 

that SoA increases with better performance even when actions are assisted (e.g., even 

when several commands were not executed). However, giving assistance during 

interaction should be carefully designed because high levels of automation can also 

significantly reduce the SoA. This is due to the complexity of the cooperation process 
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between computers and operators. In other words, “the cognitive coupling between 

human and machine remains difficult to achieve” (Berberian, 2019). 

With the aim of exploring this coupling, prior studies have measured agency in computer-

assisted tasks. Measuring the feeling of control can give relevant insights on how to 

evaluate and design automated devices that improve user performance without 

significantly reducing the SoA.  

Coyle et al., 2012 explored the effect of different levels of assistance on subjects’ SoA 

by measuring IB via the interval estimation method. The experiment was a goal-directed 

computer task that consisted of clicking a target on screen. The levels of assistance were 

provided using a “gravity algorithm” that attracted the mouse pointer to the target with 

different levels of “gravity” to modulate how easy it was to hit it. For instance, a high 

assistance condition led to the pointer moving quite fast towards the target, thus allowing 

it to be clicked more easily. The researchers found that a mild level of assistance did not 

break the SoA. However, medium and high assistance levels significantly reduced this 

experience, suggesting that if the task is highly automated, the SoA is reduced (producing 

misattribution) but that there may exist a sweet spot at which a computer can help users 

without significantly decrementing agency. 

In another example, (Berberian et al., 2012) conducted an experiment involving a 

computer simulation of flying an aircraft with various degrees of autopilot assistance. 

They measured agency using both IB (via the interval estimation method) and explicit 

reports. The task consisted of asking participants to decide, implement and engage a 

command to resolve a flight conflict (avoid crashing into another aircraft). The levels of 

assistance included conditions in which the participants had full control to resolve the 

conflict (no automation), in which they made only some decisions and in which the task 

was fully automatic. The results of the study showed that IB was modulated by levels of 

automation, with increasing automation leading to a decrease in the SoA. This result also 

correlated with explicit judgements of agency. These findings suggest that high 

automation levels distract users from action outcomes, decreasing the sense of control 

and affecting the overall performance.  

Automation has also been suggested to be related with system acceptability. In a later 

study, using a similar aircraft supervision task, Goff et al. studied the effect of providing 

information cues on acceptability and SoA during interaction with automated systems. 
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These cues informed the user about “what the system is about to do” to alleviate the 

unpredictability of automation. They found that additional information about the system’s 

intentions increases acceptability and SoA, but this information should be displayed in an 

appropriate time window to provide a correct sense of control (Le Goff et al., 2018).  

In a more recent work, (Berberian, 2019) suggested that research on agency can provide 

useful measures to explore agency-system interaction that designers could employ to 

develop more acceptable automated interfaces that support a feeling of control.  

Certainly, automation can be beneficial for HCI, as giving some level of assistance to the 

users can improve their performance without negatively affecting the sense of control. 

However, an appropriate level of assistance should be carefully designed in each task. 

This is because the SoA has been suggested to underpin the concept of responsibility in 

human societies (Haggard & Tsakiris, 2009). That is, our sense of being an agent is not 

only related to executing a motor action but also to knowing “the nature and quality of 

the act” (Haggard, 2017). Legal systems assert that healthy adults are consciously aware 

of their intentions and the consequences of their acts. Therefore, it is important that 

automated systems give users the appropriate feeling of control in order to preserve the 

feeling of responsibility (especially in critical situations such as driving and aviation). In 

other words, it is important that systems let users clearly experience what they are doing. 

Indeed, recent studies have suggested that autonomous vehicles will be on our roads in 

the future, and research has emerged to explore how autonomous cars should “morally” 

act in a critical situation, aiming at developing new regulations for autonomous vehicles. 

For example, the Moral Machine (Awad et al., 2018) is a crowdsourcing experiment, in 

which data was collected from millions of people around the world about hypothetical 

moral decisions based on collision scenarios in autonomous vehicles. Subjects were 

presented with two possible situations (illustrated on screen) where an autonomous car 

with a sudden brake failure should take an action to either stay on course or swerve. 

Staying on course would result in the death of one group people, and swerving in the 

death of a different group. Crucially, during the experiment, the gender, age, size, social 

status, number, etc. of persons were varied in each group, and subjects were asked to 

choose the outcome they found preferable.  

With this experiment, the authors collected 39.61 million decisions from 233 countries 

and found that most people showed a preference for 1) sparing human lives, 2) sparing 
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more lives and 3) sparing young lives. Since this study was conducted using a 

crowdsourcing model, the authors collected individual variations in users’ preferences 

depending on demographic information (e.g., cultural and economic variations between 

countries). For instance, they found that subjects from collectivistic cultures that 

emphasize respect to older people showed weaker preferences for sparing younger 

characters. Similarly, preference for sparing female characters was stronger in countries 

with better health and survival prospects for women. However, this study was not based 

on a 1PP. That is, the results were obtained based on the car’s decisions rather than 

subjects’ own actions and outcomes.  

In light of this research, (Uijong et al., 2019) conducted a study to predict sudden 

decisions in a VR driving simulation using a 1PP setup. The aim of this research was to 

provide potential insights for autonomous vehicle guidelines. The study consisted of tasks 

in which subjects decided between falling down a cliff or colliding with obstacles. 

Crucially, in a control condition, obstacles consisted of trees, whereas in an experimental 

condition, obstacles consisted of pedestrians. In the results, the authors found that 

personality (e.g., psychopathy and impulsivity traits) helped to predict subjects’ decision-

making in extreme situations (when choosing between preservation of self or others). 

Similarly, (Faulhaber et al., 2019) explored moral dilemmas in VR in which participants 

decided between self-sacrifice and colliding with obstacles consisting of different human-

like avatars with  a variety of ages and group sizes. Their results validated a utilitarian 

decision-making approach consisting of “sparing the highest number of avatars possible 

with a limited influence by the other variables”.  

These studies show the importance of studying and modelling human decision-making in 

order to start crafting guidelines for autonomous driving and preserve moral 

responsibility. Particularly, research in moral judgement has highlighted the role of 

emotions in human decision-making (Choe & Min, 2011). However, while further 

research is needed to explore in depth the effect of emotions on shared agency between 

humans and machines in autonomous systems, there is a wide range of research linking 

human agency and emotions. In the next section, we summarize this research, particularly 

focusing on the sense of smell, which has been recently included in interactions while 

driving.  
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2.8 Agency and Emotions  
The self-attribution process of the SoA (e.g., I did that) is influenced by affective 

information (Bradley, 1978; Greenberg et al., 1992; Bandura, 2001, 2002). Prior studies 

have revealed that agency experience is modulated by the valence of sensory cues. That 

is, people tend to attribute positive outcomes to their own actions (self-attribution), while 

negative outcomes are attributed to external agent. In other words, people take credit for 

positive events and blame external factors for negative ones (the self-serving bias 

(Babcock & Loewenstein, 1997; Mezulis et al., 2004)).  

Takahata et al. (Takahata et al., 2012) primed subjects with rewarding and punishing 

outcomes of actions by associating auditory stimuli with positive, neutral and negative 

monetary outcomes. They found that participants exhibited higher SoA when positive 

outcomes (monetary gains) occurred than when negative outcomes occurred (monetary 

losses). Meanwhile, Yoshie and Haggard (Yoshie & Haggard, 2013) manipulated the 

emotional valence of action outcomes with negative or positive emotional vocalizations 

(Sauter et al., 2010) or neutral tones. They found that SoA was reduced for negative 

compared to positive or neutral outcomes. For their part, Christensen et al. (Christensen 

et al., 2016) investigated the influence of action outcome valence (modulated by 

emotional human vocalisations) on prospective and retrospective components of SoA. 

They found that positive outcomes enhanced the retrospective agency for unexpected 

outcomes. In another example, Beck et al. (Beck et al., 2017) found that having control 

over negative somatosensory outcomes (induced by painful heat or electrical stimulus) 

increases SoA.  

On the other hand, Aarts et al. (Aarts et al., 2012) explored affective priming through 

visualization of emotional pictures (Lang, 2005). Unlike the above examples, here the 

emotional cue was not presented as an action outcome but at the beginning of an IB task. 

They found that positive reward signals via brief exposure to positive pictures enhance 

SoA, unlike neutral pictures.  

2.8.1 Smell and Emotions 

Prior studies have suggested a close link between olfaction and affective information. 

Odours not only evoke strong experiences of pleasure or displeasure (Ehrlichman & 

Bastone, 1992) but also modulate mood (Warrenburg, 2005), attention (Tham et al., 2009; 

Keller, 2011), stress (Motomura et al., 2001; Atsumi & Tonosaki, 2007) and memories 
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(Herz & Cupchik, 1995). Different scents have been shown to elicit specific physiological 

responses or emotional states. For example, lemon is linked with arousal (Dong & Jacob, 

2016) while lavender is considered a relaxing scent (Motomura et al., 2001). Lemon 

odour has also been suggested to have antidepressant properties (Komori et al., 1995)  

while lavender and rosemary decrease cortisol levels in saliva (Atsumi & Tonosaki, 

2007). Lavender scent is associated with happiness while acetic acids are linked to anger 

and disgust elicitation (Vernet-Maury et al., 1999).  

The olfactory system is deeply linked to areas of the brain that regulate emotions (Zald 

& Pardo, 1997; Soudry et al., 2011). For that reason, emotions evoked by odorants are 

very strong. For instance, it has been suggested that “odour-evoked memories are more 

emotional than memories evoked by other sensory stimuli” (Herz & Cupchik, 1995) and 

that people who have lost their sense of smell become more depressed than people who 

have lost their vision (Smith, 2015). While the sense of smell is often considered a poor 

sense (Shepherd, 2004), emerging research interestingly suggests that we use it more than 

we actually think. For example, a study revealed that humans have scent tracking abilities 

like dogs (Porter et al., 2007) and that emotions can be communicated via the olfactory 

channel so that we can smell someone’s fear (De Groot et al., 2014).  

2.8.2 Olfactory Interfaces  

Although our everyday activities involve five basic senses (taste, smell, vision, sound and 

touch) that create compelling experiences, memories and awareness of the environment 

(Franklin et al., 2005) (e.g., having a coffee with a friend), our interaction with technology 

is dominated by visual, auditory and, more recently, haptic I/O channels. However, recent 

research in HCI is pursuing multisensory integration for user interfaces that also involve 

olfaction (Kaye, 2004; Dmitrenko et al., 2017) and taste (Vi et al., 2017; Vi et al., 2017).  

Olfactory stimulation has particularly gained attention in many application contexts, for 

example, in-car scenarios (Yoshida et al., 2011). In this line, (Dmitrenko et al., 2017) 

explored odour as an information medium by mapping scents onto messages from a car. 

For instance, the “slow down” message was strongly associated to lemon odour and “fill 

gas” to peppermint odour. These olfactory messages allow drivers to receive information 

from the car while other senses are engaged with additional information (e.g., listening to 

the radio and focusing on the road). For their part, (Yoshida et al., 2011) explored 

olfactory stimuli to  prevent drowsy driving and thus fatal car accidents. They found that 
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peppermint fragrance effectively induces wakefulness and alertness. In another example, 

(Baron & Kalsher, 1998) found that lemon scent improves drivers’ alertness and mood. 

Smell notification systems have been even patented by car companies such as Ford 

(Kolich, 2013). 

Odours also enhance the sense of presence (Barfield & Danas, 1996) and realism 

(Mochizuki et al., 2004) in VR, and the presentation of scents leads to an increased sense 

of reality and relevance (Ghinea & Ademoye, 2012). For instance, a study has shown that 

tactile, olfactory and auditory cues produce more sense of presence and memory than the 

use of visual details alone in an environment (Dinh et al., 1999). In other example, Narumi 

et al. (Narumi et al., 2011) implemented a system that displays different scents to create 

the illusion of gustatory sensation and flavours in augmented reality (AR). 

Olfactory interfaces are covering many other application scenarios such as desktop 

messaging notification (Maggioni et al., 2018), videogames (Mochizuki et al., 2004; 

Nakamoto et al., 2008), rehabilitation (Covarrubias et al., 2015), multimedia (Brewster et 

al., 2006; Matsukura et al., 2013) and communication (Ranasinghe et al., 2011; Zhang & 

Cheok, 2016). However, scent delivery is often considered challenging, and therefore 

several prototypes and techniques have been proposed. (Nakaizumi et al., 2006) and 

(Yanagida et al., 2004) proposed a scent projector consisting of vortex rings launched 

from an air cannon. In another example, SensaBubble (Seah et al., 2014) provides smell 

ambient notifications via bubbles containing scents, while Essence (Amores & Maes, 

2017) provides a wearable option for scent delivery. Commercially available devices can 

also be found. Some examples are Vortex Activ USB, Scentee, oPhone DUO and Aroma 

Shooter (see Dmitrenko et al., 2016 for a comparison).  

In the next chapters, we start our exploration of agency implication in novel user 

interfaces through a series of studies. We start by investigating agency experience in mid-

air interfaces in Chapter 3. Beyond typical interaction techniques based on touch (e.g., 

keyboards and touchscreens), touchless systems are becoming increasingly popular. 

Many commercial devices (e.g., Leap Motion and Kinect) are being employed in 

applications ranging from entertainment to surgery. However, the role of the SoA in these 

systems has been unexplored, and the two studies in the following chapter address that 

lack.  
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Chapter 3   Agency in Mid-air Haptic Interfaces 

Agency in Mid-air Haptic Interfaces  

 

Figure 3.1 A mosaic of touchless interactions in surgery and driving scenarios. 

Recent advances in gesture recognition technologies (Buckwald & David Holz, 2010; 

Lien et al., 2016) are driving a new class of interactive systems whereby a user is able to 

view, control and manipulate digital content without touching the interface. For example, 

touchless interactions are being explored as part of medical surgery (O'Hara et al., 2014), 

in the design of games that benefit children with autism spectrum disorder (ASD) (Bartoli 

et al., 2014), and touchless controllers for car dashboards (Asley, 2014) (see Figure 3.1). 

There is a strong user appetite for such systems as they are natural, having greater degrees 

of freedom for user movements. 

One aspect of touchless interaction that has not been studied is the sense of agency (SoA). 

For example, in touchless application scenarios in which perceiving a responsive system 

is relevant (e.g., surgery and driving), if users do not experience perception of causation 

(a causal relationship between action and outcome), they could diminish self-attribution 

of an unfavourable outcome. However, although this perception is independent of correct 
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performance of the device or system (i.e., personal agency), we can explore different 

interaction paradigms that enhance user’s SoA in order to design more responsive 

touchless systems.  

In physical interaction (e.g., keyboards and touchscreens) control can clearly be perceived 

as it involves touching objects. However, in mid-air interaction, where the main interplay 

involves gestures, agency could be challenging. To understand users’ SoA when 

interacting with touchless interfaces, we conducted two user studies employing the 

intentional binding (IB) paradigm (Haggard et al., 2002). In the first study, we compared 

a camera-based button-click gesture with a physical button press, using both visual and 

auditory feedback. Our results show that both physical and gestural input modalities 

produced a binding effect only when the input action was accompanied by an auditory 

outcome and not by a visual outcome. In the second study, we compared the camera-

based click gesture both with and without tactile stimuli (vibrotactile and mid-air) to 

examine if haptic feedback can enhance SoA. Our results show that haptic feedback 

produced higher IB than visual feedback only.  

