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Abstract

This thesis comprises two parts. First, we try to answer the question in a data analysis perspective,

which financial factor is more relevant to the market capitalisation movements. Second, due to

price boundaries imposed by the market regulators, how could we price the financial options on

such markets in a mathematically rigorous manner.

In the first part of this thesis, after collecting large amount of real-world financial data for

companies listed on the Chinese financial market, we carry out a data analysis and set up linear

regression models between market capitalisation and various financial data including PE ratio, total

earning, etc. By calculating and comparing the coefficient of determination, those regressionmodels

are ranked. We find that assets and earnings are highly correlated with market capitalisations.

To extract information and reduce noise, principal component analysis technique is also used.

Combining all results, a relationship between market capitalisation and other financial data is

revealed.

In the second part of this thesis, based on truncated binomial trees, several option valuation

models are obtained. After introducing assumptions satisfying the specific price boundaries in

the Chinese financial market, we derive an option valuation model from the Cox-Ross-Rubinstein

model for European call options traded on the price-bounded financial market. A closed-form

solution is obtained by assuming that security trading is continuous. Using the Chinese financial

market data, empirical analysis result suggests that our modified model has more explanatory

power than BS model in the Chinese financial market.
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Chapter 1

Introduction

This thesis consists of 2 separate parts. They focus on stock valuation and option valuation

respectively.

The first part of this thesis concentrates on a data study of the Chinese stock market. In

this part, we will look at the relationship among the extended freely available historical financial

data set. Shiller (2005) collected the price-earnings (PE) ratio values for the Standard & Poor’s

500 (S&P 500) index every January from 1881 to 1989 and calculated 1-year return. Then a

simple linear regression reveals the relationship between those two factors. Shiller’s (2005) work

suggested that lower PE could indicate higher return in the future based on his analysis of the

S&P 500 data. This result was widely accepted by a group of fundamental investors (Graham &

Dodd 2009). Empirical analysis using different datasets (Gottwald 2012, Basu 1977) and models

based on varieties of PE (Azhar et al. 2009) all confirmed this idea. Following this, we will explore

Shiller’s (2005) work in the Chinese market and furthermore verify the relationship between return

and earnings for individual Chinese companies. We also carry out a data analysis between stock

market valuation return and various financial data including PE and earnings for individual Chinese

companies. We hope to draw some conclusions between market capitalisation returns and the large

set of financial data available for the Chinese market.

Besides earnings, Fama et al. (1969) suggested that any new information may affect valuation

in different levels. Earnings and dividend policy announcements are the most analysed factors as

new information. The advantage for the Chinese stock market is that it is born after the Internet

era and a lot of financial data are available freely on the trading platforms for people who make the

effort to collect. So we will use the big data technique and analyse these available financial data

to find what quantity gives the best linear fitting for stock price. This is an extension of Shiller’s

(2005) study.

In the second part, several option valuation models based on binomial tree models are derived.

A financial option is a contract which offers the buyer a right to buy or sell the underlying asset

at a specific strike price (Hull 2015). In this thesis, we will focus on the call option, which gives

the buyer a right to buy the underlying asset. To carry out the analysis, some assumptions must

be introduced. For example, Black & Scholes (1973) assumed that the underlying asset logarith-

mic returns are normally distributed. Normal distribution is quite simple to analyse for option

valuation. However empirical studies by Corrado & Su (1996b) showed that there is significant

1



2

disparity between normal distribution based BS model and real-world data. For options on the US

financial market, higher-order-moment distributions could improve the valuation models (Rubin-

stein 1998). On some special financial markets, such as the Chinese financial market, the relevant

authorities imposed price movement bounds on the underlying stock price movements (SSE 2018),

we therefore need to introduce some modified models.

The price bounds in the Chinese financial market are imposed by the marker regulator to curb

excessive gambling behaviour. Within each phase (one day for the Chinese financial market), there

are a lower bound and an upper bound on the price movements for each stock listed on the market.

No trade is allowed if the price moves beyond the boundaries. So it is clear that a plain distribution

is truncated by the boundaries. In our research, since the normal distribution is widely used in

traditional option valuation models, we truncate normal distributions for our re-weighting model

and re-distributed model respectively. Since a binomial distribution can approximate a normal

distribution, following Cox et al.’s (1979) approach, our models will be derived from a truncated

binomial tree firstly. Then following Hull’s (2015) idea, we show that the binomial distribution

results approximate some modified normal distribution results if the binomial tree is fine enough.

Using the Chinese financial market data, we will compare our model with the BS model.

The price boundaries among those financial markets are not always same. For example, on

Borsa Istanbul (the Turkish securities exchange), there are circuit breakers at 0.9 and 1.1 of the

previous day closing price for each stock (Istanbul 2015). If a stock triggers a circuit breaker, the

stock trading pauses for 7 minutes. There is no circuit breaker in the Chinese financial market.

Trade orders are still accepted, if the bid or offer prices are within the boundaries (more details will

be explained in Chapter 4). In the Taiwanese financial market, there are different price boundaries

at 0.05 and 0.1 below or above the previous day closing price for bonds and stocks respectively

(TSE 2019). The Taiwanese market also has no circuit breaker. In this thesis, we will focus on

price boundary system in the Chinese financial market.

These 2 parts share the data that we explain and pre-process in Part I. As our stock valuation

model (the 16-variable model in Chapter 3) requires a lot of data, we hope to find a model that

requires less data. So we view the data from another perspective and introduce option valuation

models in Part II. Furthermore, in Part II, we set up a portfolio of stocks and options. We believe

that options require less data to evaluate and portfolios reduce more uncertainty. So we can have

a model that has more explanatory power and requires less data.



Part I

Stock market data analysis

3



Chapter 2

Data consideration for the Chinese

stock market

When using fundamental data for investment reference, a large group of investors believe that

price-earnings (PE) ratios have strong relationship with future returns of a stock (Gottwald 2012).

It has been demonstrated that low PE stocks will have higher returns than high PE stocks over

a long time period on collective basis (Basu 1977). This phenomenon has been widely verified

(Gottwald 2012).

Shiller (2005) analysed the relationship between market capitalisation change rates and PE

ratio using Standard & Poor’s 500 (S&P 500) index. He collected the S&P 500 index price data

every January as well as the total earnings of all component companies in the previous year and

set up a linear regression between the market capitalisation change rates and PE ratio. Then

regression coefficient (β) and the coefficient of determination (R2) data are collected. By doing so,

he suggested that the S&P 500 index would have higher rate of change in five year period, if the

PE ratio is lower in January. Shiller concluded that the market capitalisation change rates and

PE ratios are negatively correlated. However, the low R2 obtained via regression indicated high

degree of market volatility and uncertainty.

In this chapter, we will follow Shiller’s (2005) idea to have a brief look at the relationship

between return and price-earnings ratio in the Chinese stock market.

2.1 Linear regression analysis

In data analysis, one of the most commonly used methods to determine the relationship between

two variables (or one against several variables) is regression analysis.

In this chapter, we will use the coefficient of determination R2 to measure the goodness of

fit. R2 values are normally greater than or equal to 0 and less than or equal to 1. According

to Freedman et al. (2007), an R2 of 1 indicates that all data can be interpreted perfectly by the

model, while an R2 of 0 indicates that no data can be interpreted by the model.

Of course we are aware of the deficiencies of using R2 as the only criterion. For example, R2

test is not able to explain biases (Ozer 1985). Hu & Bentler (1999) suggested using two-index

4



5

strategy, combining two or more testes together to judge a model. Some researchers recommend

“making a residual analysis” (Barrett 1974) with R2 test. However this makes the analysis too

complex in our context. Using one index, we can easily compare two models. We could also apply

other methods, such as F-test or chi-squared test (Mendenhall & Sincich 2012). These tests are

also useful to check the goodness of fit for a model. But similar to the R2 test, each has its own

limitations (Hooper et al. 2008). Since we are working on large number of data, we believe that

the statistical summary of large numbers of R2 can, from one angle, compensate the statistical

shortcomings of R2 when observing a few quantities.

Our next step is to define a critical value of R2 to separate the well-fitted and poorly-fitted data

sets. As observed by Taylor (1990), analyses based on laboratory data could have higher R2 values

than analyses based on naturally observed data. In finance data analysis, various values have been

used as indicator of goodness of fit. For example, Fama & French’s (1993) analysis showed that

R2 for the wide-accepted CAPM is less than 0.29.

To simplify the discussions, we adopt the simple threshold as R2 = 0.5. This can be interpreted

as the models could explain approximately 70% of standard deviation. We define the term large

R2 as R2 > 0.5. And P(large R2)
(

i.e. P(R2 > 0.5)
)

as how many companies (in percentage) can

be explained by the model.

2.2 The data

We download data between 19th of December 1990 and 30th of June 2015 from GTA CSMAR

database. The data include:

• market capitalisation,

• net assets,

• retained earnings,

• fixed assets,

• intangible assets,

• total assets,

• current liability,

• accounts receivable,

• inventory,

• operating cash flow,

• current asset,

• operating income,

• operating cost,

• net profit,
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• operating profit,

• total profit,

• after-tax profit and

• stock daily close prices,

for all 2378 companies listed on Shanghai Stock Exchange and Shenzhen Stock Exchange. Addi-

tionally, we download and use the CSI 300 index data in this thesis to reflect the overall performance

of Chinese financial market. This index consists of stocks traded on both Shanghai Stock Exchange

and Shenzhen Stock Exchange. In this database, some data cells are filled with “NaN”, because

the corresponding company was not traded on that day. So we clear our database by deleting NaN

cells before the IPO (initial public offering) date for the corresponding companies and filling the

rest by the most recently available historical data (see later).

Then we pre-process the data before we can carry out our analyses. Firstly, we sort the data

in order by ascending date.

Secondly, we generate the daily data. Due to the limited available data, to increase the sample

size, we decide to use the daily data in our analyses. However, except daily market capitalisation

data, most data (for example, earnings data) we downloaded is by quarter. Therefore, filling all

the daily values by the most recently available historical data, we generate the daily data. In other

words, the values in that quarter are all the same.

Finally, before approaching data for modelling, data normalisation procedure is required to

remove the units and adjust values to a common scale. For data D = {d1, · · · , di, · · · , dn}, the
normalised data D̃ = {d̃1, · · · , d̃i, · · · , d̃n} are calculated as

d̃i =
di −m

M −m
, (2.1)

where m is the minimum and M is the maximum of D. For our ratio analyses requiring return

and PE ratio data, we calculate the ratio results using the untreated data firstly, then normalise

the results into the normalised return or the normalised PE. For the principal component analyses

in Section 3.3, we will introduce several new variables (i.e. PC1, PC2, PC3 and PC4). These

variables are first principal component results of different data sets (more details will be explained

in Section 3.3). To obtain those results, we extract information from the untreated data using

principal component analysis technique, before normalising the extracted result into one variable.

These data will be used to analyse the relationship between PE and return, between market

capitalisation and other variables in this part. The raw data will also be used in the empirical

analyses in the Part II.

2.3 The variables

In the Chinese stock market, there are large number of stock splits. For example, the number of

shares outstanding of Global top e-commerce Co., Ltd. (Figure 2.1) was changed several times

between 2015 and 2017. So its market capitalisation and stock price (Figure 2.2) went to different

directions.



7

2015 2016 2017
Date (year)

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Nu

m
be

r o
f s

ha
re

s o
ut

st
an

di
ng

1e6

Figure 2.1: Number of shares outstanding: Global top e-commerce Co., Ltd.

Hence we believe that the stock price method used by Shiller (2005) cannot be applied to the

Chinese stocks without careful adjustment. So we use the market capitalisation to represent the

value of a company. Market capitalisation (CAP) is the total market value of all stocks of a

company, which is defined as

CAPi = the price of stock i× the number of stock i. (2.2)

The price in (2.2) is the latest trading price on a specific trading period. For daily data, the

price is the last price on a trading day. Figure 2.3 suggested that market capitalisation and stock

price are highly correlated. For over 73% companies, the correlation coefficient values between

their market capitalisation and corresponding stock price data are larger than 0.707. According

to Walpole et al. (2012, p. 433), it is clear that the correlation coefficient larger than 0.707 here

implies a coefficient of determination larger than approximately 0.5. Recall that we adopted the

threshold at R2 = 0.5 (recall Section 2.1). We follow the same criterion here. Therefore we believe

that market capitalisation can be used in our analyses to replace stock price in Shiller’s (2005)

research.

The PE ratio is calculated, using the market capitalisation and earnings data, as follows
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Figure 2.2: Market capitalisation and stock price: Global top e-commerce Co., Ltd.

PE =
stock price

earnings per share
(2.3)

=
stock price× the number of shares

earnings per share × the number of shares

=
market capitalisation

total earnings
.

The rate of change υ of a variable λ over time period [t, t+ δt] is defined as

υλ(t, δt) =
λt+δt − λt

λt
. (2.4)

We will use this formula to calculate the return, which is the rate of change for market capi-

talisation. We carry out two analyses in this chapter. One analysis is to require holding the stock

for at least 1 year. For this analysis, we select companies whose historical data existed for no less

than 5 years prior to the investigation period. The other analysis is to require holding the stock

for at most 10 years. For the latter analysis, we select companies whose historical data existed for

no less than 15 years prior to the investigation period. Table 2.1 shows the number of companies

we will use for different analyses.

Hence for the first analysis (1 year holding period) we will have 2270 companies, while for the
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Figure 2.3: Histogram of correlation coefficient between market capitalisation and stock price.

Holding Existence of historical data required The num. of companies
1 year 5 years 2270
10 years 15 years 849

Table 2.1: The number of companies for different holding period.

second one (maximum 10 years holding) we will have 849 companies. We calculate the return on

rolling basis. Since we only have the data before 01-07-2015 in our database, we only calculate

1-year return for data before 30-06-2014, and 10-year return before 30-06-2005.

2.4 1-year return and PE

In Shiller’s (2005) study, he pointed out the following discrepancies in his analyses and conclusions:

1. Only one data point on January for each year.

2. Only S&P 500 index data.

3. Low coefficient of determination (R2) value.

To improve the study, we will try to investigate the problems from a different perspective. We

will collect and analyse the rolling annualised return of daily data on every trading day from the
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Chinese stock market. We will also collect and analyse data for all feasible companies listed on

the Chinese stock market. By these, we hope to address these issues, through the use of statistical

summaries.

Similar to Shiller’s (2005) idea, the first analysis we will carry out is the regression between

normalised market capitalisation 1-year return (R1) and normalised price-earnings (PE) ratio.

Figure 2.4a shows the frequency of the regression coefficient for all companies, and Figure 2.4b

shows the frequency of their coefficient of determination value. It is clear that most companies

have very low R2. This implies that this model has similar deficiencies as Shiller has concluded.

The fact that most of the R2 values from linear regression are below 0.5 implies that, from big

data point of view, 1-year return and PE may not have close relationship. They might be a kind

of random value pairs.
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(a) Regression coefficient β histogram.
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(b) Coefficient of determination R2 his-
togram.

Figure 2.4: Regression relationship between 1-year return and PE.

Now we breakdown the above statistics into a summary table (Table 2.2). The number of

companies with negative slope β value is greater than the ones with positive value. This shows

that for most companies, the investors will have higher returns, if they buy the stocks when PE is

lower.

R2 > 0.5 R2 < 0.5 Total
slope < 0 9 companies 1676 companies 1685 companies
slope > 0 5 companies 580 companies 585 companies
Total 14 companies 2256 companies 2270 companies

Table 2.2: Breakdown of the statistics: the number of companies in different R2 and slope value
groups.

Clearly, negative β value implies that return and PE are negatively correlated for those com-

panies. However, most companies with negative β have low R2, meaning the match between the

two variables has low quality. All these are similar to the observations made by Shiller for S&P

500 index. Over 74% (1685 out of 2270) companies have negative β and low R2, implying that if

we accept poor quality of fit, return and PE are negatively correlated as expected.
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2.5 Using shorter or longer term returns

It is noticed that Figure 2.4b demonstrates that most of the companies have very low R2 values for

the one year return-PE regression over the entire life. We will try to modify our model by using

shorter or longer term return to find a better fitting.

We use the same return-PE model as the previous section and breakdown the results into Figure

2.5. From this, we can see that there is no clear trend over holding period, the return-PE models

don’t interpret much data in the Chinese market.
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Figure 2.5: P(R2 > 0.5) for different holding periods, following the same idea of 1-year model.

Hence the return-PE model is not ideal and sole PE ratio is not able to describe the rise

and fall of market capitalisation. Goedhart et al. (2005) reviewed a similar PE valuation model.

Same to our results, the model has been demonstrated to have poor predictive power. To find

better model, they proposed to introduce more factors such as operating items (operating income,

operating leases, etc.). However they didn’t investigate these factors further. Following their idea,

we will look at broader factor sets involving more financial statement data. We derive that some

factors might better describe the variations in the size of capitalisation.



Chapter 3

Data investigation of the Chinese

stock market

As we discussed earlier, Shiller (2005) suggested that PE ratio could affect the future return of a

stock market. This can be confirmed in US market on the index level, as Shiller (2005) has shown.

The defect of his investigation is that the regression involved demonstrated low R2 value. We

want to address this issue by using a large set of financial data for most of the companies from the

Chinese stock market (whenever there is long enough history of being listed on the stock market),

to seek if any financial data demonstrate better fitting properties. Besides PE, Nissim & Penman

(2001) analysed more items, including common equity, operating assets and etc. They introduced

several models and suggested that assets and operating liabilities have strong statistical relationship

with common equity and market values. Fama et al. (1969) also reviewed stock splits, dividends

and stock returns. They suggested that any new information could affect stock prices. It implies

that broader data set should be introduced into research. We will focus on financial statement

data as the starting point. Instead of ratio analyses, we carry out non-ratio analyses using the

plain data in this chapter. So the normalised data variables we pre-processed in Section 2.2 will be

used as the independent variables. We always use market capitalisation as the dependent variable

for all models.

Following these ideas, we will investigate, in a systematic pattern, which quantities affect the

rise and fall of market capitalisation on statistical basis. Our approach is to collect 16 widely used

financial data components. We carry out regression analysis on 1 out of 16, 2 out of 16, 3 out of

16, etc. And finally, looking at how the principle components of these financial data affect the rise

and fall of capitalisation.

3.1 Regression analysis

3.1.1 Single-variable models

In this section we carry out the first set of data analysis, we regress our dependent variable

(normalised market capitalisation) against every single normalised financial data we selected.

Table 3.1 shows the summary for 1-variable models. We can find that the model with net assets

12
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factor produces the best fit with our criteria. In the Chinese stock market, 33% companies’ data

can be interpreted by this model.

Feature µ(α) median(α) µ(β) med(β) µ(R2) med(R2) P(largeR2)

Net Assets 0.13 0.1 0.29 0.3 0.36 0.33 0.33

Total Assets 0.13 0.1 0.27 0.29 0.34 0.31 0.31

Retained Earnings 0.14 0.11 0.24 0.26 0.32 0.27 0.27

Fixed Assets 0.13 0.1 0.24 0.26 0.32 0.28 0.27

Current Asset 0.15 0.12 0.23 0.24 0.3 0.24 0.24

Current Liability 0.15 0.12 0.21 0.23 0.28 0.21 0.21

Inventory 0.15 0.13 0.2 0.2 0.27 0.2 0.21

Intangible Assets 0.16 0.14 0.17 0.17 0.26 0.2 0.19

Accounts Receivable 0.16 0.14 0.17 0.17 0.25 0.18 0.17

Net Profit 0.13 0.12 0.22 0.21 0.23 0.16 0.15

Operating Cash Flow 0.18 0.16 0.12 0.1 0.16 0.08 0.08

Operating Profit 0.17 0.15 0.15 0.13 0.16 0.1 0.07

Total Profit 0.16 0.15 0.15 0.14 0.16 0.1 0.07

Operating Income 0.2 0.18 0.1 0.08 0.15 0.09 0.05

Operating Cost 0.2 0.18 0.09 0.07 0.14 0.08 0.04

After-tax Profit 0.17 0.16 0.13 0.11 0.13 0.07 0.04

Table 3.1: Statistical breakdown for single variable models: mean of y-intercept, median of y-
intercept, mean of slope, median of slope, mean of coefficient of determination, median of coefficient
of determination and the P(R2 > 0.5) (order by descending probability).

Furthermore, 4 out of first 5 features are asset-related. It suggests that asset information

strongly influence Chinese stock valuation. Below net profit, P(R2 > 0.5) drops to less than 0.08,

which suggests that these features could explain very few data. Hence income statement items,

including profit related features and operating related features, have low impacts on stock values.

The mean results and median results show the same trend as P(R2 > 0.5) results, which confirms

our conclusion.

3.1.2 Models with index data

Since the P(R2 > 0.5) values of all models in the last section are less than 0.5, we introduce index

feature (CSI 300 data, recall Section 2.2) and try to improve the models. The index model itself

(Table 3.2) could interpret 57% company data and adding another feature (net assets here, see

Table 3.3) could interpret 82% company data. These results suggest that in our dataset the index

is the best feature to help understanding stock values.

Feature µ(α) median(α) µ(β) med(β) µ(R2) med(R2) P(largeR2)

Index 0.06 0.05 0.68 0.73 0.54 0.57 0.57

Table 3.2: Statistical breakdown for regression relationship between market capitalisation and
index.

3.1.3 Two-variable models

To select 2 features from 16 features, we use a 16-choose-2 combination C16
2 . Then we follow the

same procedure as in last subsection. Table 3.4 shows the summary for 2-variable models.

The best model, model with net assets and retained earnings factor, can explain 44.3% com-

panies data in the Chinese stock market. It is much better than the best 1-variable model
(

P(R2 > 0.5)= 0.33
)

. Recalling that the best 1-variable model is the model with net assets,

we find the best 2-variable model has one more factor, retained earnings, in conjunction with the

net assets factor.
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Feature µ(α) median(α) µ(β) med(β) µ(R2) med(R2) P(largeR2)

Net Assets 0.04 0.01 0.15 0.14 0.7 0.77 0.82

Total Assets 0.04 0.01 0.12 0.11 0.69 0.76 0.81

Retained Earnings 0.03 0.01 0.14 0.12 0.69 0.75 0.81

Fixed Assets 0.05 0.02 0.09 0.09 0.69 0.75 0.80

Current Asset 0.04 0.01 0.13 0.11 0.68 0.74 0.80

Inventory 0.05 0.02 0.09 0.07 0.66 0.72 0.77

Current Liability 0.05 0.02 0.08 0.07 0.67 0.73 0.76

Intangible Assets 0.05 0.03 0.07 0.05 0.66 0.72 0.76

Net Profit 0 -0.01 0.17 0.13 0.66 0.72 0.75

Accounts Receivable 0.05 0.03 0.07 0.05 0.65 0.71 0.73

Total Profit 0 -0.01 0.16 0.12 0.63 0.68 0.72

Operating Profit 0 -0.01 0.16 0.12 0.63 0.68 0.72

Operating Income 0.04 0.02 0.09 0.06 0.62 0.67 0.70

Operating Cost 0.05 0.02 0.08 0.05 0.62 0.66 0.70

After-tax Profit 0.01 0 0.14 0.1 0.61 0.66 0.69

Operating Cash Flow 0.05 0.03 0.06 0.03 0.61 0.65 0.68

Table 3.3: Statistical breakdown: models with index (order by descending probability).

