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Summary

In the context of the second quantum revolution, the field of quantum sensors is
in full expansion. One of the corner stones of this field is inertial sensing through
cold-atom interferometry which provides sensors of high precision and stability. Size
reduction is one of the main tasks in order to develop atomic inertial sensors that
could apply to inertial navigation: this leads to the development of atom-chips. It
is with this context in mind that this thesis investigates an atom-chip gyro in a col-
laboration between the University of Sussex and l’Observatoire de Paris (France).
The experimental work is hosted at l’Observatoire de Paris where we worked on
atom-chip fabrication, comparing metal deposition by evaporation and by electro-
plating, and paying attention on the wire’s roughness as it impacts on the magnetic
waveguide and therefore the atoms. But the wire’s roughness is only one source of
noise to the magnetic waveguide. Low noise current supplies are also studied and
characterised. Furthermore, using the density operator and coherent state basis we
develop a simple and elegant formalism under a 1D approximation. We use a new
approach to show how temperature influences the propagation of a wavepacket by
increasing the spatial spreading while decreasing the wavepacket coherence. We also
built a model for the pumping dynamics of a cold-atom experiment in a single va-
cuum chamber which matches experimental data from l’Observatoire de Paris and
is an important step to work on size and the dead time reduction of sensors. All
these different steps present in this thesis take us towards a working inertial sensor.
While working on noise characterisation which will always remain a fundamental
issue in building an inertial sensor, this thesis presents new models and approaches
that may benefit the development of quantum technologies.
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Chapter 1

Introduction

“We are currently in the midst of a second quantum revolution. The first quantum

revolution gave us new rules that govern physical reality. The second quantum re-

volution will take these rules and use them to develop new technologies.” This is a

famous phrase in the abstract of Quantum technology: the second quantum revolu-

tion an article by Jonathan P. Dowling & al in 2003 [1]. In 2014 the UK Quantum

Technology hubs were established and a few years after in May 2016 the Quantum

Manifesto was published [2], a call to launch Europe’s initiative in quantum tech-

nologies. Indeed the second quantum revolution is upon us, and it is in the context

of a dynamic and effervescent European quantum community that this PhD thesis

started (in November 2015). One of the main interests in quantum technology, and

in this PhD thesis, is quantum sensing [3]. Within the vast, exciting and growing

field of quantum sensing, this work focuses on inertial sensing using cold atom inter-

ferometry, and more specifically the atom-chip based atomic gyroscope. Gyroscopes,

also referred to as just gyros, can be applied in geophysical studies and fundamental

tests of physics like the geodetic effect. However, since the first gyro application

with Anschutz’s gyrocompass in 1906 [4], gyros had one major application, namely

navigation. This is indeed the purpose of this study, to work towards a quantum

gyroscope through cold atom interferometry on atom-chips with application to in-

ertial navigation and was done in a collaboration between the Observatoire de Paris

and the University of Sussex.
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1.1 Gyroscopes and Sagnac effect

Gyros cover three applications, gyrocompass determining the earth’s rotational axis

and gyroscopes determining both the angular position (relatively to the gyroscope’s

angular momentum) and the angular velocity (where a distinction is made in French

as a “gyromètre” gives the angular speed [5]). There are two types of gyroscope,

mechanical gyroscopes and Sagnac effect gyroscopes. Mechanical gyroscopes are

either based on spinning wheels and conservations of angular momentum, or based

on vibrating structures and Coriolis effects. Coriolis vibrating gyroscopes [6] mainly

take the form of microelectromechanical Systems (MEMS) and are found in everyday

instruments such as smartphones. We will, however, be focusing on Sagnac effect

[7] gyroscopes. Based on wave mechanics, they benefit from the incredible precision

achievable through interferometry. There are two types of gyroscope that use the

Sagnac effect: optical gyroscopes and atomic gyroscopes.

Over a century after George Sagnac’s experiment, the Sagnac effect is today

widely applied in gyroscope to measure an angular velocity Ω [8]. In the Sagnac

effect, two coherent waves, conter-propagating in an enclosed area A will build a

phase difference φSagnac due to the rotation of the different paths, as you can see in

Fig. 1.1. We can write the following relation between the phase difference φSagnac

and Ω:

φSagnac =
4πE

hc2
~A.~Ω, (1.1)

where E is the energy of the particle, E = hν for a photon of frequency ν and

E = mc2 for a particle of rest mass m.

With the rise of atomic matter-wave interferometry in the 1990s [9, 10, 11],

Sagnac effect with atomic matter-wave was first demonstrated in Ref. [12]. This first

demonstration opened the path for more than 20 years of development in atomic

Sagnac interferometers [13]. The biggest interest of using atomic matter-waves rely

on E from Eq. (1.1), indeed if we compare the phase difference generated by an

optical photon to the phase difference generated by an atomic matter-wave, we

see that for a same area A the phase difference generated by the atomic Sagnac

interferometer will be ' 1011 times higher. Therefore, for a same sensitivity to a

rotation velocity, atomic gyroscopes allow for more compact setups in contrast to

optical gyroscopes.

2



Figure 1.1: Schematic of a Sagnac interferometer in a Mach-Zender configuration.

The atoms come from the left (blue arrow), and is split into two clouds by a π/2

pulse (50/50 beam splitter pulse). The two clouds, with different momenta, will

follow different paths (colored lines, colors illustrate different momenta). A π-pulse

(mirror pulse) will then change the clouds momenta, their paths will then form a

sensing area A, sensitive to an angular velocity ~Ω which is perpendicular to the area

A. A second π/2-pulse will act as a second beam splitter, mixing the clouds for an

interference pattern. The interference will been seen in terms of population ratio of

the two clouds after the second π/2 pulse. The Sagnac phase shift in Eq. (1.1) will

give a population ratio different to the expected 50/50 beam splitter.

Moreover, in Ref. [13], it is shown that within Sagnac atomic interferometers,

it is the experiment based on cold atoms which show the best predisposition to

compactness. Therefore cold atom gyroscopes are suitable for our project to create

an atomic inertial sensor, but further investigation into size efficiencies are required.

For instance, the SYRTE’s gyrometer setup (at l’Observatoire de Paris) [13, 14]

uses an atomic fountain not compatible with our compact sensor, since it adds

considerable length through free fall motion of the clouds.

3



1.2 Towards the use of waveguides

Beside our goal to achieve a portable navigation device, gyroscopes need to be as

compact as possible in order to reduce systematic error. Indeed, in addition to being

sensitive, a gyroscope needs to be accurate. By reducing the size of the gyroscope,

we reduce systematic phase shifts due to stray fields and mechanical vibrations.

However, according to Eq. (1.1) the Sagnac phase shift φSagnac, which determine

the sensitivity of the gyroscopes, is proportional to the sensing area A. Therefore

reducing the size of the device, which generally leads to reducing the sensing area,

leads to a reduction the device’s sensitivity. However, there is margin to reduce an

atomic gyroscope size without reducing the sensing area by just addressing the in-

terferometer configuration. For example, the gyroscope at SYRTE, with a fountain

configuration, presents a surface area of 11 cm2 for a height (between the Raman

beams) of 59 cm [14], which translates to a geometry with a high perimeter length

for a given area. We can then address the size reduction of atomic gyroscope re-

ducing the perimeter of the sensing area. It is then natural to aim for a circular

configuration of the atomic interferometer as it is the geometry that minimizes the

perimeter for a given area. The use of a magnetic atom waveguide then becomes

the obvious solution in order to manipulate the atoms through a circular path. Fur-

thermore, while using waveguides, we can partially compensate a physical reduction

of the sensing area by making the atoms go through multiples revolutions, virtually

increasing the effective sensing area as it is done for Fibre Optic Gyroscope (FOG)

[15]. Moreover, a waveguide would allow us to obtain longer interrogation times

than atomic fountains which are limited by free fall paths. The interrogation time

would then be determined by the initial kick transferred to the atoms. It would also

give us a better interferometric contrast due to low velocity scattering of the guided

cold atoms.

Several works in the cold atom field are aiming towards the production of circular

waveguides (i.e. ring/toroidal traps). We can note three major techniques to produce

them: magnetic traps [16, 17, 18], optical potentials [19, 20, 21, 22], and Radio-

Frequency (RF) dressing potentials [23, 24, 25, 26, 27, 28]. Between those three

techniques, RF dressing potentials are well adapted to atom-chip technology and

miniaturisation.
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1.3 An atom-chip gyro

This thesis is a collaboration project between the University of Sussex and SYRTE

(at l’Observatoire de Paris) with the ambition to work, by both theory and ex-

periment, towards the realisation of an atom-chip gyroscope compatible for inertial

navigation. Atomic inertial sensors have the hope to revolutionise the precision of

inertial measurements in the same way that atom-clocks have revolutionised time

measurement. There is, however, a huge obstacle to over-come before such a revolu-

tion: the miniaturisation of atomic sensors. It is by addressing the miniaturisation

of cold atom experiments that devices such as atom-chips have been intensively pur-

sued. Twenty years after the demonstration of the first atom-chips [29] by Jakob

Reichel, atom-chip have spread and grown in the field of cold atoms, both in terms of

technological devices and fundamental physics [30]. Atom-chips have even reached

space, in the International Space Station, where NASA’s Cold Atom Lab (CAL)

is performing cold atom experiments using atom-chips [31]. Furthermore, with re-

gards to technical applications in vehicles, atom-chips show that they are robust and

can operate through important stresses. For example a Bose-Einstein Condensate

(BEC) was realized and used to perform atomic interferometry with an atom-chip

in a sounding rocket: the MAIUS project [32].

In our specific case, an “atom-chip” experiment for rotation sensing was demon-

strated in Ref. [33] by Mara Prentiss’ team. Their “atom-chip” is made using wires

and permalloy foils of mm scale, such devices are often called mesoscopic atom-chips

[34] as they are not produced by microfabrication processes. Mara Prentiss’ team

demonstrated a moving linear guide based atom interferometer with an ‘8 loop’

shaped sensing area of 0.2 mm2. Unfortunately their device showed a standard de-

viation of the phase readout ' 0.4 rad. There is still a long way to go to before

achieving a working atom-chip gyro used in inertial navigation.

An ongoing experimental project, GyrAChip, aims to develop a Gyroscope on

an Atom-Chip. It is with this project, hosted by SYRTE, that the University of

Sussex have collaborated for the work presented in this thesis. The project is built

on a design proposal for a GyrAChip [35, 36], capable of reaching a sensitivity of the

order of 10−7 rad · s−1/
√

Hz. The proposal considers the realization of a microwire

pattern using three wires in a circular geometry capable of creating a circular non-

5



dissipative magnetic guide as you can see in Fig. 1.2. With a radius of 500 µm for the

central wire, the parallel outer wires have a 13 µm separation from the central wire.

The outer wires provide a bias magnetic field with a current of −123 mA whereas

the central wire has a current of 121 mA, this pattern would generate a confining

potential for the atoms. This potential would confine atoms 13 µm above the chip

substrate. These currents would be modulated, reducing the induced decoherence

during the propagation of the cloud due to the roughness of the wires [37].

Figure 1.2: Three wire design (for a GyrAChip prototype, taken from [36]) in order

to create a circular waveguide (light blue). The entry point E and the exit point

S are physically at the same point. The effect of the matter-wave beam splitter is

represented by the wavevectors k1 and k2.

In this ring waveguide, a cold atom cloud of N atoms would be split at the point

E (entry) (Fig. 1.2), by Bragg or Raman beam splitters, into two clouds propagating

in opposite directions. After a time 2T (which depends on the launch velocity) the

two clouds reach the exit point S, located at the same place of the ring as E (Fig. 1.2),

where another beam splitter is applied. The outcome of the interferometer would

be two conter-propagating clouds, with a probability P± for a atom to be in one of

those clouds, plus a static cloud, with a probability P0 for the atoms to be in this

6



cloud, written as follows:

P± =
1

2
[1− η cos(φSagnac + φ)], (1.2)

P0 =
1

2
[1 + η cos(φSagnac + φ)], (1.3)

where η is the contrast of the interferometer and φ is an additional phase which

would arise from the experimental parameters as is discussed in Ref. [38]. After

a time smaller than T the population difference between the clouds is measured,

carrying a signature of the rotation Ω through φSagnac as showed in Eq. 1.3.

There is still a lot of work in this thesis before the first rotation measurement with

a GyrAChip will be made. For example, there is a discussion on the use of thermal

atom clouds instead of BECs, on how they would propagate in a ring waveguide and

if we would be able to use them for inertial sensing. We then address in Chapter 2

the effect of temperature on a wavepacket propagation. We address in Chapter 3

the effect of temperature on the interference fringes. Moreover, a GyrAChip with a

wire pattern for a ring waveguide is still to be manufactured. Therefore atom-chip

fabrication at l’Observatoire de Paris is presented in Chapter 4 where we focus on

how to build thick wires with the smallest surface roughness possible. The aspect

of the current noise is also addressed in Chapter 5 where we study low noise current

generators. And finally, the vacuum system is also addressed in Chapter 6 in order

to study the question of an atomic sensor dead-time, due to the loading of atoms in

traps. The work presented in Chapter 6 was published in Ref. [39] in July 2019.
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Chapter 2

Thermal wavepacket

In the previous chapter, we have presented the idea of using atom-chip based gyro-

meters for inertial navigation by generating waveguides in form of a 500 µm radius

ring. However, there is a major concern as to how atoms will spread on such scales,

knowing that atoms in ring waveguides tends to spread and occupy all the ring

[22, 28, 17]. A key question is: what are the required conditions for an atom, rep-

resented by wavepacket, to do one or more turns in the ring waveguide, while, still

being able to produce interference fringes?

There are, of course, different parameters to take into account such as the launch-

ing speed, the size of the ring, the matter-wave properties and so on; most of these

parameters have already been studied [38]. One parameters that is of interest to us

is the temperature and its effect on the propagation of atoms. With this purpose in

mind, we will study the propagation of a 1D free wavepacket as an approximation of

the ring waveguide, which can be considered as a 2D trap in the radial direction and

a 1D free space on the azimuthal direction. Our approach is to use the formalism of

density operators with the Glauber-Sudarshan P-representation, where we can write

the phase-space thermal distribution of our quantum system in the coherent state

basis. This would then be equivalent to consider our density operator as a mixed

state, a superposition, of coherent wavepackets ψα(x, t):
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ρn̄(x, x′, t) = 〈x|ρ̂n̄|x′〉

=

∫∫
P(α) 〈x|α〉 〈α|x′〉 d2α

=

∫∫
P(α)ψα(x, t)ψ†α(x′, t) d2α (2.1)

With |α〉 being the coherent state, α being the eigenvalue of |α〉 and P(α) being the

Glauber-Sudarshan P-function, defined as follows (Appendix A):

P(α) =
1

πn̄
exp

(
−|α|

2

n̄

)
. (2.2)

Where n̄ is the expected value of the number operator, n̄ contains the temperature

information according to the following formula:

n̄ =
1

exp
(

~ω
kBT

)
− 1

. (2.3)

From this, we will first consider a pure-state wavepacket and calculate its density

operator. This calculation will be followed by the calculation of the density operator

of a mixed state: a superposition of coherent wavepackets with a P(α) distribution.

2.1 The pure-state density operator

Before applying the P-function we will study our system as a pure state: a Gaussian

solution to the 1D free space Schrödinger equation, ψ0. Therefore, let’s take a look

at a Gaussian wavepacket ψ0 for an atom of mass m, initially positioned at x0 = 0

and with an initial momentum ~k0. The initial momentum spread, ∆k, is defined

as the Gaussian variance in the momentum space. Therefore we have for ψ0 (from

Appendix B):

ψ0(x, t) =
(√

2π∆x(t)
)−1/2

exp

[
−(x− v0t)

2

4∆x(t)2

]

× exp

[
i
v∆t

∆x(0)

(x− v0t)
2

4∆x(t)2
+ i(k0x− ω0t)−

i

2
cos−1

(
1

2∆x(t)∆k

)]
(2.4)

Where we define the following quantities:
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ω0 =
~k2

0

2m
v0 =

~k0

m
(2.5)

v∆ =
~∆k

m
∆x(t = 0) =

1

2∆k
(2.6)

∆x(t)2 = ∆x(0)2 + (v∆t)
2 (2.7)

Therefore the density operator for a pure state 1D free propagating wavepacket

is:

ρ0(x, x′, t) = 〈x| |ψ0〉〈ψ0| |x′〉 (2.8)

=ψ0(x, t)× ψ†0(x′, t) (2.9)

=
1√

2π∆x(t)
exp

[
−(x− v0t)

2 + (x′ − v0t)
2

4∆x(t)2

]

× exp

[
ik0(x− x′) +

iv∆t

4∆x(t)2∆x(0)

(
[x− v0t]

2 − [x′ − v0t]
2
)]

(2.10)

=
1√

2π∆x(t)
exp

[
−([x− v0t] + [x′ − v0t])

2

8∆x(t)2

]

× exp

[
−([x− v0t]− [x′ − v0t])

2

8∆x(t)2

]
× exp[ik0([x− v0t]− [x′ − v0t])]

× exp

[
2i

v∆t

∆x(0)

([x− v0t] + [x′ − v0t])([x− v0t]− [x′ − v0t])

8∆x(t)2

]
(2.11)

We can then plot ρ̂0 and see the propagation of a pure-state wavepacket in a

(x, x′) space which represents the density matrix elements in a spatial basis. The

real physical 1D space is then the diagonal of the density matrix, when x = x′.

Using Eq. (2.11) we can plot |ρ0(x, x′, t)| and arg(ρ0(x, x′, t)), in Fig. 2.1, as they are

directly expressed. Let us note that when x = x′, we have ρ0(x, x, t) = |ψ0(x, t)|2,

we can then directly see the probability density as a Gaussian distribution. Also,

|ρ0(x, x′, t)| in Fig. 2.1 appear as a perfectly symmetric 2D Guassian, which can also

be seen in Eq. (2.11). The parameter used in Fig. 2.1 can be seen in Table. 2.1 using

the data present in Ref. [40] for the D2 optical transition of 87Rb.
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Figure 2.1: Plot of ρ0(x, x′, t) at three different times. Left column, plots of

|ρ0(x, x′, t)|, we see a 2D Gaussian propagating on the diagonal and spreading

on (x, x′). Right Column, plots of arg(ρ0(x, x′, t)), we can see nodes of values

(0, π, 2π) increasing in size as t increase. Let us note that on the diagonal (x = x′),

arg(ρ0(x, x′, t)) = 0.
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Our parameter Value used Reference

v0 2vr = 2× 5.8845× 10−3 m · s−1 [40]

ω 2π × 100 Hz arbitrary

m 1.44316060× 10−25 Kg [40]

~ 1.054571× 10−34 J · s [40]

kB 1.380650× 10−23 J ·K−1 [40]

Table 2.1: Table of parameters used in Fig. 2.1 for the D2 optical transition of 87Rb.

The formalism used to present ρ0(x, x′, t) was specifically chosen as it will be

useful to see intuitively the impact of temperature on a propagating wavepacket,

as well as, making the calculation relatively straight-forward. In this formalism, we

can separate ρ0(x, x′, t) into different terms with a direct physical meaning:

N0(t) =
1√

2π∆x(t)
, (2.12)

G+
0 (x, x′, t) = exp

[
−([x− v0t] + [x′ − v0t])

2

8∆x(t)2

]
, (2.13)

G−0 (x, x′, t) = exp

[
−([x− v0t]− [x′ − v0t])

2

8∆x(t)2

]
, (2.14)

φ0(x, x′, t) =k0([x− v0t]− [x′ − v0t])

+ 2
v∆t

∆x(0)

([x− v0t] + [x′ − v0t])([x− v0t]− [x′ − v0t])

8∆x(t)2
. (2.15)

These terms are: the normalisation factor N0(t), the diagonal Gaussian G+
0 (x, x′, t),

the anti-diagonal Gaussian G−0 (x, x′, t) and the phase φ0(x, x′, t). We can then write

ρ0(x, x′, t), using these terms as follows:

ρ0(x, x′, t) = N0(t)G+
0 (x, x′, t)G−0 (x, x′, t) exp(iφ0(x, x′, t)) . (2.16)
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2.2 A mixed state: superpositions of coherent wave-

packets

Let us remind that our approach is to simplify the study of atoms propagating in a

waveguide by the propagation of a single wavepacket in a 1D free space. However,

instants before atoms are freed in the waveguide (at t = 0), they are trapped (and

cooled) in a standard 3D harmonic potential. The harmonic potential will not only

determine the initial conditions of the wavepacket but also the coherent states basis.

Indeed, if we define ω as the initial harmonic potential frequency (not to be confused

with ω0 from Eq. (2.4)), then we can link
{
â†, â

}
to {x̂, p̂} as follows:

â ≡
√

1

2mω~
(mωx̂+ ip̂) â† ≡

√
1

2mω~
(mωx̂− ip̂) , (2.17)

Therefore, giving new definition to the position and momentum operators:

x̂ =

√
~

2mω

(
â+ â†

)
p̂ = −i

√
mω~

2

(
â− â†

)
. (2.18)

Now, we can link the quantities {xα, kα} to {αRe, αIm} to the expressions xα = 〈x̂〉α
and ~kα = 〈p̂〉α using αRe = Re{α} and αIm = Im{α}, as follows:

xα = 〈α|x̂|α〉 =

√
~

2mω
(α + α∗) =

√
2~
mω
× αRe, (2.19)

and

~kα = 〈α|p̂|α〉 = −i
√
mω~

2
(α− α∗) = ~

√
2mω

~
× αIm. (2.20)

Let us now introduce now the harmonic trap length aho:

aho =

√
~
mω

. (2.21)

Therefore, since we are considering our atoms to be trapped in an harmonic potential

before they start propagating in the waveguide (simplified as a 1D free space), at

t = 0, then the initial spreading ∆x(t = 0) of our 1D wavepacket is determined by

the harmonic trap length aho as follow[41]:

∆x(t = 0) =
aho√

2
. (2.22)
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Therefore we can re-write the quantities presents in Eq. (2.4) as:

v∆t

∆x(0)
=ωt, ∆x(t)2 =

a2
ho

2

(
1 + [ωt]2

)
. (2.23)

And {xα, kα} from Eq. (2.19) and Eq. (2.20) as:

xα =
√

2ahoαRe, kα =

√
2

aho

αIm. (2.24)

Therefore, by linking
{
â, â†

}
to {x̂, p̂} we are writing our wavepacket in a coherent

state basis, then converting it back to spatial basis through the coherent wavepacket

ψα(x, t):

ψα(x, t) =
(√

2π∆x(t)
)−1/2

exp

[
−([x− v0t]− [xα + vαt])

2

4∆x(t)2

]
× exp[i[k0 + kα][x− xα]− iω0+αt]

× exp

[
i
v∆t

∆x(0)

([x− v0t]− [xα + vαt])
2

4∆x(t)2
− i

2
cos−1

(
1

2∆x(t)∆k

)]
, (2.25)

where ω0+α = ~(k0 + kα)2/(2m), vα = ~kα/m and d2α = dαRe dαIm = dxα dkα /2.

Then, the idea here, is to represent ψα(x, t) as a solution of the 1D free space

Schrödinger equation, as much as ψ0, both represented in a phase-space represent-

ation as you can see in Fig. 2.2. In this representation, ψ0 is just a point (red

point in Fig. 2.2) of coordinates {x0, k0}, therefore ψα is the point of coordinate

{x0 + xα, k0 + kα} (blue point in Fig. 2.2). Following this idea, we can represent

Eq. (2.1) in Fig. 2.2 as a sum of all the blue points (centered on around the red

point) with a distribution P(α). By doing so, we go from the density operator ρ̂0 of

a pure-state, represented by the red point (in Fig. 2.2), to the density operator ρ̂n̄

of a mixed-state. The temperature information in this mixed-state density operator

is then carried by n̄ through the action of P(α) working as a distribution function.

Therefore, starting from Eq. (2.1) we can calculate ψα(x, t)ψ†α(x′, t):
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a) b) c)

Figure 2.2: Phase-space representation. From left to right: (a), the red point rep-

resents ψ0, (b), from ψ0 we represent the coherent wavepacket ψα as a blue point,

(c), we then represent a thermal mixed state as a sum of all the blue point centered

in the red point with a P(α) distribution.

ψα(x, t)ψ†α(x′, t) =(√
2π∆x(t)

)−1

exp

[
−([x− v0t]− [xα + vαt])

2

4∆x(t)2

]

× exp

[
−([x′ − v0t]− [xα + vαt])

2

4∆x(t)2

]
× exp[i(k0 + kα)(x− xα)− iω0+αt− i(k0 + kα)(x′ − xα) + iω0+αt]

× exp

[
i
v∆t

∆x(0)

([x− v0t]− [xα + vαt])
2

4∆x(t)2
− i v∆t

∆x(0)

([x′ − v0t]− [xα + vαt])
2

4∆x(t)2

]

× exp

[
− i

2
cos−1

(
1

2∆x(t)∆k

)
+
i

2
cos−1

(
1

2∆x(t)∆k

)]
(2.26)

=
(√

2π∆x(t)
)−1

exp

[
−([x− v0t]− [xα + vαt])

2

4∆x(t)2

]

× exp

[
−([x′ − v0t]− [xα + vαt])

2

4∆x(t)2

]
× exp[i(k0 + kα)(x− x′)]

× exp

[
i
v∆t

∆x(0)

(
([x− v0t]− [xα + vαt])

2

4∆x(t)2
− ([x′ − v0t]− [xα + vαt])

2

4∆x(t)2

)]
.