3.1 Touchless Button Click 
To investigate the relationship between in-air gesture input and the system’s responses, 

we measured IB during simple micro-interactions typical of desktop computing 

environments. We based our selection gesture on Saffer’s statement, “The best, most 

natural designs, then, are those that match the behaviour of the system to the gesture 

humans might actually do to enable that behaviour. Simple examples include pushing a 

button to turn something on or off” (Saffer, 2008). Consequently, we chose a fundamental 

gesture action (touchless button click) and compared it with typical touch input (physical 

button press). 

In this context, a button press movement is common in our everyday interaction with 

computers and smartphones. Besides, it can be reliably tracked with devices such as Leap 

Motion, which is specifically focused on hand and finger tracking. In common desktop 

computing environments, a physical button press generally produces three kinds of effect: 

(1) visual on-screen: when we press a button or key of the keyboard we normally expect 

a visual change on screen (e.g., typing tasks); (2) auditory feedback: because we can 

perceive a click sound through mechanical pressure on the actuator; and (3) haptic: 

because of the obvious physical contact with the mechanoreceptors of the skin. Therefore, 
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we provided participants with visual, auditory and haptic feedback as the outcome of our 

physical and gestural action inputs to examine how states of input (physical and 

touchless) map onto states of the system.  

3.2 Investigating Agency in Touchless Interfaces  

3.2.1 Method and Materials 

Participants judged their perception of time by reporting the position of a rotating dot 

around a Libet clock at the moment they either executed an action (baseline action and 

active action blocks) or received the feedback (baseline outcome and active outcome 

blocks), as shown in Figure 2.3. The numbers of the clock were not used to avoid creating 

visual patterns during the task.  

The rationale behind this decision lies in two main aspects. First, the traditional Libet 

clock layout usually involves numbers on its perimeter (e.g., marks around the circle and 

numbers from 0 to 60 at intervals of five “clock-seconds” (Pockett & Miller, 2007)), and 

in pilot testing we noticed that, even when participants were instructed not to use the 

numbers on the clock face to determine their action, they tended to identify a number as 

a reference (e.g., “I’m going to do the action when the dot reaches the number 3”). 

However, we considered this does not reflect the volition/urge to execute the action.  

Second, we wanted to explore a higher resolution of judgements, avoiding fixed ticks. 

That is, having discrete and fixed markers around the clock (e.g., 5, 10, 15, 20, etc.) 

constrains the granularity of time, being integer numbers mainly reported by participants. 

Therefore, to increase resolution and avoid creating visual patterns, we decided not to use 

the numbers, supporting our decision on previous studies that did the same  (Demanet et 

al., 2013; Lynn et al., 2014; De Pirro et al., 2019)  without a negative effect on the results. 

Instead of verbally reporting the dot position using an integer number as a reference, 

participants used an external circular controller (Griffin Powermate USB Controller) to 

relocate the dot on the perceived position (with a resolution of around 7ms per step). This 

was similar to the study by (Pockett & Miller, 2007) in which participants were asked to 

mouse-click on the circle at the reported position. However, in our study, participants 

rotated the USB controller to move the dot around the clock, this being more natural. 

The Libet clock was 500 pixels in diameter and was placed at the centre of a screen (24-

inch, 1920 x 1080 resolution). Participants were asked to perform the action (either 
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gestural or physical) whenever they felt the urge to do so. The perceived and actual times 

were recorded to calculate IB. In the trials with user-performed action, the action was 

either a touchless click gesture or a physical button press. The outcome was presented 

through one of four different feedback methods: on-screen visual, auditory (a beep), 

wearable vibrotactile, and mid-air haptic feedback. 

3.2.1.1 Gesture Action 

Participants moved their index finger, mimicking a button-press action (i.e., up–down 

finger movement of 2cm). The gesture was captured using a Leap Motion controller with 

capture rates of about 300 fps (Buckwald & David Holz, 2010). Participants rested their 

hand (palm down) at a fixed position of about 20cm above the surface of the Leap Motion 

device in all feedback conditions preceding a gesture action. Then, after a period of 

250ms, a sensory outcome was given to participants.  

3.2.1.2 Auditory Outcome 

Auditory stimulus is a common sensory effect used in the IB paradigm. We considered 

audio feedback to have baseline comparison with new outcome modalities. In the 

conditions with auditory feedback, participants heard a tone that lasted 200ms at 900Hz 

using headphones. However, they always wore headphones during the full study. 

3.2.1.3 Visual Outcome 

Visual feedback was in the form of an on-screen button (250 pixels in diameter) that was 

presented at the centre of the screen and inside the Libet clock. When participants 

performed the click gesture, they could see an animation of this button changing state (the 

button sank as if it had been pressed; changed from red to green; and returned to its 

original state after 200ms). The procedure for presenting visual stimuli and the Libet 

clock is similar to those in previous studies (Moretto et al., 2011; McEneaney, 2013). 

Possible time delays due to the refresh rate of the screen used in our study (60Hz) in the 

visual conditions on screen, including the rotation of the Libet clock, was also 

compensated for by following the procedure of previous studies (Stewart, 2006). We 

executed a preliminary test with a photodetector and a high-speed camera placed in the 

middle of the screen to count the number of frames shown within specific periods of time. 

This was done to identify and compensate for missing frames. Our system was consistent 

in missing one frame in each trial, so to correct this delay, we subtracted the duration of 

one tick (16.66ms) from our interval durations, as in (Garaizar et al., 2014). 
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3.2.1.4 Vibrotactile Haptic Outcome 

Vibrotactile feedback was given to participants using a wearable glove with an embedded 

coin vibration motor (model 310-103 by Precision Microdrives), 1cm in diameter and 

positioned in the glove so that the vibration is provided on the participant’s fingertip 

(index finger). This motor vibrated at a speed of 12,000 rpm and 250Hz in frequency. 

The typical rise time of 87ms was compensated for to make timing as accurate as possible. 

Each vibration lasted 200ms, which was easily recognizable over the tactile channel 

(Gescheider et al., 2010). Participants did not wear the glove during visual, auditory and 

mid-air haptic feedback blocks. 

3.2.1.5 Mid-air Haptic Outcome 

Mid-air haptic feedback was provided using the UltraHaptics kit (Carter et al., 2013). 

This device uses low-intensity and low-frequency ultrasound pressure waves to create 

multiple focal points in mid-air for tactile sensations. The user can perceive the focal 

points using bare hands due to the mechanoreceptors in the skin evoking a haptic 

sensation. To equalize our two haptic feedback conditions in terms of the stimulation 

area, we simulated vibrotactile outcome features with an UltraHaptics kit. Five focal 

points were created on the tip of participants’ index finger to cover an area of 1cm2 with 

the same frequency as the vibrotactile condition (250Hz). The stimulation lasted for 

200ms.  

 
Figure 3.2 Experimental setup. 
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3.3 Study 1 – Touchless Vs Physical Action 
Following RQ1 - Is a SoA experienced in touchless interaction? In this experiment, we 

compared traditional physical-based input with gestural-based touchless input. Both 

actions were accompanied by auditory and visual outcomes, in order to explore RQ2 - 

What type of feedback produces greater SoA in mid-air interfaces? This resulted in four 

combinations of action + outcome: physical & auditory, physical & visual, gestural & 

auditory and gestural & visual, as shown in Figure 3.3. 

3.3.1 Procedure   

Participants were asked to sit in front of a screen at a distance of about 100 cm. Every 

trial started when they pressed a footswitch to indicate they were ready to start. After this, 

a Libet clock was presented at the centre of a screen. The dot always started rotating from 

a random position. After one full revolution of the dot, participants were asked to perform 

the action:  a physical button press using a keyboard (space key) or a click gesture in mid-

air. For touchless action, the hand always stayed palm down and rested on top of a 

supporting structure (shown in Figure 3.2). For physical action, this structure was not 

used and the Leap Motion device was replaced by a computer keyboard. Participants 

always executed the action (gestural and physical) using their dominant hand.  

After a period of 250ms, the outcome was presented in the form of auditory (a beep) and 

visual feedback on screen. Then, participants judged their perception of time by reporting 

the position of the dot on the clock. Participants wore noise-cancelling headphones to 

eliminate any audible noise from the devices. They performed 20 trials in each condition, 

resulting in 320 trials per participant (20 trials x 4 IB blocks x 4 combinations of action 

+ feedback). The experiment was completed in a maximum time of 90min; there was a 

short break between conditions. Figure 3.3 shows the procedure of a single trial.  

  
Figure 3.3 Experimental trial of Study 1. (*not done in baseline outcome blocks, ** 

not done in baseline action blocks). 
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3.3.2 Participants  

Twelve right-handed participants (Four male, mean age=30.92 years old, SD=3.03) took 

part in the experiment. They had normal or corrected-to-normal vision. The local ethics 

committee approved this study and participants were not paid for their participation. 

 

Figure 3.4 Average of action and outcome binding in milliseconds of each action and 
outcome modality. The sign of outcome binding on the chart bars has been inverted 
to allow for comparison with action binding. Error bars represent standard error of 

mean. 

 

Table 3.1 Average of action, outcome and total binding in milliseconds (with 
standard deviation in brackets) grouped by combination of action & outcome. 

 

Figure 3.5 Average of total binding in milliseconds for each combination of action 
and outcome. Error bars represent standard error of mean.  
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3.3.3 Results of Study 1 

Before comparing our main conditions, we first explored whether a binding effect was 

observed in the input modalities independently. To do so, we conducted repeated 

measures ANOVA tests to determine interactions between the baseline block (when only 

one event occurs, either action or outcome) and the active block (when both events occur 

– action and outcome) for both action binding and outcome binding (see Figure 2.3 for 

detailed blocks) in each input condition. We report the partial eta squared (ηp
2) as a 

measure of effect size according to (Cohen, 1977). 

For the physical action a significant binding effect was always found between active and 

baseline blocks. Interestingly, a significant binding effect was also observed for the 

combination ‘gestural action-visual feedback’ (F(1, 230)=15.28, p<0.001, ηp
2=0.062) only 

for the action binding but no such significant binding was observed for the outcome 

binding (F(1,231)=0.008, p=0.929, ηp
2=0.013). Controversially, a significant binding effect 

was found for the combination ‘gestural action-auditory feedback’ for the outcome 

binding (F(1,229)=9.16, p=0.003, ηp
2=0.038). 

These results show a significant temporal binding effect for gestural action when 

accompanied by auditory feedback but not by visual feedback. Next, we present the 

comparison between the different types of action and feedback. 

A repeated measure design was used to compare the effects of touchless input modality 

with physical-based input and visual and auditory feedback.  

A 2X2 within subjects’ ANOVA, with the type of action (touchless gesture-based click 

vs physical button press) and the type of feedback (visual vs auditory) as factors, revealed 

no significant effect of type of action on total binding (F(1,11)=0.003, p=0.96, ηp
2=0.00). 

We also found no significant interaction between the type of action and type of feedback 

(F(1,11)=0.63, p=0.45, ηp
2=0.05). However, there was a significant main effect for the type 

of feedback (F(1,11)=5.31, p=0.04, ηp
2=0.33), with the auditory feedback scoring higher 

compared to the visual feedback. Figure 3.5 shows the average total binding with different 

action and feedback modalities. 

An identical ANOVA was then performed for the action binding, showing no significant 

interaction (F(1,11)=0.36, p=0.56, ηp
2=0.03) and no main effect for the type of action 

(F(1,11)=0.12, p=0.74, ηp
2=0.01) and the type of feedback (F(1,11)=0.79, p=0.39, η p

2=0.07).  
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The outcome binding, however, showed a significant main effect for the type of feedback 

(F(1,11)=9.17, p=0.01, ηp
2=0.45), with auditory outcome producing an increased binding 

in both the physical button press (M=-37.48ms, SD=106.23ms) and the touchless gesture-

based click (M=-32.02ms, SD=81.73ms) compared to visual feedback respectively in the 

physical action (M=11.99ms, SD=92.28ms) and the touchless gesture-based click 

(M=0.57ms, SD=81.25ms). A breakdown of these means in relation to action and 

outcome binding is shown in Table 3.1. Figure 3.4 shows action binding and outcome 

binding effects. 

3.3.4 Discussion of Study 1 

Our results from Study 1 reveal an IB effect when both input modalities – gestural and 

physical – preceded auditory feedback. However, this effect was not observed with visual 

feedback. As shown in Figure 3.4, the visual outcome did not shift towards the action. 

This suggests that the touchless system exhibited significantly more IB when the input 

action was accompanied by auditory outcome compared with visual outcome. As 

expected, the physical button press preceding an auditory outcome produced IB, as 

previously shown in a large number of studies on SoA.  

Interestingly, we found no statistically significant difference in the action binding across 

the different combinations of action and outcome. This could suggest that participants 

may have perceived the touchless action to be as responsive as the physical action in 

terms of IB, even when the touchless action did not involve typical characteristics of 

touching an object (e.g., proprioceptive perception). Proprioceptive perception plays an 

important role in terms of feeling immediate haptic feedback (as in pressing a physical 

button). In the study by (Coyle et al., 2012), participants reported increased IB for skin-

based input modality, as this action involves tactile sensation in both the finger and the 

arm.  Thereby, this seems a challenge for touchless action where implicit tactile feedback 

does not occur.  

Although in our touchless condition there was not simultaneous action–feedback, like in 

the physical button press, interestingly we still found an IB effect, as the touchless action 

execution always involved participants’ motor movement following a prior intention. 

Previous studies have suggested that the SoA principally arises due to internal motor 

signals (Blakemore et al., 2002; Moore & Haggard, 2008) and also that intention to act 

influences action attribution, when reafferent signals (e.g., motor or visual) match with 
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intention retrospectively (Wenke et al., 2010; Chambon & Haggard, 2012, 2013). 

Thereby, ideomotor signals produced by the touchless action could have served as a 

contributory factor in our results on IB.  

Furthermore, we also attribute these findings to the influence of the postdictive model of 

the origination of agency. As we state, “it is not necessary to physically touch an object 

to have the perception of a “button press” if it is associated with an effect in response (see 

Chapter 2 – Section 2.6.1). Although the touchless action did not involve immediate 

tactile feedback, participants always received a confirmation with a visual or auditory 

outcome. Similar accounts were reported in (Wegner et al., 2004; Banakou & Slater, 

2014; Kokkinara et al., 2016), where subjects reported feelings of agency even when there 

was just the effect itself and no cause preceding the effect. Yet, in our studies, participants 

always had an intention to act and thereby a motor movement preceding an outcome. This 

could have contributed to the IB effect shown in our results.  

3.4 Study 2 – Touchless Action: Visual Vs Haptic Outcome 
To expand our RQ2 - What type of feedback produces greater SoA in mid-air interfaces? 

This experiment aimed to investigate if haptic feedback can improve participants’ SoA in 

gesture-based touchless interaction. For this, we measured IB both with and without 

haptic feedback. 

3.4.1 Procedure  

Participants in Study 2 used the same experimental procedure used in Study 1, with one 

exception. Whereas participants in Study 1 performed two kinds of actions (physical and 

touchless) and received two kinds of feedback (auditory and visual), in the second study 

participants performed only the touchless-based action and received visual, vibrotactile 

and mid-air haptic feedback (Figure 3.6). Both kinds of haptic feedback were provided 

on participants’ dominant hand (index finger). Participants wore noise-cancelling 

headphones to eliminate any audible noise from the devices. They performed 30 trials for 

each condition, resulting in 360 trials per participant (30 trials x four intentional binding 

blocks x three combinations of action + feedback). The experiment was completed in a 

maximum time of 90min; there was a short break between conditions. Figure 3.6 shows 

the procedure of a single trial. 
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3.4.2 Participants 

Twelve right-handed participants (four females, mean age=30.33 years, SD=3.86), took 

part in the experiment. They had normal or corrected-to-normal vision. The local ethics 

committee approved this study, and participants were not paid for their participation. 

