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A novel method to rapidly fit conductance-based models to individual neurons

SUMMARY  

In this thesis, I present a new method of model optimisation that allows the cal-

ibration of conductance-based models of neuronal membrane potential to data

from just a single neuron, and achieves good correspondence with the reference

data in mere minutes. These properties are desirable because they allow investig-

ations of individual variability among neurons of a given type, of homoeostatic

processes and non-synaptic plasticity events, as well as of the contribution of

particular neuronal properties to the dynamics of small circuits.

In the first chapter, the thesis introduces in detail the working principle of the

method, which can be summed up as model optimisation using stimuli to isolate

parameter  subsets (“MOSTIPS”), and represents a major part of the work and

novelty of this project. The second chapter focusses on the construction of ac-

curate models of two mammalian potassium channels which, being ectopically

expressed in  Xenopus laevis oocytes,  served as a  validation tool  for  the  new

method. In the third chapter, I evaluate the new method, presenting results from

fitting models to data from synthetic sources as well as the above-mentioned

oocytes. Finally, the fourth chapter contains a number of related results from

closed-loop electrophysiology approaches, including extensions to the dynamic

clamp protocol for both single neurons and hybrid circuits composed of live and

simulated neurons, as well as preliminary results from a closed-loop model fit-

ting approach closely related to the main work presented above.

The thesis concludes that the newly developed approaches to model fitting con-

stitute valuable additions to existing methods. The MOSTIPS method achieves

tightly  constrained parametrisations  using both less  data  and less processing
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time than classical methods, while the related closed-loop fitting approach pro-

duces results that closely follow ongoing changes in evoked activity patterns in

real time. Conversely, some issues have been left unanswered, including the con-

tribution  of  the  stimulus  generation  and  selection  algorithm,  the  success  of

which I have been unable to establish, as well as whether the methods developed

herein can reliably identify relevant properties of individual cells. Nevertheless,

both the particular methods and the general approach of using prior estimates of

the model and its parameter values to propose stimulus patterns represent major

advances in the field of neuron model optimisation.
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 1 Introduction

One of the most well-known and iconic phenomena of neuroscience, the action

potential, is typically taught and described in terms of a mathematical model of a

membrane containing voltage-gated sodium and potassium channels.  This de-

scription, known as the Hodgkin-Huxley model, is one of the cornerstones of

computational neuroscience, and forms part of a larger class of conductance-

based neuron models. Though originally devised to describe the membrane po-

tential of the squid giant axon (Hodgkin & Huxley, 1952a, 1952b, 1952c, 1952d;

Hodgkin  et al.,  1952), the general  form of the model has since been applied

much more widely (Rinzel, 1990; Catterall  et al., 2012). While both extensions,

e.g. to multi-compartment models (Fitzhugh, 1962; Migliore & Shepherd, 2002),

and generalisations, e.g. to Markov chain models (Armstrong, 1969; Hille, 1991;

Strassberg & DeFelice, 1993), have been made, these will not be considered in

this thesis.

 1.1 Hodgkin-Huxley models

Under the Hodgkin-Huxley formalism, the membrane potential   is typically

modelled as

(Equation 1.1)

where   is the membrane capacitance,   is any current injected through the

experimenter’s electrode,  and  are the conductance and reversal potential of

a  passive  “leak”  current,  and  finally,   are  active  ionic  conductances,  carried

across a membrane by voltage-gated ion channels. In general, ion channels are

modelled as active conductances with a maximum conductance   and reversal

potential  . Active, here, means that the actual conductance value varies with

time and membrane potential, based on the opening and closing of individual ion

channels. That is,   is the conductance value in the (hypothetical) case that all
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channel are opened. The mechanism for channel opening and closing, known as

gating, is modelled with  activation gates and  inactivation gates, all acting in-

dependently. The voltage-dependent open state of these gates is described by

the gating variables  and , respectively, according to equations 1.2.

(Equation 1.2)

The gating variables usually depend on voltage in some exponential fashion, us-

ing e.g. some form of Boltzmann function for the steady-state  and a re-

lated function for the time course . The choice of these functions depends

on the particular current or ion channel species modelled and, once identified, is

typically considered invariant in the context of experiments on a given system.

Once the model structure is in place, there are many parameters that need to be

adjusted in order for a model to reproduce, and eventually predict, the behaviour

of a particular system. The process of tuning parameters is known as model op-

timisation. Due to the challenging nature of the problem – particularly when large

numbers of parameters are involved – model optimisation has been tackled in a

number of different ways, which I will briefly review in the following.

 1.2 Existing model optimisation methods

The archetypal voltage clamp model optimisation procedure (Hodgkin & Huxley,

1952d; Willms et al., 1999; Lee et al., 2006) uses a combination of pharmacolo-

gical  agents  such as  tetrodotoxin  or  4-aminopyridine  to  selectively  block  ion

channels, ion replacement, replacing e.g. sodium with lithium ions, to suppress

currents carried by the replaced ions, and channel-specific stimulus protocols to

inactivate  certain  channels.  By  cleverly  combining  these  procedures,  experi-

menters can isolate and measure individual current types. These measurements

are then combined to parametrise a composite model that includes all currents.
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Usually, the final product is constructed from data pooled across a number of

neurons, because gathering all required data from a single cell is impossible (with

irreversible channel blockers) or at the very least not practically feasible due to

the amount of time and disruptive manipulation required.

While model optimisation based on separation of currents may work for systems

with a very limited number of distinct conductances, and indeed to fit the kinet-

ics  of  individual  currents,  most  systems  are  not  neatly  separable.  Early  ap-

proaches to the optimisation of more complex models entailed tuning paramet-

ers by hand to achieve a particular set of activity patterns  (Traub et al., 1991; De

Schutter  & Bower,  1994).  Given the potentially  large influence  of  parameter

changes and the intractable complexity of parameter interactions, however, the

validity of such hand-tuned models beyond the activity patterns considered for

tuning is questionable.

With access to more computational power, some groups attempted to exhaust-

ively search through parameter space, trying to find models that reproduce gen-

eric activity patterns seen in reference neurons (Bhalla & Bower, 1993; Prinz et

al., 2003; Prinz, Bucher, et al., 2004; Taylor et al., 2006). While this approach may

increase the likelihood of finding a model that fits the reference data well, it can

also turn up many false positives. With a rich set of conductances, neuron mod-

els are effectively degenerate, meaning that they can produce indistinguishable

activity patterns from many different parameter combinations (Prinz, Bucher, et

al., 2004; Marder & Goaillard, 2006). Thus, a database approach gives no indica-

tion of how accurate a given solution is with respect to the actual biophysics it

purports to model.

Other approaches are focused on observing specific instances of neuronal activ-

ity recorded in the absence of chemical or electrical manipulation. Among the

more  computationally  expensive,  but  highly  effective  approaches  for  this  are

those  that  harness statistical  methods,  either  straightforwardly  fitting against

membrane potential traces (Huys & Paninski, 2009; Toth et al., 2011; Kostuk et
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al., 2012; Meliza et al., 2014), or transposing the problem into a dynamical sys-

tems perspective and fitting against voltage trajectories in state space (Vavoulis

et al., 2012). Using similar kinds of reference data, but different fitting methods,

some approaches apply more explicit search methods such as evolutionary al-

gorithms  or  simulated  annealing  to  locate  optimal  parameter  combinations

(Vanier & Bower, 1999; Van Geit et al., 2008; Svensson et al., 2012).

In order to achieve models that faithfully reproduce the full range of neuronal

activity, however, passive recordings of membrane potential are often not good

enough, as the neuron may never enter states that provide adequate information

about  some  parameters.  Perturbing  the  system,  either  with  random  current

clamp or voltage clamp injections  (Hobbs & Hooper,  2008; Tomaiuolo  et  al.,

2012; Brookings et al., 2014) or with specially selected stimuli  (Nowotny et al.,

2008; Druckmann et al., 2011), promises to improve the amount of information

contained in a given reference trace.

 1.3 Neurons are not like peas in a pod

A  fundamental  assumption  underlying  most  of  the  model  optimisation  ap-

proaches outlined above is that the neurons used during optimisation are homo-

geneous, to the extent that any differences in current dynamics or conductances

are negligible. That is, the implicit and often untested assumption is made that all

neurons of a given type – i.e. the particular system that a model is supposed to

describe – show identical  or  near-identical  behaviour,  and that this behaviour

arises from a similarly identical or near-identical biological “implementation” in

terms of the currents present in these neurons. Indeed, the formulation of the

conductance-based models suggests a direct mapping linking the mathematical

description of currents and the activity of specific ion channel types in the neur-

onal membrane.

However, a careful exploration of how model parameters relate to the biophys-

ical reality they supposedly describe  (Foster  et al.,  1993; Marder & Goaillard,
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2006) casts doubt on this assumption. The invertebrate neurons investigated in

the  Marder  lab  are  morphologically  and  functionally  identified,  meaning  that,

from one animal to another, they appear in the same approximate location, con-

nect to the same pre- and post-synaptic partners, exhibit the same activity pat-

tern and fulfil  the same circuit  role.  By all  relevant indicators,  therefore,  one

would expect these neurons to also be roughly identical in terms of their ion

channels and membrane currents. Surprisingly, however, the relative magnitudes

of different conductances varies between cells  (Golowasch et al., 2002; Schulz

et al., 2006), and the behaviour of neurons depends on the relative magnitude of

conductances in complex, non-linear fashion (Goldman et al., 2001). Therefore,

model optimisation approaches that use average data from multiple neurons are

not only unrepresentative of any individual cell, but may in fact exhibit behaviour

that differs strongly from that of its reference cells.

In vertebrate neuroscience, there is a notion of cell types, identified by morpho-

logy, function, genetic identity, and activity patterns (Lein et al., 2007; Kim et al.,

2017; Erö et al., 2018; Murakami et al., 2018). However, here, too, there is vari-

ability within these types and subtypes  (Pospischil  et al., 2008; Migliore  et al.,

2018), with a growing recognition that there is no sharp boundary distinguishing

clusters (of e.g. activity or gene expression patterns) that we might identify as

types (Phillips et al., 2018).

In  addition  to  inter-individual  variability  within  a  given  neuron  type,  neuronal

properties also change over time in response to or as a consequence of changing

morphology, environment, and electrical activity (Turrigiano et al., 1994; Desai et

al., 1999; MacLean et al., 2003; Soofi et al., 2014). While some of these changes

are likely to be homoeostatic, regulating e.g. excitability towards a set point of

desired activity, other changes may be unpredictable or even chaotic in nature

(Gal  et al., 2010). Finally, neurons in both invertebrate systems (Antonov et al.,

2001; Kemenes  et al., 2006; Nikitin  et al., 2008, 2013) and vertebrate systems

(de Jonge et al., 1990; Moyer et al., 1996; Saar et al., 1998) are known to exhibit
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non-synaptic plasticity (Zhang & Linden, 2003; Mozzachiodi & Byrne, 2010), that

is,  they alter  their  behaviour  in  functionally  relevant  ways  to  support  various

forms of memory.

Taken together, these phenomena show that, at least in some situations, models

that abstract beyond the individual cell and attempt to describe a neuron type

are insufficient and will lead to false predictions of the neurons’ behaviour. To

make matters worse, because biophysically realistic models contain a substantial

number of distinct conductances, there are potentially many different parameter

combinations, or regions of parameter space, that give rise to comparable activ-

ity patterns (Prinz et al., 2003; Prinz, Bucher, et al., 2004).

 1.4 Individual variability matters

In many contexts, of course, it is irrelevant whether a model’s internal structure

matches that of the modelled system; the important feature is often just the in-

put-output relationship, or the overall  dynamics of the system in the average

case. As long as such features are captured faithfully and serve the modeller’s

goals adequately, there is no need for the model to accurately reproduce under-

lying mechanisms or their individual differences. Such is the case, for example, in

network models that use conductance-based neuron models that reflect average

response properties of entire populations of neurons.

However, there are lines of inquiry and methodologies, focused particularly on

single neurons or small circuits, that make explicit reference to underlying mech-

anisms, and therefore require accurate models thereof. This is particularly im-

portant in investigations using dynamic clamp (Robinson & Kawai, 1993; Sharp

et al., 1993; Prinz, Abbott,  et al., 2004; Economo et al., 2010). Briefly, dynamic

clamp is a method of electrically inserting virtual conductances into a membrane

by measuring the membrane potential, simulating the desired conductance in real

time, and continuously injecting a corresponding current through an electrode.

This can be used e.g. to virtually modulate a particular ionic conductance that is
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expected or known to be present in the target membrane (Ma & Koester, 1996;

Hughes et al., 1998; Zhang et al., 2003). Investigations of this kind would benefit

greatly from having a cell-specific model of the manipulated conductance.

Dynamic clamp can also be used to construct hybrid circuits composed of a com-

bination of real and modelled neurons  (Wilders  et al., 1996; Le Masson  et al.,

2002; Debay et al., 2004; Oprisan et al., 2004; Sorensen et al., 2004; Sieling et

al.,  2009). This is a particularly useful tool to investigate e.g. the dynamics of

central pattern generators (CPG), i.e. tightly coupled neuronal circuits that gen-

erate stereotyped rhythmic activity (Marder & Calabrese, 1996). It allows us to

substitute a real neuron with its model and systematically probe model (or syn-

apse) parameters for their relevance to circuit-level phenomena. However, if the

individual characteristics of the substituted neuron have functional relevance in

this context, any such investigation may have to take these potentially idiosyn-

cratic characteristics into account. For example, the activity pattern of the pyloric

CPG in crustaceans has been shown to exhibit robust dynamic invariants (Elices

et al., 2019) in the intact circuit, which have so far resisted any attempts at rep-

lication in hybrid circuits (personal communication with I. Elices).

Thus, for both single-neuron and circuit investigations where individual variability

is known or suspected to play a role, it would be very advantageous to be able to

optimise models to individual neurons. Ideally, a tool to do this would provide a

fully optimised, biophysically accurate model of a single neuron within experi-

mentally relevant time scales (i.e., minutes), with minimal disruption of the refer-

ence neuron, such that the experimenter can use the optimised model on either

the reference cell, or on the circuit to which the reference cell belongs or be-

longed.

Almost all of the model optimisation methods reviewed above fall short of this

goal. Most methods require either large amounts of data (often from multiple

cells),  large amounts of time, or both.  A promising approach is  taken by To-

maiuolo et al. (2012), who fit models to voltage traces under white noise current
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injection, achieving results both within the desired time frame and optimised to a

single neuron’s activity. However, much like the database approach (Prinz et al.,

2003; Prinz, Bucher,  et al., 2004), this method is susceptible to false positives

due to model degeneracy.

Milescu et al. (2008) propose a single-neuron fitting method based on recording

voltage traces in an intact cell, then pharmacologically blocking a conductance

and reinserting it via dynamic clamp, adjusting its parameters to recover the pre-

viously recorded activity pattern. While they have done this only for a single so-

dium conductance, the method could in principle be iterated to achieve a com-

plete neuron-specific and biophysically accurate model. However, applying chan-

nel blockers constitutes a significant and potentially irreversible disruption to the

system, such that this method is likewise unsuitable, particularly in the context of

hybrid circuits.

Finally,  Reyes-Sanchez  et  al.  (2018) use  a  set  of  closed-loop  algorithms  to

achieve and maintain desired activity patterns in hybrid circuits, gradually adjust-

ing parameters in a feedback-driven manner. The resulting model neurons are

calibrated not to match the replaced real neuron, but to act as a robust substi-

tute in the circuit. While useful for investigations of circuit-level phenomena, the

lack of a direct reference to the replaced neuron means that any model that

provides the expected input-output relationship is acceptable to the algorithm,

including models with simplified internal dynamics. Thus, this method also does

not provide a clear mapping between the reference neuron and the properties of

the model.

In this thesis, I present two closely related methods that attempt to address this

gap in our toolbox. The first method, elucidated in detail in chapter 2, focuses on

biophysical specificity, aiming to optimise models to a point where the model

parameters  reflect  an  underlying  reality  in  the  reference  neuron.  A  thorough

proof of concept of this method is presented in chapter 4, based on the model

system developed in chapter 3.
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The second method is an extension of the first, sacrificing parameter specificity

to an extent in order to optimise models faster and less intrusively. Developed

with a view towards application in hybrid circuits, it is presented in chapter 5

alongside an account of my efforts in improving and extending a set of tools for

dynamic clamp.
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 2 MOSTIPS: An algorithm for model 

optimisation using stimuli that isolate parameter 

subsets

 2.1 Introduction

 2.1.1 Model optimisation is a difficult problem

Model optimisation is the process of finding parameter values that accurately re-

flect properties of the modelled system or that, at a minimum, permit the model

to accurately predict the system’s behaviour. In order to optimise the model of a

particular  neuron’s  membrane  currents,  we  need  to  fine-tune  values  for  the

membrane  capacitance,  the  leak  conductance  and reversal  potential,  and  the

maximum conductance and reversal potential of any putatively present ion chan-

nel species. Additionally, it may also be necessary to fine-tune parameters gov-

erning the voltage dependence and kinetics of channel gating. Finally, the size

and  configuration  of  compartments  in  a  multi-compartment  model  may  also

need to be optimised.

This presents significant challenges: Firstly, as noted in the general introduction,

conductance-based models are degenerate, allowing different parameter com-

binations to exhibit the same surface-level behaviour or, more precisely, to rep-

licate a given data set with high fidelity without necessarily reflecting e.g. the

true current densities. Secondly, parameter space – the set of all possible para-

meter combinations – grows with the power of the number of parameters con-

sidered for optimisation, a problem aptly named the curse of dimensionality. As a

consequence, a naïve optimisation algorithm must either spend enormous com-

putational resources to fully explore parameter space, or sample the space so

sparsely that finding a globally optimal parameter set becomes highly unlikely.

This problem is compounded by the presence of non-linear interactions between
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parameters, which may mislead optimisation approaches that rely on gradients,

and which are in plentiful supply in conductance-based neuron models.

Therefore, an accurate model optimisation algorithm must solve the degeneracy

problem and not be misled by parameter interactions, and a fast algorithm must

circumvent the curse of dimensionality. Ideally, we would like to be able to op-

timise each parameter independently of the rest; if that were possible, we could

guarantee that parameter values reflect an underlying reality, and we would be

freed from sampling  the  entire  parameter  space,  sampling instead  just  along

each target parameter’s axis while holding the remaining parameters constant.

Unfortunately, interactions between parameters make this approach seemingly

impossible.

 2.1.2 The key idea: actively isolate parameters

Observing a conductance-based neuron model over time, however, we notice

that the influence of certain subsystems over the behaviour of the whole system

varies. For example, while fast sodium currents dominate the rise of a neuronal

action potential, slower potassium currents become influential during repolarisa-

tion. Under voltage clamp, this is even more pronounced, with classical step pro-

tocols routinely maximising the contribution of target currents while minimising

that of others, e.g. by holding the membrane potential at an intermediate level to

inactivate sodium channels before probing the properties of non-inactivating po-

tassium currents. In other words, it is possible to at least partially decouple some

parameters from others – those governing distinct currents – by observing the

system in particular states in which those parameters are highly influential.

This observation underlies the key idea behind the model optimisation method

presented in this chapter: It should be possible to drive the system to states that

highlight the contribution of each model parameter, thus approaching the ideal

situation outlined above. Each parameter could then be optimised to fit the sys-

tem’s behaviour in states that are most prominently governed by that parameter.
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In order to implement this optimisation strategy, we need two things: Firstly, we

need to find stimulus patterns and associated observation windows that force

the system into a state dominated, or at least strongly influenced, by each para-

meter. While this could be done by hand for simple models with few parameters,

my objective was to design a largely automated, model-agnostic method, which

is detailed in section 2.2. Secondly, parameter isolation is unlikely to be perfect,

that is, non-target parameters will almost certainly have some level of influence

over the system’s observed behaviour even with optimal stimuli and observation

windows. Thus, we need an optimisation algorithm that can both make good use

of such parameter isolation as is achievable, and deal with a number of different

cost functions – the parameter-specific stimuli and observations – which should

nonetheless all point towards a single, globally optimal solution. My approach to

this problem is described in section 2.3. In section 2.4, I outline the software im-

plementation of this set of algorithms, which I have used to generate the results

in chapter 4, picking out some of the salient details that make it possible to sim-

ulate the large numbers of neuron models required by the algorithms. Finally, in

section 2.5, I conclude the chapter with a discussion of the difficulties involved in

testing and verifying the method.

 2.2 Finding stimuli that isolate parameter subsets

 2.2.1 How to stimulate, and what to measure?

In  search of  observations that  can reliably isolate the influences of individual

model parameters, it is useful to consider first the kind of data that is most suit-

able.  Targeted stimulation  can obviously  provide  more information  about  any

parameter than passive observation of the membrane potential, but should we

use current clamp or voltage clamp? The advantage of current clamp – injecting

current to observe membrane potential – is its experimental ease and its relat-

ively low impact on the cell. However, active processes such as channel gating

both influence and are influenced by membrane potential, which precludes pre-
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cise control over the system state. Furthermore, due to the system’s highly non-

linear nature, minor parameter changes can precipitate large changes in the ob-

served voltage trace, which makes optimisation very difficult. In voltage clamp,

on the other hand, we dictate one of the system’s main control parameters, the

neuron’s membrane potential, while measuring the current required for this con-

trol. By breaking the feedback loop between channel gating and the voltage that

causes it, we achieve much tighter control over the system state, which at least

to  some extent  allows  us  to  separate  the  system into  its  ionic  currents,  as

demonstrated  by  (Hodgkin  et  al.,  1952;  Hodgkin  &  Huxley,  1952d,  1952a,

1952b, 1952c) and countless subsequent investigations of membrane currents

using this method. Since isolating a current is equivalent to isolating a subset of a

model’s  parameters,  and therefore close to single  parameter  isolation,  I  have

spent the majority of my efforts on working with voltage clamp data.

Voltage clamp does come with added complexity, however: Unlike the open-loop

current clamp paradigm, where the measured membrane potential does not in-

fluence the injected current, voltage clamp requires closed-loop control. Usually,

this is performed in hardware by a feedback amplifier and associated circuitry,

which needs to be manually tuned to achieve good control over a cell’s mem-

brane potential. As a consequence, the achieved membrane potential, and thus

by way of the feedback loop the injected current, depend on experimental para-

meters such as the feedback gain  and the access resistance  of the injecting

electrode and its  headstage.  To not  falsely  attribute  these  influences  to  the

neuron model, voltage clamp simulation in this chapter and in chapter 3 always

includes a coarse model of the basic voltage clamp circuit, as follows. Given a

command voltage   and a membrane voltage  ,  the clamping amplifier’s

output voltage is  , which is dropped over the injecting elec-

trode and the membrane, i.e.,   (Halliwell  et al., 1994). Substi-

tuting   and rearranging, we can express the injected current as a function of

clamp and control parameters, i.e., . During fitting
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to experimental data, the true values for  and  are used, while simulations in

the preliminary stages detailed below are run with approximate values from ex-

perience.

The voltage clamp stimuli used throughout this work are combinations of linear

voltage segments, i.e. steps with constant voltage and ramps with constant in-

crease or decrease in voltage. This is inspired by common voltage clamp proto-

cols using similar techniques, sharpening the notion that the investigated quantit-

ies are currents; besides, using linear segments reduces both the complexity of

simulation and the dimensionality of stimulus space,  which keeps the task of

finding stimuli tractable without requiring an unreasonable amount of computa-

tional resources. In principle, however, the algorithms presented in this chapter

are agnostic to both the form of the stimuli and of the model to which they are

applied.

 2.2.2 Approaches to quantifying parameter isolation

Having decided on the kind of data to use, we next need a method of judging the

goodness of parameter isolation, with an eye towards using this judgement as a

cost function when algorithmically generating stimuli. Since we can not expect to

perfectly isolate each parameter, this measure should reflect a parameter’s relat-

ive influence, or in other words, the system’s sensitivity to changes in this para-

meter. Further, since the system state evolves during stimulation, we must ex-

pect this sensitivity to change over time, too, so as we are looking for highly

sensitive regions, we should capture instantaneous, i.e. time-dependent, sensitiv-

ity. This suggests a form of sensitivity analysis evaluated against specific stimuli

and sampled over time; from the resulting parameter-specific sensitivity traces,

we can then extract observation windows during which the system’s response,

i.e. the membrane or clamp current, is dominated by a target parameter.
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 2.2.2.1 Estimating sensitivity

Mathematically  speaking,  we can  describe the  clamp current   evoked by  a

given stimulus   as a function of time   and the set  of   model parameters

. Sensitivity to changes in a given parameter   corresponds to

the partial derivative , so we can write sensitivity to para-

meter changes as the Jacobian , assuming that our

models are differentiable. To provide an intuition, evaluating  over time for

a given parameter set  would produce a set of traces – one for each parameter

– rising and falling with the sensitivity of the clamp current to that parameter. In

the general case of arbitrary input stimuli and model structures, however, the

Jacobian is not analytically accessible. Therefore, we must approximate  .

To do this, I make two simplifying assumptions: Firstly, I assume that each partial

derivative   is approximately linear in its target parameter  , which is in-

deed the case for many, though by no means all, parameters under voltage clamp

(see e.g. the left-hand side plots in Figure 2.2 on page 27). Secondly, I assume

that each  is relatively unaffected by the value of non-target parameters.

While less defensible, this assumption may hold within certain limits; more im-

portantly, it allows us to express our estimate of  as a real value, rather

than as a function of .

In practice, the method I use to approximate  is predicated on simulating a

model in voltage clamp using several parameter sets and analysing the differ-

ences in the resulting clamp current. The naïve approach, which we might call ra-

dial detuning, would be to start from a well-chosen parameter set , populated

e.g. during model identification by hand-tuning or using parameter values from

relevant literature, and to approximate  by shifting each parameter 

in turn by a small amount . For normalisation purposes, each  can be tuned to

produce  an  average   of  similar  magnitude  across  many  stimuli.  While  this

method generates a good approximation for the local  and is computa-
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tionally cheap, requiring only  simulations, it makes no attempt to capture

any remaining nonlinearities  or  parameter  interactions and may therefore not

generalise well even in a tightly constrained parameter space.

In recognition of this, I use a method referred to as spiral detuning, which fol-

lows a more generic elementary effects strategy (Morris, 1991; Saltelli & Annoni,

2010).  To  alleviate  the  problem of  local  specificity,  I  choose   starting

points with   being the hand-chosen parameter set, and   sampled

uniformly  from  within  the  permissible  parameter  space.  Further,  rather  than

stepping radially from each starting point, I detune each successive parameter

without  stepping  back  to  the  origin,  which  results  in  a  spiralling  trajectory

through  parameter  space;  this  both  reduces  the  dependence  on  the  starting

point, and facilitates implementation by allowing me to detune each parameter

more than once where this is computationally advantageous. As above, however,

only parameter sets that differ in exactly one parameter are compared, each such

pairwise comparison yielding one elementary  effect  .

Because each  only partly depends on the detuning step size , normalisation

is performed post hoc at the level of elementary effects, using , the mean ele-

mentary effect size across many stimuli, rather than normalising . Finally, I av-

erage across the elementary effects of each parameter to approximate global

sensitivity .

Although no additional attempt is made to analyse or harness the nonlinearities

and parameter interactions that this method could reveal, the extended sampling

across parameter space should make the estimate more robust. In practice, I use

only a small number of starting points during the search for stimuli in order to

keep the computational cost bearable. This trade-off is not unreasonable, as a

more comprehensive sampling of parameter space is performed in a later step,

as described in section 2.2.4.
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 2.2.2.2 Judging parameter isolation from sensitivity

As a reminder, the purpose of measuring parameter sensitivity is to find stimuli,

or regions of interest within stimuli, during which a given model is highly sensit-

ive to a target parameter and relatively insensitive to non-target parameters. In

other words, we need an algorithm that finds, for a given stimulus  and from

among the evaluated time points , a set of observation windows  that

fulfils the criterion of high relative sensitivity to a target parameter. Additionally,

we need to score these observations with a parameter-specific fitness function

 in order to maximise parameter isolation, i.e. relative sensitivity. I pro-

pose two approaches to achieve this, each taking a different perspective on the

problem.

 2.2.2.2.1 The bubble algorithm

The intuition for the “bubble” algorithm is to consider an overlay of the sensitivity

traces for each parameter; a region of interest is a period during which the target

parameter’s trace rises above the rest, forming a “bubble” of high relative sensit-

ivity, as illustrated in the blue shaded area in Figure 2.1. Although we may hope

to find stimuli for each parameter that produce “absolute” bubbles, meaning re-

gions where , this is by no means guaran-

teed. In contrast, because the components of  are normalised across many

stimuli, as detailed in section 2.2.2.1, there must for each parameter be stimuli

and observations where  , the mean sensitivity across all para-

meters. Such “relative” bubbles, therefore, can reliably be found and optimised

for.  To  do  so,  I  define  a  measure  for  instantaneous  parameter  isolation,

. A valid bubble, then, is an interval  such that

, and its score or fitness is the mean isolation value within

the bubble, discretised to  .  By using the mean

magnitude of   rather than, say, its integral,   prefers short observation win-
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dows with strong parameter isolation, i.e. with , to long windows where

 only barely exceeds  and the target parameter  is not well separated from

the remaining parameters.

While the bubble approach reliably identifies regions of high relative parameter

influence, it makes no attempt to control or even consider other parameter influ-

ences except in terms of their mean value. Thus, not only may the target para-

meter be far from the most influential one during the observation, but in addi-

tion, the sensitivity profile may change drastically within a bubble, which makes it

difficult to credit the error between model and observation to individual para-

meters.  To address these challenges,  we need a more holistic  approach that

takes all parameter influences equally into account.

