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Summary 

To understand the world around us we largely rely on our prior knowledge, 

which can help us structure newly incoming information.  My research 

implemented naturalistic fMRI studies to investigate how previously acquired 

information affects the encoding and retrieval of new, but related, events.  It is 

important to note that our stored knowledge can be either more general 

(schematic) knowledge – such as what typically happens at restaurants – or can 

be referring to a specific event – such as when we start listening to a lecture to 

which we have missed the beginning.  In my first experiment I focused on 

examining effects of more specific prior knowledge.  I presented participants 

with the first and second halves of clips.  The speech in some of the first half 

videos was made unintelligible.  The second half clips were identical for 

everyone.  This design allowed me to investigate how we integrate prior (topic 

specific) information with newly incoming information.  I observed better 

memory for the clips for which prior information was provided.  Interestingly I 

also observed higher brain activity synchronization across participants sharing 

the same prior knowledge in a subset of brain regions.  This result suggested 

that these brain regions play a role in the integration of new and prior 

information.  In a separate experiment I examined the effects of more generic 

prior knowledge.  I familiarised participants over the course of a week with one 

of two shows.  Inside the scanner participants performed a picture and a video 

clip task.  In the picture task participants watched pictures of characters that 

were either from the trained or the untrained show.  I found higher activations in 

ventromedial prefrontal cortex, hippocampus and retrosplenial cortex when 

participants were viewing pictures from the trained show versus the untrained 

show.  In the video task I asked participants to watch and recall previously 

unseen clips from both the trained and untrained shows.  I observed higher 

pattern similarity between trained clips when compared to the untrained clips, in 

frontal regions suggesting that they are involved in maintaining schema 

knowledge during encoding of new information.  Apart from schema knowledge 

effects, I ran a project where I examined which brain regions might be 

particularly important for representing knowledge about social categories.  I 
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have also examined event cognition in individuals with mild cognitive 

impairment.   
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Chapter 1: General Introduction 
 

Where am I? Who are all these people around me and what do they 

want? What time is it? What will I do now? What did I do yesterday?  These are 

all questions one can often answer relatively easy, however by no means are 

they easy questions.  One must perceive, maintain and integrate information 

from multiple modalities and time-scales in order to make sense of his or her 

situation.  Our prior knowledge can play an important role on how we 

comprehend and remember our surroundings.  For instance, if we go to a 

library, we expect that people would be studying rather than dancing.  In order 

to structure, comprehend, remember and predict what would happen in the near 

future, we often rely on our prior knowledge.  Knowledge could be general 

(schematic), such as what typically happens at restaurants or how people 

typically act, or refer to a specific event, such as when we start listening to a 

lecture to which we have missed the beginning.  In the current thesis I 

investigated the effects of different types of prior knowledge on event cognition, 

by using naturalistic stimuli presented in a functional magnetic resonance 

scanner (fMRI).  In this introduction I first provide an overview of the some of 

the core psychological concepts and theories that lie at the heart of this thesis.  

I will then introduce the specific research questions that were addressed in the 

experimental chapters. 

Before continuing it is important to introduce the concept of an event 

model, and I do this with the aid of an example.  In a typical day, one might 

have breakfast, commute to work, interact with colleagues, have dinner with 

friends, brush their teeth and go to sleep.  Although these might be mundane 

activities, each of these events consists of multiple features (location, people 

involved, semantic themes etc.) and represents information unfolding in time.  

Indeed, in our waking lives we are continuously exposed to rapidly changing 

sensory input, yet we perceive the world around us as a coherent sequence of 

meaningful events.  It is thought that we achieve this by building mental 

representations of the slowly changing features (e.g. location, people, goals) 
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relevant to specific situations.  These mental representations are often termed 

event (or situation) models and are thought to represent the spatio-temporal 

and causal relationships between entities present in a particular context 

(Johnson-Laird, 1983; Ranganath & Ritchey, 2012; Zwaan & Radvansky, 1998).  

More colloquially, they represent the what, where, who, when and why of a 

situation.  In order to comprehend incoming information and build coherent 

event models we often rely on our previous experience with similar situations. 

Seminal behavioural studies in psychology have demonstrated that our 

prior experiences and schematic representations of the world can have large 

influence on our comprehension and memory of particular events (Anderson, 

1984; Bartlett, 1932; Bransford & Johnson, 1972; Carmichael et al., 1932; 

Dooling & Lachman, 1971; Posner & Keele, 1968).  One of the most famous 

examples is a study by Bransford and Johnson (1972).  They presented 

participants with difficult to comprehend narratives.  Each sentence was 

grammatically correct and comprehensible on its own.  However, participants 

could not link the sentences and understand the subject of the narrative, unless 

they were provided with key information beforehand.  Presenting participants 

with a picture representing the situation being described by the paragraph 

greatly improved their comprehension and later recall of the passages.  

Importantly, the comprehension and memory benefits were present only if the 

participants were provided with knowledge about the context before reading the 

paragraphs (see also Bransford & Johnson, 1979; Dooling & Lachman, 1971).  

The provision of prior knowledge allowed participants to link and organise the 

new information coming from the individual sentences and to build an event 

model of the situation being described. 

The concept of a “schema” is associated with event models (Alba & 

Hasher, 1983; Ghosh & Gilboa, 2014; Zacks et al., 2007).  However, it can be 

differentiated on the premise that schemas are thought to be mental scripts of 

stereotypical situations, whereas event, or situational, models refer to specific 

events (Zwaan & Radvansky, 1998).  Individuals might have a schema about 

the typical actions that take place in restaurants.  For example, we might expect 

to be handed a menu on arrival rather than a bazooka.  On the other hand, an 

event model would refer to a particular visit to a restaurant (e.g. Tuesday 16th 
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May dinner with Ben).  The implication of these definitions is that schema 

representations can lay the ground work for the construction of event models 

(see also Van Dijk & Kintsch, 1983; Zacks et al., 2007; Zwaan & Radvansky, 

1998).  

It still unclear how different types of prior knowledge affect event 

cognition.  Furthermore, little is known on which brain systems are involved in 

the building of event models and the integration of prior knowledge with 

incoming information.  Previous studies have often relied on highly controlled 

but simple, often unimodal, stimuli (such as words or pictures) to examine 

cognition (Liu et al., 2016; Polyn et al., 2005; Richter et al., 2016; Staresina et 

al., 2013).  They have been incredibly informative and indeed have also 

provided some initial evidence on which brain systems might be supporting 

processing of complex events (Ranganath & Ritchey, 2012).  However, recent 

developments in fMRI have allowed experimenters to implement more complex 

stimuli to examine cognition.  Naturalistic stimuli, such as videos, narratives and 

audio stories are particularly well suited for examining event cognition, since 

they represent complex situations evolving over time, which are commonly 

interpreted with reference to prior knowledge (Bartlett, 1932; Bower et al., 1979; 

Bransford & Johnson 1972; Brewer & Treyens 1981).  The presence of inherent 

temporal information in such stimuli can also elucidate when during an event 

(onset, throughout, offset) cognitive processes occur (Ben-Yakov et al., 2012; 

Ben-Yakov et al., 2014).  Naturalistic stimuli can provide a more ecologically 

valid way to examine everyday processing.  Furthermore, apart from their clear 

importance in examining event cognition, they have also been shown to elicit 

more reliable neural responses compared to simpler stimuli and may be more 

engaging for the participants (Hasson et al., 2010).  For instance, face-

processing networks have been shown to be more consistently activated by 

natural dynamic faces rather than static or rigid pictures (for review Adolphs et 

al., 2016; Fox et al., 2009; Schultz et al., 2012). 
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A network of regions often exhibits increased connectivity during resting-state 
tasks and has been termed default mode network (DMN) (Buckner et al., 
2008; Raichle et al., 2001; Yeo et al., 2011). The brain regions that are often 
associated with this network include medial prefrontal cortex (mPFC), 
posterior medial cortex (PMC), retrosplenial cortex, medial temporal lobes 
and angular gyrus (AG). We note this set of regions have been associated 
with various cognitive functions such as episodic and semantic memory, the 
construction of imaginary scenarios, the integration of information over long 
time-scales, and discourse comprehension (Binder et al., 2009; Hasson et 
al., 2015; Mar, 2011; Spreng et al., 2009; Svoboda et al., 2006). Indeed, 
there is overlap between the DMN and other brain networks such as the core 
retrieval network (King et al., 2015; Rugg & Vilberg, 2013), long-timescale 
processing network (Hasson et al., 2015), semantic network (Binder et al., 
2009) and PMAT network (Ranganath & Ritchey, 2012), but see Bellana et 
al. (2017). It has been proposed that these brain areas are particularly 
important for event models (Ranganath & Ritchey, 2012).     

 

 

Box 1. Brain Regions and Event Cognition 

Figure 1-1 Default Mode Network. The map shows a network of brain regions, 
which often show high resting-state functional connectivity. Figure was created using 
functional network atlas created by Yeo et al. (2011). PMC – Posterior medial 
cortex; mPFC – medial prefrontal cortex; AG – angular gyrus; IFG – inferior frontal 
gyrus; ATL – anterior temporal lobe.  
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Recent naturalistic fMRI designs have benefited from newly developed 

methods of analysis, which have been particularly helpful for the investigation of 

event cognition.  Hasson and colleagues (2004) found that the BOLD time-

courses in sensory and default mode network regions (DMN; see Box 1) were 

similar across participants watching the same movie.  They used inter-subject 

correlation (ISC) analysis to examine the shared BOLD signal across 

participants.  ISCs have proven very useful for naturalistic fMRI studies.  

Traditional fMRI analysis methods (e.g. general linear model - GLM) rely on pre-

defined model of the expected BOLD activity and often involve averaging over 

events or time.  However, in naturalistic settings the prior context of a stimuli 

can affect its interpretation.  For instance, the BOLD response to the word dog 

might differ depending on the words preceding it (‘The kid petted the dog’ vs 

‘The woman ran from the dog’).  As such averaging over all instances of the 

stimuli might lead to loss of information (Ben-Yakov et al., 2012).  Therefore, 

GLM analysis may not always be well suited for naturalistic stimuli that involve 

rapidly changing information evolving over time.  ISC does not rely on a pre-

defined model of the timing of the stimuli or expected neural response.  ISC 

utilises the data of other participants experiencing the same stimuli and is 

sensitive to the stimulus-locked shared signal across participants (Nastase et 

al., 2019; Pajula et al., 2012).  If participants are watching or listening to the 

same story, they will show high similarity (high ISC) in brain areas that are 

showing similar processing.  However, areas that are processing the stimuli 

idiosyncratically across participants will show lower ISCs.  

ISCs have been a very useful tool in the investigation of event cognition.  

For instance, Regev and colleagues (2013) dissociated modality-specific 

responses in sensory cortices from responses to the underlying meaning in 

DMN regions.  In their study participants either listened or read a story.  Using 

ISCs, they showed that early sensory cortices (visual or auditory) showed 

modality specific responses to the story.  On the other hand, higher order 

regions overlapping with the DMN: medial prefrontal cortex (mPFC), precuneus, 

angular gyrus (AG), inferior frontal gyrus (IFG) and superior temporal sulcus 

(STS) showed reliable responses across participants regardless of the 

presentation modality.  Similar effects were also shown across participants 



6 
 

listening to the same story presented in different languages (Honey et al., 

2012b).  These studies have been helpful to elucidate that frontal and parietal 

areas involved in the processing of the content of narratives regardless of the 

method of presentation.  Indeed, they imply that these areas are important for 

the representations of event (situation) models.  More recent studies have also 

found that participants experiencing the same events showed shared patterns 

of activity (Bird et al., 2015; Chen et al., 2017; Oedekoven et al., 2017; St-

Laurent et al., 2015).  Zadbood et al. (2017), for instance, showed shared 

patterns of BOLD activity across participants watching, remembering or 

listening to descriptions of the same events.   

Further evidence that DMN regions are important for event models 

comes from research showing these regions integrate information over long 

timescales (Hasson et al., 2015; Hasson et al., 2008; Honey et al., 2012).  For 

instance, Lerner et al., (2011) presented participants with auditory narratives 

that were scrambled either at the word, sentence or paragraph levels.  They 

observed that early auditory cortices showed reliable responses even to stories 

scrambled at word level (participants did not hear coherent sentences in this 

condition).  On the other hand, parietal and frontal regions showed reliable 

responses only when the story contained coherent paragraphs.  These results 

suggest that frontal and parietal regions are integrating information over longer 

periods of time (seconds to minutes), which is necessary for event cognition.  

This cortical hierarchy of differing temporal receptive windows has been shown 

also with electrocorticography data and data-driven fMRI analysis techniques 

(Baldassano et al., 2017; Honey et al., 2012; see also Huntenburg et al., 2018). 

Previous studies strongly support the involvement of DMN regions in 

event cognition.  However, effects are often wide-spread across large regions of 

the cortex, and it is still not clear how different aspects of the event models are 

represented and how we rely on our prior knowledge to comprehend newly 

incoming information.  The complexity of event models makes it difficult to 

understand what aspects are represented.  Two events may differ on the broad 

topics (schemas) they are referring to (e.g. wedding vs funeral) or only differ on 

subtle details (e.g. lunch on Monday versus Tuesday).  The previously observed 

effects might partly be due to differences in broad schematic representations 
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between events (e.g. ‘meeting in a restaurant’ or ‘a car chase’).  Such 

schematic knowledge provides the building blocks for comprehending and 

remembering events but might not be very helpful in differentiating between 

similar events (e.g. going to a restaurant on different dates).  More specific 

information, such as the goal of the actors or topic of conversation is required to 

distinguish between similar events.  However, only recently have researchers 

started to examine the neurobiological effects of prior knowledge on event 

processing.  

A recent fMRI study used a design similar to Bransford and Johnson’s 

(1972) paradigm (see also Dooling & Lachman, 1971).  Ames and colleagues 

(2015) presented participants with ambiguous or confusing vignettes.  Prior to 

reading some of the vignettes participants were presented with pictures that 

provided context and allowed participants to fully comprehend the vignettes.  

This manipulation allowed them to examine the effects of provision of prior 

knowledge on brain activity.  They found that when participants shared the 

same prior knowledge they showed increased synchronization in the 

ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC) 

(Maguire et al., 1999; see also van Kesteren et al., 2010).  It should be noted 

that in such experiments the manipulation often results in participants either 

being able to construct a very detailed mental representation of what is 

happening in the current situation or not being able to understand at all what the 

story is about.  As such, the effects of such manipulations could be due to 

fundamental differences between the conditions, such as comprehending 

versus not comprehending.  These manipulations often prevent participants 

from constructing an event model at all or even prevent them from activating the 

situation appropriate schematic knowledge.  

However, our comprehension of everyday events is not necessarily 

binary.  We could understand an event only partially, which possibly would be 

associated with a less detailed event representation.  For instance, if a person 

walks into a conversation midway through, they might comprehend vaguely 

what is happening but still have less detailed understanding on what the people 

were talking about.  Apart from affecting their interpretation, this can also 

influence their memory for the event.  On the other hand, a person that listened 
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to the first half could integrate the incoming information with the previously 

established topic of conversation, which could result in better understanding of 

the situation.  Indeed, having heard the first half of the conversation could also 

improve later memory for the second half, by making the relevant information 

more accessible.  

In the Chapter 2 of this thesis I examined how the prior knowledge of the 

topic of conversation affected comprehension and memory for complex events.  

I presented participants with clips that were separated into two halves.  The 

language in some of the first half clips was made incomprehensible which 

prevented people from knowing the specific topic of conversation.  However, the 

first half clips, even without comprehensible speech, provided some 

general/schematic context about the situation (e.g. number of people involved, 

location etc.).  This manipulation allowed me to examine how prior narrative 

knowledge specific to a situation will affect encoding of newly incoming 

information.  Specifically, I examined whether having more detailed 

understanding of the narrative would result in widespread differences in event 

representations as measured with fMRI.  I also used behavioural measure to 

examine whether hearing the first half of the conversation would lead to better 

memory for the second half.  The chapter also provides a more detailed 

overview on the more recent studies that have utilised naturalistic fMRI designs 

to examine event cognition and effects of prior knowledge (e.g. Chen et al., 

2016; Keidel et al., 2017; Lahnakoski et al., 2012; Nguyen et al., 2019; Saalasti 

et al., 2019; Yeshurun et al., 2017). 

Apart from prior knowledge specific to a certain situation, our prior 

knowledge could also be more general.  For instance, our knowledge of how a 

friend typically acts can help us understand him.  However, the effect of this 

type of schematic knowledge has rarely been examined using naturalistic 

stimuli (but see Baldassano et al., 2018).  There has been quite a few studies 

that have examined schema effects using simple stimuli (see Gilboa & Marlatte, 

2017 for review).  Some of them have relied on participants’ pre-existing 

knowledge and have presented participants with familiar vs unfamiliar stimuli to 

examine schema effects (e.g. Bein et al., 2014; di Oleggio Castello et al., 2017; 

Liu et al., 2016).  These types of studies often have difficulty controlling for 
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differences in the extend of prior knowledge across participants.  Another type 

of studies have trained participants on arbitrary rule-based associations (e.g. 

Schlichting & Preston, 2015; Sommer, 2016; Wagner et al., 2015).  These 

paradigms allow for strong experimental control, but often involve learning 

simple associations over short periods of time, which does not resemble the rich 

schematic representations that we often acquire over multiple episodes of 

exposure.  

In Chapter 3 and 4 I utilised a new paradigm where I trained participants 

outside of the scanner on one of two TV shows over the course of a week.  This 

allowed me to match the amount of prior knowledge across participants, whilst 

they were learning complex schematic representations (e.g. how the main 

characters typically act).  In Chapter 3 I examined how familiarity with the 

characters acquired over multiple episodes affected processing of still pictures 

of trained and untrained characters.  The data was used to better understand 

current neurobiological theories of schematic processing.  To briefly summarise, 

various neurobiological theories have suggested that vmPFC and hippocampus 

are particularly important for schema processing (Gilboa & Marlatte, 2017).  

However, whereas some theories suggest that they have complementary roles 

(Preston & Eichenbaum, 2013; Robin & Moscovitch, 2017), others have 

suggested competing roles for these regions (van Kesteren et al., 2012).  For 

instance, van Kesteren et al., (2012) suggested that in the presence of 

information congruent with prior knowledge vmPFC would exhibit higher 

activation, which in turn would be associated with decreased activation in 

medial temporal lobes (including hippocampus).  According to the SLIMM 

("Schema-Linked Interactions between Medial prefrontal and Medial temporal 

lobes” - SLIMM van Kesteren et al., 2012) model, the hippocampus would show 

higher activity for information incongruent with prior knowledge, since it is 

involved in incidental learning of such information (see also Greve et al., 2019).  

The design in Chapter 3 allowed me to directly examine this theory and 

investigate vmPFC and hippocampal activity when participants were processing 

new information that was related to their training or not. 

In Chapter 4 I examined how schematic knowledge about the TV show 

affected encoding and retrieval of naturalistic stimuli.  It is important to 
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understand that when processing complex events, we could have schematic 

knowledge about multiple elements of the situation.  For instance, at a 

restaurant meeting we could have schematic knowledge of what to expect from 

a restaurant, but also, we can have schematic knowledge about the friend we 

are out with (e.g. how do they typically act).  In this study, I examined how 

person specific schema effects affected event cognition.  In particular, I focused 

on how schematic knowledge of people impacted on the encoding and retrieval 

of naturalistic events.  

Apart from schematic knowledge specific to an individual we also have 

stereotypical knowledge about people from certain social groups.  In Chapter 5 I 

present a pilot study where I examined how knowledge about social categories 

(e.g. occupations) is represented.  This was partly inspired by previous 

behavioural literature showing that stereotypical or person schema knowledge 

can affect participants’ memory (see Cohen, 1981; Klatzky et al., 1982).  I 

designed this study to investigate whether we will observe effects suggesting 

that social categories are represented by the same brain regions that support 

general schematic knowledge.  I implemented word and picture stimuli 

associated with certain professions and applied cross-modal classification 

analysis (Kaplan et al., 2015) in order to search for amodal semantic 

representations of social categories.  

In chapter 6 I applied the analytic techniques I employed in the study 

from Chapters 2, to investigate event processing in healthy older adults and 

patients diagnosed with mild cognitive impairment (MCI).  Specifically, I used 

ISCs to examine whether MCI patients would process the clips differently from 

older adults with subjective memory impairments and healthy controls.  MCI 

patients often experience memory problems and behavioural evidence suggests 

they have problems processing naturalistic stimuli (Johnson et al., 2003; Zacks 

et al., 2006).  Such patients are at increased risk of developing Alzheimer’s 

disease (AD) (Flicker et al., 1991; Petersen et al., 2000; Royall et al., 2007).  

Apart from episodic memory problems AD, might be associated with difficulty 

performing everyday tasks, and orienting oneself in space.  Indeed, at later 

stages of the disorder patients may even struggle to provide answers to some 

of the questions posed in the beginning of this introduction. 
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In this thesis I aimed to examine how different types of prior knowledge 

affect event processing.  I show that both specific and more generic prior 

knowledge was associated with some memory benefits.  I found evidence that 

medial prefrontal regions may be particularly important for processing 

schematic knowledge.  Furthermore, I demonstrate that angular gyrus and 

inferior frontal gyrus might be particularly important for supporting situation 

specific prior knowledge that can affect the interpretation of the event.   
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Chapter 2: Shared contextual 

knowledge strengthens inter-subject 

synchrony and pattern similarity in the 

semantic network 
 

2.1 Abstract 

Events are understood with reference to what has happened before. However, 

the effects of previously acquired knowledge on the processes supporting event 

cognition are poorly understood. Here, we selectively manipulated knowledge 

about the narrative content of events. Narrative knowledge boosted memory for 

the events and had two effects on fMRI markers of neural processing: (1) it 

strengthened temporal inter-subject correlations in left angular (AG) and inferior 

frontal gyri (IFG), and (2) it increased spatial inter-subject pattern similarity in 

the bilateral anterior temporal lobes (ATL). We argue that shared narrative 

knowledge constrains participants’ interpretation of the videos, resulting in 

greater alignment of neural processing of the events. We propose a division of 

labour between semantic control brain regions (IFG and AG), which coordinate 

the moment-by-moment activation of relevant semantic concepts, and the ATL, 

which represents the overarching narrative gist of an event. 
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2.2  Introduction  

Understanding events as they unfold requires our attention over multiple 

timescales (Hasson et al., 2015).  Following a conversation or a complex 

sequence of actions involves attention to moment-by-moment changes in 

incoming information.  It is also thought that we extract and represent more 

slowly changing features of the event such as the location and the people 

present as overarching “event models” (Zacks et al., 2007).  These event 

models provide coherence to our experiences, even in the face of rapidly 

changing sensory input (Zacks et al., 2007).  Our prior knowledge affects both 

our ability to comprehend conversations and to construct event models.  

However, the effects of prior knowledge on the brain systems that underpin 

event processing are poorly understood.  

Recently, MRI scanning combined with the use of naturalistic materials, 

has begun to shed light on the brain regions that support processing of lifelike 

events (Ben-Yakov et al., 2013; Bird et al., 2015; Chen et al., 2017; Zacks et al., 

2001).  Various studies have described both transitory responses, 

corresponding to discrete events within a continuous video (Zacks et al., 2001), 

as well as patterns of activity that persist over time and which may correspond 

to representations of a currently active event model (Baldassano et al., 2017; 

Bird et al., 2015; Oedekoven et al., 2017). 

Interestingly, effects are not only seen within individual subjects, but 

some aspects of event processing are shared across brains.  Hasson and 

colleagues (2004) found significant correlations in the timecourse of activity 

elicited by a movie across subjects (inter-subject correlations: ISC).  In more 

recent work, Chen et al. (2017) demonstrated the existence of shared 

multivoxel representations of events.  Participants watched and recalled a full 

movie in the scanner and the authors analysed multivoxel patterns of activity 

averaged across sub-events within the movie.  The authors found that activity 

patterns were correlated across participants, both when they watched, or 

recalled, specific events from the movie (inter-subject pattern similarity: ISPS).  

Similar effects have been seen when people construct an event in their mind’s 

eye while listening to it being described (Zadbood et al., 2017).  The authors 
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suggested that the “units” of information being shared across participants were 

event models. 

Effects in these studies are typically seen across large regions of 

sensory cortex as well as throughout the brain’s so-called default mode network 

(DMN; Raichle et al., 2001).  However, a major challenge is to dissect what are 

often widespread effects into the processes and representations supported by 

different brain regions.  For example, the complexity of event models makes it 

difficult to confidently ascribe pattern similarity effects to any particular aspect of 

the model.  Thus, observed effects could reflect very broad schematic 

representations of the content of the scenes (e.g. ‘a conversation in a café’, or 

‘a chase down the street’).  While such schematic representations provide an 

essential scaffold for comprehending and remembering short events, by 

themselves they provide no means of differentiating similar events (e.g. talking 

to different people on different days while having a coffee in the same café).  

Instead, much more specific information is required, such as the specific actions 

being carried out by the actors or the topic of the conversation. 

A number of classic studies have investigated narrative comprehension 

of prose passages by manipulating prior knowledge (e.g. Bransford & Johnson, 

1972; Dooling & Lachman, 1971; Maguire et al., 1999).  In such experiments, 

ambiguous or confusing narratives can be understood with the provision of 

specific background contextual information before the narrative is read.  Ames 

and colleagues (2015) used such a manipulation to investigate the effect of 

prior contextual knowledge on ISCs.  The authors found that participants 

sharing the same background knowledge showed increased synchronization in 

BOLD response in the ventromedial prefrontal cortex (vmPFC) and posterior 

cingulate cortex (PCC).  However, the key contrast in such paradigms involves 

comparing meaningful passages with passages that are very difficult to 

understand and it is therefore unclear whether the effects reflect this more 

fundamental difference in the conditions (coherent versus incoherent 

narratives). 

Several recent studies have tried to address this issue by presenting 

participants with identical comprehensible narratives and manipulating the prior 
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knowledge participants receive beforehand (Chen et al., 2016; Keidel et al., 

2017; Lahnakoski et al., 2012; Nguyen et al., 2019; Saalasti et al., 2019; 

Yeshurun et al., 2017). 

Yeshurun et al., (2017) manipulated the interpretation of ambiguous 

narrative in two groups of participants by presenting them with different prior 

context.  Both groups of participants listened to the same story about a phone 

conversation between two friends, Arthur and Lee.  However prior the story, one 

group was led to believe that the Arthur’s wife was cheating on him with Lee, 

whereas the other group were provided with a different context in which Arthur 

was overreacting and being paranoid.   Yeshurun et al. (2017) found that 

participants that held different interpretations showed different brain activations 

in extended network largely overlapping with the DMN, which further supported 

that DMN areas are representing content about the event models.  Yeshurun’s 

et al. (2017) manipulation led to very different interpretations of both the 

semantic and emotional content across groups.  Furthermore, it did not address 

how we integrate incoming information with relevant prior knowledge to aid 

comprehension, since both groups were provided with equally likely contexts. 

A recent study more directly examined how prior knowledge is integrated 

with on-going narrative processing to aid comprehension (Keidel et al., 2017).  

Participants saw first and second half clips taken from TV situational comedies 

(sitcoms).  The second half clips could either be a direct continuation of the first 

half clips, or be clips taken from the same show involving the same characters 

and location, but a different episode of the show (and consequently depicting a 

different narrative storyline).  The first half clips always provided some general 

semantic information about the relationship between the characters but did not 

always provide relevant topic of conversation for the second half clips.  When 

examining the second half clips the provision of narrative context resulted in 

increased activation in regions of the SN, including the inferior frontal gyrus 

(IFG), middle temporal gyrus (MTG) and angular gyrus (AG).  It was argued that 

this reflected the reactivation of linked semantic concepts that were created 

when watching the first half videos.  However, because the non-continuation 

clips clearly showed a different event, the activation differences may have 

reflected other differences between the conditions, such as the appearance of 
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the characters and the contents of the scene.  This study only examined within-

subject univariate effects.   

