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Abstract 

Global land use is changing at an unprecedented rate and has been identified as a key driver of 

habitat loss, fragmentation and species decline in the natural environment. Understanding how 

land use influences spatial patterns in species abundance, and habitat connectivity at a 

landscape scale is critical for the survival of wildlife populations. The focal species of my research 

is the rare greater horseshoe bat (Rhinolophus ferrumequinum), which was once widespread 

across southern England and Wales. However, owing to changes in agricultural land 

management and the expansion of urban areas, its range has contracted considerably over the 

last century. Using a series of ecological techniques, including a novel predictive modelling 

approach, field experiments and social network analysis, this thesis aims to identify which 

ecological factors affect their activity and movement at a landscape scale. The work also 

provides conservation practitioners the ability to identify the locations of these impacts, pinch-

points, in the wider environment; where strategic planning and mitigation measures can be 

applied to increase their overall occurrence and abundance in the wider environment.  

Using a field experiment, I examined how traffic noise can influence the relative activity levels 

of free-living bats. Overall, I showed that traffic noise can significantly reduce the activity levels 

of R. ferrumequinum, as well as other bat species, along linear feature. Using a separate field 

experiment, I determined that the sonic spectrum had a greater negative effect on bat activity 

than the ultrasonic spectrum. These results therefore suggest that the mode of action is likely 

to be through general deterrence and avoidance rather than through the masking of 

echolocation calls. R. ferrumequinum are widely considered to be dependent on linear landscape 

features such as woodland edges and hedgerows. My research supported this view, and 

highlighted the particular importance of treelines, which were associated with greater activity 

than even sympathetically managed hedgerows. However, an important novel finding from my 

research was that about a third of all activity recorded at paired detectors was derived from the 

middle of fields. It is therefore important to consider these more open habitats, as well as 
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hedgerows, treelines and woodland edges, when designing and conducting ecological impact 

assessments for future developments.  

Bats use the landscape at a large spatial scale, and responses to any particular challenge (such 

as a new lighting scheme or urban development) are likely to depend on their context within a 

landscape. For example, the disruption of a commuting route is likely to have a greater impact 

where only one suitable route exists, compared with scenarios where there are numerous 

alternatives. To understand better how R. ferrumequinum interacts with the British landscape, I 

therefore created models of predicted functional connectivity around four maternity roosts 

using Circuitscape software. Using non-invasive static bat detectors as a method of ground 

validation, I created robust models predicting R. ferrumequinum movement; which allowed the 

identification of pinch-points in the landscape, either those areas limiting species movement or 

highly important for the species conservation. 

While most research, and the work of ecological practitioners, focuses on the maternity season, 

hibernation ecology has received much less attention. Yet given that horseshoe bats are known 

to move roost location frequently during the hibernation period, it is important to understand 

more about this behaviour. Using social network analysis, I demonstrate that adult males are 

significantly more central (connected to a higher number of individual bats) in the network 

during the hibernation period. I found that movements between hibernacula were associated 

with both age and degree centrality of individual bats, with those more geographically isolated 

hibernacula playing an important role for the movement of certain individuals at a landscape 

scale. This highlights that despite low activity in some of these smaller roost locations, they are 

a conservation priority to decrease the risk of fragmentation and loss of connectivity within the 

wider landscape. 

The results of my meta-analysis, which was based on 22 studies, demonstrated the significant 

negative effects endectocides on Aphodiinae dung beetles. My results suggest that ivermectin 
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has the highest negative effect on the abundance of both adult and large Aphodiinae dung 

beetles. However, contrasting results were observed for dung beetle occurrence, with adult 

beetles showing an attraction to dung with endectocides and larvae showing the complete 

opposite, with poor survival rates and impaired development. Over time this could have 

significant negative effects on dung beetle populations.  

The results of this thesis indicate that the landscape-scale conservation of R. ferrumequinum is 

complex. Considerations need to be given to a suite of factors ranging from the prey items they 

consume to the physical habitat structures which they utilise. From this research, specific 

locations and features which have impacts on their movement and activity can be identified, 

allowing the outputs to be used by decision-makers as a tool to inform local management 

strategies. The prioritisation of conservation activity for the species can be aided by spatially-

explicit models, such as the one I developed using Circuitscape, which bring together multiple 

input layers to create outputs readily interpretable to practitioners. However, to achieve a 

successful outcome for this priority species, collaborative efforts from many stakeholders, 

across boundaries, are required. 
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Globally land use is changing at an unprecedented rate, with the primary drivers being 

agricultural changes and urbanisation (Millennium Ecosystem Assessment 2005a; Millennium 

Ecosystem Assessment 2005b). These changes significantly impact ecosystems at different 

spatial scales, leading to a more fragmented landscape and reducing its permeability for species 

(Vanbergen et al. 2005; Lawler et al. 2006; Fahrig 2007; Hendrickx et al. 2007; Firbank et al. 

2008; Barbaro & van Halder 2009). This landscape fragmentation is one of the leading causes of 

global biodiversity loss and has resulted in the progressive disappearance of local populations 

across a range of taxonomic groups; including birds, mammals, invertebrates and plants 

(Ceballos & Ehrlich 2002; Flynn et al. 2009).  

Due to the rapidly growing demand for food and natural resources, the rate of change in land-

use activities and the associated impacts on biodiversity are set to continue accelerating 

throughout the globe. These losses in biodiversity are currently having significant effects on 

ecosystems services which critically contribute to human well-being (Haines-Young & Potschin 

2010; Howe et al. 2014). With human populations continuing to grow, there is increasing 

demand for these services. Against this background, the challenges of reducing and reversing 

the impacts of landscape fragmentation can be achieved, but will require major alterations in 

political and institutional practices (Millennium Ecosystem Assessment 2005a).  

Understanding how these changes and pressures influence spatial patterns in species 

abundance and composition on a landscape scale is critical for the survival of wildlife populations 

(Gorresen, Willig & Strauss 2005; Fahrig et al. 2011). Here I review landscape scale ecology and 

conservation, focusing on the status and ecology of the greater horseshoe bat (Rhinolophus 

ferrumequinum).  
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1.1 Landscape ecology and conservation 

1.1.1.  Key terms and concepts 

The term “landscape ecology” was coined by the Carl Troll (1939); it principally uses spatial 

analysis from geographers in combination with functional approaches from ecologists (Forman 

& Godron 1986). It is used to describe connections between spatial patterns and ecological 

processes at broad scales (Turner 1989), with a landscape described as an area that is spatially 

heterogeneous (see se1.1.2ction 1.1.2) in at least one factor of interest (Forman 1995). A simple 

description of landscape ecology which incorporates both its broad scope and interdisciplinary 

relationships can be broken down into three parts (Forman 1983): 

1) The spatial relationship among landscape elements, or ecosystems; 

2) The flow of energy, mineral nutrients, and species among the elements; and 

3) The ecological dynamics of the landscape mosaic through time. 

These three points illustrate that the interactions between a species and its landscape are 

affected by the composition and structure of its environment (Watt 1947), and that the strength 

of these interactions vary with distance between individual organisms and locations (Turner & 

Gardner 2015). All of these interactions are dependent on scale (Wiens 1989). Current research 

has illustrated that local scale (the same scale or smaller than the abundance/factor of interest) 

results are not necessarily scalar and may not be related to broader scale environmental issues 

such as climate change or habitat fragmentation (Fahrig 2005; Turner & Gardner 2015). 

Landscape ecology studies have shown that maintaining a diverse range of species and viable 

populations can be achieved through a well-connected heterogeneous landscape that contains 

high quality habitat characteristics with different spatial configurations and compositions 

(Wiens 1995; Hendrickx et al. 2007; Haslem & Bennett 2008).  
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1.1.2. Landscape heterogeneity  

Landscape heterogeneity can be described as the combination of landscape composition and 

the spatial positioning (configuration) of habitat features (Fahrig & Nuttle 2005; Oliver et al. 

2010; Fahrig et al. 2011). These elements play a crucial role within the functioning of the 

ecosystems and affect biodiversity, ecosystem services and social interactions both within and 

between species (Fahrig 2007; Fraterrigo, Pearson & Turner 2009; Fahrig et al. 2011; He, 

Maldonado-Chaparro & Farine 2019).  

1.1.2.1. Landscape configuration and composition  

The term landscape configuration refers to the non-random spatial arrangement of habitat 

characteristics and structure in the landscape (Forman 1995). Many landscape metrics, such as 

patch size, edge density, patch shape, linear connectivity/barriers and interspersion of patches, 

are used to measure the impacts of landscape configuration on species composition and 

movement. In species-specific studies, landscape configuration is mainly used to examine to the 

effect of habitat fragmentation and connectivity within the landscape (Bennett et al., 2006).  

Landscape composition refers to the number of different elements and their relative 

proportions present within a landscape mosaic (Bennett, Radford & Haslem 2006), whilst it is 

not making any reference to the spatial attributes/arrangement of these different elements 

within the landscape (McGarigal, Cushman & Ene 2012). The composition of elements within 

each landscape can be classified in a number of ways. For example, as land cover type 

(woodland, arable, cattle-grazed fields), from a vegetative perspective (coniferous versus 

deciduous trees cover) or structurally (height of vegetation etc.; Fuller, Trevelyan & Hudson 

1997). The composition of these classifications within a landscape affects habitat availability and 

hence the distribution or occurrence of target species. For example, the dispersal of species 

through a landscape may be enhanced by the provision of connective elements, or increased 

predator behaviour may be observed in response to an increase in the availability of edge 
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habitats. The significance of these effects particularly impact fragmented landscape that consists 

of small isolated habitat patches (Kupfer, Malanson & Franklin 2006; Kennedy et al. 2010).  

1.1.2.2. Landscape mosaic  

A landscape ecology approach is not only concerned with the heterogeneity of the landscape 

but also with the interactions with the surrounding environment and spatial extent at which it 

is measured (Thies, Steffan‐Dewenter & Tscharntke 2003; Dunford & Freemark 2005; Turner & 

Gardner 2015). Two patches that are indistinguishable in terms of size, shape, quality and 

relative connectivity to other patches will respond differently to ecological processes depending 

on the surrounding habitat mosaic. The occurrence of a species within a patch can often be 

explained by the characteristics of the elements both within the core patch and the surrounding 

landscape, the influences of these elements varies geographically and among species (Steffan-

Dewenter et al. 2002; Prugh et al. 2008; Lintott et al. 2016). This is particularly true for species 

groups, including many mammals (Thornton, Branch & Sunquist 2011), that require a wide range 

of heterogeneous habitats within the landscape (Dunning, Danielson & Pulliam 1992). Oliver et 

al. (2010) illustrate that landscape heterogeneity can support stability in butterfly population by 

providing a wide range of resources that can help buffer population fluctuations. In addition, the 

different elements within a landscape mosaic required by a species may be used during different 

temporal scales and may only be needed for one particular part of its life cycle (e.g. Pope et al., 

2000). Overall, this demonstrates that what happens at a specific locations is often influenced 

by the surrounding environment. This knowledge is essential when designing conservation 

management plans as the surrounding landscape and the connectivity within it can significantly 

influence the outcome of the results.  

1.1.2.3. Connectivity 

Connectivity within landscape ecology refers to the degree to which a landscape facilitates or 

impedes the movement of an individual between habitat patches and different resource types 
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(Dunning, Danielson & Pulliam 1992; Forman 1995; Tischendorf & Fahrig 2000). In ecological 

terms, there are two different types of connectivity within the landscape: structural and 

functional. Structural connectivity describes the degree to which habitat patches are physical 

linked, whereas functional connectivity relates to the actual movement of an individual between 

habitat patches (Turner & Gardner 2015). The cost incurred by individuals in travelling between 

two specific patches is known as the resistance value (Urban & Keitt 2001; Baguette et al. 2013).  

Connectivity can influence habitat patches in three main ways (Murphy & Lovett‐Doust 2004):  

1) Impeding or improving the rate of species dispersal/colonisation; 

2) Facilitating the introduction of new invasive species; and 

3)  Allowing access to alternative habitats. 

This concept of connectivity is fundamental for meta-populations (source-sink) to be able to 

survive within changing landscapes, and can be illustrated by delayed re-colonisation of 

populations to areas that become locally extinct (e.g. Verboom et al., 1991). This is particularly 

true for bat species as they often require links to highly dispersed resources within a landscape 

and are often strongly associated with specific habitat features such as mature 

treelines/woodland edge. The loss of connectivity can negatively affect bats through the 

creation of a ‘barrier effect’ which can imped their movement between habitat patches (Stone, 

Jones & Harris 2009; Berthinussen & Altringham 2012b; Mathews et al. 2015; Azam et al. 2016; 

Fensome & Mathews 2016). This can have significant implications for how species utilise the 

landscape (forage, commute, reproduce), with some resources becoming unavailable due to a 

loss in connectivity (e.g. Henry et al., 2007). From a conservation and management perspective, 

adding or protecting key areas of connectivity is likely to have significant positive effects on the 

landscape/species, particularly when the number of elements within the composition of that 

suitable habitat is low (Andren 1994; Fahrig 1997). A fundamental understanding of these issues 
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can allow for better management of the wider landscape and the conservation of rare, highly 

mobile species that require a variety of connected habitat types to survive.  

1.1.3. Landscape conservation and management  

One of the overarching aim of conducting landscape scale ecological research is to put into 

practice the correct management plans to sustainably conserve biodiversity (Wiens & Moss 

2005). To do so, key concepts must be understood and acted upon such as accounting for meta-

population dynamics, heterogeneity and connectivity within the landscape. To create effective 

management plans targeted objectives, conservation measures and monitoring approaches 

must be defined from the most up-to-date scientific knowledge of ecological process and species 

traits from the outset. Unfortunately many management plans fails to achieve their full potential 

due to poor definition of the objectives and applications of on the ground conservation 

strategies (Fazey et al. 2006).  

Effective conservation of habitats and species not only considers the impact of a single patch 

but also takes into account the mosaic of landscape around it (Turner & Gardner 2015). This is 

essential as a single patch management plan which implements the most modern and well-

designed conservation measures may fail to deliver its targets due to the ecological degradation 

of its hinterlands (Lindenmayer et al. 2008). For bats, particularly rare and sensitive species such 

as the R. ferrumequinum, protecting only a roost site is insufficient as foraging grounds, 

commuting routes and areas of social interaction are also essential for viable meta-populations 

(e.g. Ransome, 1996).  

Both anthropogenic and natural pressures can directly impact the carrying capacity of habitats 

through degradation and/or fragmentation. This can impact the sustainability of a meta-

populations within the landscape leading to smaller more vulnerable populations going extinct, 

with a consequent loss of genetic diversity. One way to combat such extreme events is to create 

or restore suitable habitats (foraging/breeding grounds, commuting routes etc.) for the species 



 

8 
 

within the wider landscape (Hodgson et al. 2011), reducing population isolation and maintaining 

meta-populations (Hanski 1998; Hanski 1999). Two of the most effective and successful 

landscape scale conservation management plans that have been developed and implemented 

within the UK are the ‘special projects’ within the English Countryside Stewardship Scheme for 

the stone curlew (Burhinus oedicnemus; Bealey et al. 1999; Green, Tyler & Bowden 2000) and 

the cirl bunting (Emberiza cirlus; Stanbury et al. 2010; Davies et al. 2011). These projects 

illustrate that successful practical conservation can be achieved when the wider landscape is 

taken into account and species specific knowledge and targets are implanted in the correct 

manner. In addition, these types of landscape scale conservation and management plans can 

have significant positive effects on non-target species within the landscape as well (MacDonald 

et al. 2012).   

1.1.4. Predictive tools used in landscape scale conservation 

Loss of habitat connectivity is a critical global issue (Worboys, Francis & Lockwood 2010). The 

sizes and quality of habitat patches and their relative fragmentation can alter connectivity over 

both spatial and temporal scales (Ewers & Didham 2006). This variation makes effective 

conservation actions difficult to develop and implement, particularly when incorporating the 

movement of species across corridors within the landscape into management plans (Kool, 

Moilanen & Treml 2013).  

To aid the understanding of environmental interactions on species occurrence and distribution, 

spatial computer algorithms and software packages have been developed over the last decade 

(Scheller et al. 2010). These use habitat variables and species occurrence/distribution data to 

create predictive Habitat Suitability Models (HSM) and interactive maps. This allows us to 

effectively map the habitat niche species occupy and deliver valuable information about species 

habitat and social network requirements at a landscape scale (Guisan & Zimmermann 2000; 

Hirzel & Le Lay 2008), especially for rarer and more mobile species such as bats (Bellamy, Scott 
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& Altringham 2013; Razgour et al. 2013; Bellamy & Altringham 2015; Razgour et al. 2016). Both 

Gorresen, Willig and Strauss (2005) and Bellamy, Scott and Altringham (2013) have illustrated 

that different environmental variables can influence bat species distribution depending on the 

scale and resolution at which they are examined.  

Within the literature HSM have been labelled using various terminology including 

Species/Habitat Distribution Models, Resource Selection Functions or Ecological Niche Models 

(Boyce & McDonald 1999; Guisan & Zimmermann 2000; Rushton, Ormerod & Kerby 2004; 

Peterson et al. 2006). Some of the latest methods for HSM and connectivity modelling include 

the use of Geographical Information Systems (GIS; Erickson, McDonald & Skinner 1998; Danks 

& Klein 2002; Gontier 2007) and include such packages as MaxEnt (Phillips, Dudík & Schapire 

2004), Conefor (Saura & Torne 2009), Corridor Design (Majka, Jenness & Beier 2007), Zonation 

(Moilanen, Kujala & Leathwick 2009) and Circuitscape (McRae & Shah 2009). Some HSMs have 

the ability to be transferred between geographic regions using the same species criteria within 

the model but different environmental data (Peterson, Papes & Eaton 2007). The resulting maps 

are easily interpretable communication tools. Their uses include highlighting to decision-makers 

where to focus and create conservation strategies to generate connectivity and mitigate 

negative impacts of human developments (Abbitt, Scott & Wilcove 2000; Johnson & Gillingham 

2005).  

1.1.4.1. Graph theory models 

The graph theory (Harary 1969) has been used in various scientific disciplines for solving issues 

relating to network routing, social network analysis and the flow of energy between points. 

More recently it has been used in conservation biology to examine habitat connectivity and 

corridors (Urban & Keitt 2001; Beier, Majka & Spencer 2008; McRae et al. 2008; Urban et al. 

2009). The output of the models produced represent continuous surface graphs and networks 

that are comprised of both nodes and edges. Nodes are connection points which, in ecological 
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terms, could represent habitat patches, individual bats or roost locations. Edges represent 

connections between two nodes within the model network (e.g. movement of animals from one 

place to another or their association between each other; Urban & Keitt 2001). Each edge is 

weighted based on the strength of its connection or interaction between nodes (McRae et al. 

2008). When used for connectivity models, these are described as cost surface models where 

the highest value is equal to a high cost of movement rather than a high suitability within any 

given landscape (O'Brien et al. 2006). These types of computer models can bring useful insights 

into functional connectivity within landscape ecology rather than the focus just being on 

structural connectivity (Lookingbill et al. 2010).  

One of the most widely used methods for connectivity modelling involving the graph theory is 

the Least-Cost Path (LCP). The LCP is based on the movement of a species between two nodes 

(habitat patches) for which the species accumulates a cost as it moves away from its source node 

(Adriaensen et al. 2003). The costs incurred depend on the specific habitat 

features/characteristics encountered and the dispersal capabilities of the species being 

examined (Avon & Bergès 2015). Using this methodology, a single path is identified which 

provides least resistance and the highest probability of survival when travelling the route 

(Russell, Swihart & Feng 2003; Beier, Majka & Spencer 2008; Poor et al. 2012). One of the major 

criticism of this type of connectivity modelling is that it implies that the species knows exactly 

where this one path is and that all individuals travel the same path of least resistance (Theobald 

2006; Avon & Bergès 2015). In reality this may not allow good predictive movement of 

individuals between nodes, and it does not take into account the existence of other paths which 

allow for random dispersal depending on an individual’s behaviour (Belisle 2005; McRae & Beier 

2007). To counter this, recent advances in calculating resistance distances between nodes has 

been delivered through using the circuit theory (Guillemin 1953) and the random walk theory 

(Doyle & Snell 1984) in conjunction with the graph theory. This has been implemented using 

Circuitscape software (McRae & Shah 2009). 
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Circuitscape describes landscape connectivity through the application of the circuit theory to 

graphs created using the graph theory. This application keeps the original graph structure with 

linked nodes but it substitutes the graph edges with electrical resistors (Urban & Keitt 2001; 

McRae et al. 2008). This function allows a theoretical landscape to be represented as a 

conductive surface and permits an electrical current to pass through it from the source node 

outwards to all other nodes within the circuit, much like the inverse of the cost surface in the 

graph theory (McRae et al. 2008; Urban et al. 2009). The current can therefore travel along 

multiple potential dispersal pathways at once, taking into account both random movements of 

individuals and redundant pathways, with each pathway equally probable (McRae 2006; McRae 

& Beier 2007; McRae et al. 2008).  

The current denotes dispersal of species, with nodes of low resistance being represented by 

environmental variables that are most permeable within the landscape (McRae et al. 2008). 

Current densities can be calculated at each node and linked to the relative movement of a 

species within the wider landscape. When Circuitscape is calculating current density it not only 

takes into account the environmental variables present within that specific node but also the 

influence of the variables in the neighbouring nodes (McRae et al. 2008). This feature can help 

highlight critical corridors or “pinch points” and identify potential barriers (McRae et al. 2008; 

McRae & Shah 2009; Braaker et al. 2014; Pelletier et al. 2014). It has been argued that the 

outputs of Circuitscape identify dispersal corridors more accurately and reliably compared to 

other landscape connectivity models (Poor et al. 2012; Roever, van Aarde & Leggett 2013b; 

McClure, Hansen & Inman 2016).  
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1.2 Greater horseshoe bat 

1.2.1. Species description and distribution 

R. ferrumequinum (Schreber 1774) is one of 77 bat species that are included in the 

Rhinolophidae family (Harris & Yalden 2008). These species are distributed throughout Europe, 

Asia and Africa (Csorba, Ujhelyi & Thomas 2003), with higher diversity found in more tropical 

regions. Five species of Rhinolophidae are known to occur in Europe, two of which are recorded 

within the British Isles, R. ferrumequinum and Rhinolophus hipposideros (Dietz & Kiefer 2016). 

One of the main distinguishing features of this family is its ‘nose-leaf’, the lack of the tragus 

within its ears and its highly mobile ears, all features that are related to their echolocation 

system. These species produce high constant frequency calls, which are emitted through their 

nostrils, and detect changes in Doppler shift of the returning echoes to orient themselves in their 

environment and locate their prey. For R. ferrumequinum, the frequency of its calls is between 

79 and 84 kHz, depending on their distribution (Jones & Ransome 1993; Russ 2012). 

R. ferrumequinum are a medium sized bat in relation to the other Rhinolophidae and the largest 

in Europe (Dietz & Kiefer 2016). It has an approximate head and body lenght of 56 – 68 mm and 

a wingspan of 330 – 395 mm. The species has an approximate forearm length of 50.6 – 59.0 mm 

and a weights of between 13 – 34 g, with males on average being slightly smaller than females 

(Harris & Yalden 2008). R. ferrumequinum has thick fur all over its body, which for adults is a 

brown to grey-brown colour with dorsal fur that darkens and turns reddish brown with age. The 

fur of the juvenile R. ferrumequinum is grey in colour, and changes to buff brown in the first year 

(Dietz & Kiefer 2016).  

In Europe, R. ferrumequinum distribution stretches from Greece and Portugal in the south and 

to Slovakia across to Britain in the north. The latter is the most north westerly extent of its 

distribution (Figure 1.2.1). Globally they are listed as Least Concern on the IUCN red list database 

(Aulagnier et al. 2008), but in Europe they are Near Threatened (European Environment Agency 
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2020). The species is protected under at least 13 different national and European legislations, 

including the Wildlife and Countryside Act (1981) (as amended), Bonn (1979) and Bern (1982) 

Convention, as well as the Habitats Directive (Council Directive 92/43/EEC on the Conservation 

of natural habitats and of wild fauna and flora’ (1992)). Its more northerly European populations 

have dramatically declined over the last 100 years (Hutson & Mickleburgh 2001). In Britain, R. 

ferrumequinum are considered to be extremely rare and has a core population restricted to 

South West England and Wales (Figure 1.2.2). However, in recent decades there has been a 

recent expansion of both population size and species range. There are small colonies now 

recorded in North Wales and along the southern coast of England as far east as West Sussex 

 

Figure 1.2.1: Map of the current greater horseshoe bat (Rhinolophus ferrumequinum) 
distribution throughout Europe and northern Africa. 

 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:HTML
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Figure 1.2.2: Current and past distribution of greater horseshoe bat (Rhinolophus 
ferrumequinum) in Britain (Mathews et al. 2018). 

1.2.2. Population Status of the Greater Horseshoe Bat in Britain 

Historical studies have shown that R. ferrumequinum had a much wider distribution in the past, 

with records occurring as far east as London and Kent up until around 1900 (Stebbings 1989; 

Harris 1995). An estimate of their population at the start of the 1900s suggest that they 

numbered around 300,000 individual (Stebbings & Arnold 1989), although this figure is disputed 

(Ransome 1989). Population estimates, based on low sampling effort, from the latter half of the 

20th Century suggest that there were approximately 2,200 R. ferrumequinum bats in Britain 

(Stebbings & Griffith 1986). This estimate increased to approximately 4,000 in 1993 (Hutson 
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1993). It has to be noted that some additional R. ferrumequinum roosts were found between 

these periods which were not included in prior estimate. At the start of the 21st century the 

population was estimated to be 6,600 (Battersby 2005). However, the most current population 

estimate is 12,900 (Mathews et al. 2018). 

Due to the long term protection and monitoring (National Bat Monitoring Programme) of this 

species in Britain accurate population trends have been obtained (Bat Conservation Trust 2016). 

The trend analysis takes into account data from 32 maternity roosts and 231 hibernacula in both 

England and Wales between 1999 and 2015. The results indicate that overall numbers within 

maternity roost are up 126% from 1999, which is an annual increase of 5.2% (Bat Conservation 

Trust 2016). This positive trend is also reflected in hibernation counts with an overall 113% 

increase in total numbers comparted to 1999; this equates to an annual increase of 4.8% for 

hibernating bats. However, recent (2012-2015) trend analysis reveals that there has been a 

slight decrease in numbers (Bat Conservation Trust 2016). When this trend is examined further, 

the decline seems focused on the Welsh rather than the English population.  

1.2.3. Foraging, habitat use and prey items 

Given the legal protection afforded to R. ferrumequinum, there is a considerable body of work 

which has investigated habitat use and their diet. In a broad context, R. ferrumequinum mainly 

foraging around pastures (predominately cattle grazed pastures), deciduous woodlands, 

riparian habitats and hedgerows/treelines (Ransome & McOwat 1994; Jones, Duvergé & 

Ransome 1995; Flanders & Jones 2009; Dietz, Pir & Hillen 2013; Dietz & Kiefer 2016; Ancillotto 

et al. 2017; Froidevaux et al. 2019). Most radio-telemetry studies in the South West of England 

show that the main core foraging and commuting sustenance zone around a R. ferrumequinum 

maternity roosts is approximately 4km for adults and 2km for juveniles (Billington 2002; 

Billington 2003). However, R. ferrumequinum do travel and forage regularly at much larger 

distances from the roost (9-12km) (Ransome & Hutson 2000; Billington 2008).  
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Flanders and Jones (2009) showed that in the South West of Britain R. ferrumequinum spent 

relatively equal amounts of time utilising pasture and deciduous woodland habitats in spring 

(42.1% and 37.5%, respectively). However, the emphasis of these habitats switched during the 

summer months with more activity occurring over pasture compared to deciduous woodland 

(Duvergé & Jones 1994). This shift in dependence of different habitat features throughout the 

season has been linked to the availability and abundance of key prey items within them. The 

importance of well-developed hedgerows and mature treelines to R. ferrumequinum has been 

highlighted by a number of studies, not only as critical networks of commuting routes and 

potential roost locations but also as shelter belts and key food resources (Ransome & McOwat 

1994; Ransome 2000; Flanders & Jones 2009; Dietz, Pir & Hillen 2013; Dietz & Kiefer 2016; 

Froidevaux et al. 2019).  

Most of the evidence on the diet of R. ferrumequinum in Europe is based on dietary analysis of 

British colonies. R. ferrumequinum is a selective feeder that specifically targets large prey items, 

predominately Arthropoda (Jones & Rayner 1989; Jones 1990; Ransome & Hutson 2000). Both 

Lepidoptera and Coleopteran species are the main prey items of R. ferrumequinum when 

available, with Tipulidae, Trichoptera and Ichneumonid parasitic wasps also being preyed upon 

(Jones 1990). By volume Lepidoptera contributes 41% of the total diet of R. ferrumequinum 

throughout the year and Coleoptera 33%. Of these Coleoptera, 29% were beetles that are 

associated with cow pats, primarily Aphodius spp. (Jones 1990). 