 
Figure 3.6 Experimental trial of Study 2 (*not done in baseline outcome blocks, ** 

not done in baseline action blocks). 

3.4.3 Results of Study 2 

A one-way repeated measure ANOVA was conducted to compare the effect of the three 

type of feedback (visual vs vibrotactile vs mid-air haptic) on the action, outcome and total 

binding. The results show a significant effect on the total binding (F(2,22)=4.96, p=0.02, 

ηp2=0.31) depending on the type of feedback. Post-hoc comparisons using Bonferroni 

correction showed that there is a statistically significant difference in the total binding 

specifically in the mid-air haptic feedback (M=84.21ms, SD=111.35ms) compared to the 

visual (M=-6.41ms, SD=82.98ms, p=0.02); but no such difference was found compared 

to the vibrotactile condition (M=40.77ms, SD=89.84ms, p=0.69). The difference between 

the visual and vibrotactile conditions was also not significant, p=0.23. Figure 3.8 shows 

the average total binding with different action and feedback modalities. 

We found that the action binding was not significantly affected by the type of feedback 

(F(2,22)=0.27, p=0.76, ηp2=0.02). However, crucially, the outcome binding showed a 

significant difference (F(2,22)=0.6.74, p=0.005, ηp2=0.38). Post-hoc comparisons using 

Bonferroni correction showed that the outcome binding was significantly greater in the 

mid-air haptic condition (M=-64.79ms, SD=79.58ms) compared to the visual condition 

(M=12.68ms, SD=66.07ms, p=0.02), but there was no statistically significant difference 

between the mid-air haptic and the vibrotactile feedback (M=-29.13ms, SD=69.75ms, 
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p=0.69ms). Additionally, we found no significant difference between the vibrotactile and 

the visual condition, p=0.23.  

 

Figure 3.7 Average of action binding and outcome binding in milliseconds for each 
feedback type (visual, vibrotactile and mid-air). The sign of outcome binding effects 

on the chart bars has been inverted to allow for comparison with action binding. 
Error bars represent standard error of mean. 

 

Table 3.2 Average of action, outcome and total binding (with standard deviation in 
brackets) grouped by feedback type. 

 

Figure 3.8 Average of total binding in milliseconds for each feedback type (visual, 
vibrotactile and mid-air). Error bars represent standard error of mean. 
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These findings suggest that mid-air haptic feedback produces the strongest effect in the 

IB values, and specifically in the outcome binding, compared to the other modalities. A 

breakdown of means in relation to action and outcome binding is shown in Table 3.2. 

Figure 3.7 shows action binding and outcome binding effects. 

We performed further analysis using an independent sample t-test to compare the effect 

of the IB with auditory feedback in the touchless modality in Study 1 with the mid-air 

haptic feedback in Study 2. The results show no significant difference on the total binding 

(t(22)=0.99, p=0.33) between the auditory condition of Study 1 (M=39.80ms, 

SD=106.02ms) and the mid-air haptic condition (M=84.21ms, SD=111.35ms) of Study 2. 

These results were also not significant for the outcome binding (t(22)=0.68, p=0.32) in 

the auditory condition (M=-32.02ms, SD=81.73ms) compared to the mid-air haptic 

condition (M=-64.79ms, SD=79.58ms). 

3.4.4 Discussion of Study 2 

Our results from the Study 2 revealed an IB effect when the touchless input modality 

preceded a haptic feedback. However, this effect was not observed with visual feedback 

similar to Study 1. This suggests that the touchless system exhibited significant higher IB 

when participants received a haptic confirmation rather than a visual confirmation. 

Crucially, we found no statistically significant difference in action binding values across 

the outcome modalities. 

Both haptic feedback conditions (vibrotactile and mid-air) shifted towards the touchless 

action. Interestingly, we found no statistically significant difference for outcome binding 

between these two haptic conditions. We set both outcome conditions with the same 

characteristics as much as possible. This is because vibrotactile feedback is higher in 

intensity compared with ultrasound. However, by creating five focal points of ultrasound 

overlapping each other to cover the same area as the vibrotactile stimuli, we could 

equalize between these two conditions. 

3.5 General Discussion  
Our results revealed the existence of IB effect in touchless gesture-based interactive 

applications. From our two studies, we found that gesture-based system exhibited 

significant higher IB when the input action was accompanied by haptic or auditory 

outcomes compared with visual outcome. Our results from Study 1 show an action 

binding effect in both physical and touchless interactions with no statistically significant 
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difference, possibly suggesting that that our click gesture input could be perceived as 

responsive as the physical action in terms of IB, even when no simultaneous action-

feedback occurred like in physical touch events. We attribute this result to ideomotor 

signals and the postdictive influence of agency in the IB paradigm, in which participants 

always receive an action confirmation with a visual, auditory or haptic outcome (in 

contrast to Coyle’s work, in which only audio feedback was considered). Although we 

obtained different IB values from the tasks involving gesture input and visual feedback 

in both studies, we found no statistically significant difference in this condition between 

Studies 1 and 2.  

Our results from both studies show different outcome binding effects depending on the 

type of feedback, with audio and haptic feedback producing higher IB effect than visual 

feedback only. Visual feedback on screen produced the lowest IB effect in both studies. 

This suggests that participants had a higher perception of controlling the touchless 

interface when they received an auditory or haptic confirmation rather than a visual 

confirmation. In cognitive neuroscience, a wide range of studies have employed audio 

feedback for studying agency, showing it to be a suitable modality to measure and 

produce SoA (Moore et al., 2009; Aarts et al., 2012; Moore & Obhi, 2012; Khalighinejad 

& Haggard, 2015). However, in our Study 2, we also found an IB effect with vibrotactile 

and mid-air haptic outcomes, with no statistically significant difference between them. 

This suggests that if one cannot provide audio feedback it may be preferred from an IB 

perspective to provide haptic feedback over visual-only feedback. 

It is worth mentioning that we are aware the UltraHaptics device produces sound because 

of the ultrasound waves emission. In the frequency at which it works, audible sound is 

generated from its speakers. To address this, participants were asked to wear noise-

cancelling headphones, not only during this condition but also for the entire task 

(including all the conditions). 

3.6 Limitations 
For the present work, we only explored implicit agency. We employed the IB paradigm 

as an implicit measure of the SoA, following evidence suggesting that increased IB is 

related to a higher experience of agency (Ebert & Wegner, 2010; Moore & Haggard, 

2010). Since previous studies have suggested that self-reports of agency and IB may 

operate differently (Obhi & Hall, 2011), further research is needed to investigate the 
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relation between explicit judgement of agency and IB for touchless interfaces. 

Additionally, in this work we put more attention on the impact of output modalities on 

agency, and further studies are needed to examine the effect of proprioceptive perception 

on the SoA in mid-air interactions, possibly by using the haptic devices to create more 

natural perception of touching real objects. Furthermore, we mainly compared visual 

feedback with the other modalities in our two studies, but a more direct comparison 

between audio and haptic feedback will be explored in future work. 

This study involved a low sample of participants (N=12), being a first step to explore 

implicit agency in touchless systems. This could be considered a limitation and further 

studies with a bigger sample of participants are necessary to explore in more depth 

implicit agency in mid-air interactions. 

Finally, the visual outcome employed in this study (an animation of a button being 

pressed) is very similar to the action itself; in other words, the outcome might be seen as 

a visual representation of the action, which can be considered a limitation. However, we 

chose such a visual outcome to explore agency in an ecological way. That is, when people 

use touchless systems, visual feedback usually constitutes the confirmation of the action. 

Because in gestural input, actions are so natural (e.g., pinch gesture to pinch an object, 

slide gesture to slide an object), visual feedback is usually presented as a visual 

representation of the action (Xuan et al., 2019). For this reason, in our study we employed 

an animation that confirms the action input (a button press), aiming to explore agency 

using a setup as similar as possible to a real application. Moreover, additional studies are 

needed to explore differences between “natural” visual outcomes that represent actions 

themselves and more “contrasting” visual outcomes that are not related with the action 

itself (e.g., a red flash on screen). 

3.7 Conclusion and Application Scenarios  
In this work, we have shown types of interaction that significantly impact users' SoA in 

order to provide solutions to improve touchless interfaces. Our results suggest that audio 

and haptic feedback better produce users’ SoA compared with visual feedback. Although 

these kinds of feedback have been frequently used in past work (as mentioned in Chapter 

2 – Touchless Systems), the role of SoA has been unexplored. Here, we have validated 

these feedback types through implicit metrics supporting their use to provide a better and 

more responsive interaction. Next, we explain some possible application scenarios. 
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Interactions in VR commonly rely on touchless actions; however, these systems often add 

haptic feedback, as they try to simulate real-world settings in order to provide a realistic 

interaction. We have demonstrated that touch and touchless input modalities 

accompanied by mid-air haptic feedback improve IB, which enables application scenarios 

for VR and bare-hands interactions. For example, by considering the role of agency in 

designing VR training simulators (e.g., flight or surgery), designers can approximate 

agency effects in users that are similar to those in a real-life situation. In this way, their 

commitment to the interaction (action inputs and system responses) might be stronger, 

enabling better training for the professional. 

It is known that audio and haptic feedback releases the visual channel, allowing it to focus 

on additional tasks; this interplay is suitable for driving scenarios. Our results show that 

audio and mid-air haptic feedback improve users’ SoA. This suggests that these kinds of 

feedback will not only help focus driving attention but also provide users with the feeling 

of being in control during touchless interactions (e.g., controllers for car dashboards). 

Additionally, mid-air haptic feedback represents a good means for private communication 

in cases where audio cannot be played, allowing the user to still experience agency.  

Our results are in line with prior research suggesting that differences in interaction 

techniques can significantly affect the experience of control (Limerick et al., 2015). 

Inspired by these findings, and following the line of mid-air interfaces, in the next chapter 

we explore agency in olfactory interfaces. Beyond traditional interaction modalities based 

on vision, audio and touch, olfactory interfaces are becoming increasingly popular. Yet, 

as it is a modality newly introduced to user interfaces (e.g., in-car applications and VR), 

it is not clear how olfactory cues can influence our SoA. We therefore explore this aspect 

in Chapter 4 by modulating emotions though affective odours, following research which 

suggests that agency is modulated by emotional signals.  
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Chapter 4   Effect of Olfaction-mediated Emotions on the Sense of Agency 
Effect of Olfaction-mediated Emotions on the Sense 
of Agency 

 
Figure 4.1 Scent priming approach. Participants were primed with positive (lavender), 

negative (civet) and neutral (water) scents to explore the effect of smell-induced emotions 
on intentional binding (IB) – the perceived temporal attraction between actions and 

outcomes. (B) Structure of the scent delivery system and setup for the IB task. 

Olfactory interfaces are becoming increasingly popular as they provide compelling user 

experiences. However, our sense of smell is often considered poor compared with other 

senses (Shepherd, 2004), and thus our interaction with technology is dominated by visual, 

auditory and, more recently, haptic interfaces (Obrist et al., 2017). Nonetheless, olfaction 

is deeply connected to our mood (Warrenburg, 2005), memories (Herz & Cupchik, 1995) 

and emotions (Soudry et al., 2011), suggesting a strong potential to improve human-

computer interaction (HCI) (Obrist et al., 2014). One unexplored aspect of olfactory 

interfaces is the effect of olfaction-mediated emotions on the Sense of Agency (SoA). As 

detailed in Chapter 2 - Section 2.8, agency studies have modulated the valence of 

emotions (positive and negative) using visual (Aarts et al., 2012), auditory (Yoshie & 

Haggard, 2013; Christensen et al., 2016) and somatosensory (Beck et al., 2017; Borhani 

et al., 2017) cues, and the role of olfactory information (i.e., emotions induced by odours) 

in agency has not been explored to date. With the increasing research on olfactory 

interfaces (Dmitrenko et al., 2017) (e.g., car scenarios (Dmitrenko et al., 2016) and virtual 
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reality (VR) (Ramic-Brkic & Chalmers, 2014)) in the pursuit of providing multisensory 

experiences in HCI (Kortum, 2008; Obrist et al., 2017; Obrist et al., 2017), it is important 

to explore if olfaction-mediated signals affect the experience of agency.  

Additionally, it is unclear if the modulation of agency is due to pure emotion activation 

to other parameters that in conjunction activate an emotion. That is, when triggering 

emotions through visual, auditory or somatosensory channels, there is an indirect path 

between the affective signal and the emotional area of the brain. For example, visual 

information coming from the eyes passes by the thalamus (responsible also for motor 

signals) and then reaches the visual cortex (Usrey & Alitto, 2015), where the valence of 

the content is evaluated. In contrast, olfactory signals directly trigger the amygdala (the 

area of the brain that controls our emotions (Zald & Pardo, 1997)) in an unmediated path 

(Aggleton & Mishkin, 1986). Therefore, if the SoA is modulated by affective odours, 

then we could conclude that agency is modulated by the effect of the emotions 

exclusively, instead of by other related processes. 

To explore this, in this chapter we investigate the effect of emotions induced by olfactory 

information on the SoA using the intentional binding (IB) paradigm and found that IB 

increased when participants were exposed to a positive scent compared with negative and 

neutral scents. These findings indicate that olfactory information not only produces 

physiological responses (Vernet-Maury et al., 1999) and modifies emotions (Warrenburg, 

2005; Soudry et al., 2011) but also affects the feeling of controlling the environment. We 

discuss the impact of our results in olfactory interfaces and HCI scenarios where the sense 

of smell can enhance user experiences.  

4.1 User Study – Exploring the Effect of Odours on Agency 
In this experiment, we primed participants with three different types of emotion (positive, 

negative and neutral) at the beginning of an IB task, as in the work by (Aarts et al., 2012). 

Participants were presented with two essential natural fragrances (lavender and civet oils) for 

positive and negative association, respectively, and one baseline scent (water) for neutral 

emotion (see Figure 4.1). In order to explore the effect of olfaction-mediated emotions on 

the SoA, and to answer both RQ3 - Do emotions produced by odours modulate the SoA? 

and RQ4 – Does a positive smell increase the SoA? we measured three main variables: 

(1) IB as an indicator of the SoA, (2) subjective emotion using a self-assessment manikin 

(SAM) scale to test whether the scents produced the intended emotion in participants and 
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(3) skin resistance as a measure of the physiological activation of the neural central 

system due to scent stimulation. Next, we present details of the procedures, methods and 

apparatus used in this study. 

4.1.1 Intentional Binding Task Procedure 

Every trial started when participants pressed a footswitch and a fixation cross was shown 

on screen while the scent was being presented (positive, negative or neutral) for 2500ms. 