In the current study, we examine how prior narrative context affects the 

cognitive and neural substrates of event processing.  We presented participants 

with video excerpts taken from sitcoms that were divided into first and second 

halves.  In the high context condition, the first-half clips were presented with 

normal speech, whereas in the low context condition we spectrally rotated the 

speech to render it unintelligible.  Under this design, all the pairs of clips were 

clearly taken from the same occasion and differed only in the provision of the 

narrative context.  Importantly, all second-half clips, which were the focus of the 

analyses, were the same for both conditions, allowing us to detect differences in 

inter-subject synchronization and pattern similarity while participants viewed an 

identical set of stimuli.  Both temporal synchronisation and spatial pattern 

analyses require the comparison of activity across more than one event - either 

two or more events within a subject, or the same event across multiple subjects.  

Since our manipulation is hypothesised to affect processing only during the 

second-half clips, these analyses can only be carried out across subjects. 

The study aims to test a number of hypotheses.  First, we predict that 

provision of comprehensible narrative contextual information will aid the 

comprehension and memory for the subsequent event.  Second, a narrative 

context will constrain the interpretation of the second-half clips, resulting in 

greater inter-subject similarity within semantic processing regions.  ISCs 

examine the temporally varying BOLD signal and are therefore suited to 

detecting moment-to-moment processing of the narrative content.  These 

effects may therefore be particularly apparent in regions associated with 

semantic control processing (Noonan et al., 2013).  Conversely, ISPS is based 

on spatial patterns of activity averaged across the video clips and is therefore 

more likely to detect stable aspects of the narrative (e.g. overarching themes) 

that contribute to the overall event model.  These effects are predicted to be 

apparent in regions representing abstract and amodal semantic knowledge 

(Fairhall & Caramazza, 2013b; Rice et al., 2015). 

  



17 
 

2.3  Methods 

2.3.1  Participants 

Twenty-four right-handed native English speakers with normal or 

corrected to normal vision were included in the study.  Four participants were 

not included in the final analysis due to artefacts in the MRI scans and 1 further 

participant did not complete the experiment.  One participant had corrupted 

post-scanning behavioural data for the memory questions and was not included 

in the behavioural analysis.  The project was approved by the Brighton and 

Sussex Medical School Research Governance and Ethics Committee (RGEC) 

and all participants gave informed consent and were paid £20. 

 

 

 

 

Figure 2-1 Study design. Schematic of study design. Participants viewed videos from 
unfamiliar TV sitcoms that were divided into two halves. Participants viewed a set of 5 
first half videos followed by a set of 5 corresponding second half videos presented in 
random order. Ten of the first halves had comprehensible speech, whereas the other 
10 had unintelligible speech, created by spectrally rotating the audio. Videos were 
counterbalanced across participants in a within-subjects design. SRS – spectrally 
rotated speech; NS – normal speech; HC – high context; LC – low context. 
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2.3.2  Stimuli 

Twenty video clips from different US and UK television shows were used 

in the experiment.  The TV shows originally aired between 1970 and 2003 and 

were selected to be unfamiliar to our sample.  Each video was divided into first 

and second halves.  The scene location and characters remained constant 

across the two halves.  For our main experimental manipulation, the speech in 

10 of the first half videos was made unintelligible.  This was done with Praat 

(version 6.0.15) (Boersma, 2001) by spectrally rotating the audio of the videos 

with a sinusoidal function with maximum frequency of 4 KHz.  This keeps the 

intonation and rhythm of the speech but makes it incomprehensible.  The audio 

for all videos was scaled to have the same mean decibel intensity.  The mean 

duration of all the excerpts was 32.47(±3.88) seconds.  The first half videos 

(30.57±4.38) were on average shorter than the second half videos 

(34.37±2.02).  Three different video clips, all with spectrally rotated audio, were 

used in the practice task with total video length of 4.36 minutes. 

2.3.3  Procedure 

Participants were informed they would see first- and second-half videos 

in four separate runs (five videos in each).  They were told that the speech in 

some of the first-half videos would be unintelligible and were asked to watch the 

clips as they would watch television at home.  Participants were also informed 

that their memory for the clips would be tested after the scanning session.  They 

completed an 8-minute practice session outside the scanner, to familiarise 

themselves with the task and the sound of spectrally rotated speech. 

Four lists were created to fully counterbalance the conditions and presentation 

order.  For instance, a first half video was presented with normal 

comprehensible speech (NS see Figure 2-1) for half of the participants and the 

same video was presented with spectrally rotated speech (SRS see Figure 2-1) 

for the other half participants.  This meant half of the participants had 

knowledge of the narrative theme for a second half clip (HC see Figure 2-1) and 

the other half did not (LC see Figure 2-1).  Apart from counterbalancing the 

conditions which created two lists we also counterbalanced the order in which 
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the videos were presented both across runs and within run.  This created two 

more lists leading to 4 counterbalancing lists.   

The scanning session started with a 4-minute resting state scan (data not 

reported here).  Following this, the task was presented in four functional runs, 

each approximately 10 minutes long.  Each run consisted of 5 first half and 5 

second half clips and every clip was followed by a question and an active 

baseline task.  Participants initially watched the set of 5 first half clips and 

afterwards watched the set of corresponding second half clips in random order.  

This meant that a second half clip did not immediately follow its’ corresponding 

first-half clip.  In each run there were either two or three clips with rotated 

speech.  Clip onsets were time-locked to the repetition time (TR).  After each 

clip, a white fixation cross was presented for 1 second.  Each video was 

followed by a question about the general relationship between the characters in 

the scene (e.g. Did the characters appear to be enjoying themselves?).  

Behavioural piloting confirmed that participants could answer the questions 

regardless of whether speech was rotated or not.  The questions were 

presented for 8 seconds or until participants made a Yes/No response and were 

followed by a 500 milliseconds fixation.  Participants made an odd/even number 

judgement during an active baseline task (Stark & Squire, 2001), which was 

presented in 16-second blocks between clips.  Six randomly chosen numbers, 

between 1 and 98, were each presented for 2 seconds, followed by a fixation 

cross presented for 667 milliseconds.  The active baseline task was used to 

prevent participants from rehearsing the information presented in the clips.  

After the baseline task a red fixation cross was presented for a minimum of 400 

milliseconds to signal that the next video was about to begin. 

Outside of the scanner, participants completed a questionnaire about 

their familiarity with the shows.  Only 6 participants reported any familiarity with 

1-3 of the 20 shows.  This represented only 3.9% from the data used in the 

analysis.  None of the participants were familiar with the particular scenes used 

in the experiment, which was our main interest as the first half clips provided 

some familiarity with the social relationships between characters in the second 

half clips.  Afterwards, participants carried out a computer-based memory task, 

in which the first 4-6 seconds of the second half videos were presented as a 
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memory cue.  Participants were then asked to rate from 1 to 10: (1) the 

vividness of their memory of the video, (2) how coherent they found the story in 

the videos, (3) how engaging they found the video.  Participants were also 

asked an open-ended memory question specific to each second half video (e.g. 

What was the address on his chest written in?).  All memory questions 

concerned only material presented in the second half of the videos. 

2.3.4  MRI acquisition 

Data were acquired on a 1.5 T Siemens Avanto MRI scanner.  Functional 

T2* weighted BOLD-sensitive images were acquired with EPI sequence with the 

following parameters: FOV = 192mm, TR = 2.62 seconds, TE = 42 milliseconds, 

90 degree flip angle, slice thickness = 3mm, 35 interleaved ascending slices 

with .6 mm gap, and 3.0x3.0x3.0 mm voxels.  A high resolution T1-weighted 

image was acquired with the following parameters: FOV 256mm, TR = 2.73 

seconds, TE = 3.57ms, 1.0x1.0x1.0mm voxel size. 

2.3.5  Image pre-processing 

All EPI images were pre-processed using SPM 12 (Wellcome 

Department of Imaging Neuroscience, London, UK).  Field maps were used to 

correct for image distortions and susceptibility-by-movement effects using the 

Realign and Unwarp option (Andersson et al., 2001; Hutton et al., 2002).  All 

EPI images were aligned to the first image of the first session.  The anatomical 

image of each subject was co-registered to their mean realigned EPI image.  

The anatomical images were then segmented into grey and white matter maps.  

Anatomical and EPI images were normalized to the MNI space using DARTEL 

(Ashburner, 2007) and smoothed with an 8 mm FWHM kernel.  Images for the 

inter-subject pattern similarity were pre-processed as above with the exception 

that a 6 mm FWHM smoothing kernel was applied to the normalised images, as 

previously used by Chen et al. (2017). 

2.3.6  Data Analysis 

Data were analysed with SPM 12, the CoSMoMVPA toolbox (Oosterhof 

et al., 2016) and custom scripts in MATLAB (Version 2016b, The MathWorks, 

Inc., Natick, MA, USA).  Permutations tests for whole brain analyses were 
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conducted with command-line functions in FSL (Nichols & Holmes, 2002; 

Winkler et al., 2014).  All analyses were conducted on MNI normalised images 

within a grey matter mask.  Segmentation of the high-resolution structural 

images provided us with grey matter tissue probability map for each subject.  

These probability maps were normalised to MNI, averaged across participants.  

The averaged mask was smoothed with an 8mm FWHM kernel.  We selected 

all voxels within this average probability map higher than a threshold of 0.3 

(Nastase et al., 2019).  To describe and visualise our data we used the 

Bspmview toolbox (www.bobspunt.com/bspmview), which implements the MNI 

coordinates from the Anatomical Automatic Labelling 2 toolbox for SPM 12.  

Significance was tested with a one-sample random effects t-test against zero.  

Unless otherwise stated, images were whole brain cluster corrected for FWE p 

< 0.05 at voxel height-defining threshold of p < 0.001.   

2.3.7  GLM analysis 

A single task regressor for each of the four conditions (SRS, NS, LC and 

HC: see Figure 2-1) was included in the first-level models.  For all GLM first 

level models the questions after each video were modelled with a single 

regressor of no interest and the odd/even number judgment task was left 

unmodelled to represent the implicit baseline.  A block design first level analysis 

was conducted to replicate previous findings.  In this analysis, all video stimuli 

were modelled with boxcar functions whose durations matched the stimulus 

duration.  The models also included the six motion parameters, a regressor for 

the mean session effects, and a high-pass filter with a cut-off of 1/128 Hz.  We 

also ran an analysis identical to the above but modelled only the onset of the 

videos with a gamma function, rather than including the whole duration of the 

video.  This was done to replicate previous findings by Keidel et al. (2017).  

First-level models for the inter-subject pattern analysis included the same 

nuisance regressors as the previous analysis.  However, each video was 

represented with its own block regressor that covered the whole duration of the 

video.  This allowed us to examine video specific patterns.  
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2.3.8  Inter-Subject Analyses 

2.3.8.1  Inter-subject correlation (ISC) 

The ISC allowed us to examine how dynamic processing of the second 

half videos was modulated by previous knowledge.  ISCs were computed 

voxelwise over second half videos (HC and LC videos, which contained 

coherent speech).  To examine the similarity across participants under the 

same condition we constructed 2 condition lists.  To construct 2 condition lists 

from 4 counterbalancing lists we combined the lists in which videos were seen 

under the same condition, but in a different order.  There were 9 and 10 people 

in the two condition lists.  It has been shown that averaging over at least 4 

people’s time courses provides reliable ISC estimation (Hasson et al., 2004).  

The first 2 TRs (5.24 seconds) of each video were removed in order to remove 

transient onset effects that can lead to artificially high ISCs (Ames et al., 2015).   

The raw time course for each video and each subject were extracted.  

These time-courses were used to compute the Fisher-transformed correlations 

across subjects for each video.  For a given subject we computed the 

correlation between the subject’s specific video time-course and the average 

time-course for the rest of the participants watching the same video in the same 

condition (e.g. the participants in the same condition list).  This resulted in 20 

(10 HC and 10 LC videos) time-course correlations for each subject, which 

represented the time-course similarity across participants watching the same 

videos (diagonal values in Figure 2-3 A & C).   

The time-course correlations across participants watching different 

videos (e.g. correlating the time-course of a subject watching ‘Dharma and 

Greg’ with the average time-course of other subjects watching ‘Just Shoot Me’) 

were also computed for the general ISC analysis (see off-diagonal in Figure 2-3 

A).  The general ISC analysis allowed us to examine ISCs while participants 

watching the same videos irrespective of whether the context was familiar or not 

(see Figure 2-3 A).  We compared the time-course correlations across 

participants watching the same video versus different videos.  The mismatching 

videos (off-diagonal in Figure 2-3 A) acted as a baseline, since participants 

were experiencing different sensory stimulation whilst watching different videos.  
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It allowed us to see if we can observe synchronisation across participants 

watching the same videos regardless of context. 

Next, we examined how narrative themes affected ISCs.  We examined 

whether participants were more synchronised when they were watching the HC 

clips versus when they were watching the LC clips.  Each subject had 10 ISCs 

for the HC clips and 10 ISCs for the LC clips (see Figure 2-3 B).  These 

subjects’ values represent his similarity with the rest of the people that watched 

the same clips under the same conditions.  The HC vs LC contrast was 

performed for each subject by averaging over the 10 Fisher transformed 

correlations across HC videos and subtracting the average of the 10 LC 

coefficients.  This condition difference was computed for each voxel and for 

each subject.  Therefore 19 subject specific brain maps were used in the group 

analysis. 

The resulting 19 subject specific brain maps however are not necessarily 

independent.  This is due to the fact that when comparing the correlation 

between a subject’s time-course and the mean of the “others” there is overlap in 

the information used to compute the mean “others” across subjects.  To 

illustrate this if we have 1-20 subjects within a group, the ISCs for subject 1 is 

between subject 1 and the average time-course of subjects 2, 3-20.  The ISCs 

for subject 2 involves the average of everyone else, which is 1, 3-20.  

Therefore, the data for subjects 3-20 was used to calculate the ISCs for both 

subjects 1 and 2, which means that their ISCs are not independent. Indeed for n 

subjects in a group any pair will share n-2 elements (Aly et al., 2018).  Because 

of this, we used non-parametric permutation tests to compute the significance at 

the group level.  The difference in Fisher transformed ISCs between conditions 

(same vs different videos and HC vs LC) was computed for the general and 

context specific ISC analyses respectively.  To perform the permutations the 

sign of the resulting difference was flipped for a random subset of subjects 

before computing the group mean.  This effectively is the same as shuffling the 

conditions for different subjects.  5000 permutations were run (per analysis) to 

obtain the null distribution with which to compare our observed data and obtain 

p-values.  Cluster corrected images at FWE p < 0.05 at voxel height-defining 

threshold of p < 0.001 are presented in Figure 2-3 and Figure 2-4 
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2.3.8.2  Inter-Subject Pattern Similarity (ISPS) 

This analysis was performed to examine spatial pattern similarity across 

participants experiencing the same events.  The inter-subject pattern (ISPS) 

analysis was conducted on the normalised t-maps generated for each subject 

and each 2nd half video.  For each subject, a searchlight map was generated 

by centring a spherical searchlight with radius of 3 voxels (mean size 110 

voxels) at each voxel.  For a given participant the activity patterns for a specific 

video were correlated with the average activity pattern across participants 

watching the same video in the same condition.  This resulted in 20 (10 HC and 

10 LC videos) correlations for each subject representing the video specific 

pattern similarity across subjects (see diagonal Figure 2-4 A).  The across 

participants pattern similarity was also calculated for non-matching videos 

resulting in 380 correlation coefficients for each searchlight (see off-diagonal 

Figure 2-4 A).  Contrast matrixes were used to weight the resulting Fisher-

transformed spatial-pattern correlations for each searchlight.  The summed 

correlations were assigned to the central voxel of each searchlight.  Two ISPS 

analyses were conducted by specifying different contrast matrixes (see Figure 

2-4).  Therefore, the central voxel of each searchlight represented the difference 

between conditions (same vs different videos or HC vs LC) for the general and 

context specific ISPS respectively.  For each of the two analyses we obtained a 

single condition difference brain image per subject. These brain maps were 

used in the group analyses. 

First, we conducted a “General Show” ISPS analysis to examined the 

similarity across participants watching the same clip versus when they were 

watching non-matching clips, irrespective of their prior knowledge (see Figure 

2-4).  

Then we examined whether participants showed more highly correlated 

patterns for HC videos than for LC videos (see Figure 2-4).  Due to stimulus 

counterbalancing, there were two groups (n = 9 and n = 10) of people who saw 

the same videos in the same condition.  Therefore, similarly to the ISC analysis, 

for the ISPS we compared the similarity between a subject’s patterns and the 
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average patterns of the other subjects in their group who viewed the same 

video under the same condition.  

Similarly, to the ISC images the ISPS images were not necessarily 

independent. Therefore, we again used non-parametric permutation testing to 

examine the group significant results for the ISPS analyses.  This was done by 

flipping the sign of the ISPS condition difference images for a random subset of 

subjects. 5000 permutations were run.  Results were cluster corrected at FEW p 

< 0.05 with voxel height defining threshold of p < 0.001. 

Both ISCs and ISPSs analyses were also calculated separately for the 

first half videos using identical procedures as described above.  These analyses 

examined the synchronization across participants watching the same first half 

videos.  We also contrasted whether participants were more synchronized when 

they were watching the normal speech (NS) first half videos when compared to 

videos with spectrally rotated audio (SRS).  These analyses showed higher 

synchronization (both ISC and ISPS) across participants when watching the NS 

videos compared to the SRS videos in bilateral ATL and other regions often 

associated with the DMN or semantic processing (see Supplementary Figures 

2-4 and 2-5).   

2.4 Results 

2.4.1  Behavioural results 

Participants had an overall accuracy of 72.2% for the memory questions, 

which is high level of performance given the fact that the questions were open 

ended.  Participants responded more accurately to the same questions when in 

the HC condition (80%) than in the LC condition (64.4%: t17 = 3.39, p = 0.003).  

The memory questions were specific to the 2nd half videos and did not require 

information from the 1st half videos.  HC videos were also rated as being 

remembered more vividly (t17 = 7.15, p < 0.001), more coherent (t17 = 6.88, p < 

0.001) and more engaging (t17 = 6.23, p < 0.001). 
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Figure 2-2 Behavioural results. A) Shows average memory performance for 
questions on HC versus LC videos. B) Shows that participants on average found HC 
videos more coherent. C) Higher vividness ratings were observed for HC videos. D) 
Participants reported HC videos as more engaging. ** p < .01; *** p < .001 
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2.4.2 fMRI Results 

2.4.2.1 GLM 

The contrast of watching videos versus the active baseline task revealed 

higher activation in visual, auditory, medial and anterior temporal cortices (see 

Supplementary Figure 2-1).  This is consistent with previous studies using 

videos (e.g. Bartels & Zeki, 2004).  Brain areas that showed higher activation for 

the onset of the videos versus baseline are shown in Supplementary Figure 2-3.  

These results replicate Keidel et al.’s (2017) findings and indicate that 

retrosplenial cortex (RSC) and parahippocampal cortex (PHG) extending into 

the ventral precuneus showed transient activation associated with the onset of 

the videos.  The results of the time-course analysis were also consistent with 

this previous study in showing higher activation in the middle temporal gyrus 

(MTG), supramarginal gyrus (SMG) and angular gyrus (AG) for videos depicting 

a continuation of a previous narrative (HC clips). See Supplementary Material 

for further discussion. 

2.4.2.2 Inter-Subject Correlation  

The ISC analysis allowed us to examine synchronization of the BOLD 

response across participants.  ISCs for watching videos irrespective of the 

context manipulation were found in extensive regions of the occipital and 

superior temporal lobes, encompassing visual and auditory processing regions.  

Higher synchronization was also observed in bilateral IFG, medial prefrontal 

cortex, AG and precuneus (see Figure 2-3). 

The ISC comparison between HC and LC videos showed stronger 

coupling in the left AG, IFG, superior parietal lobule (SPL), superior frontal 

gyrus, and right precentral gyrus (see Figure 2-3).   

2.4.2.3 Inter-Subject Pattern Similarity 

The general ISPS allowed us to examine where spatial patterns of 

activity were more similar across participants watching the same videos versus 

watching different videos irrespective of the context manipulation.  The results 

are shown in Fig. 4.  This analysis revealed significant video-specific similarity 

across participants in the primary sensory areas and areas associated with 
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higher cognitive processes, such as the bilateral IFG, precuneus, the MTG, the 

inferior portion of the anterior temporal pole (ATL) and the medial prefrontal 

cortex.  The video-specific pattern similarity results reported here strongly 

resemble the scene-specific cross-subject similarity reported by Chen et al. 

(2017).  

However, our main interest was to examine whether narrative theme 

modulates this effect.  We expected higher spatial pattern similarity for people 

watching HC videos as they had shared narrative knowledge and were, 

potentially, better able to interpret the videos.  Indeed, for the HC > LC contrast 

we found that left and right anterior temporal lobe (ATL) to show higher pattern 

similarity across participants.  Surprisingly, the reverse contrast showed that the 

precentral gyrus exhibited higher pattern similarity across subjects for LC clips.  
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Figure 2-3 Inter-subject correlations. A) The weight matrix (General ISC) tests for 
video specific time course similarity across participants. Each cell represents the 
correlation between subjects’ time course for a particular video with the average time 
course of all remaining participants for a particular video. The diagonal represents 
correlations between time courses for the same videos. The off diagonal represents 
temporal correlations between mismatching videos within the same run.  B) Brain map 
from video specific analysis, which shows extended synchronization across the brain 
for people watching the same videos. C) Weight matrix that tests for the time-course 
similarity across the same videos, depending on the prior knowledge provided for them. 
D) Brain map showing how time-course synchronicity was modulated by prior 
knowledge. Both brain maps show clusters significant at FWE p < 0.05 after 
permutation testing. 
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Figure 2-4 Inter-subject Pattern Similarity. A) The weight matrix (General ISPS) 
tests for video specific spatial pattern similarity across participants. The diagonal 
represents spatial similarity for the same videos. The off diagonal represents spatial 
correlations between mismatching videos within the same run. B) Brain map from video 
specific analysis, which shows extended pattern similarity across the brain for people 
watching the same videos. C) Weight matrix that tests for the spatial similarity across 
the same videos, depending on the prior knowledge provided for them. D) Brain map 
showing how spatial pattern similarity was modulated by prior knowledge. Both brain 
maps show clusters significant at FWE p < 0.05 after permutation testing. 
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2.5 Discussion 

This study examined the cognitive and neural effects of prior knowledge 

of a narrative storyline on the processing of novel events.  Participants viewed 

videos for which they either were, or were not, provided with knowledge of the 

preceding narrative (HC and LC respectively).  Prior knowledge increased 

participants’ memory performance and subjective comprehension and vividness 

ratings.  Several regions showed higher coupling in the moment-to-moment 

BOLD response across participants in the HC condition, particularly in regions 

associated with the brain’s semantic network (including the left superior and 

inferior frontal gyrus, and left AG).  In addition, we observed greater cross-

participant multivoxel pattern similarity for HC videos in another region strongly 

associated with semantic knowledge, the bilateral anterior temporal lobes.  The 

results show that increasing the amount of “common ground” with which to 

interpret a new event increases the degree to which neural responses in 

regions of the semantic network are shared across participants.  More generally 

these results highlight the role of the semantic network in processing narrative 

content, a central element of naturalistic events. 

Prior knowledge about a particular situation enables subsequent new 

information to be comprehended more easily and remembered better (Ames et 

al., 2015; Bransford & Johnson, 1972; Chen et al., 2016; see also Yeshurun et 

al., 2017).  It also constrains how the new information is interpreted.  For 

example, in one of the second half videos in our experiment (taken from the 

show “Just Shoot Me”) two of the main characters (Jack and Maya) discuss the 

fact that penguins cannot fly.  Jack claims that “penguins once filled the skies”, 

but one day their confidence was shattered, and they never flew again.  A 

participant viewing this clip in the HC condition can relate this discussion back 

to the first half of the video, in which Jack explains how Maya hurt her 

colleague’s confidence and the negative effect this has had on his work.  

However, because participants viewing this clip in the LC condition were familiar 

with the general setting (Jack and Maya in an office), but not the specifics of the 

narrative, they would be likely to have formed more idiosyncratic interpretations 

of what the scene is really about.  Thus, while participants in both conditions 

shared the general “scaffold” of the event model, only in the HC condition could 
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participants bring the more specific information gained from the first half of the 

video to their understanding of the second half. 

Previous studies using ISC and pattern similarity measures to investigate 

event processing have generally compared participants watching similar, or the 

same events to different events (Bird et al., 2015; Chen et al., 2016; Chen et al., 

2017; Oedekoven et al., 2017; St-Laurent et al., 2014).  These studies have 

found widespread effects throughout sensory brain regions and the DMN.  We 

found similar effects when we compared the similarity across participants 

watching the same show, regardless of prior knowledge.  These effects are 

likely to be driven by the common elements of the same shows, including the 

location, the people present or the overarching schemas (see Baldassano et al., 

2018).  Indeed, a recent study showed that the neural representation of events 

in the DMN, indexed by multivoxel patterns of activity, is dominated by the 

spatial context (Robin et al., 2018).  Our findings comparing the HC with the LC 

condition reveal a much more restricted set of regions are involved in 

integrating prior knowledge of the narrative.  These effects were found 

predominately within the semantic network.  Furthermore, different regions were 

highlighted with the ISC analysis to the ISPS analysis, which may reflect the 

different processing roles of these regions. 

ISC effects were seen in regions, which have been associated with 

semantic processing, particularly in “semantic control” (Binder et al., 2009; 

Noonan et al., 2013).  These were the superior and inferior frontal gyri, the AG, 

and premotor cortex.  The fact that ISCs are based on temporal correlations in 

activity, suggest that these regions are involved in moment-by moment 

integration of knowledge gained by watching the intact first half of each video 

(for participants watching in the HC condition) with the incoming information 

provided by the second half of the video.  Of note, the MTG, IFG and AG were 

recently highlighted in a recent study of narrative context processing (Keidel et 

al., 2017).  Activity in these regions was higher, and in the case of the MTG, 

peaked earlier, when a narrative context was provided.  The authors suggested 

that these regions processed the “on-the-fly” links between semantic concepts 

necessary to comprehend the storyline. 
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It is worth mentioning two recent studies that examined how similarity in 

narrative interpretation affected ISC across participants (Nguyen et al., 2019; 

Saalasti et al., 2019).  Nguyen et al., (2019) for instance presented participants 

with ambiguous narrative and later asked them for their interpretation of the 

narrative.  They found higher ISCs for participants that had more similar 

interpretations of the narrative in AG and other areas of the DMN.  Saalasti et 

al., (2019) used a similar approach where they presented participants with a 

narrative and asked them every 3-5 seconds to report 3 words that came to 

their mind.  They also found higher ISCs in AG for participants that had more 

similar interpretations of the narrative.  These findings resonate well with our 

results since the provision of narrative context potentially constrained the 

possible interpretations of the second half clips.  Furthermore, the AG, IFG, 

ATLs and SPL regions have been recently shown to continuously integrate 

information in the scale of seconds to minutes (Hasson et al., 2015, Hasson et 

al., 2008; Lerner et al., 2011).  Here we extend these findings demonstrating 

that these regions are also involved in the integration of narrative context even 

when multiple narratives were presented in an interleaved manner (second half 

videos did not immediately follow the first half videos) (see also Lahnakoski et 

al., 2017).  Whether these regions process any previously acquired information 

(such as people or locations), or they more specifically process the abstract 

concepts necessary to understand a narrative, is a question for future research.  

We additionally carried out ISPS analyses to see where the spatial 

patterns of BOLD activity were more consistent between participants sharing 

narrative contextual information.  These effects were localised to the anterior 

temporal lobes bilaterally.  Although these results are due to the same contrast 

as the ISC results discussed above (greater similarity for the HC compared to 

the LC clips), they are possibly driven by subtly different mechanisms.  While 

ISC effects reflect temporal variations in activity during the clips that are more 

synchronised across participants, the ISPS effects are driven by spatial 

variation in the activity patterns for each clip, where the patterns reflect time-

averaged responses.  Therefore, these effects might represent shared 

representations of the overarching narrative themes rather than more dynamic 

processing of concepts relating to the ongoing narrative.  This information, 
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together with information about the location and people present, is a core 

element of the event model describing a particular situation.  The importance of 

the ATL for semantic memory and conceptual knowledge is well-established (L. 

Chen et al., 2017; Patterson et al., 2007; Rice et al., 2015).  Within the ATL, the 

anterior and ventral regions identified in our study have been argued to act as a 

semantic “hub”, supporting amodal conceptual representations that are 

independent of specific sensory input (Murphy et al., 2017; Patterson et al., 

2007).  Our results extend this theory, suggesting that the region supports 

abstract representations of information as complex as narrative themes. 