(2.27)

Since the integration in Eq. (2.1) is done over {xα, kα} we can separate out the

terms that are independent of these. By doing so, we recognize ρ0(x, x′, t) from Eq

(2.16) multiplied by the terms that hold the temperature information. Therefore

using Eq (2.2) we can write:
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ρn̄(x, x′, t) =ρ0(x, x′, t)
1

πn̄

×
∫∫

exp

[
− x2

α

2n̄a2
ho

]
exp

[
−a

2
hok

2
α

2n̄

]
exp[ikα(x− x′)]

× exp

[
−1

4∆x(t)2

(
+ 2x2

α + 4xαvαt+ 2v2
αt

2

− 2xα[(x− v0t) + (x′ − v0t)]

− 2vαt[(x− v0t) + (x′ − v0t)]

)]

× exp

[
v∆t

∆x(0)

i

4∆x(t)2

(
− 2xα[(x− v0t)− (x′ − v0t)]

− 2vαt[(x− v0t)− (x′ − v0t)]

)]
dxα dkα

2
.

(2.28)

We observe that ρn̄(x, x′, t) is written as ρ0(x, x′, t) times a complex number. We

identify this complex number to be a n-dimensional Gaussian integral with a linear

term. This Gaussian integral can be solved in the following canonical form:

∫
exp

[
−1

2

n∑
i,j

Aijzizj+
∑
i

Bizi

]
dnz

=

√
(2π)n

det[A]
exp

(
1

2
~BTA−1~B

)
(2.29)

=

√
(2π)n

det[A]
exp

(
1

2

1

det[A]

(
B2

1A2,2 + B2
2A1,1 − 2B1B2A1,2

))
,

(2.30)

where we identify z1 = xα, z2 = kα and n = 2. Meaning we can easily look for the

matrix A and the vector ~B, and look to solve the integral on the coherent states.

2.2.1 The matrix A and vector ~B

Knowing that vα = ~kα/m, by identification, we can look at the coefficients for the

x2
α, k2

α and xαkα terms in order to find the elements of the matrix A.
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For x2
α we see:

−1

2
A1,1 =− 1

2n̄a2
ho

− 1

2∆x(t)2

=− 1

2

1

a2
ho

(
1

n̄
+

a2
ho

∆x(t)2

)
, (2.31)

for k2
α we see:

−1

2
A2,2 =− a2

ho

2n̄
− t2

2∆x(t)2

~2

m2

=− 1

2
a2

ho

(
1

n̄
+ [ωt]2

a2
ho

∆x(t)2

)
, (2.32)

and for xαkα we see:

−1

2
A1,2 × 2 =− ~t

m∆x(t)2

=− a2
ho

∆x(t)2
ωt. (2.33)

This lead us to write the matrix A(t) in the following form:

A(t) =

 1
a2

ho

(
1
n̄

+
a2

ho

∆x(t)2

)
a2

ho

∆x(t)2ωt

a2
ho

∆x(t)2ωt a2
ho

(
1
n̄

+
a2

ho

∆x(t)2 [ωt]2
)
 . (2.34)

Now we can look at the linear terms for the coefficients of xα and kα in order to

find the elements for the vector ~B:

For xα we see:

B1 =
1

2∆x(t)2
([x− v0t] + [x′ − v0t])− i

v∆t

2∆x(t)2∆x(0)
([x− v0t]− [x′ − v0t])

=
1

2∆x(t)2
([(x− v0t) + (x′ − v0t)]− iωt[(x− v0t)− (x′ − v0t)]), (2.35)

and for kα we see:

B2 =i(x− x′) +
~t

2m∆x(t)2
([x− v0t] + [x′ − v0t])

− i ~t
2m∆x(t)2∆x(0)

([x− v0t]− [x′ − v0t])

=
1

2∆x(t)2

(
ωta2

ho[(x− v0t) + (x′ − v0t)] + ia2
ho[(v0t)− (x′ − v0t)]

)
. (2.36)

We can, therefore, write the vector ~B(x, x′, t) in the following form:

~B(x, x′, t) =
1

2∆x(t)2

 [(x− v0t) + (x′ − v0t)]− iωt[(x− v0t)− (x′ − v0t)]

a2
hoωt[(x− v0t) + (x′ − v0t)] + ia2

ho[(x− v0t)− (x′ − v0t)]

 .

(2.37)
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Then, finally, using matrix A(t) and vector ~B(x, x′, t) we can write ρn̄(x, x′, t) in the

form of a pure state term multiplied and modified by a thermal term as follows:

ρn̄(x, x′, t) = ρ0(x, x′, t)× 1

n̄
√

det[A(t)]
exp

[
1

2
~B(x, x′, t)TA(t)−1~B(x, x′, t)

]
.

(2.38)

Using Eq. (2.38) we can then plot the thermal wavepacket propagation, as you

can see in Fig. 2.3 (using the parameters of Table 2.1), making the results comparable

to Fig. 2.1. We clearly see a significant increase in the standard deviation on the

diagonal axis and a reduction of the standard deviation on the anti-diagonal axis.

This mean that we can clearly describe ρn̄(x, x′, t) with a diagonal Gaussian and

an anti-diagonal Gaussian, as in the formalism that we have selected for Eq. (2.16).

Let us also note that the phase of ρn̄(x, x′, t) is calculated by the function ‘angle’

function of Matlab, which uses the real and imaginary parts of ρn̄(x, x′, t). Therefore,

as those parts converge to 0 far from the diagonal, it is only on a specific region

of the (x, x′) space that the phase of ρn̄(x, x′, t) can be accurately calculated. Still,

the phase of ρn̄(x, x′, t) is really similar to the phase of ρ0(x, x′, t) as the (0, π, 2π)

nodes appear to remain on the same position and are of the same size. This lead

us to look for a more canonical form for ρn̄(x, x′, t) with the same formalism as for

Eq. (2.16), in this formalism ρn̄(x, x′, t) could be written as follows:

ρn̄(x, x′, t) = Nn̄(t)G+
n̄ (x, x′, t)G−n̄ (x, x′, t) exp(iφn̄(x, x′, t)) . (2.39)

18



Figure 2.3: Plot of ρn̄(x, x′, t) at three different times and for T = 10 nK. Left

column, plots of |ρn̄(x, x′, t)|, we see a 2D elliptical Gaussian propagating on the

diagonal and spreading on (x, x′). Right column, plots of arg(ρ0(x, x′, t)), we can

see nodes of values (0, π, 2π) increasing in size as t increase. Let us note that the

phase is calculated from the real and imaginary parts of ρn̄(x, x′, t), therefore as they

both converge to 0, only in a certain region of (x, x′) can they be calculated.
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2.2.2 A canonical formalism: Nn̄(t)

We know that ρ0(x, x, t) = |ψ0(x, t)|2, which is in a normalised Gaussian canon-

ical form. In this canonical form, ∆x(t)2 is the standard deviation and N0(t) =

1/
√

2π∆x(t) is the normalisation factor. Therefore, following the same logic as

Eq. 2.39, we expect here a normalised Gaussian function for ρn̄(x, x, t) with a stand-

ard deviation ∆xn̄(t)2 and a normalisation factor Nn̄(t) = 1/
√

2π∆xn̄(t). Therefore,

by identification, the normalisation factor Nn̄(t) for ρn̄(x, x′, t), from Eq. 2.38 is:

Nn̄(t) =
1√

2π∆x(t)

1

2πn̄

√
(2π)2

det[A]
. (2.40)

Then by calculating det[A(t)] separately we have:

det[A(t)] =
1

a2
ho

(
1

n̄
+

a2
ho

∆x(t)2

)
a2

ho

(
1

n̄
+

a2
ho

∆x(t)2
[ωt]2

)
− a4

ho

∆x(t)4
(ωt)2

=
∆x(t)2 + n̄a2

ho

(
1 + [ωt]2

)
n̄2∆x(t)2

. (2.41)

We can now go back to the expression for Nn̄(t):

Nn̄(t) =
1√

2π∆x(t)n̄

n̄∆x(t)√
∆x(t)2 + n̄a2

ho

(
1 + [ωt]2

)
=

1
√

2π
√

∆x(t)2 + n̄a2
ho

(
1 + [ωt]2

) , (2.42)

identifying that:

∆xn̄(t)2 = ∆x(t)2 + n̄a2
ho

(
1 + [ωt]2

)
. (2.43)

Which can also be written in the following manner, as in Eq (2.23):

∆xn̄(t)2 =
a2

ho

2

(
1 + [ωt]2

)
(2n̄+ 1) = ∆x(t)2(2n̄+ 1) . (2.44)

In this expression, we see the increase of the standard deviation from the pure-

state by the effect of temperature, as we observed in Fig. 2.3. We could then proceed

to the next term, but first let us relate det[A(t)] to ∆xn̄(t)2 (which will be useful

going forward):

det[A(t)] =
∆xn̄(t)2

n̄2∆x(t)2
. (2.45)
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2.2.3 A canonical formalism: G+
n̄ (x, x′, t)

Having defined ∆xn̄(t) by identification of Nn̄(t), we can then expect G+
n̄ (x, x′, t) to

have the following form:

G+
n̄ (x, x′, t) = exp

[
−([x− v0t] + [x′ − v0t])

2

8∆xn̄(t)2

]
. (2.46)

However only the parts in ~BTA−1~B that have ([x− v0t] + [x′ − v0t])
2 as common

factors will be included in the expression for G+
n̄ (x, x′, t). By expanding ~BTA−1~B,

we can write:

G+
n̄ (x, x′, t) =G+

0 (x, x′, t)

× exp

[
1

2 det[A(t)]

(
a2

ho

2∆x(t)4
([x− v0t] + [x′ − v0t])

2

×
[

(ωt)2

2

(
1

n̄
+

a2
ho

∆x(t)2

)
+

1

2

(
1

n̄
+

a2
ho

∆x(t)2
(ωt)2

)
− a2

ho

∆x(t)2
(ωt)2

])]
, (2.47)

And using Eq. (2.45) for det[A(t)] we have :

G+
n̄ (x, x′, t) = exp

[
([x− v0t] + [x′ − v0t])

2

(
n̄a2

ho

8∆x(t)2∆xn̄(t)2
− 1

8∆x(t)2

)]
(2.48)

= exp

[
−([x− v0t] + [x′ − v0t])

2

8∆xn̄(t)2

]
. (2.49)

Which agrees with our expectations from identification of a Gaussian wavepacket

canonical form. However, we cannot go further with this method as there are no

possible predictions by identification on the anti-diagonal and the phase terms.

2.2.4 A canonical formalism: G−n̄ (x, x′, t)

From Eq (2.38) and Fig (2.3) we know that the anti-diagonal Gaussian has a different

standard deviation than the diagonal. Therefore, in this case we cannot really

predict what we would obtain. However, in the same way as for G+
n̄ (x, x′, t), we can

calculate G−n̄ (x, x′, t), taking the parts of ~BTA−1~B that has ([x− v0t]− [x′ − v0t])
2
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as a common factor:

G−n̄ (x, x′, t) =

G−0 (x, x′, t)exp

[
− ([x− v0t]− [x′ − v0t])

2

2 det[A(t)]∆x(t)4

×

(
a2

ho

4

(
1

n̄
+

a2
ho

∆x(t)2
[ωt]2

)(
v∆t

∆x(0)

)2

+
∆x(0)4

a2
ho

(
1

n̄
+

a2
ho

∆x(t)2

)

+
a2

ho

∆x(t)2
ωtv∆t∆x(0)

)]
, (2.50)

using the relationship of Eq. (2.23) we have:

=G−0 (x, x′, t) exp

[
−([x− v0t]− [x′ − v0t])

2

8∆xn̄(t)2
2n̄(2n̄+ 1)

]
(2.51)

= exp

[(
−2n̄(2n̄+ 1) +

∆xn̄(t)2

∆x(t)2

)
([x− v0t]− [x′ − v0t])

2

8∆xn̄(t)2

]
. (2.52)

We can now introduce ∆x−n̄ (t)2 such that:

G−n̄ (x, x′, t) = exp

[
−([x− v0t]− [x′ − v0t])

2

8∆x−n̄ (t)2

]
, (2.53)

therefore, we have:

∆x−n̄ (t)2 =
∆x(t)2

(2n̄+ 1)
. (2.54)

Let us note that ∆xn̄(t)2 = ∆x(t)2(2n̄+ 1), from this we then notice a certain

symmetry with ∆x−n̄ (t)2 which show the following relation :

∆xn̄(t)∆x−n̄ (t) = ∆x(t)2 (2.55)

As we will see, this relation shows a conservation of the 2D Gaussian’s ‘volume’

(integrated over (x, x′)) between G+
0 G−0 and G+

n̄G−n̄ . It also highlights the importance

of the quantity (2n̄+ 1) as the signature of thermal effects and this agrees with the

elliptical Gaussian we can observe in Fig (2.3).

2.2.5 A canonical formalism: φn̄(x, x
′, t)

Once we have taken the terms that have:

([x− v0t]− [x′ − v0t])
2
, and ([x− v0t] + [x′ − v0t])

2
,
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as common coefficients in ~BTA−1~B, we are left with only the imaginary terms that

have

([x− v0t] + [x′ − v0t])([x− v0t]− [x′ − v0t]),

as common factors. This coincides with the last term of our density operator form-

alism. Our phase term φn̄(x, x′, t) is then:

φn̄(x, x′, t)

= φ0(x, x′, t)− a2
ho

2∆x(t)4

([x− v0t] + [x′ − v0t])([x− v0t]− [x′ − v0t])

2 det[A(t)]

×
(
ωt

[
1

n̄
+

a2
ho

∆x(t)2
(ωt)2

]
− ωt

[
1

n̄
+

a2
ho

∆x(t)2

]
+

a2
ho

∆x(t)2
ωt
[
1− (ωt)2])

(2.56)

=φ0(x, x′, t)− a2
ho

2∆x(t)4

([x− v0t] + [x′ − v0t])([x− v0t]− [x′ − v0t])

2 det[A(t)]
× 0

=φ0(x, x′, t). (2.57)

So it appears that the thermal mixed-state density operator has the same phase

as the pure-state density operator, which can be interpreted as the temperature not

having any effect on the phase of a thermal wavepacket. This result can actually be

seen the Fig. 2.3 especially for the third time t = 0.20156 s (last line) in the plot

of the phase (right column) equal to the phase of the pure-state in Fig. 2.1 for the

same time (can be seen by looking at the position and the values of the nodes). This

consideration is important as an unchanged phase means an unchanged interference

fringes spatial frequency. However, this does not give us direct information on the

impact of temperature on the contrast. Indeed, we can predict from the impact

of the temperature on the anti-diagonal term that an increased temperature should

decrease the contrast. This is an expected result that will be addressed in Chapter 3.

2.2.6 The analytic solution and expected values

Following Eq. (2.39), we can write the full analytic solution:
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ρn̄(x, x′, t)

=Nn̄(t)G+
n̄ (x, x′, t)G−n̄ (x, x′, t) exp(iφ0(x, x′, t)) (2.58)

=
1√

2π∆xn̄(t)

exp

[
−([x− v0t] + [x′ − v0t])

2

8∆xn̄(t)2

]
exp

[
−([x− v0t]− [x′ − v0t])

2

8∆x−n̄ (t)2

]
× exp[ik0([x− v0t]− [x′ − v0t])]

× exp

[
2i

v∆t

∆x(0)

([x− v0t] + [x′ − v0t])([x− v0t]− [x′ − v0t])

8∆x(t)2

]
. (2.59)

Let us note that when T → 0, n̄ → 0 and we have ρn̄(x, x′, t) = ρ0(x, x′, t), which

is to be expected (this aspect will be discussed in Chapter 3 by extending our

formalism). Therefore the main effect of temperature on the density operator is

to effect the standard deviations of the diagonal and anti-diagonal Gaussian terms.

From this point, one question remains, what is the effect of the temperature on the

expected values?

We can address that point by using the density matrix ρn̄(x, x′, t) to calculate

the expected values of x̂, x̂2, p̂ and p̂2:

〈x̂〉 = Tr[x̂ρ̂n̄]

=v0t, (2.60)〈
x̂2
〉

= Tr
[
x̂2ρ̂n̄

]
=∆xn̄(t)2 + 〈x̂〉2

=∆x(t)2(2n̄+ 1) + 〈x̂〉2 , (2.61)

〈p̂〉 = Tr[p̂ρ̂n̄]

=~k0, (2.62)〈
p̂2
〉

= Tr
[
p̂2ρ̂n̄

]
=(~∆k)2(2n̄+ 1) + 〈p̂〉2 . (2.63)

First, we see that the temperature does not change 〈x̂〉 and 〈p̂〉, however it does

change for 〈x̂2〉 and 〈p̂2〉 by a factor 2n̄ + 1. This is the same factor which acts on

∆xn̄(t)2 (which follows since it is related to 〈x̂2〉) and on ∆x−n̄ (t)2. It appears that

there is some particular physical interpretation of the 2n̄+ 1 term.
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2.3 Interpretation of 2n̄ + 1 and conclusion

The first interpretation we can make on 2n̄ + 1 is that it quantifies how much

|ρn̄(x, x′, t)| is going to be deformed in comparison to |ρ0(x, x′, t)|. Indeed, following

the 2D Gaussian view of G+
n̄G−n̄ , the elliptical deformation of the 2D Gaussian is de-

cided by how much ∆xn̄(t)2 and ∆x−n̄ (t)2 differ. Therefore, following Eq. (2.44) and

Eq. (2.54), the elliptical deformation depends of the value of 2n̄+1. Furthermore, n̄

depends not only on the temperature, but also on the trap frequency ω, as you can

see in Eq. (2.3). We can then plot 2n̄ + 1 as function of temperature for different

values of ω.

Figure 2.4: Plot of (2n̄ + 1) as function of temperature for different values of trap

frequency ω (values in the legend correspond to ω/2π). We see that as ω increases,

the higher is the temperature to observe an effect of temperature on |ρn̄(x, x′, t)|.

Following Fig. 2.4, we can then deduce, for a given ω, which temperatures would

have no visible impact on |ρn̄(x, x′, t)|, and which ones would have a huge impact.

You can see in Fig. 2.5 the effect of 1 nK, 10 nK and 20 nK on |ρn̄(x, x′, t)|. These

temperatures have been chosen following Fig. 2.4 for ω = 2π×100 Hz as at T = 1 nK

we should not see a visual difference from Fig. 2.1 at the same time t = 0.13437 s.
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At T = 10 nK we have the same plot for Fig. 2.3 and finally at T = 20 nK, the

value of 2n̄ + 1 is around twice its value then for T = 10 nK. These figures show

how the value of 2n̄+ 1 effects |ρn̄(x, x′, t)|.

Another aspect that we have not addressed here, but is nevertheless related to

the 2n̄+ 1 term, is the interpretation related to entropy. This interpretation comes

from the fact that the 2D Gaussian G+
n̄G−n̄ would have a ‘volume’ (integral over

(x, x′)) which is independent of T . However, due to the normalisation factors N0(t)

and Nn̄(t), we have the following relations:∫∫
|ρ0(x, x′, t)|2 dx dx′ =N0(t)2

∫∫
G+

0 (x, x′, t)2G−0 (x, x′, t)2 dx dx′ , (2.64)∫∫
|ρn̄(x, x′, t)|2 dx dx′ =Nn̄(t)2

∫∫
G+
n̄ (x, x′, t)2G−n̄ (x, x′, t)2 dx dx′ . (2.65)

Furthermore, we have the following relation:

Nn̄(t)2 =
N0(t)2

2n̄+ 1
. (2.66)

It is therefore possible that the 2n̄+ 1 term appears in the linear entropy of a mixed

state, as we have:

Tr
[
ρ̂2
n̄

]
=

∫
ρ2
n̄(x, x, t) dx (2.67)

=

∫ (∫
〈x|ρ̂n̄|u〉 〈u|ρ̂n̄|x〉 du

)
dx (2.68)

=

∫∫
ρn̄(x, u, t)2 du dx . (2.69)

However, we do not know how the phase would be effected in Eq. (2.69) as entropy

has not been addressed in this thesis. We can, however, still expect that the quantity

2n̄+ 1 should be present or at least play a role in the linear entropy.

Still, something of importance for us is the effect of temperature on the contrast.

This question will be addressed within the next Chapter.
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Figure 2.5: Plot of |ρn̄(x, x′, t)| at the same time with three different temperatures.

The parameters used are from Table 2.1.
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Chapter 3

Interference fringes

We studied the effect of temperature on the spreading of a free wavepacket, which

is important from an application perspective to the atomic ring waveguide gyros.

Studying the effect of temperature on the interference fringes is then the crucial

next step as inertial rotation measurements are done by looking at the interference.

Indeed as we have showed before, the temperature does not effect the phase, there-

fore, we would expect no changes on the fringe spacing. However, the temperature

does effect the wavepacket coherence (see Fig. 2.3), therefore, we expect to see the

fringe contrast effected too. Using the thermal wavepacket formalism that we have

developed in Chapter 2, we can now look at how our thermal wavepacket would

produce interference.

With this in mind we will first use a naive approach where we will let two coherent

wavepackets interfere with each-other, as a way to reproduce a single wavepacket

interfering with itself in a closed ring waveguide [22]. Then we will try to increase the

complexity by introducing the process of beam-splitting, then look for an interference

sequence with double Bragg diffraction in order to get closer to an experimental

process.

3.1 A näive picture for interference

The most common procedure to transfer an atomic cloud from a 3D trap to a ring

waveguide is to release the cloud in a section of the waveguide from where it will

spread, then, after some time, occupy the whole ring [22, 42, 26]. A less common
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procedure is to transfer uniformly the initial cloud to the ring waveguide [43, 44].

Let us however, focus on the most common procedure as the cloud spreads in the

waveguide, we will reach the moment where the two extremities of the cloud meet,

the extremities will then interfer with each other [22]. However observing these

interference experimentally is not easy. For example, in the experiment done by

Thomas A. Bell & Jake A. P. Glidden [22], they compare a simulation showing

interference, to an experiment where they are not measured. We present in Fig.3.1

a figure from [22] in which the simulation and the experiment are presented and

compared. The absence of fringes in the experimental data is explained by the

fringes being below the resolution of the imaging system.

Figure 3.1: Comparison between simulation and experiment, work and figure pub-

lished by Thomas A. Bell & Jake A. P. Glidden in [22]. The three images at the top

shows an experimental Bose-Einstein Condensate (BEC) spreading in a ring wave-

guide. The three images at the bottom shows the simulation data of the experiment

at the same times. The simulations show interference fringes which are not observed

in the experiment.

Reflecting on Fig. 3.1, we want for our model to look at how it would predict the

contrast of interference fringes then see under which conditions of temperature the

contrast would permit to actually see fringes. We can actually try to address the

question with a naive approach which would still give us insights on the contrast

for more general situations. Our approach will be on the approximation of the ring

waveguide to 1D free space (as in Chapter 2) considering, however, here the fact

that the ring is a closed 1D azimuthal space. This will translate to us considering
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our 1D waveguide of length L as a periodic 1D free space where the coordinates

x = 0, x = L and x = 2L are the same positions. This representation can be

seen in Fig. 3.2 where the closed 1D azimuthal space is a ring of perimeter L with a

curvilinear coordinate s(θ) assimilated to a 1D linear coordinate x such that s(θ) = x

modulo 2π, with s(θ = 0) = 0 and s(θ = 2π) = L.

θ

s(θ)

s(θ)

s(0)=0 s(2π)=L

s(0)=0 s(2π)=L

s(0)=0

Figure 3.2: Schematic of an azimuthal 1D ring space extrapolated as a 1D linear

space. You can see that it leads to consider a periodicity on the 1D linear space.

We can then treat the Self Interefering Single wavepacket (ψSIS) initially at pos-

ition x = 0 as two distinct coherent wavepacket spreading from position x = 0 (ψ1)

and x = L (ψ2):

ψSIS =
1√
N

(ψ1 + ψ2), (3.1)

the expected meeting point is x = L/2, with N being a normalisation factor (N = 2

in the numerical applications). Before going further, we need to redefine our notation

using the definition of 〈x|ψ0〉 from Eq. (2.8) and ψ0(x, t) of Eq. (2.4) such as:

〈x|x0, k0〉 ≡ 〈x|ψ0〉 (3.2)

ψ(x0, k0;x, t) ≡ ψ0(x, t) (3.3)

We can extend this notation to the coherent state 〈x|α〉 = ψα(x, t) from Eq. (2.1)

as follows:

〈x|x0 + xα, k0 + kα〉 ≡ 〈x|α〉 , (3.4)

ψ(x0 + xα, k0 + kα;x, t) ≡ ψα(x, t) (3.5)
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Such that for a given initial position xin and initial momentum ~kin, we can write a

Gaussian wavepacket solution of a 1D free space Shrödinger equation as:

〈x|xin, kin〉 ≡ ψ(xin, kin;x, t) (3.6)

With this notation, we can then rewrite Eq. (3.1) as:

ψSIS =
1√
N

(ψ(x1, k1;x, t) + ψ(x2, k2;x, t)). (3.7)

From this point, we want to write the density operator ρ̂SIS related to ψSIS. Sim-

ilarly to what we have done in Chapter 2, we want to write ρ̂SIS without introducing

n̄ and P(α), so we can see how thermal effect would effect the fringes from a more

standard case. However, earlier in the case of ρ̂0 we had a pure state (in Chapter 2),

which is not the case here. Therefore we need to keep extending our notation in-

troduced in Eq. (3.2) and Eq. (3.3) to the density operators, in order to keep our

formalism stable.

