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Abstract

Vehicle-to-Vehicle (V2V) technology aims to enable safer and more sophisticated trans-
portation via the spontaneous formation of Vehicular Ad hoc Networks (VANETs). This
type of wireless networks allows the exchange of kinematic and other data among vehicles,
for the primary purpose of safer and more efficient driving, as well as efficient traffic man-
agement and other third-party services. Their infrastructure-less, unbounded nature allows
the formation of dense networks that present a channel sharing issue, which is harder to
tackle than in conventional WLANs.

This thesis focuses on optimising channel access strategies, which is important for
the efficient usage of the available wireless bandwidth and the successful deployment of
VANETs. To start with, the default channel access control method for V2V is evalu-
ated hardware via modifying the appropriate wireless interface Linux driver to enable
finer on-the-fly control of IEEE 802.11p access control layer parameters. More complex
channel sharing scenarios are evaluated via simulations and findings on the behaviour of
the access control mechanism are presented. A complete channel sharing efficiency as-
sessment is conducted, including throughput, fairness and latency measurements. A new
IEEE 802.11p-compatible Q-Learning-based access control approach that improves upon
the studied protocol is presented. The stations feature algorithms that “learn” how to
act optimally in VANETs in order to maximise their achieved packet delivery and min-
imise bandwidth wastage. The feasibility of Q-Learning to be used as the base of self-
learning protocols for IEEE 802.11p-based V2V communication access control in dense
environments is investigated in terms of parameter tuning, necessary time of exploration,
achieving latency requirements, scaling, multi-hop and accommodation of simultaneous ap-
plications. Additionally, the novel Collection Contention Estimation (CCE) mechanism for
Q-Learning-based access control is presented. By embedding it on the Q-Learning agents,
faster convergence, higher throughput, better service separation and short-term fairness
are achieved in simulated network deployments.

The acquired new insights on the network performance of the proposed algorithms
can provide precise guidelines for efficient designs of practical, reliable, fair and ultra-low
latency V2V communication systems for dense topologies. These results can potentially
have an impact across a range of related areas, including various types of wireless networks
and resource allocation for these, network protocol and transceiver design as well as Q-
Learning applicability and considerations for correct use.
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Chapter 1

Introduction

1.1 Overview

Vehicle-to-Vehicle (V2V) technology aims to enable safer and more sophisticated trans-

portation starting with minor, inexpensive additions of communication equipment on con-

ventional vehicles and moving towards network-assisted fully autonomous driving. It is

a fundamental component of the Intelligent Transportation Systems (ITS) [8] and Inter-

net of Things (IoT) [109]. This technology allows for the formation of Vehicular Ad Hoc

Networks (VANETs), a new type of network which allows the exchange of kinematic data

among vehicles, for the primary purpose of safer and more efficient driving, as well as

efficient traffic management and other third-party services. VANETs can help minimise

road accidents and randomness in driving with on-time alerts, enable (semi)-autonomous

vehicle applications, as well as enhance the whole travelling experience with new infotain-

ment systems which allow acquiring navigation maps and other information from peers.

V2V communications enable the wireless ad hoc networking of moving vehicles within

a Region of Interest (RoI), for safety message exchanges and other purposes. The key en-

abling technology, specifying the physical (PHY) and medium access control (MAC) layers

of the V2V stack is IEEE 802.11p, which enables communications Outside the Context of a

Basic service set (OCB) via the Dedicated Short Range Communication (DSRC) frequen-

cies at 5.9 GHz. With DSRC specifying a 1-hop range of up to 1 km Line-of-Sight (LoS),

wireless vehicular networks will have to accommodate many transmitting vehicle-stations

within the range of each other. Additionally, with the Internet of Vehicles proposing an

ever increasing amount of promising applications, novel protocols are needed to meet chal-

lenging demands not addressed by the conventional standard, since IEEE 802.11p belongs

in the IEEE 802.11 family of protocols originally designed to be used in Wireless Local
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Area Networks (WLANs). The DSRC PHY and MAC must be scalable and it is expected

that the stack often will have to manage 50-100 interconnected stations in an immediate

communication zone.

A MAC protocol defines the rules of how multiple network stations access the shared

channel to avoid packet collisions. The de-facto MAC layer used in IEEE 802.11p-based

networks is implemented as a Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) algorithm, which is a distributed, contention-based protocol. For VANETS,

CSMA is preferable to centralised solutions such as Time-Division Multiple Access (TDMA)

or Frequency-Division Multiple Access (FDMA) [78] [106], since these would require syn-

chronisation among stations which is very difficult to achieve in such mobile, infrastructure-

less networks. But there is still space for improvement, especially when it comes to wireless

vehicular networks which are unbounded, ad hoc networks with long one-hop transmission

range, that allows them to become quite dense and congested in urban environments, lead-

ing to packet collisions. Every vehicle must maintain a relative standard of transmission

rate or else the rest of the vehicles in near proximity would not be aware of its existence.

A vehicle-station’s packets colliding and being dropped effectively means that it is dis-

connected from the wireless vehicular network for the period of time that these packets

are dropped, which may pose safety concerns. Furthermore, with the majority of radio

stations that form VANETs being moving vehicles, the latency requirements of some ITS

applications can be very strict.

As a solution, this thesis studies a novel self-learning channel sharing control method

that can be biased towards satisfying various V2V applications, for both unicast and broad-

cast V2V exchanges via DSRC links. It allows to directly interconnect a large number of

vehicles and stationary units via IEEE 802.11p wireless interfaces, by employing a Rein-

forcement Learning (RL) algorithm to perform CW adaptation. This technique allows the

designers to improve networking performance via self-learning channel access controllers,

without having to make major modifications to existing hardware. Moreover, the real-time

learning and control requirements of the algorithm are considered.

1.2 Challenges and Research Questions

1.2.1 Motivation

A MAC protocol is part of the data link layer (L2) of the OSI model and defines the rules

of how the various network stations share access to the channel. The IEEE 802.11p stack
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for V2V employs the CSMA/CA MAC, the decentralized contention-based access control

algorithm which has been extensively tested in WLANs and Wireless Sensor Networks

(WSNs). The primarily one-to-many nature of transmissions for VANETs presents some

problems for the IEEE 802.11-inherited MAC layer which is not designed to accommodate

dense broadcast traffic. Additionally, due to the safety nature of the packets exchanged

via DSRC and their short temporal validity, the Contention Window (CW ) parameter

defined by CSMA/CA for the purpose of randomising the time of access to the channel

among the various stations to avoid collisions, is kept small according to the default IEEE

802.11p specification. While keeping the CW value small lowers the end-to-end latency of

transmissions, studies [99] [30] have shown that this is a primary cause of packet collisions

in DSRC-based networks, which cannot be eliminated by the IEEE 802.11p MAC as it is

due to its inability to adapt the parameter. Additionally, the IEEE 802.11-based MAC

presents an intrinsic (short-term) fairness problem whereby stations cannot gain access

to the wireless medium with equal probability under heavy traffic conditions [98], which

can often be the case in wireless vehicular networks. This could impair the reliability of

applications such as information collection from vehicular sensors, safety-related real time

traffic, and TCP applications. Furthermore, the fairness problem may seriously affect the

quality of service (QoS) support for DSRC-based networks, meaning that the desirable

QoS for some uses may not be satisfied due to unfair access opportunities. The CW L2

parameter is definitive to the network performance and its correct adaptation could largely

improve the performance of suggested applications.

The data to be exchanged via VANETs can divided into technical (i.e., vehicular, prox-

imity sensors, radars), crowd-sourced (i.e., maps, environment,traffic,parking) and personal

(i.e., VoIP, Internet radio, routes) applications. We believe that a significant part of this

data will be exchanged through V2V or Vehicle-to-Everything (V2X) links, making system

scalability a critical issue to address. There is a need for an efficient MAC protocol for

V2V communication purposes, that adapts to the density of vehicular traffic and types

of traffic (data rates etc.), since network conditions and topology are not known a-priori.

Applications for VANETs vary a lot, as do their communication requirements. Pre-crash

sensing or (semi) autonomous applications such as Cooperative Adaptive Cruise Control

(CACC) [70] rely on ultra-low latency exchanges (< 20ms) for warnings or directly driv-

ing vehicle control systems. Others are oriented towards more assistive, road safety and

traffic efficiency uses such as lane-changing and emergency braking, with strict but more

easily met latency requirements (< 100ms) [108]. Finally there are also convenience and
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infotainment uses where delay is not as critical in comparison but the transferred data

volume can be much larger.

1.2.2 Aims and Objectives

The studied problem is the sharing of wireless DSRC frequencies for dense urban, highway

or smart-city scenarios where many vehicles would need to communicate with each other

as well as other connected elements of the environment such as Road-side Units. The

higher-level objective of this work is to develop a DSRC-compatible MAC layer capable of

self-improving over time, that can meet key requirements for various VANET applications,

such as reliability and bandwidth efficiency and low latency as well as enhancing short-term

fairness and handling of service separation. The objectives of this thesis are presented in

detail below.

• Gaining a better understanding of the IEEE 802.11p MAC contention resolution cap-

ability in various VANET scenarios featuring multiple transmitters. The protocol’s

performance would have to be evaluated in a real hardware implementation, as well

as computer simulations that allow modelling of dense networks, various application

layers or multi-hop.

• Investigation of the applicability of Reinforcement Learning in the distributed access

control problem in VANETs. The outcome of this would be a novel adaptive MAC

layer protocol based on RL agents, tailored for wireless vehicular networks. The

protocol would have to the ability to “learn” how to optimise the MAC layer per-

formance in various networking scenarios. The protocol’s performance would have to

be evaluated against a set of networking metrics. It would have to support broadcast

(OCB) mode which is the primary mode of operation for V2X.

• Design of detailed reward functions that allow the RL agents to strive towards achiev-

ing multiple MAC layer goals simultaneously. A MAC protocol for VANETs has to

achieve high packet delivery, low latencies and fairness of bandwidth allocation among

vehicles. The reward function would make RL agents “aware” of these objectives, and

make them take actions to reach them.

1.3 Contributions

We design and present an IEEE 802.11p-compliant MAC algorithm based on Q-Learning.

It simultaneously targets reliable packet delivery and throughput-fairness, while being
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latency-aware. It features the proposed CCE reward method for Q-Learning, designed to

tackle the inherent fairness problem appearing in CSMA-based IEEE 802.11p networks,

to achieve more efficient channel sharing in terms of providing (near) equal transmission

opportunities and improved transmission reliability for all stations. A summary of contri-

butions is listed as follows:

• Chapter 3: The investigation of the default DSRC MAC Layer and its contention

resolution capability is the first contribution of this work. More specifically, we exam-

ine the effect of the Contention Window parameter on communications under heavy

channel contention, with a multitude of vehicles attempting to exchange data packets

with each other. The DSRC protocol’s capability in channel sharing is tested in a

real-world implementation based on commodity hardware. The hardware platform

used to evaluate the DSRC MAC provides access to the Link Layer software so that

the studied parameters can manually set. This chapter presents a unique study of

the effect that the DSRC CW parameter has on communication performance, based

on real hardware test-bed built of of-the-shelf components.

Furthermore, a more extensive, simulation-based study of the effect of the para-

meter in denser VANETs was conducted in OMNeT++. A MAC protocol evaluation

framework around packet delivery ratio, latency and fairness is presented. The effect

of different IEEE 802.11p-compatible values of the parameter are examined, applied

symmetrically or asymmetrically to the network, to promote either fairness and over-

all network-wide reliability or favour high-priority stations respectively.

• Chapter 4: After investigating the capability of the baseline DSRC protocol in hand-

ling communications in congested VANETs, improvements based on Machine (Rein-

forcement) Learning are employed to increase the available bandwidth utilisation and

achieve more efficient communication, in terms of achieved data transfer rates as well

as transmission latency. A novel Q-Learning-based MAC protocol for both unicast

and broadcast DSRC systems, featuring CW adaptation, is presented. The protocol

is effective when transmitting in classic, unicast mode, as well as broadcast (OCB)

mode which is the default for V2X. It also supports both single-hop and multi-hop

information dissemination via retransmissions. Real-time effectiveness and learning

performance is considered and evaluated.

• Chapter 5: Given the criticality of packet exchanges among vehicles in DSRC net-

works, an investigation of fair sharing of the bandwidth among multiple nodes is also
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of concern. A new Q-Learning-based MAC protocol is developed that features a Col-

lective Contention Estimation (CCE) algorithm, for enhanced fairness and through-

put. The capability of the Q-Learning-based MAC and the CCE algorithm to ac-

commodate different classes of data going through the network simultaneously is also

examined. Additionally, a way of combining multiple objectives that the Q-Learning

can strive towards is proposed and evaluated.

1.4 Structure of thesis

The remainder of the thesis is outlined as follows: Chapter 2 reviews the existing technical

background on V2X communications and the Link Layer technology, as well as related

research work in the problems and adaptive MAC solutions. Chapter 3 reviews the IEEE

802.11p MAC protocol for broadcast communication. Chapter 4 presents the development

of a modification of the IEEE 802.11p MAC based on Reinforcement Learning, as well as

evaluation under various network conditions. An enhanced version of the RL-based MAC

protocol based on a novel Collective Contention Estimation reward function is developed

in Chapter 5. Finally in Chapter 6, we conclude our findings and suggest topics for future

research on the matter.
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Chapter 2

Background

2.1 Introduction to Vehicular Networking

The Intelligent Transportation Systems (ITS) network architecture comprises of three do-

mains: the in-vehicle, the ad hoc and the infrastructure domain, as seen in [51]. The

in-vehicle domain is composed of an on-board communication unit (OBU) and multiple

control units. The connections between them are usually wired, utilising protocols such as

Controller Area Network (CAN), Local Interconnect Network (LIN) or Ethernet etc. and

sometimes wireless. The ad hoc domain is composed of vehicles equipped with such OBUs

and roadside units (RSUs) [58]. The OBUs can be seen as the mobile nodes of a wireless

ad hoc network and likewise RSUs are static nodes. Additionally, RSUs can be connected

to existing infrastructure and the Internet via gateways, as well as communicate with each

other directly or via multi-hop. There are two types of infrastructure domain access, RSUs

and hot spots (HSs). These provide OBUs access to the Internet. In the absence of RSUs

and HSs, OBUs could also use cellular radio networks (GSM,GPRS,LTE) [58] for the same

purpose. The various networking domains and their respective components can be seen in

Fig 2.1.

2.1.1 Types of Communication

In-vehicle communication refers to a car’s various electronic controllers communicating

within the in-vehicle domain. The in-vehicle communication system can detect the vehicle’s

performance regarding the internal systems (electrical and mechanical) as well as driver’s

fatigue and drowsiness [5], which is critical for driver and public safety. In the ad hoc do-

main, Vehicle-to-Vehicle (V2V) communication can provide a data exchange platform for

the drivers to share information and warning messages, so as to expand driver assistance
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Figure 2.1: Networking Domains for VANETs

and prevent road accidents. Vehicle-to-road Infrastructure (V2I) communication enabled

by VANETs allows real-time traffic updates for drivers, a sophisticated and efficient traffic

light system as well, as could provide environmental sensing and monitoring. V2I can

extend to Vehicle-to-Broadband Cloud (V2B) communication means that vehicles may

communicate via wireless broadband mechanisms such as 4G/5G (infrastructure domain).

As the broadband cloud includes more traffic information and monitoring data as well as

infotainment, this type of communication will be useful for active driver assistance and

vehicle tracking as well as other infotainment services [33]. The V2V and V2I communic-

ation types can be collectively referred to as Vehicle-to-Everything (V2X). More types of

V2X communication are examined by researchers, e.g., Vehicle-to-Pedestrian (V2P) and

Vehicle-to-Device (V2D) intended more for connectivity among cars and bicycles as well

as other devices.

2.1.2 V2X communication technologies

What has been the design under debate in all parts of the world is the Ad Hoc Domain,

or V2X communication. There are two dominant types of V2X communication techno-

logy depending on the underlying technology being used: WLAN-based, and cellular-based.

Various proposals on the V2V radio technology around the world, such as the EU Commis-

sion’s Delegated Act on ITS [29] define a hybrid approach, endorsing the ITS-G5 standard,

also known as IEEE 802.11p or DSRC, as the baseline technology for direct V2V commu-

nication since it is a mature, well-researched physical layer solution. Complementary 4G

or 5G Cellular V2X (C-V2X) technology can be used for longer range communication to
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infrastructure and cloud services.

Work in [37] shows that IEEE 802.11p exhibits lower latency and higher delivery ratio

than LTE in scenarios fewer than 50 vehicles. More specifically, for smaller network densit-

ies, the standard allows end-to-end delays less than 100ms and throughput of 10 kbps which

satisfies the requirements set by active road safety applications and few of the lightweight

cooperative traffic awareness applications. However, as the number of vehicles increases,

the standard is unable to accommodate the increased network traffic and support perform-

ance requirements for more demanding applications.

A white paper from NXP Semiconductors [93] finds IEEE 802.11p (ITS-G5 in Europe)

to be the superior technology to allow deploying V2X communications right now. The

comparison done by NXP reveals the much better coverage by ITS-G5, using the state-

of-the-art modems, with minimal packet loss recorded at 400 meters of range (>93% of

transmission success), with LTE-V2V achieving just 40% for the same range. The the-

oretical specification for IEEE 802.11p PHY defines upper TX power enough to reach a

theoretical LoS range of 1 km. These ranges also indicate that V2V networks can become

particularly dense i.e., in urban or highway scenarios, with multiple vehicular or road-side

transmitters exchanging kinematic, traffic and other information.

There has been newly proposed C-V2X technology, based on the Release 14 of the

LTE standard, which includes two modes for V2V communications: Mode 3 (base-station-

scheduled) and Mode 4 (autonomously-scheduled). C-V2X Mode 3 is not comparable

with IEEE 802.11p since it does not support the formation of ad hoc (infrastructure-less)

networks, rather makes use of cellular infrastructure support for resource allocation. This

means that only C-V2X Mode 4 is relevant since V2V safety applications cannot depend

on the availability of infrastructure-based cellular coverage. It is specifically designed

for V2X communications (using the PC5 sidelink interface) and allows vehicle-stations to

autonomously select and manage their radio resources.

The IEEE 802.11p standard is a mature V2X technology which is suitable for deploy-

ment right now having been tested in field trials. The same is not true for C-V2X Mode

4, which is new technology with modems not yet widely available, and there has been lim-

ited, mostly analytical and simulation-based research into its performance and suitability

for V2X use. Also, different studies have proved possible inefficiencies of the autonomous

resource scheduling of C-V2X Mode 4 when the transmissions are not periodic [36]. Work

in [96] shows that IEEE 802.11p outperforms C-V2X Mode 4 in terms of packet delivery

when tested in a platooning (CACC) scenario.
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2.2 Dedicated Short Range Communication (DSRC)

The primary functionality that VANETs will contribute towards the Smart City environ-

ment is advanced active road safety. A vehicular safety communication network is ad hoc,

highly mobile with a large number of contending nodes. The safety messages are very

short as it is their useful lifetime-relevance, and must be received with high probability

[106]. The key enabling technology, specifying Layer 1 and 2 of the protocol stack used

in V2X (ad hoc domain), is Dedicated Short Range Communication (DSRC). The DSRC

radio technology is essentially IEEE 802.11a adjusted for low overhead operations in the

DSRC spectrum (30MHz in the 5.9 GHz band for Europe). It is being standardized as

IEEE 802.11p [2].

2.2.1 IEEE 802.11p

In the architecture of classic IEEE 802.11 networks, there are three basic modes of opera-

tion:

• A Basic Service Set (BSS), which includes an access point (AP) node that behaves

as the controller/master station (STA).

• The (Independent Basic Service Set) IBSS, which is formed by STAs without infra-

structure (AP/s). Networks formed like this are called ad-hoc networks.

• The (Extended Service Set), which is the union of two or more BSSs connected by a

distribution system [111].

The most suitable architecture for a VANET would be the IBSS. A STA (node) within

an IBSS acts as the AP and periodically broadcasts the Service Set ID (SSID) and other

information. The rest of the nodes receive these packets and synchronize their time and

frequency accordingly. Communication can only be established as long as the STAs belong

in the same Service Set (SS).

The IEEE 802.11p amendment defines a mode called “Outside the context of BSS"

(OCB) in its Medium Access Layer, that enables exchanging data without the need for the

node to belong in a Service Set (BSS), and thus, without the overhead required for these

association and authentication procedures with an Access Point before exchanging data.

DSRC defines 7 licenced channels, each of 10 MHz bandwidth (as seen in Fig. 2.2): 6

service channels (SCH) and 1 control channel (CCH). All safety messages, whether trans-

mitted by vehicles or RSUs, are to be sent in the control channel, which has to be regularly
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Figure 2.2: The channels available for 802.11p

monitored by all vehicles. The control channel could be also used by RSUs to inform ap-

proaching vehicles of their services, then use the service channel to exchange data with

interested vehicles.

The explicit multi-channel nature of DSRC necessitates a concurrent multi-channel

operational scheme for safety and non-safety applications [43]. This need is facilitated

with a MAC protocol extension by the IEEE 1609 working group, which deals with the

standardization of the DSRC communication stack between the link layer and applications.

The IEEE 802.11p and IEEE 1609.x protocols combined are called Wireless Access in

Vehicular Environments (WAVE) since they aim to enable wireless communication between

vehicles. The entire protocol stack based on DSRC L1 and L2, suggested for V2X use is

depicted in Fig. 2.3.

Networking	Layer

Upper	Link	Layer

Physical	Layer

WSMP
IEEE	1609.2	(Security)

IEEE	1609.3	(Networking	Services)

IEEE	802.2	(Logical	Link	Control)

IEEE	802.11p	(PHY)

Lower	Link	Layer
IEEE	1609.4	(Multichannel	Operation)

IEEE	802.11p	(MAC)

IPv6

Transporting	Layer UDP/
TCP

Safety	applicationsNon-safety	
applicationsWAVE	stack

Figure 2.3: The DSRC/WAVE Protocol Stack and Associated Standards

There has been work on why the multi-channel operation of DSRC in the way it is

currently designed poses some issues, with the most significant being bandwidth wastage

[27]. This is because the time frame that a car with a single antenna system would have

to be tuned to each channel is fixed (50ms), no matter if the actual data exchange can

be completed in less time than that. This also sets a hard latency requirement of 50ms,
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meaning that a vehicle should get its information across within this time since this is the

period of a station scanning the CCH. For these reasons, this work focuses on optimising

single-channel operation, but can be used as-is to resolve contention in multiple channels

if the IEEE 1609.4 switching layer is in operation.