Of course, we would expect multimodal events to be represented across 

many cortical regions.  If we take together these previous findings and the 

results of the current study, it appears that there is a division of labour in the 

instantiation of event models in the brain.  Regions of the DMN, notably 

posterior midline regions, represent the stable core of the model, such as the 

location and identity of the people present (Chen et al., 2017; Robin et al., 

2018).  By contrast, the ATL may play a central role in representing the 

overarching narrative gist.  Finally, other regions of the semantic network, 

particularly the IFG and AG, may more tightly track the changing aspects of the 

associated narrative and link then to prior knowledge.  This framework is similar 

to that proposed by Ranganath and Ritchey (2012). 

In summary, we have shown how manipulation of knowledge about a 

narrative storyline impacts on the cognitive and neural processing of events.  

The availability of narrative information led to increases in intersubject 

synchronization and spatial pattern similarity in regions associated with 

semantic processing.  Moment-by-moment tracking of narrative information and 

linking it to prior knowledge was associated with several regions of the semantic 

control network.  Conversely, global updating of the event model with the 

central narrative themes was linked to representations supported by the ATLs.  

These results provide important new insights into how the brain represents and 

updates narrative information as well as highlights an important case of 

functional specialisation within the wider network of brain regions that are 

involved with event processing.    
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2.6 Supplementary Materials 

 
Supplementary Figure 2-1 Video vs Baseline analysis. The map shows brain regions 
active throughout the duration of the videos (from all conditions) versus baseline. 

 

 
Supplementary Figure 2-2 Language contrast. Brain map showing contrast of first half 
videos with intact speech (NS) versus first half videos without comprehensible speech 
(SRS). 
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Supplementary Figure 2-3 Analysis of video onsets. Conjunction analysis showing the 
positive onset responses for HC, LC and NS videos. Voxels in red represent whole-
brain significant (p < 0.001) responses to all 3 conditions. 
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Supplementary Figure 2-4 Inter-subject correlations for first half videos. A) The weight 
matrix (General ISC) tests for video specific time course similarity across participants. 
Each cell represents the correlation between subjects’ time course for a particular 
video with the average time course of all remaining participants for a particular video. 
The diagonal represents correlations between time courses for the same videos. The 
off diagonal represents temporal correlations between mismatching videos within the 
same run.  B) Brain map from video specific analysis, which shows extended 
synchronization across the brain for people watching the same videos. C) Weight 
matrix that tests for the time-course similarity across the same videos, depending on 
whether the language in the videos is intelligible (NS) or not (SRS). D) Brain map 
showing how time-course synchronicity was modulated by provision of comprehensible 
language in the videos. Both brain maps show clusters significant at FWE p < 0.05 
after permutation testing. 
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Supplementary Figure 2-5 Inter-subject Pattern Similarity for first half videos. A) The 
weight matrix (General ISPS) tests for video specific spatial pattern similarity across 
participants. The diagonal represents spatial similarity for the same videos. The off 
diagonal represents spatial correlations between mismatching videos within the same 
run. B) Brain map from video specific analysis, which shows extended pattern similarity 
across the brain for people watching the same videos. C) Weight matrix that tests for 
the spatial similarity across the same videos, depending on the whether the language 
is comprehensible (NS) or not SRS. D) Brain map showing how spatial pattern 
similarity was modulated by presence of comprehensible narrative. Both brain maps 
show clusters significant at FWE p < 0.05 after permutation testing. 
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2.6.1 Supplementary Methods 

We implemented a time-course analysis in order to analyse how activity 

differed over the duration of the videos. A set of 12 piecewise linear tent 

functions were used to model the first 26.2 seconds of each of the 4 conditions. 

Keidel et al. (2017) found significantly greater activation in MTG, AG, SMG and 

IFG for HC as compared to LC videos. To attempt to replicate this finding we 

averaged the results of the time course analysis in these clusters. Significant 

differences in the time-course were found in the left MTG, AG, and 

supramarginal gyrus (SMG) replicating the previous findings, while no 

significant difference was observed in the left IFG.  
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Supplementary Figure 2-6 FIR analysis. Deconvolution analysis examining response 
to the initial 26.2 seconds for HC and LC videos. A) Results reported by Keidel et al. 
(2017). B) Time courses in ROIs identified in Keidel et al. (2017) for HC versus LC 
videos. 
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Chapter 3: The brain regions supporting 

schema-related processing of people’s 

identities 
 

3.1 Abstract 

Schematic knowledge about individual people enables us to predict and 

understand their behaviour in novel situations. The ventromedial prefrontal 

cortex (vmPFC) and hippocampus have been identified as playing key roles in 

schema-based processing of new experiences. Nevertheless, their precise roles 

and their interactions with each other remain poorly understood. We 

manipulated schematic knowledge by familiarising participants to the lead 

characters of one of two TV shows, both of which featured young couples. 

Familiarisation involved watching episodes of the show over a period of at least 

a week. Then participants viewed pictures of all 4 characters in an MRI scanner 

and performed a recognition memory test afterwards. They also performed a 

memory test for short novel videos from the two shows. Schematic knowledge 

boosted performance on both of the memory tests. Whole-brain analyses 

revealed that schematic knowledge increased activation in the vmPFC and the 

retrosplenial cortex, while a region-of-interest analysis additionally found 

increased activity in the hippocampus. The size of the effects in the vmPFC and 

hippocampus were not significantly different. Representational similarity 

analyses found evidence for person-specific patterns of activity in the vmPFC 

but not hippocampus, but neither region showed an effect of training on 

representational similarity. Our findings suggest complementary roles for the 

vmPFC and hippocampus in processing schematic knowledge that has been 

recently acquired over multiple occasions.   
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3.2 Introduction 

The world and people around us can be confusing.  To understand what 

is happening in our environment we rely on our prior schematic knowledge.  

Schemas are abstracted knowledge structures learned over multiple episodes 

(Ghosh & Gilboa, 2014; see for review Gilboa & Marlatte, 2017).  A schema for 

a well-known friend might include their appearance, likes and dislikes and their 

personality traits.  This knowledge helps us understand and predict other 

peoples’ behaviour in new situations (Ramon & Gobbini, 2018).  The present 

study investigates the impact of schematic knowledge - acquired in a 

naturalistic manner - on both episodic memory processes and on brain activity 

in regions that support these processes.  In this introduction, we will first 

highlight the findings from different types of studies that have been used to 

investigate the brain-basis of schematic knowledge.  We will then summarise 

current views on how schematic processing is carried out in the brain before 

introducing the current study. 

A range of tasks have been used to examine the neurobiology of 

schemas.  These fall broadly into three different types.  The first are studies that 

rely on participants’ pre-existing knowledge, contrasting behavioural and 

physiological responses to stimuli that are familiar versus unfamiliar (Bein et al., 

2014; di Oleggio Castello et al., 2017; Liu et al., 2016; McAndrews et al., 2016; 

van Kesteren et al., 2013; van Kesteren et al., 2014).  For example, Liu et al., 

(2016) required participants to learn face-house associations, where the faces 

were of either famous or non-famous people.  Such studies consistently find 

positive effects of prior knowledge on memory performance.  It has been argued 

that this boost in performance is due to the rich associations that exist for 

familiar items which enables new memories to be organised efficiently as well 

as increasing the distinctiveness of individual items (e.g. Bird et al., 2011; Van 

Overschelde et al., 2005). 

The second class of studies involve teaching participants new arbitrary 

rule-based associations (Schlichting et al., 2015; Schlichting & Preston, 2016;  

Sommer, 2016; Wagner et al., 2015; Zeithamova et al., 2012).  In one such 

study, Sommer and colleagues (2016) trained participants on 10 distinctive 
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object-location arrays each containing 20 locations.  During training, only some 

of the locations in each array were associated with an object.  Participants were 

then presented with novel object-location pairs that were either related or 

unrelated to the previously learned spatial structure.  In these types of 

paradigms, memory is better for new items that conform to the learnt rules.  

The last types of studies use naturalistic video- or text-based tasks and 

expose participants to information that aids the interpretation of novel events 

(e.g. Ames et al., 2015; Keidel et al., 2017; Raykov et al., 2018; van Kesteren et 

al., 2010).  In a study by van Kesteren et al., (2010), participants watched a 

movie for which prior knowledge was manipulated.  On the first day of the 

experiment participants watched the first part of the movie in either scrambled 

or unscrambled order.  On the next day both groups watched the last 15 

minutes of the movie in unscrambled order.  Thus, participants who had 

watched the unscrambled first half of the movie had a more coherent 

knowledge base within which to interpret the second half clip.  Once again, the 

provision of knowledge consistently results in improved memory for the 

subsequent movie or narrative text.  

All the studies mentioned above have combined manipulations of prior 

knowledge with functional MRI to investigate the brain regions involved schema 

processing.  Overall there is a general consensus that when participants 

engage schematic knowledge, brain activity is modulated in certain key regions.  

These are the ventromedial prefrontal cortex (vmPFC) and hippocampus, as 

well as other regions such as the anterior temporal lobes, posterior midline 

regions, and - particularly in the case of faces - the fusiform gyrus (see Gilboa & 

Marlatte, 2017).  Despite this overarching similarity across studies, there is still 

inconsistency in the specific pattern of BOLD activity effects.  For example, 

whereas some studies find that processing stimuli related to prior knowledge is 

associated with higher activity in vmPFC and hippocampus (e.g. di Oleggio 

Castello et al., 2017; Liu et al., 2016; Sommer, 2016; Zeithamova et al., 2012), 

other studies find a different pattern showing that the hippocampus is more 

active whilst processing schema-incongruent associations (McAndrews et al., 

2016; van Kesteren et al., 2013, see also van Kesteren et al., 2014).  For 

instance, using paradigms reliant on pre-experimental knowledge, Liu et al., 
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(2016) found that known faces engaged both the vmPFC and hippocampus, but 

van Kesteren et al., (2013) found that while schema-consistent associations 

activated medial PFC, the hippocampus was more active when viewing 

schema-inconsistent associations.  While the former result suggests that the 

two regions are part of a single functional unit, the later finding suggests that the 

two regions play distinct roles (for reviews see Ghosh & Gilboa, 2014; Gilboa & 

Marlatte, 2017; McCormick et al., 2018; Preston & Eichenbaum, 2013; Robin & 

Moscovitch, 2017; van Kesteren et al., 2012).  

Various theoretical frameworks have been proposed to explain how 

different brain regions interact during schema-based processing of new 

information.  Van Kesteren and colleagues proposed the “SLIMM” framework 

("Schema-Linked Interactions between Medial prefrontal and Medial temporal 

lobes”, van Kesteren et al., 2012).  SLIMM proposes that the vmPFC and 

hippocampus have competing roles in the presence of prior knowledge (see 

also Greve et al., 2019).  According to this framework, incoming information 

congruent with prior knowledge is associated with increased medial PFC 

engagement and inhibition of medial temporal lobe (including hippocampal) 

activity.  By contrast, processing information incongruent with prior knowledge 

should be associated with increased hippocampal activity.  However, other 

models suggest that the hippocampus and medial PFC play complementary 

roles in relating new experiences with prior knowledge (e.g. Preston & 

Eichenbaum, 2013).  In a recent formulation, Robin and Moscovitch (2017) 

argued that the posterior hippocampus, anterior hippocampus and vmPFC play 

roles in processing detail, gist and schema information respectively, and that 

these regions act cooperatively when retrieving episodic memories. 

The lack of consensus in the roles different brain regions play in schema 

processing is unsurprising, given the variability in findings from different fMRI 

studies.  It is possible that some of this variability is a consequence of the 

paradigms used.  Studies that capitalise on schematic knowledge acquired 

outside of the laboratory have a strength in that the knowledge is acquired in 

real-world settings.  However, it is difficult to equate the amounts of information 

known about the different stimuli across participants.  Consequently, the type, 

and richness, of information activated by a “familiar” stimulus is likely to be 
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highly variable (see also Westmacott & Moscovitch, 2003).  Studies that require 

the learning of rule-based schemas enable careful control of the amount of 

schema-relevant information learnt, but the schemas involve highly abstract 

information and the rules are often learnt rapidly in one or two sessions close to 

when scanning takes place.  This is very different from real-world situations 

where schematic knowledge is acquired over weeks, months and years.  Lastly, 

paradigms that manipulate knowledge of a single event or narrative are not 

necessarily targeting the more general and abstract schematic knowledge that 

is acquired over multiple episodes. 

For these reasons, the present study uses a novel method to acquire 

new schematic knowledge under a naturalistic, yet carefully controlled, training 

regime.  Over the course of a week, participants watched six episodes from one 

of two television shows.  This allowed participants to gradually build up their 

knowledge of the show’s main characters across multiple episodes over several 

days, in a manner similar to our acquisition of person-specific semantic 

knowledge in everyday situations.  Both shows were US situation comedies 

(henceforth, “sitcoms”) that aired in the early 1990’s and were previously 

unfamiliar to our participants.  The trained show was counter-balanced across 

participants to control for potential stimulus-specific confounds between the two 

shows.  Before scanning, we checked that all participants had complied with the 

training regime by examining their memory for the training videos.  

The main purpose of the study was to identify the brain regions that are 

engaged when schematic knowledge is activated.  Familiar faces are thought to 

automatically activate “identity-specific semantic codes” (Bruce & Young, 1986).  

We therefore assume that after training, participants will spontaneously activate 

their schematic knowledge about the characters when viewing them in both 

static photos and short video clips.  We therefore contrast the BOLD response 

when people view pictures of the trained characters compared to when they 

view characters from the untrained show.  To engage participants in the in-

scanner task and to obtain an index of schematic knowledge, participants 

performed a recognition memory test for the specific pictures they viewed in the 

scanner.  Participants also watched and then answered questions about short 

video clips taken from unseen episodes of both sitcoms.  Although these tasks 
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do not directly assess schematic knowledge learnt about the trained characters, 

numerous studies have demonstrated a memory advantage for memoranda 

associated with pre-existing schematic knowledge (e.g. Bird et al., 2011; 

Klatzky & Forrest, 1984; Liu et al., 2016).    

We carried out three types of analyses.  Univariate analyses investigated 

differences in overall brain activity for pictures of familiarised versus unfamiliar 

characters.  Differences could reflect the direct effects of activation of schematic 

information or related processes (such as activation of episodic memories 

involving the characters or the rewarding effects of seeing a familiar person).  

Multivariate representational similarity analyses (RSAs) aimed to identify 

regions where person-specific information was represented – and critically, 

regions where person-specific representations existed only for the trained 

characters.  Lastly, functional connectivity analyses were used to identify 

whether the connectivity between different brain regions was modulated by the 

presence of schematic knowledge about the characters.  Our analyses 

focussed particularly on effects within and between the vmPFC and 

hippocampus.  We predicted schema-related effects due to training in the 

vmPFC.  Additional training-related effects within the hippocampus would be 

supportive of views that the vmPFC and hippocampus work in concert when 

prior knowledge can support new learning (Preston & Eichenbaum, 2013; Robin 

& Moscovitch, 2017).  By contrast, stronger engagement of the vmPFC 

compared to the hippocampus for trained material would be more in line with 

the SLIMM model.   
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3.3 Methods 

3.3.1 Participants 

Thirty right-handed native English speakers (15 female), between ages 

18-29 (21.71 ± 3.08) were included in the experiment.  One participant was not 

included in the fMRI analysis, as they did not complete the task due to a 

technical issue with the scanner.  One additional person was excluded from the 

behavioural analysis of the video memory test due to a technical issue.  Before 

taking part, participants were screened to be unfamiliar with other shows/films 

where the main characters played a major role.  Informed consent was obtained 

from all participants and they were all paid £40. 

3.3.2 Stimuli  

Sixty-four colour pictures taken from two US shows (“Mad about you” - 

MaD and “Dharma and Greg” - DG) were used in the scanning session.  The 

shows were chosen to be previously unfamiliar to our participants.  Both shows 

represent fictional situations happening in the everyday life of a couple in their 

30s living in USA.  There were 16 pictures for each of the four main characters 

(two for each show).  The pictures were selected from unseen clips from the 

shows.  Each picture represented a single character in the living room or in the 

kitchen.  The camera angle and clothes differed across pictures of the same 

character.  10 short videos for each show were also used for a memory test.  

Videos from MaD show (32.7secs ± 6.73) were on average the same duration 

as videos from the DG show (33.4secs ± 7.87) (p = .833).  The videos were 

selected from previously unseen episodes and represented self-contained 

situations happening in unfamiliar locations (e.g. the museum).  All clips were 

presented in black and white and the audio was scaled to the same mean 

decibel intensity with Praat (version 6.0.15). 
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Figure 3-1 Schematic of picture task. Participants viewed pictures of the 4 main 
characters taken from unseen episodes from two TV shows. Before the experiment 
participants were familiarised with one of the shows (2 of the characters). Each picture 
represented only one character in their kitchen or living room. The view angles and 
clothes of the characters differed across different pictures. Participants made an odd-
even number judgment task in between presentation of pictures, which acted as an 
active baseline task.  

 
 
3.3.3 Procedure 

Participants were asked whether they had seen either of the two shows 

or other shows including the same actors in leading roles.  Participants who 

reported seeing either of the shows (or shows with the same actors in main 

roles) were not included in the experiment.  Participants were then randomly 

assigned to one of the two training conditions (MaD or DG).  This 

counterbalancing allowed us to control for stimuli effects at the group level.  

Each participant was allocated 6 episodes to watch at their own time.  

Participants were asked to watch the episodes over a week rather than binge 

watch all episodes in one sitting.  To ensure participants followed the 

instructions their memory for the 6 training episodes was tested before 

continuing with the scanning session.  Participants freely recalled the 6 

episodes.  When necessary, cues were provided for certain details (e.g. what 

was said, the intentions and emotions of the characters, their location) about 

scenes in the episodes.  Participants that required many cues and could not 
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recall specific details about one or more episodes were asked to re-watch them.  

Only one of the included participants needed to re-watch a single episode.  This 

screening procedure was done at least 2 days before scanning and took 

approximately 45 minutes.  

Participants carried out 4 functional runs within the scanner; 2 runs 

involved viewing pictures (run 1 and run 4) and 2 runs involved watching short 

videos (runs 2 and 3).  Each run of the picture task lasted 9 minutes and 

participants saw 8 pictures for each of the 4 main characters (2 characters from 

the trained and 2 from the untrained show).  Presentation order was 

randomized within runs.  Each picture was presented for 2 seconds on a black 

background followed by a 12 second inter-stimulus-interval during which 

participants made an odd/even judgment, which served as active baseline task 

(Stark & Squire, 2001; Visser et al., 2010).  See Figure 3-1 for a schematic of 

the procedure.  The odd/even task comprised a sequence of four numbers 

randomly chosen from the range 1-98.  Each number was presented for 2 

seconds followed by a fixation cross lasting 750 milliseconds.  A red fixation 

cross was presented for 500 milliseconds before the presentation of the next 

picture.  Participants were informed their memory for the pictures would be 

tested outside of the scanner.  To further ensure participants attended to the 

pictures, there was an oddball target detection task where participants pressed 

a target if they saw a picture of an adult older than the 4 repeated characters (4 

targets per run).  Each run of the video task lasted approximately 16 minutes.  

Ten videos were presented in each of the two video task runs (5 trained, 5 

untrained).  Videos were presented in an interleaved order.  There was a 13 

second inter-trial interval between each video.  

Outside of the scanner participants first completed a memory test for 

video task.  We used a three-alternative forced-choice test for the details from 

the video (see Supplementary Figure 3-2).  There were 5 questions for each 

video.  The sets of 5 questions were presented in a pseudo-random order so 

that there were no more than 3 sets of questions in a row for the same show.  

Performance was measured as the proportion correct, with chance level being 

0.33.  We report the behavioural data from the video memory test below. The 
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fMRI data collected during these runs is the focus of a separate manuscript and 

will not be described further here. 

Participants then completed a yes/no recognition memory test with 40 old 

(studied) pictures and 62 new (unstudied) pictures.  The new pictures were 

selected from previously unseen episodes.  Each picture was presented for 5 

seconds or until the participants made a response.  A white fixation cross was 

presented for 2 seconds between each picture and a red fixation cross 

preceded the next picture by 400 milliseconds.  To characterise performance, 

whilst accounting for response bias, we used the non-parametric discrimination 

index A’ (Snodgrass et al., 1985).  The index was calculated separately for each 

participant for the trained and untrained pictures.  The index was calculated as 

0.5 + ((H - FA)*(1 + H - FA))/4*H*(1-FA), where H stands for hits - correct old 

responses to previously presented pictures, and FA stands for false alarms - 

incorrect old responses to new pictures.  A’ ranges from 0-1 and 0.5 indicates 

chance level performance. 

3.3.4 Behavioural analysis 

For both the video and pictures task accuracy on the trained and 

untrained stimuli was compared using a paired samples t-test.   

3.3.5 MRI acquisition 

A 3T Siemens Prisma scanner with a 32-channel head-coil was used to 

acquire all images.  Soft cushions were inserted into the head coil to minimize 

head movement.  Functional images were acquired with a gradient-echo EPI 

sequence with multiband acceleration factor of 8 with the following parameters 

(TR = 0.8 seconds; TE = 33.1 ms; 52 degree flip angle; FOV = 208x180mm; 72 

slices with sliced thickness of 2mm and isotropic 2mm voxels).  Two SpinEcho 

Field map runs with reversed phase-encode blips in both Anterior to Posterior 

and Posterior to Anterior were acquired with the same parameters as the 

functional images.  A high-resolution structural T1-weigthed image was 

acquired with 3D MPRAGE sequence (TR = 2.4 seconds; TE = 2.14 seconds; 8 

degree flip angle; FOV = 224x224mm and 0.8mm isotropic voxels). 
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3.3.6 Image pre-processing 

All images apart from the field maps were pre-processed with SPM 12 

(Wellcome Department of Imaging Neuroscience, London, UK).  Images from 

both runs were initially spatially realigned to the mean image.  Field maps were 

estimated and applied to the motion corrected data with command-line functions 

from FSL (Smith et al., 2004).  Field maps were used to correct for image 

distortions (Andersson et al., 2001; 2003).  The anatomical image was 

coregistered to the mean functional image and segmented into grey, white and 

cerebrospinal fluid using tissue probability maps.  The segmented images were 

used to estimate deformation fields, which were applied to the functional data to 

transform them to MNI space.  A 6mm FWHM smoothing kernel was applied to 

the functional images for the whole-brain GLM analyses.  

3.3.7 Data analysis 

Data were analysed with SPM 12, the CosMoMVPA toolbox (Oosterhof 

et al., 2016) and custom scripts in MATLAB (Version 2017b, The MathWorks, 

Inc., Natick, MA, USA).  All analyses were conducted on MNI normalised 

images.  The RobustWLS toolbox in SPM 12 was used to estimate the first level 

models (Diedrichsen & Shadmehr, 2005).  This method downweights volumes 

with high variance estimates, which leads to a “soft” exclusion of bad volumes.  

We used the Bspmview toolbox (www.bobspunt.com/bspmview) to visualise 

and describe our data.  The toolbox implements MNI coordinates from the 

Anatomical Automatic Labelling 2 toolbox for SPM 12. 

3.3.8 Whole-brain analyses 

We first carried out whole-brain random-effect analyses across 

participants.  Contrast images in MNI space were evaluated with one-sample t-

tests.  Results were thresholded in SPM using a cluster-level family-wise error 

correction (p < .05), with a cluster-defining voxel threshold of p < .001.  

3.3.9 ROI definition and analyses 

Predefined ROIs were used in follow-up analysis, as a seed for functional 

connectivity analysis and for representational similarity analysis.  These ROIs 

were in the hippocampus and the vmPFC.  

http://www.bobspunt.com/bspmview
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We investigated separately the head, and the combined body and tail, of 

the hippocampus since theories of schematic processing have suggested 

differentiation between these sub-regions of the hippocampus (Preston & 

Eichenbaum, 2013; Ritchey et al., 2015; Robin & Moscovitch, 2017).  These 

regions were defined based on a segmentation carried out by Ritchey and 

colleagues (2015) and available at www.neurovault.org.  This ROI was used for 

(1) univariate activity analyses, (2) functional connectivity, and (3) 

representational similarity analysis. 

In order to compare activations between vmPFC and hippocampus, while 

avoiding circular voxel selection, we used a leave-one-participant out (LOSO) 

method (Esterman et al., 2010).  The voxels for an vmPFC ROI for a given 

participant were identified by using the suprathreshold voxels in a whole-brain 

group analysis that excludes the participant.  For instance, the ventromedial 

prefrontal cortex ROI for participant 1 is identified from suprathreshold voxels 

from a group analysis of all the other participants excluding participant 1.  This 

was repeated for each participant.  

We also used an anatomical mask of the ventromedial prefrontal cortex 

to perform representational similarity analysis (RSA).  We used the WFU atlas 

pick toolbox and the AAL to identify ventromedial prefrontal cortex following the 

procedure presented in Liu (2016).  The ventromedial mask included the left 

and right gyrus rectus and the left and right medio-orbital section of the frontal 

cortex. 

3.3.10 GLM analysis 

For the univariate analyses we modelled all of the trained pictures (32 

trials) with a single regressor and a separate regressor included the information 

about the untrained characters (32 trials).  We also included a regressor of no 

interest for the odd-ball pictures and modelled the six motion parameters.  To 

estimate patterns to use in the subsequent RSA we modelled each of the 

characters with a single task regressor (Trained male, Trained female, 

Untrained male, Untrained female; 8 trials per run per character).  This meant 

that a regressor for a character included pictures of the same character in 

different locations and from different viewpoints.  We implemented a slow event 

http://www.neurovault.org/
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related design, which allowed us to sample the whole duration of the HRF and 

we used multiple trials per character to estimate robust patterns for each 

character (Zeithamova et al., 2017).  Estimated patterns for all four characters 

were used in the general identity and trained vs untrained RSAs.  An additional 

regressor of no interest was used for the oddball images.  The odd/even 

judgment task was not modelled and served as an implicit baseline.  The six 

motion parameters, mean session effects, and a high pass filter with a cut-off of 

1/128 Hz were also included in the models.  The contrasts of interest from the 

first-level models were subjected to a group analysis.  

To compare BOLD activity between the hippocampal and vmPFC ROIs 

whilst accounting for regional differences and across-participants variability of 

the BOLD signal we computed a differentiation index (see Koen et al., 2019).  

For each trial and for each separate ROI we extracted the mean signal over all 

voxels within the ROI.  Thus, we had a single value for each ROI and each 

condition.  This allowed us to compute a differentiation index separately for 

each ROI.  The individual trial values were used to estimate the mean (µ) and 

variability (σ2) for each condition (trained and untrained).  Positive values of the 

differentiation index indicate the ROIs preference for the trained versus the 

untrained condition.  The differentiation index was calculated with the following 

formula:  

 

Differentiation Index =  
𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 - 𝜇𝜇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

�𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2  + 𝜎𝜎𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

2

2

 

 
 
3.3.11 Connectivity analyses 

Based on prior findings of modulated connectivity in the hippocampus 

when processing schematic knowledge (van Kesteren et al., 2010) we ran 

generalized psychophysiological interaction (gPPI) analysis (McLaren et al., 

2012) to examine whether the anterior (head) and/or posterior (combined body 

and tail) hippocampus would show connectivity with the rest of the brain that is 

modulated by prior knowledge.  We also used the significant vmPFC cluster as 
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a seed to examine whether there are changes in connectivity modulated by 

training over and above the increased univariate response in the vmPFC. 

3.3.12 Representational similarity analysis (RSA) 

We ran exploratory RSAs (Kriegeskorte et al., 2008) to investigate 

whether activation patterns were specific to the identities of the four main 

characters presented and whether pattern similarity was modulated by training.  

Whole-brain searchlight analyses were performed using a searchlight sphere 

with radius of 4 voxels (mean 235 voxels).  Images for the RSAs were pre-

processed as described above but were not smoothed before estimating the 

first-level models.  All RSAs were performed for each subject separately in 

normalized space and the resulting maps were subjected to a one-sample 

group t-test against zero. 