3.2 Notation and formalism of thermal density

operators

The thermal density operator ρ̂n̄ given in Eq. (2.58) is by definition a mixed state,

as it is a sum of coherent wavepackets with P(α) as a density distribution of those

wavepackets, as you can see in Eq. (2.1). However from Eq. (2.2) we can write P(α)

as a 2D Gaussian distribution over {αRe, αIm}, which is equivalent to {xα, kα} as

they are related in Eq. (2.19) and Eq. (2.20). Therefore, P(α) is as follow:

P(α) =
1√
πn̄

exp

(
−α

2
Re

n̄

)
× 1√

πn̄
exp

(
−α

2
Im

n̄

)
, (3.8)

we can note that P(α) is normalized to 1 in {αRe, αIm} space. Therefore we can

apply the zero variance limit for when n̄→ 0 (equivalent to T → 0), such that:

lim
n̄→0
P(α) = δ(xα)δ(kα). (3.9)

Moreover, with the zero variance limit, we can extend ρ̂n̄ defined in Eq. (2.58) to ρ̂0

defined in Eq. (2.8) as follows:

lim
n̄→0

ρ̂n̄ = ρ̂0. (3.10)
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Which is a limit that have been discussed in Chapter 2 and trivial when using the

analytical expressions of ρ0(x, x′, t) in Eq. (2.16) and of ρn̄(x, x′, t) in Eq. (2.58). Let

us therefore extend n̄ too,

n̄(T = 0) = 0. (3.11)

We can now extrapolate the notation from Eq. (3.2) and Eq. (3.3) to the density

matrix as follows:

ρ(x0, k0, n̄;x, x′, t) =ρn̄(x, x′, t)

=

∫∫
P(α)ψ(x0 + xα, k0 + kα;x, t)ψ†(x0 + xα, k0 + kα;x′, t) d2α .

(3.12)

Therefore we can write the density operator ρ̂SIS related to the interference as

follow:

ρSIS(x, x′, t) =

∫∫
P(α)

N
[ψ(x1 + xα, k1 + kα;x, t) + ψ(x2 + xα, k2 + kα;x, t)]

× [ψ(x1 + xα, k1 + kα;x′, t) + ψ(x2 + xα, k2 + kα;x′, t)]
†
d2α

(3.13)

=
1

N
[ρ(x1, k1, n̄;x, x′, t) + ρ(x2, k2, n̄;x, x′, t)]

+
1

N

∫∫
P(α)

[
ψ(x1 + xα, k1 + kα;x, t)ψ†(x2 + xα, k2 + kα;x′, t)

+ ψ(x2 + xα, k2 + kα;x, t)ψ†(x1 + xα, k1 + kα;x′, t)
]

d2α

(3.14)

We can see that ρ̂SIS is a sum of ρ̂(x1, k1, n̄) and ρ̂(x2, k2, n̄), which correspond

to the individuals density matrix of the two conter-propagating wavepacket, plus

two more term that would correspond to cross-terms between the two wavepackets.

Then let us call those cross-terms, in this particular case, ρ̂12(n̄) and ρ̂21(n̄) such

that:

ρ12(n̄;x, x′, t) =

∫∫
P(α)ψ(x1 + xα, k1 + kα;x, t)ψ†(x2 + xα, k2 + kα;x′, t) d2α

(3.15)

ρ21(n̄;x, x′, t) =

∫∫
P(α)ψ(x2 + xα, k2 + kα;x, t)ψ†(x1 + xα, k1 + kα;x′, t) d2α

(3.16)

32



We will now proceed by trying to give an analytical expression to ρ̂12(n̄) and

ρ̂21(n̄).

3.3 Case of n̄ = 0

As in Chapter 2, let us first consider the case of n̄ = 0, so that we have something

to compare to when we will consider n̄ > 0. Therefore, using the zero variance limit

and Eq. (3.9), we can write ρ̂12(0) and ρ̂21(0) as follow:

ρ12(0;x, x′, t) =ψ(x1, k1;x, t)ψ†(x2, k2;x′, t), (3.17)

ρ21(0;x, x′, t) =ψ(x2, k2;x, t)ψ†(x1, k1;x′, t). (3.18)

It is not obvious at this point if ρ̂12(0) and ρ̂21(0) are hermitian conjugates due to

the presence of x1 and x2. However, ˆρSIS should conserve the hermiticity property.

We will then focus on the calculation of the cross-terms ρ̂12(0) and ρ̂21(0).

3.3.1 Calculation of ρSIS(n̄ = 0;x, x′, t) cross-term

For now, we are assuming that |k1| = |k2| (for simplicity), therefore, let us focus on

ρ̂12(0) then calculate ρ̂21(0) separately:
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ρ12(0;x, x′, t) =

1√
2π∆x(t)

exp

[
−(x− x1 − v1t)

2

4∆x(t)2

]
exp

[
−(x′ − x2 − v2t)

2

4∆x(t)2

]

× exp

[
i(k1[x− x1]− ω1t)− i(k2[x′ − x2]− ω2t)

− i v2
1t

2

4∆x(t)2

v∆t

∆x(0)
+ i

v2
2t

2

4∆x(t)2

v∆t

∆x(0)

]
× exp

[
i
v∆t

∆x(0)

(x− x1 − v1t)
2

4∆x(t)2
− i v∆t

∆x(0)

(x′ − x2 − v2t)
2

4∆x(t)2

]
(3.19)

=
1√

2π∆x(t)
exp

[
−([x− x1 − v1t] + [x′ − x2 − v2t])

2

8∆x(t)2

]

× exp

[
−([x− x1 − v1t]− [x′ − x2 − v2t])

2

8∆x(t)2

]

× exp[ik1(x− x1)− ik2(x′ − x2)] exp

[
2i

v∆t

∆x(0)

×

(
[x− x1 − v1t] + [x′ − x2 − v2t]

)(
[x− x1 − v1t]− [x′ − x2 − v2t]

)
8∆x(t)2

]
(3.20)

Using the same steps we can write ρ̂21(0) as follow:

ρ21(0;x, x′, t) =

1√
2π∆x(t)

exp

[
−([x− x2 − v2t] + [x′ − x1 − v1t])

2

8∆x(t)2

]

× exp

[
−([x− x2 − v2t]− [x′ − x1 − v1t])

2

8∆x(t)2

]

× exp[ik2(x− x2)− ik1(x′ − x1)] exp

[
2i

v∆t

∆x(0)

×

(
[x− x2 − v2t] + [x′ − x1 − v1t]

)(
[x− x2 − v2t]− [x′ − x1 − v1t]

)
8∆x(t)2

]
(3.21)

At this point, we can determine that ρ̂21(0) is not the hermitian conjugate of

ρ̂12(0). Furthermore, we also recognize the canonical formalism we used in Chapter 2

34



with the diagonal Gaussian, the anti-diagonal Gaussian and the phase. We can

note that for ρ̂21(0) and ρ̂12(0) the diagonal Gaussians expression are equal and by

looking at the phases expressions we can predict the apparition of the fringes as a

cos function over x = x′. However, the action of the anti-diagonal is not straight

forward. Therefore, we will once again introduce new terms in order to give more

sense to the equation relative to the nature of our problem. Let us introduce x+,

x−, v+ and v− such as:

x+ =
x1 + x2

2
x− =

x1 − x2

2
(3.22)

v+ =
v1 + v2

2
v− =

v1 − v2

2
(3.23)

k+ =
k1 + k2

2
k− =

k1 − k2

2
(3.24)

Then Eq. (3.20) become:

ρ12(0;x, x′, t) =

1√
2π∆x(t)

exp

[
−([x− (x+ + v+t)] + [x′ − (x+ + v+t)])

2

8∆x(t)2

]

× exp

[
−([x− x′]− 2[x− + v−t])

2

8∆x(t)2

]

× exp[ik1(x− x1)− ik2(x′ − x2)] exp

[
2i

v∆t

∆x(0)

×

(
[x− (x+ + v+t)] + [x′ − (x+ + v+t)]

)(
[x− (x− + v−t)]− [x′ + (x− + v−t)]

)
8∆x(t)2

]
,

(3.25)

and Eq. (3.21) become:
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ρ21(0;x, x′, t) =

1√
2π∆x(t)

exp

[
−([x− (x+ + v+t)] + [x′ − (x+ + v+t)])

2

8∆x(t)2

]

× exp

[
−([x− x′] + 2[x− + v−t])

2

8∆x(t)2

]

× exp[−ik1(x′ − x1) + ik2(x− x2)] exp

[
2i

v∆t

∆x(0)

×

(
[x− (x+ + v+t)] + [x′ − (x+ + v+t)]

)(
[x+ (x− + v−t)]− [x′ − (x− + v−t)]

)
8∆x(t)2

]
.

(3.26)

Therefore, using Eq. (3.25) and Eq. (3.26) we can write the total cross-term

component of ρSIS as:

ρ12(0;x, x′, t) + ρ12(0;x, x′, t) =

1√
2π∆x(t)

exp

[
−([x− (x+ + v+t)] + [x′ − (x+ + v+t)])

2

8∆x(t)2

]

×

(
exp

[
−([x− x′]− 2[x− + v−t])

2

8∆x(t)2

]
ei[k1(x−x1)−k2(x′−x2)]

× eiC(x,x′,t)
([
x−(x−+v−t)

]
−
[
x′+(x−+v−t)

])
+ exp

[
−([x− x′] + 2[x− + v−t])

2

8∆x(t)2

]
e−i[k1(x′−x1)−k2(x−x2)]

× e−iC(x,x′,t)
([
x+(x−+v−t)

]
−
[
x′−(x−+v−t)

]))
(3.27)

where:

C(x, x′, t) =
v∆t

∆x(0)

(
[x− (x+ + v+t)] + [x′ − (x+ + v+t)]

)
4∆x(t)2

. (3.28)

We can recognize in Eq. (3.27) some terms close to Euler’s cosine formula (and its

extension to hyperbolic cosines). We can then apply the following formula in order

to make the hyperbolic cosines term appear:

ea + eb = 2e
a+b

2 cosh

(
a− b

2

)
, (3.29)
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where (a, b) ∈ C2 and if (a, b) are both pure imaginary then the hyperbolic cosine

becomes a regular cosine. Therefore we can write Eq. (3.27) as follow:

ρ12(0;x, x′, t) + ρ12(0;x, x′, t) =

1√
2π∆x(t)

exp

[
−([x− (x+ + v+t)] + [x′ − (x+ + v+t)])

2

8∆x(t)2

]

× 2 exp

[
−(x− x′)2 + 4(x− + v−t)

2

8∆x(t)2

]
exp

[
i(x− x′)(k+ + C(x, x′, t))

]
× cosh

(
(x− x′)(x− + v−t)

2∆x(t)2

+ i(k−[x+ x′]− 2[k+x− + k−x+])− i(2C(x, x′, t)[x− + v−t])

)
.

(3.30)

With Eq. (3.30) we can then write and plot ρSIS(x, x′, t) and look at interference of

wavepackets with or without momenta (as long as they have the same normalisation).

However, in this chapter we focus for now on the case of static wavepackets spreading

and interfering with each other, we will now discuss the fringes in this case.

3.3.2 Fringes and the static spatial frequency

The ρSIS(0;x, x′, t) cross-term in Eq. (3.30) can give us an intuition on the interfer-

ence fringes. First, let us remind ourselves that it is in the diagonal of our matrices

that the physical space is represented. Therefore, we can identify in Eq. (3.30) (when

x = x′) a normalised Gaussian envelop:

1√
2π∆x(t)

exp

[
−([x− (x+ + v+t)] + [x− (x+ + v+t)])

2

8∆x(t)2

]
, (3.31)

what we identify as a contrast term:

exp

[
−4(x− + v−t)

2

8∆x(t)2

]
, (3.32)

and the sinusoidal term that will create our fringes:

cos
(

2k−x− 2[k+x− + k−x+]− 2C(x, x, t)[x− + v−t]
)
. (3.33)

Let us note that in the cosine, we can distinguish two spatial frequencies, one related

to the momenta: 2k−x, the other, related to the spreading of the wavepacket and the
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Our parameter Value used Reference

ω 2π × 100 Hz arbitrary

m 1.44316060× 10−25 Kg [40]

~ 1.054571× 10−34 J · s [40]

kB 1.380650× 10−23 J ·K−1 [40]

k1 0

k2 0

L π × 140 µm [22]

x1 0

x2 L

Table 3.1: Table of parameters used in Fig. 3.3, in Fig. 3.5 and Fig. 3.6.

relative initial position: 2C(x, x, t)[x− + v−t]. It is therefore this spatial frequency,

that we call the static frequency, which is of interest in order to produce fringes

comparable to Fig. 3.1. Furthermore, as we are still in the case of n̄ = 0, thus

Eq. (3.30) can be compared to the fringes of |ψSIS|2 from Eq. (3.7), for x = x′.

When we have static wavepackets (k1 = 0 and k2 = 0), we can write the angular

spatial frequency f(t) from Eq. (3.33) (and from |ψSIS|2) as:

cos(2C(x, x, t)x−) = cos

(
−2x−

v∆t

∆x(0)

(2x− 2x+)

4∆x(t)2

)
= cos

(
− v∆t

∆x(0)

x−
∆x(t)2

(x− x+)

)
, (3.34)

therefore, from Eqs. (2.23), we can write:

f(t) =− v∆t

∆x(0)

x−
∆x(t)2

=− 2x−
a2

ho

ωt

1 + (ωt)2 . (3.35)

In Fig. 3.3 we estimate the spatial frequency from Eq. (3.35). The parameters used

for Fig. 3.3 can be seen in Tab. 3.1. The estimation of f(t) is important as we

can easily fall into the trap of spatial aliasing effects due to a bad choice of spatial

sampling frequency.

Indeed, as you can see in Fig. 3.3, the angular spatial frequency f(t) have a

peak in the order of 108 m−1 (for ω = 100 Hz), then decrease reaching the order of
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Figure 3.3: Plot of the angular spatial frequency f(t), the parameters used for this

plot can be seen in Tab. 3.1. The time scale focus on the initial peak where f(t)

reach its maximum value, but, in our case the wavepackets meet at longer times

where f(t) is in the order of 106 m−1.

106 m−1 at a time which correspond to when the two wavepackets will meet (this

time is outside the time scale of Fig. 3.3 which focus on the initial peak). We can

also estimate the time at which we expect the spreading wavepackets to meet with

v∆ from Eq. (2.7), and by estimating f(L/ 2v∆) we can choose a spatial step of

' 2×10−8 m. However, the size of our 1D free space is L ' 4.4×10−4 m, therefore,

we cannot use a spatial definition capable to show both the full space and the fringes.

We then decide to zoom on L/2 ' 2.2× 10−4 m and see the interference fringes, as

you can see in Fig. 3.4.

The first thing we can comment on Fig. 3.4 is the surprisingly high spatial

frequency for our chosen trap frequency ω. As it was discussed in [22], observing

those fringes related to the spreading appears to be a technical challenge. The

second notable thing in Fig. 3.4, is the symmetry of the diagonal and anti-diagonal

spatial frequencies. It is however, somewhat to be expected if we extrapolate a

perfect symmetry from diagonal and anti-diagonal in Fig. 2.1. Now that we have a

reference expression for a non-thermal ρ̂SIS, we can push our study to the effect of

temperature on ρ̂SIS.
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Figure 3.4: Interference pattern using the values in Tab. 3.1 for n̄ = 0. Left column,

we have |ρSIS(0;x, x′, t)| and its diagonal ρSIS(0;x, x, t) on the right column, each lines

show different times. The first two lines show the fringes before the wavepackets

meet and when they are getting closer (the value of ρ̂SIS is negligible), the last line

show the fringes when the wavepackets have met. Both diagonal and anti-diagonal

spatial frequency are the same as expected when n̄ = 0.
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3.4 Case of n̄ > 0

Following the same method as in Section. 2.2, we will start by identifying the matrix

A(t) and the vector ~B12 associated to our case (where |k1| = |k2|). It should be

straight forward as we build our formalism in Chapter 2 focusing on a symmetry

around the relative wavepacket center: “
(
x− [x0 + v0t]

)
”.

3.4.1 Matrix A(t) and vector ~B12(x, x′, t)

Therefore, let us start by calculating ψ(x1 +xα, k1 +kα;x, t)ψ†(x2 +xα, k2 +kα;x′, t):

ψ(x1 + xα, k1 + kα;x, t)ψ†(x2 + xα, k2 + kα;x′, t) =(√
(2π)∆x(t)

)−1

exp

[
−([x− (x1 + xα)− (v1 + vα)t])2

4∆x(t)2

]

× exp

[
−([x′ − (x2 + xα)− (v2 + vα)t])2

4∆x(t)2

]
× exp[i(k1 + kα)(x− x1 − xα)− iω1+αt− i(k2 + kα)(x′ − x2 − xα) + iω2+αt]

× exp

[
i
v∆t

∆x(0)

([x− x1 − v1t]− [xα + vαt])
2

4∆x(t)2

− i v∆t

∆x(0)

([x′ − x2 − v2t]− [xα + vαt])
2

4∆x(t)2

]
× exp

[
− i

2
cos−1

(
1

2∆x(t)∆k

)
+
i

2
cos−1

(
1

2∆x(t)∆k

)]
, (3.36)

=
(√

(2π)∆x(t)
)−1

exp

[
−([x− x1 − v1t]− [xα + vαt])

2

4∆x(t)2

]

× exp

[
−([x′ − x2 − v2t]− [xα + vαt])

2

4∆x(t)2

]
× exp

[
i
(
kα[x− x1 − x′ + x2] + xα[k2 − k1] + k1[x− x1]− k2[x′ − x2]

)]
× exp

[
i
v∆t

∆x(0)

(
([x− x1 − v1t]− [xα + vαt])

2

4∆x(t)2
− ([x′ − x2 − v2t]− [xα + vαt])

2

4∆x(t)2

)]
.

(3.37)
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Therefore, since the integration is done over {xα, kα} we can separate out the terms

that are independent of these. By doing so, we recognize ρ12(0;x, x′, t):

ρ12(n̄;x, x′, t) =

ρ12(0;x, x′, t)
1

πn̄

∫∫
exp

[
− x2

α

2n̄a2
ho

]
exp

[
−a

2
hok

2
α

2n̄

]
× exp[ikα(x− x1 − x′ + x2) + ixα(k2 − k1)]

× exp

[
−1

4∆x(t)2

(
+ 2x2

α + 4xαvαt+ 2v2
αt

2 − 2xα[(x− x1 − v1t) + (x′ − x2 − v2t)]

− 2vαt[(x− x1 − v1t) + (x′ − x2 − v2t)]

)]

× exp

[
v∆t

∆x(0)

i

4∆x(t)2

(
− 2xα[(x− x1 − v1t)− (x′ − x2 − v2t)]

− 2vαt[(x− x1 − v1t)− (x′ − x2 − v2t)]

)]
× dxα dkα

2
.

(3.38)

Now we will use Eq. (2.30) and identify the coefficients for x2
α, k2

α and xαkα. By

doing so, we can see we that have the same matrix A(t) as in Eq. (2.34):

A(t) =

 1
a2

ho

(
1
n̄

+
a2

ho

∆x(t)2

)
a2

ho

∆x(t)2ωt

a2
ho

∆x(t)2ωt a2
ho

(
1
n̄

+
a2

ho

∆x(t)2 [ωt]2
)
 . (3.39)

Now we will identify the coefficients for xα and kα. By doing so we will have the

vector ~B12, which is actually different from Eq. (2.37):

B12
1 (x, x′, t) =

1

2∆x(t)2

(
[(x− x1 − v1t) + (x′ − x2 − v2t)]

−iωt[(x− x1 − v1t)− (x′ − x2 − v2t)]

)
+ i(k2 − k1)

(3.40)

B12
2 (x, x′, t) =

1

2∆x(t)2

(
a2

hoωt[(x− x1 − v1t) + (x′ − x2 − v2t)]

+ia2
ho[(x− x1 − v0t)− (x′ − x2 − v2t)]

)
. (3.41)
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We can see, however, that if k1 = k2 and x1 = x2 we have ~B12 = ~B. Finally, we can

write ρ12(n̄;x, x′, t):

ρ12(n̄;x, x′, t) = ρ12(0;x, x′, t)
1

n̄
√

det[A(t)]
exp

[
1

2
~B12(x, x′, t)TA(t)−1~B12(x, x′, t)

]
.

(3.42)

Knowing that ρ12(n̄;x, x′, t)† = ρ21(n̄;x, x′, t), we can then compute ρSIS(n̄;x, x′, t)

from Eq. (3.42). You can see in Fig. 3.5 the plots of ρSIS(n̄;x, x′, t) to compare with

the plots of ρSIS(n̄;x, x′, t) in Fig. 3.4. We can see the expected loss of contrast which

is already significant at 5 nK. Furthermore, we see the consequences of the higher

diagonal spreading, not only we see the wavepackets reach L/2 faster, but we can

also see an ‘offset’ to the fringes due to this spreading (compared to the non-thermal

wavepackets).

We can now compute and interfere thermal wavepackets using Eq. 3.42 and

Eq. 2.58 as long as they verify the condition |k1| = |k2|. However, Eq. 2.58 does not

allow us to have an analytic expression needed to give a physical understanding to

the effect of temperature on wavepackets.

3.4.2 An analytic formula for ρ12(n̄;x, x′, t)

Due to the increasing number of terms in the calculation of ρSIS(n̄;x, x′, t), it is

time consuming to reach an analytic result. Fortunately, our formalism shows an

impressive symmetry, and following the steps of Section 2.2 up to the analytic equa-

tion Eq. (2.58) we can actually make a straightforward guess on ρ12(n̄;x, x′, t) of
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Figure 3.5: Interference pattern of two static wavepackets for n̄ > 0 with T =

5 nK. Left column, we have plotted |ρSIS(n̄;x, x′, t)|. Right column, we have plotted

ρSIS(n̄;x, x, t) in blue and ρSIS(0;x, x, t) in red. We used the parameters in Tab. 3.1.

We can clearly see a loss in contrast from Fig. 3.4, as well as a an ‘offset’ due to a

higher diagonal spreading.
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Eq. (3.42):

ρ12(n̄;x, x′, t) =

1√
2π∆xn̄(t)

exp

[
−([x− (x+ + v+t)] + [x′ − (x+ + v+t)])

2

8∆xn̄(t)2

]

× exp

[
−([x− x′]− 2[x− + v−t])

2

8∆x−n̄ (t)2

]

× exp[ik1(x− x1)− ik2(x′ − x2)] exp

[
2i

v∆t

∆x(0)

×

(
[x− (x+ + v+t)] + [x′ − (x+ + v+t)]

)(
[x− (x− + v−t)]− [x′ + (x− + v−t)]

)
8∆x(t)2

]
,

(3.43)

Let us note that we have not touched to the phase as it was shown in Eq. (2.58)

that the temperature has no effect on the phase. Therefore we can now write

ρSIS(n̄;x, x′, t) using Eq. (3.14) as follow:

ρSIS(n̄;x, x′, t) =
1

N
(ρ(x1, k1, n̄;x, x′, t) + ρ(x2, k2, n̄;x, x′, t) + [ρ12(n̄;x, x′, t) + h.c. ]).

(3.44)

We can then compare Eq. (3.42) to Eq. (3.44) and see if our expectation meet

the reality in Fig. 3.6. We can see that the plot of Eq. (3.44) coincide perfectly

with Eq. (3.42). Therefore, we can have a pretty high confidence in Eq. (3.44).

Furthermore, in Fig. 3.6, we present times which are not presented in Fig. 3.4 and

Fig. 3.5. We can see how the thermal wavepakets dominate at small t, this is due

to a faster spreading than non-thermal wavepackets. Moreover, we can see that at

longer t, the contrast of thermal fringes actually increases, this is probably due to

the time dependence of f(t) (as you can see in Fig. 3.3).
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Figure 3.6: Comparison of the interference fringes between non-thermal wavepack-

ets, thermal wavepacket calculated by matrices and thermal wavepacket analytic

form. In black: Eq. (3.42), in dashed green: Eq. (3.44) and in red: Eq. (3.30).
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3.5 Contrast and conclusion

We can now extrapolate Eq. (3.30) to n̄ > 0 by using Eq. (3.44):

ρ12(n̄;x, x′, t) + ρ12(n̄;x, x′, t) =

1√
2π∆x(t)

exp

[
−([x− (x+ + v+t)] + [x′ − (x+ + v+t)])

2

8∆xn̄(t)2

]

× 2 exp

[
−(x− x′)2 + 4(x− + v−t)

2

8∆x−n̄ (t)2

]
exp

[
i(x− x′)(k+ + C(x, x′, t))

]
× cosh

(
(x− x′)(x− + v−t)

2∆x−n̄ (t)2

+ i(k−[x+ x′]− 2[k+x− + k−x+])− i(2C(x, x′, t)[x− + v−t])

)
.