After the scent presentation, a Libet clock was shown (with a rotating dot) which always 

started rotating from a random position. Then, participants were asked to freely press a 

button (space bar on a keyboard) at the elapsed time of their preference (i.e., voluntary 

action). After a fixed interval of 250ms, they perceived a tone (i.e., the action’s outcome) 

which lasted 100ms at 900Hz in frequency. Subsequently, after a random interval 

between 1000ms and 1500ms, the clock stopped and participants were asked to report the 

position of the clock (where the dot was) at the moment when they either executed the 

action (baseline action and active action blocks) or perceived the tone (baseline outcome 

and active outcome blocks), as shown in Figure 2.3. The procedure of a single trial is 

shown in Figure 4.2. 

 
Figure 4.2 Procedure of the IB task. In baseline outcome blocks the action does not occur.  

Between scent conditions, we used an air extractor in the room for about 3min to clear 

the environment. Participants performed four blocks (shown in Figure 2.3) of 20 trials 

each in each scent condition (three types), resulting in 240 trials per participant. 

Participants wore noise-cancelling headphones playing white noise during the entire 
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experiment to block out sounds from the devices. The full experiment took about 90 min 

with a 3min break between conditions (air cleaning).  

Participants were asked to remember the position of a rotating dot around a Libet clock 

(size 500 pixels) shown on screen (24-inch, 1920 x 1200 resolution) at the moment of 

their action/outcome. The clock rotated clockwise once every 2560ms. The numbers of 

the clock were not used to avoid creating visual patterns during the task. Instead, after 

each trial and when the dot stopped, participants used an external controller (Griffin 

Powermate Knob Controller) to relocate the dot on the perceived position. We then 

calculated the time errors by the difference between perceived and actual clock positions. 

4.1.2 Scent Delivery 

Figure 4.3 shows the structure of the delivery system. It consists of a custom-made 

electronic device controlled by an Arduino board. The device is composed of three 

electro-valves (4mm Solenoid/Spring pneumatic valve) that regulate the air passage (on–

off) from a tank of compressed air. The tank (70l/s, maximum pressure of 8 Bar) supplied 

air flow through 4mm plastic pipes, passing through the electro-valves and entering three 

small glass bottles that contained two commercially available natural essential oils 

(lavender and civet) and water, respectively. The tank airflow was set at a constant 

pressure of 1 Bar-l/min, through an air regulator. This device was built following the 

guidelines from (Dmitrenko et al., 2017). 

The odours reached the participant through a 3D-printed nozzle (diameter 3.5cm). The 

nozzle was positioned at about 30cm in distance from the participants’ nose (Dmitrenko 

et al., 2017), and never directly in contact with the participant to avoid an air puff 

sensation. With our setup (see Figure 4.4), the scent takes about 1.5 seconds to be 

perceived by participants (from the valve triggers to participant judgement), as revealed 

in a pilot study we conducted before the actual IB experiment. 

 
Figure 4.3 Structure of the scent delivery system: (1) air tank, (2) manifolds, (3) 

electric valves, (4) Arduino, (5) PC, (6) scents, (7) one-way valves, (8) output nozzle. 
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During the entire experiment, participants rested their chin on a supporting structure 

critically positioned to ensure scent delivery to the participants’ nose. Figure S1 shows 

the real setup. The fragrances used were 100% pure, undiluted essential oils. Civet oil is 

often used as a perfume base. However, in its pure state it is considered unpleasant since 

it is the perineal gland secretion produced by the civet cat (Sbrollini, 1987; Johansen, 

2008). Civet oil is commercially available on the (Plush Folly) website and lavender oil 

on the (Barrett and Holland) website. 

We are aware of cultural variability in odour perception and so chose civet as our negative 

scent since it has been effectively used for inducing negative emotions (Zarzo, 2008; 

Rinaldi et al., 2018) and been categorized as unpleasant by study participants in different 

cultures: French, Vietnamese, American (Chrea et al., 2004), Swiss, British, and 

Singaporean (Ferdenzi et al., 2013), showing no significant differences between gender. 

4.1.3 Subjective Emotional Assessment 

To evaluate whether the scents produced the desired emotion in participants, we 

employed a SAM scale (Bradley & Lang, 1994) after each scent condition to obtain the 

three dimensions of emotion (valence, arousal and dominance) from participants. A 9-

point rating scale was employed for each dimension. A value of 9 represents a high rating 

in each dimension while a value of 1 represents a low rating in each dimension. The SAM 

scale has been extensively used in previous studies to evaluate emotions induced by 

exposure to odours (Bestgen et al., 2015) as it uses graphical representations of the three 

dimensions of emotion (using manikins), providing an intuitive scale for subjects. 

Additionally, the SAM scale has been used to obtain large amounts of emotional data for 

multisensory stimulation studies (Gatti et al., 2018). The SAM scale is shown in 

Appendix 1. 

 
Figure 4.4 Experimental setup. (1) Libet clock on screen, (2) USB controller, (3) 

output nozzle, (4) keyboard, (5) chinrest, (6) headphones, (7) skin resistance sensor, 
(8) Distance – 30cm. 
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4.1.4 Skin Resistance Assessment  

Previous studies have shown that physiological signals such as skin resistance can be 

modulated by the perception of odorants (Van Toller et al., 1983; Vernet-Maury et al., 

1999; Bensafi et al., 2002; Gatti et al., 2018), which is a product of neural central system 

activation. To explore whether such activation occurs with the scents used in our study, we 

measured skin resistance with and without scent stimulation. Skin resistance was measured 

using a Shimmer3 GSR+ Unit wireless device (Shimmer Sensing, Dublin). Participants 

wore an armband with the shimmer device attached and two 8mm snap style finger 

electrodes on their index and middle fingertips (with a constant voltage 0.5V). We 

recorded data with a frequency of 512Hz (10 mSiemens (μS)/volt, A/D resolution of 12 

bit) allowing us to record responses ranging from 2 to 100μS. We recorded skin resistance 

during the scent conditions, namely, neutral, positive and negative (see Figure 4.2) for 5s 

in each trial and also during a baseline condition consisting of 60s prior to the experiment, 

without exposure to any scent. 

4.1.5 Participants  

Thirteen right-handed participants (four females, mean age=31.39 years old, SD=5.33) 

took part in our study. They had normal or corrected-to-normal vision and were pre-

screened prior to the experiment using an olfactory assessment test (shown in Appendix 

1) to make sure their sense of smell was not impaired and that they were not suffering 

from allergies, cold or flu. Females during their menstrual cycle or pregnancy were 

excluded since hormone levels can change olfactory sensitivity. The local ethics 

committee approved this study.  

An a priori statistical power analysis was performed for sample size estimation in 

G*Power. Running a power analysis on a repeated measures ANOVA with three 

emotional scent conditions (i.e., neutral, positive, and negative, repeated four times 

corresponding to the four blocks of the IB paradigm), a power of 0.95, an alpha level of 

0.05, and a medium effect size (f=0.25, ηp
2=0.06, critical F=1.63) (Faul et al., 2007; 

Lakens, 2013),  requires a sample size of approximately 12 participants. Thus, our 

proposed sample of 13 participants was adequate for the main objective of this study.  

4.2 Results on Emotions 
A one-way repeated measures ANOVA for each dimension of emotions (i.e., valence, 

arousal and dominance) was conducted to compare the effect of the emotional scents on 
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participants’ judgement. Partial eta squared (ηp2) is reported as a measure of effect size 

according to Cohen (Cohen, 1988). 

 
Figure 4.5 Results on emotions. Top: Average of the emotional responses from 

participants using the self-assessment manikin (SAM) scale (rated with a 9-point 
rating scale) grouped by smell type with ± SD in brackets. Bottom: Plot for 

comparison of the three emotional dimensions (pleasure, arousal and dominance) 
per smell type. Error bars represent SEM. * =p<0.05 in valence. 

The results show a significant effect of scents on valence (F(1,11)=4.65, p<0.05, ηp
2=0.28), 

and further comparison tests with Bonferroni correction showed a significant difference 

between all three scents (see Figure 4.5 for the mean scores). A significant effect on 

arousal was also shown (F(1,11)=4.87, p<0.05, ηp
2=0.22), and further comparison tests with 

Bonferroni correction showed a significant difference between neutral and positive 

(p<0.05) and neutral and negative (p<0.05) scents. However, a non-significant effect of 

scents on dominance was shown (F(1,11)=0.144, p=0.71, ηp
2=0.01).  

4.3 Results on Intentional Binding 
Before comparing our three main conditions (positive, negative and neutral), we first 

explored whether a binding effect was observed in each scent condition independently. 

To do so, we conducted repeated measures ANOVA tests to determine interactions 

between the baseline block (when only one event occurs, either action or outcome) and 

the active block (when both events occur – action and outcome) for both action binding 

and outcome binding (see Figure 2.3 for detailed blocks) in each scent condition. 
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For the positive scent, we found a significant binding effect between the baseline (M=-

1.86ms, SD=129.5ms) and active (M=29.18ms, SD=102.86ms) blocks for the action 

condition (F(1,270)=15.473, p<0.001, ηp
2=0.054). Similarly, we found a significant binding 

effect between baseline (M=109.29ms, SD=123.35ms) and active (M=61.75ms, 

SD=112.130ms) blocks for the outcome condition (F(1,264)=32.08, p<0.001, ηp
2=0.108). 

For the neutral scent, a significant binding effect was found between the baseline 

(M=5.33ms, SD=103.32ms) and active (M=27.55ms, SD=105.42ms) blocks for the 

action condition (F(1,266)=6.82, p=0.01, ηp
2=0.025). Meanwhile, a significant binding effect 

was found between the baseline (M=99.48ms, SD=116.6ms) and active (M=75.14ms, 

SD=135.02ms) blocks for the outcome condition (F(1,265)=6.43, p=0.012, ηp
2=0.024). 

Finally, for the negative scent we found a significant binding effect in the action condition 

(F(1,265)=4.624, p<0.032, ηp
2=0.017) between the baseline (M= -6.05ms, SD=19.21ms) and 

active (M=18.1ms, SD=97.52ms) blocks. Controversially, for the outcome condition, we 

found a non-significant binding effect (F(1,266)=1.149, p=0.285, ηp
2=0.004) when 

comparing the baseline (M=90.58ms, SD=114.58ms) and active (M=79.74ms, 

SD=129.83ms) blocks. 

These results show a significant temporal binding effect in each timing technique 

independently. Next, we present the comparison between the three timing techniques 

A one-way repeated measures ANOVA was conducted to compare the effect of the scents 

used as an emotional prime (i.e., neutral, positive, and negative) on action, outcome, and 

total binding. The results show a significant effect of the emotional prime on the total 

binding (F(1,11)=4.50, p<0.05, ηp
2=0.26). Particularly, comparison tests with Bonferroni 

correction showed a significant difference between the neutral and positive emotional 

scents (p<0.01) and between the positive and negative (p<0.05) scents. The results also 

show a significant effect of the emotional scent on the outcome binding (F(1,11)=5.53, 

p<0.05, ηp
2=0.30), while comparison tests with Bonferroni correction showed a 

significant difference between the neutral and positive (p<0.01) and the positive and 

negative emotional scents (p<0.05). However, for action binding (F(1,11)=1.08, p=0.05, 

ηp
2=0.16), we found no significant effect between the three scents. Details related to mean 

time of action, outcome and total binding in each of the emotional prime conditions are 

presented in Figure 4.6. 
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Figure 4.6 Results on intentional binding. Top: Average of action, outcome and total 
binding in milliseconds of each smell modality, with ± SD in brackets. Middle: Plot 

for comparison: a positive value represents a delayed awareness of the action (action 
binding) and a negative value an early awareness of the outcome (outcome binding). 
Bottom: Total binding (Action Binding – Outcome Binding). Error bars represent 

SEM. * = p<0.05. 

4.4 Results on Skin Resistance 
A one-way repeated measure ANOVA was conducted to compare the effect of the scent 

stimulation on skin resistance reactions. The results show a significant effect of scents on 

skin resistance (F(1,11)=4.34, p<0.05, ηp
2=0.28). Particularly, comparison tests with 

Bonferroni correction show a significant difference between the baseline and all the scent 

conditions (p<0.01). However, no significant effect is shown between the three emotional 

scents (positive, negative and neutral). Figure 4.7 shows the mean skin resistance in ohms. 
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Figure 4.7 Results for skin resistance. Top: Average of galvanic skin response 

(resistance) collected from participants in ohms (Ω), with ±SD in brackets grouped 
by scent type and the baseline condition. Bottom: Plot for comparison: the upper 

dashed rectangle shows a zoom of the emotional scents: positive, neutral and 
negative. * =p<0.05. 

4.5 Discussion  
Our results show that the scents we employed in our study effectively produced the 

intended emotions on participants (positive, negative and neutral), as revealed in the 

analysis from the SAM scale. Participants scored the lavender scent significantly higher 

in valence compared with the civet and water scents, while the civet scent was reported 

with the lowest valence. While the mean scores of valence for the three scents sit around 

the middle of the SAM scale (see Figure 4.5) we found that the differences between scents 

were statistically significant in our analysis. Additionally, the mean score of valence for 

the scent of lavender (~6) is consistent with previous studies (Serrano et al., 2016; Brianza 

et al., 2019) as well as for the scent of civet (~4) (Rinaldi et al., 2018), which confirms 

the validity of our results. 

In terms of arousal, the lavender scent was scored with low arousal (see Figure 4.5), which 

supports that lavender odour is relaxing (Motomura et al., 2001). However, the water 

scent was reported as significantly less arousing than the lavender and civet scents. Yet, 

further studies are needed to explore scents with high valence and high arousal. Finally, 

no effect on dominance was found.  
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The analysis of skin resistance shows a significant difference between the baseline 

condition (i.e., prior to the IB experiment without the exposure to scents) and the 

emotional scent conditions. In line with prior work, this suggests that participants’ skin 

resistance was affected by the elicited emotion, which confirms that there was a response 

from the neural central system due to the scent stimulation (Hongratanaworakit, 2004; 

Weber & Heuberger, 2008). However, while we observed higher skin resistance for the 

positive scent (see Figure 4.7) we found no statistically significant difference between 

scents. 

Crucially, we found that participants exhibited significantly higher total IB in the positive 

valence condition (Figure 4.6). This suggests that participants felt higher SoA when they 

were exposed to the lavender scent compared with the civet and water scents. These 

findings are in accordance with prior research on modulation of agency through emotional 

cues. That is, people tend to self-attribute events when positive information is involved, 

unlike negative information (the self-serving bias) (Babcock & Loewenstein, 1997). 

Although previous studies modulated the valence of emotions (positive, negative or 

neutral) using visual (pictures) (Aarts et al., 2012), auditory (e.g., human vocalizations) 

(Yoshie & Haggard, 2013; Christensen et al., 2016; Yoshie & Haggard, 2017) and even 

somatosensory (cutaneous heat-pain) (Beck et al., 2017; Borhani et al., 2017) cues, in the 

present study we show that the experience of agency is modulated by olfactory cues, these 

being higher when a positive scent is presented.  

As shown in Figure 4.6, we found no differences in action binding (the delayed awareness 

of the action) between the different emotional conditions. However, we observed 

significantly higher outcome binding (the anticipated awareness of the outcome) with the 

positive scent in contrast with the neutral and negative scents (see Figure 4.6). This is in 

line with the work from Aarts and Haggard (Aarts et al., 2012; Beck et al., 2017), in which 

the main effect was observed on the outcome binding. This suggests that the positive 

reward signal through a pleasant scent caused a stronger prediction of the outcome. 