There is considerable seasonal variation in dietary composition. Both Jones (1990) and Ransome 

(1996) show the main prey items per month: 

 April and May – mainly Geotrupes and Melolontha with some Tipulids and Ichneumonid; 

 June and July – dominated by Lepidoptera (between 60 and 85%) with Aphodius spp. 

more frequent in late July; 

 August and September – mainly Aphodius spp.; and 



 

17 
 

 October to March - Geotrupes, Tipulids and Ichneumonid. 

Overall, the results of these studies illustrate the specialised selection of prey items by R. 

ferrumequinum and the ability for it to adapt its foraging behaviour between seasons and 

habitat type, which is aided by its sophisticated echolocation technique. 

1.2.4. Roosting ecology 

R. ferrumequinum uses a variety of different roost structures, depending on the time of year and 

reproductive status. The main types are maternity and hibernation roosts, although mating, 

transitional and night roosts are also used (Park, Jones & Ransome 2000; Ransome & Hutson 

2000; Flanders & Jones 2009).  

During the summer (May - September), maternity roosts are located in a variety of different 

structures, including the attics within houses, old barns, churches and heated cellars. In the more 

southerly areas of its European distribution it also uses caves (Ransome & Hutson 2000; 

Debernardi & Patriarca 2007; Flanders & Jones 2009; Pavlinic & Dakovic 2010; Maltagliati, 

Agnelli & Cannicci 2013; Dietz & Kiefer 2016). In the northern half of their distribution across 

Europe, maternity roosts are almost exclusively found in buildings with the average colony size 

of between 20 and 200 individuals (Ransome & Hutson 2000; Hutson & Mickleburgh 2001; Dietz 

& Kiefer 2016). These roosts are usually in in dark roof spaces that reach high temperatures 

during the day (some in excess of 40oC).  

Within the winter hibernation period (October – May), R. ferrumequinum are found in cooler 

underground sites, usually caves and mines with temperatures usually between 6 and 12oC 

(Ransome 1971; Hutson & Mickleburgh 2001; Dietz & Kiefer 2016). However, the requirements 

of temperature and humidity within hibernacula, depends on the age, sex and the overall 

condition of the bat (Ransome 1968; Ransome 1971; Ransome & Hutson 2000). Arousal from 

torpor – usually at dusk – occurs at intervals ranging from 1 to 18 days depending on the time 

of year and the ambient temperature within the hibernaculum (Ransome 1968; Ransome 1971; 
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Park, Jones & Ransome 1999; Park, Jones & Ransome 2000; Ransome & Hutson 2000). During 

arousal bats usually complete some type of grooming and stay within the cave system, 

suggesting that although foraging does occur during the hibernation period it is unlikely to be 

the principal purpose of arousal (Ransome 1971; Park 1998; Park, Jones & Ransome 2000; 

Ransome & Hutson 2000).  

Temperature is not the only factor in determining where R. ferrumequinum hibernate. Three 

different types of hibernacula are described in the literature that are dependent on the sex and 

age of individual bats (Ransome 1968; Ransome 1971; Ransome 2000; Ransome & Hutson 2000): 

Type 1: Usually containing first year and older immature R. ferrumequinum of both 

sexes.  

Type 2: Where mainly 2nd and 3rd year bats are found (although it may also but contain 

1st year bats and adult males). The adult males usually form clusters and on occasions 

solitary adult females are observed in Type 2 hibernacula.  

Type 3: Used as a breeding territory for the same adult male over a number of years. 

These are usually small isolated exposed hibernacula which are mainly occupied in 

autumn and again in spring where adult females join the male for a period. Increasing 

evidence suggests that mating occurs at these sites. If the Type 3 hibernacula is a large 

cave the male may reside there for the entire winter period.  

Ransome and Hutson (2000) notes that Type 3 hibernacula are the most abundant and 

widespread within a population, followed by Type 2 and then Type 1 hibernacula. It is important 

to note that multiple alternate locations of each type (1-3) occur within the same geographical 

area of a landscape and are utilised by the same population of R. ferrumequinum during 

hibernation.  
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Despite these descriptions and observations, very little has been statistically tested regarding 

the social associations and movement of hibernating R. ferrumequinum. Questions remain 

regarding whether, unlike during the maternity season, males play a more active role in R. 

ferrumequinum society, or if adult females form tight knit bonds and how long do these bonds 

last for. Additionally, very little information has been gathered on how often or when individuals 

move between hibernation sites and how this might impact the interactions between individuals 

at a population level. Examining these movements and social interactions can allow for a better 

understand of the species ecology and would be critical for the conservation of the species at a 

landscape scale.  

1.2.5. Human induced threats 

1.2.5.1. Roost disturbance 
Caves used by R. ferrumequinum can come under pressure from disturbance due to rock 

extraction, recreational caving, and use as tourist attractions (Johnson, Brack & Rolley 1998; 

Ransome & Hutson 2000; Hutson & Mickleburgh 2001; Gaisler & Chytil 2002). Due to safety 

concerns numerous underground sites formerly used by R. ferrumequinum have been 

permanently sealed (Tuttle & Taylor 1998; Johnson, Wood & Edwards 2006), though over recent 

decades there has been increasing use of grilles to allow bats continued access. Disturbance by 

conservationists during the hibernation period, for example through the ringing of bats or the 

checking of ring numbers, may also pose a threat to bats (Hutson & Mickleburgh 2001; Gaisler 

& Chytil 2002). Each disturbance event during a hibernation period may cause arousal of the bat 

from torpor using up vital energy supplies. Thus, if disturbance causes arousal too frequently it 

could have implications on their survival through the hibernation period (Ransome & Hutson 

2000; Hutson & Mickleburgh 2001; Gaisler & Chytil 2002).  

There are also pressures on the type of buildings used as for maternity roosts by this species 

through demolition, renovation or development. (Hutson & Mickleburgh 2001; Dietz & Kiefer 

2016). Direct destruction or alteration of roost buildings are not the only factors to reduce 
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roosting opportunity for this species. Remedial timber treatments, historically, organochlorine 

timber treatment caused significant bat mortality (Mitchell-jones et al. 1989). The illumination 

of roost exits can delay emergence reducing foraging time. In extreme circumstances, artificial 

lighting can also act as deterrent which may cause the permanent loss of the roost site (Downs 

et al. 2003; Boldogh, Dobrosi & Samu 2007). This is a particular concerns for roosts within public 

buildings such as churches but also in caves which are exploited for tourism (Ransome & Hutson 

2000). Both natural and non-native predators pose significant risk to R. ferrumequinum colonies. 

For example, domestic cats can cause both disturbance to activity patterns and emergence 

times, as well as R. ferrumequinum behaviour, e.g. greater clustering within roosts (Ancillotto, 

Venturi & Russo 2019).  

1.2.5.2. Habitat loss and degradation 
At the northern edge of its range, habitat alteration is thought to be one of the major causes of 

decline in R. ferrumequinum (Hutson & Mickleburgh 2001). Given the importance of woodlands, 

permanent pastures and linear features for R. ferrumequinum and their prey (Duvergé 1996; 

Billington 2008; Froidevaux et al. 2019), the loss, fragmentation and degradation of these 

habitats is of particular concern (Ransome & McOwat 1994; Flanders & Jones 2009; Boughey et 

al. 2011; Cizek et al. 2012; Dietz, Pir & Hillen 2013; Burgio et al. 2015; Caro et al. 2016). However, 

efforts have been made in the past to enhance these features specifically for R. ferrumequinum 

through Countryside Stewardship Schemes (Duvergé & Jones 2003).   

Additionally, urbanisation, infrastructure, traffic noise and street lighting may act as a barrier to 

the movement of bats through the landscape (Downs et al. 2003; Stone, Jones & Harris 2012; 

Day et al. 2015; Hale et al. 2015; Luo, Siemers & Koselj 2015; Mathews et al. 2015). Roads also 

present a direct collision risk to bats, with R. ferrumequinum mortalities being recorded several 

counties in Europe (Fensome & Mathews 2016).  
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1.2.5.3. Prey availability  
On a broad scale, pesticide use is documented as a serious threat to insectivorous predators (De 

Reede 1982; Agosta 2002; Henderson et al. 2009; Kunz et al. 2011; Hallmann et al. 2014). There 

are particular impacts on the larvae of favoured prey items for R. ferrumequinum (tipulids, 

noctuid moths, melolonthid beetles), these are considered pests due to the large quantities of 

the grass roots they consume within agricultural fields (Ransome & Hutson 2000; Jackson & Klein 

2006; Peck, Olmstead & Morales 2008; Toth et al. 2010). As with many predators the build-up 

of toxins due to the consumption of prey items containing sub-lethal doses can have detrimental 

impacts on their populations through the reduction in their body condition and effects on their 

reproduction. This has been extensively recorded in birds of prey and in particular Barn Owls 

(Tyto alba) (Mendenhall, Klaas & McLane 1983; Newton, Wyllie & Asher 1991; Newton, Wyllie 

& Dale 1997).  

The impact of chemical use is not just restricted to direct control of pest species. There are also 

non-target effects, for instances from the use of endectocides (to combat intestinal worms and 

ecto-parasites) in cattle and sheep (Ransome & Hutson 2000; Hutson & Mickleburgh 2001; Dietz 

& Kiefer 2016). Endectocides are broad spectrum drugs administered by injection, use of a bolus, 

or applied as a drench poured onto livestock. Residues of the products are found in the dung of 

treated animals. Research has showed that this can have detrimental impacts on dung fauna, 

especially at the larvae stage (Wall & Strong 1987; Hempel et al. 2006; O'Hea et al. 2010; Sutton, 

Bennett & Bateman 2014).  

1.3 Study aims and thesis outline 

Despite a growing awareness of the negative impacts of increased rates of urbanisation and 

changes to agricultural land management on biodiversity, most studies in this field focus on 

single issues. In this thesis, I try to disentangle the various causes of habitat degradation for a 

rare bat species. Bringing together issues that affect the availability of prey items, how social 
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structure of overwintering bats may have implications for its conservation, and I analyse the 

anthropogenic barrier effects in the species landscape. 

In particular, the aims of this thesis are to: 

 Investigating the impact of traffic noise, both the sonic and ultrasonic spectrums, on 

relative bat activity and feeding records. Using a playback experiment this research aims 

to identify which specific aspect of traffic noise impacts bat activity but how this is 

caused, e.g. avoidance behaviour, echolocation masking. The study discusses the 

potential need for traffic noise to be considered in all future Environmental Impact 

Assessments and road schemes (Chapter 2). 

 Assess how different land management regimes can influence species diversity and 

abundance along linear features and in the middle of field boundaries. These results will 

potentially give insight to facilitate the formulation of management strategies to identify 

and protect suitable foraging and commuting features within the landscape for the 

benefit of a variety of bat species (Chapter 3). 

 Using predictive software, examine how different landscape features can influence the 

movement of R. ferrumequinum from their roost locations to potential foraging areas. 

Detecting which features can act as barriers to their movement and which increase 

permeability into the wider landscape; while identifying where practical mitigation 

measures would be best placed to increase functional connectivity into the wider 

landscape and have the highest conservation impact (Chapter 4).   

 Assess the long-term social structure of hibernating R. ferrumequinum populations by 

monitoring species attributes using social network analysis. Identifying which type of  

individuals are likely to travel between hibernation locations between study years and 

which individual bats have the highest social connectivity within wintering populations 

of R. ferrumequinum. These results will have important implications on the conservation 
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of wintering R. ferrumequinum populations and highlight the significance of alternate 

types of hibernation locations (Chapter 5). 

 Investigate contradicting literature sources to identify the effect of multiple 

endectocides on both life stages, adult and larvae, of aphodiine dung beetles. These 

findings will have important implications for our understanding on how different 

endectocides affect the occurrence and abundance of aphodiine dung beetles in the 

wider agricultural landscape and how this can influence the availability of prey items for 

R. ferrumequinum (Chapter 6).   
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Chapter 2                                                                         

Traffic noise playback reduces the 

activity and feeding behaviour of free-

living bats. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

An adapted version of this chapter has been published as: 

Finch, D., Schofield, H., and Mathews, F., 2020. Traffic noise playback reduces the activity and 

feeding behaviour of free-living bats. Environmental Pollution, p.114405. 
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2.1. Abstract 
Increasing levels of road noise are creating new anthropogenic soundscapes that may affect 

wildlife globally. Bats, which form about a third of all mammal species, are sensitive 

bioindicators, and may be particularly vulnerable because of their dependency on echolocation. 

However, few studies have solely focused on this potential impact, with many suggesting its 

influence when examining roads as a whole but cannot differentiate its effects, and as such what 

can be done to mitigate it. Here we present the first controlled field experiment with free-living 

bats. Using a Before-After-Control-Impact phantom road experimental design, we examine the 

impacts of traffic noise on their activity and feeding behaviour. Disentangling the impacts of 

traffic noise from other co-varying exposures such as habitat quality, the experiment 

demonstrates a significant negative effect on the activity of each of the five, ecologically 

different, species (genus for Myotis spp.) examined. This suggests that the results are widely 

applicable. The negative effects are largely attributed to noise in the sonic spectrum, which 

elicited aversive responses in all bat species tested, whereas responses to ultrasound were 

restricted to a single species. Our findings demonstrate that traffic noise can affect bat activity 

at least 20m away from the noise source. For Pipistrellus pipistrellus and Pipistrellus pygmaeus, 

feeding behaviour, as well as overall activity, was negatively affected. We demonstrates the type 

of impact traffic noise can have on bat assemblages, signifying that Ecological Impact 

Assessments are needed wherever there are significant increases in traffic flow, and not just 

when new roads are built. Further research is required to identify effective mitigation strategies, 

to delineate the zone of influence of traffic noise, and to assess whether there is any habituation 

over time. 
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2.2. Introduction 
The exponential growth of the human population and the rapid increase in global urbanisation 

has profound implications for wildlife. Networks of roads have been built through the natural 

environment, posing barriers to the movement of animals through collision risk and habitat loss, 

as well as causing indirect effects on habitat quality that can compromise foraging and 

commuting (Forman 2003; Keller & Largiader 2003; Fensome & Mathews 2016). While road 

densities have only increased by approximately 10% between 1990 and 2011 in OECD countries 

(Organisation for Economic Co-operation and Development), traffic densities have increased by 

55% (OECD Publishing 2013). This has led to a global growth in anthropogenic noise pollution 

and the creation of new soundscapes, which can alter how animals use their primary sensory 

systems to detect or recognise cues to forage, communicate, find mates and avoid predators 

(Brumm & Slabbekoorn 2005; Swaddle et al. 2015; Senzaki et al. 2016). Species diversity, 

occupancy, reproductive success and survival (e.g. Goodwin & Shriver 2010; Halfwerk et al. 

2011; Wiącek et al. 2015), can be affected through the masking of both territorial and predatory 

alarm calls (Mockford & Marshall 2009; Templeton, Zollinger & Brumm 2016; Nelson et al. 2017), 

and by eliciting avoidance behaviour and stress responses (McClure et al. 2013; Troïanowski et 

al. 2017; Hastie et al. 2018).  

Compared to birds, little research has been undertaken with bats to disentangle the impact of 

traffic noise from overall effects, which could include a combination of light, sound and air 

pollution as well as habitat changes (e.g. Berthinussen & Altringham 2012b; Pourshoushtari et 

al. 2018; Claireau et al. 2019b; Medinas et al. 2019). However, recent experimental evidence, 

based on captive animals, using acoustic playback systems in an enclosed environment suggests 

that traffic noise can reduce the feeding success of Myotis myotis, Myotis daubentonii and 

Antrozous pallidus (Schaub, Ostwald & Siemers 2008; Siemers & Schaub 2011; Bunkley & Barber 

2015; Luo, Siemers & Koselj 2015). Both Schaub, Ostwald and Siemers (2008) and Siemers and 

Schaub (2011) found that traffic noise may mask echolocation calls and the use of passive 
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listening as a foraging strategy for M. myotis, owing to the frequency overlap between the 

movement of their prey items and the traffic noise being played. In contrast, Luo, Siemers and 

Koselj (2015) found no evidence of acoustic masking or reduced feeding attention in M. 

daubentonii. Rather, three out of four of the captive bats in their experiment showed signs of 

avoiding noise below the frequency at which they echolocate, with this avoidance being 

responsible for reduced feeding success. It was not possible to distinguish whether the reduced 

feeding success reported by Bunkley and Barber (2015) was owing to call masking or avoidance 

behaviour. 

Given this experimental evidence from captive animals, we have conducted the first controlled 

field experiments (i.e. outside the laboratory) to test the impacts of traffic noise on free-living 

bat assemblages. This is vital, as unlike in laboratory studies free-living individuals have a choice 

of whether they want to be present in the vacinity of the noise source or not. Our study aims to 

disentangle the effect of traffic noise from other correlated risk factors seen in operational 

roads, e.g. habitat fragmentation or lighting, by replaying traffic noise in a roadless environment. 

We are therefore able to examine the local effects of traffic noise in isolation, on a diverse range 

of bat species. To understand the general consequences of traffic noise for bats, we recorded 

activity and feeding behaviour for four species with contrasting flight patterns, echolocation and 

foraging techniques (Russ 2012; Dietz & Kiefer 2016), and also for the genus Myotis.  

We hypothesised that, at a local scale, the full acoustic spectrum (sonic and ultrasonic spectra 

combined) of traffic noise would reduce activity for all species recorded. Additionally, we 

hypothesised that the sonic spectrum (<20 kHz frequency noises) would have a larger negative 

effect than the ultrasonic spectrum (>20 kHz frequency noises), when played separately, due to 

bats showing avoidance behaviour rather than their calls being masked. We predicted that the 

bat assemblage would not become habituated to traffic noise over the period of the experiment, 

because of the short duration of the exposure, but that feeding activity would also decrease.  
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2.3. Methods 

2.3.1. Traffic noise surveys 
Traffic noise from a dual carriageway (A38, Devon, England, 50. 5702555°, -3.6485612°), with a 

surface cover of asphalt, was recorded at a distance of 3m from the centre of the carriageway 

closest to the road side verge. Both sonic and ultrasonic frequencies were recorded as wav-files 

on separate Song Meter SM2BAT+ monitors (Wildlife Acoustics Inc., Maynard, Massachusetts), 

fitted with SMX-II (sonic) and SMX-U1 (ultrasonic) microphones (for details of the spectral 

response see Wildlife Acoustics (2019)). Microphones were placed horizontally, side by side, at 

a height of 1.5m off the ground, and were perpendicular to the centre of the road (i.e. faced the 

centre). Traffic noise from the vehicles were recorded on a dry, windless day, without a wind 

guard on the microphones (i.e. under dry asphalt conditions) (Schaub, Ostwald & Siemers 2008), 

over a period of approximately three hours. Dry conditions were chosen as they have less of an 

impact when compared to wet conditions (Marimuthu et al. 2002). No low or high pass filters 

were applied during the recordings. The mean vehicle speed, as assessed over 50m, was 

110km/h.  

To calculate the average recorded pass duration of a vehicle, 50 vehicles were studied. We used 

Adobe Audition CC (Adobe® Systems, Mountain View, CA, USA) to measure the time at which 

the vehicles were initially detected by the microphones (assessed by change in frequency 

compared to background noise) to when the frequency returned to background noise levels. 

The mean duration of the length of sound from the passing vehicles was 1.4s (SD 0.57). We 

therefore selected a pass of duration of 1.4s— equivalent to a single passing vehicle — to use in 

our experiment. The recording deployed was chosen at random from those of this length 

available. To make the experiment represent real field conditions as closely as possible, we 

counted the volume of traffic on a dual carriageway for an hour starting at dusk in May. We 

recorded a mean vehicle pass rate of 26 vehicles per minute. Therefore, this repetition rate was 

used in the experiment, with the 1.4-second-long passes being dispersed equally across the 
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minute. To mimic a natural road, the normal recorded background noise of the road was added 

to the gaps between the vehicle passes, thus avoiding large sections of the recording being 

artificially blank. As this is the first time free-living bats have been experimentally exposed to 

traffic noise, we chose to examine whether there was an effect of a single 1.4-second-long pass 

and background noise for both the sonic and ultrasonic recordings, rather than testing multiple 

sounds. This approach allows for easy replication in future research. However, other study 

designs, for example using multiple recordings during playback experiments, could also be 

considered (e.g. Arroyo‐Solís et al. 2013). The sonic amplitude of passing vehicles was measured 

at the roadside over a two-hour period (Precision Gold, NO5CC Sound Level Meter, 30 – 130 

dB(A), fast leq), and was found to have a peak of 86dB SPL 3m away from the centre of the 

carriageway closest to the road side, however it did oscillate as the vehicle arrived at, and 

continued past, the recording point. These oscillations in noise, caused by the vehicles passing 

a static point, were included in the playback for the field experiment.  

Both our sonic and ultrasonic recordings were created and arranged in Adobe Audition CC, and 

were played simultaneously through Audacity® (version 2.1.3) (Carnegie Mellon University, PA, 

USA). Our sonic sound files had a high pass filter set at 1kHz (to avoid damaging the speakers 

(Schaub, Ostwald & Siemers 2008)) and a low pass filter set at 20 kHz. Our ultrasonic recording 

had a high pass filter set at 20 kHz and had a sampling rate of 192 kHz (contained frequencies 

up to 96k Hz; Appendix 2.7.1) (Adobe Audition; digital FFT filter, 2048 points, Blackman window).  

2.3.2. Field experiment set up 
Before-After-Control-Impact (BACI) designs were used for both the first field experiment in 

2017, which examined the impact of the full spectrum of traffic noise (including both sonic and 

ultrasonic spectra) on bat activity, and for the second field experiment in 2018, which examined 

the sonic and ultrasonic spectra independently. 
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The first experiment took place at seven sites around four greater horseshoe bat (Rhinolophus 

ferrumequinum) roost sustenance zones (RSZ; area of land within 3km of a roost) between May 

and August 2017 in Devon, England. During this first period of data collection both, the sonic 

and ultrasonic spectra of traffic noises were combined and played back to recreate the full 

acoustic spectrum of traffic noise. Experimental locations were along linear features 

(hedgerows/treelines), which were specifically chosen to include different surrounding habitats: 

grasslands, arable fields, woodland edges and riparian corridors, to enable the results to be 

generalised as widely as possible. These features had previously had no known disturbance from 

traffic noise.   

Within each of the seven sites, we selected an Experimental location and a Control location. 

Control locations were at least 500m from any Experimental location to avoid disturbance from 

noise playback. Each of the Control locations were paired with their respective Experimental 

locations by choosing locations that had similar habitat features/types surrounding them and 

were in the same RSZ. For example, if the Experimental location was along a treeline with grass 

fields on their side, then a Control location along a treeline and by grass fields was chosen.  

The protocol at our Experimental locations consisted of two control nights where no traffic noise 

files were played, followed by three treatment (sound playback) nights. On treatment nights, 

traffic noise files were played from 30min before sunset for 3.5h. Recordings of bats were made 

during this time-period on both control and sound treatment nights using four Song Meter 

SM2BAT+ monitors (Wildlife Acoustics Inc., Maynard, Massachusetts). We placed a single bat 

detector 20m in front of the first speaker and another 20m behind the last speaker, and the final 

two were placed in the middle between the three speakers (Figure 2.3.1). In addition, one 

detector was placed at the Control locations and were set to record in the same way and on the 

same nights as those at Experimental locations. Both traffic noise recordings were played back 

on a loop from a laptop computer, through an external D/A-converter (MAYA44 eX 4-in / 4-out 
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PCIe audio interface, sampling rate 192kHz, ESI Audio, Germany), broadband amplifiers (WPA-

600 Pro, Conrad Electronics, Hirschau, Germany) and through three loud-speakers (Avisoft, 

Speaker Vifa, frequency range 1 – 120 kHz, +/- 9dB) which were set on tripods 1.5m off the 

ground. Tripods were placed at Experimental locations for both the control and treatment 

nights. All speakers faced in the same direction (horizontal) and were placed 1.5m out from the 

linear feature and at 20m intervals along it. Both the ultrasonic and sonic noises were played at 

the same amplitude on the amplifier to create a peak sonic amplitude of 86dB. The experiment 

only proceeded on nights when wind speeds were ≤ 11km/h, temperatures were above 10oC at 

dusk, and in dry conditions. The impact of noise has been shown not to affect the attention 

available for foraging or the search effort of bats to capture prey in captive settings but a 

frequency shift has been found in the echolocation call of the greater horseshoe bat (Hage & 

Metzner 2013; Luo, Siemers & Koselj 2015). It is therefore reasonable to infer that a decline in 

acoustic activity recorded using bat detectors reflects a true decline in the presence of bats, 

rather than a reduction in the detectability of the animals due to alteration in their echolocation 

patterns.  

The second experimental period took place between June and August 2018 at six new locations 

in Sussex and Dorset, England. Because of the generality of the effects observed in the first 

experiment, the sites were not specifically chosen to be in RSZs (only one was in this category), 

but all were in locations known to be used regularly by bats. The methods were identical to the 

first experiment, except that sonic and ultrasonic components of road noise were replayed on 

separate nights at the Experimental locations: the pattern of playback was one control night, 

two nights of the sonic components of traffic noise, and two nights of the ultrasonic components 

of traffic noise. The order in which the noises were played alternated between sites, such that 

three sites played ultrasonic noise first followed by sonic noise, and three sites did the reverse. 

This controlled for the effects of treatment order on the findings. All sites were along treelines.  



 

32 
 

 

Figure 2.3.1: Depiction of the experimental set up at Experimental locations, with three speakers 
placed along a linear feature and bat detectors placed between, in front of and behind them to 
record bat activity. 

2.3.3. Bat sound analysis 
The analyses of bat activity were conducted using Kaleidoscope software (version 3.1.1; Bats of 

the UK classifier version 3.0.0; Wildlife Acoustics, Maynard, Massachusetts); all files were also 

checked manually. Relative bat activity was assessed as the number of bat passes per night 

during the 3.5 hour survey window (e.g. Jung et al. 2012; Charbonnier et al. 2014). Individual bat 

passes were defined as two or more echolocation calls within one second of each other (Fenton 

1970; Walsh & Harris 1996a). Some species of Myotis bats can be difficult to distinguish, owing 

to their similar call structures (Schnitzler & Kalko 2001), therefore all Myotis species were 

grouped together for analysis at genus level. The five UK species of Myotis that were likely to be 

recorded during this experiment were Myotis nattereri, Myotis bechsteinii, Myotis daubentonii, 

Myotis brandtii and Myotis mystacinus. Feeding activity was defined and recorded as the 

number of times a feeding ‘buzz’, the calls emitted while homing in on prey (Kalko & Schnitzler 

1989), occurred per night during the survey window. Detailed characteristics of the evolutionary 

traits of all species examined in this study, including the call structure and their foraging 
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strategies, can be found in Russ (2012) and Dietz and Kiefer (2016). An example of the call 

structure of all species groups examined in this study is given in Appendix 2.7.2 – Appendix 2.7.6. 

2.3.4. Statistical analysis 
Generalised Linear Mixed Models (GLMM), ‘lme4’ (Bates et al. 2015), with a negative binomial 

distribution, were used to examine the potential impact of traffic noise on total bat activity (11 

species); and then separately for the four species and one genus that represented most calls 

(97%): Rhinolophus ferrumequinum, Pipistrellus pipistrellus, Pipistrellus pygmaeus, Nyctalus 

noctula and Myotis species. All analyses were completed in R (version 3.3.0) (R Core Team 2016).  

We used a BACI approach with the data collected from the first experimental period to assess 

the impact of playing traffic noise (including both the sonic and ultrasonic spectra) on the 

number of bat passes per night per detector. This allowed us to ask whether there were 

differences between Experimental and Control locations that were contingent on time (and 

hence treatment). The outcome variables were the counts of bat passes per night, and the 

exposure variables were the temporal variable (control v.s. sound treatment nights; fixed 

factor), the spatial variable (Experimental location v.s. Control location; fixed factor) and the 

interaction between them. The models also included detector position, nested within unique 

site identities and RSZ identities, as random effects to account for the pairing of the 

Experimental and Control locations, and the possible non-independence of some of the seven 

experimental sites that fell within the same RSZ. Using detector position nested within site as a 

random factor also allowed the models to account for multiple non-independence detectors at 

each location.  