(3.45)

Therefore, our long awaited contrast term η, can be expressed by:

η(n̄, x−, v−, t) = exp

[
−(x− + v−t)

2

2∆x−n̄ (t)2

]
. (3.46)

It is obvious now that the contrast decreases with an increasing temperature. Fur-

thermore, the effect of temperature on the contrast is exactly the same as on the

coherence of density matrix as both are effected by ∆x−n̄ (t) in the same way (see

Eq. (2.58)). However, the effect of temperature on the contrast can be compensated

(up to a certain limit) by the choice of experimental parameters (x− and t) for a

given trap frequency ω, indeed, at longer times t, ∆x−n̄ (t) increase and the con-

trast converge to 1. Therefore, an experimenter can adjust the time window of its

measurement in order to measure fringes at a given temperature T (as you can see

in Fig. 3.6), however, the density ρ̂SIS will drop (and converge to 0 in an infinite

space) as the wavepacket keep spreading in the whole space, which will limit the

experimenter capacity to compensate the effect of temperature on the contrast.

Moreover, the model we have presented can be used, as it is, for cases where the

interfering wavepackets have a momentum, which was not discussed in this chapter.

Indeed, once considering momentum, the problem increases in complexity. For ex-

ample, we assumed here that the momentum would have the same norm, but it is

not the case if we want to apply this model for cold atom interferometry. Indeed,

most of the beam-splitter pulse used are not perfect and can generate clouds with
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a non-symmetrical momentum [33, 45]. In Ref. [38], a pulse sequence is discussed

for a rotation measurement in a ring waveguide using double Bragg diffraction [46].

The first π/2-pulse would split a standing wavepacket into clouds with symmetric

momenta, our model was actually true for this first π/2-pulse. However, a second

π/2-pulse would recombine the two symmetric clouds into 3 clouds. A standing

cloud and again two clouds with symmetric momenta. It is by accessing the pop-

ulation ratio of those 3 clouds that a Sagnac interferometer is realized and inertial

rotation measured. Further work on this thermal wavepacked model would allow us

to access those conditions and study the effect of temperature on an inertial sensing

measurement.
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Chapter 4

Atom-chip fabrication

So far, we have discussed the propagation of a thermal wavepacket in a 1D free space

as an approximation of a ring waveguide without even discussing the waveguide

itself. This thesis focuses on the case of a magnetic waveguide generated by micro-

fabricated wire on an atom chip. Therefore in this chapter we will look at the

fabrication of an atom-chips for the experiment at SYRTE.

Atom-chips have a lot of advantages in cold atom experiments, especially in

regards to size reduction, which is crucial to the integration of atomic inertial sensors

within vehicles. One such advantage is, in comparison to macroscopic coils, a lower

power consumption to generate important magnetic gradients for the traps, which is

also crucial for integration in vehicles. This aspect forms an important part of this

thesis as we will investigate current supplies for the atom-chip and the technical noise

related to it (see Chapter 5). In our case, technical noise will be mainly due to current

noise and wire roughness. Therefore, in this chapter, we will discuss the different

processes in the fabrication of atom-chips. These are: photolithography, metal

deposition (by vapour deposition or electrodeposition) and finishing processes (lift

off, insulating layer, mirror), while focusing on the impact of the different fabrication

steps to the wire roughness. You can see in Fig. 4.1 the different fabrication steps of

an atom-chip for two different metal deposition processes with a negative photoresist

method.

Benefiting from the mature technology of semiconductors and microelectronics,

atom-chip fabrication can be easily done in clean rooms equipped with such techno-

logies. L’Observatoire de Paris (who host the SYRTE) possess such a clean room,

49



1 2

4

5 6

3

(a) Fabrication steps by PVD

1 2 3

4 5 6

7 8 9

(b) Fabrication by electroplating

Figure 4.1: Different fabrication steps for an atom-chip fabrication by Physical

Vapour Deposition (PVD) or electrodeposition with a negative photolithography.

The black represents the substrate, blue the photoresist, magenta dashes the UV

light going through a mask, in yellow gold and in dark yellow titanium.

and it was decided to transfer there the atom-chip fabrication, initially done by

Thales industries, to their facilities. In doing so, I was required to prepare the Ob-

servatoire’s clean room in order to reproduce and, if possible, improve the atom-chips

manufactured by Thales for our experiment. In Fig. 4.2 we can see the atom-chip

manufactured by Thales. The chip configuration we want to achieve is a layer of

gold wires upon a substrate, covered by an insulator, with a gold mirror on its top.

This chip uses an Aluminium Nitride (AlN) substrate, therefore, we will discuss this

choice in the next section. However, the height of the wire (' 1 µm in Fig. 4.2) does

not suit us, if we consider electrical resistivity and heat dissipation we are aiming

for a 3 µm height. We will then discuss the fabrications process for such thick metal

depositions, required by the application of our atom-chip.

As we will see in the following sections, I realised photolithographies and metal

depositions on a Silicon (Si) substrates before working on AlN substrates. The low

cost of Si substrates make it perfect to train, optimise and test any challenges and

issues, not related to the substrates roughness, that could arise. Issues such as the

‘step coverage’ present with vapour deposition processes of thick layers, as we will

see within the following sections.
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AlN substrate 

Insulator

Gold mirror

Gold wires

Figure 4.2: SEM picture of an atom-chip’s cross section (manufactured by Thales

industries). We can see the polycrystalline AlN substrate, the gold wires with '

1 µm height, an insulator layer (a baked polymerised photoresist) and a gold mirror

on the top in order to achieve a mirror MOT.

4.1 The substrate

The substrate has to provide a robust use of our device in regards to mechanical,

electrical and thermal aspects. The nature of our experiment requires the substrate

to be a good electric insulator and a good thermal conductor. The two most common

substrates for atom-chips are Si substrates with a layer of Silicon Oxide (SiO2) as an

electric insulator and AlN ceramics substrates. In order to avoid coherence loss due

to atom-surface interaction, the atoms must remain at a certain distance from the

atom-chip surface. Indeed atom-surface interactions have been measured to have a

significant impact to an Na atomic beam at up to 3 µm [47]. Casimir-Polder forces

limit the atom-chip’s trap depth at distances less than 2 µm (for a 87Rb BEC) [48].

It is commonly agreed that atoms must be at greater 10 µm distances from the chip

to avoid losses due to atom-surface interaction and other technical noises [49]. At

l’Observatoire, Carlos L. Garrido Alzar proposed an atom-chip design for rotation

sensing [35] where the magnetic waveguide would be created 13 µm above the chip’s

substrate.

However, the further the waveguide is from the surface, the higher the current
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required in the wire, which will create need for heat sinking. A higher current

also requires a higher power from the current supplies since the micro-wires have

a non negligible resistivity which depends on the wire’s cross-section and length.

When the total dissipated power from the wires becomes large, substrate heating

effects cannot be neglected [50]. We then need to consider a substrate with a high

thermal conductivity. AlN is then a better choice than Si in this regard as it has

a better thermal conductivity, 170 − 280 W/(m · K) for AlN as opposed to 80 −

150 W/(m·K) for Si[49]. In addition, AlN is a better electric insulator then Si, which

requires a layer of SiO2 (with a poor thermal conductivity) to electrically insulate the

wires. With AlN, the wires can be directly in contact with the thermal conductor,

instead of a SiO2 layer, improving therefore the heat transfer. However AlN, being a

polycrystalline ceramic, has a surface roughness typicaly < 40 nm (after polishing)

which will never achieve the quality of a mono crystal Si substrate (typically <

0.5 nm of roughness) and will still show isolated defects on the micrometer scale

[49]. You can see in Fig. 4.3 different pictures of AlN substrates seen through both

a microscope and a Scanning Electron Microscope (SEM). In Fig. 4.3a micron sized

defects can be observed, these are holes on the surface of the substrate which can

be critical for metal depostion if such a defect is located on a micron sized wire’s

position (these holes can also be seen in Fig. 4.5 and Fig. 4.9). AlN surface roughness

actually represents a significant challenge to building structures of size < 10 µm [49],

however, it is a challenge that needs to be addressed.

Let us note, however, that the perfect choice for our application would be a type

IIa diamond substrate with a thermal conductivity of 2300 W/(m ·K) at 300 K [51].

There is indeed some advancement being made on diamond substrates, however, its

cost is still significant. Actual “cheap” fabrication processes for diamond in MEMS

technology will produce UltraNanoCrystalline Diamond (UNCD) thin films on a

chosen substrate. This technology could be applied to atom-chips, it will however

not solve the issues relating to surface roughness as with AlN substrate. Indeed,

there is a relation between grain size and conductivity in a polycrystalline structure

[52]. It seems that for polycrystalline substrates, a compromise between surface

roughness and thermal conductivity, both of which relate to the grain size, needs

to be considered. Therefore the heat conductivity of UNCD rapidly drops from

52



(a) AlN surface by optical microscope. Scale

indicate 100 µm.

(b) Zoom on the blue circle of (a). Scale

indicates 10 µm.

(c) AlN by SEM. Exposed substrate surface

from Thales’ atom-chip.

(d) Cross sectional view by SEM of Thales’

atom-chip with a surface view.

Figure 4.3: (a) and (b) are the picture of a substrate used to charaterise the photo-

lithography process while (c) and (d) show the substrate of an atom-chip manufac-

tured by Thales. In (a), red circles represent microsized defects (holes). In (b) we

see a zoom of (a) on the blue circle. The color difference follows a photolithography

process that was totally removed, the white part was exposed to UV light. In (c),

the defect we see in the lower right corner is due to the cleavage of the atom-chip.

In (d), we have a view of the AlN surface and the polycrystalline bulk.

the known conductivity of diamond (2300 W/(m · K)) to 300 W/(m · K), as it was

experimentally measured for a 1.35 µm thick UNCD Aqua 100 [53], this thermal

conductivity value may increase for thickness > 1.35 µm as here the thickness is in

the order of the UNCD grains (a theoretical value of 800−900 W/(m ·K) is expected

to 5 µm UNCD Aqua 100 [53]). In such cases the cost difference to AlN may not
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be worth the gain in thermal conductivity. Nevertheless, there are current efforts

working on achieving (commercially viable) mono-crystal substrates for both AlN

and diamond with important exciting results [54, 55, 56, 57]. Indeed, mono-crystal

AlN substrates are starting to be commercialized, but still limited in physical size

(and at important prices). Still, such breakthrough technologies would have a big

impact on atom-chip fabrication and application. Thankfully, even without mono-

crystal AlN substrates, there is a way to reduce the impact of the roughness of the

wires on trapping fields by giving special care to the photolithography part of the

process.

4.2 The photolithography

The photolithography is a corner stone process for all the different branches of

microfabrication and nanotechnologies. Being a mature technique, photolithography

gives an incredible amount of possibilities for anyone who wants to fabricate atom-

chips [49, 58]. The basic idea is to transfer the pattern from a mask to a photoresist

layer (upon a substrate) through optical exposure (generally UV light, depending

of the photoresist sensitivity) and then chemically develop the pattern. Then, the

exposed subtrate will be etched or processed according to its need. In our case, the

developed photoresist will reveal a negative picture of our mask, as you can see in

Fig. 4.4, and metal will be deposited on the exposed substrate. A lift-off process

will then dissolve the polymerised photoresist and the metal remaining will be a

reproduction of our mask pattern (Fig. 4.4). The quality of the photolithography is

crucial for the atom-chips as we need to reproduce the mask pattern with fidelity,

but we also need to guarantee that the slope at the edge of our deposited wires is as

vertical as possible. A cross-section of our wires needs to reveal a rectangular profile

instead of a trapezoid profile. It has indeed been shown that the roughness at the

edges of a wire is the main contributor to the magnetic potential roughness [59, 60].

In Fig. 4.1, we can see our processes for a negative photolithography followed by the

different processes depending of the kind of metal deposition. We want to realize

(steps 1-2 in Fig. 4.1a and steps 2-4 in Fig. 4.1b).

The negative photolithography consists of deposition by spin coating a layer of
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(a) Schematic of the pattern of the wires. The black line rep-

resents a scale of ' 3.5 cm.

(b) Picture of the mask on the red rectangle

of (a). Scale indicate 200 µm.

(c) Zoomed picture by optical microscope of

(b). Scale indicates 100 µm.

Figure 4.4: In (a), wire pattern used in the mask for the photolithography present

in this thesis. The black line represents the dimension of the insulating layer on

top of the wires. In (b), the scale represent 200 µm, picture of the mask using a

microscope on the region of the red rectangle in (a). In (c), the scale represent

100 µm, we zoom on (b) in order to see the 3 wires which will be used to generate

a waveguide and which are in contact with the U and Z wires as you can see in the

white circle, the loop wire is an antenna that can be used to add phase shift to the

atoms in one arm of a linear waveguide in future experiments.
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photoresist (AZ nLOF 2070), then we soft-bake it at 110◦C (step 2 in Fig. 4.1b). We

expose the photoresist to UV light (320 nm) through our mask (step 1 in Fig. 4.1a

and step 3 in Fig. 4.1b), then we do a post-exposure baking at 110◦C, the exposed

photoresist is then polymerised and hardened. Then, by using the developer (AZ

826 MIF), the unpolymerised photoresist will dissolve, leaving only the UV exposed

photoresist as a negative picture of our wires pattern [58] (step 2 in Fig. 4.1a and

step 4 in Fig. 4.1b). It it by setting the correct combination of times for UV-light

exposure and development bath that we are able to to select a profile shape for the

photoresist’s negative pattern. As you can see in Fig. 4.1, the photoresist’s pro-

file needs to be adapted to our metal deposition methods. Moreover, during the

developer bath, it is important to give some agitation to the solution in order to

avoid concentration gradient in the developer due to the dissolution of the unex-

posed photoresist. This matter can be critical to the development of small patterns

(3 wires, loop wire). This agitation, depending to the photoresist’s adhesion to

the substrate surface, may destroy high aspect ratio structures. Indeed, since the

photoresist layer is ' 6 µm, then the pattern relating to the loop wire shows the

highest aspect ratio profile (6 µm for 2 µm), it is subject to high tensions and can

easily collapse at too vigorous agitations, as you can see in Fig. 4.5 on AlN. The

same would occur with Si but with lesser sensitivity to the agitation.

I achieved this process on Si substrates and AlN substrates. We can see the

result of those photolithographies in Fig. 4.6. The photoresist profile does not have

the same requirements for PVD and electrodeposition, a PVD requires an under-cut

profile in order to be dissolved after the deposition while the ectrodeposition need to

match the intended wires profile (see Fig. 4.1). Once the photolithography is done,

we can follow up our process with the metal deposition.
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(a) Collapsed photoresist strip for the loop

wire, far from the loop region. The white

scale is 29 µm.

(b) Bended photoresist strip for the loop

wire, close to the loop region. The white

scale is 19 µm.

Figure 4.5: SEM image of the collapse of a photoresist strip related to the loop

wire due to agitation and a high aspect ratio. In (a), we see the collapse at the

junction between the wire sized pattern and electrode pattern used for the atom-

chip connection. In (b), we see that the strip collapse propagate tension in the strip

making it bend in a region close to the loop.
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(a) Photolithography on AlN for the loop

wire. White scale is 19 µm.

(b) Photolithography on Si for the loop wire.

White scale is 19 µm.

(c) Top view of a photolithography on AlN.

The white scale is 71 µm.

(d) Top view of a photolithography on Si.

The white scale is 183 µm.

Figure 4.6: SEM images of photolithographies on AlN ((a) and (c)) and on Si ((b)

and (d)). (a) and (b) show the negative loop wire with a tilted view to appreciate

the 3D structure. (c) and (d) show the top view of the region corresponding to the

red rectangle in Fig. 4.4a.
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4.3 Metal deposition

It is through metal deposition that we will create a wire circuit to generate magnetic

potentials. As we have discussed in the previous sections, our goal is a thick metal

deposition, for heat dissipation and power consumption reasons, with a cross section

as close as possible to rectangular. The grain size needs to be as small as possible

such that the metal deposition does not increase the surface roughness. Two process

are tested and investigated in this section. The physical vapour deposition (PVD)

process, known to give the best surface quality for the wire circuits and the elec-

troplating, an economical process which can easily achieve thick depositions. One

problem with electroplating is that it can also produce cavities inside the wires [61]

and have a surface roughness far more significant than vapour deposition, possibly

deterioring the surface roughness compared to AlN substrates.

4.3.1 Physical Vapour Deposition (PVD)

We used a physical vapour deposition (PVD), a method to deposit matter on a

target via evaporation [62] (step 3 in Fig. 4.1a). We deposited aluminium (Al) on a

Si substrate in order to test the capacities of thick deposition with PVD. Then we

deposited gold on the AlN substrate to see the impact of the surface roughness on

the depositions. You can see a PVD chamber in Fig. 4.7, it is basically a vacuum

chamber where a crucible (made of tungsten) loaded with matter faces our target

which is positioned over the crucibles. A high current is then passed through the

crucible until the matter inside the crucible is first melted then evaporated, creating

a cone shaped vapour beam in the vacuum that will directly hit the target. We

first deposit a layer of titanium (Ti) which has excellent adhesion properties and

will efficiently stick to the substrate, allowing the our chosen metal to grow on it.

Then we start the deposition of our chosen metal, Al or Au, which will adhere to

the Ti layer. The metal vapour cone hits the target and will deposit the matter

over all surfaces directly facing the crucible. Therefore, in this method, there is no

need for us to have vertical profiles for the photoresist as the incident angle of the

vapour cone is what is more crucial for us. However, since the metal also grows

on the photoresist, there is actually a need to have an under-cut profile for the
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lift-off process, as you can see in steps 2-3 of Fig. 4.1a. Still, thick deposition is

more challenging in this case as the finite size of the crucible gives us a limit on the

thickness we can achieve in one PVD. Indeed, in order to realise thicker deposition,

the PVD chamber needs to be opened several times in order to reload the crucible.

By opening the vacuum chamber we may introduce impurities inside the wires, this

can actually be seen with Al deposition in Fig. 4.8 (and Fig. 4.10) through oxidation

blisters on the top of the wires. Thankfully, the chemical inertness of gold allows us

to not worry too much about contaminations as it the noblest metal [63].

(a) Picture of the crucibles inside the PVD

chamber.

(b) Picture of the deposition target inside

the PVD chamber.

Figure 4.7: Pictures of the PVD chamber. In (a), we see two crucibles that were

previously loaded with gold. In (b), we see the target (a photolithography on an

AlN substrate) on top of the crucibles. The result of this PVD can be seen on Fig.

4.9.
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I then tried thick deposition of Al on Si substrate by PVD, as you can see in

Fig. 4.8 for deposition heights of ' 2 µm, I achieved the deposition on a static

target (Fig. 4.8a and Fig. 4.8c) and on a rotating target (Fig. 4.8b and Fig. 4.8d. In

Fig. 4.8a and Fi. 4.8c, we can see different layers for a static target PVD due to the

different positions of the two crucibles (seen in Fig. 4.7). We also see a significant

roughness on the edges of the wires, we believe it to be mostly due to the metal

growing on the photoresist. However, we see for a rotating target, that the different

metal layers and the edge roughness disappears. Furthermore, the profile slope seems

more significant than with the static target deposition. The PVD on the rotating

target was realised with Al on Si substrates (Fig. 4.8b and Fig. 4.8d) and also with

gold on a used AlN substrate that showed a high surface roughness (compared to

a unused polished AlN substrate) as you can see in Fig. 4.9. At the end of this

PVD characterisation, my first field mission at SYRTE was done (a second field

mission will focus on electrodeposition). Using my PVD characterisation and my

work on photolithography, an atom-chip was fabricated on an unused and polished

AlN substrate and is now in the experiment’s vacuum chamber at SYRTE (presented

at the end of the chapter in Fig. 4.17).

However, using PVD method, we would have a limit on the wires’ height due to

the pattern sizes of the circuit we want to deposit. Indeed, with the vapour depos-

ition process, the metal is deposited everywhere, even on the top of the photoresist.

However the metal will not grow purely vertically on the photoresist’s edge, as you

can see on Fig. 4.10. This is known as step coverage [64, 65], and it has an important

impact when the deposited thickness is of the same order as the gap you are trying

to fill. This led, in our case, to reduce the gap between the negative photoresist

structure seen by the vapour cone and to give an important slope at the edges of

our wires (until the gap is totally closed for the 3 wires or the loop wire for example).

This ultimately fixes a maximum height to our wire and make it impossible to grow

vertical profiles for thicker depositions. Therefore, in order to realise thick vapour

depositions with vertical profiles, we need to find a way to overcome the issue related

to the step coverage of the protoresist. Meanwhile, we will explore another metal

deposition process: electrodeposition.
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(a) PVD on a static target. SEM image of

the loop wire.

(b) PVD on a spinning target. SEM image

of the loop wire.

(c) PVD on a static target. SEM image on

the 3 wires.

(d) PVD on a spinning target. SEM image

on the 3 wires.

Figure 4.8: SEM image of two atom-chip prototypes done by Al PVD on a Si (2 µm

thick). We see the result of two different techniques where the target is static ((a)

and (c)) and rotating ((b) and (d)). Both techniques gives different output in term

of edge slope, surface roughness and metal purity (due to the oxidations blisters on

the Al due to vacuum quality).

62



(a) SEM image on a small U wire of a gold

PVD on an AlN substrate.

(b) Zoom of (a) on the left lower corner of

the U wire.

(c) SEM image on the loop wire of a gold

PVD on an AlN substrate.

(d) SEM image on the 3 wires of a gold PVD

on an AlN substrate.

Figure 4.9: SEM images of a gold PVD on an AlN substrate, we can see that the

PVD reproduce with high fidelity the surface roughness of the AlN substrate. In

(a), a small U wire that you can see in Fig. 4.4b. In (b), zoom on (a), you can see

that the gold layer reproduce with fidelity the AlN roughness. In (c) and (d), you

can see the ALN roughness have huge consequences on structures of few µm.
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(a) SEM image on the loop wire of a PVD

before the lift-off. Blue scale is 20 µm.

(b) SEM image on the 3 wires of a PVD

before lift-off. Blue scale is 23 µm.

Figure 4.10: Result of a PVD (Al on Si substrate) on a spinning target before the

lift-off. In (a), we see the loop wire and in (b) the 3 wires connecting to the Z wire.

Let us note the step coverage, we clearly see the metal growing on the photoresist

with a porous layer of metal growing on the under-cut profile.
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4.3.2 Electrodeposition: expectations

In term of grain size and surface roughness, electrodeposition cannot beat PVD,

the only limiting factors for PVD is the photolithography quality and the substrate

roughness. By any means, electrodeposition cannot beat PVD’s surface roughness

as the metal is grown over a seed layer produced by PVD, as you can see in step

1 of Fig. 4.1b. In micro-fabrication, every growing process deteriorate the surface

roughness or at best copy it, there is only one way to reduce a surface roughness, it is

by polishing it. However, considering step coverage issues, it appears that not only

we cannot achieve wires with vertical profiles using the PVD processes, additionally,

the wire height in our circuit would be limited. It is common in clean rooms for

microfabrication processes to use vapour depositions for thin metal films with an

excellent RMS surface roughness (Rq) of ' 3 nm [66, 67], while thick deposition are

achieved by electrodeposition with a surface roughness of lesser quality. We have

then turned to the electrodeposition processes with the aim to achieve the smoothest

surface roughness possible for our gold wires. Electrodeposition, in comparison to

PVD, is less expensive (in price, energy consumption and metal mass consumption)

and can perform metal deposition of several µm far easier and faster. This process

is free of step coverage issues since there is no metal growing on the photoresist (as

you can see in step 5 of Fig. 4.1b). The question is then: which deposition quality

do we need to achieve such that electrodeposition can be competitive to PVD?

By looking at Fig. 4.9 we see that PVD will reproduce with high fidelity the

AlN surface roughness, while Fig. 4.8 show us that the wire’s edge roughness is

affected by the quality of the photolithography. Therefore, we only need to achieve

an electrodeposition quality such that we would still be limited by those factors (AlN

and photolithography roughness) and do not need to reach the same quality as with

PVD. Literature on this matter tends to show this objective is achievable. Indeed,

Konstantin Ott in Ref. [68], achieved a gold electrodeposition on AlN substrate

where he measured an arithmetical mean deviation of the surface roughness (Ra) of

28± 3 nm while the AlN shows an Ra of 34± 3 nm. Clearly, the surface roughness

measured by Konstantin Ott is limited by the AlN surface roughness. Furthermore,

Philipp Treutlein in Ref. [66], using the same electrolyte as Konstantin Ott, achieved

an electrodeposition on a Si substrate, such that the surface roughness is not limited
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by the AlN, and achieved a surface roughness Rq = 15 nm, a factor ' 2 below the

AlN roughness measured by Konstantin Ott. Moreover, to the best of our knowledge,

the best electrodeposition in term of surface roughness that can be found in the

litterature was achieved by Elena Koukharenko et al. in Ref. [69] on Si substrate

with a Rq of 2.3 nm, which is a surface quality that would then exceed the quality

of vapour deposition. Let us note, however, that this result shows some discrepancy

with later work from the same team [67], published 6 years later, they noted a

surface roughness of Rq = 3 nm by vapour deposition, stating that vapour deposition

processes exceed the quality achieved via electrodeposition.