 2.2.2.2.2 The cluster algorithm

The inspiration for the “cluster” algorithm comes from the realisation that per-

fect, or even good, single-parameter isolation is unlikely to be attainable in the

general case. As a consequence, during model optimisation proper (see section

2.3),  it makes sense to consider the relative influence of all  parameters on a

given observation, fitting each according to its weight. A better approach to find-

ing good observations, then, would be to find observations during which relative

parameter sensitivity changes little, so that credit for the current error can be as-

signed with greater certainty. Here, I am no longer looking for contiguous obser-

vation windows, but clusters of observations with a similar profile  of relative

sensitivity, hence the algorithm’s name.
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Figure 2.1: A demonstration of the bubble and cluster algorithms, using the Hodgkin-Huxley

squid axon model and an opportune stimulus. Coloured traces represent each parameter's sens-

itivity  , calculated using radial detuning with normalised  , while the grey trace and

shaded area represents the mean sensitivity .

Shaded in blue and marked by vertical blue bars is a bubble for the Na+ maximum conductance

gNa. Note how drastically the relative sensitivities change within the chosen period, and how

 is far outweighed by  in the latter part. Thus, while the current error of a deviating

parameter set might indicate an error in gNa, it may also reflect an inaccurate gK, yet the bubble

algorithm ignores this contribution.

Shaded in  purple are two areas that the  cluster algorithm considers similar (with a similarity

threshold of 0.98, i.e., all  in the cluster are within 11.5º of the cluster head). Although abso-

lute sensitivity differs within that cluster, the relative sensitivity across parameters clearly re-

mains comparable.

What does it mean for relative sensitivity to be similar? Remember that  is

a vector representing the response current’s sensitivity to each parameter in . If

we consider the unit vectors , then  provides a sim-

ilarity measure ranging from 0 (orthogonal) to 1 (identical). Setting a threshold ,
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we  can  define  a  cluster  of  similar  observations   such  that

. To delineate useful clusters of this kind,

we may want to look for high target parameter sensitivity directly; alternatively –

since we’re already resigned to only partial isolation – we may want to simply

maximise the amount of useful data by finding the longest few clusters in a given

stimulation, score these according to target parameter sensitivity, and hope for

decent isolation to emerge over the course of the search algorithm. I use this lat-

ter approach because, as an added benefit,  applying this twofold objective of

long duration and high sensitivity may help to ease the search algorithm’s tend-

ency to overfit.

To find large clusters, I compute the similarity  for all pairs

, and count  , the number of time points   for which  . I then

find the time point  at which  is similar to the largest number of neigh-

bours,  i.e.  ,  and  extract  these  neighbours  as  a  cluster

. While not strictly a cluster by the definition above – similar-

ity to the cluster head  does not entail similarity among all members – it is a

close enough approximation as to be useful for our purposes. To iterate the clus-

tering process, I select the next cluster head  from the not yet

clustered time points and extract its associated cluster , and so on until a max-

imum number of clusters is reached, or an extracted cluster is too small to be

useful. Finally, using , I compute each cluster’s average para-

meter sensitivity  , using its components as the fitness value for each

parameter, i.e. .

 2.2.3 Stimulus generation

Having described the methods I  use to evaluate stimuli  and observation win-

dows, we now turn to the algorithm that generates stimuli which maximise these

measures. The stimuli considered, as mentioned in section 2.2.1, are composed

of sequences of command voltage steps or ramps. Although this is a relatively
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simple set, it is still too large to search exhaustively, so we need an efficient

search algorithm. The following section relates how I arrived at my chosen solu-

tion, which long pre-dates my conception of the cluster algorithm; any reference

to fitness, therefore, refers to variations of the bubble algorithm.

 2.2.3.1 Searching for a search algorithm

To identify promising stimuli, I first turned to a genetic algorithm (GA; Holland,

1992; Reeves & Rowe, 2002; De Jong, 2006), which starts from a population of

randomised stimuli, scores these by a fitness function, selects the more success-

ful ones for mutation (e.g. random changes to stimulus properties, or exchange

of properties between two stimuli, see Table 2.1) to generate a new population,

iterating this process until a halting condition is reached. The results I achieved

with this approach, however, were brittle: Trying several variations of the bubble

fitness function produced either extremely short observation windows, or ex-

tremely long and uninformative ones; stimuli rarely converged across runs and

were useless for model optimisation even under perfect conditions. This sugges-

ted that the fitness function might be highly deceptive, presenting no clear path

towards a global optimum and instead guiding solutions towards many different

local optima.

Looking for alternatives that might overcome such a rugged fitness function, I

considered novelty search  (NS; Lehman & Stanley, 2011), which – rather than

rewarding high fitness outright – looks for solutions that differ in some aspects

of their outcomes unrelated to fitness, building an archive of novel solutions.

Faced then with a large and varied archive of ostensibly high-quality solutions, I

used a GA to filter and optimise for fitness alone. My understanding was that

even with a very rugged and deceptive fitness function, at least some of the

novel solutions should be near the global fitness maximum, which would then be

found. As with the pure GA approach, however, the combined NS+GA approach
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seemed to drive stimuli into a corner of high fitness, where they generalised very

poorly to actual model optimisation.

Clearly, I could not rely on just a fitness function, no matter how much sense it

made on paper. I judged that adding additional desiderata to the fitness function,

such as long but meaningful observations or high clamp current levels, would

have diluted the simplicity of the function, potentially making it more brittle still,

and I wanted to avoid multi-objective optimisation for fear of simply multiplying

the problem of inadequate objective functions. Instead, I realised that I needed to

select for additional desirable features not during the search, but after it – and

using a better, more comprehensive metric (described in section 2.2.4) than the

univariate fitness function that had proven so unreliable. In other words, I needed

not a search algorithm that spits out a single best solution, but an illuminating al-

gorithm that produces a diverse set of high-quality solutions.

 2.2.3.2 Finding MAP-Elites

To be able to select from a range of useful outcome variables, I turned to the

MAP-Elites algorithm  (Mouret & Clune, 2015). This algorithm expands on the

idea of novelty, replacing the population of candidate solutions used in GA and

NS with an archive which is explicitly structured by selected outcome measures.

The archive consists of a hypercube defined by these outcome dimensions and is

partitioned into grid cells by a choice of bins along each dimension. Each such

cell can be occupied by a single candidate, namely the one with the highest fit-

ness value that falls within the corresponding bins along each outcome axis. A

populated archive thus represents a set of solutions that differ from each other

in the secondary outcome measures, but are all more “fit” than any other candid-

ate evaluated with the same secondary outcomes.

The algorithm is initialised with a number of randomly generated stimuli, whose

performance is calculated both in terms of the fitness function and of the chosen

outcome measures. Candidates are then binned along each of the outcome di-
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mensions and thereby assigned a cell in the archive; if that cell is already occu-

pied, the candidate with the lower fitness value is discarded. Then, once all initial

candidates are processed, new candidates are drawn uniformly from the archive,

mutated as in a GA, and evaluated in turn.

Operator P Details
Crossover 2 With a second parent chosen uniformly from all avail-

able candidates. Crossover between stimuli of duration
 is performed by drawing a random time  such that

,  and  generating  a  new  stimulus  with  all
steps and ramps from one parent in  , and those
from the other in .

Voltage change 2 The command voltage after one step or at the end of
one ramp, chosen uniformly from the stimulus’s steps
and ramps,  is  increased or  decreased by a randomly
drawn voltage .

Time change 2 As above, but for time, with .
Number of steps 1 A randomly drawn step or ramp is removed from or

newly generated and added to the stimulus.
Step swap 0.5 Two distinct steps or ramps are drawn uniformly from

within the stimulus, exchanging their voltage values as
well as the flag designating them a step or a ramp.

Step type 1 One randomly drawn step is turned into a ramp, or vice
versa.

Table 2.1: Mutation operators applied in order to generate slight changes in stimuli. In my MAP-

Elites implementation, novel stimuli are generated from existing ones using  separate mutation

operations, with  drawn separately for each new stimulus. Op-

erators are chosen at random with relative probabilities as indicated in the second column.

To evolve stimuli with this algorithm, I have used various outcome dimensions;

those used for the results presented in chapter 3 are summarised in Table 2.2.

Further, the archive is initialised with a set number of bins along each outcome

dimension, usually between 32 and 128. After a number of epochs, the number

of bins is doubled and their size halved to increase the archive’s resolution as it

begins to saturate.
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Outcome dimension Notes
Duration Total duration of the evaluated observation window
Onset time Bubble onset time. This is not used for cluster-type fit-

ness, because it is less meaningful when multiple obser-
vation windows are possible.

Voltage deviation Mean deviation between command and holding voltage
over the entire stimulus

Current Mean  clamp  current  within  the  evaluated  observation
window,  estimated  from the  simulation  of  all  starting
point  models.  The maximum is user-defined,  as it  de-
pends on the model used.

Number of clusters Total number of valid clusters in the stimulus as a meas-
ure of its complexity. Hard-coded to 32 integer bins.

Target parameter Index of the parameter  for  which fitness is  evaluated.
This dimension is unaffected by changes in archive resol-
ution.

Table 2.2: MAP-Elites outcome dimensions

The MAP-Elites algorithm has several important advantages over the GA-based

approaches. Because it eschews the notion of a population, it produces the best

stimuli in each niche of outcomes, rather than discarding them in favour of can-

didates with higher fitness and different outcomes, and the search is unbiased,

sampling the entire space of outcomes evenly. As a result, it gives a clear view of

the fitness landscape, or how (achieved) fitness is affected by the chosen out-

come variables. This gives me as an experimenter the option to make conscious

decisions to trade off between several desirable stimulus properties, rather than

putting me at the fitness function’s mercy. Finally, by using the target parameter

as an outcome measure, a single run of the algorithm can produce candidate

stimuli for all parameters, which allows it to harness synergies between the fit-

ness functions for different parameters, and to escape local optima more easily

by exposing the evaluated stimuli to several different effective fitness functions.

Conversely, the solutions that come out of a MAP-Elites run are overwhelmingly

numerous. I have typically produced archives with between 104 and 107 stimuli,
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in stark contrast to the single “best” solution to come out of a GA. Thus, the

MAP-Elites algorithm cannot stand on its own; it must be accompanied by a sub-

sequent stimulus selection process. In the next section, we will explore some ap-

proaches to this, and end with a description of the strategy I have come up with

to whittle the many candidates down to an individual  solution to use in sub-

sequent experiments.

 2.2.4 Robustness screening

A potential shortfall of the measures to quantify parameter isolation described in

section  2.2.2 is that they may be overly specific to the parameter sets used in

their calculation, and may not generalise well across parameter space. Particu-

larly parameters such as current densities may differ significantly between and

across cells, experiments, and model assumptions. Since stimulus generation as

laid out above is a computationally costly process, however, it isn’t feasible to

adjust to such differences during model optimisation. Therefore, it is important

that we select stimuli  that  generalise well,  i.e.  that provide good information

even in the face of changed parameters. In other words, the data gathered with a

given stimulus and observation window should always point our model optimisa-

tion algorithm in the right direction, regardless of where in parameter space the

true model and the candidates lie. To an extent, this can be achieved during stim-

ulus generation by choosing to evaluate parameter sensitivity at various points in

parameter space, as I do with spiral detuning and multiple starting points. How-

ever, because the model generation algorithm has to evaluate a very large num-

ber of candidate stimuli,  there is simply no room for a thorough sampling of

parameter space. Additionally, as noted above, there is a need for an alternative

evaluation method that can help filter a completed MAP-Elites archive and sup-

port the choice of a single best stimulus.
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 2.2.4.1 Varying the target parameter only

As a first approximation to judging robustness, one might attempt to map the er-

ror  landscape  of  a  given  stimulus/observation  pair.  A  naïve  approach  to  this

would be to focus only on the target parameter of a stimulus, exploring a range

of its values and relating them to the reported error (i.e. the mean squared devi-

ation of the clamp current between reference data and a candidate model over

the observed period). The examples in Figure 2.2 show the result of this process

for a number of stimuli evolved against two parameters of a model of a neuron in

the crustacean stomatogastric ganglion (Liu et al., 1998; Golowasch et al., 2002),

using radial detuning, bubble evaluation, and a MAP-Elites generation approach.

How could  this  data  be  useful?  One might  argue that  a  steeper relationship

between parameter value and error could be better for model optimisation, if the

optimisation algorithm made use of the magnitude of the error gradient – which,

however, neither of those I use do (see section 2.3). Alternatively, one might se-

lect for smooth relationships, such that the error increases monotonically with

increasing distance to the correct model; however, for many parameters (partic-

ularly maximum conductances), a monotonic relationship is almost tautologically

true, and so also fails to constitute a good selection criterion. More importantly,

varying only one parameter at a time and assuming correct values for the rest ig-

nores the reality of model optimisation, where we must expect all parameters to

be mostly wrong most of the time. Besides, in trying to assess robustness, we

cannot assume a single true model, but should instead expect any parameter set

to be a possible end point of optimisation.
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Figure 2.2: Example error profiles. Starting from a crustacean stomatogastric ganglion model

(Golowasch  et  al.,  2002) with  11 free  parameters,  including  equilibrium potentials,  current

densities, and capacitance, stimuli of 300 ms duration were generated using radial detuning,

bubble evaluation function,  and MAP-Elites with three outcome dimensions (duration,  onset

time, and voltage deviation). 548 and 505 stimuli (gCaT and ENa, respectively) were chosen

from the archive by selecting for bubble durations up to 12 ms and highest fitness along the

voltage deviation axis. The target parameter was then varied systematically, and the mean ob-

served current error against the default parameter set  reported. The two

plots are representative of the typical outcome for current densities (left) and equilibrium po-

tentials (right). Many of the stimuli targeting ENa are clearly very brittle and could be filtered out

by this method, whereas the gCaT profiles are qualitatively so similar that there is no obvious

sensible selection criterion.

A better approach, therefore, would be to sample uncorrelated points in para-

meter space and use each parameter set as a reference against which others are

judged. I again propose two approaches, one narrowly focused on variation in a

target parameter, developed against bubble stimuli, the other considering para-

meter space in its full dimensionality as is appropriate for cluster stimuli. In both

approaches, I start from a large number of models sampled uniformly from para-

meter space, i.e. from within the range of allowable parameter values.

 2.2.4.2 Paired parameter space sampling

In the narrow, parameter-specific version, a uniformly sampled model population

is paired with a detuned version of itself, in which the target parameter is shifted
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by small amount in every model. Each stimulus under consideration is simulated

using all models. Each tuned model is then used as a reference against which all

other tuned/detuned pairs are evaluated. The quantities of interest are the errors

 of the tuned and the detuned model  of a

pair.  Intuitively,  this  error  should  increase  with  increasing  distance  between

probe and reference, so that the error gradient points towards the reference

model; this is directly analogous to a monotonic fall of the error towards the tar-

get value in Figure 2.2, but now with disparate values for non-target parameters.

We can describe the proportion of probe/reference pairs that satisfy this intu-

ition as the accuracy of a stimulus. This provides a better measure than the naïve

approach described above, in that it probes non-target parameter variation, and

correctly punishes stimuli that produce deceptive observations.

 2.2.4.3 Unpaired parameter space sampling

However,  for  cluster-based  observations,  this  approach  is  inadequate:  Since

here, we know the relative importance of each parameter, it makes little sense to

consider only the distance along one parameter-space axis and ignore other, per-

haps more influential parameter differences. Indeed, given a stimulus/observation

pair’s sensitivity vector , we should expect the error with respect to a reference

model to grow roughly in proportion to the components of  as we move away

from it in parameter space. To test this, I define a sensitivity-weighted distance

 between two models  and  as . Again using a popu-

lation of  models sampled uniformly from parameter space, now without de-

tuning,  I  compute  the  pairwise  sample  correlation  coefficient   between  the

weighted distance   and the corresponding error   for all pairs   with

. A strong positive correlation indicates a relatively smooth

error landscape, where sensitivity-weighted distance to the reference model is

predictive of the observed error. This is a useful metric for model optimisation,

as it means that, on average, a model with a lower error with respect to data is
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also closer – as far as we can tell, given the sensitivity of the stimulus/observa-

tion pair – to the true model in parameter space.

This method effectively subsumes the paired approach in section 2.2.4.2, in that

the sensitivity vector  can be replaced with a target-only weighting , i.e.

considering only distance along the target parameter axis, which corresponds to

the target-only detuning of the paired approach. Conversely, we can leave  an

unweighted Euclidean distance, ignoring parameter sensitivity entirely and using

an all-ones . In either case, the expectation is that if the model optimisation

algorithm uses a search function similar to the weighting chosen here – that is, if

it searches through parameter space in steps scaled by  –, then a high  means

that, on average, the error drops with a step towards the true model, and grows

with a step away from it.

 2.2.5 Selection strategy

The final part of stimulus generation, having synthesised a large archive of can-

didate stimuli and outlined a method of screening them for robustness, is to se-

lect a single appropriate stimulus for each parameter to use in model optimisa-

tion. The limiting factor here is the computational cost of robustness screening,

where each stimulus is evaluated against a large number of models. Thus, we

need to pre-select  promising stimuli  from the MAP-Elites  archive.  I  have em-

ployed the following pre-selection strategies:

• Dimensionality reduction: In archives with more than two outcome dimen-

sion, only the two most experimentally relevant features are retained. For

each bin  in  the  remaining two-dimensional  grid,  the  stimulus  with  the

highest fitness value is chosen, and all other candidates discarded.

• Outcome limits: For the remaining outcome dimensions, appropriate limits

are set, e.g. a lower bound to the duration of observation or to the ob-

served current. Such limits ensure that non-viable stimuli are excluded by
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adding experimenter knowledge such as the expected magnitude of in-

strumentation noise or the duration of current injection artefacts.

• Tolerant Pareto front: As a final pre-selection method, a modified Pareto

optimality criterion is used, maximising over fitness and each of the re-

maining outcome dimensions. Briefly, a solution  with fitness  and out-

come dimensions  ,   is Pareto-optimal if there is no other solution  

such that   and  for at least one . Since solutions in the

archive are binned along the outcome dimensions, a pure Pareto optimal-

ity criterion would select a very small set of solutions1 and might there-

fore discard useful (i.e., potentially robust), but slightly suboptimal solu-

tions. To counteract this, I define a tolerance value  for each dimen-

sion, including fitness, and declare a solution  to be tolerantly-optimal if

there is no solution  such that  and  for at least

one .

The set of all pre-selected stimulus/observation pairs  is then evaluated for ro-

bustness, yielding for each candidate   weighted, unweighted and target-only

. Based on their fitness value  , candidates are then assigned a score

, where  and , i.e.

either  or , depending on the presence of negative correlations (unless other-

wise noted, see section 4.2.5). Finally, the stimulus with the highest score is se-

lected for use in model optimisation. A complete set of stimuli thus contains one

stimulus for each fitted parameter, evolved to maximise that parameter’s influ-

ence, screened for robustness, and selected for a combination of high relative

parameter influence and high robustness to different parametrisations.

1  Although the theoretical maximum number of Pareto-optimal solutions is equal to the 

product of the outcome bin counts, in practice, the Pareto front is often a narrow sliver at the

edge of “outcome space”, and thus effectively limited to something close to the smallest bin 

count.
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 2.3 Model optimisation

Having outlined how I arrive at a small set of parameter-specific stimuli, we now

turn to the algorithms I use to optimise models to data gathered with these stim-

ulus sets. As a reminder, the point of using these stimuli is to reduce the dimen-

sionality of the search space, with each stimulus rendering some or most of the

model parameters irrelevant to the observed outcome, while highlighting the in-

fluence of others. In other words, we can think of each stimulus/observation pair

as a lens that allows us to look at a low-dimensional version of parameter space

and identify regions of high correspondence between the data and our models.

 2.3.1 General considerations

To make good use of this transformation, our fitting algorithm should incorpor-

ate information about which parameters are being targeted, e.g. by limiting its

search to sensitive parameters. Thus, rather than using all stimulus/observation

pairs at once, attempting to fit all parameters to all  data in an unconstrained

manner, we break optimisation down into constrained, partial fits to individual

observations with known parameter sensitivity profiles, iterating over each stim-

ulus/observation pair in turn to home in on an optimal parameter set.

Therefore, our fitting algorithm must also be able to deal with the multiple fit-

ness criteria  presented by the stimulus/observation pairs.  This  is  a  non-trivial

point:  assuming  a  noise-free  environment  and  a  perfect  match  between  the

model  structure  and  the  target  neuron,  all  stimulus/observation  pairs  would

agree on a single globally optimal parameter set. However, since we cannot as-

sume a perfect match, it is conceivable that global optima differ between obser-

vations. Since, given the first consideration above, each partial fit can only make

use  of  one  fitness criterion,  a  deterministic  fitting  algorithm could  easily  get

stuck in a loop, jumping from one optimum to the next. These optima could even

be global in the context of their respective fitness function, but may be nothing

of the sort when compared to all data. Thus, we need an exploratory algorithm
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that moves less purposefully, retains imperfect fits, and thereby arrives at solu-

tions that are satisfactory to all fitness criteria.

 2.3.2 Model optimisation algorithms

Again, I propose two (albeit closely related) algorithms that match the above re-

quirements, a genetic algorithm (GA) and a self-adapting differential evolution al-

gorithm (DE).  Both  use  a  set  of  candidate  models,  termed  their  population,

which is generated randomly in the first epoch and evolved using a combination

of selection and mutation from one epoch to the next. In each epoch, the popu-

lation  is  evaluated  by  simulating  it  with  one  stimulus,  yielding  an  error

 for each model.  The stimulus/observation

pair for the next epoch is then chosen, so that the algorithms can incorporate the

sensitivity vector   into their offspring generation schemes. The stimulus is

chosen semi-randomly, in that the probability of choosing a given stimulus  is

proportional to the number of epochs since  was last used; this is to prevent

the model population from following a stereotyped trajectory through the vari-

ous fitness landscapes that might appear in sequential scheduling, while reducing

the likelihood that a stimulus is not used for many epochs. Next, using , evalu-

ated “parent” models are selected and propagated to generate the “offspring”

population  used  in  the  next  epoch.  The  key  difference  between the  two al-

gorithms lies in their population dynamics and mutation schemes, i.e., how they

select and generate offspring models from the parent population, as described

below.

 2.3.2.1 Genetic algorithm

In the GA, the parent population is sorted by error. The   lowest-performing

candidate models are re-initialised with randomly generated parameter values,

giving the algorithm an opportunity to escape local optima. Conversely, the 

highest-performing models (the “elite”) are retained in the offspring population

without change so as not to lose high-quality candidates to deleterious muta-
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tions. The remaining   offspring models are generated by mutating

parent models. Algorithmically, the process goes something like this:

sort population by decreasing error
randomly reinitialise models {1, 2, … nR}
for i from nR + 1 to N – nE:

pick parents a, b from models {i, i+1, … N}
generate offspring model i by mutation from parents a, b

retain models {N – nE + 1, …, N} unchanged

Note that the i-th model of the new population is, in the general case, offspring

not of the i-th model of the parent population, but rather of randomly chosen

models with a performance equal or better than the i-th parent. In this way, re-

production is somewhere between a completely elitist GA, where only the best

candidates reproduce, and a purely fitness-based GA, where the probability of

reproduction is proportional to a candidate’s fitness. Here, the probability of re-

producing is an approximately exponential function of a candidate’s rank.

From the chosen parent models, an offspring is generated in two steps. Firstly,

with a “crossover” probability , parameter values are picked at random (p=0.5)

from either parent; otherwise, parameter values are copied from only one of the

two parents. Secondly, mutations are applied, meaning small random changes to

the parameter values, governed by the sensitivity vector  of the following

epoch’s stimulus/observation pair. In a given epoch , parameters  are updated

as  either  ,   for  additive  parameters,  or

,  for multiplicative parameters. Paramet-

ers are defined as additive or multiplicative as part of the model definition, fol-

lowing the intuition that some parameters (e.g. reversal potential) have an addit-

ive effect on model behaviour, while others (e.g. current densities) have a multi-

plicative effect. The standard deviation  of the random factors  depend on a

model-defined step size , a global step size modifier  decaying with a half-life

of  epochs, and the sensitivity , i.e. . While the decaying

step size helps to ensure that the searched parameter space volume contracts as
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the models become more refined, the critical inclusion of   focuses the

search on those parameters that are influential on the next evaluation’s fitness

criterion, while perturbing comparatively irrelevant parameters only little.

 2.3.2.2 Differential evolution

As an alternative to the GA, which requires a large number of metaparameters

(such as ,  ,   and others), I also use a differential evolution (DE) algorithm

(Storn & Price, 1997; Das & Suganthan, 2011; Buhry et al., 2012), modified to

self-adapt its strategy and metaparameters as detailed by  (Qin  et al., 2009). In

DE, models compete not against the entire population, but only against their par-

ent, replacing the parent if they perform better, and being discarded in favour of

a new offspring model otherwise. Offspring generation in DE is performed by a

variety of crossover-like techniques, rather than random mutation. Models are

treated as vectors in parameter space; to generate a new model, a donor vector

 is created by combining a target vector with the scaled difference between one

or more pairs of (other) vectors. The choice of target vectors depends on the

particular strategy used and is at least in part random. I follow the authors of the

self-adapting DE (Qin et al., 2009) in using the mutation strategies rand/1, rand/

2, rand-to-best/2 and current-to-rand/1. Let  be the donor vector for a parent

model  ,  let   be  mutually  exclusive  model  indices  ,  let

 and   be scale factors drawn randomly for each donor

vector, and let  denote element-wise multiplication. The strategies are defined

as follows:

- rand/1:

- rand/2:

- rand-to-best/2:

- current-to-rand/1:
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Note the inclusion of  to again scale the mutation to the sensitivity of the

next stimulus. The donor vector   is then combined with the parent vector  

with element-wise binary crossover to yield the offspring , i.e.,

Since the fitness function differs from one epoch to the next, both parent and

offspring are then evaluated under the new stimulus/observation pair, and the

better-performing of the two is deemed successful and retained as parent for

the next epoch.

Each  new  candidate  is  generated  according  to  one  of  the  four  mutation

strategies,  the  choice  of  which  is  random  with  an  initial  probability

 in the first epoch. In subsequent epochs, the number of

successful ( ) and unsuccessful ( ) offspring is recorded for each strategy .

Unlike (Qin et al., 2009), who keep a finite-size memory of  and , I simply

calculate decaying running averages  and  with a decay period  such that

 and equivalently  for  .  This provides a

similar functionality as a finite-size memory, but is easier and more efficient to

implement. The probability  of choosing strategy  is then proportional to the

success  rates,  i.e.,  ,  where  ,  so  that  the  algorithm

self-adapts to choose more successful strategies more often. The crossover rate

 is governed in analogous manner by a decaying, running av-

erage  of the mean crossover rate of successful offspring.

As a consequence of both self-adaptation and a purely crossover-defined muta-

tion operator, this algorithm has only two free metaparameters, the population

size and the self-adaptation decay constant  . Particularly with the long fitting

runs I present in chapter 3, I do not expect the algorithm’s performance to be

very sensitive to the choice of . Population size, on the other hand, can be very



36

influential on how fast and how robustly the algorithm converges (Gämperle et

al., 2002), although I have found no indication that large populations hinder con-

vergence.  With the level  of  high-performance parallel  computation I  use (see

section 2.4 below), I have invariably used populations orders of magnitude larger

than the dimensionality of parameter space and am confident that population

size is therefore a negligible metaparameter.

 2.4 Implementation details

 2.4.1 General overview

Since part of my intention with this project has been to provide the neuroscience

community with a readily applicable tool for the task of model optimisation, I de-

veloped all the algorithms described in this chapter into a unified software appli-

cation called RTDO (real-time dynamic observer, so named for historic reasons).

The software is written in C++ and uses the Qt framework to provide a graphical

user interface. It allows access to a large number of settings for each of the al-

gorithmic steps detailed above, provides an interface to run these steps and per-

form related analysis procedures, supplies data visualisations with the Qcustom-

Plot library after and, in the case of model optimisation proper, while the algo-

rithms are running, and logs and saves (almost) every computation for later ref-

erence and use. Some of the figures in this thesis are produced by the software.

RTDO is built for and used with the GNU/Linux operating system (CentOS 7, 64-

bit) and run on a Dell Poweredge T630 with 32 GB of RAM and two Intel Xeon

E5-2623 v3 processors with 8 cores each running at 3 GHz. Most of the model

simulations, however, are offloaded onto an NVIDIA Tesla K40c graphics pro-

cessing unit (GPU) as described below. The software environment includes gcc

4.8.5 and NVIDIA CUDA 9.1. Finally, for access to live electrophysiology data, I

use a National Instruments PCIe-6251 data acquisition card driven by the open-

source comedi driver.
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The software requires a neuron model to be specified according to a custom

XML format that describes the equations governing the model, its state variables,

any fixed parameters, as well as, of course, the parameters to be optimised, their

type, initial values and permissible value range. This model specification is sup-

plied to RTDO at startup and compiled from within the software into a dynamic-

ally loadable module that contains all the model-specific computational routines,

which is then loaded into RTDO and can be reused in subsequent runs. A direct

consequence of this process is that any model that can be described in terms of

the XML format can be optimised in the fashion described in this thesis; adding a

new model is not a matter of programming, but simply of casting the model into

the right format.

The model compilation step makes heavy use of GeNN (Yavuz et al., 2016), from

which version 2.2.2 is integrated into the RTDO code.  Briefly, GeNN (GPU-en-

hanced Neuronal  Networks)  is  a  framework  that  turns  a  user-defined,  C++-

based model description into C++/CUDA code to simulate a user-defined neur-

onal network on a GPU. In RTDO, its primary use is to provide the compilation

machinery and some of the details of GPU setup and use. The code produced

jointly by RTDO and GeNN allows parallel simulation of a large number of mod-

els on the GPU, which is key to running any of the evolutionary algorithms out-

lined above at a reasonable speed.