For each searchlight sphere, the multi-voxel response patterns (t-

statistics) for each character for run 1 and run 2 were extracted and vectorised 

to compute their similarity using Pearson correlation.  The resulting correlation 

coefficients were then Fisher transformed and assigned to the center voxel of 

each searchlight sphere.  The resulting matrix of 16 correlations represents the 

neural similarity between the four characters across the two runs.  The four 

diagonal values representing the matching identities across runs and the 12 off-

diagonal values representing the correlations between non-matching identities 

(see Figure 3-2). 

To identify brain regions that show higher similarity for matching 

identities we compared the correlation matrices calculated above with the 

similarity matrix shown in Figure 3-2 (left). This is equivalent to computing the 

mean average similarity for matching identities minus the mean average 

similarity for non-match identities (‘Identity RSA’). 

A second RSA compared only the similarities of the matching identities to 

investigate brain regions where similarity was greater for the trained characters 

compared to the untrained characters (see Figure 3-2, right; ‘Trained versus 

untrained RSA’). 
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It is possible that any observed similarity to characters could be driven in 

part by the background scene (e.g. the character Dharma was always pictured 

in her living room or kitchen, but never the rooms from the other show).  To 

ensure any observed effects are specific to character identity an additional RSA 

was run to examine the similarity across matching locations versus mismatching 

locations, irrespective of the character in the picture.  There were two locations 

within each show (kitchen and living room).  The first-level models included a 

single regressor for each of the all four locations (trained kitchen, trained living 

room; untrained kitchen; untrained living room) in each run.  The regressor 

trained kitchen averaged over pictures of the trained characters in the kitchen.  

The similarity matrix was the same as the Identify RSA, but the patterns were 

specific to the locations rather than the characters.  We also ran an RSA 

comparing the similarity for the trained and untrained locations.  

In addition to whole-brain searchlight analyses we ran the RSAs 

described above in the hippocampal and vmPFC ROIs using all voxels within 

the ROI as activity patterns.   

  



57 
 

 

 
Figure 3-2 Contrast Matrices. The contrast matrixes used for the RSA analyses are 
shown above. Red indicates positive and blue indicates negative contrast values. In the 
identity RSA the main contrast was comparing for higher similarity for matching 
identities (across runs) versus mismatching identities. The second analysis examined 
modulations by training and which regions show more similar patterns (across runs) for 
the trained matching identities versus the untrained matching identities 
 

3.4 Results 

3.4.1 Behavioural Results 

In the pictures task participants showed higher old/new discrimination, 

measured with A’ (Snowgrass et al., 1985), for the trained pictures compared to 

the untrained ones (t28 = 2.07; p = 0.047) (see Figure 3-3).  This effect is in line 

with previous findings of better recognition of familiar faces (Bird et al., 2011; 

Klatzky & Forrest, 1984).  Overall, accuracy on the video memory questions 

was high (mean = 0.75 SD = 0.11 chance level = 0.33).  Consistent with the 

results from the recognition memory test, performance on the video memory 

test was higher for the clips taken from the trained show (mean = 0.78) versus 

the untrained show (0.72: t27 =3.5; p = 0.002). 
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Participants showed high overall performance on the odd-even task in 

the scanner with average accuracy of 97% (sd = 0.02).  There were no 

differences in accuracy or reaction times on the odd-even task trials following 

the trained or untrained pictures (ps > 0.42). 

 
 
 

 
Figure 3-3 Behavioural results. Bar graph shows discrimination performance on the 
picture task, memory accuracy for the videos. Both measures were significantly higher 
for the trained show. Bar graph shows mean and standard error. Red dashed line 
indicates chance performance for each of the two tests. The star indicates a significant 
difference between the trained and untrained conditions at p < 0.05. 

 

3.4.2 Imaging results 

3.4.3 Univariate analyses 

The contrast of viewing pictures versus the odd-even baseline task 

showed extensive activations including visual cortex, anterior temporal poles, 

ventromedial prefrontal cortex (vmPFC) and hippocampus (see Supplementary 

Figure 3-1).   
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In our main univariate analysis of interest, we compared activity while 

participants viewed the trained versus the untrained characters.  The revealed 

whole-brain significant increases in BOLD activity in the vmPFC (cluster size = 

185; peak voxel x = -4, y = 42, z = -12 t28 = 5.35) and RSC (cluster size = 183; 

peak voxel x = 12, y = -48, z = 18; t28 = 5.06)(see Figure 3-4).  

Apart from whole brain effects we also focused on a priori defined 

regions of the anterior and posterior hippocampus.  We examined the average 

BOLD response within our ROIs over all voxels.  The head (t28 = 2.42, p = 0.02) 

and the body (including tail; t28 = 2.49; p = 0.02) of the hippocampus showed 

higher activations for the trained versus the untrained characters.   

We were particularly interested to examine if there were any differential 

effects in processing pictures of trained versus untrained people between the 

vmPFC and the hippocampus.  The vmPFC region maximally sensitive to the 

trained versus untrained effects was identified using a LOSO method (see 

above).  Effects in this region were compared to the effects in the head and 

body of the hippocampus using the differentiation index method (for details see 

Methods).  The across regions repeated ANOVA did not show any significant 

difference in differentiation index method across regions (F1,83 = 0.95, p = 

0.33)(see Figure 3-5).   
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Figure 3-5 Within ROI Trained vs Untrained differentiation index. The plot shows the 
average differentiation index in the vmPFC, head of the hippocampus (HC head) and 
body plus tail of the hippocampus (HC body and tail). A positive differentiation index 
indicates that the regions shows greater activation for the trained condition. Bar graph 
shows mean and standard error. 

  

Figure 3-4 Trained vs Untrained pictures. The maps shows brain regions more active 
for the trained pictures when compared to the untrained pictures. Map is thresholded  
at p < 0.001 with FWE cluster size correction. 
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3.4.4 Connectivity analyses 

Contrary to our expectations, we did not observe any modulation of 

hippocampal connectivity by our training manipulation.  Additionally, we did not 

observe any differences in connectivity between training conditions when we 

used the significant vmPFC cluster as a seed.  Our result is in line with a recent 

finding from Brod and colleagues (2016) who also did not observe significant 

modulation of connectivity of hippocampus and vmPFC (but see Liu et al., 

2016).   

3.4.5 RSA 

The Identity RSA searched for brain regions that showed consistent local 

patterns of activity for the four different characters.  This analysis revealed a 

significant cluster in the vmPFC (cluster size = 273; peak voxel x = -10, y = 38, 

z = -2; t28 = 5.46), a cluster in the occipital cortex (cluster size = 264; peak voxel 

x = 16, y = -90, z = 16; t28 = 5.34), and a smaller cluster in the right occipital 

cortex (cluster size = 98; peak voxel x = 36, y = -72, z = -4; t28 = 4.69) (see 

Figure 3-6).  A follow-up RSA for locations did not reveal any significant effects 

across the brain, suggesting that the Identity-RSA results are driven by the 

characters themselves and not the locations that they are pictured in.  

The Trained vs Untrained RSA revealed a single cluster in the left inferior 

temporal gyrus (cluster size = 79; peak voxel x = -40, y = -44, z = -12; t28 = 

4.98) where activity patterns were more similar for the characters for whom 

schematic knowledge was available (see Figure 3-7).  The location of this 

cluster corresponds to the well characterised fusiform face area.  When 

comparing similarity for trained and untrained locations at the whole brain level 

we found a significant cluster in left postcentral gyrus (cluster size = 134; peak 

voxel x = -20, y = -42, z = 66; t28 = 5.74).   

In addition to whole brain searchlight analysis we ran both the Identity 

RSA and the Trained vs Untrained RSA in our predefined regions of interest.  

The anatomically defined vmPFC ROI showed higher similarity for matching 

identities versus mismatching ones (t28 = 2.76; p = 0.01), echoing the whole 

brain searchlight analysis.  Neither the head (t28 = -1.22; p = 0.23) or the body 

(t28 = -0.21; p = 0.83) of the hippocampus showed significant multivariate effects 
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of identity.  Surprisingly, none of our regions of interest showed significantly 

higher similarity for the trained versus the untrained characters (all ps > 0.3).  
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Figure 3-6 Identity RSA. Searchlight map shows regions that showed higher similarity 
for matching identities when compared to mismatching identities. Map is thresholded at 
p < 0.001 and FWE cluster size corrected. 

 

 
Figure 3-7 Trained vs Untrained RSA.  Searchlight analysis revealed one region (the 
left fusiform gyrus) showing higher similarity for the trained identities when contrasted 
with the untrained identities. Map is thresholded at p < 0.001 and FWE cluster size 
corrected. 
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3.5 Discussion 

The current study aimed to investigate the effects of recently acquired 

schematic knowledge on the processing of pictures of people.  Before scanning 

we trained participants on one of two TV shows, which allowed us to examine 

brain regions that are associated with processing of knowledge that has been 

acquired across multiple occasions in a naturalistic manner.  Whole-brain 

analyses revealed the vmPFC and retrosplenial cortex were more active when 

viewing trained versus untrained characters.  To a lesser extent, but significant 

within our pre-specified regions of interest, both the head and the combined 

body and tail of the hippocampus also showed increased activation for the 

trained characters.  We did not observe an inter-regional interaction between 

the vmPFC and the hippocampus suggesting a similar level of preference for 

the trained stimuli in both regions.  Furthermore, we observed representational 

similarity identity effects in the vmPFC, but not in the hippocampus.  Our results 

are consistent with theories implicating vmPFC and hippocampus in processing 

of schematic knowledge, but do not support a differential processing role for 

these regions in the face of prior knowledge.  

Participants learned about the characters of a TV show over the course 

of a week.  The training show was counterbalanced across participants allowing 

us to control for low-level visual differences between the shows and other 

potential confounds, such as the attractiveness or distinctiveness of the 

characters.  Participants had to integrate information from multiple episodes to 

learn about the home, personalities, relationships and occupations of the main 

protagonists.  This resembles how we acquire schematic knowledge in our 

everyday life and differentiates our design from previous studies that have relied 

on participants’ pre-experimental knowledge without matching it across people 

or studies that have trained participants on rule-based associations.  

Furthermore, our design was different from other studies using naturalistic 

stimuli that have provided prior knowledge only specific to a single situation or 

narrative.  Our finding of stronger activations in the vmPFC for the trained 

characters supports this region’s proposed role in processing of schematic 

knowledge. 
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Notwithstanding the differences in study designs, our results are 

consistent with previous findings that have showed vmPFC involvement in prior 

knowledge effects (Baldassano et al., 2018; Liu et al., 2016; Preston & 

Eichenbaum, 2013; Tse et al., 2007, 2011; van Kesteren et al., 2013, 2010; 

Zeithamova et al., 2012).  For instance, Liu et al., (2016) found higher vmPFC 

activation for famous versus non-famous faces (see also di Oleggio Castello et 

al., 2017; Von Der Heide et al., 2013).  Using a weather prediction task trained 

over two days, (Wagner et al., 2015) observed higher vmPFC activity when 

participants were retrieving the rules after a 24-hour delay.  Interestingly, 

lesions to the vmPFC have been associated with subtle schematic processing 

deficits (Ghosh et al., 2014).  For instance, patients with vmPFC lesions have 

difficulty linking words (“receptionist”) to their appropriate everyday schemas 

(“visit to the doctor”) (Ghosh et al., 2014).  Moreover, on word lists that contain 

thematically linked information (“bed”, “tired”, “rest”, “dream”), healthy 

participants often have false memories for schematically linked but not 

presented targets (“sleep”).  In contrast patients with vmPFC damage often do 

not make such false memory errors for schema congruent words (Ciaramelli et 

al., 2006; Melo et al., 1999; Warren et al., 2014).  The paradoxically more 

accurate performance of patients with frontal lesions could be due to their 

reduced ability to instantiate a schematic representation that biases the 

encoding of related words (see Gilboa & Marlatte, 2017).   

We note that the orbitofrontal cortex, which overlaps with the vmPFC, is 

implicated in social cognition, in person-trait processing (Benoit et al., 2010; 

Jenkins et al., 2008; Krienen et al., 2010), and in representing stereotypes 

about people (Stolier & Freeman, 2016).  These findings are compatible with a 

role for the region in schematic processing.  Stereotypes and trait judgments 

are likely based on schematic-like knowledge acquired across multiple 

occasions.  Future studies could test whether different types of schemas (e.g. 

social versus non-social) are more associated with different sub-regions of the 

medial prefrontal cortex.  For instance, it is possible that vmPFC is more 

involved in prior knowledge when it involves social or evaluative aspects (see 

for similar suggestions Liu et al., 2016).   



66 
 

Apart from univariate training effects we found evidence for character-

specific patterns of fMRI activity within the vmPFC, suggesting that the region 

contains information about people’s identity.  Interestingly, this effect was found 

for both the trained and the untrained characters.  This finding is consistent with 

previous studies reporting successful identity decoding for both friends and 

unfamiliar others in the vmPFC (di Oleggio Castello et al., 2017).  Surprisingly, 

we did not observe higher pattern similarity for trained identities versus 

untrained identities across runs.  This might initially appear to be in contrast with 

the univariate effect in the vmPFC, however, it should be noted that correlation-

based RSA analyses rely on the voxel level variability across conditions.  On 

the other hand, univariate effects sensitive mainly to the mean activation 

differences across conditions (Davis et al., 2014).  Future studies will be needed 

to better understand the neural coding mechanisms of schematic processing.  

One potential explanation for this pattern similarity finding is that the repeated 

exposure to the untrained characters allowed participants to make impressions 

about their identities (Todorov et al., 2015).  Nevertheless, taken at face value, 

our RSA results, and the finding of di Oleggio Castello et al., (2017), are 

inconsistent with the view that the vmPFC plays a preferential role in processing 

stimuli associated with schema-related knowledge.  

We also observed training effects on overall activation level in both the 

anterior (head) and posterior (body and tail) hippocampus.  These effects were 

not significant at the whole-brain level but were present when considering 

average activity levels within the pre-defined ROIs.  According to recent 

suggestions, these two sub-regions of the hippocampus process information at 

different levels.  The posterior hippocampus is thought to process information at 

more detailed perceptual level, whereas the anterior hippocampus might 

support coarser gist-level semantic information (Poppenk et al., 2010; Preston & 

Eichenbaum, 2013; Robin & Moscovitch, 2017).  Based on these suggestions 

we might have expected that the anterior hippocampus might better differentiate 

between training conditions as it might reflect the gist-level information.  

Moreover, several studies contrasting responses to famous and non-famous 

faces have found effects in the anterior hippocampus and adjacent regions of 

the amygdala (Elfgren et al., 2006; Trinkler et al., 2009; Von Der Heide et al., 
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2013).  However, our photo stimuli depicted not only the characters themselves, 

but also their apartments, which were familiar to participants after training.  

Since the posterior hippocampus is more associated with processing spatial 

contexts (Nadel et al., 2013; Ranganath & Ritchey, 2012; Strange et al., 2014), 

this might explain why activity in this region was also modulated by training.  

The higher hippocampal activation for the trained characters may be due 

to spontaneous reinstatement of episodic memories about the show (see also 

Ishai, 2008; Ishai et al., 2002; Trinkler et al., 2009), rather than simply the 

activation of associated schematic knowledge.  This suggestion is in 

accordance with findings that famous names can be associated with personal 

memories (Renoult et al., 2012; Louis Renoult et al., 2015; Westmacott et al., 

2004; Westmacott & Moscovitch, 2003).  This in turn might contribute to the 

(modest) boost in recognition performance for the pictures of trained individuals.  

Indeed, a number of studies have shown that learning new information which is 

related to prior experience was supported by the hippocampus (Liu et al., 2016; 

Poppenk et al., 2010; Preston et al., 2004; Sommer, 2016; Tse et al., 2007, 

2011).  However, the present study cannot provide direct evidence for the 

nature of the relationship between episodic recollection, schematic knowledge 

activation and memory for new information. 

Some models propose that the hippocampus and vmPFC have 

competing roles.  The SLIMM model proposes that the vmPFC monitors 

whether the current experience is related to prior schematic information and 

engages different memory processes depending on the amount of congruency 

with prior knowledge.  By contrast, the medial temporal lobe, including the 

hippocampus, is involved in memory processing of novel information, but not of 

information strongly related to prior knowledge (van Kesteren et al., 2012).  

Therefore, according to the SLIMM model we might have expected to have 

seen stronger vmPFC response for the trained pictures and a stronger 

hippocampal response for the untrained pictures.  In fact, we found that (1) the 

response in both the anterior and posterior hippocampus was greater for trained 

versus untrained pictures, and (2) that the trained versus untrained effects were 

not significantly different between the vmPFC or either hippocampal ROI. These 

findings are inconsistent with the SLIMM model.  However, our findings are 
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consistent with other studies reporting increased hippocampal involvement for 

prior knowledge effects from a range of tasks (Liu et al., 2016; Sommer, 2016; 

Zeithamova et al., 2012).  More broadly, our findings lend support to accounts 

of memory processing that view the roles of the vmPFC and hippocampus as 

being complementary (e.g. Robin & Moscovitch, 2017) or working together 

under situations with moderate levels of prior knowledge (Gilboa & Marlatte, 

2017).   

Given that prior schematic knowledge modulates activity in the vmPFC 

and hippocampus to a similar degree, future studies will be needed to better 

understand the nature of their roles in schema-based semantic and episodic 

memory processes.  For example, both the vmPFC and the hippocampus have 

been shown to be involved in episodic memory retrieval (e.g. see McCormick et 

al., 2018).  However, they seem to process information at different levels of 

abstraction.  Partial damage to hippocampal regions is associated with loss of 

detailed memories, but preserved gist, or story level memories (St-Laurent et 

al., 2014).  On the other hand, damage to vmPFC is often associated with 

problems in schematic processing (Ciaramelli et al., 2006; Melo et al., 1999; 

Spalding et al., 2015; Warren et al., 2014).  Nonetheless, it is important to note 

that schematic processing has rarely been examined in patients with 

hippocampal damage and more research is needed to understand how vmPFC 

lesions affect episodic memory (see McCormick et al., 2018 for review).  An 

open question for future studies is to examine to what extent encoding of new 

information related to prior schematic knowledge depends on episodic memory 

retrieval (see Zeithamova et al., 2012).   

Beyond the effects in the vmPFC and hippocampus, two further regions 

warrant mention.  First, there was an increase in activation for pictures of 

trained versus untrained characters in the retrosplenial cortex.  Posterior midline 

regions including the retrosplenial cortex are strongly implicated in processing 

known versus unknown entities (e.g. Liu et al., 2016; Von Der Heide et al., 

2013) and are also frequently identified in studies that have manipulated prior 

knowledge (e.g. Ames et al., 2015; Maguire et al., 1999).  Although posterior 

midline regions have attracted less attention than the vmPFC in schema 

processing, it is possible that they nevertheless play an important role in linking 
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incoming information with prior knowledge (see also Bird et al., 2015).  The 

second region is the left fusiform gyrus, as this was the only brain region in our 

study to show significant identify-specific RSA effects that were greater for 

trained compared to untrained characters.  This is a region strongly implicated 

in face processing (Kanwisher et al., 1997) and other studies that have 

examined prior knowledge for faces have also often observed effects here (e.g. 

see Brod et al., 2016; Liu et al., 2016; Schlichting & Preston, 2016).  

Interestingly, a study by Axelrod & Yovel (2015) also found that a region in the 

fusiform gyrus was the only place where the identify of famous faces could be 

decoded from patterns of BOLD activity.  The mechanism underpinning these 

findings is unclear, but it is possible that familiarity with a person “sharpens” the 

representation in this region, resulting in increased pattern similarity.  Follow-up 

studies could examine whether different types of category-specific schematic 

knowledge result in representational similarity effects in other specialised 

cortical regions (e.g. locations in the parahippocampal gyrus). 

It may seem surprising that we did not observe more widespread RSA 

effects of location. Only one region (within the left postcentral gyrus) showed 

greater similarity for the same compared with different locations.  However, it 

should be noted that all of the locations were highly similar – all being 

apartments belonging to a young married couple.  Although the locations could 

be living rooms or kitchens, during the training episodes participants saw a lot of 

scenes involving the characters moving from one to another.  This could have 

led to a highly associated representation of these locations.  Our result 

contrasts with studies that have observed robust and widespread location 

similarity effects, which have often used locations that are distinctive and unique 

to different episodes (e.g. Robin et al., 2018).  Furthermore, the participants’ 

task was to detect the oddball pictures of elderly individuals, which potentially 

directed their attention more to the faces present in the picture rather than the 

locations. 

In sum: our results further support the neurocognitive theories that 

suggest a role for both the vmPFC and hippocampus in schema-based 

processing of new information and they also identify the posterior midline cortex 

in as an additional region associated with person-specific schematic knowledge.  
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Our study employed a novel paradigm to enable participants to acquire novel 

schema in a naturalistic manner.  New schematic knowledge boosted 

performance on tests of episodic memory for previously unseen pictures and 

short videos.  The finding that prior knowledge increased activity in both the 

vmPFC and the hippocampus to similar extent is at odds with the SLIMM 

account of memory processing.  Future studies are needed to establish the 

effects of the specific content and richness of schema knowledge on the 

involvement of particular brain areas. 
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3.6 Supplementary Materials 

 

 

 

Supplementary Figure 3-2 Example questions for a single video clip. The title 
indicates for which video the questions are. The participants see each question one 
after the other and have to make a choice between three provided options. The 
highlighted options are the correct answers (they were not presented to the 
participants). 

  

Supplementary Figure 3-1 Picture Contrast. Brain regions with higher activation for 
watching pictures (both trained and untrained) versus the odd-even number judgment 
baseline task. The map is FWE cluster corrected with a voxel threshold p < 0.001. 
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Chapter 4: Person related schema 

knowledge during processing of 

complex events 
 

4.1 Abstract 

To comprehend the world around us we often rely on our prior knowledge. 

Schema knowledge about a friend can help us understand and predict how they 

will typically act. Apart from our perception, schemas could also affect how we 

later remember information. Here we focused on how person related schematic 

knowledge will affect the encoding and retrieval of naturalistic events. 

Participants were familiarised with the lead characters of one out of two TV 

shows. Over the course of a week, participants watched 6 episodes in order to 

acquire schematic knowledge about the main characters from one of the shows. 

Inside the scanner, participants watched and retrieved novel short clips taken 

from both the show they were trained on and the show that was completely 

unfamiliar to them. Outside the scanner participants performed a memory test 

for the clips. Schema knowledge boosted memory performance. Surprisingly, 

we did not observe any modulation of memory reinstatement effects by schema 

knowledge. However, we show shared patterns of activity for the trained clips in 

medial prefrontal cortex (mPFC), angular gyrus (AG) and superior frontal gyrus 

(SFG). These results further extend previous work showing that mPFC, AG and 

SFG might be particularly important for supporting schema representations 

during naturalistic perception. 
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4.2 Introduction 

The use of video stimuli, in Chapter 2, allowed me to examine how 

situation specific prior knowledge affects ongoing processing of events.  Apart 

from examining situation specific knowledge, I also used naturalistic stimuli in a 

week-long familiarization procedure to examine the effects of schematic prior 

knowledge (Chapter 3).  In Chapter 3, I used still picture stimuli in order to have 

a better comparison with previous literature on schematic knowledge.  However, 

a sensible extension is to also examine the effects of schema knowledge on 

complex stimuli.  Here I report, data from the same participants (as in Chapter 

3), who underwent the week-long familiarization with a TV show, but performed 

a video task inside the scanner.  The use of a video task allowed me to examine 

what effects schematic knowledge would have on the processing of dynamic 

stimuli, which is something that has not been extensively examined previously.  

In this chapter I report data from participants who watched and retrieved novel 

short clips taken from a familiar or unfamiliar show (see Figure 4-1).  Below I 

introduce some of the rationale for the study.  

Schema knowledge is thought to bias how we process new information 

that is related to our prior knowledge.  However, this has rarely been examined 

using naturalistic stimuli.  A recent study by Baldassano et al., (2018) 

investigated the brain regions that are involved in a particular aspect of 

knowledge schemas – “scripts” (Bower et al., 1979; Mandler, 1984; Schank & 

Abelson, 1977).  Scripts describe familiar situations and comprise the locations, 

likely individuals and objects present, as well as the typical order of actions (see 

also Ghosh & Gilboa, 2014).  Baldassano and colleagues scanned participants 

while they listened to audio clips or watched video clips which depicted scenes 

taking place at an airport or in a restaurant.  Although the scenes were taken 

from different genres and featured very different characters, remarkably 

consistent patterns of fMRI activity were observed when the clips corresponded 

to the same underling scripts.  For example, the pattern of activity across medial 

prefrontal cortex, angular gyrus and posterior midline regions was similar when 

participants viewed or listened to clips involving the ordering of food in a 

restaurant.  
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Scripts constitute a major framework for understanding events, with 

Schank and Abelson (1977) arguing that “most of understanding is script-

based”.  However, schemas can also relate to particular individuals, enabling us 

to anticipate how an individual is likely to act in a particular situation.  For 

example, we may have a script for “waiting for a delayed train to arrive” but 

predicting how a specific individual will act in this situation will depend on our 

knowledge of their temperament, which is typically acquired after observing that 

individual in a range of different situations.  How is such knowledge activated 

when processing novel events and what are the brain regions responsible?  

Here we address this question. 

We further examined whether schema knowledge about people will affect 

retrieval of complex events.  Recent neuroimaging experiments have shown 

that patterns of activity during retrieval of a stimulus are similar to patterns that 

were elicited during encoding of the same stimulus.  Such pattern reinstatement 

effects during retrieval have been observed in a range of tasks (Danker & 

Anderson, 2010; Deuker et al., 2013; Staresina et al., 2013).  Indeed, they have 

been demonstrated for complex video stimuli (Bird et al., 2015; Chen et al., 

2017; Oedekoven et al., 2017; St-Laurent et al., 2015).  Interestingly, higher 

reinstatement has been associated with better memory performance (Bird et al., 

2015; Oedekoven et al., 2017).  Schemas can affect how we learn and later 

retrieve new events (see for reviews see Gilboa & Marlatte, 2017; van Kesteren 

et al., 2012).  Information that is consistent with our schema knowledge is often 

remembered better (DeWitt et al., 2012; Gilboa & Marlatte, 2017; Liu et al., 

2016; Sommer, 2016), but see (Bartlett, 1932; Oren et al., 2017).  Therefore, we 

hypothesised that person related schema knowledge would be associated with 

better retrieval and stronger reinstatement effects for complex events. 

Specifically, we hypothesised that we would observe higher pattern similarity 

between encoding and retrieval of trained versus untrained events.  

We investigated the effects of training using univariate and multivariate 

analyses.  Apart from whole-brain analyses we also examined the univariate 

response in ventromedial prefrontal cortex (vmPFC), hippocampus and 

retrosplenial cortex (RSC).  Based on previous findings (Liu et al., 2016; 

Chapter 3), we predicted that vmPFC and hippocampus would show higher 
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activity for the trained clips.  We also ran exploratory analyses examining 

whether these regions would also differentiate between retrieving trained and 

untrained clips.  Multivoxel analyses allowed us to replicate previous 

reinstatement effects and examine whether our training manipulation affected 

how activity is reinstated during retrieval.  Using a conceptually similar analysis 

to Baldassano et al. (2018) we were also able to investigate whether there are 

spatial patterns of activity shared across all trained encoding videos when 

compared to the untrained videos.  Our reasoning for this analysis was that if 

there is schema instantiation for the trained clips, they should be more similar to 

one another compared to the untrained clips.   
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4.3 Methods 

4.3.1 Participants 

 Here we report data from participants that were also included in Chapter 

3. Twenty-eight participants (15 females) were included into the analyses.  

Mean age was 21.71 (± 3.08). For more details see Chapter 3. 

4.3.2 Stimuli 

 Twenty short clips were taken from two US shows (“Mad about you” – 

MaD and “Dharma and Greg” - DG) to be used in the scanning session.  All 

clips used in the scanning session were chosen to represent unrelated self-

contained short situations.  The clips were taken from previously unseen 

episodes and were all in unique and unfamiliar locations (e.g. the museum).  

The duration of the 10 clips from the MaD show (32.7 ± 6.73) were on average 

the same duration as clips from the DG show (33.4 ± 7.87) (p = .833).  The 

audio for the clips was scaled to the same mean decibel intensity with Praat 

(version 6.0.15) (Boersma, 2001).  All clips were made black and white. 

4.3.3 Procedure 

 See Chapter 3 for more detailed procedure on the familiarization. 