Having established that there were no significant differences at Control locations across time, 

we then examined whether the amount of recorded activity at the Experimental locations only 

varied according to the position of the detector relative to the speakers. For this model, the fixed 

effects were specified as time (control v.s. sound treatment nights), detector location (behind 
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the speakers; in the middle of the speakers; or in front of the speakers; Figure 2.3.1) and their 

interaction. Detector position, site identity, and RSZ identity, were again specified as random 

effects. For each species, where significant interactions were identified and suitable data were 

available, three additional models were created using only data from a single detector location 

(before the speakers; in the middle of the speakers; or in front of the speakers) at a time. This 

allowed for time (control v.s. sound treatment nights; fixed effect) to be compared at each 

individual detector location individually to determine if traffic noise impacted bat activity at that 

specific location. Both site and RSZ were used as random effects in these models. We assessed 

potential short-term habituation by testing for an interaction between time (control v.s. sound 

treatment nights) and night of treatment nested within time (i.e. from night one to night five). 

Detector position, site identity, and RSZ identity, were again specified as a random effect.  

To examine whether feeding activity was affected by traffic noise playback, binomial GLMMs 

were created using the number of feeding ‘buzzes’ recorded per night compared with the 

number of all other calls (excluding social calls) as the outcome variable. The overall model, 

examining total feeding activity, used the same fixed and random effects as the initial negative 

binomial models. If any interactions were observed, we then examined if there was an effect at 

just Experimental locations, using time (control v.s. sound treatment nights) as a fixed factor and 

the same random factors as the original model for both P. pipistrellus and P. pygmaeus. Models 

using feeding buzz data could only be created for P. pipistrellus and P. pygmaeus owing to the 

lack of data for other taxa. Myotis spp. and N. noctula were not examined because there was 

little feeding activity at baseline, as would be expected in these habitats; and feeding calls are 

difficult to distinguish for R. ferrumequinum.  

Finally, we used the data from the second experimental period to assess whether the impacts 

of road noise resulted from exposure to sonic or ultrasonic components of the sound spectrum. 

Using a negative binomial GLMM we initially assessed whether there were differences in bat 
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activity between Control and Experimental locations that were contingent of time (using a 

temporal variable (control v.s. sonic noise v.s. ultrasonic noise treatment nights; fixed factor); a 

spatial variable (Experimental location v.s. Control location; fixed factor) and the interaction 

between them. Then, isolating data from the Experimental locations, we investigated whether 

nights playing sonic or ultrasonic traffic noise (fixed effect) had an impact on bat activity relative 

to control nights. The models also included detector position, nested within unique site 

identities as random effects. Using a binomial GLMM feeding activity were once again examined 

for the interaction between both the time and spatial variables for total feeding activity, before 

examining P. pipistrellus and P. pygmaeus individually at Experimental Locations. Detector 

position, nested within unique site identities were added to the models as a random factor. If a 

detector failed to record any bat activity, owing to technically difficulties, the detector position 

from that site was removed from the analysis. However, similar results were obtained from the 

BACI analysis when the data were excluded. Given that the data from the Experimental sites 

were collected under similar environmental conditions, with no significant difference, the data 

were included in the final analysis. All model residuals were examined to ensure they met the 

assumptions of the models. Effects were judged as statistically significant when p was less than 

0.05.  

To test whether environmental conditions, temperature and humidity, significantly influenced 

nightly bat activity, we included them in our initial analysis when examining treatment night and 

survey locations (Control and Experimental). For both experiments, we used the same random 

effects for these negative binomial models, as described above. There was no significant 

relationship activity and either temperature or humidity and so these variables were not 

considered further.  

2.4. Results 
The playback of traffic noise experiment elicited substantial decreases in overall bat activity 

(Figure 2.4.1). Using the BACI approach, we determined that the total amount of bat activity 
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recorded at Control relative to Experimental locations differed between noise and control nights 

(interaction term: p = 0.008). Significantly fewer bat passes were recorded at Experimental 

locations when traffic noise was being played, whereas at Control locations activity did not differ 

between control and noise treatment nights (Figure 2.4.2). This provides strong evidence that 

the reduction in activity was caused by the traffic noise playback. Further summary statistics can 

be found in Appendix 2.7.7 and Appendix 2.7.8.  

 

Figure 2.4.1: Mean nightly bat activity (+SE) during control (white) and noise (grey) treatment 
nights across the seven study sites; graph based on raw activity data. Total number of passes at 
Experimental locations = 13817 (on control nights: total = 10836, mean = 264, SE = 56; on noise 
treatment nights: total = 2981, mean = 51, SE = 9). 

There was a significant interaction between the amount of bat activity recorded at Control 

relative to Experimental locations on sound treatment and control nights for R. ferrumequinum 

(interaction term: p = 0.013), P. pipistrellus (interaction term: p = 0.032), P. pygmaeus 

(interaction term: p = 0.035) and Myotis species (interaction term: p = 0.046) but not for N. 

noctula (interaction term: p = 0.576). When bat activity was examined at Experimental locations 

only, the number of bat passes for all species/genus was significantly lower on sound treatment 

compared with control nights: R. ferrumequinum (Odds Ratio (OR): 0.23, CI: 0.12 – 0.43, p < 
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0.001), P. pipistrellus (OR: 0.16, CI: 0.09 – 0.29, p < 0.001), P. pygmaeus (OR: 0.08, CI: 0.04 – 0.17, 

p < 0.001), N. noctula (OR: 0.41, CI: 0.24 – 0.71, p = 0.001) and Myotis species (OR: 0.14, CI: 0.07 

– 0.28, p < 0.001). 

 

Figure 2.4.2: Predicted bat activity on control and noise treatment nights, at Control (white) and 
Experimental (grey) locations. Bars show 95% confidence intervals. 

Within Experimental locations, significant interactions between detector location and time 

(treatment vs. control nights) were found for, P. pipistrellus (interaction term: p = 0.050), P. 

pygmaeus (interaction term: p = 0.037) and Myotis species (interaction term: p = 0.016). For R. 

ferrumequinum the interaction term was marginal (p = 0.072) and for N. noctula the interaction 

term had a p = 0.336). Further models examining individual detector locations could only be 

created for P. pipistrellus and P. pygmaeus owing to the lack of data for other taxa. For these 

species, traffic noise had a significant negative impact on activity at detectors placed both at the 
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speakers and 20m in front of the speakers (P. pipistrellus OR: 0.08, CI: 0.04 – 0.17, p < 0.001; OR: 

0.18, CI: 0.10 – 0.36, p < 0.001, respectively; P. pygmaeus OR: 0.03, CI: 0.01 – 0.13, p < 0.001; 

OR: 0.16, CI: 0.01 – 0.47, p < 0.001, respectively). There was also a significant reduction in activity 

20m behind the speakers for both P. pipistrellus (OR: 0.30, CI: 0.10 – 0.94, p = 0.038) and P. 

pygmaeus (OR: 0.33, CI: 0.12 – 0.94, p = 0.038). We also assessed whether there was evidence 

of habituation or increased responsiveness at each Experimental location during the noise 

treatment nights. There was no significant interaction between location and the night on which 

the noise was played (p = 0.146) with activity staying relatively constant over time at 

Experimental locations.  

We examined whether differences between Experimental and Control locations depended on 

whether it was a noise treatment or control night, and found a significant negative interaction 

for total feeding activity (p = 0.025). At Experimental locations, feeding activity was lower on 

noise treatment nights compared with control nights for both P. pipistrellus (OR: 0.57, CI: 0.47 – 

0.69, p < 0.001) and for P. pygmaeus (OR: 0.53, CI: 0.35 – 0.79, p = 0.002).  

Having established that road noise playback strongly influenced bat activity, we then tested 

whether the effects were generated by the sound in the ultrasonic or sonic spectrum. As in the 

previous experiment, there were no significant differences between bat activity recorded at 

Control locations. Additionally, at Experimental locations, there were significant differences 

between control and sound treatment nights for total bat activity (interaction term: p = 0.043) 

and P. pipistrellus (interaction term: p = 0.008), but not P. pygmaeus (interaction term: p = 0.552) 

or Myotis species (interaction term: p = 0.368). Owing to very low pass rates for N. noctula and 

the rare R. ferrumequinum, these species were not analysed further. Both sonic and ultrasonic 

noise playback had significant negative effects on total bat activity at Experimental locations, 

though the effect sizes were larger for the sonic treatment (sonic: OR: 0.32, CI: 0.22 – 0.47, p = 

0.001; ultrasonic: OR: 0.50, CI: 0.35 – 0.72, p < 0.001) and P. pipistrellus (sonic: OR: 0.34, CI: 0.23 
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– 0.51, p < 0.001; ultrasonic: OR: 0.53, CI: 0.36 – 0.78, p = 0.001). For P. pygmaeus and Myotis 

species, sonic noise playback reduced bat activity (OR: 0.40, CI: 0.24 – 0.64, p < 0.001; OR: 0.34, 

CI: 0.21 – 0.55, p < 0.001, respectively) but ultrasonic noise had no effect (p > 0.05) 

We identified that there were significant negative interactions between Experimental and 

Control locations and treatment night for total feeding activity (p < 0.01), during the second 

experiment. Feeding activity appeared to be reduced at Experimental locations on nights with 

sonic and ultrasonic playback compared with control nights for both P. pipistrellus (sonic: OR: 

0.65, CI: 0.53 – 0.80, p < 0.001; ultrasonic: OR: 0.79, CI: 0.69 – 0.92, p = 0.001) and for P. 

pygmaeus (sonic: OR: 0.61, CI: 0.46 – 0.82, p = 0.001; ultrasonic: OR: 0.49, CI: 0.39 – 0.62, p < 

0.001). 

2.5. Discussion 
We have established, for the first time, that playback traffic noise alone can reduce the activity 

of free-living bat assemblages, even in the absence of other features associated with roads such 

as lighting and habitat loss. Reduced activity in response to playback of traffic noise (sonic and 

ultrasonic spectra combined) was observed for each species that we examined. This includes 

those species that have markedly different flight heights, speeds, foraging strategies, and with 

contrasting echolocation patterns. For example species such as R. ferrumequinum can emit high 

frequency ultrasonic calls (82kHz), whereas species like N. noctula can have low frequency calls 

within the sonic range (18kHz), other species emit frequency modulated sweeps (e.g. Myotis 

spp.), constant frequency calls (R. ferrumquinum) and calls combining frequency modulation and 

constant frequency elements (e.g. Pipistrellus spp.) (Russ 2012). The results suggest that the 

response of bats to traffic noise is a generalised phenomenon that has a negative impact across 

all functional groups examined. It is notable that sound in the sonic spectrum had a negative 

impact on the activity of all species, whereas ultrasound produced less marked responses and 

was absent in some species. This suggests that the mode of action is likely to be through general 

deterrence and avoidance, rather than through the masking of echolocation calls used for 
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orientation or foraging. These results are similar to the findings of laboratory based studies (e.g. 

Luo, Siemers & Koselj 2015). Comparable results were also identified from perceived point noise 

sources, that caused acoustically-mediated distractions for bats (e.g. Bunkley & Barber 2015). In 

addition, high frequency sound waves (ultrasound) propagate over smaller distances through 

air than lower frequency sounds. Therefore, the effective distance over which ultrasound 

generates an ecological impact — whether derived from experimental playback or from real 

roads — is likely to be lower than for sonic noise. It is unlikely that our speakers fully replicated 

the true coverage and extent of real road noise. However, this means that the effects observed 

in this study are likely to be conservative estimates of the true impact of traffic noise on free 

living bat species.  

The deterrent effects of traffic noise, within the local area of the Experimental locations, were 

evident at distances of at least 20m from the source in our experiment, and was more severe 

beside the sources of the noise and in the direction it is coming from. Nevertheless, effects are 

still observed behind the speakers because noise drifts and bounces off objects, emphasising 

that consideration must be given to the diffusion of noise through space. Further work is 

required to establish the spatial scale of the impacts. This is important as many studies have 

demonstrated a reduction in general animal species diversity and abundance in relation to 

distances to roads (Benítez-López, Alkemade & Verweij 2010; Berthinussen & Altringham 2012b; 

Wiącek et al. 2015; Claireau et al. 2019b); our results suggest that traffic noise is likely to be an 

important factor. Nevertheless, other studies do demonstrate that fast flying bats are not as 

affected by roads and traffic noise compared to slower flying bats though (Bonsen, Law & Ramp 

2015; Myczko et al. 2017). It is unclear however, whether bats would habituate to playback noise 

over the long-term, but over the relatively short duration of our study, the aversive effects 

appeared too consistently low over time.  
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Traffic noise reduced feeding activity (measured as the ratio of feeding calls to orientation calls) 

for both P. pipistrellus and P. pygmaeus — species with very similar echolocation patterns. When 

exposed to sonic and ultrasonic noise separately, stronger negative effects were observed for 

the former. The results of these experiments therefore support the inferences made by previous 

contrasting studies: ultrasonic noise reduces bat ability to feed, potentially by masking the 

echolocation calls used by foraging bats (e.g. Schaub, Ostwald & Siemers 2008; Siemers & 

Schaub 2011), but there is also a larger effect from sonic noise which does not overlap with the 

echolocation calls (Luo, Siemers & Koselj 2015). The mechanism for the latter is unclear but it 

may appear that the foraging bats actively avoid the aversive stimulus of traffic noise. 

Now that we have established that the experiments have shown significant negative impact of 

traffic noise on bat activity and foraging behaviour using a single sound file, future research 

should focus on examining the effects of multiple target sound files (traffic noise) with similar 

components recorded over longer periods of time (Kroodsma et al. 2001). Additionally, a ‘cross 

playback’ (reversing the control and treatment locations after the initial experiment) could be 

conducted to ensure that all local variation within sites are considered and accounted for within 

the experimental design.  

Many bats are of high conservation concern (e.g. in Europe, all species are protected under the 

Habitats Directive 92/43/EEC). Environmental Impact Assessments therefore need to consider 

the potential effects of road noise on habitat quality, landscape connectivity, and population 

viability. These effects need to be considered in combination to those of street lighting, collision 

and direct habitat loss and prioritised accordingly (e.g. Stone, Jones & Harris 2009; Day et al. 

2015; Mathews et al. 2015; Azam et al. 2018; Pauwels et al. 2019). Given that road noise 

increases with the extent of traffic flow, the ecological impacts of greater traffic flow on existing 

routes — whether generated by transport policies or by specific projects such as a peri-rural 

housing development — must be considered, not just new road construction schemes. Potential 
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mitigation strategies include noise barriers, substrate alterations and speed limits (Wayson 

1998; Ishizuka & Fujiwara 2004) but research is needed to test the effectiveness and 

proportionality of alternative strategies. New mitigation strategies are particularly needed to 

reduce the impact of sonic noise created by vehicles. Unfortunately, this is more difficult than 

mitigation for ultrasound that is readily attenuated over a short distance in air. Although the 

transition to electric vehicles may reduce road noise within urban centres, it is unlikely to have 

a material impact for most roads because at speeds >75km/h, sound is generated primarily by 

the contact between the tyres and road surface rather than by engines (The Highway Agency et 

al. 2011). Alterations to tyre composition and structures are therefore a more promising route 

to reducing traffic noise. 
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2.7. Appendices 
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Appendix 2.7.1 Spectrogram and power spectrum of 1.4 second traffic noise playback clip used 
during the experiment. Sonic (A), ultrasonic (B) and both sonic/ultrasonic combined (C). 
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Appendix 2.7.2: Example of a greater horseshoe bat call (Rhinolophus ferrumequinum). Time in 
seconds is on the x-axis and frequency in kHz is on the y-axis.  

 

 

Appendix 2.7.3: Example of a common pipistrelle bat call (Pipistrellus pipistrellus). Time in 
milliseconds is on the x-axis and frequency in kHz is on the y-axis.  

 

 

Appendix 2.7.4: Example of a soprano pipistrelle bat call (Pipistrellus pygmaeus). Time in 
milliseconds is on the x-axis and frequency in kHz is on the y-axis.  
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Appendix 2.7.5: Example of a noctule bat call (Nyctalus noctula). Time in milliseconds is on the 
x-axis and frequency in kHz is on the y-axis.  

 

 

Appendix 2.7.6: Example of a Myotis bat call. Time in seconds is on the x-axis and frequency in 
kHz is on the y-axis.  
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Species Location Control  Combined sonic and ultrasonic 
traffic noise playback  

Total  Mean SD Total  Mean SD 

Total bat activity Control 1265 115   144 1697   100   107.1 

Experimental 10462  255.2 358 3407   58.7   70.9 

Rhinolophus ferrumequinum Control 163 14.8 22.1 273  16.1   24.2 

Experimental 178  4.3 5.5 164   2.8 7.2 

Pipistrellus pipistrellus Control 538 49   76.4 531   31.2   37.4 

Experimental 2933   71.5   89.2 1247   21.5   40.3 

Pipistrellus pygmaeus Control 442   40.2    54.6 723   42.5    53.4 

Experimental 4187 102.1  180 480  8.3   13.4 

Nyctalus noctula Control 17   1.7  3.8 47 2.8 3.4 

Experimental 916 22.3   63.7 725  12.5   32 

Myotis species Control 90  8.2   7.6 105   6.2  8 

Experimental 1931 47.1   99.6 634  11   31 

Appendix 2.7.7: Data showing total, mean and standard deviation (SD) of species activity recorded during control nights and nights when traffic noise were 
being played at both control and experimental locations. 
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Species Location Control  Sonic traffic noise playback Ultrasonic traffic noise playback  

Total  Mean SD Total  Mean SD Total  Mean SD 

Total bat Activity Control 342   85.5 92.2 667   66.7   90.9 550   55     72.4 

Experimental 5112  222.3 321.9 2539  56.4  67 4840  105.2 138.9 

Rhinolophus ferrumequinum Control 0 0 0 2 0.2 0.6 11 1.1 2.6 

Experimental 108 4.7 15.7 80 1.8 6.8 235 5.1 19 

Pipistrellus pipistrellus Control 203 50.8 78.9 486 48.6 73.3 314 31.4 51.8 

Experimental 2441 106.1 156.8 1283 28.5 35.8 2391 52 61.9 

Pipistrellus pygmaeus Control 31 7.8 11.1 39 3.9 6.2 76 7.6 14.4 

Experimental 760 33 77.6 610 13.6 34.8 1212 26.3 60.1 

Nyctalus noctula Control 27  6.8    13.5   13 1.3    3 63  6.3 12.9 

Experimental 13       0.6 1.6 2  0.04  0.2 23 0.5 1.7 

Myotis species Control 1  0.3   0.5 0 0 0 3  0.3    0.7 

Experimental 47  2   2.2 33  0.7 1.2 76  1.7   2.2 

Appendix 2.7.8: Data showing total, mean and standard deviation (SD) of species activity recorded during control nights and nights when both sonic and 
ultrasonic traffic noise were being played at both control and experimental locations. 
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Chapter 3                                           

Habitat associations of bats in an 

agricultural landscape: linear features 

versus open habitats. 
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3.1. Abstract 
Bat species are important within agricultural landscapes, providing a number of different 

ecosystem services e.g. pest control and pollination. Yet, agricultural intensification is 

considered a leading cause of biodiversity loss and fragmentation at a landscape scale. However, 

it is not known the extent at which bats use linear features when foraging and commuting in 

agricultural settings, when compared to the interior of fields – which is not generally monitored 

during Environmental Impact Assessments. As part of a large-scale citizen science project, bat 

detectors were placed at 24 paired locations to examine whether activity differed between the 

centre of agricultural fields and the linear features (hedgerows and treelines) immediately 

surrounding them. The relationship between bat activity and individual linear feature types were 

then examined at 106 locations to determine which of the three categories (intensively managed 

hedgerows, sympathetically managed hedgerows and treelines) were utilised by bats in an 

agricultural landscape. Our results show that all 10 of the bat species found along linear features 

in our study also occurred in the middle of agricultural fields. Of the five species groups with 

sufficient data to examine separately, all had significantly more bat activity along linear features 

compared to the middle of fields, except for Nyctalus noctula. However, our results did show 

that 29% of calls from Rhinolophus ferrumequinum — a species generally considered to be highly 

restricted to linear features — were registered in the middle of agricultural fields; whereas this 

only accounted for 10% of Pipistrellus pipistrellus activity. Bat species were more likely to be 

associated with treeline compared to any other linear feature type, with no species were found 

to be significantly associated with intensively managed hedgerows (< 2m high). Our results 

highlight the importance of linear feature management to bat conservation.   
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3.2. Introduction 
Agricultural intensification is considered one of the most important drivers of global declines in 

biodiversity, through habitat loss, transformation and fragmentation (Foley et al. 2011). In the 

past agricultural landscapes were structurally heterogeneous, consisting of a myriad of 

agricultural and semi-natural habitats in close proximity, offering relatively favourable habitat 

for wildlife (e.g. Weibull, Bengtsson & Nohlgren 2000). However, over the last 100 years, 

agricultural land has become more homogeneous, with increased land parcel sizes having high 

negative impacts on wildlife (Robinson & Sutherland 2002; Benton, Vickery & Wilson 2003). To 

facilitate this increase in parcel size many historical linear features (LF) were removed altogether 

from Europe’s landscapes, in some cases as much as 71% (Sklenicka et al. 2009).  

Treelines and hedgerows play a crucial role for biodiversity by providing structural 

heterogeneity, foraging grounds, breeding habitat and functional connectivity in the wider 

landscape for numerous taxa from small mammals and bats (Gelling, Macdonald & Mathews 

2007; Kelm et al. 2014), to birds (Hinsley & Bellamy 2000) and invertebrates (Dover & Sparks 

2000). Additionally, LF provide ecological services such as reducing soil erosion, increasing water 

retention and reducing pest incidences, as well as providing food and shelter for farm livestock 

(Baudry, Bunce & Burel 2000). Despite the historic loss, unfavourable management and neglect 

of hedgerows and treelines, their ecological importance is recognised and they are a priority 

habitat across Europe; financial incentives are provided for their conservation and management 

through Agri-Environmental Schemes (AES; Boughey et al. 2011).  

Many European bat species are highly associated with LF (e.g. Walsh & Harris 1996b; Verboom 

& Spoelstra 1999). These features have been shown to increase functional connectivity and 

permeability into the environment at a landscape scale, thus reducing the ‘barrier effect’ caused 

by other features such as streetlights and roads (Stone, Jones & Harris 2009; Berthinussen & 

Altringham 2012b; Finch et al. 2020). There is, however, a tendency to dismiss the potential 

importance of open habitats, compared to LF, for species other than Nyctalus and Eptesicus bats 
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(e.g. Verboom & Huitema 1997) without quantifying relative amounts of activity in each habitat 

type. Recent research illustrated the importance of cattle-grazed fields, with both Rhinolophus 

ferrumequinum and Pipistrellus pipistrellus showing significantly more activity there compared 

to un-grazed fields (Ancillotto et al. 2017). These results highlight the relative importance of 

certain open agricultural habitats for bats, regardless of the amount of edge habitat or natural 

vegetation surrounding the site.  

Here, we compare both occurrence and relative activity of bat communities found along LF and 

in open agricultural fields (both arable and pasture; all pasture fields apart from one, which had 

sheep, did not have livestock in them). In addition, we compared different types LF, 

sympathetically managed hedgerows, intensively managed hedgerows, and treelines, to assess 

their relative importance for British bat species. We also discuss the possibility of how historical 

LF might influence the abundance of species records found in present day open agricultural 

fields using the ROAM database (http://digimap.edina.ac.uk/roam/historic).  

3.3. Methods 

3.3.1. Site selection 
Sites were selected at four R. ferrumequinum roost sustenance zones (RSZ: area of land within 

4 km of a roost) in Devon, England. Detectors were placed in a paired design (n=24) to examine 

the extent to which bat communities use open agricultural fields verses to the LF immediately 

surrounding them. To determine how bats utilised different LF types within an agricultural 

setting, 106 sites were selected; intensively managed hedgerows (n=17), sympathetically 

managed hedgerows (n=45) and treelines (n=44). These were chosen based on the approximate 

habitat availability of these features within the landscape and access to them. LF’s were defined 

as follows: intensively managed hedgerows are those hedgerows typically cut annually and 

which have a median height < 2m, sympathetically managed hedgerows are those with a median 

height > 2m that have not been cut in the previous year, and treelines are defined as those 

sympathetically managed hedgerows > 6m that have trees along the length of the feature.  

http://digimap.edina.ac.uk/roam/historic
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3.3.2. Acoustic surveys 
Bat activity data were collected between the 26th July and the 11th September 2016, as part of a 

large citizen science project (Devon Greater Horseshoe Bat Project). Volunteers were asked to 

place full spectrum bat detectors (SM2 and SM2+ detectors with an SMX-U1 and SMX-US 

ultrasonic microphone, Wildlife Acoustics, Maynard, Massachusetts, USA) at the survey 

locations which had been previously identified as suitable. All detectors were pre-set to the 

manufacturer’s specifications before being placed out by the volunteers. Details of the acoustic 

detector settings are provided in Appendix 3.7.1. Microphones were placed at a height of at 

least 1 m off the ground and were orientated horizontally. The detectors were set to record from 

30 minutes before sunset to 30 minutes after sunrise, for a period of up to seven nights.  

All bat passes were analysed using Kaleidoscope Pro software (version 3.1.1; Bats of Europe 

classifier version 3.0.0; Wildlife Acoustics, Maynard, Massachusetts) and were verified manually 

on the basis of call frequency, shape and repetition rate. Bat passes were defined as one or more 

echolocation call within one second of each other (Fenton 1970; Walsh & Harris 1996a). Detailed 

characteristics of the evolutionary traits of all species examined in this study, including their call 

structure and their foraging strategies, can be found in Russ (2012) and Dietz and Kiefer (2016). 

3.3.3. Statistical analysis 
Statistical analyses were undertaken using R (version 3.3.0; R Core Team 2016). To investigate 

the relationship between bat activity and habitat type, generalised linear mixed models with a 

negative binomial distribution were built for each species using the ‘lme4’ package (Bates et al. 

2015). When examining the relationship between LF and the centre of agricultural fields; RSZ 

(two zones), site (unique field ID) and individual detector identities were set as random factors 

to account for the potential non-independence of data gathered on consecutive nights. Detector 

identity was nested within site, to account for the paired structure of the study. Those detectors 

placed in the middle of the agricultural fields were then extracted to create a subset dataset and 

a new model. Total bat species activity was used as the predictor variable, with distance to LF, 
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field type (arable or pasture field) and whether historical LF were present or not in the past 

(ROAM database) were all used as fixed effects in the model. RSZ were used as a random effect.  

To assess the relative effects individual LF had on species activity, LF type were used as predictor 

variables, with individual detector identities included as a random factor. RSZ (four zones) was 

also used as a random factor for all species groups apart from R. ferrumequinum, which it was 

used as a fixed factor. This was done to test whether the data collected at the four roost 

locations significantly influence bat activity. If interactions were identified to be significant, 

multi-comparison Tukey adjusted post-hoc tests were conducted using the ‘lsmeans’ package 

(Lenth 2016); to test for pairwise differences between levels of the relevant factors. 

3.4. Results 
Nine species of bat were individually identified: Barbastella barbastellus, Eptesicus serotinus, 

Nyctalus noctula, Pipistrellus nathusii, P. pipistrellus, Pipistrellus pygmaeus, Plecotus auritus, 

Rhinolophus hipposideros, R. ferrumequinum, and the genus Myotis. All species recorded 

occurred both in the middle of fields and along LF. Sufficient data were only available to examine 

relative activity of five species groups: Total species (all species combined), R. ferrumequinum, 

P. pipistrellus, P. pygmaeus and N. noctula. 

Four of the species groups investigated had higher bat activity at the LF compared to the middle 

of field (Table 3.4.1): R. ferrumequinum (Odds Ratio (OR): 3.51, CI: 1.90 – 6.47, p < 0.001), P. 

pipistrellus (OR: 7.14, CI: 4.35 – 11.42, p < 0.001), P. pygmaeus (OR: 7.0, CI: 3.49 – 14.01, p < 

0.001), as well as total activity of all species recorded (OR: 4.11, CI: 2.74 – 6.16, p < 0.001). N. 

noctula was the only species not to illustrate a significant difference (OR: 1.10, CI: 0.69 – 1.74, p 

= 0.69). Using the subset of data consisting of only records in the middle of agricultural field, we 

highlight that distance to LF (median: 76, range: 30 – 147), field type and the presence of 

historical ROAM LF did not significantly influence total bat activity (all p-values > 0.05). 