4.3.3 Electrodeposition: the experiment

Looking at the experimental setup of Philipp Treutlein and Konstantin Ott in Fig.

4.11, we believe that there is room for improvement. It appears that the important

factors to control the electrodeposition and achieve a low surface roughness are the

choice of the chemical electrolyte, the control of the temperature, the control of the

current surface density and the solution agitation.

The choice of electrolyte is actually discussed by Philipp Treutlein in Ref. [66]

where a sulfite bath is compared to a cyanide bath used by [70], it is concluded that

sulfite bath could achieve less roughness. Cyanide baths are historically the most

used electrolytic bath for gold electrodeposition as they are not only cheap, but also

extremely robust in use as they are resistant to changes in pH, oxidations and hy-

drolysis. However, their compatibility to standard photoresist and ‘under-plating’

(when metal grow underneath the photoresist where it is not supposed to) repres-

ents a major issue. Sulfite baths are in fact highly compatible with micro-electronic

processes and are now the most used bath in this field [71]. For examples of com-

mercial sulfite baths we have, Gold-SF from Metakem used by Philipp Treutlein and

Konstantin Ott [66, 68], and Gold ECF 60, brightener E3, from Metalor [69]. While

for an example of commercial example of cyanide bath example we have PurAGold

402 [70]). As in [66, 68] we will be using Gold-SF from Metakem. Metakem’s sulfite

bath recommends a working temperature range of 55◦ to 65 ◦C with an optimum

at 60 ◦C. The temperature then needs to be controled and maintained during the

whole process. Better temperature control is achievable through the use of a water
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(a) Electrodeposition setup of Philipp

Treutlein presented in [66].

(b) Electrodeposition setup of Konstantin

Ott, with courtesy of SYRTE and Kon-

stantin Ott.

Figure 4.11: Typical electrodeposition setup for non cyanide bath.

bath with a circulation pump rather then a magnetic stirrer with a hot plate as used

in Fig. 4.11.

The most critical difference we decided to adopt from the electrodepositions of

Fig. 4.11 is related to the electric contact to our atom-chip. In the electrodeposition

process, the metal is deposited on the cathode, therefore in our case the cathode

would be our atom-chip. In this situation the most common way to proceed is to

deposit a seed layer of gold on all the substrate before proceeding to the photo-

lithography (as you can see in Fig. 4.1b). Furthermore, how the current density is

managed has a significant impact in the process, in terms of electrical contact, but

also in term of time evolution of the resistivity’s area density as we will evolve from a

thin seed layer of gold, between 50 to 200 nm, to the targeted thickness (few µm). It

is known that an inhomogeneous contact would make metal grow more significantly

in the vicinity of that contact [72]. We also want to use a current generator in order

to fix the current surface density, therefore we need to be sure that the metal depos-
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ition is done on the atom-chip and only the atom-chip, which requires the electrical

contact to not be exposed to the gold electrolyte. We can see in Fig. 4.12 how an

homogeneous electrical contact to our gold seed layer is managed and sealed, with

the atom-chip holder capable holding two atom-chips (one on each side). This was

designed by David Holleville from SYRTE, but due to sealing stress, I decided to

introduce a small cut to the rings copper contact.

(a) Picture of the atom-chip

holder for electrodeposition.

(b) Picture of an atom-chip

(before electrodepostion) in

the holder.

(c) Sealed holder with an

atom-chip for electrodepos-

ition.

Figure 4.12: Pictures of the atom-chip holder with a homogeneous sealed electrical

contact to improve electrodeposition. In (a), we see how the electrical contact is

done from the back to the top of an atom-chip positioned as in (b), then the copper

contact is sealed from the electrolyte bath in (c).

Another change that we decided to take is the method used for the solution’s

agitation. In both electrodeposition baths of Philipp Treutlein and Konstantin Ott

(Fig. 4.11), the agitation is done through a magnetic stirrer, we chose to use mech-

anical agitation through the use of an overhead stirrer with a propeller. There is

actually several reasons for the choice of an overhead stirrer, going from commodity

in terms of space with the water bath to trusting the higher efficiency of a propeller.

Still, there is a question that does not seems to be addressed in the literature, in

relation to electrodeposition processes applied to atom-chip fabrication using mag-

netic stirrers. Would the magnetic stirring field affect the quality of the deposited

gold through the Lorentz force applied on the gold ions? There are studies on the

effect of constant magnetic fields during electrodeposition [72, 73, 74]: those studies

actually show that a constant magnetic field (around 1 T) parallel to the electrodes’

electric field enhances the electrodeposition quality (in term of surface roughness
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and even speed for ferromagnetic metals). There is, however, to the best of our

knowledge, no study on the effect of a rotating field from a magnetic stirring on

electrodeposition has been done. Although we acknowledge that the weakness of

the magnetic field would probably not be enough to create a visible effect. Still,

it is wiser to not introduce a magnetic field which is uncontrolled and whose effect

is unknown. Moreover, an experiment without magnetic stirring would be more

easily adapted to investigate gold electrodeposition in a controlled magnetic field

environment.

Our experimental setup can be seen in Fig. 4.13. The electroplating frame with

a sealed electric contact and a customized beaker were designed by David Holleville

from SYRTE. The customized 3D printed beaker is clean room compatible as it

has been recently proven that, with special care and cleaning processes, 3D printed

devices can be used in clean room for semiconductors processing [75].
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(a) Schematic of our electrodeposition setup.

(b) Picture of our electrodepsition setup.

(c) The customized beaker being 3D printed. (d) Customized beaker in the water bath be-

fore installing the electrodeposition frame.

Figure 4.13: Presentation of the electrodeposition setup designed by David Hol-

leville. In (a), we see a schematic of the electrodeposition setup and in (b) we see its

picture. In (c), we see our customized beaker matching the electrodeposition frame

in order to have an effective volume of 1 L for the electrolyte bath. In (d), we see

a picture of the beaker and the water bath which are below the electrodeposition

frame in (b).
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4.3.4 Electrodeposition: mixed result

Therefore I achieved the first 3 µm gold electrodeposition on a Si substrate. However,

the resulting deposition was ultimately a failure as the deposited gold layer was

covered by an unknown contaminant. We can see in Fig. 4.14a an inhomogeneous

brown to black deposition on the atom-chip, and is likely to be due to a known issue

of the electrolyte [76]. This issue relate to the oxidation of the additives present

in Metakem’s electrolyte which occurs when the electrolyte solution is exposed to

air for some time but not much gold is worked out. Introducing additives could be

enough to correct this deposition issue in future attempts. Another possible cause

could be the 3D printed beaker, not for contaminant reasons but for the structural

properties of 3D printed structures. Indeed, due to it having hollow walls the beaker

acted as a thermal insulator, preventing the temperature control of the electrolyte

solution beyond the recommended temperature range. However, SEM images in

Fig. 4.14 shows that this brown deposition occurred only at the end of the process

as we can see crystal on the top of the gold but never inside the layers seen through

the edges of the wire (see Fig. 4.14c and Fig. 4.14d).

Morever, SEM images in Fig. 4.15 shows that this first electrodeposition attempt

was far from being a total failure as the roughness of the gold wires is unusually

low, when they are not covered by the contaminant crystals. Indeed, contamin-

ant free gold surfaces of our wires show a surface roughness Rq ' 12 nm, below

Philipp Treutlein’s results (Rq ' 15 nm) and far below the AlN roughness budget

(30− 40 nm). Furthermore, if we look into Philipp Treutlein’s electrodeposition in

Fig. 4.15d, we see that the roughness on the top and on the edge of the wires is the

same. We do not see such consistency between the roughness at the top and at the

edges of our wires, actually it seems that the roughness at the edge of the wires is

better then the roughness at their top, as you can see in Fig. 4.14d and Fig. 4.15c.

Looking more in detail at Fig. 4.14d, the SEM definition cannot see a difference

between the seed layer (at the bottom) and the wire’s edge, unfortunately it is not

possible to measure the edge’s roughness with our profilometer as we did for the top

of the wires. However, it is more likely that the edge’s roughness is limited not by

the seed layer but by the photolithography and the photoresist’s roughness (which

can be impressively good).
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(a) Picture of the atom-chip right after the

electrodeposition.

(b) SEM picture of red rectangle region of

Fig. 4.4a

(c) SEM picture inside a wire gap. (d) Zoom of (c) on the edge of the gold layer.

Figure 4.14: Pictures of the gold electrodeposition on a Si substrate showing brown

contaminants. In (a), a picture of the atom-chip right after the electrodeposition

showing inhomogeneous brown deposition. In (b), SEM image of the atom-chip

showing the region of the red rectangle of Fig. 4.4a, we see in clear grey the irregu-

larity of the brown deposition of (a). In (c), we look into the gap between wires, we

can clearly distinguish the contaminant crystals which appear to be present only on

the top of the deposition. In (d), we zoom on (c) to have a better look at the wire’s

edge, at this definition, the SEM is not capable to show a visible difference between

the wire’s edge and the bottom seed layer.
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(a) Electrodeposited loop wire seen with a

tilted angle.

(b) Electrodeposited loop wire seen from

above.

(c) Electrodeposited 3 wires seen with a tilt.

(d) Electrodeposited wires from

Philipp Treutlein in [66]

Figure 4.15: SEM images of electrodeposited wires showing the surface roughness

of the wires. In (a), we see the loop wire with a tilt in order to see the edges.

The loop wire photolithography has a known roughness due to UV light difraction

(and is mask dependant), we can see the reproduction of this roughness on the

electrodeposition. In (b), the loop wire from above, we see the fidelity of the pattern

reproduction and the low slope of the wire’s edge. In (c), 3 wires seen with a tilt

in order to show the wire’s edge profile. In (d), image taken from Philipp Treutlein

[66] in order to compare roughness to our wires. Images (c) and (d) are at the same

scale.
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This shows not only the validity of our choices for the electrodeposition bath, but

also opens the possibilities to improvement the surface roughness through electrode-

position as there is still room for improvement from our first deposition attempt.

Moreover, the unexpected difference between the wire’s edge roughness and top

roughness shows that there is still margin to improve the roughness measurement of

Rq ' 12 nm. This point will be important in the future, indeed, if there’s no need to

improve such surface roughness for an atom-chips on polycrystalline AlN substrate,

there is however an interest to be capable to produce thick metal deposition for

mono-crystalline substrate with lower surface roughness (below the nm). Moreover,

it is possible that an electrodeposition of such quality on AlN substrate could force

the roughness of the wire edges to be defined by the photolithography as they grow

confined between two photoresist strips.

4.4 Finishing processes and conclusion

With our metal deposition achieved, we still need to to get rid of the polymerised

photoresist by disolving it into an organic solvent (acetone or TechniStrip NI 555).

This step is often called lift-off (step 4 in Fig. 4.1a and step 6 in Fig. 4.1b) as (for

PVD) the gold on the top of the photoresist is lifted-off, however lift-off refers to the

whole micro-fabrication process where metal deposition is used to grow structures

rather than etching metal layers [77]. There is no gold being lifted-off in the case of

electrodeposition processes, however, this step is still called lift-off as a metonymy

due to the symmetry of a metal deposition process instead of etching a metal layer.

It is a pretty simple process for electrodeposition as the photoresist is well exposed

to the organic solvent and will simply dissolve in it. However, things get more

difficult for the PVD process as metal is also deposited on top of the photoresist,

making it less exposed to the chemical. Moreover, due to this metal growing on the

top of the photoresist, there is a need for an under-cut profile of the resist so the

chemical can access the resist by the edges. Under this condition, step coverage can

be a significant issue as it tends to close the gaps on top of the wires, sealing the

photoresist edges to the solvent, and the under-cut photoresist profile also tends to

be covered in metal as you can see in Fig. 4.10. You can actually see for example in
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Fig. 4.8b and in Fig. 4.8d that the lift-off process was not totally successful as we

see metal ‘ears’, a common problem related to lift-off due to metal growing on the

under-cut photoresist profile then falling on the wires during the lift-off. We believe,

however, that those ears are not only due to the step coverage of our PVD process,

but also the fact that we have coated by sputtering the whole atom-chip (in Fig. 4.8b

and in Fig. 4.8d) with a thin layer of gold (few nm) in order to observe the step

coverage on the photoresist by SEM. As you can see in Fig. 4.16, a lift-off following

a gold PVD on AlN substrate, the gold metal layer on the top of the photoresist is

being lifted-off and falling to the bottom of the beaker.

(a) A gold PVD on ALN substrate ongoing the lift-off process.

(b) A gold PVD on ALN substrate at the end of the lift-off

process.

Figure 4.16: Lift-off process of a gold PVD. In (a) you can see the gold layer depos-

ited on the top of the photoresist fall as the photoresist is dissolved. In (b), you can

see the result of the lift-off once all the photoresist’s gold layer is gone.
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As we mentioned, for the electrodeposition process, the lift-off is easier. However,

there is an extra step, compared to the PVD process, in order to expose the gap

between the wires. This extra step is the etching of the seed layer, done by chemical

processes i.e. wet etching, or by Reactive Ion Etcching (RIE) (step 7 in Fig. 4.1b).

There is no particular need for lithography as this process is basically etching a

thickness of 50− 200 nm (corresponding to the seed layer’s thickness) across all the

atom-chip, which does not change the intended deposited thickness as the etched

layer was an original “offset” to the general thickness. This process step is known to

increase the surface roughnesses, Konstantin Ott in Ref. [68] shows that RIE does

not deteriorate the gold surface roughness within the measurement definition of an

Atomic Force Microscope (AFM) while a wet etching (aqua regia) increase the Ra

surface roughness of 32 nm. The efficiency of RIE etching is believed to be due to

the chemical inertness of gold as in the same process the RIE have increased the

AlN Ra surface roughness of by 16 nm.

Following this step, we need to build a mirror on the atom-chip in order to

create a mirror Magneto-Optical Trap (MOT). A very easy way to produce a mirror

is to deposit a layer of gold on a smooth surface (step 6 in Fig. 4.1a and step 9 in

Fig. 4.1b). Therefore we need to deposit on the top of our wires an insulator layer

to insulate the metal mirror from the wire, but also to flatten the surface. This can

be done by using a layer of our photoresist (' 5 µm) polymerised by UV exposure

and then slowly baked up to 200 ◦C to harden it and make it compatible with a high

vacuum (step 5 in Fig. 4.1a and step 8 in Fig. 4.1b). The final result (from a PVD

process) can be seen in Fig. 4.17; this atom-chip is currently used in experiments in

the vacuum chamber at SYRTE.

We can conclude that we have succeeded to transfer the atom-chip fabrication

techniques to l’Observatoire’s clean room, as this clean room has now produced an

atom-chip which is in use in the SYRTE’s experiment vacuum chamber. We have

also shown a way to improve atom-chip fabrication, by electrodeposition, which

would allow us to fabricate thick metal wires that decrease the power consumption

and increase the heat dissipation of atom-chips. This improvement can be made

without sacrificing the surface roughness of our wires, compared to PVD process,

since only the AlN substrates roughness and the photolithography quality would
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Figure 4.17: Picture of an atom-chip fabricated at l’Observatoire de Paris following

the PVD processes developed in this thesis. This atom-chip is currently being used

in the SYRTE GyrAChip experiment.

limit the wires roughness. This would then redirect the efforts to reduce technical

noise to the current generators, as we will discuss in the next chapter.
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Chapter 5

Floating current supplies and

current noise

In Chapter 4 we have discussed the technical noise related to wire roughness, here

we will discuss the technical noise related to current generators. Furthermore, it

was shown that ' 10 kHz current modulation can reduce the potential roughness

related to wire roughness by at least a factor of five [37].

In this thesis, I worked on the characterisation and optimisation of current sup-

plies (i.e. current generators) that will be used in the GyrAChip experiment. We

need low noise floating current supplies as we have several wires making connection

with each other (as you can see in Fig. 4.4). Floating current supplies are generat-

ors with a floating ground which help to eliminate ground loops, reducing the noise

coupled to the system.

In Ref. [78], Friedemann Reinhard worked to develop the current supplies in use

in the GyrAChip experiment. We can see the circuit of a prototype of these low noise

current supply in Fig. 5.1 taken from Ref. [78], where Friedemann Reinhard helped

in their development for l’Observatoire. They showed good noise performance in

the past as they can achieve a relative noise level below 10−5 (relative to the current

load). They are capable of delivering up to 3 A with a power capacity of 10 W. We

will discuss these current supply in the first part of this chapter.

From Friedemann Reinhard’s work we can access the current supply requirement

for our experiment. We need to prevent fluctuating Zeeman shifts by controling

magnetic fields on the 10 µG level: a noise level below 10−5 relatively to the current
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output. We also need alternating current in order to reduce potential roughness [37].

This is a major issue for us since our current supplies are not designed to deliver

alternating currents. Those current supplies can be driven by an external signal,

but they can’t inverse the current polarity, therefore they can only modulate current

within one current polarity. There is several proposals to address this issue. One

proposal is to use another current supply to give a negative offset.

Another concern for our experiment is the resistivity of the wires. We want to

pass currents, within the 10−1 A order, through wires with a 3 µm width and a height

varying from 3 µm to 2 µm. A resistivity of ' 50 Ω was measured on 2 µm wires.

However, the max power given by the supplies being ' 10 W, wires with a section

of 3 µm × 2 µm can be driven only up to ' 400 mA. In Ref. [70], Jerome Esteve

studied the maximal current one can put in a micro-sized wire (independently of the

maximal power output of the supply), this study address the thermal dissipation of

those wires. As one can easily imagine, too much current in a micro-sized wire and

it will melt or evaporate.

These homemade low noise current supplies are grounded by default. However,

our experiment requires the use of floating supplies for the atom-chip pattern that

was build in Chapter 4. Indeed, in Chapter 4, we see that our U-wire and Z-wire [49]

are in contact due to the ‘3-wires’ going through them (see Fig. 4.4). These ‘3-wires’

could be used, for example, to generate a RF-dressed linear waveguide, therefore,

we would need to supply those wires with current while making sure that the AC

current of each one of the ‘3-wire’ does not interfere when those wires are in contact.

Therefore, we need to modify the current supply so they can have a floating ground.

The idea is to isolate the current generator circuit from any grounding. By doing so,

we could cut the current generator circuit from other circuits, related to the control

of the current supply or to the low noise generation. We identified two configur-

ations which will isolate the core of the current generator from groundings, these

configurations are called Floating-1 and Floating-2. The configuration Floating-1

correspond to the modifications done on the circuit of Fig. 5.1 by the black crosses

while the modification done for Floating-2 are shown in red in Fig. 5.1. Given that

the position for Floating-1 harms the low noise characteristic of the current supply,

the second position, Floating-2, is then chosen to be in a position less harmful to the
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2
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Figure 5.1: Circuit of a homemade low noise current supply from Ref. [78]. The blue

cross represent a component which is not used anymore in those current (the circuit

is let open at the blue cross). The black crosses are positions where the circuit is

open only for the Floating-1 configuration. The red cross is a position where the

circuit is open only for the Floating-2 configuration, the red dashed circle shows

where a short-circuit is made for the Floating-2 configuration and finally the output

of the current supply in the Floating-2 configuration are the position B1 and B2

(red dots) instead of the component J3.
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A

A

A

A

Supply 1 R=1.5 Ohm
Supply 2

A1,in A2,in

A1,out A2,out

Figure 5.2: Electrical schematic for the ‘simple test’. Four ammeter allow us to

measure the current from the supply in and out of the resistor.

low noise. However, Floating-2 isolates the current generator circuit from several

control features of the current supply, like for instance an emergency Short-Circuit

switch used to cut the current supply from the load.

We will then discuss of ways used to test the floating ground of these current

supply.

5.1 Floating configurations

5.1.1 ‘Simple test’

Since we have the ‘3-wires’ going through the U and Z wires (see Fig. 4.4), we

implemented a test protocol called the ‘simple test’. This test aim to see if two

current supply have a floating ground. Two current supply are connected to the

same load (a 1.5 Ω low noise resistor) while the current leaving and getting to

each current supply is monitored. You can see in Fig. 5.2 the electrical circuit

corresponding to the ‘simple test’. We can see in Fig. 5.2 the load R, which was

measured at 1.5 Ω. This resistor is equipped to dissipate heat and allow up to 25 W,

it is therefore well suited for the ‘simple test’ as we will use two 10 W generator to

run current through it. This test consist of measuring the current in (Ai,in) and out

(Ai,out) of the resistor to the current supply i. In this test, if the two current supply

have a floating ground, then the current measured by Ai,in should be the same as
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A1,in (A) A1,out (A) A2,in (A) A2,out (A)

0.000 0.003 0.00 0.003

0.100 0.104 0.00 0.003

0.100 0.104 3.00 3.00

0.500 0.506 0.00 0.003

0.500 0.506 3.00 3.00

1.001 1.008 0.00 0.003

1.001 1.008 3.00 3.00

0.000 0.003 0.00 0.003

0.000 0.003 1.00 0.994

2.657 2.667 1.00 0.994

0.000 0.003 0.00 0.003

2.991 3.001 0.00 0.003

Table 5.1: ‘Simple test’ results for two current supplies in the Floating-1 configur-

ation. The first line is measured with the supplies unplugged, it gives an idea of

the ammeters uncertainty, which is common for other tables. Data in blue are the

maximum current output obtained without inducing changes in the readings of the

other current supply.

Ai,out independent of any current coming out of the other current supply (Aj,in and

Aj,out for i 6= j).

You can see the measurements from this test in Tab. 5.1 using two current

supplies in the Floating-1 configuration, and in Tab. 5.2 using two current supplies

in the Floating-2 configuration. In Tab. 5.1 and Tab. 5.2 , the data shown in blue

corresponds to the maximum output of the current supply (maximum either on the

current output, or on the power output), this maximum is obtain starting from 0 A

while taking care that the readings on the other current supply does not changes.

Tab. 5.1 and Tab. 5.2 present data which are to be expected from current supplies

with a floating ground.

For comparison, we can see in Tab. 5.3 that two grounded current supply do not

show the same behavior of the current supplies in Tab. 5.1. Indeed, the readings

of Ai,out are different from the readings of Ai,in, furthermore, part of the current
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A1,in (A) A1,out (A) A2,in (A) A2,out (A)

0.00 0.003 0.00 0.003

2.96 2.918 0.10 0.102

2.83 2.798 0.50 0.500

2.60 2.576 1.00 1.000

2.45 2.427 1.50 1.495

2.28 2.261 2.00 1.993

2.09 2.072 2.50 2.492

1.92 1.911 3.00 2.985

0.10 0.119 3.32 3.306

0.50 0.509 3.32 3.306

1.00 1.003 3.32 3.306

1.50 1.491 3.32 3.306

Table 5.2: ‘Simple test’ results for two current supply in the Floating-2 configuration.

Data in blue are the maximum current output obtained without inducing changes

in the readings of the other current supply.
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A1,in (A) A1,out (A) A2,in (A) A2,out (A)

0.003 0.003 0.00 0.00

0.500 0.440 0.00 0.04

1.004 0.883 0.00 0.11

1.003 0.931 0.50 0.56

1.003 0.978 1.00 1.02

Table 5.3: ‘Simple test’ of two grounded current supply.

coming from a supply i (Ai,in) can be seen following the path of Aj,out, to the supply

j.

5.1.2 ‘Simple test’: mixing the configurations

Out of curiosity, but also to see the reliability of the floating configuration, we ran

the ‘simple test’ between current supplies in different configurations. Therefore, we

can see in Tab. 5.4 the results of ‘simple test’ with one supply in the Floating-1

configuration and the other in the Floating-2 configuration. There is no different

behavior from the experiments done for Tab. 5.1 and Tab. 5.2. This experiment

increases our trust in the ‘simple test’ as it allows to see behavior of floating current

supplies despite their differences.

Furthermore, we realised a ‘simple test’ between floating and grounded current

supplies. One would expect that if one of the current supply is floating, then it

would be enough to have a positive outcome to the ‘simple test’. This actually is

the case, as you can see in Tab. 5.5. However, it appears that fast output variation

in the floating current supply induced instabilities in the grounded current supply

as small ranges current variation could be seen in the grounded supply readings.

This is shown in Tab. 5.5 by the data with a red color.

5.1.3 ‘Circuit Test’

We wanted to push further the ‘simple test’ and compare the floating configuration

behavior in a circuit with asymmetric resistivity values. Therefore, in addition to

the ‘simple test’, we established the ‘circuit test’.
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A1,in (A) A1,out (A) A2,in (A) A2,out (A)

0.00 0.003 0.00 0.003

0.10 0.105 3.12 3.118

0.50 0.497 0.00 0.003

0.50 0.497 3.09 3.086

1.00 0.998 3.06 3.056

1.50 1.498 3.00 3.008

1.96 1.954 3.05 3.041

2.94 2.925 0.10 0.111

2.79 2.777 0.50 0.505

2.61 2.607 1.00 1.005

2.45 2.438 1.50 1.498

2.27 2.258 2.01 2.014

1.93 1.919 3.00 3.000

Table 5.4: Data result from the ‘simple test’ with a current supply in configuration

Floating-1 (supply 1) and a current supply in configuration Floating-2 (supply 2).