2.2.2 Wave Short Message Protocol

There are two stacks supported by WAVE, one being the classic Internet Protocol version

6 (IPv6), and another one being WAVE Short Message Protocol (WSMP). The reason

for having two variations in the upper layers is to distinguish the messages as high-

priority/time sensitive or more latency-tolerant and feature-rich packet transmissions such

as UDP transactions.

These are intended for applications such as collision avoidance, that do not necessarily

require very large datagram lengths or complex packets to be transmitted, rather than high

probability of reception and low latency. The format of a WSMP packet is depicted in Fig.

2.4. The overhead is 11 bytes, when a typical UDP-IPv6 packet has a minimum overhead

of 52 bytes [56]. WSMP enables sending short messages while directly manipulating the

Physical Layer Characteristics such as the transmission power and data rate so that nearby

vehicles have a high probability of reception within a set time frame. A Provider Service

ID (PSID) field is similar to a port number in TCP/UDP, which acts as an identity and

answers which application is a specific WSMP heading towards. To improve the latency, a

WSMP exchange does not necessitate the formation of a BSS, which is a requirement for

Service Channel exchanges.

WSM version

1 byte

Security Type

1 byte

Channel Number

1 byte

Data Rate

1 byte

TX Power

1 byte

PSID

4 bytes

Length

2 bytes

DATA

Variable

Figure 2.4: The Format of a WSMP packet

Apart from safety message exchange, connected cars can provide extra functionality

and enable driving assisting and infotainment systems, such as downloading city map

content from RSUs, exchanging video for extended driver vision or even uploading traffic

information to the cloud towards an efficient traffic light system. However, WSMP is not

able to support these, or the classic Internet applications or exchange of multimedia, and

it does not need to since such applications are more tolerant to delay or fluctuations in

network performance. By supporting the IPv6 stack, which is also open and already widely

deployed, such services are easily and inexpensively deployable in a vehicular environment.
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2.2.3 Message Types

Two types of WSMP messages are sent through the control channel by every DSRC-enabled

vehicle:

Periodic safety messages: These are broadcast status messages (beacons) containing

information of the dynamics such as direction, velocity etc. of the transmitting vehicle.

These messages are meaningful for a short period of time, so that the receivers can be

approximately aware of the movement of the transmitter, and quickly become irrelevant.

RSUs also utilize these beacons for traffic light status etc. The beaconing interval is

usually 100ms or less (Fbeacon > 10Hz). These packets are also referred to as Cooperative

Awareness Messages (CAMs).

Event-triggered messages: Changes in the vehicle dynamics (hard breaking) or

RSU status activate the broadcasting of emergency messages with safety information (i.e.,

road accident warning, unexpected breaking ahead, slippery road). These packets are also

referred to as Decentralized Environmental Notification Messages (DENMs).

There are also non-safety communications, that can happen for file transfers (local

map updates, infotainment) or transactions (toll collection) and others. These can take

place in the service channels but are advertised through WSA messages in the control

channel, in which every DSRC-enabled vehicle is tuned in by default.

2.2.4 Summary of relevant DSRC communication properties

The control channel is the one to facilitate safety communications through the exchange

of safety-related or CACC packets. Many of the safety applications are based on single

hop communication since they are very localized. The basic DSRC communication design

proposals do not feature any networking (packet routing) capabilities. Although safety

communications are often single-hop, the system is unbounded and supports 1 km range

in LoS, which means that V2V communication can stretch to great distances, unlike a

bounded system (cells in mobile telephony) [43].

There are, though, scenarios where the message needs to be disseminated to the vehicles

beyond the immediate transmission range of a sender. In these cases, multi-hop commu-

nication is used. Such cases can again be safety related, like on-time warnings for an

accident/hazard along a highway), information about the traffic in an extended area or

other geo-significant information. The work in [17] focuses on safety-related applications

via multi-hop communication, thus disseminating information such as warning messages

(e.g., accident, blocked street, traffic congestion etc.) to a greater RoI. Additionally, [54]
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presents various routing techniques and considerations for large-scale VANETs. Rebroad-

casting schemes for enhancing the multi-hop performance or reliability are seen in [107].

Safety applications made possible through VANETs require a low end-to-end delay and

high packet delivery probability. Additionally, since the exchanged information should be

shared with all vehicles in an RoI, VANETs will be the first large-scale networks where

communication is based mainly on broadcast rather than on unicast transmissions, which

means that it is targeted at vehicles depending on where they are (within a relevant RoI)

rather than some form of identification. The choice of an IEEE 802.11 based technology for

this kind of network raises some issues [88]. The MAC protocol in this family of standards

is well known for its inability to cope with large scale broadcast communications, since it

was designed for a different use-case and it clearly favours unicast [71] communication.

Furthermore, channel access is not centrally managed in DSRC, since vehicular com-

munication networks should be spontaneously formed without the need for infrastructure

support, which translates to a fully distributed architecture. A major concern for DSRC

is that since all DSRC-enabled vehicles and infrastructure continuously broadcast beacon

messages as well as event-triggered safety messages, such a system would require special

design so that it can work reliably and efficiently in a large scale. Originally the CCH was

proposed to facilitate the exchange of safety messages, complying with the WSMP. Oc-

casionally, it would be used for advertising non-safety applications (by RSUs) which take

place in one of the service channels. These are called WAVE Service Advertisement (WSA)

messages. The receiving node would get informed of the existence of such applications, and

tune in the appropriate channel if it needs to make use of these. These advertisements are

generally lightweight and their effect to the control channel’s load is insignificant [43]. But

more advanced applications have been suggested that could benefit from the low latencies

CCH would provide, i.e., (semi) autonomous driving applications like CACC.

Consequently, the focus of the CCH performance characteristics initially was towards

low latency and high delivery probability rather than high transfer rates. Nevertheless,

given that the IEEE 1609.4 multi-channel system is not being actively implemented and

used, and given the performance problems that can arise from it, DSRC networks as of now

would operate at a single frequency at a time, which means that the CCH would have to

support higher amounts of traffic if possible. The lower MAC layer would essentially remain

unchanged in all cases (single-channel or multi-channel) and must have the capability to

adapt and accommodate all different types of traffic irrespectively of the channel or use.
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2.3 The IEEE 802.11p Medium Access Control

The MAC protocol is responsible for transferring data reliably when there is more than one

station attempting to access the same channel simultaneously. An efficient MAC will strive

for maximum channel utilization with minimum collisions. The Distributed Coordination

Function (DCF) is the fundamental MAC technique of the IEEE 802.11-based standards.

DCF employs the CSMA/CA algorithm for sharing access to the common medium among

multiple peers in a distributed manner.

Optimising the CSMA/CA MAC layer essentially translates to appropriate tuning of

four related parameters, namely: minimum and maximum Contention Window (CWmin

and CWmax), the Arbitrary Interframe Spacing (AIFS) and lengths of packet bursts or

transmission opportunity limit (TXOP limit). A fifth parameter representing the backoff

window multiplier was studied during the standardization process, but was eventually

abandoned due to doubts about its effectiveness and replaced with a fixed multiplier of 2

[105].

2.3.1 The CSMA/CA algorithm

We start with the basic principle of the medium access operation for networks based on

the IEEE 802.11 family of protocols, which works as follows:

• Once a packet is ready for transmission, the station is required to sense the state of

the wireless medium before transmitting (listen before talk) to determine whether

another station is transmitting or not. This is done by performing a Clear Channel

Assessment (CCA) (listening for transmissions at the PHY) which includes compar-

ing against some threshold to determine whether the channel is idle while accounting

for noise.

• If the station finds that the medium is continuously idle for a DCF Interframe Space

(DIFS) period (or a variable AIFS period for separating different classes of data),

the station is given permission to transmit after it goes through an additional time

period called backoff , defined by the CW parameter. The purpose of the backoff

is to introduce some asynchronisation which helps the case in which two station’s

DIFS expire simultaneously. When the backoff counter reaches 0, the packet is

transmitted immediately.

• If the channel turns busy before the DIFS interval expiration, the station again defers

from transmission until the medium is again idle for the duration of a DIFS interval.
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• When a unicast packet has been received correctly, the destination station waits

for a Short Interframe Space (SIFS) interval to give priority to an ACK packet

transmission, sent back to the source node to indicate successful reception.

• Transmit Opportunity or TXOP is the amount of time a station can send frames

when it has won contention for the wireless medium. A TXOP of 0 means that

the station can only send 1 packet during the TXOP period. If a station with

TXOP > 0 obtains the channel, it will be permitted to transmit a sequence of data

packets in the time duration defined by the parameter. Once the packet/s are sent,

it must contend for the wireless medium again with the CCA, AIFS and CW .

• If an ACK is not received by the source station in due time, the transmission is con-

sidered as failed and a retransmission of the packet is arranged (unless the maximum

number of retransmissions has been reached). The CW value is set by the Binary

Exponential Backoff algorithm prior to every retransmission.

2.3.2 Binary Exponential Backoff Mechanism

The range of the generated random backoff timer is bounded by the Contention Window

(CW ). More especially, the node randomly draws an integer backoff from the uniform

distribution over the interval [0, CW ], where the initial CW value equals CWmin, and

counts down for backoff time slot intervals before attempting to transmit. The backoff

value will be reduced only when the channel is free, or else the counter freezes until the

medium turns idle again.

The mechanism of CW adaptation for unicast packets is the Binary Exponential Backoff

(BEB) algorithm. The station uniformly selects a random value for its backoff counter

within [0, CWi], where CWi is the current CW size and i is the number of failed attempts

to transmit this single packet. The default BEB adaptation mechanism can be described

as follows;

CWi = 2i × CWmin for i ∈ [0,m], (2.1)

where the number of the backoff stages m is given by:

m = log2(CWmax/CWmin), (2.2)

At the first transmission attempt for a packet,

CW0 = CWmin. (2.3)
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If a unicast packet encounters a collision (meaning no ACK was received for a set time

frame), then

CW1 = 2× CW, (2.4)

CWi is doubled every time a collision happens, until it reaches

CWm = CWmax = 2m × CWmin. (2.5)

When CWi = CWmax, it maintains this value until a successful transmission is achieved

(ACK received). Then CWi will be reset to CWmin, and the process will start again for

the next unicast packet. In essence, in the classic IEEE 802.11-based unicast networks, the

CW parameter adapts to a value between CWmin and CWmax, depending on the delivery

outcome of the transmitted packets. If a packet transmission fails (ACK not received), the

CW parameter is doubled. If the following transmission fails, the CW is doubled again

and so goes on until either it reaches CWmax or it successfully transmits a packet and

resets CW to CWmin. By using this mechanism it is less probable that two or more nodes

pick the same backoff value and transmit simultaneously.

Two problems appear with the BEB mechanism when trying to establish communica-

tion among many highly mobile nodes. Firstly, in dense wireless networks such as VANETs

there is higher probability that multiple nodes choose the same CW value, resulting to

collisions. Secondly, every time a collision occurs, the CW size is doubled to avoid more

collisions. But given that the network density for a VANET can vary a lot over short time

periods because of high mobility, a node using a large CW value (because of previous failed

transmissions) will wait more than it needs to before transmitting under lighter network

conditions. This will result in unnecessary delay.

2.3.3 Enhanced Distributed Channel Access

When just the basic DCF scheme is employed, all nodes contend for access to the medium

using the CSMA/CA algorithm with the same parameters. But there are cases where

the transmitted data packets are different regarding content and purpose. In such cases,

priority of transmission should be handled differently depending on the tolerance of each

class of data regarding latency, since the Quality of Service (QoS) for all ideally should be

guaranteed [104]. For example, real-time traffic information and collision warning messages

have strict delay requirements, while applications such as map data downloading and

Internet browsing are more time-tolerant. In order to meet the different QoS requirements

such as end-to-end delay and throughput, traffic should be differentiated depending on
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these. The way of doing this service separation is by setting different contention parameters

for different classes of data.

The IEEE 802.11p stack is compatible with the Enhanced Distributed Channel Access

(EDCA) from IEEE 802.11e in order to improve the QoS, as an alternative or a compli-

mentary technique to the multi-channel operation defined by IEEE 1609. It offers traffic

classification through 4 priority queues, or Access Categories (ACs). When packets have

different ACs, they contend internally and the winner will participate in external conten-

tion [76]. Data generated by a station’s application layers, depending on their class go

through a different AC. Every AC has a different value of Arbitrary Inter Frame Space

(AIFS), which defines a period a wireless node has to wait before it is allowed to transmit

its next frame, which replaces DIFS in EDCA-enabled stations. The Contention Window

limits CWmin and CWmax, from which the additionally random backoff waiting time is

computed are also variable depending on the AC. The highest the priority, the lowest the

value of its AIFS and the limits of its CW , so that internal contention is more likely to

be won by the data going through it. The different ACs and the parameter values assigned

to each one are shown in Table 2.1. The duration AIFS(AC) is derived from the value

AIFSN(AC) by the relation:

AIFS(AC) = AIFSN(AC)× SlotT ime. (2.6)

As shown in Table 2.1, highly important messages (safety broadcasts) fall in AC3 which

has the lowest Arbitrary Inter-Frame Space (AIFS) and CW size, so they are more likely

to win the internal contention and keep the transmission delay as low as possible. The

QoS requirements for various vehicular networking applications can be found in [106].

AC (Priority) Data Class CWmin CWmax AIFSN

3 (High) Safety Related 3 7 2

2 Voice 7 15 3

1 Best Effect 15 1023 6

0 (Low) Background Traffic 15 1023 9

Table 2.1: Contention Parameters for different Access Categories in 802.11p
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2.3.4 Issues of the IEEE 802.11p MAC for Vehicular Ad Hoc Networks

Therefore, this thesis focuses on studying and improving the DCF, which is the default

contention-based protocol used for channel sharing in IEEE 802.11-based wireless networks,

and consequently IEEE 802.11p VANETs. It employs the Carrier Sense Multiple Access

with Collision Avoidance (CSMA/CA) algorithm to manage access to the medium among

stations in a distributed way. The DCF’s purpose is to avoid collisions of packets by

utilizing both the CSMA scheme and the BEB algorithm. When the network carries

more data than it handle (network congestion), the Quality of Service (QoS) is negatively

impacted. A more efficient MAC layer can better control access to the medium and resolve

some of that congestion, improving the QoS.

The BEB algorithm, when enabled, adjusts the CW parameter based on the number

of consecutive collisions detected by lack of incoming ACK packets. When it comes to

the IEEE 802.11p amendment for V2V communication, the BEB part of the DCF can be

considered harmful since it relies on these explicit ACK packets to adjust the backoff

parameter depending on whether a transmission was successful or not. This can cause

increased delays and unreliability because the non-reception of ACK packets is blocking

other urgent transmissions, as seen in [47].

Additionally, implementation of neither the BEB nor ACKs is done for broadcast

(OCB) transmissions because they will cause the ACK implosion phenomenon [41] which

can lead to service disruption, since there can be many recipients that will all return

an ACK upon reception, causing more collisions and packet drops than actually help re-

solve network traffic congestion. This means that broadcast communication in DSRC has

no acknowledgement feature and the choice of backoff values is always limited within

[0, CWmin]. In broadcast transmissions, though, which is the primary way of exchanging

information in IEEE 802.11p-based networks, there is no reaction to increases in network

load by enlarging the CW parameter or BEB. The reason for this is that original pack-

ets are not acknowledged to avoid the acknowledgement storm problem, because every

recipient would invoke a SIFS interval and try to send back an ACK, which would cause

interference and lead to collisions. Consequently, for the broadcasting case, the backoff

counter reinitialises to a uniformly distributed value within [0, CWmin] no matter the out-

come of the attempted transmission. The operation of CSMA/CA for both unicast and

broadcast transmissions can be seen in Fig. 2.5.

A small CWmin value means that the stations will not have to wait for many time slots

before they can transmit when the channel is sensed to be idle. This is preferable in sparse
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Figure 2.5: A CSMA/CA cycle of operation, managing channel access among transmitting

nodes A and B, for both unicast and broadcast transmissions.

networks since it keeps the total transmission delay low and helps not miss transmission

opportunities because of waiting longer than needed. But in an urban environment where

multiple vehicle-stations continuously transmit using a small CWmin, the probability of

two or more stations drawing the same backoff after both finding the channel idle and

attempting to transmit simultaneously will unavoidably increase, which leads to packet

collisions and bandwidth wastage.

Furthermore, the BEB mechanism presents an intrinsic fairness problem, because each

station relies on its own direct experience to estimate congestion, which often leads to

asymmetric views. Consequently, when the mechanism is utilised under high traffic loads,

some stations achieve significantly larger throughput than others, as shown in some studies

in literature [98] [55]. The problem occurs due to the fact that BEB resets the CW of a suc-

cessful sender to CWmin, while other stations could continue to maintain larger CW sizes,

thus reducing their chances of capturing the channel and resulting in continuous channel

domination by the successful station. But even with the BEB mechanism disabled, the

large number of collisions in a congested wireless vehicular network can result in unfairness

in the system. Consequently an efficient backoff adaptation algorithm replacement that

adjusts the CW parameter as needed to tackle the described packet drop and fairness

problems could be of great use in such environments.

2.4 Contention in VANETs and Control Approaches

The network traffic congestion in VANETs has a devastating impact on the performance of

ITS applications. Given the large number of contending vehicle-stations, especially in an

urban environment, it has been found [67] that the default CSMA/CA-based access control

layer is not reliable enough due to high collision rates. This means channel congestion



22

control and broadcast performance improvements of the 802.11p MAC are of particular

concern and need to be addressed [43] in order to meet the QoS requirements of DSRC

applications. A significant reason for this, to be addressed through this research, is the

non-adaptation or sub-optimal adaptation of the minimum Contention Window (CWmin)

size.

2.4.1 Typical Congestion Control Methods

The node density in a typical VANET scenario can vary from very sparse connectivity to

more than 100 cars interconnected with each other [88], so VANETs have to (up/down)scale

really well [49]. The modifications brought by the IEEE 802.11p amendment focused on

the physical layer, while the classic 802.11 MAC layer was enhanced for transmission of

data outside BSS context which will contribute towards the scalability goal by removing

the association and authentication overheads. But IEEE 802.11 was designed for unicast

applications in mind, so it comes as no surprise that the control channel operating un-

der 802.11p can be saturated solely by beaconing, even for medium vehicular or network

densities [88].

One idea on how to treat degrading performance on increasing vehicle density that has

been around for a long time is limiting the number of contending nodes, which can be

done by using mechanisms for transmission power control. When access to the medium

becomes difficult, reducing the transmission power of a station reduces the interference

area [91]. There are, however, some limitations on the minimum area that safety messages

should reach. Another solution, sometimes combined with power control, is controlling the

transmission time of a beacon. Since the packet’s size are determined by the application,

only the data rate can be adjusted. Higher data rate translates into higher transmission

probability [66], but also requires higher SNR at the destination of the message, so the

coverage area is reduced. This solution suffers from the same limitation as power control.

The way to operate on maximum coverage area and still avoid collisions and prevent

performance degradation is optimising the MAC layer employed by the stations in the net-

work. TDMA is found [106] not to be appropriate to resolve the MAC issues presented as it

was designed for centralised systems, and would not be applicable in IEEE 802.11p-based

networks. There have been TDMA protocol implementations operating in distributed

manner but they still are not immune to the contention problem, are more difficult to

implement and can accommodate a limited number of vehicle-stations [78], especially with

the periodic broadcasting of CAM packets. Hence, the ideal solution to efficient channel
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allocation among multiple vehicle-stations would be based on the default IEEE 802.11p

MAC protocol (CSMA/CA), but with an appropriate backoff (CW ) adaptation mechan-

ism relying on the experienced network traffic density. With a high number of transmitting

nodes, a large CW size is needed to avoid unnecessary collisions. On the other hand, when

the traffic load of the network is low, a small CW size is needed so that potential senders

can access the wireless medium with a short delay [102] [23] [103], thus make more efficient

use of channel bandwidth. Additionally, the time the channel is idle because of nodes

being in the backoff stage could be minimised. In an ideal situation, there would be

zero idle time (which is essentially lost and is a synonym of bandwidth wastage) between

messages in congested networks with the exception of the DIFS period [88]. The ITS-G5

specification suggests [29] what is defined as the Distributed Congestion Control (DCC)

mechanism to control the network load and avoid unstable behaviour. It incorporates the

CSMA protocol as the MAC layer featuring CW adaptation via the BEB mechanism (just

for unicast transmissions) and Transmit Power Control (TPC) in PHY.

2.4.2 MAC-level Congestion Mitigation in IEEE 802.11p

Work in [57] studies the sensitivity of throughput, latency and fairness to changes of

the CWmin, CWmax parameters of the DCF in IEEE 802.11-based networks with many

contending stations. Modifications to the IEEE 802.11 DCF have been proposed regarding

mitigating the inherent fairness problem of the DCF, such as the solutions presented in [98]

and [16] which both use a backoff copying scheme to achieve fairer bandwidth allocation

among stations. However, traditional IEEE 802.11-based networks require that stations are

interconnected via an Access Point, and are designed for unicast exchanges. Consequently

the protocol cannot be used as-is for V2V communications, which has to be infrastructure-

less and accommodate geo-significant transmissions to be received by all peers within a

RoI.