 2.4.2 Parallel computation

In GeNN, the particulars of a model’s numerical integration are left up to the

user, with the intent that the user provide the code for one integration interval,

between which GeNN deals with communicating synaptic potentials or spikes

between models. Each interval corresponds to one launch of a so-called kernel,

i.e. the function that runs on the GPU and updates the internal state of all mod-

els. At the start of each kernel launch, and thus at each interval, variables need to

be loaded into kernel memory, which causes a short delay. In the typical GeNN
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use case,  this  is  a  minor issue,  as only a model’s  state variables need to be

loaded,  while  model  parameters  are  baked into the simulation code as hard-

coded values. In RTDO use, however, all fitted parameters are variables in GeNN

terminology and thus need to be loaded at kernel launch. With even modestly

sized models, this slows integration down to a crawl unless very large intervals

are chosen.  However,  since parameters  are never changed during a stimulus,

most of these memory accesses are to effectively constant values. Furthermore,

there is  only  limited (and no network-like)  need for  communication between

models. Therefore, instead of supplying GeNN with code for a single interval,

RTDO wraps integration in a loop over the entire stimulus duration and provides

models with additional information about what to do, including a description of

the stimulus/observation pair. Thus, it takes only a single kernel call and memory

access to simulate the entire stimulus.

For integration proper, RTDO includes a choice of forward Euler integration, a

fixed-step 4th-order Runge-Kutta scheme (RK4), as well as an adaptive step size

4th/5th order Runge-Kutta-Fehlberg scheme (RKF45)  (Fehlberg,  1970).  Largely

useless for the short intervals in the typical GeNN use case, step size adaptation

is very efficient for the long unobserved stimulus sections in RTDO. Conversely,

during observed sections, samples (e.g. current values) need to be generated at

fixed intervals, so RKF45 has a smaller advantage over the fixed-step schemes

here.

In NVIDIA CUDA, code is executed in parallel in so-called warps, or groups of 32

threads,  that  perform  the  same  instruction  on  separate  data.  When  threads

within a warp diverge, e.g. during branching statements, the entire warp is forced

to process each branch in turn, reducing the benefit of parallelism. Because step

size adaptation causes the integration code to be called a varying number of

times, it almost invariably causes such divergence; some threads will arrive at the

end point of integration in fewer iterations than others and remain idle until the

remainder of the warp has caught up with them. In RTDO, although each thread
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can have its own stimulus, most applications – including all those described in

this chapter – call for only one stimulus/observation pair in each warp. As a con-

sequence,  step sizes are  unlikely  to  differ  very  widely,  particularly  in  voltage

clamp, and thread divergence has only limited impact on RKF45 performance. A

possible exception to this is current clamp integration (see section 5.2), where

easily integrated quiescent models and more computationally demanding spiking

models may well coexist within the same warp, slowing execution to the slowest

thread in the warp. However, I have not observed a significant overall slow-down

over several hours of current clamp simulation; besides, the worst-case RKF45

performance is  little  slower than a comparable RK4 execution with the same

minimum step size.

In addition to numerical integration, several other tasks are executed on the GPU,

including most of the algorithms described in this chapter, with the notable ex-

ception of the reproduction and mutation operators during stimulus generation

and model optimisation. Since writing high-performance CUDA code is a difficult

process and an art in its own right, I will not dwell on the details here, but refer

the interested reader to the src/cuda/ directory of the RTDO code, and outline

only some general principles that I  have followed during development. Firstly,

wherever possible, I have used existing libraries for common tasks. For example,

I use the Thrust library (Bell & Hoberock, 2012) to compute the correlation val-

ues for robustness analysis (section  2.2.4).  Secondly,  I  have put considerable

thought into organising the algorithms’ implementations such that memory local-

ity  is  respected in order to allow high-throughput coalesced memory access.

Where appropriate, I make use of CUDA’s “constant” memory area to store data

that is used across all of a kernel’s threads, such as the reference data during

model optimisation. Thirdly, to exchange data between threads, I use so-called

“warp  shuffle”  functions,  which  allow  threads  within  a  warp  to  access  each

other’s registers as if they were their own, without requiring explicit synchronisa-

tion. Particularly for the cluster algorithm (section 2.2.2.2.2), in which, for each
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stimulus, after generating the time series of elementary effects for each of the 

parameters, the elementary effect vectors  must be compared all-to-all

within  the  time  series,  using  a  highly  efficient  inter-thread  communication

scheme is critical to keeping total running time within acceptable limits. Finally,

to keep the code readable and maintainable, I have separated the algorithm im-

plementations from model-specific code as far as possible, such that only a small

fraction of the CUDA code, particularly model-specific data structure definitions

and low-level functionality such as common operations over -dimensional vec-

tors  of  parameters  or  parameter-related  values,  is  code-generated  through

GeNN, while most of the higher-level functionality is written in standard C++/

CUDA.

 2.5 Conclusion

In this chapter, I have introduced the basic idea behind the model optimisation

approach developed in this thesis, pointing out the possibility of fitting subsets

of model parameters to data that are relatively invariant to other parameter influ-

ences, and thereby avoiding, to some extent, both the curse of dimensionality

and the problem of model degeneracy. I have argued that classical voltage clamp

protocols often do something similar, albeit at a different level of abstraction,

isolating and probing currents rather than model parameters. Noting the advant-

ages of voltage clamp, I  have motivated its use in this project, mitigating the

higher complexity this entails by including a model of the clamping amplifier in all

simulations. I then detailed the algorithms I have developed to perform model

optimisation starting from a given model structure. Broadly, the process involves

a computationally heavy, but data-independent search for good stimuli (section

2.2), and a computationally much less intensive, and thus faster, search for para-

meter sets that fit data gathered using these stimuli (section 2.3). While the lat-

ter is a relatively straightforward task with few complicating considerations and

many examples of at least broadly similar work in the literature, the former is
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both complex and ambitious, constituting the major push towards the Unknown

presented in this thesis. Partly for this reason, I have developed not just a single

approach, but tried several alternative techniques with the same aim, hoping that

one might prove successful. In some cases (stimulus generation proper, section

2.2.3, and robustness screening, section 2.2.4), this takes the form of an evolu-

tion from simple towards more complex and a priori more promising algorithms,

while in others (quantifying parameter isolation, section 2.2.2, the final selection

strategy, section 2.2.5, as well as model optimisation itself, section 2.3), I offer

two or three techniques that, before experimental verification, appear compar-

able.

Due to the complexity of both the problem and the proposed solutions, assess-

ing what works is frustratingly difficult. There is no particularly good way to test

any of the steps detailed in this chapter on its own: We cannot independently

verify the quality of a parameter isolation metric or of a set of stimuli without an

adequate fitting algorithm, we cannot judge the quality of a fitting algorithm in-

dependently of the stimuli that are used to collect its input data, and we cannot

judge thousands of stimuli for their robustness to the noise and parameter vari-

ability in real data without gathering enormous amounts of such data. Worse yet,

because the primary goal of the project – optimising models to individual neur-

ons, rather than to a potentially disparate set of neurons – has not been achieved

at the level of detail aimed for here, independent verification is in fact impossible.

Nevertheless, this thesis does not, of course, stand with a description of a novel

method alone. The next chapter lays the groundwork for an intermediate step, or

rather, a proof of concept using data from a simple biophysical system that can

be  accurately  described  without  resorting  to  pharmacological  intervention,

namely,  Xenopus oocytes. With the models from the next chapter in hand, we

will then return to the MOSTIPS method in chapter 4, where I present my at-

tempts at showing that the concept is sound and that the algorithms work as in-

tended, and examine the results of my experiments in silico and in vitro.
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 3 Potassium channel models

 3.1 Introduction

To show that the MOSTIPS method works, not just in a theoretical or simulated

setting, but with real data, I needed a system that is suitably similar to a real

neuron, but provides a high level of access to other parameter estimation pro-

cedures against which could serve as benchmarks for the new method. For this

purpose, I turned to Xenopus oocytes, which are essentially – for the purposes of

the experiments herein – passive, spherical membrane compartments that can be

augmented with any given ion channel protein by simply inserting the appropriate

RNA into the cell. Due particularly to their simple geometry, their large size, and

their lack of uncontrollable active properties, oocytes provide an excellent op-

portunity  to  measure,  or  precisely  estimate,  the  properties  of  any  expressed

channels. By expressing only one or two channel constructs, we can thus engin-

eer a system that can serve as a benchmark for the MOSTIPS method.

In this chapter, I introduce the models of the potassium channels which I have

used in my oocyte work. While these models were initially based on existing lit-

erature and would not normally require a chapter of their own, over the course

of early experiments, I found that they unsatisfactorily described the currents I

recorded. I therefore set about improving them, adjusting them to the data I had

collected. Here, I document both the original models and how I had built them,

and the data that demonstrated a model mismatch, as well as my attempt at im-

proving the models to a more adequate standard.

All  model improvements were done without direct reference to the MOSTIPS

method, using instead the data that I had gathered by classical methods. Since

the same data and analysis methods were also used to provide validation values,

or the “ground truth”, against which I qualified the success of the new method,

much  of  this  chapter  also  serves  in  part  as  a  methods  section  for  the  next
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chapter, where I present MOSTIPS fitting results and relate them back to the

“classical” parameter estimates detailed herein.

 3.2 Methods

 3.2.1 Oocyte preparation

All experimental work involving Xenopus laevis oocytes was conducted in Dr. An-

thony Lewis’s Ion Channel Laboratory at the University of Portsmouth. While I

personally conducted some of the RNA injections, all other oocyte preparation

work was done by staff of the Xenopus Resource Centre (provision of ovaries),

and Dr. Ruolin Ma, then a PhD candidate in the lab, who prepared the oocytes

from defolliculation to incubation, as well as preparing the cRNA at appropriate

concentrations.  The  term cRNA (complementary  RNA) refers  to  RNA strands

with the same base sequence as its corresponding original messenger RNA, de-

rived by copying the latter to a complementary DNA sequence template, then

copying that back to RNA for injection.

Briefly,  ovaries were harvested from anaesthetised  X. laevis females.  Oocytes

were coarsely defolliculated with forceps, washed in OR-2 solution (in mM: NaCl

82.5, KCl 2.5, MgCl2 1, HEPES 10, calibrated to pH 7.4 with NaOH), and stirred

for 1-2 hours in OR-2 with 1.6 mg/ml collagenase to complete defolliculation.

The oocytes were then washed thoroughly in 1 M CaCl2 and placed in ND96 (in

mM: NaCl  96,  KCl  2,  MgCl2 1,  CaCl2 1.8,  HEPES 10,  1% Streptomycin,  0.1%

Gentamycin,  calibrated  to  pH  7.6  with  NaOH)  for  recovery  and  incubation.

Healthy stage V and VI oocytes were manually selected, injected with between

0.05 and 2 ng of the appropriate cRNA, and left to incubate for 1-2 days. Oo-

cytes were prepared for one of three expression profiles by injecting cRNA of

either Kv1.4, or Kv2.1, or both.
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 3.2.2 Electrophysiology

For data collection, two-electrode voltage clamp was performed at room tem-

perature using an OC-725C amplifier (Warner Instruments), Digidata 1440A and

pClamp 10 (Molecular Devices). Oocytes were transferred to a recording cham-

ber perfused with a bath solution (in mM: NaCl 96, KCl 4, MgCl2 1, CaCl2 0.3,

HEPES 10, calibrated to pH 7.6 with Tris base). Borosilicate glass micropipettes

were pulled to tip  resistances around 0.5 MΩ and  filled with 3 M KCl.  After

checking  the  current  electrode’s  resistance,  I  impaled  the  oocytes,  activated

voltage clamp at -80 mV with low initial gain, increasing the gain to 2000 over 1-

2 seconds. Oocytes with large leak currents or no perceptible potassium current

were discarded. After holding the oocytes at -80 mV for 1-3 minutes to allow

the cells to recover from impalement, recording was initiated from within the

pClamp software. Data were saved in the software’s default ABF format. For fur-

ther processing and analysis,  the recordings were converted to the plain-text

ATF file format and transferred to my lab at Sussex University using a portable

hard disk drive.

 3.2.3 Stimulus protocols

The following stimulus protocols were chained together, with a holding period of

10 s between each stimulation and a recording frequency of 40 kHz: First, to

probe leak conductance and current activation, a series of 1-second steps from -

80 mV to [-120, -110, …, +60] mV; second, to probe deactivation, a brief (Kv1.4

only: 10 ms; Kv2.1 and joint expression: 100 ms) step to +60 mV followed by 1-

second steps to [-120, -115, …, -40] mV; and finally, to probe capacitance, a

series of 5 square pulses of 50 ms duration from -80 mV to -90 mV and back. All

three protocols are shown in  Figure 3.1. Following these generic protocols, al-

gorithmically generated stimulus protocols corresponding to the channels ex-

pressed in the oocyte were recorded at 10 kHz. No leak subtraction or filtering

was performed for any of the protocols, as estimation of the leak conductance
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and capacitance formed part of the analysis I intended to do. In a few cases, re-

cording had to be stopped before all data was collected, as the cell or voltage

clamp had degraded beyond the point of usefulness.

Figure 3.1: Stimulus protocol command voltages, top to bottom: Activation, tail currents, capa-

citance. Holding voltage for all three protocols was -80 mV. The prepulse to +60 mV in the tail

current protocol (middle) was 10 ms for Kv1.4 (as shown here) and 100 ms for Kv2.1 and joint

expression, with the remainder of the stimulus pushed back by 90 ms in those cases. In the ca-

pacitance protocol (bottom), due to a technical oversight, the recording of the final step at 450

ms was cut short, such that only 9 complete steps could be used for analysis.



46

 3.2.4 Software

All parameter estimation and fitting procedures described in this chapter were

implemented in an evolving combination of Jupyter notebooks  (Kluyver  et al.,

2016) and raw python scripts. I used the former for developing the fitting and

estimation  methods,  running  sanity  checks  on  the  data,  the  estimation  pro-

cesses, and the outcomes, as well as for visualisation, including most of the fig-

ures shown below. Raw python scripts were used to implement repeatedly used

procedures such as loading recordings as well as some of the fitting and estima-

tion methods once they were fully formalised and tested. I relied on a number of

python libraries, including StimFit 0.15.5 (Guzman et al., 2014) to read the ATF

records,  NumPy and SciPy  (Oliphant,  2007) for  data  manipulation,  Matplotlib

(Hunter, 2007) for plotting, and the multiprocessing library to speed up full-re-

cord  fitting.  Least-squares  fitting  was  performed  using  the

scipy.optimize.least_squares function, using either the default Trust Region Re-

flective or the Levenberg-Marquardt method.

 3.3 Building single-component models from literature

The original plan was to turn oocytes into a facsimile of simple neurons by jointly

expressing sodium and potassium channels in approximately balanced quantities.

However, since the Ion Channel lab is specialised in potassium channels, no so-

dium channels  were  available  there,  and  procuring  them from other  sources

turned out to be more difficult than anticipated. Therefore, I focussed my atten-

tion solely on two potassium channels,  Kv1.4 and Kv2.1.  These were chosen

based on availability of their cRNA in Dr. Anthony Lewis’s lab, as well as their

comparatively good documentation in literature.

Both neuroscientists and cardiologists are interested in ion channels as key regu-

lators of the behaviour of their respective cells of interest. Both Kv2.1 and Kv1.4

are present in both heart and brain tissue and are therefore studied in both fields.

As a result, there is a considerable number of papers characterising these chan-
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nels in circumstances similar to the ones I  was preparing for,  i.e.,  expressing

cRNA derived from rat brain or cardiac tissue in Xenopus oocytes.

I hoped to harness the characterisations of these channels in literature to quickly

build models of these channels that I could then use for classical and novel para-

meter estimation methods. However, the manner in which the channels are char-

acterised generally does not translate directly into a model. For example, while

we can assume potassium channels to have four activation gates, activation cur-

rents are usually fitted with a single exponential, such that translating reported

values into a Hodgkin-Huxley format requires approximating such exponentials

with fourth-order activation kinetics. In addition, not all data are reported numer-

ically, particularly in older papers; where they were only available as figures, I

used WebPlotDigitizer  (Rohatgi, 2019) to extract the data I needed. In the fol-

lowing, I describe the process of building these models from the available data in

literature.

 3.3.1 Kv2.1

Kv2.1 is a delayed rectifier potassium current found in mammalian cardiac (Dixon

& McKinnon, 1994; Yang et al., 1994) and neural (Frech et al., 1989; Murakoshi

& Trimmer, 1999) tissue, also referred to as drk1, shab and KCNB1 (Ranjan &

Khanna, 2019). Because Kv2.1 shows a slow, but pronounced inactivation (Frech

et al., 1989), I modelled the conductance with the usual four activation gates and

an additional  slow inactivation gate  (Armstrong,  1969; Hille,  1991),  mirroring

other modellers’ choices (Günay et al., 2008):

(Equation 3.1)

(Equation 3.2)

(Equation 3.3)
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First-order fits for steady-state activation were readily available from (VanDon-

gen  et al., 1990; Kerschensteiner & Stocker, 1999) using rat cRNA in oocytes,

and from (Shi  et al., 1994) in COS-1 cells, which are mammalian non-neuronal

fibroblasts (Gluzman, 1981). Taken together, these data paint a fairly consistent

picture, see  Figure 3.2, and were used to hand-fit the fourth-order Boltzmann

function in Equation 3.4.

Inactivation data were taken from the same sources, as well as from (Li  et al.,

2015) and (Klemic et al., 1998). Here, since inactivation is a first-order process,

no translation to a different order is required, which made hand-fitting somewhat

easier; the resulting steady-state function is shown in  Figure 3.2 and  Equation

3.5.

(Equation 3.42)

(Equation 3.5)

Figure 3.2: Kv2.1 activation and inactivation steady state curves, from various sources, together

with the hand-fitted chosen model curves. The activation curves for VanDongen, Shi and Ker-

schensteiner are first-order Boltzmann curves, while the Günay and chosen model are fourth-or-

der curves.

2 Note that steady-state variables  are dimensionless. Here, and in subsequent 

voltage-dependent steady-state equations unless otherwise noted,  is the dimensionless 

value of the membrane potential expressed in mV.
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Time course data were more difficult to find, with reliable activation data from

oocyte expression only in  (Kerschensteiner & Stocker, 1999), and much faster

kinetics reported in COS-1 (Li et al., 2015) and modelled in (Günay et al., 2008),

both of which are of doubtful use, as the kinetics are dependent on secondary

subunits and other cofactors that are likely present in mammalian cells,  even

non-neuronal, but not in Xenopus oocytes. I therefore extracted oocyte-derived

first-order time course data from Figure 1 in (Kerschensteiner & Stocker, 1999),

fitted the resulting exponentials with fourth-order approximations over 200 ms,

then  hand-fitted  Equation  3.6 to  these  data  points,  with  the  resulting  curve

shown in Figure 3.3. None of the other papers used for steady-state activation

reported time course data, other than time-to-peak or figures of traces, neither

of which seemed a reliable way of improving my estimate.

(Equation 3.63)

(Equation 3.7)

For the inactivation time course, (Klemic et al., 1998) provided a decent starting

point, though here, too, I had to extract graphed data (from figure 3C, ibid.). Po-

tassium channel inactivation may arise from several distinct mechanisms (Klemic

3 Note that here, and in subsequent equations unless otherwise noted, time constants  are 

dimensionless values implicitly expressed in ms. As in steady-state equations,  is the di-

mensionless value of the membrane potential in mV.

Figure 3.3: Kv2.1 time course data and models
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et al., 1998; Kurata & Fedida, 2006), including closed-state inactivation that can-

not be modelled in the Hodgkin-Huxley formalism, and is perhaps for this reason

not modelled consistently (e.g. in classical Hodgkin-Huxley fashion analogous to

sodium inactivation,  in  piecewise  fashion  (Destexhe  & Huguenard,  2000),  or

even without any voltage dependence  (Günay  et al., 2008)). My approach falls

somewhere in between, trying to achieve a pronounced voltage dependence for

recovery from inactivation at strongly negative voltages, while remaining approx-

imately stable for higher voltages. Though Equation 3.7 does not capture the re-

ported kinetics particularly well, I judged this model to be adequate for my pur-

poses.

 3.3.2 Kv1.4

Kv1.4 is an A-type potassium current found, like Kv2.1, in both cardiac muscle

(Comer et al., 1994; Rasmusson et al., 1995; Wickenden et al., 1999) and in the

central nervous system (Stühmer et al., 1989; Stephens et al., 1996) and is also

referred to as RCK4 and KCNA4  (Ranjan  et al.,  2019). I constructed my initial

model of this channel analogously to the Kv2.1 model, i.e. according to equa-

tions 3.1 to 3.3.

Luckily, a fair number of studies expressing Kv1.4 in oocytes is available. In par-

ticular,  I  relied on  (Stühmer  et al.,  1989; Nunoki  et al.,  1994; McIntosh  et al.,

1997; Hashimoto et al., 2000; Hagiwara et al., 2003) for both activation and inac-

tivation steady-state data, with (Rettig et al., 1994) adding further data for inac-

tivation.  Correcting  again  for  fourth-order  kinetics,  I  hand-fitted  Boltzmann

curves to the various data as shown in  Figure 3.4, resulting in the steady-state

functions in Equations 3.8 and 3.9.

(Equation 3.8)

(Equation 3.9)
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Time course data were again a little  more difficult,  particularly for activation,

which is faster and more strongly affected by inactivation than that of Kv2.1.

Finding no useful data for activation, I lifted deactivation data from figure 7C in

(McIntosh et al., 1997), which was generated with a brief pulse to +60 mV to ac-

tivate the conductance, then stepping down to various levels and observing the

tail currents, resulting in single exponential decay time constants. To these expo-

nentials,  I  fitted  a  Hodgkin-Huxley  conductance  equation  of  the  form

, using for  the fraction of the maximum

current as reported in figure 1D (ibid.) and estimating  from figure 4A (ibid.).

The resulting data points – if we can still call them that after so much uncertain

processing – are shown in Figure 3.5 together with my attempt at fitting some-

thing sensible to it. I should point out that the points below -60 mV are almost

entirely fictitious,  being based on guesses of   rather than actual data, and

should therefore be taken with a large grain of salt. The resulting model is shown

in Equation 3.10.

(Equation 3.10)

(Equation 3.11)

Figure 3.4: Kv1.4 activation and inactivation
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Inactivation is somewhat better documented due to its prominence in the chan-

nel’s currents, though good data are still lacking, again due to the uncertain inter-

play between different types of inactivation as well as recovery from it. Regard-

less, I gave my best attempt at matching all data available to me, resulting in

Equation 3.11.

 3.4 Parameter estimation and fitting procedures

 3.4.1 Classical estimation of passive parameters

Having constructed these models to the best of my knowledge, I then proceeded

to collect and analyse data from oocytes expressing these channels.  The po-

tassium channels expressed beautifully in the oocytes, giving rise to large cur-

rents with the expected features, as seen in a typical example of a Kv2.1 current

in Figure 3.6. In the following, I describe how I estimated the “easy” parameters

of interest – the leak conductance and equilibrium potential, capacitance, and po-

tassium equilibrium potential – using this recording for illustration. These proced-

ures were the same for oocytes expressing either one or both of the potassium

channels, the only difference being the timing of the tail current steps for oo-

cytes expressing Kv1.4 only, as noted in section 3.2.3.

Figure 3.5: Kv1.4 time course data and model
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Figure 3.6: Representative example traces of a Kv2.1-expressing oocyte under each of the three

voltage clamp protocols. Traces are IIR-filtered, downsampled to 4 kHz and clipped to the plot-

ted range for display only. Top: achieved voltage, bottom: corresponding clamp current. Proto-

cols from left to right: Activation, tail currents, capacitance.

The first analysis step was to estimate the leak conductance. For this, using the

activation protocol, I computed the median voltage and current during steps to

potentials below -80 mV, where the potassium conductances can safely be as-

sumed absent, and fit a straight line to the resulting points in the current-voltage

plane, yielding the equilibrium potential and conductance of the leak current, as

shown in Figure 3.7.

Next, I estimated the capacitance using data from the capacitance protocol. Each

of the 10 mV steps (in both directions, a total of 9 steps), the first two of which

are shown in  Figure 3.8, were analysed separately. The achieved voltage step

size   was estimated using the median voltage in each step. To account for

leak, the median current of the final 12.5 ms of the step was subtracted as a

baseline  to  yield   Finally,  the  capacitance  was  estimated  according  to



54

, and the mean   across all  9 steps recorded. I  note

that, although the traces in Figure 3.6 look noisy, the integral is computed as a

sum over all samples, roughly half of which are negative once the baseline is sub-

tracted, such that noise should not greatly affect the estimate.

Figure 3.7: I-V plot derived from the activation protocol data  in the previous

figure. Blue, current maxima during the step; orange, leak current fit (El: -22.4

mV, gl: 2.1 µS)

Figure 3.8: Two capacitance protocol steps, showing the first 2 ms of data from the beginning

of the step. Left, voltage; right, corresponding current traces. Though the majority of the capa-

citive current flows within the period shown, the entire 50 ms were used during estimation to

avoid bias. The capacitance in this example was estimated at 90.7 nF.
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Figure 3.9: Tail current fits. Top: Tail currents and fitted exponentials. The blue vertical

line shows the cutoff point designed to protect the fit against the capacitive artefact.

Bottom: I-V plot showing the exponentials’ values at t=0 (blue) and the straight-line fit to

the positive values used to estimate EK, here -70.0 mV.

Finally, I used the tail current protocol to estimate the potassium equilibrium po-

tential, since the I-V plot (Figure 3.7) proved inadequate for this. I cut the tail

currents at a safe distance from the capacitive artefact, subtracted the leak cur-

rent that was expected to be evoked by the median achieved voltage, and fit the

remaining current trace with a sum of two exponential decays.  The initial  ra-
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tionale for using a double exponential was a mere matter of achieving a good fit;

only later did it become apparent that there are indeed two decaying compon-

ents with distinct time constants, see section  3.5. The resulting fit (see  Figure

3.9) was extrapolated back to the beginning of the step to estimate the current

that would have flown, at the median voltage achieved during the fitted portion

of the tail currents, with the channels in the largely open state promoted by the

prepulse. Since up to step initiation, all traces derive from the same stimulus pat-

tern (i.e., a prepulse to +60 mV), one should expect the resulting tail current-

voltage relationship to be linear. There was, however, very consistent evidence

of something that looks like rectification, the source of which is not entirely clear

to me. It seems plausible that the tail currents are more difficult to fit at lower

voltages, since the artefact at the step is greater; perhaps there is also an effect

of faster deactivation that is hidden within the artefact. In any case, I could thus

not trust the negative currents for a straight-line fit, and so restricted myself to

the positive tail currents, fitting a straight line to find the reversal potential EK.

 3.4.2 Model-free active parameter estimation

The classical way of finding the maximum potassium conductance would be to

use the peak currents of the activation protocol (Figure 3.7) together with the EK

estimate to derive a straight-line fit that describes the current-voltage relation-

ship of  fully  opened channels.  However,  this  would be unreliable,  since both

Kv1.4 and Kv2.1 are inactivating; the peak currents, therefore, are already re-

duced below the maximum conductance due to inactivation (Willms et al., 1999;

Lee et al., 2006). More importantly still, in oocytes with joint expression of both

channels, peak currents alone could not suffice to estimate two maximum con-

ductances.

Thus, instead of estimating  from peak activation current, I decided to use the

full activation protocol traces, fitting a Hodgkin-Huxley simulation to the data

with a least-squares optimisation routine. Furthermore, rather than fully trusting
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the literature-derived kinetics and fitting only the maximum conductance, I opted

for a more exploratory approach that would allow me to verify or adjust the

model kinetics as necessary.

Firstly, I posit a typical model structure of the form

(Equation 3.12)

with the activation and inactivation gating variables  and  following the dif-

ferential equation

(Equation 3.13)

Initially, I had no reason to assume more than one component for each channel,

but was challenged in that assumption as shown in section 3.5, hence the more

general formulation here.

Then, in order to avoid specifying any particular kinetic model (i.e., voltage-de-

pendent functions  and ), I assume  throughout the linear

segments of each stimulus, approximating the voltage during a given step by the

median measured membrane potential. This allows me to solve the differential

equations for the gating variables explicitly, i.e.,

. (Equation 3.14)

Since the membrane is held at -80 mV before each protocol sweep, I can assume

complete deactivation and deinactivation, i.e.,  and , such that  can

be formulated as

(Equation 3.15)

where .
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To fit this equation to the activation protocol, I prepared the most informative

traces, that is, those with clearly detectable currents (command voltage >= -60

mV for Kv1.4, and >= -20 mV for Kv2.1), by subtracting the leak current as es-

timated above. Then, I least-squares fit  Equation 3.15 to each trace separately,

yielding trace-specific , ,  and . Finally, I assumed a maximum achievable

conductance  and extracted trace-specific .

 3.4.3 Time constant fitting with the tail current protocol

While  the  above  procedure  is  sufficient  to  produce  good  estimates  for  the

steady-state variables , which we can safely assume to follow a sigmoidal re-

lationship to membrane potential, the time constants  follow a more complex

relationship  and are therefore  insufficiently  constrained at  lower voltages.  To

rectify this situation, I turned to the tail current protocol. Since this protocol has

a prepulse before the current of interest, estimating the initial gating variables 

is a little trickier. Luckily, the activation protocol fits provide good estimates for

the  and  at the prepulse voltage. Using these estimates together with the

median prepulse voltage, I calculated the gating state at the end of the prepulse

with Equation 3.15.

Then,  using this state as the new  ,  I  dropped   to the median test  pulse

voltage and again fit the current equation to leak-subtracted data, with one im-

portant difference: Rather than fitting all kinetic variables, I drew the steady-state

and inactivation values from modelled functions as described in more detail be-

low. This left only the activation time constants to fit, which were thereby well

constrained.

Finally, combining both activation and tail current protocol fits across all record-

ings, I decided on voltage-dependent functions for each  and  by a combina-

tion of least-squares fitting and hand-tuning.
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 3.4.4 Model-constrained full-record fitting

With trustworthy models in hand, I could then turn to finding maximum conduct-

ances and kinetic parameters that best fit the recordings from a given oocyte.

Notice that, in the preceding section, I fit the values for  and  for each trace

in isolation; now, and for the purposes of validating the MOSTIPS method, I am

looking to fit the parameters that govern the kinetic equations  and 

to an entire record.

