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Summary 

3D interaction provides a natural interplay for HCI. Many techniques involving diverse 

sets of hardware and software components have been proposed, which has generated an 

explosion of Interaction Techniques (ITes), Interactive Tasks (ITas) and input devices, 

increasing thus the heterogeneity of tools in 3D User Interfaces (3DUIs). Moreover, most 

of those techniques are based on general formulations that fail in fully exploiting human 

capabilities for interaction. This is because while 3D interaction enables naturalness, it 

also produces complexity and limitations when using 3DUIs.  

In this thesis, we aim to generate approaches that better exploit the high potential human 

capabilities for interaction by combining human factors, mathematical formalizations and 

computational methods. Our approach is focussed on the exploration of the close coupling 

between specific ITes and ITas while addressing common issues of 3D interactions. 

We specifically focused on the stages of interaction within Basic Interaction Tasks 

(BITas) i.e., data input, manipulation, navigation and selection. Common limitations of 

these tasks are: (1) the complexity of mapping generation for input devices, (2) fatigue in 

mid-air object manipulation, (3) space constraints in VR navigation; and (4) low accuracy 

in 3D mid-air selection. 

Along with two chapters of introduction and background, this thesis presents five main 

works. Chapter 3 focusses on the design of mid-air gesture mappings based on human 

tacit knowledge. Chapter 4 presents a solution to address user fatigue in mid-air object 

manipulation. Chapter 5 is focused on addressing space limitations in VR navigation. 

Chapter 6 describes an analysis and a correction method to address Drift effects involved 

in scale-adaptive VR navigation; and Chapter 7 presents a hybrid technique 3D/2D that 

allows for precise selection of virtual objects in highly dense environments (e.g., point 

clouds). Finally, we conclude discussing how the contributions obtained from this 

exploration, provide techniques and guidelines to design more natural 3DUIs. 
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Chapter 1 Introduction 

Introduction 

1.1 Motivation 

The usability requirements for designing User Interfaces (UIs) are well known and 

commonly standardized for 2D applications (LaViola Jr et al., 2017). For instance, the 

WIMP metaphor (Van Dam, 1997) used in 2D User Interfaces (2DUIs), has been widely 

accepted, and a standardized set of Interaction Techniques (ITes), Basic Interactive Tasks 

(BITas) and controls have been identified to such an extent, that they are natively 

supported by all modern operating systems (OS). However, while 2DUIs are widely used, 

they do not fully exploit common human capabilities to interact with the real world.  

According to neurological maps of human body representation, humans have large 

sensory capabilities as illustrated in the sensory homunculus (Figure 1.1 left). This 

representation shows scaled proportions of the body according to the amount of cortex in 

the brain devoted to sensory functions e.g., large hands representing high touch sensibility 

and high precision of movements (Penfield et al., 1937; Penfield et al., 1950).  

On the other hand, our interaction with traditional 2DUIs is limited. According to 

O’Sullivan and Igoe, the way “how the computer sees us” is a representation consisting 

of only one eye (as we don’t need any depth), one finger (due to common tapping input 

with the same finger) and two small ears (to perceive audio feedback) as shown in Figure 

1.1 right. (O'Sullivan et al., 2004).  

Even considering the increasing emergence of multitouch input devices (involving 

multiple fingers) and mobile computing that allows users’ navigation (involving actual 

walking), the lack of 3D worlds hinders richness and naturalness in interaction.  



 

Chapter 1: Introduction 

2 

By comparing the two representations depicted in Figure 1.1, it is clear that human 

capabilities are not fully exploited when using 2DUIs, suggesting in turn a lack of 

naturalness as 2D interaction does not mimic the way we actually interact with real 3D 

worlds. Thus, “to change how the computer reacts to us, we have to change how it sees 

us” (O'Sullivan et al., 2004). 

      

Figure 1.1 (left) Sensory homunculus illustrating human capabilities to interact with real 

3D worlds. Figure source: (Brown University, 2014). (Right) Illustration of “how the 

computer sees us” when interacting with 2DUIs (O'Sullivan et al., 2004). 

3D User Interfaces (3DUIs) arguably offer the highest potential to exploit human 

capabilities. For instance, Virtual Reality (VR) stimulates all of the user senses, 

simulating thus the way we explore and interact in the real world (Sanchez-Vives et al., 

2005). Indeed,  this technology has become mainstream due to many applications over a 

wide range of fields e.g., medicine, education, teleoperation, training and entertainment 

(LaViola Jr et al., 2017). However, the potential of VR comes at the expense of much 

higher complexity.  

For instance, to unleash human interaction capabilities, VR relies on a wide range of 

heterogeneous hardware (e.g., body motion sensing, eye tracking and electromyography 

(EMG), etc.). Successively, while VR offers natural interplay by means of body tracking 

and gestural input, mid-air interaction also involves more complex tasks e.g., “touching 

a menu item floating in space is much more difficult than selecting a menu item on the 

desktop, not only because the task has become 3-D, but also because the important 

constraint of the physical desk on which the mouse rests is missing.” (Bowman et al., 

2001). Therefore, even when VR provides richness of interaction in 3D worlds, its 

complexity makes the standardization across a variety of ITes, BITas and controls even 

more difficult.  

Certainly, important improvements have been achieved along the years, especially in 

terms of sensing approaches (relying on optical systems, EMG; radar and sonar 
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technologies) to such an extent that consumer-grade devices are currently available to the 

public at affordable prices (e.g., Kinect and Leap Motion). This has enabled attempts of 

standardization of 3DUIs (e.g., Google and Microsoft), one recent example is Unity, 

which supports most of the consumer-grade VR devices and OpenVR provides the 

promise of standardized support to VR headsets, controllers and tracking systems. Yet, 

this is still hindered by the broad spectrum of possibilities that VR enables. This suggests 

that advances in hardware have addressed some of the issues related to 3DUIs (e.g., in 

terms of perception, rendering, frame rate, weight and wires), but these solutions are still 

generic i.e., they do not exploit the interplay between the specific task the user needs to 

complete, and the potential of human interaction/perception.  

As a consequence of this increased complexity and the heterogeneity of hardware, no 

standard set of ITes has been developed. Despite some conceptual frameworks being 

available (e.g., virtual hand, ray-casting, etc.) their solutions are also generic and revolve 

around general metaphors. Therefore, there are no development frameworks comparable 

to those available for standardized 2DUIs (Dachselt et al., 2005). 

1.2 Opportunities, Goals and Approach 

In this thesis, we take advantage of both (1) the high potential of 3DUIs to exploit human 

capabilities for interaction and (2) the hardware improvements that have broadened the 

scope of applications. 

However, fully exploiting these two benefits in 3DUIs, requires a close coupling between 

the specific scope of the application (i.e., the task the user needs to complete) and the 

ITes used, e.g., pointing (the ITa), achieved by ray-casting technique (the ITe). As general 

3DUI metaphors were proposed many years ago, they fail in exploiting the potential 

interplay between the human factors and the specific task that the specific 3DUI is 

designed for. First, being general metaphors, they have very limited ability to be tailored 

for specific task. Second, being proposed many years ago, they were not designed with 

the computational power of current devices in mind, and rely on relatively simple 

algorithms.  

Our goal is therefore, to help on the generation of more natural 3DUIs by exploiting the 

close coupling between human factors and ITas (tasks). We achieve this by employing 

mathematical formalizations and computational approaches, taking advantage of the 

computational power of current devices. 
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1.3 Thesis Structure 

The very own scope of 3DUIs, dealing with heterogeneous hardware, complex 

interaction, huge range of ITas and non-standard ITes, makes it hard to provide a 

comprehensible exploration of our goal with the scope of a thesis. Thus, this thesis 

explores the potential of coupling human factors and ITes by illustrating applications of 

our approach to each of the main stages of interaction in 3DUIs i.e., mappings, ITes and 

ITas. Particularly, the exploration performed within this thesis is structured as follow: 

First, Chapter 2 provides background related to the current state of 3DUIs when compared 

with traditional GUIs, identifying possible improvement opportunities. This chapter also 

details our main approach and how each point study fits in the general scope of 3DUIs. 

In Chapter 3, we explore the problem of mapping complexity on hardware inputs. Data 

input is the first stage of the interactive dialogue (Foley et al., 1990), and one of the most 

important elements in any VR interaction technique as it is the link between real and 

virtual worlds (LaViola Jr et al., 2017). One of the most intuitive metaphors for 3D data 

input is gestural interaction (Quek, 1996). From early projects like Krueger’s Videoplace 

(Krueger et al., 1985), developers have been fascinated by using hand motion as direct 

input. However, designing gesture mappings for 3D interaction is complicated (LaViola, 

2013). Particularly challenging is the elicitation of the most appropriate gestures and their 

mapping to tasks, which can easily lead to a combinatorial explosion. This is due to the 

high resolution of human hand motion, with many degrees of freedom “the hand is the 

most dexterous of the extremities” (Jones et al., 2006; Sridhar et al., 2015). As a result, 

interaction designers are faced with a very challenging task, with many factors involved 

in the creation of the gestural interfaces.  

To address this issue, this chapter illustrates a case of study of low gestural resolution 

input devices (e.g., Myo Armband) used to achieve a “complex interactive dialogue” with 

a task that requires a high input resolution (text entry). We present an approach for the 

semi-automatic generation of gesture mappings in a text entry task. Our solution was 

based on the optimization of mathematically modelled factors collected from systematic 

studies (-low level factors- i.e., error, speed, accuracy) and semi-structured workshops 

with experts (-high level factors- e.g., cognitive load, heuristics). The comparison 

between our approach (combining high-level and low-level factors) with other 

computationally determined mappings using naive cost functions (low-level factors only) 

showed that our mapping presented a good balance on performance in all factors involved 
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(speed, accuracy, comfort, memorability, etc.), consistently performing better than purely 

computational mappings. The results indicate that our hybrid approach can yield better 

results compared to a pure user-driven methodology or pure computational approaches 

and show an interesting interplay between human factors and computational approaches. 

This work was published in INTERACT 2019. DOI: 10.1007/978-3-030-29381-9_38 

Then, in Chapter 4 we explore 3D Object Manipulation, one of the major group of 

interaction techniques in the second stage of the interactive dialogue i.e., “manipulations 

that preserve the shape of objects” (Foley et al., 1984; LaViola Jr et al., 2017). Virtual 3D 

manipulation should be analogous to the way we perform it in the real world (e.g., 

reaching and grabbing objects). Many parameters are considered to achieve this 

analogous interaction, for example “distance to the target object, target size; the density 

of objects around the target” (Poupyrev et al., 1997). Particularly, distance is often a 

limitation in terms of ergonomics, as manipulation within certain distances is highly 

constrained by interaction within arms’ reach, task space and tracking devices (Mine, 

1995). Since 3DUIs usually require mid-air gestures and hand-coupled devices, object 

manipulation is subject to fatigue and discomfort due to the height and distance of the 

hands with respect to the body, producing thus the so called “gorilla arm effect” (Boring 

et al., 2009). This effect increases when uncomfortable and unsupported poses are 

performed for long periods of time i.e., “the farther away and higher the hands, the less 

time users can interact comfortably” (LaViola Jr et al., 2017).  

To address this issue, in this chapter we then present an object manipulation technique 

(that we called Erg-O), that increases the endurance time i.e., the duration of user comfort 

(Chaffin et al., 1999). This technique leverages visual dominance to maintain the visual 

location of the elements in VR, while making them accessible from more comfortable 

physical locations (using a retargeting approach). We explore minimum redirections, 

producing a non-isomorphic mapping of the visual and physical spaces to improve 

comfort, but allowing for non-noticeable redirection to retain naturalness. We used an 

ergonomic evaluation combined with real-time optimization approaches to compute the 

best physical location to interact with each visual element (comfort mapping), and space 

partitioning techniques to distort the visual and physical spaces based on the generated 

comfort mapping to allow multi-object retargeting. Our studies tested our approach, 

comparing two different retargeting strategies using Erg-O versus a traditional virtual 

hand method. Our results demonstrated the potential of our technique to improve 

https://doi.org/10.1007/978-3-030-29381-9_38
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ergonomics, without significant effects on performance. This example illustrates the 

possibility to use real-time optimization approaches to improve human factors (i.e., 

ergonomics), while not hindering usability criteria (e.g., sense of control, performance). 

This work was published in UIST 2017. DOI: 10.1145/3126594.3126605. 

Chapter 5 then explores Navigation techniques i.e., the second major group of interaction 

techniques, again situated in the second stage of the interactive dialogue. In 3DUIs, travel 

achieved by actual physical motion such as walking (i.e., when body tracking is used) is 

only adequate within constrained space and speed (LaViola Jr et al., 2017). This is due to 

limitations of physical space (room size) and tracking ranges. For this reason, additional 

controls are employed e.g., vehicle metaphor and teleportation (Bowman et al., 2004). 

However, these techniques usually involve only visual motion cues limiting vestibular 

cues, producing thus cybersickness and disorientation (Bowman et al., 1997). Therefore, 

adding vestibular cues that provide walking-like perception, is desirable to avoid side 

effects (Harris et al., 1999) caused by visual-vestibular mismatch.   

In this chapter, we particularly focus on scaled-adaptive navigation techniques, as they 

allow “full gait” metaphor (LaViola Jr et al., 2017) by using a non-isomorphic mapping 

between real and virtual displacements, i.e., dynamically scaling the user’s movements 

(Interrante et al., 2007) enabling user’s travel through Virtual Environments (VEs) larger 

than the physical space. However, although this technique provides vestibular cues and 

expands the navigable space, it is often considered unnatural (Steinicke et al., 2010) 

because scaling factors applied are only useful for large displacements along non-relevant 

areas. For fine navigation tasks however (e.g., search and manoeuvring), it is not suitable. 

This is because scaled-navigation is usually based on egocentric control (when walking 

view is fully controlled by the user) and it is not space-aware (Thorndyke et al., 1982).  

To address this issue, in this chapter we propose a novel method (that we called 

NaviFields) that employs scale-adaptive VR navigation, which quantifies the 

requirements for precise navigation of each point of the environment, allowing natural 

navigation (1:1 mapping) within relevant areas, while scaling users’ displacements when 

travelling across non-relevant spaces. This expands the size of the navigable space, retains 

the natural navigation metaphor and still allows for areas with precise control of the 

virtual head. Results from a user evaluation showed NaviFields’ ability to cover larger 

spaces, introduce minimal disruption when travelling across bigger distances and improve 

significantly the precise viewpoint control inside relevant areas. This shows an 

https://doi.org/10.1145/3126594.3126605
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application of our approach enabling locomotion via physical displacement (i.e., exploit 

human factors), not hindering usability (i.e., performance was similar to natural walk in 

many cases) and alleviating constraints within 3DUIs (i.e., enable walking along larger 

spaces). This work was published in UIST 2017. DOI: 10.1145/3126594.3126645. 

Subsequently, Chapter 6 highlights a limitation found in the previous chapter. That is, the 

technique presented in Chapter 5 showed great potential, but it also introduced a side 

effect (Drift) resulting from gradually scaling displacements as the user moves causing a 

mismatch between the real/virtual spaces that can grow over time, and turn the navigation 

techniques unusable. This Drift seriously limited the amount of time that a user could 

make use of our technique. Interestingly, the same issue affected other scale-adaptive VR 

navigation techniques. To address this issue, in this chapter we present an analysis of the 

effects of Drift, highlighting its potential detrimental effects. Then, two techniques to 

correct Drift effects are described and applied to two different scale-adaptive navigation 

techniques: one ego-centric (Seven League Boots) and one allocentric (NaviFields), 

demonstrating that our correction technique can significantly reduce Drift effects, extend 

the life-span of the navigation techniques (i.e., time that they can be used before Drift 

draws targets unreachable), while not affecting users’ experience and not adding any 

significant changes to the basic behaviour of the technique. This chapter is not explicitly 

focussed on enabling human factors, although enabling the use of physical displacements 

for longer periods of time could be considered under this light. Even if focussed on fixing 

a technical issue inherited from Chapter 5, this chapter illustrates the value of formal 

mathematical modelling (Drift) and the use of real-time simulations to optimize 

displacements. This work was published in UIST 2019. DOI: 10.1145/3332165.3347914. 

In Chapter 7 we then explored 3D selection tasks i.e., one of the most important 

interaction techniques situated in the third stage of the interactive dialogue. Object 

selection has been identified as a fundamental task in 3DUIs (Mine, 1995; LaViola Jr et 

al., 2017) and one of the primary task in VR interaction (Bowman et al., 1999). One 

significant limitation that affects most of the 3D selection techniques is inaccuracy due 

to inter-object distance, scene-density and occlusion (LaViola Jr et al., 2017). Unlike 2D-

based selection metaphors (e.g., mouse and touchscreens), 3D selection suffers from more 

salient effects of inaccuracy as it often involves mid-air interaction in 3D unconstrained 

spaces (e.g., 3D drawing in VR (Arora et al., 2018)) and floating menus (Bowman et al., 

2001)). Therefore, tabletop-based 2D interaction techniques have been proposed as they 

https://doi.org/10.1145/3126594.3126645
https://doi.org/10.1145/3332165.3347914
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allow well known 2D metaphors in 3D selection tasks, taking advantage of accuracy and 

stability of having a surface (e.g., “Balloon Selection” (Benko et al., 2007), “Void 

Shadows” (Giesler et al., 2014) and “Triangle Cursor” (Strothoff et al., 2011).  

However, selection is still challenging in 3D world coordinates where the main interplay 

requires full mid-air interaction (e.g., in Immersive Virtual Reality - IVR) and Head 

Mounted Displays (HMD) (unlike tabletop surfaces) for both selection and manipulation 

tasks. This issue is specially limiting in dense environments (e.g., point cloud editing). 

Today, the availability of 3D scanners and imaging (e.g., photometric scanning (Izadi et 

al., 2011) and 3D MRI and CT scans (Altahawi et al., 2018)) allow artists and scientists 

to obtain virtual representations of the real world in form of large data set of points. While 

VR can provide an intuitive medium to interact with these 3D models, mid-air interaction 

and high density are still limitations for analysing, cleaning and editing 3D data.   

To address this limitation, in this chapter we propose “Slicing-Volume”, a hybrid 

selection technique that enables simultaneous 3D interaction in mid-air and a 2D pen-

and-tablet metaphor in VR. Inspired by well-known slicing plane techniques in data 

visualization, our approach consists of a 3D volume that encloses target objects in mid-

air, which are then mapped to a 2D tablet view for precise selection on a tangible physical 

surface. We evaluated the accuracy of our approach in a highly occluded selection task, 

comparing different multimodal interaction techniques (e.g., mid-air, virtual tablet and 

real tablet). Our results showed that our hybrid technique significantly improved accuracy 

of selection thanks to the added visualization and the combined benefits of mid-air and 

2D tablet interactions. Our system then provides a solution for point cloud editing tasks 

suffering from high occlusion levels. In line with our main goal, this chapter illustrates 

how we exploit human factors enabling bimanual interaction for more precise object 

selection, using hybrid strategies in VR.  

Finally, in Chapter 8 we reflect on the results obtained during each of the interactive 

dialogue stages explored in this work (mapping, ITes and ITas), as well as the general 

overview about the potential of the main approach in this thesis. We also discuss our 

contributions related to the solutions provided in each chapter, along with possible 

scenarios where our findings can benefit the integration of human factors into the 3DUIs 

design. We highlight how our general approach can help in gaining naturalness on 3D 

interactions, improving thus the generation of tailored user interfaces that better reflect 

the human allowances and limitations in terms of interaction. 



 

Chapter 2: 3D User Interfaces 

9 

 

 

 

 

 

 

Chapter 2 3D User interfaces: Background, Opportunities & Summary of the Approach 

3D User Interfaces: Background, Opportunities 

& Summary of the Approach 

In this chapter, we review important concepts, components, and classifications of 3DUIs. 

This review aimed to ground the basis where this thesis is built on, enabling to analyse 

the 3DUI components independently to better identify relevant issues and propose 

solutions not only from the VR point of view, but also from different levels of abstraction 

that BITas classification and the interactive dialogue involve. This topic’s segmentation 

will allow us to better recognize potential solutions where human factors can be used to 

enhance the interaction with 3DUIs, thus exploiting human capabilities to generate more 

natural an intuitive interaction. 

2.1 Elements of a 3D User Interface 

Hix and Hartson defined a UI as “the medium through which the communication between 

users and computers takes place”(Hix et al., 1993). Then, two different definitions of 

3DUIs are described by Bowman et al. “a UI that involves 3D interaction” (Bowman et 

al., 2004) and Molina-Masso et al. “a user interface in which the language used by the 

user to transmit information to the computer or the language used by the computer to 

transmit information to the user, are based on the space and its 3 dimensions” (Molina-

Masso et al., 2008). 

These definitions of 3DUIs are so wide, that they can encompass applications ranging 

from virtual worlds displayed by 3D graphics (e.g., Head Mounted Displays - HMD), to 

simply output (e.g., haptic or audio feedback) and input (e.g., body motion, gaze, etc.) 

modalities involving any kind of 3D interaction. Such a broad definition of 3DUIs results 
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in a very heterogeneous mix of interfaces, which can involve a great variety of devices 

(e.g., HMDs, 3D or tactile displays for output; tracking systems or data-gloves for input) 

and techniques. When compared with 2D-based interfaces relying on well-established 

devices (i.e., mouse, keyboard and monitor) and metaphors (i.e., WIMP metaphor), 3DUI 

development is significantly less mature, not only due to the heterogeneity of the 

hardware involved, but also due to the lack of standardized interaction techniques and 

methods. This can be illustrated by analysing the current state of 2DUIs. 

The WIMP metaphor used by 2DUIs, has been widely accepted, and a standardized set 

of Interaction Techniques (ITes), Basic Interactive Tasks (BITas) and controls have been 

identified which are natively supported by all modern operating systems (OS). Even if 

the first HMD (Sutherland, 1968) was created approximately at the same time that the 

first mouse (Gelbart et al., 1968) (both created in the 60s), the field of 3DUIs still does 

not rely on a standardized set of interface elements (ITes, BITas, controls) (Bowman et 

al., 2001).  

In general, the lack of agreement and standardization seems to be a well-known issue in 

the field and therefore many different classifications have been proposed for 3DUIs. For 

instance, Marsh et al. classifies the 3DUI elements depending of 3 factors (element’s 

components): (1) imaginary, (2) behaviour and (3) interaction (Marsh et al., 1998), while 

Eastgate uses the relationship between the user and the VR system in terms of physical 

and cognitive interaction levels (Eastgate, 2001) (see Figure 2.1 left). However, none of 

them has been standardized. 

     

Figure 2.1 Diagrams of 3DUI components: (Left) Eastgate and (Right) Molina.  

While the number of classifications proposed over the years has been large, we will use 

the classification by (Molina-Masso et al., 2008) in this thesis (see Figure 2.1 right), as 

this classification was created with the intention to unify such diverging views from 



 

Chapter 2: 3D User Interfaces 

11 

previous work. We then discuss the three main categories in this classification as well as 

their features and functionalities for 3DUI i.e., virtual space, virtual objects and 

interactive dialogue. 

2.1.1 Virtual Space 

The virtual space is one of the most important and representative elements of a 3DUI. 

Theoretically, it is an infinite synthetic 3D space that users can navigate and explore, but 

in reality, it also includes boundaries to limit users to the populated areas and avoiding 

navigations over empty parts of the space (Bowman et al., 1999). 

“RealPlaces” design guidelines (David, 1998) structure a virtual space in places and their 

associated set of tasks. Similarly, IDEAS3D methodology (Molina et al., 2003) proposes 

a parallelism between GUI elements and VE elements, i.e., different places in the VE are 

associated to correspondent windows in the GUI and to a set of features to achieve the 

associated task (e.g., the appropriated point of view to perform the task). Thus, the virtual 

space results in a structure made of aggregated places that form a hierarchical list of tasks 

to be done in the VE. Figure 2.2 depicts such structure and indicates the relationship 

between places, objects, and task (Molina-Masso et al., 2008). 

 

Figure 2.2 Virtual space components diagram according to (Molina-Masso et al., 2008). 

Analogous to how GUIs have controls arranged in a 2D canvas, 3D spaces can be 

considered as the “canvas” (i.e., interface space) of VEs and their 3D elements (i.e., 

virtual objects) as the controls deployed to interact with the system logic. Then, the 

system logic translate the information from the interface elements (2D controls / 3D 

elements) to achieve a specific task (e.g., selection, manipulation, etc). This particular 

description of the space as a user-to-logic interface can be used to describe the interactive 

dialogue between a single user and the system. 

However, as proposed by (Martinez-Plasencia, 2010), an extended perspective is needed 

to describe the interactive dialogue in a multi-agent-to-system case e.g., collaborative 
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VEs with multiple intelligent agents (e.g., enemies within games). In this case, a better 

approximation of the concept of virtual space would be that considering the space as a 

medium, enabling entity-to-entity communication. Each entity (i.e., user or agent) is 

assumed to be autonomous, using the space around it to deploy the controls that allow it 

to send/receive information from other entities and enclosing its own set of tasks and 

behaviours. 

2.1.2 Virtual Objects 

Another important component of a 3DUI is the virtual object. As mentioned in the 

previous section, virtual objects act as the interface's components of VEs allowing to 

sustain the interactive dialogue between the user and the system. That is, a virtual space 

with no objects will be useless, as no interactive dialogue (e.g.,tasks) will be supported. 

Many authors have proposed classifications of virtual objects, based on multiple factors. 

For instance, based on their behaviour (whether they have it or not) (Sutcliffe, 2003) or 

based on their structure (passive, active or agents) (Tanriverdi et al., 2001). Others divide 

them into application objects and interactive objects (Conner et al., 1992). Again, we 

particularly use the model proposed by (Molina-Masso et al., 2008) as it gathers 

conceptual information from the afforded mentioned classifications and because of its 

simplicity and semantic richness. 

As shown in Figure 2.3, the elements of a virtual object according to (Molina-Masso et 

al., 2008), are composed by: (1) the function which refers to a set of operations, 

procedures or services that the object offers to other entities in the VE; (2) the behaviour, 

that controls the execution of the functions according to the object’s internal state, the 

current state of the VE (e.g., time, flags) or other events from the VE (e.g., collisions); 

and (3) Sub-models that describe objects’ features such as visual, auditive or haptic 

representations, but also position of their interactive parts and physical features (e.g., 

weight, stiffness, etc.). 

 

Figure 2.3 Virtual Object components, according to Molina (Molina-Masso et al., 2008). 
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Table 2.1 shows the classification of the possible virtual object types, according to the 

elements just described. The resulting virtual object types from this classification are: 

• Process: This object type represents algorithms or functions that have no 

representation in the user interface. This object type can be modelled as objects 

without “sub-models” component. 

• Static objects: They are objects with a representation in the user interface but with no 

associated “behaviour” component. They are usually used to add context to the virtual 

scene (to create a specific atmosphere) but they can also be used to provide information 

cues to users (e.g., a static map can help user's find their way in VR navigation tasks). 

• Dynamic objects: This object type has a representation in the user interface and has 

an attached "behaviour" component which is autonomous. However, dynamic objects 

are not interactive elements as they do not react to external events (e.g., a virtual clock 

behaviour). 

• Reactive objects: Objects of this type have a representation in the user interfaces and 

a "behaviour" component too. However, its behaviour is only triggered by external 

events from the user or from other objects in the VE (e.g., the behaviour of a lamp, 

turning on/off based on a button press). 

• Agents: These objects have a representation in the user interface and a specific 

behaviour component that combines reactive and autonomous behaviours. This is 

commonly found on video games through AI (artificial intelligence) mechanisms. 

• Avatars: Particularly, these objects can be considered as a user's container, as the user 

embodies the object to interact with other objects within the VE (e.g., avatars can be 

human-like models, robots, cars, planes, etc.). 

Object type Sub-model Behaviour Example 

Process No Algorithms Gravity behaviour 

Static Yes No Tree, scenario 

Dynamic Yes Not affected by other objects Clock 

Reactive Yes Reacts to external events Button 

Agent Yes  Autonomous behaviour Enemies (games) 

Avatar Yes User-driven behaviour Humanoid, airplane 

Table 2.1 Virtual object types and corresponding features (Molina-Masso et al., 2008). 
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2.1.3 Interactive Dialogue 

The previous elements provide the infrastructure (i.e., virtual space) and the elements 

(i.e., virtual objects) that support interaction within the VE. These infrastructure elements 

allow users and objects to interact with the system logic or with each other. However, the 

internal logic of the system (what interactions are supported and what they do) still needs 

to be defined. Foley et al., by introducing the “interactive dialogue” states that there is 

communication between the user and the environment that allows them to access the 

functionality of the virtual world (Foley et al., 1990). Similarly, Molina defined it as “the 

communication between the user and the system" (Molina-Masso et al., 2008). However, 

as these definitions only consider a single user and the system, a more extended definition 

was proposed by Martinez-Plasencia to support multi-user applications such as the case 

of Collaborative Virtual Environments (CVE), i.e., “the sequences of actions that the 

entities of the CVE will perform and the reactions that will be executed in response”. 

(Martinez-Plasencia, 2010). 

Element of 3DUI 
Element of natural 

language 

Interactive Dialogue 

 

Sentence 

Interactive task 

 

Word (meaning) 

Interaction technique 

 

Word (syntax) 

Hardware Input letter 

Table 2.2 Foley’s analogy between interactive dialogue & the elements of a sentence (Foley 

et al., 1990). 

The interactive dialogue in 3DUIs can be seen from different levels of abstraction. 

According to Foley and his comparison between the elements of a 3DUI and the elements 

of a sentence (elements of the natural language) (Foley et al., 1990), the interactive 

dialogue can be considered as the sentence, composed by: (1) hardware inputs (letters), 

(2) interaction techniques (word syntax) and (3) interactive tasks (word meaning). Table 

2.2 depicts Foley’s metaphor of interactive dialogue using three equivalent components: 

(1) Input devices; Interaction Techniques (ITes); and (3) Interactive tasks (ITas). In this 

analogy, input devices (user’s actions) are the lower level of abstractions and they 

represent the letter to generate a word structure (ITes). The main difference between ITes 

(word syntax) and ITas (word meaning) is that, while an ITe provides the necessary 
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information to execute a task (where such task is not known or does not exist), an ITa 

takes the information provided by the ITe, and computes the appropriate reaction 

according to a broader context (e.g., the state of the system logic). In the next sections, 

we explore the interactive dialogue based on each level of abstraction (ITes, ITas and 

input devices). 

2.1.3.1 The Interactive Tasks (ITas) 

Molina defines an ITa as “the activity required to achieve a goal and that requires one 

or more information units as an input” (Molina-Masso et al., 2008). ITas classify the 

information units (generated from ITes) and supply them with meaning. Foley classifies 

ITas into (1) Basic Interactive Tasks - BITas (that can process only one information unit) 

and (2) Composite Interactive Tasks - CITas (that can process multiple information units 

from the same or different type) (Foley et al., 1990). This classification allows 

decomposing complex tasks into simple steps, that Molina called “operations” on objects 

(Molina-Masso et al., 2008). This “operations” can be also explained as the combinations 

of object’s functions and behaviours (see Figure 2.3). In other words, the operations are 

related to the executions of an object’s function. 

The “operation” concept is very relevant from this level of abstractions as it can 

contribute to defining the interactive dialogue as “an exhaustive definition of the 

sequences of operations required to accomplish the tasks of the CVE” (Martinez-

Plasencia, 2010), with operations encapsulating: i) the conditions to be satisfied to trigger 

them; ii) the information to be transmitted (between objects); and iii) the reactions (object 

functions) to be executed as a result. This interactive dialogue description is independent 

of lower levels of abstractions (ITes and input devices) and better connects with the object 

structure presented in the previous section. This allows us to generate a description of 

virtual objects (based on their behaviour and interactions) independently of their nature 

(avatars, agents, etc.). 

2.1.3.2 BITas Classification 

Foley’s ITas classification (BITas and CITas) was well accepted, while indeed it exists a 

set of BITas proposed back in 1994 (Herndon et al., 1994), a final classification has not 

been agreed yet, as many other classifications have been proposed along the years (Foley 

et al., 1990; Herndon et al., 1994; Bowman et al., 1999; Boyd et al., 1999; Barrilleaux, 

2001; Sutcliffe, 2003). To narrow the scope about these classifications and according to 

the line of this thesis (mainly focused on VR), we discuss only those considering 3DUIs 
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on the frame of VR applications. Table 2.3 shows the three main classifications proposed 

within this scope. 

Bowman et al. proposed a classification based on categories (travelling, selection, 

manipulation and release) and provides a set of BITas to achieve each of them (Table 2.3 

left), (Bowman et al., 1999). Boyd proposed a quite similar classification but considering 

“release” task as part of object manipulation and proposing instead a “data input” task to 

include voice and keyboard inputs to the system (Table 2.3 middle). Sutcliffe similarly 

includes travelling (as movement and navigation), selection and manipulation (as object 

manipulation and interaction), but also considers additional tasks such as conversations 

with agents and non-VR features (Table 2.3 right). 

2.1.3.3 Interaction Techniques (ITes) 

This is a particularly controversial section, as we defined before, ITes can be the medium 

to accomplish a certain task, but there is a diffuse line between where an ITe ends and an 

ITa begins (i.e., some authors consider certain elements as a part of ITes while others do 

not). According to Foley, an ITe can be described as “the way input devices are used to 

generate information”. Molina considers the avatar as a part of an ITe (Molina-Masso et 

al., 2008). Additionally, Herndon et al. describe ITes as “the interfaces that the users 

interact with in order to accomplish a task” (Herndon et al., 1994), this definition also 

includes interactive objects as part of ITes (avatars, 3D widgets, etc.). However, other 

authors would consider the interaction between these elements as a ITas component 

(Bowman et al., 1999). 

 

Table 2.3 Basic Interactive Tasks (BITas) and data types classification by (Bowman et al., 

1999), (Boyd et al., 1999) and (Sutcliffe, 2003). 
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If we consider (i) the disagreement about the ITes’ boundaries, (i) the massive 

diversification of input devices and (iii) the complexity of 3DUIs when compared with 

traditional GUIs (Herndon et al., 1994), all together may explain why a standardized set 

of ITes has not been identified yet.  

Acknowledging this problem, Bowman et al., proposed a correspondent set of generic 

ITes to be used to accomplish each ITa (Bowman et al., 1999). However, because of the 

increased number of ITes available, choosing the appropriate ITe to achieve a specific 

ITa is not trivial. For instance, LoUISE laboratory has conducted several testbed 

evaluations (Bowman et al., 2002) to help designers with ITes identification according to 

system features (García et al., 2005; González et al., 2009). Another classification focused 

on manipulation techniques, was done by Poupyrev et al., highlighting some ITes 

metaphors such as virtual pointers, virtual hand, etc. (Poupyrev et al., 1998).  These 

metaphors are very relevant as they represent the mental model that users build when 

interacting with a specific ITe. This generated mental model help users to understand 

what is allowed and constrained by the ITe. 

Previous attempts to classify and generate a standard set of ITes that 3DUIs can use, have 

been done to enable the implementation of generic toolkits for ITes (as those established 

for GUIs). Because of the complexity to achieve the goal, a generic model to describe the 

process of an ITe to assess 3DUIs developers becomes crucial. Foley suggested to study 

the degrees of freedom (DoF) from input devices and associate them to the ones each ITa 

may require. Elsewhere, (Molina-Masso et al., 2008) proposed a more complex model 

that considers the user’s action in the real world, going through input devices, until the 

action is performed by the virtual avatar (see Figure 2.4). 

 

Figure 2.4 Model proposed by Molina to describe the ITes’ stages, and their boundaries 

with ITas.  
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This model clearly defines the boundaries between ITes and ITas. For instance, it defines 

ITes domain from the process of users’ real actions to the avatar’s virtual actions (not 

including the interaction between virtual objects). The “controls” in the model (see 

Figure 2.4) are modelled as reactive objects (those are an abstraction of widgets proposed 

by (Herndon et al., 1994)), that translate user’s actions to information that ITas will 

require. Virtual actions are then, the connection between ITes and ITas, in the way that, 

ITes generate virtual actions that the system analyses to select the BITa to be executed 

(giving a meaning to the ITe). 

2.1.3.4 Physical Devices  

From the theoretical point of view, physical devices are the tools used to measure user 

actions (e.g., users’ gestures, body position/orientation/velocity, typed text, joystick 

movement, etc.) and translate them to system inputs. These devices are an important 

component of the implementation of an ITe. As Bowman et al. states, different devices 

can be used to implement the same ITe, and the same device can be used to implement 

different ITes (Bowman et al., 2001). Sutcliff classifies physical devices in discrete and 

analog, while Bowman uses discrete and continuous. However, Martinez-Plasencia 

highlights the ambiguity of the term continuous depending on the applications (the 

device’s sampling resolution) and proposed to use devices’ updates per second instead as 

a more objective parameter (Martinez-Plasencia, 2010).  

Furthermore, Foley proposed to classify physical devices based on the degrees of freedom 

they can generate (DoF). While Molina proposed the concept of “abstract input device” 

that considers the number of DoF and input type (discrete or continuous) to generalize 

the suitable devices (those that meet the requirements) to implement a given ITe. 

Additionally, Martinez-Plasencia considers including the device input modality (e.g., 

voice. Motion, BCI, etc.) to complement Molina’s concept. The same concept can be also 

applied to output devices (abstract output devices) to describe the modality to be used as 

feedback to the user (visual, audio, tactile, etc.) and the elements to provide such 

feedback.  

However, from the practical point of view, input devices have had huge advances in 

general quality. For instance, overcoming along the years well-known limitations (e.g., 

render quality, perception, low frame rates, latency, etc.), increasing also their 

acceptability by making their acquisition into affordable prices (allowing to spread their 

use to public). However, this increment in the generation of better and more affordable 
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input devices is, in turn, increasing the heterogeneity of the hardware, making their 

standardization even more complex. Although attempts to standardize hardware such as 

HMDs and tracking systems (e.g., from frameworks such as Unity, OpenVR among 

others), they are far to become a standard. While great advances in hardware input have 

been done, these advances are focussing on the improvement of generic issues (low 

frames per second, rendering, latency, etc.). While they help on providing the necessary 

hardware power to ITes when needed to achieve a task, being improvements at hardware 

level (potentially for any 3DUI), they cannot exploit the specifics of the task supported 

by a concrete application to further increase the richness of interaction. This highlights 

the need for better interaction techniques that may take advantage of these hardware 

improvements, but also take advantage of the knowledge of the tasks that the user will 

perform to enable more natural and intuitive interactions with systems.  

2.2 Opportunities and Justification of the Approach 

Even when traditional 2DUIs have a well-defined set of ITes, ITas, controls and devices, 

such as the WIMP metaphor (Van Dam, 1997), they fail in exploiting the human potential. 

As depicted (Figure 1.1) i.e., the “way the system sees us” can be very limited (O'Sullivan 

et al., 2004). In contrast, 3DUIs have a much higher potential to exploit human 

capabilities by stimulating all the senses (LaViola Jr et al., 2017), but also, taking 

advantage of the way we explore and interact in the real world enabling an easy transition 

from real to virtual interactions (decreasing the learning process) (Bricken, 1991), 

allowing also the generation of more natural and realistic interaction paradigms. 

Despite the 3DUIs potential, the input requirements (to make extensive use of humans’ 

perceptual and interactive potential) lead to a high heterogeneity of devices and 

interaction techniques that increase the interaction complexity and turn, the 

standardization of 3DUI elements is even more challenging, reflecting thus the non-

mature state of the field (Bowman et al., 2001). 

While the improvements on hardware have been remarkable in the last years, the state of 

current software/ITes has not improved that much as illustrated in this chapter. Relevant 

conceptual background about this topic exists, however, most of the representative ITes 

and ITas were proposed long time ago (e.g., virtual hand and ray-casting) (Bowman et 

al., 1999). Thus, these approaches may not take advantage of the computational 

capabilities from current hardware. Also, as those were designed as general metaphors, 

they do no exploit the interplay between human factors and specific ITas.  
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Figure 2.5 Diagram to illustrate our aim to better exploit human factors in the generation 

of more natural 3DUIs, by considering the current state of hardware and Interaction 

metaphors. 

Figure 2.5 shows a representation of such interplay of these factors in 3DUIs, based on 

the current state of heterogeneity of hardware and interaction metaphors, and the need of 

greater inclusion of human factors to better benefit from the human potential for 

interaction. On the basis of this model, our goal is to better exploit human factors to create 

more natural interfaces that better exploit human capabilities. Current computers provide 

a vast amount of computational power which is not fully exploited by generic ITes and 

ITas. This power would allow the use of more advanced algorithms (e.g., computational 

approaches, real-time simulation) to produce ITes and ITas that provide better support for 

3DUI interactions. Seeking this opportunity, we combine human factors, mathematical 

formalizations and computational methods (i.e., optimization methods and real-

time/offline simulations).  

Since, it is impossible to fully explore the 3UIs scope, we explore the potential of this 

approach by reviewing each of the main stages of the interaction. Figure 2.4 shows the 

boundaries between ITes and ITas as proposed by Molina (Molina-Masso et al., 2008), 

where we clearly observe the interaction’s stages involved (mappings, ITes and ITas): 

First, the generation of mappings to enable the dialogue between input devices (user’s 

actions) and the system. Second, how the generated information is converted to avatar’s 

actions and controls and; Third, this resulting data is transformed into information units 

that a corresponding BITa will use. In this thesis, we used Molina’s model (Figure 2.4) 

to illustrate our exploration through the interaction stages. 



 

Chapter 2: 3D User Interfaces 

21 

2.2.1 Mapping Generation 

In the Chapter 3, we explore the integration of human factors in the generation of input 

mappings for a complex task (e.g., text entry), by first, mathematically formalizing 

expert’s tacit knowledge (high-level factors) and quantifiable factors (low-level factors) 

and second, combining these formalizations with offline simulation and optimization 

methods to generate gestural mapping that better reflects human capabilities and 

limitations. 

2.2.2 Interaction Techniques (ITes) 

On one hand, Chapter 4 explores how to improve human factors such as ergonomics in 

VR object manipulation tasks. We combined the most natural object manipulation 

metaphor in VR (virtual hand) with unnoticeable distortions in users’ perception about 

interactable 3D elements positions, generating thus, an interaction technique that 

combines comfort mappings (from a real-time ergonomic analysis), a movement 

redirection method and an optimization strategy to enable more comfortable object 

interaction. 

On the other hand, Chapter 5 explores how to maintain a natural navigation metaphor 

while avoiding space limitations (due to either, a limited real space or a constrained 

tracking system). We mathematically modelled users’ displacement within the VE, to 

dynamically scale it based on an allocentric navigation technique to generate the illusion 

of exploring bigger spaces. Our technique maintains a natural interaction in relevant 

zones (areas with 1:1 movement ratio for precise interaction and fine manipulation or 

manoeuvring tasks), while at the same time compresses the non-relevant spaces 

generating navigation fields.  

Even with the observed benefits from this technique, we observed a Drift effect that 

interestingly was present in other adaptive-scale navigation techniques. This Drift effect 

tends to grow over time decoupling the centres of the virtual and real worlds i.e., shifting 

the virtual targets to a possibly non-reachable position in the VE. Therefore, Chapter 6 

explores this Drift effect, by mathematically modelling its behaviour. We then used real-

time simulations to generate a correction method that significantly reduces the Drift effect 

without disrupting the navigation technique scaling policy. This correction method 

leverages the use of more natural navigation techniques (using physical locomotion) 

while addressing the problem of limited real space exploiting thus human capabilities of 

real walking. 



 

Chapter 2: 3D User Interfaces 

22 

2.2.3 Interactive Tasks (ITas) 

Chapter 7 explores object selection, which has been identified as a fundamental task in 

3DUIs (Mine, 1995; LaViola Jr et al., 2017). Here, we introduced a method that mimics 

the way users interact with physical surfaces in the real world. We combine 3D selection 

in mid-air and 2D selection on a touchscreen tablet in VR. Using this hybrid approach 

enables more comfortable interaction (addressing fatigue common in mid-air interaction) 

while producing more precise selection (on a constrained physical surface) in dense VEs 

(e.g., point cloud). To achieve this, we take advantage of the current computational power 

to enable real-time interaction in big data sets (~6M objects) by a GPU-based approach. 

This approach aims to enable natural interaction (such as a pen-and-tablet metaphor) to 

provide extra visualization from the VE on a tablet viewpoint, enhancing scene 

understanding in dense environments, and providing haptic feedback and stability in VR 

interactions. 

2.2.4 About Isomorphic and Non-isomorphic Mapping 

All the approaches proposed in this thesis were aimed to enable the generation of more 

natural 3DUIs that take advantage of human capabilities, but also considering human 

constraints (e.g., ergonomic limitation) to generate more human-tailored 3DUIs. 

Although not intentional, our exploration soon led us to explore the mapping between 

real and virtual spaces, and to the identification of the advantages in the use of isomorphic 

and non-isomorphic mappings, depending of the specific tasks and the human factors 

involved. The isomorphic view relies on a strict one-to-one (1:1) analogy between body 

movements in both real and virtual worlds, while the non-isomorphic view allows real-

virtual movements discrepancies at the expense of realism (Poupyrev et al., 1996; Pierce 

et al., 1999). Although 1:1 analogy has been suggested to be more natural (Knight, 1987), 

such mappings are often impractical due to input devices constraints (e.g., when tracking 

ranges are restricted). Therefore, non-isomorphic techniques provide a solution, although 

deviating from realism, they maintain usability and performance (Bowman et al., 1997; 

Poupyrev et al., 1997).    

Chapter 4 explores solutions to address user fatigue in mid-air manipulations by 

modulating the isomorphism of interaction (through a movement redirection technique). 

We take advantage of isomorphic mappings to improve comfort while maintaining 

usability and feeling of control. The implicit benefit of isomorphism in this specific 

application is that the objects remain fixed at specific positions from the user, even if 
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these positions do not match with visual positions, this still allows users the use of muscle 

memory to reach them (as the body remembers where the object was, from previous 

interactions) highlighting its potential for object manipulation. 

Moreover, we also employed non-isomorphism to address space constraints in virtual 

navigation (in Chapter 5 and Chapter 6) i.e., the non-isomorphic mapping was the key to 

allow navigation along larger areas, whereas Chapter 6, shows how this non-isomorphism 

needs to be controlled to avoid users drifting out of navigable spaces. 

In this chapter, we have reviewed some important concepts, components, and 

classifications of 3DUIs. This review aimed to ground the basis where our general 

approach is built on. However, specific related work is provided at the beginning of each 

chapter to better reflect the scope of both, the identified issue in the correspondent 

interaction stage (see Figure 2.4) and the way we address it. 
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Chapter 3 Optimization of Text-Entry Devices with Low Gestural Resolution 

Designer Led Computational Approach to Generate 

Mappings for Devices with Low Gestural Resolution 
 

According to our thesis structure, in this chapter we explore hardware input, i.e., the first 

step of the interaction stages (Figure 2.4), and the first element of the interactive dialogue 

(Foley et al., 1990). We started with this stage, since data input is considered the link 

between virtual and real worlds (LaViola Jr et al., 2017). More effective communication 

between devices and the system (input mappings) can strongly impact the naturalness of 

the interaction, user performance and overall user experience. Next, we introduce a hybrid 

technique that addresses mapping complexity of gestures input, leveraging the 

combination of human factors and computational approaches i.e., exploiting the close 

coupling between human factors and ITes. 

3.1 Introduction 

Gestures play an inherent role in our everyday communication, to the extent that we make 

use of them even when our interlocutor is not present, such as when speaking on the 

phone (Rimé, 1982). Gestures can be used to communicate meaningful information 

(semiotic), manipulate the physical world (ergotic) or even to learn through tactile 

exploration (epistemic) (Cadoz, 1994). Semiotic gestures have been of particular interest 

to the HCI community as a powerful way to communicate with computers (Rimé et al., 

1991; McNeill, 1992). 

The design of interfaces involving gestural interaction remains a challenge. First, 

advances in hardware have been remarkable. Gestural interaction is no longer restricted 

to data-gloves (Kessler et al., 1995; Fabiani et al., 1996; Weissmann et al., 1999), and 

there is an increasing range of potential devices, allowing gesture tracking on un-



 

Chapter 3: Designer Led Computational Approach to Generate Mappings for Devices with LGR 

25 

instrumented hands or even in mobile formats. Secondly, the methods to design these 

experiences have followed a much slower progression, not coping with the increasing 

number of devices available, and still relying on iterative methods and designers’ 

expertise (Sturman et al., 1993; Gabbard et al., 1999).  In other words, in the last years 

the community has been focused mainly on generating new devices to improve hardware 

capabilities that could be reflected in better interaction with the systems (e.g., release of 

new input devices, tracking techniques, etc.). However, there has been a lack of effort in 

advancing the understanding on designing experiences involving gesture interaction, for 

instance considering human factors, hand and gesture tracking allowances, comfort, 

mapping to tasks, etc. 

As a result, interaction designers are faced with a very challenging task, with many factors 

involved in the creation of the gestural interface. While some factors will be easy to assess 

(i.e., device’s comfort, accuracy, speed), others will be more complex (i.e., social 

acceptability and cognitive load). Particularly challenging is the elicitation of the most 

appropriate gestures and their mapping to tasks, which can easily lead to a combinatorial 

explosion. For instance, our example case study (text entry) offers more than 35K ways 

to map gestures to input commands and more than 12K ways to map these to actual letters. 

While iterative methodologies, designers’ intuition and heuristics might help, it will be 

costly to navigate this vast solution space and identify the optimum interactive dialogue. 

In contrast, computational approaches might struggle to capture the complexity of the 

task, particularly for complex/subjective factors.   

Unlike previous methods, we propose a hybrid approach, merging designer-led methods 

and computational approaches for the generation of robust gestural mappings under such 

challenging conditions (i.e., large solution space involving complex high-level factors).  

More specifically, we present an expert-guided, semi-automated design of interactive 

dialogues for low gestural resolution devices. Our approach consists of four steps: i) 

quantify low-level factors (error, speed or accuracy); ii) semi-structured workshops with 

designers (identify higher level factors, such as cognitive load and experts’ heuristics); 

iii) formalization & optimization (using objective and designers’ knowledge to produce a 

mathematical model, and computing optimum mappings); and iv) comparative 

evaluations (to guide the iterative interface design, in a cost-effective manner). 

We demonstrate this approach applying it to the design of a text entry technique using a 

Myo device. Figure 3.1 (g) shows the result – a multi-level mapping between the input 
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gestures and characters for text entry. To assess the value of our approach, we compared 

the mapping produced from our hybrid approach (incorporating designers’ high-level 

factors) to several purely computational, naïve mappings. Particularly, we defined 6 

alternative cost functions (i.e., models to assess the quality of a mapping) optimizing for 

time and accuracy, and explored up to 2.7 billion possible mappings, finding the optimum 

mapping for each of the 6 naïve cost functions.  

 

Figure 3.1 Resulting mappings from the full optimization using different training database 

and cost function’s factors. Below each layout, its histogram is shown. The cost per layout 

is represented along all histograms using colour code (M_C1=green, M_C2=blue, 

M_C3=yellow, M_C4=magenta, M_C5=cyan, M_C6=black and M_D=red. 