After obtaining the 2-variable models, we add index feature into those models. Table 3.5 shows

that adding index feature could interpret 44.9% more companies (0.892 − 0.443). This confirms

our finding that index is the strongest factor.

3.1.4 Multi-variable models

After we find the best 2-variable model, we can carry out our procedure to find the best 3-variable

model, by using 16-choose-3 combination C16
3 . Table 3.6 shows the results. To make the results

more understandable, we present them in a dot plot (Figure 3.1). In Figure 3.1, each row represents

a set of variables in a regression model. A blue square indicates that the feature, whose variable

name is on the top of the figure, is present in the model. The numbers on the right of the figure

show the P(R2 > 0.5) values. In this section, we will use dot plot figures to present results.

We repeat the same approach for 4-variable model, 5-variable model and so on (the number of

independent variables v = 4, 5, . . . , 16). We summarise some best results of variable selecting into

Figure 3.1 to 3.13. These results are ordered by descending P(R2 > 0.5).

For some models, the probability values are very close to each other. Figure 3.3 shows the first

10 best 5-variable models. The first 3 models even have exactly the same P(R2 > 0.5) value at

0.697. We believe that the main reason is our discrete indicators. There are totally 2378 companies

in our dataset (recall Section 2.2). The value 0.697 shows that 1657 (≈ 0.697× 2378) companies

can be explained by the model. It is clear that the number of companies is a non-negative integer.

Hence P(R2 > 0.5) values are discrete. It can accept a countable number of values.

Obviously, median function is continuous. There is less chance to have exactly the same value

(shown in Figure 3.3). However it is difficult to explain the underlying financial meaning of those

median values. Therefore we stick with the original criteria P(R2 > 0.5).

From 6-variable models to 15-variable models, similarly, some models have the same value.

Hence, for 5-variable or more models, we keep the best 3 models in our final selection summary

figure (see Figure 3.14).
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Feature 1 Feature 2 Probability

Retained Earnings Net Assets 0.443

Fixed Assets Net Assets 0.441

Total Assets Net Assets 0.438

Current Asset Net Assets 0.431

Intangible Assets Net Assets 0.431

Current Liability Net Assets 0.428

Total Assets Retained Earnings 0.427

Inventory Net Assets 0.423

Fixed Assets Total Assets 0.417

Current Asset Total Assets 0.416

Current Asset Fixed Assets 0.414

Total Assets Current Liability 0.412

Fixed Assets Retained Earnings 0.411

Intangible Assets Total Assets 0.411

Current Asset Retained Earnings 0.405

Accounts Receivable Net Assets 0.404

Intangible Assets Retained Earnings 0.399

Inventory Total Assets 0.396

Net Profit Net Assets 0.396

Operating Cash Flow Net Assets 0.394

Current Liability Retained Earnings 0.393

Inventory Retained Earnings 0.388

Operating Profit Net Assets 0.388

Inventory Fixed Assets 0.387

Total Profit Net Assets 0.386

Accounts Receivable Total Assets 0.383

Intangible Assets Fixed Assets 0.383

Net Profit Total Assets 0.381

After-tax Profit Net Assets 0.380

Operating Cost Net Assets 0.378

Fixed Assets Current Liability 0.377

Operating Income Net Assets 0.376

Operating Cash Flow Total Assets 0.375

Net Profit Fixed Assets 0.371

Current Asset Current Liability 0.371

Current Asset Intangible Assets 0.368

Total Profit Total Assets 0.366

Operating Profit Total Assets 0.366

Accounts Receivable Fixed Assets 0.365

Operating Cost Total Assets 0.363

Operating Income Total Assets 0.362

Accounts Receivable Retained Earnings 0.362

After-tax Profit Total Assets 0.360

Inventory Current Asset 0.360

Accounts Receivable Current Asset 0.352

Operating Cash Flow Retained Earnings 0.351

Intangible Assets Current Liability 0.346

Net Profit Retained Earnings 0.344

Inventory Intangible Assets 0.343

Operating Profit Fixed Assets 0.341

Total Profit Fixed Assets 0.340

Operating Cash Flow Fixed Assets 0.339

Net Profit Current Asset 0.339

Inventory Current Liability 0.336

Operating Profit Retained Earnings 0.335

Total Profit Retained Earnings 0.334

Operating Income Retained Earnings 0.327

Operating Cash Flow Current Asset 0.326

Operating Income Fixed Assets 0.324

Operating Cost Fixed Assets 0.324

Operating Cost Retained Earnings 0.324

· · · · · · · · ·

Feature 1 Feature 2 Probability

· · · · · · · · ·

After-tax Profit Retained Earnings 0.323

After-tax Profit Fixed Assets 0.323

Net Profit Current Liability 0.320

Accounts Receivable Intangible Assets 0.320

Net Profit Inventory 0.316

Accounts Receivable Inventory 0.316

Accounts Receivable Current Liability 0.314

Net Profit Intangible Assets 0.313

Operating Profit Current Asset 0.307

Total Profit Current Asset 0.304

After-tax Profit Current Asset 0.299

Net Profit Accounts Receivable 0.296

Operating Cash Flow Inventory 0.294

Operating Cost Current Asset 0.291

Operating Income Current Asset 0.291

Operating Cash Flow Current Liability 0.288

Operating Profit Current Liability 0.286

Total Profit Current Liability 0.283

Operating Cash Flow Intangible Assets 0.282

After-tax Profit Current Liability 0.275

Operating Income Current Liability 0.274

Operating Profit Inventory 0.274

Operating Profit Intangible Assets 0.271

Total Profit Inventory 0.271

Operating Cost Current Liability 0.270

Operating Cash Flow Accounts Receivable 0.269

Total Profit Intangible Assets 0.267

After-tax Profit Inventory 0.263

After-tax Profit Intangible Assets 0.255

Operating Income Inventory 0.254

Operating Profit Accounts Receivable 0.254

Net Profit Operating Cash Flow 0.254

Total Profit Accounts Receivable 0.253

Operating Cost Inventory 0.251

Operating Income Intangible Assets 0.251

Operating Cost Intangible Assets 0.247

Operating Income Accounts Receivable 0.239

After-tax Profit Accounts Receivable 0.239

Operating Cost Accounts Receivable 0.233

Operating Cost Net Profit 0.208

Operating Income Net Profit 0.204

Net Profit After-tax Profit 0.195

Operating Profit Net Profit 0.193

Total Profit Net Profit 0.192

Operating Profit Operating Cash Flow 0.154

Total Profit Operating Cash Flow 0.153

Operating Cash Flow After-tax Profit 0.143

Operating Income Operating Cash Flow 0.140

Operating Cost Operating Cash Flow 0.140

Operating Cost Operating Profit 0.124

Operating Income Total Profit 0.123

Operating Cost Total Profit 0.122

Operating Income Operating Cost 0.122

Operating Income Operating Profit 0.122

Operating Profit After-tax Profit 0.111

Total Profit After-tax Profit 0.110

Operating Income After-tax Profit 0.105

Operating Profit Total Profit 0.104

Operating Cost After-tax Profit 0.100

Table 3.4: P(R2 > 0.5): 2-variable models.
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Feature 1 Feature 2 Probability

Retained Earnings Net Assets 0.892

Fixed Assets Net Assets 0.892

Fixed Assets Retained Earnings 0.891

Total Assets Net Assets 0.891

Total Assets Retained Earnings 0.889

Current Liability Retained Earnings 0.883

Current Asset Total Assets 0.883

Fixed Assets Total Assets 0.883

Current Asset Fixed Assets 0.882

Current Asset Retained Earnings 0.882

Current Liability Net Assets 0.882

Inventory Net Assets 0.879

Intangible Assets Net Assets 0.879

Inventory Retained Earnings 0.879

Current Asset Net Assets 0.876

Intangible Assets Retained Earnings 0.875

Accounts Receivable Net Assets 0.875

Intangible Assets Total Assets 0.874

Inventory Fixed Assets 0.872

Current Asset Current Liability 0.871

Total Assets Current Liability 0.871

Net Profit Net Assets 0.870

Operating Profit Net Assets 0.868

Accounts Receivable Retained Earnings 0.868

Net Profit Fixed Assets 0.868

Net Profit Total Assets 0.866

Inventory Total Assets 0.866

Intangible Assets Fixed Assets 0.866

Current Asset Intangible Assets 0.865

Total Profit Net Assets 0.865

Net Profit Retained Earnings 0.865

Operating Profit Fixed Assets 0.863

Operating Profit Total Assets 0.863

Fixed Assets Current Liability 0.863

Inventory Current Asset 0.862

Total Profit Fixed Assets 0.860

Accounts Receivable Current Asset 0.860

Accounts Receivable Total Assets 0.860

Total Profit Total Assets 0.859

Net Profit Current Asset 0.859

Operating Profit Retained Earnings 0.858

Accounts Receivable Fixed Assets 0.858

Total Profit Retained Earnings 0.857

After-tax Profit Net Assets 0.857

Inventory Intangible Assets 0.854

After-tax Profit Total Assets 0.853

Operating Cash Flow Net Assets 0.853

Operating Profit Current Asset 0.851

Net Profit Intangible Assets 0.851

Total Profit Current Asset 0.850

Net Profit Inventory 0.850

Operating Cash Flow Total Assets 0.850

Intangible Assets Current Liability 0.849

After-tax Profit Fixed Assets 0.849

After-tax Profit Retained Earnings 0.849

Operating Cash Flow Retained Earnings 0.848

Net Profit Accounts Receivable 0.845

Inventory Current Liability 0.845

Net Profit Current Liability 0.844

Operating Income Net Assets 0.843

Operating Cost Net Assets 0.843

· · · · · · · · ·

Feature 1 Feature 2 Probability

· · · · · · · · ·

Operating Cost Retained Earnings 0.842

Operating Income Retained Earnings 0.842

Accounts Receivable Intangible Assets 0.842

Accounts Receivable Current Liability 0.841

Operating Cash Flow Fixed Assets 0.840

Operating Profit Inventory 0.838

Operating Income Fixed Assets 0.838

Operating Profit Intangible Assets 0.838

After-tax Profit Current Asset 0.838

Accounts Receivable Inventory 0.837

Total Profit Intangible Assets 0.836

Operating Income Total Assets 0.836

Total Profit Inventory 0.836

Operating Cost Total Assets 0.835

Operating Cost Fixed Assets 0.833

Operating Profit Current Liability 0.832

Operating Cash Flow Current Asset 0.832

Total Profit Current Liability 0.832

Total Profit Accounts Receivable 0.829

Operating Cost Current Asset 0.827

Operating Profit Accounts Receivable 0.827

Operating Income Current Asset 0.825

After-tax Profit Inventory 0.824

After-tax Profit Intangible Assets 0.823

Operating Income Intangible Assets 0.818

After-tax Profit Current Liability 0.816

Operating Cash Flow Inventory 0.815

Operating Cash Flow Current Liability 0.815

Operating Cash Flow Intangible Assets 0.814

Operating Cost Intangible Assets 0.814

After-tax Profit Accounts Receivable 0.809

Net Profit Operating Cash Flow 0.809

Operating Income Current Liability 0.807

Operating Cost Current Liability 0.806

Operating Income Accounts Receivable 0.805

Operating Cost Net Profit 0.805

Operating Income Net Profit 0.803

Operating Income Inventory 0.802

Operating Cost Inventory 0.802

Operating Cash Flow Accounts Receivable 0.801

Operating Cost Accounts Receivable 0.800

Operating Income Operating Cost 0.797

Operating Income Operating Profit 0.797

Operating Cost Total Profit 0.795

Operating Cost Operating Profit 0.794

Operating Income Total Profit 0.792

Operating Profit Net Profit 0.788

Net Profit After-tax Profit 0.787

Operating Profit Operating Cash Flow 0.782

Total Profit Operating Cash Flow 0.780

Total Profit Net Profit 0.778

Operating Cost After-tax Profit 0.777

Operating Income After-tax Profit 0.777

Total Profit After-tax Profit 0.770

Operating Income Operating Cash Flow 0.768

Operating Profit After-tax Profit 0.767

Operating Cost Operating Cash Flow 0.765

Operating Profit Total Profit 0.765

Operating Cash Flow After-tax Profit 0.759

Table 3.5: P(R2 > 0.5): 2-variable models with index.

Feature 1 Feature 2 Feature 3 P(R2 > 0.5)
Net Assets Retained Earnings Fixed Assets 0.546
Net Assets Retained Earnings Intangible Assets 0.537
Net Assets Fixed Assets Intangible Assets 0.537
Net Assets Retained Earnings Current Liability 0.534
Net Assets Current Asset Total Assets 0.534
Net Assets Fixed Assets Total Assets 0.534
Net Assets Retained Earnings Total Assets 0.533
Net Assets Fixed Assets Current Asset 0.532
Net Assets Fixed Assets Current Liability 0.531
Net Assets Retained Earnings Current Asset 0.530

Table 3.6: The first 10 3-variable models in descending order of P(R2 > 0.5) (cf. Figure 3.1).
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Figure 3.1: Dot plot and P(R2 > 0.5) values for the first 10 3-variable models (cf. Table 3.6).

Finally, we summarise the result into Figure 3.14. This figure shows the result of selecting

models. The indicator integers at the left of the figure show the number of independent variables

v in each model. Since some models have same v values, we omit the indicator integers below the

first model which has the same v value. We suppose to use this selection result in the following

sections for further model analyses.

To reduce outliers, we use confidence interval level at 0.85 (85%) for net assets beta. Then

we re-calculate the beta mean values and large R2 probability values for selected models, using

confidence interval level at 85% for the net assets beta. Figure 3.15a shows the summary of

P(R2 > 0.5). In 16-variable model, 92.3% companies data can be explained properly. Figure 3.15b

shows the summary of beta mean for net assets against the number of independent variables (v)

in a model. The result is clearly unsatisfactory. Different from intuitive expectation, the results

are not convergent. There is big gap around v ∈ [5, 10]. Especially, the beta mean values become

negative at v = 6.

After adding index feature (see Figure 3.16), our 8-or-more-variable models could explain al-

most all companies (Figure 3.16a), which is much better than the models without index feature.

Although there are still some jumps for beta mean (Figure 3.16a), all values are positive.

These observations lead us to guess that there are some noises in the data. In some models,

these noises enhance each other and affect the whole analysis. Hence, we need to reduce the noises.

Therefore, we will use the principal component analysis technique to extract the real information
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Figure 3.2: Variable selecting results and P(R2 > 0.5) values for 4-variable models (best 10 results).

from the variables and reduce noises.
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Figure 3.4: Variable selecting results and P(R2 > 0.5) values for 6-variable models (best 10 results).
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Figure 3.6: Variable selecting results and P(R2 > 0.5) values for 8-variable models (best 10 results).
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Figure 3.7: Variable selecting results and P(R2 > 0.5) values for 9-variable models (best 10 results).
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Figure 3.8: Variable selecting results and P(R2 > 0.5) values: 10-variable models (best 10 results).
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Figure 3.9: Variable selecting results and P(R2 > 0.5) values: 11-variable models (best 10 results).
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Figure 3.10: Variable selecting results and P(R2 > 0.5) values: 12-variable models (best 10 results).
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Figure 3.11: Variable selecting results and P(R2 > 0.5) values: 13-variable models (best 10 results).
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Figure 3.12: Variable selecting results and P(R2 > 0.5) values: 14-variable models (best 10 results).
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Figure 3.13: Variable selecting results and P(R2 > 0.5) values: 15-variable models.
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Figure 3.15: Statistical breakdown for multi-variable regression models.
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Figure 3.16: Statistical breakdown for multi-variable regression models, after adding index into
the models.

3.2 Results using quarterly data

The daily data we used in our analysis are generated by filling some values (recall Section 2.2).

From 5-variable models (Figure 3.3) to 15-variable models (Figure 3.13), some P(R2 > 0.5) values

are exactly the same. In this section we will explore this issue to see whether the generated data

is the reason why some values are the same.

In Table 3.7, we present the results using the raw quarterly data. It is clear that some values

are the same. Comparing to the results using the generated daily data (see Figure 3.3 to 3.13),

there is no clear evidence that using quarterly data could solve the issue. Obviously the generated

daily data is not the reason.

v 5 6 7 8 9 10 11 12 13 14 15

0.777 0.810 0.842 0.862 0.883 0.895 0.906 0.908 0.915 0.918 0.924
0.770 0.810 0.842 0.862 0.883 0.895 0.906 0.908 0.915 0.918 0.924
0.770 0.810 0.842 0.861 0.883 0.895 0.906 0.908 0.914 0.918 0.924
0.770 0.810 0.831 0.856 0.882 0.894 0.904 0.908 0.914 0.917 0.921

P(R2 > 0.5) 0.770 0.801 0.829 0.856 0.882 0.894 0.904 0.908 0.912 0.917 0.920
0.767 0.801 0.829 0.856 0.882 0.894 0.904 0.907 0.912 0.917 0.919
0.766 0.801 0.828 0.855 0.881 0.893 0.903 0.907 0.912 0.917 0.917
0.763 0.798 0.828 0.855 0.881 0.893 0.903 0.907 0.910 0.917 0.917
0.763 0.798 0.828 0.855 0.881 0.893 0.903 0.906 0.910 0.917 0.916
0.762 0.798 0.828 0.855 0.880 0.892 0.903 0.906 0.910 0.915 0.916

Table 3.7: P(R2 > 0.5) values of best 10 v-variable models, using quarterly data.

3.3 Principal component analysis

In this section, we will use principal component analysis (PCA) to reduce the dimensionality of

data and retain as much as possible of the data variation. We will introduce 4 variables. PC1 is

the normalised first principal component of net assets, retained earnings, fixed assets, intangible

assets and total assets data. PC2 is the normalised first principal component of current asset,

current liability, accounts receivable and inventory data. PC3 is the normalised first principal
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component of net profit, operating profit, total profit and after-tax profit; PC4: operating cash

flow and operating income data.

3.3.1 PC1: net assets, retained earnings, fixed assets, intangible assets

and total assets

First of all, we try to extract information from the variables of the first 5-variable model and

combine the information into one variable (PC1), using principal component analysis technique.

Please note that we extract information from the untreated data, before normalise the result into

PC1 (recall Section 2.2). We treat this PC1 variable as a normal variable as any others. The five

variables are net assets, retained earnings, fixed assets, intangible assets and total assets (recall

Figure 3.3). The four of these five variables are clearly asset-based, except retained earnings. The

retained earnings is an item placed on income statement, while asset items are placed on balance

sheet. However, retained earnings also make positive contribution to assets. In this analysis, since

we only focus on assets-liabilities dividing, to simplify the research, we also treat the retained

earnings as asset. Then we remove these five variables from our datasets.

We repeat our approach for PC1 and the rest 11 variables. We select the best 1-variable model,

then 2-variables model and so on, using the same method as in last section. The PC1 factor is

the first one which has been selected. In 1-variable model selecting, model with PC1 has higher

P(R2 > 0.5) value than any other models (shown in Table 3.8). For the 2-variable models (shown

in Table 3.9), the result affirms our finding.

Feature Probability
PC1 0.297

Current Asset 0.242
Current Liability 0.209

Inventory 0.205
Accounts Receivable 0.172

Net Profit 0.152
Operating Cash Flow 0.079

Operating Profit 0.067
Total Profit 0.066

Operating Income 0.051
Operating Cost 0.042
After-tax Profit 0.038

Table 3.8: P(R2 > 0.5): single variable (including PC1) models (order by descending probability).

After that, we keep those selected models and recalculate the probability value of large R2 and

the beta mean for the PC1 factor, under 85% confidence interval for PC1 beta mean. Figure 3.18a

shows the P(R2 > 0.5). As we expected, the probability values increase very quickly. Finally, for

12-variable model (v = 12), the probability values arrive at 0.860. Which means that over 86%

companies can be interpreted properly by the 12-variable model. Please note, in the 12-variable

model, we have used all 16 variables.

Figure 3.17 shows the variable selecting results. Figure 3.18b shows the beta mean for the PC1

factor. In 1-variable model (v = 1), except PC1 factor, there is no other factors. In 2-variable
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Feature 1 Feature 2 Probability
PC1 Current Asset 0.418
PC1 Current Liability 0.387
PC1 Inventory 0.379
PC1 Accounts Receivable 0.354
PC1 Net Profit 0.347
PC1 Operating Cash Flow 0.338
PC1 Operating Profit 0.332
PC1 Total Profit 0.326
PC1 Operating Cost 0.323
PC1 After-tax Profit 0.323
PC1 Operating Income 0.321

Table 3.9: P(R2 > 0.5): 2-variable (including PC1) models (order by descending probability).

model (v = 2), after another factor joined, the PC1 beta mean value drops a lot. At v = 6, the

PC1 beta mean drops again. It seems that these four factors, the second factor up to the fifth

factor, can be place in a group. And from the sixth factor, the direction changes again.

Adding index feature into above models improves P(R2 > 0.5) results (Figure 3.19a), as we

expected. However it doesn’t improve the beta mean results (Figure 3.19b). So firstly, we try to

solve the first gap. Then, we check the result again, to make sure both those two values can be

convergent.

3.3.2 PC2: current asset, current liability, accounts receivable and in-

ventory

Now we extract another first principal component from the further four variables shown in Figure

3.18b and combine the information into one new variable (PC2), using the same principal compo-

nent analysis technique as we did before. These four variables are current asset, current liability,

accounts receivable and inventory. These four variables are all short-term high-liquidity items.

They could change very frequently in an operating period. Additionally, all these four items make

positive contributions to assets. The 1-variable models result (Table 3.10), 2-variable models result

(Table 3.11) and variable selecting result (Figure 3.20) are presented.

Feature Probability
PC1 0.323
PC2 0.300

Net Profit 0.152
Operating Cash Flow 0.079

Operating Profit 0.067
Total Profit 0.066

Operating Income 0.051
Operating Cost 0.042
After-tax Profit 0.038

Table 3.10: P(R2 > 0.5): single variable (including PC1 and PC2) models (order by descending
probability).
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Figure 3.17: Variable selecting results after introducing PC1.
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Figure 3.18: Statistical breakdown for multi-variable regression model, after introducing PC1
factor.
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Figure 3.19: Statistical breakdown for multi-variable regression models: adding index into PC1
models.

Feature 1 Feature 2 Probability
PC1 PC2 0.394
PC1 Net Profit 0.347
PC1 Operating Cash Flow 0.338
PC1 Operating Profit 0.332
PC1 Total Profit 0.326
PC1 Operating Cost 0.323
PC1 After-tax Profit 0.323
PC1 Operating Income 0.321

Table 3.11: P(R2 > 0.5): 2-variable (including PC1 and PC2) models (order by descending prob-
ability).

