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Toprics IN GEOMETRIC ANALYSIS:

ANALYSIS ON SYMMETRIC SPACES, GENERALISED SPECTRAL ZETAS,

AND THE HYPERGEOMETRIC FUNCTION

ABSTRACT

In this thesis we study topics pertaining to the analysis, geometry, and spectral theory
of the Laplacian on Riemannian symmetric spaces of rank one. These spaces are quotients
of the form 2~ = G/H with G a Lie group and H a suitable subgroup of G. In the
compact case they entail the unit sphere S = SO(n+1)/SO(n), the real projective space
RP"™ = SO(n+1)/0(n), the complex projective space CP" = SU(n+1)/S(U(n) x U(1)),
the quaternionic projective space HP"™ = Sp(n+1)/(Sp(n) xSp(1)), and the Cayley Plane
P2(Cay) = F*/Spin(9). In the non-compact case they entail the real hyperbolic space
RH" = SOy(n,1)/SO(n), the complex hyperbolic space CH" = SU(n,1)/S(U(n) x
U(1)), the quaternionic hyperbolic space HH"™ = Sp(n,1)/(Sp(n) x Sp(1)), and the
hyperbolic Cayley plane H?(Cay) = F/Spin(9).

At the heart of this study is the analysis of operators built out of the Laplacian,
the spherical functions, the spectral projections and measure, and the functional calculus
associated with the Laplacian. These build close connections with the theory of special
functions (the hypergeometric function and orthogonal polynomials) on the one hand and
representation theory and harmonic analysis on these spaces on the other.

The Maclaurin spectral coefficients are computed by using a class of differential-
spectral identities developed here together with an explicit description of the spectrum,
the multiplicity functions and Plancherel measures for each space. We closely examine the
heat kernels and the spectral zeta functions, as two key tools, the latter being given in the
compact spaces by the Dirichlet type series

C(s;%):;]\&ﬁ/), Rs > d/2,

and in the non-compact case, via the Mellin transform of the heat trace, by

(s 2) = () /OOO (A;‘% dx.
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We introduce and study some new generalisations of these spectral objects and among
other things provide explicit representations for them in terms of the Hurwitz zeta function,
Beta, Gamma and other special functions. These in particular lead to the discovery of the
poles and residues of the zeta type functions and, more remarkably, deeper proportionality
relations between individual pairs of compact and non-compact spaces in ” duality” .

We extend the classical Hecke-Funk identity (originally for spheres) to all compact
symmetric spaces, where we show for suitable F' with Schwartz kernel Kz that

F(=Ay)p = KplP6, ¢ €H,
where Hj, are the finite-dimensional eigenspaces of the Laplacian and

a,f (2W)d/2

Rl [ Kzt 00 -

~ 20T(d/2

Here 32,‘: # are the Jacobi polynomials with o, 8 > —1 fixed parameters associated to each
space. A spectral-differential identity on the hypergeometric functions of the form

N
o [2F1(a, b ¢; £(9)] ]9_0 =3 puHin(—ab),
- m=0

is proved, where .%p is a differential operator and H,,(X) = H,,(a, b, ¢; &; X) is an explicitly
computable polynomial, which with various specialisations and generalisations as stated
above play a central role throughout the thesis.
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Introduction

This thesis is formed by a collection of studies in the area of geometric analysis, primarily
focused on symmetric spaces of rank one. Each chapter consists of a different study,
and thus each is self-contained (bar a shared set of appendices and certain omissions to
avoid excessive repetition) and has its own character and feel. Throughout we will be
working with the Gaussian hypergeometric function oF}(a,b; ¢; z), as well as the families
of functions and polynomials that arise as special cases of it, in paricular the Jacobi and
Gegenbauer families. Our interest in these families arises from how they act as the zonal
spherical functions on rank-one symmetric spaces.

In Chapter 1 we present a differential identity on the Gaussian hypergeometric function
oF (a,b;c; z), unifying and extending certain spectral results on the scale of Gegenbauer
and Jacobi polynomials, and leading to a new class of hypergeometric related scalars
cgn(a, b, ¢) and polynomials %, = %,,(X). We next consider the Laplacian on a compact
rank one symmetric space and for operators of the Laplace transform type use an operator
trace relation to describe the Maclaurin spectral coefficients of the Schwartz kernels of these
operators. Other related representations as well as an extension of the differential identity
to generalised hypergeometric functions are discussed.

In Chapter 2, we build on the differential identity in Chapter 1. Here we formulate
and prove a generalised multi-variable differential-spectral identity on the hypergeometric
function and discuss applications of this identity to the spectral representation of operator
kernels and zonal spherical functions on symmetric spaces of rank-one. Some extensions
of the main result of this chapter and a number of related examples are also presented.

In Chapter 3, a constant coefficient partial differential operator %4p = P(9) of or-
der N is applied to the Gauss hypergeometric function 9Fy = 2Fi(a,b;c;z) with 2z =
1—g(X1)...9(X,) and point evaluated at (Xi,...,X,;) = 0. Here g is an even smooth
function satisfying g(0) = 1. A representation formula is obtained that completely clas-
sifies the action by a sequence of polynomials %(a,b,c;g; X) and scalars cj-(a, b,c;9)

directly linking to the hypergeometric parameters a, b, c and the function g. Explicit and
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computable descriptions of these quantities in terms of the elementary symmetric polyno-
mials and the exponential Bell polynomials are given and some applications to the analysis
of Riemannian symmetric spaces are discussed. Extensions of the result to the generalised
hypergeometric function , F, = , F;(a; b; z) with vector parameters a, b and the matrix hy-
pergeometric function 9 F (A, B; C; z) with matrix parameters A, B and C are established
and discussed.

In Chapter 4, we present applications of the differential identity outlined in the previ-
ous chapters to the analysis of invariant operators on compact rank-one symmetric spaces,
including operator trace formulations pertaining to functions of the Laplace-Beltrami op-
erator. A generalisation of the Funk-Hecke formula is stated. The Maclaurin spectral
functions associated with various operator families are examined and exploited and a
novel trace representation via ¢-series encompassing Jacobi theta series and related func-
tion families are established.

In Chapter 5, we undertake a deeper study of the Maclaurin spectral coefficients

2(t; Z7) introduced in earlier chapters, specifically in the case of the heat semi-group,
where they are seen to be generalisations of the heat trace as ©(t; 27) = by (t; Z7). We
extend the well-known short-time asymptotics of the heat trace on symmetric spaces,
providing explicit formulae for an analogous expansion of the so-called Maclaurin heat
coefficients on each rank-one symmetric space Z . Comparing the expansions of spaces in
duality (compact vs. non-compact), we arrive at a proportionality principle between the
so-called generalised Minakshisundaram-Pleijel heat coefficients.

In Chapter 6, we study the spectral zeta function ((s; Z") on rank-one symmetric
spaces, motivated by their remarkable relation to the heat trace via an application of the
Mellin transform. Although the form of these zeta functions differs between spaces of
compact and non-compact type, they share the same set of poles, with the residues being
represented using the Minakshisundaram-Pleijel heat coefficients a;(.2") of the asymptotic
expansions of the heat trace as discussed in the previous chapter. With the aim of ex-
tending this, we take the Mellin transform of the Maclaurin heat coefficients 05, (t; Z7),
deriving a generalised spectral zeta function (y(s; Z7). We give explicit formulae for these
functions on compact and non-compact spaces in terms of the Hurwitz zeta function and
various special functions, enabling us to locate the poles. We finally derive and prove a
proportionality principle on the level of the residues of the generalised zeta function on

spaces in duality.



Tables

This section contains tables of geometric and spectral data referred to throughout the

thesis.

Table 1: Spectral data for compact rank one symmetric spaces

z M M)
s k(k+n—1) (2k+nkii)£kl;n— 2)!
e
e | ween ()
o) e ()
PHCay) | R(E+1D 6(2k +11) Fgfﬁ!:!)rrff - i)l)

Table 2: Geometric quantities for compact rank-one symmetric spaces

X N RP" cp" HP™ P?(Cay)
0(Z) 27 T 27 2 2
(n+1)/2 (n+1)/2 n.n 2n,_2n | 8
Vol(2) 27 T 4" 4" 3!(4m)
I'(n+1)/2) T'((n+1)/2) n! (2n+1)! 11!