Figure 3.1 shows histograms for all these mappings according to: the naïve 

computational metrics (a-f) and our approach (g). The optimum mappings computed are 

also highlighted within each histogram (bars). These show that, while naïve functions are 

highly ranked according to the designers-led metric (i.e., low scores, in Figure 3.1(g)), 
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the designers-led mapping ranked relatively poorly according to each of the 6 naïve cost 

functions used (red bar showing high values in Figure 3.1(a-f)). This could either point 

towards designers’ insight being irrelevant (or even harmful) or to computational methods 

failing to capture the complexity of the task. The results from our study show that the 

designers-led mapping showed a good balance on performance in all factors involved 

(speed, accuracy, comfort, memorability, etc.) and consistently performing better that 

purely computational mappings. This reveals an untapped power in the designers’ ability 

to identify a good cost function, with our approach helping to produce a suitable 

formalization to exploit the exploratory potential of computational approaches. 

We finish this chapter reflecting on these results and on how they should open a 

discussion on the added value of designers’ intuition and heuristics when exploring 

gestural interfaces, and the need to make these an integral part of current design 

methodologies, for large solution spaces.  

3.2 Related Work 

3.2.1 Gestural Input Devices: A growing landscape 

An increasing number of device options are available to support gestural interaction. 

Early instances included data gloves and tracking systems, mostly used for Virtual Reality 

(Weissmann et al., 1999) and multimodal interaction. These provide high gestural 

resolution (i.e., high number of distinct gestures), but require user instrumentation, 

hindering their applicability (i.e., users cannot simply walk-up and use them, wires limit 

mobility, etc). Wireless tracking systems (e.g., Kinect) can improve applicability (Dutta, 

2012), but their sensors are typically fixed, constraining the user to specific working 

spaces.  

Mobile solutions have also been proposed. Kim et al. (Kim et al., 2012), presented a wrist-

mounted optical system, allowing for hand gestural interaction. Myo armbands use 

Electromyography (EMG) to record and analyse electrical activity, allowing lightweight 

mobile gestural input, without hindering the use of our hands and avoiding self-occlusion 

problems. EMPress (McIntosh et al., 2016), combines EMG and pressure sensors, 

providing the same affordances of Myo bands, but with improved gestural resolution. 

Solutions to extend smartwatch interaction with around device gestural interaction have 

also been explored (Knibbe et al., 2014), but they either provide limited gestural 

resolution (Kerber et al., 2015) or involve instrumenting the user’s gesturing hand (Zhang 

et al., 2016). 
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3.2.2 Gestures and Mappings: Point Studies 

The HCI literature has produced a plethora of studies, which can help designers deal with 

the increasing number of device options available. Sturman et al. (Sturman et al., 1989) 

explored and provided guidelines to improve gestural interaction in VR. Studies from 

Rekimoto (Rekimoto, 2002), Wu & Balakrishnan (Wu et al., 2003) provide insight in the 

context of interactive surfaces, and Grossman et al. (Grossman et al., 2004) explored the 

topic in the context of 3D volumetric displays, just to mention some. However, these 

illustrate how information related to gestural interaction is scattered across individual 

point studies, focused on specific tasks and contexts. 

A more general approach to designing gestural interaction has been to formalize user 

elicitations (Gelain et al., 2010; Kammer et al., 2010). Designers seek end-user input on 

mapping gestures to tasks, classifying gestures into high level groupings based on salient 

properties (e.g., direction of movement, finger poses, etc). Elicitation studies have been 

successfully used in a number of contexts, but have also been criticized for biasing results 

by basing them on input from populations unfamiliar with the task or capabilities of a 

device (Gelain et al., 2010; Davey et al., 2015). 

Alternatively, designers can gain insight about the mapping between gestures and tasks 

from related literature. Focusing on text entry (closest to our case study), the QWERTY 

keyboard serves as a preeminent example of discrete mapping, enforcing a 1:1 mapping 

between each key (gesture) and a letter (task). It also illustrates a mapping designed 

around the mechanical limitations of past typing machines, rather than its appropriateness 

for human input.  

Computational approaches have proved to be valid tools to identify better mappings. Bi 

et al. showed clear improvements for clarity (avoid gesture ambiguity) and typing speed 

for the most common digraphs in English (Bi et al., 2016) by simply swapping two keys 

(I and J). Bi et al. (Bi et al., 2010) explored alternative mappings by swapping a few 

neighbouring keys, to get a layout with better performance on speed, while retaining 

QWERTY similarity. Smith et al.  showed a similar approach, improving clarity, speed 

and QWERTY similarity for 2D gesture typing. Alternatives for situations where 1:1 

mappings are not available (e.g., mobile phones) have also been tackled using 

computational approaches, mostly through predictive text entry models (Pavlovych et al., 

2004; Gong et al., 2005). Other works have focused on exploring the extent of human 

hand’s dexterity, creating mappings that benefit from all its bandwidth. Sridhar et al. 
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explored the bio-mechanical features of the hand (flexion levels, inter-digit dependencies) 

(Sridhar et al., 2015), while PianoText (Feit et al., 2014) leverages users’ musical skills, 

using a piano keyboard and chords  to create an ultrafast text-entry system. In all cases, 

the benefits of computational approaches are limited by the use of low-level, quantifiable 

factors. 

Thus, while designers are usually in charge to explore such large solution space, they can 

introduce user biases. The emerging alternative within HCI is the use of computational 

approaches, but these might fail to capture higher level aspects of such complex tasks as 

they tend to bias/limit their results towards quantifiable factors that are easy to assess). 

Our approach intends to bridge this gap, being the first one to put together the benefits of 

both approaches (designers-led vs computational solutions), by blending designers’ 

methods/insight and computational approaches. 

3.3 Our approach: Semi-automatic Mappings for Low Input Resolution 

Our method aims to bridge the differences between designer-led and computational 

solutions, capturing designers’ tacit knowledge of the domain, and formalizing it to be 

exploited by computational approaches. We thus combine quantitative parameterization 

of relevant factors with domain expert knowledge elicitation, into a structured approach. 

We refine these into a formal model quantifying the quality of each mapping and using a 

global optimization algorithm to explore the solution space, finding (potentially) the best 

solution. Our approach is compatible with iterative methodologies and can be seen as the 

tasks required for one iteration cycle. The outline of our approach can be divided into 

four stages:  

3.3.1 Quantification of Low-level Factors and Constraints 

This stage involves the experiments and in-lab tests required to measure and quantify 

low-level factors and constraints. Low-level factors are simple parameters (e.g., time, 

errors) associated with the device or modality that might influence the design of the 

mapping and are easily quantifiable. Low-level constraints represent limitations within 

the device or the way it is used. Using our case study as an example, factors can include 

time to perform each Myo gestures, while excluding the double tap gesture due to its low 

accuracy can be an example of a constraint.  
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These quantified values will be used in the two following stages: First, they will inform 

designers, to help produce mappings and formulate heuristics; Second, they provide 

quantifiable data, used by our optimization methods.  

3.3.2 Domain Expert Knowledge Elicitation  

We use small teams of experts as a way to elicit the relevant factors that need 

consideration to design the interactive dialogue. Different methodologies can be used 

(e.g., workshops, elicitation studies, prototypes), which help addressing a broad spectrum 

of aspects that cannot be covered by computational approaches alone (e.g., interface 

design, feedback elements, definition of the interactive dialogue, etc.).  

However, while designers must consider the mapping of gestures to tasks, the ultimate 

intent of this process is not the specific mapping chosen (computational searches should 

help making this specific choice). Instead, we focus on the designers’ rationale that they 

use to determine what might be a good choice of gestures and mapping.  

We reflect this rationale as constraints (i.e., conditions that must be obeyed) and high-

level factors (i.e., non-obvious aspects or heuristics affecting interaction, such as social 

acceptance). These will help our following formalization process and the weighting of 

the relative importance of each of these factors. 

3.3.3 Formalization & Optimization 

In order to optimize our mappings, we first need to provide a metric for the quality of any 

given mapping. We formalize the quality of a mapping M as a cost function C computing 

as a weighted average of the factors identified by experts, with lower values identifying 

better mapping: 

 𝑪(𝑴) =  ∑𝒌𝒊  𝑭𝒂𝒄𝒕𝒐𝒓𝒊(𝑴)                                                     (3.1)  

The different factors are all normalized to a homogeneous range [0, 1), according to the 

maximum and minimum values observed from the quantification. The value for 𝑘𝑖  

(influence of a given 𝐹𝑎𝑐𝑡𝑜𝑟𝑖 in the mapping M) needs to be estimated from the experts’ 

impressions and analysis (further details follow). This assures that the contribution of 

each factor to the quality of M is the result of the designer’s insight, and not the result of 

the factors’ relative orders of magnitude. In our example, the sum of factor weights (∑𝑘𝑖) 

equals one (factor as a percentage), but any other weight distribution reflecting the 

expert’s impressions can be used.  
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We then use a global optimization method to explore the solution space, converging 

towards an optimized solution given the factors and weighing values identified. Although 

our case study used Simulated Annealing (Kirkpatrick et al., 1983), other optimization 

approaches can also be used. 

3.3.4 Comparative-Summative Evaluation 

While the normalization of the factors identified follows quantitative criteria, the 

estimation of the weight distribution (𝑘𝑖) does not, and relies on the subjective assessment 

of domain experts. Different weight distributions might reveal different ways of thinking 

about the solution (e.g., how more relevant is minimizing time over cognitive load?). 

Computing optimized mappings, according to different weight distributions, and 

comparing them through comparative evaluations can allow for the best mapping to be 

identified. This reduces the exploration of the solution space to a few candidates (each 

resulting from a different weighting strategy), and integrates easily with iterative 

methodologies for gestural interaction, such as (Gabbard et al., 1999). 

3.4 Case Study with Myo: Compute Vs Design  

We tested our approach using a Myo device (i.e., very low gestural resolution) for a text-

entry task, both as a worst-case scenario and as an obvious match to Foley’s analogy 

between natural language and a general interactive dialogue. The in-built IMU was not 

used and only the muscle activation was considered. This reduces our gestural resolution 

even further (more challenging solution space) but it also lends itself to interesting 

application scenarios. IMU-based gestures are defined relative to the body, and might be 

restricted during our daily life (i.e., while sitting in a bus, walking or inside a busy 

elevator). In contrast, our gestures remain relative to the hand, being still available in any 

situation where the wrist can be moved.  

Finally, we also wanted to assess the added value of our designers’ guided approach when 

compared to unconstrained computational approaches, based on observable and 

quantifiable factors alone. We replace the last stage of the method (iv), by a description 

of the naïve computational mappings used, and a comparison against the results provided 

by these alternative approaches.  
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Figure 3.2 Gestures possible with a Myo armband. We used the enclosed gestures in this 

work. 

3.4.1 Problem Delimitation 

Although Myo supports up to five gestures, at the time when this work was carried out 

“Double tap” was a recent addition with known inconsistencies in its detection (Thalmic-

Labs). Also, any fast and consecutive pair of gestures was detected as “Double tap” (i.e., 

false positives), conflicting with the use of other potential gesture chains. For that reason, 

only the four remaining gestures were used (see spread (S), fist (F), wave-out (WO) and 

wave-in (WI), in Figure 3.2). We quantified the performance of 16 possible 2-step chain 

gestures (consecution of two gestures, as in Fig 3). Such 2-step chains require an 

intermediate relax action (i.e., hand returning to a neutral status between gestures) to be 

recognized by the system. 

 

Figure 3.3 Two-step chain gestures under designers’ categories. 

We asked our designers to categorize the 2-step chain gestures and they identified three 

different groups: opposite, orthogonal and repeat. Opposite chains combine gestures that 

activate opposing muscles. Orthogonal chains invoke orthogonal muscle groups; and 

Repetitive chains contain two instances of the same gesture (see Figure 3.3). For example, 

WI+WI is a Repeat, WI+WO is of type Opposite, and WI+F is type Orthogonal. We will 

borrow this for the analysis in this section (even if the distinction only appeared during 
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the later workshops), as its analysis allows us to assess to what extent designers’ insight 

reflects trends in data, or if some aspects pointed by designers would be likely to be 

included or ignored by alternative purely computational approaches. Finally, we also 

conducted a similar study for 3-step chain gestures. However, designers soon disregarded 

these chains during the later workshop (only use 2-chain gestures – C1), so our results 

for 3-step chains are omitted here for brevity. 

3.4.2 Quantification of Relevant Factors.  

We conducted a quantitative study, where participants performed a series of 2-step chain 

gestures under different input speeds to evaluate potentially relevant factors (i.e., errors, 

ergonomics, and preferred 2-step chain gestures). We calibrated the Myo for each 

individual participant and allowed them to become familiar with the 4 Myo gestures 

(Figure 3.2) and our 2-step chain gestures (Figure 3.3). They were then asked to perform 

the 2-step chain gestures shown on a display, which changed at regular speeds (i.e., each 

single gesture shown during 0.6s, 0.8s, 1.0s or 1.2s). Participants were asked to complete 

the gestures accurately and within the length of the prompts, which helped us identify the 

appropriate “typing speed”. 

The experiment consisted of 4 blocks (one block for each input speed) including three 

repetitions of each of the sixteen 2-step chains gesture, resulting in 192 trials per 

participant. To avoid participants fatigue given this number of trials, each block was 

designed to be completed in about 4min giving participants a 3min break between blocks. 

Due to fatigue could potentially affect participants’ performance, we ensured that each 

block duration was short with enough time to rest. The full experiment duration was then 

about 30 min, including calibration, training and breaks between blocks. 

We counterbalanced the order of the input ratios using a Latin Square design, but gesture 

order was randomly selected. Time per gesture chain and accuracy (whether the gesture 

was recognized by Myo or not) were recorded. After each block (i.e., input speed), 

participants also filled in a Borg CR10 Scale (Borg, 1990) questionnaire (i.e., specially 

designed to quantify perceived exertion and fatigue  (Borg, 1990; Robertson et al., 2003)) 

for each of the 16 2-step chain gestures. The experiment was performed by twelve 

participants (4 females), with average age of 23.53 (21 to 30) SD=2.98, with the study 

being approved by the local ethics board. Recruitment criteria was: i) all participants 

right-handed; ii) normal or correct-to-normal vision; iii) no injuries on their hands and 

wrists; and iv) no prior experience with hand gesture interaction. Outliers were removed 
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from the data (i.e., mean ± 2 standard deviation), filtering out 129 trials (5.59 % of 

samples). We then conducted factorial repeated measures ANOVA (p=0.05 to determined 

significance) on the factors measured, which we report in the following subsections.  

Time per gesture (F1): Figure 3.4(a) shows the results of time for each 2-step chain. This 

analysis revealed significant effects of gesture type on time performance (p<0.001), 

justifying its later inclusion as a factor (F1), even for a purely computational approach. 

Post-hoc tests with Bonferroni corrections show significant differences between certain 

gestures (e.g., WI+WO vs F+WO, p=0.03; WI+WI vs F+F, p<0.001), but the high 

number of pairs to compare (120), made such analysis poorly informative. Therefore, we 

did analyse time performance based on the categories proposed by the designers (Repeat, 

Orthogonal and Opposite). Opposite gestures performed best (M=1.965s; SD=0.229s), 

with significant differences (p<0.001) between the duration of Opposite and Repeat 

gestures (M=2.022s; SD=0.255s) and also between Opposite and Orthogonal gestures 

(M=2.028s; SD=0.240s; p=0.001). On the other hand, clustering techniques (for time, 

accuracy or comfort) did not lead to identifying these categories. Thus, this is considered 

designers’ tacit knowledge and would not be considered by purely computational 

approaches. 

 

Figure 3.4 Mappings’ performance: (a)Time per chain gestures for Opposite, Orthogonal 

and Repeat categories (Mean in seconds); b) Accuracy per chain gestures (Mean in %); c) 

Effort results per chain gesture. 
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Accuracy per gesture (F2): Figure 3.4(b) shows our results for accuracy, revealing 

overall accuracy is low (70% - 90%). An ANOVA analysis revealed an effect of gesture 

on accuracy (used as factor F2). Again, significant differences were found between 

specific pairs of gestures, but we focus the analysis on designers’ categories. We only 

found significant differences between Repeat (M=86.8%; SD=21.57%) and Orthogonal 

categories (M=81.28%; SD=24.45%; p=0.032), but with reduced effect size. Also, no 

clear patterns could be observed by looking at the categories (values well above and 

below the mean are present in all categories, in Figure 3.4(b). 

Gesture Comfort (F3): Comfort was rated by participants using a Borg CR10 Scale 

(Figure 3.4(c) shows the average of participants’ effort per gesture). According to their 

answers, we found Repeat gestures as the most comfortable (M=1.5, SD=0.33) followed 

by opposite gestures (M=1.66 BCR10 and SD=0.2) and the most uncomfortable reported 

were orthogonal gestures (M=2.35 BCR10, SD=0.38). It is worth mentioning that due to 

the number of trials (192) during the experiment, fatigue could potentially affect 

participants’ performance. However, as shown in Figure 3.4(c), the maximum score of 

effort was about 3.2 (in a scale from 0 to 10) suggesting that although we could observe 

differences in effort (e.g., orthogonal gestures were more uncomfortable), participants 

gave generally low scores in effort and therefore we considered unlikely that these low 

scores represent a negative effect on participants’ performance during the experiment. 

 

Figure 3.5 Average time (a) and accuracy (b) for the first and second gesture. Error bars 

represent standard error of mean. 

Typing speed of 1 second (C2): The effects of typing speed on gesture time (Figure 

3.5(a)) and accuracy (Figure 3.5(b)) were also analysed. This revealed the first gesture 

(M=0.783s; SD=0.119s) is significantly shorter than the second one (M=0.843s; 
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SD=0.109s), and also more accurate (p=0.012). Using an input speed of 0.8s users barely 

could keep up with the input speed (first gesture>0.8s, accuracy significantly smaller than 

input at 1.2s (p<0.001)). It is interesting how users (even if allowed more time) did not 

take more than 0.97s to perform each gesture. No significant differences were found for 

typing speeds of 1s or 1.2s. Thus, we included typing speed of 1s (C2) as a low-level 

constraint (i.e., fastest speed allowing sustained typing). 

3.4.3 Designer’s Workshop.  

After obtaining the relevant low-level factors, we carried out a workshop with interaction 

designers, as a mean to identify the design rationale they use in producing their mappings. 

We motivated the workshop around the concept of gestural text-entry, a challenging 

context forcing them to explore the topic in depth. 

We recruited four UX designers (no specific expertise on text-entry) from the University 

of Bristol (other than where the main study was conducted), to produce a design scheme 

for the system. The workshop session lasted four hours. To encourage a broad perspective 

towards the design of an effective interactive dialogue, designers were encouraged to 

think about these four questions: How to map gestures with letters? What is a good 

interface layout? What feedback elements are required? Is the operation easy to 

remember? The workshop was kept open-ended to encourage creative thinking, but one 

researcher stayed in the room, to answer designers’ questions. It must be noted that the 

quantitative results from (i) (e.g., speed, accuracy) were only provided if and when 

specifically requested by designers, to not bias their thoughts. This request was made one 

hour after the workshop started when designers wanted to identify the speed ratios per 

gesture combination to be considered in the mapping design. 

At the beginning of the workshop, designers considered using chained gestures right 

away. Three-chain gestures were soon discarded by designers, due to their high cognitive 

load (too many potential gestures to remember) and discomfort (orthogonal and opposite 

gestures). Thus, they limited their search to 2 step-chain gestures (C1) and a predictive 

text entry. This used 8 categories, mapping 4 letters to each gesture/category and 

addressing 32 characters: the 26 letters from the English alphabet and the 6 most common 

punctuation characters: space, period, comma, question mark, exclamation mark and 

hyphen). They also felt inclined to explore alternatives beyond the constraints defined 

(such as using both hands or using continuous gestures, using the duration of the gesture 

as a variable). At the end of the workshop, designers were asked to present their interface 
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layout and to reflect on it, as a way to verbalize their rationale. In the next subsection, we 

report these observations as high-level factors and constraints. 

From designers’ rationale to factors and constraints. Designers soon got interested in the 

time (F1) and accuracy (F2) of each gesture and experimented with the level of comfort 

(F3) afforded by each gesture by performing them casually. They considered the WI 

gesture to be the most ‘natural’ gesture, and WO as the least comfortable. They also found 

the F and S gestures hard to perform. Designers also became interested in the frequency 

of using each letter, using the ENRON corpus (Klimt et al., 2004) to inform this aspect. 

At the end of the workshop, they presented their proposed interface design (see Figure 

3.6(a)), reflecting both the appropriate interface design and the way the interactive 

dialogue should work. The UI layout consisted of several concentric circles, working as 

a decision tree with choices at each node. Users would identify the target letter in the 

external level/ring and then follow the path through the ring from the inside out, 

performing the gestures to reach the chosen letter. The interface should highlight the 

rings, as gestures are recognized, e.g., Figure 3.6(b), shows Fist + Spread gestures used 

to type ‘q’, and feedback displayed. 

The final scheme presented reflected aspects of their rationale (high-level factors), highly 

relevant for our approach. For instance, they attempted to maximize the usage of WI (F4), 

while avoiding WO (F5) and S gestures (F6). They also found the use of orthogonal 

gestures very uncomfortable and suggested avoiding them (C3). 

 

Figure 3.6 Interface layout: a) proposed by designers; b) Final design using their factors 

and our search method. Typing a “q” requires to perform the chain gesture fist (F) - 

spread (S).  
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As a second major concern, designers also attempted to reduce the cognitive load of the 

mapping, by applying several heuristics. For instance, they suggested to keep all vowels 

clustered together (in two categories only) (F7). They also placed alphabetically adjacent 

letters in the same categories (e.g., “abcd”), which was considered as a relevant factor 

(F8). These techniques were meant to facilitate users' ability to remember the layout. 

Designers also tried to assign the comfortable and fast gestures to the most frequent 

characters. They attempted to build a mapping solving the problem in an optimal way, 

and including all identified factors. However, they failed to find a clear candidate 

mapping, illustrating the challenge designers face when addressing large solution spaces. 

3.4.4 Formalization & Optimization.  

We used the constraints (C1-C3) and factors (F1-F8) identified in the previous stages to 

refine our definition of the problem and to formalize the description of our candidate 

mappings. Due to our constraints, we limited our search to 2-step chain gestures (C1), 

with typing speed 1s (C2) and used only "opposite" and "repeated" gestures (C3), 

resulting in only 8 possible gesture chains (see Figure 3.3). 

Each factor was formalized (quantified), with the common criteria that lower values 

represent a better mapping. Let D be our dictionary (we use the ENRON database (Klimt 

et al., 2004), with duplicates to represent word frequency). Let W be a word and L a letter. 

Let Time (L), Accuracy (L) and Exertion (L) be the meantime, accuracy and effort (i.e., 

inverse of comfort) of the gesture associated with letter L, as measured from our 

quantitative studies from (i).  

Time factor (F1). This factor favours fast typing speeds, by quantifying the "average time 

to input a letter according to our dictionary". 

𝐹1(𝑀) =  ∑𝑊 𝑖𝑛 𝐷 ∑𝐿 𝑖𝑛 𝑊
𝑇𝑖𝑚𝑒

|𝐷||𝑊|
                                      (3.2) 

Accuracy factor (F2). This factor enforces mappings with gestures of high accuracy 

recognition, by quantifying the “probability to make one (or more) errors in a word”.  

𝐹2(𝑀) =  ∑𝑊 𝑖𝑛 𝐷 ∑𝐿 𝑖𝑛 𝑊
1−𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐿)

|𝐷|
                             (3.3) 

Comfort factor (F3). This factor measures the “amount of exertion required to input a 

letter”, to minimize effort. 

𝐹3(𝑀) =  ∑𝑊 𝑖𝑛 𝐷 ∑𝐿 𝑖𝑛 𝑊
𝐸𝑥𝑒𝑟𝑡𝑖𝑜𝑛 (𝐿)

|𝐷||𝑊|
                              (3.4) 



 

Chapter 3: Designer Led Computational Approach to Generate Mappings for Devices with LGR 

39 

Wave-in factor (F4). This factor encourages the use of WI gesture, considered 

comfortable by designers. This factor computes "the average density of non-WI gestures 

per letter”. 

𝐹4(𝑀) =  ∑𝑊 𝑖𝑛 𝐷 ∑𝐿 𝑖𝑛 𝑊
𝑖𝑠𝑁𝑜𝑡 𝑊𝑖(𝐿)

|𝐷||𝑊|
                                  (3.5) 

Wave-out factor (F5). This factor discourages the use of WO gesture, as it was considered 

less comfortable. Particularly, it quantifies "average density of WO gestures per letter". 

𝐹5(𝑀) =  ∑𝑊 𝑖𝑛 𝐷 ∑𝐿 𝑖𝑛 𝑊
𝑖𝑠 𝑊𝑜(𝐿)

|𝐷||𝑊|
                                      (3.6) 

Spread factor (F6). This factor penalizes the use of S gestures, as they were considered 

less comfortable. This factor computes the "average density of S gestures per letter".  

𝐹6(𝑀) =  ∑𝑊 𝑖𝑛 𝐷 ∑𝐿 𝑖𝑛 𝑊
𝑖𝑠 𝑆(𝐿)

|𝐷||𝑊|
                                      (3.7) 

Vowels factor (F7). This factor counts the “number of categories containing vowels”, to 

favour vowels being grouped in a few categories. 

𝐹7(𝑀) = max(|𝑉|), 𝑉 ⊂ 𝐶 /∀𝑐𝜖𝑉 , {𝑎, 𝑒, 𝑖, 𝑜, 𝑢} ∩ 𝑐 ≠∅                   (3.8) 

Consecutive factor (F8). This factor benefits mappings where letters are assigned to 

categories in a consecutive order. Thus, it measures the "number of non-consecutive (NC) 

letter per category (C)". 

𝐹8(𝑀) =
𝑁𝐶(𝐶[0],𝐶[1])+𝑁𝐶(𝐶[1],𝐶[2])+ 𝑁𝐶(𝐶[2],𝐶[3]) 

3
                            (3.9) 

Determining the weight of each factor and optimization. Each factor was normalized to a 

[0, 1) range, as in Table 3.1. This allows the relevance of each factor to be assessed in 

terms of weight alone (and not according to the factor’s scale). Constants 𝑠𝑤 and 𝑙𝑤 

represent the length of the shortest and longest words in D, respectively; 𝑚𝑡 and 𝑀𝑡 stand 

for the minimum and maximum gesture times, and 𝑚𝑎 and 𝑀𝑎 stand for the minimum 

and maximum gesture accuracy respectively. Weights were then determined based on the 

designers’ insight. It must be noted that this was the interpretation of the research team 

(i.e., two transcribing and cross-validating notes from the experiment, and two translating 

them into the weights described in Table 3.1), as we had no further access to the designers 

involved in (ii). 
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 F1 F2 F3 F4 F5 F6 F7 F8 

Min |𝑠𝑤| ∙ 𝑚𝑡 |𝑠𝑤| ∙ (1 − 𝑚𝑎) 0.125 0 0 0 2 0 

Max |𝑙𝑤| ∙ 𝑀𝑡 |1𝑤| ∙ (𝑀𝑎) 1.75 1 1 1 5 1 

Ki 0.35 0.20 0.1 0.05 0.05 0.05 0.1 0.1 

Table 3.1 Factors used use for 𝑴𝑫𝒆𝒔 (our proposed mapping), ranges and weights (ki). 

We used these weights (cost function as described by Eq(3.1)) and simulated annealing 

(SA) (Kirkpatrick et al., 1983) to find the optimum mapping. Initially, letters were 

randomly assigned to the 8 categories (only "opposite" and "repeated" gestures, see 

Figure 3.3) and neighbour states were computed by permutation of single letters between 

two random categories (diameter=32). Transition acceptance between states follows the 

traditional method by Kirkpatrick (Kirkpatrick et al., 1983). Cooling schedule was 

empirically tuned with 𝑁𝑠=20 step adjustments per temperature step, 𝑁𝑡 = 7 temperatures 

steps per temperature change, 𝑅𝑡 = 0.85 (Cooling factor). The initial temperature was set 

in T(0)=180. The final mapping is shown in Figure 3.7(a-c).  

Given the designers constraints (no Orthogonal gestures), the solution space was limited 

to (32
4
) = 35960  mappings and a full search would have been feasible. However, this 

was not feasible for the pure computational solutions we compared against (larger 

solution space), and we used the same schedule to aid fairness in comparison. 

3.4.5 Computing alternative approaches.  

Some of the factors and observations made by designers were hard to justify purely 

looking at the data. The categories identified (Repeat, Opposite and Orthogonal) show 

weak differences and, given any performance metric, all of them have gestures both well 

above and below the sample mean. Even in the case of time per gesture (clearer distinctive 

behaviour for Opposite), the use of clustering techniques would not result on the 

categories identified. 

Picking specific data could seem to back up the designers’ insight.  For instance, WI+WI 

was the most comfortable gesture (M=1.15 Borg CR10 Scale –BCR10) and WO+S as the 

least comfortable (M=3.15 BCR10), followed by S+WO (M =2.6 BCR10). While 

WO+WI resulted the fastest 2-step chain gesture (M=1.947s, SD=0.228), WI+WI was 

second fastest (M=1.949s, SD=0.242), the most accurate (M=95.13 %, SD=13.73) and 

the most comfortable gesture performed (M=1.15 BCR10), whilst WO+S the least 

comfortable (M=3.15 BCR10).  
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These point observations could support designers’ factors F3 and F4, but observational 

bias and the limited size of the sample would make for weak evidence. This was found 

worrying, as it could point towards a weak ability of the designers to analyse the 

complexity of the problem. On the other hand, factors could also reflect designers’ tacit 

knowledge, that is, understanding of complex mechanics of the task which were difficult 

to articulate, but still relevant. 

Thus, we decided to compare the designer’s guided solution against six naïve 

computational solutions, not considering designers’ high-level factors and constraints 

(e.g., 8 categories used to allow comparison, but not constrained to Repeat and Opposite 

gestures alone). These naïve solutions will both help us assess the added value introduced 

by feeding the designers’ insight into the optimization method; and also challenge their 

decisions/constraints. 

These six solutions were generated as a combination of two elements: a) the training 

dataset: the Enron (E) dataset (Klimt et al., 2004); the most common Digraphs (D) in 

English language (Bowman et al., 2004), and a combination of both (E+D); and b) the 

cost functions: two were defined, one assessing time per gesture (factor F1) and another 

one assessing accuracy (F2). e.g., M_C1 represents the mapping obtained with the best 

Accuracy assessed by Digraphs dataset. For each of the six combinations, we generated 

all the possible subsets of 8 gestures (from the 16 different 2-step gestures possible) and 

used Simulated Annealing to compute the best letter combinations. We explored (16
8
) ∙

(32
4
) ∙ 6 = ~2.8 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 possible mappings, with Figure 3.1 showing the best mapping 

for each of the 6 naïve cost functions. 

3.5 Analytical and Summative Evaluation 

Figure 3.1 shows histograms for all possible mappings according to our seven metrics 

(the naïve computational metrics (a-f) and designer-led (g)). The best mappings per 

metric are also highlighted (as colour bars) in the remaining histograms, for comparison. 

Table 3.2 shows this information in a numerical format. The best results for Accuracy 

mappings (i.e. 𝑴𝒄𝟏, 𝑴𝒄𝟑 and 𝑴𝒄𝟓) was 𝑴𝒄𝟓 (best average percentile across the 6 naïve 

functions, within its category), while the selected mapping for Speed (i.e. 𝑴𝒄𝟐, 𝑴𝒄𝟒 and 

𝑴𝒄𝟔) was 𝑴𝒄𝟒. For clarity, during the comparative evaluation, we will refer to these as 

time (𝑴𝑻𝒊), and accuracy mappings (𝑴𝑨𝒄𝒄), instead of (𝑴𝒄𝟒 and 𝑴𝒄𝟓). 
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Cost/Mapping M_C1 M_C2 M_C3 M_C4 M_C5 M_C6 M_Des Average SD 

C1-AAcc 0 33 5 3 1 31 33 0.304 0.077 

C2-ASp 21 0 65 1 45 1 67 1.147 0.052 

C3-EAcc 4 100 0 11 1 29 5 0.238 0.066 

C4-ESp 81 50 45 0 60 1 40 1.077 0.064 

C5-D+EAcc 1 80 1 3 0 20 10 0.587 0.014 

C6-D+ESp 49 4 42 1 40 0 41 2.258 0.110 

D-D+EMix 10 40 1 1 1 1 0 0.949 0.025 

Table 3.2 Numerical mappings’ performance: The percentile per mapping (0 to 100) 

across the seven cost functions (CF) used in the optimization process. On the right 

columns, AVG and SD for the data per CF condition are shown. The best mappings for 

speed (M_C4) and accuracy (M_C5) are highlighted in green while our proposed mapping 

(M_Des) is highlighted in blue. 

It was also interesting to see how the designers-led layout (𝑴𝑫𝒆𝒔), rated against the other 

mappings. While computational mappings consistently scored well using the designers’ 

cost function (see last row), the designers mapping scored much more mediocre results 

(see column 𝑴𝑫𝒆𝒔), being usually in fourth or fifth position (or even last) among the 

mappings considered.  

We then carried out a user study to evaluate the performance of the generated mappings: 

𝑴𝑻𝒊, 𝑴𝑨𝒄𝒄 and 𝑴𝑫𝒆𝒔. We added one additional mapping for text-entry i.e. a simple 

alphabetical distribution (𝑴𝑨𝒃𝒄) shown in Figure 3.7(d), as a baseline comparison 

(minimum cognitive load, not optimized). 

3.5.1 Experiment Setup 

At the beginning of the session, we calibrated the Myo for each individual participant. 

Subsequently each mapping was shown on screen with its different layout and letter 

distribution (see Figure 3.7). Participants were then instructed to “type” a sentence shown 

above the circle by performing the specific chain of gestures (i.e., identifying the two 

gestures they need to perform to select a given letter). The system included feedback cues 

i.e., visual highlights in the category selected at each step (see Figure 3.6(b)), and 

auditory effects. 

Participants were allowed to practice the chain gestures in a training stage to complete 4 

sentences before each block, in order to get familiar with the layouts. Participants 

performed 4 blocks of 3 sentences each, completing 28 sentences in total (700 

letters/gesture chains). The sentences in the blocks had from 4 to 6 words, and 4 to 6 

letters per word, being selected by using the Levenshtein algorithm (Haldar et al., 2011) 

to compute representative sets of sentences from our dictionary.  
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Figure 3.7 Final gesture mappings: a) Gesture mappings of time factor (𝑴𝑻𝒊), (b) accuracy 

factor (𝑴𝑨𝒄𝒄), (c) mixed mapping according to designers’ factors (𝑴𝑫𝒆𝒔) and d) 

alphabetical gesture mapping (𝑴𝑨𝒃𝒄). 

The full experiment duration was 45min. Similarly, as described in the first study, each 

block was designed to be completed in about 8min giving participants a 3min break 

between blocks to avoid fatigue. Moreover, since orthogonal gestures (the most 

uncomfortable gestures found in the first study and rated on average ~3.2 in a scale from 

0 to 10) were not employed in this study, we considered unlikely that fatigue negatively 

affects participants’ performance during the experiment. We counterbalanced the order 

of the sets (i.e., sentences) and mappings using a 4×4 Latin Square design. Figure 3.8 

shows our experimental setup. 

 

Figure 3.8 Experimental setup for the typing task. 
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The system collected the time per letter and error rate automatically. User–satisfaction 

questionnaires after each block (mapping), collected information about typing comfort 

and how easy each it was to remember each mapping. Finally, at the end of the 

experiment, participants also chose their favourite mapping according to 4 aspects (easy 

to type, comfort, speed and easy to remember). Sixteen right-handed participants took 

part in the experiment (4 Females, average age of 29), which was approved by the local 

ethics board. The experiment duration was 45min, including 3 min breaks between 

conditions. The recruitment criteria were the same as in the first experiment. 

3.5.2 Analysis of Results 

An a priori statistical power analysis was performed for sample size estimation in 

G*Power. Running a power analysis on a repeated measures ANOVA mapping 

conditions (i.e., 𝑴𝑻𝒊, 𝑴𝑨𝒄𝒄, 𝑴𝑫𝒆𝒔 and 𝑴𝑨𝒃𝒄), repeated 28 times corresponding to the 28 

sentences on the experiment), a power of 0.95, an alpha level of 0.05, and a medium effect 

size (F=0.196, 𝜂2=0.037, critical F=1.1), requires a sample size of approximately 8 

participants. Thus, our proposed sample of sixteen participants was adequate for the 

purposes of this study. 

A Repeated Measure ANOVA was conducted to compare the effect of the four type of 

mappings (𝑴𝑻𝒊 vs 𝑴𝑨𝒄𝒄 vs  𝑴𝑫𝒆𝒔 vs 𝑴𝑨𝒃𝒄) on the time of chain of gestures. Results 

revealed a significant effect on the average time, 𝐹(3,45)=25.82, p<.001 depending on the 

type of mapping, with the designers’ mapping providing best results. Post-hoc 

comparisons using Bonferroni correction showed statistically significant differences in 

time, specifically between  𝑴𝑫𝒆𝒔 (M=1.577s, SD=0.622s) compared to 𝑴𝑨𝒃𝒄 (M=1.785s, 

SD=0.674s; p<0.001), but also  𝑴𝑫𝒆𝒔 and 𝑴𝑻𝒊 (M=1.782s, SD=0.653s; p<0.001). No such 

difference was found compared to 𝑴𝑨𝒄𝒄 (M=1.64s, SD=0.71s), p=0.279. Surprisingly, 

𝑴𝑻𝒊 did not provide the best results for time, which seems to indicate it failed to capture 

the complexity of the typing task.   

The average error per mapping was small for all conditions. As expected, 𝑴𝑨𝒄𝒄 got the 

lowest error score as it was computed to minimize errors. A Repeated Measure ANOVA 

test showed a significant effect of the type of mapping (𝑴𝑻𝒊 vs 𝑴𝑨𝒄𝒄 vs  𝑴𝑫𝒆𝒔 vs 𝑴𝑨𝒃𝒄) 

on the number of errors 𝐹(3,45)=7.71, p<.001, 𝜂2= 0.009. Post-hoc comparisons showed 

statistically significant differences for errors, specifically between 𝑴𝑨𝒄𝒄 (M=0.072 errors, 

SD=0.293 errors) compared to  𝑴𝑫𝒆𝒔 (M=0.139 errors, SD=0.444 errors), p=0.001 and 



 

Chapter 3: Designer Led Computational Approach to Generate Mappings for Devices with LGR 

45 

𝑴𝑨𝒃𝒄 (M=0.149 errors, SD=0.520 errors), p=0.001; but no such difference was found 

compared to 𝑴𝑻𝒊 (M=0.087 errors, SD=0.369 errors), p=1.  

 

Figure 3.9 Comparison of performance: Scatter plot of AVG gesture time (Left) and 

errors (Right) per mapping. Bars represent standard error of mean. 

Additionally, we found a significant difference in 𝑴𝑻𝒊 compared to 𝑴𝑫𝒆𝒔, and 𝑴𝑨𝒃𝒄, 

p<=0.035. These results suggest that 𝑴𝑨𝒄𝒄  and 𝑴𝑻𝒊 produced the lowest number of errors 

when participants performed the gesture chains to “type” the sentences. 

 

Figure 3.10 User Experience results: Box plots for rememberability (left) and comfort 

(right) per mapping. Horizontal red bars and boxes represent medians and IQRs. 

Whiskers stretch to points within median ± 1.5 IQR. Outliers shown as single red crosses. 

Figure 3.10 shows the score given by participants (using a scale from -3 to 3) after each 

block in relation to how easy to remember the mapping was (left) and how comfortable 

they felt while “typing” (right). A Repeated Measure ANOVA test showed a significant 

effect of the mapping used on participants’ scores of rememberability 𝐹(3,33)=11.7, 

p<.001, 𝜂2= 0.723. Post-hoc comparisons using Bonferroni correction showed that there 

is a statistically significant difference between 𝑴𝑻𝒊 (M=0.67, SD=0.98) and 𝑴𝑫𝒆𝒔 
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(M=1.67, SD=0.88, p<0.05), and between 𝑴𝑻𝒊 and 𝑴𝑨𝒃𝒄 (M=2.17, SD=0.71, p<0.01). 

However, we found no statistically significant effect of the mapping used on participants’ 

scores of comfort 𝐹(3,33)=1.39, p=0.26, 𝜂2= 0.112, although higher mean scores are 

observed for 𝑴𝑨𝒄𝒄 and 𝑴𝑫𝒆𝒔 as shown in Figure 3.10(right).  

Particularly, when participants were explicitly asked which mapping they preferred in 

terms of ease, comfort, speed and rememberability (see Figure 3.11), most of the 

participants reported 𝑴𝑫𝒆𝒔 as the most comfortable (50%) and easiest to type mapping 

(43.75%), followed by 𝑴𝑨𝒄𝒄 (31.25% and 25%, respectively).  

Interestingly, although 𝑴𝑫𝒆𝒔 allowed for faster typing as shown in the performance 

results (see Figure 3.9, left), 𝑴𝑨𝒄𝒄 was reported as faster by most of  participants (37.5%). 

Finally, as expected, participants also reported 𝑴𝑨𝒃𝒄, as the easiest to remember 

(43.75%), followed by 𝑴𝑫𝒆𝒔 (31.25%).  

 

Figure 3.11 Percentage of participants that preferred each mapping: (𝑴𝑻𝒊, 𝑴𝑨𝒄𝒄, 𝑴𝑫𝒆𝒔 

and 𝑴𝑨𝒃𝒄) regarding their task experience (ease typing, comfort, speed and ease to 

remember). 

3.6 Discussion 

Our results seem to indicate the designer-led semi-automatic mapping 𝑴𝑫𝒆𝒔 provided 

better results in terms of time, comfort and users’ preference (i.e., most of participants 

preferred 𝑴𝑫𝒆𝒔 in terms of ease and comfort) when compared to the remaining mappings. 

It consistently appeared as the best or second-best option, only performing worse in terms 

of accuracy, where very small differences (effect size) were present among mappings. 

This suggests that users preferred the mappings created by the combinations of experts’ 

knowledge (proposed weights for 𝑴𝑫𝒆𝒔) and the computational optimization.  

This might reflect the difficulty to model all aspects related to interaction using only low-

level factors, and how these might be misleading when the complexity of the task 

increases. Even for our naïve cost functions, 𝑴𝑻𝒊 did not actually lead to faster typing 
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speeds; and they also failed to predict the performance of 𝑴𝑫𝒆𝒔 (expected to be poor, as 

shown in Table 3.2), even for the specific factors (i.e., time) they measured. 

The results also highlight the value of designers’ higher-level insight, even if it cannot be 

directly justified from data. For instance, the categories identified (Orthogonal, Repeat, 

Opposite) guided constraint C3, but they could not be identified from clustering 

techniques. During the workshop, we pointed out that the high-level factors F4, F5 and 

F6 were already covered by low-level ones, but designers still decided to keep them. We 

understand these reflect tacit knowledge which, even if hard to verbalize/rationalize, was 

still relevant to the task. The results obtained by the designers’ mapping should highlight 

the relevance of such designers’ insight (i.e., high-level factors identified), but it also 

illustrates the value of our hybrid approach, exploiting computational methods to keep 

this human knowledge in the optimization loop. 

The resources required for both the designers’ workshops and the brute-force exploration 

of alternative mappings must also be considered. The full search to create our alternative 

mappings (2.7 billion combinations explored, for the 6 alternatives) required 5 standard 

desktop machines running over 5 days (development costs for software not considered). 

In comparison, the designers’ feedback was gathered during a single workshop of 4 hours 

and still managed to identify relevant high-level factors, constraints, and provided good 

results for the final mapping. This seems to indicate designers’ involvement can be easily 

justified, producing relevant input to underlying computational approaches and 

potentially reducing development costs.  

Finally, our use-case must be considered as an illustrative example of our approach, rather 

than an exemplar text-entry system. Text entry systems can leverage extensive task-

specific knowledge (e.g., digraph transitions, predictive models, etc.), which can allow 

defining effective mappings even from low-level factors. Instead, our case study provides 

an example that is generalizable to a broader spectrum of applications using gestural 

interaction; illustrates the challenges related to creating complex interactive dialogues 

from low-level factors; and highlights the benefits related to designers’ insight into the 

process. Our approach can be seen as a guide to develop useful tools from computational 

approaches to help designers not only on the low-level factor identification, but also in 

the exploration of big search spaces while keeping control over the main steps of the 

process, such as i) the high-level factors definition to better reflect their insight about the 

problem and ii) the relevance that each of the factors has over the optimization. 
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3.7 Conclusion 

In this chapter we presented an approach for semi-automatic generation of gesture 

mappings for devices with low gestural resolution. Our approach consists of quantifying 

observable low-level factors such as individual gesture error rates, speed and accuracy; 

and identifying how designers weigh different factors to create a weighted cost function 

that is optimized to find the gesture set and its mappings to tasks. Comparing the results 

of our mapping with mappings obtained from other naïvely constructed cost functions 

shows that overall users perform consistently well with our mapping in terms of speed, 

comfort and memorability. These results highlight the value of our approach, as a tool to 

guide the designer led computational approach to generate complex mappings. This 

approach should not stand as a replacement for traditional HCI methods, but as a tool to 

help such iterative processes to converge faster towards satisfying solutions. 

It is worth mentioning that with the proposed generation of mappings, we also enabled 

the use of low input resolution devices to achieve complex tasks (as the case of study of 

this chapter). This may facilitate in some way, the coupling between hardware input and 

ITes (even with different input/output resolutions).  
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Chapter 4 Erg-O: Ergonomic Optimization of Immersive Virtual Environments 

Erg-O: Ergonomic Optimization of Immersive 

Virtual Environments 
Following our thesis structure, in this chapter we explore the second stage of interaction 

proposed by (Molina-Masso et al., 2008) shown in Figure 2.4 (i.e., ITes). We particularly 

focus on object manipulation as it has been identified as one of the primary VR interaction 

tasks (Boyd et al., 1999). Here we discuss user fatigue common during mid-air object 

manipulation in VR. To address this issue and following our general approach, we 

designed a tailored ITe to achieve more comfortable object manipulation taking into 

consideration human factors. We combined ergonomic evaluations and computational 

optimization methods to generate a comfort mapping that represents the lowest effort 

areas for object manipulation within the user’s arms reach. This approach aims at 

exploiting the user capabilities to interact in 3D unconstrained spaces (i.e., mid-air 

interaction) but at the same time, addressing human limitations (fatigue) inherent within 

mid-air interactions in 3DUIs. 

4.1 Introduction  

Recent market studies  foresee VR will become mainstream, reaching a $62 billion market 

by 2025 (Ott et al., 2015). The rise of commercial VR devices, tracking technologies and 

3D graphics have enabled increasingly compelling VR systems, not only in displaying 

realistic content but also allowing more natural interactions (Steuer, 1992) and better 

feeling of presence (Sanchez-Vives et al., 2005). Beyond entertainment, training 

environments can easily take advantage of this (e.g., flight or surgery simulators (Satava, 

1993; Seymour et al., 2002) ), as users are allowed to interact with the virtual environment 
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(VE) in much the same way as they would do in reality, softening the learning process 

(Bricken, 1991). 

However, such natural VR interaction often involves large body motions (mainly 

affecting upper limbs) (Wachs et al., 2011), which can result in fatigue and discomfort 

(Hincapié-Ramos et al., 2014) (see Figure 4.1(a)). This is especially true for demanding 

(i.e., complex or repetitive) tasks, or gaming activities for long periods.  

One possible solution is to place the interactive elements (e.g., buttons, menus) at 

ergonomically comfortable positions, using ergonomic evaluation metrics such as RULA 

(McAtamney et al., 1993) or Jack (Badler et al., 1993). This can be useful for in-game 

menus or in scenarios where the VR designer is free to pick the location of the interactive 

elements around the user. 

Unfortunately, such ergonomic relocation might not be applicable to a pilot cockpit, or 

training scenarios where the virtual object resembles a real one, and interactive parts 

cannot be relocated. Manipulation techniques, such as Go-Go (Poupyrev et al., 1996), 

might allow users to reach distant objects, while keeping arms in closer, more comfortable 

positions for the user (i.e., avoid overstretching of the arms). However, this technique 

loosens the egocentric manipulation metaphor (i.e., virtual hand), reduces precision at 

longer distances (Flasar, 2001), affects the feeling of body ownership (Lopez et al., 2008) 

and can be undesirable for training/simulation scenarios where the user needs to be aware 

of the actual limits of his interaction space (i.e., what she/he will actually be able to 

reach/do in the real situation)(Richardson et al., 1999; Dünser et al., 2006). 

 

Figure 4.1 Erg-O approach: (a) VR involves interactions with upper limbs, which can lead 

to discomfort (b) Out approach retains visual objects in their location, but users can reach 

them from more comfortable positions (c). Our approach is based on defining two space 

partitioning trees, and using optimization approaches to look for most comfortable 

retargetings (visual to physical positions).  

Our proposed solution is to get benefit of the dominance of human visual system over the 

proprioceptive system. We retain the visual position of the elements in the VE, but allow 
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users to reach them from more ergonomic physical positions (Figure 4.1(b)). This is 

possible as changes in position of only a few cm can increase comfort significantly.  

We first contribute a manipulation technique that allows such ergonomic retargeting for 

a variable number of interactive elements within the user’s arm reach. Our solution wraps 

the interactive space around the user, ensuring that: a) the virtual hand reaches the visual 

location of the interactive element, when the physical hand reaches the retargeted physical 

location of the element (Figure 4.1(b)); b) the technique works in an open ended fashion, 

not needing  prior knowledge about the element the user wants to reach at each point; and 

c) any other point within the user’s arm reach is still reachable, with continuity of 

interaction even when reaching between interactive elements. 

We combine our manipulation technique with optimization methods, to enable online 

computation of optimum retargeting mappings (i.e., most ergonomic retargeted position 

to interact with the visual representation of each interactive element). We describe two 

example optimization strategies to obtain such mappings (Spatially Consistent (S_R) and 

Ergonomic (E_R)) and report the results from a user study with 12 participants, 

comparing S_R and E_R approaches to natural virtual hand interaction.  

Our results show that participants’ comfort was improved according to quantitative data 

(RULA score) as well as subjective judgement in retargeting conditions (S_R and E_R) 

compared with the natural (N) condition (one-to-one mapping without retargeting). 

Additionally, we found that execution time was lower in S_R and E_R conditions 

compared with N condition. These results illustrate the benefits that the multi-object 

retargeting enabled by ERG-O can provide for a general VR system using virtual hand 

interaction. We finish the chapter reflecting on how the technique can also be applied for 

other application scenarios, such as rehabilitation or reinforcing spatial skill training for 

patients with cerebral palsy. 

Finally, it is worth mentioning that the approach in this chapter is focussed on scenarios 

where virtual elements in the scene cannot be visually modified as position changes 

negatively affect space awareness of the user. For instance, in virtual pilot training, the 

position of the elements in a cockpit cannot be changed as the pilot must generate a mental 

model that should match with the layout of a real control panel. For this reason, in order 

to facilitate this mental mapping and decrease the movement effort during virtual training, 

we proposed our redirection technique base on an automatic ergonomic evaluation. 
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4.2 Related Work 

Our technique can be categorized as an egocentric virtual hand metaphor according to 

VR manipulation taxonomies (Flasar, 2001). To better appreciate our contribution, our 

review is focused on two main areas: (1) visual dominance and spatial redirecting; and 

(2) ergonomic assessment.  