The IEEE 802.11p (DSRC) amendment is proposed to tackle peer-to-peer (ad hoc)

networking for vehicles. The MAC layer of the protocol adopts the DCF and includes

the new OCB mode of operation which allows vehicles to form ad hoc networks among

them and enable broadcast transmissions as the primary form of communication. The

poor performance of the DSRC MAC in supporting safety applications mainly due to the

high collision probability of the broadcasted packets is identified as a key issue in the

MAC layer of vehicular networks in [62]. Campolo, et al. in [25] show that packet delivery

probability, modelled as a function of CW and the number of vehicles, is negatively affected
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as the nodes increase. Then in [24] they suggest that increasing the CW size reduces the

frame loss probability in a similar IEEE 802.11p broadcasting scenario. The work in [48]

suggests that a larger CW favours packet delivery for status-message broadcasting which

is more delay-tolerant. The impact that vehicular density and increased traffic have on

transmission reliability, in terms of packet delivery rates, is also shown in [40]. Additionally,

it proposes a new MAC protocol that trades increased packet delay, which still remains

below the required threshold for most safety applications, for decreased packet loss by

introducing retransmissions. These findings contradict the analysis presented in [77] which

suggests that large CW values will increase delay to the point that they can invalidate the

proper function of some V2V applications. Work in [108] shows that some proposed safety

applications such as Pre-Crash Sensing / Cooperative Collision Mitigation cannot tolerate

more than 20ms of packet delivery latency. A swarming approach for CW adaptation,

towards optimising the one-hop delay in inter-platoon V2V communications is presented

in [103] . Furthermore, work in [39] proves that for V2I exchanges in sparser networks,

a smaller CW will benefit the packet delivery performance of the faster-moving vehicles,

allowing them to content fairly with the slower ones. We conclude that there cannot be a

value of CW that is suitable for all circumstances, and that can be a problem in broadcast

IEEE 802.11p where by default the size of the parameter is not adapted to network traffic.

2.5 Computational Intelligence in Networking

There has been research, as the one presented in [87], which uses fuzzy logic to hard-code

existing knowledge regarding the relation of network density with the CW value defining

the backoff of vehicle-stations. Fuzzy Logic requires expert knowledge of the system and

how the controlled parameter should affect the output. This and other hard-coded or

heuristic-based solutions from literature presented so far can be insufficient since the same

level of CW can affect the performance in completely different ways given the uncertainty

regarding network traffic properties and dynamics of conditions. Not all situations and

respective solutions can be known a-priori, so a system controlled this way can have sub-par

performance in scenarios that are not predicted at the time of the controller design. Lately

there has been emerging work on “smart” communication networks, that employ Machine

Learning (ML) algorithms on various levels of the networking stack towards improving

their efficiency and enabling new applications [6] [80] [97]. ML was defined in 1959 by

Arthur Samuel as “the field of study that gives computers the ability to learn without

being explicitly programmed”. ML algorithms typically belong in one of three categories:
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Supervised, Unsupervised and Reinforcement Learning (RL).

Algorithms belonging in the supervised learning category are provided with “labelled”

data sets, which are used to approximate a system model from the relationship between

input and output data, in terms of some examined features. Supervised learning algorithms

aim to map the target output to the input features as best as possible, so that when given

new input data, they can predict the output data based on the built mapping function.

The Support Vector Machine (SVM) classification algorithm is used for the purpose of

resource allocation for CSMA/CA in [3]. It is also tested as a solution for localization in

wireless networks, as seen in [28] or antenna selection in [44]. In that work, a classifier

built on the k-nearest neighbors (k-NN) algorithm is also examined as a solution for the

same purpose. Neural Networks are also examined for the use of localisation [85] [85] and

routing [113] in wireless networks, as well as other purposes.

Unsupervised learning algorithms are provided with unlabelled input data, so no cor-

responding output is given at the training stage. The goal of algorithms belonging in

this ML category is to classify the input data into different groups by investigating their

similarities, by discovering previously unknown patterns in the data. When it comes to

networking and communications applications, unsupervised learning algorithms are natur-

ally used in problems such as node clustering and data aggregation. Work in [81] explores

clustering of nodes in WSNs based on the k-means unsupervised learning algorithm. The

same algorithm is used in [38] for periodic data aggregation in WSNs. Work presented in

[46] examines the use of the Principal Component Analysis (PCA) algorithm to assess the

QoS in VANETs.

RL is a class of ML algorithms fit for problems of sequential decision making and

control. It can be used as a parameter-perturbation/adaptive-control method for Markov

Decision Processes (MDPs) [13], a discrete time, stochastic control formulation. RL is

based on the idea that if an action is followed by a satisfactory state of affairs, or by an

improvement in the state of affairs, then the agent’s tendency to produce that action is

strengthened, i.e., reinforced. In contrast to the two categories of algorithms mentioned

already, RL is not a data-driven approach, meaning that it does not require existing training

datasets, labelled or unlabelled, a-priori for the purpose of building a system model. In

RL there is an agent that interacts with the external world, and instead of being taught by

an example dataset, it learns by exploring the environment and exploiting the knowledge

it acquires. The actions the agent takes are rewarded (reinforced) or penalized. The agent

uses this feedback from the environment to learn the best sequence of actions or “policy”
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to optimize a cumulative reward. Networking areas that RL has traditionally been applied

on is packet routing [21] [4], resource allocation in wireless networks [34] [82] and other

decision-making problems for which collecting a batch of samples for all possible settings

and environments is difficult or impossible.

Research on ML solutions towards resource allocation problems, such as the channel

sharing - access control problem for VANETs studied in this thesis, is focused on developing

RL-based methods [97]. This is because RL is capable of dealing with decision making

problems without requiring a detailed dataset collected a-priori as an input. Such complete

data sets which accurately represent the examined situations are difficult to collect for

resource allocation problems, since the number of uncertainties in a network in terms of

density and characteristics of transmitters, data traffic properties for each etc. is very

large. Consequently, data-driven approaches such as supervised or unsupervised learning

algorithms partially examine such problems, since training sets can only contain a sub-set

of possible networking scenarios and combinations of allocating resources.

2.6 Reinforcement Learning in Markovian Environments

2.6.1 Markov Decision Processes

In RL, the learning agents can be studied mathematically by adopting the MDP formalism.

An MDP is defined as a (S,A, P,R) tuple, where S stands for the set of possible states, As

is the set of possible actions from state s ∈ S, Pa(s, s′) is the probability to transit from

a state s ∈ S to s′ ∈ S by performing an action a ∈ A. Ra(s, s′) is the reinforcement (or

immediate reward), result of the transition from state s to state s′ because of an action a,

as seen in Fig. 2.6. The decision policy π maps the state set to the action set, π : S → A.

Therefore, the MDP can be solved by discovering the optimal policy that decides the action

π(s) ∈ A that the agent will make when in state s ∈ S.

2.6.2 Q-Learning

There are, though, many practical scenarios, such as the channel access control problem

studied in this work, for which the transition probability Pπ(s)(s, s′) or the reward function

Rπ(s)(s, s
′) are unknown, which makes it difficult to evaluate the policy π. Q-learning

[100] [101] is an effective and popular algorithm for learning from delayed reinforcement

to determine an optimal policy π in absence of the transition probability. It is a form

of model-free reinforcement learning which provides agents the ability to learn how to act
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Figure 2.6: Absract MDP model

optimally in Markovian domains by experiencing the consequences of their actions, without

requiring maps of these domains.

In Q-learning, the agent maintains a table of Q[S,A], where S is the set of states and

A is the set of actions. At each discrete time step t = 1, 2, . . . ,∞, the agent observes

the state st ∈ S of the MDP, selects an action at ∈ A, receives the resultant reward rt

and observes the resulting next state st+1 ∈ S. This experience (st, at, rt, st+1) updates

the Q-function at the observed state-action pair, thus provides the updated Q(st, at). The

algorithm, therefore, is defined by (2.7) which calculates the quantity of a state-action

(s, a) combination. The goal of the agent is to maximise its cumulative reward. The core

of the algorithm is a value iteration update. It assumes the current value and makes a

correction based on the newly acquired information, as shown below.

Q(st, at)← Q(st, at) + α× [rt + γ ×max
at+1

Q(st+1, at+1) −Q(st, at)] (2.7)

where the discount factor γ models the importance of future rewards. A factor of γ = 0

will make the agent “myopic” or short-sighted by only considering current rewards, while

a factor close to γ = 1 will make it strive for a high long-term reward. The learning rate α

quantifies to what extent the newly acquired information will override the old information.

An agent with α = 0 will not learn anything, while with α = 1 it would consider only the

most recent information. The maxat+1∈AQ(st+1, at+1) quantity is the maximum Q value

among possible actions in the next state.
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2.6.3 RL for Channel Sharing in Wireless Networks

There has been significant work in academic and industrial research focusing on ML solu-

tions or other intelligent algorithms which are targeted specifically on wireless MAC layer

issues. Current approaches are inadequate to cope with the growth of autonomous network

elements in various IoT environments, including V2V and V2I communication. An over-

view of the convergence of machine learning and communications, focusing on applications

in wireless networking, is presented in [80]. The study indicates that the performance of

mobile networks is strongly influenced by radio resource management i.e., medium access

control parameters and suggests that ML techniques can be utilised to augment the MAC

layer.

There has also been emerging work specifically focusing on employing the MDP formu-

lation and RL algorithms towards optimising the channel access control layer in wireless

networks. In [84] the Markov Decision Process (MDP) formulation is used to design a

MAC layer with deterministic backoff for virtualized IEEE 802.11 WLANs. For V2V ex-

changes, the work presented in [92] examines the IEEE 802.11p MAC performance under

the condition of channel contention using the Markov model from [18] and proposes a pass-

ive contention estimation technique by observing the count of idle inter-frame slots. The

problem of optimizing the IEEE 802.11 backoff mechanism as an MDP is formulated in

[7], and Reinforcement Learning algorithms are proposed as a solution. Work in [60] exam-

ines adopting Reinforcement Learning as an energy-efficient channel sharing technique for

wireless sensor networks. A Q-Learning based MAC protocol for unicast, delay-sensitive

VANET exchanges is proposed in [102]. We found that this work does not consider the

broadcast nature of VANETs, or the learning algorithm convergence and real-time require-

ments set by such vehicular use-cases. Additionally there is a potential to further improve

the performance regarding packet delivery for various latency requirements and fairness.

2.7 Summary

The vehicular ad-hoc networking domain of the ITS is of particular interest. It is wireless

and favours low-latency exchanges, but could be improved to accommodate higher network

traffic and denser topologies. The CSMA MAC is the de-facto channel sharing protocol for

V2V communications under DSRC frequencies. In the quest for car-to-car communication

for intelligent transportation networking applications, improvements on the access control

methods could be enablers for applying these in large networks.
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The most critical CSMA parameter affecting the channel sharing efficiency and there-

fore transmission performance in VANETs consisting of multiple stations is CW . According

to the literature, it should be set in different levels depending on various factors such as

the number of contending stations, or others affecting the network traffic such as the trans-

mitted packet sizes, required latency by applications etc. It also can determine the fairness

of the system, thus ensuring or not whether all vehicle-stations in a VANET acquire the

appropriate portion of the bandwidth at all times to accommodate their transmissions.

Given the criticality of the applications that have to be enabled via V2X links, these

objectives should be satisfied in networks of formed of many vehicles, thus become an

objective of the MAC layer. Traditional techniques of sharing the wireless medium are

not enough for all but the simplest of applications in such dense networks. Thus a lot

of research focus is given into intelligent algorithms for networking use. An investigation

into existing intelligent MAC agents is conducted, as well as proposed solutions from the

general field. The Markov Decision Process and Reinforcement Learning frameworks are

presented, to be used as an enabler of intelligent MAC solutions in the next chapters.
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Chapter 3

Performance Assessment of the IEEE

802.11p MAC Layer

3.1 Hardware-based evaluation of the DSRC access control

layer

3.1.1 Introduction

The CSMA/CA CW parameter is definitive to the Link Layer performance in VANETs.

Specifically CWmin parameter defines the entire range of backoff values a station in a

VANET can use for broadcast transmissions and can have a great effect regarding channel

sharing efficiency and communication performance. To help us understand the true effect

the parameter has on communications, testing on real networking hardware was necessary.

To the best of our knowledge, there has been no work in evaluating the IEEE 802.11p

MAC and especially the effect the CW parameter has on communications, via real hard-

ware implementations. A real-world testing platform that is completely open and allows

realistic evaluations of the IEEE 802.11p MAC protocol in hardware became an objective

of the study, since no such commercial solution that satisfies this requirement exists to

our knowledge. The platform would need to be built from commodity hardware and the

software stack would need to rely on open technologies such as the Linux operating system

and open wireless drivers that can be modified. Extensibility is also a requirement so that

more experiments could be designed in the future.

A real hardware system of interconnected stations was designed in order to observe the

effect that CW adaptation has on a station’s performance in a congested network. The

experiment is based on the Linux wireless subsystem and drivers, which is the most realistic
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Figure 3.1: Testbed schematic with 2 x IEEE 802.11p and 10 x IEEE 802.11n stations

tuned in the same frequency.

way of evaluation since the Linux IEEE 802.11 implementation is open and modifiable, and

a lot of existing commercial networking equipment is built around it.

3.1.2 System Architecture

Two IEEE 802.11p OBUs - stations were implemented, one used as transmitter and one

as a receiver, for the purpose of assessing the transmitters performance. These stations

operate according to the IEEE 802.11p specification so there is no need for an Access Point

in between them, and communication is done in an ad-hoc manner. A second network,

tuned in the same frequency as the two V2V stations was implemented as to emulate

channel contention. This consists of 10 constantly-transmitting WLAN transmitters and

a PC receiving all the traffic and evaluating their, all connected to a WiFi access point. A

schematic of the testbed is presented at Fig. 3.1.

3.1.3 The IEEE 802.11p stations

Linux Networking Sub-system

The wireless network interface card (NICs) is connected through a PCI-e interface. In most

cases, NIC hardware and firmware running on the NICs microcontroller, or just firmware

would handle MAC and lower layer functionality. These implementations do not allow

freedom of development since developers would not have access to the firmware code. The

generation of wireless NICs used for this experiment use a software MAC (SoftMAC),
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Figure 3.2: Linux IEEE 802.11 stack

loaded as a Linux Kernel module.

The main building blocks of the IEEE 802.11 Linux implementation regarding the

MAC layer (and lower-layer) functionality can be seen in Fig. 3.2. Drivers for SoftMAC

devices are built on a framework named mac80211, and offload functionality that would

traditionally be on the hardware do be implemented and controlled in software. The

cfg80211 framework is responsible for the configuration of SoftMAC devices in Linux.

The mac80211 API depends on it for registration to the networking Linux subsystem and

configuration, as well as applying regulatory restrictions. Finally, ath9k is the driver the

kernel loads to interface with the card. The ieee80211_ops and cfg80211_ops define the

callbacks between these APIs. The nl80211 subsystem, based on the Netlink protocol,

acts as a bridge between the cfg80211 API and the user-space configuration tools. The

user-space configuration tools like iw are also based on Netlink.

With the networking stack, the drivers and the configuration tools being open source,

end-developers can read and modify a large part of the wireless adapter’s functionality

and parameters. The IEEE 802.11p specification has already been ported to the Linux

Kernel, as seen in [59]. The Outside the Context of a BSS (OCB) mode has been enabled

in the MAC layer, allowing the NICs to transmit packets without being associated with an

access point and even supports the DSRC frequencies at 5.9 GHz. The iw utility has been

modified accordingly to include new commands for using OCB mode (e.g., join a DSRC

channel, leave a DSRC channel).

So this version of the kernel was deployed on 2 APU boards, one to be used as a

transmitter and one that would act as a receiver, for performance benchmarking. The

addition that was needed regarding the operation of the Ath9k driver was a way to be
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able to change the CWmin parameter so that we could test its effect on transmissions in

a congested environment. The AR_DLCL_IFS register is responsible for setting the CWmin,

CWmax and AIFSN parameters. But modifying the value of CWmin directly through

that register would require a kernel recompilation for every new value which is a lengthy

process. This could make the experiment less accurate since the networking conditions

would slightly vary depending on external interference. So the goal was to be able to

change the CWmin parameter through the user-space quickly so many experiment runs

could be conducted in the same environment.

Hardware

The OBUs are implemented with APU2C4 single-board computers, running a Debian Linux

derivative (Voyage Linux) with a modified Kernel for IEEE 802.11p support. The board,

seen in Fig. 3.3 features an quad-core AMD x86 processor, 4 GBs of RAM, 1 m-SATA

port where the SSD with the OS is connected and two mini PCI-E ports, of which one is

used to connect the wireless adapter. It also features 1 serial port, used for communicating

with the system before the OS is installed or loaded, and 3 Ethernet ports, of which one is

used as a high-speed interface with the system via the SSH protocol, after the Linux OS

boots.

A Wireless NIC supporting the Ath9k driver (SoftMAC) would be needed so that the

CW parameter could be adapted from software. For this testbed, a Compex WLE200NX

miniPCI-e card is used, which is based on the Atheros AR9280 chipset, which is Ath9k-

compatible. These cards support IEEE 802.11n connectivity, with default frequency ranges

of 2.412 - 2.472 GHz and 5.180 - 5.825 GHz which is extended to DSRC frequencies via

the Kernel (although not used for this experiment).

Contention Window Adaptation

The iw Linux user-space utility was adapted to send new CW values to nl80211, which

on its own turn adapts the parameter used by mac80211. A piece of code that was found

on legacy versions of iw utility allowed manually setting the currently employed Access

Category of the EDCA, among the 4 options. That code was re-added at the phy.c

collection of lower layer functions of the IEEE 802.11p-modified iw. The limitation is

4 ACs (set by the kernel driver), so just 4 CW values could be tested at a time, and

then the modified iw program had to be recompiled with the rest of the values. 7 IEEE

802.11p-compatible CW values were tested (3-255), with TXOP = 0 and AIFS = 2.
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Figure 3.3: APU2C4, the single-board computer used for building DSRC OBUs, equipped

with a Compex WLE200NX miniPCI-e IEEE 802.11n wireless module.
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Both CWmin and CWmax would have to be set, as defined at the driver level, although

only the minimum parameter would be used in OCB transmissions. In this implementation

CWmin = CWmax.

Listing 3.1: C code for passing parameters from userspace to nl80211 via libnl

NLA_PUT_U8(msg , NL80211_TXQ_ATTR_QUEUE, queue ) ;

NLA_PUT_U16(msg , NL80211_TXQ_ATTR_TXOP, txop ) ;

NLA_PUT_U16(msg , NL80211_TXQ_ATTR_CWMIN, cwmin ) ;

NLA_PUT_U16(msg , NL80211_TXQ_ATTR_CWMAX, cwmax ) ;

NLA_PUT_U8(msg , NL80211_TXQ_ATTR_AIFS, a i f s ) ;

Upon using iw to adapt the above parameters, the nl80211 layer would automatically

parse these, thanks to the parse_txq_params function, as seen below.

Listing 3.2: C code for passing parameters from userspace to nl80211 via libnl

txq_params−>ac = nla_get_u8 ( tb [NL80211_TXQ_ATTR_AC] ) ;

txq_params−>txop = nla_get_u16 ( tb [NL80211_TXQ_ATTR_TXOP] ) ;

txq_params−>cwmin = nla_get_u16 ( tb [NL80211_TXQ_ATTR_CWMIN] ) ;

txq_params−>cwmax = nla_get_u16 ( tb [NL80211_TXQ_ATTR_CWMAX] ) ;

txq_params−>a i f s = nla_get_u8 ( tb [NL80211_TXQ_ATTR_AIFS ] ) ;

The nl80211_set_wiphy function, which sets physical and other lower layer proper-

ties of the IEEE 802.11 driver in its own turn calls the parse_txq_params. A necessary

condition in order for the function to be called is that the NIC is set in Access Point or

Peer-to-Peer GO mode (also known as WiFi Direct). A necessary addition to the code

so that nl80211 could parse and forward the new settings would be support for the OCB

mode, done as seen below.

Listing 3.3: C code for enabling CW adaptation via nl80211 in OCB mode

i f ( netdev−>ieee80211_ptr−>i f t y p e != NL80211_IFTYPE_AP &&

netdev−>ieee80211_ptr−>i f t y p e != NL80211_IFTYPE_P2P_GO &&

netdev−>ieee80211_ptr−>i f t y p e != NL80211_IFTYPE_OCB)

return −EINVAL;

By performing these changes, we avoid recompiling the kernel every time we need to

change the CWmin parameter to directly enter in into the AR_DLCL_IFS register. This way

we can quickly and fairly collect measurements, without large time gaps between using

different CW values, and avoiding a change in nearby network conditions.
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Listing 3.4: C code for passing the CW parameters to the NIC firmware located in

ath9k/mac.c

REG_WRITE(ah , AR_DLCL_IFS(q ) ,

SM(cwMin , AR_D_LCL_IFS_CWMIN) |

SM( qi−>tqi_cwmax , AR_D_LCL_IFS_CWMAX) |

SM( qi−>tq i_a i f s , AR_D_LCL_IFS_AIFS) ) ;

3.1.4 Contending Nodes Design

Needing to simulate channel contention, and do it an a way that would be simple and

inexpensive compare to the method of building IEEE 802.11p stations, it was decided that

the experiment would be conducted in WiFi frequencies so that more common wireless

modules could be utilised as contending stations.

The ESP-8266 is a popular WiFi module for its Internet of Things applications. It

features an IEEE 802.11b/g/n transceiver at the 2.4GHz band, as well as an on-board

32-bit microcontroller with an operating frequency of 80 MHz and 1 MB of built-in flash

memory. These hardware capabilities enable full TCP/IP stack support. The ESP-8266

chips were programmed as UDP clients that connected to the AP, and generated and

attempted to transmit 200 packets/s with the server’s IP as a destination address. The

packets were 400 bytes long so that significant contention could be emulated even using a

small number of contending stations (10). The setup is seen in 3.4.

UDP was preferred over TCP to be used as the Transport Layer for the purpose of as-

sessing just the Link Layer performance of the vehicle OBU transmitter, as it is connection-

less, and does not feature error-checking and delivery guarantees (i.e., re-transmissions).

A PC running Linux, connected to the same WLAN was acting as a UDP server for the

ESP nodes to connect to, for the purpose of collecting measurements and validating correct

system operation. A benchmarking utility was written and executed at the server com-

puter so as to record the contending nodes’ performance, as seen in Fig. 3.5. It features

multi-threading, so that every new client could be assessed individually based on an ID

contained in the transmitted packets, and it can be expandable to more clients without

changes, by automatically adding a new thread collecting measurements every time a new

ID is detected in the incoming packets. The ID of the transmitting station was contained

in the first 2 bytes of every packet, leaving a payload of 398 bytes. A common WiFi router

was used as an Access Point and the appropriate channel was set through its user interface.
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Figure 3.4: 10 IEEE 802.11n ESP-8266 stations were used to emulate contending stations.