To do this, I estimated the passive parameters as described in section 3.4.1, and

preprocessed the traces from both activation and tail current protocols by sub-

tracting the expected leak current and setting cutoff points to exclude the capa-

citive current artefact. Then, I provided a routine to integrate the complete cur-

rent model (Kv2.1x, Kv1.4x, or both together, as appropriate, see section  3.5)

with a forward Euler method at the records’ sampling rate of 40 kHz. Initial con-

ditions were assumed as ,   as above. From the start of each trace,

the expected current was then calculated based on the measured voltage in each

sample. Finally, the current residuals in the observed regions (i.e., test pulses

after the artefact cutoff) were collated across all traces in both protocols, and

fed to a least-squares optimisation routine to fit either just the maximum con-

ductances, or, in the case of the oocytes expressing only Kv2.1, the complete

kinetics parameter set, too.

Although some results are shown in section 3.5.3, the main purpose of the full-

record fit was, of course, to provide reference parameter values for comparison

with the MOSTIPS method, as we will explore in the next chapter.
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 3.5 Fixing model mismatch with a second component

 3.5.1 Single-component fits are qualitatively 

unsatisfactory

As shown in section 3.3 above, I had considerable difficulty finding good data on

the channel kinetics despite the preponderance of relevant literature. As I will

demonstrate below, however, the problem went deeper than just a lack of ad-

equate kinetics. Instead, I was forced to concede that the models were not as

good as I had hoped. I therefore decided to adjust the models to fit the data I

had in hand.

Using the model-free fitting method outlined in section  3.4.2, I  fit the single-

component models to the activation protocol traces. For Kv2.1 currents, I tried

several least-squares methods, and many initial guesses, but invariably ended up

with one of two solutions, illustrated in Figure 3.10: The fitting algorithms either

exploited the wide boundary conditions I gave them, using uncharacteristically

fast inactivation to fit the shape of the current onset while ignoring slow inactiv-

ation, or conversely, fitting the slow inactivation correctly at the expense of a

very inaccurate current onset.

For Kv1.4 currents, the problem was slightly more subtle, because the fitting al-

gorithms could not ignore the much more pronounced inactivation. However, the

fits looked qualitatively mismatched in the same way as the Kv2.1 fits that appro-

priately accounted for inactivation, namely with too sharp an activation shape, as

shown in Figure 3.17. And so, since a single component with  activation could

not possibly accurately fit  the current onsets I  observed in either of the two

channels, I decided to add a second component to each of the channel models.
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Figure 3.10: Single-component Kv2.1 kinetics fail to accurately fit activation and slow inactiva-

tion processes. Blue, data (median voltage 54.9 and 8.7 mV for the upper and lower trace, re -

spectively). Green, least-squares fits that match the shape of activation, using fast inactivation

kinetics. Red, fits that match observed slow inactivation, but not activation shape, hand-tweaked

slightly to better match inactivation and thereby illustrate the problem. Inset, magnified view of

the lower traces. The recording shown here is the same one used for illustration in section

3.4.1.

 3.5.2 Two-component Kv2.1x

For Kv2.1, I added a non-inactivating component, since reasoned that the slow

inactivation  would  not  allow a  distinction  between  two  separate  inactivating

components.  Thus,  the  extended  model  for  Kv2.1,  hereafter  referred  to  as

Kv2.1x, takes the form

(Equation 3.16)

or, in explicitly solvable and fittable terms,

(Equation 3.17)

Again, I fit this equation, now with six parameters, to each trace separately, res-

ulting in a much better qualitative fit as shown in Figure 3.11. With a little coax-

ing – i.e., guiding the fit by setting suggestive initial conditions – I achieved a very

consistent separation into a fast and a slow component. By consistent, I mean

two things: Firstly, that all recordings separated well, and that the fit improved
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dramatically  from one component to  two components,  both  qualitatively  and

quantitatively, see Table 3.1. Secondly, separation was consistent in that within

recordings, the relative size of the components was largely, though not entirely,

stable between traces at different membrane potential levels, as shown in Figure

3.12.

Figure 3.11: Kv2.1 least-squares fits using the single-component model (left) and the two-com-

ponent model (Kv2.1x, right). Freed from trying to use inactivation to fit the current onset, the

two-component model achieves a very tight fit throughout. Yes, there are two curves of each

colour there!

n RMSE mean RMSE std t p
Kv2.1

15
0.281 0.173

5.57 6.96 * 10-5

Kv2.1x 0.090 0.050
Kv1.4

6
0.131 0.046

5.62 2.47 * 10-3

Kv1.4x 0.032 0.017

Table 3.1: Fitting cost comparison between single-component and two-component models, sig-

nificance-tested with a paired-samples t test. RMSE: Root mean squared current residual, in µA.

Figure 3.12: Kv2.1x fast and slow components that make up the two-component fit in  Figure

3.11. Consistent separation was achieved by seeding the least squares fits with appropriate ini-

tial values for each trace. Though not quite perfect, both components look like they could be in-

dependent currents.
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As it turns out, the failure of the single-component model to fit the data is by no

means a coincidence. Upon expression in oocytes, Kv2.1 has indeed been shown

to  form  channel  complexes  with  endogenous  MinK  related  proteins  (MiRP),

slowing the current kinetics of a subset of channels – presumably those interact-

ing with MiRP – in an expression level dependent fashion (Gordon et al., 2006). In

other words, adding a second component, although initially motivated by a mis-

match between data and model, is in fact based in biophysical reality.

Having fitted each recording to a two-component process, I could now ask what

characteristics this channel (or rather, these channel complexes) exhibits.  The

steady-state variables behaved in accordance with expectations and are plotted

in  Figure  3.13 together  with  sigmoid  curves  of  the  form

 that best fit the data, the parameters

for which are listed in Table 3.2.

Figure 3.13: Kv2.1x steady-state activation and inactivation values plotted against the achieved

voltage (asterisks, each colour represents a separate recording, n=15), and fitted sigmoids (grey

lines). While the activation variables show a very clear sigmoidal relationship, the inactivation

variable looks more like a binary switch. This may be due to a lack of good information, since

the protocol used is not particularly suited to probing inactivation.

Next, I tackled the inactivation time constant , for which I had no useful data

beyond the activation protocol, since   appeared to be close to 1 at the tail

current voltages. Even in the activation protocol, a good part of the fitted curves

fit better with no inactivation, as the high values for  in Figure 3.13 indicate. I

therefore excluded all fits with , as well as those with , and in-

stead included some of the literature values already used in section  3.3.1. The
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resulting picture suggested an asymmetric relationship to voltage, so I fit a curve

of the form 

(Equation 3.18)

 to the few data points available by hand, with the result shown in Figure 3.14 

and Table 3.2.

Figure 3.14: Kv2.1x inactivation time constants from activation protocol fitting (blue asterisks,

n=15 recordings),  Klemic et al.,  (1998, circles)  and Kerschensteiner and Stocker (1999, tri-

angles). The orange curve was fitted by hand.

Next, since the tail current protocol fitting method described in section 3.4.3 re-

quires an estimate for high-voltage kinetics, I hand-fitted functions of the form

(Equation 3.19)

to the high-voltage  and  coming out of the activation protocol fits. I then fit

the tail currents and adjusted the time constant functions to those fits, again by

hand. Results are shown in Figure 3.15, with parameters for the approximations

listed in Table 3.2. In retrospect, I am struck by the realisation that I could have

done a much better job of fitting particularly the ; at the time, I did not think to

combine the data from both protocols, much less use a more principled fitting

procedure than iterated hand-tuning. In my defence, I did try to least-squares fit

the curves – but only to one side of the data at a time, which of course failed to

produce results that fit the other side. I am, however, forced to present the fit in
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its present, embarrassing state, because by the time I realised my error, I had

already used this flawed model to generate MOSTIPS stimuli and collect data and

did not have the time to return to this point.

Figure 3.15: Fitted time constants for both Kv2.1x components. Each plot shows fitted values

from both the activation protocol (>-25 mV) and the tail current protocol. Values belonging to

the same cell are drawn in the same colour. The solid lines represent my approximations to the

data. One recording was excluded due to low expression levels, which resulted in effectively un-

detectable tail currents, therefore here, n=14.

unit value Range (sg) Range (opt) sigma type
gK_fast µS 60 [1, 200] [1, 500] 0.05 *
gK_slow µS 20 [1, 100] [1, 500] 0.05 *
EK mV -70 [-90, -40] [-130, -30] 0.1 +
gl µS 2 [0.1, 30] [0.01, 100] 0.01 *
El mV -10 [-30, 20] [-60, 40] 0.1 +
C nF 150 [50, 250] [50, 500] 0.1 *
nK_mid mV -13.7 [-30, 0] 0.1 +
nK_slope mV 14.8 [4, 40] 0.1 +
taunK_min ms 5 [0, 20] 0.1 +
taunK_max ms 110 [60, 160] 0.1 +
taunK_mid mV 36 [20, 50] 0.1 +
taunK_slope1 mV 18 [5, 50] 0.1 +
taunK_slope2 mV -17 [-50, -5] 0.1 +
hK_mid mV 5.8 [-10, 20] 0.1 +
hK_slope mV -3.9 [-20, -1] 0.1 +
tauhK_lmin ms 200 [0, 500] 1 +
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unit value Range (sg) Range (opt) sigma type
tauhK_rmin s 8 [4, 12] 0.1 +
tauhK_max s 50 [10, 100] 0.1 +
tauhK_mid mV -30 [-50, -10] 0.1 +
tauhK_lslope mV -16 [-40, -4] 0.1 +
tauhK_rslope mV 15 [4, 40] 0.1 +
sK_mid mV -19.7 [-40, 0] 0.1 +
sK_slope mV 11.1 [4, 40] 0.1 +
tausK_min ms 25 [0, 100] 0.1 +
tausK_max ms 500 [250, 750] 1 +
tausK_mid mV 36 [20, 50] 0.1 +
tausK_slope1 mV 18 [5, 50] 0.1 +
tausK_slope2 mV -17 [-50, -5] 0.1 +

Table 3.2: Base value, range, and MOSTIPS metaparameters for the Kv2.1x model. Value ranges

for the non-kinetic parameters are separated into those used during stimulus generation (sg)

and the wider limits applied during optimisation (opt); for the kinetic parameters, the same lim-

its were used for both tasks. The kinetic parameters (from nK_mid onwards) were only fitted in

“Kv2.1k” fits, and were otherwise held fixed at the listed value.

 3.5.3 Kv2.1x full-record fit

Using the full-record fitting method described in section 3.4.4, I then proceeded

to estimate the full kinetic parameter set described above to each cell’s activa-

tion and tail current recordings. The resulting kinetic curves are shown in Figure

3.16. Clearly, the steady-state curves were reasonably well chosen, as the agree-

ment between the default model (strong blue lines) and the fits show. The wide

agreement  between records  furthermore  suggests  that  these  parameters  are

also adequately constrained with the available data. This is less clear for the time

constants, which are much more scattered, particularly for inactivation, which

mirrors the difficulty I have had in fitting its kinetics from first principles. An addi-

tional protocol to better reveal inactivation would certainly have helped in gener-

ating a good model of the channel. The time course of fast activation, , strik-
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ingly confirms the mismatch between the data and the hand-chosen parameters

seen in Figure 3.15.

Figure 3.16: Kv2.1x full-record kinetic fits (n=27). The thick blue line represents the default kin-

etics (see Table 3.2), which were used as the initial guess for fitting.

 3.5.4 Two-component Kv1.4x

Although the single-component Kv1.4 fits were less obviously inadequate than

those to the Kv2.1 currents, I decided to try adding a second component to bet-

ter fit the current peak. There is admittedly less biophysical justification to do so

– I am not aware of any work similar to (Gordon et al., 2006) looking specifically
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at  Kv1.4,  though  similar  concentration-dependent  effects  have  been  seen  in

other  potassium  channels,  including  Kv1.2  (Guillemare  et  al.,  1992),  Kv1.3

(Honore et al., 1992), and others (Moran et al., 1992).

Figure 3.17: Kv1.4 single-component fit (left) and two-component fit (right). The single-com-

ponent mismatch is less pronounced than with Kv2.1 currents, but the improvement in moving

from one to two components is equally clear and remarkable.

Since inactivation is much more pronounced in Kv1.4, I posited the second com-

ponent  to  also  inactivate,  such  that  both  components  take  the  form

.  Similar  to  Kv2.1x,  I  found that  the  two-component  model  fit

much better (see Figure 3.17 and Table 3.1), with the components again consist-

ently splitting up into a slower and a faster component (Figure 3.18) with only

slight nudging via initial parameter guesses.

Figure 3.18: Kv1.4x fast and slow components that make up the two-component fit in  Figure

3.17. The two components are remarkably well separated and both look like credible currents in

their own right.

With the activation protocol fits in hand, I first formalised the voltage-dependent

functions for inactivation. Following the literature-based model, both inactivation

gates were modelled with an inactivating fraction , such that
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(Equation 3.20)

Here, too, the data did not allow a distinction between the two components, so I

hand-fit  Equation  3.20 with  ,  ,  and  ,

see Figure 3.19.

Figure 3.19: Kv1.4x fast and slow steady state inactivation. Each marker colour represents one

of the n=6 recordings.

The time constants for inactivation I adjusted from the literature-based model

(Equation 3.11) to the few available data points by hand. Unlike in Kv2.1, there

was no need to exclude any of  the  data,  as  inactivation  was  clearly  present

throughout the probed voltages. The resulting equations are

(Equation 3.21)

and

(Equation 3.22)

with the data and fitted curve shown in Figure 3.20.

Figure 3.20: Kv1.4x fast and slow inactivation time constants.
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Next, I turned to the activation variables. I modelled the fast and slow steady-

state  and  with the usual sigmoid function,

(Equation 3.23)

Due to the small number of recordings I had (of my seven records, one was dis-

carded due to low expression, leaving me with 6 viable fits), I could not reliably

fit a steady-state sigmoid by least-squares, and so decided to hand-fit them in-

stead. As with the inactivation steady-state, there appeared to be no clear differ-

ence  between the  components,  so  I  decided  to  model  both  with  the  values

 and . Results are shown in Figure 3.21.

Figure 3.21: Kv1.4x fast and slow component activation steady-state fits, including data from

both  activation  and  tail  current  protocols.  Note  that  there  is  some  overlap  in  the  probed

voltages between -60 mV and -40 mV which is fit consistently. The sigmoid curve was not ad-

justed to the tail current data points (lower voltages), as I considered it unnecessary and poten-

tially misleading.

For the activation time course, I hand-fit curves of the form used in the single-

component model (Equation 3.10) to the data in order to run a tail current fit as

described in section 3.4.3. Using data from both the activation protocol fits and

the tail current fits, I then hand-fit the time constant equations as

(Equation 3.24)

and
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(Equation 3.25)

The resulting curves, along with data from both protocols fits, are shown in Fig-

ure 3.22.

Figure 3.22: Kv1.4x fast and slow activation time constants. Two obvious outlier data points are

not shown. The recording producing the brown markers does not distinguish itself in any obvi-

ous way other than the incongruous fitting results (note also its apparent outlier status in other

figures in this section) and was therefore not removed, but simply ignored during hand-tuning.

Finally, because I did not quite trust my hand-tuning of the activation sigmoids

described above, I fit the tail protocols in much the same way as described in

section  3.4.3, but fitting   and   while drawing   and   from

Equations 3.24 and 3.25. Somewhat surprisingly, although the tail current fits are

of course noisier, the sigmoids matched the data reasonably well, as seen in Fig-

ure 3.21, and were not adjusted any further.

 3.6 Conclusion

In this chapter, we have seen how, starting from presumably good characterisa-

tions in literature, I built models of two potassium channels. Upon expressing

these channels in Xenopus oocytes – the exact environment the characterisations

had emerged from – closer inspection of the expressed currents showed a clear

mismatch to the model expectation, even when the kinetic aspects of the models

were left entirely unconstrained. In the case of Kv2.1, this mismatch is entirely
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explained by the interaction with endogenous proteins in oocytes; in Kv1.4, we

can hypothesise a similar effect, though tangible evidence is lacking. Separating

the channel models into two components, I have shown a greatly improved fit;

thus, turning to the proposed MOSTIPS method in the next chapter, I have used

these two-component models exclusively when working with real data.

I hasten to point out that, despite my relatively detailed analysis of the available

data, neither of the extended models is quite beyond doubt. The stimulus proto-

cols that were used are suited to illuminate only parts of the channel kinetics, but

leave others – in particular, the time constants of inactivation and its recovery at

lower voltages – ill constrained. A full characterisation would have to include in-

activation  probing,  but  was  omitted  due  to  time  constraints:  Given  the  10-

second holding period between each stimulus, the classical protocols shown in

this  chapter  alone  take approximately  five  minutes.  Of  course,  in  addition to

those, I also had a number of MOSTIPS stimulus sets to record, raising the total

recording time closer to 20 minutes per oocyte in some conditions. Although oo-

cytes are remarkably robust under voltage clamp, prolonged experimentation is

not conducive to the quality of the data received, such that I rejected further ex-

tending the set of recordings.

The difficulty of accurately modelling even a single, well known, well character-

ised channel in a highly controlled environment suggests, I  would argue, that

conductance-based neuron models are generally much more abstract than one

might assume. We have seen here the result of incidental interactions between

single channel proteins and non-neuronal factors; there can be no doubt that in

neurons, these sorts of interactions are multiplied many times over, with hetero-

merisation between channel pore subunits,  targeted interactions with auxiliary

subunits,  modulations mediated by other  ligands such as  calcium,  as  well  as

modulations driven by more complex processes as they are known e.g. in the

regulation of synaptic channel proteins  (Song & Huganir, 2002; Derkach  et al.,

2007; Diering & Huganir, 2018). To accurately model all of these effects, along
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with the effects of cell morphology and the distribution of channels among dis-

tinct membrane compartments, is impossible with the kinds of models, and the

level of complexity, that are in use today.

While I do not believe that this invalidates the aim of this thesis, it does suggest

a certain humility: If we look closely enough, any model, and any parametrisation

thereof, must fall far short of the true complexity of a neuron. Thus, as we move

into the next chapter, where I show how well the MOSTIPS method works for

fitting these – ultimately rather crude – models to data, it is perhaps instructive

to expect mismatch, rather than be surprised by it.
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 4 Empirical proof of concept

 4.1 Introduction

Developing a method to measure previously unmeasurable quantities presents a

bootstrapping problem: We want to make sure that the method works, but we

cannot test it in its entirety, because no reference method exists against which

we could calibrate our work. Therefore, it is of critical importance to tread care-

fully and verify the novel method’s functionality at every step. In order to do this,

I have tested the methods developed in chapter 2 against two types of model

systems whose properties should be known well enough to serve as calibration.

The first of these systems is a simulated optimisation target. This offers the op-

portunity of perfect knowledge and, by using the simulated model as a starting

point  for  the optimisation  algorithm,  of  perfect  correspondence between as-

sumed and target model structure. Although the optimisation problem is by no

means trivial  even in  this  idealised scenario,  it  is  a  relatively  low bar  for  the

method to pass. In addition, fitting against a simulated target allows us to look at

how well the method can cope with such added difficulties as instrument noise

or target parameter values that are different from the original assumption. An ex-

ploration of these themes is presented in section 4.3.

The second model system that I have used for calibration is a more life-like test

of optimisation against real, active membranes. Ideally, we would like to use a

model system that is characterised well enough that we can obtain validation

data that fully qualifies the success of the method. I know of no neurons that fit

this description, since their morphology and ion channel composition is too com-

plex to allow a full characterisation on a single cell. If, instead, we can turn a

passive, geometrically simple cell into an active membrane compartment by in-

troducing well-known ion channels into it, we should have an easily characterised

biological system. This is made possible by using Xenopus oocytes, a commonly
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used expression system that will readily translate any cRNA injected into its cyto-

plasm. Using this feature, I  have gathered electrophysiological data from real,

active membranes, without having to worry about geometry, in an effort to de-

termine how well the method works with such data. We have already seen the

difficulty of accurate modelling and model fitting by classical methods in the pre-

vious chapter; in section  4.4, we will look at how well my algorithmic solution

fares.

 4.2 Methods

First, however, I need to elucidate details of the experiments, simulations and al-

gorithms  I’ve  used  to  produce  my  results,  beyond  the  wet-lab  experimental

methods  described  in  chapter  3.  Although  the  working  principle  of  the  al-

gorithms that comprise the MOSTIPS method is described in chapter 2, some

details,  as  well  as  many  metaparameters  (i.e.,  parameters  governing  the  al-

gorithms themselves), require additional explanation. Many of these metapara-

meters were chosen judiciously, though without any detailed exploration of the

methods’  sensitivity  to  their  choice,  not  least  because  there  are  too  many

metaparameters to investigate their effects in a principled manner.

 4.2.1 Models

The models I used to generate the results in this chapter are, in an approximate

order of increasing complexity, a single-component delayed rectifier potassium

current (Kv2.1), its two-component analogue (Kv2.1x), a two-component A-type

potassium current (Kv1.4x), a combination of the latter two (Kboth), the original

Hodgkin-Huxley squid axon model (HH), a model of the B1 motor neuron in the

Lymnaea stagnalis buccal ganglia (B1), and finally a version of the two-compon-

ent delayed rectifier current where I fitted the kinetic parameters (Kv2.1k).

All models take the generic form shown in  Equation 4.1, where  is the mem-

brane capacitance,  is injected (clamp) current,  and  define a passive leak
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current, and the active conductances   are, of course, specific to the model

and described below.

(Equation 4.1)

A small number of hyperparameters for the MOSTIPS algorithm were chosen dif-

ferently between models, and are listed in Table 4.1.

unit All Kv HH B1
Sampling interval ms 0.1 0.25 0.25
Settling duration s 10 1 1
Clamp gain 2000 1000 1000
Access resistance MΩ 0.6 5 15
Current  limit  for  stimulus
generation

µA 10-20 10 1

Holding potential mV -80 -70 -60

Table 4.1: Model-specific hyperparameters for stimulus generation, robustness screening, and

model  optimisation.  Current  limits  for  the  potassium channel  models  were,  for  Kv2.1  and

Kv2.1k, 10 µA; for Kv2.1x, 20 µA; and for Kv1.4x, 15µA.

 4.2.1.1 Kv2.1

The details of the single-component Kv2.1 model are shown in section 3.3.1, and

parameter details specific to MOSTIPS are listed in Table 4.2.

unit value range sigma type
gK µS 60 [10, 200] 0.05 *
EK mV -80 [-100, -50] 1 +
gl µS 0.1 [0.0001,

10]
0.01 *

El mV -10 [-30, 10] 1 +
C nF 150 [50, 200] 0.01 *

Table 4.2: Base value, range, and MOSTIPS metaparameters for the Kv2.1 model.
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 4.2.1.2 Kv2.1x and Kv2.1k

The two-component model of Kv2.1 was used in two incarnations: Firstly, with

fixed kinetics (as Kv2.1x), where only passive parameters (C, gl, El, EK) and max-

imum conductances (gK_fast, gK_slow) are fitted; and secondly, where in addi-

tion,  all  kinetic  parameters  were  adjustable  with  MOSTIPS  (as  Kv2.1k).  The

model structure, i.e. the form of the equations, was identical between these two,

and is detailed in section 3.5.2. The kinetic parameters for Kv2.1x were the de-

fault values listed in Table 3.2, which also contains the MOSTIPS metaparamet-

ers for both models. As mentioned in the legend to that table, the parameter

range for the non-kinetic parameters differed between stimulus generation and

model optimisation, as the data included oocytes that lay beyond what I had con-

sidered the likely parameter range.

 4.2.1.3 Kv1.4x

The two-component model of Kv1.4 is described in detail in section 3.5.4, with

the MOSTIPS metaparameter listed in Table 4.3.

unit value range (sg) range (opt) sigma type
gA_slow µS 20 [5, 50] [1, 500] 0.05 *
gA_fast µS 80 [10, 200] [1, 500] 0.05 *
EK mV -80 [-100, -50] [-130, -30] 0.1 +
gl µS 0.1 [0.0001, 10] [0.01, 100] 0.01 *
El mV -10 [-30, 10] [-60, 40] 0.1 +
C nF 150 [50, 200] [50, 500] 0.1 *

Table 4.3: Base value, ranges, and MOSTIPS metaparameters for the Kv1.4x model.

 4.2.1.4 Kboth

Oocytes expressing both Kv1.4 and Kv2.1 were modelled with each of the com-

ponents of Kv1.4x and Kv2.1x and a common potassium equilibrium potential EK

for both channels.  For  details  of  the channel  models,  see sections  3.5.2 and

3.5.4. The details of the parameters under optimisation are shown in Table 4.4.
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unit value range (sg) range (opt) sigma type
gK_slow µS 60 [1, 200] [1, 500] 0.05 *
gK_fast µS 20 [1, 100] [1, 500] 0.05 *
gA_slow µS 20 [5, 50] [1, 500] 0.05 *
gA_fast µS 80 [10, 200] [1, 500] 0.05 *
EK mV -80 [-100, -50] [-130, -30] 0.1 +
gl µS 0.1 [0.0001, 10] [0.01, 100] 0.01 *
El mV -10 [-30, 10] [-60, 40] 0.1 +
C nF 150 [50, 200] [50, 500] 0.1 *

Table  4.4: Base value, ranges, and MOSTIPS metaparameters for the Kboth model combining

Kv1.4x and Kv2.1x.

 4.2.1.5 HH (Squid axon)

The squid axon model, besides being a simple, experimentally validated model of

a neuronal membrane compartment, was chosen for its place in the history of

conductance-based neuron modelling. It is an implementation of the squid giant

axon model described in  (Hodgkin & Huxley, 1952d). The model contains two

active conductances, representing sodium and potassium current.

The sodium current is modelled as , with the activation

variable  following

(Equation 4.24)

and the inactivation variable  following Equation 4.3:

4 Note that here and in subsequent equations,  and  are dimensionless values implicitly ex-

pressed in ms-1, and  in these equations is the dimensionless value of the membrane poten-

tial expressed in mV.
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(Equation 4.3)

The potassium current is modelled as , with the gating vari-

able  following

(Equation 4.4)

In this model, the kinetic parameters were held constant, leaving only the para-

meters in Table 4.5 to be fitted by MOSTIPS.

unit value range sigma type
gNa µS 120 [60, 240] 0.05 *
ENa mV 45 [25, 65] 0.1 +
gK µS 36 [18, 72] 0.05 *
EK mV -82 [-102, -62] 0.1 +
gl µS 0.3 [0.15, 0.6] 0.01 *
El mV -60 [-80, -40] 0.1 +
C nF 1 [0.5, 2] 0.1 *

Table 4.5: Base value, range, and MOSTIPS metaparameters for the HH model.

 4.2.1.6 B1 (Lymnaea stagnalis buccal motor neuron)

The B1 model was intended to be a live experimental target within this project,

had I progressed beyond oocytes. Although I did not quite get there, I did use a

version of this model with slightly adjusted kinetics for the preliminary closed-

loop work documented in section  5.2. The model described here mirrors that

proposed by (Vehovszky et al., 2005). Besides a leak conductance, it contains a
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sodium current , a delayed rectifier potassium current  with two compon-

ents, and an A-type potassium current , defined as shown in Equation 4.5:

(Equation 4.5)

All currents’ gating variables are formulated by their steady-state and time con-

stants, i.e., they follow the formulation

(Equation 4.6)

The sodium current’s activation kinetics are defined as

(Equation 4.7)

and its inactivation kinetics as

(Equation 4.8)

The two components of the delayed rectifier current activate with

(Equation 4.9)

and

(Equation 4.10)

Finally, the A-type current’s activation kinetics are

(Equation 4.11)
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and its inactivation kinetics,

(Equation 4.12)

As with the squid axon model, I have kept the kinetic parameters constant, fitting

only the passive parameters and maximum conductances as shown in Table 4.6.

unit value range sigma type
gNa µS 7 [0.1, 25] 0.03 *
ENa mV 35 [20, 50] 1.14 +
gKA µS 1.44 [0.01, 10] 0.008 *
gKB µS 2.88 [0.01, 10] 0.002 *
gA µS 12 [0.1, 40] 0.016 *
EK mV -67 [-82, -52] 0.1 +
gl µS 0.02 [0.0001, 1] 0.1 *
El mV -20 [-50, 10] 3.4 +
C nF 3.5 [1, 6] 0.029 *

Table 4.6: Base value, range, and MOSTIPS metaparameters for the B1 model.

 4.2.2 Simulations

All simulations were performed with Runge-Kutta-Fehlberg 4/5 integration with

a minimum step size equal to one twentieth of the observation sampling interval

noted in the respective model description, and a maximum step size extending to

the next time point at which a value needed to be reported. In order to arrive at a

steady state, models were settled by imposing the holding potential of the next

stimulus for 10 s (potassium channel models) or 1 s (HH and B1 models). During

observed periods, clamp current and any values derived from it (e.g. elementary

effects) were recorded at the temporal resolution noted in the model descrip-

tions. Simulations generating synthetic target traces (section 4.3) were executed

on the CPU, using functionally identical code to that produced for GPU simula-

tions. Target traces were produced only once and then cached for repeated use
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during fitting. All other simulations as required throughout the MOSTIPS stimulus

generation and model  fitting process were executed on the GPU, parallelised

across 8192 model instances.

For stimulus generation and robustness testing, the simulated voltage clamp was

parametrised in line with expected experimental circumstances. For the inverteb-

rate neuron models, the gain and access resistance were set to 1000-fold and

between 5 and 15 MΩ, respectively, in anticipation of sharp-electrode voltage

clamp. For the potassium channel models, which were constructed for oocyte

experiments, clamp and access resistance were 2000-fold and 0.6 MΩ, respect-

ively. When fitting against synthetic data, these parameters were left unchanged;

when fitting against real data, they were adjusted to the true experimental values

that had been used during data collection.

Since voltage clamp is experimentally a little trickier than mere current clamp re-

cordings, it is easily polluted by artefacts specific to the equipment used, to sa-

line and noise levels, and many other factors that are difficult to control.  The

largest impact of these artefacts appears immediately after a command voltage

step, as the equipment is pushed to its limits by the capacitive current. To avoid

fitting against such artefactual data, I categorically excluded all data within 5 ms

after a command voltage step at all points in the process.