Data in blue are the maximum current output obtained without inducing changes

in the readings of the other current supply.
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A1,in (A) A1,out (A) A2,in (A) A2,out (A)

0.00 0.003 0.00 0.003

0.10 0.105 3.01 3.009

0.50 0.502 3.06 3.052

1.00 0.997 3.05 3.050

1.50 1.495 3.15 3.146

2.86 2.856 0.10 0.108

2.73 2.856 0.49 0.500

2.55 2.537 0.99 0.999

2.39 2.378 1.50 1.499

2.21 2.201 2.00 1.999

Table 5.5: Data result from the ‘simple test’ between floating and grounded current

supplies. Data in blue are the maximum current output obtained without inducing

an important change in the readings of the other current supply. The data in red

shows a mean value of current from variations that are observed when the other

current supply (seen by A1,in and A1,out) is being controlled and its current output

is changing.
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A A'

B C

B' C'

(a) The atom-chip equivalent circuit

A

A

A A

Supply
1

Supply 2

A1,in

A1,out

A2,inA2,out

(b) The circuit test

Figure 5.3: Electrical schematic for the ‘circuit test’. In (a), a circuit equivalent to

our ‘3-wires’ going through the U-wire. BB’ have 310 Ω measured resistivity and

CC’ have 303 Ω measured resistivity. Together they represent two of this ‘3-wires’.

AA’ have 7.2Ω measured resistivity and represent the U-wire. In (b), the circuit

test.

The purpose of this test is to validate the floating behavior of the current sup-

plies for an application closer to our experiment in terms of resistivity values. We

considered that in our chip the resistivity of the ‘3-wires’ is of the order of 100 Ω

(for a height of 1 µm) and that the U and Z wires are in the order of 1 Ω. This is an

important difference of resistivity and we want to be sure that our current supplies

can work as intended in this condition with a floating ground.

To do so, we realised a macroscopic circuit equivalent to our chip pattern (see

Fig 4.4). We can see the circuit in Fig. 5.3, the resistors used can support 7 W .

This test showed no difference in results from our ‘simple test’.
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5.2 Noise measurement

5.2.1 Experimental setup

In the previous sections, we have presented our homemade current supply and its

different configuration: Floating-1, Floating-2 and grounded. We have shown that

floating current supplies are capable to generate a specific current in a load which

is in contact with other current supplies, without being affected by those other

current supplies. However, we have not addressed the question of current noise yet,

and more specifically, if our modifications to floating configuration have increased

the current noise.

In order to measure the current noise we used a FFT spectrum analyzer (SRS

SR-760). This spectrum analyzer was used to measure the Power Spectral Density

(PSD) of a voltage signal. Therefore, we need to convert the current output of our

supplies to a voltage signal. We then used a current sense resistor of 10 Ω, that you

can see in the I/V electrical circuit Fig. 5.4.

5.2.2 FFT analyzer and PSD measurement

Something which is important to have in mind for this part is that we worked in

AC mode (for the FFT analyzer), the current supplies are giving constant currents,

the voltage we measure is VRMS. This choice was made according to the fact that

we want to measure the variations of a DC signal. This mean that we are applying

to our signal a high pass filter, with a cutoff frequency below the lower limit of the

frequency span (250 Hz), which mean that the results used here are not relevant for

long term stability.

In order to see the quality of our I/V circuit and the noise measurement limitation

of the FFT analyzer, we measured the PSD of the SR760 (before plugging any supply

to it) in three configuration:

• Open input, which means that the input is open and nothing is plugged to

it

• 50 Ω terminator, which means that the input is closed by a classic 50 Ω BNC

terminator
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Current 
Supply 

Current Sense Resistor 

FFT 
Spectrum 
Analyer

(a) I/V circuit

Open
Circuit 

Current Sense Resistor 

FFT 
Spectrum 
Analyer

(b) I/V circuit without supply

Figure 5.4: In (a), electrical circuit used to connect the current supplies to the

FFT spectrum analyzer. The Current Sense Resistor is a special resistance with

no inductance (R = 10 Ω here). In (b), I/V circuit configuration without current

supply, used to characterise the noise related to the resistor. The resistor is in

contact with the metal table as heat sink.
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• Open I/V circuit, as you can see in Fig. 5.4b, the current sense resistor is

plugged to the FFT without any current supply which give us the noise floor

related to the sensing resistor

We can see in Fig. 5.5 data acquired from the FFT analyzer without supply (but

with the I/V circuit) and a PSD measurement realized by Friedmann in Ref. [78].

The conversion in Fig 5.5a is done by dividing the raw data by R = 10 Ω. The PSD

with 50 Ω terminator is almost identical to the PSD with I/V circuit (and better

then the Open input) which should make us confident on the quality of the I/V

circuit. However we can see an important Flicker noise on this PSD for all three

configurations which can be a major issue since the first point is at 250 Hz. Flicker

noise is usually visible below 102 Hz so either the white noise is really small, or the

Flicker noise is too important.

We can see that despite the Flicker noise our measurements are at the same

level as Friedmann’s measurement (at least in the [250 Hz,105 Hz] range). This is in

fact a bad news. Indeed in Fig. 5.5a the measurement is done without any current

supply, it then represent the intrinsic noise of the setup which we would expect to

be below Friedmann’s measurement. It is most probable that the I/V circuit is not

suitable for a proper measurement, it is also possible that the resistor (below ±1%

uncertainty) used is the origin of the Flicker noise.

5.2.3 Current supplies PSD measurement

You can see in Fig. 5.6 the PSD measurement of a grounded homemade current

supply and a current supply in the Floating-1-capa configuration, this measurements

will be used to evaluate the increase in current noise by modifying current supplies

to a floating configurations. The ‘Unplugged’ curve in Fig. 5.6 correspond to a

measurement where the current supply was connected to the FFT spectrum analyzer

by the I/V circuit, but was not plugged to a power socket. The ‘Max Power’ curve

in Fig. 5.6 is the measurement where the current supply reach its maximum output

power (here ' 11 W ). The first thing we can observe from Fig. 5.6 is that except

for extreme values (0 A and ‘Maximal Power’) the PSD from the different current

values are almost the same.
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(a) PSD of SR760

(b) Friedmann’s noise measurement

Figure 5.5: In (a), PSD of the SR760 in the three configurations discussed in text.

The axes are chosen in order to coincide with Friedmann’s noise measurement of the

same current supply and on the same FFT spectrumm analyzer. In (b), Friedmann’s

noise measurement presented in Ref. [78].
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(a) PSD of a grounded current supply for different value of DC current output.

(b) PSD of a current supply in the Floating-1-capa configuration for different value of DC

current output.

Figure 5.6: Comparison between the PSD of a grounded current supply and the

PSD of a current supply in the configuration Floating-1-capa (which will be the

configuration used in the experiment at l’Observatoire). We can see that the PSD

of configuration Floating-1-capa is comparable to the PSD of the grounded config-

uration.
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However, the Flicker noise is extremely important. If we compare Fig. 5.6 to

Fig. 5.5b we can clearly see that the Flicker noise is responsible for the signal going

above Friedmann’s measurements at low frequencies. This is a clear issue for our

low noise current supply, however despite the important Flicker noise, the current

supply is still in agreement with the < 10−5 relative noise requirement (at least in

the [250Hz,105Hz] range, as we will see in Tab. 5.6. Indeed, except for the ‘Max

Power’ signal where we can see a strange resonance (the reason of it is unknown) the

RMS noise is always below the 10−5 relative noise requirement. Anyway we should

not need to reach the maximal power of those current supply.

5.2.4 RMS relative noise

The RMS noise is calculated according to this formula:

RMS =

√∫
PSD2 df, (5.1)

where f is the frequency parameter in the PSD. We then applied the trapeze integra-

tion method to the PSD measurement of current supplies in different configurations.

We can see the RMS relative noises of each configuration in Tab. 5.6. The RMS rel-

ative noise of the current supplies in Floating-1 and Floating-2 configurations is too

high. However, we can see a lower RMS relative noise for Floating-2 configuration.

In Ref. [78], we can see that at some point the ground of the housing was con-

nected to the ground of the circuit through capacitors in order to diminish noise

in floating supplies. Following this idea we decided to add capacitors, from the

Floating-1 configuration we add two capacitor of 1 µF in parallel between the posi-

tion A1 and A2 in Fig. 5.1, this is configuration Floating-1-capa. From configuration

Floating-1-capa we apply the changes which are in red in Fig. 5.1, this is configur-

ation Floating-2-capa (which is basically doing a configuration Floating-2 added to

a configuration Floating-1-capa). We also realised successful ‘simple tests’ in order

to check if this modification still let the current supply with a floating ground. We

then measured the PSD of Floating-1-capa and Floating-2-capa and calculated their

RMS relative noise, which you can see in Tab. 5.6.

From the data present in Tab. 5.6, we can conclude that the best choice for our

experiment is the Floating-1-capa configuration. Floating-2-capa may show RMS
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relative noise values lower than Floating-1-capa, however, it still go beyond the

< 10−5 RMS relative noise requirement for 0 A and ‘Max power’, while Floating-1-

capa is consistently below this < 10−5 RMS relative noise requirement. Moreover

Floating-1-capa even succeed to best the grounded configuration as the grounded

configuration goes above the requirement for the ‘Max Power’.
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Output Grounded Floating-1 Floating-1-capa Floating-2 Floating-2-capa

Unplugged 7.28× 10−6 7.63× 10−6 8.80× 10−6 7.21× 10−6 6.96× 10−6

0A 7.44× 10−6 2.63× 10−5 8.34× 10−6 2.64× 10−5 4.63× 10−5

0.1A 8.17× 10−6 3.57× 10−3 9.12× 10−6 2.39× 10−4 9.03× 10−6

0.2A 7.95× 10−6 3.99× 10−3 9.39× 10−6 2.58× 10−4 8.69× 10−6

0.3A 8.11× 10−6 4.19× 10−3 8.92× 10−6 2.82× 10−4 8.73× 10−6

0.4A 8.27× 10−6 4.27× 10−3 9.15× 10−6 3.44× 10−4 8.43× 10−6

0.5A 8.39× 10−6 4.28× 10−3 9.22× 10−6 3.63× 10−4 8.65× 10−6

1A 9.41× 10−6 3.07× 10−3 8.91× 10−6 No Data 8.68× 10−6

Max Power 1.36× 10−5 1.45× 10−5 7.98× 10−6 2.08× 10−5 2.49× 10−5

Table 5.6: RMS relative noise of the current supplies in different configurations. In blue, the RMS value that are under 10−5A. The

unplugged line can be seen as a reference floor.
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5.2.5 Conclusion on the homemade current supplies

We showed that the configuration Floating-1-capa is the best configuration for us.

It is a floating ground configuration with a RMS relative noise below 10−5 in the

[250Hz, 105Hz] range. However the RMS relative noise measurement, even being

below 10−5, still approach dangerously this value. We suspect two major problems

to address if one wants to improve the RMS relative noise:

1. The important flicker noise: we suspect it comes from the voltage ref-

erence (here being internal). Using the analogue input with a good low noise

voltage source would probably solve this problem.

2. The too high white noise floor: even when the current supply is not

plugged into the power socket. This show a limitation due to the measurement

rather then to the current supply. The fact we are using the same instrument

as Friedemann suggests that the origin of this issue is due to the I/V circuit.

To have a better measurement of this RMS noise, we need a better circuit (i.e.

a better current sense resistor for the conversion from current to voltage)

Still, we can use in our experiment homemade low noise current supplies in the

Floating-1-capa configuration. Furthermore, depending on the way the magnetic

potential is generated by the wire patterns, it is possible to relate the current noise,

measured here, through the PSD to atom’s phase noise by using the auto-correlation

function and its relation to PSD. This relation would allow us to see the viability of

generating ring traps for gyroscopes.
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Chapter 6

Pumping dynamics and dead-time

So far we have discussed of the propagation of atoms in a waveguide (and their

interference), of the fabrication of atom-chips and of the current noise. However,

a key element for our quantum sensor to reach the required level of sensitivity is

the preparation of a well-controlled state of the atoms in terms of their internal

and external degrees of freedom. This requires laser cooling in a magneto-optical

trap (MOT) to sub-Doppler temperatures (on the order of 1 µK and below), which

unavoidably introduces a dead time in the measurement process. For atom interfer-

ometers, this translates into the well-known Dick effect that degrades the stability

of these devices [79, 80, 81, 82]. To reduce the MOT loading time, a relatively high

background partial pressure of the atoms to be cooled is required [83], for example,

approximately 10−8 mbar for 87Rb atoms. However, this high background pressure

reduces the available lifetime to perform the desired experiments with the trapped

atom clouds [84] and also, it degrades the contrast of the interference fringes leading

to a reduction of the signal-to-noise ratio of the measurements.

In a typical cold-atom experiment the high background pressure problem is over-

come, on the one hand, by using two chambers connected via a differential pumping

stage. In this situation, one chamber (at high pressure) is used as a bright source

of cold atoms and the other one (at low pressure) as a science chamber. However,

this solution is hardly compatible with the realization of cold-atom-based compact

and miniature sensors. So, on the other hand, when using a single vacuum cham-

ber incorporating the atom source (i.e. an alkali metal dispenser) after the MOT

loading stage the residual background atoms need to be pumped out quickly. This
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is needed in order to preserve a useful level of lifetime of the trapped atoms and to

avoid an important increase of the dead time. This latter situation implies the abil-

ity to switch from high (approximately 10−8 mbar) to low pressure (approximately

10−11 mbar) in a few tenths of ms [85]. A very promising solution has been recently

found [86], which allows one to quickly and reversibly control the Rb background

pressure in a cell. In this setup, a MOT with up to 106 atoms has been realized.

However, no compatibility with a pressure level of approximately 10−11 mbar has

been demonstrated yet with this technique.

Besides the investigations presented in Refs. [85, 86], other relevant studies on

the optimized operation of compact UHV systems have been reported before. In

Ref. [87], the authors present a detailed analysis on the use of light-induced atomic

desorption to modulate the background pressure of 87Rb atoms in a glass cell. They

developed a model to find the number of atoms loaded in a MOT when the light

is on, and demonstrated an order of magnitude increase under this condition. In

the context of atom interferometry and atom sensors, an UHV system was designed

and tested for operation in the highly vibrating environment of a rocket [88] (for the

MAIUS project). In Ref. [89], the authors investigated the use of passive vacuum

pumps (nonevaporable getter pumps) for the development of compact cold-atom

sensors. Finally, in Ref. [90], microfabricated nonmagnetic ion pumps were demon-

strated with the aim of maintaining UHV conditions in miniature vacuum chambers

for atom interferometry.

The aim of the work presented in this Chapter is to understand from the physics

point of view, the pressure dynamics of single vacuum chambers loaded with atoms

via a dispenser and pumped out by a SIP (Sputter Ion Pump). So far, SIPs are com-

monly used in cold-atom experiments requiring UHV. Since they are an unavoidable

component, which is at the same time able to provide pressure readings [91, 92], it is

therefore relevant to have a physical model of the observed vacuum dynamics. This

dynamics is not only determined by the pumping mechanism of the SIPs but also by

conductance of the whole system and the dispenser sourcing effect. Understanding

this dynamics would allow, for instance, the design of miniature SIPs [90] and avoid

the use of pressure gauges improving the compactness of the experiments.

To reach a good fidelity in estimating the pressure at the vacuum chamber, we
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develop an accurate calibration procedure to quantify the leakage current in the

SIP. To achieve this goal, we first model the conductance of the vacuum system.

Then, using the model and a protocol based on a pulsed dispenser current, we

measure the temporal evolution of the pressure in the system. As we will see, the

physical parameters describing the pressure dynamics extracted in this way, allow

the reduction of the dead time in cold-atom experiments by combining a fast loading

rate of cold-atom clouds (high partial 87Rb pressure regime) and a fast removal of

background atoms after the production of these clouds [90]. It is worth mentioning

that the commonly used models [93, 94] for the SIP pumping speed do not explain

the important pressure variations (more than 2 orders of magnitude) we observe.

In fact, on measurement time scales of several minutes, the nature of the dominant

pumping mechanism changes, and this effect needs to be taken into account.

6.1 Theoretical background

We consider a single-vacuum-chamber system, as represented in Fig. 6.1, which

correspond to our experimental vacuum system. It is a simplified configuration

containing a chamber of volume V1 with the atom source (dispenser) that produces

a flow Q(t) that goes to a pump with a nominal pumping speed S. The pump

and the chamber are connected through a pipe with a conductance C. With these

definitions, we can then relate the pressure at the chamber P1(t) to the pressure

at the pump P2(t). In a steady state (t → ∞), neglecting leaks and in the free

molecular regime, these quantities are related by the equation of the steady-state

sourcing flux Q(∞):

Q(∞) = C(P1(∞)− P2(∞)) = SP2(∞) = SeffP1(∞), (6.1)

where Seff is the effective pumping speed seen by the chamber as determined by C.

More generally, P1 follows the gas balance equation [95]:

V1
dP1(t)

dt
= Q(t)− SeffP1(t). (6.2)

Since the characteristic pumping time τP ≡ V1/Seff controls the pressure transients

in the vacuum system, Seff needs to be properly determined. This is an important
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Figure 6.1: Sketch of the considered experimental setup. The vacuum chamber of

volume V1 contains the atom source producing a flow Q(t). This gas at a pressure

P1(t) in the chamber produces a pressure P2(t) at the pump through a pipe of

conductance C. In the pump volume V2, the atoms are pumped at a nominal speed

S. Also represented in this figure are deactivated getter pumps G1 and G2.
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question in particular for cold-atom experiments with time-dependent sources of

alkali atoms.

6.1.1 The electrical analogy

One way to address the determination of Seff is to use an analogy between a vacuum

system and an electric circuit. The electrical analogy allows not only to calculate

Seff in a steady state, but also to evaluate our vacuum system as a low-pass filter

[95]. This would not only allow us to model the response of our vacuum system

to 87Rb pressure pulse but also allow to model pressures modulations. With such

a tool in our hands we can then consider dynamic regimes of molecule desorption

from our alkali dispenser in order to see what would be the best strategy in order

to reduce our experimental dead time. Following this idea we can give an electrical

equivalent of our vacuum system in Fig. 6.2. In 6.2 a single science chamber con-

Science chamber Sputter-ion pump

Seff(t)

P1(t)

Figure 6.2: Electrical analogy of our single vacuum chamber system. The elements

inside the red frame corresponds to the science chamber, the elements in the blue

frame correspond to the ion pump. In this analogy, pressure act as voltage, volume

act as a capacitance, and electrical and vacuum conductance are equivalent.

taining a dispenser is connected to an ion pump through a tube as you can see in

Fig.6.1. Perpendicular to the principal tube are four small tubes connected to the

feedthroughs for electrical connections including getter pumps that can be activated

for further purpose of increasing pumping speed. According to the analogy, the

dispenser would be a current generator, the tubes with certain volume would be an

electrical conductance with capacitance, and the pump a conductance to ground.

Furthermore, free software like Molflow+ [96] allow users to load 3D models of their
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vacuum setup and model the conductivity and parameters of vacuum elements which

could then be applied in an electrical analogy. Molflow+ is still under development,

and the last versions implemented the possibility to see the pressure evolution (in

time) through the vacuum setup. However, this software does not implement time

dependent outgasing and pumping in the vacuum setup. Such feature in a soft-

ware would make it essential to address any pressure related aspect of a cold atom

experiment.

However, in order to use this analogy there are two major issues. Indeed, the time

dependence of P1(t) as a current generator from the alkali dispenser is unknown, and

more importantly, the time dependence of Seff(t) is also unknown. SIPs pumping

speed are actually dependent on the pressures of the different species to pump. This

work will then address the modeling of the SIP used in our vacuum system and

study the pumping dynamics of our vacuum system.

6.2 Experimental Results

Another particular point that we need to take into consideration in our study of the

pumpings dynamics, is the pressure readings. In our experimental setup the SIP,

a TiTanTM 45S ion pump with a pumping rate of 40 L/s from Gamma Vacuum, is

used itself as a ion gauge. This of course impose us to be cautious as the element

we want to study (the SIP) is also the element which give us our pressure reading.

6.2.1 Leakage current of the Sputter Ion Pump

Normally, the pressure is translated into current readings by the pump controller.

However, in the presence of alkali gases there exists a modification of the pump

leakage current Il [97]. This modification is responsible for an overestimation of

the real pressure. It originates from a thin layer of alkali ions stuck to the pump

walls. Together with Il there is also an ion current I produced by the ionization of

the gas flowing through the pump electrodes. These two currents contribute to the

measured current Im actually reported by the pump controller (the current reading).

The leakage current Il is typically on the order of 100 nA and it is usually neg-

lected in high vacuum regimes (it corresponds to an overestimation of ' 10−9 mbar).
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However, neglecting this current affects the use of the ion pump as a pressure gauge

in the UHV regime [95] (< 10−9 mbar). So, we include the effect of this current in

the analysis below.

Following ion-pump manufacturers and taking into account that I = I(P2) is a

function of the pressure at the pump, we have the following expression for Im:

Im(U) = I(P2) + Il = f(P2)× U + Il (6.3)

where U is the applied voltage between the pump electrodes. From this equation, we

see that an accurate determination of the actual pressure (P2 or I) requires a precise

knowledge of the leakage current. The usual way of finding Il is to measure Im while

the pump’s magnets are removed. In this situation, there is no ionization process

and we have I = 0 A. However, this method requires the pump to be stopped and

does not allow a real-time monitoring of the pressure.

Here, we measure Il by gradually decreasing U within the nominal working range

of the pump [97]. Following Eq. (6.3), the leakage current is then determined by

extrapolating the data to U = 0 V. The result of this measurement is presented in

Fig. 6.3, where the observed linear behavior indicates that the pressure P2 does not

depend on the applied voltage U at the pressure levels we perform the experiment.

The obtained value of the leakage current is Il = 119.0± 0.4 nA. As we will see in

the following section, the accuracy in the pressure measurement obtained with this

method allows us to model the pumping dynamics for pressures < 10−9 mbar.
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Figure 6.3: Current-voltage (I-V ) characteristic of the pump. The leakage current

Il = 119.0± 0.4 nA is obtained from a linear fit (solid line) of the measured current

Im. Dashed lines represent the confidence interval of the fitting parameters.
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6.2.2 Determination of the pressure using an SIP

Once the leakage current is found, we can evaluate the ion current inside the pump

I(P2) using Eq. 6.3 and the current reading Im. The next problem is then to determ-

ine the explicit dependence of the ion current on the pressure at the pump, f(P2).

Then we can invert the function f(p2) and, in the steady-state regime, compute the

pressure at the chamber using Eq. 6.1, namely:

P1 =

(
S

C
+ 1

)
P2. (6.4)

In the free molecular regime, the conductance C depends only on the geometry of

the vacuum system for a given gas species and temperature. Using the Santeler

equation [98] for the transmission probability through a cylindrical pipe of radius R

and length L, we can calculate the conductance for a molecule of mass m at room

temperature using the following relation [95]:

C ' 11.75πR2

√
mN2

m

(
1 +

3L

8R

[
1 +

1

3(1 + L/7R)

])−1

. (6.5)

In Eq. (6.5)mN2 is the mass of a nitrogen molecule, andR and Lmust be expressed in

cm to get C in L · s−1. Now, let us get an estimate of the value of S for our vacuum

system. In a constant-flow regime, the conductance of our particular geometry

(central pipe of L = 35.2 cm and R = 3 cm) evaluates to C = 32 L · s−1 for the 87Rb

monoatomic gas. This value is obtained neglecting contributions from the cross,

which is a reasonable assumption in the constant flow regime. Finding S precisely is

slightly more difficult when considering pumping of 87Rb atoms. However, following

the pump manufacturer’s documentation [97] we can use the linear relation:

P2 = αk
I

U
, (6.6)

in order to express the pressure at the pump in terms of the ion current. Here, k =

10.9 mbarVA−1 at room temperature and α is a calibration factor. This factor is the

ionization vacuum gauges’ correction factor, which links the pressure measurement

of specific gas species to calibration measurements using nitrogen. For Rb, α = 4.3

[99]. As we see later, the empirical relation Eq. (6.6) does not take into account the

fact that the actual relationship between the pressure P2 and the ion current in the

pump I is nonlinear.
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With our MOT, we can realize an independent measurement of P1 instead of

computing it using Eq. (6.5). From the loading curve of the MOT, as shown in

Fig. 6.4, we can find P1 as indicated in Appendix C and Refs. [100, 101]. In fact,

the loading dynamics of the MOT critically depends on the background pressure

of the trapped species and other gases. As has been demonstrated in the past

[83, 85, 100, 101], these curves produce reliable pressure measurements. In our

experimental setup we use a mirror MOT obtained with an atom chip. The relevant

experimental details are as follows: the red-detuned cooling lasers (−1.5Γ where

Γ = 2π × 6 MHz is the natural line width of 87Rb D2 line) have a maximum power

of ' 40 mW shared by four independent MOT beams of about 2.5 cm of 1/e2

diameter. The magnetic field gradient is 11 G · cm−1. During 100 s of loading, the

fluorescence emitted by the atoms is collected on a photodiode with a solid angle of

1.3× 10−2 srad. This signal is used to compute the atom number. In order to vary

the pressure P1, we change the dispenser current to produce different stationary gas

flows Q.