4.2.1 Visual Dominance and Spatial Redirecting 

Visual dominance refers to the tendency of visual information to determine what is 

perceived when conflicting information is perceived through the visual channel and any 

other modality (Colman, 2015).  

This effect has been extensively exploited in VR (Burns et al., 2005), with best known 

applications for navigation techniques such as redirected walking, or to avoid visual 

penetration of the virtual hand inside solid objects (e.g., rubber-band virtual hand (Burns 

et al., 2005)). However visual dominance can also influence the way in which we perceive 

our own body, such as having a bigger belly or even having a child’s body (Normand et 

al., 2011; Kilteni et al., 2012; Banakou et al., 2013). When combined with synchronized 

multisensorial stimuli, it can even be used to induce illusions of executing actions, such 

as speaking (Banakou et al., 2014) or walking (Kokkinara et al., 2016). 

Closer to our approach, visual dominance has also been studied in the context of hand 

interaction. Burns et al. (Burns et al., 2005) found very strong dominance of visual over 

proprioceptive perception when no tactile feedback is provided. This allowed for up to 

20 cm just noticeable differences (JND) between the real and virtual hand location, before 

becoming noticeable (75% recognition rate), even if users were aware that a mismatch 

could become present.  

This mismatch threshold is significantly reduced if vibrotactile cues are introduced to 

reinforce proprioception or when other body parts are involved. Lee et al. (Lee et al., 

2015), reported JND thresholds of 5.2 cm when cutaneous haptic feedback (normal and 

shear forces) was applied to the fingertip. Matsuoka et al. (Matsuoka et al., 2002) report 

average JND thresholds of 3.2 cm for finger flexion when force feedback is applied. 

Direction of forces (Barbagli et al., 2006) or the curvature of the physical props (Robles-

De-La-Torre et al., 2001) can also influence these thresholds. 

This knowledge has allowed the development of various redirection techniques for 

manipulation. Haptic retargeting (Azmandian et al., 2016) and Sparse Haptic Proxy 
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(Cheng et al., 2017) create the illusion of touching several virtual objects. Unlike Erg-O, 

the target of interaction must be known a priori and it only applies to stream-lined 

interaction (i.e., hand at a rest position, then touch the target object), not allowing free 

hand movements. Valkov et al. proposed a technique using the display surface of a 

stereoscopic flat display as the passive haptic prop for shallow 3D interaction (Valkov et 

al., 2014). Redirected touching (Kohli et al., 2012) uses a flat board to induce the feeling 

of touching rotated objects. Unlike ERG-O, these techniques are usually limited to a 

single point of interaction (i.e., a finger) and require previous knowledge on the target of 

the interaction. 

Leveraging thin-plate spline warping (Boring et al., 2009), approaches have been reported 

that allow mapping point interactions (e.g., fingers, surgery tools) to passive, non-flat 

surfaces of known geometry (Kohli, 2010; Ban et al., 2012; Spillmann et al., 2013). 

However, ERG-O is the first VR manipulation technique to tackle redirection for the 

whole interactive space around the user, not being limited to single points or surfaces and 

operating in an open-ended fashion (i.e., target of interaction not known a priori). 

4.2.2 Ergonomics 

Ergonomic assessment has been extensively used to assess risks in workspaces, but also 

to evaluate interaction within HCI. These methods can be divided into: self-report, 

observational methods and direct measurement (Burdorf et al., 1991). 

Self-report methods (e.g., NASA-TLX (Bustamante et al., 2008) or the Borg CR10  scales 

(Borg, 1998)) usually involve questionnaires, ranked by using Likert-scales. These 

methods, however, do not allow for online assessment (while the task is carried out), and 

the need to rate difficultly quantifiable parameters (e.g., workload) can compromise 

reliability of the results (Wiktorin et al., 1993).  

Observational methods and direct measurement allow for online assessments, and the 

development of marker-less sensing techniques is slowly removing this distinction. 

Previous observational methods such as RULA (McAtamney et al., 1993) or Jack (Badler 

et al., 1993) can now be directly measured using nonintrusive wearable devices or depth 

cameras (Plantard et al., 2015).  

Other recent approaches include Consumed Endurance, which uses ergonomic models 

for the online assessment of mid-air planar interactive spaces (Hincapié-Ramos et al., 

2014). Bachynskyi et al. (Bachynskyi et al., 2015) evaluated user muscle effort in 3D 
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pointing tasks using EMG. They detect muscle activation and apply clustering techniques 

to identify movements with low muscle effort.  

These techniques (illustrated in Figure 4.6), show a strong and consistent correlation 

between the space around the user and the most comfortable regions, with the middle area 

below the user’s chest being consistently ranked as most comfortable. These techniques 

also show how a change within the JND threshold allowed by visual dominance (i.e., a 

few centimetres) can have important effects on ergonomic scores. For instance, if our arm 

is fully extended aside with the hand at chest’s height, moving the hand just 5cm towards 

the belly, will reduce the RULA score from 5 (medium-high risk) to 2 (low risk). 

ERG-O builds on these observations and methods, using these areas to guide our 

optimization methods and finding ergonomically acceptable mappings to retarget the 

interactive elements of the VE and improve comfort (Figure 4.2).  

4.3 Erg-O: ergonomic Optimization for Redirected Interaction 

ERG-O allows redirected interaction with the interactive elements of the VE. Leveraging 

visual dominance and ergonomic criteria, we reposition the physical location of the 

interactive elements (e.g., buttons on a cockpit), but we maintain their visual location. 

Besides reaching these elements from more ergonomic positions, users can still 

interact/reach any other point of the 3D space around them. Thus, ERG-O is the first 

manipulation technique to allow: 

 

Figure 4.2 RULA comfort mapping representation: Side view of the mapping highlighting 

in green the most comfortable zone to interact (a). Planes computed with Consumed 

Endurance (Hincapié-Ramos et al., 2014) approach (b), which are in agreement with our 

comfort mapping (c). 
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• Open-ended, Multi-object retargeting (i.e., ERG-O can retarget several objects, 

with free hand movement and not knowing which object the user intends to reach). 

• Isomorphic visual-to-physical mapping (i.e., only the visual points a user would 

be able to reach in reality are accessible. Each point of the visual space is mapped 

to one (and only one) point in physical space. 

• Optimization-based computation of retargeting mapping (i.e., automatic 

computation of the physical location that leads to most ergonomic interaction, 

while minimizing visual-to-physical mismatch). 

In order to realize these features, our approach is decomposed in two main stages. First, 

we create a multi-object retargeting technique. We partition the user’s reachable space 

into tetrahedrons, with their vertices either on the boundary (limit of user’s arm reach) or 

on a retargeted point. Each tetrahedron describes a volume in the visual space (V) and its 

matching volume in physical/retargeted space (P). However, their shapes will differ 

slightly, as a vertex on a retargeted point will have different coordinates in V and P.  

This topology of matching tetrahedrons is key to Erg-O. When the (physical) hand is 

anywhere inside a physical tetrahedron, the virtual hand can be mapped to an equivalent 

point in the matching visual tetrahedron. When a physical hand reaches a vertex, the 

virtual hand is mapped to the equivalent vertex, whether this is a retargeted point (this 

allows our multi-object retargeting); or a boundary point (this still allows users to reach 

the extents of their natural interactive area). As the mapping only depends on the hand 

location, hands can be moved freely (open-ended).  

At the second stage, we compute the retargeting mapping. This determines the best 

physical location to reach each visual element, using ergonomic and spatial criteria. Our 

technique dynamically adapts to the current interactive elements within user’s reach (i.e., 

their number and position relative to the users will change as they move in the VE). We 

describe two example approaches to compute such retargeting mappings, one focused on 

maintaining the structural relationship between the interactive elements and a second one 

focused on improving ergonomic interaction. 

These two stages are formally described in the following two subsections. For these 

explanations, we will make use of right-hand systems of reference, homogeneous 

coordinates (i.e., 3D points in A’s coordinates as 𝒑𝑨(𝑥, 𝑦, 𝑧, 1) ∈ ℝ
4) and homogeneous 

transformation matrices (𝓜𝑩
𝑨 ∈ ℝ4𝑥4, to convert coordinates from A to B). 
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4.3.1 Retargeted Manipulation: Bijective Mapping of Visual and Physical 

SpacesVirtual hand interaction in VR usually assumes a direct correspondence 

between the physical space (P), around the user; and the virtual space (V), around 

their avatar. All points are mapped from one space to another directly through a 

transformation matrix (e.g., 𝒑𝑽 =𝓜𝑽
𝑷 ∙ 𝒑𝑷). 

Our multi-object retargeting requires a more complex mapping, at least for the points in 

space within user’s reach. As introduced earlier, we use tetrahedrons as the basic space 

partitioning unit, and build two equivalent space partitioning trees (same structure), one 

for each space P and V. The steps required are detailed in the next subsections. 

4.3.1.1 Tetrahedrons as Basic Space Partitioning Units: 

We first considered a sphere to represent the users’ reachable space, however, since this 

geometry may lead to more complex computation and cost, we instead used a low-

resolution approximation of a sphere i.e., a set of tetrahedrons grouped in an icosahedron 

layout, reducing thus the initial complexity and preserving low computational cost. Our 

approach uses a set of tetrahedrons pairs (see Figure 4.3), one defined in each space, P 

and V. Let 𝑻𝑽 = {𝒂𝑽, 𝒃𝑽, 𝒄𝑽, 𝒅𝑽} ⊆ 𝑽 and 𝑻𝑷 = {𝒂𝑷, 𝒃𝑷, 𝒄𝑷, 𝒅𝑷} ⊆  𝑷 be a tetrahedron 

pair described by the visual coordinates and retargeted physical coordinates, relative to 

user’s torso (T).  

For each tetrahedron, it is possible to describe its own non-orthogonal and non-

homogeneous system of reference, using their three edges and its first vertex as column 

vectors (matrix 𝓜𝑽
𝑻 can be computed analogously): 

𝓜𝑷
𝑻 = [(𝒃𝑷−𝒂𝑷)

✝, (𝒄𝑷 − 𝒂𝑷 )
✝, (𝒅𝑷 − 𝒂𝑷)

✝, 𝒂𝑷
✝]                             (4.1) 

These matrices allow us to directly map any physical point 𝒑𝑷 inside 𝑻𝑷 to its analogous 

tetrahedron 𝑻𝑽, by computing its local coordinates in 𝑻𝑷 and mapping the point to the 

same coordinates in the equivalent tetrahedron 𝑻𝑽: 

𝒑𝑽 =𝓜𝑽
𝑻 ∙ (𝓜𝑷

𝑻)−𝟏 ∙ 𝒑𝑷                                                    (4.2) 

By using this mapping strategy, the pair {𝑻𝑷, 𝑻𝑽} now identifies two equivalent volumes 

in P and V, even if their shape is different (as in Figure 4.3). Thus, not only physical 

vertices {𝒂𝑷, 𝒃𝑷, 𝒄𝑷, 𝒅𝑷} are mapped to their equivalent retargeted vertices {𝒂𝑽, 𝒃𝑽,

𝒄𝑽, 𝒅𝑽}. Any other point inside 𝑻𝑷 can also be mapped to its equivalent in 𝑻𝑽 (e.g., a point 

on the edge  𝒃𝒄𝑷 is mapped to point on the edge 𝒃𝒄𝑽). 
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4.3.1.2 Bounding the Interactive Space: Physical and Visual Trees 

To build our space partitioning trees (we refer to them as tree P and tree V), we start by 

identifying the boundary of the interactive space around the user’s torso in both spaces. 

We specifically approximate these as reduced icosahedrons, (with only 15 of the 20 

tetrahedrons, as in Figure 4.4(a-b). This geometry provides a basic structure, covering 

the space the user can reach with reduced complexity. 

 

Figure 4.3 Example of a tetrahedron pair, defining a volume in space P and its equivalent 

(slightly different) volume in V. Vertex O and edges are used to define their local systems 

of reference. This allows mappings any point in tetrahedron P to a single point in 

tetrahedron V, enabling retargeting. 

Let 𝑻𝑷
𝒊 = {𝒕𝑷, 𝒑𝟎𝑷, 𝒑𝟏𝑷, 𝒑𝟐𝑷} ⊆  𝑷 and 𝑻𝑽

𝒊 = {𝒕𝑽, 𝒑𝟎𝑽, 𝒑𝟏𝑽, 𝒑𝟐𝑽} ⊆ 𝑽, with 𝒊 ∈

[1,15]  ⊆ ℕ, describe each of the 15 equivalent tetrahedrons in both spaces. Point 𝒕 

identifies the user’s torso and the mapping between boundary points is computed as 𝒑𝒋𝑽 =

 𝓜𝑽
𝑷 ∙ 𝒑𝒋𝑷, 𝑗 ∈ {0,1,2} (i.e., usual VR mapping described earlier). We use these 15 

tetrahedrons to produce the two basic tree structures for P and V, with each tree 

containing 15 nodes in their first level and each tetrahedron node 𝑻𝑷
𝒊  in tree P having an 

analogous tetrahedron node 𝑻𝑽
𝒊  in tree V (shown in Figure 4.1(c)). 

This tree structure is the seed for our multi-object retargeting mapping. Any point 

𝒑𝑷 around the user will be inside a unique leaf tetrahedron node 𝑻𝑷
𝒊  in tree P. Thus point 

𝒑𝑷 can be mapped to space V using 𝑻𝑽
𝒊 , as in Eq(4.2). 

As each boundary vertex in tree P has simply been multiplied by 𝓜𝑽
𝑷 to compute its 

matching vertex in V, the tetrahedron pairs have the same shape and our technique 

behaves like a traditional virtual hand (i.e., this is how the technique works if no 

interactive elements are within user’s reach). Thus, current trees P and V act simply as 

an encapsulating boundary, allowing users to reach any point in P and V, but not the 

points beyond their natural reach.  
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The following subsection will modify this initial behaviour, by adding the interactive 

(retargeted) elements to the basic tree structure. Each interactive element will add internal 

tetrahedron pairs, but their shapes will not match (see example in Figure 4.4(c-d)). Thus, 

the volume inside the basic encapsulating boundary will be distorted, to accommodate 

the retargeted interactive elements.  

4.3.2 Retargeted Space Partitioning  

We iteratively partition the basic tree described above (15 tetrahedrons pairs, vertices on 

the boundary), adding each of the interactive elements within user’s reach. Let ℇ be the 

set of interactive elements. We model each element as a pair 𝒆 = {𝒆𝑷, 𝒆𝑽} ∈ ℇ, describing 

its coordinates in the visual and physical/retargeted spaces (the way we compute the pairs 

in set ℇ is explained in the next section). 

For each point 𝒆𝑷, we determine the leaf tetrahedron node 𝑻𝑷 it belongs to, subdivide it 

into four sub-tetrahedrons (as shown in Figure 4.4(e)), and add the corresponding nodes 

to tree structure P. Each new sub-tetrahedron uses 𝒆𝑷 as its first vertex (origin of 

coordinates, fourth column in Eq(4.1)), and 3 of the 4 vertices in 𝑻𝑷. The former leaf 

node 𝑻𝑷 will keep a reference to 𝒆 (and we will say “𝑻𝑷 manages 𝒆”).  

Next, for each sub-tetrahedron added to tree P, we create its paired sub-tetrahedron 𝑻𝑽 in 

tree V. Thus, we use 𝒆𝑽 as the first point and equivalent vertices in 𝑻𝑽 (see Figure 4.4(e)), 

to ensure each sub-tetrahedron in tree P remains equivalent to its paired sub-tetrahedron 

in tree V. 

 

Figure 4.4 Summary of our manipulation technique: (a-b) Side 3D view of the boundary 

space enclosing user’s interactive range. (c-d) Tetrahedron-based partitioning of the 

physical and visual space (simplified 2D view). Matching tetrahedrons highlighted on 

same colours. (e) An interactive element inside a tetrahedron will cause it to be sub-

divided in four tetrahedrons. (f) Continuity of interaction is assured when hand moves 

across tetrahedrons, but the direction and speed of motion can be affected. 

This process produces the final equivalent tree structures for P and V shown in Figure 

4.4 (c-d). Tree P maintains a hierarchical space partitioning structure. If a point is inside 
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a tetrahedron node, it is also inside its parent’s tetrahedron, but not inside any of the 

parent’s siblings. This allows for efficient mapping of users’ physical hand locations to 

retargeted visual locations, by finding the leaf node in tree P the hand is inside and 

mapping it to space V as in Eq. (4.2). 

Also, neighbour tetrahedron nodes always share a common face (see Figure 4.4(e)). This 

ensures continuity in the mapping when the physical hand leaves a node in tree P and 

enters a neighbour. However, as the geometry of the equivalent tetrahedrons in P and V 

might differ, hand motion direction and speed can change (see Figure 4.4(f)). The effects 

redirections may have in an example hand trajectory are shown in Figure 4.4(c-d) (black 

path; redirections occur as the hand moves across tetrahedrons). However, our use of a 

minimum hierarchical topology of tetrahedrons (15 plus 4 per interactive element) 

minimizes the occurrence of these artefacts, and the fact that the hand is moving will 

reduce the chances of user’s perceiving this change (Burns et al., 2005). 

4.3.3 Real-time Update of the Trees.  

The position of the interactive elements relative to the user will vary as they travel through 

the VE. This will require changes to the tree structure, to maintain the hierarchical space 

partitioning properties of tree P (see Figure 4.5). 

In each frame, we start by marking all tree nodes as dirty, and define an (initially) empty 

set ℇ’. We then proceed to iterate through the current set of interactive elements in ℇ. For 

a given 𝒆𝑷, managed by node 𝑻𝑷, if 𝒆𝑷 is still inside 𝑻𝑷, this node and all of its children 

leaf nodes (i.e., not managing any other interactive element) are marked as clean. On the 

other hand, if 𝒆𝑷 is inside a node other than 𝑻𝑷, we add 𝑒 to ℇ’ and remove it from ℇ. 

 

Figure 4.5 User displacements will change the mapping of interactive elements, causing 

the hierarchical tree structure to be recomputed.   
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At the end of this process all dirty nodes’ children are removed from the trees (see e2 in 

Figure 4.5). Set ℇ contains the elements which are still correctly located and are directly 

committed (i.e., update the location of tetrahedron’s vertices). Finally, elements in ℇ’ are 

re-introduced, using the iterative approach described in the previous sub-section.  

4.4 Computing Retargeting Mappings 

The approach above describes a manipulation technique that can provide retargeted 

manipulation for a set of multiple interactive elements (given their physical and 

corresponding visual locations). The challenge still remains to find the optimum mapping 

ℇ for these points, based on ergonomics, spatial criteria and mismatch thresholds of visual 

dominance. Please note that only interactive elements (set ℇ) are retargeted. Boundary 

points remain unaffected, to maintain the size of the user’s reachable space. 

As a first step to guide our retargeting approaches, we need to describe the metrics that 

will assess the quality of a retargeting mapping ℇ. We then report two example 

approaches to compute the retargeting mapping based on these metrics and different 

criteria.  

4.4.1 Quantifying Retargeted Mappings 

Our algorithms will make use of three factors to evaluate the quality of the potential 

retargeting mappings. The final cost function for a mapping is computed as a weighted 

average, with the specific value of the weights depending on the retargeting approach 

used: 

C(ℇ) =  𝑤1 ∙ R_S(ℇ) + 𝑤2 ∙  V_𝑆(ℇ) + 𝑤3 ∙  𝑆_𝑆(ℇ)                               (4.3) 

4.4.1.1 Adapted Continuous RULA (R_S()): 

We use a metric inspired in the four first steps of the RULA process, as these are the steps 

providing an ergonomic score based on the position of the arms, which is the space our 

manipulation technique addresses.  

Being initially an observational method, RULA uses broad ranges for the orientation of 

each joint, providing a discrete score for each range (e.g., a shoulder between +20o, is 

ranked as +1; 20-45o, is ranked as +2, etc.), with a final score for each arm between 1-9, 

associated to a risk level (neglectable, low, medium or high risks; associated areas for 

these scores are visible in    Figure 4.2 (a and c).  
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This scheme allowed assessment of workers performing manual tasks through pictures or 

videos. However, when combined with our optimization methods, this results in a 

staircase function, with searches getting stuck in plateaus until the next step is reached (a 

change in RULA score). This then resulted in sudden changes in the retargeting mapping 

(e.g., when a user approached an interactive element, big changes in retargeting happened 

as it transitioned from one RULA score to the next one).  

To prevent this and allow for smooth retargeting schemes, we simply take each angular 

range for each of the joints, and apply linear interpolation between the joint angle and the 

RULA scores for that range and joint. Then, for any given a point 𝑒𝑃 , we used an IK 

algorithm (IKAN (Tolani et al., 2000)) to compute the angles of the three arm joints, 

keeping the angles providing most ergonomic (lower) score for disambiguation. The 

global score for a given mapping ℇ is then simply computed as 𝑅_𝑆(ℇ) =

∑ 𝑅_𝑆(𝑒𝑃){𝑒𝑃,𝑒𝑉}∈ℇ . 

Please note this modified RULA score is used to compute mappings only. Our study used 

the usual RULA scores. 

4.4.1.2 Visual Dominance Mismatch Threshold (V_S(ℇ)): 

In our study we explore the use of ERG-O for VR retargeted interaction, without making 

use of any type of tactile feedback. As such, the thresholds reported by Burns et al. (Burns 

et al., 2005) (up to 20cm) could be used. We however took a more conservative maximum 

mismatch of 10 cm, penalizing retargeting pairs where the distance between the visual 

and physical elements were likely to be detected. Thus, we defined our metric as 

𝑉_𝑆(ℇ)) =  ∑‖𝑒𝑃 − 𝑒𝑉‖ , ∀{𝑒𝑃, 𝑒𝑉} ∈ ℇ /‖𝑒𝑃 − 𝑒𝑉‖ > 10𝑐𝑚. 

4.4.1.3 Spatial Relationship Preservation (S_S(ℇ)): 

Our manipulation technique can map V and P spaces, based on any set of point pairs. 

This could result in mappings in P space that hold not relation to the way elements are 

arranged in V space. This metric penalizes mappings where the ratio of distances between 

physical pairs and visual pairs is not constant, as a way to preserve the topology between 

elements.  

To do so, for each two points a,b ∈ ℇ, we measure their distance in P and distance in V 

and compute their ratio 𝑟(𝑎, 𝑏) = ‖𝑎𝑃 − 𝑏𝑃‖/‖𝑎𝑉 − 𝑏𝑉‖. To model that this ratio should 

be similar among all pairs (and penalize otherwise), we define S_S(ℇ) as “the variance in 

𝑟(𝑎, 𝑏), ∀a,b∈ ℇ”. 
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4.4.2 Optimization Methods to Compute Mappings 

To illustrate our approach, we report two simple example approaches to compute 

retargeting mappings using the metrics described. The first approach is aimed at 

preserving the spatial structure between elements; while the second one loosens this 

criterion to reinforce ergonomics.  

4.4.2.1 Spatially Consistent Retargeting (S_R):  

This first approach is designed to improve ergonomics and maintain mismatch threshold 

but keeping the spatial relationships among the interactive elements intact (see second 

column in Figure 4.6). To do so, we use a scale transformation matrix 𝑺𝑷
𝑽 , centred on the 

user chest, to equally affect all interactive elements, with visual positions mapped to 

physical positions as 𝒑𝑷 = 𝑺𝑷
𝑽 ∙ 𝒑𝑽.  

This problem is modelled using a single variable k, to represent the scaling factor applied 

by 𝑺𝑷
𝑽 . Let 𝒕𝑽 be the position of the user’s torso and {𝒆𝑷, 𝒆𝑽} ∈ ℇ the most distant element 

to 𝒕𝑽. If k ∈ (0, ‖𝑒𝑉 − 𝑡𝑉‖), all elements will stay within the reachable volume. 

This technique uses a naïve linear search, testing 2000 potential k values within this 

interval to find the value that minimizes the cost function shown in Eq(4.3). Weights were 

empirically tuned to 𝑤1 = 0.3,  𝑤2 = 0.7, with the last factor being ignored (𝑤3 = 0), as 

this retargeting strategy inherently maintains spatial relationships. 

 

Figure 4.6 Comparison of the retargeting behaviour: Spatially Consistent and Ergonomic 

for two different layouts.   

This technique should not be mistaken for a simple motor-space scaling method. Only 

the interactive elements are retargeted, and the boundary still encloses all the reachable 
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space. Thus, redirections (Figure 4.4(f)) will still affect the hand (e.g., in our study, every 

time the user reaches from the belly to the target, or when reaching targets from the side). 

4.4.2.2 Ergonomic Retargeting (E_R):  

This approach optimizes the position of each {𝑒𝑃 , 𝑒𝑉} ∈ ℇ independently. This loosens 

the constraints on spatial preservation from the previous approach, in order to achieve 

higher improvements for ergonomics. 

This problem is modelled as a multivariable optimization approach, one for each of the 

XYZ coordinates of the 𝒆𝑷 elements in ℇ. As in Chapter 3, we use of Simulated Annealing 

(SA). The weights of the cost functions were empirically tuned to 𝑤1 = 0.2,  𝑤2 = 0.4 

and 𝑤3 = 0.4. Neighbours are computed by jittering a physical point 𝒆𝑷 in the current 

mapping ℇ with a random direction and magnitude, for a maximum displacement of 5 cm 

(50% of our mismatch threshold). Transition acceptance between mappings follows the 

method by (Kirkpatrick et al., 1983). Let ℇ1 and ℇ2 be two potential mappings, C(ℇ) be 

our cost function and T the current temperature. The probability of transitioning to from 

ℇ1 to ℇ2.is computed as in Eq(4.4). 

𝑃(ℇ1, ℇ2, 𝑇) = {
   1                        , 𝐶(ℇ2) < 𝐶(ℇ1)

  𝑒
𝐶(ℇ1)−𝐶(ℇ2)

𝑇    , 𝐶(ℇ2) ≥ 𝐶(ℇ1)
                                       (4.4) 

Our cooling schedule uses Ns=10 step adjustments per temperature step, Nt =5 

temperatures steps per temperature change, cooling factor Rt =0.5 and initial temperature 

T=180, testing nearly 18.000 possible retargeting mappings per optimization (frame). The 

results (best mapping) from a frame are used as the starting state for the next frame, as 

user displacements are likely to be small from frame to frame. This allowed us to produce 

satisfying results, while maintaining the real-time requirements of ERG-O, even with the 

relatively aggressive cooling schedule used.  

4.4.3 Analytical Comparison of Retargeting Approaches 

In this section, we analyse the differences in retargeting introduced by each of our 

example strategies. Figure 4.6 shows two examples of interactive elements around the 

user. In the first example (top), the visual elements (in blue) are already at comfortable 

locations within user reach. In the second example (bottom), the interactive elements are 

evenly located around the user, close to the limits of their reachable space. Generally, 

these are uncomfortable positions, especially for lowest points and points above the user’s 

chest.  
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As expected, Spatially Consistent retargeting (S_R) repositions elements maintaining 

their spatial structure, while Ergonomic Retargeting (E_R) affects structure, in order to 

enable more ergonomic interaction.  

For the first example, S_R performed minor corrections (the displacement between visual 

and retargeted points within AVG + 6.8cm, STDEV 6.1cm), but still achieved 

improvements in ergonomics. The behaviour of E_R is more interesting. Although the 

retargeted distances were similar (AVG + 8.3cm, STDEV 8.6cm), the Figure 4.6 (top, 

right) shows how E_R flipped the structure of the elements (i.e., from a concave to a 

convex shape). The resulting shape actually wraps around the central part of the 

ergonomic area (note the shape of RULA zones in Figure 4.2(c)), achieving much higher 

improvements.  

This behaviour can be explained by looking at our definition of S_S(ℇ). By flipping the 

shape, the ratio of the distances between any two pair of points is actually preserved. This 

allowed (E_R) to significantly improve ergonomic score for the nine central elements, 

although at the expense of decreasing the score of the elements at the edges. The wrapping 

to a curved shape shows E_R’s efforts to bring the edges back to more ergonomic 

locations, but metric S_S(ℇ) did penalize this wrapping.  

For the second example (second row in Figure 4.6), S_R shows a similar behaviour as in 

the first example (6.9 + 6.5cm), while E_R presents a more aggressive behaviour 

(10.1+9.5cm), especially the positions of low and high points (least comfortable). As 

expected, this results in higher ergonomic gains for E_C, but also higher spatial distortion.  

 

Figure 4.7 Experimental task: (a) Screenshot showing the selection task implemented in 

out testing environment and (b) third layout tested, with visual elements anchored to the 

world in two planes and forcing users to walk in order to reach them.   
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4.5 User Study 

The previous sections motivate the need for Erg-O and provide a formal definition for the 

technique. The current section will evaluate the usability of the technique in a VR 

selection task. We compare our two examples of retargeting strategies against a 

traditional virtual hand technique, to gain insight on the improvements obtained for 

ergonomic interaction and the influence that distortions (due to retargeting and space 

warping) could have on interaction.  

4.5.1 Task and Environment 

We implemented a target selection task to test our technique, with 30 trials per task. At 

the beginning of each trial, users could see a range of blue spheres (i.e., interactive 

elements) floating in the space in front of them. Two spheres were highlighted in green 

(instead of blue), to inform users of the targets of their selection, and a regressive 

countdown from 5 to 0 was shown. When the countdown finished, users touched their 

belly to select the hand they wanted to use for that trial, and proceeded to touch the 

highlighted spheres. An auditory cue notified users when they had correctly selected each 

target. The pair of spheres to select was randomly chosen, but both spheres were reachable 

with a single hand. 

The environment was implemented using C++ and OpenGL. We used an Oculus Rift 

DK2 for display, OptiTrack to achieve a larger tracking volume and Kinect v2 for skeletal 

tracking. Projection matrices and barrel distortion meshes were replicated from Oculus 

SDK v1.7. Conventional speakers were used for audio feedback. 

4.5.2 Layouts Tested: 

We tested the techniques using three different layouts, to assess their performance under 

several usage scenarios. In some layouts (L1 and L2) we wanted spheres to stay in specific 

areas relative to the user (e.g., in comfortable/ uncomfortable points). In these cases, the 

grid of spheres was anchored to the users’ lower torso, so that they would stay at these 

fixed areas even if the users moved. Upper torso (i.e., chest) was avoided as an anchor, 

as its orientation can change when users reach towards an object due to accompanying 

movement of the shoulder. 

During tests, we measured users’ arm span A. All distances and positions describing our 

layouts are relative to A, but in our explanations, we will report the equivalent value in 

centimetres for a reference user with A=170 cm.   
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4.5.2.1 Ergonomic Layout (L1) 

This layout (shown earlier in Figure 4.6) consisted of 15 spheres, placed in a 5x3 grid in 

front of the user’s lower torso and at a distance of 0.21∙A (~36 cm). This is an agreed 

zone for comfortable interaction (e.g., middle ground between the comfortable plane used 

in (Hincapié-Ramos et al., 2014) and the volume receiving a RULA score of 1). This was 

chosen as a worst-case scenario to test against our technique, because: a) there is little 

room for improvement due to ergonomic retargeting (spheres are already at comfortable 

locations); and b) users will still suffer from the distortions and loss of linearity (Figure 

4.4(f)) introduced by our retargeting strategies.  

4.5.2.2 Limits of Reach Layout (L2) 

This second layout (also displayed in Figure 4.6) consisted of 24 spheres, evenly 

distributed along the limits of users’ reachable space at 0.44A (~75 cm) and anchored to 

the users’ lower torso, as above. In contrast to L1, this layout should provide best 

ergonomic improvements, but at the same time, it will introduce more aggressive 

retargetings. This can increase spatial distortion, which could hinder motor control and 

affect the selection task. Thus, L2 should help illustrate the extent of the benefits of Erg-

O for ergonomics and the impact of its redirections. 

4.5.2.3 World Fixed Layout (L3) 

This last layout (shown in Figure 4.7(b)) is based on a more generic scenario where 

elements are fixed in the VE (instead of anchored to the user) and distributed across a 

bigger volume, forcing users to walk to them in order to interact with them. More 

specifically, 24 spheres were evenly distributed over two vertical planes, spanning across 

1.4Ax0.8A (238 cm x 136 cm). Lowest and highest spheres were placed at heights 0.4A 

(68 cm) and 1.2A (204 cm) from the floor, forcing users to reach both low points and 

points above their heads. Both planes were separated by a distance of 0.5A (85 cm), 

ensuring elements in one plane would not be in reach from the other plane. Besides testing 

a more generic scenario, this layout allowed us to see the influence of a varying retargeted 

mapping (i.e., the retargeting for each sphere changed as user moved, as this changed the 

sphere’s position relative to the user). 

4.5.3 Experimental Design 

In the experiment, we compared three techniques: Natural virtual hand (N), Spatially 

Consistent retargeting (S_R) and Ergonomic retargeting (E_R). We adopted a 3x3 full 
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factorial design, with factors being the technique (N, S_R or E_R) and layout (L1, L2 or 

L3), counterbalanced following a Latin Square design.  

The experiment was conducted with 12 participants (10 male, and 2 females between the 

ages of 21 and 35. We collected 3240 trials (12 participants, 9 blocks, 30 trials each). 

Each participant was tested individually and the experiment took approximately 45 

minutes per participant.  

4.5.3.1 Dependent Variables Measured 

Participants were asked to fill a user comfort and physical effort questionnaires after each 

block (technique).  

The experimental software recorded: trial completion time (TCT), and the length of the 

real (RP) and virtual hand paths (VP) for each trial. TCT measured the time between the 

user touching the first and second highlighted spheres. Path lengths (RP and VP) were 

measured as the ratio between the length of the path followed by the (real or virtual) hand, 

divided by the linear distance between the spheres (Zhai et al., 1998). This allowed 

comparisons across paths of different lengths and measured effectiveness (deviation from 

optimum) for the interaction. Conventional RULA scores were also recorded when users 

selected each sphere, to test if our mappings actually improved ergonomics.  

4.6 Results and Analysis 

For all analysis presented in this section a repeated measures ANOVA was conducted to 

compare the effect of the 3 techniques (Natural (N), Spatially Consistent (S_R) and 

Ergonomic (E_R)) on mean time, effort and path length. Outliers were filtered out (i.e., 

mean ± 2 standard deviation), removing 284 trials (2.83% of samples). Post-hoc 

comparisons used Bonferroni corrections for each case. 

We start the analysis by looking at the general behaviour of each retargeting approach, 

and then focus our analysis on each of the different layouts tested, to get further insight 

on how the approaches behave in different scenarios.  

4.6.1 General Analysis of Retargetting Approaches 

4.6.1.1 Retargeting Approach vs Time 

Results showed a significant effect on the average time required to complete the selection 

task (F(2,4)=279.67, p<0.001), depending of the type of retargeting. Post-hoc 

comparisons using Bonferroni corrections showed significant differences. Specifically, 

S_R (M=0.945s, SD=0.473s) was faster TCT than E_R (M= 1.043, SD= 0.473s), p= 
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0.001; and also, faster than Natural (M= 1.03s, SD= 0.734s), p= 0.005. No such 

differences were found between E_R and Natural, p= 1. These findings suggest that E_R 

and Natural conditions behave in a very similar way, but the use of the Spatially 

Consistent retargeting approach can lead to lower task execution times. 

4.6.1.2 Retargeting Approach vs Comfort (using RULA) 

Comfort was defined using the RULA scores calculated. Results showed a significant 

effect on comfort F(2,4)=26.06, p<0.001 depending on the retargeting approach used. 

Post-hoc tests with Bonferroni corrections show significant difference (p=0.002) between 

E_R (M=1.6078, SD=1.0934) and Natural (M=1.7767, SD=1.1175). No other differences 

in comfort were found. This suggests that the Ergonomic (E_R) retargeting approach can 

reduce user effort, possibly enabling longer usage periods before the user gets tired.  

4.6.1.3 Retargeting Approach vs Length 

This analysis showed no effects of retargeting type on path length performance. This 

could indicate that the thresholds used to optimize the target positions (~10cm) were too 

small compared to the hand displacements required to complete the task, as to represent 

a significant difference. 

4.6.1.4 Retargeting Approach vs Self Reports 

Figure 4.8 shows the results of the questionnaires filled after each retargeting condition 

block (S_R, E_R and Natural). We used a Likert scale from -3 to 3 to assess the comfort, 

easiness of reachability, sense of control and overstretching. The boxes represent the 

interquartile ranges (IQRs) and the whiskers represent the confidence interval. 

 

Figure 4.8 Box plots for the results of our questionnaires: Horizontal red bars represent 

medians, and boxes represent the interquartile ranges (IQRs). Whiskers stretch to the 

data points that are within the median ± 1.5 IQR. 
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Participants perceived all techniques as similar in terms of comfort, which indicates that 

the blocks were not long enough as to make the improvements to ergonomics (RULA) 

become a driving factor for effort in this task.  

Approach E_R was perceived as the approach allowing easier reachability and less 

overstretching. More interesting, users reported that they felt more control when using 

any of the retargeted conditions (S_R or E_R) than using N.  

 

This could be a result of both S_R and E_R placing the objects at slightly closer physical 

positions of each other. This would cause the index of difficulty of the task (Fitts’s law) 

to decrease, making them easier to reach and potentially affecting the users’ assessment 

about their sense of control. However, as no significant differences were found for path 

length (hand motion not significantly shorter than in N), we cannot strongly support this 

hypothesis.  

In any case, the fact that S_R or E_R did not actually receive worse scores for control was 

found a very positive result. This seems to indicate that the spatial distortion and the 

artefacts related to linearity (Figure 4.3(f)) still allow fluent interaction, confirming our 

empirical observations. 

4.6.1.5 Retargeting Approach vs Layout 

Layout 1 

The results showed a significant effect of retargeting on TCT (F(2,4)=12.295, p<0.001), 

for Layout 1. Post-hoc comparisons showed significant differences in time, with S_R 

(M=0.640s, SD=0.234s) leading to lower TCT than either E_R (M= 0.749s, SD= 0.316s), 

p< 0.001; or Natural conditions (M= 0.722s, SD= 0.348s), p= 0.001. 

Retargeting approach also influenced Comfort (F(2,4)= 8.92, p<0.001). Pairwise 

comparisons showed significant differences, with E_R (M= 2.86, SD= 0.502) providing 

better scores than N (M=3.01, SD=0.529), p<0.001, even if objects in Layout 1 were 

already at comfortable positions.  

These results confirm general expectations about S_R and E_R, with the first one 

improving performance, while the second one improved comfort. However, E_R not 

being faster than N could indicate E_R was not good for performance. The objects being 

at more comfortable locations, and the arguably smaller index of difficulty of the task, 

should both benefit E_C for TCT. We believe the more aggressive redirections could 

make users rely more on visual feedback, making them perform more slowly. 
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Figure 4.9 Average measurements per strategy and layout: (a) Time completion task and 

(b) RULA scores during the task. Significant difference between retargeting strategies for 

each layout are represented by ‘*’. 

Layout 2 

Our results showed no significant effect of approach on TCT (F(2,4)=2.664, p=0.07) for 

Layout 2. Retargetting a few centimeters was probably not a significant advantage for the 

longer hand displacements required in this task.  

The analysis however showed significant effects on Comfort (F(2,4) = 8.238, p<0.001), 

with paired analysis indicating that E_R (M=3.33, SD=0.75) led to better comfort than 

Natural (M=3.59, SD=0.932), p<0.001, and confirming the general trend of these 

techniques, also for scenarios involving large arm movements. 

Layout 3 

As shown in Figure 4.9, retargeting strategy showed significant effects for both TCT 

(F(2,4)=5.628, p=0.004) and Comfort (F(2,1077)= 5.902, p=0.003) in this layout. Post-

hoc comparisons showed participants were faster using S_R (M=1.08s, SD= 0.385s) than 

with E_R (M= 1.2s, SD= 0.437s), p= 0.002, but no significance was found compared to 

N (p= 0.282).  

In terms of comfort (see Figure 4.9(b)), the scores were generally high (uncomfortable). 

Natural (M=3.83, SD=1.076) led to worse results than either E_R (M=3.59, SD=0.924), 

p=0.005, or S_R (M=3.63, SD=0.950), p=0.02. We observed users tended to walk towards 

the targets with their arms fully extended (i.e., focusing on performance, rather than 

interacting comfortably), which probably blurred the differences between techniques. 

However, instructing participants to interact comfortably (rather than quickly) could have 

produced a similar bias (i.e., walk until the target is in comfortable reach and then select; 

this would also result in no differences in comfort across techniques). Instructing them to 
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walk to specific points before selecting, would have implicitly fixed the location of targets 

relative to the user, blurring differences with L1 and L2.  

4.7 Discussion 

The approach described (Erg-O) uses controlled warping of the visual and physical space 

around the user, to enable multi-object retargeting in an open-ended fashion. Our two 

example retargeting functions (E_R and S_R) also helped us illustrate how Erg-O can be 

used to improve ergonomic interaction in VR. Is spite of warping space (i.e., virtual hand 

not following the exact motion of the real hand), both strategies improved ergonomic 

scores without decreasing performance (actually, S_R resulted in better TCT than N for 

some scenarios); sense of control or complexity. 

Our example strategies also highlight the importance of the retargeting function. First, 

they can result in very different behaviours (S_R being generally better for TCT, while 

E_R improved ergonomics). Using other metrics for ergonomic assessment (e.g., Jack 

(Badler et al., 1993) or (Hincapié-Ramos et al., 2014)), other functions or weight 

distributions could produce different results. Second, even simple functions, such as S_R, 

can produce good results.  

The importance of spatial preservation was also highlighted (see artefacts produced by 

E_R, in Figure 4.6). For example, consider two elements, with A visually to the left of 

B. A function retargeting B to the left of A would result in undesirable discontinuities for 

interaction. Similarly, tetrahedron pairs with very different shapes or volumes would 

result in strong redirections and significant changes in speed, and the retargeting function 

should avoid this. Beyond the examples presented in this chapter (multi-object retargeting 

to improve ergonomics in VR), varying specific aspects of Erg-O can adapt it to other 

application scenarios.  

For instance, boundaries P and V were kept equal and always anchored to the user’s and 

avatar’s chest. Scaling the boundary in V, would enable interaction with distant objects 

in the VE (i.e., similar to Go-Go, but allowing multi-object retargeting inside). Detaching 

tree V from the user’s chest and moving it to a distant point of the VE could replicate the 

HOMER (Bowman et al., 1997) technique.  

Also, unlike in the example presented in the chapter, the shape of the boundaries P and 

V do not need to match. This could be useful for users with limited limb mobility, as the 

boundaries of tree P can be tailored to circumscribe the physical space the patient can 
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reach. Tree V could still circumscribe the reachable space for a person with normal 

mobility, and our isomorphic mapping would allow patients with reduced mobility to 

interact within all this space.  

The internal topology of the tree (retargeted points and resulting tetrahedrons) could be 

used to further refine this mapping. In the case of users with limited mobility this could 

be used to avoid uncomfortable poses or to provide adequate levels of resolution to 

specific parts of the space, based on the patient’s motor skills and condition. As a 

particular example, this could apply to children with mental palsy or spasticity, to create 

novel range of motion exercises (Dunne et al., 2010) or building games (e.g., LEGO) 

exploiting the spatial properties of VR to improve cognitive skills (Cheng et al., 2014).  

Taking the opposite approach, the retargeting strategy could be tailored to force specific 

poses in the patient (e.g., most of the visual space mapped to higher locations in the user’s 

physical space, forcing the user to lift his arms). This could be applied for rehabilitation 

or physical training purposes.  

Our solution could also be applied to surgical simulations, such as (Spillmann et al., 

2013), in which retargeting is currently limited to two dimensional surfaces.  

4.8 Conclusion 

In this chapter, we presented Erg-O, a multi-object retargeting technique for manipulation 

in VR. The visual location of one or more interactive objects (e.g., buttons) is maintained, 

but users can reach them from more ergonomic locations. Users can move their hands 

freely, and they can also reach any other points (not only retargeted elements). We 

achieve this by creating a mapping between he visual and physical space that warps the 

user’s reachable space according to the location of the retargeted elements.  

We presented a formalization of our manipulation technique, and also described two 

example retargeting strategies to compute the best physical retargeted positions for 

interactive elements, according to spatial and ergonomic criteria. We finally evaluated 

the performance of these example retargeting techniques compared to a traditional virtual 

hand (baseline). Results from our study demonstrated the potential of our technique to 

improve ergonomics, without significant effects on performance or sense of control. We 

finished the chapter by discussing relevant aspects related to the use of Erg-O in other 

scenarios, as well as identifying other possibilities and application scenarios where Erg-

O can be applied.  
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NaviFields: Relevance fields for adaptive VR 

navigation  
Similar to the previous chapter, in this chapter we explore the second stage of interaction 

(i.e., ITes). However, here we refer to a different BITa according to (Molina-Masso et al., 

2008). We focused on navigation, another primary interaction task (Bowman et al., 1999). 

We led our exploration around the problem of limited real space for VR navigation, 

giving particular attention to “manoeuvring” (i.e., the stage after a relevant target has been 

reached) (Bowman et al., 2001), where precise exploration is involved, focusing on a 

seamless transition between navigation and manipulation tasks in VR. Our approach in 

this chapter aims to better exploit the human potential for navigation (i.e., enabling 

vestibular cues through actual physical displacement) while addressing physical space 

constraints. We present a scale-adaptive navigation technique that addresses this 

limitation by applying computational methods into an allocentric metaphor (i.e., 

considering the space relevance rather than the user viewpoint) that uses non-isomorphic 

mappings to extended VR navigation while maintaining naturalness in relevant zones for 

precise interaction (1:1 movement ratio). 

5.1 Introduction 

Physical displacement in Virtual Reality (VR), where the viewpoint is directly controlled 

by the user’s head motion  (Bowman et al., 1997), stands as the most natural navigation 

techniques for VR and benefits both interaction and sense of presence (Bystrom et al., 

1999). However, limitations in tracking technologies (i.e., reduced tracking volume) or 

in the actual physical space available (e.g., empty space in a user’s living room) 

practically constraint the size of the Virtual Environment (VE) that users can navigate. 
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Many techniques have been proposed to overcome these limitations, allowing users to 

navigate a virtual space bigger than the actual physical space available. Treadmills can 

achieve this while maintaining a natural navigation metaphor, but expenses and the need 

to deploy a (potentially bulky) hardware element in the user home can limit their 

adoption. Teleportation or Steering (e.g., using head or hand orientation to control the 

direction of motion) techniques enable unconstrained navigation. However, they also 

break the metaphor of using physical displacements to move in VR, which can affect 

user’s presence (Bystrom et al., 1999), and might only be well suited for specific 

scenarios (e.g., while teleportation could be adequate in a sci-fi action game in VR, it 

might be ill suited for simulation or training scenarios). In this chapter, we explored not 

only more natural navigation in VR though physical locomotion, but also explored object 

interaction during the exploration. For that reason, hand-guided navigation is not 

employed, as it does not mimic the way we navigate in the real world. 

In this chapter we propose NaviFields, a VR navigation  technique that maintains the 

physical displacement metaphor (Bowman et al., 2001), while expanding the size of the 

VE that users can navigate. With our technique users’ head displacement is scaled 

according to their position in the VE. If the user is in an interactive area requiring fine 

control (e.g., assembling machinery parts), the viewpoint will follow the real motion of 

the head (1:1 direct navigation). In contrast, while travelling across connecting spaces 

(e.g., the corridor leading to the maintenance room), motion will be gradually scaled, 

requiring smaller displacements to cover bigger distances.  

 

Figure 5.1 NaviFields approach scales user displacements dynamically, enabling natural 

1:1 navigation inside areas where precise interaction is required (green) while 

progressively increasing their movements outside these areas (yellow, red). This allows 

larger navigable spaces, maintains the natural displacement metaphor and allows precise 

manoeuvring where necessary.  
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We do this by creating a navigation field (see Figure 5.1) describing the relevance (i.e., 

requirements for precise motion) of each point of the VE, and then use this field to 

determine the scaling applied to user displacements at each point. This practically 

compresses the overall size of the VE, but retains a direct 1:1 navigation within highly 

interactive areas. This is useful in, for instance, a training VE for a factory, where there 

is a well identified set of stations for machinery control (interactive areas requiring fine 

control), but at the same time the user needs to build a mental model of how these stations 

are arranged in the real factory. 

This chapter contributes a formal description of the NaviFields technique. We then report 

a quantitative testbed evaluation, assessing low-level travel tasks (search travel and 

manoeuvring (Bowman et al., 2001)), and explore the effect of using varying scaling 

factors, travel path lengths, manoeuvring complexity and user poses. We identify the 

potential and limitations of NaviFields, by comparing its performance to the use of: a) 

physical displacements with a constant scaling factor (naïve alternative technique that 

maintains physical displacement and covers bigger navigable spaces); and b) natural 

navigation (baseline comparison, best case scenario).  

Our results show NaviFields can be comparable to natural navigation in manoeuvring 

tasks, and still allows good performance for search travel tasks. When compared to the 

homogeneous scaling technique, NaviFields showed better performance for all factors 

assessed (travel, manoeuvring and user preference). Our results also provide useful 

insight about the effects of scaling or user pose in travel and manoeuvring tasks; or the 

effects of Drift in navigation techniques based on differential tracking, applicable to other 

non-isomorphic techniques. We finish the chapter discussing the opportunities and 

application scenarios NaviFields enable. 

5.2 Related Work 

We review prior work in two related areas: (1) VR navigation techniques; and (2) 

Dynamic control of the viewpoint. 

5.2.1 VR Navigation Techniques 

Navigation is identified as a fundamental task for VEs, being usually decomposed 

(Bowman et al., 2001) into wayfinding (the cognitive process related to navigation) and 

travel (the actions executed to reach a destination). Travel can be further divided into: 
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exploration (roaming with no explicit goal), search (there is a specific goal), and 

manoeuvring (small displacements, precise control of the viewpoint required). 

Natural walking stands as the most natural and effective navigation technique (Usoh et 

al., 1999; Riecke et al., 2010), not involving additional controls and leveraging our 

oculomotor control and vestibular systems, with positive effects to understand the 

environment (Cutting, 1997). However, this method of locomotion is only feasible when 

the 3D world is (at most) as big as the working volume of the tracking system. Hybrid 

approaches complement walking with other techniques, such as joysticks to travel in 

specific directions (Cirio et al., 2009), or controllers to teleport to other locations (e.g., 

commonly used in HTC Vive games). However, joysticks create the feeling of flying 

rather than walking (Lécuyer et al., 2006), and teleportation hinders navigation skills 

(Darken et al., 1993). 

Redirected walking techniques exploit change blindness (Peck et al., 2009), giving the 

illusion of naturally walking a large VE while keeping users within the tracking volume. 

Techniques proposed make use of rotational gains (Razzaque et al., 2001), translation 

gain (Williams et al., 2006), space substitution (Suma et al., 2011) or distractors (Peck et 

al., 2010). However, the tracking spaces needed are still large (e.g., 6.5x6.5m in (Peck et 

al., 2009)). 

Walking in place (WIP) techniques also involve physical displacement (i.e., navigation 

controlled by the movements of the user’s body), but with no actual translation of the 

user. Thus, users simulate walking, and the movement of their feet (Slater et al., 1995), 

heels (Feasel et al., 2008) or knees (Wendt et al., 2010) is used to control translation in 

the VE. These techniques have also been adapted for mobile VR devices (Tregillus et al., 

2016) and seated environments (Terziman et al., 2010). Although regarded as immersive 

and natural (Slater et al., 1995), WIP techniques do not provide the same vestibular cues 

than walking (e.g., no inertia). Delays in detecting the start/stop of the motion can also 

affect presence (Templeman et al., 1999) and encumber manoeuvring (Feasel et al., 

2008). 