Lastly,  all  simulations  were  run  using  single-precision  (32-bit)  floating  point

numbers for parameters, state variables and other internals of the simulation and

related code, with the notable exception of variables that accumulate values (e.g.

current residuals) over an entire stimulus, which were implemented as double

precision (64-bit) floating point numbers to reduce the cumulative effect of nu-

meric imprecisions and rounding.

 4.2.3 Stimulus generation

Voltage clamp stimuli were constrained to last 1 second, to start at a holding po-

tential of -80 mV (potassium channel models), -70 mV (HH) or -60 mV (B1), and
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to have between 1 and 10 steps or ramps with command potentials reaching

between -120 mV and +60 mV. At the outset of the stimulus generation al-

gorithms, 3200 stimuli were randomly generated within these constraints. Once

this initial set was exhausted, existing stimuli were chosen uniformly from within

the archive and mutated as described in Table 2.1.

The parameter sets used during stimulus generation were initialised once, at the

start of the search, such that all stimuli were scored against the same parameter

sets. In most cases, I used 32 starting points in parameter space, including the

model’s initial parameter set, and other starting points drawn uniformly within

the ranges shown in each model’s parameter table. Each starting point was de-

tuned by adding the appropriate  to each successive parameter to yield a spiral

trajectory of length 8. Since a single epoch contained 8192 parallel model simu-

lations, this allowed for 32 stimuli to be evaluated per epoch.

An exception to this was the 28-parameter Kv2.1 model with adjustable kinetics

(Kv2.1k), for which only the initial parameter set was used as a starting point for

a single spiral detuning trajectory of length 32. This was done to avoid over-reli-

ance on the particular randomly chosen starting points, while keeping the com-

putational demands relatively low by dodging the issue of combinatorial explo-

sion. Thus, with only a single trajectory, the Kv2.1k model allowed for 256 stim-

uli to be evaluated per epoch.

The MAP-Elites archive used the duration and mean current of the scored obser-

vation as outcome dimensions (see Table 2.2) with 32 bins each, increasing to 64

after  1000 epochs.  Following the observation that  the observed current was

generally concentrated near the lower end of the total possible current in each

model, I applied a current limit, with observations yielding a higher mean current

binned to the highest available bin. This limit was model-specific and is listed in

Table 4.1. In addition to duration and mean current, I used the index of the para-

meter for which fitness is evaluated and, for cluster-based MAP-Elites searches,

the number of valid clusters found. These latter two dimensions are limited by
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the model  and implementation details,  respectively,  and were therefore unaf-

fected by the resolution increase in epoch 1000.

To estimate the average elementary effect size , which is used to normalise the

effect of detuning (see section 2.2.2.1), 100 epochs of purely randomly gener-

ated stimuli were simulated and the elementary effects across all stimuli and all

time points averaged for each parameter.

In  order  to  keep  processing  time  within  manageable  limits,  the  cluster  and

bubble algorithms did not operate on individual current samples, but instead on

the sample average in 500 µs windows. In addition to a performance boost, this

may also have had the effect of reducing the influence of floating point inac-

curacies by averaging them out.

While the bubble algorithm was left free to explore even the shortest possible

“bubbles” of 500 µs, the cluster algorithm was restricted to disregard observa-

tions of less than 5 ms duration for greater robustness. In addition, implementa-

tion details  limited the number of bubbles per evaluated stimulus to a single

highest-fitness bubble for each parameter, and the number of clusters to the

longest 32 (total, regardless of model size). The cluster similarity threshold was

set to 0.98.

The MAP-Elites algorithm was run for 10,000 epochs in search of bubbles, and

for 100,000 epochs when searching for clusters.  The number of epochs was

chosen somewhat arbitrarily, based on anecdotal observations of the search pro-

cess stalling with a largely saturated archive. Several factors play into saturation,

the most obvious being the archive size, which was 32-times larger for clusters

due to the  additional  outcome dimension (number of  clusters,  see above).  A

second factor is that a given stimulus, returning up to 32 clusters, can potentially

occupy many more niches in a cluster archive than a bubble archive, which trans-

lates into a smaller number of unique stimuli relative to the size of the archive.

Finally,  because they are restricted to contiguous intervals,  bubbles for many
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parameters are less likely to extend over large durations, leaving parts of the

archive effectively unreachable. Although I have not investigated this in detail (fit-

ness considerations suggest that a superficial  investigation via the number of

unique stimuli would be insufficient), I suspect that, given the epoch numbers

above, the cluster archives were left comparatively underexplored, yet may have

yielded more valuable stimuli due to the greater freedom that the search was

given.

 4.2.4 Stimulus screening and selection

The theoretical maximum number of stimuli per parameter under the conditions

outlined  above  is  4096 (642)  for  bubble  searches,  and  131072 (642*32)  for

cluster searches. With some areas of stimulus space effectively unreachable, the

actual number of candidates was somewhat smaller, on the order of 2,500 and

90,000 total  stimulus/observation pairs  per  parameter  for  bubble and cluster

searches, respectively. A notable exception to this was the Kv1.4x model, which,

due to its swiftly inactivating current, was unable to produce long, high-current

stimuli, which limited the archive to around 1,000 and 20,000 stimuli per para-

meter for bubble and cluster searches, respectively.

The general process of selecting a promising subset of stimuli from an archive is

described  in  section  2.2.5,  and  illustrated  with  two  examples  in  Figure  4.1.

Briefly,  the  archive  was  split  into  parameter-specific  slices,  and  for  cluster

searches, the third outcome dimension (number of clusters) was squeezed out,

leaving duration and mean current of the observation as the two outcome axes.

To achieve a reasonable signal-to-noise ratio, observed current was limited to >1

µA (>100 nA for B1 models) and observed duration to >30 ms. If the remaining

solutions  numbered  less  than  1000,  they  were  all  selected  for  robustness

screening; otherwise, a tolerant Pareto optimality criterion was applied, with the

tolerance factor  at 5% of maximum observed fitness. For the Kv2.1 model, no

further selection was applied, while for the HH and B1 models, I selected for
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high duration and high current with  along both axes at 8 bins (i.e., 125 ms and

12.5% of the current range). The selection strategies for the oocyte models were

slightly different, see section 4.2.5 below.

Figure 4.1: Example MAP-Elites archive selection, from archives generated for the Kboth model.

Colour indicates candidate fitness, with blue for no candidate. Top: Bubble search, candidates

for capacitance (C). Bottom: Cluster search, candidates for the Kv1.4x slow component con-

ductance (gA_slow). Left,  full  archive for the given parameter; right:  candidates selected by

lower boundaries and a tolerant Pareto front as described in the text.

The selected stimulus/observation pairs were then run through the robustness

screening  algorithm  using  unpaired  parameter  space  sampling  (see  section

2.2.4.3),  yielding  distance-to-error  correlations  ,   and

 and corresponding scores   for each candidate. Finally, picking the

stimulus/observation pair with the highest  in each parameter, I arrived at one

stimulus set for each search modality (cluster and bubble) and weighting scheme

(weighted, target-only, and unweighted). All stimulus sets used in this chapter

are presented without further comment in Appendix 1.
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 4.2.5 Oocyte stimuli and recordings

The experimental protocols for oocyte preparation and recording are detailed in

chapter 3. The data presented in this chapter are derived from a total of 23 cells

with joint expression of Kv2.1 and Kv1.4, 8 cells expressing Kv1.4, and 12 cells

expressing Kv2.1. As noted in chapter 3, each cell was first probed with the clas-

sical  stimulus  protocols  for  validation purposes.  Then,  MOSTIPS stimuli  were

used according to the expression profile of the oocyte (i.e., according to what

cRNA was injected, as long as any potassium current was seen at all; no attempt

was made to check for successful joint expression). Each set of stimuli generated

a single data file that was either saved for fitting or, in case the recording deteri-

orated beyond the point of usefulness during stimulation, discarded along with

the affected oocyte, such that no incomplete stimulus sets were used for fitting.

Due to time constraints, I had not quite finalised the stimulus selection process

yet when I started recording the data presented in section  4.4. Therefore, the

stimuli  used for  oocyte recordings differ  in  two minor details:  Firstly,  stimuli

were selected for robustness screening following the principles outlined above,

but with some discretion applied with regards to the Pareto front and its toler-

ance limits.  No Pareto front was used where few stimuli  were found; where

Pareto front selection was used, the tolerance values lay between 5-10% fitness,

with further selection for high current and high observation duration where many

(>1000) candidates remained. Secondly, after robustness screening, the values

of  were not consistently normalised, with  fixed at 0 or -1 manually, and in

a few cases mistakenly in contravention to the principle set out section  2.2.5.

However, these discrepancies should not have a significant impact on the out-

comes,  and  are  indeed  only  partly  reflected  in  the  selected  stimuli.  For  the

Kv2.1x and Kboth models, several sets of stimuli were selected based on shifting

criteria; for analysis, these details are ignored.

Finally, since the oocytes expressing Kv2.1 were probed for two models, Kv2.1x

and Kv2.1k, and since a single stimulus set for the latter includes 28 stimuli (one
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per parameter) with the membrane potential held at -80 mV for 10 s between

each, only two stimulus sets were used for each of these models, selected from

cluster and bubble archives using a   criterion. Unweighted and target-

only fits to Kv2.1-expressing oocytes in section  4.4 were completed using re-

cordings from these weighted stimulus sets.

 4.2.6 Model optimisation

Model optimisation attempts using both a genetic algorithm (GA, section 2.3.2.1)

and differential evolution (DE, section 2.3.2.2) were performed over 500 epochs

in bundles of 8 separate, parallel populations of 1024 total candidate parameter

sets each. Given a settling period of 10 s before each stimulus and a stimulus

duration of 1 s, this would take some 90 minutes if simulated at real time; in

reality, since data collection and model optimisation were decoupled, simulations

generally completed much faster, taking only 10-15 minutes in most instances.

In GA fits, 32 candidates were retained across epochs as elites, and a further 32

were reinitialised from scratch, while the remaining 960 candidates were gener-

ated by mutation with a 30% crossover probability (xGA) or without crossover

(mGA). The parameter-specific mutation step sizes are listed as “sigma” in the

model description tables; these were multiplied by 5 and decayed with a half-life

of 100 epochs. In DE fits, the decay period  used for self-adapting method and

crossover probabilities was set to 10 epochs, allowing the algorithm to quickly

respond to changing circumstances as the population converges on a solution.

In  general,  the  mutation  scheme  (unweighted,  weighted,  target-only)  was

chosen  to  reflect  the  stimulus  selection  method,  except  for  the  Kv2.1x  and

Kv2.1k models where, as noted above, only data from weighted stimulus sets

were available, which were used with all three mutation schemes to complete

the picture. While I appreciate that lumping an aspect of stimulus selection and

the mutation scheme together in this manner may make it slightly more difficult

to interpret the results, I would argue that the two concepts are linked closely
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enough  to  justify  this.  Moreover,  since  the  different  weighting  schemes  are

closely related, there was considerable overlap between stimulus sets, such that

any  differences  in  performance  are  more  likely  to  arise  from  the  mutation

scheme than from the stimulus selection criteria.

 4.3 Fitting against synthetic data

Before taking the proposed method into a lab setting, it is sensible to run a proof

of concept under controlled conditions. To do this, I have used synthetic data –

i.e., data generated by model simulations – as easily collected and manipulated

target data for an early proof of concept. Since almost all parts of the MOSTIPS

method have changed since that initial groundwork, however, I present here data

gathered at a later stage of my project, using the algorithms in the form de-

scribed in this thesis. For this demonstration, I have chosen two neuron models

(HH and B1) as well as the single-component Kv2.1 model. 

In this section, we will look at the method’s performance in fitting against these

three models in an environment of increasing difficulty, arising from the manner

of generating the reference data. The easiest target would seem to be one that

can be matched exactly. I present results from fitting against simulations of the

original models, both with the original parameter values that were used during

stimulus  generation,  and  with  randomised  parameter  sets.  Since  the  original

parameter set is always considered during stimulus generation, while randomly

parametrised models may lie in areas of parameter space that were not explored,

I would expect the selected stimuli to be less well adapted to fitting against ran-

domised models, making those more difficult to match precisely. Then, to make

the fitting both more difficult  and more realistic,  we will  look at how adding

white noise to the synthetic data changes the fitting performance.

The MOSTIPS algorithm as described in chapter 2 and sections  4.2.3 to  4.2.6

leaves a number of choices open. There are two stimulus generation algorithms

(cluster  and  bubble),  three  robustness  correlation  and  mutation  weighting



90

schemes (unweighted, weighted, target-only) and three optimisation algorithms

(DE, xGA and mGA). In addition, each model has different parameters with dis-

tinct scales, and the models themselves have characteristic scales e.g. of voltage

clamp current. In the following I will first give examples of how fitting unfolds

over time in specific examples, and then summarize performance with respect to

the different algorithm choices.

 4.3.1 Convergence within populations

 4.3.1.1 Introduction

First, we will look at how well the fitting algorithms converge on a particular

solution. To make this a little more tangible, I present Figure 4.2 as an example.

It shows the median and interquartile range of the parameter standard deviation

in each individual model population of fits against a noise-free, originally para-

metrised B1 model. Each colour represents one fitting method and summarises

fits across all weighting schemes and stimulus generation methods, each produ-

cing eight independent model populations. We can see that the general trend is a

roughly exponential decrease in the within-population variance. The time scales

differ somewhat between the fitting methods, with DE populations clearly con-

tracting more slowly, but reaching a more tightly constrained region of para-

meter space than the GA variants in most cases. There are also clear differences

between parameters, with some proving apparently more difficult to constrain

than others.

Before we take a closer look at more data, there are a few things worth noting

here. Firstly, what we are looking at in this section – convergence within popula-

tions – means neither convergence across populations, nor convergence with the

reference parameter set, which are tackled in the next section. It also does not

necessarily imply that the populations are stationary; it is possible in principle for

a population to move around parameter space while remaining internally conver-

gent. This possibility will not be further explored, but is worth keeping in mind. I
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also do not discuss the question of the time to converge, partly because the fit-

ting algorithms are not my central concern, and partly because there is no obvi-

ous and unbiased way to control for the initial range of each parameter.

Figure 4.2: Example convergence for the B1 model, split by parameter (subplots) and fitting al-

gorithm (colours). The reference model was parametrised with its original parameter values, and

no noise was added to its simulation. Plotted are the median (strong lines) and interquartile

range (shaded) of the standard deviations of the parameter values in question within the al -

gorithm’s model populations as a function of fitting epoch.

Secondly, for clarity and to avoid tedious repetition, I will compress data for fur-

ther analysis in two ways. In the first instance, since I am much more interested

in the final outcomes than in the fitting algorithms per se, I ignore the progress

of fitting, limiting the data shown instead to only the final 10% of the fitting runs

(epochs 450 to 500). Convergence in these epochs is averaged to even out ef-

fects related to parameter-specific mutation operators. In the second instance, I

will  present results in terms of parameter space distance, rather than broken
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down by parameter. The latter is not a trivial step and deserves a detailed explan-

ation, as follows.

 4.3.1.2 Parameter space distance

The problem, in moving from parameter-specific data to a single representative

value, is that each model parameter has a characteristic scale, and a distinct way

of affecting its model. As noted previously, some parameters have a multiplicat-

ive effect: Doubling e.g. a maximum conductance will approximately double the

clamp current under some circumstances. Other parameters are more additive,

such as equilibrium potentials, where each additive change will have roughly the

same effect regardless of the parameter’s magnitude. In addition, not all para-

meters are equally influential on the model as a whole – the leak equilibrium po-

tential, for example, is relatively insignificant (and therefore also difficult to es-

timate with any certainty), unless the leak conductance is unusually high. As a

consequence, it is not obvious what it means for one parameter set to be close

to another. To normalise parameter magnitudes, one could express deviations

between models in terms of relative magnitude, but would risk e.g. overestimat-

ing the impact of additive parameters that happen to be close to zero. To com-

bine parameter differences into a single value, one could use Euclidean distance

in parameter space, but would risk overestimating the impact of relatively incon-

sequential parameters.

My  solution  is  to  use  a  measure  of  parameter  influence  that  I  already  have,

namely, the  introduced in section 2.2.2.1, which describes the average current

shift caused by changing a given parameter by its detuning step size  . Under

the assumption that this is linear and independent of other parameters, we can

use this measure to assign to any parameter deviation its expected current shift.

Of course, neither of those assumptions hold up particularly well, but for an im-

pact-weighted distance metric, I consider it to be more valid than any of the al-

ternatives  considered.  Formally,  I  calculate  the  parameter  space distance  de-
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scribed by a parameter vector  as . Although  could technic-

ally be considered a measure of current, I consider it safer to use it as a dimen-

sionless  quantity,  given  the  noted  violation  of  assumptions.  This  choice  also

makes sense in light of the very different PD scales seen in the three models

used here, which can only partly be attributed to the characteristic scale of the

model currents.

 4.3.1.3 Results

Using this approach, we will take a closer look at convergence across the three

proof-of-concept models.  Figure 4.3 shows convergence in the perfect match

condition,  where the target traces are generated by models with the original

parameter sets and not polluted with noise. The data invite a discussion of a few

points of interest.

Firstly, there is a very clear trend for the GA populations (left and central groups)

to remain more varied than the DE populations. This reflects a fundamental dif-

ference between the two types of algorithm: In a GA, both with and without

crossover, parameters are perturbed by the mutation size , which is independ-

ent of the population. Thus, even if a population were to converge on a single

point in parameter space, the mutation operator would scatter it for the next

epoch, thereby forming a lower bound on expected population variance. Only in

target-only weighting, where only one parameter is perturbed in each epoch, can

a GA population contract to a smaller region of parameter space, as is clearly the

case in almost all cases shown (green markers). In contrast, the perturbation in

the DE algorithm is directly derived from the population itself,  meaning that,

given a scaling factor , a population will tend to contract indefinitely even

in the absence of a cost function.
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Figure 4.3: Convergence within populations of fits to noise-free reference traces generated by

originally parametrised models. Each box and whiskers summarises the standard deviations of

parameters in n=8 populations, averaged over the final 50 epochs of fitting, measured in terms

of parameter space distance (see section 4.3.1.2). The box represents upper and lower quart-

iles, and whiskers delimit the full data range, excluding individually plotted outliers. Outliers are

defined as  data  points  more  than 1.5 times the interquartile  range beyond their  respective

quartile boundary. The filled symbols are placed at the median of each group. Fits are split into

groups by fitting algorithm (separated spatially), by weighting scheme (colour) and by stimulus

generation method (symbols).  Note the different  vertical  scales,  reflecting the characteristic

scales of the models in question.

Secondly,  among the  DE fits,  there is  a  very  clear  trend for  the  unweighted

scheme to converge much less than the weighted and target-only schemes. This

is not entirely surprising, since unweighted fitting ignores the information we

have about parameter-specific influences. Mutating the candidates without ac-

counting for parameter sensitivity essentially scatters the population along axes

in parameter space that the subsequently applied cost function is ill equipped to

constrain. Thus, in unweighted fitting, the pressure of the cost function is effect-

ively reduced. I would argue that this is more apparent in DE fits because, unlike

a GA, DE does not discard inadequate candidate solutions outright, unless their

own offspring is better; thus, in absence of consistent selection pressure, popu-

lation-level variance particularly in relatively uninfluential parameters will tend to

remain high.
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Finally, despite fits within a group being entirely independent, the convergence is

remarkably  similar  across  fits  in  most  conditions.  Between-group  differences

largely outweigh any fluctuations due to the random nature of the fitting proced-

ure.  Likewise,  the  relative  magnitude  of  convergence  is  largely  unchanged

between the three models, with only few differences. Due to numeric instabilities

inherent in the HH model, the results there are less clear, but the general trends

seen in the other two models are discernible there, too.

Figure 4.4: Convergence within populations of fits to noise-free reference traces generated by

randomly parametrised models, processed and displayed as described in Figure 4.3. Each group

summarises  fits  against  20 independently  drawn random parametrisations,  plus  the  original

parametrisation, with 8 populations per parameter set, for a total of n=168 fits per group.

Next, I  investigated fitting performance when the reference model uses para-

metrisations  not  encountered  during  stimulus  generation.  In  each  condition

(model x fitting algorithm x weighting scheme x stimulus generation method), I

independently drew 20 random parametrisations uniformly from the parameter

range of the respective model. These randomised models were used to generate

reference traces with the same stimulus sets as above, which were then fed to

the fitting algorithms. Since each fitting run was parallelised over 8 populations

(see section 4.2.6), each of the randomised models was thus fit 8 times. The res-

ults of these fits, together with the original parametrisations, are shown in Figure

4.4.
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The general trends described above are largely conserved. Most DE fits converge

more strongly than the GA fits; within GA fits, target-only convergence is greater

than that of the weighted and unweighted schemes; the relative magnitudes of

convergence are approximately the same across all three models; and the un-

weighted DE fits converge less reliably than their weighted counterparts.

The only major differences are in the DE/bubble fits, with the unweighted con-

vergence edging much closer to its cluster counterpart on average, due to better

convergence  in  the  bubble  fits  and  worse  convergence  in  the  cluster  fits  in

roughly equal measure. Again, the HH model’s results are less clear, with large

numbers of outliers due mostly to parameter combinations that appear to be

detrimental to the model’s numeric performance.

More generally, the fact that convergence remains comparable between the ori-

ginal parametrisation and other, randomly chosen parameter sets as reference in-

dicates that the stimuli are applicable across the full parameter range, fulfilling

one of the chief goals of the stimulus generation process.

Finally, I repeated the random drawing of parameter sets, but added Gaussian

white noise with a standard deviation of 50 nA (Kv2.1, HH) or 5 nA (B1) to the

reference current traces. As before, each stimulus only produced a single refer-

ence trace that was cached and reused throughout each fit, and across all eight

otherwise independent parallel populations in a given run, mirroring the situation

with recorded oocyte data (section 4.4).

The results of these fits are shown in Figure 4.5 and very closely resemble those

in the noise-free condition, both in terms of the relative distribution of conver-

gence values, and in terms of their absolute values. I conclude that the impact of

noise on convergence is very limited.
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Figure 4.5: Convergence within populations of fits to noisy reference traces generated by ran-

domly parametrised models, processed and displayed as described in  Figure 4.3. Again, each

group summarises fits against 20 independently drawn random parametrisations, plus the ori-

ginal parametrisation, with 8 populations per parameter set, for a total of n=168 fits per group.

 4.3.2 Distance to reference parameters

 4.3.2.1 Introduction

A crucial measure of the success of the MOSTIPS method is, of course, its ability

to find the true parameter values. In fitting against synthetic data, we have this

information readily available and can thus straightforwardly evaluate the accuracy

of the various versions of the algorithm. (Reasons for not calling this measure

“accuracy” will become apparent with the oocyte results, section 4.4.) Again, to

make this analysis more tangible, Figure 4.6 shows an example of the progress

of fitting over time. Here, because we are interested in how well the reference

model is approximated by fitting, I show the candidate parameter set with the

lowest cost in each epoch and population.
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Figure 4.6: Example distance to reference for the B1 model, split by parameter (subplots) and

fitting algorithm (colours). The reference model was parametrised with its original parameter

values, and no noise was added to its simulation. Plotted are the median (strong lines) and in-

terquartile range (shaded) of the absolute difference between the reference parameter values

and every population’s best-fit model in each epoch.

As with convergence, the detailed analysis below is presented in terms of overall

parameter space distances as defined in section 4.3.1.2 above. I also again ignore

the temporal aspect of fitting, being more interested in the final result. To find

the final best-fit parameter set from a population independently of the last fit-

ness function applied,  I  evaluate the algorithm’s entire  population in the final

epoch against all stimuli used during fitting, collecting the error not just in the re-

spective observation windows, but throughout the stimuli, excluding capacitive

current artefacts. Then, I select the parameter set with the lowest total error as

the  algorithm’s  final  output,  and  plot  the  parameter  space  distance  between

these final models and their respective reference models.
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 4.3.2.2 Results

Again, we start with the ostensibly easiest case, the noise-free fits against the

originally parametrised models. The results are shown in the top row of  Figure

4.7, organised in the same manner as above, but using violin plots for distinctive-

ness. Perhaps the most immediately striking feature of the results is how much

less orderly and systematic they are than the convergence shown above. Per-

formance appears to depend not just on the combination of methods, but also

on the model used, such that no general trends can be seen that hold across

models. Within models, there are clear trends, particularly in the Kv2.1 model

with the separation between relatively ill-fitting bubble stimuli and the comparat-

ively much better fitting cluster stimuli, and in the HH model with the cluster/tar-

get-only fits approximating the reference model notably less closely than other

methods.

With increasing difficulty, however, these trends progressively wash out. Fitting

against randomised parameter sets (Figure 4.7, middle row), the disadvantage of

the HH cluster/target-only fits disappears, and further adding noise (Figure 4.7,

bottom row) largely removes any discrepancies between the Kv2.1 bubble and

cluster stimuli. In both cases, direction of change is towards the methods per-

forming worse in the easiest environment, which suggests that there may be a

trade-off between performance in specific cases (initial parameters; noise-free

data) on the one hand, and performance in the general case (novel parameters;

noisy data) on the other hand, with stimuli or methods performing below average

in specific cases being more robust to added difficulty.
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Figure 4.7: Distance to reference for fits against synthetic data. Top row: Fits to noise-free ref-

erence traces generated by originally parametrised models (n=8 fits per group). Middle row: Fits

to noise-free reference traces generated by randomly parametrised models  (n=168 fits per

group). Bottom row: Fits to noisy reference traces generated by randomly parametrised models

(n=168 fits per group). Each “violin” summarises the parameter space distance (as defined in

section 4.3.1.2) to the respective reference model of the final solutions of all populations in a

group. The shape (width) of the violins represent a histogram, or the density of solutions at a

given value. The large filled symbols are placed at the median of each group, while the small

filled symbols represent the respective median convergence, for comparison. Note that the PD

scale is model-specific and can not be compared between models.
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In order to make a little more sense of the scale of parameter (mis-)match, I re-

port the median distance to reference in each of the three conditions, broken

down by parameter,  in  Tables  4.7-4.9.  Keeping  the  caveats  noted  in  section

4.3.1.2 in mind – neither absolute nor relative terms are particularly clear indicat-

ors of the goodness of fit, because the reference parameter values differ in the

manner and magnitude of their influence – we can see that the distance to refer-

ence differs greatly between parameters.

Perhaps surprisingly, particularly the passive leak conductance (gl, El) and capa-

citance (C) are not well constrained. A likely cause for this is that these paramet-

ers are relatively uninfluential compared to those governing active conductances,

which makes it difficult for the fitting algorithm to reliably separate good estim-

ates from bad in models that show any mismatch in other parameters. However,

since these parameters are relatively simple to estimate with other methods (as

demonstrated in chapter 3), they are also the least important to “get right” – in

an experimental situation, it would be sufficient to briefly fit these by classical

methods in advance, then let the MOSTIPS fitting algorithm either use such es-

timates as fixed values, or perhaps adjust them within a narrow range.

Of  the  remaining  parameters,  those  governing  potassium  conductances  are

largely very well constrained, whereas the sodium conductances are evidently

more difficult. This is not a great surprise, given that the sodium conductances

inactivate much faster, giving the fitting algorithm much less data to work with

than for the more slowly (or not at all) inactivating potassium conductances.



Kv2.1 gK (µS) EK (mV) gl (µS) El (mV) C (nF)

Noise-free, initial
parameters (n=144)

1.35E+00 1.66E+00 5.52E-01 1.36E+01 5.00E+01
2.25% 2.07% 551.61% 136.36% 33.34%
0.4 1.7 1.5 3.9 6.2

Noise-free, random
parameters (n=3024)

1.35E+00 1.35E+00 9.38E-01 6.98E+00 3.19E+01
1.68% 1.77% 23.73% 97.50% 27.40%
0.3 1.1 2.3 3.5 5.6

Noisy, random
parameters (n=3024)

3.73E+00 3.34E+00 1.55E+00 1.39E+01 4.77E+01
4.05% 4.30% 32.28% 141.09% 42.15%
0.7 2.5 3.7 6.6 6.3

Table 4.7: Kv2.1 distance to reference by parameter in terms of absolute values (top rows), percentage of the reference value (middle rows) and z-

score (bottom rows). Reported are the median values across fits in all method combinations. Relative values are calculated using the respective refer -

ence parameter values of each fit and are therefore not consistent across conditions. Z-scores are calculated per fit as the fraction of the distance to

reference and the standard deviation of the respective candidate population in the final 50 epochs.
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HH gNa (µS) ENa (mV) gK (µS) EK (mV) gl (µS) El (mV) C (nF)

Noise-free, initial
parameters (n=144)

1.32E+01 9.96E+00 9.07E-02 2.24E-01 5.64E-03 8.09E-01 1.25E-01
10.99% 22.14% 0.25% 0.27% 1.88% 1.35% 12.53%
1.4 3.4 0.1 0.3 0.5 0.5 1.2

Noise-free, random
parameters (n=3024)

1.75E+01 1.02E+01 2.18E-01 5.12E-01 1.05E-02 1.17E+00 5.96E-02
12.36% 22.68% 0.53% 0.63% 3.10% 2.02% 5.04%
1.9 3.4 0.3 0.7 0.7 0.8 0.5

Noisy, random
parameters (n=3024)

2.58E+01 1.23E+01 7.40E-01 1.91E+00 4.73E-02 4.43E+00 2.64E-01
18.31% 27.46% 1.88% 2.37% 13.96% 7.84% 21.63%
1.9 3.1 0.7 1.7 1.6 1.6 1.6

Table 4.8: HH distance to reference by parameter in terms of absolute values (top rows), percentage of the reference value (middle rows) and z-score

(bottom rows). Reported are the median values across fits in all method combinations. Relative values are calculated using the respective reference

parameter values of each fit and are therefore not consistent across conditions. Z-scores are calculated per fit as the fraction of the distance to refer -

ence and the standard deviation of the respective candidate population in the final 50 epochs.
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B1 gNa (µS) ENa (mV) gKA (µS) gKB (µS) gA (µS) EK (mV) gl (µS) El (mV) C (nF)

Noise-free, initial
parameters (n=144)

7.11E-02 4.45E-01 7.22E-04 9.67E-04 5.45E-03 2.00E-02 2.24E-04 6.97E-01 4.50E-03
1.02% 1.27% 0.05% 0.03% 0.05% 0.03% 1.12% 3.48% 0.13%
0.08 0.39 0.00 0.01 0.01 0.04 0.01 0.37 0.06

Noise-free, random
parameters (n=3024)

1.90E-01 1.06E+00 3.51E-03 3.70E-03 1.70E-02 2.64E-02 9.91E-04 2.04E-01 9.71E-03
2.30% 3.10% 0.09% 0.08% 0.10% 0.04% 0.30% 1.28% 0.30%
0.24 0.73 0.02 0.03 0.02 0.05 0.06 0.15 0.11

Noisy, random
parameters (n=3024)

1.86E+00 7.50E+00 1.76E-01 1.98E-01 5.96E-01 5.72E-01 2.03E-02 2.52E+00 4.19E-01
18.20% 22.86% 3.66% 4.38% 4.00% 0.83% 5.45% 17.27% 11.29%
2.23 5.08 0.62 0.57 0.53 0.60 0.77 1.36 2.24

Table 4.9: B1 distance to reference by parameter in terms of absolute values (top rows), percentage of the reference value (middle rows) and z-score

(bottom rows). Reported are the median values across fits in all method combinations. Relative values are calculated using the respective reference

parameter values of each fit and are therefore not consistent across conditions. Z-scores are calculated per fit as the fraction of the distance to refer -

ence and the standard deviation of the respective candidate population in the final 50 epochs.
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 4.3.3 Conclusions

In conclusion, these results are a promising start to this challenging problem.