Table 3: Shared parameters for dual rank-one symmetric spaces

Ze d a B p Zne
s» n (n-2)/2 (n-2)/2 (n-1)/2 | RH"
RP™ n (n—-2)/2 (n—2)/2 (n-1)/2 -
CP" |2n n-1 0 n/2 CH"
HP" |4n 2n—1 1 (2n+1)/2 | HH"
P?(Cay) | 16 7 3 11/2 H?(Cay)




Table 4: Hypergeometric parameter values for compact rank one symmetric spaces

Z a b c —ab
N -k k+n—-1 n/2 kk+n-1)
RP" -2k 2k+n—-1 n/2 2k(2k+n-1)
cp» —k E+n n k(k +n)
HP™ —k k+2n+1 2n  k(k+2n+1)
P?(Cay) | —k k+11 8 k(k+11)

Table 5: The first few coefficients cJ*(a, b, ¢)

il S S
_15(a +b)* —15(a + b)c
o1 3latb)—2c+1 de(c+1)(c+2)
2¢ 4e(c+1) C15(a+b)+2¢° —9c+4
de(e+1)(c+2)
o o 3 45(a +b) —30c+ 15
de(c+1) 8c(c+1)(c+2)
15
3] 0 0 -
8c(c+1)(c+2)




Chapter 1

1.1 Introduction

Let (#,g) be an d-dimensional (d > 2) compact smooth Riemannian manifold without
boundary and let A = A, denote the Laplace-Beltrami operator on .#, given in local
coordinates, by Ay = 1/y/det g 9; (v/det g ¥ d).

By basic spectral theory there exists a complete orthonormal basis (f;j : j > 0) of ei-
genfunctions of —A, in L?(.#,dv,) with a spectrum ¥ = %(—A,) consisting purely of
eigenvalues. Each eigenvalue has a finite multiplicity and the spectrum can be arranged as
0=MX <A1 <Ay <--- with \; 7 oo. Thus —A,f; = A;f; and by suitably normalising
[ fillL2(wy = 1 for all j > 0 while (fj, fx)r2(n) = 0 for 0 < j # k. Now for a given
function ® = ®(X) in the Borel functional calculus of —A, the operator ®(—A,) has a

Schwartz kernel given by the spectral sum

Ko(z,y) :Z‘I’(Aj)fj(ﬂf)fj(y), T,y € M. (1.1.1)

§=0
If A is a compact rank one symmetric space of a Lie group then by using the addi-
tion formula for the matrix coefficients of irreducible unitary representations the above
simplifies to

Ka(0) = kZﬂ%@W)@(@%» (1.12)

where F, = Z1(0; #) are the spherical functions on .#Z, A\, = \i(.#) are the numerically
distinct eigenvalues of —A on #, My = My(.#) is the dimension of the eigenspace
associated with A, 8 = 6(z,y) is the distance between z,y € .# and Vol(.#) denotes the
volume of .Z. (See, e.g., [6, 62, 83, 99, 100])

The families of compact rank one symmetric spaces of interest are the sphere S” =
SO(n + 1)/SO(n), the real projective space RP™ = S"/{£} = SO(n + 1)/0(n), the
complex projective space CP™ = SU(n+1)/S(U(n) x U(1)), the quaternionic projective
space HP" = Sp(n + 1)/Sp(n) x Sp(1) and the Cayley projective plane P?(Cay) =
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F,/Spin(9). These spaces with the exception of the real projective space RP™ (n > 1) and
the circle S are simply-connected where 71 (RP™) = Zs n > 2 and 71(S?) = w1 (RP!) & Z.
(For further discussion and results see [6, 7, 99] and [28, 41, 98, 100]).

The scale of Jacobi polynomials e@éa’ﬂ ) (with £ > 0, a, 8 > —1) are intertwined with
the spherical functions on these symmetric spaces (for suitable «, ) and here, in the

simply-connected case, (1.1.2) can be rewritten as !

2 My ()

n (e.8)
W@(Ak),@k (cos ). (1.1.3)

Ke(0) =
k=0

Tables 1 and 2 present some of the relevant spectral and geometric data for the rank one
symmetric spaces described above and Table 3 gives among other things the parameters
a, B for the spherical functions associated with these spaces. Now in view of the Schwartz
kernel K4 in (1.1.3) being an even function of 6, subject to sufficient regularity, it admits
a formal Maclaurin expansion about § = 0, given by

0o . . 00 .
02] 62] 2y b2]

K
]Z;; (25)! 6% 4)! Vol( )

6=0 ]:0

(1.1.4)

The Maclaurin spectral coefficients by;[®] defined above through the successive differenti-
ation of the Schwartz kernel at the origin can be given an interesting trace formulation by
applying the following statement, in essence, a differential-spectral identity on the Jacobi
polynomials. 2

Towards this end let Py (X) = po+>_ p; X? (summation for 1 <4 < N) be a polynomial

of degree N > 2 and consider the differential operator

N
Lo =Py (dfd0) =po+ Y pid'/db'. (1.1.5)

i=1

Theorem. The action of £p as in (1.1.5) on the Jacobi polynomial ,@Iga”g) satisfies the

following identity,

IN/2]
fp%“’ )(0089 ‘ _=hot Z meZC )\aﬁ]

N/2J

=Dpo + Z p2m m ) (116)

"When .# = RP" it suffices to set Fy(0) = 2"~ 2/>=2/2) (co50) = €% (cos 6).
2This theorem is a special case of a more general result on hypergeometric functions appearing in

Theorem 1.2.2.
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Here )\2”8 = k(o + B+ k+ 1) are the eigenvalues of the Jacobi operator (see (A.1.6)),

cn

(v, B) are suitable coefficients and Hm = Xm(X) is the mt degree polynomial

Fn(X) = (o, B)X. (1.1.7)

Returning now to the discussion prior to the theorem it is seen that here the Mac-
laurin spectral coefficients associated with the Schwartz kernel K¢ are given by by[®] =

Te{®(—A 4)}, and for [ > 1 by

821

bal®] = 5o Ko(0)|  Vol(#) = Te{[2)(~A.0)}, (1.1.8)
6=0

where Tr denotes the operator trace, in this case the operator being [Z;P](—A 4). As
a particular example, ®(X) = e X in (1.1.3) gives the heat kernel on .#, with the
coefficients in (1.1.8) corresponding to the Maclaurin heat coefficients.

In this chapter we specialise to functions ® = ®(X) of Laplace transform type, namely,

those that for a suitable L'-summable f are given by integral
d(X) = / f(s)eXsds, X >0. (1.1.9)
0

Applying (1.1.8), we can write the Maclaurin coefficients for K¢ as
00 oo l '
bot[B(—A)] = / ) M S e e ds
0 k=0 =1

:/Ooof(s) [% (—js)] TreSAds:/Ooof(s)bgl[eSA]ds. (1.1.10)

Here the polynomial %;(X) is defined in (1.2.8) and by[e*?] are the Maclaurin heat coef-
ficients given by by[e*?] = % (—d/ds) Tre*®. One particular example of (1.1.9) is when
f(s) = fo(s) = s 1e7%7/T'(a) with Re(a) > 1 in which case for ® one recovers the re-
solvent operator R, raised to the power a. For related discussion and applications see
[10, 46, 87, 90, 92, 94] and the references therein.

To describe the plan of the current chapter, Section 1.2 explores and extends the
differential-spectral identity (1.1.6) to the more general context of hypergeometric func-
tions (see Appendix A.l). The main theorem here (Theorem 1.2.2) unifies and extends
these concepts to a setting where no immediate spherical function representation or spec-
tral interpretation of the hypergeometric function F'(a,b;c; z) is applicable. This leads to
a new characterisation of the scalars c'(a, b, c) and polynomials %y, in (1.1.7), reducing

to the Jacobi polynomial case when a = =k, b=a+ 3+ k+1, c=a+1 (see Table 3 and
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Table 4). As an application in the remaining sections we invoke these ideas along with
the trace formulation of the Maclaurin spectral coefficients (1.1.8) to operators of Laplace
transform type on a scale of compact rank one symmetric spaces to give a representation
of these spectral coefficients via those of the heat semigroup and the Jacobi theta func-
tions. Let us finish off this introduction by highlighting some important special cases of

the hypergeometric function 9F(a, b; ¢; z) for future reference (cf., e.g., [1, 4, 47, 73]).

The Legendre polynomial Pg(t), k > 0,

Pu(t) = oFy(—k, k + 1;1; (1 — £)/2) (1.1.11)

— g [ -1

The Gegenbauer polynomial €} (t), v > —1/2, k > 0,

G (t) = o Fy (—k, 20 + kv + 1/2; (1 — 1) /2) (1.1.12)

—1)k —vt1/2 dF -
:zk<y(+)1/z>k 1 e

The Jacobi polynomial (@lga,,g) (t), k>0, a,5>—1,

P20 () = oFi(—h, 0+ B+ k+ 10+ 1;(1 - 1)/2) (1.1.13)
(—1)k _ 5 4" B(1 _ )k
= ——— (1 —t)7*1+t — (1 -1 +t)°(1 -t .
1070+ g [a-ora 0P - )
e The incomplete Beta function B(z;p,q),
P
B(z;p,q) = ;2F1(p,1 —gp+qx) (1.1.14)

:/ P11 — )9 ae.
0

Note in particular that in the Gegenbauer and Jacobi cases we have t@lia’ﬂ )(1) =1 and

%/ (1) =1 by the choice of normalisation.