Hardware solutions using linear (Stanney, 2003) or omnidirectional treadmills (Darken 

et al., 1997), or with the user walking inside a rotating sphere (Fernandes et al., 2003; 

Medina et al., 2008), provide a closer match to natural locomotion. However, they still 

do not produce the same proprioceptive perception as real walking (Bowman et al., 2001). 
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The need to deploy a bulky and expensive hardware element in the users’ home can also 

limit their adoption. 

Steering techniques loosen the role of body motion. They use the direction of the user’s 

head (Fuhrmann et al., 1998), torso (Laurel et al., 1994) or hands (Bowman et al., 1997) 

to determine direction of motion, but require additional control commands (e.g., 

joysticks, gestures) to trigger motion or determine speed. Solutions using joysticks, 

gamepads or mouse and keyboard have also been extensively user (e.g., games), but they 

negatively influence spatial orientation (Lathrop et al., 2002) and the sense of presence 

(Usoh et al., 1999). 

5.2.2 Dynamic Control of the Viewpoint 

Dynamically scaling the translation speed of the viewpoint has been mostly applied for 

less immersive navigation techniques (i.e., not involving physical displacement).  

Mackinlay et al. (Mackinlay et al., 1990) developed one of the pioneering techniques, 

with some similarity to the NaviFields technique. When a user selects a target destination, 

a logarithmic function allows fast displacements along big distances, progressively 

slowing down as the user reaches the destination. Argelaguet’s approach allows open-

ended navigation (not based on selection of a target destination), but uses the optical flow 

in the user’s view to adjust the navigation speed based on the user’s perception of motion 

(Argelaguet, 2014). Lecuyer et al. use a model of the head’s lateral motion, rotation and 

eye fixation, affecting viewpoint motion to improve the sensation of passive walking in 

the VE (Cirio et al., 2009). In these techniques, motion speed is not connected to the 

meaning/relevance of the objects in the environment. Freitag et al. adjust travel speed 

based on viewpoint quality (i.e., how informative a viewpoint is), sharing some 

conceptual similarity with our approach (Freitag et al., 2016).  

The dynamic modification of viewpoint scale and speed is much more uncommon for VR 

techniques involving physical displacement, as these are mostly focused on providing a 

1:1 mapping between the user’s real and virtual displacements.  

Redirected walking techniques have made use of subtle changes in scaling, to alter users’ 

paths without translation gains becoming noticeable (Steinicke et al., 2010). Multi-scale 

techniques scale the size of the user (rather than its speed), to interact with the VE at 

microscopic or macroscopic levels (Kopper et al., 2006). 
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Use of higher scaling factors to navigate bigger spaces have been even less common. 

Williams et al. scale user’s physical displacement using a constant scaling factor 

(Williams et al., 2006). Interrante et al. couple the scaling factor, to the speed of the user’s 

real head (Interrante et al., 2007). While allowing close to natural navigation at low 

speeds, the viewport will move exponentially faster, the faster the user moves in reality. 

LaViola et al. (LaViola Jr et al., 2001) use their feet to interact with a World-In-Miniature 

(WIM) (Bowman et al., 2001). Little displacements on the WIM cause large 

displacements of the user, and scale can also be adjusted with foot gestures. In all these 

cases, viewport speed is controlled by users’ actions alone (egocentric), and not by the 

contents of the VE (allocentric, as in NaviFields). 

The closest match to the proposed NaviFields technique can be found in (Song et al., 

1993). This technique identifies a sphere in the VE, describing the primary space for 

interaction. Natural navigation is available inside the inner sphere, but motion is scaled 

exponentially outside this sphere. Like NaviFields, this allows for bigger navigable 

spaces, using physical displacements and with scaling being driven by the structure of the 

VE (i.e., allocentric, instead of egocentric). It can thus be considered as a particular 

instance of the fields our technique covers, but it does not deal with the interactions 

among several areas and cannot address the relevance of each point of the VE 

individually. 

5.3 NaviFields: Adaptive VR Navigation 

NaviFields uses the known location of the interactive areas within the VE, enabling 

natural 1:1 navigation within those areas, while gradually speeding up displacements 

when travelling between interactive areas. In practice, this increases the navigable space, 

retains a physical displacement metaphor in all the VE and 1:1 natural displacement in 

places demanding precise navigation (manoeuvring) or interactive tasks (precise 

manipulation).  

The following sections describe the mathematical modelling of the adaptive navigation 

and the description of the navigation field (that determines the scaling applied at each 

point of the VE). For our explanations, systems of reference will be noted as capital 

letters, with U referring to the user’s head system of reference; T referring to the system 

of reference of the tracking system; and W referring to the system of reference of the 

virtual world. We will make use of right-hand systems of reference, homogeneous 

coordinates (i.e., points in A’s coordinates as 𝑷𝑨(𝒙, 𝒚, 𝒛, 1) ∈ ℝ
4) and 4x4 matrices 
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(𝑴𝑩
𝑨 ∈ ℝ4𝑥4, to convert coordinates from A to B). This notation will aid reproducibility 

and ease explanation of our technique in comparison with homogeneous scaling. 

5.3.1 Modelling Navi-Fields: Differential Tracking   

Physical displacement techniques usually rely on a bijective mapping between the real 

space (tracking volume) and the navigable space in the VE. In other words, each point in 

the real world is uniquely mapped to a point in the VE and vice-versa. Our technique 

breaks this bijective mapping in order to dynamically scale displacements according to 

the location of the user (inside an interactive area or a transition area).  

This can be illustrated comparing NaviFields to the use of a homogeneous scaling factor 

(Williams et al., 2006) (shown in Eq(5.1)). In this technique, the position of the user’s 

head at any specific point in time 𝑴𝑻
𝑼(𝒕) is scaled by a constant scale matrix 𝑺(𝒌, 𝟏, 𝒌), 

effectively increasing the navigable space in the XZ plane by a factor of 𝑘 ∙ 𝑘 (see Figure 

5.2(A-B)). Finally, this scaled navigable volume is mapped to a specific part of the virtual 

world using a constant transformation 𝑴𝑾
𝑻  (i.e., teleporting can be implemented by 

dynamically modifying 𝑀𝑊
𝑇 .  

     𝑴𝑾
𝑼 (𝑡) = 𝑴𝑾

𝑻  ∙ 𝑺(𝒌, 𝟏, 𝒌) ∙  𝑴𝑻
𝑼(t)                                          (5.1) 

This mapping is invertible, showing a bijective mapping between spaces W and T: 

𝑴𝑻
𝑼(𝑡) =  𝑺(𝒌, 𝟏, 𝒌)−𝟏 ∙ (𝑴𝑾

𝑻 )
−𝟏
∙  𝑴𝑾

𝑼 (t)                                 (5.2) 

In contrast, our approach relies on the previous position of the user’s head and is not 

directly invertible. At each point in time, the current position is computed from the 

previous virtual position 𝑴𝑾
𝑼 (𝑡) and the current real displacement of the user’s head (Eq. 

(5.3)). This displacement is scaled by a variable factor 𝒌(𝑴𝑾
𝑼 (𝑡)), which depends on the 

location of the user in the virtual world (Eq. (5.4)). Orientation (direction) of motion is 

not affected. This function relating the virtual location of the user to displacement 

represents our navigation field and is explained in the following section, being a key 

element for the adaptive nature of our technique. 

𝑴𝑾
𝑼 (𝑡 + 𝑑𝑡) = 𝑴𝑾

𝑼 (𝑡) + 𝑫(𝒌(𝑴𝑾
𝑼 (𝑡))) ∙

𝑑𝑴𝑻
𝑼(t)

𝑑𝑡
                         (5.3) 

𝑫(𝒌(𝑴𝑾
𝑼 (𝑡))) = 𝑺(𝒌(𝑴𝑾

𝑼 (𝑡)), 𝟏, 𝒌(𝑴𝑾
𝑼 (𝑡)))                            (5.4) 
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The initial location of the viewpoint is defined as in Eq(5.5), mapping the navigable 

volume to a specific part of the VE: 

             𝑴𝑾
𝑼 (0) = 𝑴𝑾

𝑻  ∙ 𝑴𝑻
𝑼(0)                                            (5.5) 

5.3.2 Generating the Navigation Field 𝑘(𝑀𝑊
𝑈 (𝑡)) : 

The previous section described the adaptive technique enabling variable displacement 

according to the user position in the VE. However, it is still necessary to define the 

navigation field, that is the scalar field 𝒌(𝑴𝑾
𝑼 (𝑡)) describing the scaling factor to apply 

at each point of the VE.  

Being a scalar field, navigation fields can be represented as textures, with the value of 

each pixel describing the scaling factor to apply (and we will represent them as such 

throughout the chapter). However, here we describe a general approach to automatically 

compute this navigation field based on a set of interactive areas. To do so, we first model 

the contribution of each interactive area and then compute the final field from these 

individual contributions.  

 

 

Figure 5.2 NaviFields’ principle: (A) Tracking spaces are usually reduced. (B) Physical 

displacement with homogeneous scaling can increase the navigable volume by a constant 

factor S. (C) In NaviFields, each interactive area provides a different scaling function, 

based on how relevant each point is to interact within that area. (D) We compute the final 

Navigation Field, by combining these individual contributions.  
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5.3.2.1 Per Interactive Area Contribution:  

For each interactive area, we compute a simple function that describes the scaling to be 

applied to a user position, based on how relevant that position is to interact in that area. 

Let 𝑰 be our set of interactive areas in the world (W). We model each area 𝒊 ∈ 𝑰 as a tuple 

𝒊 = {𝑖𝑊, 𝑟𝑖 , 𝑅𝑖 , 𝑀}, representing two concentric cylinders of radii 𝑟𝑖 and 𝑅𝑖 centered 

around 𝑖𝑊 ∈ ℝ4, and with maximum scaling factor M (see Figure 5.3(A)).  

Let 𝑷𝑾 = 𝑴𝑾
𝑼 (𝑡) ∙  (0,0,0,1)𝑇, be the current position of the virtual head and 𝑷′𝑾 its 

projection on the horizontal plane (Y=0). We define contribution of area i to the field as 

in Eq. (5.6), where  𝑑 = ‖𝑷′𝑾 − 𝑰𝑾‖ represents the distance between the user and the 

centre of the interactive area: 

𝒌𝒊(𝑷′𝑾) =

{
 

 
                       1              , 𝑑 ≤ 𝑟𝑖

1 + (𝑴 − 1) ∙
𝑑 − 𝑟𝑖
𝑅𝑖 − 𝑟𝑖

       , 𝑟𝑖 < 𝑑 ≤ 𝑅𝑖

                         𝑴              , 𝑅𝑖 < 𝑑  

                             (5.6) 

This function provides no scaling (𝒌𝒊(𝑷𝑾) = 1) inside the inner cylinder, to facilitate 

maneuver and precise interaction.  The scaling factor increases linearly between the inner 

and the outer cylinders, to ease navigation to distant points. It must be noted that, although 

this function shows a linear behaviour, it operates on the user’s velocity (𝑑𝑴𝑻
𝑼(t)/dt, in 

Eq. (5.3)). Thus, user moving away from i at constant speed will actually experience a 

parabolic motion. This is inspired from related approaches of viewport control 

(Mackinlay et al., 1990), to reduce simulation sickness (López, 2013) and maintain spatial 

awareness (Bowman et al., 1997). 

 

Figure 5.3 Modelling navigation fields: (A) Interactive areas are defined by their inner 

and outer cylinders (radius ri and Ri) and their maximum scaling factor M. (B) Function 

described by each interactive area.  
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5.3.2.2 Global Navigation Field: 

Each area 𝒊 ∈ 𝑰 provides a different scaling function, based on how relevant each point is 

to interact with that area. Thus, for given a point 𝑷𝑾, each area will provide a different 

scaling factor. We resolve conflicts by describing the navigation field as the minimum 

scaling factor across all interactive areas (see Eq. (5.7)). This ensures natural navigation 

inside all interactive areas (k(𝑷𝑾) = 1). User motion will also be speed up when leaving 

an interactive area and slowed down again when arriving to a new area. 

𝒌(𝑷𝑾) = min{𝒌𝒊(𝑷𝑾)} , 𝒊 ∈ 𝑰𝑾                                                    (5.7) 

It must be noted that all the definitions provided in this section only scaled displacements 

along the horizontal plane (assumed XZ). This is convenient for most indoor VEs and 

avatars resembling humans. In other application contexts (e.g., a spaceship game, where 

head physically controls motion of the ship) scaling factors 𝒌 and 𝒌(𝑴𝑾
𝑼 (𝑡)) should also 

affect the Y coordinate. Similarly, volumetric textures should be used to represent these 

such navigation fields. 

5.4 User Study 

The previous sections motivate the need for NaviFields and provide a formal definition 

for the technique. In this section we assess the usability of the navigation technique for 

search travel and manoeuvring (low-level navigation tasks (Bowman et al., 2001)). 

We compare our technique to the use of homogeneous scaling (Williams et al., 2006), 

rather than other scaled physical displacement approaches (LaViola Jr et al., 2001; Freitag 

et al., 2016), as these later ones impose an egocentric approach that does not match the 

inherent allocentric nature of NaviFields (i.e., scaling controlled by the environment, not 

the user). Rather than focusing the study on egocentric vs allocentric navigation, we 

include an additional comparison to natural navigation. This baseline comparison, and 

the extensive analysis of the factors influencing search and manoeuvring (scaling factors, 

path lengths, manoeuvring complexity and user poses), allow us to present a full testbed 

evaluation on the particularities of the technique proposed. 

5.4.1 Participants 

We performed our study across two different European countries (Spain and UK). Both 

locations used equipment with similar performance (90fps) and an empty experimental 

space of 3x3m for navigation. We used written-in-game instructions in both languages to 

guide participants’ training, to minimize differences across countries (i.e., different 
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experimenters providing the instructions) and to reduce bias due to such oral instructions. 

Following this process, we recruited 24 participants (12 in each country), collecting 

written consent from them before the start of the experiment. 

5.4.2 Testing Environment and Navigation Tasks 

We implemented our technique1 using Unity, and an HTC Vive headset, and created a 

testbed environment to evaluate it (Figure 5.4(A)). The environment contained six target 

areas of 60cm Ø, identified with numbered flags and evenly distributed around the user’s 

initial position. Participants were invited to stand in the centre of the experimental space, 

wearing the headset and holding one of the HTC controllers. At the beginning of the 

experiment, users went through a short in-game walkthrough, to familiarize then with the 

virtual environment and the tasks. They also performed one travel task (using natural 

navigation) and one manoeuvring task (see the next section) for training.  

 

Figure 5.4 Virtual environment: (A) Screenshot of the test environment implemented, with 

six target flags around initial location. (B) The navigation field was computed for each 

condition, and used to compute the equivalent homogeneous scaling factor.  

For the following trials, participants performed a two-part task, the first one to test the 

usability of the techniques for travelling, and the second one focused on manoeuvring. 

5.4.2.1 Travelling Task:  

At the beginning of each trial, users were positioned in the centre of the tracking space 

(and aligned to the centre of the VE). A text box was then displayed in front of them, 

describing a sequence of flags they had to travel to (target flags). Target flags appeared 

highlighted (see Figure 5.4(A)). Participants were allowed to look around to identify the 

flags (for planning and wayfinding). When ready (and only if still standing inside the 

central area) users pressed the trigger on the controller, to start the task and travel towards 

the flags. The task finished when the user reached the final flag.  
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5.4.2.2 Manoeuvring Task: 

When participants reached the last flag in the travelling task, an audio signal notified them 

of the start of the manoeuvring task. We then used an adapted version of in-world 

ParaFrustum (Sukan et al., 2014) (see Figure 5.5(A)) to describe the manoeuvring task. 

Participants had to attain and keep a correct head position and orientation for one second, 

to complete the trial. 

As defined in (Sukan et al., 2014), ParaFrustum is “a geometric construct that represents 

this set of strategic viewpoints and viewing directions and establishes constraints on a 

range of acceptable locations for the user’s eyes and a range of acceptable angles in which 

the user’s head can be oriented”. 

In our adaptation, two spheres (red for the left eye and blue for the right eye) showed to 

the users where they had to position their eyes (size of the spheres reflected the 

positioning tolerance allowed). After positioning, a green ring (tail/target, in the 

ParaFrustum notation) identified where users had to look at. A small cursor helped users 

to align their view to the target. The size of the ring was computed based on the maximum 

orientation error allowed. Thus, if the cursor was inside the ring, the orientation error 

would be small enough. Please note that this differs from the original ParaFrustum 

proposed in (Sukan et al., 2014), where the ring is shown at the periphery of the vision 

field. While this might be appropriate for the field of view (FoV) of the device they used 

(~60 deg), the wider FoV in the Vive pushed us to use this alternative implementation 

(i.e., to keep attention focused on the target to look at, instead of on the periphery of 

vision).  

 

Figure 5.5 ParaFrustums: (A) Screenshot of the in-world ParaFrustum implemented. (B) 

ParaFrustums were randomly located among 6 potential locations, each enforcing a 

different pose of the user   
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In each manoeuvring trial, six ParaFrustum’s were displayed in six potential positions 

around the flag, arranged in a hexagonal pattern (see Figure 5.5(B)). These forced three 

different poses in the users: kneeling (maximum stability, but reduced mobility), medium 

(low stability, higher mobility) and standing (good stability and mobility). 

5.4.2.3 Self-report: 

At the end of each trial, participants were asked to answer 4 questions. Two inquiring 

how easy/comfortable it was to walk to the flags (i.e., travel task) and two inquiring how 

easy/comfortable it was to look at the targets (i.e., manoeuvring task). Questions were 

displayed either in English or in Spanish on floating textboxes. Each question used a 

Likert scale from -3 to 3, which participants selected by moving the controller on their 

choice and pressing trigger. 

5.4.3 Experimental Design 

5.4.3.1 Travelling Task: 

In the experiment, we compared the proposed NaviFields technique (NF) to Physical 

Displacement with a homogeneous scaling factor (PH). We adopted a 2x3x2 full factorial 

design, with these factors being the condition tested (T={NF, PH}), the scaling factor 

used (S={2, 4, 8}), and the lengths of the travelling path (between L=3 or L=5 flags, see 

travelling task above). Scaling factors were selected based on a pilot study with 8 users, 

where S=16 was found too high.  

Experimental trials were pseudo-randomized using Latin Squares, counterbalancing order 

among participants according to technique, scaling factor and path length. That is, trials 

were presented within 2 blocks of six trials each (one block per NF or PH condition). 

These six trials then counterbalanced scaling factors (S={2, 4, 8}, S={4, 8, 2} or S={8, 

2, 4}) and path lengths (L={3, 5} or L={5, 3}). 

After the two condition blocks, participants completed a third block with natural 

navigation (S=1), which was used as a control condition (most natural and with most 

experience from the user). This will allow us to express our results as a deviation from a 

baseline, comparing performances in PH and NF as deviations from the optimal/baseline 

condition.  

Using this approach, we maintained our experimental design balanced and fully factorial. 

An alternative would have been to add a fourth scaling factor (S=1) to the design. 

However, when S=1, NF and PH behave in the same way. Thus, trials with S=1 would 
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be performed twice more than any other trial. Also, removing S=1 in either NF or PH 

would have resulted in an unbalanced experimental design. 

Finally, we made sure that, while the starting flag for each travelling task was randomly 

selected, the total distance to travel between flags was always equal for all trials under 

the same L condition. In other words, all paths with L=3 had the same length, as well as 

all paths with L=5. Up to 24 paths of equal distance were identified for L=3, and 108 

paths for L=5, with paths being randomly selected for each trial. 

5.4.3.2 Manoeuvring Task 

The manoeuvring task was performed at the end of each travel task. Given the 

experimental design explained above, each manoeuvring task was repeated twice for each 

scaling factor and condition (i.e., for any given S and T, there is one manoeuvring trial 

with L=3, and second one with L=5). This allowed us to test twelve different 

ParaFrustums per scaling factor and condition. The twelve ParaFrustums were a 

combination of three different factors, namely the ParaFrustum’s position (P), head size 

(HS) and tail size (TS).  

Position (P={KP, MP, SP}) was connected to the location of the ParaFrustum (see Figure 

5.5(B)) and represented the user pose than allowed him/her to reach the eye spheres, either 

kneeling (KP), medium (MP) or standing (SP).  

Head size (H_S={TH,LH}) related to the position error tolerance of the ParaFrustum. 

That is the size of the red and blue spheres indicating to the users where to position their 

eyes. Two sizes were compared: Tight head (TH; +1.5 cm max eye position error) and 

Loose head (LH, + 3cm). 

Tail size (T_S = {TT, LT}) related to the orientation error allowed by the ParaFrustum 

and was visually connected to the size of the target ring. Two sizes were tested: Tight tail 

(TT; max orientation error +5 degree) and Loose tail (LT, max orientation error +10 

degrees). 

5.4.4 Scaling Factors, Environment Size and Navigation Fields 

To test navigation across bigger virtual environments, the distance of the flags to the 

centre in the virtual environment increased proportionally with the scaling factor (S). 

More specifically, flags were located at DS={2m, 4m, 8m} from the centre respectively 

for each S={2,4,8}. For the baseline condition (natural navigation) flags were located at 

D1=1m from the centre of the VE. 
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The configuration of the interactive areas (the flags) also changed according to the scaling 

condition S. All areas 𝒊 ∈ 𝑰 maintained an inner radius 𝑟𝑖 = 30 cm (60cm Ø), but their 

outer radius was set to 𝑅𝑖 = 𝑟𝑖 + (𝐷𝑆 − 2𝑟𝑖)/3. For two adjacent flags, this outer radius 

covered one third of the distance between the edges of their inner 1:1 areas (Figure 

5.4(B)) shows an example for S=4, with specific measurements in meters). Thus, 

independently of the scaling applied, a user travelling between adjacent flags would go 

through the transition zone of the first flag for one third of the trip, through the area of 

maximum speed during the second third, and into the second flag’s transition zone in the 

last third. 

Finally, the scaling factors (S) needed to be compensated across techniques. For example, 

a scaling factor S=2 in PH would apply in all the navigable space. However, if we used 

M=2 in the interactive areas (see Eq(5.6), for the meaning of M), this scaling would only 

apply when users are outside of all interactive areas (i.e., red areas in Figure 5.4(B)).  

To balance these conditions for each S factor, the interactive areas will use an M value 

that provides an average scaling across the navigation field equal to our target value S. 

To compute these equivalent M values, we simply configured the areas as described 

above (distance to centre DS, inner and outer radius values). We then performed a linear 

search, testing increasing M values until the average scaling factor (i.e., integral of the 

navigation field divided by area) matched our target value S. Using this approach the 

equivalent M values to use for each S{2,4,8} were M={2.19, 4.60, 9.17}. Note that these 

values need to be slightly higher than PH, to compensate for the areas where no scaling 

is applied. 

5.4.5 Usability Evaluation Criteria 

The experimental software automatically recorded several dependent variables. For the 

travelling trials these were: task completion time (T_TCT), real distance travelled 

(T_RD) and deviation (T_D). T_TCT measured the time since the participants arrived to 

the first flag until they reached the final flag. T_RD measured the distance users moved 

their head (in reality). Finally, T_D measured the ratio between length of the virtual 

trajectory followed (linear integral along the path) divided by the optimum/minimum path 

length.  

For manoeuvring, the variables recorded were: task completion time (M_TCT), number 

of fixation attempts (M_FA), average position error (M_PE) and average orientation error 
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(M_OE). M_TCT measured the time required to complete the task. The task required 

users to stay within the constraints of the ParaFrustum continuously during one second. 

Leaving it, even for one instant would reset our one second timer. The number of fixation 

attempts (M_FA) counted the number of times this happened. Average position error 

(M_PE) and average orientation error (M_OE) measured error only while the user was 

correctly located within the ParaFrustum constraints.  

Finally, we collected the responses to the four questions as Q_CT, Q_ET, Q_CM and 

Q_EM, to refer to the ease (E) and comfort (C) for the travel (T) or manoeuvring task 

(M) 

5.5 Results and Partial Discussion 

In this section, we report the results of our user study. Independent sample t-tests across 

countries showed no significant differences. During our joint analysis of travel, 

manoeuvre and self-reports, we used within-subjects analysis of variance (ANOVA) to 

analyse the impact of each factor on the dependent variables (explained above). We also 

measured interactions between technique (T) and the other independent variables in the 

task (e.g., interactions between condition T and variables L and S, for the travelling task).  

Please note that the reported values (average and standard deviation) are reported as 

deviations from baseline (natural navigation). Given the high number of features 

examined, and because of the nature of the results (many significant interactions between 

variables), we will only report the absolute results in Appendix 2. Where needed, post 

hoc analysis with Bonferroni corrections were performed and most of them can be found 

in Figure 5.6 and Figure 5.7 (i.e., significance between pairs is indicated with an asterisk; 

and the difference between the pairs can be assessed from the graphs itself). The average 

and standard deviation of the baseline is also included in a box under the horizontal axis 

of each graph (i.e., to help assess the relevance of the effects observed between 

conditions). Numerical reports, absolute averages and standard deviations (instead of 

deviation from baseline) and average and standard deviation indicating the exact values 

of factors in the significant interactions can be found in Appendix 2.  

5.5.1 Traveling task: NaviFields vs. Homogeneous Scaling 

ANOVA results for travelling are shown in Table 5.1, both for the main effects and their 

interactions with T. Both techniques behaved on average worse than the baseline (see 

Figure 5.6) in terms of deviation from the optimal path (T_D). Lateral head movements 
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while walking could justify this, as these were scaled by both techniques. Even if the torso 

was moving linearly (following the optimum path), the sinusoidal side movement of the 

head would be scaled, resulting in higher distance travelled and worse T_D. 

 T S L T*S T*L 

T_D 
F=29.53 

p < 0.001 

F=43.45 

p < 0.001 

F = 3.04 

p= .093 

F = 8.13 

p< 0.001 

F= 0.45 

p = 0.50 

T_RD 
F= 111 

p< 0.001 

F= 98.62 

p< 0.001 

F= 78.74 

p< 0.001 

F=78.68 

p< 0.001 

F=23.44 

p< 0.001 

T_TCT 
F= 0.229 

p = 0.63 

F=76.96 

p< 0.001 

F= 73.9 

p<0.001 

F=2.10 

p = 0.13 

F= 0.22 

p = 0.63 

CT 
F= 6.646 

p< 0.05 

F= 32.03 

p< 0.001 

F= 0.404 

p= 0.531 

F= 1.182 

p= 0.315 

F= 0.026 

p=0.87 

ET 
F= 15.8 

p< 0.001 

F= 31.75 

p< 0.001 

F= 2.229 

p= 0.14 

F= 0.904 

p= 0.412 

F= 0.036 

p= 0.851 

Table 5.1 Results from repeated measures ANOVA on travel-related features and 

questionnaire ratings (CT and ET rows). Effects of technique (T), scaling (S) and path (L), 

as well as interactions among them (T*S, T*L) 

 

Figure 5.6 Results of traveling task: Bar plots representing mean and standard error of 

the variables collected in the travelling task, for each condition and scale factor. 

Significant post-hoc tests (p<0.05) between condition at each level of scaling are marked 

with *. 

However, our technique (NF) showed much lower deviation than homogeneous scaling 

(PH), with this difference becoming more relevant for higher scaling factors (significant 

interaction T*S). Paired analysis (indicated with asterisks in Figure 5.6) reveals 

differences between NF and PH are significant under all scaling conditions. This could 

be the result of head side displacements being scaled less while the user travelled through 
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low-scaling parts of the virtual environment (inner areas and transition zones). It is also 

worth noting that NF was only significantly worse than the baseline for S=8 (paired t-

test, Bonferroni corrected, p<0.05), indicating that for lower factors, users could still 

follow their paths effectively. 

On average, users also moved more in the real environment (T_RD) with NF and PH than 

in the baseline condition (see Figure 5.6). The difference between PH and baseline can 

be explained by looking at our users’ behaviour. Paths were equivalent for PH and 

baseline if users passed through the centre of the interactive areas. However, as soon as 

users reached the inner radius of the area, a sound was triggered, and most users directly 

proceeded to the next flag (travelling between the edges of the areas). Thus, using PH 

with scaling S=4, the 60cm interactive area would be reduced to 15cm in the real world 

(with users traveling 22.5 cm more to reach edges). Considering the distances between 

flags from Figure 5.4(B), this led to a final travel distance of 339cm/4 = 85cm. 

This situation was even worse for NF. Using the same example (and measurements from 

Figure 5.4(B)), users would require 40cm to travel through both transition areas, and 25 

cm to go through the area of maximum scaling, resulting in a required total distance of 

105cm. These differences in the distances required for each technique actually increased 

with higher scaling factors, further penalizing the NF condition.  

The fact that participants moved more in the real environment in both NF and PH can 

also help explain why users took more time to travel (T_TCT) in the two conditions (see 

Figure 5.6), and the influence of S and L.  

However, we found the lack of significant differences between NF and PH in terms of 

T_TCT interesting. We actually expected NaviFields to behave worse than PH, given 

that: a) the user was not in control of the velocity (depends on his position in the VE); 

and b) bigger S and L values should have penalized the NF technique even more than PH 

in terms of T_RD. The most likely way NF users could cover more real distance in (not 

significantly) higher time, would be if they actually moved faster in reality, which would 

indicate a higher level of confidence during locomotion.  

Questionnaire results also aligned in this direction, showing a general preference for NF 

(significance of T, for both C_T and E_T), which was further reinforced at higher scaling 

factors and distances (interaction T*S, and T*L for both C_T and E_T). Particularly, for 

all factors higher than S=2, travel was considered easier in NF and also more comfortable 
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(see significant post-hoc tests in Figure 5.6, for C_E and E_T). The fact that human motor 

control is planned in advance, based on the information collected from the environment 

(Kawato, 1999; Hayhoe et al., 2009), could also influence the better performance and 

preference for NF. Despite both NF and PH scaling users’ movements, we observed 

participants using NF tended to look around to plan the travel trajectory before starting 

locomotion (e.g., while inside a 1:1 area). The progressive increase in scaling could also 

have helped them to tune and adapt motion, once travelling started. These factors could 

help participants in the NF condition perceive travel as more comfortable. Finally, the 

progressive slow down when reaching the flags could serve as a feed-forward, reassuring 

them on the successful completion of the task, before actually finishing it. 

 T S H_S T_S P 

M_TCT 
F= 185.7 

p < 001 

F=103.7 

p< .001 

F= 09.7 

p< 0.001 

F=5.332 

p < 0.01 

F = 10.9 

p< .001 

M_OE 
F=41.27 

p <.001 

F=19.77 

p <.001 

F = 1.35 

p = 0.25 

F =9.282 

p < 0.001 

F=0.295 

p = 0.59 

M_PE 
F= 12.99 

p < 0.01 

F= 7.39 

p< 0.01 

F= 5.866 

p< 0.05 

F= 0.115 

p = 0.07 

F= 0.017 

P = 0.89 

M_FA 
F= 267 

p < 0.001 

F=134.8 

p< 0.001 

F=97.81 

p< 0.001 

F = 0.629 

p =0.43 

F = 9.586 

p < 0.05 

Table 5.2 ANOVA effects for each independent variable. 

 T*S T*H_S T*T_S T*P 

M_TCT 
F= 140.2 

p< 0.001 

F=97.25 

p< 0 .001 

F= 2.54 

P = 0.124 

F=13.59 

p< 0 .01 

M_OE 
F=17.5 

p <0.001 

F=5.64 

p <0.05 

F=0.64 

p =0.4 

F=0.002 

p = 0.96 

M_PE 
F= 5.08 

p< 0 .001 

F= 2.20 

P=0.1 

F= 6.459 

p< 0.05 

F= 7 

p< 0.05 

M_FA 
F = 174.3 

p< 0.001 

F = 125.3 

p< 0.001 

F = 2.02 

p = 0.16 

F = 8.5 

p < 0.05 

Table 5.3 ANOVA effects for the interactions of the factor T with dependent variables for 

manoeuvring  

 T S L T*S T*L 

CM F= 82.84 

p< 0.001 

F= 47.18 

p< 0.001 

F= 3.194 

P= 0.08 

F= 77.33 

p< 0.001 

F= 3.135 

P=0.08 

EM F= 60.15 

p< 0.001 

F= 39.73 

p< 0.001 

F= 0.59 

p= 0.44 

F= 42.97 

p< 0.001 

F= 4.17 

P = 0.052 

Table 5.4 ANOVA effects for questionnaire questions and interactions of factor T with 

each of the remaining variables. 

5.5.2 Manoeuvring: NaviFields vs. Homogeneous Scaling 

Table 5.2 reports the main effects from the ANOVA model for the independent variables, 

while Table 5.3 reports the main effects for all the interactions. Table 5.4 reports 

ANOVA results for the manoeuvring questionnaires. 
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Our results clearly show NaviFields (NF) provided better results than PH for 

manoeuvring. Significant effects were found for all variables (with NF always performing 

better). Also, higher scaling factors increased these differences even more (note the 

significant interactions T*S according to all variables; diverging trends clearly observable 

in Figure 5.7).  

These results were expected. For instance, in the case of a small ParaFrustum head (3cm) 

and S=4; participants using PH had to place their head within a sphere of 0.75cm. When 

compared to baseline, PH was significantly worse for S factors bigger than 2 (p < 0.05 

for all post-hoc tests between scaling and baseline; see Appendix 2).  

In contrast, NF enables similar amount of control than natural navigation. Indeed, when 

comparing NF to the baseline, no significant effect of scaling or condition was found for 

any of the variables, including questionnaires (CM and EM). Although expected (NF 

allowed close to 1:1 navigation during manoeuvring), these results clearly illustrate one 

of the main strengths in NF (allow larger navigable spaces, but still allow precise 

manoeuvring), and also show the impact scaling can have on manoeuvring tasks.  

Besides, our study also revealed some other relevant aspects related to manoeuvring tasks, 

which can be applied to NaviFields, or any other physical displacement navigation 

techniques scaling user’s motion (Song et al., 1993; Williams et al., 2006; Interrante et 

al., 2007; Steinicke et al., 2010). 

First, these results seem to challenge related work, where a homogeneous scaling factor 

of S=10 was regarded as still comfortable for users (Williams et al., 2006). Results from 

both travel and manoeuvring show a clear decrease in performance as scaling factors 

increase. The precision demands of the task also have a great influence on this factor (i.e., 

more significant effects in our manoeuvring results). 

However, it was interesting to observe that users seemed to have a relatively good 

manoeuvrability with a scaling factor of 2, both for NF and PH. In this condition (S=2), 

no significant differences could be observed between PH and NF (or baseline) in terms 

of M_OE and M_PE (observe lack of differences between pairs in Figure 5.7, for S=2). 

Questionnaires further reinforced this observation: for S=2 no significant difference were 

found between NF and PH (t < 1 and p > 0.05), for both CM and EM.  

This seems to indicate that, even in precise tasks, users can adapt their movement to finely 

control their gaze and posture, even in conditions where their visual feedback is 
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dissociated from their proprioceptive and vestibular feedback by a factor of 2. This could 

encourage the use of scaling factors bigger than one even inside relevant areas. This could 

further increase the additional navigable space while not affecting interaction 

significantly. 

 

Figure 5.7 Results of manoeuvring task: Bar plots representing mean and standard error 

of the variables collected, for each condition and scaling. Significant post-hoc tests 

(p<0.05) between condition at each level of scaling are marked with *. Since our plots 

depict the deviation from the baseline condition (natural navigation), the mean and 

standard deviation are presented under each graph as "N = Mean, ±SD". 

Our results also seem to indicate that, when scaling was applied, manoeuvring complexity 

was mostly driven by the position error allowed by the ParaFrustum (rather than the 

orientation error). It is worth noting that ParaFrustum head sizes chosen (H_S= {3cxm, 

6cm}) had a significant effect on M_PE (less error for loose head sizes). The same applied 

to tail size (T_S= {±5◦, ±10◦}), with main effect on M_OE (again, less error for loose tail 

sizes). These results indicate that the sizes and angular ranges chosen actually represent 

two positioning and two orientation tasks with different levels of complexity. However, 

the influence of H_S (Effect size on M_OE, Choen’s d=0.23) was much bigger than T_S 

(Effect size on M_OE, Choen’s d=0.5). This relevance of positioning vs orientation 

should be specially considered when designing tasks for points of the VE with higher 

scaling factors (for S>2, allow more positioning error).  
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Finally, the user’s pose had significant effects on the time (M_TCT) and number of 

attempts required (M_FA). Trials completed standing had on average the best 

performance and, surprisingly, kneeling led to the worst performance (higher M_PE, 

M_TCT, M_FA, M_OE, when compared to other poses). This seems to indicate mobility 

range can become a much more relevant factor that stability, for manoeuvring in 

environments using displacement scaling. We observed that, the small movement of the 

participants’ head while kneeling (down, but also forward) was scaled up, and users 

would tend to move past their target location. Users had to learn and anticipate this, either 

avoiding forward motion while kneeling, or by kneeling at a further distance to the target. 

This made it more difficult to reach the desired position, and the more limited range of 

motion of the pose, also offered less chances to correct it. Thus, users needed several 

attempts before “landing” in the correct spot.   

5.6 Drifting Effects in NaviFields 

Another observed effect from our studies was the presence of Drift in our technique (this 

effect is more deeply studied and corrected in the next chapter). Briefly, the effect occurs 

when a user returning to the centre of the VE, does not actually end up in the same position 

where he started in the real world. Being an unforeseen effect, our software did not collect 

data as to allow us to provide an empirical assessment of its impact. However, this effect 

did not result in any major issues during our experiments. 

 

Figure 5.8 Example of the role of Drift: A user walking along a closed path in the VE, will 

not return to the same real point.  

The effect of Drift can be exemplified by Figure 5.8, left. This shows a user walking in 

a closed trajectory near an interactive area with 𝑟𝑖= 1m, 𝑅𝑖= 3m and maximum scaling 

M=3. In reality (Figure 5.8, right), this user would walk 1m across the inner area (arrow 

a) and 1 m across the transition area (arrow b; average scale of two). Due to scaling, the 
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curved trajectory in (c), would require an arch in reality of only 3/3=1 m of radius, but in 

the path back to the centre (d and e, similar to b and a), our example user would end up 

1.41 m away from the starting point. 

This effect is the result of the different scales used for motion in the virtual and real world. 

For any given closed path A, the Drift vector can be computed as in Eq(5.8) (a full 

derivation for Eq(5.8) is available in Appendix 1). 

𝐷𝑟(𝐴) = ∫ 𝑺(𝒌(𝑴𝑾
𝑼 (𝑡) − 1 , 0 , 𝒌(𝑴𝑾

𝑼 (𝑡) − 1)) ∙
𝑑𝑷𝑻(𝒕)

𝑑𝑡
∙ 𝒅𝒕

𝐴

0

                  (5.8) 

Once modelled, this effect can be addressed by borrowing approaches from redirected 

walking. For instance, the Drift accumulated by the user since the beginning of the session 

is implicitly represented by the difference between its virtual and real positions (𝑴𝑾
𝑼 (𝑡) and 

𝑴𝑻
𝑼(𝑡)). However, the effect of the Drift cannot be assessed until the user returns to the 

original position (he/she closes the path). One simple approach is to, at every point in 

time t, compute the Drift that would be present if the user wished to return to the starting 

position, (following a linear path L from 𝑴𝑾
𝑼 (𝑡) to 𝑴𝑾

𝑼 (0)): 

𝐷𝑟(𝐴′) = (𝑴𝑾
𝑼 (𝑡) − 𝑴𝑻

𝑼(𝑡)) + 𝐷𝑟 (𝐿)                                            (5.9)  

This estimation can now be used to iteratively reduce Drift. If the current displacement 

(Eq(5.4)) will increase the magnitude of the Drift vector, one could positively scale this 

displacement (i.e., so that the user continues to move in that direction for as short as 

possible). Alternatively, if the current displacement will reduce Drift, user motion should 

be damped (i.e., to force motion in Drift-correcting directions). 

5.7 Discussion 

The results from our experiment have shown very good potential of NaviFields as a 

navigation technique, allowing users to navigate environments up to 8x8 times bigger 

than natural navigation, with very good potential for both travelling and manoeuvring. 

However, its effects on higher level aspects on navigation (spatial orientation, way-

finding, presence, cyber-sickness) should still be assessed.  

Other aspects revealed by our study also deserve further exploration. Reusing models to 

predict body motion from head motion (Slater et al., 1995; Cirio et al., 2009; Freitag et 

al., 2016), could avoid scaling head’s lateral motion. Drift correction techniques should 

also be tested. 
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NaviFields’ ability to extend the navigable space will also be heavily influenced by the 

nature of the VE. NaviFields will perform well in VEs with a discrete set of relevant 

areas, spread throughout the space. However, it will degrade to behave like homogeneous 

scaling if all points of the VE have similar relevance. This can be judged by looking at 

the gradient of the navigation field, as shown in Figure 5.2(D) or Figure 5.4(B). 

Other alternatives to generate the navigation field should also be explored. We described 

a very simple approach to compute the field, based on cylindrical areas and locations 

fixed at design time. This allowed us to explore the use of NaviFields as a general 

navigation technique, simplifies understandability and might serve as a general approach, 

but it is by no means the only way to generate such fields.  

As shown at several points throughout the chapter, the field can be described as a 2D map 

showing the scaling factor applied at each point of the VE. Thus, it can be understood as 

a continuous entity, where the scaling of each point in space can be tailored individually, 

to adapt to the specific requirements of the VE. The fields could then be automatically 

inferred, based on the geometry or architectural cues (e.g., doors, alleys, furniture) of the 

VE.  

Alternatively, an open-ended VE (with no a-priori knowledge of which areas are more 

relevant) could infer this from the user. The VE could initially use homogeneous scaling 

(i.e., all points in the navigation field sharing the same scaling factor). Clustering 

techniques could then be used, analysing the points of the VE where the user spends more 

time, to reduce the scaling factor in those areas (i.e., allow more natural navigation) and 

increase it in the places where the user spends less time. This could inherently support 

the learning process in training scenarios, allowing trainees to initially explore the whole 

environment (e.g., build mental models) and gradually provide adapted support for the 

areas where they need to spend more time (e.g., workspaces). 

The creation/modification of the navigation field could also become part of the mechanics 

of a VR game. In titles such as Gears of War, players need to advance among trenches, 

which become the guiding element for their navigation (i.e., advance to the next trench 

and then focus on shooting, taking cover or reloading). With NaviFields, identifying such 

areas could add an element of strategy to such games. Users should specifically identify 

strategic spots (e.g., by a gate, behind a crate) and create relevant areas there. Our 

technique would allow precise interaction in those locations and fast transitions between 

them (e.g., to run from one cover point to the next one).  
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Finally, the technique has always made use of scaling factors bigger than one. Smaller 

factors would reduce user motion and could be used to avoid penetration into objects 

(e.g., head getting close to a wall). This could also be used to recreate other effects, such 

as a user stepping on a muddy patch of the floor (or a slippery patch, using a factor bigger 

than one). 

5.8 Conclusions 

We presented NaviFields, a VR navigation technique that computes the relevance of each 

point of the VE (navigation field) and scales user’s motion accordingly. This provides 

areas of natural navigation (1:1), and faster navigation across non-relevant areas, 

extending the space users can navigate. 

We provided a mathematical characterization of the technique, and implemented it for a 

testbed environment. We then compared NaviFields performance for travelling and 

manoeuvring, comparing it with homogeneous physical displacement and natural 

navigation. 

Our results show that NaviFields is a suitable technique to navigate and interact within 

the virtual environment. NaviFields results are comparable to natural navigation in 

manoeuvring tasks, and only slightly worse for travelling tasks. Moreover, when 

compared to homogeneous scaling of the environment, NaviFields is judged better in both 

travel and manoeuvring tasks. Our experimental results also provide insightful 

information for interaction in VR, highlighting the role of user pose, head position and 

target size in manoeuvring task, and showing that participants can adapt relatively well 

for scaling factor up to S=2. We also analysed the drifting effect observed during the user 

study, provided a formal model for the effect (reusable for other techniques using 

differential tracking) and identify strategies to correct it. We finally discussed the scope 

of application of NaviFields, based on its observed properties and the affordances that it 

enables.  
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Chapter 6 Drift-Correction Techniques for Scale-Adaptive VR Navigation 

Drift-Correction Techniques for Scale-Adaptive 

VR Navigation 
Based on the Drift effect involved in scale-adaptive navigation found in the previous 

chapter, and seeking to better exploit the human capabilities by generating more tailored 

ITes, in this chapter we mathematically modelled the behaviour of the Drift effect across 

different scale-adaptive navigation techniques (i.e., the second stage of interaction) 

(Molina-Masso et al., 2008), considering also different navigation control types (ego-

centric and allocentric). Then, based on the general formulation of the Drift effect, 

computer simulations and user studies, we propose two modelled correction techniques 

to address this issue aiming to not only leverage the use of physical locomotion in VR 

navigation but also address detrimental Drift effects that produce turning the navigation 

techniques unusable. 

6.1 Introduction 

Space availability imposes restrictive constraints to the kind of commercial and 

professional VR experiences created nowadays. Only 9% of VR end users have access to 

real spaces larger than 3x3m (Community, 2017), which influences the kind of 

experiences and games created by industry. Natural navigation, arguably the most natural 

way of locomotion in VR, requires a real space that matches the size of the Virtual 

Environments (VEs), significantly limiting its current scope of application. Hence, 

alternative navigation techniques, which do not mimic the way we move and explore in 

the real world (Anthes et al., 2004), or even might not involve physical displacement at 

all (Slater et al., 1995) are used extensively.  

 



 

Chapter 6: Drift-Correction Techniques for Scale-Adaptive VR Navigation 

99 

Scale-adaptive navigation techniques could offer a suitable solution to compromise these 

constraints. Large VEs (e.g., 9x9m) can be accessed even from reduced real spaces (e.g., 

2.5x2.5m). Navigation is still controlled by user’s physical motion (i.e., closer to natural 

navigation), although scaled according to various policies (e.g., non-linear mapping of 

speed (Interrante et al., 2007), relevance (as shown in Chapter 5), space boundaries (Song 

et al., 1993)).  

However, this dynamic scaling introduces an issue (Drift, exemplified in Figure 6.1), that 

greatly limits their applicability.  Due to scaling, the location of the virtual head is not 

just the result of the current head position in the real world, but the result of its past 

trajectory of displacements (scaled according to the technique’s policy). Thus, given an 

available real space (e.g., 2.5x2.5m), the space that the user will be able to reach in the 

VE (navigable space) will vary according to the past history of user’s displacements.  

Figure 6.1 shows an extreme case illustrating the effects of Drift. A user follows a closed 

path (semi-circle) and returns to the origin of the VE (top row, in Figure 6.1). The 

technique (according to an artificial/example policy) applies no scaling in the linear path 

(red, 1:1 ratio) and 3x scaling along the curved part of the path (blue, 1:3 ratio). A user 

returning to the starting point in the VE would actually end up 2m to the right of the 

starting position in reality (i.e., see Figure 6.1(c)).  

 

Figure 6.1 The Drift effect: (a-c) Scale-adaptive techniques apply variable scaling to users’ 

displacements (red=1, blue=3). Drift appears as a result, causing that a user following a 

closed path in VR will not return to the same point in VR (c), which can affect the amount 

of time that the user can use the technique, before abandoning the limits of the tracking 

space available (d). 

This exemplifies how Drift can seriously hinder the practical use of scale-adaptive 

techniques. A VR Designer might have created the VE (i.e., with an intended navigable 

space in mind), and tuned the policy of the navigation technique (e.g., max scaling), to 

initially allow users to reach all relevant parts of the VE. However, Drift will accumulate 

as users navigate, changing the navigable space to the point that users might not be able 

to reach relevant parts of the VE, or even forcing them to stop (i.e., our example user 
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cannot complete the semi-circular path twice without leaving the real space available). 

To address this, we propose and test correction approaches that dynamically compute the 

Drift resulting from each user’s displacement and adjust the scaling factor to reduce its 

impact (i.e., minimize displacements when they increase Drift and maximize drift-

correcting displacements). 

We first provide a general model to describe scale-adaptive techniques and to 

characterize the Drift effect. In a first study, we quantify the effects of Drift on several 

user paths for an example environment and scale-adaptive technique. This provides an 

initial assessment of the ill effects that Drift can have on navigation, as well as data to 

guide the creation and tuning of our correction techniques.  

We then present a general model for Drift correction techniques and two example 

implementations: i) Derivative Correction (based on the proposed model from Chapter 

5), and ii) Angular Correction, based on our own insight. We then reused the paths 

recorded from our first study to simulate each technique, systematically exploring varying 

values of their tuning parameters, observing their effects on Drift and identifying an 

optimum technique and configuration. 

We finally evaluate our chosen Drift-correction technique with real users, applying it to 

one allocentric (NaviFields: our proposed technique in Chapter 5) and one ego-centric 

(Seven League Boots: proposed by (Interrante et al., 2007)) adaptive navigation 

techniques and using a VE different than that in our first study. Our evaluation confirms 

the effectiveness of our correction for both techniques. Drift can be consistently reduced 

(from values above 0.6m to a steady average value ~20cm). Users can also continue to 

navigate in the VE for extended distances, before Drift pushes them out of the tracking 

volume (from average 13m without correction to ~69m with our technique), with users 

not being forced to stop at all in most cases. Finally, our corrections introduce minimum 

changes to the basic behaviour of the navigation techniques and showed no negative 

effects in users’ performance or their subjective impressions. 

6.2 Related Work 

We reviewed the literature in two interrelated fields: VR navigation techniques and Drift 

effect in VR navigation. 
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6.2.1 VR Navigation Techniques 

Physical displacement in immersive Virtual Environments (VE) is commonly constrained 

by the real available space (or the size of the tracking volume), with natural 1:1 motion 

requiring a VE equal or smaller than the real space available.  

Many metaphors and approaches have been proposed to overcome such limitation 

(Billinghurst et al., 1997). Some approaches achieve navigation across large VEs at the 

expense of physical displacements, usually relying on additional controls  (e.g., joystick, 

buttons, wands (Anthes et al., 2004; Williams et al., 2006)). Other techniques rely on 

users’ body motion but with no actual displacement (i.e., walking), such as steering [3, 

13, 26] or teleportation techniques (Laurel et al., 1994; Fuhrmann et al., 1998; Bozgeyikli 

et al., 2016; Liu et al., 2018), but they are usually associated with increased user’s spatial 

disorientation (Bowman et al., 1997; Lathrop et al., 2002). Other methods use walking in 

place (WIP), where physical displacement is led by the user’s simulation of walking 

(assisted by movement of feet, heels or knees (Slater et al., 1995; Feasel et al., 2008; 

Wendt et al., 2010)) or treadmills-based systems (Darken et al., 1997; Fernandes et al., 

2003; Hale et al., 2014) for more natural locomotion. However, they still lack the same 

vestibular cues and proprioceptive perception than actual walking (Bowman et al., 2001). 

Redirected walking techniques that make use  of rotational and translational gains 

(discussed in Chapter 5, section 5.2.1) provide little benefit for spaces smaller than 6x6m 

(Azmandian et al., 2015). This is a serious constraint for their practical application, 

considering that only 9% of non-professional VR users (i.e., end customers) use spaces 

larger than 3x3m (Community, 2017).  