While not all parameters are well constrained to the known reference value, the

discrepancies are generally small to medium in size, suggesting that the method

is capable of achieving reasonable fits.

Although there are clear differences between the various combinations of meth-

ods  in  terms of  convergence within  candidate  populations,  these  differences

largely  disappear when considering the  accuracy  of  the  parameter  estimates.

One could express fitting performance in terms of posterior probabilities (i.e.,

how likely does the algorithm “think” the true solution is, considering the location

and spread of the candidate population in parameter space), thus making use of

both  convergence  and  distance  to  target  and  ostensibly  gaining  information

about  the  algorithm’s  precision.  However,  most  major  differences  between

method combinations in convergence are essentially artefacts of the way the fit-

ting algorithms work. Therefore, the level of convergence cannot be reliably in-

terpreted as indicative of the algorithm’s precision, particularly not when com-

paring  between  methods.  Since  all  method  combinations  seem  to  perform

roughly on par with each other, going forward into real electrophysiological data,

we will not discard any of them, instead repeating the same pattern of analysis,

with added checks to thoroughly test the MOSTIPS method.

 4.4 Fitting against oocytes expressing ion channels

At last, we come to the proof of concept with real electrophysiological data. In

the following, I will present a similar analysis to that above, with some obvious

differences. Here, there is no question of artificially adding noise to the data,

since that’s already included at a magnitude on the order of 10-100 nA at holding

potential. Likewise, there is natural variation in the reference parameter values,

since channel expression can only be partially controlled by adjusting the amount
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of cRNA injected, and I did not attempt to explicitly vary expression levels. Fi-

nally, the reference parameter values themselves are merely estimates, derived

from the classical protocol data as described in chapter 3.

In addition to analysing convergence and similarity to reference as above, we will

look at the data and fits in two additional ways. The first is a cross-validation

analysis explained in more detail in the relevant section (4.4.4) below, while the

second takes the form of a randomised control, as follows.

 4.4.1 Random observation controls

A question I have so far left entirely unexamined is whether the stimulus genera-

tion approach that I have taken actually does anything useful. After all, despite

having thought deeply about how to find good stimuli and observations, and in-

deed about what “good” means in this context, I have yet to show that my stimu-

lus generation methods are functional. One might argue that successful fitting is

a sufficiently positive answer; however, it is conceivable that any fitting success

is in fact exclusively attributable to the fitting algorithm, rather than the stimuli

or observations. To control for this, I have chosen to reuse the stimuli and their

recordings, but with a twist: Rather than use the algorithmically chosen observa-

tion windows, the observation windows were scattered across their stimulus set,

as follows.

Remember that each stimulus/observation is associated with a target parameter.

The association between parameter and stimulus was randomly reshuffled within

a given stimulus set, while the observation windows were retained with their ori-

ginal parameter, but placed into the new stimulus at random time points. In other

words, each parameter retained the duration of its observation(s), but the obser-

vations were placed at random times in a randomly selected stimulus. These new

stimulus/observation pairings were then used in two ways. Firstly, to control for

the effect of selecting appropriate observation windows, I performed target-only

fitting. Secondly, to control for the effect of stimulus design, I evaluated the new
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stimulus/observation pairings under the cluster algorithm, and used the resulting

sensitivity vector for weighted fitting. This is an effective control, because, while

the weighting reflects the parameter sensitivities in the observed data, the stim-

uli are not optimised to emphasise any particular parameter. Finally, unweighted

fitting was not attempted with randomised observations, as it is unclear how

such fits could be interpreted, and the fitting algorithms used were limited to

xGA and DE. I note that each set of 8 fits (i.e., a single fitting run using a single

fitting algorithm, stimuli, weighting scheme, and set of recorded current traces)

used an independently randomised stimulus/observation pairing.

 4.4.2 Convergence within populations

As for synthetic data, we will first consider the convergence within populations

of the various fitting algorithms.  Figure 4.8 shows the time course of conver-

gence for the Kv1.4x model, which is largely representative of the progress also

in  Kv2.1x  and  Kboth.  For  most  parameters,  convergence  is  largely  complete

within 200 epochs. Again, the DE populations converge more slowly, but much

more thoroughly, while substantial variance remains in the GA populations. The

Kv2.1k model  with its  28 parameters  (Figure 4.9)  shows a similar  trajectory,

though convergence is both slower and less pronounced, particularly in DE fits

and for the parameters to the kinetic equations.
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Figure 4.8: Example convergence for the Kv1.4x model, split by parameter (subplots) and fitting

algorithm (colours). Plotted are the median (strong lines) and interquartile range (shaded) of the

standard deviations of the parameter values in question within the algorithm’s model popula-

tions as a function of fitting epoch. For a description of this model and its parameters, refer to

sections 4.2.1.3 and 3.5.4.

Moving to parameter-space distance and separating convergence by the combin-

ation of methods in each fit (Figure 4.10), we again find pronounced differences

along similar lines as shown for synthetic data. Firstly, weighted and target-only

DE fits converge more strongly than most of the GA fits. In contrast, unweighted

DE  populations  remain  spread  out,  both  relative  to  the  other  DE  weighting

schemes, and – except in Kv1.4x – also relative to the GA populations. In the

Kv2.1k fits using unweighted DE, I observe that populations appear to be driven

into the corners of parameter space (i.e.,  the distribution of values along any

given parameter axis is bimodal, with peaks at either end of the permitted scale

and only a small number of models in between). This effect is very consistent,

but I have not been able to find its root cause, and have not pursued the issue

further because I consider the unweighted scheme a null control; if it fails, as it

does in this particular case, this serves to show that scaling mutations by para-

meter influence does indeed have a positive effect.
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Figure 4.9: Convergence in the Kv2.1k model, including cluster and bubble stimuli fitted with

weighted and target-only  mutation schemes.  Unweighted fits  did  not  converge  and are  ex-

cluded. Note the relatively fast convergence for the passive parameters (potassium and leak

conductances and equilibrium potentials in the first five subplots, and capacitance in the bottom

right corner), in contrast to the kinetic parameters, particularly in the DE algorithm. For a de-

scription of this model and its parameters, refer to sections 4.2.1.2, 3.5.2, and Table 3.2.
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Figure 4.10: Convergence within populations of fits against oocyte data. Each box and whiskers

summarises the standard deviations of parameters in a given population, averaged over the final

50 epochs of fitting, measured in terms of parameter space distance (see section 4.3.1.2). The

box represents upper and lower quartiles, and whiskers delimit the full data range, excluding in-

dividually  plotted  outliers.  Outliers  are  defined  as  data  points  more  than  1.5  times  the  in-

terquartile range beyond their respective quartile boundary. The filled symbols are placed at the

median of each group. Fits are split into groups by fitting algorithm (separated spatially), by

weighting scheme (colour) and by stimulus/observation pair generation method (symbols). The

method labelled “randobs” (diamonds) refers to the randomised stimulus/observation pairings

used as controls, generated as described in the introduction section 4.4 above.

Secondly, there is strong convergence in target-only GA fits across both stimulus

generation algorithms. As noted in the previous section on synthetic data, the

reason for this is that the unweighted and, to a lesser extent, weighted mutation

operator keeps the population variance above a lower bound set by the mutation

step  ,  whereas in target-only fitting,  the off-target parameters are not per-

turbed, and thus not prevented from converging to a narrower region. Interest-

ingly, in the Kv2.1k model, populations in the weighted scheme converge much

more readily than those in the unweighted scheme. A potential explanation is
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that the average weighting of a parameter across stimuli is lower in this model,

due to the high specificity of many of the parameters. That is, kinetic parameters

are, at least theoretically, more separable, because their effects are limited to a

small range of possible stimulus/observation pairs. To see this, consider e.g. the

tau_max parameters, governing the amplitude of the  curve of their respective

gating variable (Figure 3.15). To experience any significant influence from this

parameter, a stimulus needs to both hit a relatively narrow voltage range, corres-

ponding to the width of the  curve, dwell there for an appropriate duration cor-

responding to the curve’s amplitude, and then find a stimulation regime that re-

veals the resulting gating state. Since all kinetic parameters have similarly convo-

luted stimulus/observation requirements, it should not be surprising that they are

well separated, thus leading GA fits with the corresponding weight vectors to

converge  more  strongly  than  their  unweighted  analogues.  Conversely,  static

parameters (conductance, equilibrium potentials) have a much more diffuse ef-

fect, and are thus less separable, and much more likely to exert an influence over

a very wide range of stimuli.

Finally,  we see that the randomised control  observations (diamonds in  Figure

4.10) converge almost as well as the effective stimulus/observation pairs,  re-

gardless of the weighting scheme used. This seems to indicate that neither the

applied stimulus nor the observation of a particular chunk of data have a notable

impact on convergence within populations. Instead, the pattern of convergence

we see across non-control fits appears to be largely dictated by the combination

of fitting algorithm and weighting scheme, but not by the quality of the stimulus

or observation. In the weighted controls, one might argue that the often short

observations allow a sensible choice of weight vectors (i.e., weights that are in

fact reflective of parameter influence in the observed period) even in the absence

of a targeted choice of stimulus or observation, and so the comparable result is

perhaps not too surprising. Conversely, the target-only controls evaluate para-

meters on data that is potentially (and in the case of kinetic parameters, as ar-
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gued above, likely) not strongly influenced by that parameter. Even so, however,

unless a given observation is entirely insensitive to its randomly associated para-

meter, there will be a fitness gradient, and since neither of the two fitting al-

gorithms make use of the value of the gradient (GA uses population-wide rank

order, DE only refers to the lowest-cost individual in a population and relative fit-

ness between parent and offspring), we should not expect any difference in con-

vergence locally, i.e. in the context of similar parameter sets moving from one

epoch to the next. Globally, however – across disparate parameter sets and over

the course of many epochs – we might expect that non-optimal observations are

unstable, i.e. that their gradient points in inconsistent directions, which would

hinder convergence. Given that most target-only fits converge no worse under

control conditions than with optimised observations, it would appear that either

random observations are unexpectedly stable, or the observations to come out

of the bubble and cluster algorithms are less so.

 4.4.3 Distance to reference parameters

Figure 4.11: Example distance to reference for the Kv1.4x model, split by parameter (subplots)

and fitting algorithm (colours).  Plotted are the median (strong lines) and interquartile range

(shaded) of the absolute difference between the reference parameter values and every popula-

tion’s best-fit model in each epoch.
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Next,  we will  look at the distance between fitted models and their  reference

parameter sets. As a reminder, the reference parameters are derived from the

combined measuring and fitting protocols  described in chapter  3,  and should

therefore be seen not as a ground truth as such, but only as a reliable second

opinion. As in the previous section,  Figure 4.11 shows parameter-wise distance

to reference for the Kv1.4x model, with the trajectories following similar pat-

terns for the Kv2.1x and Kboth models.  Here,  the fitting algorithm does not

seem to have a significant effect on the outcome. I note that the median lines’ re-

versal in the early epochs of the EK and El parameters, which might be inter-

preted as overfitting, is in fact merely an artefact of presenting the absolute dis-

tance. In Figure 4.12, we see the parameter-wise distance to reference of Kv2.1k

fits,  which show very considerable discrepancies that,  for many of the kinetic

parameters, tend to increase as fitting proceeds. While there are some differ-

ences in performance between the fitting algorithms in individual  parameters,

these are neither significant nor systematic.

Examining distance to reference in terms of parameter-space distance and split-

ting the results by the combination of methods used, we arrive at the data shown

in  Figure 4.13.  Unfortunately,  unlike convergence within populations,  there is

very little systematic difference in performance between any of the models. The

one  notable  systematic  effect  is  a  high  distance  to  reference  in  the  Kv2.1k

model, i.e., in fits that failed to properly converge; however, the effect is much

smaller than might be expected, and there is considerable overlap between these

and  the  weighted  and  target-only  fits.  Even  the  control  stimulus/observation

pairings (diamonds) achieve similar performance.
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Figure 4.12: Distance to reference in the Kv2.1k model, again including weighted and target-

only, but not unweighted fits.
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Figure 4.13: Distance to reference for fits against oocyte data. Each “violin” summarises the

parameter space distance (as defined in section 4.3.1.2) to the respective reference model of

the final solutions of all populations in a group. The shape (width) of the violins represent a his-

togram, or the density of solutions at a given value. The large filled symbols are placed at the

median of each group, while the small filled symbols represent the respective median conver-

gence,  for comparison. Note that the PD scale  is model-specific  and can not  be compared

between models. The method labelled “randobs” (diamonds) refers to the randomised stimulus/

observation pairings used as controls.

This – admittedly rather boring – outcome mirrors the relative indifference of fit-

ting results to method combination when noisy synthetic data were used as tar-

gets (section 4.3.2.2). Given that the parameter space distances correspond to

rather large deviations from the reference value (cf. Figures 4.11 and 4.12), and

that the variance within populations is of a similar order of magnitude for most

fits, it is perhaps instructive to consider whether we are seeing a failure to fit at

all. If so, we would expect fits using a given method combination and data set to

disagree amongst each other, too.

Figure 4.14 shows that this is partly the case, particularly with the unweighted

Kv2.1k fits,  but  also in  several  other  conditions,  including all  Kv2.1k GA fits,
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weighted and unweighted mGA in all models, and to a lesser extent weighted

and unweighted xGA. Conversely, weighted and target-only DE fits almost uni-

versally agree much better among each other than with the reference model. In

this last point, and indeed across all three weighting schemes for DE, these res-

ults  closely  resemble the convergence within  populations.  This  suggests  that

convergence within populations could indeed be interpreted as a measure of the

uncertainty of the DE algorithm’s results. It also shows that, unlike most of the

GA fits, weighted and target-only DE produces internally consistent estimates.

This consistency, however, does not extend beyond the boundaries of a given

group:  Convergence  across  different  combinations  of  weighting  scheme  and

stimulus generation method is on the same order of magnitude as similarity to

reference (data not shown).

Figure 4.14: Convergence across fits to the same data, calculated as the PD of the standard de-

viation of the final model of all fits in a given group that were made using a given data set. The

small symbols filled with black reproduce the median similarity to reference from Figure 4.13.

Disappointingly, the control observations do not show significantly greater vari-

ability within fits to a given data set nor greater distance to reference, suggesting
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that stimulus and observation selection is not a strong factor in determining the

result of fitting.

 4.4.4 Cross-validation

Finally, we will examine the fitting results in terms of cross-validation, a common

machine learning practice and a measure of how well the chosen model general-

ises to previously unseen data. Remember that each oocyte yielded several dif-

ferent data sets, including both the classical and various MOSTIPS stimulation

protocols. In addition, even in fitting against data from a given MOSTIPS stimulus

set, the fitting algorithms’ cost function is only exposed to the observed regions,

typically only a small part of the total data collected. Thus, for cross-validation, I

used the full set of recordings taken from a given cell, reporting the root mean

squared clamp current error of a fitted model. It may be worth noting that this

lends an advantage to the classically fitted models, which were fitted to large

portions of the activation and tail current protocol data, and have therefore been

exposed to a much larger fraction of the total recordings than the MOSTIPS fits.

In reporting the outcome of cross-validation, I have chosen to relate the MOS-

TIPS results directly to their respective reference fits’ results, presenting an error

ratio. Note that this does not introduce bias to the analysis, since the reference

fits are shared across all recordings of a given cell. The mean raw error values

across all method combinations are recorded in  Table 4.10. Leaving aside the

Kv1.4x and Kboth fits (see below for a closer analysis of those), it is interesting

to note that the Kv2.1k parameter sets, fitted both by classical and by MOSTIPS

methods, generalise less well overall than the Kv2.1x fits, even though they are

generated from the exact same data (reference fits) or at least using data from

the same cells (MOSTIPS fits). This suggests that fitting the kinetic parameters

leads to some amount of overfitting. I note this with a mixture of satisfaction and

disappointment, as it both vindicates my choice of (fixed) kinetic parameters for
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the Kv2.1x model, but also shows that none of the systematic methods I used,

classical or MOSTIPS, could outperform my careful manual tuning.

Kv1.4x Kv2.1x Kv2.1k Kboth
Reference error 264 1141 2086 799
MOSTIPS error 348 1164 1394 1183
MOSTIPS error (excluding 
unweighted fits)

350 1176 1226 1199

Table 4.10: Cross-validation error of the reference parameter sets ( ) and the MOSTIPS fits ( )

in nA. Note that the Kv2.1 currents are, due to their slow inactivation, greater than the Kv1.4

currents even at comparable expression levels, which leads to naturally higher error values.

Figure 4.15: Cross-validation error of the final parameter selections ( ), compared to that of the

reference parameter set ( ). Values below the dotted line indicate an improvement over the

reference, with the purple shaded area containing all MOSTIPS results that generalise between

half and twice as well (upper and lower boundary, respectively) as the reference parameter sets.

In Figure 4.15, we see more clearly how strongly the outcome of cross-validation

differs between models. The Kv1.4x and Kboth model MOSTIPS fits both gener-

alise  worse,  overall,  than  their  classical  counterparts,  with  the  Kboth  model
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showing much greater variability. In the Kv1.4x fits, there is no systematic pat-

tern relating the cross-validation performance to any of the method combina-

tions.  In  the Kboth fits,  conversely,  there  is  a  noticeable  difference  between

bubble and cluster fits,  with the latter performing worse in combination with

either of the GA fitting methods.

In contrast to the poor performance of unweighted fitting in terms of conver-

gence, similarity to reference, and even consistency across fits to the same data,

we see surprisingly good unweighted performance in Kboth and Kv2.1x cross-

validation,  with particularly  unweighted DE in both models outperforming the

classical fits.

Both Kv2.1x and Kv2.1k MOSTIPS fits largely generalise better than the classical

fits, with the exception of the Kv2.1k unweighted fits. Ignoring those, the Kv2.1k

cross-validation results are by far the most promising, very clearly outperforming

the classical reference values. As noted above, this is at least in part driven by

overfitting in the classical case, which the MOSTIPS fits appear to be more res-

istant to.

Finally, I note that the control observations perform no worse than the algorith-

mically designed ones, regardless of weighting scheme, fitting method, or model

used.

 4.4.5 Conclusions

In the sections above, I have detailed how well MOSTIPS fits against oocyte data

converge within populations,  how well  each population’s best solution agrees

with the reference parameter values, as well as with other fits using the same

data and method, and how well the resulting parameter sets generalise to other

data harvested from the same cells. I have shown that, while there are clear dif-

ferences in the population trajectories between the various method combina-

tions, the final outcomes, both in terms of similarity to reference and of cross-

validation, do not appear to depend much on the particular methods chosen.



120

The only clear exception to this are the unweighted Kv2.1k fits, which failed to

converge,  thereby  also  impeding  the  refinement  of  any  high-quality  models

present in the population. This failure is likely driven by the sheer size of para-

meter space, both in terms of its dimensionality and in terms of the relatively

large range of parameter values. It is likely that narrower value ranges would

have aided the fitting process by restricting the search to a more manageably

sized area of parameter space. However, considering that the weighted and tar-

get-only fits for the same model produced results that compare favourably to

the reference values, the loose limits I have chosen are clearly an impediment

only to a blind search, but not to a search guided by added information about the

observed data.

At face value, fitting with just about any MOSTIPS method appears to yield com-

parable results to the classical fitting method. There are two main points of con-

tention to this,  however.  Firstly,  the controls  that  I  have  chosen – arbitrarily

placed observations – performed as well as the optimised observations on all

measures investigated, both in weighted mode, where parameter-specific muta-

tion sizes were related to the predicted parameter sensitivity in the observation

windows, but also in target-only mode, where the relationship between observa-

tion and mutated parameter was entirely arbitrary. The unexpected success of

these controls appears to suggest that the entire stimulus generation algorithm,

including both the evolution of particular stimuli and the selection of suitable ob-

servations,  is  quite  unnecessary,  and that randomly observing chunks of data

generated by an arbitrary process could yield similar results.

While I cannot dismiss that possibility, I note on the one hand that the stimuli

produced, and used for both effective and control observations, are of course a

particular subset of all possible stimuli; they are designed to perform parameter

separation. This may mean that observations of data generated by these stimuli,

even at arbitrary time points, are likely to be unusually sensitive (or insensitive)

to  certain  parameters,  compared  to  arbitrary  stimuli.  Conversely,  robustness
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screening and the stimulus selection procedure, relying strictly on the observa-

tion windows suggested by the stimulus generation algorithm, clearly does not

have a favourable effect on the fitting outcomes. On the other hand, the results

suggest that alternating the mutated parameters or differently modulating the

relative size of mutations across epochs may be a powerful way to constrain

models that are otherwise difficult  to fit,  and thus vindicates the key idea of

parameter separation on the fitting side of the process, if not on the observation

side.

Secondly, I note that both the amount of data and the amount of wall-clock time

used  are  considerably  less  for  MOSTIPS  fitting  than  for  the  classical,  least-

squares fits. Conversely, the kinds of data observed are much more varied, in-

cluding ramps as well as constant holding voltages, and exhibiting a wider range

of voltages during and, particularly, before observation. These stimulus acrobat-

ics are encouraged by the stimulus generation cost functions, since they drive

the model to unusual places in state space. That even very short observations of

this kind are sufficient for high-quality fitting reinforces the notion that forcing

the system into unusual states is a useful method of learning about the system

even in the absence of a targeted observation strategy, as noted above.
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 5 Closed-loop approaches

 5.1 Introduction

The ultimate goal of optimising models to individual cells is, of course, not to

parametrise models of genetically engineered oocytes, but of real neurons. In the

first part of this chapter, I present a model optimisation method that builds on

the work covered in the preceding chapters, taking some of the core ideas of the

MOSTIPS approach, but transposing them into the current clamp domain and

closing the loop between neurons and models. I will elucidate the guiding prin-

ciples of the method and present results from a small number of pilot experi-

ments.

In the second part, we will leave the model fitting world behind and cover some

new ground in dynamic clamp techniques. Specifically, I have expanded the fea-

ture range of the Windows-based dynamic clamp software StdpC, and report

here the major additions and improvements made, along with an account of their

experimental application.

 5.2 Closed-loop model fitting

 5.2.1 Motivation

The MOSTIPS method, as described in chapters 2-4, was developed mainly in the

expectation of voltage clamp data (see section 2.2.1 for a justification). From an

experimenter’s perspective, however, voltage clamp is significantly more difficult

to use: Even under ideal conditions, the method causes non-negligible artefacts

due to its sensitivity to details in instrumentation. In neurons, there is the addi-

tional difficulty of achieving what is called “space clamp”, or full control over the

entire membrane; there are physical limits to how far, and how fast, the injected

current can spread into axons and dendrites. In cells with active compartments
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outside the soma, this can make robust control even of somatic membrane po-

tential impossible, as e.g. action potentials may arise in uncontrolled distal com-

partments and systematically distort the detected clamp current.

On the other hand, the MOSTIPS methods as presented in this thesis is not well

suited to current clamp data without some modification. In particular, the cost

function in voltage clamp – root mean squared (current) trace error – would yield

a very heterogeneous fitness landscape in current clamp, trapping any search al-

gorithm in one of many local optima. While developing a better cost function is

certainly possible, as shown below, the stimulus generation and selection steps

are of course also sensitive to such a cost function, making its development and

testing a potentially very long-winded process.

More importantly, the parameter separation idea at the core of the stimulus gen-

eration process is less obviously applicable to current clamp data, regardless of

the cost function. Without control over the model state, the task of finding stim-

ulation/observation pairs that robustly highlight a given parameter – challenging

enough in voltage clamp – is likely to be prohibitively difficult, if not impossible,

in current clamp.

 5.2.1.1 An alternative approach

As an alternative, I decided to try a different approach, distancing myself from

the focus on individual  parameters and instead embracing the possibilities af-

forded by immediate interactions between a living neuron and a population of

candidate models. The key idea is that a population of candidate models can be

treated as an estimate of the true parameter values, and that this estimate can be

refined in a targeted manner. In particular, given that a model population has a

certain variability in its behaviour, refining the estimate can be likened to search-

ing for a certain behaviour or set of behaviours in the population. A possible way

of doing this would be to record a reference behaviour (e.g. the voltage trace in

response to a certain current stimulus), then score candidates by how well they
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match this behaviour, and iterate with a GA or similar algorithm. But what should

the stimulus be? Without knowing in advance what the reference behaviour is, a

good stimulus is one, I would argue, that is “contentious” in the candidate model

population, i.e., that produces a wide range of behaviours. The wider the spread

of responses from the candidate models, the more information we gain from

comparing the model responses to the reference. Conversely, of course, a stimu-

lus that elicits a homogeneous response from the candidate population is quite

unsuitable to provide any information about how well the candidates represent

their reference.

Following this intuition, I  propose the following iterated optimisation process.

First, generate a number of candidate stimuli, and evaluate them against the can-

didate model population, keeping track of some outcome measure. Next, calcu-

late for each stimulus the variance of said outcome measure across models, and

use the stimulus with the highest variance to gather reference data. Finally, score

the candidate models’ responses to the same stimulus by the measure used dur-

ing stimulus evaluation, conduct a selection and procreation round, and advance

to the next epoch.

 5.2.2 Implementation

I implemented the above approach on top of the software built for MOSTIPS in

an effort not to complete a full investigation of the method, but to gain some pi-

lot data as proof of concept. For this reason, and due to time constraints, I im-

plemented a simplified version of the above as follows.

 5.2.2.1 Cost function

The cost function  , likely the most important part of this algorithm, was de-

signed to provide a good measure for trace alignment without falling into the

trap of very high cost for only slightly misaligned action potentials. It compares
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the evaluated voltage trace  to a reference trace  at each time point

using two component functions  and  in root mean squares fashion, i.e.,

(Equation 5.1)

The first component, applied only outside of spikes, is the squared voltage differ-

ence as formalised in Equation 5.2.

(Equation 5.2)

The second component is a spike density function, calculated iteratively starting

from , decaying with a factor , and increasing by a set amount 

during spikes:

(Equation 5.3)

The spike detection mechanism is implemented on top of a decaying average 

of the discrete voltage derivative of the evaluated trace, i.e.,

(Equation 5.4)

The   flag is set when   rises above a threshold  , and cleared when

 drops below .

For the experiments described below, the threshold  was set em-

pirically to detect spikes in the reference trace as early as possible without false

positives  from  recording  noise.  The  spike  density  decay  rate  was  set  to

, and the increment to , both applied at a sampling interval of

240 µs.

Due to an oversight on my part, while the spike detection mechanism’s decaying

voltage derivative  was calculated as presented for the experimental reference

trace, it was accidentally inverted for simulated traces. That is, for stimulus se-

lection and for candidate traces during model optimisation (see below), Equation
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5.4 was implemented as  ,  thus trig-

gering the spike flag during the repolarisation phase of action potentials and re-

setting  shortly  thereafter.  While  largely  inconsequential  for  the  spike  density

function , the direct trace error  therefore included action potentials, making

the cost function more sensitive to spike misalignment than intended.

 5.2.2.2 Stimulus selection

In each epoch, 64 current stimuli were randomly generated, constrained to last 1

second, contain between 1 and 3 steps or ramps of no less than 2 ms duration,

with a current starting at zero and limited to  ±2 nA. Then, to speed up evalu-

ation, 128 of the 8192 candidate models were randomly5 chosen to evaluate

each stimulus. Then, rather than compare traces all-to-all within these chosen

models, I chose to only make pairwise comparisons, with each model comparing

its trace to its preceding neighbour, wrapping around in sets of 32 models. This

allowed me to make these comparisons and accumulate  iteratively during sim-

ulation, greatly speeding up both my implementation and the evaluation. Then,

for each stimulus, the variance of   across all models evaluating that stimulus

(i.e. across all pairwise comparisons between neighbouring models) was calcu-

lated. Then, the 2 stimuli with the highest variance were selected for evaluation

against the reference neuron, see below.

 5.2.2.3 Model optimisation

The candidate model population was optimised with a genetic algorithm as de-

scribed in section  2.3.2.1, using   elites,   reinitialised models,

and crossover rates  between 0 and 0.3.  The parameter mutation rates (see

section  5.2.3.2 below) were decayed with a half-life of 700 epochs. The cost

5 The choice of subset was effectively random for most models by virtue of the randomised 

procreation mechanism. This excludes any GA elites (see below), which would have remained 

within (or without) the subset as long as they retained their elite status. This was deemed ac-

ceptable, since on average, only 1-2 elites should fall within the subset.
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function  was  used  as  described  in  section  5.2.2.1 above,  accumulating  the

squared error observed during  the full 1 second response to  each of the two

stimuli selected in a given epoch. For validation, a set of four stimuli was used,

including single steps of 1 s duration to +1 nA and +2 nA, and ramps over 1 s

from 0 nA to +1 nA and +2 nA. Reference responses were collected with this

stimulus set every 10 epochs.