Figure 3.21a shows the P(R2 > 0.5). In the new 9-variable model (where all 16 variables in the

datasets have been used), 74.6% companies data can be explained properly. The corresponding

value in the last section is 86%. This means that less companies can be interpreted, after we

introduce more PCA factors.

However, the summary of beta mean for PC1 and PC2 in Figure 3.21b shows that the result

is still not convergent. There are still some gaps or drops in the figure. For PC1 mean line (the

red points and line in Figure 3.21b), the drop between v = 1 and v = 2 is quite obvious. This is

reasonable as we have argued that the PC2 factor is another strong factor. As a result of Table

3.1, we already expected that PC2 is stronger than any remaining individual factors. So we can

accept this drop. However, for PC2, the gap between v = 4 and v = 5 is much more serious. It

suggests that the 5th variable (operating income) is stronger than PC2 which contains information

from four variables. Additionally the operating income feature can only interpret 5% companies’

data on its own (recall Table 3.1). Hence, we decide to use principal component analysis technique

again to extract information from the rest of the variables.

After adding index feature, P(R2 > 0.5) results are improved a lot (Figure 3.22a). But beta

mean results are unchanged (Figure 3.22b).
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Figure 3.20: Variable selecting results after introducing PC1 and PC2.
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Figure 3.21: Statistical breakdown for multi-variable regression models: after introducing PC1 and
PC2 factors.
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Figure 3.22: Statistical breakdown for multi-variable regression models: adding index into PC1-
PC2 models.

3.3.3 PC3: net profit, operating profit, total profit and after-tax profit;

PC4: operating cash flow and operating income

Instead of the grouping method based on orders we used before, in this subsection, we use a new

grouping method based on the underlying economic meaning. We separate the rest seven variables

into three groups. The first one is PC3, including net profit, operating profit, total profit and

after-tax profit. This group is clearly profit-related. The second group is PC4, including operating

cash flow and operating income. This group is operating-related. There is only one variable left,

which is operating cost. So we do not need to name it again.

It is anticipated that, in our datasets, there is only one variable could make negative contribution

to the assets, which is the operating cost. So we separate it out from other groups.

We use the same technique as we did before to calculate the P(R2 > 0.5) as well as beta

mean for PC1 and PC2. Figure 3.23a shows the P(R2 > 0.5) for models with different number

of variables. In 5-variable model (where all 16 variables in our datasets have been used), 57.1%

companies data can be explained properly. Figure 3.23b shows the beta mean values for the two

PCA factors. Except the big drop between v = 1 and v = 2 for PC1 factor, the result is acceptable,

the curve is much more smooth.

Finally, the beta mean value for operating cost is −0.166. The operating cost only appear on

the 5-variable model. So we do not need to plot a figure for it. This shows that our hypothesis,

operating cost makes negative contribution to assets, might be true.

So far, we have separated all variables into groups and extract the corresponding information,

using principal component analysis technique, from each group.

Combining all results, we can find that PCA factors are strong. As we expected, they do contain

lots of information of the corresponding companies. Additionally, the much stronger factor, index

feature, could improve the goodness of fit a lot and interpret more companies. All models including

PCA models are improved by adding index data into them.
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Figure 3.23: Statistical breakdown for multi-variable regression models: after introducing PC1,
PC2, PC3 and PC4 factors.
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Figure 3.24: Statistical breakdown for multi-variable regression models: adding index into 4-PCA
models.
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In this part, we analysed the Chinese stock market. We introduced our dataset and verified

Shiller’s (2005) idea using Chinese data in Chapter 2. We collected 16 quarterly variables from

the Chinese financial market between 1990 and 2015. These data are used through the whole

thesis. We generated and normalised the daily data and used them to probe the relationship

among the variables. To remove the stock split effect, instead of stock prices, we used the market

capitalisation values to generate PE values and returns. The simple return-PE model showed

unsatisfactory results. Although we used a large set of data and changed the holding length, we

found no clear relationship between return and PE.

Following Fama et al. (1969) and Nissim & Penman’s (2001) idea, using regression analysis

techniques, we carried out a further research about the relationship between market capitalisation

and other variables in Chapter 3. In this chapter, we conducted a plain data analysis, instead

of ratio analysis. The multi-variable model results showed that more than 92.3% of market cap-

italisation data can be explained by our model, by using 16 independent variables. However we

decided not to accept the models, because of the convergence concern. The mean of beta values

jumped several times. We guessed that there are noise data in our dataset.

To reduce the noise, we carried out analyses using quarterly data, and using principal compo-

nents. We expected that quarterly data could exclude the redundant data that we introduced in

the daily data generating process. However, the results showed that there is no clear improvement.

Then we separated our variables into 5 groups. The principal component analyses reduced noise

and extracted information from each group of datasets.

Finally, the PCA-based model is acceptable. Compared to the return-PE model
(

see Figure

2.5, P(R2 > 0.5) < 0.05
)

introduced in Chapter 2, more than 57.2% of market capitalisation data

can be explained by this 5-variable model. Compared to the 16-variance model in Section 3.1, this

model allays the convergence concern. However, it still requires 16 datasets. It is not practical. To

solve this problem, we will view the data from another perspective. We will include options and set

up a portfolio of stocks and options. We expect that the portfolio requires much less datasets and

reduces even more uncertainty. In the next part, we will introduce our option valuation models.



Part II

Option pricing for assets with

restricted underlying price

movements
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Chapter 4

Review of binomial option pricing

models

In the following chapters, the mathematical idea of Cox-Ross-Rubinstein (CRR) binomial options

pricing model (Cox, Ross & Rubinstein 1979) will be used to model a special case, where stock

prices cannot rise or fall over given thresholds. For example, in the Chinese financial market, prices

are capped by how much they can rise or fall. In one single trading day, the maximum gain is

limited to 10% of the latest close price, while the maximum loss is limited to −10%. Which means

at any time t, the daily return rt ∈ [−0.1, 0.1]. Some market regulators may impose different

boundaries. For example, on the Taiwanese bond market, the daily returns are limited within

[−0.05, 0.05]. In this thesis, we will introduce a generalised model (the re-distributed model) for

regulator-imposed price boundaries. This model is appropriate for any financial markets, if the

security prices are limited in an interval proportional to a historical price. We will introduce some

preparation information in Chapter 5 and 6, before introducing the re-distributed model (Chapter

7). For the empirical analysis (Section 7.6), because of data availability, we will use Chinese

financial market data to examine our models.

4.1 The Black-Scholes model

In finance, a European option gives its owner the right to buy (for a call option) or sell (for a

put option) the underlying security at strike price K on the expiry date T . It is well known that

the value V of the European option at initial time t0 = 0 is given by the following Black-Scholes

partial differential equation (the Black-Scholes equation),

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (4.1)

where V is a function of time t and stock price S, r is the risk-free rate of interest and σ is the

volatility of the underlying security.

To derive the option pricing model, Black & Scholes (1973) assumed the following conditions:

1. There is no transaction costs or taxes in buying or selling the stock or the option.
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2. The stock pays no dividends or other distributions.

3. The option is European.

4. There are no penalties to short selling.

5. Security trading is continuous.

6. The risk-free rate of interest r is constant, it is possible to borrow or lend any amount of

cash at the risk-free rate.

7. The stock price follows a geometric Brownian motion (GBM), i.e.

ln
(ST

S0

)

∼ N
(

(µ− σ2

2
)T, σ2T

)

. (4.2)

8. The volatility σ and drift rate µ are known and constant through time.

9. It is a risk-neutral world, i.e. the expected return of any investment is equal to the risk-free

rate. Hence the discount rate is also the risk-free rate.

For European call options with final condition C(ST ,K) = max(ST −K, 0), the solution is

Theorem 4.1 (Black-Scholes formula):

c = S0Φ(d1)−Ke−rTΦ(d2),

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

and

Φ(x) =
1√
2π

∫ x

−∞

e
−
t2

2 dt.

4.2 The Cox-Ross-Rubinstein model

In this section, the Cox-Ross-Rubinstein model (CRR model) developed by Cox, Ross & Rubinstein

(1979) for European call options will be reviewed. Let n be the number of steps for the binomial

tree. For a time point t = i × T/n, where i ∈ Z ∩ [0, n), it is obvious that there exists a one-step

binomial branch over time interval [t, t+T/n]. During the time period [t, t+T/n], the continuously

compounded return of a risk-free asset is rT/n, where r is the annual risk-free interest rate.

For the one-step binomial tree branch over [t, t+T/n], Cox, Ross & Rubinstein (1979) assumed

a stock with price St at time t ∈ [0, T ) can either move up to St × u with the upward rate u > 1

or move down to St × d with downward rate d ∈ (0, 1). If the upward movement probability is
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assumed to be p ∈ (0, 1), by risk-neutral valuation, the stock will have risk-free return over time

interval [t, t+ T/n], i.e.

p(St × u) + (1− p)(St × d) = St × erT/n. (4.3)

Solving (4.3), the probability of upward movement becomes

p =
erT/n − d

u− d
. (4.4)

Since the volatility is defined as the standard derivation of the percentage change in the stock

price in the time interval [t, t + T/n], and the stock prices follow a geometric Brownian motion,

the volatility of the stock should be σ
√

T/n.

For a random variable X , variance of X equals E(X2)− E2(X). So

σ2T/n =
[

pu2 + (1− p)d2
]

−
[

pu+ (1− p)d
]2

. (4.5)

The above 3-variable system (4.4) and (4.5) has many solutions for u, d and p. To simplify the

analysis, Cox, Ross & Rubinstein (1979) chose

Proposition 4.2:

u× d = 1.

Hence combining (4.4), (4.5) and Proposition 4.2, we have

u = eσ
√

T/n (4.6)

and

d = e−σ
√

T/n. (4.7)

Therefore, (4.4) becomes

p =
erT/n − e−σ

√
T/n

eσ
√

T/n − e−σ
√

T/n
. (4.8)

If the initial stock price is S0 at time t = 0, for a branch which has i steps going up and n− i

steps going down, the price of the stock at the end of this binomial tree branch is

S0u
idn−i. (4.9)

For the binomial tree with probability going up at p, by the definition of binomial distribution

probability mass function, the probability of the branches that have exactly i upwards and n − i

downwards steps is

n!

(n− i)!i!
pi(1 − p)n−i. (4.10)
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Since for an European call option, its payoff formula is max(S0u
idn−i − K, 0), the expected

payoff from the European call option is

n
∑

i=0

n!

(n− i)!i!
pi(1 − p)n−imax(S0u

idn−i −K, 0). (4.11)

For an option with life T and an annual risk-free interest rate r, by risk-neutral valuation, the

call option price should be (Cox et al. 1979):

Theorem 4.3:

c = e−rT
n
∑

i=0

n!

(n− i)!i!
pi(1 − p)n−imax(S0u

idn−i −K, 0). (4.12)

Finally, we present S0, u, d and p in Figure 4.1. Then we define

Definition 4.1: For fixed n and p, we denote

b(i, n, p) :=
n!

(n− i)!i!
pi(1 − p)n−i

=:b(i)

and

Definition 4.2: For fixed n, S0, K, u and d, we denote

f(i, n, S0,K, u, d) :=S0u
idn−i −K

=:f(i).

The above payoff formula can be rewritten as

max(S0u
idn−i −K, 0) (4.13)

=max(f(i), 0)

:=fpayoff (i).

So we re-write (4.12) as

c := e−rT
n
∑

i=0

b(i)fpayoff(i). (4.14)

4.3 A closed-form solution by Hull (2015)

In this section, we present the Hull’s (2015) result which states that if n is large enough, the above

CRR model converges to the BS model. In (4.11), it is clear that

Proposition 4.4:

max(S0u
idn−i −K, 0) =

{

S0u
idn−i −K, if S0u

idn−i −K > 0

0, if S0u
idn−i −K 6 0.
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Figure 4.1: Binomial tree model.

We can find that

Lemma 4.5:

i >
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

,

iff

max(S0u
idn−i −K, 0) = S0u

idn−i −K.

Proof: Since S0,K, u, d > 0,

S0u
idn−i

> K

⇐⇒ S0/K > 1/(uidn−i)

⇐⇒ ln(S0/K) > ln(
1

uidn−i
)

= −i ln(u)− (n− i) ln(d)

= i
(

ln(d) − ln(u)
)

− n× ln(d)

⇐⇒ ln(S0/K) + n× ln(d) > i
(

ln(d)− ln(u)
)

.

Since 0 < d < 1 < u, then ln(d)− ln(u) < 0, so
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ln(S0/K) + n× ln(d) > i
(

ln(d) − ln(u)
)

⇐⇒ i >
ln(S0/K) + n× ln(d)

ln(d) − ln(u)
.

Since u = eσ
√

T/n and d = e−σ
√

T/n, then

ln(S0/K) + n× ln(d)

ln(d) − ln(u)
=

1

2

( ln(K/S0)

σ
√

T/n
+ n

)

.

Therefore

i >
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

,

iff

S0u
idn−i

> K,

iff

max(S0u
idn−i −K, 0) = S0u

idn−i −K.

Combining above, we have

Lemma 4.6:

max(S0u
idn−i −K, 0) =

{

S0u
idn−i −K, iff i > α

0, iff i < α,

where

α :=
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

.

Then (4.12) becomes

c = e−rT
n
∑

i>α

n!

(n− i)!i!
pi(1 − p)n−i(S0u

idn−i −K), (4.15)

where

α =
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

. (4.16)

By defining

U1 =

n
∑

i>α

n!

(n− i)!i!
pi(1− p)n−iuidn−i (4.17)

and
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U2 =

n
∑

i>α

n!

(n− i)!i!
pi(1− p)n−i, (4.18)

(4.15) becomes

c = e−rT (S0U1 −KU2). (4.19)

We have

Lemma 4.7: If n is large,

p ≈ 0.5.

Proof: By Taylor series, since n is large,

p =
e

rT

n − e
−σ

√

√

√

√

T

n

e
σ

√

√

√

√

T

n − e
−σ

√

√

√

√

T

n

=
1 +

rT

n
+ · · · − 1 + σ

√

T

n
+ · · ·

1 + σ

√

T

n
+ · · · − 1 + σ

√

T

n
+ · · ·

≈
rT

n
+ σ

√

T

n

2σ

√

T

n

=

rT√
n
+ σ

√
T

2σ
√
T

≈ σ
√
T

2σ
√
T

=
1

2
.

It is obvious that

Corollary 4.8: If n is large,

p(1− p) ≈ 1

4
.

Hence if n is large, p is far away from 0 and 1. So B
(

n, p
)

is approximately an N
(

np, np(1−p)
)

distribution. Therefore Hull (2015, pp. 299-300) stated that if n is large,

Lemma 4.9:

U2 ≈ Φ
(σ

√
T
√
n(2p− 1) + ln(

S0

K
)

2σ
√
T
√

p(1− p)

)

,
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where

Φ(x) =
1√
2π

∫ x

−∞

e
−
t2

2 dt

is the cumulative distribution function of standard normal distribution.

Proof:

U2 =

n
∑

i>α

n!

(n− i)!i!
pi(1− p)n−i

≈ 1− Φ
( α− np
√

np(1− p)

)

= Φ(
np− α

√

np(1− p)
)

= Φ

(np− 1

2

( ln(K/S0)

σ
√

T/n
+ n

)

√

np(1− p)

)

= Φ
(σ

√
T
√
n(2p− 1) + ln(

S0

K
)

2σ
√
T
√

p(1− p)

)

.

Furthermore if n is large,

Lemma 4.10:
√
n(p− 1

2
) ≈ (r − σ2/2)

√
T

2σ
.

Proof: By Taylor series, since n is large,

√
n(p− 1

2
)

=

√
n

2

2e

rT

n − e
−σ

√

√

√

√

T

n − e
σ

√

√

√

√

T

n

e
σ

√

√

√

√

T

n − e
−σ

√

√

√

√

T

n

=

√
n

2

2(1 +
rT

n
+ · · · )− (1− σ

√

T

n
+

σ2T/n

2!
+ · · · )

1 + σ

√

T

n
+ · · · − (1− σ

√

T

n
+ · · · )

+

√
n

2

−(1 + σ

√

T

n
+

σ2T/n

2!
+ · · · )

1 + σ

√

T

n
+ · · · − (1− σ

√

T

n
+ · · · )

≈
√
n

2
× 2rT/n− σ2T/n

2σ

√

T

n

=
(r − σ2/2)

√
T

2σ
.
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Hence Hull (2015, pp. 299-300) stated that

Lemma 4.11: If n is large enough, for

α :=
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

,

it is true that

U2 :=

n
∑

i>α

n!

(n− i)!i!
pi(1− p)n−i

≈Φ(
ln(S0/K) + (r − σ2/2)T

σ
√
T

).

Proof: Since n is large enough,

U2 ≈Φ(
σ
√
T
√
n(2p− 1) + ln(

S0

K
)

2σ
√
T
√

p(1− p)
)

=Φ

(

σ
√
T
(√

n(2p(n)− 1)
)

+ ln(
S0

K
)

2σ
√
T
(

√

p(n)(1 − p(n))
)

)

=Φ

(

σ
√
T
((r − σ2/2)

√
T

σ

)

+ ln(
S0

K
)

2σ
√
T
(

√

1

4

)

)

=Φ(
ln(S0/K) + (r − σ2/2)T

σ
√
T

).

Furthermore, it is clear that

Corollary 4.12: If n is large enough, for any fixed x and

m :=
1

2

( ln(x)

σ
√

T/n
+ n

)

,

we have

n
∑

i>m

n!

(n− i)!i!
pi(1 − p)n−i

≈ Φ
( ln(1/x) + (r − σ2/2)T

σ
√
T

)

.

According to (4.17),
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U1 =

n
∑

i>α

n!

(n− i)!i!

[

pu
]i[

(1− p)d
]n−i

. (4.17b)

By setting

p′ :=
pu

pu+ (1− p)d
, (4.20)

we have

1− p′ =
(1− p)d

pu+ (1 − p)d
. (4.21)

According to (4.4),

pu+ (1 − p)d = erT/n, (4.4b)

so U1 becomes

U1 =
[

pu+ (1− p)d
]n n
∑

i>α

n!

(n− i)!i!
(p′)i(1− p′)n−i (4.22)

= erT
n
∑

i>α

n!

(n− i)!i!
(p′)i(1 − p′)n−i.

Then Hull (2015, pp. 299-300) stated that

Lemma 4.13: If n is large enough, for

α :=
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

,

it is true that

U1 :=
n
∑

i>α

n!

(n− i)!i!
pi(1− p)n−iuidn−i

≈erTΦ(
ln(S0/K) + (r + σ2/2)T

σ
√
T

).

Proof: By Taylor series and above Lemmas, since n is large enough, we have

U1 ≈erTΦ(
np′ − α

√

np′(1− p′)
)

=erTΦ(
σ
√
T
√
n(2p′ − 1) + ln(

S0

K
)

2σ
√
T
√

p′(1− p′)
)

=erTΦ(
ln(S0/K) + (r + σ2/2)T

σ
√
T

).
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Furthermore, it is clear that

Corollary 4.14: If n is large enough, for any fixed x and

m :=
1

2

( ln(x)

σ
√

T/n
+ n

)

,

we have

n
∑

i>m

n!

(n− i)!i!
pi(1− p)n−iuidn−i

≈ erTΦ
( ln(1/x) + (r + σ2/2)T

σ
√
T

)

.

Finally, we can put all results together. A European call option has value

c =e−rT (S0U1 −KU2) (4.23)

−→e−rT

[

S0e
rTΦ

( ln(S0/K) + (r + σ2/2)T

σ
√
T

)

−KΦ
( ln(S0/K) + (r − σ2/2)T

σ
√
T

)

]

,

as n −→ ∞. By rearranging the above into the standard form, the CRR model converges to the

BS model, if the number of steps in the binomial tree is large enough.

4.4 Option pricing under truncated distributions

As price boundaries are imposed in some financial markets, to evaluate the options on such markets,

an intuitive method is to introduce a doubly truncated normal distribution (Amemiya 1973).

Under a normal distribution N (µ, σ2), the probability density function of doubly truncated normal

distribution is defined as (Johnson et al. 1994):

Definition 4.3:

ϕtruncated normal(x) :=



































0, if x < a

1

σ

ϕ

(

x− µ

σ

)

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

) , if x ∈ [a, b]

0, if x > b,

where the boundaries a and b satisfy −∞ < a < b < ∞,

ϕ(x) :=
1√
2π

e
−
1

2
x2
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is the probability density function of standard normal distribution and

Φ(x) =
1√
2π

∫ x

−∞

e
−
t2

2 dt

is the cumulative distribution function of standard normal distribution.

So now we can assume that the logarithmic returns of stocks in these markets follow a trun-

cated normal distribution defined above (Friedmann & Sanddorf-Köhle 2007). Following the similar

method to the Black & Scholes’s (1973) approach, Lin et al. (2015) and Zhu & He (2018) demon-

strated some examples of option pricing models under truncated normal distributions. Their

approaches rely on the Black-Scholes partial differential equation (4.1). In Chapter 6, we will use

a truncated binomial tree to approximate the truncated normal distribution, and derive an option

pricing model.

However, the stocks returns usually behave asymmetric and non-mesokurtic (Jarrow & Rudd

1982). One normal or truncated normal distribution is not enough to explain the returns. Different

from a truncated normal distribution, another simple approach is to combine several distributions

together. For example, Ki et al. (2005) took a linear combination of 2 normal distributions and

presented a extended normal distribution model. Empirical results showed that the extended

normal distribution has better performance to explains skewness and kurtosis than plain normal

distributions (Ki et al. 2005).

However, normal distribution is a bell-shaped distribution. Friedmann & Sanddorf-Köhle (2007)

believed that in the price-bounded markets, probabilities are clustered near the boundaries. Fur-

thermore, Arak & Cook (1997) suggested the magnet effect of price boundaries. The price tends to

move towards the boundary as it is close enough to a price boundary. The boundary itself seems

like a magnet which has a powerful attraction. Using high-frequency data, Cho et al. (2003) pro-

posed an autoregressive model to empirically verify the magnet effect. By analysing the coefficient

of dummy variables related to the boundaries, Cho et al. (2003) concluded that if the price is close

to the boundaries (within 3%), there is a tendency to accelerate towards the boundaries.

To capture the magnet effect, Friedmann & Sanddorf-Köhle (2007) introduced a mixed beta

distribution model, by combine 2 beta distributions. The beta distribution family already contains

J-shaped distribution and U-shaped distribution. Furthermore, by combining 2 beta distributions,

the mixture family also accepts W-shaped distribution. Moreover, beta distribution itself is sup-

ported on a bounded interval. Hence the mixed beta distribution is a good alternative to truncated

normal distributions.

To transform those distributions into some discrete frameworks, such as binomial trees, beta

distributions require more complicated techniques than the normal distributions that we are fa-

miliar with (Ki et al. 2005). In this thesis, we will focus on normal distributions and binomial

distributions. To capture the magnet effect, we will use different techniques, instead of the beta

distributions.