Alternatively, scale-adaptive techniques that dynamically adapt user’s displacements 

could be better suited for such tight spatial constraints. They use selection of target 

destination (Mackinlay et al., 1990), optical flow (Argelaguet, 2014) or head’s motion 

(Interrante et al., 2007)  to reduce the physical displacement and induce visual navigation 

by controlling the viewpoint scale and speed, allowing thus fast displacement along big 

distances whilst gradually decreasing speed as the user approaches a target. These 

techniques are usually ego-centric (i.e., fully controlled by user motion). Other techniques 

use an allocentric approach where the navigation is based on the VE (Song et al., 1993) 

i.e., the viewpoint speed is adjusted in specific areas depending of their relevance in the 

VE (fine or big exploration movements as shown in Chapter 5). 
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These techniques appear as an interesting alternative, making use of physical 

displacements (e.g., reduce disorientation, provide proprioceptive perception of walking), 

allowing navigation of medium-sized VEs and requiring smaller real spaces (e.g., 3x3m 

as employed in Chapter 5; 3.5x3.5m (Wilson et al., 2018); 5x5m (Xie et al., 2010)), better 

suited for the current landscape of VR users, with spaces between 2.5x2.5m and 3x3m 

being available for ~30% of VR end users (Community, 2017), and up to ~60% of 

professional VR spaces (Community, 2016).  

However, scale-adaptive techniques also introduce an undesired Drift effect (i.e., a 

difference between the real and the virtual position of the user after traveling along a 

closed path in the VE), which we describe next. 

6.2.2 Drift Effect in VR Navigation  

The Drift effect is an inherent problem in VR navigation. We distinguish two main types 

of Drift: hardware-induced and technique-induced Drift. The first case (hardware-

induced) has been subject to more extensive research (Siciliano et al., 2016), and is the 

result from accumulated measuring errors of the device over time (resulting in a 

progressive mismatch between the position in VR and the real position of users). For 

instance, inertial sensors have an implicit Drift effect due to the nature of the devices used 

that results in both rotational and translational Drift (Oskiper et al., 2011). 

Technique-induced Drift is typical from techniques including dynamic modification of 

user speed (e.g., dynamic scaling factors) (Interrante et al., 2007; Wilson et al., 2018), as 

shown in Chapter 5. This results in the same outcome as hardware-induced Drift (a 

mismatch between the “measured” position in VR and the position in reality), but in this 

case the effect is the result of the accumulated differences between the user’s physical 

and (scaled) displacements in VR.  

Correction techniques have been proposed to deal with hardware-induced Drift (Foxlin, 

2005; Oskiper et al., 2011). As per technique-induced Drift, studies measure the impact 

of this effect (Nilsson et al., 2013), and initial ideas identified in Chapter 5 on how 

corrections could be implemented. However, to the best of our knowledge, no attempts 

have been made at correcting technique-induced Drift. The correction approach proposed 

in this chapter uses absolute coordinates (position and orientation of a target with respect 

to a reference coordinate system) focussing then on technique-induced Drift and it is not 

affected by hardware or sensor deviations (e.g., inertial sensors). 
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6.3 Modelling Scale-adaptive Techniques 

In this section, we introduce a general model to describe scale-adaptive VR navigation 

techniques, such as (Razzaque et al., 2001; Steinicke et al., 2010; Wendt et al., 2010; 

Azmandian et al., 2015). This allows us to formalize the Drift problem affecting these 

techniques, which will be instrumental to allow the correction techniques proposed later 

in the chapter.  

For our explanations, R and V represent the systems of reference of the real and virtual 

world respectively. Points PR(t) and PV(t) represent the 3D position of the user’s head at 

each point in time (e.g., PR(3) refers to the real position of the user’s head, at time t=3s). 

Capital letters refer to positions in 3D space, while bold lower-case letters refer to vectors 

(e.g., directions). Operator · refers to the usual dot product, while ʘ refers to the element-

wise (Hadamard) product (Horn et al., 1990).  

We also assume spaces R and V are initially aligned (PR(0)=PV(0)=(0,0,0)). This 

represents the efforts of the VR designer to identify the navigable space, that is, the virtual 

space that the user should be able to reach considering: i) the real space available; and ii) 

the navigation technique chosen. Drift effects will affect this initial mapping and can 

make navigation unfeasible (e.g., areas of the navigable space becoming unreachable), as 

shown later in this chapter. 

6.3.1 Uncorrected Scale-adaptive Techniques: A General Model 

Scale-adaptive techniques control the position of the virtual head (PV(t1)) by applying a 

variable scaling factor (𝒌(𝑡1)) to the user’s real displacements (Δ𝑷𝑹(t1)):  

𝑷𝑽(t1) =  𝑷𝑽(t1 − Δt) + 𝒌(𝑡1)ʘ(Δ𝑷𝑹(t1))                                  (6.1) 

Function k(t): ℝ →ℝ3, represents the scaling policy of the technique, that is, how the 

user’s movements will be scaled according to the technique’s logic. It can be, for instance, 

the result of a non-linear mapping of the user’s speed (Interrante et al., 2007), the distance 

of the user to the centre of the VR world (Song et al., 1993) or the use of navigation fields 

explored in Chapter 5. Finally, given our initial assumption (PR(0)=PV(0)=(0,0,0)), real 

and virtual positions can be defined over time as:  

𝑷𝑹(t1) = ∑ Δ𝑷𝑹(t)𝑡1
𝑡=0 ;  𝑷𝑽(t1) = ∑ 𝒌(𝑡)ʘΔ𝑷𝑹(t)𝑡1

𝑡=0                          (6.2) 
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6.3.2 Translational Gain (G(t): ℝ →ℝ3): 

The scaling policy (i.e., modelled by k(t) in Eq (6.1)) is key to allow users to navigate 

spaces different (larger) than the real space. Figure 6.2 illustrates this behaviour, showing 

the user’s real displacements in R and the resulting path in V, computed by scaling the 

user’s displacements by 𝒌(𝑡). 

 

Figure 6.2 Illustration of user displacement in the real (red line) and virtual spaces (blue 

line). The green line represents the Gain vector (extra displacement enabled by the 

technique).  

We refer to this accumulated difference between real and virtual positions (𝑷𝑽(t1) −

𝑷𝑹(t1)) as Translational Gain (Gain, for short), and joined with Eq (6.2) is defined as:  

𝑮(t1) = ∑ (𝒌(𝑡) − (1,1,1))ʘΔ𝑷𝑹(t)𝑡1
𝑡=0                                     (6.3) 

This, Gain implicitly represents the “extra displacement” that the technique has allowed 

between t=0 and t=t1. Most techniques extending navigable space (i.e., main focus of this 

chapter) will aim for a scaling policy allowing high Gain. 

 

Figure 6. 3 Drifted trajectory: A user moves along a closed path in the VE (blue line), but 

does not return to the same point in reality (red line). This offset is called Drift, and it 

changes with time (e.g., it will double if the user repeats the same virtual path again, 

dotted lines). 



 

Chapter 6: Drift-Correction Techniques for Scale-Adaptive VR Navigation 

105 

6.3.3 Defining Drift: Uncontrolled Gain along Closed Paths 

Gain is also the source of the Drift problem. As illustrated in Figure 6. 3, when a user 

travels along a closed path in V (i.e., blue path), it is most common that the user will not 

return to the same starting position in R (i.e., end of red line). In the example, if the user 

was to repeat the path twice (i.e., blue path), he/she would have drifted towards the limits 

of the real space available (i.e., end of dotted red line). However, he/she would believe to 

be back at the same point (the headset shows he/she is right at the origin of V).  Parts of 

the VE that were accessible before will no longer be available (e.g., our user cannot 

complete the path a third time), and the initial mapping between spaces R and V 

(navigable space) has been compromised. We draw inspiration from the exploration in 

Chapter 5 to model this effect, describing Drift as “the Gain accumulated along a closed 

path in V”, being only defined if PV(t1)=PV(0): 

𝑫(t1) = 𝑮(t1)         ⇔      𝑷𝑽(t1) = 𝑷𝑽(0)                                   (6.4) 

This allows us to formalize the goal of our Drift correction techniques. The techniques 

should allow for high Gain (extended navigation), while ensuring Drift remains small 

(maintaining the original alignment between R and V). We also focus our exploration on 

cases where Drift effects are most detrimental, particularly medium-size VEs (i.e., dozens 

of square meters) using reduced real spaces (i.e., 2.5x2.5m). 

6.3.4 Estimated Drift: Approximation for Open Paths 

As discussed in Chapter 5, Drift correction methods will require an estimation of the 

current Drift at any point in time. However, Drift is only defined for closed paths (Eq 

(6.4)). A simple approach is to estimate the Drift that would be present if the user wished 

to return to the starting position (𝑷𝑽(0)) from the current position (𝑷𝑽(t1)). We denote 

such estimated Drift as 𝑫̅(t1): ℝ →ℝ3, and compute it as a two-step process, described 

in the following subsections: i) simulate a path returning to the origin; and ii) estimate 

Drift based on current state (i.e., position, velocity) and the simulated path.  

6.3.4.1 Simulating Path Returning to Centre: 

We use a very simple model, simulating that the user goes back to the origin following a 

straight line. To approximate user speed (i.e., required by some techniques  (Interrante et 

al., 2007)), we assume a conventional  human motor control scheme (Kawato, 1999; 

Hayhoe et al., 2009), where users initially collect information from the environment (plan 



 

Chapter 6: Drift-Correction Techniques for Scale-Adaptive VR Navigation 

106 

path), and then follows a ballistic locomotion stage (Horn et al., 1990), initially 

accelerating towards the target and slowing down upon arrival.  

Let L and l(t) be the initial and current distance from the user to the centre respectively, 

𝑣0 the user’s initial speed (𝑣0= ‖Δ𝑷𝑹(t1)/Δt1‖) and 𝑣𝑀 the maximum walking speed 

(Argelaguet, 2014; Zank et al., 2015). User speed is then approximated as in Eq (6.5):  

‖
Δ𝑷𝑹(t))

Δt
‖ = {

𝑣0 −2(𝑣𝑀 −𝑣0)𝑙(𝑡)/𝐿,     𝑙(𝑡) < 𝐿/2

𝑣𝑀 − 2(𝑣𝑀−𝑣0)(𝑙(𝑡)− 𝐿/2)/𝐿
                           (6.5) 

Once the speed (‖Δ𝑷𝑹(t)/Δt‖) is determined, the user displacement is computed easily, 

by multiplying this magnitude by the unitary vector in the direction of the origin. This 

allows us to simulate both the user’s real position and speed along its path back to the 

centre of the VE. 

6.3.4.2 Estimating Drift: 

In order to estimate the Drift, we need to consider the current location and the simulated 

path (described above). Let’s assume that at the current time t1, the user is at 

positions 𝑷𝑹(t1) and 𝑷𝑽(t1), with G(t1) being the current gain accumulated (as per Eq 

(6.3)). Also, let S: (t1, t2] → ℝ3 be the simulated path returning to the centre computed as 

above. S(t) will describe the user’s real position at each point in time (t ∈ (t1, t2]).  

Estimated Drift is simply computed by completing the closed path, that is, simulating Eq 

(6.1) along the path described by S: 

𝑫̅(t1) = 𝑮(𝑡1) + ∑ (𝒌(𝑡) − (1,1,1))ʘΔ𝑺(t)𝑡2
𝑡=𝑡1                           (6.6) 

6.4 Study 1. Quantifying and Understanding Drift 

As a preliminary step to guide our research, we wanted to gain insight on the magnitude 

of the Drift effect, to better assess its potential harmful effects on the usability of scale-

adaptive techniques. Particularly, we used the NaviFields technique proposed in Chapter 

5 with a navigable space of 168m2. We did so by fixing the maximum scaling factor to 

M=8 and replicating the testbed environment used in Chapter 5 (i.e., six flag targets, 

placed in a hexagonal pattern, 8m away from the origin of V; inner radius of relevance 

areas 0.25m; outer  radius 2.75m; all feedback cues replicated). The experiment was 

performed in an empty room-size tracking space of 2.5x2.5m. 

Participants were asked to complete one training task and six navigation tasks. Each task 

required users to travel along sequences of 6 flags (L6) or 12 flags (L12) (see Figure 6.4). 
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Participants started the task from the centre and the “next flag” was always highlighted 

(red cylinder in Figure 6.4). For the training task, natural 1:1 navigation was used, 

allowing users to get used to the task and feedback. The six actual tasks using NaviFields 

followed, with each path length (L6 or L12) being repeated three times. Although each 

path was randomly generated, we ensured that all travel distances were the same, for paths 

of the same length (e.g., all paths of 6 flags were 54.4m long). The study was approved 

by the local ethics committee and we collected data from 12 participants (5 females, mean 

age=28.38 years old, SD=4.62). 

 

Figure 6.4 Travelling task: Participants travelled a sequence of target flags (L6 and L12) 

in a shown sequence, starting from the centre of the VE. 

6.4.1 Analysis of Drift Effects 

Figure 6.5 shows the evolution of the estimated Drift (average magnitude and SD), as 

our participants progressed along their flags. This average magnitude increased almost 

linearly during the first steps of the task (flags 1-6) and seemed to settle above 0.6m 

afterwards. This is a very high value for a 2.5x2.5m tracking area, practically reducing 

the usable space to 1.3x1.3m. Actually, 4 out of 12 participants could not complete their 

tasks because of the Drift (target areas not reachable), forcing us to enrol new participants 

to complete our sample. Thus, this is an optimistic estimate, as results are from successful 

participants, where Drift was not so high.  

We computed the average estimated Drift magnitude at each flag for each participant 

(average across their three repetitions). An ANOVA analysis showed significant 

interactions between estimated Drift and flag number for both our 6-flag paths (p<0.001, 
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η2=0.807) and 12-flag paths (p<0.001, η2=0.830), indicating that Drift effects increase, 

the more the user navigates. This interaction is not present (p=0.499, η2=0.126) for the 6 

last flags of our longer paths (i.e., flags 7-12), and hence we cannot disregard the 

hypothesis that Drift settles after the initial 6-flag stage. 

A second observation worth noting is that the variance of the estimated Drift was very 

high. This could indicate that the magnitude of the Drift might be more difficult to predict 

as the length of the path increases (i.e., the longer the user is navigating). This is 

understandable, as Drift will evolve according to user’s decisions (i.e., where she/he 

wants to go), becoming less predictable the longer that the user is navigating. However, 

this trend is not so obvious towards the end of the path (i.e., variance is more constant, 

between flags 7-12). Our ANOVA tests showed no significant interactions between the 

number of flags and the variance of the Drift (for any path lengths), so we cannot confirm 

these observations.  

 

Figure 6.5 Evolution of the average of estimated Drift for each path length (L6 and L12) 

and flag (1-12). Error bars represent SD. The bottom dashed line represents no Drift. 

6.5 Drift Correction Techniques 

The previous evaluation illustrated the very detrimental effects that Drift might have for 

the general use of scale-adaptive techniques. Four of sixteen users did not complete 

longer paths, and the Drift magnitudes observed (0.7 + 0.4 m) were large, especially for 

such a small tracking space. In this section, we describe techniques to correct this effect. 

We first provide a simple general model for Drift correcting techniques. We then describe 

two approaches: Derivative correction, based in our initial model presented in Chapter 5; 

and Angular correction, based on the relationship between the user’s displacements and 

the Drift vector. 
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6.5.1 A Generic Model for Drift Correction Techniques 

As introduced earlier, our techniques should allow for high Gain (i.e., navigate 

medium/large VEs from reduced real spaces), while ensuring Drift remains small (i.e., 

maintain initial mapping between R and V). Also, we wished to maintain the initial 

properties of the navigation technique: i) displacements must retain the direction of the 

user’s real motion (i.e., translational gain); and ii) correction must add minimal changes 

to the normal behaviour of the technique.  

Based on these constraints, our correction techniques are a simple modification of the 

general case in Eq (6.1):  

𝑷𝑽(t1) =  𝑷𝑽(t1 − Δt) + 𝑐(𝑡1)𝒌(𝑡1)ʘ(Δ𝑷𝑹(t1))                          (6.7) 

Here c: ℝ → [1-ε, 1+ε] ⊂ ℝ describes a correction (scalar) function, which simply 

modulates the magnitude of the scaling policy (i.e., does not affect its direction). Besides, 

the function is bounded to a small range around 1 (i.e., ε should be close to 0), to ensure 

that the behaviour of the corrected technique is mostly driven by the technique’s scaling 

policy (i.e., the corrected behaviour remains similar to that of the uncorrected technique).  

6.5.2 Derivative Correction 

Our first technique is directly derived from the Drift model described in Chapter 5, with 

the correction being driven by the variation in Drift at each point in time (see Eq (6.8)). 

For instance, if current displacements are increasing estimated Drift (i.e., positive 

derivative of 𝑫̅(t)), displacements will be scaled up, to minimize Drift-increasing 

displacements:  

𝒄𝑫𝒆𝒓𝒊𝒗(t) =  {

1 − ε                      ,Δ‖𝑫̅(t)‖/Δt < − ε

1 − Δ‖𝑫̅(t)‖/Δt                                    

1 + ε                      ,Δ‖𝑫̅(t)‖/Δt >    ε

                              (6.8) 

We use two parameters to fully define this function. Parameter ε (mentioned above) 

defines the bounds of the correction (i.e., how much the corrected scaling factors can 

deviate from that of the basic technique). Parameter   defines the aggressiveness of the 

correction (how quickly the technique reacts to derivative changes to try to correct Drift). 

6.5.3 Angular Correction 

The second technique looks at the correlation between the current displacement and the 

Drift. This is based in the implicit relationships between Drift, Gain and Δ𝑷𝑹(t). Given 

the behaviour of scale-adaptive techniques (translational gain), Gain increases/decreases 
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in the direction of Δ𝑷𝑹(t)). Given that Drift is a specific type of Gain (along a closed 

path), it will also evolve in the direction of Δ𝑷𝑹(t).  

This second technique models this insight. If a displacement is aligned to the direction of 

the current estimated Drift, it will take this displacement as an opportunity to correct Drift 

(increase/decrease scaling). However, displacements perpendicular to the Drift are 

ignored, as they cannot help correcting the Drift effect. This is modelled by Eq (6.9), 

where 𝒖𝑫̅(t) and 𝒖𝑹(t) denote the unitary vectors in the direction of 𝑫̅(t) and Δ𝑷𝑹(t), 

respectively (and dot product being used to determine their relative alignment). The 

Angular technique defines the same tuning parameters as the previous technique (i.e., 

bounds (ε) and aggressiveness ()).  

𝒄𝑨𝒏𝒈(t) =  {

1 − ε                        ,𝒖𝑫̅(t)𝒖𝑹(t) < − ε

1 − 𝒖𝑫̅(t)𝒖𝑹(t)                                        

1 + ε                        ,𝒖𝑫̅(t)𝒖𝑹(t) >  ε   

                              (6.9) 

6.6 Testing & Tuning our Correction Techniques  

Our first study revealed that Drift could have very detrimental effects on the continued 

usage of scale-adaptive techniques, justifying the need for correction algorithms. Our 

analysis also revealed a high variability in the magnitude of this effect, reflecting the fact 

that in the end, it is the user who is in control, and Drift will be determined by the users’ 

decisions (i.e., where/when they want to go). This variability poses a serious challenge 

when trying to assess the best configuration for our correction techniques.  

On one hand, values for parameters ε and  should be kept low. Particularly, a low bounds 

value (ε) is needed so that the technique’s behaviour is mostly driven by its own scaling 

policy (and not by our attempts to correct Drift). Low aggressiveness () is required to 

prevent corrections from reacting too quickly to small changes in 𝑫̅(t), as this could 

introduce jitter in the scaling factor, even if the user is moving smoothly. On the other 

hand, both ε and   need to be high enough as to maintain a reduced amount of Drift and 

allow for a continued usage of the navigation technique.  

This section explores how different configurations of ε and   affect the behaviour of our 

correction techniques (Derivative and Angular) in terms of Drift. We first describe how 

we made use of the data recorded during Study 1 to simulate the effects of a given 

configuration (i.e., correction technique and specific values of ε and  ). We then describe 

the configurations simulated and the results obtained.  
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6.6.1 Data Driven Simulation  

We reused the paths recorded during our first study (72 paths of 54.4m and 108.8m), 

simulating a user following the recorded paths with different configurations (i.e., 

correction techniques and values for ε and  ), and computing the resulting 𝑫̅(t). 

We could not use the users’ real displacements (i.e., PR(t)) to guide our simulations. By 

changing the configuration (technique and parameters), these displacements could result 

in very different paths in VR, not necessarily going through the same points/flags in the 

VE than the user we recorded.  

Instead, our simulations are guided by the users’ virtual paths (i.e., PV(t)). That is, given 

a specific configuration (i.e., technique, parameters), we compute the real displacements 

that the user should have made to follow the virtual path recorded. This implies the 

assumption that users are in control of the navigation (they know the path they want to 

follow and plan their physical displacements to match it). 

6.6.2 Simulation of Correction Configurations and Results  

We performed a brute force search of our solution space for both techniques (Derivative 

and Angular), using increasing (but low) values of bounds (ε ∈ {0.35, 0.3, 0.25, 0.20, 

0.15, 0.10, 0.05}). The aggressiveness factor needs to account for the difference in units 

between the correction criteria (e.g., Δ‖𝑫̅(t)‖/Δt), and the correction range (e.g., [1-ε, 

1+ε]), and was hence explored following a geometric series ( ∈ {0.125, 0.25, 0.5, 1, 2, 4, 8}), 

each covering a different order of magnitude. This resulted in 49 different tests for each 

correction technique (Derivative and Angular) resulting in 98 configurations in total, 

aiding us in the search of the best configuration for each technique, and providing insight 

on their general behaviour.  

Figure 6.6 provides an overview of the results obtained from this search, showing the 

final Average (AD) and Standard Deviation (SDF) of estimated Drift for each 

configuration. The colour code in our Bi-variate chart is scaled (see Figure 6.6(a)). As 

minimum values for AD and SDF (pink colour), we use the minimum values found across 

all 98 configurations. As maximum values (purple colour), we use the AD and SDF of 

the uncorrected technique (i.e., any value higher than the uncorrected technique is 

considered unacceptable). 

The Derivative technique showed very poor results, always with high 𝑫̅(t) (purple 

colours, in Figure 6.6(b)). Paired comparisons with Bonferroni corrections were run, 
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comparing the estimated Drift of the uncorrected technique with each configuration of 

Derivative tested. No significant differences were found in most cases and, where 

differences were found, Derivative always performed worse than the basic uncorrected 

technique indicating that the approach proposed in Chapter 5  is not an effective approach 

to correct Drift. Results for paired tests for all Derivative and Angular tests are available 

in our Appendix 3.   

The Angular technique did show very good results for some configurations (pale pink in 

top-left of Figure 6.6(c)). Our results show that the Angular technique reduces Drift for 

higher values of ε and low values of alpha  (best result for ε=0.25 and =0.25). The first 

result (good correction for higher ε values) is to be expected, as higher bounds (ε values) 

allow Angular to apply larger corrections to the scaling policy. 

 

Figure 6.6 Overview of the results (data driven simulation): (a) Bi-variate map, showing 

colour code used for Average 𝑫̅ (AD) and Standard Deviation of 𝑫̅ (SDF); (b) The 

Derivative approach showed very poor results (not improving the behaviour of the 

uncorrected technique).  (c) The Angular technique showed a clear sweet spot (pink area 

in top-left), for low values of  and mid-high values of 𝛆. 

 

Figure 6.7 Comparison of Drift (=0.25, 𝛆=0.25, best configuration) for our techniques, 

showing evolution of 𝑫̅ as users travelled across flags 1-12. 

The explanation of the second result (good correction for =0.25 or =0.125) required a 

more detailed understanding of the behaviour of the Angular technique. The technique 

(Eq (6.9)) uses the alignment between the Drift vector and the user displacement to guide 

correction. More specifically, 𝒖𝑫̅(t)𝒖𝑹(t) describes the cosine of the angle between 
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these two directions. This provides a value in the range [-1,1], which is then scaled by the 

aggressiveness to the range [-,], with the final correction capped by ε (range [-ε, ε]). 

For our best case (ε=0.25 and =0.25), the aggressiveness naturally maps the [-1,1] range 

to the range [-0.25, 0.25] allowed by ε. Displacements in the direction of Drift (0 degrees) 

will result in a maximum correction (0.25), which will decrease to zero as the angle 

reaches 90 degrees.  

However, a higher value of  will make the Angular technique less selective to directions 

(Drift to displacement angles). For instance, for (ε=0.25 and =0.5), a displacement angle 

of 60 degrees respective to 𝑫̅(t) will already provide a maximum final correction value 

of 0.5cos (60)=0.25. A smaller angle (e.g., 30 degrees) will not provide more correction 

(e.g., 0.5cos (30)=0.43 is bigger than ε=0.25, so correction will be capped to 0.25). 

Thus, techniques with  > ε will scale large angles (i.e., poor alignment) just as much as 

small angles (i.e., good alignment), making the correction technique unreliable. Actually, 

all configurations with  > ε failed to correct Drift and in some cases resulted in very 

adverse effects e.g., ε=0.25; =8 resulted in a final AD of 2.37m (more examples are 

presented in Appendix 3, Figure S1). 

Similarly, values of  smaller than ε do not make good use of the correction range allowed 

by ε. For =0.125, the range [-1,1] will always be mapped to [-0.125, 0.125], even if ε 

would allow for higher corrections (e.g., ε = 0.3). Actually, paired analysis comparing 

configuration (ε=0.125 and =0.125) with other configurations (see Appendix 3, Table 

S1) with higher ε never show any significant differences/improvements.  

Our results and analysis clearly show that the Angular technique with ε=, will result in 

an optimum use of its correction range. Based on this, we selected ε=0.25 and =0.25 for 

our following studies (Drift results in Figure 6.7).  

6.7 Study 2. Generability and Robustness of our Correction Techniques 

Our previous step allowed us to assess the effectiveness of our correction technique for a 

specific technique and set of paths, allowing us to recommend a specific configuration 

(Angular technique, ε=0.25, =0.25). In this study we tested if our correction would still 

be effective for other techniques and environments but, more importantly, with real users.  

Particularly we tested two techniques: Seven League Boots (Interrante et al., 2007) and 

NaviFields (proposed in Chapter 5), as representatives of two different paradigms. In 
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Seven League Boots, scaling is exclusively dependent on the user’s speed, being a good 

representative of an ego-centric technique (de Haan et al., 2009). In NaviFields, the 

scaling factor depends exclusively on the location of the user in the VE (i.e., how relevant 

that point is), being an example of an allocentric scale-adaptive technique. Besides 

reducing Drift for these techniques, we also wanted to test if our Drift correction 

techniques introduced any ill effects to the navigation experience. That is, if either the 

user performance or subjective impressions (e.g., sense of presence, sense of control) 

were distorted as a result of our dynamic (maybe unexpected) corrections. It must be 

noted that our intention is not to compare the performance of NaviFields vs Seven League 

boots, but to assess if our correction can address Drift in both cases and without affecting 

their overall behaviour. 

6.7.1 Seven League Boots Implementation (7LB) 

Seven League Boots (7LB) was implemented as a particular case of our corrected scale-

adaptive techniques (i.e., using Eq (6.7)), with its scaling policy only determined by 

user’s real speed (𝒗𝑹 =  Δ𝑷𝑹(t1)/Δt), and defined as follows:  

𝒌(t) =  {
    1                        ,     𝒗𝑹   <  0.2  𝑚/𝑠     

𝑒1.62 (𝒗𝑹  −0.2)          , 0.2 <  𝒗𝑹   <  1.4 m/s
                              (6.10) 

This implementation is directly inspired by the original technique. First, the range of 

speeds chosen (e.g., 𝒗𝑹 ∈ [0, 1.4) m/s) corresponds to the walking speed of an average 

adult. The exponent selected (i.e., 1.62) allows scaling of up to 7 at maximum walking 

speed, like the original technique. 

6.7.2 Environment and NaviFields Implementation (NF) 

Being an allocentric technique, the explanation of the NaviFields (NF) implementation 

used is tied to the VE (and navigation field) used, and they are here described together. 

First, we used a smaller environment than in Study 1. This was partially a consequence 

of the implementation of 7LB. Assuming all walking speeds were equally probable, the 

average scaling provided by 7LB was 2.79 (i.e., integral of k(t) divided by 1.4). The 

environment was scaled according to this factor, with flags located at 2.79 m from the 

centre, and following the same hexagonal distribution as in Study 1. Although we do not 

compare 7LB vs NF, we wanted to test the NF technique in an environment different than 

the one used in Study 1 (i.e., test if the configuration tuned for a scaling factor of 8 was 

still valid in other environments). Thus, we decided to test NF using the same 
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environment that we use for 7LB, modifying the navigation field according to its new 

size. More specifically, we changed the outer radius of the 6 flags to 1.01m and further 

modified the navigation field, by adding an extra area of interest in the centre of the room 

(inner radius 0.15m, outer radius 1.01m). The final VE resulting and its navigation field 

used are shown in Figure 6.8.  

6.7.3 Navigation Tasks  

We used a travelling task similar to that in Study 1, but with 42 flags in each path. The 

intention was to test if our correction techniques increased the amount of time users could 

use the technique, before the Drift forced them to stop (i.e., next flag not reachable from 

the tracking space). Thus, 42 was the maximum length that users could navigate, but we 

expected most users would not be able to finish the task. Each 42 flags sequence was 

internally structured as six repetitions of a 7-flag pattern. Each pattern started with the 

user navigating along 6 flags on the edges of the environment (accumulation stage) and 

in the seventh step of the sequence, the user was asked to return to the centre of the VE. 

Returning to the centre was required to obtain a true measurement of the Drift. That is, 

our correction techniques use estimated Drift (𝑫̅(t)) to apply corrections, but the real 

Drift effect (𝑫(t)) is only defined for closed paths (Eq(6.5)). Our design of the task (six 

7-flag patterns) allowed for up to six measurements of Drift during the task and Drift 

could continue to accumulate from one 7-flag pattern to the next. 

We used 6 flags for the accumulation stage of the patterns because, Drift did not seem to 

increase significantly with the number of flags after the 6th flag (see interactions between 

path length and Drift in Study 1). The order of the flags for the accumulation stages were 

pseudo-randomized, with equal probabilities for all flags but ensuring that the final path 

length was always constant (141.68m in the VE). 

 

Figure 6.8 Test environment and navigation field used for the second study, after 

modifying scale and adding extra regions. 
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6.7.4 Experimental Design and Variables Measured 

We conducted two independent studies, each one testing our correction method for one 

navigation technique (i.e., NaviFields (NF) or Seven League Boots (7LB)) and comparing 

the Drift effect with and without our Angular correction (ε=0.25; =0.25). In each study, 

we compared two conditions: NF (original technique) and NFC (corrected) for the first 

study, whilst 7LB (original technique) and 7LBC (corrected) for the second study.  

Participants completed three repetitions of our Navigation task for each condition (NF, 

NFC) and (7LB, 7LBC). Both studies were approved by our ethics committee and we 

collected data from 12 participants (2 females, mean age=31.39y, SD=5.33) in the first 

study and 12 participants (4 females, mean age=28.38 years old, SD=4.90) in the second 

study. Our software automatically recorded several dependent variables during both 

studies (acronyms used summarized in Table 6.1. We conducted separate statistical 

analyses for each study. However, results from both studies are presented together, for 

brevity and due to their similarity.  

Acronym  Description 

D7, D14, D21, D28, D35, D42 Drift at the end of each 7-flag pattern 

FR Number of flags reached 

TPF Time required to reach each flag 

RDF Real distance per flag 

Table 6.1 Variables measured to assess technique performance. 

6.7.4.1 Drift Correction Variables 

The first group of variables tested the performance of our correction technique. As 

described above, we measured the Drift at the end of each 7-flag pattern (identified as 

D7, D14, D21, D28, D35 and D42). We also measured the number of flags the user 

reached (FR) before Drifting out of the tracking space, assessing support for 

longer/sustained navigation.  

6.7.4.2 Travelling Performance and User Experience Variables 

We measured the performance of each technique vs their corrected counterparts, to test 

our assumption that our corrections would not influence/hinder the usage of the 

technique. We specifically measured: time per flag (TPF) and real distance per flag 

(RDF). TPF measured the average time required to reach each flag (time navigated 

divided by FR) and RDF measured the average real distance that users moved to reach 

each flag (total real distance moved divided by FR). Please note that these corrections 

(dividing per FR) were necessary as the length of the trials could vary. We also wanted 
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to ensure that the corrections would neither affect/hinder the user’s subjective perception 

of the techniques (when compared to uncorrected counterparts), due to any 

dynamic/unexpected adjustments in scale. To do so, we used 8 questions, with 5 of them 

selected from (Witmer et al., 1998) (questions 6,7,10,13&16, focusing on navigation). 

Specifically, we assessed: comfort, control, involvement, ease, naturalness, consistency, 

sense of moving and proficiency (see Appendix 3, Table S4, for a  list of questions). 

6.7.5 Analysis of Results 

6.7.5.1 Drift Correction Results 

One-way Repeated Measures ANOVA was used, to test for differences on the real Drift 

between each technique and its corrected counterpart (i.e., NF vs NFC; 7LB vs 7LBC). 

The evolution of Drift along the various 7-flag stages (D7-D42) in each technique is 

shown in  Figure 6.9(a) and Figure 6.10(a). In both cases, our analysis showed significant 

differences between uncorrected techniques and their corrected counterparts for the first 

stage of flags (generally until D14). This analysis was affected by the low number of 

participants reaching the last stages without correction. For NF, only 2 participants 

reached D21, and only one reached D28 (see Figure 6.9(a)). In the case of 7LB, only one 

participant completed D42 (see Figure 6.10(a)).  

 

Figure 6.9 Drift in NaviFields: Comparison of uncorrected (NF) and corrected (NFC) 

Drift. (a) Evolution of Drift along the various 7-flag stages (D7-D42). (b) Overall Drift 

along a path of 42 flags. Error bars represent SD. *=p<0.05. 

 

Figure 6.10 Drift in Seven League Boots: Comparison of uncorrected (7LB) and corrected 

(7LBC) Drift. (a) Evolution of Drift along the various 7-flag stages (D7-D42). (b) Overall 

Drift along a path of 42 flags. Error bars represent SD. *=p<0.05. 
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Figure 6.11 NaviFields: Comparison of performance (NF Vs NFC) regarding (a) Number 

of flags reached, (b) Real distance per flag and (c) Time per flag. Error bars represent SD. 

*=p<0.05. 

 

Figure 6.12 Seven League Boots: Comparison of performance (7LB Vs 7LBC) regarding 

(a) Number of flags reached, (b) Real distance per flag and (c) Time per flag. Error bars 

represent SD. *=p<0.05. 

When all Drift measurements were considered together (D7-D42), our ANOVA tests 

revealed a significant reduction of Drift for NFC (F(1,11)=59.6, p<0.001, η2=0.844) as 

shown in Figure 6.9(b), and for 7LBC (F(1,11)=79.74, p<0.001, η2=0.879) as shown in 

Figure 6.10(b). Besides showing that our Angular correction reduced Drift in both cases, 

the results show good agreement with the estimated Drift expected from our data driven 

simulations (corrected Drift ~0.2 m; uncorrected ~0.6 m), supporting the reliability of our 

estimation method. 

Participants could also reach more flags in both experiments, when Angular correction 

was applied. Specifically, One-way Repeated Measures ANOVA showed significant 

effect on the number of flags users could reach (FR) between NF vs NFC (Figure 6.11(a); 

F(1,11)=641.68, p<0.001, η2=0.983), and also between 7LB vs 7LBC (Figure 6.12(a); 

F(1,11)=91.84, p=0.001, η2=0.893). While very few participants could complete D21 with 

uncorrected techniques, almost all participants were able to reach all 42 flags using NFC 

(10 out of 12) or 7LBC (11 out of 12). These results both highlight how Drift can seriously 

limit the applicability of scale-adaptive techniques and how our correction techniques 

can greatly extend the amount of time and distance that the users can navigate before 

Drift becomes an issue. Besides, the fact that Drift tends to stabilize ~0.2m after the initial 
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stages of the experiment (D21-D42) seems to indicate that the corrected techniques would 

allow sustained navigation. 

6.7.5.2 Effects of Correction on Performance and User Experience: 

No significant differences were found between the technique (NF and 7LB) and its 

corrected counterpart (NFC and 7LBC) for time per flag (TPF) and real distance per flag 

(RDF). These results seem to confirm that our correction scheme (Angular, ε=0.25, 

=0.25) did not influence/hinder user’s performance neither in terms of time or distance 

travelled (see Figure 6.11(b-c) and Figure 6.12(b-c)). 

 

Figure 6.13 Questionnaire results for NF and NFC. 

 

Figure 6.14 Questionnaire results for 7LB and 7LBC. 

Also, the analysis of the questionnaire responses indicates that the correction techniques 

did not have negative effects on the users’ experience. In the case of NaviFields, no 

significant differences could be found between NF and NFC for any of the 8 questions 

(Figure 6.13). Differences could be found in the case of 7 League Boots but, surprisingly, 

they revealed higher satisfaction with the corrected technique (see Figure 6.14). 

Significant differences between 7LB and 7LBC were found in terms of comfort 

(F(1,11)=16.83, p<0.01, η2=0.605), ease (F(1,11)=11.35, p<0.01, η2=0.508), control 

(F(1,11)=6.907, p<0.05, η2=0.386), naturalness (F(1,11)=9.27, p<0.05, η2=0.457), consistency 

(F(1,11)=6.39, p<0.05, η2=0.368) and proficiency (F(1,11)=7.65, p<0.05, η2=0.410).  
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We do not believe this is indicative of correction techniques improving experience but 

believe it could be a subjective bias. As the users managed to reach more flags with 7LBC 

than 7LB (before completing the questionnaire), this could give them a sense of 

achievement, which could translate to more positive subjective results. In any case, these 

results provide strong evidence that the correction technique does not add significant 

negative effects to the user experience.  

6.8 Discussion 

As introduced earlier, the size of the spaces available to end VR users influences the type 

of VR experiences and navigation techniques created by industry. While scale-adaptive 

stand as a feasible solution for this (i.e., use of physical displacements, addressing 

medium size VEs from relatively small real spaces), our study illustrates how 

unconstrained Drift can grow quickly  (i.e., 4 out of 16 participants could not complete 

their 12-flag trials, while only 2 out of 12 reached flag number 21 in our second study), 

which would lead to users having to frequently interrupt their experiences (e.g., remove 

the headset and return to the centre of the tracking space), or can even result in collisions 

with objects placed around the designated tracking space.   

Our experiments showed very encouraging results for the correction of such Drift effects, 

applied to two examples of such scale-adaptive techniques (an ego-centric and an 

allocentric one). Drift was consistently reduced but, more relevant than that, the inclusion 

of our technique greatly increased the amount of time and distance that our users could 

continue to navigate before Drift made targets unreachable (i.e., user drifting out of the 

tracking space). Most users (88%) could complete the whole test, and Drift tended to 

settle around stable magnitudes (~0.2 m), suggesting that sustained navigation over the 

medium sized VE used could be possible.  

However, we believe that (corrected) scale-adaptive techniques will still require the use 

of other supporting techniques. Even if, as results suggest, sustained navigation could be 

achieved for a particular technique and environment, these techniques are still limited to 

medium size VEs, which would still be a limitation for the creation of commercial VR 

experiences (or VE experiences designed to be used in a reduced VR space). Also, even 

if Drift tends to remain stable over time, this still does not fully eliminate the possibility 

that the user drifts out of the real space (i.e., some of our test users did), and support 

techniques should be made available to be used in these cases. For instance, the use of 

redirected teleporting (Liu et al., 2018) can act as a great complement here, 
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simultaneously correcting Drift and also redirecting the user towards the centre of the VE. 

Using redirected walking technique can be also a suitable combination, however one of 

the main constraints could be the big space required from the technique to generate the 

motion redirection (by rotational and translational gains). Such solution (or combination 

of solutions) could enable VR experiences where navigation is driven by users’ physical 

displacements most of the time, covering a variable size of the VE and better suited for 

current constraints around real space availability.  

It is also worth noting that our correction technique is independent of the navigation 

technique used and can be applied to any technique following the model presented by Eq 

(6.1). The fact that our correction provided consistent results, even if applied to different 

techniques and VE (i.e., Study 1) is encouraging, as a potential solution applicable to 

other (or maybe any) scale-adaptive techniques, or even to other techniques from 

redirected walking making use of translational gain. 

6.9 Conclusion 

This chapter has presented an exploration of the technique-induced Drift effect, present 

in scale-adaptive techniques (i.e., VR navigation techniques involving physical 

displacements and translational gain). Such effect had received little attention, even 

though it affects a great range of VR navigation techniques and its effects (as seen in our 

study 1) can be very detrimental to the usage of these techniques, particularly for virtual 

environments deployed over reduced physical spaces.  

We presented a general formulation for such scale-adaptive techniques compatible with 

a wide range of VR techniques. Such formulation allowed us to derive and formalize the 

factors that drive and limit their behaviour (Gain, Drift). We also proposed a simple but 

general model to correct this effect, being independent of the specific navigation 

technique.  

Our studies have shown how it is possible to use this framework to model and correct 

Drift for both ego-centric and allocentric techniques, while not adding any significant 

changes to the basic behaviour of the technique. We believe our results could enable 

scale-adaptive techniques (or hybrid models making use of them) to become a very 

interesting alternative for current commercial VR experiences or experiences deployed in 

small real spaces, allowing for more extensive use of metaphors involving users’ physical 

displacements.  
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The findings shown in this chapter not only highlight the relevance of Drift effects on 

navigation techniques but also highlight a potential of our solution in helping to reduce 

it, leveraging the use of techniques to extend the navigation space and extend the time of 

navigation in VR. 
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Chapter 7 Slicing-Volume: Hybrid 3D/2D Multi-target Selection Technique for Dense Virtual Environments 

Slicing-Volume: Hybrid 3D/2D Multi-target 

Selection Technique for Dense Virtual 

Environments 
In this chapter, we explore the third stage of interaction (ITas) of 3DUIs. We focused on 

the complexity of selection tasks due to occlusion when the VE is highly dense (e.g., 

point-clouds). According to our general approach we first, identify the ITa’s requirements 

and then design a tailored ITe to meet their specific needs. We initially explore the 

benefits and constraints of mid-air and tangible interaction (under the frame touch-based 

interaction devices e.g., table-tops, tablets, smartphones, etc.). Then, we present a 

customized ITe that combines both 3D and 2D interactions to address the problem of 

occlusion (produced by scene density) and lack of stability during the task (produced by 

mid-air selection). We used a GPU-based solution to manage real-time computationally 

heavy interaction with ~1 million elements within the VE. The approach introduced in 

this chapter allows more natural interactions for selection tasks by combining 3D and 2D 

metaphors i.e., mimicking the way users interact in the real world (e.g., pen-and-tablet 

metaphor) involving haptic feedback common when using physical surfaces. 

7.1 Introduction  

Capturing the real-world using 3D scanning and imaging is becoming increasingly 

popular and widespread across a range of application domains. Examples include 

photometric scanning (Izadi et al., 2011; Cheveau, 2018), medical image analysis (e.g., 

3D MRI and CT scans (Altahawi et al., 2018)), virtual exploration of infrastructure in 

VR/AR (e.g., Matterport and ARKit), and VR sculpting & painting (Agrawala et al., 

1995; Prior, 2006). Target selection plays a critical role for interacting with such 
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unstructured 3D contents for clean-ups, analysis, and editing. For instance, scientists 

analysing MRI scans often need to use slicing planes to inspect and select relevant areas 

(Hinckley et al., 1994; McKeown et al., 2003; Peeters et al., 2004; Janoos et al., 2009; 

Obermaier et al., 2015). However, such selection tasks are well known to be challenging 

due to the complexity of the dense environment  (Yu et al., 2012). A typical 3D scanned 

model can contain around six million points. In such a dense space, occlusion is a major 

challenge for accomplishing selection tasks (LaViola Jr et al., 2017). 

Virtual Reality (VR) is a promising platform for 3D data manipulation and analysis 

(Cruz-Neira et al., 1993; Ribarsky et al., 1994). A key aspect of VR is the high degrees 

of freedom (DOF) offered by its input modalities, such as 3D controllers (6-DoF (LaViola 

Jr et al., 2017)) and mid-air hand gestures (more than 25-DoF (Jones et al., 2006; Sridhar 

et al., 2015)). However, despite the freedom of mid-air interactions, these prevalent input 

modalities lack haptic feedback and stability required for precise interactions (Herndon 

et al., 1994; Argelaguet et al., 2013). Furthermore, in contrast to 2D interaction (e.g., 

touchscreens), fine motor control tasks (Keefe et al., 2007; Arora et al., 2017) are also 

physically-demanding in arbitrary 3D scales due to our ergonomic limitations (Arora et 

al., 2017). 

Recent studies have proposed hybrid techniques that combine the benefits of both free 

3D mid-air gestures and precise 2D tactile input (Arora et al., 2018; Dias et al., 2018) to 

aid VR interactions. For example, in SymbiosisSketch (Arora et al., 2018) having a 2D 

pen-and-tablet metaphor within a 3D world, helped in improving precision and ballistic 

actions by constraining the motion along the Z axis and providing haptic feedback 

(Lindeman, 1999; LaViola Jr et al., 2017). These hybrid approaches have been therefore 

used for navigation (Medeiros et al., 2013; Dias et al., 2018), 3D drawing (Arora et al., 

2018) and simple selection (i.e., limited to a low number of targets) (Medeiros et al., 

2013; Wang et al., 2015; Afonso et al., 2017). More recently, Surale et al. (Bhaskar Surale 

et al., 2019) contributed a comprehensive design space of solid modelling techniques 

enabled by a tracked 6-DOF tablet in VR. These explorations show promising values of 

hybrid techniques, particularly to improve the stability of the interaction. However, it is 

still unclear whether such proposed hybrid approaches could address the occlusion 

problem for selection tasks in highly dense Virtual Environments (VE’s). Specifically, 

how do we design a hybrid technique that can help users comfortably and accurately 
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select a specific amount of points in a highly occluded environment? As well as, how can 

we evaluate such technique? 

In this chapter, we propose a hybrid selection technique for dense point-clouds in VR. 

Our technique maps the complex 3D multi-target selection task into a hybrid workflow 

that combines both mid-air and tablet interactions (see Figure 7.1). This mapping was 

done through a variation of known slicing plane techniques (Hinckley et al., 1994), i.e., 

our approach consists of a “Slicing-Volume” that encloses desired 3D objects and project 

them onto an tablet view enabling 2D interactions for more precise selection. We 

implemented our technique in a standard VR system with two mid-air controllers. A touch 

pen was attached to the dominant-hand controller, and a multi-touch tablet to the non-

dominant-hand controller (see Figure 7.1(c)). The user places the Slicing-Volume around 

the selection targets using her non-dominant hand. Then, selection and refinement can be 

carried out on the tablet display using her dominant hand i.e., a pen-and-tablet metaphor 

(see Figure 7.1). 

The mapping from the Slicing-Volume to the tablet essentially reduces the complexity of 

the selection task. The dimensions of the Slicing-Volume can be adjusted, which enables 

either selection of a large set of points (by increasing its size) or selection of occluded 

points (by decreasing its thickness). When a user touches on the tablet, our technique 

casts a ray from the touch point perpendicular to the tablet surface to select all points 

along this ray (which length is defined by the Slicing-Volume thickness) (see Figure 7.2). 

Thus, users can select 3D points using continuous tactile touch, which is physically more 

comfortable and precise (LaViola Jr et al., 2017). 

 

Figure 7.1 Slicing volume 3D-2D interaction: The user places the volume (which is initially 

attached to a virtual tablet) on the desired area in VR (a), and adjusts the volume size and 

thickness to deeply explore the model, managing occlusion (b). The points enclosed within 

the volume are projected to a virtual tablet view. Then the user selects the visible points on 

the tablet surface using a pen-and-tablet metaphor. The selection on the tablet is then 

propagated along the Slicing-Volume thickness and updated in the 3D model.  In the real 

world, the user holds a real tablet and a real pen attached to 3D controllers, which provide 

stability and haptic feedback for precise selection. 
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We conducted a user study to explore whether this hybrid technique improves accuracy 

in dense selection, and if so, which aspects of the system contribute to such improvement 

(i.e., the stability given by the physical tablet surface, the extra visualization given by the 

added tablet view, or a combination of both). To answer these questions, we compared 

three main conditions: (1) Mid-air only, (2) Mid-air & Virtual Tablet and (3) Mid-air & 

Real Tablet in two point-cloud models with different levels of selection difficulty, i.e., 

occlusion level (highly occluded and mildly occluded). Our results demonstrate that, 

compared to mid-air only interactions, our hybrid selection technique significantly 

improved the accuracy of selection tasks for highly dense environments. Our study 

indicates that this is primarily due to haptic feedback afforded by the physical tablet, 

rather than the extra visualization from virtual tablet mode. 

In summary, unlike current hybrid techniques proposed in the literature (mostly limited 

to selection with a low number of targets, sparsely distributed across space), the main 

contributions of our work are: (a) we explore the potential of tablet-in-VR approaches to 

address the occlusion problem of VR selection tasks, (b) we propose and implement a 

real-time VR selection technique tailored for highly dense and highly occluded 

environments, (c) we conduct a user study to understand the factors influencing users’ 

performance according 3 independent factors: the use of extra visualizations (Mid-air vs 

Virtual Tablet modes); physical support (Virtual vs Real Tablet modes); and level of task 

complexity (highly occluded and mildly occluded 3D models). 

 

 

Figure 7.2 Propagation technique: (a) The user increases/decreases the volume size and 

thickness using the left joystick. (b-c) Our technique casts a ray from the touch point 

(laser or pen) perpendicular to the tablet surface to select all points along this ray (which 

length is defined by the Slicing-Volume thickness). 
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7.2 Related work 

7.2.1 Occlusion in 2D/3D Selection 

Object selection has been identified as a fundamental task in 3D user interfaces (Mine, 

1995; LaViola Jr et al., 2017) and one of the primary task in VR interaction (Bowman et 

al., 1999). Since 3D object selection is often affected by occlusion (e.g., density, target 

size, inter-object distance) (Argelaguet et al., 2013), multiple selection techniques have 

focused on solutions to overcome this limitation in selection tasks. For instance, 

Grossman et al. proposed a technique for selection in volumetric displays based on ray 

intersection (e.g., depth ray, lock ray, smart ray and flower ray) followed by a target 

disambiguation method consisting on moving a ray-aligned cursor controlled by 

dimensional device motion (Grossman et al., 2006). However, the selection in the 

disambiguation step still needs to be visually confirmed by the user, limiting their 

applicability to highly occluded environments, moreover, these techniques are focused to 

single object selection where the selection of a big number of targets will not be allowed. 

Olwal and Feiner introduced a flexible pointer that bends to avoid obstacles in a single-

object selection task on a partially occluded view in a collaborative virtual environment 

(Olwal et al., 2003). This technique is highly dependent on the user’s point of view 

limiting thus, the selection of totally occluded objects. Forsberg et al. replaced the ray 

with a cone-shaped volume to select small or distant objects, however, the cone aperture 

tends to over-select objects around the target (Forsberg et al., 1996).  