The sampling interval  for recording and evaluation, both in model optimisation

and in stimulus selection, was set to 240 µs, and integration was performed with

a Runge-Kutta-Fehlberg 4/5 method with a minimum step size of 12 µs. To con-

trol the initial state of candidate models, they were settled with a 1 second null

stimulus prior to both stimulus selection and each model optimisation stimulus.

 5.2.3 Application

I applied this method to gather pilot data in collaboration with Dr. Rafael Levi, a

visiting researcher invited for this purpose and supported by a Research Develop-

ment Fund grant to Prof. Thomas Nowotny and Prof. George Kemenes. In this

section, I will briefly discuss our experiments and their results. We used the pond

snail  Lymnaea stagnalis as a source of neurons, targeting the B1 motor neuron,

for which we had a relatively trustworthy model in hand (Vehovszky et al., 2005).

In  these  experiments,  Rafael  Levi  handled  dissection  and  electrophysiology,

Thomas Nowotny provided the adjusted B1 model, and Rafael Levi and myself

jointly performed stimulation and recording.

 5.2.3.1 Methods

Snail brains were dissected in normal (physiological) saline (in mM: NaCl 50, KCl

1.6, MgCl2 2, CaCl2 3.5, HEPES 10, pH 7.9 adjusted with NaOH) and fixed onto a

Sylgard substrate with fine pins. The outer sheath covering the buccal ganglia

was removed with forceps, and since the left and right B1 neurons are electric-

ally  coupled,  the  buccal  commissure  was  crushed to  disrupt  this  connection.
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Then, a small amount of protease was topically applied to the buccal ganglia for

1-2 minutes to soften the inner sheath. After washing, the preparation was again

submerged in physiological saline and transferred to the electrophysiology setup.

Electrodes were pulled from borosilicate glass capillaries and filled with 5 M po-

tassium acetate, yielding tip resistances of 5-10 MΩ for the current electrode,

and 20-25 MΩ for the voltage electrode. B1 neurons were visually identified and

impaled with both electrodes. An AxoClamp 2B device was used in current clamp

mode to read the voltage and inject current. For data collection,  we used the

Dell Poweredge computer and National Instruments PCIe-6251 data acquisition

card described in section 2.4.1 to perform the closed-loop algorithm, to control

stimulation, and to record data during stimulation episodes. In parallel to this, we

used a Dell workstation running Windows XP with a Digidata 1320A to passively

record all input and output data at 10 kHz in pClamp 8.

 5.2.3.2 Model

The published B1 model (Vehovszky et al., 2005), which I used in its original form

in chapter 4 (see section 4.2.1.6), did not fit closely enough with data from our

own investigations. We therefore adjusted its kinetics to more closely approxim-

ate the action potential shape and other characteristics. The model currents are

unchanged from the original model, and include a sodium current , a delayed

rectifier potassium current , and an A-type potassium current  as described

in Equation 4.5 on page 80. The gating variables of all currents are formulated by

their steady-state and time constants, i.e., they follow the formulation

(Equation 5.5)

The kinetics equations for all currents were standardised to the form

(Equation 5.6)
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where x is m and h for sodium activation and inactivation, NA and NB for the

delayed rectifier components, and a and b for the A-type potassium current. The

central parameter values were set as shown in Table 5.1. The equilibrium poten-

tial parameters ENa, EK, El, as well as the offset parameters Vx and tVx were

treated as additive, with a sigma of 0.25 mV and a range of ±20 mV around the

central value. All other parameters were treated as multiplicative, with a sigma of

0.01 and a range of 0.5 to 1.5 times the central value. The leak conductance gl

was allowed to increase to up to 1 µS to account for varying experimental condi-

tions. Due to a bug in my code, all negative multiplicative parameters (tsm, sh,

tsh, tsNA, tsNB, tsa, sb) were restricted to exactly 1.5 times the central value

during optimisation.

parameter value parameter value parameter value
* gNa 18.48 µS + ENa 36.20 mV * gKA 4.71 µS
* gKB 1.58 µS * gA 12.36 µS + EK -66.29 mV
* gl 0.0185 µS + El -20.82 mV * C 1.0 nF
+ Vm -25.27 mV * sm 9.37 mV * t0m 0.346 ms
+ tVm -37.98 mV * tsm -1.99 mV * tAm 8.465 ms
+ Vh -29.43 mV * sh -3.96 mV * t0h 2.45 ms
+ tVh -25.12 mV * tsh -3.65 mV * tAh 16.23 ms
+ VNA 13.99 mV * sNA 32.54 mV * t0NA 8.28 ms
+ tVNA -19.65 mV * tsNA -46.33 mV * tANA 67.68 ms
+ VNB 8.63 mV * sNB 15.50 mV * t0NB 1.44 ms
+ tVNB -19.98 mV * tsNB -43.17 mV * tANB 11.07 ms
+ Va -12.28 mV * sa 14.11 mV * t0a 0.055 ms
+ tVa -20.60 mV * tsa -34.76 mV * tAa 5.70 ms
+ Vb 71.26 mV * sb -7.15 mV * t0b 4.22 ms
+ tVb -20.92 mV * tsb 35.23 mV * tAb 25.27 ms

Table 5.1: Adjusted B1 model parameters’ central values. The prefix “+” or “*” indicates additive

or multiplicative status of the parameter, respectively.
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 5.2.3.3 Results

We conducted a number of experiments exploring the space of possible imple-

mentations of the general idea of closed-loop model optimisation, and of pos-

sible cost functions, the results of most of which I will not present. In the follow-

ing, I present results from three B1 cells that reflect the most recent state of our

evolving understanding of how to apply this method.

In  Figure 5.1, I demonstrate the progress of fitting with snapshots taken every

20 epochs. The plotted models (blue traces) are the best-fit parameter sets of

the epoch immediately preceding the recording of the respective validation trace.

The models are therefore not selected for an optimal fit against the plotted re-

sponse, but against algorithmically selected stimuli. Despite this, we see a clear

trend for the excitability of the models to track the excitability of the cell, which

varies considerably across the approximately 10 minutes elapsing from first to

last trace. There is also a slight trend towards closer approximation of the resting

membrane potential,  particularly in the two fits on the left.  Conversely, spike

shape does not appear to improve over time, which suggests that capturing spike

shape in the cost function may be worth investigating, e.g. using a phase plane

approach.

In  Figure 5.2,  I  show a principal  components analysis (PCA) of the complete

model populations corresponding to the plots in  Figure 5.1. Ignoring the 100

freshly randomised models dotted around the middle of each plot, we see that

the populations tend to cluster very early in each fit, with successive snapshots

showing an ongoing refinement from many to 2-4 clusters. This tendency to not

collapse into a single cluster may be due to an interaction with the stimulus se-

lection algorithm. Of course, once the model population is converged to a small

number of clusters, stimuli are selected to differentiate between these, rather

than between models and the reference. I speculate that this may impede refine-

ment of  the model  population towards more accurate parameter  sets,  e.g.  if

neither cluster fits the reference traces particularly well. My use of two stimuli in
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each epoch, rather than only one, may also impact this development, in that it

takes twice as many stimuli exposing a consistent error gradient between two

clusters for the cluster with higher error to go extinct. That there are several

clusters throughout most fits therefore indicates that the true model is either

well hidden (e.g. in a narrow global optimum) or does not exist; in either case, I

would argue that maintaining several clusters is in fact more informative to us

and keeps the algorithm more flexible.
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Figure 5.1: Closed-loop fitting progress in three B1 cells, demonstrated with snapshots from

epochs 10, 30, 50, 70 and 90 (top to bottom; each column is a separate cell and fit). Shown are

the validation traces (red) and the best-fit model (blue) responding to a ramp from 0 to +2 nA.

Fits clearly track excitability changes.
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Figure 5.2: PCA of the candidate parameter sets, using the same fits as in Figure 5.1, arranged in

the same way.  The initially widely dispersed candidate parameter sets appear to quickly con-

verge onto a small  number of  clusters,  though the algorithm seems unable to differentiate

between these. Note, the widely dispersed points are randomly initialised models.
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 5.2.4 Conclusion

Despite these issues, I am confident that the results presented here are indicative

of this method’s potential.  By stimulating neurons in current clamp instead of

voltage clamp, the kinds of data we receive are more naturalistic, i.e. more rep-

resentative of the neuron’s typical  behaviour.  While current clamp stimulation

does not offer the opportunity of isolating, and thus precisely estimating, indi-

vidual parameters, it may be a better tool to model the behaviourally relevant as-

pects  of  a neuron’s activity  patterns.  This contrasts  with voltage clamp data,

which, in addition to the experimental difficulties outlined above, is also a very

unnatural manipulation that may affect the cell in unexpected ways, e.g. by activ-

ating homoeostatic pathways related to the regulation of the membrane poten-

tial or to excitability.

Aside from fixing the bugs mentioned above and perhaps further exploration of

the relevant cost functions for both models and stimuli, there are other relatively

easy improvements that could be made to the method as described above. For

example, I generated the stimuli completely randomly at each epoch, but it might

be interesting to co-evolve a population of stimuli alongside the model popula-

tion, allowing progressive refinements in one population to tighten the focus of

the search in the other. Since the fitness goal of the stimuli (high variability in the

model responses) is directly opposed to that of the models (close approximation

of the reference trace), a co-evolution approach could be made to self-enhance,

similar to the idea of generative adversarial networks in the deep learning literat-

ure (Goodfellow et al., 2014).

Other possible improvements, such as a more refined fitting algorithm, more var-

ied stimuli, etc. are shared with the voltage clamp MOSTIPS and discussed in the

final  chapter.  Before we get there,  however,  there is  one final  aspect to my

thesis, namely the continued development of the dynamic clamp software StdpC.
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 5.3 Extensions to StdpC

Dynamic clamp (Robinson & Kawai, 1993; Sharp et al., 1993; Prinz, Abbott, et al.,

2004) is a method of manipulating a neuron’s membrane potential based on con-

ductance models e.g. of ion channels or synapses. That is, rather than injecting a

current independently of the membrane voltage – as in open-loop current injec-

tion – dynamic clamp simulates a conductance, injecting a current that corres-

ponds to the state of that conductance and the membrane voltage at any given

time. Since closing the loop in this manner requires a very fast cycle of measure-

ment, model calculation, and current injection, dynamic clamp is typically imple-

mented either in hardware, e.g. (Desai et al., 2017), or in real-time operating sys-

tems, e.g. (Linaro et al., 2014; Amaducci et al., 2019), where the implementation

has complete control over the timing of the clamp cycle. However, these solu-

tions  are  technically  involved,  requiring  specialised  hardware  and/or  software

that might dissuade less technically oriented experimental neuroscientists from

attempting to use them.

StdpC is an open source dynamic clamp software originally developed by Prof.

Thomas Nowotny  (Nowotny  et  al.,  2006;  Kemenes  et  al.,  2011;  Samu  et  al.,

2012). Unlike typical dynamic clamp solutions, StdpC is designed to run on Win-

dows,  likely  the  most  commonly  used  operating system among experimental

neuroscientists,  given that  most other electrophysiology software (e.g.  Spike,

Signal,  pClamp) is  also Windows-based. The principal  difficulty  in  using Win-

dows, a non-real-time operating system, as a platform for dynamic clamp is that

the clamp cycle timing is not under the software’s control, and the duty cycle

varies considerably as the operating system schedules other tasks to run along-

side the dynamic clamp computations. Of course, any processes worth imple-

menting in dynamic clamp are dependent on both the membrane voltage and on

time. To calculate its models accurately, StdpC must therefore refer to the sys-

tem clock rather than a fixed time step for information about the time elapsed

since the previous computation, as well as work as fast as possible to minimise
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the temporal shift between a current injection command and the voltage reading

that it is based on.

StdpC has become a key tool for a number of labs around the world and has

been successfully used to perform dynamic clamp experiments in various sys-

tems, including in invertebrates such as lobsters  (Reyes et al., 2008), the pond

snail  Lymnaea (Kemenes  et al.,  2011; Samu  et al.,  2012) and the nudibranchs

Melibe, Dendronotus (Sakurai & Katz, 2016, 2017, 2019) and Tritonia (Sakurai et

al.,  2014),  in rodent brain slice preparations, targeting thalamus  (Hong  et al.,

2014; Amarillo et al., 2018), amygdala (Szűcs et al., 2010, 2012; Szűcs & Huerta,

2015; Francesconi et al., 2017), hippocampus (Vaidya & Johnston, 2013; French

et al., 2015; Szűcs et al., 2017; Sokolova et al., 2019), and cortex (Huang et al.,

2018), as well as in resected human cortical tissue (Szegedi et al., 2019). During

my early MOSTIPS work, Thomas Nowotny was approached by Naoki Kogo, who

wanted to use StdpC for an ambitious project that required additional features.

Having used StdpC in a previous project myself, and already being set up with all

the relevant equipment and software development skills, I offered to take the ex-

tension in hand. In the following, I will summarise the major features added to

the software in the meantime, both for Dr. Kogo and for other collaborators.

Most  of  the  feature  development  detailed  below  is  entirely  my  own  work.

Thomas Nowotny developed the software-defined voltage clamp (section 5.3.6),

step generator and wire (section  5.3.7) tools. Software-defined voltage clamp

testing was conducted in collaboration with Dr Rafael Levi.

 5.3.1 Existing features

StdpC was built as a fairly general-purpose dynamic clamp software with a com-

prehensive graphical user interface (GUI) with the following features before my

extensions. As data sources, StdpC supported DigiData 1200/A devices, National

Instruments data acquisition cards, and a “simulated” data acquisition device (la-

belled SimulDAQ) which used text files with time series data as input and output
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channels. Only one data source could be active at a given time. A hard-coded

total of six synaptic conductances (including several formulations for chemical

synapses, as well as a gap junction model) and six ionic conductances (including

both /  and /  formulations) could be connected to the input (voltage) and

output (current) channels of the data sources. Each of these models provided ex-

tensive  opportunities  for  parametric  customisation.  Lastly,  StdpC  provided  a

“spike generator” producing a voltage time series defined by exponentially rising

and decaying  spikes  of  a  parametrically  defined width,  amplitude,  and  timing

structure, which could be run in a loop or triggered by threshold crossings on an

input channel.

In addition to these core features, StdpC provided a rudimentary graphing inter-

face to visualise the data that the software was reading from and writing to the

data source channels, intended mostly for testing purposes, as well as a “data

saving” feature that allowed the samples from any channel to be written to a file

on disk. StdpC allowed saving a graphically set up configuration to a text file, and

of course loading the same. The format of configuration files consisted of hu-

man-readable key-value pairs, which – together with a time stamp – could also

be used for scripting, where parameters are changed at specific times while the

dynamic clamp process is running.

In addition to the flexibility afforded by the highly parametric models and the

scripting interface, StdpC was, and is, an open source project written in C++,

which means that users are free to change the source code or add their own

models as required.

 5.3.2 Hybrid networks with complete neuron models

 5.3.2.1 Motivation

Hybrid networks, composed of both real and model neurons, were requested by

Naoki Kogo. His project aims to examine the neural substrate for bistable per-
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ception, as e.g. in binocular rivalry (Levelt, 1965; Laing & Chow, 2002; Noest et

al., 2007; Shpiro et al., 2009). To do this, he hoped to form a mutually inhibitory

circuit between pairs of real cortical pyramidal neurons, manipulating the proper-

ties of the inhibitory interneurons and their synaptic interactions with the pyram-

idal neurons, the presence and strength of background noise in the circuit (see

section 5.3.4 below), and the strength of input to the pyramidal neurons.

 5.3.2.2 Implementation

To support this, StdpC needed a way to model not just ionic conductances, but

entire neurons. This has been done with the StdpC code base previously, though

in an ad-hoc fashion that did not find its way into the released software (Brochini

et al., 2011). In the spirit of reusing existing features and minimising redundancy,

I decided to exploit the existing ionic conductance models by connecting them to

a model of a passive membrane. Conceptually, a membrane model – defined by

capacitance and a leak conductance – can be viewed as an input-output channel

pair, much like a real membrane accessed with an electrode. By connecting mod-

els  of  active  conductances to these channels,  we can then build  a  complete

neuron model in a completely modular fashion.

The mathematical implementation of such a model is straightforward, with the

update rule for the membrane potential derived from the familiar  Equation 5.7,

with  the  “injected”  current   now produced by  the combined conductance

models.

(Equation 5.7)

The programmatic implementation, however, was a little more involved. Since in

the existing StdpC code, only one data source (data acquisition card or simula-

tion thereof) could be active at a time, the concept of input and output channels

was immediately linked to the presently active data source, with an exception in
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place for  the spike generator  outputs.  Instead of adding to the exceptions,  I

therefore decided to rework the way data sources and channels were handled.

First, I modularised the code for the existing data source classes, allowing an ar-

bitrary number of data source objects to be active simultaneously. Next, I  re-

worked the way channels were identified. Previously, to assign conductances to

specific channels, addressing was done using an integer index, with -1 specifying

the spike generator’s output. With data sources no longer defined as a single,

uniquely active object, this needed to be replaced with a hierarchical addressing

method, specifying the type of data source, its index (since there could be mul-

tiple instances of a given type, e.g. two separate data acquisition cards), and the

index of the channel within that instance. Finally, I turned the spike generator and

the newly created passive membrane model into data source classes of their

own.

Since there were several configuration options associated with channels (spe-

cifically, flags to denote them as active and to mark them for data saving, data

limits, a constant bias term for output, i.e. current, channels, and spike detection

settings for input, i.e. voltage, channels), I decided to keep the basic data source

parameters (e.g. leak conductance for the membrane model, or the spike timings

for the spike generator) separate from the channel settings, allowing each of

these new data sources to expose an arbitrary number of channels or channel

pairs, each with their own configuration. Finally, the interface to assign channels

to conductances was likewise modularised, allowing a given conductance model

to be assigned to an arbitrary number of channel combinations.

To allow users  to  make full  use  of  the  flexibility  afforded by  unlimited  data

sources, I further lifted the limitation on the number of synaptic and ionic con-

ductance models, turning the previously static list of six models of each type into

a dynamically sized list, thereby removing any artificial limitations on the com-

plexity of experiments conducted with StdpC.
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With all these changes implemented, users could now define neuron models of

arbitrary complexity,  within the limitations of the formalisms provided by the

conductance models. Since the synapse models include a gap junction model,

multi-compartment models could also be built in principle by creating a separate

membrane model for each compartment and linking them with gap junctions. In

addition, any synapse model could also be used to build synaptic connections

amongst model neurons as well  as between model neurons and live neurons

connected to StdpC via electrodes and data acquisition cards,  thus making it

possible to build hybrid circuits of both real and modelled neurons.

Upon testing, however, we noticed that model neurons had a tendency to be-

come numerically unstable due to the following problem. The ionic conductance

models used a simple forward Euler integration method to calculate their state

evolution. In a purely dynamic clamp context, where a conductance model only

contributes a small part of the overall membrane current, this is sufficiently pre-

cise, with any imprecisions washing out in the noise of the recording and the

membrane’s intrinsic dynamics. In a membrane model, however, where the entire

current is defined by numeric integration, any imprecisions in the integration add

up, leading the model to behave in unexpected ways. This problem is exacer-

bated with StdpC’s variable clamp cycle timing and occasional very long time

steps as the operating system schedules other tasks alongside the clamp cycle

process.

In part, this problem was fixed by enforcing limits on the models’ gating variables

and the membrane model’s voltage, catching invalid values and resetting affected

models on the fly, thereby preventing integration from getting stuck in infinities.

However, while this prevented complete breakdowns of the models, the funda-

mental problem of insufficiently precise numeric integration also needed to be

addressed to keep models behaving as expected.

To do this, I turned to a fourth-order Runge-Kutta integration scheme, which ap-

proximates the model state at time  much more precisely than the forward
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Euler scheme by progressively estimating the state and resulting state gradient

at intermediate time points. Of course, in normal dynamic clamp, the state of the

system is largely externally defined, thus Runge-Kutta integration is not possible.

Therefore, during the setup phase of the clamp cycle, I separated conductances

into three categories, the first including all conductances that take input from

analogue data  sources  (e.g.  normal  dynamic  clamp conductances,  or  synapse

models connecting from analogue input to model neurons), the second including

all conductances with no connection to analogue sources (e.g. model neurons’

membrane conductances), and the third including any remaining conductances

(e.g. synapses connecting from model neurons to analogue output). While the

first and third category could be integrated with a forward Euler scheme without

producing artefacts, the second category was entered into a Runge-Kutta integ-

ration  loop,  providing  robust  numeric  integration  with  minimal  computational

cost.

 5.3.2.3 Application

The new feature was successfully applied by Naoki Kogo in experiments. Pyram-

idal neurons were recorded with patch pipettes in mouse occipital brain slices,

ensuring  no  existing  mono-  or  disynaptic  connections.  In  StdpC,  interneuron

models were set up using literature-derived models of sodium and delayed recti-

fier potassium channels  (Hodgkin & Huxley, 1952d), as well  as Kv3 channels

(Lien & Jonas, 2003), using passive membrane properties as described in (Pos-

pischil et al., 2008). Excitatory synaptic connections from the pyramidal cells to

the model inhibitory neurons, and inhibitory connections from the model inhibit-

ory neurons to the pyramidal cells, were set up using StdpC’s ChemSyn model

with parameters hand-tuned to consistently evoke sufficiently large post-syn-

aptic potentials, giving rise to a hybrid four-neuron mutual inhibition circuit as

shown in Figure 5.3. For more detail on the investigation of bistability, refer to

section 5.3.2.
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Figure 5.3, adapted from Kogo, Kern et al. (under review): A hybrid circuit built from live pyram-

idal neurons (PN) and model inhibitory neurons (mIN). A: Circuit diagram. Dotted features are

simulated in StdpC. B: Two biocytin-filled pyramidal neurons in mouse visual cortex, layer 2/3. C:

The strength of the excitatory synapse (PN to mIN) had to be adjusted manually to consistently

evoke action potentials in the mIN (bullet symbols), giving rise to inhibitory post-synaptic po-

tentials in the other PN (asterisks). D: Mutual inhibition causes bistable spiking, with activity

periodically switching between PN1 and PN2.

 5.3.3 Synaptic delay

One of the ingredients of a realistic circuit, hybrid or otherwise, is the existence

of temporal conduction delays. StdpC had no such feature, instead calculating

synaptic conductances based on the most recent measured (or model-produced)

voltage sample. This feature was requested by Naoki Kogo as part of the hybrid
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circuit extension, since his proposed circuit structure (see above) is a closed loop

and could have been affected by unexpected feedback behaviour if all synapses

were instantaneous. Implementation was again complicated by the variable time

step of the StdpC clamp cycle. With a fixed time step, a temporal delay could be

expressed in terms of number of cycles, making it straightforward to keep a buf-

fer with the required number of (pre-synaptic voltage) samples, retrieving these

with a delay to calculate the post-synaptic conductance.

To enable synaptic delays with StdpC’s variable time step, I set up a buffer for

voltage samples, sized generously to accommodate acquisition rates up to 100

kHz, and in parallel to that, a buffer keeping track of the time at which each

sample was collected. Delayed samples could then be retrieved from the sample

buffer by first looking up the time point closest to the requested time, then using

the index of that point in the time buffer to locate the corresponding voltage

sample.

To make this lookup process as fast as possible, I applied a number of tricks and

optimisations. Firstly, each buffer was implemented as a ring buffer, i.e. a con-

tiguous memory area with a pointer to the most recent sample, advancing with

each sample and looping back to the start as it reaches the end of the memory

area. Secondly,  since data acquisition is  synchronous (i.e.,  every channel pro-

duces  exactly  one  sample  in  each  cycle),  I  used  a  single  time  buffer  for  all

delayed synapses, sized to the longest requested delay. Likewise, any channel re-

quiring delayed samples is set up with just one buffer. Then, each delayed syn-

apse is assigned two variables, one containing its offset into the time buffer, the

other the exact delay requested. At the start of each clamp cycle, all offsets are

advanced as necessary to point to the time point closest to the requested time,

and these updated offsets are then used during the conductance calculation to

retrieve the appropriate voltage samples.

The synaptic delay functionality has been used in the work presented in section

5.3.2 above. Since the feature is already contained in the most recent public re-
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lease of the software (StdpC 2017), it appears to also have been used in unre-

lated research investigating microcircuits in human cortical interneurons (Szegedi

et al., 2019).

 5.3.4 Synaptic background noise

 5.3.4.1 Motivation

As part of his project to investigate the neural basis of bistable perception (see

section 5.3.2), Naoki Kogo needed to differentially stimulate the pyramidal neur-

ons in the circuit to reveal how such stimulation – analogous to e.g. the level of

contrast of two competing images – affects the alternation rate, the relative dur-

ation of activity states, etc. One way to do this would be to inject a constant cur-

rent into the cells. However, it has been argued in related work (Brascamp et al.,

2006; Kim et al., 2006; Moreno-Bote et al., 2007; Huguet et al., 2014; Pisarchik

et al., 2014; Baker & Richard, 2019) that noise or stochasticity is a key compon-

ent of the dynamics of this system. Additionally, pyramidal neurons in a slice pre-

paration  are  already  deprived  of  input  from their  many presynaptic  partners.

Therefore, we decided to inject, and systematically manipulate, a stochastic cur-

rent that mimics the synaptic bombardment a pyramidal cell  might receive in

vivo.

 5.3.4.2 Implementation

Mathematically,  we followed the model  proposed by  (Destexhe  et  al.,  2001),

which recreates the statistical properties of synaptic background noise with a de-

caying Ornstein-Uhlenbeck process. An individual (inhibitory or excitatory) syn-

aptic background noise current with a reversal potential   is calculated in a

discrete time environment as described in Equation 5.8.

(Equation 5.8)
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Here,  is the mean conductance around which the numeric value fluctuates,  is

the decay time constant, and  is a random variable drawn from a zero-mean,

unit standard deviation normal distribution and scaled as shown in Equation 5.9,

using a noise diffusion coefficient , where  is the variance of the noise.

(Equation 5.9)

In StdpC, synaptic background noise is implemented in the same manner as an

ionic current, reading voltage from an input channel and adding its resulting cur-

rent into its assigned output channel. When a conductance of this type is injected

into a model membrane and therefore integrated with a Runge-Kutta scheme,

random samples are drawn only for the end of a complete step, with the inter-

mediate  estimates  linearly  interpolated.  This  both  reduces  the  load  of  the

pseudo-random number generator and keeps the stochastic nature of the con-

ductance from interfering with the deterministic estimation process of other cur-

rent models.

 5.3.4.3 Application

The synaptic background noise model was employed in the set of experiments

described in section 5.3.2, injecting in vivo-like synaptic bombardment into both

the pyramidal neurons and the interneuron models. The noise standard deviation

was varied systematically, and the duration and reversal rate of dominance peri-

ods, defined as periods during which one of the pyramidal neurons is exclusively

active, were analysed, see Figure 5.4. The results demonstrate that the simulated

noise produces a realistic pattern in the membrane potential of both real and

model neurons (A,B),  and that the dominance durations (E) follow a similarly

skewed distribution as seen in behavioural data in bistable perception.
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Figure 5.4, from Kogo, Kern et al. (under review): Model excitatory and inhibitory synaptic noise

(random changes of excitatory and inhibitory conductance, gE and gI, respectively) was applied

to the pyramidal neurons and the inhibitory neurons through the dynamic clamp system. A-B:

Baseline membrane potentials at -60mV without (A) and with (B) the model noise. C: Effect of

changing the noise level systematically. Increase of the noise resulted in increase of reversal rate

(from top to bottom). Noise levels are indicated as standard deviations (SD) of gE and gI (in nS).

Asterisk: Data with the “standard” parameter set.
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Figure 5.4 (continued): D: Pooled data of the effect of noise to the reversal rates from 15 pairs.

The reversal rates from the individual pair are normalized by the value at the standard noise

parameters (c) before pooling. Orange bar (a) indicates the data with no model noise. The noise

parameter sets for a, b, c (standard noise parameters), d and e are shown in the table below.

The noise level is increased linearly from b to e. E: Histogram of dominance durations for PN1

and PN2 from 10 minutes continuous recording (with the “standard” noise parameters).

 5.3.5 Synaptic stochasticity

For the next step in his project, Naoki Kogo aims to increase the realism of the

synapses in the hybrid circuit. In particular, StdpC’s synapse models are entirely

deterministic, always evoking a post-synaptic conductance (PSC) of a given size

for a pre-synaptic spike. While useful for predictable simulations, this contrasts

with the situation in real synapses, which release their  neurotransmitters in a

probabilistic and quantal fashion (Katz & Miledi, 1965; Barrett & Stevens, 1972;

Bekkers  et al., 1990; Redman, 1990; Stevens, 1993). A more realistic synapse

model should therefore exhibit stochastic PSCs.

Of the three synapse models in StdpC, two (the “Destexhe” and “Alpha-Beta”

models) are integrated continuously as a function of the presynaptic membrane

potential; in contrast, the “Chemical” synapse model’s PSCs are functionally inde-

pendent of presynaptic voltage below a certain threshold. Its post-synaptic cur-

rent  is modelled as shown in Equation 5.10 and 5.11, where  and 

are pre- and post-synaptic membrane voltage, respectively, and , , ,

 and  are user-defined parameters.

(Equation 5.10)

(Equation 5.11)

Because of the explicit threshold in this model, it is possible to efficiently add

stochasticity to the PSC size upon threshold crossings, as follows.
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Following the analysis in  (Redman, 1990), I added a set of parameters to the

model to control the number of independent neurotransmitter release sites ,

the release probability per site, , as well as the standard deviation  of the

quantal amplitude, that is, of the PSC size of a single release event. When a PSC

is evoked (i.e., the presynaptic voltage exceeds the threshold value), the number

of release events is drawn from a binomial distribution as  . If

any release occurs, i.e.  ,  then an amplitude modifier   is

drawn from a normal distribution, with negative values discarded. This modifier is

then multiplied in with the dynamic PSC amplitude variable  to yield an

appropriately scaled rising and decaying post-synaptic potential.