Kodres (1993) suggested using a censored distribution model. The idea is that if the consensus

price is between the price boundaries, the observed price equals the consensus price. And if the

consensus price is beyond a boundary, the observed price equals the boundary value. Moreover, we

assume that the consensus price follows a geometric Brownian motion. In this thesis, we will follow
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the idea from the mixed beta distribution models and shift probability mass to the boundaries.

To focus on the normal distributions, the probability mass is clustered at the boundaries. Hence,

following Kodres’s (1993) idea, we introduce another W-shaped distribution. This distribution will

be transformed into discrete binomial trees in Chapter 7. We will introduce a re-distributed model

under this distribution.



Chapter 5

A truncated model

In Chapter 4, the standard option pricing model introduced by Black & Scholes (1973) and Cox,

Ross & Rubinstein (1979) was recalled. That model serves as a useful reference in the study of the

option pricing models in most cases. However, some markets have regulator imposed regulations.

In this chapter, we will evaluate call options on the price-bounded financial markets. Same as

standard European call options, these options may be exercised only at the expiration time T .

However, the payoff formula for these options is defined as











0, if St > S0Lu

max(St −K, 0), if St ∈ (S0Ld, S0Lu)

0, if St 6 S0Ld,

(5.1)

where S0Ld is the lower price bound and S0Lu is the upper price bound for the underlying stocks

(more details will be explained in Section 5.2 and 5.3). We assume that 0 < Ld < 1 < Lu < ∞ and

those values are given at time t = 0. Hence, there are price bounds for ST . If ST goes beyond the

bounds, option payoff becomes 0. In this chapter, we construct an absorption-vanishing process at

the imposed bounds in returns. We assume that the price follows a geometric Brownian motion in

the interior. So it is the same as the existing model. If the price ST hits or exceeds the bounds

at time t = T , the option payoff vanishes (Skorokhod 1961). This hypothetical model introduces

some mathematical preparations. Some lemmas derived in this chapter will be used later. Finally,

we can present our boundaries as the blue lines in Figure 5.1. In Figure 5.1, the horizontal axis

represents time t and the vertical axis represents security price S.

5.1 Description and preliminary steps to adapt CRR to our

truncated model

In our binomial tree, there are a total of n steps. Among these steps, we assume that there are i

steps where price moves up and j steps where price moves down. Hence we have i, j ∈ Z
+ ∪ {0},

i + j = n. So it is obvious that i ∈ Z ∩ [0, n]. In this chapter, we are going to introduce β and γ

for the upper and lower price bounds in our truncated model respectively. We will prove that they

are

54



55

(S0) (ST)
t0 T

S

S0Ld

S0Lu

Figure 5.1: The boundaries in our model.

β =
1

2

( ln(Lu)

σ
√

T/n
+ n

)

(5.2)

and

γ =
1

2

( ln(Ld)

σ
√

T/n
+ n

)

(5.3)

respectively. Additionally, we introduced (see (4.16))

α =
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

. (5.4)

All these numbers will play a role in restricting the range of i in our truncated model. According

to Proposition 4.4 and Lemma 4.5, we must have

i > α (5.5)

for strike price K, if payoff is positive. In other words, the binomial tree branches must contain at

least α steps going upward. It is clear that for given K, S0, σ and T , when n is sufficiently large,

α satisfies 0 6 α 6 n. We are going to limit our discussion to such range, specifically we have

Lemma 5.1: For any given K, S0, σ and T , to ensure 0 6 α 6 n, n must satisfy
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√
n >

∣

∣

∣

ln(K/S0)

σ
√
T

∣

∣

∣.

Proof:

0 6
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

6 n

⇐⇒ 0 6
1

2
(
ln(K/S0)

σ
√

T/n
+ n) and

1

2
(
ln(K/S0)

σ
√

T/n
+ n) 6 n,

then it is equivalent to

0 6
1

2
(
ln(K/S0)

σ
√

T/n
+ n)

⇐⇒ 0 6
ln(K/S0)

σ
√
T

+
√
n

⇐⇒ − ln(K/S0)

σ
√
T

6
√
n

and

1

2
(
ln(K/S0)

σ
√

T/n
+ n) 6 n

⇐⇒ ln(K/S0)

σ
√

T/n
6 n

⇐⇒ ln(K/S0)

σ
√
T

6
√
n.

Hence combining the above together, we have

0 6
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

6 n

⇐⇒
∣

∣

∣

ln(K/S0)

σ
√
T

∣

∣

∣ 6
√
n.

For β and γ, it is obvious that

Corollary 5.2: For any given Lu, σ and T , to ensure 0 6 β 6 n, n must satisfy

√
n >

∣

∣

∣

ln(Lu)

σ
√
T

∣

∣

∣

and

Corollary 5.3: For any given Ld, σ and T , to ensure 0 6 γ 6 n, n must satisfy

√
n >

∣

∣

∣

ln(Ld)

σ
√
T

∣

∣

∣
.
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Since S0, K, Ld, Lu, σ and T all have constant values, the above solutions show the restrictions

for the range of n, the number of steps in a binomial tree. Therefore combining the above, we

must have

Theorem 5.4: For any given Ld, σ and T , to ensure 0 6 α, γ, β 6 n, where

α =
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

, (5.6)

β =
1

2

( ln(Lu)

σ
√

T/n
+ n

)

(5.7)

and

γ =
1

2

( ln(Ld)

σ
√

T/n
+ n

)

. (5.8)

n must satisfy

√
n > max

(

∣

∣

∣

∣

ln(Ld)

σ
√
T

∣

∣

∣

∣

,

∣

∣

∣

∣

ln(Lu)

σ
√
T

∣

∣

∣

∣

,

∣

∣

∣

∣

ln(K/S0)

σ
√
T

∣

∣

∣

∣

)

.

5.2 Upper price bound

In this section, an extension of the CRR formula where price movement is bounded from the above

is introduced. If there is an upper bound 1 < Lu ≪ ∞ on the price movement, then we have

Hypothesis 5.1:

S0u
idj 6 S0Lu,

∀i, j ∈ Z
+ ∪ {0}, i+ j = n,

where u is the upward rate, d is the downward rate at each step and S0 is the initial price.

Now we show that the above is equivalent to

Lemma 5.5:

i 6
1

2

( ln(Lu)

σ
√

T/n
+ n

)

,

i.e. β :=
1

2

( ln(Lu)

σ
√

T/n
+ n

)

is an upper bound for i.

Proof: According to Proposition 4.2, since S0u
idj 6 S0Lu,

uidj =ui−jujdj

=ui−j
6 Lu

⇐⇒ (i− j) ln(u) 6 ln(Lu)

⇐⇒ i− j 6
ln(Lu)

σ
√

T/n
.
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Since i+ j = n,

2i 6
ln(Lu)

σ
√

T/n
+ n.

Hence

i 6 β :=
1

2

( ln(Lu)

σ
√

T/n
+ n

)

.

Furthermore we have

Lemma 5.6: β :=
1

2

( ln(Lu)

σ
√

T/n
+ n

)

is the least upper bound.

Proof: Proof by contradiction. We assume that there exists an arbitrarily small positive quantity

ε, such that the least upper bound is β − ε. So at time T ,

ST /S0 :=uβ−εdn−β+ε

=u2β−n−2ε

=eσ
√

T/n×(2β−n−2ε)

=e(2β−n)σ
√

T/n/e2εσ
√

T/n

=Lu/e
2εσ

√
T/n.

Since 2εσ
√

T/n > 0, then ST < S0Lu. It is a contradiction to our assumption.

Then using β as the upper bound for i, we re-write (4.12) into

c =e−rT

⌊β⌋
∑

i=0

n!

(n− i)!i!
pi(1 − p)n−imax(S0u

idn−i −K, 0) (5.9)

=e−rT

⌊β⌋
∑

i=0

b(i)fpayoff(i),

where floor of β, ⌊β⌋ := max{m ∈ Z|m 6 β}.
According to Proposition 4.4 and Lemma 4.5, it is clear that

n
∑

i=0

fpayoff(i) =

n
∑

i>α

f(i), (5.10)

where

α =
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

and
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f(i) := S0u
idn−i −K.

Now we split our discussion into the following cases:

1. K 6 S0Lu.

2. K > S0Lu.

For Case 2, it is obvious that for any ST in (0, S0Lu], ST is less than K. According to

Proposition 4.4 and Lemma 4.5, call option value is zero for such ST . For Case 1, we have

Lemma 5.7:

α 6 β ⇐⇒ K 6 S0Lu.

Proof:

α 6 β

⇐⇒ 1

2
(
ln(K/S0)

σ
√

T/n
+ n) 6

1

2
(
ln(Lu)

σ
√

T/n
+ n)

⇐⇒ K

S0
6 Lu

⇐⇒ K 6 S0Lu.

As α 6 β, according to Proposition 4.4 and Lemma 4.5, we also have

n
∑

i>⌊β⌋

fpayoff(i) =

n
∑

i>⌊β⌋

f(i). (5.11)

Then (4.12) becomes

c :=e−rT

⌊β⌋
∑

i=0

b(i)fpayoff(i) (5.12)

=e−rT
(

n
∑

i=0

b(i)fpayoff(i)−
n
∑

i>⌊β⌋

b(i)fpayoff (i)
)

=e−rT
n
∑

i=0

b(i)fpayoff(i)− e−rT
n
∑

i>⌊β⌋

b(i)fpayoff(i)

=:e−rT
n
∑

i>α

b(i)f(i)− c′.

For c′, we have
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c′ :=e−rT
n
∑

i>⌊β⌋

b(i)f(i) (5.13)

=e−rT
n
∑

i′>⌊β⌋

n!

(n− i′)!i′!
pi

′

(1− p)n−i′ (S0u
i′dn−i′ −K)

=e−rT
(

S0

n
∑

i′>⌊β⌋

n!

(n− i′)!i′!
pi

′

(1− p)n−i′ui′dn−i′

−K

n
∑

i′>⌊β⌋

n!

(n− i′)!i′!
pi

′

(1− p)n−i′
)

and

β =
1

2
(
ln(Lu)

σ
√

T/n
+ n). (5.14)

Then we can define

U ′
1 =

n
∑

i′>⌊β⌋

n!

(n− i′)!i′!
pi

′

(1− p)n−i′ui′dn−i′ (5.15)

and

U ′
2 =

n
∑

i′>⌊β⌋

n!

(n− i′)!i′!
pi

′

(1− p)n−i′ . (5.16)

So (5.13) can be re-written as

c′ = e−rT (S0U
′
1 −KU ′

2). (5.17)

According to Corollary 4.14 and Corollary 4.12, if n is large enough, (5.15) and (5.16) become

U ′
1 ≈ erTΦ

( ln(1/Lu) + (r + σ2/2)T

σ
√
T

)

(5.18)

and

U ′
2 ≈ Φ

( ln(1/Lu) + (r − σ2/2)T

σ
√
T

)

. (5.19)

Then (5.13) becomes

c′ −→ e−rT

(

S0e
rTΦ

( ln(1/Lu) + (r + σ2/2)T

σ
√
T

)

(5.20)

−KΦ
( ln(1/Lu) + (r − σ2/2)T

σ
√
T

)

)

,
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as n −→ ∞. By combining the above results together, since n is large enough, we obtain

Theorem 5.8: If K 6 S0Lu (Case 1),

c = S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d3) +Ke−rTΦ(d4),

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

,

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

If K > S0Lu (Case 2),

c = 0.

Proof: If K > S0Lu (Case 2), then α > β. Since the lower bound of summation is greater than

the upper bound of summation in
β
∑

i>α

f(i), we have

β
∑

i>α

f(i) = 0,

hence c = 0. If K 6 S0Lu (Case 1), according to Hull’s (2015) results and Theorem 4.1, it is clear

that

e−rT
n
∑

i>α

b(i)f(i) = S0Φ(d1)−Ke−rTΦ(d2),

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

and

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

.

According to (5.13), if n is large enough,

c′ = S0Φ(d3)−Ke−rTΦ(d4),

where
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d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

Hence

c =e−rT
n
∑

i=0

f(i)− c′

=S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d3) +Ke−rTΦ(d4).

5.3 Lower price bound

In this section, we follow the same procedure as the previous section and introduce another exten-

sion of the CRR formula where price movement is bounded from below. We assume that there is

a lower bound Ld ∈ (0, 1) at time t = T , then we have

Hypothesis 5.2:

S0Ld 6 S0u
idj ,

∀i, j ∈ Z
+ ∪ {0}, i+ j = n.

The above is equivalent to

Lemma 5.9:

γ :=
1

2

( ln(Ld)

σ
√

T/n
+ n

)

is a lower bound.

Proof: According to Proposition 4.2, since S0Ld 6 S0u
idj , we could get

ui−j
> Ld (5.21)

⇐⇒(i − j) ln(u) > ln(Ld)

⇐⇒i − j >
ln(Ld)

σ
√

T/n
.

Since i+ j = n, we have

i >
1

2

( ln(Ld)

σ
√

T/n
+ n

)

.
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Furthermore, we have

Lemma 5.10: γ =
1

2

( ln(Ld)

σ
√

T/n
+ n

)

is the greatest lower bound.

Proof: Proof by contradiction. We assume that there exists an arbitrarily small positive quantity

ε, such that the greatest lower bound is γ + ε. So at time T ,

ST /S0 :=uγ+εdn−γ−ε

=u2γ−n+2ε

=eσ
√

T/n×(2γ−n+2ε)

=e(2γ−n)σ
√

T/n × e2εσ
√

T/n

=Ld × e2εσ
√

T/n.

Since 2εσ
√

T/n > 0, then ST > S0Ld. It is a contradiction to our assumption.

Since γ is a lower bound for i, we must have that for any i 6 γ, the value of our payoff is zero.

To satisfy this condition, we can define

ftruncated payoff(i) :=

{

fpayoff(i) , if i > γ

0 , if i 6 γ.
(5.22)

Now we split our discussion into the following cases:

1. K < S0Ld.

2. K > S0Ld.

For Case 1, we have

Lemma 5.11:

α < γ ⇐⇒ K < S0Ld.

Proof:

α < γ

⇐⇒ 1

2
(
ln(K/S0)

σ
√

T/n
+ n) <

1

2

( ln(Ld)

σ
√

T/n
+ n

)

⇐⇒ K

S0
< Ld

⇐⇒ K < S0Ld.

So i > ⌈γ⌉ =⇒ i > α, where ceiling of γ, ⌈γ⌉ := min{m ∈ Z|m > γ}. Hence if i > ⌈γ⌉,
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ftruncated payoff(i) =fpayoff(i) (5.23)

= f(i).

According to (5.22), for any i 6 ⌈γ⌉, ftruncated payoff(i) is zero. Then (4.12) becomes

c =e−rT
n
∑

i=0

b(i)ftruncated payoff(i) (5.24)

=e−rT
α
∑

i=0

b(i)ftruncated payoff(i) + e−rT

⌈γ⌉
∑

i>α

b(i)ftruncated payoff(i)

+e−rT
n
∑

i>⌈γ⌉

b(i)ftruncated payoff(i)

=0 + 0 + e−rT
n
∑

i>⌈γ⌉

b(i)f(i)

=:c′.

For c′, we have

c′ :=e−rT
n
∑

i>⌈γ⌉

b(i)f(i) (5.25)

=e−rT
(

S0

n
∑

i′>⌈γ⌉

n!

(n− i′)!i′!
pi

′

(1− p)n−i′ui′dn−i′

−K
n
∑

i′>⌈γ⌉

n!

(n− i′)!i′!
pi

′

(1− p)n−i′
)

and

γ =
1

2

( ln(Ld)

σ
√

T/n
+ n

)

. (5.26)

We can define

U ′
1 =

n
∑

i′>⌈γ⌉

n!

(n− i′)!i′!
pi

′

(1− p)n−i′ui′dn−i′ (5.27)

and

U ′
2 =

n
∑

i′>⌈γ⌉

n!

(n− i′)!i′!
pi

′

(1 − p)n−i′ . (5.28)

then re-arrange the above as

c′ = e−rT (S0U
′
1 −KU ′

2). (5.29)
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According to Corollary 4.14 and Corollary 4.12, if n is large enough, (5.27) and (5.28) become

U ′
1 −→ erTΦ

( ln(1/Ld) + (r + σ2/2)T

σ
√
T

)

(5.30)

and

U ′
2 −→ Φ

( ln(1/Ld) + (r − σ2/2)T

σ
√
T

)

, (5.31)

as n −→ ∞.

For Case 2, K > S0Ld, it is obvious that if ST ∈ [K,∞), ST is greater than S0Ld. Hence

ftruncated payoff(i) = fpayoff (i) for any i in this case. And again ST > K, then ftruncated payoff(i) =

f(i). By combining the above results together, since n is large enough, we obtain

Theorem 5.12: If K < S0Ld (Case 1),

c′ = S0Φ(d1)−Ke−rTΦ(d2),

where

d1 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

and

d2 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

.

If S0Ld 6 K (Case 2), the original CRR model should be used, i.e.

c′ = S0Φ(d1)−Ke−rTΦ(d2),

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

and

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

.

Proof: If K < S0Ld (Case 1),

c′ =e−rT (S0U
′
1 −KU ′

2)

=e−rT

(

S0e
rTΦ

( ln(1/Ld) + (r + σ2/2)T

σ
√
T

)

−KΦ
( ln(1/Ld) + (r − σ2/2)T

σ
√
T

)

)

=S0Φ(d1)−Ke−rTΦ(d2),
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where

d1 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

and

d2 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

.

If S0Ld 6 K (Case 2), according to Proposition 4.4 and Lemma 4.5, it is clear that for any

i ∈ [γ, α], we have max(S0u
i′dn−i′ −K, 0) = 0, so

α
∑

i>γ

f(i) = 0.

Hence according to Hull’s (2015) results and Theorem 4.1, it is clear that

c′ = S0Φ(d1)−Ke−rTΦ(d2),

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

and

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

.

5.4 Combine the upper and lower bounds

In this section, a stock market where both upper and lower bounds exist for the underlying security

price movements will be analysed. For the price bounds S0Ld and S0Lu, since 0 < Ld < 1 < Lu ≪
∞, we always have S0Ld < S0Lu. So we could have three possible situations for strike price K:

1. K < S0Ld (upper bound Case 1 and lower bound Case 1).

2. S0Ld 6 K 6 S0Lu (upper bound Case 1 and lower bound Case 2).

3. S0Lu < K (upper bound Case 2 and lower bound Case 2).

These situations will be discussed separately. For Situation 1, we can combine upper bound

Case 1 result and lower bound Case 1 result, so the payoff formula becomes Figure 5.2.

Hence we have

Theorem 5.13: If K < S0Ld (Situation 1),

c = S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d3) +Ke−rTΦ(d4),
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Figure 5.2: Payoff: K < S0Ld.

where

d1 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

,

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

Proof: K < S0Ld =⇒ α < γ, according to (5.22),

γ
∑

i>α

ftruncated payoff(i) = 0.

Hence according to Theorem 5.8 Case 1 result and Theorem 5.12 Case 1 result, (4.12) becomes
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c =e−rT
n
∑

i=0

b(i)ftruncated payoff(i)

=e−rT

⌊β⌋
∑

i>⌈γ⌉

f(i)

=e−rT
n
∑

i>⌈γ⌉

f(i)− e−rT
n
∑

i>⌊β⌋

f(i)

=S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d3) +Ke−rTΦ(d4),

where

d1 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

,

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

For Situation 3, we can combine upper bound Case 2 result and lower bound Case 2 result, so

we have

Theorem 5.14: If S0Lu < K (Situation 3),

c = 0.

Proof: S0Lu < K =⇒ β < α, since the lower bound of summation is greater than the upper bound

of summation in
β
∑

i>α

f(i), we have

β
∑

i>α

f(i) = 0,

hence c = 0 .

And for Situation 2, we can combine upper bound Case 1 result and lower bound Case 2 result,

so the amount of payoff is plotted in Figure 5.3.

Hence we have

Theorem 5.15: If S0Ld 6 K 6 S0Lu (Situation 2),
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Figure 5.3: Payoff: S0Ld 6 K 6 S0Lu.

c = S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d3) +Ke−rTΦ(d4),

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

,

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

Proof: S0Ld 6 K 6 S0Lu =⇒ γ 6 α 6 β, so i 6 γ =⇒ i 6 α. Then according to Proposition 4.4

and Lemma 4.5, we have that for any i < α, fpayoff (i) = 0. So
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α
∑

i>γ

b(i)fpayoff(i) = 0.

Hence according to Theorem 5.8 Case 1 result and Theorem 5.12 Case 2 result, (4.12) becomes

c =e−rT
n
∑

i=0

b(i)ftruncated payoff(i)

=e−rT
n
∑

i>α

b(i)f(i)− e−rT
n
∑

i>β

b(i)f(i)

=S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d3) +Ke−rTΦ(d4),

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

,

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.



Chapter 6

Re-weighting model

6.1 Introduction

In this chapter, we will discuss another type of European call option. Similar to the discussions

made in Chapter 5, the underlying asset for this option has boundaries imposed on its price

movements: S0Ld and S0Lu, where Ld < Lu. Suppose that the market regulator dictates that

if the underlying stock price ST at time t = T goes beyond the stated boundaries, the buyers of

this option will get a refund, and the option contract is annulled. The refund value equals the

future value at time T of its initial cost c. In other words, this option has a payoff formula which

is defined as











erT c, if ST > S0Lu

max(ST −K, 0), if ST ∈ (S0Ld, S0Lu)

erT c, if ST 6 S0Ld,

(6.1)

where c is the European call option initial cost at time t = 0. In this chapter, our payoff formula

is an implicit formula. Right now, we don’t know the exact value of c. Now let me introduce some

technical preparations here. The following lemmas will be used later. For our n-step binomial tree

defined in Chapter 4, we introduce that for S0Lu and S0u
idn−i (which equals ST ),

Lemma 6.1: S0u
idn−i > S0Lu ⇐⇒ i > β,

where

β :=
1

2

( ln(Lu)

σ
√

T/n
+ n

)

.

Proof: According to Lemma 5.5,

S0u
idn−i > S0Lu

⇐⇒ i >
1

2

( ln(Lu)

σ
√

T/n
+ n

)

.

71
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For K and S0u
idn−i,

Lemma 6.2: S0u
idn−i > K ⇐⇒ i > α,

where

α :=
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

.

Proof: According to Lemma 4.5,

S0u
idn−i > K

⇐⇒ i >
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

.

And for S0Ld and S0u
idn−i,

Lemma 6.3: S0u
idn−i > S0Ld ⇐⇒ i > γ,

where

γ :=
1

2

( ln(Ld)

σ
√

T/n
+ n

)

.

Proof: According to Lemma 5.9,

S0u
idn−i > S0Ld

⇐⇒ i >
1

2

( ln(Ld)

σ
√

T/n
+ n

)

.

Now we use these lemmas to re-write (6.1) into three cases:

• K ∈ (S0Ld, S0Lu), i.e. α ∈ [γ, β].

• K < S0Ld, i.e. α < γ.

• K > S0Lu, i.e. α > β.