 

54 
 

There were significant interactions between LF type and the relative activity for R. 

ferrumequinum (p = 0.014) and P. pygmaeus (p < 0.001). However, LF type did not affect P. 

pipistrellus (interaction term: p = 0.26), N. noctula (interaction term: p = 0.25) or total bat activity 

(interaction term: p = 0.16). Using a post-hoc test, intensively managed hedgerows were found 

to have a significant negative effect on for R. ferrumequinum (χ² = -0.91, p = 0.04) and P. 

pygmaeus (χ² = -1.38, p = 0.006) activity when compared to treelines. Similarly, significant higher 

activity was recorded along treelines when compared to sympathetically managed hedgerow 

for P. pygmaeus (χ² = 0.81, p = 0.02). There was no significant difference between R. 

ferrumequinum activity at sympathetically managed hedgerows compared with either treelines 

(χ² = 0.05, p = 0.98) or intensively managed hedgerows (χ² = 0.86, p = 0.06; Table 3.4.2).  

The interaction between RSZ and R. ferrumequinum activity was also significant (p = 0.005), with 

less activity recorded at the RSZ that had the smallest roost compared to in two RSZ that had 

larger colony sizes (χ² = -1.32, p = 0.01; χ² = -1.41, p < 0.001).  

Table 3.4.1: Species activity found along linear feature compared to in the middle of agricultural 
fields. 

Species or 
genus 

Total No. of passes 
recorded 

Mean No. of passes per night, SD and the 
percentage 

Field Linear 
Feature 

Field Linear Feature 

Mean SD % Mean SD % 

Rhinolophus 
ferrumequinum 

225  396  1.6 3.5 29 3.9 4.4 71 

Pipistrellus 
pipistrellus 

482  3214  3.4 5.4 10 31.5 54.8 90 

Pipistrellus 
pygmaeus 

244  1036  1.7 3.9 15 10.2 19.3 85 

Nyctalus 
noctula 

536  419  3.8 8.3 48 4. 9.2 52 

Total species 1796  5679  12.8 13.6 19 55.7 67.9 81 
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Table 3.4.2: A comparison between species activity recorded at the three different types of linear features: intensively managed hedgerows (IM), 
sympathetically managed hedgerows (SM) and treelines (T). 

Species or 
genus 

Total No. of passes 
recorded 

Mean No. of passes per night, SD and the percentage 

IM SM T IM SM T 

Mean SD % Mean SD % Mean SD % 

Rhinolophus 
ferrumequinum 

618 
 

1174 
 

3268 
 

5.8 10.4 15 5.0 8.3 14 26.8 80.8 71 

Pipistrellus 
pipistrellus 

3074 
 

13304 
 

7923 
 

28.7 47.6 19 56.4 137.6 38 64.9 103.4 43 

Pipistrellus 
pygmaeus 

443 
 

2511 
 

9597 
 

4.1 11.9  5 10.6 21.5 11 78.7 297.1 84 

Nyctalus 
noctula 

293 
 

931 
 

421 
 

2.7 8.7 27 3.9 8.8 38 3.5 6.2 35 

Total species 5724 20846 26370 53.5 66.6 15 88.3 55.4 25 216.1 499.2 60 



 

56 
 

3.5. Discussion 
This research demonstrates the important relationship LF have on bat activity in an agricultural 

landscape, and illustrates the need for their protection and appropriate management. Four of 

the five species groups analysed showed significantly higher bat activity at LFs compared with 

the middle of fields. However, the frequency at which species were recorded in the middle of 

fields differed. Our results are mirrored in other studies which report open habitats having less 

bat activity (e.g. Walsh & Harris 1996b; Verboom & Huitema 1997; Boughey et al. 2011; Kelm et 

al. 2014). The attraction of bats to LF can largely explained by higher food availability, protection 

from predators and wind (Verboom & Spoelstra 1999; Downs & Racey 2006), and the use of LF 

for navigation (Schaub & Schnitzler 2007).  

Out of those species significantly associated with LF, we identify that almost a third, 29%, of R. 

ferrumequinum activity is recorded in the centre of agricultural fields. Such findings are unusual 

for species which tend to be heavily associated with LF or woodland (e.g. Billington 2008). This 

highlights the importance of such areas when designing acoustic surveys and the need to include 

‘sub-optimal’ habitat into Environmental Impact Assessments; to get an accurate understanding 

of how bats are utilising the landscape throughout the year.   

Using the ROAM database, we assessed whether the presence of bats in the middle of fields 

could be due to a historical legacy of hedgerows being present in those locations in the past, 

acting as old commuting routes and foraging grounds for the bats. This, however, did not seem 

to influence the results, with the highest nightly R. ferrumequinum and total species activity 

being recorded in fields which did not have any previous LF within them since the earliest ROAM 

records for these locations in the 1930s. In addition, whilst we could not examine the effect of 

seasonality as part of this study owing to its methodological design, we anecdotally record 

higher bat activity in the middle of fields later in the season (September). This is in line with the 

results obtained by Kelm et al. (2014), who demonstrated that LF had weaker effects on bat 
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activity later on in the season (July-October). This could be because more bats are present post 

breeding, leading to higher food demands, as well as the seasonality of prey items.  

Overall, our findings show that two of species groups had significantly more activity recorded 

along treelines compared to hedgerows. This reiterates the results from Wickramasinghe et al. 

(2003), Brandt et al. (2007) and Froidevaux et al. (2019), who found that increased bat activity 

and foraging potential occurred along LF on agricultural land which had trees and taller shrubs 

present. This is especially true for bat species associated with woodlands and woodland-edge 

habitat (Russ & Montgomery 2002; Nicholls & Racey 2006; Fuentes-Montemayor et al. 2013). 

Boughey et al. (2011) found that unlike height, hedgerow width has not been found to influence 

bat activity, but the length of individual hedgerows and the total length at which they occur in 

the surrounding landscape are important for increased activity (Verboom & Huitema 1997). It is 

not only bats that are significantly associated with well-developed treelines and taller 

hedgerows. They have been shown to increase floral diversity, as well as moth species richness 

and bird abundance/density (MacDonald & Johnson 1995; Merckx et al. 2012; Staley et al. 2012; 

Froidevaux, Broyles & Jones 2019). Similarly to bats, they can act as food stores, shelter belts 

(creating microclimates) and breeding/roosting locations for other species (Hinsley & Bellamy 

2000; Maudsley 2000; Staley et al. 2012). However, these increase in diversity along LF critically 

comes down to their management, with those that are cut every three years showing some of 

the highest benefit for biodiversity (Staley et al. 2012; Froidevaux et al. 2019). Staley et al. (2012) 

shows that by reducing cutting frequency from every year to every 3 years resulted in 2.1 times 

more flowers and a 3.4 times greater berry mass over 5 years. These associations and benefits 

may be due to the structural changes in LF as they develop and succeed from sympathetically 

managed hedgerows into treelines (MacDonald & Johnson 1995). 

Due to their significant importance to a wide variety of species, LF are key landscape feature for 

the movement of wildlife in fragmented environment, yet they are under threat. The total length 
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of LF has decreased by approximately 23% over 16 years (Barr & Gillespie 2000) and the number 

of trees present within them has also reduced by 6.6% over a 20 year period (Carey et al. 2008). 

Boughey et al. (2011) speculates that this is due to management regimes, illustrating the point 

that new trees in hedgerows add cost to mechanical trimming and decrease crop production 

through shading. However, as our results show, increased LF height showed greater bat activity, 

having the potential to act as critical corridors and foraging areas for the long-term survival of 

populations. Such corridors provide even more important resources during periods of lactation, 

as females tend to travel shorter distances to forage; increased travel time to foraging grounds 

can negatively impact juvenile growth and survivorship (Clark, Leslie Jr & Carter 1993; Kerth & 

Melber 2009). 

Appropriately managing, retaining and rebuilding the countryside’s network of LF, particularly 

those of higher quality (sympathetically managed hedgerows and treelines), through result 

based financial incentives from AES (or otherwise) is vital to the conservation of bats and the 

many other species using them (Froidevaux et al. 2019; Froidevaux, Broyles & Jones 2019). 

Appropriate ecological assessments and considerations of cumulative impacts at a landscape 

scale need to be given when examining the effects of agricultural practices. 

3.6. Acknowledgements  
We would like to thank all of the citizen scientists and landowners who help with the research, 

and Anna David and Mike Symes who helped in obtaining land-owner permissions. We thank 

Patrick G. R. Wright for his comments on the manuscript. This research is a PhD studentship 

funded by the Vincent Wildlife Trust, the Devon Wildlife Trust, the University of Exeter, and the 

University of Sussex. 

 

 

 



 

59 
 

3.7. Appendices 
Appendix 3.7.1: Detector settings used for both the SMX-U1 and SMX-US microphones used in 
conjunction with SM2 and SM2 bat+ detectors (Wildlife Acoustics, USA) during the acoustic bat 
surveys. 

Detector settings SMX-U1 SMX-US 

Sampling rate 192000 kHz 192000 kHz 

Gain 12dB 48dB 

High pass filter 4 kHz 4 kHz 

Low pass filter Off Off 

Trigger level 18 SNR 18 SNR 

Trigger window 2.0 sec 2.0 sec 
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Chapter 4                                      

Modelling the functional connectivity of 

landscapes for greater horseshoe bats 

Rhinolophus ferrumequinum at a local 

scale. 
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Finch, D., Corbacho, D.P., Schofield, H., Davison, S., Wright, P.G., Broughton, R.K. and 
Mathews, F., 2020. Modelling the functional connectivity of landscapes for greater horseshoe 
bats Rhinolophus ferrumequinum at a local scale. Landscape Ecology, pp.1-13. 
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4.1. Abstract 
The importance of habitat connectivity for wildlife is widely recognised. However, assessing the 

movement of species tends to rely on radio-tracking or GPS evidence, which is difficult and costly 

to gather. To examine functional connectivity of greater horseshoe bats (Rhinolophus 

ferrumequinum) at a local scale using Circuitscape software; comparing our results against 

expert opinion ‘fly ways’. Expert opinions were used to rank and score five environmental layers 

influencing R. ferrumequinum movement, generating resistance scores. The slope and 

resistance scores of these layers were varied, and validated against independent ground truthed 

R. ferrumequinum activity data, until a unimodal peak in correlation was identified for each 

layer. The layers were combined into a multivariate model and re-evaluated. Radio-tracking 

studies were used to further validate the model, and the transferability was tested at other roost 

locations. Functional connectivity models could be created using bat activity data. Models had 

the ability to be transferred between roost locations, although site-specific validation is strongly 

recommended. For all other bat species recorded, markedly more (125%) bat passes occurred 

in the top quartile of functional connectivity compared to any of the lower three quartiles. The 

model predictions identify areas of key conservation importance to habitat connectivity for R. 

ferrumequinum that are not recognised by expert opinion. By highlighting landscape features 

that act as barriers to movement, this approach can be used by decision-makers as a tool to 

inform local management strategies. 
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4.2. Introduction 
Retaining the functional connectivity of landscapes is a pressing issue for conservation (Goodwin 

& Fahrig 2002; Fahrig et al. 2011). Largely driven by urbanisation and agricultural change, 

increasing habitat fragmentation has implications at an individual and population level. The 

consequences include isolation from habitats necessary for foraging, resting or gene flow, 

resulting in population declines and greater vulnerability to extinction (Pulliam 1988; Beier 1993; 

Rossiter et al. 2000).   

The identification of landscapes or habitats that provide high functional connectivity for species 

of conservation concern has the potential to focus resources where they can be deployed most 

effectively (Lawton 2010). For some species, such habitats are —at least in principle — legally 

protected because they are vital to maintaining the integrity of key populations (e.g. landscapes 

connecting a network of Special Areas of Conservation of bats under the EU Habitats Directive; 

92/43/EEC (EC 1992)). However, in practical terms, trying to identify the exact locations or the 

extent of these habitats can be extremely challenging, with many habitat requirements being 

species specific (Fagan & Calabrese 2006; Fahrig 2007). For example, important corridors may 

offer relatively poor habitat quality in themselves, but may offer the best — or only — available 

route to join areas important for foraging, mating or resting.  

One approach to exploring and visualising functional connectivity within a landscape is to use 

circuit theory (McRae 2006). In combination with random walk theory (Doyle & Snell 1984; 

Chandra et al. 1996), these approaches allow for all available movement possibilities to be 

considered and mapped using resistance surfaces. These surfaces (landscapes) are scored based 

on the cost incurred for an individual to move between two nodes (habitats) (Wiens 2001), with 

less resistance representing an increased probability of movement between nodes. Linking 

nodes together creates cost paths that can be represented by a cumulative resistance value or 

cost-weighted distance (McRae et al. 2008). Thus, the probability of movement between any 

two spatial locations can be measured, whilst considering all other available routes.  
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The application of this approach, using the software Circuitscape (McRae et al. 2008), has been 

successfully used to map barriers to gene flow and species movement, and to identify landscape 

corridors critical to the long term viability and stability of populations (Belisle 2005; e.g. Rayfield 

et al. 2016; Le Roux et al. 2017). However, most of this research has focused on large spatial 

scales (e.g. country-level), and has used direct measures of animal movement (e.g. GPS tracks). 

In practice, barriers to connectivity, as well as conservation actions, frequently operate at much 

smaller spatial scales. For example, decisions must be made about the probable effect of a 

single, lane major road on the ability of a local population to access parts of its habitat, and 

hence what, if any, mitigation is required.  

Considering the cost implications and the lack of equipment to be able to GPS smaller bat species 

safely and ethically, we highlight the need to be able to develop non-invasive methods for 

examining conservation issues surrounding landscape fragmentation at a local scale. This is of 

particular concern for the greater horseshoe bat (Rhinolophus ferrumequinum) which has 

suffered large worldwide declines and is of particular conservation concern in Britain (Jones et 

al. 2009). This species is highly dependent on linear features, such as hedgerows, to facilitate 

movement into the wider landscape (Duvergé & Jones 1994; Froidevaux et al. 2017). Using an 

approached detailed by Shirk et al. (2010), we use R. ferrumequinum in southern Britain to test 

whether i) robust, high resolution connectivity models suitable for informing conservation 

planning at local scales can be produced using Circuitscape, ii) non-invasive indicators of activity 

can be used to populate models of functional connectivity, and iii) the optimal connectivity 

model output corresponds with expert opinion ‘fly ways’.  

4.3. Methods 

4.3.1. Study area and GIS data 
The study areas were defined as 3km radii around four R. ferrumequinum maternity roosts in 

Devon, southwest England (Appendix 4.7.3). These study areas were restricted to 3km due to 

computational limitations regarding the trade-off between the extent of the area covered and 
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the resolution of the data. As R. ferrumequinum are site-faithful (Rossiter et al. 2002), with 

limited movement of females between sites during the maternity season, the data collected 

from these roosts were treated as independent from each other during the modelling process. 

In addition, the roosts were between 13.5km – 89km apart. The maximum distance recorded by 

an individual during our radio telemetry study was 9.1km (mean: 5.4km); this is in line with 

Pinaud et al. (2018), who recorded a maximum distance of 7.6km (mean: 4.2km). Each study 

area contained a mosaic of habitats and landscape features, including grazed and arable fields, 

broadleaved woodland, coniferous woodland, hedgerows, riparian habitats, and occasional 

farm buildings and residential houses (Appendix 4.7.4 – Appendix 4.7.7). Numerous single-lane 

roads crossed the landscape, and in two of the study areas there were two-lane highways. 

Immediately surrounding three of the roosts were small villages. Streetlights occurred in these 

villages, as well as in isolated patchy locations across the wider landscape.  

One-metre resolution geographical information system (GIS) raster data were obtained for each 

landscape feature surrounding each of our roosts, resulting in five different environmental 

layers (Table 4.3.1). The Lightscape layers were created following the methodology described 

by Bennie et al. (2014), using streetlight position and height with Digital Terrain Models (DTM) 

and Digital Surface Models (DSM) to create a light irradiance GIS layer. These were used to 

predict the direction and intensity of streetlight at different wavelengths, modelling the night-

time light environment. The Distance to Roads layers were created using ArcGIS and ranked 

using the most current annual average daily traffic volumes (AADT; rounded to the closest 10) 

(Department of Transport 2015). In this case, lower AADT meant a lower rank value. The 

Distance to Linear Features layers defined ‘intensively managed hedgerows’ as those typically 

cut annually and which have a median height < 2m; ‘sympathetically managed hedgerows’ are 

defined as those with a median height > 2m, that had not been cut the previous calendar year, 

and were managed, whether intentionally or not, in ways that benefit wildlife. 
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Table 4.3.1: GIS data used to model the movement of Rhinolophus ferrumequinum in the study 
site (average annual daily traffic – AADT). 

Environmental 
layer 

Landscape feature Rank & 
AADT 
score 

Reference 

Land Cover Orchards Rank 1 EDINA (2016d) 

 Deciduous woodland Rank 2 Morton et al. (2011) 

 Scrub Rank 3 Morton et al. (2011) 

 Grassland Rank 4 Morton et al. (2011) 

 Coniferous woodland Rank 5 Morton et al. (2011) 

 Arable land Rank 6 Morton et al. (2011) 

 Lake Rank 7 Hughes et al. (2004) 

 Buildings Rank 8 EDINA (2016e) 

Lightscape GPS coordinates of lights, 
column height, light type 

- Devon and Cornwall 
County Council 

 LiDAR – DSM  - EDINA (2016a) 

 LiDAR – DTM - EDINA (2016b) 

Distance to River River - EDINA (2016d) 

Distance to Roads Single lane local road Rank 1 - 
AADT 660 

EDINA (2016c) 

 Single lane minor road Rank 2 - 
AADT 
3260 

EDINA (2016c) 

 Single lane major road Rank 3 - 
AADT 
15510 

EDINA (2016c) 

 Two-lane major Road Rank 4 - 
AADT 
41750 

EDINA (2016c) 

Distance to Linear 
Features 

Sympathetically managed 
hedgerow 

Rank 1 Broughton et al. (2017) 

 Treeline Rank 2 Broughton et al. (2017) 

 Woodland edge Rank 3 EDINA (2016d) 

 Intensively managed hedgerow Rank 4 Broughton et al. (2017) 

 

4.3.2. Bat surveys 

4.3.2.1. Acoustic surveys 
The relative R. ferrumequinum activity was based on acoustic surveys for bats that were 

conducted as part of a citizen science project (Devon Greater Horseshoe Bat Project; June – 

September 2016). Acoustic data were collected at 205 survey points using full-spectrum static 

bat detectors (SM2 and SM2+ detectors with SMX-U1 or SMX-US ultrasonic microphones that 

were sensitivity-tested prior to deployment, Wildlife Acoustics, Maynard, Massachusetts, USA). 

Details of the acoustic detector settings are provided in Appendix 4.7.2. Microphones were 
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placed at a height of at least 1 m above the ground and were orientated horizontally. Recordings 

were made for up to seven nights from 30mins before sunset to 30mins after sunrise. Bat 

detectors were placed as close to randomly as possible (depending on landowner permission) 

in all available landscape features within 3km of each roost. During the process of univariate and 

multivariate model validation, no predictions within the peripheral 300m of the survey area 

were used, as it is anticipated that the validity of the model would decline at its outer extremities 

(Koen et al. 2010).  

Acoustic records were analysed using Kaleidoscope software (version 3.1.1; Bats of Europe 

classifier version 3.0.0; Wildlife Acoustics, Maynard, Massachusetts, USA) and were verified 

manually on the basis of call frequency, shape and repetition rate. Relative bat activity was 

assessed as the average number of bat passes per night per detector during the survey period 

(e.g. Jung et al. 2012; Charbonnier et al. 2014). Any bat detectors that only functioned for a 

single night owing to malfunction, and that did not record R. ferrumequinum during that night, 

were excluded from further analysis. R. ferrumequinum passes were defined as pulses of sound, 

as described by Russ (2012), recorded within a single sound file. Sounds files were created by a 

rolling two-second window: once the detectors were triggered, recording continued until there 

was a two-second window without sound of sufficient amplitude to trigger recording. The 

average pass rate per night per detector were used to validate all models.  

4.3.2.2. Radio tracking study 
During May and June 2010 and 2012, 13 female R. ferrumequinum were caught using mist nets 

and harp traps for radio-tracking at Roost 2 in southern Devon, under licence from the National 

Statutory Nature Conservation Organisation (Natural England). Each bat was weighed, and the 

largest parous females were selected for study. The transmitter (0.35 g) did not exceed 5 % of 

the bat’s body weight. A small area of fur was clipped from between the scapulae, and VHS 

radio-transmitters (Micro-pip, Biotrack Ltd., Wareham, Dorset, UK) were attached using Torbot 

surgical adhesive (Torbot Group Inc., Rhode Island, USA).  
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The female R. ferrumequinum were tracked nightly for up to ten days, or until the tags dropped 

off or their batteries failed. Bats were followed, as closely as possible without causing a 

disturbance, by, two teams of observers each equipped with radio receivers (Sika, Biotrack Ltd., 

Wareham, Dorset, UK) connected to hand-held directional three-element Yagi antennae; to 

establish commuting routes and foraging grounds in situ (White & Garrott 2012), fixes were 

taken every 5mins. Alternatively, the general locations of the bats were identified using an omni-

directional magnetic whip aerial mounted on the roof of a vehicle. Once the teams homed in on 

the individual R. ferrumequinum, they switched to the hand-held equipment again, taking 

multiple timed bearings of the location of each bat. From these measurements, the position of 

the bats were then biangulated after each survey night. Using a similar approach, Pinaud et al. 

(2018) estimated the spatial accuracy to be approximately 100m. To eliminate temporal 

correlation of our fixes, each fix was considered independent when at least 30min separated 

two consecutive locations (White & Garrott 2012).  

4.3.3. Modelling approach 
An underlying premise of our approach was that relative R. ferrumequinum activity (in this case 

bat passes) are a suitable proxy for more direct indices of connectivity (e.g. genetic connectivity 

indices or animal movement tracks collected by GPS). Doncaster and Rondinini (2001); Braaker 

et al. (2014); Le Roux et al. (2017); and Pinaud et al. (2018) all demonstrate, through field 

observations, static bat detectors, radio-tracking and Geographical Positioning System (GPS) 

data, that in general species, including R. ferrumequinum, spend less time in unfavourable 

habitats that have higher resistance values. Additionally, the same individuals are more likely to 

occur multiple times, and at higher activity levels, in more favourable areas of low resistance 

values, e.g. along commuting routes or at foraging grounds (Doncaster & Rondinini 2001). To 

test this, we compared the outputs of our Circuitscape models with independent data gathered 

using both acoustic surveys and from radio-tracking studies at our study locations. 
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Landscape connectivity for R. ferrumequinum was hypothesized to be influenced by local-scale 

landscape heterogeneity. To make predictions on this hypothesis, we used a similar modelling 

framework to that outlined by Shirk et al. (2010), and expert opinion models were created as 

raster resistance surfaces (spatial models) for each environmental layer. Mathematical functions 

that varied resistance scores and slope values were applied (see below and Appendix 4.7.8), to 

the expert opinion model for each environmental layer, evaluating and identifying the peak 

relationship between the resistance surface parameters and the independent activity data 

collected around a single R. ferrumequinum roost (Roost 1). This process identified the optimal 

univariate models for each environmental layer. These optimal layers were combined into a 

multivariate model, which were then reanalysed to find the optimal multivariate model. In 

addition, we then compared the Circuitscape model output for Roost 2 against data collected 

through radio-tracking studies. To test the transferability of the multivariate model to other 

locations, we applied the same resistance values to the environmental layers at three other R. 

ferrumequinum roosts (Roosts 2–4); using independent ground truthed R. ferrumequinum 

activity data collected around each of those three roost locations to assess the utility of the 

models. 

4.3.3.1. Expert opinion model 
Based on eight expert opinions and a literature review of the movement and dispersal ability of 

R. ferrumequinum (Jones, Duvergé & Ransome 1995; Flanders & Jones 2009), 18 different 

landscape features were selected and ranked, within their respective environmental layer 

groups (Table 4.3.1), based on the likely resistance they posed to the movement of R. 

ferrumequinum. The experts were from both academic and non-governmental organizations, 

who specialise in, and have extensive knowledge of, R. ferrumequinum ecology. Each expert was 

sampled, via questionnaire, on the rank and potential resistance values of each landscape 

feature. These data were then combined to determine the initial ranks and resistance values. All 

experts were consistent in ranking the resistance on each landscape features. A rank of one 
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indicated the least costly landscape feature for the movement of R. ferrumequinum, while 

higher ranks were associated with more costly features. If there was only one landscape feature 

in a given environmental layer, then no ranks were required e.g. Rivers. However, if a layer had 

more than one landscape feature, e.g. Roads, then the maximum rank was the total number of 

features—in this case four; for other layers, such as Land Cover, the maximum was eight. Those 

landscape features with higher ranks have greater weighting associated with them, relative to 

others within the same layer, and as a result, they are more resistance to species movement. 

Both resistance, and subsequently cost surfaces, using expert opinion data, were then created 

for each of the environmental layers at Roost 1, before mathematical functions (see below) were 

applied and analysed during the univariate modelling process. 

4.3.3.2. Mathematical functions 
When examining an ecological system, the relationships between environmental layers (or their 

resistance values) and the functional response of the species (e.g. animal movement) are rarely 

linear (Etherington 2016). In addition, researchers do not often account for interactions 

between multiple environmental layers that can occur in real landscapes. For example, a 

hedgerow with and without streetlights on it will influence the movement of bat species in 

different ways (Stone, Jones & Harris 2009). To avoid these issues, and to maximise the potential 

accuracy of the models, we rescaled our raster data to permit a range of slope values (x; ranged 

from 1–5) relating to our resistance values. Additionally, we varied the maximum resistance 

value (Rmax), allowing for a range of resistance values to be considered for each layer (varied 

between resistance 1 and 1010; see below and Appendix 4.7.8).  

4.3.3.2.1. Land cover 

The eight broad land cover features were ranked based on expert opinion in order of lowest to 

highest resistance (Table 4.3.1). The ‘Buildings’ landscape feature was always set as the lowest 

permeability. Resistance surfaces for Land Cover were created using the following equation:  
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R = (Rank/Vmax)x*Rmax 

where R is the resistance for each raster pixel (each of which consist of a single Land Cover type) 

and Vmax is a constant that is the highest possible rank for that feature type. For example, at 

three of our roost locations there were seven landscape features (Orchards, Deciduous 

woodland, Scrub, Grassland, Coniferous woodland, Arable land, Buildings; Vmax = 7), and at one 

we had eight, because Lakes were only present for Roost 4 (Vmax = 8). This means that as the 

expert opinion ranking moves nearer to the highest resistance rank (Vmax), the overall resistance 

increases towards Rmax at a rate controlled by the response curve of the slope value (x) (Shirk et 

al. 2010).  

4.3.3.2.2. Lightscape 

The lightscape irradiance (IR) values were multiplied by the slope values and maximum 

resistance:  

R = (IR)x*Rmax 

4.3.3.2.3. Distance layers 

Each of the three continuous distance layer functions were modified in different ways based on 

their ecological relationship with R. ferrumequinum. Euclidean distance to Rivers was calculated 

using the following function:  

R = (Det/Vdmax)x*Rmax 

where Det is the nearest distance of the raster pixel to any river in the 3km extent, and Vdmax is a 

constant that is defined as the maximum distance possible from Rivers within the extent of the 

3km. Based on previous literature suggesting that R. ferrumequinum activity occurs at close 

proximity to linear features a maximum distance of 10m was set for both the Linear Features 

and Rivers layers (Ransome 1996). 
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Distances, to Linear Features were modelled in a similar way, except as there is more than one 

feature; the rank order of the features were based on the resistant values chosen by the expert 

opinion. The lower the expert opinion resistance value the higher the rank order of the feature, 

meaning that those variables with higher rank order are more permeable than those with a 

lower rank order. Vrmax is a constant representing the highest rank value for each layer, in this 

case four. Both the distance to each feature and its rank carried equal weight within the 

function, and so were multiplied by 0.5.  

R = ((Det/Vdmax)*0.5 + 0.5*(Rank/Vrmax))x*Rmax 

Landscape resistance values for distance to Roads were classified using four ranks (660, 3260, 

15510, 41750 AADT for each road types (Department of Transport 2015); see Table 4.3.1 for 

rank order). Based on examination of previous literature (Berthinussen & Altringham 2012b), a 

maximum distance of 200m was set for the Roads layer. As resistance was expected to decline 

with increasing distance to Roads (the inverse of the expectation for Linear Features), we used 

the following function:  

R = ((1- (Det/Vdmax))*0.5 + 0.5*(Rank/Vrmax))x*Rmax 

Where Vrmax is a constant which represents the highest number of ranks within the Roads layer, 

set to the highest AADT (41750; rank 4).  