Progressive refinement techniques have been explored for target disambiguation in 

locally dense spaces by iteratively splitting the search space into smaller hierarchical 

regions (Kopper et al., 2011; Bacim et al., 2013; Mendes et al., 2017). In these techniques, 

users perform repeated selections until the selection contains a single object. These 

techniques use several discrete steps to iteratively select an object within a group of 

interest, which can be tedious to reach the desired target, and it may be not suitable for 

highly occluded VEs (Kopper et al., 2011). Grossman et al. proposed a 2D area cursor 

technique called “bubble selection” which dynamically resizes a circular cursor to only 

contain one object at the time in a 2D selection task (Grossman et al., 2005). Further 3D 

versions were explored using a 3D volumetric cursor (sphere) instead (Cockburn et al., 

2004; Vanacken et al., 2009; Rosa et al., 2010) adding transparency to the volumetric 

cursor to decrease occlusion over targets. However, these techniques are mostly focused 

on desktop applications and not suitable for VR. In mobile AR, DrillSample (Mossel et 
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al., 2013) is a two-step selection technique that first disambiguates occlusion by showing 

users an exploded view of all the objects near the select target. The user can then select 

the target in the second step. This technique, however, is only applicable to single-object 

selection. 

Clustering methods have been also applied to address the density problem in selection 

tasks, such as the approach proposed by Lingyun Yu et al. where selection tools based on 

propagation techniques in point cloud data are used to select group points based on user 

draws (e.g. using 2D lasso tool) (Yu et al., 2012, 2016). Similarly, Shan et al. proposed a 

selection method in dense data sets using 2D circle and polygon tools to select regions of 

data where a clustering step is based on a voxelization of the selected region to increase 

clustering accuracy (Shan et al., 2014). These are powerful techniques that allow users to 

select 3D data form 2D inputs however, these techniques are in the frame of data 

visualization, as they are constrained to desktop or touchscreen monitor applications 

where a single mode gesture interaction for selection is allowed. In contrast, spatial 

interactions (e.g., hand gestures, controllers, hybrid-interfaces) are relatively less 

explored to interact with dense VR data. 

In VR, numerous techniques have been introduced that take advantages of the expressive 

mid-air gestures supported in most VR systems (Argelaguet et al., 2013). “Large Scale 

Cut Plane” (Mossel et al., 2016) and “Yea Big, Yea High” (Jackson et al., 2018) allow 

users to use mid-air gestures to define a slicing plane in VR. Slicing plane is a well-known 

technique to reduce occlusion and filter data in the scientific visualization community 

(Obermaier et al., 2015). However, these techniques do not explore additional interaction 

modes and they were designed mainly for selecting single or partial objects (e.g., a vase 

or small patches of a 3D mesh), thus they may be not suitable for multi-target selection 

in dense environments. In contrast, our work explores the more challenging multi-target 

selection task in a dense VR environment. We explore a technique that maps the 3D 

selection task into a hybrid workflow that combines both expressive mid-air and grounded 

tablet interactions. 

7.2.2 Selection using Mobile Devices in Mixed Reality  

7.2.2.1 Visualization and Exploration 

A tablet, when tracked in VR, can provide numerous powerful add-ons to how users 

interact with the VR environment (Bhaskar Surale et al., 2019). Most notably is the use 

of the tablet screen as an additional tool to support navigation and exploration of the 
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environment. In CAVE systems, Aspin et al. (Aspin et al., 2007) used a tracked tablet and 

pen to explore complex 3D models. Navigation is a prerequisite of selection in large-scale 

environment. Some techniques combine both navigation and selection on the tablet. 

Madeiros et al. (Medeiros et al., 2013) mapped finger gestures on tablet to enable 

selection and manipulation actions. Kim et al. (Kim et al., 2008) introduced a “finger 

walking in place” technique for navigation in VR using a tablet touch input. These 

techniques, however, only let users use 2D touch gestures to perform these 3D tasks and 

did not explore how to integrate them with more expressive mid-air interaction.  

Mid-air interaction is arguably the primary mode of interaction in VR. When combined 

with a 6DOF tracked tablet, most work only explores simple cases such as menu 

navigation or single-object selection Bornik et al., combined 2D pen input on tablet, and 

mid-air interaction by means of a 3D controller in VR to enable medical data exploration 

and manipulation (Bornik et al., 2006). In Augmented Reality (AR), Wang and Lindeman 

employed 3D controllers for mid-air selection and multitouch tablet input for menu 

navigation (Wang et al., 2014; Wang et al., 2015). Reitmayr et al.  proposed a hybrid AR 

system for pen and a tablet interaction allowing 2D-3D selection in collaborative tasks 

(Reitmayr et al., 2001). Dias et al. explored hybrid systems and enabled 3D selection by 

gaze recognition (Dias et al., 2018). Bhaskar-Surale et al. explored the design space for 

using a multi-touch tablet in solid modelling in VR (Bhaskar Surale et al., 2019).  

However, these techniques are limited to single/dual object selection and they do not 

explore the problem of density. Our approach extends this research by focusing on more 

challenging multi-target selection tasks and contributes a technique that takes advantage 

of a seamless hybrid mid-air/tablet workflow to address density issues in VR selection. 

7.2.2.2 Haptic Feedback and Stability  

The advantages of mid-air interaction come mainly from the high DOF of the interaction. 

In VR, with a tracked controller or hand gestures, a user can easily move her hand in mid-

air to describe complex shapes and curvature (Schkolne et al., 2001). However, mid-air 

interaction is known to be imprecise and can cause fatigue over extend use (LaViola Jr et 

al., 2017). Many research has investigated complementing mid-air gestures with physical 

props to increase stability (Poupyrev et al., 1998; Schmalstieg et al., 1999; Bowman et 

al., 2001; Bowman et al., 2003; Lucas, 2005). Most work, however, focuses only on 

content creation tasks such as VR sketching (Arora et al., 2017; Arora et al., 2018) and 

modelling (Billinghurst et al., 1997; Szalavári et al., 1997). Ours explores the accuracy 
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issue of mid-air interaction in a new context (i.e., multi-target VR selection). We explore 

a new strategy to increase precision by reducing the complexity of the selection task into 

a hybrid selection workflow. 

In summary, most of the previously mentioned selection techniques that employ hybrid 

metaphors (i.e., combine both mid-air and tablet) do not support fluent multimodal 

interaction. That is, they constrain the selection to only one modality at a time, either on 

mid-air or on the physical tablet surface (Benko et al., 2007; Strothoff et al., 2011; 

Medeiros et al., 2013; Giesler et al., 2014; Afonso et al., 2017; Besançon et al., 2017; 

Sundén et al., 2017). On the other hand, several mid-air techniques in VR/AR only focus 

on simple use cases such as menu navigation or single-object selection (Bowman et al., 

2001; Wang et al., 2014; Wang et al., 2015; Arora et al., 2018; Bhaskar Surale et al., 

2019). Our work contributes a selection technique that lets users seamlessly use both 

modalities to perform the selection task in a challenging dense VR environment. 

7.3 Implementation and Setup 

We implemented our system in Unity (version 2018.4.3), using the point cloud importer 

“Pcx” (Takahashi, 2017). An Oculus Rift and two 3D touch controllers were used for VR 

interaction. We use an “iPad Air 1” as a physical proxy for our system.  

The main goal of our system is to explore a hybrid 2D-3D tablet-in-VR approach for 

improving precision in multi-target selection tasks for dense VEs i.e., leveraging both 

haptic feedback and exploration offered by typical 2D interaction on a tablet (unlike 

arbitrary mid-air interaction). To achieve this, our system’s key components are: i) 

Slicing-Volume and ii) 2D-3D mapping (mid-air & tablet). 

7.3.1 Slicing Volume 

Inspired by slicing planes commonly used in MRI analysis to explore dense data sets, our 

Slicing-Volume (SV) defines a specific region in the 3D space to be mapped onto a 2D 

tablet view in VR, for multi-object selection tasks (Yu et al., 2012, 2016) (see Figure 

7.1). Contrary to slicing planes that usually visualize the cross-section of the data (the 

slice), Slicing-Volume uses the orthographic projection view of a virtual camera 

(adjusting projection size and clipping planes’ positions) to capture the content enclosed 

within its volume, but not the neighbouring elements. The rendered view on a virtual 

tablet surface within the VE, allows users to have a visualization tool to filter out elements 

that surround the desired target selection. 
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The Slicing-Volume provides a quick and flexible way to specify the initial selection, 

which can be refined i.e., it can be grabbed, translated and rotated by pressing the grip 

button on the right controller, to be easily placed and oriented by users during the 

selection task. Its dimensions can be dynamically adjusted using the joystick on the left 

controller (see Figure 7.2) allowing users to customize the 3D space mapped on the 

current virtual tablet view e.g., increasing the thickness of volume facilitates the selection 

of a larger set of points, while decreasing the thickness facilitates precise selection of 

occluded points (Figure 7.2). This Slicing-Volume then enables an exploration tool for 

highly dense data sets, that we employ for more precise selection. 

During a selection task, the volume is initially attached to a virtual tablet in the VE, which 

in turn is attached to the left controller though a 3D-printed holder (see Figure 7.3), for 

free translation/rotation using the hand position and orientation. Then, to fix the volume 

in a specific position in the VE, the user presses the trigger button on the left controller 

to decouple the volume form the tablet. 

7.3.1.1 Selection Modalities 

We designed two different modes to use our Slicing-Volume: (a) combined with a Virtual 

Tablet only (i.e., providing an exploration tool but not haptic feedback) and b) combined 

with both a Virtual and a Real tablet (i.e., providing both exploration and haptic 

feedback). 

Real Tablet mode: We tracked a real tablet (iPad air) that was aligned to the virtual one 

allowing touch interaction and a physical limit using its touchscreen in VR. Selection in 

physical tablet mode enables a pen-and-tablet metaphor, a 10cm touch pen was attached 

to right controller allowing bimanual interaction (see Figure 7.3). 

 

Figure 7.3 Pen-and-tablet metaphor. Real Tablet attached to the left controller through an 

adjustable 3D-printed holder (2 joints). Physical stylus attached to the right controller for 

touch input on the tablet. The Slicing volume is attached to the tablet in the VE. 



 

Chapter 7: Slicing-Volume, Hybrid 3D/2D Multi-target Selection Technique for Dense VE’s 

132 

 

Virtual Tablet mode: Since this mode does not involve a physical tablet for selection, we 

employ a virtual laser attached to right controller, using a ray-casting technique to interact 

with the Virtual Tablet surface allowing also a pen-and-tablet metaphor, but without 

haptic feedback (Figure 7.8). 

It is worth mentioning that the physical tablet view is never used for actual visualization 

(the user is wearing a Head-Mounted Display and immersed in a VE), but only for haptic 

feedback and touch input. Then, the user always explores the 3D space using the Virtual 

Tablet view, that can be accompanied by a physical tablet (aligned to the virtual one) or 

not, depending on the selection modality (see Figure 7.8 for a comparison of the two 

selection modalities). 

For selecting elements on the tablet view, the user brushes with the pen/laser on the tablet 

surface (either virtual or physical) and the strokes are mapped to the Slicing-Volume, i.e., 

the elements in the tablet view colliding with either the laser pen or the real pen are 

selected and projected along the Slicing-Volume thickness (see Figure 7.2(b-c)). Finally, 

the selection done on the tablet is updated in the 3D space.  

These two modes (virtual and physical) allowed us to independently compare the two 

primary benefits of tablet-in-VR approaches suggested in the literature (i.e., extra 

visualization and stability), and thus explore the elements that contribute to improve 

accuracy of selection (if any). Selection events in both modes are triggered by holding 

down the trigger button on the right controller while brushing on the tablets’ surface. 

Deselection events are also considered and triggered by pressing the “B” button on the 

right controller. 

7.3.2 3D-2D Mapping (Mid-air & Tablet) 

To map 2D strokes from the tablet view to a 3D volumetric space, we first considered the 

initial size of the Slicing-Volume frontal face to be the same size and aspect ratio as the 

tablet screen (15.5cmx21cm), but extending the thickness by the larger tablet side, then 

our selected 3D space unit size U(x, y, z) ∈ ℝ3 is {15.5cm, 21cm, 21cm}, about 6,868𝑐𝑚3. 

The size U is the initial size of the Slicing-Volume in the virtual environment with scale 

= 1. As the virtual camera is attached to frontal face of the Slicing-Volume, this face 

represents the main plane to be rendered to the 2D tablet view.  
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The system uses compute shader to process the information from the elements contained 

within the volume boundaries in each frame. All the elements intersecting the Slicing-

Volume are highlighted in white (blended default point colour in the point cloud with a 

pure white), to be easily visualized from the tablet view, as well as in the VE.  

The position of the elements in the volume are projected onto the main plane (clipping 

plane) which allows us to quickly detect the collisions from the tablet strokes (by 

pen/laser selection) and highlight the collided (selected) elements in green (blending the 

default point colour in the point cloud with a pure green) to indicate selection. These 

highlights (green and white) helps in the visual exploration of the current state of the 

points that belong and surround the target in the volume from either tablet and VE views. 

7.3.3 Formal Description 

In order to formally describe our system, we define the key components of our system: i) 

the point-cloud container PC, which contains the point cloud information (local points’ 

position and colours) and serves as an anchor between the virtual world and the point 

cloud data, ii) the slicing volume SV, i.e., a 3D volume in the virtual world used to define 

a specific section in the 3D space to be mapped to a tablet surface allowing direct 

interaction in the virtual space (3D) from tablet touch inputs (2D), iii) the selection group 

(SG) which similarly to PC is a container in the virtual world that serves as an anchor in 

the world for the selected points only, enabling users to move and explore the selected 

elements independently from the rest of the points in PC. We will discuss these key 

elements in more detail next.  

To formally describe the interaction with the point cloud, we use right-hand systems of 

reference, homogeneous coordinates (i.e., 3D points in A’s coordinates as 𝑷𝑨(𝑥, 𝑦, 𝑧, 1) ∈

ℝ4) and homogeneous transformation matrices (𝑴𝑨→𝑩 ∈ ℝ
4𝑥4 to convert coordinates 

from A to B). 

 

Figure 7.4 System node graph. 
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If we analyse the system based on the node graph shown in Figure 7.4, we identify 4 

main nodes: Point Cloud (PC), Slicing Volume (SV), Selection Group (SG) and the 

virtual World node (W). We can explain then the system behaviour in function of 

transitions of points between nodes (each node has its own system of reference). When 

selecting a point pi from the point cloud (PC), the point pi is moved to the selection group 

node (SG) and the current position in SG system of reference is computed by: 

𝒑𝒔𝒈 𝒌 = (𝑴𝑺𝑮→𝑾)
−𝟏 ∙ 𝑴𝑷𝑪→𝑾 ∙ 𝒑𝒊                                        (7.1) 

Where k is the point index in the SG node, 𝒑𝒊 is the recently selected point from PC, 

while 𝑴𝑷𝑪→𝑾 and (𝑴𝑺𝑮→𝑾)
−𝟏 are the transformation matrices to move the point through 

the nodes, from PC to W and from W to SG.  

7.3.3.1 Slicing-Volume and Point Cloud Interaction 

We can describe the interaction between the SV, the points in PC and the selected points 

in SG more formally if we let P={p1,p2,…,pn}, V={v1,v2,…,vn}, G = {s1,s2,…,sn} be the 

set of points in the point cloud (PC), the set of positions in the slicing volume (SV) and 

the set of points in the selection group (SG), respectively. Then, we can define a sub-set 

Iv that represents the intersection between P and V as Iv=P∩V, where 𝐈𝐯 ⊆ 𝑷 and 𝐈𝐯 ⊆

𝑽 are the points in the point cloud inside the slicing volume (SV). 

The SV size can be adjusted by two factors, i) aspect size and ii) thickness. Aspect size 

refers to the x,y plane (tablet frontal face), and thickness refers to the z-axis (adjustment 

of depth). The change ratio (ΔR) was identified empirically through a small pilot study 

with 6 participants where the task was to play with manually tuned ΔR to find the one or 

the ones they felt more suitable for the task. The pilot results show 2 sets of thresholds 

and ΔRs (one for each aspect ratio and thickness) that we use in our system. 

7.3.3.2 Real-Time GPU-based Solution 

Processing big amounts of data in the CPU drastically drops the FPS down. We then used 

ComputeShaders and standard shaders to share/pass the interaction with the point cloud 

to the GPU (e.g., collisions between Unity game objects and individual points in PC).  

This allowed us to interact in real-time with big data sets (~1 million points). In our 

system, we implemented three main ComputeShaders (selectionIn2D, SelectionIn3D and 

SVIntersection) to manage the point cloud interaction, but only one is used per Unity 

update call. Figure 7.5 shows a diagram that represents the behaviour of our system from 

the GPU perspective. 
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Figure 7.5 The general behaviour of the system. 

7.3.3.3 Selection in 2D-ComputeShader 

Selection in 2D is computed by using the position of the touch input (from the real/virtual 

tablet) in SV coordinates, and the points’ positions and slicing volume position in W 

coordinates. To compute the selection from 2D, we considered T={t1,t2,…,tn} to be the 

set of positions in the propagated touch in SV coordinates (see Figure 7.2). Then, 2D 

ComputeShader is used to compute: i) the set of elements intersecting the slicing volume 

(SV) and ii) the set of elements intersecting the propagated touch (T). If we assume that 

Iv=P∩V is the intersection between the elements in PC and SV; and It = P∩T is the 

intersection between the PC and the propagated touch T, we can then compute: 

i) The new point’s position in the set V (the intersecting points in SV coordinates) as: 

𝒑𝒗 𝒋 = ∙ (𝑴𝑺𝑽→𝒘 )
−𝟏  ∙ 𝑴𝑷𝑪→𝑾 ∙ 𝒑 𝒊 , ∀𝒑 𝒊  ∈ 𝑰𝒗                            (7.2) 

ii) The new point’s position in the selection group (set of points selected) coordinates as: 

𝒑𝒈 𝒋 = (𝑴𝑺𝑮→𝑾)
−𝟏 ∙ 𝑴𝑷𝑪→𝑾  ∙ 𝒑 𝒊 , ∀𝒑 𝒊  ∈ 𝑰𝒕                             (7.3) 

Pseudocode 1: 2D volume intersection and selection: 

 

As a result of Eq. 7.2 and 7.3, all the points in the set P intersecting with set V will be 

moved to the node SV (slicing volume node) and all the points intersecting with the 

For all points in the PC 

   action = readAction; 

   touch = inputTouch; 

   p = pointInPCCoord; 

   pInWorldCoord = PCtoWorldMat * p; 

   pInVolumeCoord = (VolumeToWorld)-1* pInWorldCoord; 

   pIsInVolume = IsInVolume(pInVolumeCoord); 

   if(pIsInVolume) 

         highlight(p); 

   pIsSelected = isColliding(pInVolumeCoord, touch); 

   if(pIsSelected) 

         doAction(p, action); 
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propagated touch (set T) will be moved to the node SG. The general behaviour of the 

selectionIn2D shader is also explained in the pseudocode 1.  

7.3.3.4 Selection in 3D-ComputeShader 

Unlike selection in 2D (where selection events are activated by actual touch on the real 

tablet or collision from laser pointer on the virtual tablet), selection in 3D uses a position 

of a floating 3D sphere (used as pointer to select/deselect on real/virtual tablet) in world 

coordinates, and the points’ positions in W coordinates. As only one ComputeShader is 

used per Unity update call, the intersection Iv is also computed on this shader. To 

compute elements’ selection, we consider S={s1,s2,…,sn} to be the set of position in the 

selection sphere in W coordinates. 

The 3D ComputeShader computes: i) the set of elements intersecting the slicing volume 

(SV) and ii) the set of elements intersecting the selection sphere (S). Taking the 

intersection of the elements Iv=P∩V (between the PC and the SV) and Is = P∩S 

(between the point cloud and the selection sphere), we then compute: 

i) The new point’s position in set V using the Eq. 7.2. 

ii) The new point’s position in the selection group (set of points selected) coordinates for 

all element in the intersection sub-set Is as: 

𝒑𝒈 𝒋 = (𝑴𝑺𝑮→𝑾)
−𝟏 ∙ 𝑴𝑷𝑪→𝑾  ∙ 𝒑 𝒊 , ∀𝒑 𝒊  ∈ 𝑰𝒔                                 (7.4) 

As a result of Eq. 4, all the points intersecting with S will be moved to the node SG. The 

general behaviour of the selectionIn3D shader is also explained in the pseudo-code 2. 

Pseudocode 2: 2D volume intersection and 3D selection: 

 

 

For all point in the PC  

   action = readAction; //select / deselect 

   spherePos = SpherePosInWorld; 

   p = pointInPCCoord; 

   pInWorldCoord =  * p; 

   pInVolumeCoord = (VolumetoWorldCoord)-1*pInWorldCoord; 

   pIsInVolume = IsInVolume(p); 

   if(pIsInVolume) 

         highlight(p); 

   pIsSelected = isColliding(pInWorldCoord, spherePos); 

   if(pIsSelected)  

         doAction(p, action); 
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Summirizing, in this implementation, all the ComputeShaders described are called by 

Unity and executed on the GPU along with standard shaders in order to enable object-

user interaction with large amounts of elements (~1 million objects) in real-time. 

However, only one ComputeShader is called per update call, to ensure correct assignation 

of elements’ states (e.g., selected) based on the current user's action. 

7.4 User Study 

We conducted a within-subjects user study in VR to test our system. Our study aimed at 

(1) explore whether our approach improves user performance in selection tasks and (2) 

gain insight about the cause of the potential benefits obtained (i.e., visualization vs haptic 

feedback). We asked participants to select a specific set of target points from a dense 

point cloud environment in VR (see Figure 7.6(a)).  

As we are interested in understanding the benefits of having a tangible tablet for this task 

in VR, we compared our two selection modalities (see Figure 7.8): “pen selection” using 

both Virtual and Real tablets (i.e., involving Slicing-Volume exploration tool and haptic 

feedback) and “laser selection” using the Virtual Tablet only (i.e., involving Slicing-

Volume exploration tool but not haptic feedback). A baseline condition was also included 

in the study, consisting of a standard 6-DOF brushing-based selection technique i.e., Mid-

air only selection using one 3D controller without the use of Slicing-Volume tool nor 

tablet modalities. The detailed design of these conditions is described in the Experimental 

Conditions section and depicted in Figure 7.7 .  

7.4.1 Participants 

Twelve participants (2 females, mean age=28.08 years old, SD=4.62) took part in our 

study. They were all right-handed with no previous experience on VR. The recruitment 

criteria only included having normal or corrected-to-normal vision and having no injuries 

on their hands and/or arms. The local ethics committee approved this study. A full session 

took about 60min and participants were not paid for their participation. 

7.4.2 Task Point Cloud Model 

We designed a dense point cloud environment for the study. Our point cloud model 

consists of 984,613 points (~1 million). The model shows a museum with three sculptures 

(i.e., a statue, a T-Rex and an Elephant) as shown in Figure 7.6. The statue was used only 

for a training stage. Then, the T-Rex and Elephant sculptures were used for the main 

tasks. The whole point cloud (containing the three sculptures) was rendered in a 1.5m x 

1.5m x 1m volume, each model’s dimensions were then about 80m x 45m x 50m.  
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On these sculptures, we highlighted in red a set of target points strategically distributed 

to have two different levels of difficulty in the selection task i.e., this difficulty depends 

on the level of occlusion in each model (see Figure 7.6(b-c)). We defined the occlusion 

level by the point density per space unit (U). The Elephant model has an average density 

of 22,597 points/U (level of occlusion), containing 7,293 target points (see Figure 7.6(c)). 

Then, the T-Rex model has an average density of 42,687 points/U, containing 19,392 

target points (see Figure 7.6(b)). This means that the density of the T-Rex model was 

almost two times more occluded and therefore more challenging than the elephant model.  

 

Figure 7.6 Virtual Environment used in the user study(a) (~1million points). T-Rex model 

highlighting the distribution of target points (19,392) (b). Elephant model and its 

distribution of target points (7,293) (c). 

The rationale behind our scenario and manual task design lays on two main factors. First, 

the manual selection of target points allowed us to make clear the difference in selection 

difficulty in terms of occlusion between tasks. That is, the target points in the T-Rex 

model is in a much denser region and is much more difficult than the Elephant model (as 

shown in Figure 7.6(b-c)). Second, we distributed the target points such that they do not 

cover specific parts of the model (e.g., one leg or the head). While this decision makes 

our tasks less realistic, it helps us ensure the tasks are equally challenging toward all of 

the conditions. In our pilot testing, we found that if the target points are specific (e.g., we 

placed the target points covering only the T-Rex’s head), the Slicing-Volume technique 

can capture all of the targets in a short time with high accuracy. This does not fit our study 
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goal, i.e., the aim of our design was (1) make a fair comparison between all the conditions 

and (2) explore when our hybrid system could be more useful (i.e., for highly occluded 

or mildly occluded models), being level of task challenge clearly distinguishable. 

7.4.3 Experimental Conditions 

We designed our three experimental conditions to be as similar as possible so that 

measured effects are exclusively due to the interaction technique (Mid-air, Virtual Tablet 

and Real Tablet) instead of other parameters.  In all of these three conditions, the main 

actions (select, deselect, and pointer size adjustment) were mapped to the right controller. 

In the two conditions involving the Slicing-Volume, the left controller is used to adjust 

the volume dimensions (see Figure 7.7). Each participant selected the target points in the 

two models (Elephant and T-Rex) using the three conditions. 

Condition 1 (Mid-air only): This is our baseline condition. Participants were given only 

the right controller and asked to select the target points by brushing in mid-air. A floating 

sphere in front of the controller indicated the pointer to select/deselect. Points colliding 

with this sphere are then selected/deselected. The size of the pointer could be 

increased/decreased (with a minimum diameter of 0.7cm) to support varying levels of 

precision. Neither Slicing-Volume tool nor tablets were used in this condition. 

 

Figure 7.7 Controller actions for the three interaction techniques. 
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Condition 2 (Virtual Tablet): Participants were given two controllers and, in addition to 

the mid-air selection, they were also allowed to use the Slicing-Volume tool. They could 

place the volume (which was initially attached to the Virtual Tablet representation) in the 

desired area (see Figure 7.1(a)) and adjust its size and thickness to explore the models 

(see Figure 7.1(b)). The points enclosed within the volume were mapped to the Virtual 

Tablet view where participants could select the target points by “laser selection” modality 

(see Figure 7.8(a)). Selection/deselection events were enabled by the “laser” tip (0.7cm 

diameter) colliding with the Virtual Tablet surface. The selection in the Virtual Tablet 

was then propagated along the Slicing-Volume thickness and updated in the 3D model. 

Condition 3 (Real Tablet): In addition to mid-air selection and Virtual Tablet 

representation with Slicing-Volume tool, participants were given an iPad air tablet which 

was attached to the left controller through an adjustable 3D-printed holder (see Figure 

7.8(b)). A physical pen was then attached to the right controller (replacing “laser 

selection”). Selection/deselection events were enabled by the pen tip (0.7cm diameter) 

touching the Real Tablet touchscreen (see Figure 7.8(b)). The selection in the Real Tablet 

was then propagated along the Slicing-Volume thickness and updated in the 3D model. 

 

Figure 7.8 Selection modalities: (a) Laser selection: Participants select on the tablet view 

using a visible “laser” beam (10cm long) with no tangible feedback. (b) Pen selection: 

Participants select using an actual pen (10cm long) on the tangible tablet surface. The pen 

is also virtually represented. 
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7.4.4 Experimental Setup  

Participants were asked to sit next to a semicircle-shaped table and adjust the chair height 

for comfort. They then wore an Oculus Rift headset (see Figure 7.9). Participants could 

rest the Real Tablet on the table to avoid fatigue. Participants could also translate/rotate 

the whole environment to interact with it while sitting (avoiding overstretching). 

Subsequently, participants performed a training stage that lasted 15 minutes where they 

were allowed to get familiar with the system and practice the selection task (selecting 

target points from the statue model only). After the training, we presented the two models 

(T-Rex and Elephant) with their target points highlighted in red. The order of the 

conditions (Mid-air only, Virtual Tablet and Real Tablet) as well as the order of the 

models were counterbalanced across participants. Each model in each condition was 

completed in a maximum time of 10 minutes. 

7.4.5 Variables measured  

We measured the accuracy of the selection based on the F1 score used by Yu et al. in a 

point cloud selection study (Yu et al., 2012, 2016). Briefly, the F1 score is computed from 

TP (true positive: number of target points correctly selected), FP (false positive: number 

of points incorrectly selected), and FN (false negative: number of target points that were 

not selected). Where F1 score is a weighted average of precision P = TP/(TP+FP) and 

recall R=TP/(TP+FN). Then, F1 is computed as F1 = 2·(P·R)/(P+R). A F1 score of 1 

indicates perfect selection performance and 0 otherwise. When we employ the term 

accuracy in our analysis, we refer to F1. Then, when we employ the terms Over-

Selection and Under-Selection in our analysis, we refer to FP and FN respectively. 

 

Figure 7.9 Experimental setup. 
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Time measures were also recorded, we measured time of selection (time that participants 

took in selection mode, while pressing trigger), time of deselection (time that participants 

took in deselection mode while pressing “B”) and total time which represents the Task 

Completion Time (TCT) in each model i.e., including the time participants took: (a) in 

selection mode, (b) in deselection mode, (c) observation (no mode activated) and (d) 

manipulating the volume. Additionally, we assessed participants’ user experience in each 

condition using a raw NASA TLX scale.  

Since we are comparing experimental conditions (tablet modes) with controls (our 

baseline Mid-air only mode) we employed Standard Error of Mean (SEM) to represent 

error bars in our plots according to Rule 4 in (Cumming et al., 2007). 

7.4.6 Results 

We conducted One-way Repeated Measures ANOVA tests in our analyses supported by 

Shapiro-Wilk Normality Tests in the three conditions as well as a Normal Q-Q plots and 

Mauchly’s test of sphericity (i.e., sphericity not rejected) to ensure that the normal 

distribution and homogeneity of the variance assumptions were not violated. Partial eta 

squared (η2) is reported as a measure of effect size, according to Cohen (Cohen, 1988), 

we refer to a value of 0.01 as a small effect, 0.06 a medium effect, and 0.14 or greater as 

a large effect size. 

7.4.6.1 Accuracy 

A One-way Repeated Measures ANOVA was conducted to compare the effect of the 

interaction technique (i.e., Mid-air only, Virtual Tablet and Real Tablet) on participants’ 

accuracy of selection in Model 1 (T-Rex). Results showed significant effect of the 

interaction technique (F(2,22)=3.27, p=0.017, η2=0.557). Comparison tests with Bonferroni 

correction showed a significant difference between Mid-air and Real Tablet conditions 

(p=0.039) but we found no difference between Mid-air and Virtual Tablet conditions 

(p=0.135). See Figure 7.10(left), for mean F1 scores.  

The data collected from Model 2 (Elephant) did not meet the homogeneity of the variance 

assumption (p=0.002), and we therefore carried out a non-parametric One-Way Repeated 

Measures ANOVA (Related-Samples Friedman's Two-Way Analysis of Variance by 

Ranks). Results showed no significant effect of the interaction technique on participants 

accuracy of selection (p=0.92). See Figure 7.10(right), for mean F1 scores. 
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Figure 7.10 Results on Accuracy (F1) for Model 1 (left) and Model 2 (right). Error bars 

represent SEM. *=p<0.05. 

7.4.6.2 Over-Selection and Under-Selection 

A One-way Repeated Measures ANOVA was then conducted to compare the effect of 

the three interaction techniques on participants’ Over-Selection and Under-Selection in 

Model 1 (T-Rex). Results showed significant effect of the interaction technique on Over-

Selection (F(2,22)=4.04, p=0.05, η2=0.447). Comparison tests with Bonferroni correction 

showed a significant difference only between Mid-air Only and Real Tablet conditions 

(p=0.04).  

 

Figure 7.11 Results on Over-Selection (FP: false positive) and Under-Selection (FN: false 

negative) for Model 1 (top) and Model 2 (bottom). Error bars represent SEM. *=p<0.05 
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Results also showed a significant effect of the interaction technique on participants’ 

Under-Selection in Model 1 (F(2,20)=4.04, p<0.001, η2=0.817). Comparison tests with 

Bonferroni correction showed a significant difference between both Mid-air only and 

Virtual Tablet conditions (p<0.001) and between Mid-air only and Real Tablet conditions 

(p=0.016) (see Figure 7.11(top)).  

The same test was conducted for Model 2 (Elephant). However, no significant effect was 

found of the interaction technique on Over-Selection (F(2,22)=0.546, p=0.596, η2=0.098) 

nor Under-Selection (F(2,22)=0.460, p=0.644, η2=0.084), (see Figure 7.11(bottom)). 

7.4.6.3 Time 

A One-way Repeated Measures ANOVA was again conducted, to compare now the effect 

of the interaction technique on participants’ time of selection, time of deselection and 

total time in Model 1 (T-Rex). Results showed significant effect only for time of selection 

(F(2,22)=18.47, p<0.001, η2=0.787). Comparison tests with Bonferroni correction showed a 

significant difference between both Mid-air only and Virtual Tablet conditions (p=0.001) 

and between Mid-air only and Real Tablet conditions (p=0.01), (see Figure 7.12 (top)). 

 

Figure 7.12 Results on Time in Model 1 (top) and Model 2 (Bottom). Error bars represent 

SEM. *=p<0.05. 
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The same test was conducted for Model 2 (Elephant). Significant effect of the interaction 

technique on total time was found (F(2,22)=12.29, p<0.002, η2=0.711). Comparison tests 

with Bonferroni correction showed a significant difference only between Mid-air only 

and Real Tablet conditions (p=0.002). Significant effect was also observed for time of 

selection (F(2,22)=12.29, p<0.002, η2=0.711). Comparison tests with Bonferroni correction 

showed a significant difference between both Mid-air only and Virtual Tablet conditions 

(p=0.003) and between Virtual Tablet and Real Tablet conditions (p<0.001).  

However, no significant effect of the interaction technique on deselection time was 

observed for Model 2 (F(2,22)=0.15, p<0.85, η2=0.030), (see Figure 7.12 (bottom)).  

7.4.6.4 User Experience 

We also analysed participants’ subjective experience using a raw NASA TLX scale. A 

One-way Repeated Measures ANOVA was conducted to compare the effect of the 

interaction technique on participants’ user experience, (specifically on: mental demand, 

physical demand, temporal demand, performance, effort and frustration) in both Models. 

Results showed significant effect of the interaction technique only on performance 

(F(2,22)=3.99, p=0.05, η2=0.444). Comparison test with Bonferroni corrections showed a 

significant difference only between Mid-air Only and Real Tablet conditions (p=0.04). 

See Figure 7.13 for mean scores. 

 

Figure 7.13 Results on user experience in both models. Error bars represent SD. *=p<0.05. 

 

Figure 7.14 Participants’ preferred interaction technique. 
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7.5 Discussion 

The results from our user evaluation show that our hybrid interaction technique actually 

improved participants’ accuracy of selection in a highly occluded task environment. 

However, we found that the participants' accuracy depends on the occlusion level of the 

task. Recall that our two models differ in terms of occlusion: Model 1 T-Rex (42,687 

points/U) is more occluded than Model 2 elephant (22,597 points/U). In Model 2, the 

difference in participants’ accuracy is minimal, suggesting that the hybrid workflow may 

not be as advantageous for improving the selection performance in this scenario (see 

Figure 7.10(right)).  

However, in Model 1, we found that participants in the Real Tablet condition were 

significantly more accurate than in the Mid-air condition. This finding suggests that the 

reduction of multi-target selection into a hybrid workflow (that combines mid-air 

gestures, 2D selection, and physical proxies) through using a Slicing-Volume was more 

beneficial than the baseline Mid-air only condition during the selection task. Although 

the Virtual Tablet condition also outperforms the Mid-air condition, the difference was 

not found to be statistically significant. This result suggests that having only the additional 

visualization tool (Virtual Tablet view) may not be enough to significantly improve 

accuracy compared with Mid-air condition in a highly occluded environment. This 

suggests that the physical surface of the Real Tablet is clearly beneficial to the task due 

to the extra haptic and stability support.  Furthermore, these results still hold when 

considering Over-Selection and Under- Selection measures of Model 1. 

Under-Selection refers to target points participants missed during the task. When a scene 

is highly occluded, it affects a user’s ability to locate the target (Argelaguet et al., 2013). 

Thus, participants trying to select in an occluded environment may suffer more from 

Under-Selection. In our study, during both Virtual and Real Tablet conditions, 

participants significantly under-selected less compared with the Mid-air only condition. 

This suggests that participants benefited from the hybrid workflow, which used the 

Slicing-Volume visualization to help disambiguate occluded targets. However, our results 

showed no benefit of the tablet conditions (Virtual and Real) when selecting Model 2. In 

summary, in terms of Under-Selection, having an extra visualization (given by the 

Slicing-Volume tool) helped to improve participants’ performance, rather than having 

haptic feedback (given by the physical tablet surface) for the most occluded model only. 
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Over-Selection refers to points participants unintentionally selected. This measure 

reflects the participants’ ability to trace the target points to make the selection. As shown 

in our results, participants in the Mid-air only condition made much more Over-Selection 

than in the other two conditions, supporting that mid-air gestures are known to be 

inaccurate (Arora et al., 2017). However, we found that only during the Real Tablet 

condition participants over-selected significantly less than during the Mid-air only 

condition. This suggests that participants benefited from the physical tablet surface thanks 

to its stability and the selected more accurately. However, again our results showed no 

benefit of the tablet conditions (Virtual and Real) when selecting Model 2. In summary, 

in terms of Over-Selection (in a highly occluded environment), having haptic feedback 

(given by the physical tablet surface) helped to improve participants’ performance, rather 

than having an extra visualization (given by the Slicing-Volume tool) for the most 

occluded model only. 

These findings further show that our technique complements well the inaccuracy of mid-

air gestures and can act as an effective tool to inspect and select target points in highly 

occluded environments. 

It is worth mentioning that, the Real Tablet comes with extra weight, which may have 

affected participants’ ability to quickly execute actions in the study. For instance, in the 

measured time (Figure 7.12), we found that participants spent more total time in the Real 

Tablet condition. This could be due to the extra manoeuvres they had to execute to look 

at the tablet and adjust the volume thickness. However, total time was only significantly 

higher when selecting Model 2 (involving lower points density). We interpret these 

results as our hybrid system is more effective for higher dense models (e.g., our Model 

1) i.e., improving accuracy without significantly increasing the TCT. 

One interesting observation in our results is that overall participants took more time of 

selection (i.e., in “selection mode” while pressing trigger) in the Mid-air only condition 

while selecting both models (Figure 7.12). That is, even when participants took more 

total time (i.e., TCT) during the tablet conditions, they spent significantly more time in 

“selection mode” during the Mid-air only condition. We interpret these results as 

participants could select target points faster and felt more confident about their selection 

(i.e., spending less time selecting) due to both stability and extra visualization provided 

by the Virtual and Real Tablets.  
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Regarding participants’ subjective UX collected using a raw NASA TLX scale, we found 

no effect of the interaction techniques on mental demand, physical demand, temporal 

demand, effort and frustration. Although we observed trend showing higher scores for 

the Real Tablet condition, it was found non-significant. However, we found that 

participants perceived significantly better performance during the task when using the 

Real Tablet (see Figure 7.13). 

There are certain trade-offs in the design of the Real Tablet that may affect the user 

experience. On one hand, the physical sensation of using the Real Tablet helped 

participants feel more grounded during the task. When asked about the preferred 

interaction technique, the majority of the participants preferred the Real Tablet (see 

Figure 7.14). For example, P5 commented “the feeling of having a physical limit to select 

makes it more real”, P7 mentioned “a physical surface in selection is useful” and “the 

Virtual Tablet feels less natural than the Real Tablet”. P8 said “the Virtual Tablet allows 

me to select faster, but I may tend to over-select” and “the Real Tablet gives the tactile 

cues to link with the real world, that feels cool”. 

Overall, our hybrid approach showed positive results suggesting relevant benefits to be 

used in highly occluded VR models (e.g., editing: point-cloud models or dense 3D 

painting). The reduction of the multi-target selection into the tablet space through the 

Slicing-Volume tool enable users to manage occlusion and achieved better selection 

performance. It also complements the imprecise nature of mid-air selection, allowing 

users to select with higher selection accuracy. While hybrid approaches have been 

previously explored in the literature and suggested to provide advantages in VR tasks, in 

this chaper we provide an analysis of the benefits of this novel hybrid workflow in a dense 

VR selection task with different levels of density and occlusion. Whit our results, we 

expect to contribute insights to consider when designing tablet-in-VR approaches, 

particularly those involving dense environments. 

7.6 Limitations and future work 

For experimental purposes we kept all conditions simple with only few tools enabled. 

However, for future work we will add more tools to our system such as lasso, undo, delete, 

and save. A limitation of our study is that it was done with only a small set of novice VR 

users. Given the positive results from this preliminary analysis, a direction for future work 

is to evaluate our system with professional 3D designers to gain deeper insight of the 
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benefits of our hybrid system in more application scenarios such as actual editing e.g., 

point cloud, dense painting and sculpting tasks. 

7.7 Conclusion 

We presented a novel hybrid interaction technique called Slicing-Volume for selection in 

highly occluded point cloud models in VR. Our approach provides users with a 3D 

volume visualization that can enclose target objects in mid-air. Users can use this volume 

to inspect and filter out potential target points for selection. These points are then mapped 

to a 2D tactile tablet surface so that users can select with haptic feedback given by the 

tablet surface. We tested our system in a user study and found that our interaction 

technique improved the accuracy of selection in a highly occluded point cloud model in 

VR. Our results also provide insights into the specific benefits of our technique. We found 

that the mapping of the selection region into a 2D tactile surface on the tablet is generally 

the most beneficial when it comes to aiding the selection. The additional volume 

visualization is also favourable to help users filter occluded points, but only when used 

together with the tactile tablet surface. Overall, these findings show that our technique 

can act as an effective tool to help users inspect and select target points in dense VR 

environment. 
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Chapter 8 Conclusions 

Conclusions 

The main goal of this thesis was to explore human factors to help in the generation of 

more natural 3DUIs that better benefit from human capabilities, but also considering 

human limitations. To achieve this goal, we combined human factors, mathematical 

formalizations and computational methods (taking advantage of current computational 

power). However, due to the very broad extension of the 3DUI field, it was not possible 

to provide an extensive exploration over the full scope in this thesis. Therefore, to explore 

the potential of our approach, we based our analysis on the stages of interaction proposed 

by (Molina-Masso et al., 2008) shown in Figure 2.4 i.e., the hardware-ITes mapping, 

ITes and ITas.   

Designing 3DUIs involves many challenges that may represent important limitations 

within  this interaction stages in VR, which can be human-related (e.g., human 

capabilities) (Stanney et al., 1998) or hardware/software-related (e.g., tracking devices 

and techniques). Throughout the exploration in this work, we addressed some of the 

current limitations involved in VR produced by the complexity of 3D interaction. Some 

of the main issues identified in the literature regarding the interaction stages were: (1) the 

complexity of 3D input mappings in gestural interaction, (2) fatigue in object 

manipulation produced by mid-air interaction, (3) space limitations in VR navigation, (4) 

Drift effects produced by scale-adaptive VR navigation and (5) low accuracy in 

multitarget 3D object selection due to occlusion and lack of stability. Next, we describe 

our contributions by addressing these limitations in each chapter.  
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8.1 Individual Chapter Contributions  

Along five chapters, we conducted a series of implementations and user studies to address 

these challenges. Our solutions involved mainly a combination of human factors and 

computational methods in 3DUIs. Our results suggest interesting insights on how to 

design more effective 3DUIs. 

For instance, in Chapter 3, we contribute a hybrid method to produce task-to-gesture 

mappings, combining both designers’ insight (high-level factors) and computational 

approaches (low-level factors). The benefits of this hybrid approach become particularly 

clear for complex tasks with a large solution space (many potential mappings, as in our 

text-entry example). Our study showed a surprising outcome when the results of pure 

computational approaches are compared to those of our hybrid solution. All purely 

computational approaches predicted a very poor performance for the mapping that 

included designers’ insight (i.e. our hybrid method). This could indicate that such insight 

could be irrelevant (or even harmful). This raised the question: “was the designer’s insight 

misled or did computational approaches fail to capture the designer’s insight?” 

This question motivated our study and revealed that our hybrid solution actually produced 

very compelling results for all the factors measured. We strongly believe that these 

results, and the relatively low costs of using our method provide strong evidence of the 

potential benefits of the approach followed within this thesis. That is, they show how a 

combination of human factors and computational approaches can lead to the effective 

design of 3DUIs, even for a complex context (i.e., high-level factors, such as cognitive 

load, and a very large solution space). 

Then in Chapter 4, we leverage retargeting techniques for ergonomics purposes. 

Retargeting approaches have been used to create illusions in VR (Gonzalez-Franco et al., 

2017) being beneficial for many applications in HCI (e.g., haptic feedback and navigation 

(Slater et al., 1995; Azmandian et al., 2016)). Considering that mid-air object 

manipulation is tiring (Hincapié-Ramos et al., 2014), we contribute Erg-O, a technique 

that uses online ergonomic evaluations to generate comfort mappings into the arms’ reach 

(within the near interactive space) to enable object retargeting (re-mapping) aimed to 

reduce fatigue (i.e., gorilla arm syndrome (Boring et al., 2009)) in object manipulation 

tasks. We highlight how the combination of retargeting and ergonomic evaluations can 

allow designers to modify users’ perceptions to manipulate apparent-positions of virtual 

elements in the VE to achieve longer interaction time with a decreased perceived effort. 
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Our results also show that this ergonomic benefit can be achieved being unnoticed, and 

without significant effects on performance or sense of control. Also, our formalization 

and implementation demonstrate how these approaches can be seamlessly included in 

current manipulation techniques, even in real time, providing an example of how such 

interaction techniques can benefit from the computational power of current computers. 

Following our exploration, in Chapter 5 we then explored scale-adaptive navigation 

techniques to address space limitations involved when users’ displacement in VR is 

achieved by actual physical locomotion. We gave special consideration on manoeuvring 

when a target is reached. Current solutions in the literature that apply scale-adaptive 

navigation are mainly focussed on users’ perspective (ego-centric) to apply scaling 

factors and are not space-aware (Feasel et al., 2008). That is, scaling factors are also 

applied during manoeuvring tasks affecting precise exploration in relevant zones. To 

address this issue, we contribute NaviFields, a novel allocentric technique that accounts 

for the relevance of the space and applies scaling factors accordingly allowing to navigate 

bigger spaces along non-relevant areas while maintaining precise manoeuvring in 

relevant areas. Again, our approach illustrates how formal mathematical modelling and 

task awareness (e.g., the navigation field reflects the tasks that the user needs to complete 

in the VE) can lead to solutions providing better support for natural interaction (i.e., use 

physical displacement-based navigation across larger areas), while not hindering users’ 

performance. 

Along the same line of navigation, in Chapter 6 we address the detrimental Drift effects 

induced by scale-adaptive navigation techniques. This issue causes a mismatch between 

the real/virtual spaces which can increase over time turning the navigation techniques 

unusable. To address this problem, we proposed a correction technique that dynamically 

applies correction factors according to the scaling policy of the navigation technique. 

Results from our studies show that our approach consistently reduced the Drift effect 

produced by two different techniques proposed by literature (one ego-centric and one 

allocentric), increasing thus their life-span (i.e., time that they can be used before Drift 

draws targets unreachable), while not hindering users’ experience. Our results also 

suggest that, theoretically, any navigation technique using scale-adaptive factors can 

easily implement our correction approach as demonstrated in our user study. This chapter 

also highlights valuable aspects from our approach. First, it highlights the value of formal 

mathematical modelling, with the formalization of Drift in Chapter 5 being key to allow 



 

Chapter 8: Conclusions 

153 

us to propose the solution described in Chapter 6. Second, our solution requires 

simulations of the user returning to the centre VE to estimate Drift, which were run in 

real-time every frame. Our implementation shows how this is again within reach for 

current devices and illustrates promising benefits (i.e., correcting Drift for various 

environments and navigation techniques). 

Finally, in Chapter 7, we addressed the problem of scene density and occlusion in 3D 

selection tasks. Selection of 3D scanned models in VR (e.g., point clouds ~6M points) is 

extremely challenging due to inter-object occlusion and imprecise mid-air input (e.g., 6 

DoF controllers). We then proposed a hybrid 2D-3D interaction technique that combines 

3D selection in mid-air and 2D selection on a physical tablet. Inspired by well-known 

slicing plane techniques (Hinckley et al., 1994), our approach employs a slicing-volume 

that encloses 3D objects and maps them onto a 2D tablet view in VR, allowing users to 

select 3D points entirely on the tablet using 2D interactions. This technique advantages 

from both an extra visualization point (the tablet view), and haptic feedback (from the 

tangible tablet surface) giving stability while selecting. This technique made extensive 

use of compute shaders, to select, de-select and provide feedback to the user, which are 

only feasible by exploiting the computational power of current GPUs and which were key 

to explore this context of application (i.e., real-time interaction with highly dense point 

clouds). The results from our user study show that this technique can significantly 

improve the accuracy of selection in high dense models as it reduces under-selection and 

over-selection. 

It is worth noting the independent contribution of this thesis on the 

exploration/identification of the advantages and limitations of isomorphic and non-

isomorphic mapping generation, depending on the specific tasks and the human factors 

involved in the application, as demonstrated on Chapters 4, 5 and 6. 

8.2 Interaction Stages & General Contributions 

In the previous section, we discussed the contributions of our approach under the frame 

of specific applications (local contribution in each chapter). In this section, we discuss 

the potential of the approach from a broader perspective based on the interaction stages 

proposed by (Molina-Masso et al., 2008) and shown in Figure 2.4. One of the main 

highlights from the results of the point studies, was that we explored the close coupling 

between specific applications and the ITes used, supporting the inclusion of human 

factors. For instance, in our exploration through interaction stages we found that: 
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Users performed a demanding task better (Chapter 3) when human’s tacit knowledge was 

immersed in the process of the design and optimization of input mappings used for the 

task. This designer-led mapping proposed outperformed its competitors (a set of 

mappings generated by naive pure computational approaches). This highlights the 

benefits of our approach in the first stage of interaction (data input).  

Similarly, we leverage human factors in ITes (the second stage on the interaction model) 

in Chapter 4 and Chapter 5. We explored ergonomics in object manipulation tasks as well 

as more natural navigation involving physical locomotion. Our results support the 

potential of including our approach on the generation of more tailored interplay between 

human factors and ITes to enhance naturalness of 3DUIs. While the approach in Chapter 

6 is not explicitly focused on considering human factors, it enables natural navigation 

techniques for extended periods of time which could be considered under this light.  

In the third interaction stage explored (ITas), we showed that the combination between 

natural metaphors for VR selection tasks (i.e., bimanual interaction) that mimic users’ 

interaction in the real world (e.g., pen-and-tablet metaphor); and the computational power 

from current hardware (GPU processing), lead to improvements on accuracy, stability 

and user experience (UX) (as shown in Chapter 7). We exploited human capabilities by 

combining 2D and 3D metaphors allowing bimanual interaction (unlike simple 

controller-based interaction in mid-air) while addressing limitations produced by 

inaccuracies of mid-air interaction (i.e., human ergonomic limitations when interacting at 

arbitrary 3D spaces). 