We will discuss them respectively.

6.2 If K ∈ (S0Ld, S0Lu)

If K ∈ (S0Ld, S0Lu), it is obvious that (S0Ld, S0Lu) can be divided into two intervals, (S0Ld,K]

and (K,S0Lu). If S0u
idn−i ∈ (S0Ld,K], then

S0u
idn−i −K 6 0, (6.2)
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hence

max(S0u
idn−i −K, 0) = 0. (6.3)

If S0u
idn−i ∈ (K,S0Lu), then

S0u
idn−i −K > 0, (6.4)

hence

max(S0u
idn−i −K, 0) = S0u

idn−i −K. (6.5)

Therefore if K ∈ (S0Ld, S0Lu), (6.1) becomes























erT c, if S0u
idn−i > S0Lu

S0u
idn−i −K := f(i), if S0u

idn−i ∈ (K,S0Lu)

0, if S0u
idn−i ∈ (S0Ld,K]

erT c, if S0u
idn−i 6 S0Ld.

(6.6)

According to Lemmas 6.1, 6.2 and 6.3, the above payoff formula (also shown in Figure 6.1) can

be re-written as

ftruncated payoff(i) :=























erT c, if i > β

f(i), if i ∈ (α, β)

0, if i ∈ (γ, α]

erT c, if i 6 γ.

(6.7)

According to CRR model, our call option is priced as

c = e−rT
n
∑

i=0

b(i)ftruncated payoff(i) (6.8)

= e−rT
[

⌊γ⌋
∑

i=0

b(i)ftruncated payoff(i)

+

⌈α⌉
∑

i=⌊γ⌋

b(i)ftruncated payoff(i)

+

⌊β⌋
∑

i=⌈α⌉

b(i)ftruncated payoff(i)

+

n
∑

i=⌊β⌋

b(i)ftruncated payoff(i)
]

= e−rT
[

⌊γ⌋
∑

i=0

b(i)erT c+

⌊β⌋
∑

i=⌈α⌉

b(i)f(i) +

n
∑

i=⌊β⌋

b(i)erT c
]

= e−rT

⌊β⌋
∑

i=⌈α⌉

b(i)f(i) + e−rT
[

⌊γ⌋
∑

i=0

b(i) +

n
∑

i=⌊β⌋

b(i)
]

erT c
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Figure 6.1: Payoff: K ∈ (S0Ld, S0Lu).

= e−rT

⌊β⌋
∑

i=⌈α⌉

b(i)f(i) +
[

⌊γ⌋
∑

i=0

b(i) +

n
∑

i=⌊β⌋

b(i)
]

c.

Rearranging the above, we have

c
[

1−
⌊γ⌋
∑

i=0

b(i)−
n
∑

i=⌊β⌋

b(i)
]

= e−rT

⌊β⌋
∑

i=⌈α⌉

b(i)f(i). (6.9)

Now our model becomes explicit for the option cost c. Since for binomial distribution probability

mass function

b(i) :=
n!

(n− i)!i!
pi(1− p)n−i,

we have

n
∑

i=0

b(i) (6.10)
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:=
n
∑

i=0

n!

(n− i)!i!
pi(1− p)n−i

=1.

Hence in the left hand side of (6.9),

1−
⌊γ⌋
∑

i=0

b(i)−
n
∑

i=⌊β⌋

b(i) =

⌊β⌋
∑

i=⌊γ⌋

b(i). (6.11)

Therefore (6.9) becomes

c

⌊β⌋
∑

i=⌊γ⌋

b(i) = e−rT

⌊β⌋
∑

i=⌈α⌉

b(i)f(i). (6.12)

For the left hand side of (6.12), we have

Lemma 6.4:

⌊β⌋
∑

i=⌊γ⌋

b(i) = ̺,

where

̺ :≈ Φ
( ln(1/Ld) + (r − σ2/2)T

σ
√
T

)

− Φ
( ln(1/Lu) + (r − σ2/2)T

σ
√
T

)

.

Proof: According to (5.31),

n
∑

i=⌊γ⌋

b(i)

≈Φ
( ln(1/Ld) + (r − σ2/2)T

σ
√
T

)

.

According to (5.19),

n
∑

i=⌊β⌋

b(i)

≈Φ
( ln(1/Lu) + (r − σ2/2)T

σ
√
T

)

.

Hence
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⌊β⌋
∑

i=⌊γ⌋

b(i)

=

n
∑

i=⌊γ⌋

b(i)−
n
∑

i=⌊β⌋

b(i)

≈Φ
( ln(1/Ld) + (r − σ2/2)T

σ
√
T

)

− Φ
( ln(1/Lu) + (r − σ2/2)T

σ
√
T

)

.

For the right hand side of (6.12), according to Theorem 5.15,

e−rT

⌊β⌋
∑

i=⌈α⌉

b(i)f(i) (6.13)

≈S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d5) +Ke−rTΦ(d6),

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

,

d5 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d6 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

Therefore combining the above, since n is large enough, we have

Theorem 6.5: If K ∈ (S0Ld, S0Lu), our European call option is priced as

c =
1

̺

(

S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d5) +Ke−rTΦ(d6)
)

,

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

,
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d4 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

,

d5 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

,

d6 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

and

̺ = Φ(d4)− Φ(d6).

Proof: According to (6.12),

c =1
/(

⌊β⌋
∑

i=⌊γ⌋

b(i)
)

× e−rT

⌊β⌋
∑

i=⌈α⌉

b(i)f(i)

=
1

̺

(

S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d5) +Ke−rTΦ(d6)
)

.

6.3 If K 6 S0Ld

If K 6 S0Ld, then for any ST ∈ (S0Ld, S0Lu), ST is always greater than K. Hence if ST ∈
(S0Ld, S0Lu), then

max(ST −K, 0) = ST −K. (6.14)

Therefore if K 6 S0Ld, (6.1) becomes











erT c, if S0u
idn−i > S0Lu

f(i), if S0u
idn−i ∈ (S0Ld, S0Lu)

erT c, if S0u
idn−i 6 S0Ld.

(6.15)

According to Lemma 6.1, 6.2 and 6.3, the above payoff formula (also shown in Figure 6.2) can

be re-written as

ftruncated payoff(i) :=











erT c, if i > β

f(i), if i ∈ (γ, β)

erT c, if i 6 γ.

(6.16)

According to CRR model, our call option is priced as
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Figure 6.2: Payoff: K 6 S0Ld.

c = e−rT b(i)ftruncated payoff(i) (6.17)

= e−rT
[

⌊γ⌋
∑

i=0

b(i)ftruncated payoff(i)

+

⌊β⌋
∑

i=⌊γ⌋

b(i)ftruncated payoff(i)

+

n
∑

i=⌊β⌋

b(i)ftruncated payoff(i)
]

= e−rT
[

⌊γ⌋
∑

i=0

b(i)erT c+

⌊β⌋
∑

i=⌊γ⌋

b(i)f(i) +

n
∑

i=⌊β⌋

b(i)erT c
]

= e−rT

⌊β⌋
∑

i=⌊γ⌋

b(i)f(i) + e−rT
[

⌊γ⌋
∑

i=0

b(i) +

n
∑

i=⌊β⌋

b(i)
]

erT c

= e−rT

⌊β⌋
∑

i=⌊γ⌋

b(i)f(i) +
[

⌊γ⌋
∑

i=0

b(i) +

n
∑

i=⌊β⌋

b(i)
]

c.

According to (6.11), (6.17) becomes
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c

⌊β⌋
∑

i=⌊γ⌋

b(i) = e−rT

⌊β⌋
∑

i=⌊γ⌋

b(i)f(i). (6.18)

Now our model becomes explicit for the option cost c. For the left hand side of (6.18), according

to Lemma 6.4,

⌊β⌋
∑

i=⌊γ⌋

b(i) = ̺. (6.19)

For the right hand side of (6.18), according to Theorem 5.13,

e−rT

⌊β⌋
∑

i=⌊γ⌋

b(i)f(i) (6.20)

≈S0Φ(d3)−Ke−rTΦ(d4)− S0Φ(d5) +Ke−rTΦ(d6),

where

d3 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

,

d4 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

,

d5 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d6 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

Therefore, since n is large enough, we have

Theorem 6.6: If K 6 S0Ld, our European call option is priced as

c =
1

̺

(

S0Φ(d3)−Ke−rTΦ(d4)− S0Φ(d5) +Ke−rTΦ(d6)
)

,

where

d3 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

,

d4 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

,
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d5 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

,

d6 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

and

̺ = Φ(d4)− Φ(d6).

Proof: According to (6.18),

c =1
/(

⌊β⌋
∑

i=⌊γ⌋

b(i)
)

× e−rT

⌊β⌋
∑

i=⌊γ⌋

b(i)f(i)

=
1

̺

(

S0Φ(d3)−Ke−rTΦ(d4)− S0Φ(d5) +Ke−rTΦ(d6)
)

.

6.4 If K > S0Lu

If K > S0Lu, then for any ST ∈ (S0Ld, S0Lu), we always have

max(ST −K, 0) = 0. (6.21)

Therefore according to Lemma 6.1, 6.2 and 6.3, our payoff formula (also shown in Figure 6.3)

can be re-written as

ftruncated payoff(i) :=











erT c, if i > β

0, if i ∈ (γ, β)

erT c, if i 6 γ.

(6.22)

It is obvious that

Theorem 6.7: If K > S0Lu, our European call option has value

c = 0.

Proof: According to CRR model, our call option is priced as

c =e−rT b(i)ftruncated payoff(i)

=e−rT
[

⌊γ⌋
∑

i=0

b(i)ftruncated payoff(i)

+

⌊β⌋
∑

i=⌊γ⌋

b(i)ftruncated payoff(i)



81

S0Ld KS0Lu
St

0, erTc

Pa
yo

ff

Figure 6.3: Payoff: K > S0Lu.

+
n
∑

i=⌊β⌋

b(i)ftruncated payoff(i)
]

=e−rT
[

⌊γ⌋
∑

i=0

b(i)erT c+

⌊β⌋
∑

i=⌊γ⌋

b(i)× 0 +

n
∑

i=⌊β⌋

b(i)erT c
]

=0 +
[

⌊γ⌋
∑

i=0

b(i) +

n
∑

i=⌊β⌋

b(i)
]

c.

Hence according to (6.11) and Lemma 6.4, we have

c× ̺ = 0.

Since Ld < Lu, according to Lemma 6.4, it is clear that ̺ > 0. Therefore c = 0.

6.5 Summary

Finally, we summarise our findings together. For a European call option whose payoff formula

satisfies (6.1), we have
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Theorem 6.8: If K 6 S0Ld, the European call option is priced as

c =
1

̺

(

S0Φ(d3)−Ke−rTΦ(d4)− S0Φ(d5) +Ke−rTΦ(d6)
)

.

If K ∈ (S0Ld, S0Lu), the European call option is priced as

c =
1

̺

(

S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d5) +Ke−rTΦ(d6)
)

.

If K > S0Lu, the European call option has value

c = 0,

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

,

d3 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

,

d4 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

,

d5 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

,

d6 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

and

̺ = Φ(d4)− Φ(d6).



Chapter 7

Re-distributed model

7.1 Introduction

In this chapter, we assume that the stock economic value Vt := S0u
idj follows a geometric Brownian

motion for any time t ∈ [0, T ]. However the market regulator imposes price bounds S0Ld and S0Lu

for the market price Pt, where 0 < Ld < 1 < Lu. Hence combining the above, we set

Hypothesis 7.1: At time t = T , the market price

PT =











S0Lu, if VT := S0u
idn−i > S0Lu

VT , if VT ∈ [S0Ld, S0Lu]

S0Ld, if VT < S0Ld.

According to Lemmas 6.1, 6.2 and 6.3, Hypothesis 7.1 is equivalent to

PT =











S0Lu, if i > ⌊β⌋
S0u

idn−i, if i ∈
[

⌈γ⌉, ⌊β⌋
]

S0Ld, if i < ⌈γ⌉.
(7.1)

Hence the stock’s logarithmic returns follow the following probability distribution

btruncated(i) =































0, if VT > S0Lu
∑n

j=⌊β⌋+1 b(j), if VT = S0Lu

b(i), if VT ∈ [S0Ld, S0Lu]
∑⌈γ⌉−1

j=0 b(j), if VT = S0Ld

0, if VT < S0Ld,

(7.2)

where

b(i) :=
n!

(n− i)!i!
pi(1− p)n−i.

Using Lemmas 6.1, 6.2 and 6.3, the above (also shown in Figure 7.1) can be re-written as

83
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btruncated(i) =































0, if i > ⌊β⌋+ 2
∑n

j=⌊β⌋+1 b(j), if i = ⌊β⌋+ 1

b(i), if i ∈
[

⌈γ⌉, ⌊β⌋
]

∑⌈γ⌉−1
j=0 b(j), if i = ⌈γ⌉ − 1

0, if i 6 ⌈γ⌉ − 2.

(7.3)

⌈γ⌉ ⌊β⌋
i

⌉e
ns

ity

⌋alue
⌊rice

Figure 7.1: Probability density: economic value vs market price.

In this chapter, we will study a plain European call option for this kind of stocks. The option

payoff formula is defined as

ftruncated payoff(i) :=

{

f(i) := PT −K, if PT > K

0, if PT 6 K.
(7.4)

In the following sections, we will explore three possible situations for the strike price K.

7.2 If K ∈ (S0Ld, S0Lu)

According to CRR model, our call option is priced as
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c = e−rT
n
∑

i=0

btruncated(i)ftruncated payoff(i). (7.5)

If S0Ld < K < S0Lu, it is obvious that

1

2

( ln(Ld)

σ
√

T/n
+ n

)

<
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

<
1

2

( ln(Lu)

σ
√

T/n
+ n

)

. (7.6)

According to (4.16), Lemmas 5.5 and 5.9, the above becomes

γ < α < β. (7.7)

Hence (7.5) becomes

c = e−rT
[

⌈γ⌉−2
∑

i=0

btruncated(i)ftruncated payoff(i) (7.8)

+btruncated
(

⌈γ⌉ − 1
)

ftruncated payoff

(

⌈γ⌉ − 1
)

+

⌊α⌋
∑

i=⌈γ⌉

btruncated(i)ftruncated payoff(i)

+

⌊β⌋
∑

i=⌊α⌋+1

btruncated(i)ftruncated payoff(i)

+btruncated
(

⌊β⌋+ 1
)

ftruncated payoff

(

⌊β⌋+ 1
)

+
n
∑

i=⌊β⌋+2

btruncated(i)ftruncated payoff(i)
]

.

Now we discuss these terms one by one. Firstly for any i ∈
[

0, ⌈γ⌉ − 2
]

, according to (7.3),

btruncated(i) = 0. (7.9)

Hence

⌈γ⌉−2
∑

i=0

btruncated(i)ftruncated payoff(i) = 0. (7.10)

Secondly for any i ∈
[

⌈γ⌉ − 1, ⌊α⌋
]

, according to Lemmas 6.2 and 6.3,

VT ∈ [S0Ld,K]. (7.11)

Moreover, since K ∈ (S0Ld, S0Lu), and according to Hypothesis 7.1,

PT = VT ∈ [S0Ld,K]. (7.12)

Furthermore, according to (7.4),
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ftruncated payoff(i) = 0. (7.13)

Hence

btruncated
(

⌈γ⌉ − 1
)

ftruncated payoff

(

⌈γ⌉ − 1
)

= 0 (7.14)

and

⌊α⌋
∑

i=⌈γ⌉

btruncated(i)ftruncated payoff(i) = 0. (7.15)

Thirdly for any i ∈
[

⌊α⌋+ 1, ⌊β⌋
]

, according to (7.3),

btruncated(i) = b(i). (7.16)

On the other hand, according to Lemmas 6.1 and 6.2,

VT ∈ (K,S0Lu). (7.17)

Since K ∈ (S0Ld, S0Lu), and according to Hypothesis 7.1,

PT = VT ∈ (K,S0Lu). (7.18)

In addition, according to (7.4),

ftruncated payoff(i) = f(i). (7.19)

Hence

⌊β⌋
∑

i=⌊α⌋+1

btruncated(i)ftruncated payoff(i) =

⌊β⌋
∑

i=⌊α⌋+1

b(i)f(i). (7.20)

Fourthly for i = ⌊β⌋+ 1, according to (7.3),

btruncated(i) =

n
∑

j=⌊β⌋+1

b(j). (7.21)

On the other hand, according to Lemma 6.1,

VT = S0Lu. (7.22)

Since K ∈ (S0Ld, S0Lu), and according to Hypothesis 7.1,

PT = S0Lu. (7.23)

Furthermore, according to (7.4),

ftruncated payoff(i) = S0Lu −K. (7.24)
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Hence

btruncated
(

⌊β⌋+ 1
)

ftruncated payoff

(

⌊β⌋+ 1
)

(7.25)

= (S0Lu −K)×
n
∑

j=⌊β⌋+1

b(j).

Fifthly for any i ∈
[

⌊β⌋+ 2, n
]

, according to (7.3),

btruncated(i) = 0. (7.26)

Hence

n
∑

i=⌊β⌋+2

btruncated(i)ftruncated payoff(i) = 0. (7.27)

Combining all of the above, since n is large enough, we have

Theorem 7.1: If K ∈ (S0Ld, S0Lu), our option is priced as

c = S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d5) + e−rTS0LuΦ(d6),

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

,

d5 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d6 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

Proof: According to Theorem 5.15,

e−rT

⌊β⌋
∑

i=⌊α⌋

b(i)f(i)

−→S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d5) +Ke−rTΦ(d6),

as n −→ ∞, where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,
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d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

,

d5 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d6 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

Additionally, according to (5.19),

n
∑

j=⌊β⌋+1

b(j) −→ Φ(d6),

as n −→ ∞.

Hence (7.8) becomes

c =e−rT

⌊β⌋
∑

i=⌊α⌋+1

b(i)f(i) + e−rT (S0Lu −K)×
n
∑

j=⌊β⌋+1

b(j).

According to (7.4) and Lemma 6.2, we obtain that

f
(

⌊α⌋
)

= 0.

Hence

c −→e−rT

⌊β⌋
∑

i=⌊α⌋

b(i)f(i) + e−rT (S0Lu −K)

n
∑

j=⌊β⌋+1

b(j)

=S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d5) +Ke−rTΦ(d6)

+e−rT (S0Lu −K)Φ(d6)

=S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d5) + e−rTS0LuΦ(d6),

as n −→ ∞.

7.3 If K 6 S0Ld

If K 6 S0Ld, and since S0Ld < S0Lu it is obvious that

1

2

( ln(K/S0)

σ
√

T/n
+ n

)

6
1

2

( ln(Ld)

σ
√

T/n
+ n

)

<
1

2

( ln(Lu)

σ
√

T/n
+ n

)

. (7.28)

According to (4.16), Lemmas 5.5 and 5.9, the above becomes
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α 6 γ < β. (7.29)

As a result, according to CRR model, our call option is priced as

c = e−rT
n
∑

i=0

btruncated(i)ftruncated payoff(i) (7.30)

= e−rT
[

⌊α⌋
∑

i=0

btruncated(i)ftruncated payoff(i)

+

⌈γ⌉−2
∑

i=⌊α⌋+1

btruncated(i)ftruncated payoff(i)

+btruncated
(

⌈γ⌉ − 1
)

ftruncated payoff

(

⌈γ⌉ − 1
)

+

⌊β⌋
∑

i=⌈γ⌉

btruncated(i)ftruncated payoff(i)

+btruncated
(

⌊β⌋+ 1
)

ftruncated payoff

(

⌊β⌋+ 1
)

+

n
∑

i=⌊β⌋+2

btruncated(i)ftruncated payoff(i)
]

.

Now we discuss these terms one by one. Firstly for any i < ⌈γ⌉ − 1, according to (7.3),

btruncated(i) = 0, (7.31)

and since α 6 γ, then

⌊α⌋
∑

i=0

btruncated(i)ftruncated payoff(i) = 0 (7.32)

and

⌈γ⌉−2
∑

i=⌊α⌋+1

btruncated(i)ftruncated payoff(i) = 0. (7.33)

Secondly for i = ⌈γ⌉ − 1, according to (7.3),

btruncated(i) =

⌈γ⌉−1
∑

j=0

b(j). (7.34)

And according to Lemma 6.3,

VT = S0Ld. (7.35)

Since K 6 S0Ld, and according to Hypothesis 7.1,

PT = S0Ld. (7.36)
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Furthermore, according to (7.4),

ftruncated payoff(i) = S0Ld −K. (7.37)

Hence

btruncated
(

⌈γ⌉ − 1
)

ftruncated payoff

(

⌈γ⌉ − 1
)

(7.38)

= (S0Ld −K)×
⌈γ⌉−1
∑

j=0

b(j).

Thirdly for any i ∈
[

⌈γ⌉, ⌊β⌋
]

, according to (7.3),

btruncated(i) = b(i). (7.39)

On the other hand, according to Lemmas 6.1 and 6.3,

VT ∈ (S0Ld, S0Lu). (7.40)

Since K 6 S0Ld, and according to Hypothesis 7.1,

PT = VT ∈ (S0Ld, S0Lu). (7.41)

Furthermore, since PT > S0Ld > K, according to (7.4),

ftruncated payoff(i) = f(i). (7.42)

Hence

⌊β⌋
∑

i=⌈γ⌉

btruncated(i)ftruncated payoff(i) =

⌊β⌋
∑

i=⌈γ⌉

b(i)f(i). (7.43)

Fourthly For i = ⌊β⌋+ 1, according to (7.3),

btruncated(i) =

n
∑

j=⌊β⌋+1

b(j). (7.44)

In addition, according to Lemma 6.1,

VT = S0Lu. (7.45)

According to Hypothesis 7.1,

PT = S0Lu. (7.46)

Furthermore, since K 6 S0Ld < S0Lu = PT , and according to (7.4),

ftruncated payoff(i) = S0Lu −K. (7.47)
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Hence

btruncated
(

⌊β⌋
)

ftruncated payoff

(

⌊β⌋
)

(7.48)

= (S0Lu −K)×
n
∑

j=⌊β⌋+1

b(j).

Fifthly for any i > ⌊β⌋+ 1, according (7.3),

btruncated(i) = 0. (7.49)

Hence

n
∑

i=⌊β⌋+2

btruncated(i)ftruncated payoff(i) = 0. (7.50)

All things considered, since n is large enough, therefore

Theorem 7.2: If K 6 S0Ld, our option is priced as

c =e−rT (S0Ld −K)− e−rTS0LdΦ(d4)

+S0Φ(d3)− S0Φ(d5)

+e−rTS0LuΦ(d6),

where

d3 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

,

d4 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

,

d5 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d6 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

Proof: According to Theorem 5.13,

e−rT

⌊β⌋
∑

i=⌈γ⌉

b(i)f(i)

−→S0Φ(d3)−Ke−rTΦ(d4)− S0Φ(d5) +Ke−rTΦ(d6),

as n −→ ∞, where
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d3 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

,

d4 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

,

d5 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d6 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

Moreover, according to (5.19),

n
∑

j=⌊β⌋+1

b(j) = Φ(d6).