Once each resistance surface was created, we used Circuitscape (Version 4.0.5) to create current 

maps (McRae et al. 2008). To identify the functional connectivity for R. ferrumequinum at a local 

scale, we used a single roost location as the source layer. Since the exact movement patterns of 

the bats were unknown, e.g. the locations of potential foraging grounds, we generated a layer 

featuring concentric circles at 100m intervals from the roost to a maximum distance of 3km, 

using this as the target or ground layer. This enabled us to model movement scenarios from 

100m to 3km, giving equal weight to each distance and direction.  
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4.3.3.3. Univariate and multivariate models 
The optimal univariate models for each of the five environmental layers were determined, 

following the method detailed by Shirk et al. (2010). For each environmental layer, the value for 

both parameter functions, x and Rmax, were increased or decreased (favouring the direction of 

increasing correlation) and revaluated after each iteration (100–161 variations per 

environmental layer with varying x (1–5) and Rmax (1–1010) values). This iterative process 

continued until an optimal model was found by examining and identifying the unimodal peak in 

the maximum Spearman’s rank correlation coefficient between the parameter functions (x and 

Rmax) output (Circuitscape current map) and the relative R. ferrumequinum activity data at Roost 

1.  

The resistance surfaces of the optimal univariate environmental layers were then combined into 

a multivariate model resistance surface for Roost 1. To incorporate the interactions between 

layers into this additive multivariate model, the parameter functions (x and Rmax) of each layer 

were increased or decreased independently, while keeping all other layers constant, until a 

unimodal peak for each layer could be identified. This started with the univariate environmental 

layer with the highest correlation to R. ferrumequinum activity. If the parameter functions of a 

layer with a lower correlation value changed, then the iterative process started again, beginning 

with the univariate environmental layer with the highest correlation value, testing each iteration 

against the ground-truthed R. ferrumequinum activity data. The same parameter functions used 

in the univariate optimisation were used during the multivariate optimisation, and were 

increased or decreased until a unimodal peak was identified. This approach was taken because 

analysing every single parameter variation for each variable in relation to every other variable 

would have required an unfeasibly large number of model tests. 

The univariate and multivariate processes were undertaken twice. First they used all nightly data 

collected during the acoustic surveys, illustrating general R. ferrumequinum movement and 

activity around their roost, over the entire night. Then secondly, they used data specifically 
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relating to R. ferrumequinum movement from their roost to their initial foraging ground at the 

beginning of the night, rather than movements during the entire night (activity recorded within 

the first hour after sunset), e.g. Pinaud et al. (2018). These two types of data sets were used to 

examine whether different environmental layers affected R. ferrumequinum activity in different 

ways, depending on the bats’ behaviour. 

4.3.2. Statistical evaluation and transferability  
All statistical analysis were completed in R (version 3.3.0) (R Core Team 2016). Spearman’s rank 

correlations were used to examine the relationship between relative bat activity recorded at 

each of the detector locations and the subsequent current density produced from the 

Circuitscape current maps for each model. Unlike Shirk et al. (2010), Spearman’s rank 

correlations, rather than Mantel’s correlations, were used because our response variable (bat 

activity) was not a matrix of distance based metrics (e.g. genetic distance). The univariate and 

multivariate models were initially built using 93 bat detector locations in the study area at Roost 

1 (training roost). The successful transferability of a model can be defined as the ability for it to 

produce accurate predictions for areas outside that used for the initial training model (Justice, 

Covinsky & Berlin 1999). The transferability of the optimal multivariate model from Roost 1 was 

tested at Roost 2 – 4 by examining it against independent datasets collected within 3 km of each 

of these respective roost (between 33 and 38 bat detector locations). Using data that were not 

used to train or develop the models allows for a more stringent model testing, reducing the 

chances of overfitting, and makes the model a more reliable predictor of new data points (Xu & 

Liang 2001; Urban et al. 2009).  

Like Pinaud et al. (2018), we wanted to investigate the accuracy of our connectivity models 

further by testing whether there would be a greater likelihood of R. ferrumequinum radio-

tracking fixes occurring in more permeable areas of higher Circuitscape current, or whether they 

would be more randomly located in the landscape. Following the methodology outlined in 

Driezen et al. (2007), z-scores were created to examine whether the cumulative sum of the cost 
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of an individual reaching a certain location (i.e. each radio-tracking fix) was less than the mean 

cost of reaching all other points of equal distance from the roost (equidistant cost). For example, 

if the fix location was 1 km from the roost, we calculated the current value at this fix location 

and then compared it to the mean current value of all other locations at equal distance from the 

roost, i.e. all locations at 1 km from the roost. Thus, the analyses took into account the travel 

route and cost by each radio-tracked bat from the roost to each of their fix locations. To create 

the standardized z-score for each fix, we subtracted the mean equidistant cost from the 

Circuitscape current value at the fix location, and divided this value by the standard deviation of 

that mean cost. A positive value indicated that the fixes were on a route of higher functional 

connectivity (lower cost) than randomly selected locations. The results of the 191 fix locations 

were then compared with a normal distribution using a Shapiro–Wilk (W) test to examine 

whether they were significantly different from zero. As the radio-tracking data could have been 

accurate up to approximately 100m, we resampled the final model output to a 100m resolution 

and examined whether this influenced the result. The data were log transformed prior to 

analysis to achieve normality.  

In addition, the optimal multivariate model output was compared against an expert opinion ‘fly 

ways’ dataset at Roost 1. This had previously been created, at the request of the Local Planning 

Authority and the Statutory Nature Conservation Organisation (Natural England 2010), by 

experts with local knowledge of bat activity in the region, who visually examined the landscape 

and selected areas of expected high functional connectivity for R. ferrumequinum. These ‘fly 

ways’ have been given additional protection from future developments and were designed for 

both local and larger scale movements. No radio-tracking data were used in the creation of the 

‘fly ways’ presented in this study. To produce a comparison of the Circuitscape model and the 

expert opinion ‘fly ways’, we overlaid the optimal multivariate model output, and compared 

inside and outside the flyways that had high current (top 25%). The data were standardise by 

the distance of each detector to the roost. We then examined the relationship between the 
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optimum multivariate model, produced for R. ferrumequinum, with the median data from all 

other bat species recorded on each bat detector at Roost 1, to try to identify whether such a 

modelling approach and conservation efforts for a single key species would be beneficial for the 

entire bat community. 

4.4. Results 
Multivariate connectivity models provided a better description of the environmental layers 

around Roost 1 compared to any univariate model. The optimal univariate model’s maximum 

per pixel resistance values differed from the multivariate model for three out of the five 

environmental layer types (Table 4.4.1). Similar results were obtained using early night, rather 

than all night, data only, except the maximum resistance values of Land Cover and Linear 

Features for the multivariate model were 10,000 and 50,000, respectively (Appendix 4.7.1).  

Table 4.4.1: Per pixel resistance values for training roost location for both optimal univariate and 
multivariate models. 

Environmental layer Resistance values for the 
optimal univariate model 

Resistance values for the 
optimal multivariate model 

Land Cover 1000 10 

Lightscape 1000 108 

Distance to Rivers 1000 1000 

Distance to Linear 
Features 

10 25,000 

Distance to Roads 10 10 

The optimal multivariate model of general R. ferrumequinum movement could be transferred 

from one roost location to another, with all locations showing a significant correlation (Table 

4.4.2). Nevertheless, there are variations between these locations.  
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Table 4.4.2: Spearman’s rank correlation, the number of ground-truthed bat detector locations 
and model type for each of the four for Rhinolophus ferrumequinum (GHS) roost locations. 

 Model type No. of 
ground- 
truthed 
locations 

Spearman 
rank 
correlation  

p-value Distance to 
Training 
Roost (km) 

No. of GHS 
present in each 
roost during 
survey period 

Roost 1 Training 
model 

93 0.562 < 0.001 0 1187 

Roost 2 Transferred 
model 

38  0.448 < 0.01 13.5 816 

Roost 3 Transferred 
model 

36  0.336 0.03 76 435 

Roost 4 Transferred 
model 

33  0.360 0.03 31 260 

 

The output Circuitscape current maps demonstrate the importance of linear features for the 

movement of R. ferrumequinum and highlight the impact of streetlights, while additionally 

identifying ‘pinch points’ within the landscape, allowing for spatial targeting of conservation 

measures in order to maximise conservation value (Figure 4.4.1). When comparing the raw data, 

we identify that R. ferrumequinum activity is 7.6% higher in the top 25% of predicted functional 

connectivity outside of the ‘fly ways’ compared with within them (Figure 4.4.2). 
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Figure 4.4.1: Image depicting functional connectivity for Rhinolophus ferrumequinum (GHS), 
pinch points, and the barrier effects of streetlights. Black triangles are streetlight locations, red 
indicates high, and blue indicates low functional connectivity. The inset map shows the locations 
of the GHS roost and area of street lighting being depicted (black square). 
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Figure 4.4.2: Circuitscape map centred on the Rhinolophus ferrumequinum (GHS) training roost 
location. Image illustrating the flow of current within the extent of the 3km map boundary, with 
the expert opinion ‘fly way’ layer overlaid on top. 

During the radio-tracking studies, 191 R. ferrumequinum fixes were recorded within 3km of 

Roost 2 in Devon. The maximum fixes per individual was 31, with an average of 15. The results 

of ground-truthing the model using the 191 z-scores derived from the radio tracking data, 

showed a significant positive relationship with the Circuitscape current scores (mean z-score: 

0.73, CI: 0.69–0.78, p-value: 0.016, W: 98). Similar results were obtained when the model output 

was resampled at a 100m resolution (mean z-score: 1.77, CI: 1.72–1.82, p-value: 0.003, W: 98). 

Using R. ferrumequinum as an umbrella species and to explore the value of the modelling 

approach for the entire bat communities, we examined data for the other 10 species we 

recorded (Barbastella barbastellus, Myotis spp., Eptesicus serotinus, Nyctalus noctula, 

Pipistrellus nathusii, Pipistrellus pipistrellus, Pipistrellus pygmaeus, Plecotus auritus, and 

Rhinolophus hipposideros). The results of the multivariate model created (using all nightly data) 



 

79 
 

for Roost 1, identified that the median number of passes for all species recorded within the top 

quartile (i.e. 76-100%) of the observed Circuitscape current values (i.e. high current), were at 

least 125% higher than any of the lower three quartiles (Table 4.4.3).  

Table 4.4.3: Median number of passes (interquartile range) of all bat species recorded per night 
per bat detector location at Roost 1, between 0 – 100% of observed Circuitscape current values.  

Species 0% – 25% 26% – 50 % 51% – 75% 76% - 100% 

Total species 37.12 (89.16) 53.57 (125.88) 25.29 (0) 120.50 (1111.39) 

Barbastella barbastellus  0 (0.33) 0.38 (0.40) 0.80 (0) 0 (0.35) 

Myotis species 1.43 (3.31) 2.93 (5.90) 2.80 (0) 1.53 (115.54) 

Eptesicus serotinus 0 (0) 0 (0.06) 0.40 (0) 0 (0.35) 

Nyctalus leisleri 0 (0) 0 (0) 0 (0) 0 (0.15) 

Nyctalus noctula 1.80 (3.54) 4.75 (8.70) 6.20 (0) 0.80 (0.95) 

Pipistrellus nathusii 0 (0) 0 (0.04) 0.20 (0) 0 (0.04) 

Pipistrellus pipistrellus 7.50 (52.45) 28.0 (52.30) 11.0 (0) 21.70 (19.33) 

Pipistrellus pygmaeus 5.0 (21.27) 11.08 (23.09) 6.80 (0) 8.26 (324.89) 

Plecotus auritus 0 (0.33) 0.13 (0.63) 0.20 (0) 0 (0) 

Rhinolophus 
ferrumequinum 2.38 (6.79) 8.92 (8.53) 6.0 (0) 47.40 (100.15) 

Rhinolophus 
hipposideros 0 (0.33) 0.08 (0.52) 0.20 (0) 0.24 (1.41) 

4.5. Discussion 
Urbanisation and agricultural intensification are well documented to be causing a loss of 

connectivity within our natural environment (Millennium Ecosystem Assessment 2005a). In 

increasingly fragmented landscapes, it is vital that connecting routes, as well as habitat patches 

of high inherent value, are conserved. For our focal study species, the greater horseshoe bat, 

the results of our optimal multivariate model align with our current knowledge of its movement 

behaviour (Pinaud et al. 2018). We demonstrate that our Linear Features layer increase 

permeability within the landscape, whereas artificial night lighting decreases it (Duvergé 1996; 

Stone, Jones & Harris 2009; Day et al. 2015). However, the extent of the influence on functional 

connectivity in the landscape is unexpected. The final multivariate resistance value for the Linear 

Features layer indicates a dramatic decrease in the likelihood of relative R. ferrumequinum 

activity at increasing distances from the feature. The converse is true for the Lightscape layer, 

where streetlights were found to have a high impact on the permeability of the landscape for R. 
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ferrumequinum, which is in line with current literature relating to horseshoe ecology (Stone, 

Jones & Harris 2009; Stone, Jones & Harris 2012; Day et al. 2015). Similar results were obtained 

using only early night data, except that the maximum resistance of both Land Cover and Linear 

Features increased compared to the general movement of R. ferrumequinum. This highlights 

that, within the first hour after sunset, the activity of light sensitive bats, such as R. 

ferrumequinum, will be more tightly constrained to hedgerows and features that are more 

sheltered. At a local scale, these types of considerations could play a part of the success or failure 

of any future conservation action plans or mitigation measures. 

The ready availability of large-scale data on, for example, weather and land cover means that 

macro-scale models, which often are based on very course resolution data about the target 

species, are commonly generated. Whilst valuable, for example in identifying migration 

corridors or highlighting areas likely to be most appropriate for a National Park (e.g. Roever, Van 

Aarde & Leggett 2013a), effective conservation also relies on fine-resolution data relevant to 

local planning decisions (Lechner et al. 2015), such as that provided here. Our models are 

relevant for other species of conservation concern, suggesting that the outputs can be of wider 

general use for conservation planning if appropriate umbrella species are selected. The numbers 

of records for non-target bat species were at least 125% higher at areas in the top quartile of 

the R. ferrumequinum Circuitscape current values compared to any of the lower three quartiles. 

We also demonstrate that spatially-targeted approaches to connectivity modelling can help to 

identify the locations of critical ‘pinch points’ within the landscape. For example, individual 

streetlight placements can have a major impact on the overall functional connectivity of the 

study areas, with the current passing through narrow corridors of suitable dispersal habitat (e.g. 

Figure 4.4.1: Image depicting functional connectivity for Rhinolophus ferrumequinum (GHS), 

pinch points, and the barrier effects of streetlights. Black triangles are streetlight locations, red 

indicates high, and blue indicates low functional connectivity. The inset map shows the locations 

of the GHS roost and area of street lighting being depicted (black square).Figure 4.4.1). However, 
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one limitation of the current study was that only streetlights, but not other lights e.g. vehicle 

headlights or security lights, were taken into account, owing to the lack of suitable spatial data. 

We highlight this as an area that is a priority for future research.  

We evaluated the extent to which the modelling approach taken here represented an 

improvement over simpler approaches for identifying key corridors in the landscape. We found 

that although some of the important local areas for connectivity fell within the ‘fly ways’ based 

on expert opinion, many of them were missed. Yet these expert-opinion ‘fly ways’ have 

historically been given greater protection through the Local Authority’s planning system than 

other regions. The model also identified some linear features as being important for functional 

connectivity that did not align with current ideas of optimal habitat (Duvergé 1996), e.g. 

intensively managed hedgerows surrounded by arable fields. However, while our results 

indicate that models can be successfully transferred from one area to another, with significant 

results, a precautionary approach should be taken. We therefore caution against transferring 

models from a ‘training’ area without any ground-truthing: where very different environmental 

conditions prevail, new models should be built (e.g. Roach et al. 2017). This will ensure that the 

resultant maps incorporate the interactions and non-linearity between predictor layers relevant 

to the specific locality.  

This study illustrates that a relatively simple framework, and an iterative approach to 

connectivity modelling, permits the influence of landscape features to be visualised at a local 

scale. It therefore overcomes many of the difficulties encountered when trying to incorporate 

research into real-world decision-making by local planners (Opdam, Foppen & Vos 2002). Our 

approach has the potential to facilitate evidence-based policy and management. The resultant 

models can help planners and conservationists reduce human-wildlife conflicts, by applying 

mitigation measures strategically at locations likely to be most sensitive to species movement 

and future land-use change. Stakeholders can also use the modelling technique described here 
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as a predictive tool. For example, the relative impacts of alternative scenarios, such as the 

positioning of new housing or lighting schemes, the creation of woodland or the restoration of 

hedgerows, can be assessed through this modelling process, helping to achieve evidence-based 

wildlife conservation. 

Environmental Impact Assessments are already meant to give consideration to the landscape 

context of a site, including the cumulative impacts of multiple developments. In practice, most 

work is conducted on a site-by-site basis. The approach outlined here provides a tool to 

incorporate functional connectivity into decision-making. 
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4.7. Appendices 
Appendix 4.7.1: Per pixel resistance values for training roost location for both optimal univariate 
and multivariate models using commuting data only. 

Environmental layer Resistance values for the 
optimal univariate model 

Resistance values for the 
optimal multivariate model 

Land Cover 1000 10000 

Lightscape 106 108 

Distance to Rivers 100 1000 

Distance to Linear 
Features 

10 50,000 

Distance to Roads 10 10 

 

Appendix 4.7.2: Detector settings used for both the SMX-U1 and SMX-US microphones used in 
conjunction with SM2 and SM2 bat+ detectors (Wildlife Acoustics, USA) during the acoustic bat 
surveys. 

Detector settings SMX-U1 SMX-US 

Sampling rate 192000 kHz 192000 kHz 

Gain 12dB 48dB 

High pass filter 4 kHz 4 kHz 

Low pass filter Off Off 

Trigger level 18 SNR 18 SNR 

Trigger window 2.0 sec 2.0 sec 
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Appendix 4.7.3: Map showing the location of the four Rhinolophus ferrumequinum roost in 
Devon, England.  
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Appendix 4.7.4: Map illustrating the general mosaic of landscape features surrounding Roost 1 
and the locations of the acoustic static bat detectors depicting the average nightly Rhinolophus 
ferrumequinum (GHS) activity. Map for illustrative purposes only. 
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Appendix 4.7.5: Map illustrating the general mosaic of landscape features surrounding Roost 2 
and the locations of the acoustic static bat detectors depicting the average nightly Rhinolophus 
ferrumequinum (GHS) activity. Map for illustrative purposes only. 
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Appendix 4.7.6: Map illustrating the general mosaic of landscape features surrounding Roost 3 
and the locations of the acoustic static bat detectors depicting the average nightly Rhinolophus 
ferrumequinum (GHS) activity. Map for illustrative purposes only. 
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Appendix 4.7.7: Map illustrating the general mosaic of landscape features surrounding Roost 4 
and the locations of the acoustic static bat detectors depicting the average nightly Rhinolophus 
ferrumequinum (GHS) activity. Map for illustrative purposes only. 
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Appendix 4.7.8: An illustration depicting how the relationship between different slope values (x) 
and the maximum distance to a GIS layer (Vdmax; in this case Roads), can influence the resistance 
value of landscape features. The correlation between these combinations of slope and 
resistance values can then be analysed against ground truthed data to identify which 
relationship best predicts how the species move through the landscape. As an example, this 
figure displays three separate maximum resistance scores (10, 50 and 100), with three slope 
values (1 (red), 3 (blue), 5 (black)). A slope value of one gives a linear response (constant rate of 
change irrespective to distance to the road), whereas a slope value of five gives an extreme 
concave response. Thus, illustrating greater resistance nearer the road, with a rapid decrease in 
resistance as you move further away from the road, with the rate of decrease controlled by the 
response curve of the slope value (x). 
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Chapter 5                                             

Social network analysis and movement 

of bats during the hibernation season: a 

case study with greater horseshoe bats 

(Rhinolophus ferrumequinum). 
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5.1. Abstract 
Social structures govern ecological networks and are fundamental to the interactions between 

individuals and groups, and consequently to the function of communities and ecosystems. These 

structures are often affected by the physical environment as the locations of these interactions 

can vary over time, particularly if there are high levels of fission-fusion in the population. Using 

a long-term dataset, we compared the social, temporal and spatial networks of hibernating 

greater horseshoe bats (Rhinolophus ferrumequinum). Over the course of 17 years, 2808 

individuals were monitored, yielding a total of 5952 records at 21 roost locations. We aimed to 

investigate whether species attributes (sex, age and breeding status of females) affected the 

rate of associations between individuals, whether individual associations re-formed year on 

year, and to identify factors that influenced the movement of individuals between hibernation 

locations. Our results highlight that adult males were significantly more central in the network 

compared to any other attribute and are a link between individuals within the society. 

Consequently, they may play an important role in information transfer. While the network 

showed high modularity (community structure), yearly re-associations between individuals were 

not found to be significant. It does not appear therefore, that groups of animals move together 

between sites at a landscape scale, but rather that individuals move independently. Movements 

between hibernacula were associated with both the age and degree centrality of individual bats, 

with those more geographically isolated hibernacula playing a role for the movement of 

individuals at a landscape scale. Highlighting that despite low number of bats recorded in some 

of these smaller roost locations, they are of conservation concern because they increase the 

connectivity of the landscape.  
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5.2. Introduction 
Social networks within populations are dynamic structures that are strongly influenced by the 

physical environment, as well as both the types of interactions which take place and the spatial 

distribution of the interacting individuals (Firth & Sheldon 2016; He, Maldonado-Chaparro & 

Farine 2019). For social species, the transfer of information between individuals (actively or 

passively), and the resultant creation and maintenance of beneficial relationships or competitive 

advantages for individuals, (Lewanzik, Sundaramurthy & Goerlitz 2019), is fundamental to a 

myriad of behaviours — ranging from mate selection, inter-species relationships, roost 

selection, identification of new foraging locations, and avoidance of predation (Wilkinson 1992; 

Doligez, Danchin & Clobert 2002; Aplin et al. 2012; Farine & Milburn 2013; Firth & Sheldon 2016; 

Ioannou et al. 2019). In turn, these can shape the outcome of entire population structures, 

making network analysis a useful tool for understanding, predicting and, potentially, 

manipulating population dynamics e.g. for disease management (Snijders et al. 2017; Gil et al. 

2018). Identifying how these processes change temporally is crucial for obtaining a full 

understanding of network dynamics, however, most studies are of short duration, consisting of 

a single year or season (e.g. Vonhof, Whitehead & Fenton 2004). Examining the long-term trends 

within social networks could provide new insights into the variation which may occur between 

years or seasons (Kerth, Perony & Schweitzer 2011). Understanding these temporal 

relationships and social structures can allow for the identify areas of conservation importance 

leading to properly targeted conservation interventions. The outcomes of which can vary 

depending on the scale of the social networks are examined, with many studies only focussing 

on individual sites at a local scale rather than taking a landscape scale approach (e.g. August et 

al. 2014; Cox et al. 2016). 

Bats make ideal focal species for social network analysis because they are widespread 

throughout the world (making up approximately one third of all mammal species), they are long-

lived and most are social for at least part of the year. Previous social network studies have shown 
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that bats usually form fission-fusion societies, however there is high species-specific variation in 

social structures. For example, tree-dwelling species move frequently — in some cases daily — 

between roosting locations. The generation of communal knowledge about the locations of 

alternative roosting and foraging sites, through intra-specific transfer of information, is likely to 

be critical for species survival (Kerth & Reckardt 2003; Russo, Cistrone & Jones 2005; Carter et 

al. 2019). However, Kerth, Ebert and Schmidtke (2006) suggests that while group decisions about 

roost selection occurs by a majority decision, individuals can use their own knowledge and the 

behaviour of others to decide where to roost, allowing individuals to ignore majority decisions 

that are unfavourable to them. For instance, in populations of Nyctalus lasiopterus, Popa-

Lisseanu et al. (2008) found that while the group composition changed with every movement 

between roosts, the social cohesion and structure of the overall population remained the same; 

However, August et al. (2014) showed that within the same woodland some species form 

separate social groups which rarely interacted with one another, illustrating the social divide 

which bats can create within continuous habitat. 

The physical environment can play a significant role in roost selection and the social structures 

of bats. Rhodes et al. (2006) illustrated that the removal of a single tree that acts as a communal 

hub for the white-striped free-tailed bat (Tadarida australis) could cause a breakdown in 

connectivity within the wider landscape, as well as affecting group stability and viability. This 

highlights how using social structures can help predict how anthropogenic impacts could cause 

fragmentation and a reduction of encounter rates within populations (Snijders et al. 2017).  

Greater horseshoe bats (Rhinolophus ferrumequinum) are a gregarious species, forming colonies 

during both the maternity and hibernation periods. In Western Europe, maternity colonies are 

typically found in buildings and classically contain mainly female bats and their offspring; males 

are found throughout the landscape in smaller roost locations. During the hibernation period, 

both sexes and all ages can be found together in cooler, underground sites (caves and mines) 
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(Hutson & Mickleburgh 2001; Dietz & Kiefer 2016). The literature suggests that there are three 

different types of hibernacula for R. ferrumequinum; these are differentiated by the age and sex 

of individuals, as well as the potential mating activity which occurs within them (Ransome 1968; 

Ransome & Hutson 2000). We know from ringing records that R. ferrumequinum often move 

between hibernation sites each year, and rarely travel more than 50km from maternity to 

hibernation roosts. Although, occasional movements of >60km are recorded (Ransome & 

Hutson 2000; Dietz & Kiefer 2016). To date, there has been no systematic study on hibernacula 

use by hibernating R. ferrumequinum that takes into account the unique identity of each 

individual.  

Using a large geographic area and individual underground hibernacula as nodes, our study 

assesses, using social network analysis, how attributes (sex, age and female breeding status) of 

hibernating R. ferrumequinum are linked with the association rate between individuals. We 

hypothesised that the sex of individual bats would play an important role in the overall social 

structure of hibernating R. ferrumequinum. We also examine whether individuals re-associate 

with the same individuals on an annual basis, assessed the relationship between associativity 

and the spatial position of individuals between different hibernation locations, and predicted 

that the core hibernation sites would have the highest rate of movements recorded. In addition, 

identifying which attributes predict the movement of individuals between hibernation sites each 

year, and suggest how the social structures can help identify important areas for conservation.  

5.3. Methods 

5.3.1. Data collection 
This long-term study took place between 2002 and 2019 at 21 hibernacula in south-west England 

(Figure 5.3.1). All the hibernacula fell within an area with a radius of approximately 30km. The 

monitoring of these hibernacula was undertaken by volunteers from the Wiltshire Bat Group. 

During each survey, unique identification metal rings were placed on bats (Natural England 

licence 2019-41471-SCI-SCI-3 and previous associated licences) that had not previously been 



 

95 
 

ringed; and the unique ring numbers were recorded for those bats that had been ringed 

previously. Only bats identified during these hibernation survey were used in the analysis. The 

age (subadult and adult), sex and breeding condition (females only) were also recorded during 

these surveys. Females were recorded as either parous or non-parous based on the size and 

presence of the nipples and false-nipples. Individuals were recorded as having breed if they were 

found to be parous in any year of the study. The age of the bats were determined based on fur 

colouration and density (adults have brown dorsal pelage with dense under-fur whilst juveniles 

and subadults have greyer sparser fur), the state of the wing membrane (shiny membrane that 

is slightly sticky and lacks extensive scarring in young animals), and the size of the metacarpal 

joints (which become progressively larger with age) (Dietz & Kiefer 2016). 

A maximum of two visits (January and February) occurred at each location per year to minimise 

the risk of adverse effects from undue disturbance. Consequently, interdictions were not 

directly observed (e.g. Vonhof, Whitehead & Fenton 2004) but bats were considered to be 

associating if they occurred within the same hibernation location at the same time. These sorts 

of associations have been termed the ‘gambit of the group’ and are used when individuals are 

known to interact at a spatial scale of the group, with the interactions occurring at similar rates 

among individuals when in a group (Whitehead & Dufault 1999; Farine & Whitehead 2015). 

Individuals were excluded from the network analysis if they were only recorded once (e.g. Zeus, 

Reusch & Kerth 2018), or if they were recorded multiple times but were always solitary 

individuals. This allowed for more-accurate associations to be identified and excludes transient 

individuals that are only recorded in the network once.  

5.3.2. Network analysis 
All analyses were performed in R version 3.5.0 (R Core Team 2018). To describe the social 

structure, we created weighted, non-directional association networks using the “Simple Ratio 

Index” (SRI; Cairns & Schwager 1987) using the package “asnipe” (Farine 2013). The SRI index 

calculates the proportion of occurrences that two individuals (or nodes) are recorded together, 
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where the weighted associations (or edges) between individuals range from zero (never found 

roosting together) to one (always found roosting together). The index is calculated as 

X/(X+YAB+YA+YB), where X is the number of records during which bat A and bat B co-occurred 

in the same hibernaculum; YAB is the number of observation periods during which A and B were 

recorded at the same time but in different hibernacula. YA is the number of hibernacula that A 

occurred in without B over the time period both were known to be in the network; YB is the 

number of observations in which only B was observed. Using weighted SRI, compared to other 

association indices, has been shown to be better at describing true association patterns, making 

no assumption or biases with the data (Ginsberg & Young 1992), particularly when the 

associations are determined by individuals of the same group (Whitehead & Dufault 1999). This 

reduces the limitations that occur when using the ‘gambit of the group’ approach (Franks, 

Ruxton & James 2010). Owing to the length of this study, there were large temporal overlaps 

between individuals with observations of each individual potentially covering multiple ages 

which changed over the 17 years. To account for this we calculated a corrected version of the 

SRI for age by using a weighted average of each individual’s age, where the weight is the number 

of times each individual was recorded as an adult and a subadult (e.g. Firth & Sheldon 2016).  