It is worth mentioning that one of the goals of our general approach was not only to 

improve naturalness on the interaction with 3DUIs, but also to avoid disruptions on UX 

as it was observed on the results from each independent approach presented in this thesis, 

where we could improve ergonomics naturalness and accuracy without disrupting overall 

performance and sense of control.  

We believe that with the findings and contributions obtained from this exploration 

(through the stages of interaction) we provide techniques and guidelines to design more 

natural 3DUIs involving gestural input, navigation, selection and object manipulation 

thanks to the combination of human factors and computational approaches using current 

hardware/software power. With this thesis, we then ambition to advance the knowledge 

to develop a standardization of 3DUIs comparable to that from traditional 2DUIs. 
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Moreover, one remarkable contribution of this thesis is the possible combination of the 

independent interaction stages we explored. We can illustrate the affordances of our 

general approach using three examples of how each independent approach presented here 

can be combined.  

For instance, as discussed in Chapter 5 and Chapter 6, Drift effects increasingly disrupt 

the usability of the navigation technique, and therefore we proposed a correction 

approach in Chapter 6 that significantly reduces this detrimental effect. However, we can 

combine (example 1): Drift correction techniques (to extend the time that the navigation 

technique is useful) with the use of isomorphism proposed in Chapter 4 and Chapter 5 

(e.g., redirection and scaling factors) to extend also navigation spaces and the endurance 

time (i.e., the duration of user comfort during object manipulation), to support more 

complete VR interaction.  

Example 2: The isomorphic mapping employed by Erg-O technique can also be 

employed to totally eliminate the Drift effect in navigation. For instance, by combining 

navigation fields (Chapter 5) and spatial partitioning (Chapter 4), we can subdivide the 

navigation plane in both worlds (real and virtual), generating equivalent subsections 

between spaces (each of those with an independent system of reference). This approach 

can allow us to generate a bijective mapping, where each sub-section in the real 

navigation plane will have its analogue in the virtual one. Once the virtual space is scaled, 

the analogy between sub-sections (in the virtual and real worlds) remains, enabling 

extended VR navigation without Drift effects. Then, specific sub-sections in the virtual 

navigation plane can be distorted (according to navigation fields approach) to support not 

only extended navigation but also allowing natural explorations in relevant zones while 

still tackling the Drift issue. 

Our third example highlights the potential of our approach by combining the presented 

approaches in Chapter 4 and Chapter 7 (corresponding to object manipulation and 

selection). That is, we can combine (example 3): motion redirection in a smaller scale 

(e.g., pinch or tap gestures) for fine interaction in bimanual selection tasks (involving 

both hands) i.e., combining (i) retargeting techniques to influence users’ perception; 

while (ii) exploiting bimanual metaphors for more natural interaction. Retargeting at 

lower scales can help to provide haptic feedback (e.g., by using proxies (Slater et al., 

1995; Azmandian et al., 2016)) when manipulating small objects in VR, taking advantage 

of the potential of human hand dexterity for 3DUIs. 
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Our approach, combining human factors, mathematical modelling and computational 

approaches has allowed us to exploit human capabilities for interaction, changing in some 

manner the way “the system sees us” (Figure 1.1, right) (O'Sullivan et al., 2004) 

enriching the interaction and highlighting the need of more tailored ITes. Our exploration 

along the point studies in this work, suggests the potential of our approach and the need 

for more deep considerations when designing ITes and ITas. For instance, it is difficult 

to consider high-level factors (such as the case of Chapter 3) when using general 

formulation for 3DUI interactions (such as the case of usual ITes definitions), where a 

deeper exploration of the context around the specific task is needed to take advantage of 

the available hardware and methods to customize the interaction technique to better 

achieve the task. 

The use of the mathematical formulations in our approach, allowed us first to understand 

the behaviours of the variables involved in the issue to be addressed, to better develop 

potential solutions. This initial understanding of the main variables led us to a more 

focused exploration to identify the set of elements (devices and techniques) that are more 

adequate to design an ITe tailored to each specific task, and therefore better address the 

issue as explored in this thesis.  

8.3  Conclusion  

With the solutions, studies and results presented in this thesis, we aim to contribute to the 

current research on 3D interaction. Designing 3DUIs is a challenging task considering 

that UIs are commonly standardized for 2D applications (LaViola Jr et al., 2017) and the 

limitations involved when interacting in 3D spaces (e.g., human ergonomic capabilities 

and hardware/software constraints). The need of new devices, techniques and metaphors 

to face the emerging requirements from 3DUIs, enables a challenging research to meet 

the usability requirements for design. Therefore, with the solutions presented along this 

thesis we aim to advance this research to design more effective and intuitive 3DUIs. 

Moreover, the presented work in this thesis, not only highlights the need to improve 

current ITes design, but also aims to advance the understanding about the benefits of more 

exhaustive explorations of the interplay between human factors, ITes, ITas and devices, 

that can positively influence on the generation of more natural and intuitive 3DUI 

interactions. 



 

References 

157 

References 
Afonso, L., P. Dias, C. Ferreira and B. S. Santos (2017). Effect of hand-avatar in a selection task using a 

tablet as input device in an immersive virtual environment. 3D User Interfaces (3DUI), 2017 IEEE 

Symposium on, IEEE. doi: https://doi.org/10.1109/3DUI.2017.7893364. 

Agrawala, M., A. C. Beers and M. Levoy (1995). 3D painting on scanned surfaces. Proceedings of the 

1995 symposium on Interactive 3D graphics, ACM. doi: https://doi.org/10.1145/199404.199429. 

Altahawi, F. and N. Subhas (2018). "3D MRI in Musculoskeletal Imaging: Current and Future 

Applications." Current Radiology Reports 6(8): 27. doi: https://doi.org/10.1007/s40134-018-0287-3. 

Anthes, C., P. Heinzlreiter, G. Kurka and J. Volkert (2004). Navigation models for a flexible, multi-mode 

VR navigation framework. Proceedings of the 2004 ACM SIGGRAPH international conference on 

Virtual Reality continuum and its applications in industry, ACM. doi: 

https://doi.org/10.1145/1044588.1044693. 

Argelaguet, F. (2014). Adaptive navigation for virtual environments. 3D User Interfaces (3DUI), 2014 

IEEE Symposium on, IEEE. doi: https://doi.org/10.1109/3DUI.2014.7027325. 

Argelaguet, F. and C. Andujar (2013). "A survey of 3D object selection techniques for virtual 

environments." Computers & Graphics 37(3): 121-136. doi: 

https://doi.org/10.1016/j.cag.2012.12.003. 

Arora, R., I. Darolia, V. P. Namboodiri, K. Singh and A. Bousseau (2017). SketchSoup: Exploratory 

Ideation Using Design Sketches. Computer Graphics Forum, Wiley Online Library. doi: 

https://doi.org/10.1111/cgf.13081. 

Arora, R., R. Habib Kazi, T. Grossman, G. Fitzmaurice and K. Singh (2018). SymbiosisSketch: 

Combining 2D & 3D Sketching for Designing Detailed 3D Objects in Situ. Proceedings of the 2018 

CHI Conference on Human Factors in Computing Systems, ACM. doi: 

https://doi.org/10.1145/3173574.3173759. 

Arora, R., R. H. Kazi, F. Anderson, T. Grossman, K. Singh and G. W. Fitzmaurice (2017). Experimental 

Evaluation of Sketching on Surfaces in VR. CHI. doi: http://dx.doi.org/10.1145/3025453.3025474. 

Aspin, R. and K. H. Le (2007). Augmenting the CAVE: An initial study into close focused, inward 

looking, exploration in IPT systems. 11th IEEE International Symposium on Distributed Simulation 

and Real-Time Applications (DS-RT'07), IEEE. doi: https://doi.org/10.1109/DS-RT.2007.9. 

Azmandian, M., T. Grechkin, M. T. Bolas and E. A. Suma (2015). Physical Space Requirements for 

Redirected Walking: How Size and Shape Affect Performance. ICAT-EGVE. doi: 

http://dx.doi.org/10.2312/egve.20151315. 

Azmandian, M., M. Hancock, H. Benko, E. Ofek and A. D. Wilson (2016). Haptic retargeting: Dynamic 

repurposing of passive haptics for enhanced virtual reality experiences. Proceedings of the 2016 

CHI Conference on Human Factors in Computing Systems, ACM. doi: 

http://dx.doi.org/10.1145/2858036.2858226. 

Bachynskyi, M., G. Palmas, A. Oulasvirta and T. Weinkauf (2015). "Informing the design of novel input 

methods with muscle coactivation clustering." ACM Transactions on Computer-Human Interaction 

(TOCHI) 21(6): 30. doi: http://dx.doi.org/10.1145/2687921. 

https://doi.org/10.1109/3DUI.2017.7893364
https://doi.org/10.1145/199404.199429
https://doi.org/10.1007/s40134-018-0287-3
https://doi.org/10.1145/1044588.1044693
https://doi.org/10.1109/3DUI.2014.7027325
https://doi.org/10.1016/j.cag.2012.12.003
https://doi.org/10.1111/cgf.13081
https://doi.org/10.1145/3173574.3173759
http://dx.doi.org/10.1145/3025453.3025474
https://doi.org/10.1109/DS-RT.2007.9
http://dx.doi.org/10.2312/egve.20151315
http://dx.doi.org/10.1145/2858036.2858226
http://dx.doi.org/10.1145/2687921


 

References 

158 

Bacim, F., R. Kopper and D. A. Bowman (2013). "Design and evaluation of 3D selection techniques 

based on progressive refinement." International Journal of Human-Computer Studies 71(7-8): 785-

802. doi: https://doi.org/10.1016/j.ijhcs.2013.03.003. 

Badler, N. I., C. B. Phillips and B. L. Webber (1993). Simulating humans: computer graphics animation 

and control, Oxford University Press.  

Ban, Y., T. Kajinami, T. Narumi, T. Tanikawa and M. Hirose (2012). Modifying an identified curved 

surface shape using pseudo-haptic effect. Haptics Symposium (HAPTICS), 2012 IEEE, IEEE. doi: 

http://dx.doi.org/10.1007/978-3-642-31401-8_3. 

Banakou, D., R. Groten and M. Slater (2013). "Illusory ownership of a virtual child body causes 

overestimation of object sizes and implicit attitude changes." Proceedings of the National Academy 

of Sciences 110(31): 12846-12851. doi: http://dx.doi.org/10.1073/pnas.1306779110. 

Banakou, D. and M. Slater (2014). "Body ownership causes illusory self-attribution of speaking and 

influences subsequent real speaking." Proceedings of the National Academy of Sciences 111(49): 

17678-17683. doi: http://dx.doi.org/10.1073/pnas.1414936111. 

Barbagli, F., K. Salisbury, C. Ho, C. Spence and H. Z. Tan (2006). "Haptic discrimination of force 

direction and the influence of visual information." ACM Transactions on Applied Perception (TAP) 

3(2): 125-135. doi: http://dx.doi.org/10.1145/1141897.1141901. 

Barrilleaux, J. (2001). 3D user interfaces with Java 3D, Manning Greenwich.  

Benko, H. and S. Feiner (2007). Balloon selection: A multi-finger technique for accurate low-fatigue 3d 

selection. 2007 IEEE Symposium on 3D User Interfaces, IEEE. doi: 

https://doi.org/10.1109/3DUI.2007.340778. 

Besançon, L., P. Issartel, M. Ammi and T. Isenberg (2017). "Hybrid tactile/tangible interaction for 3D 

data exploration." IEEE transactions on visualization and computer graphics 23(1): 881-890. doi: 

https://doi.org/10.1109/TVCG.2016.2599217. 

Bhaskar Surale, H., A. Gupta, M. Hancock and D. Vogel (2019). TabletInVR: Exploring the Design 

Space for Using a Multi-Touch Tablet in Virtual Reality. Proceedings of the 2019 CHI Conference 

on Human Factors in Computing Systems. Glasgow, Scotland, ACM. doi: 

https://doi.org/10.1145/3290605.3300243. 

Bi, X., B. A. Smith and S. Zhai (2010). Quasi-qwerty soft keyboard optimization. Proceedings of the 

SIGCHI Conference, ACM. doi: https://doi.org/10.1145/1753326.1753367. 

Bi, X. and S. Zhai (2016). IJQwerty: What Difference Does One Key Change Make? Gesture Typing 

Keyboard Optimization Bounded by One Key Position Change from Qwerty. Proceedings of the 

2016 CHI Conference, ACM. doi: https://doi.org/10.1145/2858036.2858421. 

Billinghurst, M., S. Baldis, L. Matheson and M. Philips (1997). 3D palette: a virtual reality content 

creation tool. Proceedings of the ACM symposium on Virtual reality software and technology, 

ACM. doi: https://doi.org/10.1145/261135.261163. 

Borg, G. (1990). "Psychophysical scaling with applications in physical work and the perception of 

exertion." Scandinavian journal of work, environment & health: 55-58. doi: 

https://doi.org/10.5271/sjweh.1815. 

Borg, G. (1998). Borg's perceived exertion and pain scales, Human kinetics.  

https://doi.org/10.1016/j.ijhcs.2013.03.003
http://dx.doi.org/10.1007/978-3-642-31401-8_3
http://dx.doi.org/10.1073/pnas.1306779110
http://dx.doi.org/10.1073/pnas.1414936111
http://dx.doi.org/10.1145/1141897.1141901
https://doi.org/10.1109/3DUI.2007.340778
https://doi.org/10.1109/TVCG.2016.2599217
https://doi.org/10.1145/3290605.3300243
https://doi.org/10.1145/1753326.1753367
https://doi.org/10.1145/2858036.2858421
https://doi.org/10.1145/261135.261163
https://doi.org/10.5271/sjweh.1815


 

References 

159 

Boring, S., M. Jurmu and A. Butz (2009). Scroll, tilt or move it: using mobile phones to continuously 

control pointers on large public displays. Proceedings of the 21st Annual Conference of the 

Australian Computer-Human Interaction Special Interest Group: Design: Open 24/7, ACM. doi: 

http://dx.doi.org/10.1145/1738826.1738853. 

Bornik, A., R. Beichel, E. Kruijff, B. Reitinger and D. Schmalstieg (2006). A hybrid user interface for 

manipulation of volumetric medical data. null, IEEE. doi: 

http://doi.ieeecomputersociety.org/10.1109/VR.2006.8. 

Bowman, D., E. Kruijff, J. J. LaViola Jr and I. P. Poupyrev (2004). 3D User interfaces: theory and 

practice, CourseSmart eTextbook, Addison-Wesley.  

Bowman, D. A., J. L. Gabbard and D. Hix (2002). "A survey of usability evaluation in virtual 

environments: classification and comparison of methods." Presence: Teleoperators & Virtual 

Environments 11(4): 404-424. doi: https://doi.org/10.1162/105474602760204309  

Bowman, D. A. and L. F. Hodges (1997). An evaluation of techniques for grabbing and manipulating 

remote objects in immersive virtual environments. Proceedings of the 1997 symposium on 

Interactive 3D graphics, ACM. doi: http://dx.doi.org/10.1145/253284.253301. 

Bowman, D. A. and L. F. Hodges (1999). "Formalizing the design, evaluation, and application of 

interaction techniques for immersive virtual environments." Journal of Visual Languages & 

Computing 10(1): 37-53. doi: https://doi.org/10.1006/jvlc.1998.0111. 

Bowman, D. A., D. Koller and L. F. Hodges (1997). Travel in immersive virtual environments: an 

evaluation of viewpoint motion control techniques. Proceedings of IEEE 1997 Annual International 

Symposium on Virtual Reality. doi: https://doi.org/10.1109/VRAIS.1997.583043. 

Bowman, D. A., E. Kruijff, J. J. LaViola and I. Poupyrev (2004). 3D User Interfaces: Theory and 

Practice, Addison Wesley Longman Publishing Co., Inc.,  

Bowman, D. A., E. Kruijff, J. J. LaViola Jr and I. Poupyrev (2001). "An Introduction to 3-D User 

Interface Design." Presence: Teleoperators and virtual environments 10(1): 96-108. doi: 

https://doi.org/10.1162/105474601750182342. 

Bowman, D. A., M. Setareh, M. S. Pinho, N. Ali, A. Kalita, Y. Lee, J. Lucas, M. Gracey, M. Kothapalli 

and Q. Zhu (2003). Virtual-SAP: an immersive tool for visualizing the response of building 

structures to environmental conditions. IEEE Virtual Reality, 2003. Proceedings., IEEE. doi: 

https://doi.org/10.1109/VR.2003.1191146. 

Bowman, D. A. and C. A. Wingrave (2001). Design and evaluation of menu systems for immersive 

virtual environments. Proceedings IEEE Virtual Reality 2001, IEEE. doi: 

https://doi.org/10.1109/VR.2001.913781. 

Boyd, D. and L. Sastry (1999). Development of the INQUISITIVE Interaction Toolkit-Concept and 

Realisation. Proc. of Workshop on User Centered Design and Implementation of Virtual 

Environments UCDIVE’99.  

Bozgeyikli, E., A. Raij, S. Katkoori and R. Dubey (2016). Point & teleport locomotion technique for 

virtual reality. Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in 

Play, ACM. doi: https://doi.org/10.1145/2967934.2968105. 

http://dx.doi.org/10.1145/1738826.1738853
http://doi.ieeecomputersociety.org/10.1109/VR.2006.8
https://doi.org/10.1162/105474602760204309
http://dx.doi.org/10.1145/253284.253301
https://doi.org/10.1006/jvlc.1998.0111
https://doi.org/10.1109/VRAIS.1997.583043
https://doi.org/10.1162/105474601750182342
https://doi.org/10.1109/VR.2003.1191146
https://doi.org/10.1109/VR.2001.913781
https://doi.org/10.1145/2967934.2968105


 

References 

160 

Bricken, M. (1991). "Virtual reality learning environments: potentials and challenges." ACM 

SIGGRAPH Computer Graphics 25(3): 178-184. doi: http://dx.doi.org/10.1145/126640.126657. 

Brown University (2014). "Virtual Lab: Map your homunculus." Available from: 

https://canvas.brown.edu/courses/851434/assignments/4953274?module_item_id=6841193. 

Burdorf, A. and J. Laan (1991). "Comparison of methods for the assessment of postural load on the 

back." Scandinavian journal of work, environment & health: 425-429. doi: 

https://doi.org/10.5271/sjweh.1679. 

Burns, E., S. Razzaque, A. T. Panter, M. C. Whitton, M. R. McCallus and F. P. Brooks (2005). The hand 

is slower than the eye: A quantitative exploration of visual dominance over proprioception. Virtual 

Reality, 2005. Proceedings. VR 2005. IEEE, IEEE. doi: 

http://dx.doi.org/10.1109/VR.2005.1492747. 

Bustamante, E. A. and R. D. Spain (2008). Measurement invariance of the Nasa TLX. Proceedings of the 

Human Factors and Ergonomics Society Annual Meeting, SAGE Publications Sage CA: Los 

Angeles, CA. doi: http://dx.doi.org/10.1177/154193120805201946. 

Bystrom, K.-E., W. Barfield and C. Hendrix (1999). "A conceptual model of the sense of presence in 

virtual environments." Presence: Teleoperators and virtual environments 8(2): 241-244. doi: 

http://dx.doi.org/10.1162/105474699566107. 

Cadoz, C. (1994). Les réalités virtuelles.  

Chaffin, D. B., G. Andersson and B. J. Martin (1999). Occupational biomechanics, Wiley New York.  

Cheng, L.-P., E. Ofek, C. Holz, H. Benko and A. D. Wilson (2017). Sparse Haptic Proxy: Touch 

Feedback in Virtual Environments Using a General Passive Prop. Proceedings of the 2017 CHI 

Conference on Human Factors in Computing Systems, ACM. doi: 

https://doi.org/10.1145/3025453.3025753. 

Cheng, Y.-L. and K. S. Mix (2014). "Spatial training improves children's mathematics ability." Journal of 

Cognition and Development 15(1): 2-11. doi: http://dx.doi.org/10.1080/15248372.2012.725186. 

Cheveau, A. (2018). 3D Scanning Solution for Textured Object using Photometric Stereo with Multiple 

Known Light Sources. Archiving Conference, Society for Imaging Science and Technology. doi: 

https://doi.org/10.2352/issn.2168-3204.2018.1.0.3. 

Cirio, G., M. Marchal, T. Regia-Corte and A. Lécuyer (2009). The magic barrier tape: a novel metaphor 

for infinite navigation in virtual worlds with a restricted walking workspace. ACM Symposium on 

Virtual Reality Software and Technology, ACM. doi: https://doi.org/10.1145/1643928.1643965. 

Cockburn, A. and A. Firth (2004). Improving the acquisition of small targets. People and Computers 

XVII—Designing for Society, Springer: 181-196. doi: https://doi.org/10.1007/978-1-4471-3754-

2_11. 

Cohen, J. (1988). "Statistical power analysis for the behavioral sciences . Hilsdale." NJ: Lawrence 

Earlbaum Associates 2. https://www.taylorfrancis.com/books/9781134742707 

Colman, A. M. (2015). A dictionary of psychology, Oxford University Press, USA.  

Community, S. (2016). "SteamVR Play Area Size Stats." Available from: https://bit.ly/2HzlvpG. 

Community, S. (2017). "VR Roomscale room size survey - answers analysis." Available from: 

https://bit.ly/2U7yGDW. 

http://dx.doi.org/10.1145/126640.126657
https://canvas.brown.edu/courses/851434/assignments/4953274?module_item_id=6841193
https://doi.org/10.5271/sjweh.1679
http://dx.doi.org/10.1109/VR.2005.1492747
http://dx.doi.org/10.1177/154193120805201946
http://dx.doi.org/10.1162/105474699566107
https://doi.org/10.1145/3025453.3025753
http://dx.doi.org/10.1080/15248372.2012.725186
https://doi.org/10.2352/issn.2168-3204.2018.1.0.3
https://doi.org/10.1145/1643928.1643965
https://doi.org/10.1007/978-1-4471-3754-2_11
https://doi.org/10.1007/978-1-4471-3754-2_11
https://www.taylorfrancis.com/books/9781134742707
https://bit.ly/2HzlvpG
https://bit.ly/2U7yGDW


 

References 

161 

Conner, B. D., S. S. Snibbe, K. P. Herndon, D. C. Robbins, R. C. Zeleznik and A. Van Dam (1992). 

Three-dimensional widgets. Proceedings of the 1992 symposium on Interactive 3D graphics, ACM. 

doi: https://doi.org/10.1145/147156.147199. 

Cruz-Neira, C., J. Leigh, M. Papka, C. Barnes, S. M. Cohen, S. Das, R. Engelmann, R. Hudson, T. Roy 

and L. Siegel (1993). Scientists in wonderland: A report on visualization applications in the CAVE 

virtual reality environment. Proceedings of 1993 IEEE Research Properties in Virtual Reality 

Symposium, IEEE. doi: https://doi.org/10.1109/VRAIS.1993.378262. 

Cumming, G., F. Fidler and D. L. Vaux (2007). "Error bars in experimental biology." The Journal of cell 

biology 177(1): 7-11. doi: https://doi.org/10.1083/jcb.200611141. 

Cutting, J. E. (1997). "How the eye measures reality and virtual reality." Behavior Research Methods 

29(1): 27-36. doi: https://doi.org/10.3758/BF03200563. 

Dachselt, R. and M. Hinz (2005). Three-dimensional widgets revisited-towards future standardization. 

IEEE VR 2005 Workshop New directions in 3D user interfaces.  

Darken, R. P., W. R. Cockayne and D. Carmein (1997). The omni-directional treadmill: a locomotion 

device for virtual worlds. Proceedings of the 10th annual ACM symposium on User interface 

software and technology, ACM. doi: https://doi.org/10.1145/263407.263550. 

Darken, R. P., W. R. Cockayne and D. Carmein (1997). The omni-directional treadmill: a locomotion 

device for virtual worlds. ACM symposium on User interface software and technology, ACM. doi: 

https://doi.org/10.1145/263407.263550. 

Darken, R. P. and J. L. Sibert (1993). A toolset for navigation in virtual environments. ACM symposium 

on User interface software and technology, ACM. doi: https://doi.org/10.1145/168642.168658. 

Davey, B. and K. R. Parker (2015). "Requirements elicitation problems: a literature analysis." Issues in 

Informing Science and Information Technology 12: 71-82. doi: https://doi.org/10.28945/2211. 

David, R. (1998). " RealPlaces, 3D interface for office applications." IEE colloquium on the 3D Interface 

for the information Worker '98: 437. doi: http://www3.ibm.com/ibm/easy/eouext.nsf/Publish/580. 

de Haan, G., J. Scheuer, R. de Vries and F. H. Post (2009). Egocentric navigation for video surveillance 

in 3D virtual environments. 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on, IEEE. doi: 

https://doi.org/10.1109/3DUI.2009.4811214. 

Dias, P., L. Afonso, S. Eliseu and B. S. Santos (2018). Mobile devices for interaction in immersive virtual 

environments. Proceedings of the 2018 International Conference on Advanced Visual Interfaces, 

ACM. doi: https://doi.org/10.1145/3206505.3206526. 

Dunne, A., S. Do-Lenh, G. Ó'Laighin, C. Shen and P. Bonato (2010). Upper extremity rehabilitation of 

children with cerebral palsy using accelerometer feedback on a multitouch display. Engineering in 

Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, IEEE. 

doi: http://dx.doi.org/10.1109/IEMBS.2010.5626724. 

Dünser, A., K. Steinbügl, H. Kaufmann and J. Glück (2006). Virtual and augmented reality as spatial 

ability training tools. Proceedings of the 7th ACM SIGCHI New Zealand chapter's international 

conference on Computer-human interaction: design centered HCI, ACM. doi: 

http://dx.doi.org/10.1145/1152760.1152776. 

https://doi.org/10.1145/147156.147199
https://doi.org/10.1109/VRAIS.1993.378262
https://doi.org/10.1083/jcb.200611141
https://doi.org/10.3758/BF03200563
https://doi.org/10.1145/263407.263550
https://doi.org/10.1145/263407.263550
https://doi.org/10.1145/168642.168658
https://doi.org/10.28945/2211
http://www3.ibm.com/ibm/easy/eouext.nsf/Publish/580
https://doi.org/10.1109/3DUI.2009.4811214
https://doi.org/10.1145/3206505.3206526
http://dx.doi.org/10.1109/IEMBS.2010.5626724
http://dx.doi.org/10.1145/1152760.1152776


 

References 

162 

Dutta, T. (2012). "Evaluation of the Kinect™ sensor for 3-D kinematic measurement in the workplace." 

Applied ergonomics 43(4): 645-649. doi: https://doi.org/10.1016/j.apergo.2011.09.011. 

Eastgate, R. M. (2001). The structured development of virtual environments: enhancing functionality and 

interactivity, University of Nottingham. doi: http://eprints.nottingham.ac.uk/id/eprint/10954. 

Fabiani, L., G. C. Burdea, N. A. Langrana and D. Gomez (1996). Human interface using the Rutgers 

Master II force feedback interface. VRAIS. doi: https://doi.org/10.1109/VRAIS.1996.490510. 

Feasel, J., M. C. Whitton and J. D. Wendt (2008). LLCM-WIP: Low-latency, continuous-motion 

walking-in-place. 3D User Interfaces, 2008. 3DUI 2008. IEEE Symposium on, IEEE. doi: 

https://doi.org/10.1109/3DUI.2008.4476598. 

Feit, A. M. and A. Oulasvirta (2014). Pianotext: Redesigning the piano keyboard for text entry. 

Proceedings of the 2014 conference DIS, ACM. doi: https://doi.org/10.1145/2598510.2598547. 

Fernandes, K. J., V. Raja and J. Eyre (2003). "Cybersphere: the fully immersive spherical projection 

system." Communications of the ACM 46(9): 141-146. doi: https://doi.org/10.1145/903893.903929. 

Flasar, J. (2001). Interaction Techniques for Object Selection/Manipulation in Non-Immersive Virtual 

Environments with Force Feedback, Eurohaptics. URL: 

http://www.eurohaptics.vision.ee.ethz.ch/2001/flasar.pdf 

Foley, J., A. Van Dam, J. Feiner and J. Hughes (1990). Computer Graphics, Principles and Practice, 2nd 

(ed.,) Addison-Wesley.  

Foley, J. D., V. L. Wallace and P. Chan (1984). "The human factors of computer graphics interaction 

techniques." IEEE computer Graphics and Applications 4(11): 13-48. doi: 

https://doi.org/10.1109/MCG.1984.6429355. 

Forsberg, A., K. Herndon and R. Zeleznik (1996). Aperture based selection for immersive virtual 

environments. ACM Symposium on User Interface Software and Technology, Citeseer. doi: 

https://doi.org/10.1145/237091.237105. 

Foxlin, E. (2005). "Pedestrian tracking with shoe-mounted inertial sensors." IEEE computer Graphics and 

Applications 25(6): 38-46. doi: https://doi.org/10.1109/MCG.2005.140. 

Freitag, S., B. Weyers and T. W. Kuhlen (2016). Automatic speed adjustment for travel through 

immersive virtual environments based on viewpoint quality. 3D User Interfaces (3DUI), 2016 IEEE 

Symposium on, IEEE. doi: https://doi.org/10.1109/3DUI.2016.7460033. 

Fuhrmann, A., D. Schmalstieg and M. Gervautz (1998). Strolling through cyberspace with your hands in 

your pockets: Head directed navigation in virtual environments. Virtual Environments’ 98, 

Springer: 216-225. doi: https://doi.org/10.1007/978-3-7091-7519-4_21. 

Gabbard, J. L., D. Hix and J. E. Swan (1999). "User-centered design and evaluation of virtual 

environments." IEEE computer Graphics and Applications 19(6): 51-59. doi: 

https://doi.org/10.1109/38.799740. 

García, A., J. Molina and P. González (2005). Exemplar VE design guidance tool for selection and 

manipulation interaction techniques. Proc. of 11th International Conference on Human-Computer 

Interaction, HCI International.  

https://doi.org/10.1016/j.apergo.2011.09.011
http://eprints.nottingham.ac.uk/id/eprint/10954
https://doi.org/10.1109/VRAIS.1996.490510
https://doi.org/10.1109/3DUI.2008.4476598
https://doi.org/10.1145/2598510.2598547
https://doi.org/10.1145/903893.903929
http://www.eurohaptics.vision.ee.ethz.ch/2001/flasar.pdf
https://doi.org/10.1109/MCG.1984.6429355
https://doi.org/10.1145/237091.237105
https://doi.org/10.1109/MCG.2005.140
https://doi.org/10.1109/3DUI.2016.7460033
https://doi.org/10.1007/978-3-7091-7519-4_21
https://doi.org/10.1109/38.799740


 

References 

163 

Gelain, M., M. S. Pini, F. Rossi, K. B. Venable and T. Walsh (2010). "Elicitation strategies for soft 

constraint problems with missing preferences: Properties, algorithms and experimental studies." 

Artificial Intelligence 174(3-4): 270-294. doi: https://doi.org/10.1016/j.artint.2009.11.015. 

Gelbart, D. and S. R. Zmtiiule (1968). "A research center for augmenting human intellect." doi: 

https://doi.org/10.1145/1476589.1476645. 

Giesler, A., D. Valkov and K. Hinrichs (2014). Void shadows: multi-touch interaction with stereoscopic 

objects on the tabletop. Proceedings of the 2nd ACM symposium on Spatial user interaction, ACM. 

doi: https://doi.org/10.1145/2659766.2659779. 

Gong, J., B. Haggerty and P. Tarasewich (2005). An enhanced multitap text entry method with predictive 

next-letter highlighting. CHI'05, ACM. doi: https://doi.org/10.1145/1056808.1056926. 

González, G., J. P. Molina, A. S. García, D. Martínez and P. González (2009). Evaluation of text input 

techniques in immersive virtual environments. New Trends on Human–Computer Interaction, 

Springer: 109-118. doi: https://doi.org/10.1007/978-1-84882-352-5_11. 

Gonzalez-Franco, M. and J. Lanier (2017). "Model of illusions and virtual reality." Frontiers in 

psychology 8: 1125. doi: https://doi.org/10.3389/fpsyg.2017.01125. 

Grossman, T. and R. Balakrishnan (2005). The bubble cursor: enhancing target acquisition by dynamic 

resizing of the cursor's activation area. Proceedings of the SIGCHI conference on Human factors in 

computing systems, ACM. doi: https://doi.org/10.1145/1054972.1055012. 

Grossman, T. and R. Balakrishnan (2006). The design and evaluation of selection techniques for 3D 

volumetric displays. Proceedings of the 19th annual ACM symposium on User interface software 

and technology, ACM. doi: https://doi.org/10.1145/1166253.1166257. 

Grossman, T., D. Wigdor and R. Balakrishnan (2004). Multi-finger gestural interaction with 3d 

volumetric displays. Proceedings of the 17th annual ACM UIST, ACM. doi: 

https://doi.org/10.1145/1029632.1029644. 

Haldar, R. and D. Mukhopadhyay (2011). "Levenshtein distance technique in dictionary lookup methods: 

An improved approach." arXiv e-print (arXiv:1101.1232). doi: https://doi.org/10.1007/978-981-13-

0755-3_6. 

Hale, K. S. and K. M. Stanney (2014). Handbook of virtual environments: Design, implementation, and 

applications, CRC Press.  

Harris, L., M. Jenkin and D. C. Zikovitz (1999). Vestibular cues and virtual environments: choosing the 

magnitude of the vestibular cue. Proceedings IEEE Virtual Reality (Cat. No. 99CB36316), IEEE. 

doi: https://doi.org/10.1109/VR.1999.756956. 

Hayhoe, M., B. Gillam, K. Chajka and E. Vecellio (2009). "The role of binocular vision in walking." 

Visual neuroscience 26(1): 73-80. doi: https://doi.org/10.1017/S0952523808080838. 

Herndon, K. P., A. van Dam and M. Gleicher (1994). "The challenges of 3D interaction: a CHI'94 

workshop." ACM SIGCHI Bulletin 26(4): 36-43. doi: https://doi.org/10.1145/191642.191652. 

Hincapié-Ramos, J. D., X. Guo, P. Moghadasian and P. Irani (2014). Consumed endurance: a metric to 

quantify arm fatigue of mid-air interactions. Proceedings of the 32nd annual ACM conference on 

Human factors in computing systems, ACM. doi: http://dx.doi.org/10.1145/2556288.2557130. 

https://doi.org/10.1016/j.artint.2009.11.015
https://doi.org/10.1145/1476589.1476645
https://doi.org/10.1145/2659766.2659779
https://doi.org/10.1145/1056808.1056926
https://doi.org/10.1007/978-1-84882-352-5_11
https://doi.org/10.3389/fpsyg.2017.01125
https://doi.org/10.1145/1054972.1055012
https://doi.org/10.1145/1166253.1166257
https://doi.org/10.1145/1029632.1029644
https://doi.org/10.1007/978-981-13-0755-3_6
https://doi.org/10.1007/978-981-13-0755-3_6
https://doi.org/10.1109/VR.1999.756956
https://doi.org/10.1017/S0952523808080838
https://doi.org/10.1145/191642.191652
http://dx.doi.org/10.1145/2556288.2557130


 

References 

164 

Hinckley, K., R. Pausch, J. C. Goble and N. F. Kassell (1994). Passive real-world interface props for 

neurosurgical visualization. Proceedings of the SIGCHI Conference on Human Factors in 

Computing Systems. Boston, Massachusetts, USA, ACM: 452-458. doi: 

https://doi.org/10.1145/191666.191821. 

Hix, D. and H. R. Hartson (1993). Developing user interfaces: ensuring usability through product & 

process, John Wiley & Sons, Inc.,  

Horn, R. A., R. A. Horn and C. R. Johnson (1990). Matrix analysis, Cambridge university press.  

Interrante, V., B. Ries and L. Anderson (2007). Seven league boots: A new metaphor for augmented 

locomotion through moderately large scale immersive virtual environments. 3D User Interfaces, 

2007. 3DUI'07. IEEE Symposium on, IEEE. doi: https://doi.org/10.1109/3DUI.2007.340791. 

Izadi, S., D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman 

and A. Davison (2011). KinectFusion: real-time 3D reconstruction and interaction using a moving 

depth camera. Proceedings of the 24th annual ACM symposium on User interface software and 

technology, ACM. doi: https://doi.org/10.1145/2047196.2047270. 

Jackson, B., B. Jelke and G. Brown (2018). Yea Big, Yea High: A 3D User Interface for Surface 

Selection by Progressive Refinement in Virtual Environments. 2018 IEEE Conference on Virtual 

Reality and 3D User Interfaces (VR), IEEE. doi: https://doi.org/10.1109/VR.2018.8447559. 

Janoos, F., B. Nouanesengsy, R. Machiraju, H. W. Shen, S. Sammet, M. Knopp and I. Á. Mórocz (2009). 

Visual analysis of brain activity from fMRI data. Computer Graphics Forum, Wiley Online Library. 

doi: https://doi.org/10.1111/j.1467-8659.2009.01458.x. 

Jones, L. A. and S. J. Lederman (2006). Human hand function, Oxford University Press.  

Kammer, D., J. Wojdziak, M. Keck, R. Groh and S. Taranko (2010). Towards a formalization of multi-

touch gestures. ACM ISS, ACM: 49-58. doi: https://doi.org/10.1145/1936652.1936662. 

Kawato, M. (1999). "Internal models for motor control and trajectory planning." Current opinion in 

neurobiology 9(6): 718-727. doi: https://doi.org/10.1016/S0959-4388(99)00028-8. 

Keefe, D. F., R. C. Zeleznik and D. H. Laidlaw (2007). "Drawing on air: Input techniques for controlled 

3D line illustration." IEEE transactions on visualization and computer graphics 13(5): 1067-1081. 

doi: https://doi.org/10.1109/TVCG.2007.1060. 

Kerber, F., P. Lessel, A. Kr, #252 and ger (2015). Same-side Hand Interactions with Arm-placed Devices 

Using EMG. Proceedings of the ACM CHI. Seoul, Republic of Korea, ACM: 1367-1372. doi: 

https://doi.org/10.1145/2702613.2732895. 

Kessler, G. D., L. F. Hodges and N. Walker (1995). "Evaluation of the CyberGlove as a whole-hand input 

device." ACM TOCHI'95 2(4): 263-283. doi: https://doi.org/10.1145/212430.212431. 

Kilteni, K., J.-M. Normand, M. V. Sanchez-Vives and M. Slater (2012). "Extending body space in 

immersive virtual reality: a very long arm illusion." PloS one 7(7): e40867. doi: 

http://dx.doi.org/10.1371/journal.pone.0040867. 

Kim, D., O. Hilliges, S. Izadi, A. D. Butler, J. Chen, I. Oikonomidis and P. Olivier (2012). Digits: 

freehand 3D interactions anywhere using a wrist-worn gloveless sensor. Proceedings of ACM 

UIST, ACM. doi: https://doi.org/10.1145/2380116.2380139. 

https://doi.org/10.1145/191666.191821
https://doi.org/10.1109/3DUI.2007.340791
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1109/VR.2018.8447559
https://doi.org/10.1111/j.1467-8659.2009.01458.x
https://doi.org/10.1145/1936652.1936662
https://doi.org/10.1016/S0959-4388(99)00028-8
https://doi.org/10.1109/TVCG.2007.1060
https://doi.org/10.1145/2702613.2732895
https://doi.org/10.1145/212430.212431
http://dx.doi.org/10.1371/journal.pone.0040867
https://doi.org/10.1145/2380116.2380139


 

References 

165 

Kim, J.-S., D. Gračanin, K. Matković and F. Quek (2008). Finger walking in place (FWIP): A traveling 

technique in virtual environments. International Symposium on Smart Graphics, Springer. doi: 

https://doi.org/10.1007/978-3-540-85412-8_6. 

Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi (1983). "Optimization by simulated annealing." science 

220(4598): 671-680. doi: https://doi.org/10.1126/science.220.4598.671. 

Klimt, B. and Y. Yang (2004). The enron corpus: A new dataset for email classification research. 

European Conference on Machine Learning, Springer. doi: https://doi.org/10.1007/978-3-540-

30115-8_22. 

Knibbe, J., D. Martinez Plasencia, C. Bainbridge, C.-K. Chan, J. Wu, T. Cable, H. Munir and D. Coyle 

(2014). Extending interaction for smart watches: enabling bimanual around device control. CHI'14, 

ACM. doi: https://doi.org/10.1145/2559206.2581315. 

Knight, J. L. (1987). "Manual control and tracking." Handbook of human factors: 182-218.  

Kohli, L. (2010). Redirected touching: Warping space to remap passive haptics. 3D User Interfaces 

(3DUI), 2010 IEEE Symposium on, IEEE. doi: http://dx.doi.org/10.1109/3DUI.2010.5444703. 

Kohli, L., M. C. Whitton and F. P. Brooks (2012). Redirected touching: The effect of warping space on 

task performance. 3D User Interfaces (3DUI), 2012 IEEE Symposium on, IEEE. doi: 

http://dx.doi.org/10.1109/3DUI.2012.6184193. 

Kokkinara, E., K. Kilteni, K. J. Blom and M. Slater (2016). "First Person Perspective of Seated 

Participants Over a Walking Virtual Body Leads to Illusory Agency Over the Walking." Scientific 

Reports 6. doi: http://dx.doi.org/10.1038/srep28879. 

Kopper, R., F. Bacim and D. A. Bowman (2011). Rapid and accurate 3D selection by progressive 

refinement. 2011 IEEE Symposium on 3D User Interfaces (3DUI), IEEE. doi: 

https://doi.org/10.1109/3DUI.2011.5759219. 

Kopper, R., T. Ni, D. A. Bowman and M. Pinho (2006). Design and evaluation of navigation techniques 

for multiscale virtual environments. Virtual Reality Conference, 2006, Ieee. doi: 

https://doi.org/10.1109/VR.2006.47. 

Krueger, M. W., T. Gionfriddo and K. Hinrichsen (1985). Videoplace–an artificial reality.–CHI’85: 

Proceedings of the SIGCHI conference on Human factors in computing systems, ACM Press. doi: 

https://doi.org/10.1145/317456.317463. 

Lathrop, W. B. and M. K. Kaiser (2002). "Perceived orientation in physical and virtual environments: 

changes in perceived orientation as a function of idiothetic information available." Presence 11(1): 

19-32. doi: https://doi.org/10.1162/105474602317343631. 

Laurel, B., R. Strickland and R. Tow (1994). "Placeholder: Landscape and narrative in virtual 

environments." ACM SIGGRAPH Computer Graphics 28(2): 118-126. doi: 

https://doi.org/10.1145/178951.178967. 

LaViola, J. J. (2013). "3d gestural interaction: The state of the field." International Scholarly Research 

Notices 2013. doi: http://dx.doi.org/10.1155/2013/514641. 

LaViola Jr, J. J., D. A. Feliz, D. F. Keefe and R. C. Zeleznik (2001). Hands-free multi-scale navigation in 

virtual environments. Symposium on Interactive 3D graphics, ACM. doi: 

https://doi.org/10.1145/364338.364339. 

https://doi.org/10.1007/978-3-540-85412-8_6
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/978-3-540-30115-8_22
https://doi.org/10.1007/978-3-540-30115-8_22
https://doi.org/10.1145/2559206.2581315
http://dx.doi.org/10.1109/3DUI.2010.5444703
http://dx.doi.org/10.1109/3DUI.2012.6184193
http://dx.doi.org/10.1038/srep28879
https://doi.org/10.1109/3DUI.2011.5759219
https://doi.org/10.1109/VR.2006.47
https://doi.org/10.1145/317456.317463
https://doi.org/10.1162/105474602317343631
https://doi.org/10.1145/178951.178967
http://dx.doi.org/10.1155/2013/514641
https://doi.org/10.1145/364338.364339


 

References 

166 

LaViola Jr, J. J., E. Kruijff, R. P. McMahan, D. Bowman and I. P. Poupyrev (2017). 3D user interfaces: 

theory and practice, Addison-Wesley Professional.  

Lécuyer, A., J.-M. Burkhardt, J.-M. Henaff and S. Donikian (2006). Camera motions improve the 

sensation of walking in virtual environments. Virtual Reality Conference, IEEE. doi: 

https://doi.org/10.1109/VR.2006.31. 

Lee, Y., I. Jang and D. Lee (2015). Enlarging just noticeable differences of visual-proprioceptive conflict 

in VR using haptic feedback. World Haptics Conference (WHC), 2015 IEEE, IEEE. doi: 

http://dx.doi.org/10.1109/WHC.2015.7177685. 

Lindeman, R. W. (1999). Bimanual interaction, passive-haptic feedback, 3 D widget representation, and 

simulated surface constraints for interaction in immersive virtual environments, George Washington 

University. https://web.cs.wpi.edu/~gogo/papers/lindeman_thesis.pdf 

Liu, J., H. Parekh, M. Al-Zayer and E. Folmer (2018). Increasing Walking in VR using Redirected 

Teleportation. The 31st Annual ACM Symposium on User Interface Software and Technology, 

ACM. doi: https://doi.org/10.1145/3242587.3242601. 

Lopez, C., P. Halje and O. Blanke (2008). "Body ownership and embodiment: vestibular and 

multisensory mechanisms." Neurophysiologie Clinique/Clinical Neurophysiology 38(3): 149-161. 

doi: http://dx.doi.org/10.1016/j.neucli.2007.12.006. 

López, L. B. (2013). Travel simulation inside an Immersive Video Environment (IVE). Sitcom Lab, 

Institut für Geoinformatik (IFGI) of the Westfälische Wilhelms-Universität Münster MSc. 

http://hdl.handle.net/10362/9192 

Lucas, J. F. (2005). Design and evaluation of 3D multiple object selection techniques, Virginia Tech. 

http://hdl.handle.net/10919/31769 

Mackinlay, J. D., S. K. Card and G. G. Robertson (1990). Rapid controlled movement through a virtual 

3D workspace. ACM SIGGRAPH Computer Graphics, ACM. doi: 

https://doi.org/10.1145/97880.97898. 

Marsh, T., P. Wright, S. Smith and D. Duke (1998). "A shared framework of virtual reality." Proceedings 

of UK-VRSIG 98.  

Martinez-Plasencia, D. (2010). Afreeca. An architecture for the development of collaborative virtual 

environment, Universidad de Castilla-La Mancha. 

https://dialnet.unirioja.es/servlet/tesis?codigo=123978 

Matsuoka, Y., S. J. Allin and R. L. Klatzky (2002). "The tolerance for visual feedback distortions in a 

virtual environment." Physiology & behavior 77(4): 651-655. doi: http://dx.doi.org/10.1016/S0031-

9384(02)00914-9. 

McAtamney, L. and E. N. Corlett (1993). "RULA: a survey method for the investigation of work-related 

upper limb disorders." Applied ergonomics 24(2): 91-99. doi: http://dx.doi.org/10.1016/0003-

6870(93)90080-S. 

McIntosh, J., C. McNeill, M. Fraser, F. Kerber, M. Löchtefeld and A. Krüger (2016). EMPress: Practical 

Hand Gesture Classification with Wrist-Mounted EMG and Pressure Sensing. Proceedings of the 

2016 CHI Conference, ACM. doi: https://doi.org/10.1145/2858036.2858093. 

https://doi.org/10.1109/VR.2006.31
http://dx.doi.org/10.1109/WHC.2015.7177685
https://web.cs.wpi.edu/~gogo/papers/lindeman_thesis.pdf
https://doi.org/10.1145/3242587.3242601
http://dx.doi.org/10.1016/j.neucli.2007.12.006
http://hdl.handle.net/10362/9192
http://hdl.handle.net/10919/31769
https://doi.org/10.1145/97880.97898
https://dialnet.unirioja.es/servlet/tesis?codigo=123978
http://dx.doi.org/10.1016/S0031-9384(02)00914-9
http://dx.doi.org/10.1016/S0031-9384(02)00914-9
http://dx.doi.org/10.1016/0003-6870(93)90080-S
http://dx.doi.org/10.1016/0003-6870(93)90080-S
https://doi.org/10.1145/2858036.2858093


 

References 

167 

McKeown, M. J., L. K. Hansen and T. J. Sejnowsk (2003). "Independent component analysis of 

functional MRI: what is signal and what is noise?" Current opinion in neurobiology 13(5): 620-629. 

doi: https://doi.org/10.1016/j.conb.2003.09.012. 

McNeill, D. (1992). Hand and mind: What gestures reveal about thought, University of Chicago press.  

Medeiros, D., F. Carvalho, L. Teixeira, P. Braz, A. Raposo and I. Santos (2013). "Proposal and evaluation 

of a tablet-based tool for 3D virtual environments." SBC Journal on Interactive Systems 4(2): 31.  

Medeiros, D., L. Teixeira, F. Carvalho, I. Santos and A. Raposo (2013). A tablet-based 3d interaction tool 

for virtual engineering environments. Proceedings of the 12th ACM SIGGRAPH International 

Conference on Virtual-Reality Continuum and Its Applications in Industry, ACM. doi: 

https://doi.org/10.1145/2534329.2534349. 

Medina, E., R. Fruland and S. Weghorst (2008). Virtusphere: Walking in a human size VR “hamster 

ball”. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, SAGE 

Publications Sage CA: Los Angeles, CA. doi: https://doi.org/10.1177/154193120805202704. 

Mendes, D., D. Medeiros, M. Sousa, E. Cordeiro, A. Ferreira and J. A. Jorge (2017). "Design and 

evaluation of a novel out-of-reach selection technique for VR using iterative refinement." 

Computers & Graphics 67: 95-102. doi: https://doi.org/10.1016/j.cag.2017.06.003. 

Mine, M. R. (1995). "Virtual environment interaction techniques." UNC Chapel Hill CS Dept.  

Molina, J. P., P. González, M. D. Lozano, F. Montero and V. López-Jaquero (2003). Bridging the gap: 

developing 2D and 3D user interfaces with the IDEAS methodology. International Workshop on 

Design, Specification, and Verification of Interactive Systems, Springer. doi: 

https://doi.org/10.1007/978-3-540-39929-2_21. 

Molina-Masso, J. P. and P. G. Lopez (2008). "Un enfoque estructurado para el desarrollo de interfaces de 

usuario 3d." Def. Doutorado-Universida de Castilla de la Mancha. 

https://dialnet.unirioja.es/servlet/tesis?codigo=21060 

Mossel, A. and C. Koessler (2016). Large scale cut plane: an occlusion management technique for 

immersive dense 3D reconstructions. Proceedings of the 22nd ACM Conference on Virtual Reality 

Software and Technology, ACM. doi: https://doi.org/10.1145/2993369.2993384. 

Mossel, A., B. Venditti and H. Kaufmann (2013). DrillSample: precise selection in dense handheld 

augmented reality environments. Proceedings of the Virtual Reality International Conference: Laval 

Virtual, ACM. doi: https://doi.org/10.1145/2466816.2466827. 

Nilsson, N. C., S. Serafin and R. Nordahl (2013). The perceived naturalness of virtual locomotion 

methods devoid of explicit leg movements. Proceedings of Motion on Games, ACM. doi: 

https://doi.org/10.1145/2522628.2522655. 

Normand, J.-M., E. Giannopoulos, B. Spanlang and M. Slater (2011). "Multisensory stimulation can 

induce an illusion of larger belly size in immersive virtual reality." PloS one 6(1): e16128. doi: 

http://dx.doi.org/10.1371/journal.pone.0016128. 