And according to (5.31),

⌈γ⌉−1
∑

j=0

b(j) = 1− Φ(d4). (7.51)

Hence (7.30) becomes

c =e−rT (S0Ld −K)

⌈γ⌉−1
∑

j=0

b(j) (7.52)

+e−rT

⌊β⌋
∑

i=⌈γ⌉

b(i)f(i)

+e−rT (S0Lu −K)

n
∑

j=⌊β⌋+1

b(j)

−→e−rT (S0Ld −K)(1− Φ(d4))

+S0Φ(d3)−Ke−rTΦ(d4)− S0Φ(d5) +Ke−rTΦ(d6)

+e−rT (S0Lu −K)Φ(d6)

=e−rT (S0Ld −K)− e−rTS0LdΦ(d4)

+S0Φ(d3)− S0Φ(d5)

+e−rTS0LuΦ(d6),

as n −→ ∞.
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7.4 If K > S0Lu

According to CRR model, our call option is priced as

c = e−rT
n
∑

i=0

btruncated(i)ftruncated payoff(i). (7.53)

If K > S0Lu, and since S0Ld < S0Lu it is obvious that

1

2

( ln(Ld)

σ
√

T/n
+ n

)

<
1

2

( ln(Lu)

σ
√

T/n
+ n

)

6
1

2

( ln(K/S0)

σ
√

T/n
+ n

)

. (7.54)

According to (4.16), Lemmas 5.5 and 5.9, the above becomes

γ < β 6 α. (7.55)

Furthermore, according to Hypothesis 7.1,

PT 6 S0Lu. (7.56)

Since K > S0Lu, then

ftruncated payoff(i) = 0. (7.57)

Therefore, if K > S0Lu, then the option has value

c = 0. (7.58)

7.5 Summary of re-distributed model

Finally, we summarise our findings for a call option which satisfies (7.3), (7.4) and Hypothesis 7.1

as follows:

Theorem 7.3: If K ∈ (S0Ld, S0Lu), the option is priced as

c = S0Φ(d1)−Ke−rTΦ(d2)− S0Φ(d5) + e−rTS0LuΦ(d6).

If K 6 S0Ld, the option is priced as

c =e−rT (S0Ld −K)− e−rTS0LdΦ(d4)

+S0Φ(d3)− S0Φ(d5)

+e−rTS0LuΦ(d6).

If K > S0Lu, then the option has value
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c = 0,

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

,

d3 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

,

d4 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

,

d5 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

and

d6 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

.

7.6 Delta hedging portfolios

In finance, investors could use delta hedging strategy to set up a portfolio by purchasing ∆ shares

and short selling 1 corresponding call option contract. The portfolio value should remain unchanged

if the underlying stock price changes a little (Hull 2015). The delta ∆ here is defined as

∆ :=
∂c

∂S0
. (7.59)

For BS model, ∆ equals Φ(d1) (Hull 2015, p. 404).

For our re-distributed model, it is clear that if K 6 S0Ld,

∆ :=
∂c

∂S0

=e−rTLd − e−rTLdΦ(d4) + Φ(d3)− Φ(d5) + e−rTLuΦ(d6).

If K ∈ (S0Ld, S0Lu),

∆ :=
∂c

∂S0

=Φ(d1)− Φ(d5) + e−rTLuΦ(d6).

If K > S0Lu,
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∆ = 0.

According to GBM assumption (see Section 4.1), the logarithmic return of the portfolio satisfies

ln
(ST

S0

)

∼ N
(

(r − σ2

2
)T, σ2T

)

. (7.60)

If the stock price follows a geometric Brownian motion, it is clear that BS model can be used

here. For BS model, the corresponding risk-free rate rbs and volatility σbs should satisfy







rbs −
σ2
bs

2
= µhistorical

σbs = σhistorical,
(7.61)

where the actual historical drift rate µhistorical and volatility σhistorical are observable.

Solving the above, we have







rbs = µhistorical +
σ2
historical

2
σbs = σhistorical.

(7.62)

We solve the formulas to obtain risk-free rate, instead of collecting the risk-free rate data.

Hence what we get here is the implied risk-free rate.

If the stock satisfies the assumptions of the re-distributed model, our RD model should be used

here. For RD model, using Newton’s method (Burden & Faires 2011, pp. 638-644), we can solve

the values of

{

µrd(µ, σ) = µhistorical

σ2
rd(µ, σ) = σ2

historical,
(7.63)

where µunderlying is the mean and σ2
underlying is the variance of an underlying normal distribution

for

µrd(µunderlying , σunderlying) (7.64)

=µunderlying

[

Φ

(

ln(1.1)− µunderlying

σunderlying

)

− Φ

(

ln(0.9)− µunderlying

σunderlying

)]

+σunderlying

[

ϕ

(

ln(0.9)− µunderlying

σunderlying

)

− ϕ

(

ln(1.1)− µunderlying

σunderlying

)]

+Φ

(

ln(0.9)− µunderlying

σunderlying

)

ln(0.9)

+

[

1− Φ

(

ln(1.1)− µunderlying

σunderlying

)]

ln(1.1)

and
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σ2
rd(µunderlying , σunderlying) (7.65)

=σ2
underlying

[

ln(0.9)− µunderlying

σunderlying
· ϕ
(

ln(0.9)− µunderlying

σunderlying

)

− ln(1.1)− µunderlying

σunderlying
· ϕ
(

ln(1.1)− µunderlying

σunderlying

)

+Φ

(

ln(1.1)− µunderlying

σunderlying

)

− Φ

(

ln(0.9)− µunderlying

σunderlying

)

]

+2µunderlyingσunderlying

[

ϕ

(

ln(0.9)− µunderlying

σunderlying

)

−ϕ

(

ln(1.1)− µunderlying

σunderlying

)

]

+µ2
underlying

[

Φ

(

ln(1.1)− µunderlying

σunderlying

)

− Φ

(

ln(0.9)− µunderlying

σunderlying

)

]

+[ln(0.9)]2Φ

(

ln(0.9)− µunderlying

σunderlying

)

+[ln(1.1)]2
[

1− Φ

(

ln(1.1)− µunderlying

σunderlying

)]

−
[

µunderlying

[

Φ

(

ln(1.1)− µunderlying

σunderlying

)

− Φ

(

ln(0.9)− µunderlying

σunderlying

)]

+σunderlying

[

ϕ

(

ln(0.9)− µunderlying

σunderlying

)

− ϕ

(

ln(1.1)− µunderlying

σunderlying

)]

+Φ

(

ln(0.9)− µunderlying

σunderlying

)

ln(0.9)

+

[

1− Φ

(

ln(1.1)− µunderlying

σunderlying

)]

ln(1.1)

]2

.

The above µrd and σrd will be explained in Chapter 9. Then solving runderlying , we have

runderlying = µunderlying +
σ2
underlying

2
. (7.66)

Now we have rbs and σbs for BS model as well as runderlying and σunderlying for our RD model.

We can set up two portfolios (called BS hedging portfolio and RD hedging portfolio respectively)

using delta hedging strategy. These two portfolios satisfy different assumptions. We compare

these portfolios, using the raw data we collected in Part I. On rolling base, we analyse 1110048

day trading cases for 186 companies whose listing history is longer than 20 years. On each day, we

use historical 20 trading days’ data to calculate µhistorical and σhistorical. Since our RD model is

a 1-phase model (more details will be explained in Section 8.1), we hold every portfolios for 1 day.

Now we run a one-sample t-test for the two portfolios separately. We use the hypotheses

{

H0 : expected return of the portfolio equals risk-free rate

H1 : expected return of the portfolio doesn’t equal risk-free rate,
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at alpha level of 0.05. Since the risk-free return is not constant, we subtract the corresponding

risk-free rate from the portfolio return on each case. So in our t-tests, we test that portfolio return

minus risk-free rate equals zero. The results are broke down into Table 7.1.

expected value of difference of
portfolio return minus risk-free
rate

p-value

BS hedging portfolio 5.38× 10−4 0.073
RD hedging portfolio 5.20× 10−4 0.083

Table 7.1: Delta hedging t-test results (comparing RD model with BS model).

For RD hedging portfolio, since the p-value is larger than 0.05, we cannot reject H0. Therefore

using our RD model, the delta hedging technique is effective. The value of RD hedging portfolio

remains unchanged. Furthermore the expect value of difference of portfolio return minus risk-free

rate for RD hedging portfolio is less than the one for BS hedging portfolio. And the p-value for

RD hedging portfolio test is greater than the p-value for BS hedging portfolio test. Therefore our

RD model has better performance to keep the portfolio value unchanged.



Chapter 8

Multi-phase model

In previous chapters, we have assumed that there are price bounds (lower bound S0Ld and upper

bound S0Lu on the price movements of the underlying asset) during time t ∈ [0, T ] and introduced

the re-distributed model for the options whose life time is T . Since the unchanged boundaries are

applied from 0 to T , the re-distributed model can be considered as a single-phase model (more

details will be explained in Section 8.1). In this chapter, we assume that there are multiple phases.

For an m-phase case, there are price bounds Sj−1Ld and Sj−1Lu on the j-th phase, where Sj−1

is the stock price at the end of the (j − 1)-th phase and j ∈ Z
+ ∩ [1,m]. Then we set up a n-step

binomial tree for each phase.

For the binomial tree on the j-th phase, according to Hypothesis 7.1,

Hypothesis 8.1: the stock prices at the end of the phases satisfy

Sj(ij ;uj, dj , n, γ, β)

Sj−1
:=











u
⌈γ⌉
j d

n−⌈γ⌉
j , if ij < ⌈γ⌉

u
ij
j d

n−ij
j , if ij ∈ [⌈γ⌉, ⌊β⌋]

u
⌊β⌋
j d

n−⌊β⌋
j , if ij > ⌊β⌋.

According to (4.10),

Hypothesis 8.2: the corresponding probabilities satisfy

Pj(ij ; pj , n) :=
n

(n− ij)ij
p
ij
j (1− pj)

n−ij ,

where ij ∈ Z ∩ [0, n] is the number of upwards steps in the j-th phase, j ∈ Z
+ ∩ [1,m],

γ :=
1

2

( ln(Ld)

σ
√

Tj/n
+ n

)

,

β :=
1

2

( ln(Lu)

σ
√

Tj/n
+ n

)

and uj , dj , pj , Tj are the corresponding variables for each phase. Since the initial price S0 is given,

then the probability at the beginning is P0 = 1.

Hence according to the above recursive definitions, at end of the m-th phase, the stock price is

98
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Sm(i1, · · · , im) =
Sm(im)

Sm−1(im−1)
× · · · × S1(i1)

S0
× S0. (8.1)

And the corresponding probability is

Pm(i1, · · · , im) =
n!

(n− i1)!i1!
pi1(1− p)n−i1× (8.2)

· · · × n!

(n− im)!im!
pim(1− p)n−im .

To simplify the analysis, we assume that the risk-free interest rate is unchanged during [0, T ],

i.e.

r1 = · · · = rm = r (8.3)

and the time lengths for each phase are the same, i.e.

T1 = · · · = Tm =
T

m
. (8.4)

According to (4.12), a plain European call option whose payoff formula satisfies

{

Sm −K, if Sm > K

0, if Sm 6 K,
(8.5)

is priced as

c := e−rT
n
∑

i1=0

· · ·
n
∑

im=0

[

Pm(i1, · · · , im)×max
(

Sm(i1, · · · , im)−K
)

]

(8.6)

= e−rT
n
∑

i1=0

· · ·
n
∑

im=0

[

n!

(n− i1)!i1!
pi1(1− p)n−i1×

· · · × n!

(n− im)!im!
pim(1− p)n−im

×max

(

S0 ×
[ Sm(im)

Sm−1(im−1)

]

× · · · ×
[S1(i1)

S0

]

−K, 0

)

]

.

It is clear that the stock price at the end of m-th phase is

Sm = S0 ×
[ Sm

Sm−1

]

× · · · ×
[S1

S0

]

(8.7)

in (8.6). Since the initial stock price S0 is given and
Sj

Sj−1
, where j ∈ Z

+ ∩ [1,m] is defined, Sm is

achieved recursively.
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8.1 1-phase model: m = 1

If m = 1, it is a single-phase case. Then (8.6) becomes

c = e−rT
n
∑

i1=0

[

n!

(n− i1)!i1!
pi1(1 − p)n−i1 (8.8)

×max
(

S0 ×
S1(i1)

S0
−K, 0

)

]

.

According to Hypothesis 8.1, the following 5 intervals should be analysed:

1. S1 < S0u
⌈γ⌉
1 d

n−⌈γ⌉
1 .

2. S1 = S0u
⌈γ⌉
1 d

n−⌈γ⌉
1 .

3. S1 ∈
(

S0u
⌈γ⌉
1 d

n−⌈γ⌉
1 , S0u

⌊β⌋
1 d

n−⌊β⌋
1

)

.

4. S1 = S0u
⌊β⌋
1 d

n−⌊β⌋
1 .

5. S1 > S0u
⌊β⌋
1 d

n−⌊β⌋
1 ,

where

γ :=
1

2

( ln(Ld)

σ
√

Tj/n
+ n

)

, (8.9)

and

β :=
1

2

( ln(Lu)

σ
√

Tj/n
+ n

)

. (8.10)

For the 1-phase case, it is clear that if n is large enough, then

S0u
⌈γ⌉
1 d

n−⌈γ⌉
1 ≈ S0Ld (8.11)

and

S0u
⌊β⌋
1 d

n−⌊β⌋
1 ≈ S0Lu. (8.12)

Furthermore since Ld < Lu, then for S0Ld, S0Lu and K, there are 3 possible situations:

• K < S0Ld.

• K ∈ [S0Ld, S0Lu].

• K > S0Lu.

Now the 1-phase model becomes the re-distributed model. A closed-form solution is derived in

Chapter 7.
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8.2 2-phase model: m = 2

If m > 2, some very complex closed formulas can be obtained but loses practical sense (see

Appendix A). Hence recursive models are applied and we have to compute (8.6) numerically. For

m = 2, (8.6) becomes

c = e−rT
n
∑

i1=0

n
∑

i2=0

[

n!

(n− i1)!i1!
pi1(1− p)n−i1 × n!

(n− i2)!i2!
pi2(1 − p)n−i2

×max
(

S0 ×
S1(i1)

S0
× S2(i2)

S1(i1)
−K, 0

)

]

.

We explore a simple case here, where S0 = 1, K = 1, r = 0.03, σ = 0.3, T = 1, Ld = 0.9 and

Lu = 1.1. According to Theorem 5.4, to set up a binomial tree, the number of steps for each phase

(n in this chapter) must satisfy

√
n > max

(∣

∣

∣

∣

∣

ln(Ld)

σ
√

T/m

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

ln(Lu)

σ
√

T/m

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

ln(K/S0)

σ
√

T/m

∣

∣

∣

∣

∣

)

. (8.13)

For our case, we must have n > 1. For different n, the time (in minutes) taken by the calculation

is plotted in Figure 8.1. The computation time curve suggests that a small n should be used for

fast calculation, as the computation time raises very quickly.
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Figure 8.1: 2-phase model results for different number of steps: the computation time.
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8.3 3- and 4-phase model: m ∈ {3, 4}
It is clear that for m = 3, (8.6) becomes

c = e−rT
n
∑

i1=0

n
∑

i2=0

n
∑

i3=0

[

n!

(n− i1)!i1!
pi1(1− p)n−i1 (8.14)

× n!

(n− i2)!i2!
pi2(1− p)n−i2

× n!

(n− i3)!i3!
pi3(1− p)n−i3

×max
(

S0 ×
S1(i1)

S0
× S2(i2)

S1(i1)
× S3(i3)

S2(i2)
−K, 0

)

]

.

And for m = 4, (8.6) becomes

c = e−rT
n
∑

i1=0

n
∑

i2=0

n
∑

i3=0

n
∑

i4=0

[

n!

(n− i1)!i1!
pi1(1− p)n−i1 (8.15)

× n!

(n− i2)!i2!
pi2(1 − p)n−i2

× n!

(n− i3)!i3!
pi3(1 − p)n−i3

× n!

(n− i4)!i4!
pi4(1 − p)n−i4

×max
(

S0 ×
S1(i1)

S0
× S2(i2)

S1(i1)

×S3(i3)

S2(i2)
× S4(i4)

S3(i3)
−K, 0

)

]

.

The computation time results are represented in Figure 8.2 and 8.3 respectively. Comparing

the two computation time curves, it suggests that larger m (the number of phases) implies rapidly

increasing time for computation. For the 3-phase model, 100 steps (approximately 33 steps per

phase) can be finished in less than 1 minute. But for the 4-phase model, an 100-step (25 steps per

phase) calculation requires more than 10 minutes. There is clearly a huge difference. It is obvious

that the factor m contributes much more than other factors. We will explore the relationship

between the time required and the number of phases in the following section.

Since we don’t have a practical closed-form formula for m > 2, we are not able to find the

exact mean and variance values. Hence no BS model can be used in the analysis for comparative

purposes. However we do have a corresponding BS formula for the single-phase model, we will use

it to introduce a recursive BS model in the next chapter to serve as a comparative model.
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Figure 8.2: 3-phase model results for different number of steps: the computation time.
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Figure 8.3: 4-phase model results for different number of steps: the computation time.
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8.4 The computation time for an m-phase model: 2-step-

per-phase models

In this section, we observe the computation times for different number of phases. We fix the

number of steps per phase at n = 2 as an example. Of course, for computational purposes, it is

obvious that we should have chosen n > 20.

Figure 8.4 suggests that even for a small n (n = 2 in our case), the recursive model requires

a very long computation time. The computation time goes up rapidly after m = 5. With this

in mind, for real-world analyses, m is much larger. For example, to evaluate a 3-month option

on the Chinese financial market, because of the daily price bounds on each of the approximately

60 trading days, m is about 60. Therefore this recursive model will pose challenges when used to

evaluate long-term options.
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Figure 8.4: The time taken by the m-phase model: the number of steps per phase n = 2.

Our study suggests that a usable recursive model requires low n values as well as low m values.

However, since both larger m and larger n are desired in modelling real-world situations, we will

make a tentative discussion to look at possible alternatives.



Chapter 9

An m-phase recursive

Black-Scholes model

In this chapter, to reduce computation time, we will introduce a recursive Black-Scholes (BS)

model, and then compare the multi-phase model defined in Chapter 8 with it. In the plain BS

model approach introduced in Chapter 4, we assumed that the stock price St follows a geometric

Brownian motion. Hence its logarithmic return follows a normal distribution, i.e.

ln
(ST

S0

)

∼ N
(

(r − σ2

2
)T, σ2T

)

, (9.1)

where initial stock price S0, risk-free rate r, volatility σ and option life time T are given. As

we explained in Chapter 5, N
(

(r − σ2

2
)T, σ2T

)

is also the underlying normal distribution of the

re-distributed model (defined in Chapter 7).

For an m-phase BS model, according to (8.4), the time lengths on each phase are equivalent,

i.e.

T1 = · · · = Tm =
T

m
, (9.2)

then within each phase, the logarithmic return is

ln
( Sj

Sj−1

)

∼ N
(

(r − σ2

2
)
T

m
, σ2 T

m

)

, (9.3)

where Sj is the stock price at the end of the j-th phase, Sj−1 equals the stock price at the beginning

of the j-th phase and j ∈ Z
+ ∩ [1,m].

To understand more about the truncated models, in the following sections, we will analyse a

part of above normal distribution as well as the mean and variance for the truncated distribution.

9.1 Calculation of
∫ b

a x
1

σ
ϕ

(

x− µ

σ

)

dx

In this section, we will explore definite integrals of normal distribution probability density function

over an interval [a, b]. For X ∼ N
(

µ, σ2
)

and a, b ∈ R, a < b, to simplify the expressions in this

105



106

chapter, we set

• α :=
a− µ

σ
.

• β :=
b − µ

σ
.

• f(t) := tσ + µ.

Then it is clear that a = ασ+ µ =: f(α) and b = βσ+ µ =: f(β). We also set the notation for the

area over [a, b] as

Definition 9.1: The area of N (µ, σ2) over the interval [a, b] is

Z :=

∫ b

a

1

σ
ϕ

(

x− µ

σ

)

dx

=Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

,

where

ϕ(x) :=
1√
2π

e
−
1

2
x2

is the probability density function of standard normal distribution.

Since

Lemma 9.1: The indefinite integral of the function xϕ(x) is:

∫

xϕ(x)dx = −ϕ(x) + C,

where C is the constant of integration.

Proof:

∫

xϕ(x)dx

=

∫

x
1√
2π

e
−
x2

2 dx

=
1√
2π

∫

xe
−
x2

2 dx.

Substituting u := −x2

2
yields du = −xdx and
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1√
2π

∫

xe
−
x2

2 dx

=
1√
2π

∫

−eudu

=− 1√
2π

eu + C

=− 1√
2π

e
−
x2

2 + C

=−ϕ(x) + C.

and

Corollary 9.2: the definite integral of the xϕ(x) over [a, b] is

∫ β

α

x
1√
2π

e
−
x2

2 dx

=− [ϕ(x)]
β
α

=ϕ (α)− ϕ (β)

=ϕ

(

a− µ

σ

)

− ϕ

(

b − µ

σ

)

.

we have

Lemma 9.3:

∫ b

a

x− µ

σ

1√
2π

e
−
(x− µ)2

2σ2 dx = σ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

.

Proof: Substituting α :=
a− µ

σ
, β :=

b− µ

σ
and f(t) := tσ + µ yield

∫ b

a

x− µ

σ

1√
2π

e
−
(x− µ)2

2σ2 dx

=

∫ βσ+µ

ασ+µ

x− µ

σ

1√
2π

e
−
(x− µ)2

2σ2 dx

=

∫ β

α

t
1√
2π

e
−
t2

2 σdt

=σ

∫ β

α

t
1√
2π

e
−
t2

2 dt.

According to Corollary 9.2, the above becomes



108

σ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

.

Therefore we have

Theorem 9.4: Let X ∼ N
(

µ, σ2
)

, a, b ∈ R, a 6 b,

∫ b

a

x
1

σ
ϕ

(

x− µ

σ

)

dx

=µ

[

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)]

+σ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

.

Proof:

=

∫ b

a

x
1

σ
ϕ

(

x− µ

σ

)

dx

=

∫ b

a

x
1√
2πσ2

e
−
(x− µ)2

2σ2 dx

=

∫ b

a

x− µ

σ

1√
2π

e
−
(x− µ)2

2σ2 dx

+

∫ b

a

µ

σ

1√
2π

e
−
(x− µ)2

2σ2 dx

=

∫ b

a

x− µ

σ

1√
2π

e
−
(x− µ)2

2σ2 dx

+µ

∫ b

a

1√
2πσ2

e
−
(x− µ)2

2σ2 dx

=

∫ b

a

x− µ

σ

1√
2π

e
−
(x− µ)2

2σ2 dx+ µZ.