1.2 Hypergeometric coefficients and a combinatorial iden-
tity
In this section we present the main result which uses a combinatorial identity together

with a recursive formula to describe the action of the differential operator %p on the

hypergeometric function 9F(a, b; c; z). This naturally leads to the introduction of a class
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of the polynomials %Z,, = %, (X) (with m > 1) and a set of scalars, the hypergeometric
coefficients, cj'(a,b,c) (with 1 < j < m) that play a central role in the chapter.
Before presenting the main theorem, we introduce a set of scalars s] which we define

as the coefficients of Y7 in the polynomial

p—1 p
[TV +X0) =) (X,..., X, )Y, (1.2.1)
k=0 7=0
for scalars Xo,..., Xp—1. In fact these scalars can be described by the elementary sym-
metric polynomials as S,—;(Xo, ..., Xp—1) = s?, where S;(Xo,..., Xp—1) denotes the sum

of the distinct products of length j of the variables Xy, ..., X,_1. In particular, we have

7—1
g=1, s, =Y X, s,=][][Xe (1.2.2)
=0

=0

<

Now we have the following lemma, which relates a product of Pochhammer symbols, which

are essential to the hypergeometric function, to the scalars introduced above.

Lemma 1.2.1. With the Pochhammer symbol (a); defined in (A.1.2), the product of (a);

and (b); can be written as a polynomial in ab as

Jj—1 i
(@);(®); =[] [ ab+ pla+b+p) Zs{ [ab], (1.2.3)
p=0 _— =1

Pp

where the scalars s{ = s{(a +b) are defined in (1.2.1) by setting p, = p(a + b+ p). Note
that with p, = p(a + b+ p) we have sg) =0.

Proof. Referring to (A.1.2) we can write
j—1
(a); =[I(a+p), (1.2.4)

p=0

and similarly for (b);. Applying this to the product (a);(b);, we have

j—1 Jj—1 Jj—1 Jj—1

(@);®); = [Ja+®) JJe+D)=]]a+p)b+p)=]] (@+pla+b+p). (1.25)
k=0 =0 p=0 p=0

The conclusion follows by observing (1.2.1). O

We can now present the main theorem, which shows the action of the differential
operator .£p on the hypergeometric function 9 Fj(a, b; ¢; z) and gives an explicit description

of the associated coefficients c7*(a, b, c).
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Theorem 1.2.2 (Hypergeometric coefficients). With £p the operator as in (1.1.5), for
|z| <1, and a,b,c € C with ¢ # 0,—1,-2,..., the hypergeometric function F(a,b;c;z)

satisfies the identity

Zp {2F1 <CL, b; ¢; 1_20080>]

The scalars {cj*(a,b,c) : 1 < j < m} are called the hypergeometric coefficients, given

LN/2]

=po + Z pzmzc (a,b,c)[—ab)’. (1.2.6)

0=0

explicitly by

m

c(a,b,e) = (-1)7 Y (-2 me;H c+p)t (1.2.7)
i=
with b" as in (4.2.1), and s = s’ (a + b) are the scalars defined in (1.2.1) with p, =

pla+b+p).

Before stating the proof of this theorem, we introduce the m-degree polynomial %, (X),

defined as Zy(X) =1, and for m > 1
Fm(X) = c}(a,b,c) X7 (1.2.8)
This lets us write the statement of (1.2.6) as

1-— 0
Zp [2F1 <a, b; ¢; ;:osﬂ

Proof. We begin by noting that since oF} (a,b;c; (1 — cosf)/2) is an even function of 6,

IN/2
=po+ Y Pom%m(—ab). (1.2.9)

0=0

evaluating its derivatives of odd order at zero will give zero. That is, when we apply %p

to oF1 (a,b;¢; (1 — cosf)/2) and evaluate at § = 0, we have

N .
1—cosf d’ 1—cosf
Zp [21’1 <a,b; c; 2)] = po + E piﬁzFl (a,b; ¢ 2) .

LN/QJ 2m cos 0
= po + Z pzmd92m2F1 <a b;c; 2)

6=0

0=0
(1.2.10)

This allows us to use (4.2.1) with f(cosf) = 2F} (a,b;c; (1 — cos0)/2), and then apply the

differential identities defined in Appendix A.1 as follows.

2m 1—
arop <a, b ms@)

dg>m 2

0=0 Jj=1 2=0

via (A.3.4) :Z J (a)j()]F(a+Jab+]’C+]7O)

= (c);
= B (a);(b);
_Z(iw ©; (1.2.11)
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Referring to (A.1.2), we can say

b;l = b;n = b.;'n (1.2.12)
(=2)(c); (-2 [[glc+p) ()

where the product (—2)/ Hg;é (c+p) = €7 (c) is used for conciseness. Substituting (1.2.12)
back into (1.2.11), we have

a?m 1—cosf i bgn
Y O = ISP S O
0=0 j=1
B Sy
= : s’ (ab)’. 1.2.13
;%J(C) lz; l( ) ( )

Here we have used Lemma 1.2.1 to introduce the scalars s{ . Now expanding the sum and

isolating powers of ab lets us rearrange to

d>m 1 —cosf m [ pm
F b:c: — b)J 3 i
d92m2 1 <aa ;G 9 > o ;(a) — cgz(c) J
=S (aby | (1Y s
2 2 oo
= (—ab)/c}(a,b,0), (1.2.14)

where we have written (—1)7 Doini b;”sé [€i(c)) ™! = cj'(a,b,c). The conclusion follows

when we substitute this back into (1.2.10). O

The first few hypergeometric coefficients can be found in Table 5. Using values of
a,b, and c given in Table 4 yields the respective specialised coefficients for each rank one

symmetric space.

1.3 Maclaurin spectral coefficients via Jacobi theta func-

tions on rank one symmetric spaces

Returning to the Schwartz kernel K () from (1.1.3), where we described the Maclaurin
coefficients by [®] as in (1.1.8), we now specialise to functions ® = ®(X) of the Laplace

transform type. For a suitable function f € L', we take ® as

d(X) = /OOO f(s)e™Xsds, X >0. (1.3.1)
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Applying the trace formulation (1.1.8) and taking advantage of (1.3.1) we can connect the

Maclaurin spectral coefficients for K¢ to those for the heat kernel by writing,
00 S l '
bot[B(—A)] = / 5 M S e ds
0 k=0  j=1

= /OOO £(s) {% <_§S>} Tr ™2 ds_/ooo £(s)bule*?] ds. (1.3.2)

Here the polynomial (X)) is defined in (1.2.8) and by [e*?] are the Maclaurin heat coef-
ficients given by by[e’?] = %, (—d/ds) Tre*®. An interesting example is when f(s) =
fo(s) = s%71e7%7/T'(a) with Ra > 1 where one recovers the resolvent operator to the
power a, that is, ®(—A) = R%. (See [46, 42, 92, 94] for more).

In this section we express the Maclaurin coefficients bo;[®] in terms of the classical
Jacobi theta functions of the first, second, and third kind, each defined in Appendix A.2,
first on the unit sphere S”, then the real projective space RP", then the complex projective
space CP", and finally the quaternionic projective space HP".

In the following subsections we consider the rank one symmetric spaces S", RP",
CP™, and HP" respectively, and give an explicit formulation for the Maclaurin spectral
coefficients for functions ® as in (1.3.1). We refer to Table 1 for the spectral data on each
of these spaces, and to Table 4 for the respective values of a, b, and ¢ associated to each

space, so that we can calculate explicitly the Maclaurin heat coefficients by; [eSA].

1.3.1 On the unit sphere S"

In the following two theorems, for the odd and even dimensional case respectively, we
will see how the Jacobi theta functions of the first and second kind naturally arise in the

Maclaurin coefficients associated to functions ®(—A) of Laplace transform type.