Figure 3.5: The output of the benchmarking command-line tool running at the UDP server,

collecting statistics for 10 constantly transmitting ESP-8266 stations.
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3.1.5 System Integration

The system had to be easily expandable while being inexpensive, so that a situation of ob-

servable channel contention because of multiple transmitters could be reached and studied.

For this reason, commodity WiFi chipsets where used as contending stations and measure-

ments had to be collected at the 2.4 GHz band of frequencies. The whole system would

ideally be housed in a room clear from other radio signals or a large metallic enclosure,

to avoid external interference. For practical reasons this could not be done, so the meas-

urements were taken in WiFi channels where and when there was no activity. Software

was used to track an unused WiFi channel, as seen in Figure 3.6. No Bluetooth or other

devices operating at ISM frequencies where placed near the testbed.

The WiFi router on which the ESP-8266 stations were connected was tuned in WiFi

channel 6 (at 2437 MHz) since it was not used from other neighbouring WLANs at the

area the testbed was deployed, as seen in Figure 3.6. The OBUs were also tuned in the

same frequency with a 20MHz-wide channel (for fairness in measurements, although IEEE

802.11p proposes using 10 MHz-wide channels - and the driver is capable of doing so), by

using the ip and iw command line tools with the following parameters.

Listing 3.5: reset NIC and connect via OCB in Linux bash

$ip l i n k s e t wlan0 down

$iw dev wlan0 s e t type ocb

$ip l i n k s e t wlan0 up

$iw dev wlan0 ocb j o i n 2437 20MHz

3.1.6 Evaluation

Every measurement consists of 200 packet copies transmitted back-to-back, with Lp = 400

bytes. The inter-arrival time (IAT ) between the packets is calculated at the receiver side

and averaged over the 200 transmissions. Measuring small bursts of traffic ensured that the

samples were not as likely to be affected by interference. The packet reception frequency

fRX can be obtained from IAT via (3.1). Performance gain of enforcing different CWmin

values is calculated over the worse-performing CWmin value. Collected results can be seen

at Table 5.1.

fRX =
1

IAT
(3.1)
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Figure 3.6: The WiFi explorer software, used to monitor the WiFi channels and assist with

selecting the appropriate, free from interference, wireless channel.

CW 3 7 15 31 63 127 255

IAT (s) 0.01196 0.01254 0.01323 0.01356 0.016426 0.017991 0.01907

fRX (Hz) 83.6302 79.7304 75.59142 73.7583 60.8779 55.58407 52.43747

Gain % 59.48561 52.04853 44.15535 40.65949 16.0961 6.00067 0

Table 3.1: The effect of using different CW values on DSRC exchanges in terms of mean

packet inter-arrival time.
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During the experiment procedure, the communication blackout phenomenon occurs

occasionally, where transmissions get blocked, as documented in other works which describe

hardware experimentation using the Linux networking stack [61]. The IAT measurements

affected by the phenomenon are not considered so as not to influence the accuracy of the

final results. It is observed that even with a few congesting stations, significant performance

gain can be obtained by enforcing a smaller CWmin value. This happens because the

smaller backoff time gives the OBU an advantage compared to its peers, when competing

with them for access to the medium. The ESP-8266 stations feature classic IEEE 802.11n

chipset with CSMA/CA, and consequently they compete with each other for access to the

medium with a CW of at least 15, that can reach up to 1024 if multiple collisions occur.

The DSRC station in this environment has an unfair advantage when competing with the

ESP-8266 stations since the backoff value drawn from the interval [0, CW ] will be smaller.

Since the OBU operates in OCB mode, the CW quantity is always fixed at CWmin, which

gives an additional edge to the station since its employed backoff value will likely be the

smallest among the contenders more often than not. By using the following equation, the

rate of transmission can be translated to throughput R, visualised in Fig. 3.7.

R = fRX × Lp × 8bits (3.2)

The measured IAT of packets from a DSRC node to the other without any active

contending stations is 0.0083405-0.007884 s (min-max), translating to an achieved transfer

rate in the range of 383.67-405.885Kbit/s. Once the contending stations are activated,

it can be seen that there is a significant loss in the packet delivery performance of the

DSRC transmitter, which increases as its employed CW increases. It becomes obvious

in Fig. 3.7 that there is a breakpoint below CW = 31, meaning that reducing the CW

used by the DSRC station below this value seems to significantly help its transmissions,

in the sense that it wins contention more often. This correlates with the CW used by

the IEEE 802.11n stations implemented with the ESP-8266 (which typically ranges from

15-1024 depending on the number of consecutive collisions - backoff stages). This result

agrees with work such as [22] that indicate that the CW size parameter of a station can

be reduced below the one used by competing peers in order to gain a larger bandwidth

share. Through this experiment it becomes apparent that this behaviour can be exploited

in hardware by performing the presented Linux kernel modifications. This can be especially

problematic for the studied IEEE 802.11p-networks which primary target vehicular safety

use, since this method can be exploited to implement (multiple) malicious actors that
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consume bandwidth disproportionately to other vehicles or RSUs and can effectively jam

a large portion of their transmissions. This raises concerns about the protocol design,

since most of the V2X communication will be broadcast, and consequently not require the

transmission of ACK packets upon reception of a message from a receiver. This means that

IEEE 802.11p OCB transmissions are inherently unreliable and the transmitter cannot be

sure whether its transmissions are received correctly, so effectively a disconnection of any

duration from the network can go unnoticed from the transmitter.
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Figure 3.7: Achieved throughput of a IEEE 802.11p station found in a congested WiFi

channel in the 2.4 GHz band, for different values of CWmin.
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3.2 V2V communication and access control performance eval-

uation under dense simulated networks

The hardware implementation and evaluation of the DSRC protocol stack is a useful but

restrictive and rather economically infeasible process. In the presented experiment, we

evaluated the IEEE 802.11p MAC and the effect the CW parameter has on it, but did

it while operating in WiFi frequencies, so that we can easily have a few neighbouring

nodes competing for channel access while avoiding the cost and complexity of having many

stations operating at DSRC frequencies instead.

In a realistic urban scenario through, the network densities will be much higher. As

mentioned, the DSRC L1 and L2 are expected to be able to manage 50-100 contending sta-

tions, with some studies [106] indicating ever more. Additionally, the PHY and propagation

characteristics are slightly different from IEEE 802.11n (frequency of operation, channel

width, data rates and TX range etc.). Consequently, a simulated environment is necessary

so that studies for dense V2V networks can be conducted.

3.2.1 Simulation Modeling

A Vehicular Ad Hoc Network simulation has two main components; a network com-

ponent as described above, which must have the capability to simulate the behavior of

communication networks as well as a vehicular traffic component which provides ac-

curate enough mobility patterns for the nodes of such a network (vehicles/cars).

Network Simulator

There are a few software environments for simulating a wireless network [53], of which

OMNeT++ is chosen for its available models, maturity, clear and flexible organisation

and code structure as well as advanced GUI capabilities. OMNeT++ [95] is a simulation

platform written in C++ with a component-based, modular and extensible architecture.

The basic entities in OMNeT++ are simple modules implemented in C++. Compound

modules can be built of simple modules as well as compound modules. These modules can

be hosts, routers, switches or any other networking devices. Modules communicate with

each other via message passing through gates. The connections from one gate to another

can have various channel characteristics such as error/data rate or propagation delay.

An important reason for choosing OMNeT++ to conduct simulation experiments is the

availability of third party libraries containing many protocol implementations for wireless
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networks. The VEINS 4.4 (Vehicles in Network Simulation) framework is used for its

DSRC/IEEE 802.11p implementation and its ability to bind a network simulation with a

live mobility simulation conducted by SUMO v0.25.

A benefit of using OMNeT++ is the availability of high level APIs from the C++

standard library (STL). These can be of great assistance when performing mathematical

operations (power, probabilities, exponential etc.) and provide data structures for efficient

storage, searching and manipulation of data (i.e., vectors, queues.).

Mobility Simulator

Since vehicular traffic flow is very complex to model, researchers try to predict road traffic

using simulations. A traffic simulator introduces models of transportation systems such

as freeway junctions, arterial routes, roundabouts to the system under study. Simulation

of Urban Mobility (SUMO) [12] is an open source microscopic and continuous road traffic

simulation package which enables us to simulate the car flow in a large road network.

Microscopic traffic flow models, in contrast to macroscopic, simulate single vehicle units,

taking under consideration properties such as position and velocity of individual vehicles.

The Krauss mobility model is the default vehicle mobility model used in SUMO. It is

a microscopic, space-continuous, car following model based on the safe speed paradigm.

The driver tries to stay away from the vehicle ahead (leading) at a distance and a safe

speed that allows him to adapt to the leading vehicle’s deceleration if needed [50]. The

safe speed can be calculated as follows

vsafe = vlead(t) +
g(t)− vlead(t)× τ
vlead(t)+vf (t)

2b + τ
, (3.3)

where vlead represents the speed of the leading vehicle in time t, gt is the gap to the

leading vehicle in time t, τ is the drivers reaction time (usually 1 s) and b is the maximum

deceleration ability of the vehicle. But vsafe can exceed the maximum allowed speed on

the road or the vehicle’s capability. Consequently, the desired speed is calculated from the

following,

vdesired(t) = min(vmax, v(t− 1) + a, vsafe(t)), (3.4)

where vmax is the maximum velocity of the vehicle and a is the acceleration capability

of the vehicle. But since the driver cannot realistically drive always perfectly (with the

desired velocity), to get the vehicle’s speed the following equation is used

v(t) = max(0, random[vdesired(t)− σa, vdesired(t)]). (3.5)
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where σ is between 0 and 1 and models the driver’s imperfection.

Simulating a virtual VANET scenario

The simulation environment on which novel Medium Access algorithms are to be evaluated

uses SUMO and open data to reproduce accurate car mobility. The map can be extracted

off OpenStreetMap and converted to an XML file to define the road network or can be

hard-coded for simpler topologies (grids, highways etc.). Then random trips are generated

from this road network file, and finally these trips are converted to routes and traffic flow.

The resulting files are used in SUMO for live traffic simulation as depicted in Fig. 3.8.

Figure 3.8: IEEE 802.11p/WAVE & Mobility simulation with OMNeT++ & SUMO &

Veins.

Each node within OMNeT++, either mobile (car) or static (Roadside unit) consists of

a network interface that uses the IEEE 802.11p PHY and MAC and the application layer

that describes a basic safety message exchange and a mobility module. A car, chosen in

random fashion, broadcasts a periodic safety message, much like the ones specified in the

WAVE Short Message Protocol (WSMP). Fig. 3.9 shows examples of V2V connectivity,

where cars broadcast a safety message to neighbouring cars within range.
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Figure 3.9: A station broadcasts a packet in OMNeT++ (Left). Two stations simul-

taneously attempt to broadcast their packets, leading to collision and lost transmissions

(Right).

Examined Network Densities

With a theoretical maximum LoS range of rtx = 1 km, a realistic density of 50 transmitting

vehicles is defined. As mentioned already, the proposals for V2V communication indicate

that MAC layer should handle the beaconing and additional applications for 50-100 stations

in the communication zone of each other without a major collapse in performance, which

gives a maximum vehicle density of:

Dnetwork =
Nvehicles

π × r2tx
=

100

3.14
≈ 31.84 vehicles/km2, (3.6)

If the deployed stations are tuned to reach half that range and the area of coverage of

a vehicle is reduced, we get the density by limiting the maximum range to rtx = 500m:

Dnetwork =
Nvehicles

π × r2tx
=

100

0.76
≈ 131.57 vehicles/km2, (3.7)

These values can be characterised as low-to-medium density and high density respect-

ively. These densities are within the ranges examined by other publications, such as

[72] which studies information dissemination for Dnetwork = [20, 300] vehicles/km2. The

vehicles/m density metric (for highways), or absolute number of vehicles are also used.

Evaluating Throughput

We use receiver-centric metrics to evaluate the performance of the system regarding stand-

ard’s and suggested approaches’ performance, since they better represent the level of aware-
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ness every vehicle has of its surrounding vehicles. Raw throughput in terms of intact packets

received over time is measured at all receivers and then a moving average filter is applied

so that we can collect a system-wide reading over time. That way the real-time effect of

the learning algorithm onto network performance can be evaluated.

Achieved throughput can also be expressed in terms of system-wide Packet Delivery

Ratio (PDR). For homogeneous scenarios, we measure all packets received per station and

find the mean number of received packets NpacketsRX
. The total number of packets to be

transmitted, successfully or not, during a time period is known a priori from broadcasting

frequency, since for a single station NpacketsTX
= fb(Hz) × tperiod(s), and network-wide∑

NpacketsTX
= NpacketsTX

×Nvehicles. Therefore, to get the PDR,

PDR =
NpacketsRX∑
NpacketsTX

=
Thmeasured
Thmax

. (3.8)

This evaluation of system performance based on
∑
NpacketsTX

works well for homo-

geneous, single-hop scenarios, but less so for multi-hop, since this quantity is not known

at all times and even if it was, it is inefficient to use it to calculate PDR. The reason for

that is that every vehicle experiences a different environment in terms of nearby trans-

mitters (within range), so PDR cannot be simply found using this method. Additionally,

because in multi-hop we care about the reachability of protocols in terms of distance they

cover, PDR is measured in terms of unique copies of packets received. So instead we find

Noriginal_packetsTX
= fgen × tperiod, and PDR is found in terms of unique copies of packets

received from anywhere in the network.

Evaluating Latency

On the other hand, end-to-end latency of received transmissions is measured at a single

station placed in the middle of the network. Each generated packet contains the time it

was created at the application layer, and is subtracted by the time of reception by the

receiving node’s application layer.

latency =

∑
(tAppRX

− tAppTX
)

NpacketsRX

. (3.9)

If we consider the case of beaconing (periodic broadcast transmission of kinematic

information about the vehicle such as position or velocity), then we find the following

limitations to occur regarding end-to-end communication latencies presented in Table 3.2.

The table shows packet relevance time and displacement per packet for various packet
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transmission rates for a low relative vehicle velocity of 50 km/h = 13.9 m/s (which can

reach up to more than 200 km/h).

fb Time of relevance Displacement

20Hz 50ms 0.695 m/packet

30Hz 33ms 0.463 m/packet

50Hz 20ms 0.278 m/packet

Table 3.2: Time of relevance and displacement among vehicle-stations per transmission by

vehicles for various packet transmission rates fb.

If a high accuracy is required by an ITS application, the displacement per packet

exchanged between a transmitter and receiver should be kept low. It is then natural that

some work dealing with applications like CACC [70] model the control system considering

communication latency of just 10ms.

Evaluating Fairness

The fairness objective can be characterized in two different manners: long-term and short-

term. Long-term fairness is measured over long time periods, corresponding to the trans-

mission of many packets by a station, i.e., 1000 or more. A MAC protocol is considered

to be long-term fair if the probability of successful channel access observed over a long

period of time (many packets transmitted) converges to 1/N for N competing hosts. But

a MAC protocol should also provide equal opportunity for access to the medium over

short time periods as well, i.e., lasting a few seconds or tens of packets transmitted per

station. A MAC protocol can be long term fair but short-term unfair, meaning that one

host may continuously capture the channel over short time intervals. Vehicles transmit

safety-related, irreplaceable packets with a short time of relevance. All cars should be

given equal transmission opportunities, not only in the long term but in the short term as

well (i.e., 2-4 s).

J(x1, x2, ..., xn) =
(Σn

i=1xi)
2

n×Σn
i=1x

2
i

. (3.10)

We conduct short-term fairness analysis using Jain’s fairness index [42] shown in (3.10),

which is a popular metric for measuring the unfairness of an allocation vector. We adopt

it for analysing the fairness of achieved throughput among wireless vehicular stations. The

index value equals unity corresponds to the fairest allocation in which all stations achieve
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the same throughput. We set the fairness criterion to be J = 95%, according to other

works dealing with fairness in IEEE 802.11-based systems, such as [14][15]. The number of

received packets from all transmitters are measured at a single vehicle and J is calculated

over a sampling window of 1 to 10 s (short-term to long-term) with a step of 0.5 s. This

result is averaged over equally spaced starting points with ε = α = 0.05, to increase the

accuracy of measurement.

3.2.2 Simulation Parameters

A goal of this chapter is to study the the intrinsic properties of the IEEE 802.11p chan-

nel access method in terms of throughput, latency and fairness, so we concentrate on a

homogeneous singe-hop scenario in which all stations experience similar transmission con-

ditions, meaning that no station is disadvantaged by its signal quality, traffic pattern, or

spatial position, or other asymmetries. We collect our results within a specific RoI of

≈ 600m × 500m within the University of Sussex campus, and we set the transmission

power of the stations to a high enough level within the DSRC limit (30 dBm), so that

they all can reach each other and the MAC evaluation is not influenced by border effects

(hidden/exposed stations). The artificial campus map used for simulations can be seen in

Fig. 3.10. Since we are interested in evaluating just the baseline MAC layer networking

performance, the effect of mobility is minimised by enforcing low speeds to the vehicles

(≈ 5km/h).

Figure 3.10: Campus map used by SUMO for vehicular traffic co-simulation.

In these simulations, all cars in the network are broadcasting packets such as CAMs or
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Parameter Value

Channel Frequency 5.89GHz

Channel Bandwidth 10MHz

Transmission rate R 6, 9Mbit/s

Transmission power 30 dBm

Network density 50 vehicles

Packet size Lp 256 bytes

Backoff slot time 13µs

Broadcasting Frequency fb 30, 50Hz

Packet Generation Offset 0.005 s

Table 3.3: Simulation Parameters for IEEE 802.11p MAC evaluation.

DENMs. Most proposed V2X applications need a packet transmission rate of at least 10Hz

[19], while some need even up to 50Hz [52]. A packet transmission rate of 10Hz is adequate

when considering just periodic status message broadcasting. If additional warnings, CACC

or other systems are implemented, the packet generation and transmitting frequency for

every station naturally goes up, while the packet length also varies depending on the

use. For simplicity, we evaluate V2V systems where all stations attempt to transmit 30

packets/s, with packet length Lp = 256 bytes. Some asynchronisation is introduced to

transmissions by adding a randomised offset time that can reach a maximum of 0.005 s.

The bit rate R is set from the allowed DSRC rates at 6 Mbit/s and frequency of operation

is set at 5.89 GHz.

3.2.3 IEEE 802.11p MAC evaluation in a symmetrical network

The effect of CW on PDR can be seen in Fig. 3.11. In a network formed of a lot of

contending stations, enforcing a larger CWmin value on all of them improves the network-

wide performance regarding delivery of intact packets via successful collision avoidance.

This happens because there is lower probability of more than one station drawing the

same backoff value from the interval [0, CWmin] when they find the medium being busy,

which results into lower probability of collisions occurring. Using a small CWmin level

results in fewer options in terms of backoff values for stations and consequently higher

collision probability in the network, since two or more stations drawing the same backoff

results into simultaneous transmissions and subsequently their failure.

The effect of CW on end-to-end TX latency is represented with a Cumulative Dis-
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Figure 3.11: PDR in a network of 50 contending IEEE 802.11p stations for different CWmin

values applied on all stations.

tribution Function (end-to-end latency over percentage of received packets), as seen in

Fig. 3.12. Naturally, a smaller CWmin value results in smaller backoff values being used

by stations and consequently smaller end-to-end transmission delays. This is because the

backoff parameter is the number of time-slots waiting and adds to end-to-end transmission

latency. So every time the wireless medium is found to be busy, Tbackoff = backoff ×Tslot
is added to the transmission delay.

So Tbackoff of up to max(backoff)× Tslot = 255× 13µs = 3.315ms can be added to

the transmission time. But the added latency to a transmission because of the backoff

time will be much more in a network with multiple contenders. As mentioned already, if

the channel turns busy during the backoff countdown then it freezes, and starts again

from the value it left of, after the channel is found to be idle for a DIFS period. This

means that the transmission process by a station can be paused multiple times (until the

backoff timer expires). Consequently, the longer the backoff time is, the probability of

missing a transmission opportunity increases, and the total added end-to-end latency to

the transmission can be impacted heavily. For a network of many transmitters, naturally

the backoff countdown process can freeze multiple times if the backoff parameter is large.

The previous figure presents raw latencies of transmissions over percentage of these
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Figure 3.12: Latency versus percentage of successful transmissions in an IEEE 802.11p-

based VANET of 50 stations for different network-wide CWmin values.

successful transmissions, disregarding the percentage of successful transmissions over at-

tempted transmissions (PDR). Normalising the result by multiplying with PDR, reveals

the achieved packet delivery ratio, over latency of these transmissions, recorded in Fig.

3.13. From this figure it becomes clear that even when setting CWmin = 3 for all stations

does not necessarily mean that the system will better accommodate latency-sensitive ex-

changes. We see that for a medium-density network of 50 vehicle-stations, a network-wide

setting of CWmin = 7/15 will achieve the most successful 10ms-exchanges, while a setting

of CWmin = 127 will achieve the most successful exchanges with a requirement of 20ms

end-to-end. For latencies above 24ms, using the higher CWmin will result in lower colli-

sions and higher PDR. We try a maximum value of CWmin = 255, since even this value can

negatively affect the delivery of transmissions with a sub-20ms end-to-end latency target.

In Fig. 3.14 is depicted the transmission fairness of the network over intervals of 0.5

to 10 s with a step of 0.5 s. Although the same value is used network wide, there is still

unfairness due to a high amount of collisions. For a CWmin value of 63 and above the

network becomes short-term fair within 2 seconds or 60 transmissions/station.



52

Figure 3.13: Latency versus packet delivery fraction in an IEEE 802.11p-based VANET of

50 stations in OMNeT++.
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Figure 3.14: Achieved fairness among vehicle-stations employing the same CWmin for

communications.
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3.2.4 Greedy stations in saturated networks

The hardware finding inspired us to do a larger scale simulation using OMNeT++ for

the purpose of confirming the finding of the CW parameter affecting the symmetry of

bandwidth allocation among stations and benefiting a portion of them in the network.