Participants carried out 4 functional runs within the scanner.  The first and last 

of the 4 runs included a picture task and the results from these data are 

reported elsewhere (see Chapter 3).  The middle 2 runs are the focus of this 

chapter.  Each run was approximately 16 minutes long.  In each run participants 

viewed and recalled 10 clips in total (5 from trained show and 5 from untrained 

show).  Participants viewed and recalled the clips in sets of 5 (e.g. encode 5 

videos and then recall these 5 clips) (see Figure 4-1A).  Within each set there 

were both trained and untrained clips presented in random order.  Before each 

video participants were presented with a title associated with the video (e.g. A 

Stranger’s Death) for 3s (see Figure 4-1B).  Participants were made aware the 

title would act as a memory cue later on and were asked to pay attention to it.  

The title was followed by a red cross that allowed us to TR lock the onset of the 

clips.  Each clip was followed by a 2s white fixation cross after which 

participants were asked to make an odd/even number judgment during an 
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active baseline task (see Chapter 3 for task description) (Stark & Squire, 2001).  

A white fixation cross lasting for 400ms was presented before the onset of the 

next title.  After encoding the 5 videos participants had to silently recall the 

videos in random order.  Participants were presented again with a title 

associated with one of the videos they just watched (A Stranger’s Death) for 3 

seconds in blue font (see Figure 4-1C).  The title was then followed by a text 

cue asking them to recall the video.  The recall cue stayed on the screen until 

participants made a response to indicate finishing recalling or until 30 seconds.  

The recall cue was followed by a white fixation cross presented for 1500ms.  In-

between the recall trials, participants again made odd/even number judgments 

for 4 numbers accumulating for a total of 11s.  After completing each of the four 

sets of 5 encode and 5 recall videos participants were presented with 4 visual 

analogue scales on which they rated their familiarity with the 4 main characters.  

Each scale was presented for 6 seconds and participants rated from 0 to 100 

how familiar they felt with each character (e.g. Dharma).  Familiarity ratings for 

the characters were than averaged separately for each show and each set (4 

sets in total). 
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Figure 4-1 Schema of Study Design. Before the experiment participants were 
familiarised with one out of two shows. Participants viewed and recalled novel clips 
from the trained and untrained show. A) Participants initially viewed 5 clips taken from 
both the trained and untrained show, and later recalled the 5 clips in random order. 
After each set of 5 clips participants rated their familiarity with the characters in the 
videos. A run included two sets of 5 clips and there were four sets for the whole 
experiment (2 runs; 20 clips in total). B) Shows the timings for encoding part of the 
experiment. Note all clips were in novel locations not seen in any of the familiarisation 
episodes and were made black and white. C) Shows the timings for the recall part of 
the experiment. Participants made an odd-even judgment in between each event 
(encode/recall). 

 

 Memory for the clips was tested outside the scanner (see Chapter 3).  

The title of the video was used as a memory cue.  Participants’ memory was 

tested with a three-alternative forced-choice test concerning details from the 

video.  There were 5 multiple-choice questions for each of the 20 clips (10 

trained and 10 untrained).  The sets of 5 questions for each clip were presented 

in a pseudo-random order so that there were no more than 3 consecutive clips 

from the same show.  For each subject the average accuracy for the trained 

clips was contrasted with the average accuracy for the untrained clips with a 

paired sample t-test.  Participants also made vividness and engagement 

judgments for each of the clips.  These judgments were made before 

participants completed the accuracy questions. 
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4.3.4 MRI acquisition 

 T2*-weighted fMRI images were acquired on a 3T Siemens Prisma 

scanner using a 32-channel head-coil.  To minimise movement, soft cushions 

were inserted into the head coil.  A gradient-echo EPI sequence with multiband 

acceleration factor of 8 with the following parameters (TR = 0.8s; TE = 33.1ms; 

52 degree flip angle; FOV = 208x180mm; 72 sliced with sliced thickness of 

2mm and isotropic 2mm voxels).  The same parameters were used to acquire 

two SpinEcho Fieldmap runs with reversed phase-encode blips in both Anterior 

to Posterior and Posterior to Anterior directions.  These pairs of images were 

used to estimate the distortion field map using a method similar to Andersson 

(2003) as implemented in FSL.  A T1-weighted high-resolution structural image 

was acquired with 3D MPRAGE sequence (TR = 2.4 seconds; TE = 2.14 

seconds; 8 degree flip angle; FOV = 224x224mm and 0.8mm isotropic voxels).  

4.3.5 Image pre-processing 

 We used SPM 12 (Wellcome Department of Imaging Neuroscience, 

London, UK) to pre-process all of the images except the field maps.  Images 

from both sessions were spatially realigned to the mean functional image to 

account for any motion.  Command-line functions from FSL (Smith et al., 2004) 

were used to estimate and apply field maps to the motion corrected data in 

order to correct for image distortions (Andersson et al., 2001).  The high-

resolution structural image was coregistered to the mean functional image and 

was segmented into grey, white matter and cerebrospinal fluid using tissue 

probability maps.  The segmented images were used to estimate deformation 

fields, which were applied to the functional images in order to transform them to 

MNI space.  A 6mm FWHM smoothing kernel was applied to the functional 

images.  Unsmoothed normalised images were used for ROI analyses. 

4.3.6 Data analysis 

 Data was analysed with SPM 12, the CosMoMVPA toolbox (Oosterhof et 

al., 2016), custom scripts in MATLAB (Version 2017b, The MathWorks, Inc., 

Natick, MA, USA).  All analyses were conducted on MNI normalised images.  

The RobustWLS toolbox in SPM 12 was used to estimate the first level models 

(Diedrichsen & Shadmehr, 2005).  This method provides a “soft” exclusion of 
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bad volumes by downweighting volumes with high variance estimates.  We 

used the Bspmview toolbox (www.bobspunt.com/bspmview) to visualise and 

describe our data.  The toolbox implements MNI coordinates from the 

Anatomical Automatic Labelling 2 toolbox for SPM 12. 

4.3.7 Whole-brain analyses 

 We first carried out whole-brain random-effects analyses across 

participants.  First-level contrast images in MNI space were evaluated with one-

sample t-tests.  Unless otherwise stated results were thresholded in SPM using 

cluster-level family-wise error correction (p < .05), with a cluster-defining 

threshold of p < 0.001. 

4.3.8 ROI definition and analyses 

 Various theories have implicated the hippocampus in schematic 

processing.  Particularly recent theories have argued about a division of labour 

across subregions of the hippocampus.  Anterior hippocampus has been 

argued to represent more abstracted and gist level information whereas, 

posterior hippocampus has been proposed to process more detailed information 

(Preston & Eichenbaum, 2013; Ritchey et al., 2015; Robin & Moscovitch, 2017).  

We used the bilateral head of the hippocampus as one regions of interest and 

the combined body and tail of the hippocampus as a separate region of interest.  

These regions were defined based on segmentation carried out by Ritchey and 

colleagues (2015) that is available at www.neurovault.org.  

We also used the vmPFC and RSC as regions of interest since they 

have often been associated with schematic processing (Gilboa & Marlatte, 

2017; Liu et al., 2016).  Both ROIs were defined as the suprathreshold clusters 

for training effect identified in the group analysis of the picture task from the 

same participants (see Chapter 3).     

Furthermore, in order to keep in line with previous studies, we examined 

schema effects in a set of regions from the default mode network, including the 

mPFC, angular gyrus, and posterior cingulate cortex.  Similarly to Baldassano 

et al. (2018), we also examined schema effects in the superior frontal gyrus, 

superior temporal sulcus and parahippocampal gyrus.  The posterior cingulate 

http://www.bobspunt.com/bspmview
http://www.neurovault.org/
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cortex (PCC) was defined from previous studies from our lab that have shown 

reinstatement effects for complex events (Bird et al., 2015; Oedekoven et al., 

2017).  The mPFC region was defined based on a resting state connectivity 

atlas (Shirer et al., 2012).  Specifically, it was defined as the medial frontal 

region from the “dorsal default network” set.  We used the AAL atlas and the 

WFU atlas pick toolbox to define the bilateral angular gyrus (AG), and 

parahippocampal cortex (PHG). The superior frontal gyrus (SFG) and superior 

temporal sulcus (STS; posterior division) were defined from the Harvard Oxford 

cortical atlas (https://neurovault.org/images/1699).  Any overlap from the 

superior frontal gyrus (SFG) ROI to the MPFC ROI was removed from the SFG. 

4.3.9 GLM analyses 

 For the univariate analyses we included a single task regressor for each 

of the 4 conditions (Trained Videos, Trained Recall, Untrained Videos, 

Untrained Recall).  The title cues were modelled with a single regressor of no 

interest and an additional regressor for the VAS was included.  The regressors 

included the onset and whole duration of events (clip or recall).  Unsmoothed 

contrast maps were used for the ROI analyses.  For multivariate analyses we 

ran separate first-level models where we modelled each video (20) and recall 

(20) event with a separate block regressor, which covered the whole duration of 

the video or recall event.  This allowed us to examine video specific patterns 

and whether these patterns were reinstated during recall.  These patterns were 

left unsmoothed for the within subject RSA analyses. 

4.3.10 Representational similarity analysis (RSA) 

 We investigated the similarity between spatial patterns of BOLD activity 

when people were watching and recalling the same videos using an RSA 

(Kriegeskorte et al., 2008).  Furthermore, we investigated spatial pattern 

similarity across videos from the same training conditions.  We ran whole-brain 

searchlight analyses on unsmoothed normalised t-map images with a 

searchlight radius of 4 voxels (mean 235 voxels).  In the first type of analyses 

we were interested in a general reinstatement effect.  We compared the spatial 

pattern similarity between matching encoding and retrieval patterns (encode 

video 1 and retrieve video 1; see diagonal Figure 4-2A) versus the similarity 

https://neurovault.org/images/1699
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between mis-matching encoding and retrieval patterns (encode video 1 and 

retrieve not video 1; see off-diagonal Figure 4-2A).  Higher similarity between 

matching encoding and retrieval patterns would suggest that there is 

reinstatement of the video specific encoding patterns during recall. 

To investigate how these reinstatement effects were modulated by 

memory accuracy we focused on the encode-retrieve patterns for matching 

videos.  We weighted these values positively and negatively depending on 

memory accuracy ratings, such that the diagonal values summed to zero.  To 

achieve this, we subtracted from each video accuracy score the average 

subject memory accuracy (see Figure 4-2).  Therefore, positive values are 

assigned to videos for which a participant exhibited better than average recall.  

This contrast allowed us to examine areas where the reinstatement effect 

correlates with richness of retrieval.  These general reinstatement analyses 

were conducted largely with aim to replicate previous findings (see Bird et al., 

2015; Oedekoven et al., 2017).  Similarly, to previous studies, we also ran these 

general reinstatement analyses within a region of interest encompassing the 

PCC. 

One of our main interests was to investigate whether the reinstatement 

effects were affected by our training manipulation.  Specifically, we examined 

whether encode-retrieve similarity was higher for the trained clips versus the 

untrained clips (see Figure 4-2B).  This analysis focused only on the encode-

retrieve similarity patterns for matching videos.  

Apart from reinstatement RSAs we also investigated the spatial pattern 

similarity across videos.  We directly compared whether spatial patterns for the 

trained clips are more similar among each other than patterns for the untrained 

clips (see Figure 4-2B) during encoding.  This analysis allowed us to investigate 

whether there are regions showing schematic effects during encoding of the 

trained videos.  If participants developed schemas for the trained show but not 

for the untrained show and they instantiated these schemas for each of the 

trained clips, we would expect this analysis to show areas with higher spatial 

pattern similarity across trained clips.  Importantly, each clip had a unique topic 

of conversation and was set in a unique previously unseen location (e.g. 
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museum).  We also ran this analysis in predefined ROIs.  Specifically, we ran 

the analyses in mPFC, hippocampus, PCC, parahippocampal cortex (PHC) and 

bilateral angular gyrus (AG).   

 For each searchlight sphere we computed the multi-voxel spatial pattern 

similarity across pairs of trials using correlation.  Normalised unsmoothed t-

maps for each of the encoding and/or retrieval videos trials were used.  The 

Pearson correlation values were then Fisher transformed and weighted 

according to a contrast matrix (see Figure 4-2).  The resulting weighted average 

value was assigned to the center voxel of the searchlight.  The searchlights 

spheres were with a radius of 4 voxels (mean 235 voxels size).  Different 

contrast matrixes were used for different analyses.  Note that for the last RSA 

analyses we compared the similarity across encoding videos within-subject, 

which resulted in symmetric correlation matrixes with a diagonal of 1s.  

Therefore, our contrast matrix focused only on the lower triangle of the matrix. 
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Figure 4-2 Contrast Matrixes RSA. The contrast matrixes used for the RSAs are 
shown above. Red indicates positive weighting and blue indicates negative contrast 
values. A) shows contrast matrixes examining general reinstatement regardless of 
training. The matrix on the left tests for video specific reinstatement effects. The matrix 
on the right examines where reinstatement effects are correlated with more accurate 
recall.  Different colours represent positive or negative weighting of reinstatement 
effects dependent on memory accuracy scores. Red indicates positive weighting, blue 
and green indicate different magnitudes of negative weighting. A different weight matrix 
was constructed for each subject to take into account their memory performance. B) 
Shows matrixes testing for training effects. The matrix on the left tests for regions 
showing higher reinstatement for the trained clips. The matrix on the right examines the 
similarity between clips during encoding. It tests if clips from the trained show are more 
similar to each other than clips from the untrained show. 
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4.4 Results 

4.4.1 Behavioural results 

 Participants had a high overall accuracy for the memory questions (75%, 

chance level = 33%).  Participants’ memory was more accurate for the trained 

clips (78%) versus clips from the untrained show (72%; t27 = 3.5; p = 0.002).  

Participants also rated remembering the trained clips more vividly (t27 = 3.67; p 

Figure 4-3 Behavioural Results. Bar graphs show memory accuracy for the clips 
from the trained and untrained shows. Subjective vividness and engagement ratings 
are also shown. Dashed red line indicates chance performance (33%) for the 
memory test. Stars indicate significance below p < 0.01. The line graph shows 
familiarity ratings for each show (averaged over the characters in each show) after 
each set of 5 clips. Familiarity ratings after each set were significantly higher for the 
trained characters when compared to the untrained characters. Graphs represent 
means and standard errors. 
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= 0.001) and found them more engaging (t27 = 3.94; p < 0.001) (see Figure 4-3).  

Familiarity ratings showed that, although participants felt they knew the 

characters from the untrained show more after watching the videos, they still did 

not feel as familiar as the characters from the trained show (see Figure 4-3). 

4.4.2 Imaging results 

4.4.3 Univariate analyses 

 The whole brain contrast for trained versus untrained videos did not 

show any significant clusters.  Furthermore, the ROI analyses also did not show 

differences across the trained and untrained videos [VMPFC: t27 = 0.86; p = 

0.19 one-tailed; Hippocampus Head: t27 = 0.36; p = 0.36; Hippocampus body 

and tail: t27 = -0.11; p = 0.45; RSC: t27 = 1.50; p = 0.07 one-tailed].  These 

results are somewhat in contrast to previous work (Liu et al., 2016; see also 

Chapter 3).  However, we note that modelling the whole duration of a clip with a 

box-car might not be optimal.  We ran exploratory analysis examining the BOLD 

responses at the onset of the videos.  This contrast showed that there was 

higher BOLD activity in vmPFC, the head of the hippocampus and the RSC 

ROIs for the trained versus the untrained clips (see Supplementary materials).  

Given the exploratory nature of this analysis future work will be needed to if 

confirm such onset effects are robust.  The contrast between trained and 

untrained recall events did not show any significant clusters at the whole brain 

level or across the ROIs (all ps > 0.30). 

4.4.4 RSA 

 The general reinstatement RSA analysis identified regions in which there 

was video specific reinstatement of encoding spatial patterns during retrieval.  

This analysis revealed significant clusters in bilateral angular gyrus, left middle 

temporal gyrus, left medial frontal gyrus, and right middle cingulate (see Figure 

4-4 and Table 4-1).  These results largely replicate previous whole brain 

findings from our lab (Bird et al., 2015; Oedekoven et al., 2017).  We also 

examined the general reinstatement effect in an independently defined PCC 

ROI and found a significant video specific reinstatement effect (t27 = 2.47; p = 

0.02), which is in line with previous findings.   
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 The general reinstatement weighted by memory performance revealed 

significant clusters through large parts of the brain.  Spatial patterns of 

reinstatement correlated with memory accuracy in bilateral temporal poles, 

inferior frontal gyrus (IFG), left middle temporal gyrus, middle cingulate, left 

medial frontal gyrus and right middle frontal gyrus (see Figure 4-5 and Table 

4-2).  The PCC ROI also showed a significant correlation between 

reinstatement effects and memory accuracy (t27 = 3.54; p = 0.001), replicating 

previous results from our lab (Bird et al., 2015; Oedekoven et al., 2017). 

Surprisingly, we did not find any significant clusters at whole-brain level 

and none of our ROIs showed different reinstatement effects for the trained 

videos when compared to the untrained videos.   

When we compared similarity during encoding for the trained videos, we 

found several clusters showing significantly higher similarity for clips from the 

trained show.  Trained clips were more similar to each other during encoding in 

right orbital frontal cortex, right IFG, right superior and middle frontal gyrus (see 

Figure 4-6 and Table 4-3).  When we ran these analyses in our ROIs, we also 

found that mPFC (t27 = 2.33; p = 0.02), AG (t27 = 2.32; p = 0.02), SFG (t27 = 

2.38; p = 0.01) showed significantly higher spatial pattern similarity across the 

trained clips when compared to the untrained clips.  We did not observe these 

effects in either the head of the hippocampus (t27 = 0.76; p = 0.45), the 

combined body and tail of the hippocampus (t27 =1.20; p = 0.23), the PHC (t27 = 

0.75; p = 0.46) or the STS (t27 = -0.68; p = 0.5).  The PCC ROI showed higher 

similarity for the trained clips but this effect did not reach statistical significance 

(t27 = 1.817; p = 0.08).   
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Figure 4-4 General Reinstatement. The analysis tested for areas showing higher 
spatial pattern similarity between encoding and retrieving the same clip vs different 
clips. Map shows clusters significant after FWE correction at p < 0.05 with voxel 
defining threshold of p < 0.001. 

 

 
Figure 4-5 Accuracy weighted reinstatement. Map shows brain areas where 
reinstatement effects correlated with memory performance. Map is FWE corrected at p 
< 0.05 at voxel threshold p < 0.001 
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Figure 4-6 Train vs Untrained Encode Similarity. Analysis tested for areas showing 
higher spatial pattern similarity for clips from the trained show when compared to the 
untrained show during encoding. Map is thresholded at FWE p < 0.05 with voxel 
threshold of p < 0.001. 
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Table 4-1 Significant clusters identified for the General reinstatement RSA contrasting 
encode-retrieve pattern similarity for matching vs mismatching videos. Clusters 
showing video specific reinstatement effects 

Region  x y z Size 
(voxels) T 

Right Angular gyrus  62 -54 32 394 6.35 

Left Angular gyrus  -54 -52 32 1632* 6.11 

Left Middle Temporal gyrus -50 -56 12 1632* 5.42 

Left Medial Frontal Gyrus -2 58 26 494 4.89 

Right Middle Cingulate 4 -42 36 74 4.24 

 

Table 4-2 Significant clusters identified for the encode-retrieve Reinstatement RSA 
correlating with memory accuracy. Clusters are significant after FWE correction at p < 
0.05 and voxel defining threshold of p < 0.001 

Region  x y z Size 
(voxels) T 

Right Middle Frontal gyrus  38 16 52 934 6.85 

Left VIII Lobule of Cerebellum  -26 -68 -48 720 6.06 

Left Angular gyrus -50 -60 28 189 4.97 

Left Supramarginal gyrus -60 -32 36 189 4.11 

Right Inferior Frontal gyrus 52 20 12 338 5.45 

Right Superior Temporal Pole 40 24 -30 242 5.32 

Left Middle Temporal gyrus -52 -2 -18 913 5.11 

Right Superior Frontal gyrus 28 64 -2 641 4.20 

Left Middle Temporal gyrus -56 -66 -4 257 5.10 

Right Superior Frontal gyrus 22 48 36 485 4.98 

Left Temporal Inferior gyrus -42 -34 -22 259 4.96 

Right Middle Temporal pole 38 8 -38 176 4.91 

Left Superior Frontal gyrus -20 40 42 502 4.63 

Left Medial Frontal gyrus -6 56 6 295 4.79 

Left Inferior Frontal gyrus -52 10 18 81 4.45 
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Table 4-3 Significant clusters identified for the Train vs Untrained Encode similarity. 
Analysis identified areas showing higher spatial pattern similarity during encoding of 
trained clips when compared to untrained clips. Clusters showing video specific 
reinstatement effects. 

Region  x y z Size 
(voxels) T 

Right Middle Frontal gyrus  38 32 34 1025 4.48 

Right Medial Orbitofrontal cortex  10 64 -16 542 5.26 

Right Inferior Frontal gyrus 46 10 36 121 4.77 

Left Anterior Cingulate -6 30 24 434 4.16 

Left Superior Motor Area -4 -6 62 87 4.55 

Left Superior Occipital -16 -80 40 86 4.45 
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4.5 Discussion 

 In this study we investigated the effects of recently acquired schemas on 

the encoding and retrieval of naturalistic stimuli.  We trained participants on one 

out of two TV shows and afterwards scanned them as they were watching and 

recalling short clips.  This design allowed us to examine how people process 

new information related to previously acquired knowledge.  Behaviourally we 

found that participants remembered more details about the clips from the 

trained show and rated them as more vividly remembered and more engaging.  

During encoding we found out that clips from the trained show were more 

similar to each other in mPFC, AG, SFG and a set of other frontal regions.  Our 

results are consistent with recent suggestions that mPFC and AG play a special 

role in schematic processing and further highlight the need for using naturalistic 

stimuli in such designs.    

 Although mPFC and AG have often been associated with episodic 

memory (see Rugg & Vilberg, 2013), we speculate that our results are not due 

to episodic recall of the training episodes, whilst watching the clips from the 

trained show.  The higher similarity across the encoding clips might imply that 

participants represented similar information.  We think it unlikely that each of the 

unique clips acted as a memory cue to the same episodic information from the 

training episodes.  Furthermore, our results are largely in agreement with a 

recent study that placed very little episodic memory demands to examine 

schema knowledge (Baldassano et al., 2018).  Baldassano and colleagues 

(2018) presented participants with clips taken from different TV shows and clips, 

but largely associated with two different schemas (airports and restaurants).  

They observed higher similarity in a set of regions including mPFC, SFG, and 

AG for clips taken from the same schema.  These and our results support 

proposals arguing that the mPFC and AG are involved in representing 

abstracted schema information that is not necessarily specific to a single 

episode (Gilboa & Marlatte, 2017). 

 Previously little work has been done to better understand whether we 

maintain schematic representations throughout the whole duration of an event.  

This was partly due to the use of stimuli that do not contain information 
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unfolding in time.  One of the main advantages of the current design was that 

we could start addressing questions about the timing of schema 

representations.  For instance, since the whole duration of the clips was 

modelled our results suggest that the schema representation was maintained 

throughout the whole clip.  According to schema theories people can maintain a 

general “template” that can act to structure and potentially bias information 

processing towards schema relevant features present in complex events 

(Ghosh & Gilboa, 2014; Thorndyke & Yekovich, 1980). 

Early evidence that person knowledge can bias information processing 

comes from a study by Cohen (1981).  Participants watched a video clip about 

the everyday activities of a woman and were told that she was either a waitress 

or a librarian.  Participants remembered better the features from the clip 

consistent with the occupation label they were provided with before watching 

the clip.  Further support that mPFC may be involved in selecting relevant 

information comes from a recent study that showed goal-relevant compression 

of information in mPFC (Mack et al., 2019).  It is important to note our design 

does not allow us to generalize whether schema representations would always 

be maintained for the whole duration of an event.  For instance, it is possible 

that the role of schema representations varies over events that extend over 

prolonged periods of time.  It would be particularly interesting for future studies 

to examine how person knowledge is represented in extended clips.   

 Although the schema information learned in our study was mainly 

revolving around the main characters, it is likely that mPFC, SFG and AG are 

involved in processing other types of schema information.  For instance, 

Baldassano et al. (2018) also found that these regions were associated with 

schema processing using schemas related to locations (airport and restaurant).  

Furthermore, mPFC and AG have been associated with schematic processing 

in various studies (see Gilboa & Marlatte, 2017) and these regions have been 

shown to maintain and integrate complex narrative information at long time 

scales (Hasson et al., 2015).  Interestingly, here although we observed 

qualitatively higher similarity among trained clips in PCC this effect did not 

reach significance.  This result contrasts with the results of Baldassano et al. 

(2018) who found evidence for schematic processing in PCC and PHC.  One 
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possible explanation for this discrepancy is the type of schema knowledge 

used.  The airport and restaurant schemas used by Baldassano et al. (2018) 

are strongly associated with spatial contexts.  Both PCC and PHC have been 

suggested to have preference for processing locations and scenes, which might 

account for the discrepancy between studies (Epstein & Baker, 2019; Epstein & 

Vass, 2014; Robin et al., 2018).  However, we also note that the schemas used 

in our experiment were learned over a much shorter span than the restaurant 

and airport schemas, which are often learned over the course of ones’ life.  

Future studies will be needed to better understand how consolidation can affect 

schema representations and how different types of schema knowledge are 

represented in the brain.     

 Surprisingly, we did not observe schema effects for reinstatement.  Given 

that previous literature has suggested that schema knowledge can affect 

retrieval (Gilboa & Marlatte, 2017; Liu et al., 2016; Sommer, 2016), we expected 

to see higher pattern similarity between encoding and retrieval of the trained 

clips when compared to the untrained clips.  Indeed, behaviourally we found 

higher memory accuracy for the trained clips versus the untrained clips.  

However, we did not observe reinstatement effects modulated by our training 

manipulation.  Although it is difficult to interpret a null result, we speculate that 

during retrieval participants focused more on remembering the specific details 

of the situation and did not rely strongly on the schemas acquired during 

training.  Since the spacing between encoding and retrieval was very small, it is 

possible that participants had good memory for the clips and did not rely on 

schematic or semanticised memory representations.   

One possibility given our results is that participants maintained a schema 

representation about the characters during encoding, but later did not rely on 

such person schema representations for retrieval, as much.  Indeed, the use of 

trained and untrained videos referring to salient situations could have made 

participants adopt a retrieval strategy that prioritised retrieval of situation 

specific information rather than schematic information.  This suggestion is partly 

supported from the observed high memory accuracy performance for both the 

trained and untrained clips.  Future studies will be needed to examine how 

schemas affect retrieval of complex events and whether schema knowledge 
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should be central to the retrieval task in order to observe schema effects during 

recall (e.g. Brod et al., 2016). 

Notably, when examining general reinstatement regardless of training we 

largely replicated previous work (Bird et al., 2015; Chen et al., 2017; 

Oedekoven et al., 2017).  We observed memory reinstatement effects in PCC, 

angular gyrus, middle temporal gyrus and middle frontal gyrus.  Furthermore, 

reinstatement effects were positively correlated with memory accuracy in a set 

of regions including angular gyrus and PCC.   

 In summary our results largely support the involvement of mPFC in 

schema-based processing and further highlight the potential involvement of 

SFG and posterior regions such as AG.  Our results further suggest the need to 

use naturistic stimuli to better understand everyday schema processing.  