Theorem 1.3.1 (S, n > 3 odd). Take ®(X) to be a function of Laplace transform type,
as in (1.3.1). Then the Maclaurin spectral coefficients by [®] for odd n > 3 can be written

as

n—3

2

a%( (—1) m+1/ f(s ﬁ(m+1)( )dp, (1.3.3)

m=0
where dy = 65(”_1)2/4615, and for 1 > 0 we have

1)j+m+1 l

o ZZZ RSOV (M) [ st e s

m=0 j=1 i=

where cé = cé(a, b, c) are the hypergeometric coefficients as in (1.2.7) specialised to the unit

sphere with a,b,c as in Table 4, and the scalars al', are defined in (A.4.1).
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Proof. We begin by writing the multiplicty function M} in a form that lets us apply
(A.4.1). Indeed, writing X = k+(n—1)/2, we can refer to Table 1 to write the multiplicity

as

M= (2k+n—1) Ej(:&'ﬁ;l = n_llﬂkﬂ (1.3.5)

We now note that each term (k + j), for j = 1,...,n — 2 of the product above can be
written as (X +j) for j =0,...,(n —3)/2. Taking the product of (X — j) and (X +7)

lets us apply (A.4.1) to write

2
2an
|| (X2 - 7’“)(2"”2 1.3.6

7=0 m=0

Since the sum above vanishes when X, is an integer between 1 and (n — 3)/2, we can use

the substitution Xj — p to write the heat trace Tr e*2 as

2
ZMke An 2 ZXQerQ —s(X2 (n—1)2 /4)

m(— 1
_ m ' P (). (1.3.7)
Substituting the above into (1.3.2) and differentiating via Leibniz rule gives the results. [

In the even dimensional case, for n > 2, we have a similar formulation involving

derivatives of the Jacobi theta function of the second kind.

Theorem 1.3.2 (S", n > 2 even). Take ®(X) as in (1.3.1). Then the Maclaurin spectral

coefficients can be written as

bo[cb]: b (=)™ /f )95 (s) dp, (1.3.8)

where dy = es(”*1)2/4ds, and for 1 > 0 we have

n—2

2

boy[@ ;iibx‘;_:ml()(n_l)m/f oD (s)dp. (1.3.9)

0j5=11i=0

where cé = cé(a, b, c) are the hypergeometric coefficients as in (1.2.7) specialised to the unit

sphere with a,b,c as in Table 4, and the scalars b}, are as in (A.4.2).
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Proof. This proof is similar to the proof of Theorem 1.3.1, so we skip some of the details.
Taking Xy = k+ (n—1)/2, we can express M}, in terms of the coefficients bl from (A.4.2)
(here we assume n > 4 as for n = 2 we can easily arrive at (1.3.10) below with b3 = 1 and

without recourse to (A.4.2)) as

n—2_1
n—2 T2 2
2Xk . 2Xk 2 2
M = k = X2 _
—2
n—2
2. 9b" X,
= mS XM, 1.3.1
— (n—l)‘ k ( 3 0)

Hence the heat trace Tre®® can be written as

bn s(n—1)2/4 X
n—l

Z 2p2m+1

o

(e

S

[l

g

IS

ml

}

|
iMw\i

‘3
|
N

b% -1 mes(n—1)2/4 m
_ ( (71_ o 95 (s). (1.3.11)
A !

3
]

The result follows when we substitute this formulation of the heat trace into (1.3.2) and

differentiate. ]

The polynomial %; on the sphere, for [ = 0,1,2. We now present explicit values of
bo[e®?] = Z)(—d/ds)Tre*> for S™, for n = 2,3,4. We have Zo(X) = 1, %1(X) = —X/n,
K2(X) = (2—2n)/(n® +2n)X + 3/(n? + 2n) X 2. As a result we have:

o S%: Tret® = e/t Ry (—d/ds)Tres™ = [05/2 + 192/8] e*/4,
Ro(—d/ds)Tres® = [304 + 7/20% + 11/1692) e*/4/8.

o S3: Tres® = —je*/2, #1(—d/ds)Tres® = — [9% 4+ 9] e /6,
PRo(—d/ds)Tres® = — [97'/10 + 97 /3 + 7/309)] e*

o St Tres® = —[105/6 +02/24] €%/*,
R1(—d/ds)Tres® = — [ + 5/20% + 9/1605] 7%/4 /24,
o (—d[ds)Tr e = — [0 /3 +9/40% + 179/480) + 51/6405] ¢**/*/16.

1.3.2 On the real projective space RP"

Before stating the results below we introduce half series of the odd and even terms that

make up the first and second theta functions. Taking 91 ,(s) as the sum of the odd terms
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of Y1, and ¥ ¢(s) as the sum of the even terms, we can write J1,(s) +91.(s) = V1(s). We
define these explicitly as
V1,0(s) = Ze_s(2j+1)2, V1.e(s) = Ze_s(2j)2. (1.3.12)
jez jez

Likewise for ¥, we define 95 ,(s) and 92 ¢(s) so that U2 ,(s) + U2.(s) = ¥a2(s) as
Ua0(s) = 3 (45 + 1)e *FHD" g, (5) = Y (45 + 3)e 2 i+3/27, (1.3.13)
7=0 7=0

Theorem 1.3.3 (RP", n > 3 odd). Take ®(X) asin (1.3.1). Then the Maclaurin spectral

coefficients by [®] can be written as
2 an 1 m+1 m
bo[®] = 2 (=)™ / F(s)07" D () d, (1.3.14)

where dy = es("_1)2/4ds, and for I > 0 we have

n—3

2

bl = 30 30302 ;):mm(.) (”_1)22/ POV s dp, (13.15)

m=0 j=1 i=0

where we take U1, when (n —1)/2 is odd, and V1. when (n — 1)/2 is even. Here cé =
cé- (a,b,c) are the hypergeometric coefficients as in (1.2.7) specialised to the real projective

space with a,b,c as in Table 4, and the scalars al, the coefficients defined in (A.4.1).

Proof. Taking Xy = 2k + (n — 1)/2, we can use (A.4.1) to express M} in terms of the

coefficients aJ,

-2 =
My, = (2k +j) = Xi—1J
(n_l)'j:1 (n_l)ljzo( k )
n—3
°, 23"
= X2mt2, (1.3.16)
1)k
= (n—1)!
This lets us write the heat trace as
n—3
00 h _1)2/4 ©0
N 23n es(n 1)?/4 9
— Mke—s)\k _ m X2m+2€—st
2 o (1) kZ:O )
n—3
2 23n s(n—1)2/4 —1)ym+l gm+l =2
- Am® (=1) S e (1.3.17)
(n—1)! dsm+l
m=0 k=0

Here we note that X}, takes odd integer values when (n — 1)/2 is odd, and even integer
values when (n — 1)/2 is even. With this in mind we can consider both of these cases

separately, and referring to (1.3.12) we have the following formulations.
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(i) When (n—1)/2 is odd, we substitute X, — 25+ 1 and extend the sums so they run
over Z by noting that (1.3.16) gives that M}, vanishes when X}, is a integer between
0 and (n —3)/2.

n—3
' 2am ¢ s(n—1)?2 /4(—1)m+1 & +1)?
N —5(2j+1)
Tres = (n—1)! dsm+1 Z e 54
= j="2
n—3
o %es(n_1)2/4(_1)m+1 dm+1 73(2j+1)2
_ e
Y m+1
m=0 (n 1) @ jer
n—3
& anes=DP/AymEl oL
B n m . 1.3.1
e 07y () (1.3.18)

3
]
[e=)

(ii) When (n — 1)/2 is even, we use the substitution X, = 2j and extend the sums as

above to write

‘3
|
w

237 65(n—1)2/4(_1)m+1 qgntl =X o
SA m —s(24)
Tre = (n _ 1)' dsm+1 Z € ’

- n—1
J="1

3
I

‘3
W
w

3 es(n—1)2/4(_1)m+1 (m

(n—1)! Le

n
m

(s). (1.3.19)

3
Il
=)

The result follows when we substitute these formulations of the heat trace into (1.3.2) and

differentiate appropriately. O

Theorem 1.3.4 (RP", n > 2 even). Take ®(X) as in (1.3.1). Then the Maclaurin

spectral coefficients can be written as

=2 n—l / F ()95 (5) dp, (1.3.20)

m=0

where dy = es(”_1)2/4ds, and for 1 > 0 we have

n22 I J bn _ )]+ml . n—1 2i + )

m m j—1
it - 35S EEG0) (4200 e s
where we take U2, for n/2 odd, and V2. for n/2 even. Here Cé = cé(a, b,c) are the

hypergeometric coefficients as in (1.2.7) specialised to the real projective space with a,b,c

as in Table 4, and the scalars b}, are the coefficients defined in (A.4.2).

Proof. As before we begin by writing the multiplicity function in terms of a polynomial.
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We set X =2k + (n—1)/2 and for n > 4 write

(1.3.22)

(note that the last equation remains true for n = 2). Next substituting for Mj,

‘3
N |
N

bn s(n—1)2/4 © om fs(X )2
ZMke A = ZQXk X) :

n—l

3 3
g

N
N

b 65(71—1)2/4 > Jm

_ m —s(Xp)?
— e kz T 2X e (1.3.23)
=0

3
I
(=)

Here the sequence 2Xj, for £ =0,1,2,... takes values 4j + 1 for j =0,1,... when n/2 is

odd, and takes values 4j + 3 when n/2 is even.