Unlike other sensory modalities (e.g., vision, audio or touch), the sense of smell provides 

a direct path between olfactory information and the amygdala (Zald & Pardo, 1997), and 

clinical research indicates that “emotional behaviour is critically dependent on the 

amygdala” (Aggleton & Mishkin, 1986). Our results provide evidence of agency 

modulation via a channel that is directly connected to our emotions, suggesting that an 
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increase in the SoA is unlikely to be produced by additional parameters that accompany 

other sensory modalities. 

These results represent an opportunity to design user interfaces that improve user’s SoA 

through multisensory signals. Although the sense of smell is often considered a primitive 

sense (Shepherd, 2004; Obrist et al., 2017), and its inclusion in HCI seems challenging 

(Ghinea & Ademoye, 2011) (especially in light of delivery issues (Dmitrenko et al., 

2017)), in this study we have demonstrated that the feeling of controlling the environment 

increases when people are exposed to a pleasant scent.  

4.6 Implications for HCI 
Next, we present a number of HCI application scenarios employing olfactory interfaces 

to which our results can contribute. 

4.6.1 In-vehicle Interfaces 
Our results might explain why fragrance presentation is known to improve performance 

in driving scenarios (Baron & Kalsher, 1998). Our study suggests that presenting a 

pleasant scent (e.g., lavender), could help drivers to feel more in control during in-car 

interaction involving voluntary actions/commands (e.g., turn the steering wheel) and 

responses from the car (e.g., perceiving the car moving).  

A smell notification system with varying scent presentation could not only modulate 

alertness and mood but also induce levels of agency, depending on driver requirements. 

For example, when drivers need to be awake, a peppermint scent (known to produce 

alertness (Yoshida et al., 2011)) can be emitted. Then, a positive scent such as lavender 

could be presented when drivers need more control and engagement (e.g., when 

approaching a curve which lacks lane markings). These variations in scent types will 

avoid the habituation issues common in olfactory interfaces (Dmitrenko et al., 2017).  

Another example is autonomous driving. Studies have investigated how to effectively 

alert drivers during “autonomous mode” that a critical situation is approaching. When an 

“Emergency Automation Off” message is presented, drivers delay taking back control 

(Mok et al., 2017), and a quick response is needed to avoid an accident. Emergency 

notifications can be accompanied by scent presentation so that the car not only 

communicates a message but also helps drivers to take over agency in a critical situation. 
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Therefore, driving assisted by olfactory signals in an actual car environment will be 

investigated in future work to explore optimum performance while driving. 

4.6.2 Virtual Reality 
It has been demonstrated that VR “leads to bodily responses similar to those expected in 

a real-world analogue, such as increased heart rate and skin conductance, and decreased 

skin temperature” (Bohil et al., 2011). In our study we found that participants showed a 

change in skin resistance due to the smell stimulation (in line with prior work). A virtual 

environment accompanied by scent presentation can provide users with responses that 

enhance realism and the virtual experience, contributing thus not only to the sense of 

presence but also supporting experience of agency through emotional changes.  

In future work, we will explore actual VR environments where scent presentation can 

modify levels of agency. For example, users could have a higher feeling of controlling a 

menu system while perceiving pleasant scents. On the other hand, there are situations in 

which users need to disconnect from an interaction. For example, VR has been used in 

post-traumatic stress disorder treatment (Maples-Keller et al., 2017), during which 

patients are exposed to virtual situations that may be disturbing (e.g., that induce fear or 

danger). Here, at specific points during the scene visualization, a negative scent can be 

presented so that the user loses self-attribution of the situation (e.g., a car accident). 

Reducing agency could help a patient to continue a task or session while feeling less 

connection with the moment (“it is not me who is doing this”). 

4.6.3 Sensory Substitution  

Our findings might also contribute to research on deaf-blindness (people who only have 

the senses of touch, taste, and smell to interact with the outside world) and sensory 

substitution systems (Hamilton-Fletcher et al., 2016). These systems can convert visual 

information into another sensory modality (e.g., sound) (Chebat et al., 2018). For 

instance, visual characteristics (e.g., size, movements, colours, etc.) are mapped into 

sound patterns so that blind people can even hear a colour (Hamilton-Fletcher et al., 

2016). However, for deaf-blind people this is more challenging, and the sense of smell 

could represent a medium to convey visual or other sensory information, for instance, 

smell colours. Our research opens opportunities to increase smell-based assistance to give 

deaf-blind persons another interaction channel that not only communicates information 
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(Li et al., 2017) but also provides a feeling of control and empowerment (Hamilton-

Fletcher et al., 2016).  

Unlike common sensory modalities employed in HCI (e.g., vision, audio and touch), the 

sense of smell is starting to be introduced in our interaction with technology. Our study 

aims to advance understanding of the role of olfaction on the SoA through affective 

information. With our study we aim to provide researchers with insights that may be 

useful when designing for olfactory interfaces that support an instinctive sense of control 

during interactions between humans and computers.  

4.7 Limitations 
We observed a low IB in the neutral condition. A possible reason for this low value 

suggests that presenting a “neutral scent” is challenging. Even when we used water 

instead of essential oils, and the elements (e.g., vales, manifolds bottles, etc.) were 

completely independent in each scent condition (see Figure 4.3), participants might have 

smelled components from the system. Indeed, two participants reported having perceived 

the neutral scent as a slightly plastic-like scent, which could be caused by the plastic tube 

used to transport the air or the 3D-printed nozzle. Although we expected to observe higher 

IB in the water condition, the main effect from the positive scent was clearly observed in 

comparison with the other two conditions (see Figure 4.6). However, further studies are 

needed to compare neutral conditions using odourless materials (e.g., glass tubes to 

transport the essential oils) in order to compare a more reliable neutral scent. 

We expected to observe an effect of the scent conditions (positive, negative and neutral) 

on skin resistance (e.g., differences between pleasant and unpleasant scents) according to 

prior studies (Brauchli et al., 1995). One possible reason for the lack of significance could 

be the habituation effect typical in smell stimulation (Pellegrino et al., 2017). Studies have 

shown a significant decrease in odour pleasantness with time (when an odour was initially 

pleasant) after 20 repeated odour presentations (Ferdenzi et al., 2014). Additionally, 

(Croy et al., 2013) suggested that repeated presentation of an unpleasant scent reduces its 

salience. Our IB study took about 90min in total, including a 3min beak between 

conditions, which means that each scent condition took about 27min, including four 

blocks used in the Libet clock method (two baseline and two active blocks, as shown in 

Figure 2.3) repeated 20 times each. This resulted in 80 presentations of each scent. To the 

best of our knowledge, this is the first study using the IB paradigm while employing scent 
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stimulation, and therefore further studies are needed to explore scent exposure while 

controlling the habituation effect, perhaps by conducting the task on different days or 

reducing the number of trials by using a different agency measure (e.g., the interval 

estimation method). Finally, our sample size (N=13) was low as this was a first step to 

explore the effect of olfaction-mediated emotions on the SoA. Therefore, further 

exploration is needed with a larger number of participants. 

4.8 Conclusion 
In this chapter, we investigated the effect of emotions evoked by affective odours on the 

SoA. Evidence that agency is modulated by emotions was previously revealed. However, 

to the best of our knowledge this is the first study that explored affective modulation of 

agency via emotional scents. Our results show that olfactory information not only 

modifies emotions and produce changes in physiological responses but also affects the 

feeling of controlling the environment. By using the IB paradigm, we found that the SoA 

increased when participants were exposed to a positive scent compared with a neutral or 

negative scent. We discussed how our findings can be exploited in relevant HCI 

applications, such as VR, in-car interaction or sensory substitution, and hence contribute 

to the creation of multisensory experiences that support a SoA. 

Inspired by these results, in the next chapter we explore different sensory modalities to 

address common limitations of agency measures related to visual demand. Current visual 

timing methods to measure agency (e.g., the Libet clock) are limited in scenarios that 

involve relevant visual information (Coyle et al., 2012) (e.g., in VR), as they require 

subjects’ attention to report spatial position. For instance, in Chapter 3, we found reduced 

SoA for visual feedback that was presented inside a Libet clock, and a method that does 

not require visual cues could have been more suitable for evaluating agency in visual 

tasks (e.g., involving visual feedback). 

Since in Chapter 4, we found that a different sense (the sense of smell) beyond the typical 

senses involved in HCI (vision, audio and touch) could serve as a medium to convey 

information and produce an effect on agency, in Chapter 5, we explore whether different 

senses can be used to measure perception of time. We then present the development of 

two novel timing techniques based on auditory and haptic cues that provide a reference 

for reporting the time at which events occur (action/outcome), which can be employed in 

the IB paradigm.  
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Modality Variants for Agency Measurements 

 
Figure 5.1 Audio timing (left) and haptic timing (right). Alternative cues to measure 

sense of agency using the intentional binding paradigm. 

Due to the sense of agency (SoA) having mainly been explored in the fields of psychology 

and cognitive neuroscience, current agency measurements might be limited when used in 

human-computer interaction (HCI), particularly when involving visual demand (e.g., the 

Libet clock method). In this chapter, we describe two user studies that extend the 

intentional binding (IB) paradigm by exploring two variations of timing stimuli beyond 

the Libet clock. We aimed to expand implicit measures of the SoA for more interactive 

and visual tasks and therefore proposed an audio alphabet sequence and a haptic clock on 

the hand as timing stimuli to be used in the IB paradigm (Figure 5.1). We then compared 

them with two known timing methods based on visual cues: the traditional Libet clock 

and a visual alphabet on screen. We hypothesized that by changing the layout of the 

timing cue while keeping key features (e.g., speed, frequency), we could reduce the 

current limitations of conventional visual stimuli and still allow an IB effect to be 
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observed. Additionally, we assessed user emotion by using our timing methods to 

evaluate user experience and engagement. 

Our results demonstrate that audio timing through a voice sequence (audio alphabet) and 

haptic timing through rotating stimulation on the hand (haptic clock), measured an IB 

effect that was not statistically different from that measured with the Libet clock. This 

suggests our methods are suitable alternatives for measuring the SoA using the IB 

paradigm while addressing current limitations of the traditional method (e.g., visual 

demand and lack of engagement). We discuss how our work contributes to the emerging 

research of agency in HCI, aiming to advance understanding of agency in human 

interactions with technology. 

5.1 Timing Stimuli Adaptations 
The Libet clock’s appearance and spatio-temporal properties are associated to a typical 

representation of time measure; aside from its speed, it has the same characteristics as a 

conventional clock, including rotatory cues and numeration. However, the key feature 

that provides its main function is its particular speed (which accommodates time 

differences in the hundreds of milliseconds). Nonetheless, previous work has adapted the 

Libet clock by removing the numbers (Demanet et al., 2013; Lynn et al., 2014) and 

providing visual cues inside it (Moretto et al., 2011; McEneaney, 2013), with no negative 

effect in the results.  

Alexander et al. (Alexander et al., 2016) proposed a modified version of Libet’s paradigm 

to study cognitive decision in contrast to motor decision. They added a stream of letters 

inside each quadrant of the clock, and participants were asked to choose a letter and 

indicate the clock position at the moment when the choice was made. Moreover, in past 

work, the timing stimuli was completely changed by using a letter stream on screen 

without the clock (Soon et al., 2008; Cavazzana et al., 2014; Cavazzana et al., 2017). In 

these cases, participants were asked to remember the letter that was shown at the moment 

when they felt the urge to act in a freely paced motor task (button press). This approach 

provides the advantage of showing an unpredictable sequence while avoiding common 

inaccuracies in rotating stimuli (Van De Grind, 2002). However, these adaptations remain 

within visual cues on screen. 

As we wish to address common limitations of visual stimuli, in this chapter we propose 

a set of timing stimuli that employ auditory and tactile cues, thus releasing the visual 
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channel and enabling visual attention towards other activities. In the next section, we 

describe two user studies that compared traditional visual timing methods with novel 

timing methods in an IB task in order to answer RQ5: Can the IB paradigm be employed 

using a non-visual timing stimulus? Additionally, in each study we conducted an 

evaluation on the dimension of emotion (valence arousal and dominance) in order to 

answer RQ6: Do non-visual timing stimuli reduce lack of engagement? 

5.2 Study 1 – Exploring Auditory Timing  
In our first study, we investigated the effect of auditory timing stimuli in an IB task. We 

compared audio timing through a voice sequence (audio alphabet), with two known visual 

timing methods: the traditional Libet clock and a stream of letters on screen (visual 

alphabet). We then measured IB to explore if a similar effect is observed in audio timing 

compared with visual timing. 

5.2.1 Intentional Binding Task Procedure 

Every trial started when participants pressed a footswitch that caused the timing stimulus 

to be presented. Then, they were asked to freely press a button (space bar from a 

keyboard) at the elapsed time of their preference (i.e., voluntary action). After an interval 

of 250ms, they heard a tone (i.e., the action’s outcome) which lasted for 100ms at 900Hz. 

Subsequently, after a random interval between 1000ms and 1500ms, the timing stimulus 

stopped, and participants were asked to report the cue (visual or auditory) that was 

presented at the moment they either executed the action (baseline action and active action 

blocks) or perceived the tone (baseline outcome and active outcome blocks), as shown in 

Figure 2.3.  

 

Figure 5.2 Intentional binding task procedure of Study 1 (*not done in baseline 
outcome blocks, ** not done in baseline action blocks). 
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Participants judged their perception of time using three timing methods (Libet clock, 

visual alphabet and audio alphabet). For each trial, the judgement error was calculated as 

the difference between the perceived and actual time. Following this, the IB between 

action and outcome was measured. Thus, a positive value represented a delayed 

awareness, while a negative value an early awareness. Participants performed four blocks 

(shown in Figure 2.3) of 30 trials each in each timing method (three types), resulting in 

360 trials per participant. The full experiment took about 90min, with a 2min break 

between conditions. Figure 5.2 shows the procedure of a single trial.  

 
Figure 5.3 Experimental tasks of Study 1 for the three timing methods: Libet clock 

(left), visual alphabet (middle) and audio alphabet (right). 

5.2.2 Libet Clock Method 

In the Libet clock method (Figure 5.3 left), participants had to remember the position of 

a rotating dot around a Libet clock (size 500 pixels) shown on screen (24-inch, 1920 x 

1080 resolution) at the moment of their action and outcome. The clock rotated clockwise 

once every 2560ms. The numbers of the clock were not used to avoid creating visual 

patterns during the task. Instead, after each trial, participants used an external controller 

(Griffin Powermate Knob Controller) to relocate the dot on the perceived position.  

5.2.3 Visual Alphabet 

The Visual Alphabet timing condition (Figure 5.3 middle), was similar to that used in 

prior work (Soon et al., 2008; Cavazzana et al., 2014; Cavazzana et al., 2017). Participants 

were presented with an unpredictable stream of consonants on screen; every consonant 

was presented for 250ms in a continuous sequence without any time interval between 

consonants. After each trial, participants were asked to report the letter shown on screen 

(24-inch, 1920 x 1080 resolution) at the moment of their action/outcome. They were 

shown a response mapping with five options corresponding to the letter shown during the 

actual action and outcome (0-back), two letters immediately before (1-back & 2-back) 
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and two letters immediately after (1-forward & 2-forward) (Cavazzana et al., 2014; 

Cavazzana et al., 2017). An additional option was given (the # symbol) in case any of the 

letters shown corresponded to their answer, namely, the perceived time was greater than 

2-back/2-forward. Figure S2 in Appendix 4 shows a comparison of the experimental setup 

for both the Libet clock condition and the Visual Alphabet condition.  