Since there is no guarantee that a given PSC is fully decayed before the next one

starts, the implementation in code was a little more complex. Without account-

ing for overlapping PSCs, the resulting current would immediately jump to a new

value based on the latest value of  every time the presynaptic potential crosses

the threshold. To prevent this, the PSC amplitude  , rather than being tracked

with a single variable, is separated into a list of  with corresponding stochastic

factors   for every threshold crossing event  . Only the most recent   is up-

dated with   evolving according to  Equation 5.11, while previous entries are

decayed with   regardless of the presynaptic voltage, and removed from

the list once they are sufficiently small. The total PSC is then calculated with

.  Thus,  each  PSC  is  entirely  independent  from  other  events  and

scaled by its private stochastic amplitude.

 5.3.6 Software-defined voltage clamp

 5.3.6.1 Motivation

Voltage clamp (VC) is usually considered a hardware-based method, implemen-

ted with feedback amplifiers and supporting electronic circuitry. The obvious ad-

vantage of the hardware implementation is its continuous function and poten-
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tially very high gain. However, hardware-defined VC produces artefacts both at

voltage steps, in the form of current spikes and – hopefully damped – oscillations

after the step onset, and at steady state, in the form of a constant voltage offset

proportional  to  the  injected  current.  Thus,  in  an  attempt  to  provide  a  tool

without  these  limitations,  Thomas  Nowotny  and  I  implemented  a  software-

defined VC in StdpC.

 5.3.6.2 Implementation

At its heart, the control principle of hardware-defined VC is a simple proportional

gain applied to the difference between command and membrane voltage; the

amplified voltage   is applied to the injecting electrode, but

split between the “access” or electrode resistance   and the membrane, i.e.,

 (Halliwell et al., 1994). Substituting  and rearranging, we see

that  ,  which,  at  the  high  gain  values  typical  of  hardware-

defined VC, is approximately   offset from . Implementing VC in soft-

ware, we could augment the proportional gain of hardware-defined VC with an

integral component to better control the achieved membrane voltage and bring it

closer to the intended value  . A software implementation also provides an

opportunity to add a differential component for a complete PID control setup.

Presently, our implementation is a very simple, user-adjusted system, calculating

a total clamp current from proportional, integral, and differential components in-

dependently.  The proportional component   is computed based on the user-

defined proportional gain  by Equation 5.12.

(Equation 5.12)

For the integral component, we accumulate running averages of the membrane

and command voltage , decaying with a user-defined constant , such

that  .  The component’s  current is then defined

with a user-defined gain  as shown in Equation 5.13.
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(Equation 5.13)

Finally, for the differential component, we keep a record of the last  values of

command and membrane potential,  approximating   and   with

their discretised versions based on the difference between the current values and

the values  clamp cycles earlier. With user-defined  and , the component is

then calculated as

(Equation 5.14)

I note that both the decay of the integral component’s running average as well as

the approximation of the differentials is, of course, dependent on the size of the

actual time steps, and thus perhaps less than perfect in reality.

 5.3.6.3 Application

In testing this feature, we encountered several difficulties. Firstly, tuning the con-

trol parameters is no trivial task. PID tuning (Zhuang & Atherton, 1993; Cominos

& Munro, 2002; Ang et al., 2005; Lennartson & Kristiansson, 2009) is a lively re-

search field with many different strategies for automatic tuning under current in-

vestigation, e.g. (Wang, 2017; Freire et al., 2018; Pinheiro de Moura et al., 2019;

Qi et al., 2019). In addition to being a difficult problem, PID tuning is made more

cumbersome still  by StdpC’s  strict  separation of  the  graphical  user  interface,

where  parameter  adjustments  are  made,  and  the  clamp  cycle  process;  for

changes to be applied, the clamp cycle has to be restarted.

Secondly, much like hardware-defined VC, software-defined VC has the potential

to “ring”, or cause uncontrolled oscillations that cause rapid cell death. This was

in part controlled by a fade-in period during which the total PID current is multi-

plied with a factor ramping slowly from 0 to 1. Ringing, detected as a total cur-

rent  amplitude  above  a  user-defined  threshold,  automatically  deactivates  the

voltage clamp module, thereby preserving the integrity of the neuron under ex-

perimentation.
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Thirdly, there are hard limits to the total current we can produce with common

digitiser and amplifier equipment. In particular, there is both a limit to the voltage

output of a digitiser or digital-to-analog signal converter (National Instruments

boards, for example, are typically limited to ±10 V analog output), and to the in-

put of typical amplifiers, enforced by their specification and electronics. This is in

contrast to the very high transient currents amplifiers can produce in voltage

clamp mode. Thus,  even with well-tuned parameters,  the step response of a

software-defined VC with PID may be less faithful than that of a proportional-

only VC amplifier, and depending on the size and morphology of the neuron un-

der investigation, controlling the entire membrane (known as “achieving space

clamp”) may be significantly more challenging, if not impossible.

Finally, since StdpC’s sampling step size varies, aligning data e.g. from several

voltage steps can be tricky, and there is some jitter to the timing e.g. of pre-

pulses. Though not prohibitive, these difficulties add to the cumbersome nature

of our software-defined VC.

 5.3.7 Additional tools

A number of other tools were added during development of the features detailed

above, presented here in no particular order.

To augment the software-defined voltage clamp module, we added a simple step

generator tool that outputs a command voltage time series according to a para-

metric sequence of single steps away from a holding potential.

Building on the modularised data source interface, we added a “Wire” module,

which copies data from an input channel to an output channel. The particular use

case we had in mind was to inject a predefined current into a cell by reading it

from a file to the SimulDAQ module, but the generic implementation certainly al-

lows other creative uses.
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In a similar vein, I added an “input conductance” tool, which interprets data read

from an input channel as a conductance value, and applies this conductance to an

input/output channel pair. This allows e.g. an arbitrary conductance time series

to be fed into the SimulDAQ module and replayed onto a patched membrane.

This feature was requested by Dr. Attila Szűcs, who is currently using it to replay

pre-recorded post-synaptic conductances in a dynamic clamp setup.

In support of the hybrid network extension, I added a preparatory phase to the

dynamic clamp cycle. The state of model neurons is not well defined at initialisa-

tion, since there are no parameters to set e.g. the gating state of channel mod-

els. Instead, state variables are generally initialised to 0 and allowed to evolve

from there. While this is unproblematic in standard dynamic clamp, model neur-

ons may take a while to settle into a sensible resting state. To allow this settling

to occur without interfering with the rest of the system (i.e. other models, or live

neurons), I augmented the run controls such that, rather than starting the clamp

cycle with all models active, users can choose to enter a “settling” mode, during

which only selected models are being integrated. The transition from settling

mode to the full clamp cycle is triggered either by a timer or by a direct com-

mand from the user.

Although StdpC has features to record data, many users choose to employ a

second computer for record keeping in an effort to maximise clamp cycle per-

formance. Starting a recording therefore requires user input on two separate ma-

chines. To allow users to consolidate their input, I added a simple “trigger” func-

tionality which, when primed, waits for a signal on a digital input channel to enter

the clamp cycle, or to move from settling mode to full clamp cycle mode.

Finally, in the spirit of liberating all modules from their hard-coded restrictions

on number, simultaneous activity, etc., I extended the spike generator tool. Ori-

ginally, this tool produced a set of 10 user-defined spike times, repeated (e.g.

triggered by a threshold crossing on a given input channel) without variation. I

replaced this with an arbitrary number of “bursts”, or lists of spike times of arbit-



153

rary length. Each triggering event now iterates through one burst, with success-

ive trigger or repetition cues cycling through the list of bursts. Additionally, there

is an interface to read and/or write spike timings from and to separate files, al-

lowing programmatic generation of arbitrarily complex burst sequences.

 5.3.8 Interface improvements

To support all of these new features, the graphical user interface of the software

also received a large overhaul. The main control panel (see Figure 5.5), which had

previously housed two rows of six model access panels (synapses and ionic con-

ductances, respectively), was extended to four scrolling, collapsible rows, con-

taining access panels for data sources, synaptic conductances, ionic conduct-

ances, and miscellaneous tools. The model configuration dialogs, for the most

part, were left largely unchanged, with only minor additions as necessary to sup-

port added features such as synaptic stochasticity, delay, or multiple channel as-

signments. To aid navigation and readability of the interface, modules support

user-defined labelling, in addition to the default type-and-index labelling scheme.

Perhaps the most striking change to the interface is the addition of a full-blown

graph tool in a separate tab, see Figure 5.6. The previous graphing interface was

implemented as a basic line-drawing with no interactive capability. While suffi-

cient, if cumbersome, for basic sanity checks of input and output data, this tool

was clearly due an upgrade once model neurons were implemented. For this, I

harnessed the QCustomPlot library, a tool that supports interactive data display

with zooming, panning, plotting on multiple axes, and other nifty features. The

graph tab  makes  generous  use  of  a  wide  range of  these  features,  providing

scrolling time series plots of an arbitrary number of relevant variables. Several

plots  with synchronised time axes can be stacked vertically,  or  multiple time

series plotted on the same axis.  Plottable values include all  input and output

channels, as well as the conductance value of any of the conductance models.
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Figure 5.5: StdpC interface comparison, old version (top) and new version (bottom).
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Figure 5.6: StdpC graph interface (top) and performance monitor (bottom). All axes are intuit-

ively controllable by mouse actions. The time axes of all plots are linked, moving and rescaling

together. During active use, data is displayed immediately, scrolling along as needed. The graph

interface allows an arbitrary number of graphs per plot, with colour, unit and scaling options,

and an arbitrary number of plots. Other mouse-based interactions such as adjusting the height

of each plot or temporarily hiding graphs by clicking their legend entry are also supported.
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The only major limitation of the graph interface is that plotted variables have to

be selected before starting the clamp cycle. The reason for this is a performance

consideration: Plotting, being a user interface task, is not performed in the clamp

cycle thread. Thus, to safely display the values of variables owned and manipu-

lated by the clamp cycle thread, these values have to be explicitly (and asyn-

chronously) transferred to the plotting functions. Although not computationally

heavy, this transmission could have a performance impact on the clamp cycle,

and is therefore limited to the initially selected variables, and to a user-defined

sampling frequency. Graphing can, of course, be turned off entirely, effectively

removing any performance impact this feature might have.

Next, I added three tools related to performance itself. The first is a performance

indicator in the main window’s status bar, updating once per second with the

latest clamp cycle frequency, calculated as the number of cycles over the past

second. This tool is computationally very light, involving only a counter and a

single data transmission per second in the clamp cycle thread, and is therefore

always on. A second, more detailed performance monitoring tool transmits the

counter value at a user-defined sampling frequency, keeping track also of min-

imum and maximum cycle period. These values can be displayed as a graph in a

separate tab, see Figure 5.6, and are not collected when the feature is turned off.

It may aid users in troubleshooting performance issues. Thirdly, users are given

the option of changing the priority of the clamp cycle thread, that is, of asking

the operating system to give a certain precedence to its operations over other

tasks. However, in my experience on a high-end computer (with 16 CPU cores

running at 3 GHz, and 32 GB of RAM), the primary limitation to clamp cycle fre-

quency is the data acquisition rate, that is, the time required by the National In-

struments or Digidata board to return the requested samples. Even with complex

models running, I typically see clamp cycle frequencies of around 20 kHz with

analog data acquisition, and 40-50 kHz without.
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Finally, the data output feature, which saves samples from any selected input or

output channel to a file at a user-defined frequency, was made much more flex-

ible. It now allows data to be written as text or binary output, with the output

format specified by the user. In binary format, each channel is written to a separ-

ate file, with an additional JSON (javascript object notation) file annotating the

dataset with metadata such as units, data format, etc. In addition, file naming is

dynamic, offering the capability to augment file names with time, date, or a con-

secutive index.

 5.3.9 Outlook

StdpC has come a long way, with many of my improvements already seeing good

use in active research, including independent projects by Naoki Kogo and Attila

Szűcs (personal communication). There are, however, a few goals I would like to

achieve in the short or medium term. Firstly, the most recent public release of

the software is some two years old and includes only a part of the features de-

tailed above. The main reason for not having released the rest of the features in a

new version is that I have not found the time to adequately document the new

features. StdpC includes a manual for non-technical users that should be up to

date with any official release. I hope to get around to this once this thesis is sub-

mitted.

Next, in the course of making the module selection flexible, I have disentangled

most of the module-specific code from the generic parts of the software. In prin-

ciple, this could eventually lead to a plugin architecture, where modules are sup-

plied as dynamically loaded library files rather than being hard-coded into the

main  executable.  This  would  open up the  possibility  for  technically  advanced

users to write, use, and share their own modules without needing to alter the

main body of the software. Though new territory for me, I believe that only a few

additions would need to be made to the code to support this.
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Then, we have had repeated requests to support newer Digidata boards, which

are not uncommon on electrophysiology setups. We have, in fact, attempted to

write drivers for the Digidata 1300 and 1400 series, but have not been able to

make satisfactory progress for several reasons. On the one hand, we only have

access to an almost 20 year old 1300-series board in the lab, so our ability to

test our drivers is limited. On the other hand, documentation of the driver pro-

gramming interface  (API)  is  very  sparse,  effectively  being  limited  to  undocu-

mented so-called “test bed” code, written for a specific (and long obsolete) com-

piler tool chain. Having failed personally and seen a computer science MSc stu-

dent fail to fully understand and use the API, I consider the future of Digidata

support uncertain.

Finally, as the closed-loop model fitting work matures, I would very much like to

integrate its functionality with StdpC. To date, the two projects have been en-

tirely separate, one running exclusively under Windows, the other exclusively un-

der Linux. Merging them, or possibly interfacing between the two projects at

runtime, could e.g. allow fitted models to be used immediately in a hybrid circuit.

To get there from the current state of the two pieces of software is not entirely

trivial, as both rely in part on specific operating system functionality; however, it

is certainly a possibility in the medium term future.
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 6 Discussion

In this thesis, I have presented two new approaches to neuron model optimisa-

tion, as well as a number of technical innovations in the area of dynamic clamp.

The majority of the focus of my work, and of this thesis, has been on the devel-

opment of MOSTIPS, a model optimisation method built around parameter sep-

aration using specific stimulus patterns. At its core, this approach is nothing new:

Manipulating the membrane under investigation and making targeted observa-

tions to isolate the contribution of individual parameters from the system’s over-

all behaviour has been the essence of model building and optimisation routines

from the very beginning of conductance-based modelling with Hodgkin and Hux-

ley (1952a-d).

The fundamental innovations of the approach presented here are twofold: Firstly,

the manipulation of the membrane is limited to electrical means, eschewing the

chemical or pharmacological means – channel blockers, ion replacements, etc. –

used in other methods. While this limits the separability of parameters, it pre-

vents the problem of having to use several, and potentially not identical, cells to

gather a complete data set, and is thus a critical ingredient to building models of

individual cells. In contrast to the one-channel-at-a-time approach followed by

Milescu et al.  (2008), which could be considered a single-cell analogue to the

classical channel blocker-based parameter separation approach, MOSTIPS does

not  perturb  any  other  cells  e.g.  in  a  linked  circuit,  and  leaves  the  reference

neuron intact for use after successful model optimisation.

Secondly, the particular form of the manipulation used, i.e. the set of voltage

clamp stimuli, is not designed by hand based on the experimenter’s knowledge of

the system. Instead, using the algorithms described in chapter 2, stimuli are de-

rived from the structure and expected parameters of the model itself. This is ne-

cessary in order to regain the parameter separation that was lost with the re-
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moval of pharmacological manipulations. Automating this process further makes

it possible in principle to apply this method to intractably complex models that

resist an intuitive understanding.

Algorithmic stimulus generation, targeted at achieving particular effects in partic-

ular models in service to parameter optimisation, has to my knowledge not been

attempted before. It is not entirely clear what the role of the generated stimuli is

in the success of the method – that is, whether parameter separation is achieved

as  intended  due  to  the  particular,  parameter-specific  form of  the  stimuli,  or

whether fitting success is mainly due to the wide range of model states tra-

versed by the stimuli, as the control results shown in chapter 4 suggest. How-

ever, the results reported in this thesis suggest that the general idea of optim-

ising stimuli to support parameter optimisation is a fruitful avenue of research

that should be further pursued.

 6.1 Delineating the method’s applicability

The primary goal of the method was to be able to optimise models to particular

expressions of a given a system, e.g. to individual neurons. To show that this is

possible, I have used two types of model systems, harnessing both computer

simulations of a variety of accurately controllable models and ectopic expression

of two previously characterised potassium channels in Xenopus oocytes to pro-

duce reference data. While the former showed promising outcomes, the latter

proved more difficult than expected, as the characterisation in literature did not

match the expressed currents satisfactorily. While channel modification effects –

through auxiliary subunits, primary subunit heteromerisation, or other pharmaco-

logical interactions – are not unknown, they are often not taken into account in

neuron modelling. Viewed at a high enough resolution, however, these kinds of

effects are likely to have a detrimental impact on the goal of neuron-specific

modelling.
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While I consider the model of a neuron type to be too low-resolution a picture,

unable to capture the necessary detail for some applications as laid out in the in-

troduction, the existence of variety at the level of channel protein complexes that

affects macroscopic current properties such as their kinetics raises the question

what the appropriate level of detail should be. Given the number of ion channel

subtypes and the plethora of regulation mechanisms present in neurons, there

are so many possible combinations that the mapping between ion channels and

model currents must necessarily be an approximation. When optimising models

to actual neurons e.g. to investigate individual variability or non-synaptic plasti-

city, I expect the appropriate level of detail to be similar to what I have used, that

is, close to the level of detail used to describe neuron types. Using this level of

specificity helps both to maintain continuity with existing models, and to prevent

overfitting to irrelevant details.

 6.2 K+ channels have two components in oocytes

For the purposes of testing the MOSTIPS method, I had chosen two potassium

channel constructs that, to the best of my literature search, had been reasonably

well characterised. As I have detailed in chapter 3, however, a close investigation

of the evoked voltage clamp currents showed a clear separation into two com-

ponents in both Kv2.1 and Kv1.4. While a more detailed investigation of this ef-

fect exists for Kv2.1 in  Xenopus oocytes  (McCrossan  et al., 2009), I am aware

neither of an equivalent report in Kv1.4, nor of a complete model of either chan-

nel separated into these components. Thus, while not a central part of my work,

I do consider the development of the two-component models a significant con-

tribution worth highlighting.

Although I have not investigated this further, I consider it possible that in oocytes

simultaneously expressing both Kv2.1 and Kv1.4, a yet more varied picture may

emerge upon closer inspection, for example due to heteromerisation of subunits

or lateral interactions between channels. I chose to avoid this level of complexity,
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however, as it would have made interpreting the results more difficult and poten-

tially raised issues of overfitting. 

 6.3 MOSTIPS is competitive in fitting predictive 

models

At this resolution, I have shown that the MOSTIPS method is capable of produ-

cing optimised models that are no less predictive of behaviour not seen during

optimisation than those optimised by a more common fitting approach. Encour-

agingly, the most difficult fit, optimising not just conductances and equilibrium

potentials,  but also kinetic parameters, showed the clearest advantage of the

new method over the old, indicating that MOSTIPS is capable of successfully

navigating a complex high-dimensional parameter space. That it is able to do so

seems to be due to a separation of parameters, not as expected in terms of the

stimuli and observations, but in terms of the actual fitting; one of the clearest

results is that fitting all parameters at once is often less effective than restricted

fitting, in which the directions along with candidate models can move through

parameter space are constrained.

The particular form of this constraint, however, does not appear to have a mater-

ial impact on fitting, seeing as both targeted stimulus/observation pairs and ran-

domised observations scattered across unrelated stimuli produced similar results

on most relevant measures. While this casts doubt over the notion that the stim-

uli designed by the MOSTIPS algorithm are capable of isolating parameters, it is

worth remembering that even the random observations tested are made in the

context of such stimuli. Since the MOSTIPS-derived stimuli are designed to drive

the system into very particular locations in state space, any observation made

during such stimulation is likely to encounter unusual, and thus highly informat-

ive, system states, which supports adequate fitting even in the absence of appro-

priate  parameter  targeting.  In  other  words,  although  the  stimulus  generation

pipeline failed to produce uniquely targeted stimulus/observation pairs that out-
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perform random observations within the same stimuli, I suspect that the stimuli

themselves  generate  more  informative  observations  than  e.g.  single  steps  of

comparable  duration,  and  thus  allow  the  fitting  algorithms  to  perform  ad-

equately.

This also suggests that part of the stimulus generation pipeline – namely, the ro-

bustness screening and selection procedures – may not be necessary at all to

produce comparable results. If so, this highlights the importance of the first step

of the pipeline, that is, of the cost function and stimulus search algorithm, and

vindicates the pains I have taken to hone these. In particular, it was the choice of

an illuminating algorithm like MAP-Elites that gave rise to stimuli that worked, as

opposed to earlier attempts using less stable novelty search or single-objective

genetic algorithms, the results of which were far less encouraging.

While parametrisations produced with MOSTIPS generalise similarly well as clas-

sically fitted models, the novel method has two key advantages over the classical

approach. Firstly, the amount of data required for MOSTIPS fitting is much smal-

ler, meaning that there is less interference in cellular activity, and higher informa-

tion gain per acquired sample. This is in contrast to classical methods where,

even with the three lengthy protocols I chose to use as shown in chapter 3, many

kinetic parameters remained ill constrained and had to be fit with computation-

ally expensive least-squares methods. Secondly, due to the highly parallelised

nature of the algorithm used, fitting  is faster than the iterative approach em-

ployed classically.  By reducing both data and time requirements, MOSTIPS or

similar  approaches  for  parameter  optimisation  may  be  useful  e.g.  for  high-

throughput screening of the effects of pharmacological agents on ion channel

function.

 6.4 MOSTIPS does not solve model specificity

However,  the  goal  of  the  MOSTIPS  project  was,  of  course,  not  to  produce

merely predictive models, but to produce models whose parameters directly re-
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flect the underlying system. In this respect, the results have fallen short of my

expectations. Neither in optimising against simulated targets, where we know

the true parameter values and can compare directly, nor in optimising against oo-

cytes, where the reference parameter values were derived from a careful altern-

ative fitting approach, did the MOSTIPS-optimised models very closely resemble

their reference. This casts doubt on whether this method a suitable tool to in-

vestigate e.g. individual variability: without strong evidence that the method re-

veals the “true” parameter values, i.e. values that reflect an underlying reality in

e.g. current densities or kinetics, its usefulness to study these underlying realities

is very limited. Thus, in its current state, I cannot recommend using the MOSTIPS

approach as a tool to investigate either individual variability or non-synaptic plas-

ticity.

 6.5 Closed-loop fitting as a way forward

The second method, presented in chapter 5, uses closed-loop feedback between

the reference neuron and a large population of candidate models. Based on a

more gentle stimulation approach, it is more suitable for optimisation to neurons

that form part of a circuit. Unlike the closed-loop approach followed by Reyes-

Sanchez et al.  (2018), however, it does not make any reference to circuit-level

properties, and indeed ignores any interactions the reference neuron might have

with coupled or pre-synaptic partners. Also, unlike the MOSTIPS approach, my

closed-loop method makes no direct attempt to achieve model specificity. On

the other hand, given the interaction between stimulus selection and the cost

function for candidate models, we should expect the method to reduce discrep-

ancies between reference and model not only in the input-output relationship,

but also in the internal  dynamics.  If  so,  the model specificity question would

solve itself by virtue of an ever-increasing resolution, driving parameter accuracy,

and revealing structural deficits in the model used with an inability to converge.
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While the method is likely not quite refined enough yet to achieve this, the early

results presented here are very encouraging.

 6.6 More tools for the field to use

The model optimisation approaches described in this thesis, as well as the exten-

sions to the dynamic clamp software StdpC, are tools in varying stages of devel-

opment and maturity. While neither of the model optimisation methods fully sat-

isfies the ideal aspirations outlined in the introduction – i.e., fast optimisation,

low impact on the target system, and accurate single-neuron specificity – they

both present promising approaches. Both methods, it seems to me, have the po-

tential to be or to become very valuable tools in the investigation of intrinsic vari-

ability and plasticity of neurons, and their interactions with circuit dynamics. I do

believe, however, that more work is required to improve the methods, and to ad-

apt them to specific systems and methods of inquiry. In contrast, most of the

various tools I have developed for dynamic clamp are already in active use. With

the updated interface and added flexibility, StdpC is well placed to play a major

role in making dynamic clamp a commonly used and easily accessible tool for any

neuroscientist working with single cells or small circuits.

 6.7 Future work

There are several avenues of further research that could build on the model op-

timisation approaches presented in thesis.  Firstly,  it  would be useful  to more

closely examine how the stimuli  lead to successful model fitting, and thereby

gain better insights into which parts of the stimulus generation pipeline are truly

fit for service, and which could be either omitted or improved.

Then, while I have focused here on piecewise linear stimuli, the optimisation par-

ticularly of kinetic parameters might be improved by augmenting the stimulus set

e.g. with superpositions of wave functions. Such stimuli were successfully used

by  (Beattie  et al., 2018) to  optimise the kinetic parameters of single channels.
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More generally,  stimulation based on wave functions opens the possibility  of

driving the membrane in temporally much more complex patterns without sub-

stantially increasing the search space, i.e., without having to reinvent the stimu-

lus generation algorithm suggested here.

Next, I have left a large space of territory unexplored in the area of model optim-

isation itself. The most important lesson learned in stimulus generation – that it

can be very beneficial to optimise not for a single best result, but to broaden the

perspective and allow many different solutions that are optimal within certain

limits – was not applied at all in model optimisation, where my underlying goal

remained that there should be one definitive parametrisation. However, not only

is this a flawed assumption, since part of the problem of model fitting in general

is precisely the degeneracy of the model structures employed, but in addition,

the use of algorithms that illuminate the search space, such as novelty search

(Lehman & Stanley, 2011) and MAP-Elites (Mouret & Clune, 2015), has benefits

beyond the plurality of their solutions. In particular,  as argued by  (Lehman &

Stanley, 2011), optimising for fitness alone risks the search getting stuck in local

optima, while illuminating algorithms explore the search space more widely, can

cross-pollinate between a variety of good solutions, and are thus more likely to

find even well-hidden paths to global optima. Using such an algorithm for model

optimisation would likely result in higher quality results, as well as potentially of-

fer opportunities for the experimenter to intervene, select appropriate subsets of

solutions, or better understand the solutions proposed by the algorithm.

Finally,  to gain better insight into how well a given parameter is constrained, it

would be very useful not only to track the point estimates of parameter values,

but rather their likely distribution in parameter space, using for example covari-

ance matrix adaptation (Hansen & Ostermeier, 2001; Vavoulis et al., 2012). The

additional information gained about how well, or how uncertainly, parameters are

constrained could be used both as a result in itself, and as a feedback about po-

tential mismatch between the model and the neuron investigated.
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Appendix

The following pages display the MOSTIPS stimuli used in chapter 4. With the ex-

ception of the final two figures (A.15 and A.16), which contain one Kv2.1k stimu-

lus set each, figures are organised in column-wise fashion. Each column contains

the full stimulus set for a model, stimulus generation algorithm, and weighting

scheme used during selection as indicated in the figure legend. Displayed are the

command voltages with a solid line plotted against time, with shading indicating

the  observation window(s) chosen by the stimulus generation algorithm. The

stimulus sets in figures A.7, A.8, A.11 and A.13 were each selected from one

MAP-Elites archive, using the indicated weighting scheme, but with slight differ-

ences in how the robustness correlation coefficient  was normalised. Results in

chapter 4 were combined across recordings from all three stimulus sets in these

cases.
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Figure A.1: Kv2.1 stimuli, cluster, left to right: weighted, unweighted, target-only
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Figure A.2: Kv2.1 stimuli, bubble, left to right: weighted, unweighted, target-only
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Figure A.3: HH stimuli, cluster, left to right: weighted, unweighted, target-only
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Figure A.4: HH stimuli, bubble, left to right: weighted, unweighted, target-only
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Figure A.5: B1 stimuli, cluster, left to right: weighted, unweighted, target-only
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Figure A.6: B1 stimuli, bubble, left to right: weighted, unweighted, target-only
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Figure A.7: Kv2.1x stimuli, cluster, weighted
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Figure A.8: Kv2.1x stimuli, bubble, weighted
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Figure A.9: Kv1.4x stimuli, cluster, left to right: weighted, unweighted, target-only
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Figure A.10: Kv1.4x stimuli, bubble, left to right: weighted, unweighted, target-only

gA_slow

-100
-75
-50
-25

0
25
50

V
o
lt

a
g
e
(m

V
)

gA_fast

-100
-75
-50
-25

0
25
50

V
o
lt

a
g
e
(m

V
)

EK

-100
-75
-50
-25

0
25
50

V
o
lt

a
g
e
(m

V
)

gl

-100
-75
-50
-25

0
25
50

V
o
lt

a
g
e
(m

V
)

El

-100
-75
-50
-25

0
25
50

V
o
lt

a
g
e
(m

V
)

C

0 200 400 600 800

Time(ms)

-100
-75
-50
-25

0
25
50

V
o
lt

a
g
e
(m

V
)

gA_slow

gA_fast

EK

gl

El

C

0 200 400 600 800

Time(ms)

gA_slow

gA_fast

EK

gl

El

C

0 200 400 600 800

Time(ms)



A-12

Figure A.11: Kboth stimuli, cluster, weighted
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Figure A.12: Kboth stimuli, cluster, left: unweighted, right: target-only
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Figure A.13: Kboth stimuli, bubble, weighted
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Figure A.14: Kboth stimuli, bubble, left: unweighted, right: target-only
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Figure A.15: Kv2.1k stimuli, cluster, weighted
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Figure A.16: Kv2.1k stimuli, bubble, weighted
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