This time, 50 IEEE 802.11p stations are deployed in total. All of them attempt to trans-

mit 512-byte packets every 20ms. Consequently, the effective broadcasting (transmitting)

frequency is fb=50Hz, resulting to an attempted transfer rate of

Thstation = fb × Lpacket × 8 bits (3.11)

Thstation = 50Hz × 512 bytes× 8 bits = 204.8Kbit/s, (3.12)

generated per station. The channel bitrate R is set at 9 Mbit/s to help accommodate the

increased traffic. Among these stations, 40 use a fixed CWmin of 255 (so for broadcast

IEEE 802.11p the max backoff period can be 255 timeslots). The CWmin is varied for

the remaining 10 of these stations, in an attempt to see if it would similarly affect the

communications in such dense, high-traffic networks.
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Figure 3.15: IEEE 802.11p stations gain a significant advantage in communications over

peers by using a smaller CWmin.

Results are presented in Fig. 3.15. This time we can ensure symmetrical stations in

terms of MAC layer settings, PHY implementation and differences in hardware. Naturally,
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Figure 3.16: Network-wide fairness, affected by a minority of stations using different CW

values than the rest.

using the same CW = 255 for all stations yields similar results in terms of throughput

collected in OMNeT++. Using any lower CW value for the 10 remaining stations labelled

as “greedy” will yield higher throughput result for said nodes, in expense of some of the

packet deliveries performed by the “normal” stations (with CW=255). Again, we find this

natural since this gives higher chances of the “greedy stations” competing with smaller

backoffs than “normal” IEEE 802.11p stations. But it can also be observed that the

higher CW values (below 255) employed by greedy stations (63, 127) still yield the highest

performance, because of increased collisions when lowering the CW . This is again normal

for this case of heavy contention in the simulator, since longer backoff times result in

smaller probability of collisions. On the other hand, since the largest percentage of stations

(4/5) uses a large CW value, the studied (greedy) stations will outperform these even for

the smallest CW = 3.

This asymmetry in the VANET in terms of the CWmin value of the stations affects the

overall network performance, reflected in measured throughput fairness when examined

within either short or longer intervals. In a VANET undergoing significant contention,

even a minority (1/5th) of stations exploiting their contending priority via CW adaptation

negatively impacts the fairness performance, as seen in Fig. 3.16.
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3.3 Summary

After performing a study on the IEEE 802.11p MAC internals via both hardware and

our simulator stack using OMNeT++ and Veins, it was found that OCB DSRC systems

performance in dense networks is greatly affected by the CWmin parameter. A higher

value enforced for all stations gives less probability of two or more stations drawing the

same backoff value post-DIFS, and transmitting simultaneously after the backoff count-

down ends. This translates in higher achieved throughput, for the network and the stations

individually. On the other hand, increasing the CW value also gives a higher probability

of stations drawing larger backoff times, which in dense networks will increase the end-to-

end transmission latency and cannot be tolerated by some V2V applications. Additionally,

if some stations use a smaller CW parameter than the rest, there is higher probability

they will win access to the medium when contending. It is found that for all stations

transmitting with the same frequency fb and packet size Lp, using the same CW value for

all promotes symmetry in the network regarding backoff times and translates to higher

short/long-term network-wide fairness (J). Consequently, the optimal CW value for a

station is very dependent on the existing network traffic, and can be exploited to favour

transmissions of some nodes over others in the network. Although larger CW values reduce

collisions when employed by many/all stations in a dense network, it does not necessarily

translate to best delivery performance for all stations and types of applications.
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Chapter 4

Q-Learning-based IEEE

802.11p-compatible Access Control

4.1 Introduction

The CW parameter is found to significantly affect the performance of IEEE 802.11p sta-

tions when found in a network where a large amount of traffic is exchanged. Correct

adaptation of the parameter can offer significant performance benefits to the network and

the stations individually. We find that the optimal value of the parameter depends on

multiple factors, such as the network density in terms of active transmitters and amount

of traffic exchanged at a time as well as required throughput and latency tolerance of

the application or prioritisation of some exchanges over others. There is a clear trade-off

when selecting the CW size for stations in a network, since it should be large enough to

be able to accommodate the network traffic as much as possible without collisions, but

not unnecessarily large so that it increases packet transmission latency and stations miss

opportunities to transmit because of waiting too long and the channel turning busy. In

other scenarios, the CW of a specific data class should be lower to gain a larger portion

of the available bandwidth for prioritisation purposes.

The primary objective of the study is a protocol that learns how to control the CW

parameter in VANETs to enhance packet delivery performance in congested networks,

thus make more efficient use of the available bandwidth. The Q-Learning machine learning

algorithm is employed because of its ability to discover good solutions over time by learning

via trial-end-error interactions with the environment, without requiring any knowledge of

the environment. For these reasons we employ Q-Learning to adapt the CW as needed.

This algorithm requires insignificant computational capability from the MAC controller
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and has minimal networking overhead, apart from some form of reception acknowledgement

that is typically standard in unicast wireless networks for reliability purposes and is utilised

by most applied contention-based MAC protocols for the purpose of feedback.

When combined with the IEEE 802.11p MAC, the Q-Learning algorithm can detect

network contention and adapt a station’s CW value as needed to resolve it as much as

possible, without any information about the network or the application layer itself known

a-priori. By each station acting toward its own interest regarding CW selection, the entire

network can achieve more bandwidth-efficient channel sharing. In the following sections we

present employing (2.7) as a learning, self-improving, control method for managing channel

access among IEEE 802.11p stations.

4.2 Q-Learning MAC Protocol Design

The adaptive backoff problem fits into the MDP formulation. RL is used to design a

MAC protocol that selects the appropriate CW value based on gained experience from

its interactions with the environment within an immediate communication zone. The

proposed MAC protocol, features an RL-based algorithm that adjusts the CW size based

on feedback given from probabilistic rebroadcasts in order to avoid packet collisions. In

the remaining of this section we present employing Q-Learning to design a learning, self-

improving, control protocol for sharing the wireless medium among multiple IEEE 802.11p

stations. With the state space S being the available CW values, (2.7) is adapted and used

as follows;

Q(CWt, at)← Q(CWt, at) + α× [rt + γ ×max
at+1

Q(CWt+1, at+1) −Q(CWt, at)]. (4.1)

The protocol works as follows: a station transmits a packet and then gets feedback

rt depending on the outcome of this transmission, determined by the reception or not of

a packet containing an ACK within an acceptable Round-Trip Time (RTT). The RTT is

defined as the time needed for the original transmission to be completed and an ACK for

that transmission to be received by the transmitter’s application layer. The acceptable

RTT depends on the transmission latency requirements, and in this ACK implementation

is set to be less than the packet generation period for simplicity. The Q-Learning agent

then adapts the station’s CW value accordingly before sending the next packet, and then

the process is repeated. The Q-Learning MAC protocol’s operation is depicted in Fig. 4.1.
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Figure 4.1: Q-Learning-based MAC protocol schematic of operation

4.2.1 The Exploration-Exploitation (Action Selection) Dilemma

The Q-Learning MAC protocol’s primary purpose in this application is to converge to a

(near) optimum output, in terms of packet delivery ratio. It achieves this by transitioning

to different CW values (states S) by performing actions a ∈ A, transmitting packets and

then getting experience from these transmissions using said CW values, via feedback in

the form of overheard retransmissions. The operation of the proposed self-learning channel

access control mechanism is summarised in Algorithm 1.

Watkins and Dayan [101] proved that Q-Learning converges to the optimum (s, a)

pair/s with probability 1 as long as all actions are repeatedly sampled in all states s and

the (s, a) pairs are represented discretely. To meet the second convergence criterion, the

state space S for this channel access control contains 7 discrete IEEE 802.11p-compliant

CW values ranging from CWmin = 3 to CWmax = 255. The CW is adapted according

to (2), prior to every packet transmission attempt. The action space A contains the 3

following actions a, which are the same the BEB MAC mechanism uses to adapt the CW

upon transmission failure.

CWt+1
a∈{CWt − 1/2,CWt,CWt×2−1}←−−−−−−−−−−−−−−−−−−− CWt (4.2)

RL algorithms differ from supervised learning [45] ones in that correct input-output

pairs are never presented, and sub-optimal actions are not explicitly corrected. In addition,

there is a focus on on-line performance, which necessitates finding a balance between

exploration of uncharted territory and exploitation of already acquired knowledge. This in

practice translates as a trade-off in how the learning agent in this protocol selects its next
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action for every algorithm iteration. It can either explore by randomly picking an action

from (4.2) so that the algorithm can transit to a different (s, a) pair and get experience

(reward) from it, or follow a greedy strategy that exploits its so-far gained experience, and

choose the action a which yields the highest Q-value for the state s it is currently in, given

by

π(s) = argmax
a

Q(s, a) . (4.3)

4.2.2 Accelerated Learning with Decaying ε-greedy

The RL algorithm’s purpose is to converge to a (near) optimum output, in terms of CW

value selection. The greedy policy with respect to the Q-values tries to exploit what is

known to work continuously, however, since it does not explore all (s, a) pairs properly, it

fails satisfying the first criterion. At the other extreme, a fully random policy continuously

explores all (s, a) pairs, but it will behave sub-optimally as a controller. An interesting

compromise between the two extremes is the ε-greedy policy [89], which executes the greedy

policy with probability 1 − ε. This balancing between exploitation and exploration can

guarantee convergence and often good performance.

The proposed protocol uses ε-greedy strategy to focus the algorithm’s exploration on

the most promising CW trajectories. Specifically, it guarantees the first convergence cri-

terion by forcing the agent to sample all (s, a) pairs over time with probability ε. Con-

sequently, the proposed algorithmic implementation satisfies both convergence criteria, but

further optimisation is needed regarding convergence speed and applicability of the sys-

tem. In practice the Q-Learning algorithm converges under different factors depending on

the application and complexity. When deployed in a new environment, the agent should

mostly explore and value immediate rewards, and then progressively show its preference for

the discovered (near) optimal actions π(s) as it is becoming more sure of its Q estimates.

This can be achieved via the decay function shown below,

ε = α = 1− Ntx

Ndecay
for 0 ≤ Ntx ≤ Ndecay, (4.4)

where Ntx is the time since starting expressed as the number of transmitted packets in

that period, and Ndecay is a pre-set number of packets that sets the decay period.

This decay function is necessary to guarantee convergence towards the last known

optimum policy in probabilistic systems such as the proposed contention-based MAC,

since there is no known optimum final state. By reducing the values of ε and α over time
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via (4.4), the agent is forced to progressively focus on exploitation of gained experience

and strive for a high long term reward. This way, when approaching the end of the decay

period the found (near) optimal states (CW values) are revealed.

4.2.3 Initialising and Training the Controller

The strategy presented above can also be used to get instant performance benefits, starting

from the first transmission. This can be done by pre-loading approximate controllers, pre-

trained for different transmitted bit rates and number of neighbours using (4.4), to the

agent’s memory. These controllers define an initial policy that positively biases the search

and accelerates the learning process. The agent’s objective in this phase is to quickly

populate its Q-table with values (explore all the state-action pairs multiple times) and

form an initial impression of the environment. The lookup table (Q-table) is produced by

encoding this knowledge (Q-values) for a set period of Ndecay a priori and can be used

as an initial approximate controller which yields an instant performance benefit since the

system is deployed.

Q-Learning is an iterative algorithm so it implicitly assumes an initial condition before

the first update occurs. Zero initial conditions are used the very first time the algorithm

is trained on a set environment, except from some forbidden state-action pairs with large

negative values, so it does not waste iterations in which it would try to increase/decrease

the CW level when it is already set on the upper/lower limit. The algorithm is also

explicitly programmed to avoid performing these actions on exploration. The un-trained,

initial Q-table is set as in (4.5), where the rows represent the possible states - CW sizes

and columns stand for the action space.

Q0[7][3] =



CW (CW − 1)/2 CW CW × 2 + 1

3 −100 0 0

7 0 0 0

15 0 0 0

31 0 0 0

63 0 0 0

127 0 0 0

255 0 0 −100


(4.5)

For even faster adaptation to environment changes, every agent can train and employ

different controllers for every sensed density and received bit rate combination. The station

has the ability to sense the number of one-hop neighbours since they all transmit heart-
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beat, status packets periodically. It also does not have the memory constraints that typical

sensor networks have. An example of a controller’s table at the end of the ε decay period as

in (4.4) can be seen in (4.6). The controller was trained with γ = 0.7 and a decay period

lasting for 180 s in a 60-car network. A trajectory leading to optimum/near-optimum

CW/s is being formed (depending on past experience) by choosing the maximum Q-value

for every CW-state, seen in bold font. The controller in (4.6) oscillates between the values

31 and 63 when exploiting the Q-table to find the optimum CW.

Qπ[7][3] ≈



CW (CW − 1)/2 CW CW × 2 + 1

3 −100 −0.0721847 0.238827

7 −0.0754744 −0.0325265 0.67485

15 0.19809 0.28012 0.816807

31 0.289607 0.298519 0.491713

63 0.494494 0.101152 0.283855

127 0.204304 −0.0551011 −0.0217622

255 0.174506 −0.867557 −100


(4.6)

4.2.4 Online Controller Augmentation

While a pre-trained, approximate controller is useful for speeding up the learning process

as well as getting an instant performance benefit, its drawback is that it is less useful

for adapting to change in the environment while on-line. The on-line efficiency of the

Q-Learning controller depends on finding the right balance between exploitation of the

station’s current knowledge, and exploration for gathering new information. This means

that the algorithm must sometimes perform actions other than dictated by the current

policy, to update and augment that controller with new information.

While the station is online, exploratory action selection should be less frequent (i.e.,

ε = 0.05) than in a-priori learning (ε starts from 1), and is there primarily to compensate

for modelling errors in the approximate controller. This means that the controller in its

online operation uses the optimum Q-value 95% of the time, and makes exploratory CW

perturbations 5% of the time in order to gain new experience. In this way the agent still

has the opportunity to correct its behaviour based on new interactions with the VANET

and corresponding rewards.

If sudden changes occur to the networking environment experienced by a station, which

can be judged by incoming traffic., then it can invoke the ε-decay function (4.4)) again.

Vehicle-stations entering an new unexplored VANET environment could also request ap-
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proximate MAC controller Q-tables by their peers.

4.3 Implementation Details

4.3.1 Reward Function and Algorithm

In RL, the only positive or negative reinforcement an agent receives upon acting so that

it can learn to behave correctly in its environment, comes in a form of a scalar reward

signal. Taking advantage of the link capacity for maximum packet delivery (throughput)

was of primary concern for this design, aiming to satisfy the requirements of V2V traffic

(frequent broadcasting of kinematic and multimedia information). For this purpose, the

reward function is based on the success of these transmissions. Reward r can be either 1 or

-1 for successful (ACK) and failed transmissions (no ACK) correspondingly. A successful

transmission from the same consecutive state - CW is not given any reward. The following

pseudo-code summarizes our proposed protocol.

Algorithm 1 Q-Learning MAC for IEEE 802.11p
1: Initialize Q0[CW,A] at t0 = 0

2: CW0 = CWmin = 3 at t0 = 0

3: if Ntx < Ntrain then

4: ε, α← decay function . according to rule (4.4)

5: else

6: ε, α← constant

7: end if

8: procedure Action_selection(CWt) . ε-greedy

9: if pε ≤ ε then

10: at+1 ← random((CWt − 1)/2, CWt, CWt × 2− 1)

11: else if pε ≥ 1− ε then

12: at+1 ← aπ

13: end if

14: CWt+1 ← CW at+1

15: end procedure
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1: procedure Send(TxPacket, SeqID, CWt+1)

2: TxPacket.OriginId ← SeqID

3: RTT ← 0 s

4: Content(CWt+1)

5: CWt−1 ← CWt

6: CWt ← CWt+1

7: end procedure

8: procedure Feedback(CWt, CWt−1,RxPacket)

9: if RxPacket.OriginId=TxPacket.SeqId AND RTT =< 0.1 s then

10: if at 6= (CWt ←− CWt−1) then

11: rt ← 1

12: end if

13: else if RTT > 0.1 s then

14: rt ← −1

15: end if

16: updateQ(CWt+1, at+1) . according to rule (4.1)

17: Action_selection(CWt)

18: end procedure

4.3.2 Implicit ACKs

To add reliability in OCB transmissions, we employ implicit ACKs originating from the

application layer and piggybacked in normal packets. This is a proven technique explored in

various publications [35], [90] [75] [63] to add reliability to broadcast (OCB) transmissions

in VANETs. Additionally, because these ACK packets originate from the application layer,

they do not block other transmissions in the queue of the original transmitter until they are

received or a timer expires, as it happens on the classic unicast MAC-level implementation.

This feedback technique is more appropriate for the safety-critical and less delay-tolerant

exchanges happening in VANETs, as seen in [47].

We also exploit their usefulness as feedback to apply MAC techniques that can adapt

the CW parameter appropriately to satisfy different kinds of V2V traffic as efficiently as

possible. In our simulations, to keep the implementation practical and fair we use said

forwarded packets as ACKs, in both single-hop and multi-hop systems. Since VANETs are

to enable exchanges of up-to-date kinematics-related data [32], the observation (feedback)



64

delay, or the RTT (time between transmission of a packet with set CW value and ACK

reception for that packet) should be below the packet generation period (i.e., 100ms [86]),

or else it is considered as out-of-date.

4.3.3 Broadcast Storm and Dissemination Mechanism

In order to increase the reliability of V2V broadcast communications, some vehicles need

to serve as relays and rebroadcast messages that are received so that other stations that are

not within range of the original transmitter can get the messages. The modified intelligent

MAC layer designs under study can be used with any forwarding protocol [112] [69], with

the simplest method being a constant forwarding probability i.e., Pfwd = 10%. This would

mean that a station will rebroadcast Pfwd × Nreceived additional packets, and although

can ensure the packet is forwarded towards all directions, could impose a larger load than

needed on the network and the MAC Layer. If the probability becomes too small, then

forwarding could be unreliable, or limited coverage would be achieved.

However, the broadcast storm phenomenon will occur if there are excessive rebroadcast

messages in the vehicular network. To remedy this problem, a method of rebroadcasting

received messages should be designed in a way that reduces redundant retransmissions as

much as possible, while the information reaches all the vehicles that it should. In the

presented simulations, a more efficient way to have restricted probabilistic rebroadcasting

is employed (implementation shown in Appendix 1). In order to restrict the number of

forwarded packets for the reasons mentioned above (avoid network saturation, collect fair

measurements), we use (4.7), which assigns each vehicle-transmitter a forwarding probab-

ility depending on the number of potential forwarding candidates (nearby IEEE 802.11p

equipped vehicles) and the number of retransmissions/packet required, as seen in 4.2.

Three main ideas on a vehicle-station realistically and accurately estimating the num-

ber of other neighbouring vehicles (which are within communication range), are found in

literature. To start with, the network density that is experienced by a vehicle can be

found via beacon packets [11] [83]. Each vehicle delivers its speed and position to other

vehicles. Thus, a vehicle can have a sense of how many neighbours are within communic-

ation range from packets containing some sort of identification. Another method is found

in [9], where the network density is estimated based on the number and length of stops the

vehicle makes. The more often the car stops, and the longer it stands after, the greater

the density. This method can work in a transportation system where all vehicles would

have DSRC capability, so that the network traffic would be proportional to nearby road
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Figure 4.2: A station (with Id=56) perceives the number of one-hop neighbours (Column

1) in a multi-hop topology of 100 stations, and calculates Pfwd on the fly (Column 2) every

500ms (as seen in Column 3).

traffic. The third method is estimation of the experienced network density based on the

time a DSRC unit finds the wireless channel to be occupied by some other transmission.

The correlation between the channel busy ratio perceived by a station and the number of

its neighbouring stations has been studied in [10].

For this implementation, each vehicle periodically keeps track of the numbers of other

transmitting vehicles nearby, via different IDs in incoming messages. The refresh rate

for this does not need to be very small, as the estimation of forwarding candidates could

be accurate by updating it every 0.5 s. Even if we assume that two vehicles move at

opposite directions with 100 km/h, the relative velocity among them is 55.56m/s, and

with a beaconing period of 0.1 s the displacement among them is a bit less than 6 meters

for every packet they both exchange. So even in the worst-case scenario of high speeds,

with 1 km theoretical max TX range, every station should be aware of the number of its

relevant neighbours (within range) with a high accuracy every i.e., 0.5 s. An exact number

is not needed, but the more accurate the estimation, the lower the redundancy of forwarded

packets.

By employing probabilistic retransmissions, we can also have feedback (ACK) regard-
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ing the outcome of transmissions in a broadcast environment. When the retransmissions

are overheard from the original transmitter, they act as non-blocking ACKs originating

from the application layer, which should be the de-facto ACK method in VANETs as sug-

gested in [47]. This means that the proposed MAC protocols can be applied for purely

unicast transmissions but they can also comply with the IEEE 802.11p specification which

primarily operates in OCB mode to allow one-to-many information exchanges.

So considering a network with density Nvehicles with each station generating data pack-

ets with constant rate fgen, the receivers can calculate the forwarding (ACK) probability

Pfwd in real time according to

Pfwd =
Nfwd

Nvehicles
(4.7)

by detecting the number of relevant nearby active transmitters via the incoming packets

containing the node IDs and the number of hops, so as to consider only immediate neigh-

bours and disregard packets received from multi-hop paths (retransmissions). That way

the effective beaconing frequency can be calculated as follows

fbeacon = fgen × (1 +Nfwd). (4.8)

Consequently we can get the maximum theoretical network-wide throughput as seen below

Th = Nvehicles × fbeacon × Lpacket × 8 bit, (4.9)

which gives us 3.072 Mbit/s for 50 transmitting stations sending Lp = 256byte packets

with Nfwd = NACK = 2, which is chosen so that an ACK will be received with higher

confidence since the packet delivery probability in studied systems is less than 1.

4.4 Performance Evaluation of the Q-Learning-based MAC

protocol

4.4.1 Simulation Setup

The achieved improvement on link-level contention was of primary concern, so a multitude

of tests were run for a single hop scenario, with every node being within the range of

the others. A multi hop scenario is also presented, which makes the hidden station effect

apparent in the performance of the network. Additionally, by setting an infinite queue size,

packet losses from collisions can be accurately measured.