(i) When n/2 is odd, we substitute X — 25 4+ 1/2. We then extend the sums to j =0
by noting the sum in (1.3.22) vanishes for X, =1/2,3/2,..., (n —2)/2 —1/2.

6s(n71)2/4 o gm

T\I.SA:
° (n— 1) Z ds™

= (4 + 1)esit1/2)?

RS A e
= (D) stm(ély—i—l)e g
P~

= mi.ﬁgf;)(s). (1.3.24)

(i) When n/2 is even, we use the substitution X; = 2j 4+ 3/2 and extend the sums as

above to write

‘:
|
M)

b es(n—1)2/4 o0 dm ) 5
sA m e~ 5 25+3/2

3
I
o

4

‘3
|
v

b es(n 1)2/4 © m

m 4 —5(2j+3/2)2
(n 1) Zd m (47 +3)e

3 3
Il
o

w‘\
»

b es(n— 1)2/4
(n = 1!

95 (s). (1.3.25)

3
Il
=)
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The heat trace formula can then be written as

Z n—l ﬁg@( ), (1.3.26)

where we take U2, when n/2 is odd, and 92 . when n/2 is even. Substituting (1.3.26) into
(1.3.2) and differentiating gives the result. O]

1.3.3 On the complex projective space CP"

On CP" for n odd, we see that the theta function s naturally arises in the Maclaurin
coefficients, and for n even we similarly see ¥¥3. This is in contrast to the earlier cases of

S™ and RP", where we saw 91 and 15 instead.

Theorem 1.3.5 (CP", n > 3 odd). Let the function ®(X) be of Laplace transform type
as in (1.3.1). Then the Maclaurin coefficients by [®] in odd dimensions n > 3 are given
explicitly by

n—1 n _1\ym 00
wole] = > LT [T 015 (13:27)

-0 n'(n—l)' 0

where dp = du(s) = 65”2/4ds, and forl >0

bau[® ZZZ n,n_ﬁlml<) /f 9" (s dp,  (13.28)

m=0 j=1 i=0

where the coefficients cé = cé-(a,b, c¢) are the hypergeometric coefficients as in (1.2.7) spe-
cialised to the complex projective space with a,b,c as in Table 4, and c, are the scalars

defined in (A.4.3).

Proof. Defining X, = k+n/2, we can write the multiplicity function My, of the eigenvalues

of the Laplacian on CP"™ as

2 n—1
My, = %;n [ng;)rkﬂ B n!(iXkU! ]Hl(k”)z‘ (1:3.29)

We can write the product above in terms of X}, by noting pairs of terms of the form (k+ j)

for j = 1,2,...,n — 1 can be multiplied together to get terms of the form (X,z — j2) for

j=1/2,3/2,.....(n—2)/2. Applying (A.4.3), this leaves us with
345 n—1
2X}, T~ 2 2)2 2X n y2m
My, = =T I1 x7-7772= T Zocka , (1.3.30)
1 m=
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Hence we can write the heat trace Tr 52 as

i
L

n

)
_ i 2m+1_—s(X2—n2/4)
ZM’“” E n!(n—l)!kZOXk ¢«

3
= o

3

c (_1)mesn2/4 0

" dm (j+1/2)2
m —sJ
Wl —1)! ;(QJ 1) g [ ]

(]

3
= o

3

C;Ll(_l)mesn2/4 (m)
nl(n—1)! 2 (5):

(1.3.31)
=0

3

Here we have noted that (1.3.30) implies that the multiplicity vanishes when Xj, is a half-
integer in the range 1/2,3/2,...,(n—3)/2+1/2. This lets us extend the sum in the third
step above. Differentiating via Leibniz rule and substituting the result into (1.3.1) gives

the solution. O

Theorem 1.3.6 (CP", n > 2 even). Take ®(X) as in (1.3.1). Then for even n > 2, the

Maclaurin coefficients by[®] can be expressed as

m+1dn 00 m
Z I(n—1)! /0 9" (s) £(s) dp, (1.3.32)

m=0

where dp = du(s) = e"*/4ds and forl >0,

n—2 1 J dn )j+m+1 l . % 00 o
ml J\ (" (m+j—i+1)
bul®] =3 D> D e (l) (3) /O £ (s)95 (s)du,  (1.3.33)

m=0 j=1 =0

where the coefficients cg- = cé(a,b, c) are the hypergeometric coefficients as in (1.2.7) spe-

cialised to the complex projective space with a,b,c as in Table 4, and d', are the scalars

defined in (A.4.4).

Proof. Taking X} = k 4+ n/2 as in the proof of the previous theorem, we can then write

the multiplicity as

2% +n [T(k+n)]? 20Xy 4
My = = k
k n!(n—l)![ k! ] n!(n—l)!jl_[l( +J)
- . 1.3.34
n—l H (1.3.34)

In the last equality we have noted that each (k+ j) from the product over j =0,...,n—1
can be written as (Xj + j) for j = 1,...,(n — 2)/2. Factoring out the j = 0 terms and
taking the product of (Xj — j7) with (X + j) gives the required result. Now applying
(A.4.4) gives

2X3 n—2 .
My, = n_1'Zd xm, (1.3.35)
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Inserting this formulation into the heat trace, and using that the above sum vanishes for

X}, an integer between 1 and (n — 2)/2, we can apply the substitution X — p to write

e’} n—2 n e’}
=Y MyeM = Z 2d Z 2m+3 ,—s(p?—n? /1)
k=0 —O
n Sn m mal
= Z 1 —1ym i ). (1.3.36)
The result follows after differentiating this via Leibniz rule. O

The polynomial %, on the CP", for [ = 0,1,2. We now present explicit values of
bo[e*?] = Z)(—d/ds)Tre® on CP", for n = 1,2,3,4. We have %y(X) = 1, #1(X) =
—X/2n, Bo(X) = —X/4n + 3/(4n(n + 1)) X2. As a result we have:

o CP': O(s) = Tres® = 0ye’/*, Z1(—d/ds)O(s) = [95/2 + V2/8] e/*,
Ro(—d/ds)O(s) = [304 + 7/20 + 11/160] e/*/8.
o CP2: O(s) = Tre®® = —94e’/1)2, #1(—d/ds)O(s) = — [0 + %] e /8,
Ho(—d/ds)O(s) = — [05 + 304 + 204 e /16.
o CP3: O(s) = Tres® = [94/4 + 095 /8 + 095/64] €95/ /3,
K1 (—d/ds)O(s) = [94' + 11/49% 4 19/169 + 9/6415] e75/4 )72,
Ro(—d)ds)O = [0 4+ 19/394" + 265/240% + 211480 + 129/25610,]e%/4 /192.
o CP% O(s) = Tres® = — [0 + 204 + V4] e /144,
F1(—d/ds)O(s) = — [95" )9 + 2/30%" + 95 + 4/99%] e** /128,
R (—d/ds)O(s) = — [3199 + 350" + 12991 + 1650 + 68193] e /11520.

1.3.4 On the quaternionic projective space HP"

Theorem 1.3.7 (n > 1, HP"). Take ®(X) to be a function of Laplace transform type as

n (1.3.1). Then the Maclaurin spectral coefficients by [®] are given by

2n—1 m
o= 3 G Sy ) S 0 e (1337)

where dp = dp(s) = e5@D*/44s and for | > 0 we have

balo) —%Zlii mms(l) (M2) [ em sy

m=0 j=1 i=

where the coefficients cé- = cé(a,b, c¢) are the hypergeometric coefficients as in (1.2.7) spe-
cialised to the quaternionic projective space with a,b, c as in Table 4, and €}, are the scalars

defined in (A.4.5).
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Proof. Setting X = k+n + 1/2, we can write the multiplicity function M} as

M, =

(2k +2n + 1)(k + 2n) (D(k +2n)\>
(2n)(2n + 1)(k + 1) ( kT (2n) )

B 2X,(k + 2n) et
C@2n—1)12n+1)(k+1) 1;[ (k+3)°
n—3/2
2.Xp, 2 2 -2\2
= [Xi —@n—1?/4] T] (X7 -5
(2n —1)1(2n + 1)! i=1/2
2n—1
2%k > e xm, (1.3.39)

T @D+ 1) =

where we have used (A.4.5) to write this as a polynomial in X. Hence we can write the
heat trace as

2n—1 2en s(2n—1)2/4 o0

o
_ Mue~ 5 — x2mAl s X}
; ke mz 2n—1)!(2n + 1) lz

2n— 1 m n es(2n—1) /4 am = 2
= 2X e 5%k, 1.34
Z 2n—1 2n+1'd5mz ke (1.340)

Here we can use the substitution X; — p, and the extend the sum to zero by noting that
(1.3.39) shows that the multiplicity vanishes when X} — 1/2 is an integer between 0 and
n— 1.