Indeed, we observed a set of frontal regions showing schema effects.  These 

results are in line with the only other study that used naturalistic stimuli to 

investigate schema knowledge.  It is possible that these regions support 

maintenance of schema information through the duration of the videos, 

however, future studies are needed to elucidate this.   
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4.6 Supplementary Materials 

We note that when we modelled only the BOLD response to the first 2 

seconds of the videos, we did observe difference between the onset responses 

for trained and untrained videos (see Supplementary Figure 4-1). The ROI 

analyses showed that there was a higher response for the onset of trained 

videos when compared to the untrained videos in the head of the hippocampus 

(t27 = 2.79; p =0.004 one-tailed), vmPFC (t27 = 2.07; p = 0.023 one-tailed) and 

the RSC (t27 = 2.53 ; p = 0.008; one-tailed).  There was also qualitatively higher 

onset response for trained videos in the posterior hippocampus (t27 = 1.45; p = 

0.079 one-tailed), but the effect was not statistically significant.  These results 

are largely in agreement with previous work (Liu et al., 2016; see also Chapter 

3).  The contrast for recall onsets between trained and untrained events did not 

show any significant effect at our ROIs (all ps > 0.60).  One potential 

explanation for this result is that it is unlikely that participants where at the same 

stages of retrieval at the start of each retrieval cue. We note that these results 

are exploratory and need to be replicated in order to better understand the 

observed effects.  
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Supplementary Figure 4-1 Univariate maps of training effects. Brain map shows 
contrast between trained and untrained pictures (A) and video onsets (B). Warm 
colours represent higher activations for the trained pictures or videos. Beta values 
are mapped to colour hue and t-statistics are mapped to transparency. Higher 
opacity indicates higher t-statistic. Voxels enclosed within black lines are significant 
at p < 0.001 uncorrected. 
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Chapter 5: An investigation into amodal 

representations of occupational 

stereotypes 
 

5.1 Abstract 

Knowing that someone is a pilot can already start shaping our perception of 

them. Social stereotypes can have large influence on our perceptions and 

opinions about others. Here we ran a pilot experiment to investigate the brain 

systems that support occupational stereotypes. We were interested in brain 

areas that could cross-modally distinguish across different exemplars of 

occupations. We employed two separate tasks that presented information about 

four occupations in either word or picture format. In the word task participants 

made subjective judgments about different occupations (e.g. is the typical nurse 

wealthy). In the picture task participants were presented with pictures of 

different individuals sharing the same occupation. We performed classification 

analysis within each task and across tasks aiming to distinguish between the 

four target occupations used in the current experiment. Within the word task we 

observed above chance classification in a set of regions including the medial 

prefrontal cortex (mPFC), angular gyrus (AG), and precuneus. Within the 

picture task we observed above chance classification mainly in early visual 

cortices. We did not observe any significant cross-modal classification across 

occupations. We offer some speculations on these null results.   
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5.2 Introduction 

 Social categories have a substantial influence on the processing of 

information about other people.  For instance, knowing someone is a pilot 

affects whether we expect them to be a well-organized, tidy person.  Social 

knowledge in the form of person “schemas” or “prototypes” can have an 

important influence in our formation of impressions and is closely linked to 

prejudice (Amodio, 2014).  Interestingly, there has not been much research on 

how such social categories are represented in the brain.  This is in contrast to 

the increasing literature examining representations of specific person identities 

(Anzellotti, 2017; Ramon & Gobbini, 2018; Wagner et al., 2018; Wang et al., 

2017).  In the present study we used multivariate pattern analysis (MVPA) to 

examine how abstract social categories are represented in the brain. 

 Social categories and stereotypes are cognitive representations of a 

number of features shared by larger groups of people.  Categorization can 

occur based on demographic identifications, beliefs, typical overt behaviours, 

personality traits and occupations.  Social categories can help us assign 

personality traits (e.g. nurses are caring), social status, and associate 

behaviours and physical attributes to groups of people (e.g. pilots fly planes and 

wear white shirts).  As such, categories represent a conglomeration of features, 

which can help us predict future behaviour of a specific person.  Indeed, social 

categories have been shown to play an important part in how we form 

impressions of other people (Bodenhausen et al., 1999; Brewer, 1996; Fiske & 

Neuberg, 1990; Hamilton & Sherman, 1996; Kunda & Thagard, 1996) and have 

even been suggested to be better facilitators of social processing than 

personality traits (Andersen et al., 1990). 

For instance, Andersen and colleagues (1990), presented participants 

with sentences describing a type of person performing a mundane task.  The 

person could be described with either a social category or with a personality 

trait (e.g. The politician/ The extrovert type opened the drawer).  Participants 

had to judge the likelihood that the labelled person would perform this action.  

Participants remembered sentences better and judged them more quickly when 

a social category label was used rather than a personality trait. 
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Andersen et al., (1990) argued that social categories are more 

accessible and semantically rich.  Personality traits have been argued to be 

only one of the many elements represented by social categories (Macrae et al., 

1994).  As such, social categories are an interesting semantic concept since 

they represent a mixture of features and refer to general characteristics shared 

by groups of people, yet are also highly informative about typical behaviours 

and easily imaginable (Andersen & Klatzky, 1987; Andersen et al., 1990).  

Thus, it is interesting to examine whether these person “schemas” are 

represented in brain regions often associated with semantic knowledge and 

general schematic processing. 

 Our prior social knowledge is thought to allow us to categorise our 

experiences and structure and reduce the dimensions of the incoming flow of 

information (Cohen, 1981; Kunda, 1999; Macrae et al., 1994).  Social categories 

also affect how we remember information (Bodenhausen, 1988; Bodenhausen 

& Wyer, 1985; Cohen, 1981; Klatzky et al., 1982).  For instance, Klatzky et al., 

(1982) showed that recognition was better for faces that were stereotypical 

examples of occupational labels.  In a seminal study Cohen (1981) presented 

participants with a video clip showing the daily activities of a woman.  Some 

participants were told the woman was a librarian and other participants were 

told the woman was a waitress.  Participants exhibited better memory for 

features consistent with the provided social category (e.g. waitress).  In a 

second experiment, Cohen (1981) also showed that providing the stereotype 

label before watching the clip was associated with better memory for both the 

consistent and inconsistent memory compared to when participants were 

presented with the social label after watching the clip (see also Bransford & 

Johnson, 1972; Dooling & Lachman, 1971).  The provision of a social category 

label before watching the videos potentially guided participants’ attention to 

specific features of the video and allowed them to reduce the dimensions of 

incoming information, semantically elaborate on specific details and structure 

them, leading to more efficient encoding (Cohen, 1981).   

 Although the wide behavioural effects of social categories on how we 

form impressions of others, still little is known on how these concepts are 

represented in the brain.  Recently there has been a few studies trying to 
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address similar questions (see Amodio, 2014).  Van der Cruyssen and 

colleagues (2014) compared univariate activity when participants were reading 

sentences describing behaviours performed by either a member of a social 

category or an individual person with the same trait.  They found extended 

activations in mentalizing areas such as the medial prefrontal cortex (mPFC), 

anterior temporal lobe (ATL), bilateral angular gyrus (AG) and posterior 

cingulate cortex (PCC) when participants were reading sentences describing 

people belonging to social categories versus when processing descriptions of 

individual traits (see also Contreras et al., 2011; Contreras et al., 2013).  These 

brain areas have often been associated with social cognition and particularly 

theory of mind processes and mentalizing about other individuals (Frith & Frith, 

2006; Van Overwalle et al., 2009; Wagner et al., 2018).   

Studies that require participants to make judgments about social identity 

(Volz et al., 2009), ingroup loyalty (Baumgartner, Götte, Gügler, & Fehr, 2012) 

and social interaction (Lahnakoski et al., 2012) have often found involvement of 

the mentalizing network.  However, it should be noted that previous studies 

have relied on univariate activity and have contrasted activations for social 

categories with other types of knowledge, such as semantic knowledge 

(Contreras et al., 2011), personality traits (Contreras et al., 2013; Van der 

Cruyssen et al., 2014), or knowledge about places (Fairhall & Caramazza, 

2013b).  The areas observed with such a contrast could be partly driven by 

general category differences and may not be necessarily informative about 

which brain regions represent information specific for distinguishing different 

types of social categories.  For instance, since social categories are more easily 

visualised compared to personality traits (Andersen & Klatzky, 1987), some of 

the observed differences observed by Contreras et al., (2013) and Van der 

Cruyssen et al., (2014) could be due to general differences in concreteness 

across social and personality categories rather be due to representations of 

information that can distinguish between different examples of the same 

category (e.g. nurses vs pilots).   

To address these issues, we examined which brain areas are used to 

distinguish between different social categories (e.g. pilots vs. nurses).  We 

presented participants with two tasks using four occupation social categories.  
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We chose occupational social categories since they are widely known and have 

been shown to be important social schemas (see Feldman, 1972; Goldstein et 

al., 1984; Oakhill et al., 2005).  In the first task, participants read words referring 

to specific occupations (e.g. nurse) and made simple semantic judgments about 

them.  The use of word stimuli is one way to disentangle stimulus-driven 

perceptual factors from semantic factors, since the orthographic and 

phonological features of words are not related to the actual concepts that they 

represent.  However, even with the use of words, it is still possible that the 

observed representations are modality (e.g. words) specific.  To account for 

this, we used a second task, in which we presented participants with pictures of 

individuals in the same occupations (e.g. nurses).  This was done in order to 

enable cross-modal multivoxel pattern analyses (Kaplan et al., 2015; Nastase et 

al., 2016).  In this analysis technique data from one modality (e.g. words) is 

used to train a classifier to distinguish between stimuli, and the classifier’s 

discrimination performance is tested on data from a different modality (e.g. 

pictures).  

  This technique has been used in multiple experiments examining 

representations of semantic memory (e.g. Bruffaerts et al., 2013; Correia et al., 

2013; Devereux et al., 2013; Fairhall et al., 2014; Fairhall & Caramazza, 2013a) 

or in experiments using naturalistic stimuli (Baldassano et al., 2017, Baldassano 

et al., 2018; Zadbood et al., 2017).  For instance, Fairhall and Caramazza 

(2013a) presented participants with pictures and names of objects and asked 

them to rate their typicality.  They found significant cross-modal classification 

across different semantic categories in AG, ATL, PCC, posterior middle 

temporal gyrus and dorsomedial prefrontal cortex.  Cross-modal classification is 

a stringent way to test for amodal semantic representations, which are a central 

assumption of many semantic memory theories (Fairhall & Caramazza, 2013a; 

see Nastase & Haxby, 2017 for review).  The main idea being that a word 

(“nurse”) will activate a similar semantic representation that would also be 

activated when seeing a picture of a nurse.         

 We used both words and pictures referring to the social categories in 

order to investigate where information about the categories is represented in a 

modality-independent way.  We also included pictures that were either 
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congruent or incongruent with the stereotypical gender of the profession (e.g. 

female and male nurses).  This was done to potentially examine whether the 

spatial patterns of activity elicited by words (e.g. nurse) are more similar to 

patterns of activity elicited by gender congruent pictures of nurses (female 

nurses).  We expected that regions from the mentalizing network would be 

involved in representing these social categories.  It is worth mentioning that 

some of the regions involved in mentalizing are also commonly observed in 

semantic memory tasks.  We focused our analysis within the ATL, AG, mPFC 

and PCC, since these regions have been previously shown to be processing 

information about social categories (Contreras et al., 2011, 2013; Van der 

Cruyssen et al., 2014) and have been commonly shown to be involved in 

semantic memory (Binder & Desai, 2011; Binder et al., 2009; Fairhall & 

Caramazza, 2013a, 2013b; Murphy et al., 2017; Price et al., 2015).   
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Figure 5-1 Schematic of study design. Participants completed two tasks. Initially they 
were presented with words describing occupations and were asked to make simple 
semantic judgments (e.g. is the typical nurse wealthy). After each judgment participants 
made odd-even number judgement. In the picture task participants 8 pictures in a 
series and their task was to press a button if they detected a picture incongruent with 
the rest of the pictures in the block. In-between each picture block participants again 
made odd-even number judgements. 
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5.3 Methods 

5.3.1 Participants 

 Twenty-four right-handed fluent English speakers between the ages 19-

32 (23.26 ± 3.9) were included in the experiment.  Due to a technical issue one 

participant’s data were lost and were not included in the final analysis and an 

additional participant was excluded because they fell asleep, leaving 22 people 

for all analyses.  The Brighton and Sussex Medical School Research 

Governance and Ethics Committee (RGEC) provided ethical approval for the 

project.  All participants provided informed consent and were paid £20 

compensation for their time. 

5.3.2 Stimuli 

 We chose stimuli referring to four widely known occupations (soldier, 

boxer, nurse, ballet dancer).  Based on reported gender perception roles 

(Misersky et al., 2014) we selected 4 professions – 2 perceived to be male 

dominated and 2 perceived to be female dominated.  We used 288 colour 

pictures each of a different individual for the 4 different professions, 32 of these 

pictures were used for the oddball task.  256 pictures were divided equally 

across the 4 professions (nurse, boxer, ballet dancer, & soldier) and the 

pictures were equally of male and female professionals.  Therefore, there were 

64 pictures for each profession and half of them 32 were male with the other 

half being female.  This resulted in 8 sets of 8 pictures that were included in the 

analyses.  An additional set of 32 pictures separated into 4 blocks of 8 pictures 

was used for the odd-ball task.  The inclusion of stimuli that were incongruent 

with the stereotypical gender of the occupations (male nurse) was done to 

potentially examine whether words elicited patterns more similar to the pictures 

of individuals in gender congruent occupations.  All pictures were 2100x1500 

pixels and represented an individual in prototypical clothing for their profession 

presented on a white background.  All images were taken from Shutterstock 

(https://www.shutterstock.com/home) and where appropriate the background 

was removed using Adobe Photoshop. 

 

https://www.shutterstock.com/home
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5.3.3 Procedure 

 Participants were first screened to assess whether it would be safe for 

them to go inside an MRI scanner.  There were 2 counterbalancing lists in 

which the order of the presentation for both the word task and the picture task 

was reversed.  Additionally, in the picture task the location of the oddball varied 

across lists.  

 The experiment consisted of 10 functional runs each approximately 4 

minutes.  It has been suggested that MVPA analyses can benefit from brief 

functional runs (Coutanche & Thompson-Schill, 2012).  There were two tasks 

for the experiment.  Participants completed simple “yes/no” judgments on the 4 

professions during the word task.  Participants were presented with an 

occupation name (e.g. nurse) below it an adjective (e.g. wealthy) and were 

asked to make a yes or no judgment on the combination.  Most judgments were 

subjective, although some combinations of occupation and adjectives were 

considered common knowledge (e.g. nurse – knows first aid; boxer – physically 

active).  Participants were instructed to respond about the typical profession 

description rather than think of a particular example of the occupation category 

(see Figure 5-1).  Each conjunction of occupation name and adjective was 

presented as white text on black background for 3.5 seconds followed by an 

800 milliseconds fixation.  Participants made an odd/even judgement in-

between the occupations questions, which served as an active baseline task 

(Stark & Squire, 2001).  An active baseline task was chosen in order to prevent 

participants from thinking about the social categories during the ‘rest’ periods.  

Five numbers randomly chosen from the range 1-98 were each presented for 

1.8 seconds with a 600 milliseconds white fixation in between the numbers.  

There was a red fixation cross presented for 600 milliseconds to signal the 

upcoming occupation judgment.  Therefore, the word fMRI runs implemented a 

slow event related design with a space of 13.2 seconds in between 

presentations of the occupation judgments.  

In the last 4 runs participants completed an oddball picture detection 

task.  Participants saw blocks of pictures followed by blocks of odd/even 

judgment, which again acted as an active baseline task.  A block consisted of 8 
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pictures.  Each picture was presented for 1.3 seconds with a 200 milliseconds 

gap in-between.  Therefore, the duration of a single block was 12 seconds.  

After each block of pictures, a white fixation cross was presented for 1 second.  

The odd/even judgment task (as described above) was also 12 seconds and 

followed the presentation of the pictures.  A red fixation cross, presented for 1 

second, signalled the upcoming picture block.  Participants were instructed to 

pay attention to each individual picture and press a button whenever they detect 

a mismatch between the occupations.  For instance, a picture of a soldier 

presented in a block of nurses would be a target that requires a response.  Only 

11% of blocks included an oddball and they were not included in the main 

analyses.  Outside the scanner participants completed a practice session to 

familiarise themselves with the tasks.   

Outside of the scanner participants rated the gender prevalence for the 4 

different professions.  A visual analogue scale from 0 to 100 was used and 

participants were asked to guess what proportion of the people in that 

profession were male. 

5.3.4 MRI acquisition 

 Images were acquired on a 3T Siemens Prisma scanner with a 32-

channel head-coil.  To minimise head movement, we used soft cushions that 

were inserted into the head coil.  Gradient-echo EPI sequence with a multiband 

factor of 8 with the following parameters (TR = 0.8 seconds; TE = 33.1ms; 52 

degree flip angle; FOV = 208x180mm; 72 slices with sliced thickness of 2mm 

and isotropic 2mm voxels) was used.  SpinEcho images with the same 

parameters were acquired in both the Anterior to Posterior and Posterior to 

Anterior direction and were used to estimate a field map of the distortions using 

a method similar to Andresson (2003) using FSL command-line utilities.  Using 

a 3D MPRAGE sequence (TR = 2.4 seconds; TE = 2.14 seconds; 8 degree flip 

angle; FOV = 224x224mm and 0.8mm isotropic voxels) we acquired a high-

resolution structural T1-weighted image. 
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5.3.5 Image pre-processing 

Images were analysed and pre-processed using SPM 12 (Wellcome 

Department of Imaging Neuroscience, London, UK) and FSL command-line 

utilities.  Images were initially motion corrected to the mean image.  Field maps 

were estimated and applied to the motion realigned images using FSL functions 

(Smith et al., 2004), which allowed us to correct for image distortions 

(Andersson et al., 2001).  The T1-weigthed anatomical image was coregistered 

to the mean functional image and segmented into different tissue types (grey 

matter, white matter, cerebrospinal fluid) using SPM 12 default tissue probability 

maps.  Deformation fields were estimated from the segmented images and 

used to normalise the functional images to MNI space.  A minimal smoothing 

kernel of 3mm FWHM was applied to the data. 

5.3.6 Data analysis 

 Data were analysed with SPM 12, the CosMoMVPA toolbox (Oosterhof, 

Connolly, & Haxby, 2016) and custom scripts in MATLAB (Version 2017b, The 

MathWorks, Inc., Natick, MA, USA).  Analyses were conducted on MNI 

normalised images.  Searchlight analyses were run within a grey matter mask.  

Each individual’s grey matter tissue probability map estimated during the 

segmentation analysis step was normalized to MNI space.  These grey matter 

probability masks were averaged and then thresholded at 0.3 to select voxels 

within grey matter for the group.  To visualise our results, we used the 

Bspmview (www.bobspunt.com/bspmview) toolbox.  The toolbox implements 

MNI coordinates from the Anatomical Automatic Labelling 2 toolbox for SPM 12.  

To ensure participants were awake and paying attention in the word judgment 

task we also examined responses for the odd-even task and also for word trials 

with occupation and adjective combinations, that were considered to be with 

commonly known answers.  For instance, we included participants that 

consistently responded with yes for trials: (nurse-knows first aid; boxer is 

physically active; soldier is physically active).  One participant was not 

consistently responding to the occupation questions or responding to the odd-

even task, from which we judged he/she had fallen asleep and did not include 

them into further analysis, leaving 22 participants for all fMRI analyses. 

http://www.bobspunt.com/bspmview
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5.3.7 GLM analysis 

 Each run was modelled separately.  In the word task each of the 

occupations was modelled with a separate regressor (4 regressors per run; 1 

per occupation in a single run).  An occupation regressor combined the 4 trials 

of different judgments made for the occupation in each run.  The odd/even task 

was left unmodelled and acted as implicit baseline.  This meant that beta 

estimates for word judgment task reflected the comparison between the word-

judgment trials with the odd-even task.  In the picture task each picture block 

was modelled with a separate regressor.  In each run there were 2 regressors 

per occupation (one male and one female).  The oddball picture blocks were 

included as regressors of no interest.  The models for both tasks included the 6 

motion parameters, mean session effects and a high pass filter with a cut-off of 

1/128 Hz.   

5.3.8 Multivoxel pattern analysis (MVPA) 

 We first carried out classification analyses separately within each task 

(modality) to examine whether BOLD patterns can be significantly distinguished 

between the different professions.  We ran whole brain searchlight analysis 

using a searchlight sphere of radius of 4 voxels (mean 235 voxels).  For all the 

searchlight analyses we used support vector machine classifier as implemented 

in LIBSVM with a linear kernel and a fixed cost parameter (c = 1).  For each 

searchlight the multivoxel patterns (t-statistics) for each occupation from each 

run were extracted and vectorized in order to compute classification accuracy.  

For the within modality classification both training and test data sets were from 

the same modality.  For instance, for the word task we used a leave-one-run out 

cross-validation, where a classifier is trained on 5 of the word task runs and 

tested on the left out 6th word task run.  This is repeated 6 times, so that each 

word task run is used as a test set.  The average accuracy over the six cross-

validation folds is assigned to the center voxel of the searchlight.  This process 

is repeated separately for each searchlight.  Each voxel in the resulting map 

represents a cross-validated accuracy (Etzel et al., 2013).  Similarly, for the 

picture task within modality classification we used again a leave-one-run-out 
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cross-validation.  Each classifier was trained on 3 runs and tested on the left out 

4th run. 

 For the cross-modal classification we first trained a classifier on all word 

runs and tested it on all picture task runs.  We also ran a second analysis in 

which we trained a classifier on all picture runs and tested in on the word runs.  

Because the pictures referred to the same 4 professions as the word task these 

analyses were well suited to examine which brain regions might show amodal 

semantic representations.  To correct for multiple comparisons at the whole 

brain level we used the threshold-free cluster enhancement (Smith & Nichols, 

2009) with 10000 permutations as implemented in CosMoMVPA. 

5.3.9 ROI definition 

 Apart from whole brain searchlight we also examined classification 

performance in 7 regions of interest (see Figure 5-2).  Regions of interest were 

defined as 8mm spheres around the peak voxels reported in Van der Cruyssen 

et al., (2014).  The regions spanned parts of the mentalizing network and 

included dorso-medial prefrontal cortex (DMPFC), ventromedial prefrontal 

cortex (VMPFC), left medial anterior temporal pole (mATL) and left anterior 

temporal pole (ATL), posterior cingulate cortex (PCC), left and right angular 

gyrus (AG).  Van der Cruyssen et al., (2014) observed higher activations in 

these regions when participants were processing social categories vs 

personality traits (Contreras et al., 2013).  A grid search was implemented over 

the cost parameter C for the ROI analyses.  Significance was examined with a 

one sample permutation t-test. 
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Figure 5-2 ROI definition. Seven regions of interest were defined as 8mm spheres 
around peak voxels reported in (Van der Cruyssen et al., 2014). 
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5.4 Results 

5.4.1 Behavioural 

 Participants demonstrated high accuracy for the odd-even task with 

mean performance of 0.95 (± 0.06) during the word task and 0.96 (± 0.04) 

during the picture task.  In their ratings of occupation gender prevalence, 

participants exhibited similar stereotypes to what has been previously reported 

(see Misersky et al., 2014).  On average 72.13% (± 8.36) of boxers and 73.72% 

(± 11.98) were judged to be male and 68.9% (± 11.88) of nurses and 71.59% (± 

10.42) of ballet dancers were judged to be female. 

5.4.2 Within task Classification 

5.4.2.1 Words 

 We initially ran searchlight classification analyses using cross-validation 

to examine which brain regions could distinguish between the four occupations 

using only the word task.  We observed significant classification in a number of 

areas overlapping the mentalizing network (see Figure 5-3).  We observed 

significant classification within anterior temporal lobe (ATL), middle temporal 

gyrus (MTG), medial prefrontal cortex (mPFC), inferior frontal gyrus (IFG), 

precuneus, angular gyrus (AG).  However, we also observed significant 

classification in early visual cortex. 

5.4.2.2 Pictures 

 The searchlight analysis within the picture task showed classification in 

early visual cortex, probably reflecting low-level visual differences across 

pictures of different occupations.  For instance, pictures of nurses were often 

presented in white or blue uniforms whereas soldiers were often in green 

uniforms.  Apart from visual cortex classification we also observed significant 

classification in supramarginal gyrus, angular gyrus, middle temporal gyrus and 

left inferior frontal gyrus (see Figure 5-4). 
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5.4.3 Cross classification 

5.4.3.1 Test Pictures Train Words 

 In order to investigate which brain regions might represent amodal 

representations of social categories we initially ran searchlight analyses where 

a classifier trained on all runs from the word task was used to predict stimuli 

from the picture task.  If the classifier had learned representations that are 

independent of task and stimulus presentation, we would expect to observe 

above chance classification.  We did not observe any regions that showed 

higher than chance classification when trained on the word task. 

5.4.3.2 Test Words Train Pictures 

 We also ran a searchlight analysis that examined classification accuracy 

on the word task when trained on the picture task.  We did not observe any 

regions that showed significant above chance classification for words when 

trained on pictures.  Indeed, in both cross-classification analyses we observed 

small patches in early visual cortex that showed below chance classification 

(see 5.6 Supplementary Materials).  This might suggest that the information 

learned to distinguish between occupations in the visual cortex from one task is 

anti-correlated with the information learned from the other task (see also 

Jamalabadi et al., 2016).  

 We did not examine whether patterns of activity elicited by the word task 

were more similar to the gender congruent versus the gender incongruent 

picture, since we did not observe any general cross-modal classification 

between the word and picture tasks. 

5.4.4 ROI analyses 

 Apart from whole brain searchlights we also ran the within and across 

modality classifications in a predefined set of regions (see Figure 5-2).  We 

examined classification in regions previously associated with processing 

information about social categories (Contreras et al., 2013; Van der Cruyssen et 

al., 2014).  During the word task we observed significant classification of 

occupations in large set of regions from the mentalizing network, including 

dorsal and ventral medial prefrontal cortex (DMPFC and VMPFC), left anterior 
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temporal lobe (ATL), bilateral angular gyrus (AG).  During the picture task the 

DMPFC, VMPFC and left AG showed significant classification across 

occupations.  None of our ROIs showed significant cross classification (see 

Figure 5-5).  

 

 

Figure 5-3 Word task searchlight. Brain map shows regions with significantly higher 
than chance classification of different occupations from the word task. Map is 
thresholded at z-TFCE score of 1.65 corresponding to p < 0.05 one-tailed corrected for 
multiple comparisons. 
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Figure 5-4 Picture task searchlight. Brain map shows regions with significantly higher 
than chance classification of occupations in the picture task. Map is thresholded at z-
TFCE score of 1.65 corresponding to p < 0.05 one-tailed corrected for multiple 
comparisons. 

 

 
Figure 5-5 Classification within ROIs. The plot shows classification accuracy for each 
of the 7 regions for all 4 classification analyses.  The words and picture labels show 
classification within modality and the other two labels represent the cross-classification 
analyses. Plot shows mean accuracy across people with bootstrapped confidence 
intervals. The red dotted line represents chance performance. Asterisks indicate 
significantly above chance classification.  
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5.5 Discussion 

 In this study we were interested in examining the neural representations 

of social categories.  Specifically, we investigated whether we could observe 

across modality cross-classification for different types of occupational 

stereotypes.  We presented participants with two separate tasks.  In the first 

task participants saw words referring to four occupations and made simple 

semantic judgements about them (e.g. if the typical nurse is wealthy).  In the 

second task participants saw a series of pictures referring to the same 

occupations seen in the word task.  Participants had to perform an odd-ball task 

and detect a picture that represented a different occupation than the rest of the 

pictures in the series.  Within the word task we observed significant 

classification between social categories in a set of regions overlapping with the 

mentalizing network.  We also observed significant classification across social 

categories in the picture task in prefrontal cortex regions.  However, we did not 

observe any regions that showed significant cross-modal classification.   

 Our findings of significant classification in the mentalizing network agree 

with previous studies that have examined the processing of social categories.  

Previous research has often contrasted more broader semantic categories (e.g. 

people vs places; social categories vs personality traits) in order to investigate 

the neurobiology of social knowledge (Contreras et al., 2011, 2013; Fairhall & 

Caramazza, 2013b; Van der Cruyssen et al., 2014).  Fairhall & Caramazza 

(2013b), for instance, observed higher involvement in ATL, TPJ, DMPFC, and 

posterior middle temporal gyrus when participants were processing information 

about kinds of people compared to kinds of places.  Similarly, Van Der 

Cruyssen et al., (2014) observed higher activation in DMPFC, VMPFC, ATL, 

PCC and bilateral AG when participants were making judgments about social 

categories as opposed to personality traits.   

Here, we extend these findings to show that these regions can 

distinguish between different types of social categories (e.g. nurses vs soldiers).  