According to Lemma 9.3, the above becomes

µ

[

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)]

+σ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

.
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9.2 Calculation of
∫ b

a x
2 1

σ
ϕ

(

x− µ

σ

)

dx

In this section, to derive
∫ b

a
x2 1

σ
ϕ

(

x− µ

σ

)

dx, we introduce two more lemmas. The first lemma

is

Lemma 9.5:

1√
2π

∫ β

α

t2e
−
t2

2 dt =

(

a− µ

σ

)

ϕ

(

a− µ

σ

)

−
(

b− µ

σ

)

ϕ

(

b− µ

σ

)

+Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

.

Proof: Let u := t and v = −e
−
t2

2 , then du = dt and dv := te
−
t2

2 dt.

1√
2π

∫ β

α

t2e
−
t2

2 dt

=
1√
2π

∫ β

α

udv.

Integrating it by parts, the above becomes

1√
2π

(

[uv]βα −
∫ β

α

vdu

)

=
1√
2π














−te

−
t2

2







β

α

−
∫ β

α

−e
−
t2

2 dt









=−






t

1√
2π

e
−
t2

2







β

α

+

∫ β

α

1√
2π

e
−
t2

2 dt

=−
[

tϕ(t)
]β

α
+ Z

=

(

a− µ

σ

)

ϕ

(

a− µ

σ

)

−
(

b− µ

σ

)

ϕ

(

b− µ

σ

)

+Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

.

The other lemma is
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Lemma 9.6:

σ

∫ b

a

(

x− µ

σ

)2
1√
2π

e
−
(x− µ)2

2σ2 dx

= σ2

[

(

a− µ

σ

)

ϕ

(

a− µ

σ

)

−
(

b − µ

σ

)

ϕ

(

b− µ

σ

)

+Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

.

Proof: Substituting α :=
a− µ

σ
, β :=

b− µ

σ
and f(t) := tσ + µ yield

σ

∫ b

a

(

x− µ

σ

)2
1√
2π

e
−
(x − µ)2

2σ2 dx

=σ

∫ βσ+µ

ασ+µ

(

x− µ

σ

)2
1√
2π

e
−
(x− µ)2

2σ2 dx

=σ

∫ β

α

t2
1√
2π

e
−
t2

2 σdt

=σ2 1√
2π

∫ β

α

t2e
−
t2

2 dt.

According to Lemma 9.5, the above becomes

=σ2

[

(

a− µ

σ

)

ϕ

(

a− µ

σ

)

−
(

b− µ

σ

)

ϕ

(

b− µ

σ

)

+Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

.

Therefore, from these two lemmas, we have the following theorem:

Theorem 9.7: Let X ∼ N
(

µ, σ2
)

, a, b ∈ R, a 6 b,

∫ b

a

x2 1

σ
ϕ

(

x− µ

σ

)

dx

=σ2

[

(

a− µ

σ

)

ϕ

(

a− µ

σ

)

−
(

b− µ

σ

)

ϕ

(

b− µ

σ

)

+Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

+2µσ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]
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+µ2

[

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

.

Proof:

∫ b

a

x2 1

σ
ϕ

(

x− µ

σ

)

dx

=

∫ b

a

x2 1√
2πσ2

e
−
(x− µ)2

2σ2 dx

=σ

∫ b

a

(

x2 − 2µx+ µ2

σ2

)

1√
2π

e
−
(x− µ)2

2σ2 dx

+σ

∫ b

a

(

2µx− µ2

σ2

)

1√
2π

e
−
(x − µ)2

2σ2 dx

=σ

∫ b

a

(

x− µ

σ

)2
1√
2π

e
−
(x− µ)2

2σ2 dx

+2µ

∫ b

a

x
1√
2πσ2

e
−
(x− µ)2

2σ2 dx

−µ2

∫ b

a

1√
2πσ2

e
−
(x− µ)2

2σ2 dx

=σ

∫ b

a

(

x− µ

σ

)2
1√
2π

e
−
(x− µ)2

2σ2 dx

+2µ

(

∫ b

a

x
1

σ
ϕ

(

x− µ

σ

)

dx

)

− µ2Z.

According to Lemma 9.6, the above becomes

σ2

[(

a− µ

σ

)

ϕ

(

a− µ

σ

)

−
(

b− µ

σ

)

ϕ

(

b− µ

σ

)

+ Z

]

+2µ

(

∫ b

a

x
1

σ
ϕ

(

x− µ

σ

)

dx

)

− µ2Z.

According to Theorem 9.4, the above becomes

σ2

[(

a− µ

σ

)

ϕ

(

a− µ

σ

)

−
(

b− µ

σ

)

ϕ

(

b− µ

σ

)

+ Z

]

+2µ

(

µ

[

Φ

(

b − µ

σ

)

− Φ

(

a− µ

σ

)]

+σ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

)

−µ2

[

Φ

(

b − µ

σ

)

− Φ

(

a− µ

σ

)]
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=σ2

[(

a− µ

σ

)

ϕ

(

a− µ

σ

)

−
(

b− µ

σ

)

ϕ

(

b− µ

σ

)

+ Z

]

+2µσ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

+µ2

[

Φ

(

b − µ

σ

)

− Φ

(

a− µ

σ

)]

=σ2

[

(

a− µ

σ

)

ϕ

(

a− µ

σ

)

−
(

b− µ

σ

)

ϕ

(

b − µ

σ

)

+Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

+2µσ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

+µ2

[

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

.

9.3 Re-distributed normal distribution

For the re-distributed case defined in Chapter 7, if the area of normal distribution above the upper

bound b is re-distributed at the upper bound point b and the area below the lower bound a is

re-distributed at the lower bound point a, we get a re-distributed normal (RD) distribution. The

new probability density function based on N
(

µ, σ2
)

is now defined as

Definition 9.2:

ϕrd(x;µ, σ, a, b) :=



















































0 , if x < a
1

σ
ϕ

(

x− µ

σ

)

+ Φ

(

a− µ

σ

)

, if x = a

1

σ
ϕ

(

x− µ

σ

)

, if x ∈ (a, b)

1

σ
ϕ

(

x− µ

σ

)

+

[

1− Φ

(

b− µ

σ

)]

, if x = b

0 , if x > b.

a, b ∈ R are boundaries, a 6 b.

For the RD distribution, the mean can be derived as follows,

Theorem 9.8: Mean of RD distribution is

µrd(µ, σ; a, b) =µ

[

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)]

+σ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

+Φ

(

a− µ

σ

)

a+

[

1− Φ

(

b− µ

σ

)]

b.
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Proof:

µrd(µ, σ; a, b) :=

∫ ∞

−∞

x · ϕrd(x)dx

=

∫ ∞

−∞

x
1

σ
ϕ

(

x− µ

σ

)

dx

+Φ

(

a− µ

σ

)

a+

[

1− Φ

(

b− µ

σ

)]

b

=

∫ b

a

x
1

σ
ϕ

(

x− µ

σ

)

dx

+Φ

(

a− µ

σ

)

a+

[

1− Φ

(

b− µ

σ

)]

b.

According to Theorem 9.4, the above becomes

µ

[

Φ

(

b − µ

σ

)

− Φ

(

a− µ

σ

)]

+σ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

+Φ

(

a− µ

σ

)

a+

[

1− Φ

(

b− µ

σ

)]

b.

To get variance, we need to find the E[X2] first.

Lemma 9.9: E[X2] of RD distribution is

∫ ∞

−∞

x2ϕrd(x)dx

=σ2

[

a− µ

σ
· ϕ
(

a− µ

σ

)

− b− µ

σ
· ϕ
(

b− µ

σ

)

+Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

+2µσ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

+µ2

[

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

+a2Φ

(

a− µ

σ

)

+ b2
[

1− Φ

(

b− µ

σ

)]

.

Proof:

∫ ∞

−∞

x2ϕrd(x)dx

=

∫ ∞

−∞

x2 1

σ
ϕ

(

x− µ

σ

)

dx

+a2Φ

(

a− µ

σ

)

+ b2
[

1− Φ

(

b − µ

σ

)]
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=

∫ b

a

x2 1

σ
ϕ

(

x− µ

σ

)

dx+ a2Φ (α) + b2 [1− Φ (β)] .

According to Theorem 9.7, the above becomes

σ2

[(

a− µ

σ

)

ϕ

(

a− µ

σ

)

−
(

b− µ

σ

)

ϕ

(

b− µ

σ

)

+ Z

]

+2µσ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

+µ2Z + a2Φ (α) + b2 [1− Φ (β)]

=σ2

[

a− µ

σ
· ϕ
(

a− µ

σ

)

− b− µ

σ
· ϕ
(

b − µ

σ

)

+Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

+2µσ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

+µ2

[

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

+a2Φ

(

a− µ

σ

)

+ b2
[

1− Φ

(

b− µ

σ

)]

.

Then we derive the variance of RD distribution as follows

Theorem 9.10: Variance of RD distribution is

σ2
rd(µ, σ; a, b) =σ2

[

a− µ

σ
· ϕ
(

a− µ

σ

)

− b− µ

σ
· ϕ
(

b− µ

σ

)

+Φ

(

b − µ

σ

)

− Φ

(

a− µ

σ

)

]

+2µσ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b − µ

σ

)]

+µ2

[

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

+a2Φ

(

a− µ

σ

)

+ b2
[

1− Φ

(

b− µ

σ

)]

−
[

µ

[

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)]

+σ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

+Φ

(

a− µ

σ

)

a+

[

1− Φ

(

b− µ

σ

)]

b

]2

.
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Proof:

σ2
rd(µ, σ; a, b) :=

∫ ∞

−∞

x2ϕrd(x)dx − (µrd)
2

=σ2 [α · ϕ (α)− β · ϕ (β) + Z]

+2µσ [ϕ (α)− ϕ (β)] + µ2Z

+a2Φ (α) + b2 [1− Φ (β)]

−
(

µZ + σ [ϕ (α) − ϕ (β)]

+Φ (α) a− Φ (β) b+ b
)2

=σ2

[

a− µ

σ
· ϕ
(

a− µ

σ

)

− b− µ

σ
· ϕ
(

b− µ

σ

)

+Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

+2µσ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b− µ

σ

)]

+µ2

[

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)

]

+a2Φ

(

a− µ

σ

)

+ b2
[

1− Φ

(

b− µ

σ

)]

−
[

µ

[

Φ

(

b− µ

σ

)

− Φ

(

a− µ

σ

)]

+σ

[

ϕ

(

a− µ

σ

)

− ϕ

(

b − µ

σ

)]

+Φ

(

a− µ

σ

)

a+

[

1− Φ

(

b− µ

σ

)]

b

]2

.

According to (9.3), for the m-phase BS model, the logarithmic return over each phase is

ln
( Sj

Sj−1

)

∼ N
(

(r − σ2

2
)
T

m
, σ2 T

m

)

, (9.4)

where Sj is the stock price at the end of the j-th phase, Sj−1 equals the stock price at the beginning

of the j-th phase and j ∈ Z
+ ∩ [1,m]. Then for the re-distributed normal distribution based on

N
(

(r − σ2

2
)
T

m
, σ2 T

m

)

, according to Theorem 9.8, the mean is

µrd

(

(r − σ2

2
)
T

m
, σ

√

T

m
; a, b

)

=: µeach (9.5)

and according to Theorem 9.10, the variance is

σ2
rd

(

(r − σ2

2
)
T

m
, σ

√

T

m
; a, b

)

=: σ2
each. (9.6)
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9.4 A recursive Black-Scholes model

For m phases, according to (9.1), the logarithmic return over all phases is

ln
(Sm

S0

)

∼ N
(

mµeach,mσ2
each

)

, (9.7)

where the initial stock price S0 is given, Sm is stock price at the end of m-th phase, µeach is the

statistical mean and σ2
each is the statistical variance in each phase. In other words, there exist

some rbs and σbs, such that

mµeach = (rbs −
σ2
bs

2
)T (9.8)

and

mσ2
each = σ2

bsT. (9.9)

By solving the above, it is clear that

σbs =

√

m

T
σeach (9.10)

and

rbs =
mµeach

T
+

mσ2
each

2T
. (9.11)

Now we can define an N
(

rbs, σ
2
bs

)

using the above results. Using the plain Black-Scholes model

(Theorem 4.1), the corresponding European call option is priced as

c = S0Φ(d1)−Ke−rbsTΦ(d2), (9.12)

where

d1 =
ln(S0/K) + (rbs + σ2

bs/2)T

σbs

√
T

(9.13)

and

d2 =
ln(S0/K) + (rbs − σ2

bs/2)T

σbs

√
T

. (9.14)

We explore a simple case here, where m = 2, S0 = 1, r = 0.03, σ = 0.3, T = 1, Ld = 0.9 and

Lu = 1.1. According to Definition 9.2,

a= ln
(S0Ld

S0

)

(9.15)

= ln(0.9)

and
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b= ln
(S0Lu

S0

)

(9.16)

= ln(1.1).

Figure 9.1 demonstrates the difference

d(K) := rd(K)− bs(K) (9.17)

and the relative difference in percentage

dr(K) :=
rd(K) − bs(K)

bs(K)
× 100%, (9.18)

where K is the European call option strike price, rd(K) is the multi-phase model value for K and

bs(K) is the recursive Black-Scholes model value for K. Since most of the difference values fall

within [−0.002, 0.002], it is clear that these two models produce very close results. The relative

difference is reasonably small if K < 1.1. For this 2-phase case, it is obvious that rd(K) = 0, if

K > S0L
2
u. So dr(K) rapidly drops to −100%, if K > 1.12 (shown in Figure 9.1). Furthermore, it

is clear that for the m-phase case, dr(K) should equal −100%, if K > S0(Lu)
m.

Figure 9.2 demonstrates another case, where K = 0.5, S0 = 1, r = 0.03, σ = 0.3, T = 1,

Ld = 0.9 and Lu = 1.1. The difference

d(m) := rd(m) − bs(m) (9.19)

and relative difference

dr(m) :=
rd(m)− bs(m)

bs(m)
× 100% (9.20)

for different number of phases (m in this chapter) reaffirm our finding that these two models produce

very close results. Since there is a closed-form solution for the recursive Black-Scholes model, the

computation time for the recursive Black-Scholes model is much less than the computation time

for the multi-phase model defined in Chapter 8. So within reasonable range when considering the

volatile nature of the options market, the recursive Black-Scholes model can be used as a practical

model to replace the multi-phase model.
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Figure 9.1: Difference between 2-phase re-distributed model and 2-phase recursive Black-Scholes

model for different strike price K: rd(K)− bs(K) (top) and
rd(K)− bs(K)

bs(K)
× 100% (bottom).
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Figure 9.2: Price difference rd(m)−bs(m) (top) and relative price difference
rd(m) − bs(m)

bs(m)
×100%

(bottom) between m-phase re-distributed model and recursive Black-Scholes model.
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In this part, we introduced several option valuation models. We presented some mathematical

preparations in Chapter 5. We explained some properties under a part of the normal distribution

and introduced a truncated model in that chapter. Those preparations and properties were used

through this part. Following Amemiya’s (1973) idea, we introduced a re-weighting model for price-

bounded options in Chapter 6. This re-weighting model relied on truncated normal distributions

that we explained in Chapter 4. Both the truncated model and the re-weighting model were the

stepping stones for our re-distributed model.

Following Arak & Cook’s (1997) idea, we introduced the re-distributed model in Chapter 7,

using the binomial tree approach. To derive this model, we assumed that the latent variable, un-

derlying economic value, follows a geometric Brownian motion and the observable variable, market

price, is censored. The outliers were shifted to the boundaries. We believed that the logarith-

mic returns of market prices in price-bounded markets follow a re-distributed normal distribution

(explained in Chapter 9). Using the raw data we introduced in Part I, setting up portfolios of

stocks and options, empirical results suggested that our re-distributed model is better than the

Black-Scholes model to evaluate options.

However, the re-distributed model is a 1-phase model for 1-day options only. To evaluate

longer-term options, we introduced a multi-phase model in Chapter 8. The multi-phase model

relied on recursively defined stock prices and probabilities. No closed-form solution was found.

Numerical methods were used to find the option values. Simulation results suggested that the

multi-phase model requires extremely long computation time. It took more than 30 minutes to

find an option value. It is not practical enough. We believed that this multi-phase model is not

suitable for long-term options.

To reduce the computation time, we proposed a re-distributed normal distribution and intro-

duced an m-phase recursive Black-Scholes model in Chapter 9. A normal distribution was used

to approximate the re-distributed normal distribution. Hence, a simplified closed-form solution

was found. Compared to our re-distributed model, simulation results suggested that the recursive

Black-Scholes model is accurate enough. The percentage error was approximately 1%. As there was

a closed-form solution, the recursive Black-Scholes model required negligible computation time. It

is acceptable. We believed that this recursive Black-Scholes model is suitable for long-term options.



Chapter 10

Conclusion

In this thesis, we analysed Chinese financial market from two perspectives. Although there are

2 parts, they focus on same research objective, to evaluate financial securities on price-bounded

markets.

In Part I, we proposed several stock valuation models. We explored the relationship between

returns and price-earnings (PE) ratios in Chapter 2. This model suggested that lower PE implies

higher future return. However this simple return-PE model can only explain approximately 3% of

data. Because of its performance, although it is straightforward, it is not acceptable.

Then we introduced more variables and explored the relationship between market capitalisations

and other 16 variables in Chapter 3. The final 16-variable regression model can explain 92.3% of

data. It showed a clear relationship among the financial variables. It is usable to evaluate stocks.

Although it has much more explanatory power than the return-PE model, this 16-variable model

is more complex and requires 16 independent variable data. In real-world applications, analysts

prefer simple models which require less datasets. So this 16-variable model is useful as a reference

model, but not practical for real-world applications. Furthermore, the mean of beta in this model

was divergent. We were not satisfied with this model.

As neither the simple return-PE model nor the 16-variable model produced satisfactory result,

we separated our data variables into 5 groups and used principal component analysis techniques

to extract the important information. The final 5-variable model can explain more than 57.2%

of data. Although this 5-variable model has less explanatory power than the 16-variable model,

this explanatory power level is still acceptable. Moreover, the mean of beta was convergent in this

model. However, it still required a large set of data. In our analysis, totally 16 datasets were used.

It is still not practical enough.

To improve our valuation models and exploit our data, in this thesis, we decided to view

the data from another perspective. In Part II, we proposed several option valuation models for

price-bounded options. We introduced a re-distributed model in Chapter 7. Using binomial trees

and following Hull’s (2015) idea, we derived its closed-form solution. In this model, we assumed

that there is a pair of boundaries, i.e. a upper boundary and a lower boundary. Obviously, this

re-distributed model is a 1-phase model. Although the derivation of the re-distributed model is

mathematically rigorous, this model can only be used to evaluate short-term options.

In long-term option valuations, there is a speed-accuracy trade-off between two models. The

121
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multi-phase model is more accurate. And the m-phase recursive Black-Scholes model is faster.

Using recursively defined stock prices and probabilities, we introduced a multi-phase model in

Chapter 8. As no closed-form solution was derived, it relied on numerical methods and required

long computation time. Using plain normal distributions to approximate our re-distributed normal

distribution, we introduced an m-phase recursive Black-Scholes model in Chapter 9. As approxi-

mation was used, some errors were introduced into the analysis.

If the number of phases went larger, the computation time of the multi-phase model went

extremely long and the multi-phase model became unacceptable. So we proposed the m-phase

recursive Black-Scholes model as our option valuation model for long-term options, because it

required negligible computation time for long-term options and generated approximate 2% error.

It is practical and usable.

However, according to the the Moore’s law, the expected computation power could double in a

few years. Moreover, we believe that the computation time can be further reduced by using some

optimised algorithms. Furthermore, as the multi-phase model is mathematically rigorous, it can

be used as a useful reference and benchmark to evaluate price-bounded options.

Finally, the main drawback of our stock valuation models is the unrealistic data requirement.

Except the return-PE model, all models consumed 16 datasets, before enough explanatory power

was gathered. We suspect that there is problem with data quality. A possible further research is

to optimise the datasets and reduce the data requirement in the models. We expect that there

exist a smaller set of carefully selected data that could also improve the goodness of fit.

Following the idea from Chapter 9, another possible further research is to approximate other

distributions, for example beta distributions, using normal distributions. Using beta distributions

in option pricing is supported by some literatures. However, it requires complicated techniques

to transform beta distributions into binomial trees (see Chapter 4). The results from Chapter 9

suggests that approximation using normal distributions might be an acceptable method.



Appendix A

2-phase model

In this chapter, the approaches for 2-phase models will be discussed. The two phases will be treated

as independent objects, and separate binomial trees will be set up for each phase. Since 1-phase

models have already been studied in previous chapters, the 1st phase close price S1, which could

be obtained from the 1-phase models, will be used as the initial price for the 2nd-phase binomial

tree. Hence, in Section A.1, 1-phase approaching will be summarised. After that, 2-phase models

will be derived from 1-phase models in the following sections.

A.1 Summarising of the 1-phase approaching

In this section, we introduce some mathematical preparations. For 1-phase approach, assumed

there are i1 upwards steps, in the phase. Then the 1st phase close price S1 is

S1(S0, i1) = S0u
i1dn−i1 . (A.1)

The probability P1 at S1(·, i1) is

P1(i1) =
n!

(n− i1)!i1!
pi1(1 − p)n−i1 . (A.2)

According to CRR model, a European call option price is calculated as

c := e−rT
n
∑

i1=0

P1 ×max(S1 −K, 0), (A.3)

where T is the option life time.

On a regular binomial tree, i· ∈ [0, n]. However in re-distributed model, there are upper and

lower price bound, i.e. i1 ∈ [γ, β]. To make a valid probability distribution, we place extra

probability at the boundary points.

According to (5.19), the probability above upper bound is

P (u+) :=
ln(1/Lu) + (r − σ2/2)T

σ
√
T

. (A.4)

We replace it at the upper bound. And according to (5.31), the probability below lower bound is

123
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P (d−) := 1− ln(1/Ld) + (r − σ2/2)T

σ
√
T

. (A.5)

We replace it at the lower bound. Hence

c =e−rT
[

β
∑

γ

P ×max(S −K, 0) (A.6)

+

γ
∑

i1=0

1i1:K<S(i1)P (i1)(S0Ld −K)

+
n
∑

i1=β

1i1:K<S(i1)P (i1)(S0Lu −K)
]

,

where the indicator function 1x:A(x·) is defined as

1x:A(x,·) =

{

1, if event A(x, ·) occurs
0, anything else.

A.2 2 phases: Re-weighting

In this section, a 2-phase re-weighting model will be introduced. Let n denote the number of steps

for each phase, T be the time length of one phase, i1 and i2 be the number of upward steps in

phase 1 and 2.

For the first phase, the close price S1(S0, i1) = S0u
i1dn−i1 , with probability

P1(i1) =
n!

(n− i1)!i1!
pi1(1 − p)n−i1 . (A.7)

For the second phase, if S1 is given, the close price S2(S1, i2) = S1u
i2dn−i2 , with probability

P2(i2) =
n!