2n—1 (_1)men es(2n+1)2/4 dm OO
m

Tr e*® = 2pe_5p2
2n — D!I2n +1)! ds™
2 - i I ds ot
2n— 1 )me es(2n+1)2/4 (m)
= " (s). 1.3.41
mzzo n—l 2n+1).19 () (1.341)

Substituting this formulation of the trace into (1.3.2) and differentiating via Leibniz rule

gives the result. O

The polynomial %; on the HP", for | = 0,1,2. We now present explicit values
of %#/(—d/ds)Tres® on HP", for n = 1,2. We have %y(X) = 1, Z1(X) = —X/4n,
R (X) =—(n+2)/(8n? —4n)X + 3/(162 + 8n) X 2. As a result we can write:

o HP': O(s) = Tre®® = — [0 + 02/4] €7/1/6,
P1(—d/ds)O(s) = — [ + 5/20% +9/160a] /" /24,
Ro(—d)ds)O(s) = — [94' /3 4 9/49} + 179/480%, + 51 /64195 €5/*/16.

o HP2: O(s) = Tres® = — [04 + 11/4094 + 19/1609% + 9/64195] 255/* /720,
R1(—d/ds)O(s) = —[1694" + 1440 + 29494 + 1219} + 225/16195]e%>5/* /92160,
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Rr(—d/ds)O(s) = —[307205) + 550400 + 30297604 + 5265600 + 2098524
+ 2407595)e255/ /58982400.

Remark 1.3.8. As a result of the well-known identifications HP! = S* and CP' = §?
we have all the corresponding quantities calculated above agreeing in these special cases

respectively.

1.4 Further extension to generalised hypergeometric func-

tions

The hypergeometric function o F1(z) = F'(a, b; ¢; z) is in fact a special case of the generalised
hypergeometric function ,F,(a;b;z) (see [47], pp. 182-198), where a = (ay,...,ap) and
b = (b1,...,by) with a;,b; € C and none of the by, ..., b, are non-positive integers. The

generalised hypergeometric function is defined as

oo

)k(a - (ap)k 2
(a;b; 2) kzo RO (1.4.1)

Defining the operator 9 = zd/dz, the generalised hypergeometric function w = , Fy(a; b; z)

is a solution to the order max(p,q + 1) differential equation
W@W+b—1)...(0+bg—1)—z(W@+a1)...(0+ap)w=0, (1.4.2)

although [73] gives examples where for certain values of p and ¢, a differential equation of
lower order than expected can be satisfied by the generalised hypergeometric function.
It is straightforward to derive generalisations of the identities stated in Appendix A.1

for 9 F1(a,b;c; 2). Indeed, we have the differential identity

m 0 k
C Fy(aib;z) = _1(ai)m Z al—i—mkag—l—m)k...(ap—i—m)ki‘
dz j= 1(b]) s b1+mkb2+m)k...(bq+m)k k!
f:l (ai)m
Jj=1\"3/m
where (a+ m) denotes (a1 +m,...,ap, +m).
We have more general convergence conditions for ,F(a; b; z). Indeed, if any of a1, ..., a,

are non-positive integers then the series (1.4.1) is finite. This leads to a polynomial of de-
gree —a;, where q; is the non-positive integer. Similarly if any of b1, ..., b, are non-positive
integers then the series diverges. If neither of these conditions are met, then we have the

following three cases for convergence, depending on the relative values of p and gq.

e If p > g+ 1 then the series diverges everywhere except z = 0.
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o If p=¢g+1 (as with 2F1(z)) then the series converges for |z| < 1 and diverges for

|z| > 1. It may or may not diverge for |z| = 1.
e If p < ¢+ 1 then the series converges for all z, and so ,F} is an entire function.

The statement of Lemma 1.2.1 becomes a product of p Pochhammer symbols,

j=1 p J p l
(a1)j(a2); - (ap); = [ [ (ai + %) =D _dij(a) [H ai] . (1.4.4)
k=01=1 =0 i=1

In this case the scalars d; j(a) are the coefficients of the ‘eigenvalue’ [[Y_; a; in the above
polynomial. With the operator Zp = P4(d/df) as in (1.1.5), we can then state the

following theorem.

Theorem 1.4.1. Let %p be the differential operator as defined in (1.1.5). Then for a =
(a1,...,ap) and b = (b1,...,by), with each b; not a non-positive integer, the generalised
hypergeometric function F(a;b;z) satisfies the differential identity

1—cosf Ld/2] i
e o 7)

=Dpo+ Z p2mZC§”(a, b) [—Hai] , (1.4.5)

0=0 = =1

where the scalars c}”(a, b) are called the generalised hypergeometric coefficients, and are
explicitly given by
U b;”sé-

c™(a,b) = (1) — '
g ( ) ( ) sz: (_2)2 Hi;lo ?:l(bl—Fki)

(1.4.6)

Here the scalars b]* are defined in (4.2.1), and the scalars sj» = sé (a) are defined in (A.1.9).
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Chapter 2

A Differential-Spectral Identity on
the Hypergeometric Function and

Dual Polynomials

2.1 Statement of the Main Result

The Gauss hypergeometric function 2F; = 2Fi(a,b;c;2) for a,b,c € C unifies a large
class of functions and orthogonal polynomials that play an important role in analysis and
mathematical physics. One such class are the Jacobi functions and polynomials that have
intimate links with zonal spherical functions and spectral projections on symmetric spaces
of rank-one. In this chapter we establish a somewhat general differential-spectral identity
on the hypergeometric function and discuss various refinements and applications of it to
rank-one symmetric spaces of both compact and non-compact types.

To this end let Py (X) = po+p1 X +---+ Py XY (N > 2) and consider the differential
operator % = Py(d/df) = po+p1d/dd + - - -+ pnd”™ /dOV . In Theorem 2.1.1 we consider
the action of Zp on 9Fi(a,b;c; &(0)) with & = &(0) a sufficiently smooth function in a
neighbourhood of the origin satisfying &(0) = 0 and give a precise and explicit description
of this action in terms of the hypergeometric parameter a, b, c and a closely related class of
polynomials H,, = H,,,(X) (m > 0) all whose coefficients are directly computed via certain
values of the well known Bell polynomials B,, ; = B, j(X) and the elementary symmetric
polynomials S = S;(X). !

We then consider some special cases of the functions & = &(6) and discuss the effect

!See the appendix at the end for the definition and a summary of the main properties of these families

of polynomials. See also [4, 12, 23, 70, 71, 94] for related discussion and results.
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of natural symmetries on the structure and certain cancellations of the polynomials H,,, =
H. (X) before specialising to the Jacobi and Gegenbauer functions and polynomials and
discussing applications to analysis and spectral theory of invariant operators on rank-one

symmetric spaces.

Theorem 2.1.1. Let & = &(0) be a smooth function in a neighbourhood of the origin
with &(0) = 0 and consider the function oFy = 9Fi(a,b;c;z) for a,b,c € C and ¢ ¢
{0,=1,—2,...}. Then with £p as above we have the differential identity

N
Lo [oFy(a, b; c; £(9)] ]9:0 =3 puHi(—ab), (2.1.1)
m=0

where Hy, (X) = Hy(a, b, ¢; &5 X) is an explicitly computable polynomial in X of degree (at
most) m. In fact, Hy(X) =1 and for m > 1 we have
m g m b;n j m ,
Z N o => hixt. (2.1.2)
= j=¢ J =1
Here b'[&] = By, ;(67(0), 87 (0), . ... , &I (0))|p=o with B, ; the incomplete Bell poly-
nomials whilst s? =S;¢(Yo,...,Y;_1) where Y, = k(k +a+b) for 0 <k < j—1 and

0 < j <m with Sy, the nth elementary symmetric polynomials.