To test whether associations between bats were linked to their attributes (sex, age and breeding 

status), we computed two descriptive metrics, degree and betweenness centrality. Degree is the 

simplest measure of centrality, calculating the number of connections between an individual (or 

node) and others in the network (Croft, James & Krause 2008). Individual bats with high degrees 

are more central in the network. Betweenness centrality counts the number of times an 

individual occurs on the shortest path between two other nodes in the network. High scores 

mean that the individuals are more likely to connect largely independent communities (Farine 

& Whitehead 2015) and that they are more vital for connecting different individuals within a 

network.  
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We created a single linear model for each response variable (degree and betweenness 

centrality) to test the relationship between node strength and our predictor variables (sex, age, 

breeding status, and the interaction between age and sex). Since the individuals in networks are 

unlikely to be independent of each other, the significance of associations was assessed by a 

comparison with random networks using permutation tests (Farine & Whitehead 2015). Each of 

the random networks were created using 100,000 permutations with a single random swap per 

permutation, while controlling for spatial and temporal factors (Whitehead & Dufault 1999). For 

every 100 swaps, a new randomised association matrix was extracted, resulting in 1,000 random 

networks. P-values were calculated as the proportion of times the coefficients of variations (CV) 

of the 1,000 random networks were greater than the CV of the observed data (Farine & 

Whitehead 2015; e.g. Zeus, Reusch & Kerth 2018). 

The R package ‘assornet’ was used to test assortativity within the network for age, sex and 

breeding status (Farine 2014). This used weighted measures to examine whether individuals of 

the same kind, e.g. sex or age, were more often found together than expected by chance at a 

landscape scale. As with the linear models, the significance of these associations were tested by 

comparing the assortativity coefficients of the observed data with the randomly permuted 

networks. 

5.3.3. Movement between hibernacula and community structure  
Community structure was examined using the package ‘igraph’ to both visualise and detect 

(‘infomap’ algorithm) community modularity within the 21 hibernacula (Csardi & Nepusz 2006; 

Rosvall & Bergstrom 2008). Modularity can be derived from the proportion of edges 

(associations) that occur within a given community minus the expected proportion that would 

be observed were they randomly distributed throughout the network. The values obtained can 

range from zero to one, with values above 0.3 often being regarded as indicating social structure 

within a network (Whitehead 2009). However, computational simulations suggest a threshold 

of 0.5 (Shizuka & Farine 2016).   
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The movements of bats were examined within the network to identify the most important 

central hibernation locations and assess the bat characteristics that were linked with inter-site 

movements. To identify what influenced movement of individuals between hibernacula we used 

a binary GLMM model (link = logit), using the package ‘lme4’ (Bates et al. 2015). The response 

was the presence or absence of at least one movement within the study period. The predictor 

variables were age, sex, breeding status, degree/betweenness values, and the interaction 

between age and sex. AIC values and convergence parameters were used to determine the best-

fit model. Individual R. ferrumequinum IDs were used as a random factor in the model to account 

for any non-independence of observations within site. We ran the above analysis twice, firstly 

using data from all 21 hibernacula and secondly using only data from eight core hibernacula. 

These sites had the largest number of bats within them and held 97% of the R. ferrumequinum 

records of this study (Figure 5.3.1).  
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Figure 5.3.1: Map geographically representing the locations of all 21 hibernation roost surveyed. 
Core sites are shown in black, and non-core sites in white. Numbers in the centre of each circle 
are associated with the hibernation ID’s in Table 5.4.1. 

5.3.4. Temporal analysis 
Lagged association rates (LAR) were calculated, using the package ‘asnipe’, to investigate the 

temporal persistence of any associations between pairs of individual bats, the step length was 

set to 365 days (Farine 2013). This gives the probability of any two bats being observed re-

associating together within a set time period in the future (lags), while taking into account the 

number of times each individual bat was observed over the entire survey period (Whitehead 

2008; Farine 2013). To allow further understanding of the LAR trends over the 17 years of this 

study, we calculated the lagged rate of association null by dividing the mean group size 

experienced by each individual by the mean number of total associates for each individual (the 

mean binary degree) (Farine 2013). This null value represents randomly associated bats: if the 

observed LAR drops below the null, the probability of bats re-associating between those lag 

periods is less likely than would be expected by chance. The standard errors for the LAR trends 



 

100 
 

were calculated by jack-knifing the data. Unlike the Network Analysis, the Temporal Analysis 

used all available bat data, including those excluded previously. This reduced the possibility of 

falsely biasing the LAR trends by only including data of frequently-observed R. ferrumequinum 

(Whitehead 2008). 

5.4. Results 
Over the 17 year monitoring period, 2,808 individual R. ferrumequinum were recorded in a total 

of 5,952 encounters, across the 21 hibernacula. The frequency with which these bats were 

caught ranged from 1 to 15 times (mean = 2.1; SD = 1.7; Appendix 5.7.1). The mean number of 

bats recorded each year was 351.4 (SD = 134.4), with a mean of 36.2 bats (SD = 25.9; range 0-

221) being recorded in each hibernacula each year. The mean weighted degree was 36.2 per bat 

(SD = 25.9), the mean binary degree was 77.9 per bat (SD = 49.0), and the mean group size within 

the association matrix experienced by any one individual was 31.5 (SD = 18.6). Forty nine percent 

of individual bats recorded over the study period were female. While the majority of sites 

showed similar proportion of each sex some had comparably more males or females recorded 

(e.g. hibernacula number three, five and six), as well as five of the non-core hibernacula which 

were either solely male or female sites (Table 5.4.1).  

5.4.1. Network analysis 
Both linear models for degree and betweenness centrality were significantly different compared 

to the random networks (Degree: coefobserved: -3.47, mean coefrandom: -2.88, p-value: < 0.001; 

Betweenness: coefobserved: 930.06, mean coefrandom: -2.88, p-value: < 0.001). Degree centrality 

was significantly associated with the interaction between age and sex: adult males had higher 

association rates in the network compared with any other sex/age combination; no other 

variable was identified as having a significant interaction (p-value: > 0.05). When examining 

betweenness centrality, we found that breeding status (p-value: < 0.001) and the interaction 

between age and sex were significant in the linear model. For both degree and betweenness 
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centrality we found that adult males had higher association rates in the network compared with 

any other sex/age combination.  

None of the predictor variables were significantly associated with assortativity (p-value: > 0.05 

in each case), implying that there are not particular hibernacula that are predominantly 

segregated by a certain age or sex at the spatial scale of our study.    

5.4.2. Movement between hibernacula and community structure  
Overall, the number of mean bat movements between caves per individual was 0.6 (SD = 0.9) 

over the 17 years of this study. In total there were 940 records of R. ferrumequinum travelling 

between all hibernacula, 833 of which included movement to or from one of the eight core sites 

(Figure 5.4.1). Of those bats that did move, the mean number of movements recorded per 

individual was 1.5 (SD = 0.8); a maximum of seven movements between underground sites was 

recorded for one individual. Hibernacula number two had the highest amount of movement 

both to and from it, with almost 50% more records of individual bats moving to the hibernacula 

rather than from it (Table 5.4.1). 

The mean degree centrality of R. ferrumequinum occurring in each of the 21 hibernacula ranged 

from 9.2 to 76.5, with seven out of eight core hibernacula being in the top eight uppermost 

ranking locations for higher centrality in R. ferrumequinum. The single other core hibernaculum, 

which is geographically quite central, was ranked 14th on the list (Table 5.4.1). Similarly, the core 

hibernacula showed on average higher betweenness centrality compared to non-core sites. 

However, the highest betweenness was observed at a non-core hibernaculum (hibernaculum 

number 11; Table 5.4.1). 

When movements between all hibernation sites were examined both age (OR: 34.5, CI: 3 – 397, 

p-value = 0.005) and degree centrality (OR: 0.93, CI: 0.91 – 0.97, p-value < 0.001) were 

significant; highlighting that adult bats and those of lower centrality were more likely to use 

more than one hibernation site. However, when only using data from the eight core hibernacula 
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we do not see any significant relationship between the probability of movement and degree 

centrality (p-value > 0.05), though the relationship with age remains, with adults being 

considerably more likely to move (OR: 106.6, CI: 17 – 672, p-value < 0.001). These results are 

also highlighted in the raw data (Table 5.4.1), with the proportion of movements (compared to 

the total number of bats recorded in each hibernacula) higher in non-core hibernacula (max 

67%) compared to core hibernacula, majority below 20%.  

While there are high fission-fusion dynamics within network over the length of this study, 

modularity was also high (0.59) demonstrating a deviation from randomness. As illustrated in 

Appendix 5.7.2, there are several distinct, but overlapping, community structures. Appendix 

5.7.3 and Appendix 5.7.4 also show the variations in R. ferrumequinum numbers recorded over 

the course of this study at each core and non-core hibernaculum. 
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Table 5.4.1: Table showing total number of Rhinolophus ferrumequinum (GHS) recorded, median roost size, mean degree centrality/betweenness values, 
proportion of bat movements, and proportion of each sex in each core and non-core hibernacula. 

ID  Core or 
Non-core  

Total No. 
of GHS 
recorded 

Median 
hibernacul
um size 

Mean 
degree 
centrality  

Mean 
betweenness    
centrality 

Proportion of 
movement from:to 
hibernacula 

Proportion of movements 
compared to total number of 
GHS (%) 

Sex ratio – 
Female:Male 

1 Core 1475 91 39 4006 49:51 16 49:51 

2 Core 1407 72 34 3838 34:66 16 46:54 

3 Core 965 112 76 2528 47:53 6 42:58 

4 Core 763 53 32 3885 51:49 18 49:51 

5 Core 385 23 17 2955 51:49 15 67:33 

6 Core 361 23 28 2645 59:41 16 65:35 

7 Core 309 30 28 2670 70:30 21 45:55 

8 Core 113 7 27 3258 56:44 42 54:46 

9 Non-core 62 23 28 2033 95:5 35 31:69 

10 Non-core  47 4 21 1559 74:26 24 79:21 

11 Non-core  11 2 20 6452 50:50 45 18:82 

12 Non-core  11 1 18 1618 70:30 45 18:82 

13 Non-core  11 1 17 1743 67:33 55 36:64 

14 Non-core  11 6 9 523 75:25 18 9:91 

15 Non-core  8 1 22 4114 50:50 50 63:37 

16 Non-core  3 2 22 1185 50:50 67 100:0 

17 Non-core  3 1 16 1150 25:75 67 33:67 

18 Non-core  2 2 16 0 100:0 25 0:100 

19 Non-core  2 2 9 74 100:0 50 0:100 

20 Non-core  2 2 9 78 NA* NA* 100:0 

21 Non-core  1 1 24 1058 100:0 50 0:100 
*No bats were recorded moving to or from this location.  
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Figure 5.4.1: Movement of individual Rhinolophus ferrumequinum to and from core hibernacula. 
Thicker lines represent higher rates of movements between the hibernacula. Hibernacula are 
numbered according to the data in Table 5.4.1. Hibernacula are spatially distributed.  

5.4.3. Temporal analysis 
From our temporal analysis, approximately 22% of individual R. ferrumequinum re-associated 

with each other after the first year. This relationship rapidly decreased over time, and by year 

17, < 1% of individual bat associations persisted (Figure 5.4.2). However, the LAR was 

consistently below the lagged rate of association null, indicating that the associations between 

individuals at the geographic scale of the study do not persist over time.  
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Figure 5.4.2: Lagged association rates (LAR) of hibernating Rhinolophus ferrumequinum over 
time. The solid line is the LAR with standard errors displayed and the dashed line is the lagged 
rate of association null.  

5.5. Discussion 
Overall, our results show that hibernating R. ferrumequinum are more associated with one 

another compared to chance, with males playing a key role in the social network within 

hibernacula; demonstrating the importance of long-term studies in identifying social structures 

and how an individual’s attributes can influence their social interactions. Using the metric of 

degree centrality, adult males were significantly more central in the network, compared to any 

other attribute at the geographic scale of this study. This highlights the stark contrast in seasonal 

variation of R. ferrumequinum roosting ecology; where males are typically found on their own 

or in small groups of bats during the maternity season, with limited interactions with females 

(Ransome 1968; Ransome 1991), but they have been recorded in maternity colonies (particularly 

subadults). Conversely, during the hibernation season, our results show that adult males are 

more-likely to play a key role in social interactions, having multiple contacts with other 

individuals, whether this is for information-sharing, mating purposes or could potentially cause 

disease transmission. Strikingly, at a hibernaculum level, our results do not show that adult 
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females, particularly those that have bred before, form significantly close relationships with 

juvenile bats, as might be expected considering their close relationships during the maternity 

season (e.g. Rossiter et al. 2002). Similar to degree centrality, we show that betweenness is 

significantly associated with older bats, particularly adult males and those females that have 

bred before. We demonstrate that older R. ferrumequinum are more likely to be the link 

connecting individuals with otherwise low inter-connectivity, while juvenile bats of either sex 

are more likely to be independent. This could be due to the longevity of bat species, with the 

oldest R. ferrumequinum observed within these hibernation locations being at least 26 years old 

(ringed as an adult before the start of this study). These results support Kerth, Perony and 

Schweitzer (2011), who showed similar results for older Bechstein’s bats (Myotis bechsteinii) 

when using a longer term data set. 

These findings are illustrated by and concur with the data obtained on the movement of 

individual bats: adults were more likely to move between hibernation roosts compared to both 

juvenile bats and those with lower centrality scores (using all sites). Only when using data from 

the eight core hibernacula, could we show that degree centrality no longer becomes significant 

and only age shows a significant relationship with the movement of individuals. This highlights 

that it is those individuals of lower centrality values that are more likely to move between 

hibernacula outside of the larger core hibernacula. They have smaller, satellite roosts, which are 

usually geographically peripheral within a network of hibernation sites, as either the source or 

destination of most their movements. These results suggest that those bats in the larger core 

hibernacula have higher centrality because they interact with more bats within the system but 

do not usually need to travel outside of the core sites to maintain that centrality. 

While the majority of the core sites had, on average, more central bats within them, several of 

the smaller satellite roosts had more bats with high centrality scores compared with one of the 

core sites. The highest betweenness centrality score was also recorded in a non-core 
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hibernacula, suggesting that these sites can act as locations to connect largely independent 

individuals as well as communities. These results stress the importance of these smaller sites to 

the movement and interaction of R. ferrumequinum, increasing connectivity and encounter 

rates at larger geographic scales.  

Despite the high fission-fusion dynamics of R. ferrumequinum, seeing them disband each year 

to return to their summer roosting sites only to reform for the following winter, we identified 

several distinct, yet overlapping, community structures in the network. While we observed that 

some hibernacula showed some differences in the number of each sex recorded, we found that 

there were no preferences for same sex/age clustering, with communities made up of mixed sex 

social groups, similar to those found in the Spix’s disk-winged bats (Thyroptera tricolor) (Vonhof, 

Whitehead & Fenton 2004). However, the data used in the present study does not examine 

individual clusters of bats found within hibernacula but rather focuses on larger geographic 

areas and tries to identify patterns at a landscape scale. Future research should concentration 

on social network analysis at an individual level to identify whether any patterns emerge of how 

hibernating R. ferrumequinum cluster together within individual hibernacula. 

One limitation of this study was that our temporal analysis showed that the LAR was consistently 

below the lagged rate of association null, meaning that individual associations do not persist 

between years. One reason for this could be due to the ethical restrictions of conducting 

hibernation surveys, which could only occur twice a year; this is unlike other short-term studies 

that use automated techniques (e.g. Farine & Sheldon 2016; Firth & Sheldon 2016) or those 

occurring during the active breeding season (e.g. August et al. 2014; Zeus, Reusch & Kerth 2018), 

which are able to record more interactions. However, similarly to Popa-Lisseanu et al. (2008), 

these results could suggest that while group composition changes between years with every 

movement between hibernacula, the social cohesion and structure of the overall population 

remains the same. 
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There are many other factors when examining social networks, such as information and disease 

transmission, that can play a vital role in species survival. Bats are known to harbour various 

types of infectious diseases and viruses, harmful for both themselves as well as a host of other 

fauna including humans (Kruse, Kirkemo & Handeland 2004; Shi 2013). Our results illustrate that 

disease may spread quicker during the hibernation period when mixed sex groups are present 

in a roost, and due to the higher rate of connectivity, adult males are likely to have a higher 

probability of infection. Similar results were found for male Daubenton’s bats (Myotis 

daubentonii) during the maternity season (August et al. 2014). Identifying how these patterns 

of annual social interactions can vary through time may have specific considerations when 

thinking about disease management, particularly when dealing with outbreaks that spread 

rapidly across populations and geographical areas, such as the white-nose syndrome in North 

America (Blehert 2012).  

Nevertheless, there are considerable benefits to communal roosting and group decision-making, 

with the increased likelihood of information transfer. In bats, this has been shown to aid group 

foraging and to act as places where individuals can exchange information about resources in the 

wider landscape, as well as to help members coordinate roosting behaviour (Wilkinson 1992; 

Kerth & Reckardt 2003; Kerth, Ebert & Schmidtke 2006; Cvikel et al. 2015). To fully understand 

the social structure of R. ferrumequinum though, year-round patterns of association would be 

required to fully understand population dynamics. Further research would be required at 

hibernation roosts alongside those maternity colonies in close proximity to them. Firth and 

Sheldon (2016) showed that great tits (Parus major) that flock together during the winter, having 

higher social associations, are more-likely to breed in closer proximity to each other in the 

summer. They suggest that this could reduce energy expenditure on competitive interactions 

but also increase the possibility of mating between neighbours.  
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Understanding year-round patterns of species interactions and movement is essential for 

developing realistic management plans. This is particularly true for elusive species that travel 

between multiple locations within a single year (e.g. Hays et al. 2014), this includes cross-

boundary jurisdictions, whether between countries, or between local authorities within a single 

country. The implementation of such management plans, and the collaboration of decision 

makers needs to be taken at a species level that considers their entire annual ecology, not just 

during the breeding period, as is increasingly recognised for long-range migrants (e.g. Bonter, 

Gauthreaux Jr & Donovan 2009; Chevallier et al. 2011; Tack et al. 2012). Understanding which 

physical features in the landscape act as barriers to these movements, or how alterations to the 

environment can influence social structures, can play a crucial role in their conservation (He, 

Maldonado-Chaparro & Farine 2019); for example, the red-backed fairy-wren (Malurus 

melanocephalus) whose habitats that are affected by wildfires were shown to have higher 

densities of network ties compared to those unaffected, due to habitat availability (Lantz & 

Karubian 2017). 

For R. ferrumequinum, identifying movement patterns during the hibernation period is critical, 

particularly for smaller, satellite roosts that are quite often over-looked in the planning process 

due to the lower numbers of bats utilising them. We show that some of these sites, despite low 

numbers of bats being present, are key sites for social interactions and connectivity in the wider 

landscape at a population level. Loss of these sites could cause roost fragmentation and barriers 

in the landscape to species movement; it could also cause a decrease in the encounter rate of 

individuals due to a loss of resources and an increase in aggressive behaviour within a population 

(e.g. Macdonald et al. 2004). Additionally, as all of the main roost sites are interconnected, we 

highlight that, as a whole, the combination of these core and non-core hibernacula are vital for 

network stability and as such are conservation priorities.  
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5.7. Appendices 

 

Appendix 5.7.1: Frequency of individual Rhinolophus ferrumequinum which were caught over 
the 17 years of this study.  
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Appendix 5.7.2: Depiction of the community structure observed within the social network of 
hibernating Rhinolophus ferrumequinum. Red dots are male and blue dots are female bats.  
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Appendix 5.7.3: Boxplots depicting median number of Rhinolophus ferrumequinum (GHS) caught 
at each core hibernaculum over the 17 years of this study.  
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Appendix 5.7.4: Boxplots depicting median number of Rhinolophus ferrumequinum (GHS) caught 
at each non-core hibernaculum over the 17 years of this study.  
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Chapter 6                                  

Implications of endectocide residues on 

the survival of Aphodiine dung beetles 

— a meta-analysis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

An adapted version of this chapter has been published as: 

Finch, D., Schofield, H., Floate K.D., Kubasiewicz L.M., and Mathews, F., 2020. Implications of 
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6.1. Abstract 
It is often difficult to compare studies examining the effects of endectocides on dung fauna 

because to different experimental approaches. For example, active ingredient (eprinomectin, 

doramectin, ivermectin, moxidectin) and formulations (injectable, pour-on, spiked). To gain a 

better understanding, we performed a quantitative meta-analysis using 22 studies to assess the 

overall effect of endectocide residues on the occurrence (presence/absence) and abundance of 

aphodiine dung beetles. Our results document a positive effect on the occurrence of adult 

beetles, indicating that adults tend to be attracted to dung with residues. Conversely, larvae are 

less likely to occur in the presence of residues. Thus, adults that colonize dung with residues 

either do not lay eggs or, more likely, the larvae that hatch from these eggs die early in 

development. Abundance of adult and larval stages were shown to be significantly reduced in 

dung containing residues. When individual endectocides were compared, only ivermectin 

demonstrated a significantly negative effect on the abundance of both adult and larvae, possibly 

owing to a small sample size for other agents. In laboratory studies, only dung ‘spiked’ with 

endectocides reduced the abundance of larva, whereas during field research, only pour-on 

applications were shown to reduce the abundance of larvae. The study further documents the 

non-target effects of endectocide residues on dung-dwelling organisms, provides robust 

evidence on the consequences of different application methods, and emphasises the need for 

standardised methodological techniques in future studies.  
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6.2. Introduction 
Endectocides are among the world’s most widely sold veterinary pharmaceuticals and have 

global application for the control of external and internal parasites affecting livestock. There is 

growing concern about resistance by target organisms to endectocides, and the consequent 

implications for farming (Kaplan & Vidyashankar 2012; Rose et al. 2015). Much less attention 

has focused on the potential environmental impacts of endectocides. Some endectocides can 

be poorly metabolised by the gut of livestock, with between 62 and 98% of the active ingredient 

being excreted as residue in dung (Canga et al. 2009). These residues can persist in the 

environment with a half-life of 240 days in laboratory conditions (Lumaret et al. 2012); under 

field conditions no degradation was detected up to 45 days post application (Sommer et al. 

1992). This is concerning because residues can have significant impacts on both flora (Eichberg 

et al. 2016) and fauna (Iglesias et al. 2006; Jensen, Diao & Scott-fordsmand 2007) in the natural 

environment. 

Under Phase II Environmental Risk Assessment guidelines (European Union 2009), the risk of 

veterinary pharmaceuticals to non-target species of dung-breeding organisms are assessed in 

single-species laboratory studies (Tier A testing) (VICH 2004). If a specific exposure threshold is 

exceeded in Tier A testing, additional testing is mandatory, using multispecies communities of 

dung-breeding organisms under more realistic field or field-like conditions (Tier B testing) 

(Floate et al. 2016). Specific risk threshold to the dung fauna can include mortality, reduced 

fecundity, impaired behaviour, and delayed development. 

Other than this broad requirement, there is no standard methodology for Tier B tests (Jochmann 

et al. 2011). Researchers may use dung pats that differ in size and number from different species 

of animals fed on different diets. Studies may be performed at different times of the year with 

taxa identified to different levels of taxonomic resolution (e.g., family vs. genus vs. species). In 

addition, endectocides include both avermectins (e.g., doramectin, eprinomectin, ivermectin) 

and milbemycins (e.g., moxidectin) that can be formulated and administrated to livestock as oral 
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pastes, injections, extended-release injections, pour-ons, and sustained-release boluses (Herd 

1995; Forbes 2013). All of these factors influence faecal concentrations of endectocide residues 

entering the environment (Lumaret et al. 2012) and the interpretation of results (Jochmann et 

al. 2011). Relatively few studies have directly compared the non-target effects of different 

endectocides (Hempel et al. 2006; Webb et al. 2010) or of the same endectocide in different 

formulations (Herd, Sams & Ashcraft 1996).  

Depending on their concentration, faecal residues may be lethal to the organisms that colonize 

the dung, and their offspring that develop within the dung. They may also affect behaviour, 

fecundity, and developmental times. Residues also have been variously reported to attract or 

repel insects from contaminated dung (Holter, Sommer & Grønvold 1993; Floate 2007; 

Rodríguez-Vivas et al. 2019). Generally, however, faecal residues are reported to reduce the 

richness and abundance of diverse insects (especially species of Coleoptera, Diptera and 

Hymenoptera) and other organisms in dung (Floate et al. 2005; Lumaret et al. 2012; Nieman et 

al. 2018). Nevertheless, there can be considerable variation between studies in terms of the size 

and direction of the effects (Halley et al. 2005; Webb et al. 2010; Scheffczyk et al. 2016; 

Rodríguez-Vivas et al. 2019).  

The effect of residues on dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae, Aphodiinae) is 

of particular interest. They are typically among the most prominent insects present in fresh dung 

in terms of both abundance and biomass. Their feeding and breeding activities accelerate the 

removal of dung from pastures (Anderson, Merritt & Loomis 1984; Wall & Strong 1987), thereby 

increasing grazing area and encouraging the growth of healthy grass through soil aeration and 

nutrient recycling. Consequently, they help to increase the carrying capacity of pastures and 

reduce the risk of disease transmission (Bornemissza & Williams 1970; Herd 1995; Nichols et al. 

2008; Beynon et al. 2012). Dung beetles are also key prey items for a number of species including 

the greater horseshoe bat (Rhinolophus ferrumequinum; accounting for approximately 33% of 
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the bats diet; Jones 1990; Flanders & Jones 2009) and choughs (Pyrrhocorax pyrrhocorax) 

(Roberts 1982; Meyer 1990; Young 2015). The presence of dung beetles has been shown to 

reduce numbers of pest flies breeding in dung by 58% (Beynon, Wainwright & Christie 2015) and 

to reduce the prevalence of cattle nematode infections by 55-89% (Fincher 1975). The resulting 

economic benefits have been estimated to equate to £367m a year in the UK alone (Beynon, 

Wainwright & Christie 2015). The impacts of endectocide residues are therefore important to 

the global agricultural economy. 

Studies that report on the effects of faecal residues on dung beetles often include data for 

species in the subfamily Aphodiinae. This is likely because they are common in livestock dung 

across North America, Europe, Asia and northern Africa; with most aphodiines easy to identify 

to species level. Additionally, Aphodius constans Duftschmid has been approved by the 

Organisation for Economic Co-operation and Development (OECD) as a model test organism to 

assess the toxicity of faecal residues on dung-breeding organisms (Hempel et al. 2006; OECD 

2010). The collective body of literature on the non-target effects of faecal residues to aphodiines 

includes diverse — and occasionally contradictory — results, possibly owing to differences in 

experimental design (e.g. Floate, Colwell & Fox 2002; Webb et al. 2010).  

In the present study, we conducted a meta-analysis to understand better the overall responses 

of aphodiine beetles to endectocide residues in livestock dung. This subfamily were specifically 

chosen as a model group for our meta-analysis because of the considerable amount of raw data 

already available in the literature and they are one of the few dung-breeding insects for which 

an OECD guidance document has been produced. The analyses were specifically designed to 

assess the effect of different endectocides on the occurrence (presence/absence) and 

abundance of individuals, with consideration given to both to larval and to adult life stages. The 

analysis of beetle abundance incorporated and examined data from multiple studies 
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representing both field and laboratory experiments, which used different formulations (pour-

on, injectable (in cattle), mixed in (i.e. ‘spiked’ dung)).  

6.3. Methods 

6.3.1. Data source and selection  
Literature published in any language between 1990 and 2016 that reported the impact of 

endectocides on the abundance and occurrence (presence or absence) of aphodiine species was 

identified using the databases ISI Web of Knowledge and Google Scholar. MeSH (Medical Subject 

Headings) search terms were as follows:  

 

(‘aphodiine’ OR species taxonomic names) AND  

(‘endectocide*’ OR ‘anthelminthic*’ OR specific name of an endectocide) AND  

(cattle OR cow OR sheep OR livestock).  