5.2.4 Audio Alphabet 

In the audio alphabet timing condition (Figure 5.3 right), the procedure was similar than 

the visual alphabet timing. However, it differed in that the sequence of consonants was 

presented in the form of a pre-recorded voice (250Hz in frequency) through headphones, 

with no visual cues. The frequency of the voice sequence (the same as in the visual 

alphabet condition) was determined in a pilot study to identify the speed at which the 

consonant being said was understandable. After each trial, participants were asked to 

report the letter they heard at the moment of their action\outcome using a response 

mapping on screen, as in the visual alphabet condition. Participants wore headphones 

during the entire experiment (including all the conditions).  

5.2.5 Emotion Assessment  

To explore how participants experienced our methods, after each condition they were 

asked to answer a questionnaire to evaluate their emotions by using the three timing 

methods. They were instructed to report their emotion in relation to the timing method 

they used. We employed a PAD scale (Mehrabian & Russell, 1974) composed of an 18 

bipolar adjective pairs questionnaire (Agarwal & Meyer, 2009) to measure the three main 

dimensions of emotions (higher order factors): pleasure (valence), arousal and dominance 

(Russell & Mehrabian, 1977). These emotional dimensions provided an evaluation of the 

level of enjoyment, engagement and dominance that participants had during the study 

regarding the three timing methods. Particularly, the pleasure dimension provided 

insights about how enjoyable/annoying the task was, the arousal dimension helped to 

explore how engaged/bored participants felt during the task and finally the dominance 

dimension allowed exploring how dominant/dominated they felt during the task. This 

dimension is particularly relevant for agency studies since dominance is often related to 

how “in control” subjects feel (Fontaine et al., 2007).  

We used this particular scale (e.g., rather than a self-assessment manikin (SAM) scale as 

in the previous chapter) because it provides a variety of adjectives (see Appendix 3). It 
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decomposes the dimensions of emotion into 18 independent bipolar adjectives, giving 

broader insights into how participants experienced the task. For instance, it allowed us to 

identify whether participants reported being bored, relaxed, sleepy, stimulated, etc. Given 

that we wanted to explore whether our new techniques were more engaging than the Libet 

clock, we considered this scale as more suitable than a SAM scale. Additionally, since 

we collected only implicit data and not qualitative data (e.g., interviews or anecdotal 

experiences), we employed the adjectives of the PAD scale as a report from participants 

of how they experienced the new techniques.  

5.2.6 Participants  

Sixteen right-handed participants (five females, mean age=28.38 years old, SD=4.62) 

took part in the study. They had normal or corrected-to-normal vision. The local ethics 

committee approved this study, and participants were not paid for their participation. Two 

participants were excluded because of highly variable time judgement, leaving 14 

participants for the analysis.  

An a priori statistical power analysis was performed for sample size estimation in 

G*Power, using a repeated measures ANOVA with three timing methods (i.e., Libet 

clock, visual alphabet and audio alphabet, repeated four times corresponding to the four 

blocks of the IB paradigm). A power of 0.80, an alpha level of 0.05, and a medium effect 

size (f= 0.25, ηp
2= 0.06)  (Faul et al., 2007; Lakens, 2013), requires a sample size of 

approximately 12 participants. Thus, our proposed sample of 14 participants was 

adequate for the main objective of this study.  

The parameters used in our power analysis were similar to those reported in previous IB 

studies. For example, in the study by (Christensen et al., 2016), a sample size of 15 was 

suggested while in the study by (Christensen et al., 2019) a sample size of 20 was 

suggested.  

5.2.7 Results on Intentional Binding  
Before comparing our three main conditions (Libet clock, visual alphabet and audio 

alphabet), we first explored whether a binding effect was observed in each timing 

condition independently. To do so, we conducted repeated measures ANOVA tests to 

determine interactions between the baseline block (when only one event occurs, either 

action or outcome) and the active block (when both events occur – action and outcome) 

for both action binding and outcome binding (see Figure 2.3 for detailed blocks) in each 
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timing condition. Partial eta squared (ηp
2) is reported as a measure of effect size according 

to (Cohen, 1977). 

For the Libet clock method, we found a significant temporal binding effect between the 

baseline (M=57.48ms, SD=130.86ms) and active (M=110.63ms, SD=141.09ms) blocks 

for the action condition (F(1,397)=35.369, p<0.001, ηp
2=0.032). Similarly, we observed a 

significant temporal binding effect between baseline (M=184.32ms, SD=164.66ms) and 

active (M=143.79ms, SD=230.44ms) blocks for the outcome condition (F(1,396)=8.716, p 

=0.003, ηp
2=0.022). 

In the case of visual alphabet, a significant binding effect was found between the baseline 

(M=57.48ms, SD=130.86ms) and active (M=110.63ms, SD=141.09ms) blocks for the 

action condition (F(1,397)=35.369, p<0.001, ηp
2=0.082). Meanwhile, a significant binding 

effect was found between the baseline (M=119.85ms, SD=137.11ms) and active 

(M=98.69ms, SD=153.45ms) blocks for the outcome condition (F(1,391)=4.604, p=0.033, 

ηp
2=0.012). 

Finally, for audio alphabet we found a significant binding effect in the action condition 

(F(1, 378)=14.338, p<0.001, ηp
2=0.037) between the baseline (M=-6.93ms, SD=199.34ms) 

and active (M=49.53ms, SD=220.3ms) blocks. Similarly, for the outcome condition, we 

found a significant binding effect (F(1,375)=5.003, p=0.026, ηp
2=0.013) when comparing 

the baseline (M=8.41ms, SD=209.88ms) and active (M=-22.61ms, SD=211.96ms) 

blocks. 

These results show a significant temporal binding effect in each timing technique 

independently. Next, we present the comparison between the three timing techniques. 

A one-way repeated measures ANOVA for each of the binding measures (action, 

outcome and total binding) was conducted across the three timing methods (i.e., Libet 

clock, visual alphabet and audio alphabet).  

The results show a non-significant effect of the timing methods on the total binding (F(2, 

26)= 0.271, p=0.76, ηp
2= .043), and similar results are shown for action binding (F(2, 26)= 

0.490, p=0.62, ηp
2= 0.13) and outcome binding (F(2, 26)= 0.267, p= 0.77, ηp

2= 0.043). We 

found no significant difference on the binding effects (i.e., action, outcome and total 

binding) due to the timing methods used. Details related to mean scores in relation to 

action, outcome and total binding in each of the timing methods are shown in Figure 5.4. 
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Figure 5.4 Results on intentional binding. Top: Average of action, outcome and total 
binding in milliseconds (with SD in brackets) grouped by timing method. Bottom: 

Plot for comparison; a positive value represents a delayed awareness while a 
negative value an early awareness. Total Binding = Action Binding – Outcome 

Binding. Error bars represent standard error of mean (SEM). 

5.2.8 Results on Emotion 

A factorial analysis (principal components analysis (PCA), applying a Varimax rotation 

with Kaiser normalization) was performed to obtain the three dimensions of emotion 

(pleasure, arousal and dominance) from our PAD scale (details are shown in Appendix 3, 

Table S1). Figure 5.5 shows the obtained values (normalized) for each dimension.  

A one-way repeated measure ANOVA for each dimension of emotions (i.e., pleasure, 

arousal and dominance) was conducted to compare the effect of the three timing methods 

on participants’ emotions. The results show a non-significant effect of timing methods on 

pleasure (p> 0.5). Conversely, significant effects on dominance (F(2, 26)= 8.31, p= 0.002, 

ηp
2= 0.54) and arousal (F(2, 26)= 9.55 , p= 0.001 , ηp

2= 0.53) are shown. Post-hoc 

comparisons using Bonferroni correction show that there is a statistically significant 

difference in the dominance dimension between the Libet clock method (M= -0.58, SD= 

1.06) and the visual alphabet (M= 0.12, SD= 1.12, p= 0.02) and audio alphabet (M=0.58, 

SD= 0.49, p= 0.01) methods. Post-hoc comparisons using Bonferroni correction also 

show that there is a statistically significant difference in the arousal dimension between 

the Libet clock method (M= -0.49, SD= 0.91) and the audio alphabet method (M= 0.63, 
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SD= 0.81, p= 0.008), and between the visual alphabet (M= -0.13, SD= 0.84) and the audio 

alphabet (p= 0.02) methods. 

5.2.9 Discussion of Study 1 
Our results show that the IB effect measured with the two traditional methods (i.e., Libet 

clock and visual alphabet) in an IB task consisting of a button press action and tone 

outcome did not differ statistically from that measured with the audio alphabet. This 

suggests that participants’ time judgement was not modified due to the timing method 

used (visual or auditory). The IB values found with the Libet clock and visual alphabet 

methods are in accordance with previous work (Cavazzana et al., 2014; Cavazzana et al., 

2017), which confirms the validity of our studies.  

By being visually demanding, visual methods are difficult to fit in interfaces and 

situations within HCI. For instance, studies on illusory agency using VR have been 

limited by explicit measures (i.e., questionnaires), which are subject to a number of 

cognitive biases (Wenke et al., 2010; Stenner et al., 2014).  

 

Figure 5.5 Results on emotions. Top: Average of the emotional responses from 
participants using the PAD scale grouped by timing method, with SD in brackets 

(values are normalized). Bottom: Plot for comparison of the three emotional 
dimensions (pleasure, arousal and dominance) per timing type. Error bars represent 

standard error of mean (SEM).  
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In this chapter, we hypothesized that an IB effect could also be observed using a timing 

stimulus that does not require relevant visual information in order to establish a move 

towards measuring agency in more interactive tasks. Our results provide insights about 

alternative solutions to employ the IB paradigm in VR applications. 

By using auditory timing (i.e., an audio sequence), it could be possible to implicitly 

measure SoA in tasks involving active conditions, for instance, observation of an avatar 

motion (to evoke the feeling of body ownership) without full attention to a rotating dot. 

Additional audio sequences could be used (e.g., pitch or numbers), although this needs to 

be further investigated. 

Although visual and auditory stimuli have been demonstrated to behave differently in 

terms of reaction time (Geffen et al., 1973), we found no statistically significant 

difference in terms of IB effect (i.e., the perceived time interval between a voluntary 

action and its sensory effect). This suggests that audio timing could be an alternative 

timing method when measuring SoA in the IB paradigm. For instance, a sequence of 

voice could be presented to users while manipulating an interface (e.g., menu navigation), 

thus directing the relevant visual attention towards other activities (e.g., observation of 

virtual hands on screen, moving and activating buttons).  

The duration for which the letter was shown on screen in the visual alphabet condition 

was different compared with previous studies, in which the duration of the visual cue was 

set as 500ms (Soon et al., 2008) and 150ms (Cavazzana et al., 2014; Cavazzana et al., 

2017). However, we set the duration for presenting the letters on the basis of a pilot study 

to identify the speed at which the consonant being said was understandable (i.e., 250ms). 

We then established the same frequency for the two timing methods involving the 

alphabets (visual and auditory) in order to fairly compare them. In the audio alphabet 

condition, participants visually chose the consonant on screen (using response mapping) 

for experimental reasons (Figure 5.3 right). However, this can be done verbally as well. 

The analysis of emotional responses from participants shows non-significant differences 

between the three timing methods regarding the pleasure dimension. However, our results 

suggest that participants felt significantly more aroused and dominant when using audio 

timing compared with the Libet clock. The IB task usually requires a number of trial 

repetitions to compute the average of judgement error (usually 30 trials). This task may 

be tiring as it is repetitive, which can produce lack of engagement in participants. In our 
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experiment, some of the participants reported that the Libet clock was “boring” and 

“hypnotizing”, and at the end of the task they mentioned feeling “sleepy”. Our results 

from the PAD scale reflect this experience, as participants reported being significantly 

more “awake” and “stimulated” while performing the task with the audio alphabet. This 

suggests that audio timing could better suit a more interactive task that requires more 

commitment (e.g., VR) while still being an applicable time measure in the IB paradigm. 

5.3 Study 2 – Exploring Haptic Timing 
In our second study, we introduced a haptic timing condition and compared it with visual 

timing using the typical Libet clock (see Figure 5.6). In contrast to visual cues to measure 

time perception, haptic timing has not been explored. Haptic timing allowed us to 

measure perception of time based on tactile cues, reducing the requirement of visual 

information. The Libet clock condition was identical to that described in the first study 

(Figure 5.7 left). In the haptic timing condition (Figure 5.7 right), the procedure was 

similar, but here the clock was presented in the form of a rotating haptic stimulation on 

participants’ palm. 

5.3.1 Intentional Binding Task Procedure  

The procedure for the IB task was identical to that shown in the first study (see Figure 

5.2). Participants heard white noise during the entire experiment to block sound from the 

devices used. Participants performed four blocks (shown in Figure 2.3) of 30 trials each 

in each timing method (two types), resulting in 240 trials per participant. The full 

experiment took about 45min with a 2min break between blocks. Figure 5.6 shows the 

procedure of a single trial, and Figure 5.9 shows the experimental setup. 

 

Figure 5.6 IB task procedure of Study 2 (*not done in baseline outcome blocks, ** 
not done in baseline action blocks). 
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5.3.2 Haptic Clock 

Before the task started, participants were instructed to place their non-dominant hand 

(palm down) on a custom-made box (Figure 5.8) containing a brush attached to a NEMA-

17 Bipolar 48mm Stepper (model 42BYGHW811). The stepper was controlled using an 

Arduino board and programmed to rotate clockwise at the same speed as the Libet clock 

(2560ms per revolution) with a resolution of 3.2ms/step (360°=800steps). The diameter 

of the rotational circumference was adjusted depending on hand size (normally smaller 

for female) but was about 6cm. Participants performed the action (button press) using 

their dominant hand, and the haptic timing stimulus was provided on the non-dominant 

hand. Finally, participants reported the position on the hand where they felt the tactile 

stimulus at the moment of the action/outcome using an external Griffin Powermate Knob 

Controller (as in Study 1) to physically relocate the position of the brush on the hand 

(Figure 5.7 right). Figure S3 and Figure S4 in Appendix 4 show additional pictures and 

screenshots of the setup. 

 
Figure 5.7 Experimental tasks of Study 2 for the two timing methods: Libet clock 

(left) and haptic clock (right). 

5.3.3 Participants  

Eighteen participants (one left-handed, three females, mean age=28.31 years old, 

SD=5.08) took part in the study. They had normal or corrected-to-normal vision. The 

local ethics committee approved this study, and participants were not paid for their 

participation. Two participants were excluded because of highly variable time judgement, 

leaving 16 participants for the analysis.  

An a priori statistical power analysis was performed for sample size estimation in 

G*Power. Running a power analysis on a repeated measures ANOVA with two 

measurements (Libet clock and haptic clock, repeated four times corresponding to the 
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four traditional blocks of the IB paradigm), a power of 0.80, an alpha level of 0.05, and a 

medium effect size (f= 0.47, ηp
2= 0.07) (Faul et al., 2007; Lakens, 2013) requires a sample 

size of approximately 16 participants. Thus, our proposed sample of 16 participants was 

adequate for the main objective of this study.  

 
Figure 5.8 Custom-made box to provide haptic rotational stimulus. A 7cm in 

diameter orifice on top of the box allowed a brush (A) to rotate around participants’ 
palm (C), using a step motor controlled by an Arduino board and a stepper driver 

(B). 

 
Figure 5.9 Experimental setup for Study 2. 