O'Sullivan, D. and T. Igoe (2004). Physical computing: sensing and controlling the physical world with 

computers, Course Technology Press.  

https://doi.org/10.1016/j.conb.2003.09.012
https://doi.org/10.1145/2534329.2534349
https://doi.org/10.1177/154193120805202704
https://doi.org/10.1016/j.cag.2017.06.003
https://doi.org/10.1007/978-3-540-39929-2_21
https://dialnet.unirioja.es/servlet/tesis?codigo=21060
https://doi.org/10.1145/2993369.2993384
https://doi.org/10.1145/2466816.2466827
https://doi.org/10.1145/2522628.2522655
http://dx.doi.org/10.1371/journal.pone.0016128


 

References 

168 

Obermaier, H. and K. I. Joy (2015). "An Automated Approach for Slicing Plane Placement in Visual Data 

Analysis." IEEE transactions on visualization and computer graphics 21(12): 1403-1414. doi: 

https://doi.org/10.1109/TVCG.2015.2414455. 

Olwal, A. and S. Feiner (2003). The flexible pointer: An interaction technique for selection in augmented 

and virtual reality. Proc. UIST'03.  

Oskiper, T., H.-P. Chiu, Z. Zhu, S. Samaresekera and R. Kumar (2011). Stable vision-aided navigation 

for large-area augmented reality. Virtual Reality Conference (VR), 2011 IEEE, IEEE. doi: 

https://doi.org/10.1109/VR.2011.5759438. 

Ott, M. and L. FREINA (2015). A literature review on immersive virtual reality in education: state of the 

art and perspectives. Conference proceedings of» eLearning and Software for Education «(eLSE), 

Universitatea Nationala de Aparare Carol I. URL: https://www.ceeol.com/search/article-

detail?id=289829 

Pavlovych, A. and W. Stuerzlinger (2004). Model for non-expert text entry speed on 12-button phone 

keypads. Proceedings of the SIGCHI conference, ACM. doi: 

https://doi.org/10.1145/985692.985737. 

Peck, T. C., H. Fuchs and M. C. Whitton (2009). "Evaluation of reorientation techniques and distractors 

for walking in large virtual environments." IEEE transactions on visualization and computer 

graphics 15(3): 383-394. doi: https://doi.org/10.1109/TVCG.2008.191. 

Peck, T. C., H. Fuchs and M. C. Whitton (2010). Improved redirection with distractors: A large-scale-

real-walking locomotion interface and its effect on navigation in virtual environments. Virtual 

Reality Conference (VR), 2010 IEEE, IEEE. doi: https://doi.org/10.1109/VR.2010.5444816. 

Peeters, R. R., P. Kornprobst, M. Nikolova, S. Sunaert, T. Vieville, G. Malandain, R. Deriche, O. 

Faugeras, M. Ng and P. Van Hecke (2004). "The use of super‐resolution techniques to reduce slice 

thickness in functional MRI." International Journal of Imaging Systems and Technology 14(3): 131-

138. doi: https://doi.org/10.1002/ima.20016. 

Penfield, W. and E. Boldrey (1937). "Somatic motor and sensory representation in the cerebral cortex of 

man as studied by electrical stimulation." Brain 60(4): 389-443. doi: 

https://doi.org/10.1093/brain/60.4.389. 

Penfield, W. and T. Rasmussen (1950). "The cerebral cortex of man; a clinical study of localization of 

function." doi: https://doi.org/10.1001/jama.1950.02920160086033. 

Pierce, J. S., B. C. Stearns and R. Pausch (1999). Voodoo dolls: seamless interaction at multiple scales in 

virtual environments. Proceedings of the 1999 symposium on Interactive 3D graphics. Atlanta, 

Georgia, USA, ACM: 141-145. doi: https://doi.org/10.1145/300523.300540. 

Plantard, P., E. Auvinet, A.-S. L. Pierres and F. Multon (2015). "Pose estimation with a kinect for 

ergonomic studies: Evaluation of the accuracy using a virtual mannequin." Sensors 15(1): 1785-

1803. doi: http://dx.doi.org/10.3390/s150101785. 

Poupyrev, I., M. Billinghurst, S. Weghorst and T. Ichikawa (1996). The go-go interaction technique: non-

linear mapping for direct manipulation in VR. Proceedings of the 9th annual ACM symposium on 

User interface software and technology, ACM. doi: http://dx.doi.org/10.1145/237091.237102. 

https://doi.org/10.1109/TVCG.2015.2414455
https://doi.org/10.1109/VR.2011.5759438
https://www.ceeol.com/search/article-detail?id=289829
https://www.ceeol.com/search/article-detail?id=289829
https://doi.org/10.1145/985692.985737
https://doi.org/10.1109/TVCG.2008.191
https://doi.org/10.1109/VR.2010.5444816
https://doi.org/10.1002/ima.20016
https://doi.org/10.1093/brain/60.4.389
https://doi.org/10.1001/jama.1950.02920160086033
https://doi.org/10.1145/300523.300540
http://dx.doi.org/10.3390/s150101785
http://dx.doi.org/10.1145/237091.237102


 

References 

169 

Poupyrev, I., T. Ichikawa, S. Weghorst and M. Billinghurst (1998). Egocentric object manipulation in 

virtual environments: empirical evaluation of interaction techniques. Computer graphics forum, 

Wiley Online Library. doi: https://doi.org/10.1111/1467-8659.00252. 

Poupyrev, I., N. Tomokazu and S. Weghorst (1998). Virtual Notepad: handwriting in immersive VR. 

Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No. 98CB36180), 

IEEE. doi: https://doi.org/10.1109/VRAIS.1998.658467. 

Poupyrev, I., S. Weghorst, M. Billinghurst and T. Ichikawa (1997). A framework and testbed for studying 

manipulation techniques for immersive VR. Proceedings of the ACM symposium on Virtual reality 

software and technology, ACM. doi: https://doi.org/10.1145/261135.261141. 

Prior, A. (2006). On-the-fly voxelization for 6 degrees-of-freedom haptic virtual sculpting. Proceedings 

of the 2006 ACM international conference on Virtual reality continuum and its applications, ACM. 

doi: https://doi.org/10.1145/1128923.1128966. 

Quek, F. K. (1996). "Unencumbered gestural interaction." IEEE multimedia 3(4): 36-47. doi: 

https://doi.org/10.1109/93.556459. 

Razzaque, S., Z. Kohn and M. C. Whitton (2001). Redirected walking. Proceedings of 

EUROGRAPHICS, Manchester, UK. doi: http://dx.doi.org/10.2312/egs.20011036. 

Reitmayr, G. and D. Schmalstieg (2001). Mobile collaborative augmented reality. Proceedings IEEE and 

ACM International Symposium on Augmented Reality, IEEE. doi: 

https://doi.org/10.1109/ISAR.2001.970521. 

Rekimoto, J. (2002). SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. 

Proceedings of the SIGCHI conference, ACM. doi: https://doi.org/10.1145/503376.503397. 

Ribarsky, W., J. Bolter, A. O. den Bosch and R. Van Teylingen (1994). "Visualization and analysis using 

virtual reality." IEEE computer Graphics and Applications 14(1): 10-12. doi: 

https://doi.org/10.1109/38.250911. 

Richardson, A. E., D. R. Montello and M. Hegarty (1999). "Spatial knowledge acquisition from maps and 

from navigation in real and virtual environments." Memory & cognition 27(4): 741-750. doi: 

https://doi.org/10.3758/BF03211566. 

Riecke, B., B. Bodenheimer, T. McNamara, B. Williams, P. Peng and D. Feuereissen (2010). "Do we 

need to walk for effective virtual reality navigation? physical rotations alone may suffice." Spatial 

cognition VII: 234-247. doi: https://doi.org/10.1007/978-3-642-14749-4_21. 

Rimé, B. (1982). "The elimination of visible behaviour from social interactions: Effects on verbal, 

nonverbal and interpersonal variables." European journal of social psychology 12(2): 113-129. doi: 

https://doi.org/10.1002/ejsp.2420120201. 

Rimé, B. and L. Schiaratura (1991). "Gesture and speech."  

Robertson, R. J., F. L. Goss, J. Rutkowski, B. Lenz, C. Dixon, J. Timmer, K. Frazee, J. Dube and J. 

Andreacci (2003). "Concurrent validation of the OMNI perceived exertion scale for resistance 

exercise." Medicine and science in sports and exercise 35(2): 333-341. doi: 

https://doi.org/10.1249/01.MSS.0000048831.15016.2A. 

https://doi.org/10.1111/1467-8659.00252
https://doi.org/10.1109/VRAIS.1998.658467
https://doi.org/10.1145/261135.261141
https://doi.org/10.1145/1128923.1128966
https://doi.org/10.1109/93.556459
http://dx.doi.org/10.2312/egs.20011036
https://doi.org/10.1109/ISAR.2001.970521
https://doi.org/10.1145/503376.503397
https://doi.org/10.1109/38.250911
https://doi.org/10.3758/BF03211566
https://doi.org/10.1007/978-3-642-14749-4_21
https://doi.org/10.1002/ejsp.2420120201
https://doi.org/10.1249/01.MSS.0000048831.15016.2A


 

References 

170 

Robles-De-La-Torre, G. and V. Hayward (2001). "Force can overcome object geometry in the perception 

of shape through active touch." Nature 412(6845): 445-448. doi: 

http://dx.doi.org/10.1038/35086588. 

Rosa, D. A. W. and H. H. Nagel (2010). Selection techniques for dense and occluded virtual 3d 

environments, supported by depth feedback: Double, bound and depth bubble cursors. 2010 XXIX 

International Conference of the Chilean Computer Science Society, IEEE. doi: 

https://doi.org/10.1109/SCCC.2010.51. 

Sanchez-Vives, M. V. and M. Slater (2005). "From presence to consciousness through virtual reality." 

Nature Reviews Neuroscience 6(4): 332-339. doi: http://dx.doi.org/10.1038/nrn1651. 

Satava, R. M. (1993). "Virtual reality surgical simulator." Surgical endoscopy 7(3): 203-205. doi: 

http://dx.doi.org/10.1007/BF00594110. 

Schkolne, S., M. Pruett and P. Schröder (2001). Surface drawing: creating organic 3D shapes with the 

hand and tangible tools. Proceedings of the SIGCHI conference on Human factors in computing 

systems, ACM. doi: https://doi.org/10.1145/365024.365114. 

Schmalstieg, D., L. M. Encarnação and Z. Szalavári (1999). "Using transparent props for interaction with 

the virtual table." SI3D 99: 147-153. doi: https://doi.org/10.1145/300523.300542. 

Seymour, N. E., A. G. Gallagher, S. A. Roman, M. K. O’brien, V. K. Bansal, D. K. Andersen and R. M. 

Satava (2002). "Virtual reality training improves operating room performance: results of a 

randomized, double-blinded study." Annals of surgery 236(4): 458-464. doi: 

https://doi.org/10.1097/00000658-200210000-00008. 

Shan, G., M. Xie, Y. Gao and X. Chi (2014). "Interactive visual exploration of halos in large-scale 

cosmology simulation." Journal of Visualization 17(3): 145-156. doi: 

https://doi.org/10.1007/s12650-014-0206-5. 

Siciliano, B. and O. Khatib (2016). Springer handbook of robotics, Springer.  

Slater, M., M. Usoh and A. Steed (1995). "Taking steps: the influence of a walking technique on presence 

in virtual reality." ACM Transactions on Computer-Human Interaction (TOCHI) 2(3): 201-219. doi: 

https://doi.org/10.1145/210079.210084. 

Song, D. and M. Norman (1993). Nonlinear interactive motion control techniques for virtual space 

navigation. Virtual Reality Annual International Symposium, 1993., 1993 IEEE, IEEE. doi: 

https://doi.org/10.1109/VRAIS.1993.380790. 

Spillmann, J., S. Tuchschmid and M. Harders (2013). "Adaptive space warping to enhance passive 

haptics in an arthroscopy surgical simulator." IEEE transactions on visualization and computer 

graphics 19(4): 626-633. doi: http://dx.doi.org/10.1109/TVCG.2013.23. 

Sridhar, S., A. M. Feit, C. Theobalt and A. Oulasvirta (2015). Investigating the dexterity of multi-finger 

input for mid-air text entry. Proceedings of the 33rd Annual ACM Conference on Human Factors in 

Computing Systems, ACM. doi: https://doi.org/10.1145/2702123.2702136. 

Stanney, K. M. (2003). Virtual environments. The human-computer interaction handbook. A. J. Julie and 

S. Andrew, L. Erlbaum Associates Inc.: 621-634.  

Stanney, K. M., R. R. Mourant and R. S. Kennedy (1998). "Human factors issues in virtual environments: 

A review of the literature." Presence 7(4): 327-351. doi: https://doi.org/10.1162/105474698565767. 

http://dx.doi.org/10.1038/35086588
https://doi.org/10.1109/SCCC.2010.51
http://dx.doi.org/10.1038/nrn1651
http://dx.doi.org/10.1007/BF00594110
https://doi.org/10.1145/365024.365114
https://doi.org/10.1145/300523.300542
https://doi.org/10.1097/00000658-200210000-00008
https://doi.org/10.1007/s12650-014-0206-5
https://doi.org/10.1145/210079.210084
https://doi.org/10.1109/VRAIS.1993.380790
http://dx.doi.org/10.1109/TVCG.2013.23
https://doi.org/10.1145/2702123.2702136
https://doi.org/10.1162/105474698565767


 

References 

171 

Steinicke, F., G. Bruder, J. Jerald, H. Frenz and M. Lappe (2010). "Estimation of detection thresholds for 

redirected walking techniques." IEEE transactions on visualization and computer graphics 16(1): 

17-27. doi: https://doi.org/10.1109/TVCG.2009.62. 

Steuer, J. (1992). "Defining virtual reality: Dimensions determining telepresence." Journal of 

communication 42(4): 73-93. doi: http://dx.doi.org/10.1111/j.1460-2466.1992.tb00812.x. 

Strothoff, S., D. Valkov and K. Hinrichs (2011). Triangle cursor: Interactions with objects above the 

tabletop. Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, 

ACM. doi: https://doi.org/10.1145/2076354.2076377. 

Sturman, D. J. and D. Zeltzer (1993). "A design method for “whole-hand” human-computer interaction." 

ACM Transactions on Information Systems (TOIS) 11(3): 219-238. doi: 

https://doi.org/10.1145/159161.159159. 

Sturman, D. J., D. Zeltzer and S. Pieper (1989). Hands-on interaction with virtual environments. 

Proceedings of the 2nd annual ACM SIGGRAPH UIST, ACM. doi: 

https://doi.org/10.1145/73660.73663. 

Sukan, M., C. Elvezio, O. Oda, S. Feiner and B. Tversky (2014). Parafrustum: Visualization techniques 

for guiding a user to a constrained set of viewing positions and orientations. ACM symposium on 

User interface software and technology, ACM. doi: https://doi.org/10.1145/2642918.2647417. 

Suma, E. A., S. Clark, D. Krum, S. Finkelstein, M. Bolas and Z. Warte (2011). Leveraging change 

blindness for redirection in virtual environments. Virtual Reality Conference (VR), 2011 IEEE, 

IEEE. doi: https://doi.org/10.1109/VR.2011.5759455. 

Sundén, E., I. Lundgren and A. Ynnerman (2017). Hybrid Virtual Reality Touch Table: An immersive 

collaborative platform for public explanatory use of cultural objects and sites. 15th Eurographics 

Workshop on Graphics and Cultural Heritage, Graz, Austria, September 27-29, 2017, Eurographics-

European Association for Computer Graphics. doi: https://doi.org/10.2312/gch.20171300. 

Sutcliffe, A. (2003). Multimedia and virtual reality: designing multisensory user interfaces, Psychology 

Press.  

Sutherland, I. E. (1968). A head-mounted three dimensional display. Proceedings of the December 9-11, 

1968, fall joint computer conference, part I, ACM. doi: https://doi.org/10.1145/1476589.1476686. 

Szalavári, Z. and M. Gervautz (1997). The personal interaction Panel–a Two‐Handed interface for 

augmented reality. Computer graphics forum, Wiley Online Library. doi: 

https://doi.org/10.1111/1467-8659.00137. 

Takahashi, K. (2017). "Pcx - Point Cloud Importer/Renderer for Unity." Available from: 

https://github.com/keijiro/Pcx. 

Tanriverdi, V. and R. J. Jacob (2001). VRID: a design model and methodology for developing virtual 

reality interfaces. Proceedings of the ACM symposium on Virtual reality software and technology, 

ACM. doi: https://doi.org/10.1145/505008.505042. 

Templeman, J. N., P. S. Denbrook and L. E. Sibert (1999). "Virtual locomotion: Walking in place through 

virtual environments." Presence: Teleoperators and virtual environments 8(6): 598-617. doi: 

http://dx.doi.org/10.1162/105474699566512. 

https://doi.org/10.1109/TVCG.2009.62
http://dx.doi.org/10.1111/j.1460-2466.1992.tb00812.x
https://doi.org/10.1145/2076354.2076377
https://doi.org/10.1145/159161.159159
https://doi.org/10.1145/73660.73663
https://doi.org/10.1145/2642918.2647417
https://doi.org/10.1109/VR.2011.5759455
https://doi.org/10.2312/gch.20171300
https://doi.org/10.1145/1476589.1476686
https://doi.org/10.1111/1467-8659.00137
https://github.com/keijiro/Pcx
https://doi.org/10.1145/505008.505042
http://dx.doi.org/10.1162/105474699566512


 

References 

172 

Terziman, L., M. Marchal, M. Emily, F. Multon, B. Arnaldi and A. Lécuyer (2010). Shake-your-head: 

Revisiting walking-in-place for desktop virtual reality. ACM Symposium on Virtual Reality 

Software and Technology, ACM. doi: https://doi.org/10.1145/1889863.1889867. 

Thalmic-Labs. https://support.getmyo.com/hc/en-us/articles/205180865-Double-Tap-gesture-is-not-

recognized 

Thorndyke, P. W. and B. Hayes-Roth (1982). "Differences in spatial knowledge acquired from maps and 

navigation." Cognitive psychology 14(4): 560-589. doi: https://doi.org/10.1016/0010-

0285(82)90019-6. 

Tolani, D., A. Goswami and N. I. Badler (2000). "Real-time inverse kinematics techniques for 

anthropomorphic limbs." Graphical models 62(5): 353-388. doi: 

https://doi.org/10.1006/gmod.2000.0528. 

Tregillus, S. and E. Folmer (2016). Vr-step: Walking-in-place using inertial sensing for hands free 

navigation in mobile vr environments. Proceedings of the 2016 CHI Conference on Human Factors 

in Computing Systems, ACM. doi: https://doi.org/10.1145/2858036.2858084. 

Usoh, M., K. Arthur, M. C. Whitton, R. Bastos, A. Steed, M. Slater and F. P. Brooks Jr (1999). Walking> 

walking-in-place> flying, in virtual environments. Conference on Computer graphics and interactive 

techniques, ACM Press/Addison-Wesley Publishing Co. doi: 

https://doi.org/10.1145/311535.311589. 

Valkov, D., A. Giesler and K. H. Hinrichs (2014). Imperceptible depth shifts for touch interaction with 

stereoscopic objects. Proceedings of the SIGCHI Conference on Human Factors in Computing 

Systems, ACM. doi: http://dx.doi.org/10.1145/2556288.2557134. 

Van Dam, A. (1997). "Post-WIMP user interfaces." Communications of the ACM 40(2): 63-67. doi: 

https://doi.org/10.1145/253671.253708. 

Vanacken, L., T. Grossman and K. Coninx (2009). "Multimodal selection techniques for dense and 

occluded 3D virtual environments." International Journal of Human-Computer Studies 67(3): 237-

255. doi: https://doi.org/10.1016/j.ijhcs.2008.09.001. 

Wachs, J. P., M. Kölsch, H. Stern and Y. Edan (2011). "Vision-based hand-gesture applications." 

Communications of the ACM 54(2): 60-71. doi: http://dx.doi.org/10.1145/1897816.1897838. 

Wang, J. and R. Lindeman (2014). Coordinated 3D interaction in tablet-and HMD-based hybrid virtual 

environments. Proceedings of the 2nd ACM symposium on Spatial user interaction, ACM. doi: 

https://doi.org/10.1145/2659766.2659777. 

Wang, J. and R. W. Lindeman (2015). Object impersonation: Towards effective interaction in tablet-and 

HMD-based hybrid virtual environments. Virtual Reality (VR), 2015 IEEE, IEEE. doi: 

https://doi.org/10.1109/VR.2015.7223332. 

Weissmann, J. and R. Salomon (1999). Gesture recognition for virtual reality applications using data 

gloves and neural networks. Neural Networks, 1999. IJCNN'99. International Joint Conference on, 

IEEE. doi: https://doi.org/10.1109/IJCNN.1999.832699. 

Wendt, J. D., M. C. Whitton and F. P. Brooks (2010). Gud wip: Gait-understanding-driven walking-in-

place. Virtual Reality Conference (VR), 2010 IEEE, IEEE. doi: 

https://doi.org/10.1109/VR.2010.5444812. 

https://doi.org/10.1145/1889863.1889867
https://support.getmyo.com/hc/en-us/articles/205180865-Double-Tap-gesture-is-not-recognized
https://support.getmyo.com/hc/en-us/articles/205180865-Double-Tap-gesture-is-not-recognized
https://doi.org/10.1016/0010-0285(82)90019-6
https://doi.org/10.1016/0010-0285(82)90019-6
https://doi.org/10.1006/gmod.2000.0528
https://doi.org/10.1145/2858036.2858084
https://doi.org/10.1145/311535.311589
http://dx.doi.org/10.1145/2556288.2557134
https://doi.org/10.1145/253671.253708
https://doi.org/10.1016/j.ijhcs.2008.09.001
http://dx.doi.org/10.1145/1897816.1897838
https://doi.org/10.1145/2659766.2659777
https://doi.org/10.1109/VR.2015.7223332
https://doi.org/10.1109/IJCNN.1999.832699
https://doi.org/10.1109/VR.2010.5444812


 

References 

173 

Wiktorin, C., L. Karlqvist and J. Winkel (1993). "Validity of self-reported exposures to work postures 

and manual materials handling." Scandinavian journal of work, environment & health: 208-214. 

http://www.jstor.org/stable/40966137 

Williams, B., G. Narasimham, T. P. McNamara, T. H. Carr, J. J. Rieser and B. Bodenheimer (2006). 

Updating orientation in large virtual environments using scaled translational gain. Symposium on 

Applied Perception in Graphics and Visualization, ACM. doi: 

https://doi.org/10.1145/1140491.1140495. 

Wilson, G., M. McGill, M. Jamieson, J. R. Williamson and S. A. Brewster (2018). Object Manipulation 

in Virtual Reality Under Increasing Levels of Translational Gain. Proceedings of the 2018 CHI 

Conference on Human Factors in Computing Systems, ACM. doi: 

https://doi.org/10.1145/3173574.3173673. 

Witmer, B. G. and M. J. Singer (1998). "Measuring presence in virtual environments: A presence 

questionnaire." Presence 7(3): 225-240. doi: https://doi.org/10.1162/105474698565686. 

Wu, M. and R. Balakrishnan (2003). Multi-finger and whole hand gestural interaction techniques for 

multi-user tabletop displays. Proceedings of ACM UIST, ACM. doi: 

https://doi.org/10.1145/964696.964718. 

Xie, X., Q. Lin, H. Wu, G. Narasimham, T. P. McNamara, J. Rieser and B. Bodenheimer (2010). A 

system for exploring large virtual environments that combines scaled translational gain and 

interventions. Proceedings of the 7th Symposium on Applied Perception in Graphics and 

Visualization, ACM. doi: https://doi.org/10.1145/1836248.1836260. 

Yu, L., K. Efstathiou, P. Isenberg and T. Isenberg (2012). "Efficient structure-aware selection techniques 

for 3D point cloud visualizations with 2DOF input." IEEE transactions on visualization and 

computer graphics 18(12): 2245-2254. doi: https://doi.org/10.1109/TVCG.2012.217. 

Yu, L., K. Efstathiou, P. Isenberg and T. Isenberg (2016). "CAST: Effective and efficient user interaction 

for context-aware selection in 3D particle clouds." IEEE transactions on visualization and computer 

graphics 22(1): 886-895. doi: https://doi.org/10.1109/TVCG.2015.2467202. 

Zank, M. and A. Kunz (2015). Using locomotion models for estimating walking targets in immersive 

virtual environments. 2015 International Conference on Cyberworlds (CW), IEEE. doi: 

https://doi.org/10.1109/CW.2015.20. 

Zhai, S. and P. Milgram (1998). Quantifying coordination in multiple DOF movement and its application 

to evaluating 6 DOF input devices. Proceedings of the SIGCHI conference on Human factors in 

computing systems, ACM Press/Addison-Wesley Publishing Co. doi: 

http://dx.doi.org/10.1145/274644.274689. 

Zhang, Y., J. Zhou, G. Laput and C. Harrison (2016). SkinTrack: Using the Body as an Electrical 

Waveguide for Continuous Finger Tracking on the Skin. Proceedings of the 2016 CHI Conference, 

ACM. doi: https://doi.org/10.1145/2858036.2858082. 

 

 

 

http://www.jstor.org/stable/40966137
https://doi.org/10.1145/1140491.1140495
https://doi.org/10.1145/3173574.3173673
https://doi.org/10.1162/105474698565686
https://doi.org/10.1145/964696.964718
https://doi.org/10.1145/1836248.1836260
https://doi.org/10.1109/TVCG.2012.217
https://doi.org/10.1109/TVCG.2015.2467202
https://doi.org/10.1109/CW.2015.20
http://dx.doi.org/10.1145/274644.274689
https://doi.org/10.1145/2858036.2858082


 

Appendix 1 

174 

Appendix 1 

Analytical definition of Drift:  

We define drift as the difference in the real position of the user, after traveling along a 

closed path in the VE. Please note drift is actually represented as a displacement vector.  

As illustrated in Figure 5.8, drift appears as a result of the differences between the 

displacement performed in the VE and the real displacements of the user in reality. Let’s 

define A as a period of time, in which the user has completed a closed trajectory in the 

VE. Thus, it can be modelled as:   

𝐷𝑟𝑖𝑓𝑡 (𝐴) =  ∫ (
𝒅𝑷𝑾(𝒕)

𝒅𝒕
−
𝒅𝑷𝑻(𝒕)

𝒅𝒕
) ∙ 𝒅𝒕

𝐴

𝑡=0

                                    (8) 

  At each point in time, the real and virtual positions of the user can be defined as:  

𝑷𝑻(𝒕) = 𝑴𝑻
𝑼(𝑡) ∙ (0,0,0,1)    , ∀𝑡 ∈ 𝐴                                           (9) 

𝑷𝑾(𝒕) = 𝑴𝑾
𝑼 (𝑡) ∙ (0,0,0,1)     , ∀𝑡 ∈ 𝐴                                         (10) 

Thus Eq(8) can be rewritten as:  

𝐷𝑟𝑖𝑓𝑡 (𝐴) =  ∫ (
𝒅𝑴𝑾

𝑼 (𝑡)

𝒅𝒕
−
𝒅𝑴𝑻

𝑼(𝑡)

𝒅𝒕
) ∙ (0,0,0,1)    ∙ 𝒅𝒕

𝐴

𝑡=0

                  (11) 

 

The derivative 𝒅𝑴𝑾
𝑼 (𝑡)  is computed as 𝒅𝑴𝑾

𝑼 (𝑡)/ 𝑑𝒕 = (𝑴𝑾
𝑼 (𝑡 + 𝑑𝑡) −𝑴𝑾

𝑼 (𝑡)), 

which combined with Eq(3) allows us to rewrite it as:  

𝒅𝑴𝑾
𝑼 (𝑡)

𝒅𝒕
= 𝑫(𝒌(𝑴𝑾

𝑼 (𝑡))) ∙
𝑑𝑴𝑻

𝑼(t)

𝑑𝑡
                                         (12) 

Combining equations (11) and (12), we can now define drift purely in terms of users real 

displacements: 

𝐷𝑟𝑖𝑓𝑡 (𝐴) =  ∫ (𝑫(𝒌(𝑴𝑾
𝑼 (𝑡))) ∙

𝑑𝑴𝑻
𝑼(t)

𝑑𝑡
−
𝒅𝑴𝑻

𝑼(𝑡)

𝒅𝒕
) ∙ (0,0,0,1)     

𝐴

𝑡=0

∙ 𝒅𝒕                  (13) 

Lets use I to represent the identity matrix. Eq (13) can now be simplified with steps (14) 

and (15): 
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𝐷𝑟𝑖𝑓𝑡 (𝐴) =  ∫ (𝑫(𝒌(𝑴𝑾
𝑼 (𝑡))) ∙ −𝑰) ∙

𝑑𝑴𝑻
𝑼(t)

𝑑𝑡
∙ (0,0,0,1)    ∙ 𝒅𝒕

𝐴

𝑡=0

                  (14) 

𝐷𝑟𝑖𝑓𝑡 (𝐴) =  ∫ 𝑺(𝒌(𝑴𝑾
𝑼 (𝑡) − 1, 0  , 𝒌(𝑴𝑾

𝑼 (𝑡) − 1)) ∙
𝑑𝑴𝑻

𝑼(t)

𝑑𝑡
∙ (0,0,0,1)     

𝐴

𝑡=0

∙ 𝒅𝒕        (15) 

Applying Eq(9), to represent the result in terms of users displacements, results in the final 

equation reported in Chapter 5:  

𝐷𝑟𝑖𝑓𝑡 (𝐴) =  ∫ 𝑺(𝒌(𝑴𝑾
𝑼 (𝑡) − 1 , 0  , 𝒌(𝑴𝑾

𝑼 (𝑡) − 1)) ∙
𝑑𝑷𝑻(𝒕)

𝑑𝑡
∙ 𝒅𝒕

𝐴

𝑡=0

             (7) 
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Appendix 2 

NaviFields: Relevance fields for adaptive VR navigation 

Main effects: mean and standard deviations of the main factors in the experimental 

design, for all the dependent variables 

Travelling task 

 T S L 

T_D 
NF =0.096 ±0.2 

PH =0.94±0.25 

S:1=0.05±0.08 

S:2=0.12±0.16 
S:3=0.33±0.31 

L:2=0.24±0.15 

L:4=0.23±0.18 

T_RD 
NF =1.85 ±1.17 
PH =0.94±0.73 

S:1=0.81±0.65 

S:2=1.41±0.99 

S:3=1.96±1.19 

L:2=0.92±0.74 
L:4=1.87±1.15 

T_TCT 
NF = 3.99±3.64 

PH =3.86±3.59 

S:1=1.59±1.87 
S:2=3.39±2.05 

S:3=6.80±3.94 

L:2=2.58±2.49 

L:4=5.27±4.04 

CT 
NF =-1.0±1.08 

PH =-0.6±1.4 

S:1=-0.22±0.67 

S:2=-0.67±0.94 

S:3=-1.61±1.69 

L:2=-0.79±1.40 

L:4=-0.87±1.23 

ET 
NF = -1.0±1.20 

PH =-0.5±1.61 

S:1=-0.12±0.9 

S:2=-0.66±1.18 

S:3=-1.64±1.69 

L:2=-0.7±1.47 

L:4=-0.91±1.4 

 

 

Manoeuvring task 

. T S H_S T_S P 

M_TCT 
NF=0.35 ±3.1 
PH=4.53±6.09 

S:1=0.07±3.13 

S:2=1.63±4.12 

S:3=4.99±7.8 

TH =3.59±7.22 
LH=1.29±3.38 

TT=2.78±6.01 
LT=2.1±5.45 

KP=3.17±6.57 

MP=2.33±5.71 

SP=1.82±4.75 

M_OE 
NF=0.12 ±0.9 

PH=0.4±1.07 

S:1=0.15±0.93 
S:2=0.30±0.96 

S:3=0.44±1.13 

TH =0.34±0.9 

LH=0.26±1.8 

TT =0.18±0.63 

LT=0.41±1.28 

KP=0.38±1.05 
MP=0.19±1.04 

SP=0.32±0.95 

M_PE 
NF=-0.8±0.8 

PH =0.4±0.7 

S:1=-1.02±0.7 

S:2=0.69±0.7 

S:3=0.44±0.8 

TH =0.8±0.9 

LH=-0.1±0.5 

TT =-0.3±0.8 

LT=-0.7±0.7 

KP=0.6±0.7 

MP=-1.23±0.7 

SP=-0.01±0.8 

M_FA 
NF=0.25±1.94 

PH=3.34±5.76 

S:1=0.51±2.09 

S:2=1.21±3.04 

S:3=3.06±6.59 

TH =2.87±5.74 

LH=0.73±2.43 

TT =1.7±4.25 

LT=1.8±4.86 

KP=2.44±5.48 

MP=1.63±4.25 

SP=1.33±3.72 
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Interaction effects: mean and standard deviation of the analysed interactions 

Travelling task 

Mean = average value of the observed variable for the combination of factor indicated in 

the first two columns 

sd = standard deviation of the observed variable for the combination of factor indicated 

in the first two columns 

se = standard error value of the observed variable for the combination of factor indicated 

in the first two columns 

 

Travelling task: T_TCT T*S 

 

Travelling task: T_TCT T*L 

 

Travelling task: T_D T*S 

 

Travelling task: T_D T*L 
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Travelling task: T_RD T*S 

 

Travelling task: T_rd T*L 

 

Travelling task: T_CT T*S 

 

Travelling task: T_CT T*L 

 

Travelling task: T_ET T*S 

 

Travelling task: T_ET T*L 
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Manoeuvring task 

Head: 1 = Large, 2=Tight  

Tail: 1 = Large, 2=Tight  

Position: 1=Kneeling, 2=Medium, 3=Standing 

 

Manoeuvring task: m_tct*s 

 

Manoeuvring task: m_tct*H_S 

 

Manoeuvring task: m_tct*T_s 

 

Manoeuvring task: m_tct*P 

 

Manoeuvring task: m_oe*s 
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Manoeuvring task: m_oe*H_s 

 

Manoeuvring task: m_oe*T_s 

 

Manoeuvring task: m_oe*P 

 

Manoeuvring task: m_pe*s 

 

Manoeuvring task: m_pe*H_s 

 

Manoeuvring task: m_pe*T_s 
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Manoeuvring task: m_pe*P 

 

Manoeuvring task: m_fa*s 

 

Manoeuvring task: m_fa*H_s 

 

Manoeuvring task: m_fa*T_s 

 

Manoeuvring task: m_fa*P 

 

Manoeuvring task: m_CM*S 
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Maneuvering task: m_CM*L 

 

Manoeuvring task: m_EM*S 

 

Manoeuvring task: m_EM*T 
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Baseline Raw data: 

 

Travelling task 

Travelling task: T_TCT T*S 

 

Travelling task: T_TCT T*L 

 

Travelling task: T_D T*S 

 

Travelling task: T_D T*L 

 

Travelling task: T_RD T*S 

 

Travelling task: T_rd T*L 

 

Travelling task: T_CT T*S 

 

Travelling task: T_CT T*L 

 

Travelling task: T_ET T*S 

 

Travelling task: T_ET T*L 
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Manoeuvring task 

Manoeuvring task: m_tct*s 

 

Manoeuvring task: m_tct*H_S 

 

Manoeuvring task: m_tct*T_s 

 

Manoeuvring task: m_tct*P 

 

Manoeuvring task: m_oe*s 

 

Manoeuvring task: m_oe*H_s 

 

Manoeuvring task: m_oe*T_s 

 

Manoeuvring task: m_oe*P 

 

Manoeuvring task: m_pe*s 

 

Manoeuvring task: m_pe*H_s 
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Manoeuvring task: m_pe*T_s 

 

Manoeuvring task: m_pe*P 

 

Manoeuvring task: m_fa*s 

 

Manoeuvring task: m_fa*H_s 

 

Manoeuvring task: m_fa*T_s 

 

Manoeuvring task: m_fa*P 

 

Manoeuvring task: m_CM*S 

 

Manoeuvring task: m_CM*L 

 

Manoeuvring task: m_EM*S 

 

Manoeuvring task: m_EM*T 
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Comparison between NaviFields and baseline: Bonferroni corrected pairwise 

comparisons 

Travelling task 

Baseline is expressed as absence of scaling (_NONE). Values in the tables represents p-

values for Bonferroni corrected paired t-test, computed using the R software for statistical 

computing (pairwise.t.test). Combination of columns and rows indicate the compared 

scalings. 

Travelling task: T_tct 

 

Travelling task: T_d 

 

Travelling task: T_rd 

 

Travelling task: T_ct 

 

Travelling task: T_et 
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Manoeuvring task  

Manoeuvring task: M_tct 

 

Manoeuvring task: M_oe 

 

Manoeuvring task: M_pe 

 

Manoeuvring task: M_FA 

 

Manoeuvring task: M_cm 

 

Manoeuvring task: M_em 

 

 

 

 



 

Appendix 3 

188 

Appendix 3 

We conducted paired comparisons with Bonferroni corrections to compare the Drift effect 

with both correction techniques (Derivative and Angular) in each configuration of α and 

ε (49 configurations in total). Table S1 shows the mean and p values of this comparison. 

Results suggest a poor performance of the Derivative correction when compared with the 

uncorrected Drift. Averages with SD of all the configuration are shown in Figure S1.  

 

α ε  Uncorrected Derivative Angular 
Uncorrected 

Vs 
Derivative 

Uncorrected 
Vs 

Angular 

Derivative 
Vs 

Angular 
1 0.125 0.35 0.566 m 0.665 m 0.374 m p=0.037 p<0.001 p<0.001 

2 0.125 0.3 0.566 m 0.608 m 0.374 m p=0.891 p<0.001 p<0.001 

3 0.125 0.25 0.566 m 0.591 m 0.374 m p=1 p<0.001 p<0.001 

4 0.125 0.2 0.566 m 0.573 m 0.374 m p=1 p<0.001 p=0.002 

5 0.125 0.15 0.566 m 0.546 m 0.374 m p=1 p<0.001 p=0.003 

6 0.125 0.1 0.566 m 0.533 m 0.697 m p=0.339 p<0.001 p<0.001 

7 0.125 0.05 0.566 m 0.550 m 0.770 m p=0.906 p<0.001 p<0.001 

8 0.25 0.35 0.566 m 0.644 m 0.816 m p=0.253 p<0.001 p<0.001 

9 0.25 0.3 0.566 m 0.623 m 0.268 m p=0.496 p<0.001 p<0.001 

10 0.25 0.25 0.566 m 0.603 m 0.268 m p=0.765 p<0.001 p<0.001 

11 0.25 0.2 0.566 m 0.564 m 0.929 m p=1 p<0.001 p<0.001 

12 0.25 0.15 0.566 m 0.554 m 1.118 m p=1 p<0.001 p<0.001 

13 0.25 0.1 0.566 m 0.536 m 1.047 m p=0.282 p<0.001 p<0.001 

14 0.25 0.05 0.566 m 0.550 m 0.805 m p=0.908 p<0.001 p<0.001 

15 0.5 0.35 0.566 m 0.634 m 2.118 m p=0.432 p<0.001 p<0.001 

16 0.5 0.3 0.566 m 0.627 m 2.082 m p=0.306 p<0.001 p<0.001 

17 0.5 0.25 0.566 m 0.606 m 1.942 m p=0.53 p<0.001 p<0.001 

18 0.5 0.2 0.566 m 0.569 m 1.687 m p=1 p<0.001 p<0.001 

19 0.5 0.15 0.566 m 0.555 m 1.396 m p=1 p<0.001 p<0.001 

20 0.5 0.1 0.566 m 0.536 m 0.697 m p=0.289 p<0.001 p<0.001 

21 0.5 0.05 0.566 m 0.550 m 0.814 m p=0.907 p<0.001 p<0.001 

22 1 0.35 0.566 m 0.635 m 3.088 m p=0.385 p<0.001 p<0.001 

23 1 0.3 0.566 m 0.629 m 2.648 m p=0.311 p<0.001 p<0.001 

24 1 0.25 0.566 m 0.606 m 2.239 m p=0.503 p<0.001 p<0.001 

25 1 0.2 0.566 m 0.570 m 1.854 m p=1 p<0.001 p<0.001 

26 1 0.15 0.566 m 0.552 m 1.475 m p=1 p<0.001 p<0.001 

27 1 0.1 0.566 m 0.536 m 1.117 m p=0.285 p<0.001 p<0.001 

28 1 0.05 0.566 m 0.550 m 0.815 m p=0.908 p<0.001 p<0.001 

29 2 0.35 0.566 m 0.807 m 3.371 m p<0.001 p<0.001 p<0.001 

30 2 0.3 0.566 m 0.628 m 2.830 m p=0.344 p<0.001 p<0.001 

31 2 0.25 0.566 m 0.606 m 2.332 m p=0.503 p<0.001 p<0.001 

32 2 0.2 0.566 m 0.559 m 1.902 m p=1 p<0.001 p<0.001 

33 2 0.15 0.566 m 0.552 m 1.494 m p=1 p<0.001 p<0.001 

34 2 0.1 0.566 m 0.536 m 1.123 m p=0.284 p<0.001 p<0.001 

35 2 0.05 0.566 m 0.550 m 0.816 m p=0.909 p<0.001 p<0.001 

36 4 0.35 0.566 m 0.806 m 3.445 m p<0.001 p<0.001 p<0.001 

37 4 0.3 0.566 m 0.582 m 2.882 m p=1 p<0.001 p<0.001 

38 4 0.25 0.566 m 0.572 m 2.363 m p=1 p<0.001 p<0.001 

39 4 0.2 0.566 m 0.558 m 1.904 m p=1 p<0.001 p<0.001 

40 4 0.15 0.566 m 0.552 m 1.500 m p=1 p<0.001 p<0.001 

41 4 0.1 0.566 m 0.536 m 1.125 m p=0.286 p<0.001 p<0.001 

42 4 0.05 0.566 m 0.550 m 0.816 m p=0.909 p<0.001 p<0.001 

43 8 0.35 0.566 m 0.807 m 3.468 m p<0.001 p<0.001 p<0.001 

44 8 0.3 0.566 m 0.582 m 2.895 m p=1 p<0.001 p<0.001 

45 8 0.25 0.566 m 0.572 m 2.374 m p=1 p<0.001 p<0.001 

46 8 0.2 0.566 m 0.559 m 1.396 m p=1 p<0.001 p<0.001 

47 8 0.15 0.566 m 0.552 m 1.502 m p=1 p<0.001 p<0.001 

48 8 0.1 0.566 m 0.536 m 1.126 m p=0.286 p<0.001 p<0.001 

49 8 0.05 0.566 m 0.550 m 0.816 m p=0.886 p<0.001 p<0.001 

Table S1. Mean Drift of each technique (Uncorrected, Derivative and Angular) in meters 

and results from our paired comparisons with Bonferroni corrections to compare the Drift 

effect in each of the 49 configurations of α and ε. The highlighted row shows the best 

configuration.  
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Figure S1 depicts the average of uncorrected Drift compared with the two corrections techniques (Angular and Derivative) in each of the 49 

configurations of α and ε. The lower Drift was resultant from the configuration ε=0.25 and α =0.25 which was significantly different from both 

uncorrected and Derivative correction (see Table S1 for paired comparisons).  

 

 

Figure S1.  Mean Drift uncorrected (red bars) and resultant Drift with Derivative (purple bars) and Angular (green bars) correction. Error bars 

represents SD. The yellow arrow highlights the best configuration (ε=0.25 and α =0.25) with lower Drift. 
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Generability And Robustness of Our Correction Technique 

Drift Correction 

We measured the average Drift resulting from our Angular correction in each navigation 

technique (NaviFields and Seven League Boots). Table S2 shows the average Drift and 

SD in meters along with a comparison of the original technique (NF and 7LB) against 

their corrected counterpart (NFC and 7LBC). Due to participants were not able to reach 

the last sets of flags in the uncorrected technique, we added la label indicating not enough 

data to conduct the analysis.  

 NaviFields 7 League Boots 

Flag NF NFC NF Vs NFC 
Effect 
Size 

7LB 7LBC 7LB Vs 7LBC 
Effect 
Size 

7 
M=0.621 
SD=0.21 

M=0.259 
SD=0.13 

p=0.003 η2=0.604 
M=0.508 
SD=0.25 

M=0.255 
SD=0.06 

p=0.006 η2=0.587 

14 
M=0.743 
SD=0.23 

M=0.588 
SD=0.12 

p=0.089 η2=0.288 
M=0.527 
SD=0.24 

M=0.198 
SD=0.02 

p=0.012 η2=0.679 

21 
M=0.856 
SD=0.45 

M=0.236 
SD=0.04 

p=0.33 η2=0.755 
M=0.561 
SD=0.25 

M=0.236 
SD=0.02 

p=0.295 η2=0.800 

28 
M=1.32 

Not enough 
data 

M=0.172 
SD=0.11 

Not enough 
data 

Not 
enough 

data 

M=0.433 
Not enough 

data 

M=0.208 
SD=0.106 

Not enough 
data 

Not 
enough 

data 

35 
Not enough 

data 
M=0.167 
SD=0.08 

Not enough 
data 

Not 
enough 

data 

M=0.384 
Not enough 

data 

M=0.188 
SD=0.05 

Not enough 
data 

Not 
enough 

data 

42 
Not enough 

data 
M=0.195 
SD=0.08 

Not enough 
data 

Not 
enough 

data 

M=0.183 
Not enough 

data 

M=0.167 
SD=0.04 

Not enough 
data 

Not 
enough 

data 

Table S2. Summary of Drift effects in each correction technique and comparison 

uncorrected vs corrected. 

Performance 

We also evaluated participants performance in terms of Flags Reached (FR), Real 

Distance per Flag (RDF) and Time per Flag (TPF). Table S3 shows the results from a 

One-way Repeated Measures ANOVA analysis to compare the effect of the correction 

techniques on participants performance in both original navigation methods (NF and SLB) 

and their corrected counterpart (NFC and 7LBC). 

 NaviFields 7 League Boots 

Performance NF NFC NF Vs NFC 
Effect 
Size 

7LB 7LBC 7LB Vs 7LBC 
Effect 
Size 

FR 
M=9.13 
SD=4.31 

M=41.02 
SD=2.17 

p<0.001 η2=0.983 
M=10.52 
SD=5.097 

M=36.61 
SD=9.44 

p<0.001 η2=0.893 

RDF 
M=2.931 
SD=1.09 

M=3.386 
SD=0.23 

p=0.215 η2=0.136 
M=4.16 
SD=2.32 

M=3.65 
SD=0.85 

p=0.492 η2=0.044 

TPF 
M=3.653 
SD=1.22 

M=3.510 
SD=0.91 

p=0.692 η2=0.015 
M=3.90 
SD=2.17 

M=3.463 
SD=0.70 

p=0.521 η2=0.038 

Table S3. Summary of effects of the correction techniques on performance. 
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User Experience 

We conducted a subjective evaluation of participants experience. Participants were asked 

to rate the level of agreement regarding 8 statements (shown in Table S4) in a Likert 

scale form 1 (totally disagree) to 7 (totally agree). A One-way Repeated Measures 

ANOVA was conducted to compare the effect of the Angular correction on participants’ 

subjective experience in both navigation methods (NF and 7LB). Table S5 shows mean, 

SD and effects in each statement between uncorrected (NF and 7LB) and corrected 

techniques (NFC and 7LBC).  

1 Moving from flag to flag was comfortable. 

2 Moving from flag to flag was easy. 

3 I felt control of my movements in the virtual world. 

4 I felt involved in the VR experience. 

5 The interaction with the VE seems natural. 

6 The experiences in the virtual world seems consistent with the real-world. 

7 The sense of moving around inside the VE was compelling. 

8 I felt very proficient in moving and interacting with the VE. 

Table S4. List of statements used in our subjective evaluation. 

 NaviFields 7 league boots 

Question NF NFC NF Vs NFC 
Effect 
Size 

7LB 7LBC 7LB Vs 7LBC 
Effect 
Size 

Comfortable 
M=3.58 
SD=1.56 

M=3.67 
SD=1.82 

p=0.77 η2=0.008 
M=3.92 
SD=1.56 

M=5.17 
SD=0.93 

p=0.002 η2=0.605 

Easy 
M=3.5 

SD=1.24 
M=4.08 
SD=1.62 

p=0.089 η2=0.240 
M=4.00 
SD=1.27 

M=5.33 
SD=0.49 

p=0.006 η2=0.508 

Control 
M=3.42 
SD=1.50 

M=3.92 
SD=1.83 

p=0.339 η2=0.083 
M=3.75 
SD=1.81 

M=5.25 
SD=0.75 

p=0.023 η2=0.386 

Involved 
M=4.17 
SD=1.52 

M=4.33 
SD=1.55 

p=0.551 η2=0.033 
M=4.5 

SD=1.38 
M=5.08 
SD=0.9 

p=0.067 η2=0.272 

Natural 
M=2.67 
SD=1.77 

M=3.33 
SD=1.87 

p=0.180 η2=0.157 
M=3.67 
SD=1.61 

M=4.92 
SD=0.99 

p=0.011 η2=0.457 

Consistent 
M=2.58 
SD=1.67 

M=2.92 
SD=1.83 

p=0.305 η2=0.095 
M=3.08 
SD=2.06 

M=4.33 
SD=1.15 

p=0.028 η2=0.368 

Sense of 
Moving 

M=3.67 
SD=1.37 

M=4.00 
SD=1.95 

p=0.22 η2=0.133 
M=4.5 

SD=1.508 
M=5.17 
SD=0.71 

p=0.087 η2=0.242 

Proficient 
M=3.67 

SD=1.303 
M=4.17 
SD=0.93 

p=0.053 η2=0.300 
M=3.83 
SD=1.8 

M=5.17 
SD=0.83 

p=0.018 η2=0.410 

Table S5. Summary of effects of the correction techniques on participants user experience. 
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Travelled Distances 

 REAL DISTANCE VIRTUAL DISTANCE 

ID NF NFC 7LB 7LBC NF NFC 7LB 7LBC 

1 37.66 125.71 10.202 164.338 100.454 323.8 19.2446 353.152 

2 21.8773 128.572 49.932 153.505 54.9746 319.56 114.686 352.457 

3 40.3116 135.873 63.626 142.065 97.4556 323.875 147.503 335.862 

4 18.0816 144.462 22.491 66.3553 42.506 333.618 40.9063 123.584 

5 38.068 151.480 24.288 156.094 94.74 351.340 50.0786 377.894 

6 26.204 132.012 99.151 139.989 58.1476 297.512 236.357 363.430 

7 17.5846 146.306 65.516 137.536 47.4203 402.262 196.189 412.710 

8 16.618 134.093 21.887 153.311 47.4203 402.262 196.189 412.710 

9 34.37 126.849 50.930 74.3376 43.2996 346.22 52.966 404.983 

10 35.78366 139.495 43.634 142.590 83.648 331.476 102.972 334.773 

11 23.178 149.845 41.427 125.875 55.9196 378.076 105.552 322.242 

12 11.775 152.541 32.9906 147.6173 28.5016 365.535 64.6043 325.81 

Mean 26.79 138.93 43.83 133.63 62.87 347.96 110.6 343.3 

SD 9.97 9.79 24.46349736 31.23 24.57 33.19 70.21 76.5 

Table S6. Real and virtual distances travelled by 12 participants in each technique and 

their corrected counterpart. 

 

Figure S2.  Mean of real and virtual distances travelled by 12 participants in each study 

along a path of 42 flags. Error bars represent SD. 

 

Figure S3.  Mean of real and virtual distances per flag travelled by 12 participants in each 

study. Error bars represent SD 
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