In analogy to Eq. (6.6), we assume that the ion current I is proportional to the

pressure at the vacuum chamber P1, measured with the MOT. That is I = βP1,

where β is a parameter to be experimentally determined. Then, we can write the

following equation for the ion current reading as a function of the pressure Im:

Im = Il + βP1 (6.7)

In Fig. 6.5 we plot the dependence of Im on the pressure P1 measured from MOT

loading curves at steady state. This result offers one independent method to validate

the assumption leading to Eq. (6.7). This method consists in finding the leakage

current from MOT measurements and comparing the obtained value with the one

extracted from the I-V characterization. Fitting the data in Fig. 6.5 using Eq. (6.7),

we find for Il a value of 130 ± 20 nA, in good agreement with the result given by

the I-V characterization presented in Fig. 6.3. This agreement supports the use of

β to compute the pressure in the vacuum chamber by the relation P1 = I/β. For

the parameter β we obtain the value of (9.2± 0.6)× 1010 nA ·mbar−1.

Let us note, however, that the MOT being loaded when the pressure reaches a

steady-state regime, we have no guarantee that the relation P1 = I/β stays valid in

a dynamic regime. It would also be tempting to use the information from Eq. (6.5),
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Figure 6.4: Number of 87Rb atoms loaded in the MOT (black) for a dispenser current

of 4.75 A. The fit (red solid line) to the experimental data gives a characteristic

loading time of 7.13± 0.02 s.

Eq. (6.6) and Eq. (6.7) to find the pumping speed S. As determining β is equivalent

to determining Seff in a steady state. However, as we will see in the next section,

constant pumping speeds do not properly describe the transient behavior of the

pressure when switching on and off the dispenser current.
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Figure 6.5: Meter current versus measured pressure P1 from MOT loading curves

(points). The leakage current Il and the parameter β extracted from the fit (solid

line), using Eq. (6.7), are respectively equal to 130 ± 20 nA and (9.2 ± 0.6) ×

1010 nA.mbar−1.
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6.3 Analysis of the nonlinear pumping dynamics

6.3.1 Derivation of the dynamics

When searching for the reduction of the vacuum-system contribution to the dead

time between interferometric measurements, we need to focus on the pump-down

dynamics that is triggered after loading the MOT and switching off the atom source

(dispenser). To achieve this goal, we devise a pressure measurement protocol, which

is as follows: first, we switch on the dispenser at a given current and monitor the

pressure rise until it reaches the steady state [101]. The current ranges from 3.75

to 5 A, with a step of 0.25 A. Then, we switch off the dispenser and record the

pressure decay (pump-down curve) until it goes back to the steady state. We allow

both of the transient processes to last for about 1000 s.

In the following, we develop a mathematical formalism to describe the main

physical processes taking place during the pump-down dynamics. Firstly, we assume

that the dispenser is no longer sourcing atoms into the chamber after being switched

off. In this case, we can consider that the pressure evolution is mainly due to the

pumping by the SIP in the presence of a residual outgassing flow Q(t) coming from

the vacuum chamber. In steady state, Q(t) is solely given by the thermal outgassing

in the system. Secondly, we suppose that the pump contains an ensemble of Penning

cells with the geometry sketched in Fig. 6.6. Thirdly, let us assume that at the time

instant t:

1. there already exists some sputtered pumping material (e.g. Ti) that pumps the

gas, reducing the pressure by an amount −aP2(t) dt (process a© in Fig. 6.6);

2. some trapped molecules are released by the incident ion flux increasing the

pressure by cI(t) dt (process d© in Fig. 6.6);

3. some pumping material sputtered by the ion flux pumps the gas, reducing the

pressure by −aP2(t)× bI(t) dt (process e© in Fig. 6.6).

In point 1 above, the coefficient a represents the probability rate at which a

particle reaching the cathode (made out of a pumping material) sticks to it. Fur-

thermore, when the gas molecules gets ionized inside the pump ( b© in Fig. 6.6),

the applied voltage accelerates the ions ( c© in Fig. 6.6) towards the cathode. If the

109



ions have sufficient energy they can release previously trapped particles (when they

collide with the walls) with a desorption rate proportional to c (point 2) and also,

they can sputter pumping material with a yield characterized by the coefficient b

(point 3).
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Figure 6.6: Cross-section of a Penning cell (a pumping unit cell). A high voltage

U is applied between the cylindrical anode (blue), covered by some getter material

(black), and the cathode (black). A gas particle (green) enters the pumping cell and

hits the cathode ( a©) where it is stuck or deflected towards the anode. On its way

to this electrode, the particle collides with an electron ( b©) and gets ionized. The

ion is then accelerated towards the cathode ( c©) with eventually enough energy to

be buried and sputter pumping material ( d©). The freshly sputtered material covers

the internal walls of the cylindrical anode ( e©), which is then ready to pump more

particles.

The physical processes we just described are in agreement with the fact that the

pumping speed of the SIP decreases when the pressure decreases. The reason is the

decrease of the discharge intensity (current per unit pressure) in this situation. This

reduction of the pumping speed depends strongly on the pump parameters such as

the applied anode voltage, the magnetic field, and the geometry of the pumping cell.
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Collecting together the above-mentioned processes, we arrive at the following

differential equation for the pressure evolution at the pump:

dP2(t)

dt
= −aP2(t)− aP2(t)× bI(t) + cI(t) +

Q(t)

V2

, (6.8)

where V2 is the pump volume. In the next section we use this model to fit the

experimental data and determine the physical parameters defining the nonlinear

dynamics.

6.3.2 Practical fitting model

Instead of working directly with the pressure Eq. (6.8), here we derive a practical

model that allows a fitting of the experimental data. Our meter outputs current

values and therefore, it would be more natural to work with the ion current I(t)

rather than the pressure P2(t). However, the physical processes we just discussed

indicate that we cannot use Eq. (6.6) to relate these quantities. Indeed, I(t) has a

nontrivial dependence on the pressure governed by the pressure regime the pump is

working in. This fact is encoded by the empirical equation [91]:

I = hP n
2 (6.9)

where the exponent n is a real number used to identify the different pressure regimes.

It depends on the gas species and the geometry of the pump, and is determined from

the fitting procedure. In Eq. (6.9), h is a time-independent calibration parameter

defined by the type and size of the pump.

Inserting Eq. (6.9) into Eq. (6.8) we obtain the following equation in terms of

the ion current:

dI(t)

dt
= −α1I(t)− α2I(t)2 + [α3I(t) + q]× I(t)1−(1/n), (6.10)

with α1 ≡ na, α2 ≡ nab, α3 ≡ nc n
√
h, q ≡ n n

√
hQth/V2. These parameters are

treated as independent and used in the fitting procedure. When writing Eq. (6.10)

we consider that after switching off the dispenser, Q(t) reaches the constant thermal

outgassing flux Qth in a time scale shorter than the time frame required to reach

the steady state. As we will see later, such an approximation is compatible with our

observations. We measure the pump-down curves presented in Fig. 6.7. The points
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are the experimental data and the solid lines are fits obtained with Eq. (6.10). As

can be seen in this figure, there is a very good agreement between the theory and

the experimental data.

To validate the model beyond the criteria set by the fit quality, we study the

dependence of the fitting parameters on the pressure P2 looking at their behavior in

different pressure regimes. The measurement protocol used is as follows: we change

the dispenser current and wait until the pressure reaches an equilibrium state. Next,

we measure the ion current at this equilibrium situation, before switching off the

dispenser. Finally, we start the measurement of the pump-down dynamics. The

results obtained with this protocol are presented in Fig. 6.8. It shows the dependence

of the fitting parameters on the initial ion current.

As expected, the value of n increases when the pressure goes down [102] as can be

seen in Fig. 6.8e. Moreover, it reaches unity at the highest measured pressure. The

obtained value in this latter case is actually compatible with pump manufacturers’

reported values for air. At low pressures it goes beyond 1.5, a value never reported

before to our knowledge and that might be in agreement with the fact that we are

pumping an alkali gas.

The parameter a, according to our model, depends on the pump’s cathode geo-

metry (the getter area) and the sticking factor, this latter being a function of the

temperature and the gas species. From the measurement in Fig. 6.8a we see that at

low initial ion currents (pressures) a is relatively constant. This is expected since in

this case the sticking probability should correspond to a linear process given the gas

density in the pump. However, when the initial ion current is increased, a, which

seemed constant, eventually increases (up to a factor 5), suggesting either a modific-

ation of the sticking probability or an increase of the getter area. Both would seem

unlikely as the pump geometry does not change and neither does the the species,

nevertheless, this is coherent with the fact that in this situation the behavior of n

also indicates a change in the pressure regime, a higher pressure leading to a higher

bombardment rate of the cathode (from the ion). This could lead to induce an

important surface roughness to the cathode, therefore, increasing the effective area

of the getter. Furthermore, a higher bombardement rate would lead to heat dissip-

ation in the cathode, therefore, an increase of the sticking factor as sticking factors
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have been showed to be temperature dependent [103]. It is likely that we have an

accumulation of both phenomena explaining such an increase. Let us note that this

is also coherent with n getting close to 1, leaving therefore α1 and α3 multiplied by

the same power of I(t). It is therefore not impossible that the fitting algorithm is

not capable to make the difference between α1 and α3 in this pressure regime.

From Fig. 6.8b we see that the parameter b tends to zero when the initial ion

current is increased. This is also an expected behavior since this parameter is related

to the discharge current, which is depressed by the space-charge effect when the

pressure rises. As a consequence, the sputtering rate becomes reduced [91]. In fact,

what happens is that at relatively high initial ion currents or pressures, the energy

of the ions hitting the cathode is no longer exclusively defined by the applied voltage

U .

In order to interpret the behavior of the parameters c and Qth we need to isol-

ate them from the calibration factor h. This requires us to perform independent

measurements. However, it is fair to consider h as a scaling factor in Fig. 6.8c and

Fig. 6.8d. In this situation, the increase of c with the initial ion current might be

a consequence of the bombardment boost in the presence of a significant number

of gas particles in the pump volume. This process naturally leads to a relatively

higher desorption rate of buried molecules. Increasing the initial ion current also

leads to an increase in the thermal outgassing flux Qth in the time scale we record

the data (approximately 1000 s). This effect is already observable in Fig. 6.7 where

the steady-state ion-current value depends on the dispenser current.
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Figure 6.7: We record the pump-down curves (data points) after switching off the

dispenser currents, initially at levels given in captions (a),(b). In each case, the meas-

ured ion current I(t) is fitted (solid lines) by numerical integration of Eq. (6.10)). (a)

Dispenser currents are 5 A (black circles), 4.75 A A (blue diamonds), and 4.5 A (red

squares). (b) Dispenser currents are 4.25 A (black circles), 4 A (blue diamonds),

and 3.75 A (red squares).
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(a) Former sputtered-material pumping-rate

parameter.

(b) Instantaneous ion flux induced sputter-

ing pumping rate parameter.

(c) Ion-flux desorption parameter. (d) Thermal outgassing source parameter.

(e) Pumping regime parameter.

Figure 6.8: Dependence to initial ion current (when dispenser is switched-off) of

the parameters describing the pumping physical processes. These parameters result

from the fitting in Fig. 6.7 using the numerical solution of the differential Eq. (6.10).
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6.4 Conclusion

In this work, we developed a detailed physical model of the nonlinear pressure dy-

namics in sputter ion pumps as well as a calibration method to determine the sys-

tematic error which is Il without stopping the pumping. The model developed is

experimentally corroborated by the measured data. It includes parameters describ-

ing the complex physical processes taking place inside the vacuum pump. Moreover,

we characterize the system conductance and use pressure measurements with a MOT

to establish a link between the pressure in the vacuum chamber and the ion current

provided by the pump, at a steady state regime. From a practical point of view,

this relationship allows the pump current to be used as a good indicator of the

pressure in the science chamber even in a dynamic regime as it give us a magnitude

for our pressure in the science chamber. From the observed dynamics, we can tailor

the effective pumping speed and optimize the MOT loading time with respect to

the contradictory requirements of having high repetition rates and high number of

atoms in a single chamber. Furthermore, it is still possible to calibrate the relation

between P1(t) and P2(t) by determining h. The calibration of h, our model and

software as Molflow+ [96] would open the possibility to numerically simulate the

the pressure dynamics inside our vacuum chamber. This would then open the pos-

sibilities to address numerically a huge variety alkali dispenser desorption pulse, in

terms of time and intensity, in order to minimize the dead time of the experiment.

We hope that the physics investigated in this work will be useful in the future to en-

gineer miniature and microscopic scale ion pumps [90] for cold-atom-based compact

quantum sensors.
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Chapter 7

Summary, conclusion and outlook

In this thesis we have addressed the work done towards the realisation of an atom-

chip gyro. We have looked at the key physical aspects as well as the technical

requirements needed to realise such device.

The effect of temperature on the propagation and

the interferences of a wavepacket (Chapter 2 and

Chapter 3)

We studied the propagation and interference of a 1D wavepacket using density mat-

rix formalism from quantum optics. We extended this representation using the

Glauber-Sudarshan P-function to introduce the temperature as a superposition of

coherent states wavepackets, then see the effect of the temperature on the spreading

and interference fringes. As a result, we have developed and presented a new form-

alism and canonical form which highlights physical behavior and creates an intuitive

picture of the integration of the P-function over the coherent space. It also opened

the question of entropy aspects with a possible relation between the temperature

and the linear entropy of mixed states that we hope could be addressed in the future.

This formalism was extended further when addressing the interference of thermal

wavepackets in simple and näive configurations. It opens a perspective on the ap-

plication of this formalism to experimental interferometers where the interference

signature is measured through cloud population after a π/2-pulse, with a discussion
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on the effect of temperature on the contrast of the interferometer.

The fabrication of atom-chips with thick metal de-

position with the smallest possible roughness of

wires (Chapter 4)

For the fabrication, we characterised a PVD process to grow wires by a negative

photolithography lift-off. This process was used to fabricate an atom-chip being

currently used in the GyrAChip experiment at SYRTE. Moreover, we showed how we

could push the electrodeposition processes to obtain even thicker metal deposition,

thicker than those achievable through PVD, capable of achieving a surface roughness

limited only by the choice of the substrate and the quality of the photolithography.

We also discussed how electrodeposition processes could still be pushed further to

achieve even lower surface roughness. This pushing of the process will soon become

a technical necessity as progresses are being made in the production of mono-crystal

AlN substrates. This mono-crystal AlN should achieve surface roughness comparable

to what can be achieved with Si substrate. Such technological progress will not only

improve the technical noise related to the roughness of the wires, but would also,

thanks to improved heat dissipation, allow us to increase the power going through

the wires, without destroying them.

The noise characterisation of floating current gen-

erator to be used on the atom-chip in order to trap

and control atoms (Chapter 5)

The possibility to produce thick wires is also important when we consider the use

of low noise current generators. Indeed the resistivity of the wires is a function of

their thickness, thicker wires would allow us to increase the value of the current used

which was before limited by the power of the current supply. We have characterised

homemade current supplies through PSD measurement and showed that they have
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a RMS relative noise < 10−5. Depending on the way the magnetic potential is

generated by the wire patterns, it is possible to relate the current noise measured

through the PSD to atom’s phase noise by using the auto-correlation function and

its relation to PSD. This relation would allow us to see the viability of generating

ring traps for gyroscopes.

The pumping dynamics of a single chamber cold

atom experiment in order to reduce the experiment

dead-time (Chapter 6)

Finally, we presented a study of the pumping dynamics of an ion pump in a single

chamber cold-atom experiment. This study characterised the capacity of the pump

to restore a High Vacuum level after a burst of atom vapour is produced in the

science chamber. This study was undertaken to explore the possibility of reducing

the loading time for MOT. We showed, in this study, new techniques to improve the

pressure reading of ion pumps by increasing its accuracy, measuring leakage current

without having to turn off the pumps and disassemble its magnets. We also presen-

ted a pumping model which perfectly fits a pressure decay during a pumping phase

within time scale of several minutes. This study could be used by in the future by

those who want to design quantum sensors with reduced dead time as this study

helps in the understanding of pump dynamics.

There is still a lot of work needed in order to achieve this project, but we were

able, in this thesis, to contribute to several characterisations of individual elements

used in the experimental setup. Furthermore, this thesis was able to propose new

contributions to the scientific community through a published pumping model for

ion pumps, a new formalism for thermal wavepackets, and possibilities to improve

the quality of atom-chip fabrication through the study of involved processes.
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Appendix A

P-representation

Here I will focus on the known demonstration of the P-function for a thermal dis-

tribution of coherent states. For this calculation we will define:

• P(α) the P-function of the coherent state |α〉, defined as:

ρ̂ =

∫∫
P(α) |α〉 〈α| d2α, (A.1)

• The density matrix defined as:

ρ̂ =
∑
i

pi |Ψi〉 〈Ψi| , (A.2)

• P(n) the probability of |n〉 via any of the |Ψi〉 such as:

P (n) =
∑
i

pi|〈n|Ψi〉|2. (A.3)

A.1 The characteristic function and the P-function

We define the characteristic function of P-representation by:

(λ) = Tr
[
ρ̂eλâ

†
e−λ

∗â
]
. (A.4)
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By substituting ρ̂ by its definition with the P-function we can calculate the relation

between the P-function and the characteristic function:

χp(λ) = Tr
[
ρ̂eλâ

†
e−λ

∗â
]

= Tr

[(∫∫
P(α) |α〉 〈α| d2α

)
eλâ

†
e−λ

∗â

]
=

∫∫
Tr
[
P(α) |α〉 〈α| eλâ†e−λ∗â

]
d2α

=

∫∫
Tr
[
〈α| eλâ†e−λ∗âP(α) |α〉

]
d2α

=

∫∫
P(α) Tr

[
〈α| eλâ†e−λ∗â |α〉

]
d2α

=

∫∫
P(α) Tr

[
〈α|

(∑
k

(λâ†)k

k !

)(∑
j

(−λ∗â)j

j !

)
|α〉

]
d2α

=

∫∫
P(α) Tr

[∑
k,j

(
〈α| (λâ†)k

k !

)(
(−λ∗â)j |α〉

j !

)]
d2α

=

∫∫
P(α) Tr

[∑
k,j

(
〈α| (λα∗)k

k !

)(
(−λ∗α)j |α〉

j !

)]
d2α

=

∫∫
P(α) Tr

[
〈α|

(∑
k

(λα∗)k

k !

)(∑
j

(−λ∗α)j

j !

)
|α〉

]
d2α

=

∫∫
P(α) Tr

[
〈α| eλα∗e−λ∗α |α〉

]
d2α

=

∫∫
P(α)eλα

∗
e−λ

∗α Tr[〈α|α〉] d2α

=

∫∫
P(α)eλα

∗
e−λ

∗α × 1 d2α

=

∫∫
P(α)eλα

∗−λ∗α d2α. (A.5)

However, eλ
∗α−λ∗ = e2i(αRλI−αIλR) and d2α = dαRdαI therefore we can say that P(α)

is the 2D Fourier transform of χp(λ), then:

P(α) =
1

π2

∫∫
χp(λ)eλ

∗α−λα∗ d2λ. (A.6)

A.2 P-function for thermal state

In order to calculate the P(α) for a thermal state we need to write χp(λ) with the

density matrix of the thermal state. Therefore we write the known density matrix
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for thermal states as:

ρ̂ =
∞∑
j=0

n̄j

(n̄+ 1)j+1
|j〉 〈j| . (A.7)

Therefore we can calculate:

χp(λ) = Tr
[
ρ̂eλâ

†
e−λ

∗â
]

=
∞∑
k=0

〈k| ρ̂eλâ†e−λ∗â |k〉

=
∞∑
k=0

〈k|

(
∞∑
j=0

n̄j

(n̄+ 1)j+1
|j〉 〈j|

)
eλâ

†
e−λ

∗â |k〉

=
∞∑
k=0

∞∑
j=0

n̄j

(n̄+ 1)j+1
〈k|j〉 〈j| eλâ†e−λ∗â |k〉

=
∞∑
k=0

∞∑
j=0

n̄j

(n̄+ 1)j+1
δkj 〈j| eλâ

†
e−λ

∗â |k〉

=
∞∑
k=0

n̄k

(n̄+ 1)k+1
〈k| eλâ†e−λ∗â |k〉

=
∞∑
k=0

n̄k

(n̄+ 1)k+1
〈k|

(
∞∑
j=0

(λâ†)j

j !

)(
∞∑
l=0

(−λ∗â)l

l !

)
|k〉 . (A.8)

Since â |n〉 =
√
n |n− 1〉 and 〈n| â† = 〈n−|

√
n we can therefore write:

If j > k ⇒ âj |k〉 = 0 and 〈k| (â†)j = 0,

If j ≤ k ⇒ âj |k〉 =

√
k !√

(k − j) !
|k − j〉 and 〈k| (â†)j = 〈k − j|

√
k !√

(k − j) !
.

So we can now go back on our calculus:

χp(λ) =
∞∑
k=0

n̄k

(n̄+ 1)k+1
〈k|

(
∞∑
j=0

(λâ†)j

j !

)(
∞∑
l=0

(−λ∗â)l

l !

)
|k〉

=
∞∑
k=0

n̄k

(n̄+ 1)k+1

k∑
j=0

k∑
l=0

〈k − j| λ
j

j !

√
k !√

(k − j) !
×

√
k !√

(k − l) !

(−λ∗)l

l !
|k − l〉

=
∞∑
k=0

n̄k

(n̄+ 1)k+1

k∑
j=0

k∑
l=0

λj

j !

√
k !√

(k − j) !
×

√
k !√

(k − l) !

(−λ∗)l

l !
〈k − j|k − l〉

=
∞∑
k=0

n̄k

(n̄+ 1)k+1

k∑
j=0

λj

j !

√
k !√

(k − j) !
×

√
k !√

(k − j) !

(−λ∗)j

j !

=
∞∑
k=0

n̄k

(n̄+ 1)k+1

k∑
j=0

(−1)j

j !

k !

(k − j) !j !
(λλ∗)j

=
∞∑
k=0

n̄k

(n̄+ 1)k+1

k∑
j=0

(−1)j

j !

(
k

j

)
(λλ∗)j. (A.9)
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Let’s now introduce the Laguerre polynomials defined as:

Ln(x) =
n∑
k=0

(
n

k

)
(−1)k

k!
xk. (A.10)

We can therefore write:

χp(λ) =
∞∑
k=0

n̄k

(n̄+ 1)k+1

k∑
j=0

(−1)j

j !

(
k

j

)
(λλ∗)j

=
∞∑
k=0

n̄k

(n̄+ 1)k+1
Lk(λλ

∗). (A.11)

In order to go further, let’s now introduce the generator function of the Laguerre

polynomials:
∞∑
n=0

tnLn(x) =
1

1− t
exp

(
− tx

1− t

)
. (A.12)

Therefore by writing t = n̄/(n̄+ 1) we can keep the calculus as:

χp(λ) =
∞∑
k=0

n̄k

(n̄+ 1)k+1
Lk(λλ

∗)

=
1

(n̄+ 1)

∞∑
k=0

n̄k

(n̄+ 1)k
Lk(λλ

∗)

=
1

(n̄+ 1)
× 1

1− n̄
(n̄+1)

exp

(
−

n̄
(n̄+1)

× λλ∗

1− n̄
(n̄+1)

)
. (A.13)

However 1
1− n̄

n̄+1

= n̄+1
n̄+1−n̄ = n̄+ 1, therefore we have:

χp(λ) =
1

(n̄+ 1)
× 1

1− n̄
(n̄+1)

exp

(
−

n̄
(n̄+1)

× λλ∗

1− n̄
(n̄+1)

)

=
1

(n̄+ 1)
× (n̄+ 1) exp

(
− n̄

n̄+ 1
× λλ∗ × (n̄+ 1)

)
, (A.14)

And finally,

χp(λ) = exp(−n̄× λλ∗). (A.15)

We can now finally substitute χp(λ) in Eq. (A.6):

P(α) =
1

π2

∫∫
χp(λ)eλ

∗α−λα∗ d2λ

=
1

π2

∫∫
exp(−n̄× λλ∗)× eλ∗α−λα∗ d2λ

=
1

π2

∫∫
exp
(
−n̄× (λ2

I + λ2
R)
)
× e2i(αRλI−αIλR) dλR dλI

=
1

π2

(∫
e2iαRλIe−n̄λ

2
I dλI

)(∫
e−2iαIλRe−n̄λ

2
R dλR

)
=

1

π2

(∫
e−2iπ(

−αR
π

)λIe−n̄λ
2
I dλI

)(∫
e−2iπ

αI
π
λRe−n̄λ

2
R dλR

)
. (A.16)
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Now taking the definition of Fourier transform which is:

FT [f(x)] (k) =

∫
f(x)e−2iπ×kx dx

, And therefore for a Gaussian function (where f(x) = e−ax
2
) we have:

FT
[
e−ax

2
]

(k) =

√
π

a
e−k

2 π2

a

.