We set R = 12Mbit/s so that the channel does not bottleneck even the denser net-

work scenario it terms of data traffic evaluated in the presented simulations [94]. Every
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Parameter Value

Simulation time 300 s

Training period Ntrain 1800 packets

Channel Frequency 5.89GHz

Channel Bandwidth 10MHz

Transmission rate R 9, 12Mbit/s

Transmission power
Single-hop: 30 dBm
Multi-hop: 17 dBm

Backoff slot time 13µs
Packet Generation
Frequency fgen 10Hz

ACKs per packet Nfwd

Single-hop: 2
Multi-hop: 6

Effective Broadcasting
Frequency fb (4.8)

Packet Generation
Offset 0.005 s

Table 4.1: Simulation Parameters for Q-Learning-based MAC protocol evaluation.

station generates 10 packets/s, and also retransmits original packets received from others

with a variable probability Pfwd, found every 0.5ms by each station by (4.7) depending

on the number of potential receivers. The retransmitted packets carry ACK packets that

are needed for reliability purposes as well as feedback for the CW adaptation mechan-

isms, as explained in Section 4.3.2. In practice, an acknowledgement can be carried by

any broadcasted packet, since most of the payload would still be utilised to enable other

applications. In our implementation, they are just replicas of messages, so that we can

collect fair measurements when approaching channel saturation. They are also used for

forwarding purposes in multi-hop deployments. Additionally, the Veins 4.4 IEEE 802.11p

implementation does not support unicast transmissions by default, which can be emulated

with these probabilistic retransmissions.

4.4.2 Emulating the BEB algorithm for OCB transmissions

Veins focuses on the broadcast, OCB, IEEE 802.11p protocol stack which does not feature

ACKs. Consequently, the IEEE 802.11p Veins implementation does not feature the BEB

part of the DCF, since it relies on explicit ACK packets to adjust the backoff parameter

depending on whether a transmission was successful or not. For the purpose of comparison,

we implemented a Pseudo-BEB CW adaptation mechanism based on feedback from non-
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blocking, application-layer ACKs on top of the IEEE 802.11p Veins implementation. The

CW adaptation by a station in a 50-vehicle network using the Pseudo-BEB MAC layer

can be seen in (4.3). The same for 100 vehicles can be seen in (4.4). As seen, the CW

employed by a vehicle reaches higher levels because of the increased presence of collisions.
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Figure 4.3: CW adaptation over time performed by our Pseudo-BEB implementation,

deployed in a broadcast environment of 50 vehicles. For every detected collision, CW is

doubled until it reaches a CWmax value.
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Figure 4.4: The Pseudo-BEB algorithm deployed in a network of 100 vehicles will set the

CW on higher levels on average, because of the detected increased contention.
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4.4.3 Optimising the RL algorithm’s performance

Exploration rate ε

We evaluate the performance of different exploration policies regarding achieved packet

delivery (throughput), since this is the optimization goal of them, as shown in Fig. 4.5.
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Figure 4.5: Q-Learning MAC protocol performance for different exploration-exploitation

policies, with α = 0.5

We first tested vanilla Q-Learning (greedy), which basically always uses the action

found to be optimal at every state, not enforcing any exploration policy at all (ε = 0).

This algorithm as seen can be stuck at a local maximum since it does not fairly explore all

available action states (regarding the reward they return). The employed CW over time

reveals the reason for this, since the algorithm does not explore all (s, a) pairs at the vanilla

case, as seen in Fig. 4.6. Enforcing a maximum exploration rate ε = 1 has the opposite

effect on the employed CW size, as observed in Fig. 4.7.

Then we tested a balanced exploration-exploitation ε-greedy policy, where the agent

would take an exploratory (random) move 50% of the time and exploit its best-known

option for 50% of the time (ε = 0.5). Although it raises the system throughput, we

observe wide oscillations because of the increased exploration strategy. Limiting the agents’

exploration to just 20% of the time (ε = 0.2) delays getting a performance gain but also
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Figure 4.6: Trace of CW over time for a station for vanilla Q-Learning (greedy policy).
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Figure 4.7: Trace of CW over time for a station. If constant ε = 1 is enforced, the Q-

Learning algorithm can be used as a purely search algorithm, as it continuously explores

all (s, a) pairs, but does not behave correctly as a controller.

mitigates the oscillation problem to some level and improves throughput performance after

some training has happened. We observe a maximum difference of 100 kbit/s for a 50-

vehicle scenario, but the difference will be more significant in denser scenarios with a

higher system throughput. Additionally, although the mean throughput slowly increases,

the oscillation is still significant enough after a period of 300 s. Given limited time for the

Q-Learning algorithm to converge to a good solution, exploration policies with constant

exploration ratios ε perform suboptimally, but reduced exploration ratios definitely assist

convergence. An issue is that if we reduce ε too much, fair exploration of all (s, a) pairs

is not guaranteed. The employed CW over time for the algorithm with ε = 0.2 can be

seen in Fig. 4.8. The learning agent tends to use the upper CW levels after 150 s, and

mostly uses CW = 31/63 after 270 s. Nevertheless, convergence time is long and many
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unnecessary exploratory (thus possibly suboptimal) actions are taken.
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Figure 4.8: Trace of CW over time for a station with constant ε = 0.2. It constantly

explores random (s, a) pairs 20% of the time, which delays convergence.

Finally we evaluate our suggestion to the convergence problem, which is the decaying-

ε-greedy strategy presented in Section 4.2.2 that forces a lot of exploration early on and

quickly restricts ε to small values to force convergence to the best known (s, a), while

continuing to correct the agent’s behaviour. As seen in Fig. 4.5 after 50 s, with ε being

already below 50%, the algorithm keeps raising mean throughput. The oscillation after

150 s is much narrower than other strategies since ε is kept small at 10%, and throughput

keeps increasing until the end of the simulation. The employed CW over time for the

algorithm with a decaying ε can be seen in Fig. 4.9.
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Figure 4.9: Trace of CW over time for a station using the proposed ε− decay solution.
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Learning rate α

After we have decided on the ε-decay technique, we proceed to an investigation of the effect

the α parameter has on the algorithm’s performance. The discount rate γ is set to 0.7.

Results of said investigation are depicted in Fig. 4.10. It can be observed that reducing

both ε and α quantities simultaneously yields the best performance regarding maximum

achieved throughput, as well as far fewer oscillations after ≈140 s. It makes sense that

the α parameter should decrease as well as time passes, since this way the algorithm is

forced to have more “confidence” in its so-far acquired knowledge, and avoiding overriding

information as often (just 10% of the time in this experiment).
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Figure 4.10: Q-Learning MAC protocol performance for different values of α

Reducing the value of α over time via the decay function (4.4) (also used for ε decay over

time), essentially forces the agent to progressively limit the rate of overriding the existing

experience by newly acquired rewards. This way, the so-far found (near) optimal states-

CW/s are revealed as the agent becomes more confident in its so-far gained experience as

time progresses, and behaves better as a controller avoiding large oscillations around the

optimal CW value.
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Discount rate γ

Most algorithms for solving Markov Decision Processes rely on a discount factor γ, which

ensures their convergence. It is generally assumed that using an artificially low discount

factor will improve the convergence rate, while sacrificing the solution quality. But this

is not necessarily true in all cases [73], and typically this parameter is treated as part

of the problem, and needs to be tuned for a given problem by trial and observation (or

appropriate heuristics if available or obvious to the designer). The appropriate value of γ

for a given problem correlates with the reward function, the size of the search (s, a) space

as well as the exploration policy (in this case the ε-decay period). The values typically

used for this parameter range from 0.6 to 0.99 [31].
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Figure 4.11: Q-Learning MAC protocol performance for different values of γ

We proceed to an investigation of the effect the γ parameter has on the algorithm’s

performance, as shown in Fig. 4.11, using the ε and α-decay accelerated exploration

technique present previously. In the presented scenario, it can be observed that a discount

factor of γ = 0.7 yields a better result sooner and finds the best solution over time among

examined values.
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Time of exploration Ntrain

The required time of training Ttrain = Ntrain
fg

(where fg is the packet generation frequency

as shown previously), or period of intense exploration, was also of concern. For often-

changing, safety-oriented networks such as VANETs, Ttrain should be as small as possible,

as long as it does not significantly compromise the algorithm’s convergence (converging

around a sub-optimal CW size because of insufficient exploration). The algorithm’s per-

formance regarding achieved throughput is evaluated for different training times.
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Figure 4.12: Q-Learning MAC protocol performance for different training times Ttrain

In Fig. 4.12 it can be observed that increasing the “training”, or exploration time can

give system designers larger confidence in the result. As made apparent in results for a

50-vehicle scenario, if needed the algorithm can “train” for shorter times and still improve

achieved performance, with the downside of sacrificing the quality of solution.
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4.4.4 Evaluation for different types of network traffic

In order to evaluate the performance of our novel proposed protocol in comparison to the

existing IEEE 802.11p MAC method, simulations are carried out using the same setup as

before. We evaluate the Q-Learning MAC protocol against different types of congestion.

Packets lost are not recovered since we are concerned with the performance of the Link

Layer.

The discount rate γ is set at 0.7. We use the α, ε-decay method for training the

MAC agents since it forces them to explore all action-state pairs faster early-on, and then

focus on the most promising trajectory. The simulation run time for the proposed MAC

protocol consists of two stages, as seen previously in Fig. 4.9. First is the controller intense

exploration stage, which lasts for Ndecay = 1800 generated packets (or 180 s with fgen =

10Hz), during which the ε, α parameters keep decreasing until they reach εmin = αmin =

0.05. Then follows the evaluation or online period which lasts for 120 s, in which the agent

acts according its acquired knowledge for 95% of the time. During this time, we benchmark

the effect of the trained controllers regarding network performance as well as keep “learning”

(5% of the time) for controller augmentation. For IEEE 802.11p simulations, only the

evaluation stage is needed, which lasts for the same time.

Benchmarked Protocols

• IEEE 802.11p: It is the baseline protocol operating in OCB (broadcast) mode with

fixed CW = CWmin = 3 [highest priority-AC3] or CW = CWmin = 15 [AC0 and

AC1], since these enable lower-latency transfers. It has no CW adaptation capability.

• Pseudo-BEB: The addition of retransmissions originating from the receivers’ ap-

plication layer allowed us to emulate the WiFi Binary Exponential Backoff algorithm

for the IEEE 802.11p MAC and compare the novel Q-Learning protocols against it

in a fully broadcast, OCB system, as well as emulate unicast transmissions.

• Q_MAC: The proposed MAC protocol featuring an intelligent CW adaptation

solution based on the Q-Learning algorithm.

Effect of Increased Network Density

In VANETs, the network density changes depending on location and time of the day. We

test the performance of the novel MAC against the standard IEEE 802.11p protocol for

different number of cars. We evaluate the scalability of the MAC protocol by using it on
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vehicles travelling in the simulated map described previously. Large enough transmission

power enables a simulated scenario without Hidden Terminals. The packet size Lp is

256 bytes, and the packet generation frequency fgen is set at 10Hz. Fig. 4.14 shows

the increase of successfully delivered packets when using our novel MAC protocol. When

using the standard IEEE 802.11p, PDR decreases in denser networks due to the increased

collisions between data packets. The proposed MAC is designed to adjust the size of CW

as needed to achieve maximum packet delivery.
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Figure 4.13: Average network-wide CW for VANETs of different node densities

The IEEE 802.11p MAC performance assessment found already that in dense VANETs,

where network congestion and consequently packet collisions are increased, a higher CW

level used by all agents can mitigate the packet drop problem and improve the agents’

transmission success ratio. The behaviour of the intelligent protocol proposed in this

chapter regarding CW adaptation for different network densities can be observed in Fig.

4.13. It can be seen that in this symmetrical VANET case, the protocol detects that larger

CW values should be used by all stations to accommodate traffic in denser networks.

Network-wide PDR for the proposed Q-Learning MAC is measured after the initial,

more exploratory phase with ε > 0.05 (after the agent has gained some experience), as

seen in Fig. 4.14. The agent still explores random actions 5% of the time (ε = 0.05), for

better adaptability and augmentation of the built controller (Q-table). In sparse networks,

the proposed algorithm still outperforms the rest of the protocols, but the difference from

the minimum CW is not as significant as it can be when the density increases. When

the network density exceeds 40 cars, the proposed learning MAC performs much better

regarding successful deliveries. A ≈ 40.5% increase in performance (packets delivered)

over the fastest AC of the DSRC MAC is observed in a network formed of 80 cars when
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Figure 4.14: PDR versus network density for periodic broadcasting of 256-byte packets.
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Figure 4.15: Mean end-to-end latency for successful transmissions versus network density

for broadcasting of 256-byte packets.
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using the proposed modified DSRC MAC with the self-learning backoff mechanism. For

a network of 100 cars this increase in PDR reaches ≈ 51%.

The recorded end-to-end delay for successful transmissions, shown in Fig. 4.15 indicates

that the protocol can raise latency, especially for denser scenarios. This is expected as the

increased CW enforced by the learning MAC method when traffic is increased adds to

the channel access time and consequently the overall transmission time. The worst case

scenario simulated is for 100 simultaneous transceivers within the immediate range of each

other, in which the mean transmission latency is increased by almost 9ms, raising the total

measured mean latency to 14.8ms, when using the Q-Learning MAC instead of the fastest

AC of the default DSRC MAC.

Effect of Data Rate

We examine the performance of both the standard and enhanced protocol for different

data rates. PDR is measured for a network of 50 nodes without hidden terminals. The

broadcasting frequency is set at fb = 10Hz, and the packet size Lp is varied from 64 bytes

to 512 bytes. It can be observed that for 512-byte packets the mean PDR achieved by the

stations featuring the Q-Learning MAC protocol increases by 66.47% over using the default

VANET MAC. The gain increases when transmitting 1024-byte packets. It is clear that

for larger packet transmissions the Q-Learning based protocol will be much more reliable,

as seen in Fig. 4.16.

Effect of Multi-hop

In a network without a fixed topology which has to cover a large area, the most common way

to disseminate information is to forward packets across the network. In VANETs, DSRC-

enabled vehicles can cooperate to deliver data messages via multi-hop paths, without the

need of centralized administration. Some vehicles upon reception of an original message will

operate as relays, using some forwarding method such as the probabilistic retransmission

mechanism we employ in this study. In this scenario we test the performance of the

proposed protocol when attempting to reach stations that are located up to two hops away.

We can evaluate performance for two-hop transmissions by reducing the transmission power

to 17 dBm so that not all vehicles in a simulation can reach each other. As observed in Fig.

4.17, when the network density increases, the proposed MAC still offers a valid delivery

benefit for vehicle-stations contending for access on the same DSRC channel.



79

64 128 256 512 1024
Packets Size (Bytes)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PD
R

IEEE 802.11p (CWmin=3)
IEEE 802.11p (CWmin=15)
Q_MAC
Pseudo-BEB

Figure 4.16: PDR versus packet size for 50 vehicles broadcasting with fb = 10Hz
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Figure 4.17: PDR versus network density for broadcasting and relaying 256-byte packets

in two-hop network
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4.5 Q-Learning MAC agents in saturated networks

The proposed Q-Learning MAC algorithm behaves greedily, meaning that every station

tries to optimise its own throughput performance on the fly, by adapting the CW value as

needed. As already seen in this chapter, in dense VANETs where the learning algorithm is

utilised by all vehicles, the vehicles increase the size of CW enough so that the probability

of collisions by simultaneous transmissions is reduced. This aligns the findings from Section

3.2.3, which confirm that all stations using the same, large CW value increases the total

system throughput and promotes symmetry in the network regarding packet deliveries from

all stations.

On the other hand, in a network where the majority of stations use a large CW size

under high network traffic, the rest of vehicle-stations can exploit the way CSMA operates

to win contention over them by reducing their CW size, as seen in Section 3.2.3. We

reproduce a saturated VANET traffic scenario. The channel data rate is set at 9Mbit/s, as

previously. This leaves an available bandwidth of 180Kbit/sec per station, for 50 stations

if bandwidth was equally allocated. As before, all Nvehicles = 50 stations are generating

Lpacket = 512-byte packets with fgen = 50/3Hz (beaconing interval is Ibeacon = 0.06 s in

OMNeT++), translating to an effective beaconing frequency of fb = 50Hz for Nfwd = 2,

from (4.8). Also 4/5×Nvehicles use a constant CWmin = CW value of 255. The purpose

of this experiment is to examine whether the Q-Learning MAC algorithm can validate the

findings of Section 3.2.3. We deploy the adaptive learning MAC protocol on the rest of

the stations (Nlearning = 10), and observe their mean CW over time, seen in Fig. 4.18. As

expected, the algorithm correctly detects the effect of CW in such a scenario, with stations

settling at CWmean ≈ [63, 127] < 255.

This means that the learning MAC protocol employs smaller CW sizes to improve

packet delivery performance. This is different to the scenarios presented previously, in

which the algorithm attempts to maximise the stations’ communication performance by

increasing the CW parameter. It is worth noting that, as found in Section 3.2.4, in such

a high traffic scenario the greedy stations will still tackle more collisions if they use a CW

that is large enough, but below the one employed by their competitors (<255). This is

validated when using the Q-Learning MAC algorithm for the greedy stations, as seen below

in Fig. 4.19.
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Figure 4.18: Average CW over time for the 10 stations featuring the Q-Learning-based

MAC, deployed in a saturated network of 40 existing nodes using the IEEE 802.11p MAC

with fixed CW = 255
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employed MAC layer.
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4.6 Summary

We have introduced a contention-based MAC protocol for V2V broadcast transmissions

that relies on Q-Learning to maximise throughput via CW size adjustments by continu-

ously interacting with the network. We developed simulations to demonstrate the effect-

iveness of the algorithm when utilised to implement a wireless MAC protocol. First we

demonstrated the effect that the learning rate α, discount rate γ and exploration rate ε

have on the effectiveness of the algorithm in terms of network performance over time.

We found that compared to the base IEEE 802.11p CSMA and BEB protocols, the

Q-Learning MAC protocol can largely mitigate the collision and packet drop problem in

congested VANETs by discovering the appropriate CW value to be used for transmissions.

Results prove that the proposed protocol, with all parameters set appropriately, allows the

network to scale better to increased network density and accommodate higher data rates

compared to the IEEE 802.11p standard. It also enables more reliable packet delivery

and higher system throughput, while maintaining acceptable delay levels. By deploying

some stations featuring the learning MAC in an existing saturated VANET, it is confirmed

that the suggested MAC can automatically discover solutions that benefits stations with

higher-priority traffic. A consideration that arises from these experiments is the latency

performance of the studied Q-Learning-based MAC layer.
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Chapter 5

Collective Contention Estimation

Reward Mechanism for the

Q-Learning-based MAC

5.1 Introduction

The Q-Learning-based MAC protocol as presented so far behaves greedily, since every

station tries to maximise its own individual throughput performance. By each station

selfishly optimising its throughput, the network-wide throughput will be increased. But

by deploying the proposed Q-Learning MAC protocol in this way, throughput fairness

among stations cannot be guaranteed, in the sense that some stations will perform bet-

ter than others, which also affects the bandwidth exploitation capability of the system.

Since all stations greedily try to optimise their individual performance, it is possible that

some will perform better in the expense of others, depending on the individually collected

experience of every station, undermining the network’s fairness. With the DSRC com-

munication relying on ad-hoc networking without a central management entity to enforce

the fair usage of the channel among multiple vehicles, a decentralised technique should be

employed to mitigate the fairness problems in such networks. Based on this information,

the Collective Contention Estimation (CCE) reward mechanism for the Q-Learning-based

MAC was designed, towards an effort to improve on fairness in dense VANETs.

By combining the logic behind backoff copying [98] [16] with an internal critic provides

goal-specific “advice” [65] in the form of state-dependent rewards, the protocol is enhanced

towards more efficient and fair bandwidth allocation among stations. Based on the fact

that the CW level represents the contending priority for a station, fairness can be pro-
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moted among transmissions of multiple vehicles with similar information exchange needs

by ensuring symmetry regarding their CW levels. The resultant algorithm exploits this

information and allows collaboration in finding the appropriate CW level to accommod-

ate the network traffic. The CCE algorithm is not directly enforcing any CW solution

rather than provides suggestions to the Q-Learning-based MAC controller, which ulti-

mately judges the quality of solutions based on the success of transmissions. This way,

the RL agent’s reward function is enhanced with clues that speed up convergence and help

accommodate a wider spectrum applications in terms of fairness and throughput require-

ments. Furthermore, a technique of combining two sub-goals within the Q-Learning-based

MAC algorithm’s reward function is proposed and evaluated, so that the CCE algorithm

can be used in conjunction with other optimisation goals. This way different reward func-

tions can be developed and utilised depending on whether we strive for high reliability

(packet delivery) and fairness or low latency or even balancing both.

5.2 Enhancing the Reward Function

An RL agent receives positive or negative reinforcement in the form of a scalar reward signal

upon acting so that it can learn to behave correctly in its environment. Taking advantage

of the full channel capacity and achieving maximum packet delivery (throughput) is of

primary concern for this system, aiming to satisfy the reliability requirement of V2V traffic.

This can be accomplished by employing a simplistic binary reward function according to

which the agent is rewarded with 1 in case of successful transmission (ACK received) and

-1 in the case of a failed transmission, as presented and evaluated in the previous chapter.

In this design the the agent has a harder problem to solve, compared to using a more

detailed, granular reward function. Specifying a more detailed reward function can help

the algorithm converge faster, since more clues are provided. Evaluative feedback from

internal critics associated with specific goals can be employed to make a function which

returns a different reward depending on the CW that was used for every transmission,

leading to faster convergence as well as better networking performance. Essentially we can

bias the Q-Learning agent to prefer some CW values instead of others, depending not only

on the success of transmission but also on (a set of) sub-goals which optimise some other

performance-related objectives.

Based on this logic, we present a gradient-based reward function designed for the needs

of urban vehicular networks where bandwidth efficiency and fairness regarding channel

occupation among stations are of utmost importance. It is based on copying the CW
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sizes used by neighbouring transmitting stations and comparing them with the CW the

on-board Q-Learning agent suggests. The reward is based both on the success of the

packet and the result of that comparison. This addition can be utilised when having many

vehicles with similar network presence (i.e. data rate, number of transmitting neighbouring

stations) and helps to collectively find the optimum CW that accurately reflects the level

of contention. We also validate the delay-sensitive scheme found in [102] and propose a

function that combines both objectives.