5.3.4 Results on Intentional Binding 

Before comparing our two main conditions (Libet clock and haptic clock), we first 

explored whether a binding effect was observed in each timing condition independently. 

To do so, we conducted repeated measures ANOVA tests to determine interactions 

between the baseline block (when only one event occurs, either action or outcome) and 

the active block (when both events occur – action and outcome) for both action binding 

and outcome binding (see Figure 2.3 for detailed blocks) in each timing condition.  

In the Libet’s clock condition, we found a significant binding effect (F(1,454)=26.286, 

p<0.001, η2=0.055) for the action condition between baseline (M=8.4ms, SD=85.21ms) 

and active (M=33.13ms, SD=113.59ms) blocks. A significant binding effect was also 
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found for the feedback condition (F(1,460)=45.15, p<0.001, η2=0.089) between baseline 

(M=89.9ms, SD=131.46ms) and active (M=40.98ms, SD=117.17ms) bocks. 

In the haptic clock condition we found significant binding effect (F(1,457)=19.62, p<0.001, 

η2=0.041) for the action condition between baseline (M=66.34ms, SD=212.97ms) and 

active (M=121.93ms, SD=213.11ms) blocks. Similarly, a significant binding effect was 

found for the feedback condition (F(1,391)=4.604, p=0.033, η2=0.012) when comparing 

baseline (M=190.93ms, SD=195.65ms) and active (M=159.06ms, SD=230.63ms) blocks. 

These results show a significant temporal binding effect in each timing technique 

independently. Next, we present the comparison between the three timing techniques. 

A one-way repeated measures ANOVA for each of the binding measures (action, 

outcome and total binding) was conducted across the two timing methods (i.e., Libet 

clock and haptic clock). The results show a non-significant effect of the timing methods 

on the total binding (F(1, 13)= 0.675, p= 0.18, ηp
2= .014), and similar results are shown for 

action binding (F(1, 13)= 1.400, p= 0.25, ηp
2= 0.1) and outcome binding (F(1, 13)= 0.356, p= 

0.56, ηp
2= 0.027). We found no significant difference on the binding effects (i.e., action, 

outcome and total binding) due to the timing methods used. Mean scores of action, 

outcome and total binding in each of the timing methods are presented in Figure 5.10.  

 

Figure 5.10 Results on intentional binding. Top: Average of action, outcome and 
total binding in milliseconds (with SD in brackets) grouped by timing method. 

Bottom: Plot for comparison – a positive value represents a delayed awareness while 
a negative value an early awareness. Total Binding = Action Binding – Outcome 

Binding. Error bars represent standard error of mean (SEM). 
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5.3.5 Results on Emotion 

As in Study 1, a factorial analysis (principal components analysis (PCA), applying a 

Varimax rotation with Kaiser normalization) was performed to obtain the three 

dimensions of emotion (pleasure, arousal and dominance) from our PAD scale. Figure 

5.11 shows the obtained values (normalized) for each dimension. A one-way repeated 

measure ANOVA for each dimension of emotions (i.e., pleasure, arousal and dominance) 

was conducted to compare the effect of the two timing methods (i.e., Libet clock and 

haptic clock) on participants’ emotions. The results show a non-significant effect of 

timing methods on the pleasure (p>0.5) and dominance (p>0.5) dimensions. However, a 

significant effect on arousal (F(1, 12)=12.518 , p=0.004 , ηp
2= 0.51) was observed.  

5.3.6 Discussion of Study 2 

Our results show that the IB effect measured with a haptic clock in the form of a rotatory 

timing stimulus on participants’ palm was not statistically different from that measured 

with the traditional Libet clock, both methods in an IB task consisting of a button press 

action and tone outcome. This suggests that participants’ time judgement did not differ 

due to the timing method used (visual or haptic). 

 
Figure 5.11 Results on emotions. Top: Average of the emotional responses from 

participants using the PAD scale grouped by timing method, with SD in brackets 
(values are normalized). Bottom: Plot for comparison of the three emotional 

dimensions (pleasure, arousal and dominance) per timing type. Error bars represent 
standard error of mean (SEM). 
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We introduced a haptic timing stimulus for use in the IB paradigm to reduce the amount 

of visual information presented to participants. Our results suggest that tactile cues on the 

hand can be used as an alternative to visual stimuli to measure perception of time. The 

human hand is highly sensitive due to mechanoreceptive units in the glabrous skin area 

(Johansson & Vallbo, 1979), and its resolution ranges from 1mm to 2mm (Johnson & 

Phillips, 1981).  This property represents a promising tool to judge causally related events 

in time based on tactile position. In our experiment, participants were able to recognize 

spatio-temporal stimulation for voluntary action with an overall accuracy of 69ms, that 

is, the judgement error set as the difference between actual and perceived time in the 

baseline active block (where participants reported the action only.) 

In contrast to the audio alphabet resolution (250ms), the haptic clock provides higher 

resolution as it represents a continuous stimulation. Although tactile sensitivity may be 

affected by sensory habituation (i.e., due to constant tactile stimuli) (Schmid et al., 2014), 

our participants did not report feeling habituated to the stimuli. The haptic clock condition 

took about 20min with four breaks of 2min between IB conditions (baseline and active). 

However, habituation may affect sensitivity for longer periods. 

While the haptic clock also involved rotatory cues as in the visual Libet clock condition, 

it provides a timing strategy that reduces the visual information for timing stimuli. 

Furthermore, our results provide insights on exploring haptic timing using different and 

unpredictable patterns, for instance, different shapes, random path trajectories or different 

body parts (e.g., wrist). However, this needs to be further investigated. 

One limitation of the haptic clock condition is that participants’ hands were placed in a 

fixed position. Our experimental setup, however, was mainly focused on exploring tactile 

stimulation to measure time perception based on haptic position. Yet, our results provide 

intuition to present tactile stimulation in different ways, for example, through vibration 

using wearables gloves or in mid-air through ultrasound to avoid user instrumentation.  

The analysis of emotional responses from participants shows non-significant differences 

in the two timing methods regarding the pleasure and dominance dimensions. However, 

our results suggest that participants felt significantly more aroused when using the haptic 

clock timing compared with the typical visual Libet clock. Similarly to Study 1, 

participants reported lack of engagement in the Libet clock condition, as reflected in the 

arousal dimension (see Figure 5.11) being significantly lower than in the haptic clock 
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timing. In contrast, when using the haptic clock, they experienced being more “excited” 

and “stimulated” based on the bipolar adjectives from the PAD scale (see Appendix 3). 

This suggests that haptic timing could be suitable for tasks requiring more engagement.  

5.4 General Discussion  
In this chapter, we introduced audio and haptic timing to measure SoA using the IB 

paradigm. Our methods address limitations of current agency measures, in particular that 

they involve high visual information and are difficult to stay engaged with. Our timing 

techniques allowed us to measure perception of time through audio commands (audio 

alphabet) and rotating haptic stimulation on the hand (haptic clock) in an IB task, reducing 

the required visual cues. The results from two studies comparing our methods with the 

traditional visual timing stimulus (Libet clock and visual alphabet) show non-significant 

differences in time perception and thus on IB effect. Each timing condition relies on a 

different modality (i.e., vision, audition or touch) with different cognitive implications. 

However, those perceptual differences between the senses did not significantly bias the 

IB measurements, as shown in our analysis. Yet, the absolute difference in the means 

across timing types shows lower binding for the Libet clock, although this was not found 

to be significant.  

Our results on emotion suggest that timing through audio and touch could provide a more 

suitable strategy for use in interactive scenarios. Our participants reported higher arousal 

and dominance when using the audio alphabet and haptic clock. This suggests that our 

methods not only provided a measure of agency but also improved engagement during 

the task, unlike the traditional Libet clock, which was associated with a low arousal 

dimension.  

Previous studies on agency have demonstrated that IB is modulated by affective signals, 

being higher when a positive emotion is involved compared with a negative emotion 

(Aarts et al., 2012). Although the results from the PAD scale showed higher positive 

dimensions in arousal (not valence) for audio and haptic timing, this did not influence IB. 

This is in accordance with (Aarts et al., 2012), where IB was modified by the valence 

dimension only.  

Our work thus opens opportunities to measure agency in active and visual scenarios, 

expanding research on the SoA in the field of HCI. The advantage of extending agency 

measures is being able to improve agency in actual HCI applications in which a user 
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performs voluntary actions, namely, input commands, and thus design systems that do 

not disrupt users’ feeling of being in control.  

For instance, VR studies have shown that visual distortions can be beneficial to enhance 

user experiences. One example is “haptic retargeting” (Azmandian et al., 2016) in which 

visuomotor mismatch is introduced to provide the experience of grabbing several objects 

when actually grabbing only one. This helps to reduce the number of haptic proxies while 

enhancing the visuotactile experience. In another example, (Montano Murillo et al., 2017) 

employed visual space distortion to improve ergonomics while touching virtual objects 

in mid-air. By using this visual mismatch (also called retargeting), users were able to 

touch objects from a more comfortable position (avoiding fatigue), while preserving the 

original visual spatial position of virtual elements.  Moreover, (Montano Murillo et al., 

2017) used scaling factors in the displacement of VR navigation in order to create the 

perception of traveling greater distances when actually interacting in a reduced space. 

That is, users walk 1m in the real world when the visual representation in VR shows a 

displacement of 2m. Although this visual effect is known to induce simulator sickness 

(Kolasinski, 1995), it can optimise the navigable space, improving user experiences.  

While some of these techniques are claimed to be imperceptible by the user, the role on 

the SoA in these scenarios has been unexplored, and therefore it is unclear if adding these 

kinds of visual distortions commonly used in VR environments affects the user’s SoA. 

The work presented in this chapter thus aims to offer alternative variants of timing stimuli 

in the IB paradigm, that is, a tool that HCI researchers can use and adapt (going through 

different sensory modalities) in specific applications. The Libet clock method has been 

widely used and extensively validated, but in situations where the Libet clock does not fit 

the visual layout (involving relevant visual information), audio or haptic timing could be 

used. 

5.5 Conclusion and Limitations 
Current research on agency in the field of HCI has been limited by agency measures based 

on subjective judgement. While the IB paradigm provides an implicit measure of the SoA, 

use of the Libet clock has limitations regarding high visual demand. Here, we provide 

two alternative techniques that employ audio timing through voice commands and haptic 

timing through tactile stimulation on the hand. Our techniques allow measuring 

perception of time in an IB task, revealing non-significant differences to the traditional 
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visual method (Libet clock), but addressing high visual demand and lack of engagement. 

We believe this work will enable agency implication in HCI applications. Measuring 

users’ SoA in broader modalities will allow the exploration of interaction techniques that 

give users an instinctive sense of control over the environment. 
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Chapter 6   Conclusions 

Conclusions 
The aim of this thesis was to explore how the experience of agency can be influenced by 

different human-computer interaction (HCI) paradigms. Common user experience (UX) 

frameworks that determine how to design a good user interface include a number of 

aspects related to performance metrics (e.g., accuracy, error, learning time) and user 

satisfaction scales (enjoyability, comfort, frustration, etc.) (Hartson & Pyla, 2012). 

However, despite the importance of developing technology that gives users a sense of 

being in control (Shneiderman, 2005), the sense of agency (SoA) has been little studied 

in HCI. 

The goal of HCI is to bridge the “gulf of execution” (i.e., the separation between user’s 

intentions and computer state changes) and the “gulf of evaluation” (i.e., the mismatch 

between the computer’s actual state and user’s expectations) (Norman, 1986). That is, 

HCI mainly involves an interplay between user input and system feedback (i.e., a 

communication dialogue (Hornbæk & Oulasvirta, 2017)). Since the sense of agency 

(SoA) is closely related to causality (an interplay between actions and outcomes), 

exploring users’ experience of agency can help us to find better ways to bridge these gaps. 

In other words, measuring agency can award greater insights on how the experience of 

control is given by users’ perception that sensory outcomes from the system are produced 

by their own actions. 
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Throughout this thesis, we have measured agency in various interaction paradigms, 

including mid-air interactions and olfactory interfaces. Next, we present a summary of 

the findings and contributions of this thesis based on the research questions stated in the 

Introduction chapter. Then, based on the results found in our studies, we highlight two 

relevant aspects: (1) the importance of agency measures in HCI and (2) the importance 

of preserving users’ responsibility when designing user interfaces. We then finalise this 

chapter by presenting some limitations and possibilities for future work. 

RQ1: Is a SoA experienced in touchless interaction? 

In Chapter 3 we explored whether touchless interaction produces a user’s SoA in 

comparison with physical interaction. Two types of action were implemented: a click 

gesture recorded by a Leap Motion optical sensor and a physical button press input using 

a typical keyboard. By measuring IB using the Libet clock method, we found a significant 

action binding effect in both types of input modality. 

While touchless systems are widely employed in HCI, it is unclear whether users perceive 

a feeling of control while using gestural input commands. In this chapter, we contribute 

a study that validates touchless actions being perceived as responsive using implicit 

measures of agency. That is, although touchless input commands do not involve the 

typical cues of touching a real object, users can feel agency since touchless input involves 

a motor movement that is confirmed by feedback.  

RQ2: What type of feedback produces greater SoA in mid-air interfaces? 

In response to the two types of action tested (gestural and physical), visual, auditory and 

haptic outcomes were also compared in Chapter 3, aiming to explore what type of 

feedback is more suitable in touchless interaction. Our results suggest that auditory and 

haptic feedback produced a greater IB effect compared with visual feedback only.  

With these results, we contribute insights into potential applications that user interface 

designers could employ, for example, in virtual reality (VR) and in-vehicle interaction, 

taking into consideration the SoA when developing mid-air interfaces. 

RQ3: Do emotions produced by odours modulate the SoA? 

In Chapter 4, we then explored whether the SoA is modulated by olfaction-mediated 

emotions. To achieve this goal, we employed a computer-controlled smell delivery device 

to deliver essential fragrances to subjects’ nose and thus elicit different emotions due to 
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scent exposure. We validated that the scents we used (lavender, civet and water) produced 

the intended emotion in participants, namely, positive negative and neutral, respectively, 

using a SAM scale. We also validated that the olfactory stimulation produced a 

physiological response by measuring participants’ skin resistance. Then, by measuring 

IB using the Libet clock method, we found that IB was modulated by the different scents’ 

conditions. These findings contribute to the literature of agency modulation through 

affective information (via visual, auditory and tactile cues). However, here we provide 

evidence of agency modulation by affective information via olfactory channel. 

RQ4: Does a positive smell increase the SoA? 

In line with previous research suggesting that agency increases when a positive emotion 

is involved, our results presented in Chapter 4, also show that exposure to the scent of 

lavender (rated significantly higher in valence than the civet scent) produced significantly 

stronger IB. With these findings, we contribute insights on how our results can have 

implications in HCI applications such as in-vehicle interfaces and sensory substitution. 

RQ5: Can the IB paradigm be employed using a non-visual timing stimulus? 

Since implicit agency measures can employ visual timing cues that require relevant visual 

attention (e.g., the Libet clock), it is often challenging to assess agency in tasks involving 

significant visual information (e.g., in VR). To address this limitation, in Chapter 5 we 

first developed two novel timing techniques based on audio and tactile cues to be used as 

a reference of time to report occurrence of events. We then assessed IB using our new 

techniques and found a significant binding effect measured with auditory and haptic 

timing. These novel methods contribute modality variants for agency measurements, 

addressing visual demand. 