And so going back to P(α) we have:

P(α) =
1

π2

(∫
e−2iπ(

−αR
π

)λIe−n̄λ
2
I dλI

)(∫
e−2iπ

αI
π
λRe−n̄λ

2
R dλR

)
=

1

π2
×FT

[
e−n̄λ

2
I

](−αR
π

)
×FT

[
e−n̄λ

2
R

] (αI
π

)
=

1

π2
×
√
π

n̄
e−(−αRπ )

2
×π

2

n̄ ×
√
π

n̄
e−(αIπ )

2
×π

2

n̄

=
1

n̄π
e−

α2
R+α2

I
n̄ . (A.17)

And finally we can conclude for a thermal state as:

P(α) =
1

n̄π
e−|α|

2/n̄ . (A.18)
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Appendix B

Gaussian wavepacket solution of

the 1D free space Schrödinger

equation

Colours in this appendix equations are here to help the eye.

We will consider here the propagation of a 1D wave-packet ψ(x, t) in a free

space as we make the approximation that a wave-packet propagation in a waveguide

is equivalent to a free particle moving along the waveguide axis. This result is

obviously known, however we will present an unusual representation of ψ(x, t) such

as |ψ(x, t)| exp(i arg[ψ(x, t)]) so we can directly see the probability density and the

phase.

The Hamiltonian is then Ĥ = −~2

2m
× ∂2

∂x2 , therefore, we have the Schrödinger

equation:

i~
∂

∂t
ψ = Ĥψ, (B.1)

therefore,

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ(x, t)

∂x2
. (B.2)

Let’s write the general solution of Eq. (B.2) according to the Plancherel theorem:

ψ(x, t) =
1√
2π

∫
ei(kx−ωt)φ(k) dk, (B.3)

where φ(k) is the momentum distribution of the wave-packet.
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B.1 Normalization criteria

The criteria of normalization for ψ is:

+∞∫
−∞

ψ∗ψ dx = 1,

and we can show that:

+∞∫
−∞

|φ(k)|2 dk = 1. (B.4)

Following the central limit theorem, if we chose a Gaussian distribution of the mo-

mentum in the wave-packet ψ then I have:

φ(k) = Const.× exp

(
−
(
k − k0

2∆k

)2
)
. (B.5)

Where k0 = 〈k〉, Const. is a normalization factor and the operator ∆ defined by

∆�2 = 〈�2〉 − 〈�〉2 such as ∆k is the standard deviation in the momentum space.

We then have the Heisenberg’s incertitude principle:

∆k∆x ≥ 1/2. (B.6)

Therefore we can set our physical problem as a single atom of momentum ~k0 (the

recoil velocity for our experiment) with a standard deviation ∆k.

Let’s now calculate the value of Const.:

+∞∫
−∞

|φ(k)|2 dk = 1

=

+∞∫
−∞

∣∣∣∣∣Const.× exp

(
−
(
k − k0

2∆k

)2
)∣∣∣∣∣

2

dk

Therefore, if we assume Const. ∈ R+ and the fact that exp(�) > 0 for ∀� ∈ R,

we can write:

+∞∫
−∞

∣∣∣∣∣Const.× exp

(
−
(
k − k0

2∆k

)2
)∣∣∣∣∣

2

dk = Const2×
+∞∫
−∞

exp

(
−2×

(
k − k0

2∆k

)2
)
dk = 1.

Therefore we can calculate Const. with:

1

Const.2
=

+∞∫
−∞

exp

(
−2×

(
k − k0

2∆k

)2
)
dk.
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Therefore by using the Gaussian integral formula(with a ∈ C and b ∈ C ):

+∞∫
−∞

exp
(
−a(x+ b)2

)
dx =

√
π

a
, (B.7)

we can then write:

1

Const.2
=

+∞∫
−∞

exp

(
− 2

4∆k2
× (k − k0)2

)
dk

=

√
π × �4∆k2

�2
=
√

2π∆k

So,

Const. =
(√

2π∆k
)−1/2

. (B.8)

Finally Eq. (B.5) become:

φ(k) =
(√

2π∆k
)−1/2

× exp

(
−(k − k0)2

4∆k2

)
. (B.9)

And therefore Eq. (B.3) become:

ψ(x, t) =
1√
2π

+∞∫
−∞

ei(kx−ωt) ×
(√

2π∆k
)−1/2

exp

(
−(k − k0)2

4∆k2

)
dk. (B.10)

B.2 Equation dependant of x

From Eq. (B.10) using ω = ~k2

2m
we can write:

ψ(x, t) =
(
(2π)3/2∆k

)−1/2

+∞∫
−∞

e
i
(
kx− ~k2

2m
t
)

exp

(
−k

2 − 2kk0 + k2
0

4∆k2

)
dk

=
(
(2π)3/2∆k

)−1/2 × e−k2
0/4∆k2

×
+∞∫
−∞

exp

[
−k2

(
i~t
2m

+
1

4∆k2

)
+ k

(
2k0

4∆k2
+ ix

)]
dk. (B.11)

Let’s name A(t) = i~t
2m

+ 1
4∆k2 = 2i~t∆k2+m

4m∆k2 and B(x) = 2k0

4∆k2 + ix = 2ix∆k2+k0

2∆k2 and we

will construct a constant C ∈ C such as we can complete the square, therefore:

−A(t)× k2 +B(x)× k + C = −Const.(k − keq)2

⇒ A(t)k2 −B(x)k − C = Const.k2 − 2Const.kkeq + k2
eq.
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Therefore by identification we have :

Const. = A(t), keq(x, t) =
B

2A
, C(x, t) = −Ak2

eq = −B
2

4A
. (B.12)

We have now a Gaussian integral with complex coefficients, therefore we can

rewrite Eq. (B.11) as:

ψ(x, t) =
(
(2π)3/2∆k

)−1/2
e−k

2
0/4∆k2

e−C(x,t)

+∞∫
−∞

exp
(
−A(t)k2 +B(x)k + C(x, t)

)
dk

=
(
(2π)3/2∆k

)−1/2 × e−k2
0/4∆k2 × e−C(x,t)

+∞∫
−∞

exp
(
−A(t)(k − keq(x, t))2

)
dk

=
(
(2π)3/2∆k

)−1/2 × e−k2
0/4∆k2 × e−C(x,t) ×

√
π

A(t)
. (B.13)

B.3 Harmonization of the mathematical formula

We still need to write this result with a meaningful notation knowing that the prob-

ability P (x, t) = |ψ(x, t)|2 is the known propagating Gaussian wavepacket. There-

fore we want to write ψ(x, t) = |ψ(x, t)| × eiφ. For that let’s first write C(x, t) as

CRe(x, t) + iCIm(x, t) using Eq. (B.12).

C(x, t) = −B
2

4A

= −
(
k0 + i2x∆k2

2∆k�2

)2

× 1

�4

�4m��
�∆k2

m+ i2~t∆k2

= −k
2
0 − 4x2∆k4 + i4xk0∆k2

4∆k2
× m

m+ i2~t∆k2
× m− i2~t∆k2

m− i2~t∆k2

= − m

4∆k2
× k2

0 − 4x2∆k4 + i4xk0∆k2

m+ i2~t∆k2
× m− i2~t∆k2

m− i2~t∆k2

= − m

4∆k2(m2 + 4(~t)2∆k4)
×
(
k2

0 − 4x2∆k4 + i4xk0∆k2
) (
m− i2~t∆k2

)
,

we can now separate the real and imaginary terms,

= − m

4∆k2 (m2 + 4(~t)2∆k4)

×
(
mk2

0 − 4mx2∆k4 + 8(~t)xk0∆k4 + i
[
4mxk0∆k2 − 2(~t)∆k2(k2

0 − 4x2∆k4)
])
.

(B.14)
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Therefore we can write:

CRe(x, t) = − m

4∆k2 (m2 + 4(~t)2∆k4)
×
(
mk2

0 − 4mx2∆k4 + 8(~t)xk0∆k4
)

= − m2k2
0

4∆k2 (m2 + 4(~t)2∆k4)
− �4m2∆k�4

���4∆k2 (m2 + 4(~t)2∆k4)
×
(
−x2 +

2(~t)xk0

m

)
,

(B.15)

and:

CIm(x, t) = − m

4��
�∆k2 (m2 + 4(~t)2∆k4)

×
[
4mxk0�

��∆k2 − 2(~t)���∆k2(k2
0 − 4x2∆k4)

]
.

(B.16)

B.3.1 The wavepacket norm

Let’s now focus on CRe(x, t), since we want to see a meaningful equation of P (x, t),

we know that e−CRe(x,t) must be written into the form of a Gaussian. Therefore we

should write CRe(x, t) = Const. +
(
x−x0(t)
σ(t)

)2

, for that we will complete the square

in (B.15).

CRe(x, t) =
−m2k2

0

4∆k2 (m2 + 4(~t)2∆k4)
− m2∆k2

(m2 + 4(~t)2∆k4)
×
(
−x2 +

2(~t)xk0

m

)
.

To facilitate the calculation let’s write the first fraction as Frac.

= Frac. +
m2∆k2

(m2 + 4(~t)2∆k4)
×

(
+x2 − 2(~t)xk0

m
+

[
(~t)k0

m

]2

−
[

(~t)k0

m

]2
)

= Frac.− �
�m2∆k2 × (~t)2k2

0

�
�m2 (m2 + (~t)2∆k4)

+
m2∆k2

(m2 + 4(~t)2∆k4)

(
x− ~k0

m
t

)2

. (B.17)

Let’s now focus on wrinting in a same fraction Frac. and the second fraction with

blue:

−m2k2
0

4∆k2 (m2 + 4(~t)2∆k4)
− (~t)2k2

0∆k2

(m2 + (~t)2∆k4)
× 4∆k2

4∆k2

=
−m2k2

0 − 4∆k4(~t)2k2
0

4∆k2 (m2 + 4(~t)2∆k4)

=
−k2

0((((
(((

(((
(m2 + 4(~t)2∆k4)

4∆k2
((((

((((
((

(m2 + 4(~t)2∆k4)
=
−k2

0

4∆k2
, (B.18)

We can now introduce Eq. (B.18) in Eq. (B.17) and obtain:

CRe(x, t) =
−k2

0

4∆k2
+

m2∆k2

(m2 + 4(~t)2∆k4)

(
x− ~k0

m
t

)2

. (B.19)
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Let us define:

∆x(t) =

√
m2 + 4(~t)2∆k4

2m∆k
. (B.20)

Therefore by substituting CRe(x, t) from Eq. (B.18) in Eq. (B.13) and using ∆x(t)

we can write |ψ(x, t)| as:

|ψ(x, t)| =
(
(2π)3/2∆k

)−1/2
e−k

2
0/4∆k2

e−CRe(x,t)
√

π

|A(t)|

=
(
(2π)3/2∆k

)−1/2
((((

((((
((

e−k
2
0/4∆k2

e+k2
0/4∆k2

√
π

|A|
× exp

(
−
(
x− vgt
2∆x(t)

)2
)
,

(B.21)

with,

vg =
∂ω

∂k
|k=k0 =

~k0

m
, (B.22)

and ∆x(t) such as for t ≥ 0 we have ∆x(t)∆k ≥ 1
2

in agreement with Heisenberg’s

incertitude principle.

Now we will calculate |A(t)|:

|A(t)| =
∣∣∣∣m+ i2~t∆k2

4m∆k2

∣∣∣∣
=

√
m2 + 4(~t)2∆k4

4m∆k2

=
�2∆x(t)

�4∆k

|A| = ∆x(t)

2∆k
. (B.23)

So we can write Eq. (B.21) using |A(t)| as:

|ψ(x, t)| =
(
(2π)3/2

��∆k
)−1/2

(
π2��∆k

∆x(t)

)1/2

× exp

(
−
(
x− vgt
2∆x(t)

)2
)

=

(
��2π

��2π ×
√

2π∆x(t)

)1/2

× exp

(
−(x− vgt)2

4∆x(t)2

)
=
(√

2π∆x(t)
)−1/2

exp

(
−(x− vgt)2

4∆x(t)2

)
. (B.24)

We now have a meaningful equation of |ψ(x, t)| where we can the probability P (x, t) =

|ψ(x, t)| of an atom in a free space as a Gaussian wavepacket moving with a speed

vg and spreading through time according to the standard deviation ∆x(t).

Let’s however check that the normalization criteria is still verified:
+∞∫
−∞

|ψ(x, t)|2 dx =

(
1√

2π∆x(t)

)
×

+∞∫
−∞

exp

(
−�2(x− vgt)2

�4∆x(t)2

)
dx.
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Terefore by using the gaussian integral B.7:

=

(
1√

2π∆x(t)

)
×
√
π2∆x(t)2 = 1. (B.25)

The normalization criteria is then verified.

B.3.2 The wavepacket phase

For the phase we want to write ψ(x, t) = |ψ(x, t)|eiθ(x,t) where eiθ(x,t) = e−iCIm(x,t) ×(
eiθA(t)

)−1/2
. With eiθA(t) the phase of A(t) such as:

θA(t) = cos−1

(
Re(A(t))

|A(t)|

)
= cos−1

(
2∆k

∆x(t)

1

4∆k2

)
= cos−1

(
1

2∆x(t)∆k

)
. (B.26)

Let’s now rewrite CIm(x, t) from Eq. (B.16):

CIm(x, t) = − m

4��
�∆k2 (m2 + 4(~t)2∆k4)

×
[
4mxk0�

��∆k2 − 2(~t)���∆k2(k2
0 ×

4m

4m
− 4x2∆k4 × m

m
)

]
= − �4m2

�4 (m2 + 4(~t)2∆k4)
×
[
xk0 −

�2~k2
0

�4m
t+

2x2∆k4~t
m

]
.

We define ω0 = ω(k = k0) = ~k2
0/2m such as:

= − m2

(m2 + 4(~t)2∆k4)
×
[
(k0x− ω0t) +

2(x∆k2)2~t
m

]
,

by using Eq. (B.20) we can rewrite the factor as:

= − 1

(2∆x(t)∆k)2
×
[
(k0x− ω0t) +

2(x∆k2)2~t
m

]
. (B.27)

Therefore:

θ(x, t) =
1

(2∆x(t)∆k)2
×
[
(k0x− ω0t) +

2(x∆k2)2~t
m

]
− 1

2
cos−1

(
1

2∆x(t)∆k

)
.

(B.28)

Let’s finally write:

ψ(x, t) =
(√

2π∆x(t)
)−1/2

exp

(
−(x− vgt)2

4∆x(t)2

)
× exp

[
i

(2∆x(t)∆k)2
×
[
(k0x− ω0t) +

2(x∆k2)2~t
m

]
− i

2
cos−1

(
1

2∆x(t)∆k

)]
.

(B.29)
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We can also write:

ψ(x, t) =
(√

2π∆x(t)
)

exp

[
−(x− v0t)

2

4∆x(t)2

]

× exp

[
i
k0x− ω0t

(2∆x(t)∆k)2 + i
v∆t

∆x(0)

x2

4∆x(t)2
− i

2
cos−1

(
1

2∆x(t)∆k

)]
.

(B.30)

Using v∆ = (~∆k)/m such that ∆x(t)2 = ∆x(0)2 + (v∆t)
2 and x2 = (x− v0t)

2 +

2xv0t− v2
0t

2 we have:

ψ(x, t) =
(√

2π∆x(t)
)−1/2

exp

[
−(x− v0t)

2

4∆x(t)2

]

× exp

[
i
k0x− ω0t

(2∆x(t)∆k)2 + i
(
2xv0t− v2

0t
2
) v∆t

4∆x(t)2∆x(0)

]
× exp

[
i
v∆t

∆x(0)

(x− v0t)
2

4∆x(t)2
− i

2
cos−1

(
1

2∆x(t)∆k

)]
(B.31)

=
(√

2π∆x(t)
)−1/2

exp

[
−(x− v0t)

2

4∆x(t)2

]

× exp

[
i
k0x− ω0t

(2∆x(t)∆k)2 + i

(
2x

~k0

m
t−
[
~k0

m

]2

t2

)
v∆t

4∆x(t)2∆x(0)

]

× exp

[
i
v∆t

∆x(0)

(x− v0t)
2

4∆x(t)2
− i

2
cos−1

(
1

2∆x(t)∆k

)]
(B.32)

=
(√

2π∆x(t)
)−1/2

exp

[
−(x− v0t)

2

4∆x(t)2

]

× exp

[
i(k0x− ω0t)

(
1

(2∆x(t)∆k)2 +
2~t
m

v∆t

4∆x(t)2∆x(0)

)]
× exp

[
i
v∆t

∆x(0)

(x− v0t)
2

4∆x(t)2
− i

2
cos−1

(
1

2∆x(t)∆k

)]
(B.33)

ψ(x, t) =
(√

2π∆x(t)
)−1/2

exp

[
−(x− v0t)

2

4∆x(t)2

]

× exp[i(k0x− ω0t)]

× exp

[
i
v∆t

∆x(0)

(x− v0t)
2

4∆x(t)2
− i

2
cos−1

(
1

2∆x(t)∆k

)]
. (B.34)

B.3.3 Expected values of x̂ and p̂

The way ψ(x, t) is presented in Eq. (B.29) is not usual, however the momentum

should be conserved as there is no potential in the Shrödinger Eq. (B.2). Therefore
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we need several checks. We have already checked the normalization of ψ(x, t) in

Eq. (B.25). But an other quick check we can do is for example if t = 0, then we

have:

∆x(t = 0) =
1

2∆k
,

Therefore we have the known result :

ψ(x, t = 0) =

(√
2π

2∆k

)−1/2

exp
(
−(x∆k)2) exp[ik0x] (B.35)

Let’s also note that ψ(x, t), as it is, is only one possible solution of the Schrödinger

Eq. (B.2). Here we are only interested in the solutions of a form of a moving

Gaussian, this is why we choose φ(k) as it is in Eq. (B.9).

Let us now talk about the expected values. For the expected value 〈x̂〉, this is

trivial:

〈x̂〉 =

∫
x|ψ(x, t)|2 dx

=

∫
(µ+ vgt)|ψ(µ+ vgt, t)|2 dµ

∣∣∣∣
µ=x−vgt

〈x̂〉 = vgt . (B.36)

If we look at Eq. (B.9) then the expected value of p̂ is: 〈p̂〉 = ~k0 = p0. Let us test

that on ψ(x, t) from Eq. (B.29).

〈p̂〉 = 〈ψ| p̂ |ψ〉

= −i~
〈
ψ

∣∣∣∣∂ψ∂x
〉

= −i~
∫
ψ(x, t)∗

∂ψ

∂x
dx

= −i~
∫
ψ(x, t)∗ × ψ(x, t)

[
−�2(x− vgt)
�2× 2∆x(t)2

+
ik0

(2∆x(t)∆k)2 +
i4x∆k4~t

m(2∆x(t)∆k)2

]
dx ,

knowing that ψ∗ψ = |ψ|2 and using Eq. (B.24), we have:

〈p̂〉 = −i~
∫
−(x− vgt)

2∆x(t)2
|ψ(x, t)|2 dx (B.37)

− i~
∫

ik0

(2∆x(t)∆k)2 |ψ(x, t)|2 dx

− i~ i4~t∆k4

4m∆x(t)2∆k2

∫
(µ+ vgt)|ψ(µ+ vgt, t)|2 dµ

∣∣∣∣
µ=x−vgt

= −i~
[
0 +

ik0

(2∆x(t)∆k)2 +
i4~t∆k4vgt

4m∆x(t)2∆k2

]
.
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We have vg = ~k0

m
therefore we have:

〈p̂〉 = −i~
[

ik0

(2∆x(t)∆k)2 +
i4~t∆k4~k0t

4m2∆x(t)2∆k2

]
= (+1)× ~k0

[
1

4∆x(t)2∆k2
× m2

m2
+

4(~t)2∆k4

4m2∆x(t)2∆k2

]
, (B.38)

from Eq. (B.20) we have ∆x(t)2 = m2+4(~t)2∆k4

4m2∆k2 therefore we have:

〈p̂〉 = ~k0

((((
((((

(((
((((

(((
(([

m2 + 4(~t)2∆k4

4m2∆k2
× 4m2∆k2

m2 + 4(~t)2∆k4

]
〈p̂〉 = ~k0 = p0 . (B.39)

Therefore our ψ(x, t) verify the momentum conservation.

We have to take into account here that in all our calculation the initial wave-

packet is centred in x = 0. Therefore by changing our referential origin i.e. substi-

tuting x by x− x0 in Eq. (B.29) we would have 〈x̂〉 = x0 + vgt .
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Appendix C

Pressure measurement using the

MOT loading

The loading dynamic of a MOT (Magneto-Optical Trap) is critically dependent

of the background pressure of the trapped species and other gases. Indeed the

loading rate of atoms in the trap is dependent of the trapped species pressure, while

the maximum number of atoms in the trap is related to the general background

pressure[100, 101]. We can therefore use a MOT, more precisely a MOT loading, as

a reliable pressure sensor as long as the pressure is constant during the time of the

MOT loading.

C.1 The fluorescence imaging system

The atom number Nat in the MOT is measured through the MOT fluorescence light

converted as a voltage signal on a photodiode. The photodiode converts the photon

counts (which is itself proportional to Nat) to an electrical current acquired as a

voltage signal UMOT.

The fluorescence imaging system used in the Observatoire’s experiment is dis-

cussed in detail in reference [38] and can be seen in Fig. C.2. In this experimental

setup, the collection efficiency η of the fluorescence light is estimated to be η = 0.012,

with the reflection of the MOT through the atomchip’s mirror and the shadow of

the MOT coil (see Fig. C.2) being taken into account. While the response in voltage
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Upd of the photodiode to an optical power P is given by:

Upd = ρRP , (C.1)

with ρR ' 6 × 105 V/W. Moreover, the photon scattering rate rsc of the MOT is

Figure C.1: Experimental setup for the fluorescence imaging system taken from

reference [38]. We can see that one of the MOT coil, present in the vacuum chamber,

is on the path of the fluorescence light and need to be taken into account.

given as[40]

rsc =
1

2

Γs

1 + s+ 4 δ
2

Γ

, (C.2)

with, Γ the natural line width (of the 87Rb D2 optical transition), δ is the laser

detunning and s = I/Isat, where I is the MOT’s laser intensity and Isat the saturation

intensity.

We can then write the relation between Nat and VMOT given as[38]:

Nat =
UMOTλ

hcρRηrsc

, (C.3)

with λ the wavelength of the 87Rb D2 optical transition, h the Planck’s constant

and c the speed of light.
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C.2 The measurement

For the measurement we switch ON a the dispenser (with a constant current) while

monitoring the ion pump current Im and the photodiode voltage Upd. The mon-

itoring of Im allow us know the evolution in the vacuum chamber as Im is used

by the ion pump to measure pressure, therefore, when the pressure stabilise we

switch ON the MOT lasers. However, independently from the MOT fluorescence

UMOT, the photodiode measure the signal the stray light from the MOT lasers Usl.

Therefore, as you can see in Fig. C.2, we acquire the photodiode voltage Upd for

two cases. One case (red curve in Fig. C.2) where we switch ON the MOT lasers

without switching ON the MOT’s magnetic field, therefore, there is no MOT, such

that Upd = Usl. In the other case (black curve in Fig. C.2) where we switch ON

the MOT lasers then we switch ON the MOT’s magnetic field, such that there is

a MOT and Upd = Usl + UMOT. We can then extract UMOT by subtracting the red

curve to the black curve in Fig. C.2.

Figure C.2: Photodiode voltage from a fluorescence measurement. The dispenser

is switched ON with a constant current of 4.75 A until pressure stabilise, then

the MOT lasers are switched ON at 0 s. In red, measurement of the fluorescence

without switching ON the MOT’s magnetic field. In black, the MOT’s magnetic

field is switched ON at 65 s.
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C.3 Data treatment

After extracting UMOT from the difference of the black and red curve in Fig. C.2, we

can apply Eq. (C.3) in order to extract the number of atoms in the MOT. However,

the dynamics of a MOT loading are determined by the background pressure as follow

[100, 101]

Nat =
rat

γ
(1− exp(−γt)), (C.4)

where rat is rate at which atoms are trapped in the MOT and γ the loss rate

due to collisions with background gases. Both rat and γ are pressure dependent,

however, rat also depends of the trap parameters while γ is only pressure dependent.

Therefore, by fitting the MOT loading (as you can see in Fig. C.3), we can know the

pressure P1 in the science chamber of the MOT through the following relation[100]

(with γ expressed in s−1):

P1 =
1.33322× γ

4.4× 107
. (C.5)
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Figure C.3: Number of 87Rb atoms loaded in the MOT (black) for a dispenser current

of 4.75 A. The fit (red solid line) to the experimental data gives a characteristic

loading time (1/γ) of 7.13± 0.02 s.
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Paris XI, Sept. 2001. 2

[6] V. Apostolyuk and F. Tay, “Dynamics of micromechanical coriolis vibratory

gyroscopes,” Sensor Letters, vol. 2, pp. 252–259, 09 2004. 2

[7] E. J. POST, “Sagnac effect,” Rev. Mod. Phys., vol. 39, pp. 475–493, Apr 1967.

2
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