 

These terms are an example of what was searched; exact search terms are given in the Appendix 

6.7.1. The abstracts of each paper were reviewed to identify studies that: (1) reported data for 

aphodiine beetles, (2) examined endectocides, and (3) incorporated use of control 

(uncontaminated) dung. 

The literature search identified 149 papers of which 27 matched the above three criteria. The 

papers that they cited, plus the papers that cited them, were cross-checked to identify 10 further 

papers suitable for inclusion. Requests for their raw experimental data were then sent to the 

authors of these 37 papers. Responses received for 11 papers provided > 25,000 individual rows 

of raw data. Additional responses identified papers for which data were no longer available, or 

which were not available in a suitable format.  

To qualify for inclusion in the analysis, studies had to present key summary data (mean 

abundance per treatment type, standard deviation (SD), number of samples, and/or p-value); 
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provide information that permitted the calculation of these values; or provide raw data. For 

statistical rigour, we limited our focus to compounds represented in at least two datasets. At 

the end of this screening process, the data used in our meta-analysis comprised 31 individual 

data sets from 22 studies spanning 13 countries (Table 6.3.1). 

Each data set assessed the effect of endectocide products on aphodiine beetles in cattle dung, 

but were otherwise diverse in nature (Table 6.3.1). Most data sets examined the effects of 

ivermectin (n = 22) with much less data being available for moxidectin (4), doramectin (3) and 

eprinomectin (2). In some cases, endectocides were added directly to the dung (‘spiked’ dung) 

rather than using dung collected from treated animals. Some studies placed known numbers of 

beetles into dung to assess the insecticidal toxicity of residues under lab conditions, whereas 

other studies used pitfall traps in the field to test the attraction or repulsion of beetles to 

residues. A further group exposed dung in the field to egg-laying adult beetles and then recorded 

subsequent numbers of larval or adult beetles recovered from the dung. There was also variation 

in the post-application period during which dung was collected from treated animals; the species 

of aphodiine beetles examined; time of year; and environmental conditions (humidity, soil pH, 

temperature). Additional information on variation of cattle breeds, diet and endectocide dosage 

used in each study can be found in Appendix 6.7.2. Thus, an aim of the meta-analysis was to 

detect general patterns of endectocidal effects on aphodiine beetles that might be otherwise 

masked by variation across individual studies, through the use of co-variate analysis. 
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Table 6.3.1: Description of the 22 studies included in the meta-analysis. 

Source of data Endectocide Application method Parameter(s) tested for adults (Ad) 
or larvae (L) in lab or field 

Abundance (Ab) and/or 
occurrence (O) analyses  

Country of 
study 

Beynon et al. (2012) Ivermectin Pour-on Attraction (Ad) – field (pitfall traps) 
Toxicity (L) – field and lab (dung 
pats) a 

Ab UK 

Errouissi and Lumaret 
(2010) 

Ivermectin Sustained release 
bolus 

Attraction (Ad) – field (pitfall traps) Ab France 

Errouissi et al. (2001) Ivermectin Sustained release 
bolus 

Toxicity (L) –lab Ab France 

Floate (1998a)  Ivermectin Pour-on Attraction (Ad) – field (pitfall traps) Ab Canada 

Floate (1998b) Ivermectin Pour-on Toxicity (L) – field and lab (dung 
pats) a 

Ab & O Canada 

Floate, Colwell and 
Fox (2002) 

Ivermectin, 
Doramectin, 
Eprinomectin, 
Moxidectin 

Pour-on Toxicity (L) – field and lab (dung 
pats) a 

Ab & O Canada 

Floate (2007) Ivermectin, 
Doramectin, 
Eprinomectin, 
Moxidectin 

Pour-on Attraction (Ad) – field (pitfall traps) Ab Canada 

Floate et al. (2016) Ivermectin Pour-on Toxicity (L) – field and lab (dung 
pats) a 

Ab & O Canada and 
The 
Netherlands 

Hempel et al. (2006) Ivermectin, 
Moxidectin 

Spiked Toxicity (L) – lab Ab & O Germany 

Holter, Sommer and 
Grønvold (1993) 

Ivermectin Injectionb Attraction (Ad) – field (pitfall traps) Ab Denmark 

Holter et al. (1993) Ivermectin Injection Attraction (Ad) – field (pitfall traps) Ab Denmark 
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Jochmann, Lipkow and 
Blanckenhorn (2016) 

Ivermectin Spiked Toxicity (L) – field and lab (dung 
pats) a 

Ab & O Switzerland 

Krüger and Scholtz 
(1998a) 

Ivermectin Injection Toxicity (Ad) – field and lab Ab South Africa 

Krüger and Scholtz 
(1998b) 

Ivermectin Injection Toxicity (Ad) – field and lab Ab South Africa 

Madsen et al. (1990) Ivermectin Injection Toxicity (L) – field and lab (dung 
pats) a 

Ab Denmark 

McCracken and Foster 
(1993) 

Ivermectin Spiked Toxicity (Ad & L) – field Ab & O Scotland 

Nunome, Yoshida and 
Niizuma (2009) 

Ivermectin Pour-on Attraction (A) – field (pitfall traps) Ab Japan 

O’Hea et al. (2010) Ivermectin Injection Toxicity (Ad & L) – lab Ab & O Republic of 
Ireland 

Römbke et al. (2007) Ivermectin Spiked Toxicity (L) – lab Ab & O Germany 

Römbke et al. (2010) Ivermectin Injection 
Spiked 

Attraction (Ad) – field Ab & O Spain 

Strong and Wall 
(1994) 

Ivermectin, 
Moxidectin 

Injection Toxicity (Ad & L) – field Ab & O England 

Webb et al. (2010) Ivermectin, 
Doramectin 

Pour-on Attraction (Ad) – field (pitfall traps) Ab & O Scotland 

aDung pats exposed in field to egg-laying adults and then held in the laboratory; toxicity assessments based on counts of emergent adults 
bOwing to lack of clarity in the method descriptions, only data collected from exposure via injection of livestock, and not through spiked dung, were used from 
this study in this meta-analysis. 
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6.3.2. Data synthesis: Occurrence  
The effects of endectocides on adult beetle and larvae occurrence were tested using raw data 

contributed by authors (relating to n = 11 papers). Occurrence was defined as the presence of 

at least one individual in a given dung sample. Generalised linear mixed effects models with a 

binomial error structure (GLMMs; link = logit) were built in R (version 3.3.0; R Core Team 2016) 

using the package ‘lme4’ (Bates et al. 2015). Separate models were built for adult beetles and 

larvae. Study identity, species and individual dung pat identity were specified as random effects, 

with treatment type (control or endectocides) set as a fixed effect. Presence was coded as 1, 

and absence as 0. Dung-baited pitfall trap studies are best suited to assess the attraction or 

repulsion of residues to beetles. However, there was no material difference in the results for 

numbers of adult beetles when analyses were based on this subset of studies rather than the 

entire dataset. Therefore, to maximise statistical power, all available data were used.  

6.3.3. Data synthesis: Abundance  
To test the effect of endectocide exposure on the abundance of aphodiine beetles, we used the 

standardised mean difference (Hedges' adjusted g) between endectocide treated and control 

samples to calculate the effect size and 95% confidence interval. Hedges’ g is a variation of 

Cohen’s d that determines the post-test difference in means between two treatments. The 

mean difference is then divided by the pooled standard deviation to correct for small sample 

bias (Hedges & Olkin 1985; Hedges & Vevea 1996). Effect sizes can cautiously be interpreted as 

small (0.2), medium (0.5), or large (0.8 or greater) (Cohen 1988). Analyses were performed using 

Comprehensive Meta-Analysis (version 3.3.070, Biostat, Englewood, NJ). 

Due to random errors within studies, and the variation between studies, we expected high 

heterogeneity and therefore chose a priori to apply random-effects models (REM) as the most 

appropriate method to calculate mean effect-size. In addition, REMs are more applicable when 

the aim is to generalise beyond the scope of solely those studies used in the meta-analysis 

(Hedges & Vevea 1998). To determine the level of heterogeneity between studies, we calculated 
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I2 (level of heterogeneity as a percentage) and then tested whether the level of heterogeneity 

was significant using Cochran's heterogeneity statistic (Q). Higgins et al. (2003) tentatively assign 

categories of low, medium and high heterogeneity to I2 values of 25%, 50%, and 75%. The 

sensitivity of the results to the exclusion of individual studies was tested using a sequential 

leave-one-out approach. 

To permit the inclusion of data for studies where the SD of some treatment groups was zero 

(i.e., no traps recovered beetles), a small value (0.001) was substituted for zero. There were no 

material differences in the results when the analyses were repeated using the averaged SD 

obtained across all treatment groups within a particular study. Within this meta-analysis, the 

relative sample sizes for each study were weighted according to the number of dung pats 

examined and the number of years over which the experiments were conducted. Additionally, 

the number of exposure days and individual species identities were also incorporated within this 

analysis, to account for random variation that might occur within and between studies, and to 

enable a generalised meta-analysis to be performed. If a study did not report results for species 

individually, then the species was recorded as ‘aphodiine species’. 

Analyses were first performed on all studies combined, to assess the overall effects of 

endectocides on dung beetle abundance. Additional analyses considered outcomes for adult 

beetles and larvae separately. For these analyses, beetles were defined as adult individuals that 

had colonized fresh dung pats naturally. In contrast, larvae were immature individuals that 

either had been directly placed into dung by the researcher or which had developed from eggs 

laid in dung colonized by adults; i.e., ‘progeny’ (Floate 1998b).  

The initial analysis used data for all endectocides combined (i.e., ivermectin, doramectin, 

eprinomectin, moxidectin). Each endectocide was then assessed individually when data were 

available for at least two studies; using this criteria both doramectin and eprinomectin were not 

examined for larvae as no data were available. The interaction between formulations (i.e., 
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injectable (in cattle), pour-on, spiked) and experiment type (i.e., field, laboratory) was also 

assessed for all models. Insufficient data prevented analyses of these interactions for: i) adults 

in laboratory conditions, ii) adults under field conditions using spiked dung, iii) larvae under 

laboratory conditions using pour-on formulation, and iv) studies using a sustained release bolus 

formulation. 

6.3.4. Publication bias 
We explored the possibility of publication bias for the overall analysis of the impact of 

endectocides on the abundance of aphodiine beetles. Two methods were used: (1) construction 

of a funnel plot (Sterne & Egger 2001) and (2) the computation of the fail-safe N test. The former 

permits a visual assessment to assess whether studies with small effect sizes are 

underrepresented in the literature. The latter method is used to calculate the number of non-

significant, unpublished studies required to nullify the overall effect size (Rosenthal 1979; 

Rosenthal 1984).  

6.4. Results  

6.4.1. Occurrence  
Endectocide treated dung was significantly more likely to have at least one adult aphodiine 

beetle than was control dung (Odds Ratio: 1.59, CI: 1.41 – 1.79, p < 0.001; Figure 6.4.1). The 

opposite effect was found for larvae (Odds Ratio: 0.64, CI: 0.58 – 0.70, p < 0.001; Figure 6.4.1). 
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Figure 6.4.1: Difference in the mean presence of aphodiine beetles in endectocide-treated and 
control dung samples, with upper confidence intervals. Scale and direction of effect is from -1 
(endectocide) to 1 (control). 

6.4.2. Abundance  
A significant negative relationship was detected between endectocide exposure and the total 

abundance of aphodiine beetles (adults plus larvae) (22 studies, Hedges’ g: 0.46, 95% CI: 0.21 – 

0.71, p < 0.001; Figure 6.4.2). The heterogeneity of the effect sizes among these studies was high 

(I2 = 96.95%, Q = 689.60). However, sensitivity analyses showed that the exclusion of individual 

studies had little impact on the effect size (Appendix 6.7.3 – Appendix 6.7.5). A significant 

negative relationship between treatment and abundance was detected for adults (14 studies; 

Hedges’ g: 0.34, 95% CI: 0.05 – 0.62, p = 0.022; Figure 6.4.3) and a stronger effect was detected 

for larvae (12 studies; Hedges’ g: 0.52, 95% CI: 0.21 – 0.84, p = 0.001; Figure 6.4.4). There was 

high heterogeneity of effect sizes for both life stages (adults: I2 = 93.05%, Q = 187.13; larvae: I2 
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= 96.34%, Q = 301.29), but sensitivity analyses showed that the results were robust to the 

exclusion of individual studies (supplementary material S3).  

Further analyses were conducted to assess the effect of individual endectocides on the 

abundance of different life stages. Ivermectin was associated with a significant negative effect 

on the abundance of both larvae (Hedges’ g: 0.57, 95% CI: 0.18 – 0.86, p = 0.002) and adults 

(Hedges’ g: 0.15, 95% CI: 0.04 – 0.62, p = 0.028) relative to controls. Similar negative patterns 

were observed for doramectin (Hedges’ g: 0.30, 95% CI: -0.33 – 0.93, p = 0.351) and 

eprinomectin (Hedges’ g: 0.06, 95% CI: -0.05 – 0.17, p = 0.281); though not significant, the results 

could not exclude the possibility of no effect and further research is required. For moxidectin 

residues, sample sizes were relatively low, and patterns consistent with either a positive or 

negative effect were observed for adults (Hedges’ g: -0.19, 95% CI: -1.25 – 0.86, p = 0.721) and 

larvae (Hedges’ g: 0.36, 95% CI: -1.34 – 2.05, p = 0.680). 

Exploration of the interaction between study type (field vs. laboratory) and formulation (pour-

on, injectable, spiked), showed that pour-on formulations showed a clear negative association 

with larval abundance in field experiments (Hedges’ g: 0.26, 95% CI: 0.19 – 0.34, p < 0.001). 

Results for injectable formulation and spiked dung on larvae were equivocal, with more data 

being required to assess the direction of these effects (Injectable: Hedges’ g: 0.49, 95% CI: -0.98 

– 1.96, p = 0.513; spiked: Hedges’ g: 0.32, 95% CI: -0.39 – 1.04, p = 0.372). In laboratory studies, 

a reduction in larval abundance was detected in spiked dung compared with controls (Hedges’ 

g: 1.20, 95% CI: 0.65 – 1.74, p < 0.001). With the available data, we were unable to detect a clear 

positive or negative association when using injectable formulation (Hedges’ g: 0.25, 95% CI: -

0.13 – 0.64, p = 0.201). For adults no clear conclusion can be drawn from the field experiments 

using pour-on and injectable formulations (pour-on: Hedges’ g: 0.35, 95% CI: -0.14 – 0.82, p = 

0.160; injectable: Hedges’ g: 0.47, 95% CI: -0.09 – 1.03, p = 0.100; no data were available for 

spiked formulations).
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Figure 6.4.2: Forest plot illustrating the impact of endectocides on total abundance of aphodiine beetles (larvae and adults). Boxes represent Hedges’ g 
estimates of effect size for individual studies within the overall meta-analysis, and the lines represent their 95% confidence intervals (CI). The diamond 
represents the combined mean Hedges’ g estimate of all studies, with its width representing its 95% CI. If an effect size is positive (to the right of zero), the 
data has greater association with ‘Control’ dung rather than those exposed to ‘Endectocides’ (negative; to the left of zero). Thus, highlighting the direction of 
the effect for each study. 
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Figure 6.4.3: Forest plot illustrating the impact of endectocides on adult aphodiine beetle abundance. Boxes represent Hedges’ g estimates of effect size for 
individual studies within the overall meta-analysis, and the lines represent their 95% confidence intervals (CI). The diamond represents the combined mean 
Hedges’ g estimate of all studies, with its width representing its 95% CI. If an effect size is positive (to the right of zero), the data has greater association with 
‘Control’ dung rather than those exposed to ‘Endectocides’ (negative; to the left of zero). Thus, highlighting the direction of the effect for each study. 
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Figure 6.4.4: Forest plot illustrating the impact of endectocides on larval aphodiine beetle abundance. Boxes represent Hedges’ g estimates of effect size for 
individual studies within the overall meta-analysis, and the lines represent their 95% confidence intervals (CI). The diamond represents the combined mean 
Hedges’ g estimate of all studies, with its width representing its 95% CI. If an effect size is positive (to the right of zero), the data has greater association with 
‘Control’ dung rather than those exposed to ‘Endectocides’ (negative; to the left of zero). Thus, highlighting the direction of the effect for each study. 
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6.4.3. Publication bias 
The asymmetry of the funnel plot computed for the total analysis suggested the presence of 

small-study bias or unexplained heterogeneity (Figure 6.4.5). It was calculated that correcting 

for this asymmetry would require four studies (black dots in Figure 6.4.5) to fall on the right of 

the mean effect size, i.e. studies which show significant positive effects of endectocides on 

aphodiine beetles. Using an REM including the imputed values for these four missing studies, 

we demonstrated that the new mean effect size for the symmetrical total analysis is very similar 

to the original estimate (Hedges’ g = 0.54, 95% CI: 0.31 – 0.93 compared with the original: 

Hedges’ g: 0.46, 95% CI: 0.21 – 0.71), suggesting that publication bias is unlikely to explain the 

results. Using the fail-safe N method for the total analysis, 1188 additional unpublished or 

undiscovered studies would be required to nullify the results. Rosenthal (1984) states that effect 

sizes are robust if the fail-safe N number is five-fold greater than the number of studies used in 

the meta-analysis plus 10. Thus, for every dataset used in the present study, an additional 54 

datasets showing no effect of endectocide residues would be needed to counter the effect of 

our findings. It can therefore be concluded that the estimated effect sizes in the meta-analysis, 

are robust and unbiased, can be interpreted in a meaningful way.  
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Figure 6.4.5: Hollow circles in the funnel plot represent individual studies from the total analysis 
(n = 22). Black circles represent imputed studies from Trim and Fill method, and the black 
diamond represent the 95% confidence intervals for the meta-analysis around random effect 
models mean adjusted for publication bias (black straight line). See text for further explanation. 
 

6.5. Discussion 
Our results indicate a significant overall negative effect of endectocide faecal residues on the 

abundance of both larval and adult aphodiine beetles. The high heterogeneity (I2) associated 

with study-specific factors (e.g., time of year, temperature, species, endectocide product, 

formulation) confirm the value of developing a standardised procedure for Tier B testing 

(Jochmann et al. 2011).  

The outcomes from this meta-analysis resolve the conflict between studies showing higher 

abundance of certain aphodiine beetles species in treatment dung (e.g. Errouissi & Lumaret 

2010; Webb et al. 2010; Jochmann, Lipkow & Blanckenhorn 2016) and those that show the 

opposite effect (e.g. Floate, Colwell & Fox 2002; Floate 2007). Our results show that 

endectocides lower the abundance of aphodiine beetles with the effect size being larger for 

larvae than for adults. Hence, even if adult dung beetles are observed in dung contaminated 

with endectocide residues, the survival of offspring developing in that dung is significantly 



 

134 
 

reduced compared to untreated dung. Ivermectin was determined to be particularly toxic, but 

consistent negative patterns were also detected for the other endectocides considered. The 

exception was the combination of adult beetles and moxidectin, though the data were limited 

and are consistent with the possibility of a negative effect. However, recent research has 

illustrated that moxidectin did not impact adult survival or reproductive success but did impact 

larvae survival rates (Martínez et al. 2018). Confounding factors across studies could also 

influence these results, including variation in dose and length of exposure. It is therefore 

appropriate to apply a precautionary principle until further data become available, this is 

particularly true for all endectocides other than ivermectin. Importantly, all of the endectocides 

tested were linked with some form of negative impact, so it would be unwise to classify any as 

environmentally safe based on current evidence. It would be valuable for future research to 

assess other veterinary parasiticides that may have a more limited impact on the environment.  

Investigating the interaction between formulation and study type (field v.s. laboratory) 

identified a significant negative impact of pour-on formulations on beetle larvae in the field, 

whereas evidence for the other application methods was more equivocal. Laboratory 

experiments only showed a reduction in the abundance of larvae developing in spiked dung, but 

most applications of endectocides have negative associations with beetle abundance (e.g. 

Krüger & Scholtz 1998b; Errouissi et al. 2001). However, we caution that there is a lack of studies 

that directly compare the non-target effects of different formulations, and this evidence gap 

should be filled as a matter of urgency. For example, we were unable to obtain data that directly 

compared in the same study, the effect of spiked dung versus dung from treated animals. There 

was also a lack of data assessing the abundance of adult beetles in spiked dung in field studies, 

and for larvae developing in dung from treated animals in laboratory studies.  

Analysis of the raw occurrence data (11 papers), demonstrated that treated dung had a slightly 

higher probability of containing at least one adult beetle compared to untreated dung, indicating 
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that residues can act as an attractant. The opposite pattern was detected for larvae, suggesting 

that residues increase egg and larval mortality. To our knowledge, this is the first report of how 

the occurrence of adult and larvae aphodiine beetles is affected by endectocide residues. It 

highlights the potential for a ‘snowball effect’, whereby attraction to residues may increase the 

likelihood of adults laying their eggs in dung that is particularly toxic to their progeny. In the 

absence of immigration, the application of endectocides could therefore potentially contribute 

to the local extirpation of aphodiine populations. The attraction of dung beetles to residues has 

been reported previously, with variation within and among studies associated with year, season 

(e.g., spring vs. autumn) and length of exposure (e.g. Lumaret et al. 1993; Floate 1998a; Verdú 

et al. 2018; Rodríguez-Vivas et al. 2019). Römbke et al. (2010) state that the attraction can occur 

when acetone is used as a solvent in studies that use dung spiked with ivermectin. However, we 

observed the same effects with alternative application formulations. These results demonstrate 

the complexity of the issue of attraction behind individual studies, and the local factors that 

need to be accounted for. When investigating the effects of endectocides, more research is need 

on the occurrence of species and not just on their abundance.  

Overall, our results clearly demonstrate the negative impact of endectocide residues on 

aphodiine beetles. We stress that a standardised methodological approach should be taken 

when conducting multi-species environmental impact assessments of different endectocide 

products; e.g., Jochmann et al. (2011); Floate et al. (2016); Jochmann, Lipkow and Blanckenhorn 

(2016). Critically, integrated research is needed to understand the synergies and trade-offs 

between veterinary pharmaceutical use and the delivery of ecosystem services, such as dung 

removal from pasture. As well as benefitting wildlife, more measured use of veterinary 

pharmaceuticals will slow the world-wide development of parasiticide resistance by target 

species. In Europe, nematodes on 12.5% of farms surveyed in four major cattle markets were 

recently found to be resistant to both ivermectin and moxidectin (Geurden et al. 2015). In Brazil, 

a study of 10 farms demonstrated that none of four avermectins (doramectin, eprinomectin, 
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ivermectin, moxidectin) were effective for the control of nematodes affecting cattle (Ramos et 

al. 2016). In the UK, guidelines have been created to manage for parasiticide resistance (Control 

of Worms Sustainably 2017; Sustainable Control of Parasites in Sheep 2017), however, 

dissemination and application of this information can be variable. Adhering to such guidelines 

and using parasiticide products with limited non-target effects may slow current declines being 

reported for insect populations (e.g. Hallmann et al. 2017) and will help sustain ecosystem 

services that annually return many millions to the global agricultural industry (e.g. Beynon, 

Wainwright & Christie 2015). 
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6.7. Appendices 
Appendix 6.7.1: Search terms used in the meta-analysis.  

TS = (anthelminthic*OR anthelmintic* OR Endectocide OR Macrocyclic lactone OR Milbemycin 
oxime* OR Avermectin* OR MLs OR Organophosphate OR veterinary medical products 
OR Synthetic pyrethroid* OR salicylanilide* OR substituted phenol* OR 
tetrahydropyrimidine* OR imidazothiazole* OR benzimidazole* OR Ivermectin OR 
moxidectin OR abamectin OR eprinomectin OR doramectin) AND TS = (cattle OR cow OR 
sheep OR livestock) AND TS = (Aphodius OR Aphodiinae OR Aphodiidae OR Aphodius 
ater OR Aphodius rufipes OR scarabid* OR Scarabaeidae OR night-flying dung beetle OR 
dung beetle* Or Aphodius bimaculatus OR Third-instar Larva OR Aphodius borealis OR 
Aphodius brevis OR Aphodius coenosus OR Aphodius constans OR Aphodius 
conspurcatus OR Aphodius contaminatus OR Aphodius testudinarius OR Aphodius 
depressus OR Aphodius distinctus OR Aphodius equestris OR Aphodius erraticus OR 
Aphodius pedellus OR Aphodius fimetarius OR Aphodius sylvestris OR Aphodius foetens 
OR Aphodius foetidus OR Aphodius fossor OR Aphodius frater OR Aphodius gissaricus 
OR Aphodius granarius OR Aphodius haemorrhoidalis OR Aphodius ictericus OR 
Aphodius immundus OR Aphodius lapponum OR Aphodius lividus OR Aphodius lugens 
OR Aphodius luridus OR Aphodius rufa OR Aphodius melanostictus OR Aphodius 
merdarius OR Aphodius nemoralis OR Aphodius villosus OR Aphodius niger OR Aphodius 
sus OR Aphodius obliteratus OR Aphodius obscurus OR Aphodius paykulli OR Aphodius 
piceus OR Aphodius pictus OR Aphodius plagiatus OR Aphodius porcus OR Aphodius 
prodromus OR Aphodius punctatosulcatus OR Aphodius punctipennis OR Aphodius 
pusillus OR Aphodius putridus OR Aphodius quadriguttatus OR Aphodius 
quadrimaculatus OR Aphodius rufipes OR Aphodius rufus OR Aphodius scrofa OR 
Aphodius serotinus OR Aphodius sordidus OR Aphodius consputus OR Aphodius 
sphacelatus OR Aphodius subterraneus OR Aphodius tomentosus OR Aphodius 
uliginosus OR Aphodius fasciatus OR Aphodius arenarius OR Aphodius varians OR 
Aphodius zenkeri OR Aphodius sticticus) 
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Appendix 6.7.2: Table providing additional information on the cattle breeds, their diet and dosage the endectocide used in each study. 

Source of data Endectocide Application 
method 

Cattle Breed Cattle Diet Application 
Dose 

Beynon et al. 
(2012) 

Ivermectin Pour-on Holstein friesian Whole wheat and peas Animec® 10 
ml/kg 

Errouissi and 
Lumaret (2010) 

Ivermectin Sustained 
release bolus 

Aubrac heifers (weighing between 100 
and 300 kg) 

Hay Ivomec® SR 
bolus 12 
mg/day 

Errouissi et al. 
(2001) 

Ivermectin Sustained 
release bolus 

Charolais steers and aubrac heifers 
(weighing between 150 and 450 kg) 

Hay Ivomec® SR 
bolus 12 
mg/day 

Floate (1998a)  Ivermectin Pour-on No breed specified (460 kg average 
body weight) 
 

Alfalfa cubes and barley silage 500 mg/kg 
body weight  
Ivomec®  

Floate (1998b) Ivermectin Pour-on Steers and heifers (no breed specified; 
460 kg average body weight) 
 

Alfalfa cubes and barley silage 500 mg/kg 
body weight  
Ivomec®  

Floate, Colwell 
and Fox (2002) 

Ivermectin, 
Doramectin, 
Eprinomectin, 
Moxidectin 

Pour-on Group 1: heifers (no breed specified; 
206 kg average body weight); Group 2: 
steers (no breed specified; 370 kg 
average body weight); Group 3: steers 
(no breed specified; 375 kg average 
body weight) 

Group 1: barley silage and rolled barley; 
Group 2: barley silage, chopped alfalfa, 
alfalfa silage and rye silage; Group 3: 
barley silage, chopped alfalfa, rolled oats 
and barley, and early lactation grain 
ration 

500 µg kg-1 
body weight 

Floate (2007) Ivermectin, 
Doramectin, 
Eprinomectin, 
Moxidectin 

Pour-on Group 1: steers (no breed specified; 
300 kg average body weight); Group 2: 
steers (no breed specified; 347 kg 
average body weight); Group 3: steers 
(no breed specified; 375 kg average 
body weight) 

NA 500 g/kg body 
weight 
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Floate et al. 
(2016) 

Ivermectin Pour-on Group 1: Aubrac heifers (361 kg 
average body weight); Group 2: 
Holstein steers (558 kg average body 
weight); Group 3: Holstein cows (1077 
kg average body weight) 

Group 1: hay and grass; Group 2: hay; 
Group 3: barley silage 

500 µg kg 
body weight 
Ivomec® 

Hempel et al. 
(2006) 

Ivermectin, 
Moxidectin 

Spiked NA Grass and hay 0.1, 1, 10, 100, 
mg a.s./kg 
dung 

Holter, Sommer 
and Grønvold 
(1993) 

Ivermectin Injection Heifers (no breed specified; weighing 
between 150 and 450 kg) 

NA 0.2 mg kg-1 
body weight 

Holter et al. 
(1993) 

Ivermectin Injection Red Dane/Friesian cross (weighing 
between 150 and 450 kg) 

NA 0.2 mg kg-1 
body weight 

Jochmann, 
Lipkow and 
Blanckenhorn 
(2016) 

Ivermectin Spiked NA NA 65.67, 20.75, 
6.57, 2.08, 
0.657, and 
0.208 
mg/kg fresh 
dung 

Krüger and 
Scholtz (1998a) 

Ivermectin Injection NA NA 200 µg kg-1 
body weight 

Krüger and 
Scholtz (1998b) 

Ivermectin Injection NA NA 200 µg kg-1 
body weight 

Madsen et al. 
(1990) 

Ivermectin Injection Red Dane heifers (c300 kg body 
weight) 

NA 500 µg kg-1 
body weight 
Ivomec® 

McCracken and 
Foster (1993) 

Ivermectin Spiked NA  NA 0.5, 1, and 2 
mg/kg dung 
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Nunome, 
Yoshida and 
Niizuma (2009) 

Ivermectin Pour-on Group 1: japanese black cattle; Group 
2: holsteins and jerseys 

Group 1: grass and alfalfa; Group 2: Hay, 
berets, grass 

NA* 

O’Hea et al. 
(2010) 

Ivermectin Injection NA Grass 0.2 mg kg-1 
body weight 
QualimecTM 

Römbke et al. 
(2007) 

Ivermectin Spiked NA Grass and hay 0.1, 1, 10, 100, 
1000 
mg a.s./kg 
dung 

Römbke et al. 
(2010) 

Ivermectin Injection 
Spiked 

Holstein cross (weighing between 480 
and 580 kg) 

Hay 200 µg kg-1 
body weight 
and 10.8 mg 
kg−1 dung 
Ivomec® 

Strong and Wall 
(1994) 

Ivermectin, 
Moxidectin 

Injection Limousin/fresian cross and belgium 
blue/fresian cross (302.7 kg average 
body weight) 

Silage 200 µg kg 
body weight 
Ivomec® 

Webb et al. 
(2010) 

Ivermectin, 
Doramectin 

Pour-on NA Grass 500 µg kg 
body weight 
Ivomec® and 
DectomaxTM  

*no doseage of Ivermectin was reported in the paper. 