This supports previous suggestions that these regions represent social 

knowledge.  Interestingly, these regions are often also associated with a vast 

range of cognitive functions such as semantic memory, episodic memory, and 
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imagery (e.g. Spreng et al., 2009).  Recent studies have also found that MPFC 

and AG are associated with processing of more abstract generic knowledge, 

often termed schematic knowledge (see Gilboa & Marlatte, 2017; Wagner et al., 

2015; see also Chapter 3 and 4).  Social categories have been argued to 

potentially act as person specific schemas (Cohen, 1981).  Future studies will 

be needed to better understand whether different types of schematic knowledge 

rely on the same regions and neural mechanisms. 

 Although we observed significant classification in the mentalizing network 

during the word task, significant above chance classification during the picture 

task was mainly constrained to the visual and parietal cortex.  The DMPFC and 

VMPFC seemed to also distinguish different occupations during the picture 

task, however, since they did not show significant cross-classification this 

suggests that different patterns were responsible for distinguishing between 

occupations in the word and picture tasks.   

It is difficult to make concrete conclusions based on null results, 

however, we offer some speculations on the lack of observed effects.  It is 

possible that the picture task did not encourage participants to semantically 

elaborate on the different social categories.  Although participants had to detect 

a mismatch between occupations in a series of pictures, it is possible the task 

was performed mainly on a perceptual differentiation between the pictures and 

did not require participants to actively think about features describing these 

occupations.  Furthermore, the picture task utilised a blocked fMRI design, 

whereas a slow-event related design was used in the word task.  This might 

have reduced the overlap between the word and picture tasks and might be a 

potential explanation for the lack of observed effects.  Indeed, other studies 

have shown that attention can modulate which features are classifiable from 

fMRI data in previous studies (Cukur et al., 2013; Nastase et al., 2017).  Our 

results are not directly in contrast to previous behavioural studies that have 

argued for more automatic activation of social knowledge (e.g. Oakhill et al., 

2005), but imply that these representations may not be easily captured with 

fMRI. 
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However, we note that it is possible that our design was simply 

underpowered to detect cross-modal classification effect.  Although we used a 

similar number of stimuli to previous research (e.g. Fairhall et al., 2014), our 

classification task was inherently harder since we were trying to distinguish 

between different examples from the same semantic category (occupations) 

rather than distinguish broader categories (living vs non-living)(but see Correia 

et al., 2013).  Power calculations in fMRI, especially for MVPA, have been 

notoriously difficult.  However, our results can act as starting point for future 

studies in estimating required sample sizes using newly developed tools for 

calculating fMRI power (Durnez et al., 2016; Ellis et al., 2019; Hill et al., 2017; 

Mumford, 2012).  
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5.6 Supplementary Materials 

 

Supplementary Figure 5-2 Train Words Test Pictures.  Map showing results of Cross 
modality classification. Classifier was trained to distinguish the social categories based 
on the word task and tested on the picture task. 

Supplementary Figure 5-1 Train Pictures Test words. Brain map showing cross 
modality classification. Classifier was trained on the picture task and tested on the 
word task. 
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Chapter 6: Processing of complex 

events in older adults with mild 

cognitive impairment 
6.1 Abstract 

Mild cognitive impairment (MCI) syndrome is associated with problems of 

learning new information and is a major risk factor for later development of 

Alzheimer’s disease. Video stimuli can be a useful tool in examining memory 

processes in people with MCI, since they more closely mimic the complexity of 

everyday events. To understand a complex event one can often rely on his prior 

knowledge of similar situations, but one must also continuously integrate 

multimodal information over time and sustain attention for relatively prolonged 

periods. Here we examined whether MCI is associated with problems in 

encoding of naturalistic events. Participants with MCI, subjective memory 

impairments or healthy older adults were scanned whilst they watched short 

clips inside an MRI scanner. Participants’ memory for the clips was tested 

outside of the scanner. Individuals with MCI remembered less details about the 

clips from both the subjectively impaired and healthy control groups. We used 

recently developed analysis technique (inter-subject correlation) to examine 

whether MCI patients as a group would show less reliable BOLD responses to 

the clips when compared to the other groups. MCI individuals showed less 

coherent responses in posterior medial cortex, ventromedial cortex, and anterior 

temporal poles, when compared to the other groups. Our results suggest that 

MCI patients have problems encoding adaptively naturalistic stimuli.  
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6.2 Introduction 

 As we age, our cognitive functions decline.  Older adults often 

experience decreased processing speed, problems with attentional control, 

multi-tasking and episodic memory.  Memory complaints often include word-

finding difficulties, problems learning new information, and problems recalling 

recent events (Balota et al., 2000; Gilewski et al., 1990; West et al., 1992).  

Deficits in memory are particularly exacerbated in older adults who develop a 

Mild Cognitive Impairment (MCI) syndrome or Alzheimer’s Disease (AD) 

(Petersen, 2000).  MCI is often characterised by decline in episodic memory 

that is steeper than the decline observed in healthy older adults.  Yet patients 

with MCI are not completely unable to learn new information.  MCI is a major 

risk factor for later development of AD (Flicker et al., 1991; Petersen, 2000; 

Wolf et al., 1998).  MCI patients may even exhibit some subtle difficulties with 

everyday tasks, and it is possible that part of this is due to their memory 

problems (Flicker et al., 1991; Jekel et al., 2015; Kluger et al., 1997; Royall et 

al., 2007).  A lot of everyday tasks, such as cooking, navigating in one’s 

environment and even following a television programme rely to some extend on 

episodic memory (Tulving, 1983; Zacks, 2006).  Indeed, problems remembering 

what just happened can lead to problems orienting oneself in the present 

moment and keeping track of unfolding information that is inherent in everyday 

cognition (Zacks et al., 2006).  However, it is still unclear how MCI patients 

process complex events that resemble those encountered during day-to-day 

activities.  Furthermore, it is not clear whether the observed memory deficits in 

MCI patients are due to problems in the encoding, consolidation, and/or 

retrieval stage of episodic memory.  Here we used naturalistic stimuli to 

examine whether MCI patients would exhibit difficulties encoding video clips.  

We hypothesised the commonly observed memory deficits in MCI patients are 

partly due to maladaptive encoding.  Below we discuss the rationale for the 

study. 

With the increase in the ageing population, and the importance of age as 

a risk factor for neurological conditions associated with cognitive decline or 

dementia, there is a need to better understand the cognitive and brain systems 

affected by MCI.  This might lead to both the identification of diagnostic 
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biomarkers as well as the development of behavioural strategies to manage 

cognitive decline.  It is particularly important to examine how such patients 

process everyday information.  Whereas typically laboratory studies have relied 

on simple stimuli (e.g. individual words or pictures), memory for everyday 

events is often more complicated.  Complex events are structured, contain more 

rich associations and involve information extending in time.  In order to 

comprehend such events, one must often interpret them with reference to prior 

knowledge of similar situations.  Given the complexity of everyday 

comprehension it is important to better understand how MCI affects processing 

of more naturalistic situations, as this can guide development of future 

interventions. 

Video stimuli are a useful tool to examine everyday cognition, because 

they provide an ecologically valid way to examine participants’ encoding.  They 

contain social and emotional information, which may make them more easily 

memorisable, when compared to more simple stimuli.  Indeed, it has been 

argued that healthy older adults have difficulties engaging and remembering 

arbitrary information devoid of social meaning (Hess, 2005).  Furthermore, to 

understand the situation described in a video we often rely on our prior 

experience with similar situations.  Such ‘schematic’ or ‘script’ knowledge can 

aid participants’ memory by providing a structure to help organise the incoming 

information.  Importantly, such prior knowledge may be well preserved in old 

age (Umanath & Marsh, 2014).  Healthy older adults exhibit better memory on 

tests involving structured and better contextualised materials (R.T. Zacks et al., 

2000).  Schemas, scripts and expertise tend to benefit older adults’ memory 

performance (Hess, 1990; Morrow et al., 1992).  However, it remains an open 

question whether similar benefits will be observed in MCI patients.  Some 

studies have suggested that MCI patients might have deficits in their script 

knowledge of everyday actions (Jekel et al., 2015; Jorm & Jacomb, 1989; Roll 

et al., 2019; Royall et al., 2007; West et al., 1992).  Therefore, it is possible MCI 

patients might not necessarily be able to benefit from the structure provided by 

the more complex stimuli. 

In addition it should be noted that to comprehend naturalistic stimuli 

participants must also maintain prolonged attention (Naci et al., 2014), track the 
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unfolding sequences of actions happening in the videos and switch between 

retrieving and encoding the clips to memory (Hasson et al., 2015).  

Comprehending complex events is associated with various cognitive processes 

such as memory and executive functioning (Cannizzaro et al., 2013; Graesser 

et al., 1997; Mar, 2004).  This can make naturalistic stimuli particularly useful for 

examining MCI patients who suffer from memory problems and often show 

deficits in attentional control (Albert et al., 2001; Belleville et al., 2007; Gordon 

et al., 2015; Rapp et al., 2005; Sarazin et al., 2007; Saunders & Summers, 

2010) or can show problems in discourse comprehension (Drummond et al., 

2015; see also Fraser et al., 2019).   

Only a few studies have used naturalistic stimuli to examine how MCI 

patients process events.  Johnson, Storandt, and Balota (2003) used complex 

narrative texts to examine memory performance in older adults, and individuals 

with mild dementia syndrome.  Patients with mild impairment retrieved fewer 

details from the narrative texts at both immediate and short delay tests.  Zacks 

et al., (2006) examined how healthy older adults and mildly demented patients 

processed movies of everyday activities.  They found that mildly demented 

patients showed deficits in identifying the boundaries between transitions in the 

movies when compared to healthy older adults and younger adults (see also 

Bailey et al., 2013).  Furthermore, patients with mild dementia showed problems 

remembering what events happened and their temporal order.  Memory deficits 

for the videos were associated with impaired semantic knowledge for the 

events, supporting the notion that we rely on prior knowledge to understand 

complex events (Kurby & Zacks, 2008; Zacks & Sargent, 2010; Zacks et al., 

2007).   

It is unclear what are the brain areas that might be affected by MCI in 

processing of complex events.  The hippocampus undeniably plays a major role 

in supporting memory processes (Marr, 1971; McClelland et al., 1995; Schapiro 

et al., 2017) with focal hippocampal lesions leading to severe memory 

impairments (Kolb & Whishaw, 2009).  AD and to lesser extend MCI are 

associated with atrophy in the hippocampus and extending medial temporal 

lobes (see for review Chandra et al., 2019; Du et al., 2004; Pennanen et al., 

2004).  Interestingly, however, focal hippocampal damage does not impair 
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completely the patient’s ability to understand ongoing everyday activities and to 

follow conversations whose contents exceed the typical short-term memory 

capacity for unrelated items of information (Baddeley & Wilson, 2002; Chen et 

al., 2016; Keven et al., 2018; Squire et al., 2004).  This suggests that other 

brain regions might be representing the complex unfolding sequences of actions 

occurring in everyday events. 

Areas overlapping with the default mode network (DMN), may be 

particularly important for the integration of information over minutes necessary 

for everyday comprehension (Hasson et al., 2015).  Evidence for this comes 

from studies that have scrambled the temporal structure of video or auditory 

narratives at different time-scales and showed that the responses in medial 

prefrontal cortex (mPFC), posterior middle cortex (PMC), angular gyrus, inferior 

frontal gyrus and other higher cortical areas are dependent on prior narrative 

information being intact (Hasson et al., 2008; Honey et al., 2012; Lerner et al., 

2011).  Further support that these regions represent ongoing events, comes 

from studies that show shared patterns of activity in these areas in participants 

experiencing or remembering the same events (Chen et al., 2017; Nguyen et 

al., 2019; Raykov et al., 2018; Saalasti et al., 2019; Yeshurun et al., 2017; 

Zadbood et al., 2017).  The PMC has been consistently implicated in the 

perception and retrieval of life-like events (Bird et al., 2015; Oedekoven et al., 

2017; see also Chapter 4).  Baldassano et al., (2017) showed that changes in 

patterns of activity in PMC closely matched transitions between events in an 

ongoing movie as identified by participants.  A recent study showed that 

representations in PMC were shared across healthy participants and a patient 

with extensive hippocampal damage watching the same movie, further 

supporting that PMC might be particularly important for the representation of 

ongoing events (Oedekoven et al., 2019; Zuo et al., 2019). 

    In the current experiment we examined whether processing of life-like 

events would be different in patients with MCI impairment.  Participants were 

presented with short clips in the scanner and were later asked to recall them.  

We relied on inter-subject correlations (ISC) to investigate whether fMRI 

responses in MCI group were less reliable, which might indicate that patients 

were not encoding the stimuli adaptively.  ISC is particularly well suited for the 
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analysis of naturalistic stimuli and has been shown to be a useful method to 

identify group differences in processing of movies (e.g. Geerligs & Campbell, 

2018).  We hypothesised that MCI patients would exhibit lower ISCs in DMN 

regions, since they often have difficulties retrieving narratives and have been 

shown to have deficits in attentional tasks.  Indeed, mild dementia has been 

also linked with problems identifying transitions between events (Zacks et al., 

2006).   

 

 

Figure 6-1. Schema of Study design. Participants watched a video and after 12s were 
cued to silently retrieve the video. The title and a screen shot of the video were used as 
the initial cue. The title of the video remained on the screen throughout the whole recall 
period (20-55s). There were 8 videos in total. After scanning, participants were asked 
to describe all 8 videos and to answer a forced-choice recognition test. 
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6.3 Methods 

6.3.1 Participants 

Ninety-four patients were referred from the Memory Assessment Service 

(MAS) clinics through Sussex Partnership NHS Trust in Sussex, UK.  We relied 

on a prospective design where we included all participants referred to the MAS 

clinic that met our inclusion criteria.  These criteria were: (1) referral from the 

MAS clinic for a structural scan, (2) a score of 82 or above on the 

Addenbrooke’s Cognitive Examination (ACE-R/III) score above 82 (Mioshi et al., 

2006), (3) unimpaired or mildly impaired score on the Bristol Activities of Daily 

Living Scale (BADL; Bucks et al., 1996), (4) willingness and possibility to be 

scanned for 20 minutes whilst performing a video task.  There were 4 patients 

with a diagnosis of AD, 36 patients with diagnosis of MCI, 5 patients with a 

diagnosis of depression, 10 patients with a diagnosis of underlying vascular 

dementia diagnosis and 33 patients who were found to be neurologically 

healthy.  In the current study we focused only on the patients with MCI 

diagnosis and those found to be neurologically healthy.  The neurologically 

healthy participants will be referred to from further on as participants with 

subjective memory impairment, since were not found to have clinically 

significant memory impairments but were referred to the MAS clinic based on 

subjective memory problems.  16 of the MCI (mean age 77 ± 7.3; mean years of 

education 12) patients and 13 of the subjective memory impairment group 

(mean age 71 ± 6.8; mean years of education 12) were excluded from any 

further fMRI analyses due to large motion artefacts.  For included participants, 

we also report scores on the Test of Premorbid function (TOPF), which is used 

as an approximation of premorbid IQ (Wechsler, 2009).  This meant we had 20 

MCI patients (mean age 72 ± 9.11; education: 14 ± 2.5; TOPF: 105 ± 11.76) 

and 20 neurologically healthy participants with subjective memory complaints 

(mean age 62 ± 9.14; education 14 ± 2.86; TOPF: 101.9 ± 11.44).  We recruited 

additionally 20 healthy controls independently of the Memory Assessment 

service, of whom 2 were not included in further MRI analyses due to large 

motion artefacts.  Therefore, we had a third group of 18 control participants 

(mean age 73 ± 7.4; education: 14 ± 2.92; TOPF: 108.5 ± 9.1).  The participants 

with subjective memory impairment were significantly younger than both the 
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MCI and control group (ps < 0.001).  MCI patients had lower ACE scores 

compared to the subjectively impaired patients (Welch’s t30.58 = 2.04; p = 0.006).  

The MCI group was not significantly older than the combined ages of the 

subjectively impaired and control groups (t55 = 1.87, p = 0.066). 

6.3.2 Stimuli 

 Eight short clips taken from www.youtube.com and www.nsi-

canada.ca/film-festival/ were used in the experiment.  Videos lasted on average 

43s (range 40-46s) and were presented without sound.  Clips described short 

narratives involving interaction between two (7 clips) or more characters (1 clip).  

Half of the clips presented situations happening inside a building and in the 

other half the videos took place outside.  Two videos included change in 

location.  The task was programmed in Cogent 2000 toolbox 

(www.vislab.ucl.ac.uk/cogent_2000) using Matlab (Version 2013b, The 

Mathworks, Inc., Natick, MA, USA). 

6.3.3 Procedure 

 Participants took approximately 2 and a half hours to complete the study 

protocol.  Before scanning, participants completed a practice task in which they 

were familiarised with the study protocol.   

 Inside the scanner participants watched and recalled 8 short clips.  Clips 

were presented on a black background with the clip title appearing above the 

clip.  This is referred to as the watching phase from now on.  After each video 

participants saw a countdown of grey numbers lasting 12s, followed by the 

retrieval phase of the preceding clip.  Participants saw a screenshot of the initial 

scene of the preceding video clip for 2s indicating the start of the retrieval 

phase.  Above the screenshot participants saw the instruction “Please 

remember [Title of video]” in white font.  After 2s, the cue disappeared the 

instructions faded to grey font.  The retrieval phase was partially self-paced with 

participants being able to press a button to continue to the next trial after 20s 

had passed.  If participants did not press a button, the retrieval ended 

automatically after 55s.  After each retrieval, participants were presented with a 

white fixation cross for 12s.  Throughout the experiment, participants watched 

http://www.youtube.com/
http://www.nsi-canada.ca/film-festival/
http://www.nsi-canada.ca/film-festival/
http://www.vislab.ucl.ac.uk/cogent_2000
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and then silently retrieved each video before having to remember the next video 

(see Figure 6-1).  

 Outside of the scanner participants sat in a quiet room and recalled aloud 

the 8 videos they saw in the scanner.  Each video was cued with the title and a 

screenshot of the first scene.  Participants were asked to describe what 

happened in the video and were encouraged to elaborate if they provided very 

few details.  Participants’ descriptions were audiotaped.  After attempting to 

recall each video, they also completed a forced-choice recognition memory test 

during which they had to choose which of two screenshots came from a video 

that they watched.  The lure screenshots were taken from the same videos but 

featured scenes that were not shown to participants.  There were three trials for 

each video and the maximum score for the recognition test was 24. 

6.3.4 Memory Scoring 

 Audio descriptions of the movie were transcribed verbatim and were 

scored for the amount of independent details.  Scores for each video were 

averaged which resulted in a single number for each participant representing 

memory performance.  Participants received a score of 0, 0.5 or 1 for each 

detail.  The 0 score indicated the detail was not recalled at all, 0.5 indicated a 

partially correct recall (e.g. “someone”, “picks up something”) and 1 indicated 

the detail was fully correct (e.g. “a man”, “picks up bricks”).  Details visible in the 

screenshot were not included in the scoring procedure.  There was no 

maximum amount of details to be recalled per video.  Our procedure closely 

mimicked the widely used scoring of prose recall tests (e.g. Rivermead 

Behavioural Memory Test (Wilson et al., 1999)).  All video descriptions were 

scored by an experienced researcher, Christiane Oedekoven.  

6.3.5 MRI acquisition 

 All images were acquired on a 1.5 T Siemens Avanto Scanner using a 

32-channel head coil.  BOLD sensitive T2* weighted images were acquired with 

a gradient-echo EPI sequence with the following parameters (TR = 2.62; TE = 

42ms; voxel size = 3 x 3 x 3.6 mm, FOV = 192 mm, 35 ascending 3mm thick 

slices with a 0.6 mm gap).  For the patient sample anatomical images were 

acquired during their clinical MRI scan.  Due to clinical protocols, 70 patients 
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were scanned with a 3D-T1 weighted MP-RAGE sequence (TR = 2.4s, 

TE=3.5ms, voxel size = 1.3 x 1.3 x 1.2 mm, FOV = 240mm).  22 patients were 

scanned with a different T1-weighed MP-RAGE sequence (TR = 1.16s, TE = 

4.24ms, voxel size = 0.9 x 0.9 x 0.9 mm, FOV = 230mm).   

6.3.6 Image pre-processing 

 All EPI images were pre-processed using SPM 12 (Wellcome 

Department of Imaging Neuroscience, London, UK).  Functional images were 

motion corrected to the mean functional image for the run.  The anatomical 

image of each subject was co-registered to the mean realigned functional image 

and was segmented into grey, white and CSF maps.  The resulting white and 

CSF tissue probability maps were thresholded at 0.99 and the average signal 

from the resulting masks plus the six motion parameters were regressed out 

from the functional images to reduce the effect of motion and temporal drift.  

Functional images were normalised to MNI space and were smoothed with an 

8mm FWHM kernel. 

6.3.7 Data analysis 

 Data were analysed with SPM 12, the CoSMoMVPA toolbox (Oosterhof 

et al., 2016) and custom MATLAB scripts (Nastase et al., 2019).  Libraries in 

Python were used for visualization of behavioural and supplementary results.  

Group cluster corrected significance was performed with command-line 

functions in FSL (Nichols & Holmes, 2002; Winkler et al., 2014).  All images 

were normalised into MNI space and smoothed with 8mm FWHM kernel before 

further analyses.  Segmentation of the high-resolution structural image provided 

us with grey, white and CSF tissue probability maps.  The average signal in 

white and grey matter was extracted and was regressed out with the 6 motion 

parameters from the fMRI images before computing the inter-subject 

correlations.  A threshold of 0.99 was used for the white and CSF maps to 

ensure signal from only non-grey matter voxels was included.  The grey matter 

masks for all subjects were averaged and smoothed with 8mm to create a 

group level grey matter mask.  Voxels with average probability higher than 0.3 

of being grey matter were included into the further analysis (Nastase et al., 

2019).  We used the Bspmview toolbox (www.bobspunt.com/bspmview) to 

http://www.bobspunt.com/bspmview
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visualise our data.  Anatomical Automatic Labelling 2 toolbox for SPM 12 was 

used for the description of results.  Unless otherwise stated all images were 

whole brain cluster corrected at FWE p < 0.05 at voxel threshold of p < 0.001. 

6.3.8 Inter-subject correlation (ISC) analysis 

 The ISC analysis allowed us to examine the dynamic processing of the 

videos by the three groups.  Specifically, it allowed us to test whether the MCI 

group exhibited less coherent signal (lower ISCs) when compared to 

participants not diagnosed with MCI.  ISC measures whether there is shared 

temporal signal between participants.  The ISCs is sensitive to the stimuli-

locked signal (shared across participants) and lower ISCs might suggest less 

reliable processing in participants (Nastase et al., 2019).  Previous research has 

shown that worse comprehension of a complex event is associated with lower 

synchronization across participants in DMN regions (Ames et al., 2015; Lerner 

et al., 2011; see for review Nastase et al., 2019).  Similarly, here we 

hypothesised that we might observe lower synchronization within the MCI group 

because they might be experiencing difficulties attending and comprehending 

the video stimuli. 

To compute the ISCs, we initially extracted the time-course from each 

individual video, removed the first 2 TRs (5.24 sec), and z-scored each video 

time-course to account for transient onset effects (Nastase et al., 2019).  All z-

scored video time-courses were concatenated, resulting in a single time-course 

per participant per voxel containing the signal from all videos.  The ISCs were 

computed voxel-wise.  We examined whether ISCs within each group differed 

based on diagnosis.  Specifically, we compared whether individuals with MCI 

were less similar to each other than individuals that were with subjective 

memory problems or a control group.  To do this for each subject we computed 

his correlation with the average of the other subjects that shared the same 

diagnosis with him/her.  This was repeated for each subject resulting in a single 

ISC map for each subject.  For instance, if subjects from 1-20 are all diagnosed 

with MCI and subjects 40-58 are all controls, the ISC map for subject 1 is 

represents its correlation with the average of the 2-20 subjects, who also have 

been diagnosed with MCI.  On the other hand, the ISC map for subject 40 was 
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computed by correlating the time-course of subject 40 with the average time-

course of subjects 41-58.  Fisher’s transformation was applied to each subject’s 

ISC map before examining group level results. 

 It is important to note that the resulting 58 ISCs maps were not 

necessarily independent.  This is because there is some shared information 

between maps that is inherent in the computation.  To illustrate this if we have 

20 subjects in a group, the ISC for subject 1 would be the correlation between 

subject 1 and the average time-course of subjects 2, 3-20.  The correlation 

between subject 2 and the average 1, 3-20 would be the resulting ISC for 

subject 2.  The data from subjects 3-20 is shared across the ISCs maps 

between subject 1 and 2 showing that their values are not independent.  There 

are n-2 shared elements between any pair of subjects from a group of size n.  

Because of this we relied on non-parametric tests to compute the cluster-

corrected significance.  We performed a group-wise permutation, where the 

group labels (diagnosis) for subjects were randomly permuted at each iteration.  

5000 permutations were run (per analysis) to obtain the permuted null 

distribution.  The observed data was compared to the null distribution to obtain 

p-values.  Images were cluster corrected at FWE at p < 0.05 and voxel height-

defining threshold of p < 0.001.  See 6.6 Supplementary materials at end of this 

chapter for ISCs within each diagnosis group. 
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6.4 Results 

6.4.1 Behavioural results 

 A between groups Welch ANOVA (F2,35.62 = 10; p < 0.001) followed by 

Games-Howell post-hoc tests showed that participants diagnosed with MCI 

showed lower average memory (8.53 ± 4.85) for the videos when compared to 

the controls (14.26 ± 2.83; t = 4.5; p < 0.001) and participants with subjective 

memory complaints, but no diagnosis of MCI (13.13 ± 4.32; t = 3.2; p = 0.008).  

There was no significant difference between the controls and subjects with 

subjective memory problems (t = -0.96; p = 0.603)(see Figure 6-2). 

 

 
Figure 6-2 Memory Performance. The plot shows the average video memory 
performance for each for the three groups. There were 20 MCI, 18 Controls and 20 
participants with subjective memory impairments. Means and confidence intervals are 
shown.  The horizontal lines and star indicate a significant difference between groups 
at p < 0.01. 
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6.4.2 fMRI results 

6.4.3 ISCs 

Initially we contrasted the healthy control group to the MCI patient group.  

We observed lower ISCs in the MCI group in a set of areas including the right 

inferior frontal gyrus (IFG), right temporal pole (ATL), posterior medial cortex 

(PMC), precentral gyrus and superior frontal gyrus (SFG) (see Figure 6-3). 

 

 

We also observed less synchronized signal in the MCI group when 

compared to the subjective impairment group (see Figure 6-4).  The MCI group 

exhibited lower ISC values in parts of the posterior medial cortex (PMC), 

ventromedial prefrontal cortex (vmPFC), SFG, right IFG, left middle frontal 

gyrus, and in the cuneus cortex.  

When comparing the healthy control group versus the subjective memory 

impairment group, we observed higher synchronization in superior frontal gyrus 

for the healthy control group (see Figure 6-5).  This result was surprising since 

both the healthy control group and the subjective memory impairment group 

Figure 6-3 Controls vs MCI group. Map shows areas where the healthy controls 
showed significantly higher ISC values when compared to the MCI group. This 
indicates lower coherence across participants in the MCI group. Map is thresholded at 
p <0.001 with FWE cluster size correction through permutation testing. 
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performed better on the video memory test when compared to the MCI group.  

Video memory accuracy however did not differ between the healthy control 

group and the subjective impairment group.  Although the subjective memory 

group showed more variance on the video memory test compared to the control 

group, this effect did not reach significance (Levene’s test F1 = 2.74; p = 0.1).  

Given previous literature (Geerligs & Campbell, 2018) we might have expected 

that the subjective memory impairment group would show higher ISC values 

simply because they were younger.  Since our main interest was effects in 

contrasts including the MCI group and the surprising nature of this finding, we 

do not discuss it further.  