By inspection of the proof below, it is seen that the dependence of the scalars bl"[&]
(1 < j < m) is on the function & and its successive derivatives at the origin, whilst the
dependence of the scalars sg (1 < ¢ <j)isonly on the sum a+b. This sees relevance later
in Section 2.3 when considering dual polynomials %; = %,(a,b, ¢; &; X) and in Section 2.4
where we specialise 2 F} (a, b; ¢; z) to the zonal spherical functions on rank-one symmetric
spaces. There we will see that a + b is independent of the index of these functions, and

hence so are H,,

Proof. Directly applying the operator £p to the hypergeometric function at z = &(6), we

have

o [2Fi(a, by c; €8 ‘ me L R(abes®) (2.1.3)

We can apply Faa di Bruno’s theorem to the derivatives on the right-hand side above as

. Bmj(&(6).6"0)...... &m=i+1)(g)) o

, (2.1.4)
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where we have set the scalars b" = By, ;(&"(0), £"(0), ... ,5(m_j+1)(9))‘920, with By, ; the
incomplete Bell polynomials (see Appendix A.5). Next we recall the well known recursive

relation for derivatives of o F}(a, b; ¢; 2),

am m(0)m
—oFi(a,b;c;2) = (a)(c)()gFl(a+m,b+m;c+m;z). (2.1.5)

dz™
Applying this to the derivatives in (2.1.4), noting also that 9 Fi(a, b; ¢;0) = 1 for any values

of a, b, and ¢, we can write

G bRt s )] = S bpa s b i)
j=1
_ ib}"[@ﬂ (“225?)1. (2.1.6)
j=1 J

Here, (z); = (z +1)...(x + j — 1) is the Pochhammer symbol (in this case the rising
factorial). Now expanding the product (a);(b); in powers of X = ab via the elementary
symmetric polynomials Sy(Yp,...,Y;—1), with Yy = k(a+b+ k), for k=0,...,j — 1 (see

Appendix A.5, and in particular (A.5.11)), we can write

Jj—1 Jj—1
(a);(); = [J(a+ k)b +k) =] lab+ k(a+b+ k)]
k=0 k=0
i1 J 4
— H(X +Y;) = Z Se(Yo,...,Y; 1) X77¢
k=0 =0
J
= > Sju(Yo,..., Y1) X"
=0
i i
=) gX'= > sx° (2.1.7)
=0 (=1

Note that here we have taken advantage of s% = S;(Yo,Y1,...,Yj_1) = 0 as a result of

Yy = 0. Substituting this into (2.1.6) and isolating powers of —ab, we have

g R b sO) ] = oy 2 Hel
&t B
= Jal 0,
= Hy(—ab), (2.1.8)

where we have taken H,, as defined in (2.1.2). Returning to (2.1.3), we have shown

N
Lo [5F(a, b ¢; £(6))] ‘920 =3 prHi(—ab). (2.1.9)
m=0

This completes the proof. O
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Using (2.1.2) in the above theorem, we can express the first few polynomials H,, in

the sequence as Hyo(X) = 1 and

1) =~ A 0 = - <b%£éa] G +c?:+1i?%[g]> . (b[f]l X
_ b3[€]  (a+b+1)b3[&]  _((a+b)?+3(a+0b)+2)bi[&]
Ha(X) = - < 1c + clc+ 1)2 2 clc+1)(c+2) ) >X
b3[6]  (3(a+b) + 5)b3[&] b3[&]
<c(02+ 1) cle+1)(c+ ;) ) ' c(e+ i)(c + 2)X3' (2.1.10)

2.2 Refinements of the Action Identity Resulting from Sym-
metries of & = &(0)

In this section we look more closely at the action identity (2.1.1) and the possible sim-
plifications and cancellations resulting from the symmetries of & = &(#). Of particular
interest here is when & = &(0) is an even or odd function of # and the implication this

may bear on the vanishing of certain coefficients b’ [€] or the polynomials H,,.

The case & = &(0) even. If & is an even function, then so is 2 F (a, b; ¢; &(0)) and hence
any of its odd derivatives will vanish at the origin. Now referring to (2.1.1), this implies
that in the action of .%p on the left there is no contribution from the odd terms in P,
whilst for the sum on the right, for odd m we have H,, = 0, and for m even, say m = 21,
we have no terms in H,, of order higher than [ = m/2. To look more closely at this, let

us proceed with the following two lemmas.

Lemma 2.2.1. Let m > 1 be odd, 1 < j < m and let X = (Xl,...,Xm_j+1), where
X; =0 for alll odd. Then B, ;(X)=0.

Proof. We show that every admissible (k1,...,kmn—j+1) [see (A.5.2), (A.5.3)] has at least
one k; # 0 with [ odd. It then follows from the assumption on X above that each of the
summands in By, ;(X) [see (A.5.2)] is zero. Towards this end assume the contrary and
suppose there exists (ki, ..., kn—j4+1) admissible such that k; = 0 for every [ odd. Then it
is easily seen that the second condition in (A.5.3) simplifies to 2kg + 4ky + - - - = m which

gives the desired contradiction as m is odd. O

Lemma 2.2.2. Let m > 2 be even, m > j > m/2, and X = (0, X2, ..., Xom—jt+1). Then
Bm,j(X) =0.

Proof. Here it suffices to show that when m > j > m/2 then for every admissible

(k1,...,km—j+1) we have ki # 0. Again arguing indirectly assume there exists and
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admissible (ki,k2,...,kmn—j+1) with k& = 0. Then the first condition in (A.5.3) gives
> ky = j > m/2, whilst the second condition upon splitting the sum and taking advant-
age of k1 = 0 gives

m—j+1 m—j+1 m—j+1
m= Y Ilh= Y (-k+2 > k>m (2.2.1)
1=2 1=2 =2
This however is a clear contradiction and so the assertion follows at once. O

From Lemma 2.2.1 it immediately follows that when & is an even function and m is
odd then bj*[&] = 0 for all 1 < j < m as here

b7 [&] = Bmy(X) =0, X = (6'(0),6"(0),...,8m T 0))],_,

= (0,&"(0),0,D(0),..., &M=+ (0)). (2.2.2)

Moreover, here, again by noting &’(0) = 0 in particular, it follows from Lemma 2.2.2 that
bjzl [£] = 0 when j7 > [+ 1. Thus, in this case, when m is odd, H,, = 0, and when m is

even, say m = 2l, Hy; is a polynomial of degree [ = m /2, more specifically,

2 A 2glsi
a(0) = 1>

j=1 i=j
l L b} [£]s!

— Z(_l)j Z WXj

=1 i=j

—: A (X). (2.2.3)

As a result of this reduction in the even polynomials under the stated symmetry of &, in
the last identity and below we use the convenient and more suggestive notation %Z;(X) =
Hoi(X). In this notation (2.1.1) can be rewritten as

LN
Lo [sFi(a,b; ¢; £(9))] \9:0 =" puii(—ab), (2.2.4)
=0

For the sake of future applications we now consider two particular instances of even
& = &(0). These in turn correspond to the ordinary and hyperbolic cosine functions with
immediate links to the spherical zonal functions on rank-one symmetric spaces of compact

and non-compact types respectively.

e Let &.(0) = (1 — cosf)/2 = sin?(A/2). Then (2.2.4) holds with %, as in (2.2.3),
where the scalars b*[&] = 0 for odd m and j > m/2, whilst for m even, say

m = 2, b¥[&] = (=2)7/By;(0,-1,0,1,...) = (=2) /b3 [cosb] for j = 1,...,1,
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with b?l [cos 0] as in (A.5.8). We also have the recursion

(_1)l+1/2 ifj=1
b (6] = Q2791 (7)) 12— Rl Y) << (225)

0 if j > 1.
Here the first few polynomials % in the sequence can be seen to be Zy(X) = 1 and

1 3 3(a+b)—2c+1

ﬂl(X) = — %X, %Q(X) = 4(@)2X2 — 4(6)2 X,
R3(X) = 8(1) — 15X + (45(a + b) — 30c + 15) X2
C)3
—[30(a+b)(a+b+1—c)+4c® —18c+ 8| X3|. (2.2.6)

e Let &,.(0) = (1 — cosh#)/2 = sinh?(0/2). Then (2.2.4) holds with %, as in (2.2.3),
where b"[&),] = 0 for odd m and j > m/2, whilst for m even, say m = 2, bJQ-l [Ene] =
277(=1)"7By (0, —1,0,1,...) for j = 1,...,1, with b3[cos f] as in (A.5.8). We also

have the recursion

~1/2 ifj=1

b7 [6hc] = q 279 (—1) 91 (26070 (25 - DB} Y) irn<j<e (227)

0 if j > 1.

Here the first few polynomials %, in the sequence are given by %Z(X) = 1,

21(X) = 2% L B(X) = 4(?;)2 - 3(a+z)(522c+ 1y
H3(X) = 8(1) 15X3 — (45(a + b) — 30c + 15) X 2
)3
+[30(a+b)(a+b+1—c)+dc? - 18c+8]X]. (2.2.8)

The case & = &(f) odd. Unlike the even case here we do not in general have the
convenience of the scalars by’ [¢'] vanishing for certain ranges of m and j as can be seen from
the elementary examples & () = sin6 or &(¢) = sinh 6. Indeed here b7'[&] = Bi j(X) with
X = (6'(0),6"(0),...,£mIHD(0))],_,, that is, X = (1,0,F1,0,F1,0,..., ™=+ (0)).
Thus in (2.1.1) all H,, are present.
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2.3 The Jacobi and Gegenbauer Function Families ,@ﬁ’ﬁ and
¢, and Dual Polynomials %,

In this section we specialise the differential action to the class of Jacobi and Gegenbauer
functions 2 # and %, respectively. In view of the close connection between these function
families and dual symmetric spaces of compact and non-compact types a natural notion of
dual polynomials %) resulting from (2.1.1) is introduced and studied. For more on Jacobi
functions and polynomials, Jacobi operator and transform see [62, 70, 99] and for related

topics see [4, 12, 71, 94].