5.3 The CCE Algorithm

Inspired by [98] [16], we adapt and introduce the backoff copying idea to the Q-Learning

agent, in which the receiving stations copy the CW size from overheard data frames coming

from nearby stations that experience similar network conditions. This technique can be

used as a way to bias the reward function so that agent-stations collectively estimate the

network congestion level, as well as compete more fairly for the channel, since all of them

content with fairly similar CW sizes.

Our mechanism starts with a piggybacking routine in which the employed CW value

for each transmission is piggybacked onto the packet to be transmitted. Receiving stations

invoke a CW copying routine, which adds the CW value to a ΣCW [] vector. The size

of the vector depends on the number of receipt transmissions and a set PacketsWindow

parameter. Once the vector fills up, for every new added CW value the last one is removed

(FIFO). That way every agent utilising this algorithm considers only the latest receipt CW

values, which helps estimate the network-wide congestion level for as long as the window

dictates (1 second in this case to keep up with increased mobility and changing topology

of vehicular networks).

We use the term “popular” for a CW size, by meaning that the receiving station notices

that other transmitters often achieve successful transmissions when using it. A CW size is

the most popular system-wise when used for the majority of (successful) overheard trans-

missions from stations that experience a similar environment. When the receivers become

transmitters themselves and eventually get acknowledgement for a successful transmission,

a reward calculation routine based on this idea is invoked. Transmitting stations scan

the ΣCW [PacketsWindow] vector, calculate the frequencies (popularity) of CW values

appearing there, by counterCW
length(ΣCW []) and store the results in a vector FrequenciesCW [] which

has a size dictated by the different possible CW values. This vector then gets sorted in

descending order, while the algorithm keeps track of what index (CW value) corresponds
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to which frequency. The agent gets rewarded depending on the order the CW size it used

for that transmission has in that vector.

The Q-Learning agent rewards itself more for using CW values that are placed first

in order on that vector (are often used to successfully transmit a packet), and less for

CW values that are near the end of the vector (are rarely used), by employing equally

distanced rewards. This way, the reward function just considers the order of CW levels

by their popularity, but not the popularity itself ( counterCW
length(ΣCW [])) so that it is more fair and

the Q-Learning agent does not get biased early on and fixed on a potentially wrong CW

trajectory. Specifically, when the transmitting station succeeds (and gets an ACK) using

the most commonly successful (popular) CW size within its first hop neighbours with

same transmission properties (no exploratory packets, similar data rate), its embedded

Q-Learning agent is given the maximum possible reward. Every other CW placing below

that in order of popularity will get its acquired reward reduced by 1/7th at a time (since we

consider 7 CW levels). i.e. in the case of the least popular CW (with the least successful

transmissions in the near network), the reward multiplier will be 1/7. The mechanism’s

operation is summarised in Algorithm 2.

The CCE reward function is expected to improve fairness and reduce the convergence

time of the Q-Learning algorithm, thus give a larger performance benefit, earlier. It is

also quite efficient regarding networking overhead since it costs just 3 bits per packet to

represent the 7 CW levels which can be easily absorbed by the IEEE 802.11p standard. It

could also be adapted for prioritisation among different classes of data since many proposed

techniques use different CW sizes for the same purpose.
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Algorithm 2 Collective Contention Estimation
1: ΣCW = []

2: CWlevels[7] = [3, 7, 15, 31, 63, 127, 255]

3: RewardCW [7] = [1/7, 2/7, 3/7, 4/7, 5/7, 1]

4: procedure CW_Copy(RxPacket)

5: if RxPacket.AppType = This.AppType

6: AND RxPacket.Explore = 0 then

7: PacketsWindow ++ . Resets to 0 every 1s

8: if length(ΣCW ) > PacketsWindow then

9: ΣCW [].remove(ΣCW [0])

10: end if

11: ΣCW [].add(Packet.GetCW )

12: end if

13: end procedure
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1: procedure RCCE(RxPacket)

2: for i← 0; i < length(CWlevels[]); i++ do

3: if RxPacket.CW = CWlevels[i] then

4: indexCW ← i . Find CW index

5: end if

6: end for

7: counterCW ← 0

8: for i← 0, i < length(ΣCW []), i++ do

9: if ΣCW [i] = RxPacket.CW then

10: counterCW ++

11: end if

12: end for

13: FrequenciesCW [indexCW ]← counterCW
length(ΣCW [])

14: SortedFrequenciesCW []← FrequenciesCW []

15: sort(SortedFrequenciesCW [])

16: for i = 0; i < length(FrequenciesCW []); i++ do

17: if FrequenciesCW [indexCW ] =

18: SortedFrequenciesCW [i] then

19: indexreward ← i

20: end if

21: end for

22: return RewardCW [indexreward]

23: end procedure
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5.4 Combination of two sub-goals

Similar logic regarding reward assignments can be applied to introduce delay awareness to

the protocol, as seen in [102]. As mentioned, the CW parameter is defined as the number

of timeslots the station has to weight prior to transmitting, so the smaller this parameter

is, the better in terms of total latency. The smaller CW values can be given higher reward.

The larger the CW size, the lower the reward given.

Additionally we can further optimise performance, by combining the two objectives

(fairness and low latency). This can be achieved by specifying even more detailed reward

function, featuring 49 discrete reward levels (equally distanced from each other) if the

proposed fairness-aware, CCE reward function is used in conjunction with a delay-aware

reward function. This would also focus the agent on a trajectory even faster than using

just 2 or 7 reward levels as shown before.

Rfunc(CW ) = RCCE(CW )×Rdelay(CW ), (5.1)

We found the approach in 5.1 to be more efficient when it comes to minimising latency

than a “softer” reward approach of combining rewards likeRfunc(CW ) =
RCCE(CW )+Rdelay(CW )

2 ,

via which the agent can receive relatively high rewards without necessarily achieving a

high reward from both the delay-aware and CCE functions. So i.e., the reward would be

rt ← rCCE × rdelay = 1/7× 4/7 = 4/49 for using the CW value which is the least common

found in receipt packets, but is averagely favourable for delay intolerant applications. Ef-

fectively, using the product of the result of the two functions as a reward, makes the one

act as a filter to the other. This way, the agent is less punished when it simultaneously

achieves both sub-goals (low latency, fairness) in a single transmission. If the designer

of a system needs to add bias towards one optimisation factor compared to the other, a

weighted product function can be used as in the following,

Rfunc(CW ) = RkCCE
CCE (CW )×Rkdelaydelay (CW ), (5.2)

where the weights, kCCE + kdelay = 2 and 0 < kCCE , kdelay < 2. The neutral case in (5.1)

can be obtained for kCCE = kdelay = 1. A schematic of the protocol’s operation utilising

both enhancements (fairness and delay awareness) is seen below in Fig. 5.1.

Plotting the reward function equation, also expressed as (5.3), for increasing values

(from the lower part of the figure towards the upper) of R2 in the range of [1/7,1] with

a step of 1/7 (them being the stages of the rewards for 7 different CW values) reveals
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Figure 5.1: Q-Learning MAC with fairness and latency optimisations

the total reward Rtotal acquired by the Q-Learning agent for all possible combinations of

individual rewards given by RCCE and Rdelay and biases kCCE , kdelay. The resulting figure

(Fig. 5.2) can be especially useful when defining the value of biases, since the Q-Learning

algorithm’s convergence relies on the temporal difference among reward values, and this

difference should be significant enough over time for the various (s, a) pairs so that the

algorithm can decide on a (near) optimal value more easily (within less iterations).

Rtotal = Rk1 ×R2−k
2

(5.3)
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5.5 Performance Evaluation

A MAC protocol should achieve three main objectives when the wireless medium is shared

among multiple vehicle stations: bandwidth efficiency, low latency, and fairness. Con-

sequently, we evaluate our designs against that criteria.

5.5.1 Experiment Setup

Simulation Parameters

All the cars within the area content for access to medium when trying to transmit a packet

or rebroadcast a copy of one. We perform our tests in a simulated vehicular environment

with moving IEEE 802.11p stations implemented with OMNeT++ 5 and the Veins frame-

work. The SUMO mobility co-simulator takes care of the vehicle mobility aspect. This

time all vehicles are placed on a 3-lane highway and travel with a maximum velocity of

15m/s so that the maximum distance travelled is 4.5 km in 300 s. The Krauss mobility

model is used with default parameters as seen in Table 5.1, and the maximum distance

among them reaches up to no more than 1 km as the simulation progresses. A snapshot

of the formation of vehicles at 100 s of simulation time can be seen in Fig. 5.3.

The scenarios envisaged in this work consider Nvehicles = 50 or 100 stations; each

station generates data packets with constant rate fgen = 10Hz by employing a bit rate,

R, which would depend on the experienced channel quality. The receivers can calculate

the forwarding (ACK) probability Pfwd in real time according to (4.7). All packets have

a common header which is similar to CAMs or DENMs, but is modified to include Node

ID, application type, whether a packet is original or a retransmission, the employed CW

and whether that CW was used due to exploration or exploitation.

Regarding Q-Learning training and evaluation, the discount factor γ is in the range of

0.7 to 0.9. Both ε and α quantities undergo exponential decay, as seen in 5.4 rather than

linear decay as in the previously chapter, since it forces the system to use gained experience

and limits randomness much faster, which is especially useful for mobile environments such

as vehicular networks. A larger decay constant λ will make ε and α vanish more rapidly,

which enforces exploitation sooner but may negatively affect learning so there is a trade-off

to be made. This technique, in combination with the CCE technique will allow the Q-

Learning algorithm to provide greater performance benefit, earlier. This can be achieved

via the function shown below,

ε = α = e
−λ× Ntx

Ntrain for 0 ≤ Ntx ≤ Ntrain, (5.4)
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Figure 5.3: The 3-lane highway scenario used in network simulations. Green/red colours

of vehicles identify successful/failed transmission (ACK/NACK received) of their latest

packets respectively.
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Parameter Value

Simulation time 300 s

Training period Ntrain 1800 packets

Channel Frequency 5.89GHz

Channel Bandwidth 10MHz

Transmission rate R 9Mbit/s

Transmission power
Single-hop: 30 dBm
Multi-hop: 17 dBm

Packet size Lp 256 bytes

Backoff slot time 13µs
Packet Generation
Frequency fgen 10Hz

ACKs per packet Nfwd

Single-hop: 2
Multi-hop: 6

Effective Broadcasting
Frequency fb (4.8)

Packet Generation
Offset 0.005 s

Discount rate γ [0.7, 0.9]

Mobility Model
Krauss model with default
parameters (σ = 0.5, τ = 1)

Maximum Vehicle Velocity 15 m/s

Vehicle Acceleration Ability 2.6 m/s2

Vehicle Deceleration Ability 4.5 m/s2

Table 5.1: Simulation Parameters for Q-Learning-based MAC with CCE evaluation
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Figure 5.4: CW adaptation by a single station utilising the Q-Learning based MAC pro-

tocol with exponentially-decaying ε-greedy exploration policy
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The learning rate α and ε-decay function lasts for 180 s or Ntrain = 1800(5400) original

(total) packets, with λ = 3. The two training methods, linear and exponential, and their

effect in throughput over time can be seen in Fig. 5.5. It can be observed that the

exponential ε-decay method yields a relatively larger performance benefit, faster, with a

small impact in the quality of the solution. Throughout this section, we present 5-minute

snapshots of the agent’s behaviour under various configurations and metrics, that combine

both the training (intense exploration) and evaluation (ε=0.05) stages, revealing how MAC

Q-Learning agents would perform in a system if deployed with initialised Q-Tables.
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Figure 5.5: CW adaptation by a single station utilising the Q-Learning based MAC pro-

tocol with different decaying ε-greedy exploration policies

Benchmarked Protocols

• IEEE 802.11p: It is the baseline protocol operating in OCB (broadcast) mode

with fixed CW = CWmin = 3, as defined in the standard for the fastest AC (lowest

transmission latency). It has no CW adaptation capability.

• Pseudo-BEB: The emulated BEB CA algorithm adapted for the IEEE 802.11p

MAC based on feedback from with implicit ACK packets via retransmissions.

• Q_MAC: Our original protocol first presented in Chapter 4 with a binary reward



96

function. Its operation is depicted in Fig. 4.1.

• Q_MAC+CCE: The novel protocol introduced in this Chapter based on Q-Learning

in conjunction with the CCE reward algorithm where Rfunc = RCCE

• Q_MAC+Delay: It is the Q-Learning agent using the delay-aware reward function

from [102] where Rfunc = Rdelay.

• Q_MAC+Delay+CCE: The novel protocol which targets satisfying both sub-

goals, utilising 5.2.

Applying a moving average filter to the CW recordings over time reveals the mean

system-wide CW over time. From these CW dynamics, we can make interesting observa-

tions about the significance of this parameter in dense IEEE 802.11p networks, as well as

evaluate the collective behaviour of the Q-Learning agents over time using various reward

functions. It can be seen in Fig. 5.6 that all the proposed solutions try to minimize the

medium congestion level by enforcing different CW values on communications.
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Figure 5.6: Network-wide CW dynamics for different collision avoidance mechanisms

The original Q-Learning MAC protocol strives for maximum transmission reliability,

and the one with the CCE reward function strives for both reliability and fairness regard-

ing contention. The delay-aware function tries to use a CW as small as possible while
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achieving acceptable reliability. When combining both reward functions, as in (5.1), the

mean system-wide CW is quite higher since the agent strives for reliability and fairness,

but still lower than the other two Q-Learning based solutions.

In the following, we show our findings regarding throughput, fairness and latency in

four different V2V scenarios: Medium Traffic, High Traffic, Two Simultaneous Applications

and Multi-hop.

5.5.2 Medium Traffic Environment

We first evaluate the proposed and existing MAC mechanisms against each other when

deployed in a sparser network environment of 50 vehicles transmitting 256-byte packets.

In Fig. 5.7, it can be seen how each protocol utilises the channel, since efficient bandwidth

usage is their primary objective. The protocols’ performance is evaluated against the

maximum achievable throughput (Throughput Optimal), which is found via performing an

exhaustive search among the possible CW values applied symmetrically to the network, as

shown in Appendix 2. The CCE reward function (Q_MAC+CCE) clearly performs better

regarding achieved throughput, since the agents collectively estimating congestion do a

better job than every one acting completely independently. Also the use of similar CW

sizes is enforced, which leads to less collisions. The other Q-Learning based solutions also

perform quite better than the baseline OCB IEEE 802.11p with CW = CWmin. Our BEB

implementation on the other hand is not yielding a great increase in throughput compared

to the original protocol. The poor performance of BEB is due to the increase of collisions

under increased network traffic load, since the mechanism is collision-triggered and resets

a station’s CW to CWmin after every successful transmission. On the other hand, the

proposed solutions update the CW around a value that resolves as many collisions as

possible and keep it there.

Furthermore, the achieved transmission latency is examined. The Normalised CDF

is produced for each protocol, shown in Fig. 5.8. An interesting observation from Fig.

5.8 is that each solution shows different performance limits on delay and packet deliver

ratio. With a more relaxed delay deadline, non-delay sensitive solutions show better packet

delivery ratio, e.g., achieving optimal throughput can translates to almost 79% of packet

delivery ratio but with a latency of up to 40ms. Q_MAC+CCE is very close at 77%, and

outperforms the optimal throughput solution for latency requirements below 30ms.

Additionally, given latency requirements of 12ms to 20ms [1], our Q_MAC+Delay+CCE

performs better than the rest of the protocols achieving the highest transmission reliab-
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Figure 5.8: End-to-end transmission latency versus PDR in 50-station network

ility, i.e., a packet delivery ratio of 72% shown on the Y-axis. Q_MAC+Delay is the

best solution if latencies lower than 12ms are needed. So we conclude that with appro-
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priate tuning (balancing the trade-off between delay awareness and CCE with (5.2)) the

Q-Learning MAC protocol can better satisfy even the most stringent delay requirements

for the medium-traffic environment. Fig. 5.8 can be used as a guideline to select a suitable

access strategy given an application requirement.
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Figure 5.9: Recorded fairness in 50-station network over different sampling windows in-

creasing with a step of 0.5 s

When it comes to fairness measurements, shown in Fig. 5.9, the CCE enhanced Q-

Learning agents perform better than the simpler protocols they are based on (Q_MAC and

Q_Delay), as expected. Specifically, the Q_MAC+CCE protocol meets our strict fairness

criterion even within 2 s or 60 packet transmission attempts per station, (compared to

4.5-5 s for Q_MAC) which is great for critical exchanges. If the CCE reward function is

combined with delay-awareness (Q_MAC+Delay+CCE) it takes 3 s for the same level of

packet fairness to be achieved. The delay-focused reward function without CCE performs

quite worse in that regard, since it does not achieve optimal fairness even in a 10 s sample

- or 300 transmitted packets per station. We conclude that for this sparser scenario, using

the proposed CCE reward function makes a significant difference regarding fair bandwidth

allocation among vehicles.
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5.5.3 High Traffic Environment

We then test 100 contending stations transmitting 256-byte packets. Aggregate throughput

measurements over time for the system are shown in Fig. 5.10. When compared to each

other, the protocols perform as in the previous scenario regarding achieved throughput.
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Figure 5.10: Mean network-wide throughput for 100 stations

Although the performance gap between the proposed CCE reward function and optimal

is slightly wider, i.e., 6.33% during 300 s of simulation time, given more time, the protocol

can achieve optimal throughput. In terms of the practical requirements on short-term

performance and applicability in VANETs, the algorithm can yield the presented gain over

time or be pre-trained and activated in dense environments where there is large quantity

of information to be exchanged among vehicles tuned in the same DSRC channel.

But when comes to transmission latency, shown in Fig. 5.11, the learning MAC with

joint CCE and delay-awareness outperforms all MAC solutions in terms of packet de-

livery for latency requirements among 22 to 33ms. Q_MAC, which cannot be further

controlled performs quite closely. The Q_MAC+Delay protocol, which defines what is

possible when focusing on low latency exchanges, outperforms the rest for 13.5 to 22ms.

Given a delay requirement of 100ms which is typical for V2V applications, Q_MAC+CCE

is more preferable in practice since it achieves the highest delivery ratio.

When it comes to transmission fairness, shown in Fig. 5.12 the results are quite similar
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Figure 5.11: End-to-end transmission latency versus PDR in 100-station network
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increasing with a step of 0.5 s.
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to the first scenario. Both CCE-enhanced Q-Learning protocols are throughput-fair within

shorter time than their non-CCE counterparts. The BEB and Q_MAC+Delay are not fair

in the short term or long term when evaluated against our criterion. The baseline DSRC

MAC also cannot handle 100 cars regarding neither long-term nor short-term fairness.

5.5.4 Two simultaneous services

The same mechanism for improving fairness on a network level can be employed by the

protocol to better accommodate multiple simultaneous applications, by the same (EDCA-

like priorities) or different stations. We enforce application separation regarding CW by

making the CCE algorithm check the application type field which is contained in the

packets, meaning that only CW values from packets of the same application get copied

and affect the Q-Learning reward function. Additionally, only stations running the same

application retransmit each other’s packets so that we can collect fair measurements.

We simulate stations of two types, running different application layers. To make a fair

comparison regarding raw network-wide throughput, we set 80% of the vehicles to transmit

256-byte packets and 20% of the vehicles to transmit 1024-byte packets. Consequently in

the scenario of 50 vehicles presented below, 40 cars run the first application and 10 cars

run the second one. Assuming no packet losses, the throughput of the two applications

should be equal to each other (ThBThA
= 1). Only stations running the same application

collectively estimate the optimum application-wide CW , instead of all stations trying to

find the optimum system-wide CW . The recorded application-wide throughput for all

protocols can be seen in Fig. 5.13 and Fig. 5.14 for applications A and B respectively.

It can be observed that there is significant increase in throughput (approaching the op-

timal solution) when our novel learning technique is applied to the DSRC MAC. Although

the throughput of the two applications would be equal should there be no contention, in

practice larger packet transmissions are more prone to collisions, and if losses occur the

throughput is also affected much more, because of the larger packet size. This is reflected

in the collected results, as expected. But if we evaluate application-wide fairness expressed

as a ratio of throughput of application B (1024 byte packets) over application A (256 byte

packets), the proposed learning technique shows significant improvement over the DSRC

stack. The Q_MAC+CCE protocol achieves a ratio of up to ThB
ThA
≈ 0.74 for throughput

of application B over application A, compared to 0.658 for the baseline IEEE 802.11p

solution, while yielding the highest overall throughput as well, within 6.5% of the optimal

solution.
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Figure 5.13: Total throughput achieved by stations transmitting 256-byte packets
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Figure 5.14: Total throughput achieved by stations transmitting 1024-byte packets

Regarding end-to-end transmission latency, depicted for all successful packets in Fig.

5.15, we again observe that usingRfunc with both sub-goals combined (Q_MAC+Delay+CCE),
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again favours low latency exchanges, with the protocol achieving the higher delivery ratio

for latencies below 28ms all the way down to 14ms end-to-end. Again, given a delay

requirement of 100ms which is typical for many V2V applications, the protocol with the

highest raw throughput Q_MAC+CCE performs better.
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Figure 5.15: End-to-end transmission latency of transmissions in 50-station network versus

PDR for both concurrent applications

Network-wide packet-based fairness for all stations, no matter the application they are

running, can be seen in Fig. 5.16. IEEE 802.11p CSMA with or without the BEB exhibits

a more severe fairness problem under these multi-rate conditions, which can be tackled

using the learning-based methods. We can again confirm that resetting to CWmin is not

good regarding delivery or fairness in sustained high traffic. Again, better performance can

be achieved when the proposed CCE method is utilised in conjunction with the Q-Learning

MAC mechanism, with or without delay awareness. The fairness aware learning protocol

Q_MAC+CCE achieves J = 95% within a window of 2-2.5 s or 60-75 transmitted packets

per station, while Q_MAC achieves the same of fairness within about 6.5-7 s or 195-210

packets. The Q_MAC+Delay+CCE protocol can reach the set criterion within 3.5 s for

this simulation scenario, while the other latency optimised protocol without considering

the CCE function (Q_MAC+Delay) cannot reach the fairness criterion at all.