Provided there were not large differences in both behavioural and fMRI 

results across the subjective memory group and the healthy control group, we 

performed a contrast between both these groups and the MCI group.  This was 

done to increase our statistical power to detect lower synchronization within the 

MCI group.  Therefore, we compared the average ISC values across both the 

subjective impairment group and the control groups to the MCI group (see 

Figure 6-6).  The group comparison of ISCs showed that participants that did 

not have a diagnosis of MCI were more similar to each other when compared to 

the group with MCI in a range of regions.   We observed more idiosyncratic 

signal in the MCI group in ventral medial prefrontal cortex (vmPFC), precuneus, 

right inferior frontal gyrus (IFG), right anterior temporal pole (ATL), postcentral 

gyrus, superior frontal gyrus (SFG). 
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Figure 6-4 Subjective impairment group vs MCI group. Map shows areas where the 
subjective impairment group showed significantly higher ISC values when compared 
to the MCI group. Map is thresholded at p <0.001 with FWE cluster size correction 
through permutation testing. 
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Figure 6-5 Controls vs Subjective impairment group. Map shows areas where healthy 
controls showed significantly higher ISC values when compared to the subjectively 
impaired group. Map is thresholded at p <0.001 with FWE cluster size correction 
through permutation testing. 

 

Figure 6-6 No MCI groups vs MCI group. Map shows areas where groups without MCI 
showed significantly higher ISC values when compared to the MCI group. Map is 
thresholded at p <0.001 with FWE cluster size correction through permutation testing. 
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6.5 Discussion 

 In the present study we examined whether MCI patients show less 

reliable processing of naturalistic stimuli.  We had three groups of participants.  

One group was healthy controls, another group were participants with 

subjective memory impairment and another group were diagnosed with MCI.  

We presented participants with short video clips and used ISCs to examine 

similarity between participants with the same diagnosis.  We observed that MCI 

patients showed less consistent processing in posterior medial cortex (PMC), 

vmPFC, SFG, right IFG and ATL, when compared to controls and participants 

with subjective memory impairment.  MCI patients also remembered fewer 

details from the clips, suggesting that the observed lower consistency within the 

MCI group is indicative of maladaptive encoding.  Our results extend previous 

behavioural experiments showing difficulties in processing naturalistic stimuli in 

individuals with MCI.  

 Here we observed that MCI patients showed reduced memory 

performance for the video clips and exhibited lower temporal similarity whilst 

encoding them.  These results suggest that the MCI patients did not encode the 

clips adaptively.  As outlined earlier, ISC is an analysis technique that is 

sensitive to stimulus-locked shared signal across participants.  For instance, if a 

stimulus drives BOLD responses similarly across participants one would 

observe high ISC values.  On the other hand, if the response in a brain area 

during the same stimuli is idiosyncratic across participants one will observe 

lower ISCs.  Therefore, the reduced ISCs for MCI patients suggests that they 

processed the clips less consistently when compared to healthy older adults, 

and individuals with subjective memory impairments.  Differences in MCI 

patients were observed in frontal and parietal regions that have previously been 

shown to be important in representing and encoding complex events 

(Baldassano et al., 2017; Bird et al., 2015; Chen et al., 2017; Honey, Thesen, et 

al., 2012; Oedekoven et al., 2019, 2017; Zadbood et al., 2017; Zuo et al., 2019).  

Our results provide further support in the role DMN regions play in the adaptive 

encoding of everyday activities.  Below we discuss some of the potential 

explanations of our results. 
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Previous behavioural research has shown the MCI patients have 

problems processing naturalistic stimuli.  Johnson et al., (2003) showed that 

patients with mild dementia had less detailed memories for narrative texts.  

Furthermore, Zacks et al., (2006) showed that participants with mild dementia 

have problems identifying transitions between events.  Participants were shown 

videos of everyday actions and asked to press a button when they identified a 

meaningful boundary between events.  For instance, when watching someone 

changing old bed sheets most participants would identify the removal of old 

sheets as separate from fitting in the new sheets.  Mildly demented individuals 

differed from healthy older adults in how consistently they identified the 

boundaries and also showed much lower memory for the actual videos and 

order of presented events.  The observed idiosyncrasy in segmentation of 

events was partly related to semantic knowledge of typical events.   

It is possible that in the current study the observed synchrony across 

participants without MCI in DMN regions was partly driven by the reliable 

identification of boundaries between events (Baldassano et al., 2017; Zacks et 

al., 2001).  Therefore, one speculation is that the less consistent BOLD activity 

we observed in the MCI group was because they did not appropriately identify 

event transitions.  However, we did not collect any behavioural data on how 

participants segmented the stimuli. 

One potential explanation for our results of increased idiosyncratic 

processing in MCI patients is that they had problems adaptively activating 

schema knowledge whilst they were encoding the clips.  This is in-line with the 

observed lower ISCs in vmPFC.  MPFC and particularly vmPFC have been 

consistently associated with representations of complex events and schematic 

processing (Ghosh & Gilboa, 2014; Gilboa & Marlatte, 2017).  In a recent study 

Baldassano et al. (2018) presented young adults with clips taken from different 

shows and movies broadly falling into one of two schemas (airports or 

restaurant clips).  They found that spatial patterns of activity were more similar 

across clips taken from the same schema, providing strong evidence that 

medial prefrontal regions are involved in processing generic schematic 

information about complex events (see also Chapter 3 and Chapter 4).  Schema 

knowledge about events can help participants structure, segment and predict 
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incoming information more efficiently (Rumelhart, 1977; Schank & Abelson, 

1977; Zacks et al., 2007, Zacks et al., 2006).  One potential explanation for the 

reduced synchronization in vmPFC for MCI patients is that if they did not rely as 

much on prior script knowledge this could have affected how they segmented 

and comprehended the clips, leading to more idiosyncratic processing.  MCI 

patients often have problems with everyday tasks and a recent study did find 

that mild impairment was associated with deficits in knowledge of everyday 

tasks (Jekel et al., 2015; Jorm & Jacomb, 1989; Roll et al., 2019; Royall et al., 

2007; West et al., 1992). 

 It is important to note that one potential contributor to the worse 

performance exhibited by MCI patients is deficits in attentional control.  

Understanding everyday events involves interpreting them with reference to 

prior knowledge of similar events, but also maintaining information of the 

actions and narrative as it unfolds over time.  Attentional deficits are quite 

common in MCI patients and indeed can be predictive of later development of 

AD.  Using a range of neuropsychological tasks, Saunders et al., (2010) found 

deficits in simple, divided and sustained attention in patients with MCI 

impairment.  Not paying attention to the same elements of the clips would 

decrease synchronization across participants and will lead to worse memory for 

the clips.  ISCs have been shown to be affected by differences in attention, prior 

knowledge and interpretation of complex narratives, suggesting that problems 

with schematic processing and attentional deficits are not mutually exclusive 

explanations (Ames et al., 2015; Ki et al., 2016; Nguyen et al., 2019; Raykov et 

al., 2018; Regev et al., 2018; Yeshurun et al., 2017).  Indeed, multiple cognitive 

processes contribute to narrative comprehension and it has been suggested 

that that the lines between different stages of memory (e.g. encoding/retrieval) 

are blurred in event cognition (see Ben-Yakov & Henson, 2018; Graesser et al., 

1997; Hasson et al., 2015; Xue, 2018; Zacks & Ferstl 2016; Zacks et al., 2007, 

Zacks et al., 2006). 

MCI patients exhibited differential processing in PMC, SFG and ATL.  

These results suggest that these regions are important for adaptive encoding of 

complex events.  Recent studies in young adults have started to shed light on 

the brain areas that support processing of complex events. MPFC, PMC, and 
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other areas often associated with the default mode network (DMN) have been 

shown to be associated with integration of information over long time-scales.  

For instance, scrambling narratives at the paragraph level mostly disrupted 

processing in PMC, mPFC and AG (Honey, Thesen, et al., 2012; Lerner et al., 

2011).  Furthermore, Baldassano et al., (2017) showed that transitions across 

movie events were closely matched by changes in PMC patterns.  Interestingly, 

patterns of PMC activity have been shown to be similar between encoding and 

retrieving the same events (Bird et al., 2015; Chen et al., 2017; Oedekoven et 

al., 2017; see also Chapter 4).  Furthermore, reinstatement effects in PMC and 

ATL positively correlated with behavioural memory performance.  Recently it 

has been argued that DMN regions and particularly PMC are involved in 

representing event models.  These models are abstracted from modality and 

represent the what, where, who of complex events.  Further evidence for this 

viewpoint comes from studies that have shown that spatial patterns of fMRI 

activity are similar across participants experiencing the same events regardless 

of modality (Chen et al., 2017; Honey, Thompson, et al., 2012; Regev et al., 

2013; Zadbood et al., 2017).  It is possible that the MCI patients held less 

detailed representations of the events, which is supported by the lower ISCs 

and poorer memory for the clips. 

 A possible limitation to the current study was that the participants with 

subjective memory problems were significantly younger than the MCI group.  

Age has been associated with deficits in cognitive control.  Recently, older age 

was also associated with decreased ISCs whilst watching the movie (Geerligs & 

Campbell, 2018).  We did not observe lower ISC in the control group when 

compared to the subjective memory impairment group, despite the age 

differences.  Furthermore, we observed differences between the control group 

and the MCI group, who were both the same age.  An important consideration 

with ISC analysis is whether the differences are due to group differences in 

noise level.  To control for this we regressed out the 6 motion parameters and 

average WM and CSF signal before computing the ISCs.  Our results are 

similar to previous research that has shown differentiation within the DMN 

network in MCI and early ADs when compared to healthy older adults (for 

review Chandra et al., 2019).  For instance, Machulda et al. (2009) observed 
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hypoactivation in a set of frontal and parietal regions including precuneus and 

posterior medial cortex in MCI patients during encoding of complex visual 

scenes (see also Hampstead et al., 2011; Hampstead et al., 2019).  Future 

studies with naturalistic stimuli directly controlling prior knowledge will be helpful 

to better differentiate the contributions of script knowledge and general 

attentional mechanisms in event cognition in MCI.   

 In conclusion our results showed that MCI patients had lower memory for 

the videos and showed idiosyncratic activity in PMC, vmPFC, ATL and SFG, 

which was suggesting of maladaptive encoding.  Our results are in line with 

previous behavioural findings and further suggest that these regions are 

particularly important for representations of complex events.  We note that 

future work will be needed to better understand the impact attentional control 

plays on the comprehension of everyday narratives.   
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6.6 Supplementary Materials 

 
Supplementary Figure 6-1 ISC map for MCI group. Map shows brain areas showing 
significant synchronization across people diagnosed with MCI. Map shows voxels that 
were significant at the voxel level after applying FDR correction at p < 0.05. Colours 
represent to correlation values. 

 

 
Supplementary Figure 6-2 ISC map for Subjectively impaired group. Map shows brain 
areas showing significant synchronization across people who attended the memory 
clinic but were diagnosed to be neurologically healthy. Map shows voxels that were 
significant at the voxel level after applying FDR correction at p < 0.05. Colours 
represent to correlation values. 
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Supplementary Figure 6-3 ISC map for Controls. Map shows brain areas showing 
significant synchronization across healthy older adults. Map shows voxels that were 
significant at the voxel level after applying FDR correction at p < 0.05. Colours 
represent to correlation values. 
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Chapter 7: General Discussion 
 

 The present research examined the effects of different types of prior 

knowledge on event cognition.  Functional magnetic resonance (fMRI) data was 

collected to investigate how the brain utilises prior knowledge to affect 

processing of new information.  One of the aims of the current thesis was to 

examine whether there are specialised brain areas that are involved in 

processing all types of prior knowledge.  Most previous research using 

naturalistic stimuli has focused on prior knowledge that is learned in a single 

episode and relates to a single situation.  Furthermore, in previous studies the 

provision of prior knowledge was often associated with completely different 

levels of comprehension.  In Chapter 2 I examined the effects of a more subtle 

manipulation of situation specific prior knowledge.  This experiment allowed me 

to investigate how we integrate incoming sensory information with prior 

knowledge of a narrative topic.  In a separate experiment I focused on 

schematic prior knowledge, which was learned over multiple episodes and was 

relevant for several events.  This experiment allowed me to examine how 

schematic knowledge about people can affect processing of both picture and 

video stimuli.  In Chapter 5 I examined which brain areas might be particularly 

important for representing amodal knowledge about person stereotypes.  

Chapter 6 examines event cognition in individuals with mild cognitive 

impairment (MCI).  In the current chapter I provide a brief summary and 

discussion of the main results. I also note some methodological limitations and 

discuss directions for future research.      

 Chapter 2 focused on the effects of providing narrative context on 

processing continuation videos.  Participants watched first half videos with 

either coherent or incoherent audio.  Therefore, when watching the second half 

videos, they either had or did not have knowledge of the previous narrative.  

This type of situation specific prior knowledge was associated with better 

memory for the second half clips and resulted in more similar brain activity 

across participants sharing the same knowledge.  Specifically, regions often 

associated with semantic processing and discourse comprehension seemed to 
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be affected by the provision of narrative context.  The paradigm was particularly 

helpful in allowing me to investigate how we integrate narrative information in 

order to construct a more detailed event model of the situation.  Unlike previous 

studies of prior knowledge that prevented individuals from constructing an event 

model at all, in the current study participants were provided with some general 

information about the situation even in the condition where they did not know 

the topic of conversation.  As such my manipulation probably affected how 

participants interpreted the situation and how detailed was their mental 

representation of the event.  I believe this is particularly helpful as similar 

paradigms can be useful to understanding how we represent different 

dimensions of the event models (e.g. location, narrative context, people). 

There have been already quite a few studies showing that a large set of 

regions (particularly in the DMN) are involved in representing different situations 

or vastly different interpretations of the same story.  However, it is still unclear 

what information is represented by the different brain areas.  For instance, 

some of the differences could be attributed to more general or schematic 

differences in the situations (e.g. train ride vs a bank robbery).  My results 

suggested that semantic regions may be particularly important for integrating 

prior narrative information with incoming sensory stimuli in order to build a more 

coherent event model. 

 Chapters 3 and 4 aimed to investigate effects of prior schematic 

knowledge about people.  Particularly, participants watched a set of episodes 

from a TV show over the course of a week and learned how the main 

characters typically act, where they live, and what is their relationship.  Inside 

the scanner, participants were presented with still pictures and short clips taken 

from the trained and an untrained show.  The results from the picture and video 

task are presented in separate chapters (3 and 4 respectively). 

In the picture task, the contrast of trained versus untrained stimuli was 

associated with higher BOLD activation in ventromedial prefrontal cortex 

(vmPFC), hippocampus and retrosplenial cortex (RSC).  These results go 

against some of the predictions made by the SLIMM model (van Kesteren et al., 

2012). According to van Kesteren and colleagues (2012) the hippocampus, 
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should be more involved in the processing of stimuli that are incongruent with 

prior knowledge.  Based on this, we might have expected that the hippocampus 

would be more activated when processing the untrained stimuli when compared 

to the trained stimuli.  Our results did not support this prediction or the SLIMM 

proposal that the vmPFC and hippocampus have competing roles during 

processing of information related to prior knowledge.  Indeed, our results 

suggest that both vmPFC and hippocampus are similarly involved in encoding 

of new information related to prior knowledge.   

It should be noted that the untrained stimuli are not necessarily 

incongruent with prior knowledge, but potentially fall under the category of new 

information unrelated to prior knowledge.  Nonetheless, the SLIMM model still 

would not predict higher hippocampal involvement for the trained stimuli.  A very 

important consideration for the SLIMM is that it is often difficult to quantify a 

stimulus’ congruency with prior knowledge and indeed this is potentially task 

dependent.  More research will be needed to better understand the interactions 

between vmPFC and hippocampus and the factors that influence whether they 

exhibit complementary or competing roles (Preston & Eichenbaum, 2013; van 

Kesteren et al., 2012).  

Interestingly, in the video task I did not observe any brain areas that 

showed significant differences between processing the whole duration of the 

trained and untrained videos.  At the face of it, these results demonstrate that 

responses to simple stimuli may not necessarily generalize to more naturalistic 

stimuli.  The use of naturalistic stimuli was useful as it implied that it is important 

to consider when and for how long a particular cognitive process is engaged.  

For instance, when examining the BOLD response to the onset of the videos I 

observed higher BOLD activity for the trained versus untrained clips in vmPFC, 

hippocampus and RSC (see Chapter 4 Supplementary Materials).  I note that 

given the exploratory nature of the analysis future work needs to be done to 

better understand such effects.  Nonetheless, the point that naturalistic stimuli 

may be particularly useful for elucidating at which stage of an event a cognitive 

process is engaged still holds.  This is because by design naturalistic stimuli 

contain information that unfolds over time.   
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 In both Chapters 3 and 4, I find some evidence that prefrontal regions, 

particularly vmPFC and mPFC are involved in representing schema information.  

The use of still pictures, in Chapter 3, was helpful as I could more easily relate 

the result to previous work done on the topic.  Indeed, we were able to examine 

how univariate brain activity is modulated by the presence of schematic 

knowledge.  Furthermore, I used an analysis technique recently developed to 

compare between BOLD signals in different brain areas.  This was particularly 

helpful as some theories have proposed that vmPFC and hippocampus have 

competing roles.  However, direct comparison across regions has rarely been 

done in the neuroimaging literature.  My results neatly demonstrate that 

observing a significant effect in one region, but not in another at pre-set 

threshold does not necessarily mean there is significant difference in the 

activations across the regions. 

 In Chapter 4 I find higher pattern similarity between trained clips when 

compared to untrained clips in mPFC, angular gyrus (AG) and superior frontal 

gyrus (SFG).  My results further extend previous work by showing that mPFC, 

AG and SFG are supporting person specific schematic knowledge during event 

perception.   

Based on previous literature and the results in my experiments, in 

particular Chapters 2 and 4, it is possible to speculate that the posterior medial 

cortex (PMC) is particularly important for representing the very slowing 

changing characteristics of the situation, such as the location and gist.  For 

instance,  Ames et al. (2015) presented participants with vignettes that were 

difficult to interpret without the provision of prior context.  They found increased 

synchronization of BOLD activity in vmPFC and PMC across participants 

sharing the same knowledge.  In separate studies similar patterns of activity in 

PMC have been shown across participants watching, remembering or listening 

to the same events being described (Bird et al., 2015; Chen et al., 2017; 

Oedekoven et al., 2017; Zadbood et al., 2017).  Having a completely different 

interpretation of the narrative has also been shown to be associated with 

differences in BOLD activity in PMC and vmPFC (Yeshurun et al., 2017).  

Previous manipulations have often either prevented participants from 

constructing an event model at all or made them construct vastly different event 
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models and commonly observed differences in PMC and vmPFC (Ames et al., 

2015; Nguyen et al., 2019; Saalasti et al., 2019; Yeshurun et al., 2017).  The 

manipulation in Chapter 2 was more subtle as in it provided better context for 

the situation, but possibly did not change completely the interpretation of the 

events.  Indeed, it is quite likely that participants understood the gist of the 

situations even in the second half clips.  This might explain why I did not 

observe any modulation of the PMC with the provision of prior narrative 

knowledge in Chapter 2.  PMC has been associated with theory of mind 

functions and story comprehension (Mar, 2011).  Therefore, one speculation is 

that the PMC might be particularly important for representing the gist of the 

event.  This is consistent with previous suggestions made by Ranganath and 

Ritchey (2012). 

However, I note that this is at the moment a mere speculation and not all 

data is in agreement with it.  First, this interpretation is partly based on null 

results (in Chapter 2), which could be potentially due to various other reasons 

(e.g. lack of power).  Second, I found evidence of higher reinstatement effects in 

PMC being correlated with memory accuracy (see Chapter 4).  This suggests 

PMC does represent not only the gist of the event but also some more detailed 

information about the events.  This is further supported from the results in 

Chapter 6 where I did observe less reliable processing of complex events in 

PMC in patients with mild cognitive impairment.  Although it is possible that they 

had problems understanding the gist and activating the relevant prior 

knowledge, it is also possible that the observed memory deficits were more 

related to lack of more detailed encoding.  Future studies will be needed to 

better understand to what extend PMC represent only the gist of the event. 

 Chapter 5 examined stereotypical knowledge about professions.  This 

study was partly ran as a pilot to examine whether, I could observe amodal 

representations of stereotypes and whether they would be present in regions 

often associated with representing schematic knowledge.  Stereotypes can act 

to help us interpret our social environment and provide structure to the incoming 

information.  As such they might resemble schematic information since both can 

help us compress the dimensions of the incoming information.  Furthermore, 

whereas the knowledge participants learned in Chapter 3 and 4 was schematic 
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but still specific to an individual, the stereotype task in Chapter 5 was designed 

to activate general social knowledge not related to any one individual.  I did not 

find any cross-modal classification effects, which most likely speaks to an 

underpowered design.  However, it is also possible that the picture task was not 

best suited to activate social stereotypes.  This study was mostly informative to 

show me that it is often not as straightforward to observe multivariate 

classification effects in fMRI analyses. 

 In chapter 6 I applied ISC analysis to examine data collected by other 

researchers.  I examined processing of naturalistic stimuli in healthy older adults 

or individuals with mild cognitive impairment (MCI), I was particularly interested 

in the MCI group, since they often suffer from memory problems, but also might 

experience difficulties with everyday activities, sustaining attention and orienting 

themselves.  This suggested that they might have difficulties encoding the video 

clips, which was supported by the both behavioural and neuroimaging data.  It 

should be noted that it is possible that MCI patients’ problems processing the 

clips might not only be due to problems with attention but might be due to 

issues with appropriately activating prior knowledge.  Indeed, some evidence 

suggests that MCI patients do have deficits on tasks examining knowledge of 

everyday task structure.  However, it is difficult to distinguish between these two 

accounts without including further tests.  This is partly due to the fact that 

previous research suggests that how attentional resources are allocated partly 

depends on participant’s prior knowledge of the task being performed (Kim & 

Rehder, 2011; Kosie & Baldwin, 2019). One possible way of distinguishing 

between these two accounts in the future would be to include explicit tests of 

attention and prior knowledge and examine how performance on these tests 

correlates with performance on more naturalistic tasks.  Techniques with better 

temporal resolution might further add to our understanding on how prior 

knowledge and attention interact.  It is possible that these cognitive processes 

could be separated at smaller temporal scales than measured with fMRI.  For 

instance, it is possible that prior knowledge aids participants to adequately 

allocate attention in certain points in the narrative by providing a scaffold of 

when change in important information might occur.  However, more research 

would be necessary to understand how these processes operate. 
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An important limitation for the results from Chapter 6 is that not all groups 

were matched on age.  This was partly due to the prospective design, where 

participants were recruited before knowing their diagnosis.  The subjective 

memory group was younger than both the MCI and control group.  Age has 

been previously associated with decrease in synchronization across participants 

(Geerligs & Campbell, 2018).  However, I did not observe decreased 

synchronization in the control group, which was on average older, when 

compared to the subjective memory impairment group.  I included the 

subjectively impaired group as well since it was better matched to the MCI 

group in other aspects.  For instance, anxiety and other personality factors 

might have been more similar between the subjectively impaired and the MCI 

groups who were both referred from a memory assessment clinic due to 

subjective complaints.  Another important consideration during the interpretation 

of the results of this chapter is that MCI is often associated with grey matter 

deterioration.  Therefore, it would be important to also examine brain structural 

differences between the groups to better understand whether effects here are 

partly due to reduction in grey matter in the MCI group. 

 Naturalistic stimuli can be very useful for examining cognition.  Indeed, it 

is important to demonstrate whether results using simpler stimuli generalise to 

more ecologically valid experiments.  Naturalistic designs can be particularly 

helpful to understand when a particular cognitive process is engaged.  They can 

help us understand whether we maintain a schema for a restaurant for the 

whole duration of a dinner event, or we simply activate it at the beginning.  

Additionally, they can help us distinguish which features (location, people, 

narrative) are most important for memory.  However, it should be noted that this 

inherent complexity of the stimuli comes at a cost.  Such designs often require 

more difficult analysis techniques and it can be more difficult to achieve the 

same level of experimental control as achieved by more traditional experimental 

designs.  This can sometimes make interpretation of results more difficult.  

Nonetheless, the inherent complexity of naturalistic stimuli can be particularly 

fruitful for our understanding of cognition.  That is not to say that more 

traditional experimental studies are superseded, but simply that naturalistic 
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studies can help us address a different set of questions that might be difficult to 

investigate with more traditional experiments.  

 One potential consideration in the work presented in Chapter 2 and 4 is 

that my prior knowledge manipulations, not only boosted memory performance, 

but also increased subjective ratings of engagement with the stimuli.  In real 

world situations it might be common for prior knowledge to also boost one’s 

engagement with video stimuli.  Future work will be useful to better distinguish 

evaluation processes from prior knowledge effects (Liu et al., 2016).  

Furthermore, it is often difficult to distinguish prior knowledge effects from 

successful memory recollection effects.  It often is the case that similar brain 

regions are involved in episodic memory and prior knowledge effects and it is 

possible that recollection does play an important role in prior knowledge effects.  

The tasks I used often did not explicitly require recollection.  However, it is still 

possible that recollection did affect the results.   

 Nonetheless, there are several reasons I think that an episodic memory 

account is not complete.  The IFG and AG regions observed in Chapter 2, and 

AG region observed in Chapter 4 have been strongly associated with semantic 

memory and indeed damage to these regions lead to deficits in semantic 

processing (DeLeon et al., 2007; Robson et al., 2017; Schwartz et al., 2011).  

MPFC has often been associated with schema processing and has been 

suggested to represent abstract level schematic information (Gilboa & 

Moscovitch, 2017; Robin & Moscovitch, 2017).  Furthermore, recent views have 

started to suggest that some of the previously observed episodic memory 

effects in regions overlapping in with the DMN might be actually representing 

semantic concept knowledge rather than retrieval itself (Renoult et al., 2019).  

The spatial pattern similarity effects we observed in Chapter 4 are very similar 

to tasks that exhibited no demands on episodic recollection (Baldassano et al., 

2018).  The design and analysis in Chapter 4 suggest that in order to observe 

such effects each training video should have acted as a memory cue to the 

same episodic information.  However, it is the case that often it is very difficult to 

exhibit direct control over participants cognitive process, so I cannot completely 

discount effects of episodic recollection.  Further studies will be needed to 
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better understand how retrieval and prior knowledge effects interact and how 

they can be distinguished. 

 I note that an important limitation in the use of naturalistic stimuli inside a 

scanner is the factor of time consideration.  For practical reasons, it is often 

difficult to scan participants for extended periods of time.  This limits the number 

of stimuli that can be used in an experiment.  In my experiments I have tried to 

use different video clips in order to achieve some generalization across clips.  In 

Chapter 4 I examined how participants processed clips that were taken from 

either a familiar or an unfamiliar TV show.  However, due to time constraints I 

could not investigate how more gradual differences in schema knowledge will 

affect processing.  Particularly interesting would have been to be able to include 

clips that contained information that is directly incongruent with participants 

schema knowledge (see Greve et al., 2019; van Kesteren et al., 2012). 

 Another limitation that should be mentioned, is not specific to naturalistic 

fMRI designs, but is important to reiterate.  The BOLD signal is not a direct 

measure of neuronal activity.  Indeed, research is still unveiling what exactly is 

the relationship between the measured BOLD signal and neuronal activity in 

different brain areas (Hall et al., 2016).  A further consideration is the low 

temporal resolution allowed by the BOLD signal, which can complicate some of 

the inferences about cognitive processes (Ghuman & Martin, 2019).  No 

technique is perfect, and converging evidence from multiple methods is often 

needed to make very strong claims about cognitive processing in the brain.  

Electroencephalography (EEG) and electrocorticography (ECoG) are two 

methods that might be particularly useful for examining the timing of schematic 

processes.  Furthermore, such methods might be useful to investigate the 

dynamic connectivity between brain regions during naturalistic processing. 

 In the current thesis I have examined the effects of situation specific and 

schematic prior knowledge.  Both types of prior knowledge were associated with 

memory benefits.  Different brain areas were observed across experiments 

further supporting the importance of better dissociating between these different 

types of prior knowledge.  The current paradigms could be adapted to further 

examine how the content of the prior knowledge can affect neural 
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representations.  The use of naturalistic stimuli allowed me to examine how we 

integrate the incoming information with our prior knowledge to build coherent 

event models.  Open questions are to what extent are the effects currently 

observed due to representations of semantic information rather than because of 

the cognitive and evaluative processes that are associated with prior 

knowledge.  For instance, it is possible that stimuli that are related to prior 

knowledge are associated with more evaluative processes or trigger episodic 

recall.  Furthermore, it should be noted that more research needs to be done to 

understand how we update our event models and indeed how such updating is 

affected by prior knowledge.  Taken together the findings from my thesis add 

further to the growing literature on the effects of prior knowledge on event 

cognition.   
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