RQ6: Do non-visual timing stimuli reduce lack of engagement? 

In Chapter 5, we also compared our audio and haptic timing methods with traditional 

visual timing techniques in terms of self-reported emotion. We employed a PAD scale 

which involves a variety of bipolar adjectives to obtain the three dimensions of emotion. 

This evaluation showed that audio and haptic timing produced higher self-reports of 

arousal and dominance than visual timing. With these findings, we contribute timing 

techniques able to measure IB that could be more appealing for application in more 

interactive and visual tasks.    
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6.1 Agency as a Measure in Human-Computer Interaction 
Since the SoA has been suggested to reflect an experience of being in control (Haggard, 

2017), recent studies have measured SoA as a means to explore users’ feeling of 

controlling a system (Coyle et al., 2012; Limerick et al., 2015; Bergstrom-Lehtovirta et 

al., 2018). Indeed, measuring agency in the studies described throughout this thesis has 

provided interesting insights.  

For instance, in Chapter 3 we found IB for touchless systems involving input commands 

that do not require any physical contact at all. Mid-air interfaces are becoming very 

common to control computers and machines, and therefore many commercial devices are 

being released. In Chapter 3 we show by implicitly measuring the SoA that it is not 

necessary to physically touch an object (e.g., press a button) to perceive we are activating 

a command. Rather, a simple mid-air gesture (e.g., a finger movement mimicking a button 

press) can serve as an input modality that allows users to feel agency. 

We also showed that appropriate multisensory cues can improve the SoA. For instance, 

in Chapter 4 we found that pleasant odours increase IB, which can provide major benefits 

for automotive interfaces and VR (increasing realism). Our results might explain why 

scent presentation in driving scenarios is known to improve user performance (Baron & 

Kalsher, 1998). By modulating users’ emotions through affective olfactory cues, we can 

enhance users’ sense of control. 

Measuring agency can give broader evidence on how to design user interfaces that 

provide users with a feeling of being in control. However, measuring agency is often 

challenging since current agency measures are limited to simple micro-interactions, such 

as a button press. However, by expanding the research on agency implications in HCI, 

we can broaden the possibility to assess agency in more complex settings. For instance, 

in Chapter 5 we expanded implicit agency measures by exploring timing cues perceived 

by different senses, with the aim to study agency in more interactive tasks. 

With the results described in this thesis, we aspire to advance the understanding of agency 

implication in the use of technology. We believe that agency measures should be included 

within UX metrics to design systems that not only consider precision and usability but 

that also support both (1) a feeling of being an agent and (2) a feeling of being responsible 

for events. This consideration might have a greater benefit in emerging technology using 

autonomous systems and artificial intelligence (AI). 
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6.2 Agency and Responsibility in Human-Computer Interaction 
The ubiquity of technology in our everyday life is introducing many autonomous systems. 

For instance, the rapid development of AI (e.g., autonomous driving (Hengstler et al., 

2016)) has created shared control between humans and machines. Although assisted 

systems can improve users’ performance and SoA (Wen et al., 2015; Inoue et al., 2017), 

high assistance levels can also disrupt this experience. A decrease in the SoA can cause 

the operator not to self-attribute the outcomes of their actions, thus reducing the sense of 

responsibility, which raises the question, “who is in control now?” (Berberian et al., 

2012). Since “the cognitive coupling between human and machine remains difficult to 

achieve” (Berberian, 2019), autonomous systems should be carefully designed so that 

users maintain an appropriate sense of responsibility. In other words, it is important that 

systems let users clearly experience what they are doing. 

Recent research is exploring the role of agency in legal responsibility (Haggard & 

Tsakiris, 2009; Haggard, 2017), entailing that the ethical implications of autonomous 

systems are being considered within legal systems (Elish, 2019). This exploration must 

be done from a design perspective in HCI. That is, the development of new technology 

should in fact support a feeling of being in control, not only with the goal of increasing 

usability and enhancing user experiences but also with that of supporting ethical 

responsibility.  

6.3 Limitations and Future Work 
The studies conducted in this work mainly involved simple micro-interactions consisting 

of discrete actions (e.g., a button press). This is because, according to the IB paradigm, 

when subjects report the time at which events occur, these events should be easily notable 

(i.e., discrete). For more complex actions, however, (e.g., a continuous hand movement) 

measuring IB could be challenging. Nonetheless, some studies have reported agency 

assessment during continuous action consisting of repeated key presses using self-reports 

of explicit agency (Wen et al., 2015; Inoue et al., 2017). Therefore, for future work, we 

will explore implicit agency measures for more complex actions involving continuous 

movements of different parts of the body (e.g., by using full-body tracking). 

Another limitation is that in our studies we focused more on assessing implicit agency 

rather than explicit agency, in other words, using the IB paradigm to study agency in HCI. 

This is because we paid more attention to how the experience of control is given by users’ 
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perception that sensory feedback from the system is produced by users’ own actions, in 

line with prior research studying agency in different input modalities. However, for future 

work, we will make a more direct comparison between implicit and explicit judgements 

of agency to explore whether there is a correlation between IB and self-reports in mid-air 

interaction and olfactory interfaces.    

In Chapter 4 we used smell stimulation as priming (i.e., participants were presented with 

a scent at the beginning of the IB task) rather than as an outcome. We based this design 

on the work by (Aarts et al., 2012), in which brief exposure to a positive cue affected IB. 

However, recent research is exploring smell notifications (Maggioni et al., 2018) that 

serve as feedback from the system. For example, the user is working on the computer, 

and when someone sends them an email, instead of receiving a visual or auditory 

notification, a scent is released to notify them of the email’s arrival. Scents can also vary 

depending on the sender. Based on this evidence, in future work we will explore IB using 

olfactory outcomes trying to address challenges related to delivery timing and 

synchronization, since olfactory perception can be slower than visual or auditory 

perception (Olofsson, 2014).   

Based on our results in Chapter 5, the follow-up work is to carry out evaluations of our 

timing methods in actual HCI applications, particularly in VR. Some examples include a) 

how much visual scaling factors affect user’s SoA in navigation techniques (Montano 

Murillo et al., 2017; Tregillus et al., 2017); b) to what extent the experience of agency is 

modified by retargeting techniques (Azmandian et al., 2016) without losing significant 

feeling of control; and c) how to measure illusion of agency in more complex displays 

such as gestural interaction and mid-air haptic feedback (e.g., training simulators or 

videogames). For instance, we may say that video gamers perceive SoA while interacting 

with a virtual environment even when they are just observing a virtual representation of 

their body. 



 

Appendix 1 

90 

Appendix 1 
Olfactory Assessment Test  

   
Thank you for volunteering to take part in this experiment. Before the experiment can begin, we 
need to confirm few personal details to ensure that you match the study population selection 
criteria, and to ensure that it is safe for you to participate. Therefore, please answer the following 
questions: (Note that this information will be treated in strict confidence at all times)   

   
1. What is your age?    ____________   
   
2. In this moment, are suffering of cold, hay fever or any other temporary respiratory problems? 

YES / NO   
   
3. Do you suffer of asthma or any kind of severe allergy since birth? YES / NO   
   
4. Do you suffer of any respiratory problems? YES / NO   
   
5. Do you suffer of fainting fits? YES / NO   
   
6. If you think there is any other relevant information about your health to be aware of for this 

experiment you are strongly required to specify it in the following space.    
 
______________________________________________________________________  

   
7. Have you experienced smell distortions within the past 2 years? YES / NO   
   
8. Have you ever, chronically or frequently, had any of the following conditions: 

sneezing/itchy nose; nasal discharge; problems breathing through nose; sinus 
pain/headache; sinus infection; nasal polyps as adult; gland behind nose as child; 
deviated septum; nosebleeds; allergic nasal symptoms; coughing; breathing 
problems; frequent colds; allergic asthma; non-allergic asthma; attacks of breathing 
difficulties/wheezing; lower respiratory mucus; lower respiratory infection; other 
problems with nose/mouth/sinuses/lower airways. YES / NO   

   
9. Have you ever experienced prolonged or serious exposure to any of the following?  

herbicides/pesticides; metal dust; acid fumes; industrial solvents/cleaning products; wood 
dust; formaldehyde; other exposure? YES / NO   

   
10. Have you ever been allergic or hypersensitive to any of the following substances or products:  

seasonal allergy; perennial allergy; medication; food; other allergy/hyper reactivity? 
YES / NO    

   
11. Have you ever had any serious head trauma or facial injury? YES / NO   

If so, did you have a head injury? YES / NO   

If so, did you have a facial injury? YES / NO   

   
12. Have you ever had any of the following diseases/conditions/symptoms: epilepsy; stroke; 

frequent earaches; high blood pressure; diabetes mellitus; Bell’s palsy; rheumatism; 
cystic fibrosis; Alzheimer’s disease; Parkinson’s disease; alcohol abuse; drug 
abuse; psychiatric problems; multiple sclerosis; depression; Sjo¨gren’s syndrome; 
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cancer/tumour; pregnancy/delivery; other disease/condition/symptom? YES / NO  
	   

13. Have you ever had any of the following surgeries: deviated nasal septum repair; nasal 
polypectomy as adult; removal of gland behind nose as child; nasal plastic surgery; 
other nasal surgery; sinus surgery; other head/face surgery; brain surgery; mouth 
surgery; removal of wisdom tooth; other tooth surgery; ear surgery; removal of 
tonsil? YES / NO   

   
14. Have you ever smoked? YES / NO   
   
15. Do you currently smoke? YES / NO   
   
16. How much do you smoke or did you smoke in your last year as a smoker?    
      < 1 pack per day / 1-2 packs per day / > 2 packs per day.   
   
17. Have you ever experienced prolonged exposure to tobacco smoke in your home or working 

environment (passive smoking)? YES / NO   
   
18. Are you annoyed by or do you get symptoms from strong odours, for example perfumes, 

cleaning agents and flowers? YES / NO   
   
19. If so, to what extent are you annoyed or do you get symptoms?   
no symptoms / mild symptoms / moderate symptoms / severe symptoms. /// nose / eyes 
/ throat / lungs / other symptoms.   
   
FEMALE QUESTIONNAIRE (discretionary)    
   
Please answer the following questions:   

(Note that this information will be treated in strict confidence at all times, please leave blank the 
following questions if you are not comfortable in answering)   

   
1. When did you last have your menstrual cycle? (date of the first day, approximately) 

______   
   

2. Are you using any hormonal contraceptives? YES / NO   
   
At the end of the experiment, the experimenter will tell you its purpose, and will be happy to 
answer any questions about the experiment. Your data will be treated in strict confidence all 
times. If at any stage during or following the experiment, you would like to exclude yourself and 
your data from the study, you are welcome to do so any time during the experiment you feel 
uncomfortable and would prefer to leave, please feel free to do so, by letting the experimenter 
know. However, if you would like to withdraw from the study will be possible until the research 
passed the data analysis stage (approximately 1 month after the data acquisition).   

   
Please confirm that you agree with us retaining this information by signing 
below:   
   
   
Full Name: __________________________________________   

   
Signature: __________________________________________               Date:  
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Appendix 2 
SAM Emotional Scale 

   

This scale aims to measure your emotional valence, arousal and dominance.    
   

Please indicate your emotional response on the scale.  
   
Gender: _________ 
Age: ____________  

 

Emotional Valence (Negative vs. Positive) 

 

1 2 3 4 5 6 7 8 9 

 

Arousal (Low vs. High) 

 

1 2 3 4 5 6 7 8 9 

 

Dominance (Low vs. High) 

 

1 2 3 4 5 6 7 8 9 

 



 

Appendix 3 

93 

Appendix 3 
PAD Emotional Scale 

   

This scale aims to measure your emotional response and sense of control while 
performing an action and receiving a sensory feedback.    
   

Please indicate your emotional response on the scale.  
   
Gender: _________ 
Age: ____________  

  

 1 2 3 4 5 6 7  

Happy        Unhappy 

Stimulated        Relaxed 

Controlling        Controlled 

Pleased        Annoyed 

Excited        Calm 

Influential        Influenced 

Satisfied        Unsatisfied 

Frenzied        Sluggish 

In control        Cared for 
Contented        Melancholic 

Jittery        Dull 
Important        Awed 

Hopeful        Despairing 

Wide awake        Sleepy 

Dominant        Submissive 

Relaxed        Bored 

Aroused        Unaroused 

Autonomous        Guided 
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(Mehrabian & Russell, 1974) reported that the items (18 bipolar adjective pairs) 

composing the PAD scale measure the three main dimensions of emotions (higher order 

factors): pleasure (valence), arousal and dominance. To test whether those three 

dimensions can be extracted from our PAD results a factorial analysis (Principal 

Components Analysis-PCA, applying a Varimax rotation with Kaiser normalization) was 

performed. Factorial analysis statistically measures the correlations between items to 

determine which are assumed to be measuring similar dimensions (higher order factors). 

The factorial analysis results in Table 2 show the division of the data in three dimensions 

(factors) that are composed of the adjective pairs grouped together by the highest of their 

factor values (in bold) as best representation of each factor. For this very reason three 

factors are extracted (using Bartlett Scores Method), which together explain 67% of the 

total variance. Additionally, internal consistency for each extracted factor was 

exanimated using Cronbach’s alpha (a) coefficient. Our extracted factors showed good 

internal consistency values, in accordance with previous work (Cronbach, 1951) that 

identified the range 0.9 > a ³ 0.8 as good coefficient (see Table 2 for the results details 

of each factor).  

Bipolar Adjective Pair 
Factor 

1. Pleasure (a: 0.849) 2. Dominance (a: 0.866) 3. Arousal (a: 0.880) 

1. Happy- Unhappy 0.718 0.085 0.405 

2. Pleased - Annoyed 0.656 0.530 0.263 

3. Hopeful - Despairing 0.665 0.493 -0.119 

4. Satisfied - Unsatisfied 0.869 0.269 -0.019 

5. Relaxed - Bored 0.483 0.141 0.247 

6. Contented - Melancholic 0.601 0.154 0.064 

7. Autonomous - Guided 0.151 0.748 0.050 

8. Influential - Influenced 0.075 0.789 0.409 

9. In control – Cared for 0.508 0.651 0.231 

10. Dominant - Submissive 0.576 0.660 0.482 

11. Controlling - Controlled 0.161 0.798 0.124 

12. Important - Awed 0.190 0.480 0.354 

13. Simulated - Relaxed 0.144 -0.064 0.910 

14. Exited - Calm 0.211 0.199 0.901 

15. Frenzied - Sluggish 0.194 0.286 0.497 

16. Jittery - Dull 0.022 0.493 0.647 

17. Wide awake - Sleepy 0.049 0.445 0.751 

18. Aroused - Unaroused 0.101 0.417 0.792 

Table S1. Factorial compositions of the PAD Scale (PCA rotated matrix factor 
matrix) on the three dimensions (factors) of emotions, Cronbach’s alpha (a) values 

for each extracted factor. 
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Appendix 4 
This appendix shows pictures and screenshots of the experimental setup used in Chapter 

4 and  Chapter 5, where audio and haptic timing where explored. 

 
Figure S1. Experimental setup for the olfactory study. 

 
Figure S2. Experimental setup used for the Libet clock condition (left) and the 

Visual Alphabet condition (right). 

 
Figure S3. Experimental setup used for the Haptic clock condition.  
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Figure S4. Hand position report. Participants reported the position of the haptic cue 
on their hand by rotating an external controller that controlled the brush position. 
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