(n− i2)!i2!
pi2(1 − p)n−i2 . (A.8)

The above can be combined together to get

S2(S0, i1, i2) = S0u
i1dn−i1ui2dn−i2 , (A.9)

with probability

P2(i1, i2) =
n!

(n− i1)!i1!
pi1(1− p)n−i1

n!

(n− i2)!i2!
pi2(1− p)n−i2 . (A.10)

Then the 2-phase re-weighting model can be written as

c = e−2rT 1

̺2

β
∑

i1=γ

β
∑

i2=γ

n!

(n− i1)!i1!
pi1(1− p)n−i1 (A.11)

n!

(n− i2)!i2!
pi2(1− p)n−i2
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max(S0u
i1dn−i1ui2dn−i2 −K, 0).

Four possible situations will be discussed for the strike price K:

1. S0L
2
u 6 K, the stock price S2 6 S0L

2
u is always below strike price K, hence c = 0 .

2. S0LuLd 6 K < S0L
2
u.

3. S0L
2
d < K < S0LdLu.

4. K 6 S0L
2
d.

A.2.1 If K 6 S0L
2
d

If K 6 S0L
2
d, since S0L

2
d 6 S2,

∀i1, i2 ∈ [γ, β], (A.12)

such that 0 6 S0u
i1dn−i1ui2dn−i2 −K, hence

max(S0u
i1dn−i1ui2dn−i2 −K, 0) (A.13)

=S0u
i1dn−i1ui2dn−i2 −K.

c = e−2rT 1

̺2

β
∑

i1=γ

β
∑

i2=γ

n!

(n− i1)!i1!
pi1(1− p)n−i1 (A.14)

n!

(n− i2)!i2!
pi2(1− p)n−i2

(S0u
i1dn−i1ui2dn−i2 −K)

= S0e
−2rT 1

̺2

β
∑

i1=γ

β
∑

i2=γ

n!

(n− i1)!i1!
pi1(1− p)n−i1

n!

(n− i2)!i2!
pi2(1− p)n−i2

ui1dn−i1ui2dn−i2

−Ke−2rT 1

̺2

β
∑

i1=γ

β
∑

i2=γ

n!

(n− i1)!i1!
pi1(1− p)n−i1

n!

(n− i2)!i2!
pi2(1− p)n−i2 .

Since

n
∑

i=m

t
∑

j=s

aibj =

n
∑

i=m

ai ×
t
∑

j=s

bj, (A.15)

we have
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c = S0e
−2rT 1

̺2

β
∑

i1=γ

n!

(n− i1)!i1!
pi1(1− p)n−i1ui1dn−i1

×
β
∑

i2=γ

n!

(n− i2)!i2!
pi2(1− p)n−i2ui2dn−i2

−Ke−2rT 1

̺2

β
∑

i1=γ

n!

(n− i1)!i1!
pi1(1− p)n−i1

×
β
∑

i2=γ

n!

(n− i2)!i2!
pi2(1− p)n−i2

= S0e
−2rT 1

̺2
U2
1 −Ke−2rT 1

̺2
U2
2

=
1

̺2
(S0e

−2rTU2
1 −Ke−2rTU2

2 )

=
1

̺2
(S0e

−2rT e2rT (Φ(d1)− Φ(d3))
2

−Ke−2rT (Φ(d2)− Φ(d4))
2)

=
1

̺2

(

S0(Φ(d1)− Φ(d3))
2

−Ke−2rT (Φ(d2)− Φ(d4))
2
)

,

where

d1 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

, (A.16)

d2 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

, (A.17)

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

(A.18)

and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

. (A.19)

The un-re-weighted result

S0(Φ(d1)− Φ(d3))
2 −Ke−2rT (Φ(d2)− Φ(d4))

2 (A.20)

without ̺ will be used in the distributed model as the 1st part.

A.2.2 If S0LuLd 6 K < S0L
2
u

If S0LuLd 6 K < S0L
2
u. For the second phase, if S1 = S0u

2i1−n is given, for i2, such that

K < S1u
i2dn−i2 , we have i2 > η :=

1

2
(n−

ln(
S0u

2i1−n

K
)

σ
√

T/n
).
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Let S1 such that K = S1Lu. Since u = eσ
√

T/n,

K

Lu
= S1 = S0u

i1dn−i1 = S0u
2i1−n (A.21)

⇐⇒ K

LuS0
= u2i−n

⇐⇒ ln(
K

LuS0
) = (2i1 − n)ln(u)

⇐⇒ ln(K)− ln(LuS0)

ln(u)
= 2i1 − n

⇐⇒ ln(K)− ln(LuS0)

ln(u)
+ n = 2i

⇐⇒ 1

2
(
ln(K)− ln(LuS0)

σ
√

T/n
+ n) = i1.

It is clear that

Lemma A.1: K = S1Lu ⇐⇒ 1

2
(
ln(K)− ln(LuS0)

σ
√

T/n
+ n) = i1, where u = eσ

√
T/n .

Set ζ :=
1

2
(
ln(

K

LuS0
)

σ
√

T/n
+ n). Let S1 := S0u

i1dn−i1 . Then

∀i1 < ζ, such that S1Lu < K (A.22)

⇐⇒ max(S1Lu −K, 0) = 0.

c =e−2rT 1

̺2
lim

n−→∞

β
∑

i1=ζ

β
∑

i2=η

n!

(n− i1)!i1!
pi1(1 − p)n−i1 (A.23)

n!

(n− i2)!i2!
pi2(1 − p)n−i2

(S0u
i1dn−i1ui2dn−i2 −K)

= e−2rT 1

̺2
S0 lim

n−→∞

β
∑

i1=ζ

n!

(n− i1)!i1!
pi1(1 − p)n−i1ui1dn−i1

lim
n−→∞

β
∑

i2=η

n!

(n− i2)!i2!
pi2(1 − p)n−i2ui2dn−i2

− e−2rT 1

̺2
K lim

n−→∞

β
∑

i1=ζ

n!

(n− i1)!i1!
pi1(1 − p)n−i1

lim
n−→∞

β
∑

i2=η

n!

(n− i2)!i2!
pi2(1 − p)n−i2

= e−rT 1

̺2
S0 lim

n−→∞

β
∑

i1=ζ

n!

(n− i1)!i1!
pi1(1 − p)n−i1ui1dn−i1

(Φ(d′1)− Φ(d3))
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− e−2rT 1

̺2
K lim

n−→∞

β
∑

i1=ζ

n!

(n− i1)!i1!
pi1(1 − p)n−i1

(Φ(d′2)− Φ(d4))

= e−rT 1

̺2
S0 (Φ(d1)− Φ(d3))(−Φ(d3))

+ e−rT 1

̺2
S0 lim

n−→∞

β
∑

i1=ζ

n!

(n− i1)!i1!
pi1(1 − p)n−i1ui1dn−i1Φ(d′1)

− e−2rT 1

̺2
K (Φ(d2)− Φ(d4))(−Φ(d4))

− e−2rT 1

̺2
K lim

n−→∞

β
∑

i1=ζ

n!

(n− i1)!i1!
pi1(1 − p)n−i1Φ(d′2),

where

d1 =
ln(S0Lu/K) + (r + σ2/2)T

σ
√
T

, (A.24)

d′1 =
ln(S0u

2i1−n/K) + (r + σ2/2)T

σ
√
T

, (A.25)

d2 =
ln(S0Lu/K) + (r − σ2/2)T

σ
√
T

, (A.26)

d′2 =
ln(S0u

2i1−n/K) + (r − σ2/2)T

σ
√
T

, (A.27)

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

(A.28)

and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

. (A.29)

A.2.3 If S0L
2
d
< K < S0LdLu

If S0L
2
d < K < S0LdLu, let S1 such that S1Ld < K. According to Lemma A.1, i1 <

1

2
(
ln(

K

LdS0
)

σ
√

T/n
+

n).

Now we set θ :=
1

2
(
ln(

K

LdS0
)

σ
√

T/n
+ n). The binomial tree is above K, if i1 > θ. The binomial tree

is intersected with K, if i1 6 θ. Hence

c = e−2rT 1

̺2

θ
∑

i1=γ

β
∑

i2=η

n!

(n− i1)!i1!
pi1(1− p)n−i1 (A.30)

n!

(n− i2)!i2!
pi2(1− p)n−i2
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(S0u
i1dn−i1ui2dn−i2 −K)

+ e−2rT 1

̺2

β
∑

i1=θ

β
∑

i2=γ

n!

(n− i1)!i1!
pi1(1− p)n−i1

n!

(n− i2)!i2!
pi2(1− p)n−i2

(S0u
i1dn−i1ui2dn−i2 −K)

= e−rT 1

̺2
S0

[

(Φ(d1)− Φ(d′3))(−Φ(d3))

+ lim
n−→∞

θ
∑

i1=γ

n!

(n− i1)!i1!
pi1(1 − p)n−i1ui1dn−i1Φ(d′1)

]

− e−2rT 1

̺2
K

[

(Φ(d2)− Φ(d′4))(−Φ(d4))

+ lim
n−→∞

θ
∑

i1=γ

n!

(n− i1)!i1!
pi1(1 − p)n−i1Φ(d′2)

]

+
1

̺2

(

S0(Φ(d
′
3)− Φ(d3))(Φ(d1)− Φ(d3))

−Ke−2rT (Φ(d′4)− Φ(d4))(Φ(d2)− Φ(d4))
)

,

where

d1 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

, (A.31)

d′1 =
ln(S0u

2i1−n/K) + (r + σ2/2)T

σ
√
T

, (A.32)

d2 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

, (A.33)

d′2 =
ln(S0u

2i1−n/K) + (r − σ2/2)T

σ
√
T

, (A.34)

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

, (A.35)

d′3 =
ln(S0Ld/K) + (r + σ2/2)T

σ
√
T

, (A.36)

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

(A.37)

and

d′4 =
ln(S0Ld/K) + (r − σ2/2)T

σ
√
T

. (A.38)

In this section, a re-weighting approach is discussed. The un-re-weighted results will also be

used in the distributed model in the next section.
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A.3 2 phases: Re-distributed model

For 2-phase distributed approaching, we set up separate binomial tree for each phase.

On the first phase, it is a simple binomial tree between the price boundaries. So the close price

S1(S0, i1) = S0u
i1dn−i1 , (A.39)

with probability

P1(i1) =
n!

(n− i1)!i1!
pi1(1 − p)n−i1 . (A.40)

At the price boundaries, the extra probability is distributed, since the price cannot beyond

the boundaries. So the boundary points themselves have the probability beyond the boundaries.

Hence at the lower bound, S1 = S0Ld, the extra probability is

P (d−) := 1− Φ(
ln(1/Ld) + (r − σ2/2)T

σ
√
T

). (A.41)

At the upper bound, S1 = S0Lu, the extra probability is

P (u+) := Φ(
ln(1/Lu) + (r − σ2/2)T

σ
√
T

). (A.42)

For the second phase, if S1 is given, the close price S2(S1, i2) = S1u
i2dn−i2 , with probability

P2(i2) =
n!

(n− i2)!i2!
pi2(1 − p)n−i2 . We can calculate the S1 value and its probability, using the

1-phase model. So we combine above together to get

S2(S0, i1, i2) = S0u
i1dn−i1ui2dn−i2 , (A.43)

with probability

P2(i1, i2) =
n!

(n− i2)!i2!
pi2(1 − p)n−i2P1(i1). (A.44)

Lemma A.2: At the lower bound, S2 = S1Ld, the extra probability is

P (d−) := (1− Φ(
ln(1/Ld) + (r − σ2/2)T

σ
√
T

))P1(i1). (A.45)

Lemma A.3: At the upper bound, S2 = S1Lu, the extra probability is

P (u+) := Φ(
ln(1/Lu) + (r − σ2/2)T

σ
√
T

)P1(i1). (A.46)

We use the above model to find S2 value and its probability P2 value. Hence, a European call

option price can be calculated as

c = e−rT
∞
∑

i1=0

∞
∑

i2=0

max(S2 −K, 0)× P2. (A.47)

To simplify the calculation, we divide the model into four separated parts, which are
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• c1, both S1 and S2 are between the boundaries, which is the un-re-distributed 2-phase re-

distributed model.

• c2, only S2 is between the boundaries, and S1 is beyond a boundary, which means the 2nd

phase is a un-re-distributed 1-phase re-distributed model.

• c3, only S1 is between the boundaries, which means the 1st phase is a un-re-distributed

1-phase re-distributed model.

• c4, both S1 and S2 are beyond the boundaries.

Therefore, we have

c :=c1 + c2 + c3 + c4 (A.48)

=e−2rT
[

β
∑

i1=γ

β
∑

i2=γ

n!

i1!(n− i1)!

n!

i2!(n− i2)!
pi1+i2(1 − p)n−i1+n−i2

max(S0u
i1+i2dn−i1+n−i2 −K, 0)

+

β
∑

i2=γ

n!

i2!(n− i2)!
pi2(1− p)n−i2

((1 − Φ(
ln(1/Ld) + (r − σ2/2)T

σ
√
T

))

max(S0Ldu
i2dn−i2 −K, 0)

+Φ(
ln(1/Lu) + (r − σ2/2)T

σ
√
T

)

max(S0Luu
i2dn−i2 −K, 0))

+

β
∑

i1=γ

n!

i1!(n− i1)!
pi1(1− p)n−i1

((1 − Φ(
ln(1/Ld) + (r − σ2/2)T

σ
√
T

))

max(S0u
i1dn−i1Ld −K, 0)

+Φ(
ln(1/Lu) + (r − σ2/2)T

σ
√
T

)

max(S0u
i1dn−i1Lu −K, 0))

+

γ
∑

i1=0

γ
∑

i2=0

1i1,i2:K<S0ui1dn−i1ui2dn−i2

n!

i1!(n− i1)!

n!

i2!(n− i2)!
pi1+i2(1 − p)n−i1+n−i2

max(S0LdLd −K, 0)

+
n
∑

i1=β

γ
∑

i2=0

1i1,i2:K<S0ui1dn−i1ui2dn−i2

n!

i1!(n− i1)!

n!

i2!(n− i2)!
pi1+i2(1 − p)n−i1+n−i2

max(S0LuLd −K, 0)

+

γ
∑

i1=0

n
∑

i2=β

1i1,i2:K<S0ui1dn−i1ui2dn−i2
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n!

i1!(n− i1)!

n!

i2!(n− i2)!
pi1+i2(1 − p)n−i1+n−i2

max(S0LdLu −K, 0)

+

n
∑

i1=β

n
∑

i2=β

1i1,i2:K<S0ui1dn−i1ui2dn−i2

n!

i1!(n− i1)!

n!

i2!(n− i2)!
pi1+i2(1 − p)n−i1+n−i2

max(S0LuLu −K, 0)
]

.

The upper bound

β :=
1

2
(
ln(Lu)

σ
√

T/n
+ n), (A.49)

where Lu = 1.1. The lower bound

γ :=
1

2
(
ln(Ld)

σ
√

T/n
+ n), (A.50)

where Ld = 0.9. And

p =
e

rT

n − e
−σ

√

√

√

√

T

n

e
σ

√

√

√

√

T

n − e
−σ

√

√

√

√

T

n

. (A.51)

A.3.1 Simplifying (A.48): the 1st, 2nd, 3rd part

For the 1st, 2nd, 3rd part of (A.48), each model is an un-re-weighted re-weighting model. The first

part, which is between price bounds for both phases, is an un-re-weighted 2-phase re-weighting

model without ̺. The result has been shown on (A.48). For the second and third part, these are

un-re-weighted 1-phase re-weighting models with two fixed pre-known probability values at upper

and lower bound. The P (u+) and P (d−) values at upper bound and lower bound have been shown

at the beginning of this section on Lemma A.2 and A.3.

Hence, we combine the re-weighting models and summarise them as follows.

If K 6 S0L
2
d,

c1 = S0(Φ(d1)− Φ(d3))
2 −Ke−2rT (Φ(d2)− Φ(d4))

2, (A.52)

where

d1 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

, (A.53)

d2 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

, (A.54)

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

(A.55)
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and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

. (A.56)

c2 = (S0LdΦ(d1)−Ke−rTΦ(d2)− S0LdΦ(d3) +Ke−rTΦ(d4)) (A.57)

(1− Φ(
ln(1/Ld) + (r − σ2/2)T

σ
√
T

))

+ (S0LuΦ(d1)−Ke−rTΦ(d2)− S0LuΦ(d3) +Ke−rTΦ(d4))

(Φ(
ln(1/Lu) + (r − σ2/2)T

σ
√
T

)).

c3 = (S0LdΦ(d1)−Ke−rTΦ(d2)− S0LdΦ(d3) +Ke−rTΦ(d4)) (A.58)

(1− Φ(
ln(1/Ld) + (r − σ2/2)T

σ
√
T

))

+ (S0LuΦ(d1)−Ke−rTΦ(d2)− S0LuΦ(d3) +Ke−rTΦ(d4))

(Φ(
ln(1/Lu) + (r − σ2/2)T

σ
√
T

)),

where

d1 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

, (A.59)

d2 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

, (A.60)

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

(A.61)

and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

. (A.62)

If S0LuLd 6 K < S0L
2
u,

c1 = e−rTS0 (Φ(d1)− Φ(d3))(−Φ(d3)) (A.63)

+ e−rTS0 lim
n−→∞

β
∑

i1=ζ

n!

(n− i1)!i1!
pi1(1− p)n−i1ui1dn−i1Φ(d′1)

− e−2rTK (Φ(d2)− Φ(d4))(−Φ(d4))

− e−2rTK lim
n−→∞

β
∑

i1=ζ

n!

(n− i1)!i1!
pi1(1− p)n−i1Φ(d′2),

where
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d1 =
ln(S0Lu/K) + (r + σ2/2)T

σ
√
T

, (A.64)

d′1 =
ln(S0u

2i1−n/K) + (r + σ2/2)T

σ
√
T

, (A.65)

d2 =
ln(S0Lu/K) + (r − σ2/2)T

σ
√
T

, (A.66)

d′2 =
ln(S0u

2i1−n/K) + (r − σ2/2)T

σ
√
T

, (A.67)

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

(A.68)

and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

. (A.69)

c2 =(S0LuΦ(d1)−Ke−rTΦ(d2)− S0LuΦ(d3) +Ke−rTΦ(d4)) (A.70)

(Φ(
ln(1/Lu) + (r − σ2/2)T

σ
√
T

)).

c3 =(S0LuΦ(d1)−Ke−rTΦ(d2)− S0LuΦ(d3) +Ke−rTΦ(d4)) (A.71)

(Φ(
ln(1/Lu) + (r − σ2/2)T

σ
√
T

)),

where

d1 =
ln(S0Lu/K) + (r + σ2/2)T

σ
√
T

, (A.72)

d2 =
ln(S0Lu/K) + (r − σ2/2)T

σ
√
T

, (A.73)

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

(A.74)

and

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

. (A.75)

If S0L
2
d < K < S0LdLu,
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c1 = e−rTS0

[

(Φ(d1)− Φ(d′3))(−Φ(d3)) (A.76)

+ lim
n−→∞

θ
∑

i1=γ

n!

(n− i1)!i1!
pi1(1− p)n−i1ui1dn−i1Φ(d′1)

]

− e−2rTK
[

(Φ(d2)− Φ(d′4))(−Φ(d4))

+ lim
n−→∞

θ
∑

i1=γ

n!

(n− i1)!i1!
pi1(1− p)n−i1Φ(d′2)

]

+
(

S0(Φ(d
′
3)− Φ(d3))(Φ(d1)− Φ(d3))

−Ke−2rT (Φ(d′4)− Φ(d4))(Φ(d2)− Φ(d4))
)

,

where

d1 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

, (A.77)

d′1 =
ln(S0u

2i1−n/K) + (r + σ2/2)T

σ
√
T

, (A.78)

d2 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

, (A.79)

d′2 =
ln(S0u

2i1−n/K) + (r − σ2/2)T

σ
√
T

, (A.80)

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

, (A.81)

d′3 =
ln(S0Ld/K) + (r + σ2/2)T

σ
√
T

, (A.82)

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

(A.83)

and

d′4 =
ln(S0Ld/K) + (r − σ2/2)T

σ
√
T

. (A.84)

c2 = (S0LdΦ(d1)−Ke−rTΦ(d2)− S0LdΦ(d3) +Ke−rTΦ(d4)) (A.85)

(1− Φ(
ln(1/Ld) + (r − σ2/2)T

σ
√
T

))

+ (S0LuΦ(d
′
1)−Ke−rTΦ(d′2)− S0LuΦ(d3) +Ke−rTΦ(d4))

(Φ(
ln(1/Lu) + (r − σ2/2)T

σ
√
T

)).
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c3 = (S0LdΦ(d1)−Ke−rTΦ(d2)− S0LdΦ(d3) +Ke−rTΦ(d4)) (A.86)

(1− Φ(
ln(1/Ld) + (r − σ2/2)T

σ
√
T

))

+ (S0LuΦ(d
′
1)−Ke−rTΦ(d′2)− S0LuΦ(d3) +Ke−rTΦ(d4))

(Φ(
ln(1/Lu) + (r − σ2/2)T

σ
√
T

)),

where

d1 =
ln(S0Ld/K) + (r + σ2/2)T

σ
√
T

, (A.87)

d2 =
ln(S0Ld/K) + (r − σ2/2)T

σ
√
T

, (A.88)

d3 =
ln(1/Lu) + (r + σ2/2)T

σ
√
T

, (A.89)

d4 =
ln(1/Lu) + (r − σ2/2)T

σ
√
T

, (A.90)

d′1 =
ln(1/Ld) + (r + σ2/2)T

σ
√
T

(A.91)

and

d′2 =
ln(1/Ld) + (r − σ2/2)T

σ
√
T

. (A.92)

A.3.2 Simplifying (A.48): the 4th part

For the 4th part of (A.48), there is no simplified form. Hence, we have to use the original calculation

shown on (A.48).

c4 =

γ
∑

i1=0

γ
∑

i2=0

1i1,i2:K<S0ui1dn−i1ui2dn−i2

n!

i1!(n− i1)!

n!

i2!(n− i2)!
pi1+i2(1− p)n−i1+n−i2

max(S0LdLd −K, 0)

+

n
∑

i1=β

γ
∑

i2=0

1i1,i2:K<S0ui1dn−i1ui2dn−i2

n!

i1!(n− i1)!

n!

i2!(n− i2)!
pi1+i2(1− p)n−i1+n−i2

max(S0LuLd −K, 0).
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+

γ
∑

i1=0

n
∑

i2=β

1i1,i2:K<S0ui1dn−i1ui2dn−i2

n!

i1!(n− i1)!

n!

i2!(n− i2)!
pi1+i2(1− p)n−i1+n−i2

max(S0LdLu −K, 0)

+

n
∑

i1=β

n
∑

i2=β

1i1,i2:K<S0ui1dn−i1ui2dn−i2

n!

i1!(n− i1)!

n!

i2!(n− i2)!
pi1+i2(1− p)n−i1+n−i2

max(S0LuLu −K, 0).
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