 

 

 



 

141 
 

Appendix 6.7.3: Sensitivity analysis of cumulative analysis (one study removed). 
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Appendix 6.7.4: Sensitivity analysis of adult data (one study removed). 
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Appendix 6.7.5: Sensitivity analysis or larvae data (one study removed). 
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Chapter 7                                         

General Discussion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

145 
 

7.1. Overview 
Urbanisation and the intensification of agricultural land management are known to have 

significant negative effects on the environment — such as habitat fragmentation and reduction 

in prey availability. These changes have the potential to not only affect the abundance of 

species, but also the social structure of entire populations. Effective monitoring of how these 

negative anthropogenic pressures impact species allows evidence-based conservation and 

practical management strategies to be developed. In this thesis, I have combined computer-

modelling approaches, a meta-analysis, and field experiments, to understand how landscape 

features and land management practices might influence the movement patterns and relative 

abundance of Rhinolophus ferrumequinum across anthropogenically altered landscapes.  

7.2. Summary of results  
Most of Britain’s landscapes are highly modified, with centuries of anthropogenic pressures 

shaping and reshaping the landscape. As a result, habitats with high value to wildlife, such as 

hedgerows connecting ancient woodland patches, can often be found within wider areas of 

relatively low ecological value. Urbanisation, as well as changes to the agricultural landscape, 

have been shown to cause fragmentation at a landscape scale, creating large areas of low 

ecological value. To date there has been important work on the overall impacts of roads and 

lights on abundance and diversity of bat species (Stone, Jones & Harris 2009; Berthinussen & 

Altringham 2012b; Stone, Jones & Harris 2012; Rowse et al. 2016; Rowse, Harris & Jones 2016; 

Pourshoushtari et al. 2018; Claireau et al. 2019b; Medinas et al. 2019), but very little research 

on other aspects of road ecology (e.g. traffic noise). In Chapter 2, I provide novel insight into the 

effects of traffic noise on bat activity. Using BACI field experiments over two field seasons (firstly 

identifying the overall impact of traffic noise, and secondly examining the potential separate 

impacts of sonic and ultrasonic spectrums), I showed that traffic noise negatively impacts the 

relative activity for five bat species (or species groups), and the feeding behaviour of two species. 

My research shows that the sonic spectrum (0-20 kHz) has a larger negative impact compared 
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to the ultrasonic spectrum (>20 kHz). This was true across all of bat species examined, despite 

notable different in flight heights, speeds, foraging strategies, and echolocation patterns. The 

results suggest that the responses of bats to traffic noise are likely to be a generalised 

phenomenon that has a negative impact across different functional groups. The mode of action 

is therefore likely to be through general deterrence and avoidance, rather than through the 

masking of echolocation calls used for orientation or foraging, concurring with the results of 

laboratory-based studies (e.g. Luo, Siemers & Koselj 2015). 

The results from my third chapter illustrate the importance of other types of linear features 

within the environment, which can act as foraging grounds and commuting routes for bats 

within landscapes dominated by the less suitable habitat. Treelines were found to have 

significantly higher bat activity for two species, P. pygmaeus and R. ferrumequinum, compared 

to any other type of linear feature. Overall, these results contribute to our current scientific 

understanding of how bats utilise the agricultural environment, highlight which features and 

management regimes are beneficial to increasing species activity and connecting them with the 

wider environment (MacDonald & Johnson 1995; Staley et al. 2012; Froidevaux et al. 2019; 

Froidevaux, Broyles & Jones 2019). However, an important novel finding from my research was 

that about a third of all R. ferrumequinum activity recorded at paired detectors was derived from 

the middle of fields. This information is particularly useful when conducting Environmental 

Impact Assessments for new developments in open agricultural environments. 

From my research – shown in Chapters 2 and 3 – and the current literature, it is known that 

some linear features can increase permeability of the wider landscape for R. ferrumequinum, 

whereas other such as traffic noise, light and roads can cause avoidance behaviours in bats, 

acting as barriers to species movement. However, understanding the cumulative impact of these 

pressures on species of conservation concern is technically challenging — despite the necessity 

of incorporating such cumulative assessments in Ecological Impact Assessments (Environmental 
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Impact Assessment (EIA) Directive (2014/52/EU)). In Chapter 4, I addressed this issue using a 

novel predictive computer modelling technique to examine the functional connectivity of 

landscape features for R. ferrumequinum. Using non-invasive static bat detectors as a method 

of ground validation, I show how robust models relating to species movement can be made, 

highlighting routes of high functional connectivity and points that play important roles in linking 

R. ferrumequinum roosts to potential foraging grounds in the wider environment. The results 

highlighted the significant negative impact street lights can have on the movement of R. 

ferrumequinum, but also identify locations where practical conservation measures can be 

applied to potentially alleviate negative pressures and allow greater permeability for species.  

In addition to ecological factors, attributes of individual animals, such as their age, sex, and 

breeding status, can influence the way in which bats are spatially distributed. As explained in 

Chapter 5, social structure exists within hibernating R. ferrumequinum. Using a 17-year dataset, 

I show that adult males are more central within the social network during the hibernation 

period; whether this is for information-sharing, mating purposes or could potentially cause 

disease transmission. This is a stark contrast to R. ferrumequinum roosting ecology during the 

maternity season, were females usually cluster together and have little interactions with males 

(Ransome 1968; Ransome & Hutson 2000). I found that movements between sites were 

associated with both age and degree centrality of individual bats, with less-central hibernacula 

playing an important role for the movement of certain individuals. This highlights that despite 

low activity in some of these smaller roost locations, they are a conservation concern to 

decrease the risk of fragmentation and loss of connectivity within the wider landscape. This 

research identifies the need for understanding year-round patterns of species interactions and 

movement, which are essential for developing realistic species management plans. 

The activity levels of R. ferrumequinum within the environment may not only be influenced by 

the type physical management which is applied, e.g. ploughing and grazing fields or trimming 
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hedgerows, but also by the application of additional treatments such as fertilisers, insecticides, 

pesticides and endectocides to increase productivity. Endectocides are used to prevent or 

reduce parasitic loads within livestock but have the potential to suppress dung-associated 

invertebrate populations substantially and, in turn, the availability of prey for R. ferrumequinum. 

This is important as approximately 33% of their diet consist of Coleoptera and of those 29% were 

beetles that are associated with cow dung, primarily Aphodius spp. (Jones 1990). However, 

research in this area to date have presented contrasting results. To clarify this situation, I 

conducted a meta-analysis on all the available studies (n = 22), which examined the impact of 

endectocides on both the abundance and occurrence of adult and larvae aphodiine dung 

beetles. The results demonstrated that endectocides, particularly ivermectin, had significant 

negative effects on both adult and larvae dung beetles. The results of the meta-analysis, using 

data from field experiments only, also provides evidence of the toxicity of pour-on formulations 

on Aphodiine abundance; and insufficient evidence to effectively assess whether the 

alternatives are safe. Conversely, dung obtained from cattle treated with endectocides has 

higher occurrence rates of dung beetles than controls – indicating attraction – whereas the 

occurrence and abundance of larvae is reduced, presumably because of toxicity. Overall, this 

meta-analysis highlights how farming practices, e.g. parasite management in livestock, if not 

managed appropriately, can have significant negative effects on invertebrate populations. Not 

only reducing prey items for R. ferrumequinum and other species but also considerably 

impacting the ecosystem service that dung beetles provide, such as nutrient recycling, increasing 

soil aeration, and reducing pest species (Bornemissza & Williams 1970; Nichols et al. 2008; 

Beynon et al. 2012; Beynon, Wainwright & Christie 2015).  

7.3. Recommendation 
Under the current EU legislation (Habitats Directive), member states have to implement specific 

conservation measures to achieve favourable conservation status for annex species (R. 

ferrumequinum are both an Annex II and Annex IV species). For such species, it is not only their 
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resting places (i.e. roosting, nesting or denning locations) and foraging grounds that need to be 

considered when assessing potential impacts but also the wider environment in order to 

maintain the integrity of these places. To achieve this status, a landscape scale approach may 

need to be taken with consideration given to meta-population dynamics, social structure, 

heterogeneity and connectivity within the landscape. This not only takes into account the 

composition of the landscape and the amount of any ecological resource, e.g. woodlands, but 

also the configuration and the spatial arrangement of the features within it.  

Based on the results of my research and the relevant published scientific literature, the following 

recommendations are made to reduce and mitigate the impacts of habitat fragmentation and 

changes to land management at both a local and landscape scale. While these recommendations 

are largely focused on R. ferrumequinum, they are applicable to other species.  

7.3.1. Agricultural environments 
Hedgerows act as boundaries between adjacent lands, store carbon and regulate the water table 

(Holden et al. 2019); but they also act as critical habitats for species to breed, forage and 

commute within agricultural environments. My results showed that those hedgerows managed 

sympathetically are more likely to have greater bat activity compared to those managed 

intensively (Chapter 3). In addition to my research, the literature highlights that having linear 

features with taller vegetation and trees, as well as the total length of hedgerows in the wider 

environment (Verboom & Huitema 1997), can increase bat activity. In addition, Pinaud et al. 

(2018) showed that R. ferrumequinum are less likely to cross hedgerows/woodlands habitats 

that have gaps larger than 38 metres. These results show the need to increase connectivity of 

linear features within the landscape to prevent the isolation of resources such as foraging areas. 

Such conservation measures could include, only trimming the hedgerow every three years, cut 

the hedgerows on rotation between field boundaries and not managing them intensively (Staley 

et al. 2012; Froidevaux et al. 2019; Froidevaux, Broyles & Jones 2019).   
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Attempts have been made to implement increased connectivity and biodiversity benefits into 

agri-environmental schemes (AES), but with limited resources for ensuring compliance or 

implementation, the success of these measures are largely unknown (Kleijn & Sutherland 2003). 

The current model for protecting biodiversity within agricultural settings has a number of 

limitations at a landscape scale and a shift in policy of these interventions, from farm-based 

payments to result based payments within new Environmental Land Management schemes 

(public money for public goods), is required (Haaren & Bathke 2008; Armsworth et al. 2012). In 

addition, little work has been done in achieving spatially targeted and coordinated approaches 

to AES. Such approaches could utilise the work carried out in Chapter 4, to ensure that the 

restoration or creation of new habitat could be implemented in the best locations to achieve 

the highest net gain for biodiversity, as well as the greatest benefit for landowners alike. 

Spatially targeted approaches have been shown to be more likely to yield higher biodiversity 

benefits when compared to non-spatially targeted works. For example, the farmland bird 

species cirl bunting and the stone curlew (Bealey et al. 1999; Green, Tyler & Bowden 2000; 

Stanbury et al. 2010; Davies et al. 2011) achieved local recovery because spatially target 

conservation measures were applied. These results suggest that enhancing or maintaining 

landscape heterogeneity and spatially targeting resources are likely to be highly effective 

methods of conserving biodiversity within agricultural landscapes (Concepción, Díaz & Baquero 

2008). This is particularly relevant for R. ferrumequinum, as Froidevaux et al. (2017) shows that 

the size of colonies are significantly correlated to the availability of resources surrounding each 

roost. 

To achieve these outcomes, toolboxes such as Circuitscape (Chapter 4) and habitat suitability 

models could be used. These can identify the best location to create new hedgerows allowing 

wider connectivity in the landscape, which agricultural fields to afforest for increasing foraging 

and roosting habitat for bats, and to identify those areas that already act as critical corridors for 

species movement and to protect them from further anthropogenic pressures.  
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 For R. ferrumequinum, it is critical that both a landscape scale and a multi-season approach is 

taken for their conservation. Previous research has shown that R. ferrumequinum are active and 

forage throughout the hibernation period (Park, Jones & Ransome 1999; Park, Jones & Ransome 

2000). This means that conservation measures will have stronger positive effects if implemented 

in both the summer and wintering areas of the species. These measures should have special 

consideration for how individual attribute can influence their roosting ecology at different times 

of the year and, particularly, the importance of implementing these measures at smaller more 

isolated roosting locations in the wider network (Chapter 5).  

Conservation plans not only need to consider the effects of changes and pressures to the 

physical environment, but also the application of veterinary products on livestock. In Chapter 6, 

I demonstration the significant negative effects endectocides can have on dung beetles, a key 

prey item of R. ferrumequinum during the breeding season. Simple measures to reduce the 

impact of endectocides on dung fauna could save the environment and the economy 

£40.2million year−1 (£4.36 per cow) under agri-environment schemes (Beynon, Wainwright & 

Christie 2015). Such measure include having mixed stock herds and rotate them over longer 

periods of time, leaving fields fallow for at least three weeks. In addition, only those livestock 

that need to be treated should be treated (whilst avoiding under-dosing), rather than the entire 

herd being treated at once. If livestock require treatment, those chemicals that have the lowest 

environmental impact should be preferential used and the treated animals should be kept 

indoors or off fresh pasture for at least a week, allowing large proportions of the chemical to 

pass through their dung.  

7.3.2. Urban environments 

The expansion of urban areas, and in particular roads, has been highlighted as one of the ten 

main threats to biodiversity (Maxwell et al. 2016). Roads are known to cause habitat loss, 

degradation and fragmentation, they act as barriers through the effect of their lighting schemes 

and direct mortality by collision with vehicles (Trombulak & Frissell 2000; Fensome & Mathews 
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2016). Their effects are not localised and can be recorded hundreds of meters away from the 

source location (Forman 2000; Forman & Deblinger 2000; Berthinussen & Altringham 2012b; 

Kitzes & Merenlender 2014). My results show (Chapter 2) that traffic noise can be added to this 

list, having a significant negative effect on free-living bat species. These results highlight how a 

single factor can contribute to the barrier effect of roads, causing the avoidance of key foraging 

areas and a loss of connectivity at a landscape scale for bats.  

Using the predictions made from the toolboxes used to create functional connectivity models in 

Chapter 4, key crossing locations or pinch-points in the landscape could be identified to apply 

practical mitigation measures. These could include noise barriers, substrate alterations and 

speed limits (Wayson 1998; Ishizuka & Fujiwara 2004) but research is needed to test the 

effectiveness of alternative measures. New mitigation strategies are particularly needed to 

reduce the impact of sonic noise created by vehicles. Unfortunately, this is more difficult than 

mitigation for ultrasound which is readily attenuated over a shorter distance through air. 

Although the transition to electric vehicles may reduce road noise within urban centres, it is 

unlikely to have a material impact for most roads because at speeds >75km/hour, sound is 

generated primarily by the contact between the tyres and road surface rather than by engines 

(The Highway Agency et al. 2011). Alterations to tyre composition and structures are therefore 

a more promising route to reducing the impacts of traffic noise. 

Other options surrounding these crossing points could be to design more permanent structures 

such as underpasses and overpasses, either creating them during new road schemes or 

retrofitting them after. These structures have the potential to create much larger corridors in 

the landscape, making it safer for both animals and people alike (Olsson, Widén & Larkin 2008; 

McGregor, Wilson & Jones 2015; Sawyer, Rodgers & Hart 2016). Bat gantries have been installed 

at a number of locations throughout Europe, and there is much criticism as to whether they 

actually provide bats with safe crossing points at roads. Berthinussen and Altringham (2012a) 
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demonstrates that gantries, in Britain, did not guide bats to cross the road at a safe height, 

despite some being on existing commuting routes. In contrast, both Claireau et al. (2019a) and 

Claireau et al. (2019c) found that in France, bat gantries could work as long as they were placed 

in the correct position (along previously known commuting routes). Underpasses have also been 

shown to be effective mitigation measures to increase connectivity for bats and other animals 

(Sawyer, Lebeau & Hart 2012; Sawyer, Rodgers & Hart 2016). Similar issues surrounding their 

design have been recognised, with larger underpasses, positioned in the right locations and at 

the correct height, having higher activity levels compared to smaller ones (Boonman 2011; 

Berthinussen & Altringham 2012a; Davies 2019). This identifies the need to start thinking about 

implementing larger green bridges at key locations, which could serve as corridors for other 

large mammals and not just bat species. 

The current literature (Stone, Jones & Harris 2009; Falchi et al. 2011; Stone, Jones & Harris 2012; 

Day et al. 2015; Wakefield et al. 2015; Macgregor et al. 2017; Russo et al. 2017; Azam et al. 

2018), highlights the significant negative impact lights can have on bat species, both impacting 

their prey items foraging potential (e.g. Lepidoptera) and movement within the landscape. My 

research, Chapter 4, also crucially recognises the severity of these impacts on species 

movement, with street lights having the highest resistance value of any environmental variable. 

By pinpointing the areas within the urban environment where these impacts occur (e.g. using 

Circuitscape), we can target practical mitigation measure to achieve the highest conservation 

gains. One of the simplest measures is to avoid any unnecessary lighting where possible. 

However, were lighting is required, all lighting should be dimmed as much as possible (Rowse, 

Harris & Jones 2018) and light spill above the horizontal plane should be eliminated. These lights 

should not be higher than required, with lower lights or bollard style lights where possible. Light 

baffling should be placed on all light fixtures to stop any back spill, to help reduce light trespass 

into important foraging and commuting areas (Falchi et al. 2011; Stone, Harris & Jones 2015; 

Voigt et al. 2018). Another, more recent option, has been to alternate the spectral output of LED 
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lights to achieve a red spectrum (reduced blue wavelength). This has been shown to increase 

activity of Myotis and Plecotus species when compared to white light, but a negative effect was 

observed for lesser horseshoe bats (R. hipposideros) (Spoelstra et al. 2015; Spoelstra et al. 2017; 

Zeale et al. 2018). However, there are some draw backs to this type of lighting scheme with 

public opposition being recorded as well as significant negative impacts on migratory bird 

species being observed (Gauthreaux Jr et al. 2006; Poot et al. 2008). This suggests that while 

lighting schemes should be designed with specific taxa in mind, consideration should be given 

to other taxa. This is particularly true for the prey item of many species, such as insects, which 

have been undergone dramatic declines in recent times (Conrad et al. 2006; Forister, Pelton & 

Black 2019).  

7.4. Future research  
The research presented in this thesis uses novel experimental and computational techniques to 

address some of the issues relating to landscape scale management of R. ferrumequinum. 

Although these techniques can generate a step-change in our approach to R. ferrumequinum 

conservation, further research is needed to address a number of issues.  

7.4.1. Predictive conservation and remote sensing 
Many practical conservation measures that are implemented are reactive rather than proactive, 

e.g. adding baffles to streetlights. In contrast, predicting likely future impacts on biodiversity is 

critical to our ability to design measures to future-proof the landscape, e.g. land use change or 

climate change (e.g. Razgour 2015). Having this foresight can allow conservation organisations 

to either have a management plan already prepared, or to make predictions about the severity 

of the impact.  

The visualisations of such future projections could be tested through GIS and the use of 

software’s like MaxEnt or Circuitscape (e.g. Razgour 2015). For example, the relative impacts of 

alternative scenarios, such as the positioning of new housing or lighting schemes, the creation 

of woodland or the restoration of hedgerows, can be assessed through this modelling process, 
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helping to achieve evidence-based wildlife conservation. However, to take this approach one 

step further is required in order to allow real-time decisions to be made: based on the premise 

and underlying algorithms of machine learning and artificial intelligence technologies, user-

friendly web applications could be developed to allow local authorities, developers, 

conservation organisations and community groups to input potential new developments; 

viewing how these structures or lighting schemes might influence the cumulative functional 

connectivity of a species across a landscape, rather than just examining the impacts within the 

immediate vicinity of a development. This would allow the most appropriate positioning of such 

developments to be tested before any permanent structure is built or before any money is spent 

on subsidising land improvements e.g. new hedgerows being planted for bats during AES.   

Similarly other technologies, such as remote sensing, could be used to obtain a more accurate 

understanding of how individual bats utilise and move along different features within the 

landscape. The application of such tools has the ability to provide information not only on 

species movement, in terms of GPS fixes, but their flight speeds, height, proximity to other 

individuals, and even foraging behaviour in some cases (Berry, Mackey & Brown 2007; 

Robertson & Radford 2009; Kotzerka, Garthe & Hatch 2010; Suryan, Santora & Sydeman 2012; 

Tew Kai et al. 2013; Neumann et al. 2015; Roeleke et al. 2016; Ripperger et al. 2020); as well as 

being utilised to recorded environmental variables, e.g. temperature/light/humidity sensors.  

These approaches have the capability to overcome many of the difficulties encountered when 

trying to incorporate research into real-world decision-making by local planners (Opdam, 

Foppen & Vos 2002). My suggested approaches have the potential to facilitate evidence-based 

policy and management. The resultant outputs of the predictive models can help planners and 

conservationists reduce human-wildlife conflicts, by applying mitigation measures strategically 

at locations likely to be most sensitive to species movement and future land-use change.  
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7.4.2. Practical conservation and species ecology 
By using predictive approaches, practical mitigation measures can be specifically designed for 

key pinch-point locations identified during the modelling process, particularly road crossing 

points.  

As highlighted above, structures developed to reduce habitat fragmentation (e.g. 

under/overpasses) can be extremely useful in aiding species movement and increasing genetic 

diversity into the wider landscape (Olsson, Widén & Larkin 2008; Sawyer, Rodgers & Hart 2016); 

but they can also be costly, in-practical and unsuccessful. To date, very little practical research 

has been conducted on the effectiveness of the designs of different crossing structures, e.g. the 

wire designs in bat gantries, before they are permanently fixed in place. Future research now 

needs to focus on testing practical interventions designs to improve the safety of road crossings 

for bats and other species. Such measure and designs could be first scaled down to assess their 

effectiveness across large gaps in hedgerows, e.g. those over 38 meters for R. ferrumequinum 

(Pinaud et al. 2018), and then implemented at a larger scale in partnership with local road 

authorities.  

Specific measure could be designed and tested to reduce the impact of traffic noise, principally 

in the sonic spectrum, on bat activity and foraging behaviour. Wildlife friendly sound barriers 

could be placed at key locations to alleviate some negative impacts of traffic noise and increase 

the permeability of those locations for bat species. However, these approaches could be limited 

due to the sound travelling beyond the barriers into the wider landscape and there is a question 

of whether drawing bats into these locations is actually beneficial. Nevertheless, their 

effectiveness at reducing traffic noise and whether this is actually desired for bat species needs 

to be investigated further. Similarly, future research could focus on using deterrents for species 

to decrease the risk of them crossing roads at specific locations, thus encouraging them to cross 

at other locations, e.g. purpose build green bridges. Some research into this field has already 

begun with specific asphalt being designed to emit an ultrasonic deterrent as vehicles approach 
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specific pinch points in the landscape, acting as an experimental audible warning system. The 

idea being that the early warning system only deters bats when collision risk is imminent, 

reducing the overall barrier effect of roads (Fourasté et al. 2014). 

7.4.3. Analysis of social structure and movement at a landscape scale 
While the research of this thesis focussed on movements around their maternity roosts (Chapter 

4) and between multiple hibernation locations (Chapter 5), future research should examine the 

connectivity of R. ferrumequinum roosts and the potential impacts on their dispersal abilities 

across their entire population at a landscape scale. This would identify whether some meta-

populations are at risk of becoming isolated, both genetically and structurally, and vulnerable to 

local extinction (Wright et al. In prepreation). Very little is understood about the larger 

movements of R. ferrumequinum during the spring and autumn, e.g. what routes both male and 

females use to travel between their summer and hibernation roosting locations, with most 

studies having focused on daily movements around maternity colonies rather than their 

seasonal movement patterns.  

As I have shown in Chapter 5, male R. ferrumequinum play a key role in maintaining social links 

between individuals throughout the hibernation period, but male roosting behaviour during the 

summer months is relatively understudied. During these months males usually occur roosting in 

isolated locations, on their own, away from the maternity colonies, consequently, they are 

constantly at risk from anthropogenic pressures, e.g. home renovations. However, the relative 

cumulative effect of losing single non-maternity roosting locations at a landscape scale is 

unknown, e.g. mating roosts. I have shown (Chapter 5) that smaller roosting locations do play a 

role in R. ferrumequinum social networks during the hibernation period. Additionally, having 

collaborative approaches to examine what role maternal lineages, and the use of genetic 

techniques, play in determining social patterns during hibernation periods will provide key 

information for their conservation. While, in this thesis, I found no significant relationship 

between sex and age clustering together at a landscape scale, future research should focus on 
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identify any relationships between attributes at a more local level, trying to classify social groups 

within caves rather than between them. Such questions could be answered with more frequent 

records of individuals.  

At a landscape scale, future research not only needs to consider where these individual roost 

are located and the effects they might have on the social network of a population; it also needs 

to consider the heterogeneity of the landscape (the influences specific habitat types can have 

on the social structure of a species) and the potential implications this could have if a population 

lost part of their home range (August et al. 2014; He, Maldonado-Chaparro & Farine 2019). Such 

information could then be combined with habitat suitability models or functional connectivity 

model (e.g. Chapter 4), to produce outputs which not only take into consideration habitat but 

also the social relationships between individuals.   

7.5. Conclusion and final comments 
Urbanisation and agriculture are continuing to grow at a rapid rate, with these alterations to 

land use having the potential to cause significant negative impacts on biodiversity. To match 

this, conservation efforts need to continue to utilise and develop new tools, not only examining 

where species occur but how they move in the landscape. In this thesis, I have combined 

computer-modelling approaches, a meta-analysis and field experiments to assess how the 

physical and social structures within an environment can influence the movement and activity 

of R. ferrumequinum, allowing for the creation of better informed practical conservation 

strategies.  

Utilising, developing and incorporating landscape scale approaches into conservation 

management has been acknowledged to be a progressive way of better protecting species by 

creating bigger, better and more connected habitats for a wide range of species (Lawton 2010), 

not just those of conservation concern (Pressey & Bottrill 2009). To achieve such goals and to 

manage the effects of potential impacts on the environment takes collaborative effort from 
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many stakeholders, from farmers and environmental groups to universities and national 

governments. This shift in mind-set is required to take a broader view of the landscape and how 

individual pressures can cause significant effects outside of their site boundaries. My research 

has presented novel methods in assessing and predicting the cumulative impacts of 

anthropogenic pressures on R. ferrumequinum, giving a foundation for future research and 

management plans to achieve the highest biodiversity net gain possible for the species.  
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I am looking out of my window in an anxious and resentful state of mind, oblivious of my 

surroundings, brooding perhaps on some damage done to my prestige. Then suddenly I observe 

a hovering kestrel. In a moment everything is altered. The brooding self with its hurt vanity has 

disappeared. There is nothing now but kestrel. And when I return to thinking of the other 

matter it seems less important. And of course this is something that we may also do 

deliberately: give mention to nature in order to clear our minds of selfish care. 

― Iris Murdoch, The Sovereignty of Good 
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