An interesting observation is how the baseline Q_MAC and the CCE-enhanced proto-
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Figure 5.16: Recorded fairness in 50-station network for two concurrent applications

cols handle service separation by adapting the CW of the station’s MAC layers, depicted

in Figure 5.17. Both the baseline learning and the CCE-enhanced mechanism favour trans-

mission of larger packets by reducing the CW value used to contend for the channel by

the stations transmitting them. This happens since larger transmissions are more prone

to collisions, which the Q-Learning MAC perceives and tries to mitigate. Larger packets

have a lower probability of successful transmission, since they need more time for their

transmission to be completed. Naturally, as seen in the previous figures, this prioritisation

results in both higher overall (network-wide) and application-wide throughput. So it can

be observed that stations transmitting smaller packets use a larger CW value on average

when compared to the ones transmitting much larger packets. This result also correlates

with the findings from the hardware and simulation experiment of DSRC-based asymmet-

rical network. In the presence of heavy contention, a few stations can gain significantly

more transmission opportunities if their backoff time is smaller than their contending

peers.

When looking for the optimum system value, we cross validated the Q-Learning result

by using a smaller CW value for the stations transmitting larger packets, so that they

could win more often when contending for channel access. Indeed, both Normalised CDF

and fairness show that packet delivery disregarding latency of transmissions is very similar
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Figure 5.17: Application-wide CW dynamics for different Q-Learning MAC implementa-

tions

among the CW256 = CW1024 = 255 and CW256 = 255, CW1024 = 127 cases, as seen in

Fig. 5.18 . They also perform quite closely regarding fairness, as seen in Fig. 5.19. The

latter performs optimally among solutions for transmissions that need to be < 33ms, and

for fairness recorded for 7.5-9 s, seen in 5.19.
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Figure 5.18: Latency for 50 stations running 2 applications - examining different combin-

ations of CW per app.
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Figure 5.19: Fairness for 50 stations running 2 applications - examining different combin-

ations among CW values per app.
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5.5.5 Multi-Hop Environment

The performance of the Q-Learning MAC has also been studied under a dense multi-hop

network environment of 100 stations, which are placed at most 2 hops away from each other.

Every vehicle periodically calculates its packet forwarding probability Pfwd depending on

the number of its one-hop neighbours via (4.7), by setting Nfwd = NACK = 6 to ensure

coverage for the given RoI, even in the increased presence of collisions because of hidden

nodes. Each vehicle forwards a copy of a received packet at most once to limit redundancy.

Again the Q_MAC+CCE protocol yields the highest raw throughput among the protocols,

as seen in Fig. 5.20. It can also be observed that it learns how to increase performance

faster than the rest of the protocols.
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Figure 5.20: Experienced incoming traffic in multi-hop network.

When it comes to latency performance in this scenario, depicted in Fig. 5.21, only

unique copies of packets are considered, whether they come from single-hop or two-hop

paths, since this reveals more about the performance of the system. Combining CCE and

delay awareness in the reward function (Q_MAC+CCE+Delay) with equal bias yields bet-

ter performance for requirements among 34.5ms to 47.5ms, very close to that of Q_MAC

which cannot be further controlled. As always, biasing the protocol towards delay with

kdelay > kCCE in (5.2) can yield even higher delivery rates for latency-sensitive transmis-

sions. Focusing entirely on delay (Q_MAC+Delay) will make the Q-Learning algorithm
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Figure 5.21: End-to-end transmission latency versus PDR in multi-hop network.

outperform all the rest for latencies down to 19ms in a multi-hop setting. Given that these

requirements are not common in multi-hop transmissions, for a requirement of 100ms the

Q_MAC+CCE would again yield the highest performance.

Regarding fairness, again we evaluate it regarding flows of unique packets considering

their origin (the vehicle that generated the packet) and disregarding whether they arrive via

single-hop (the vehicle that generated the information) or multi-hop (forwarding vehicle)

paths. This way we can assess the performance of the multi-hop network regarding its

capability to fairly carry information among all vehicles in the RoI, whether they are

immediate (single-hop) neighbours of the receiver or not. Results are depicted in Fig.

5.22. Achieved multi-hop fairness is naturally lower, but CCE-enhanced protocols continue

to vastly improve on the simpler Q-Learning protocols they are based on, with the best

performing just 5% below the optimal fairness found for the system. Q_MAC+CCE can

reach J = 79.4%, compared to the simpler Q_MAC with the binary reward function

which goes up to J = 74.6%. Similarly, Q_MAC+Delay+CCE goes up to J = 76.2%,

while Q_MAC+Delay can reach a maximum of J = 72.45% within 10 s or 100 original

packets transmitted per vehicle.
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Figure 5.22: Recorded fairness 100 flows in multi-hop network over different sampling

windows.

5.5.6 Using different weights for Rdelay, RCCE

The results presented so far use equal bias kdelay = kCCE = 1 in (5.2) when examining the

effect that Q_MAC+Delay+CCE has on communications. The Q_MAC+Delay imple-

mentation favours low latency exchanges but has a cost on total throughput and fairness. A

reward system that introduces CCE to a lesser degree is examined, so that we can bias the

system towards favouring low-latency exchanges while improving fairness and throughput

to some degree.

Fig. 5.23 shows the achieved network wide throughput for the Q-Learning-based MAC

protocol when the reward function in (5.2) is deployed with kdelay = 1.35 and kCCE = 0.65,

against kdelay = kCCE = 1 which is the default Q_MAC+Delay+CCE version presented

so far, and Q_MAC+Delay (kdelay = 2, kCCE = 0). Measurements are collected for the

sparser, 50-vehicle scenario.

Fig. 5.24 reveals the achieved latency for the same Q_MAC implementations. The

k = 1.35 weight biases the protocol more towards delay with less weight towards a col-

lectively found optimum value. Naturally, it should perform better in lower latencies than

Q_MAC+Delay+CCE with k = 1, and it does, outperforming all other for latencies of

9.9ms to 13.5ms.
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Figure 5.24: Latency for different k values

Fig. 5.25 show how the three protocols stand among each other regarding measured

fairness performance. As expected, focusing exclusively on minimising latency has a neg-
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ative impact on the network’s fairness, and can be minimising by also using the CCE

function. These results have been collected for the medium density scenario studied in this

chapter, which features 50 vehicles transmitting 256-byte packets with fb = 30Hz, but

the benefits can be more significant as the network contention increases and the need for

traffic differentiation via achieved latency is larger.

1 2 3 4 5 6 7 8 9 10
Sampling Window (s)

0.88

0.90

0.92

0.94

0.96

Ja
in

's 
Fa

irn
es

s I
nd

ex
 [J

]

Fairness Index for 50-station network for different weights

Fairness Criterion
k=2.0 (Q_MAC+Delay)
k=1.35 (Q_MAC+Delay+CCE)
k=1.0 (Q_MAC+Delay+CCE)

Figure 5.25: Fairness among 50 stations

5.6 Summary

The CCE function for the Q-Learning MAC protocol offers great benefits on real VANET

deployment. It accelerates the convergence of the Q-Learning MAC, yielding greater

throughput (packet delivery) and fairness performance results.

The reward function presented in this work can be used to trade raw throughput and

fairness for lowering transmission latency or the opposite. Additionally, CCE enhanced Q-

Learning MAC protocols consistently outperform the protocols they are based on, in terms

of fairness and raw throughput. It can be observed that when combining both CCE and

delay-awareness mechanisms, a designer can bias the Q-Learning agent towards either high

delivery for delay-sensitive traffic or strive for maximum data rates for large exchanges. So

there is a clear trade-off when biasing the learning agent: it can strive towards maximum
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raw throughput and fairness or reliable low-latency transmissions, or a combination of the

two, depending on requirements of given application.

Finally, results from evaluating two applications (different packet lengths) simultan-

eously reveal that the CCE function enhances the ability of the Q-Learning MAC protocol

to learn how to operate similarly to the EDCA function. It can enhance service separation

by contention priority via CW adaptation, without being explicitly programmed to do so,

but depending on the application it tries to accommodate.
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Chapter 6

Conclusions and Future Work

6.1 Contributions and Conclusions

We have introduced a contention-based protocol for V2V transmissions that relies on Q-

Learning to increase access control efficiency by continuously interacting with the network.

Simulations were developed to demonstrate the effectiveness of the MAC protocol. Results

prove that the proposed protocol allows the network to scale better to increased network

density and achieve higher transfer rates and fairness compared to the IEEE 802.11p stand-

ard, while able to maintain a tolerable level of latency. In the following subsections, we

briefly highlight the important contributions and conclusions of this thesis.

6.1.1 Evaluation of the DSRC MAC protocol

The main contribution of Chapter 3 is to provide an understanding on the effect the

CW parameter has on network performance when there are multiple stations sharing a

DSRC channel. Initially, a hardware-based experiment indicates that given high data

rates, even a few stations can cause significant channel contention. The CW parameter

of the CSMA-based MAC layer is varied, and it can be exploited by a station to gain an

advantage in communication over competing peers, and increase its total throughput. Then

a preliminary simulation study is presented, that shows the effect of the CW parameter

in symmetrical systems. We find that the choice of CWmin parameter depends on the

need of an application regarding latency and throughput. The effect the parameter has on

fairness of bandwidth allocation among stations is also examined. Finally an attempt to

replicate and validate the hardware study findings via a more complex simulated network

is presented. The acquired insights on the network performance related to CWmin also

provided a precise guideline for the efficient designs of practical and reliable vehicular
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communications systems presented in the next chapters of this study.

The detailed contributions include:

• A hardware testbed featuring a novel Linux kernel modification with appropriate

user-space software, that allows the adaptation of CWmin and other properties of

the Linux IEEE 802.11p MAC implementation, supporting the new OCB mode.

• Investigation into the effect the CWmin value has on broadcast transmissions of a

single vehicle OBU when found in a congested network, enabled by the hardware

testbed.

• A complete framework of assessing MAC layer performance incorporating through-

put, raw latency, latency versus packet delivery and fairness measurements.

• Investigation of the effect of the CW parameter regarding fair bandwidth allocation.

Simulation results using the presented framework regarding the default DSRC MAC

for a range of CW values simultaneously applied to all stations for symmetry, indicate

a benefit to the overall experience of all users in the network.

• Further investigation into MAC-level fairness. Simulation results using the same

framework regarding the default DSRC MAC for a range of CW values in asym-

metrical scenarios, indicate that users can greedily acquire a larger portion of the

bandwidth if they content for channel access with lower CW values from the peers.

6.1.2 Investigation of the ability of Reinforcement Learning to be used

for Channel Access Control

In Chapter 4 we present details regarding the implementation of a MAC protocol based the

Q-Learning algorithm. The state-action space and a simple reward function is defined. The

exploration-exploitation problem was studied so that a feasible control technique for mobile

vehicular networks based on Q-Learning could be designed. The Q-Learning algorithm

would have to converge to a (near) optimal solution in relatively short time. To decide on

a solution, we compare different exploration-exploitation policies, and end up on a ε-decay

solution that forces exploration early on the station’s deployment in a VANET and exploits

the acquired knowledge as soon as possible. Evaluation regarding Q-Learning parameters

and how they affect network performance over time is also presented. A compatible message

forwarding protocol is applied at the higher layers. Finally, we vary the network traffic

properties such as number of stations and transmitted message length. Both single-hop and
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multi-hop topologies are tested. The Q-Learning-based MAC protocol for DSRC finds a

good solution for all scenarios and outperforms baseline DSRC in terms of achieved packet

delivery performance. As a downside, we notice that the algorithm leads to increases in

transmission latency as a result of the CW adaptation.

The detailed contributions include:

• A Q-Learning based framework for channel access control compatible with broadcast

DSRC transmissions, targeting throughput optimisation.

• Investigation into the exploration-exploitation dilemma and the effect the ε para-

meter has on the algorithm’s convergence time and output regarding correct CW

selection. The proposal of the decaying ε-greedy algorithm as a solution towards

quickly building access controllers via Q-Learning.

• Investigation of how the RL parameters α and γ as well as the time of exploration

affect the achieved network throughput.

• Evaluation of the Q-Learning-based MAC protocol with networking criteria. An

assessment of the algorithm’s performance regarding achieved packet delivery and

latency when compared with existing solutions for different network densities, packet

lengths and multi-hop scenarios.

6.1.3 Reward Function Enhancements

Chapter 5 presents the novel Collective Contention Estimation (CCE) function for Q-

Learning and how it can enable accommodating different kinds of traffic. Trying to op-

timize the Q-Learning-based MAC protocol, the CCE function can be used to increase

the achieved delivery rate - throughput even more, bringing it very close to the maximum

achievable throughput for the various studied scenarios. It also significantly accelerates

convergence, yielding performance benefits earlier than the baseline reward mechanism.

Throughput fairness among vehicle-stations is also significantly improved. The mechan-

ism is evaluated for different network densities, different simultaneous services and both

single-hop and multi-hop topologies. The service separation capability of the algorithm is

also evaluated for two simultaneous applications in a network. Additionally, by providing

a way to combine multiple goals, the protocol can become latency-aware so that higher

delivery rates and fairness can be achieved even for delay-sensitive communications. We

evaluate the ability of the mechanism to satisfy lower-latency applications

The detailed contributions include:
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• A novel reward mechanism named Collective Contention Estimation (CCE), which

is compatible with the Q-Learning-based MAC protocol is presented. By incorporat-

ing the backoff copying technique, it promotes symmetry in the network regarding

the employed CW by relevant vehicle-stations. This way, throughput gains are ac-

celerated and larger. Throughput fairness is also greatly enhanced in the network,

regarding both the short and long-term.

• An investigation of how the CCE mechanism enables the Q-Learning-based MAC

protocol to better handle different service separation regarding contending priority

of stations depending on application.

• A method for the Q-Learning algorithm to target multiple networking objectives so

that applications with various latency requirements can be better accommodated by

the protocol is suggested. The method can also be used to bias the algorithm towards

focusing to a greater degree towards an objective rather than another.

6.2 Future Research Subjects

6.2.1 EDCA-like priorities via Q-Learning for Vehicular Data Traffic

The Q-Learning-based MAC protocols introduced in this thesis have been proven to be

able to tackle contention among multiple stations sharing the common wireless medium.

According to the experimental results collected in this thesis, they can be adapted to handle

internal and external contention among different applications considering their urgency.

Further work could focus on enhanced bandwidth allocation among transmissions dif-

ferent kinds of traffic. Q-Learning has already been examined as a solution to resource

provisioning and QoS enhancement for vehicular cloud [79]. Enhanced bandwidth alloca-

tion among different services could be achieved by combining the proposed protocol with

sliding window techniques which restrict the number of CW levels per application de-

pending on its priority. The QoS for different applications could be further enhanced by

having multiple Q-Learning MAC agents in a station, that are trained based on the type

and priority of traffic they have to accommodate. The Q-Learning MAC protocol could

also be trained in scenarios of fast moving vehicles where the time window of opportunity

for data exchange with other vehicles or RSUs is smaller than usual. A mobility-aware

EDCA function could be designed based on Q-Learning, to separate traffic not only based

on application requirements but the contact time vehicles have with each other or some

RSU.
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6.2.2 VANET MAC Layer design based on Deep Q-Learning

The vanilla Q-Learning algorithm can work effectively when the (s, a) space is small enough

that can be explored in sensible time and consequently just a look-up table has to be

maintained for the update of the Q-value. However, it is impossible to apply the Q-

Learning with look-up tables when the (s, a) space becomes very large, as in a joint resource

management problem. Realistically, a large number of (s, a) pairs may be rarely visited,

thus the corresponding Q-values would not be updated as frequently as needed, leading

to a much longer required time for convergence. To solve this problem, it is common to

use a function approximator to estimate the Q-value function as Q(s, a, θ) ≈ Q(s, a). It

can either be a linear function approximator, or a non-linear function approximator such

as a neural network, referred to as a Q-network [68]. Once θ is determined, the Q-values

Q(st, at) will be the outputs of the neural network.

Q-Networks have been studied for their potential application towards solving network-

ing problems, such as network resources allocation for data centres [26], and naturally

research has extended towards the emerging vehicular networks. Work in [110] presents

using deep reinforcement learning to handle resource allocation and the broadcast schedul-

ing jointly for C-V2X. For the VANET congestion control problem studied, it could be ex-

amined whether the neural network can address complex mappings between the controlled

stations parameters or network data and the desired output based on a large amount of

training data, which would be used to determine the Q-values. The Q-network has to

be trained with a large amount of simulated data, which are generated from interactions

of agents and an environment simulator. Coupling OMNeT++ with Google’s Tensorflow

API would allow researchers to train and evaluate various neural network-based learning

algorithms in terms of their networking performance, without the need to implement and

train the neural networks themselves in OMNeT++, thus allowing further research into

applying the Q-Learning algorithm in large (s, a) spaces.

6.2.3 Denial-of-Service Mitigation in VANETs

An interesting future research direction is vulnerability mitigation, especially of Denial-of-

Service (DoS) attacks which could be particularly dangerous in safety-oriented networks

such as VANETs. Malicious actors can generate artificial contention to jam useful trans-

missions of their peers. By employing techniques to estimate the backoff period of some

station or RSU, multiple stations can be placed near and RSU to synchronise their trans-

missions (Distributed DoS attack), as seen in [20]. According to this study, this becomes



119

easier in VANETs, since IEEE 802.11p by default uses small CW sizes, especially for high

priority, safety-oriented traffic (that goes through faster ACs). They suggest that by using

larger CW sizes this kind of attacks becomes harder to perform, since a lot of time and

malicious stations would be needed.

There has been existing work focusing on DoS attack detection and mitigation using

machine learning techniques, as well as some focusing on RL. Such work is presented in

[74], which studies the detection of a stealthy DoS attack in a Software Defined Network

using Q-Learning. Work in [64] explores the possibility of DDoS Response using RL in

large-scale network topologies. The proposed Q-Learning-based protocols could be used as

a base for intelligent mitigation or avoidance of MAC-layer DoS attacks by synchronisation.

More research could be focused on this matter, as more sophisticated security techniques

would be needed in real deployments.

6.2.4 Hardware deployment of the Q-Learning-based MAC

We have showed that adaptation of the CW parameter in the IEEE 802.11p Link Layer

is feasible in the Linux Kernel. Furthermore, it can be done from userspace applications

communicating with system calls with the Kernel networking stack. With the CW adapt-

ation having an observable and measurable effect on communication performance of the

IEEE 802.11p stations, a next step would be incorporating smart adaptation algorithms,

such as the ones presented in this work into hardware deployments. The Q-Learning-based

CW adaptation protocol itself could be implemented as a userspace application for sim-

plicity. A larger VANET of multiple transmitters would have to be deployed to replicate

the simulation setups presented in the thesis.

The current system evaluates IAT at the receiving IEEE 802.11p station. To maintain

that measurement technique for producing feedback for the Q-Learning-based MAC, the

IAT measurements of transmissions or IAT over multiple transmissions at a time can be

compared to some pre-defined or adaptive threshold that indicates the quality of commu-

nications. Then populate each controller’s Q-table (s, a) element (where s is a CW level),

the feedback (reward r) would have to be transmitted back to the original sender, in the

same form as presented throughout the thesis. The reward can either be binary (1 if the

achieved IAT is below the threshold or -1 if it exceeds it), or a percentage indicating how

far of from the desired value is the achieved IAT .
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Appendix A

OMNeT++ extension for reliable

broadcasting via implicit ACKs

Listing A.1: Simulation extension for probabilistic retransmissions, to support reliable

broadcasting (ACKs) and multi-hop.

//A c o l l e c t i o n o f unique v eh i c l e IDs .

std : : vector<int> Vveh i c l e s ;

i f (wsm−>getHops ()==0)

{

i f ( s td : : f i nd ( Vveh i c l e s . begin ( ) , Vveh i c l e s . end ( ) ,

wsm−>getSenderAddress ( ) ) != Vveh i c l e s . end ( ) )

{

/∗Do nothing more , t h i s i s a packet coming

from an a l ready known v eh i c l e . ∗/

}

e l s e

{

//Add veh i c l e ID to c o l l e c t i o n .

Vveh i c l e s . push_back (wsm−>getSenderAddress ( ) ) ;

}

}

/∗ Refresh number o f ne ighbours measurement

every 500 ms ∗/

i f ( simTime ( ) . dbl ()> rec_t imeVehic les +0.5)

{
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neighbours = Vveh i c l e s . s i z e ( ) ;

Vveh i c l e s . c l e a r ( ) ; // r e s e t vec to r ho ld ing veh i c l e IDs

P_ack = N_ack/ neighbours ;

// time r e s e t

rec_t imeVehic les = simTime ( ) . dbl ( ) ;

// wr i t e l og f i l e

std : : o f s tream NeighboursLog ;

NeighboursLog . open ( d i r e c t o r y + "neighbours_"

+ std : : to_str ing (myId) +". csv " , std : : ios_base : : app ) ;

NeighboursLog<<Vveh ic l e s . s i z e ()<<","<<P_ack<<

","<<rec_timeVehic les<<std : : endl ;

NeighboursLog . c l o s e ( ) ;

}

//Checks whether a packet should be re t ransmi t t ed or not .

i f (wsm−>getHops ()<MAX_HOPS && wsm−>getRateType()==thisRateType )

{

// Forward Packet

i f ( uniform (0 ,1) <P_ack)

{

WaveShortMessage ∗copy = wsm−>dup ( ) ;

copy−>setHops ( copy−>getHops ( )+1) ;

//copy−>setRateType ( rateType ) ;

sendWSM( copy ) ;

}

}
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Appendix B

Search for CSMA performance upper

bound

Algorithm 3 Sequential Search for Maximum Throughput and Fairness
1: CW [7] = [3, 7, 15, 31, 63, 127, 255]

2: for CWlevel ← 0;CWlevel < 6;CWlevel ++ do

3: for ivehicles ← 0; ivehicles < Nvehicles; ivehicles ++ do

4: V ehicle[ivehicles].CW← CW [CWlevel]

5: Throughput[CWlevel]←MeasureThroughput

6: JainFairness[CWlevel]←MeasureFairness

7: end for

8: end for

9: ThroughputMAX = 0

10: JainFairnessMAX = 0

11: for CWlevel ← 0;CWlevel < 6;CWlevel ++ do

12: if Throughput[CWlevel] > ThroughputMAX then

13: ThroughputMAX ← Throughput[CWlevel]

14: end if

15: if JainFairness[CWlevel] > JainFairnessMAX then

16: JainFairnessMAX ← JainFairness[CWlevel]

17: end if

18: end for

19: Return ThroughputMAX , JainFairnessMAX
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