The Jacobi function. The Jacobi function e@ﬁ"ﬁ = L@ﬁ’ﬁ(t), with a, 8 > —1 and u € C,

is defined via the hypergeometric function (see the appendix at the end) by setting
PB(t) = oFy (—p, i+ 2p; 00+ 15 (1= 1)/2),  peC, (2.3.1)

where p = (v + 8 + 1)/2. Referring to (A.1.5) or upon directly differentiating, it is easily

seen that the Jacobi function is a solution to the second order differential equation

[.zaﬁ +op(p+ 2p)] y =0, (2.3.2)
where
i 5 d2 d
2P = (1= )~ o= Bt (ot 6+ 2] 5 (2.3.3)

is the well known Jacobi operator. The particular interest in the Jacobi functions in this
chapter stems from the fact that for suitable choices of z, and certain ranges of «, 8 and pu
(see Table 3), they directly relate to the zonal spherical functions on rank-one symmetric
spaces of both compact and non-compact types. We discuss this connection in more detail
in Section 2.4 (see also the last part of the current section). Let us for now return to
Theorem 2.1.1 and consider the action of the differential operator %p on Jacobi functions
and prompted by its later application to symmetric spaces restrict this to the choices of
even functions & = &, and & = &, as introduced and discussed towards the end of Section

2.2.

e By taking u = k a non-negative integer in (2.3.1) we obtain the normalised Jacobi
polynomial ﬂg’ﬁ(t) = oF1(—k,k + 2p;a + 1;(1 — t)/2) (with the normalisation
,@,(:’6(1) =1). Here (2.3.2) takes the form

2
(1—t2)%—(04—54—(a—l—ﬂ+2)t)i%+k(k+a+ﬁ—|—1)yzo. (2.3.4)
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For fixed «, 8 the Jacobi polynomials y = @;: B (k > 0) form a complete orthogonal
system of eigen-functions for the Jacobi operator £ in the weighted Hilbert space
L*([-1,1]; (1 — )*(1 + t)Pdt). Theorem 2.1.1 with &,(8) = (1 — cos#)/2 now leads

to the following result.

Proposition 2.3.1. Let % be as in Theorem 2.1.1 and 37’;:”8 with k >0 and o, 8 > —1

as above. Then

[N/2]
Zp [,@g’ﬁ(cos 9)] ‘0:0 = ; paZi(A\0). (2.3.5)

Here /\‘,:’5 =k(k+a+pB+1)=—aband Z(X) = Z(a,b,c; (1 — cos)/2; X) where
2 is defined as in (2.2.3) with the hypergeometric parameters a = —k, b = k + 2p, and
c=a+1.

e By taking u = —(p+i)), where p = (a4 3+1)/2 and A € C, we obtain from (2.3.1)

the Jacobi functions ,@f’(’iﬂ.)\) (t) =oFi(p+i\p—iXa+1;(1—1)/2).

d2y

(t2—1)@+(a—ﬂ+(a+ﬁ+2)t)

dy

=+ (P + M)y =0, (2.3.6)

Theorem 2.1.1 with &,.(6) = (1 — cosh #)/2 now leads to the following result.

Proposition 2.3.2. Let % be as in Theorem 2.1.1 and ;@f’(’iH)\) with a, > —1, p =
(a+ B +1)/2 and X € C be as above. Then

LV/2]
7/3 . 2 2
Lo | P2y (cosh 9)} e lz_g Padf (X" + p%).- (2.3.7)

Here ab = X2 + p? are the ” generalised’ eigenvalues of the Jacobi operator .Z%# in
(2.3.3). Note also that we have set Z;(X) = Z(—X) with Z(X) = Zi(a,b,c;(1 —
cosh 0)/2; X) exactly as in (2.2.3). The hypergeometric parameters here are a = p + i},
b=p—iXand c=a+1.

The Gegenbauer function. In the case « = = v — 1/2, the Jacobi function ,@ﬁ’ﬁ

reduces to the Gegenbauer function ¢);. More specifically, here we have,

CY(t) = Py TR () = o Py (—p o+ 2030+ 1/25 (1= 1)/2) (2.3.8)

It is easily seen that the Gegenbauer function y = ¢}/ (t) arises as solution to the differential

equation

& d
(1- t2)d—t§’ — (2w + 1)td—i + i+ )y = 0. (2.3.9)
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These are linked to the zonal spherical functions on the sphere and the real projective
space in the compact case as well as the real hyperbolic space in the non-compact case.
Furthermore the action identity in Theorem 2.1.1 in this case can be formulated and

described as follows.

e By taking 4 = k a non-negative integer in (2.3.8) we obtain the normalised Ge-
genbauer polynomials €} (t) = o2F1(—k,k + 2v;v 4+ 1/2;(1 — t)/2). Hence with
&(0) = (1 — cosf)/2 we have

N /2]
Lo [ (cos §)] ‘920 = 3" (V). N = k(k+20). (2.3.10)
=0

e By taking u = —(v +iA) and &(0) = (1 — cosh§)/2 we have

IN/2]
L [ €71z (cosh6)] ]H = 3 B (N +1A). (2.3.11)
=0

Relation between dual polynomials &%;. As seen in Theorem 2.1.1, the form and
structure of the polynomials H,, describing the action (2.1.1) depend on both the set
of hypergeometric parameters a,b and ¢ as well as the function & = &(0). Moreover
the dependence on the hypergeometric parameters is only through a + b and ¢ (see the
comments after the statement of Theorem 2.1.1). Thus in particular the polynomials
K (X) = X (—k,k+2p, a0+ 1;(1 — cos§)/2; X) in (2.3.5) and Z°(X) = Z(p+ i\, p —
iA\,a+1;(1 —cosh#)/2; X) in (2.3.7) are independent of the values k and A respectively.
For fixed «, 8, and therefore fixed p, we refer to these polynomials as dual to one-another.
The terminology is prompted by the fact that the Jacobi polynomials 9;:’6 (cos®) and
functions ﬁff_ ., (cosh 0), for certain ranges of a, 3, represent the zonal spherical functions
on symmetric spaces that are dual to one-another.

More generally and motivated by the above discussion we say that a pair of polynomials
X = H(a,b,c;8(0); X) are dual to one-another iff they have the same a + b and ¢, but
with the different & = &.(0) and & = &,.(0) respectively. Quite remarkably we now have

the following result.
Theorem 2.3.3. (Duality relation) %Z¢(X) = (—1)'2(X).

Proof. Since as stated the dependence of the coefficients of the polynomials %; on the
hypergeometric parameters is via a + b and ¢ the only structural difference between dual

polynomials comes from the difference in the respective sequences bl"[&] and b}*[&,c] (see
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(2.1.2) and (2.2.3)). A close inspection of these coefficients (see (2.2.5) and (2.2.7)) and a

reference to (2.2.3) gives the desired conclusion. O

We return to Theorem 2.3.3 later when discussing applications to symmetric spaces.
On passing we point out that throughout the subscripts in &, and &,. and the subsequent
superscripts in #; and %]’ are to highlight the relationships of these even functions and

polynomials to compact and non-compact symmetric spaces respectively.

2.4 Applications to Rank-One Symmetric Spaces 2" = G/H

Let 2" = G/H be a d-dimensional rank-one symmetric space and let —A 4 denote the
Laplace-Beltrami operator in L?(.2; dvg). A complete list of these spaces and their re-
spective parameters «, 3 and p is given below (see Table 3). Now as a self-adjoint operator
in the Hilbert space L?(2; dvg) the Laplacian —A g admits a resolution of the identity
(E : A > 0) such that for any function F' = F(X) in the Borel functional calculus of
—A 9 we can write

FzF&A@zZﬁFQM&. (2.4.1)

Now the Schwartz kernel of this operator, depending as to whether 2" is compact or non-
compact, can be written by a spectral sum or integral respectively. More specifically in

the former case we have

Kp(z,y) = kz_o \]\/{ﬁgg;F(Ak)ﬁk(G, ), r,ye 4, (2.4.2)

where ., = Z1,(0; Z°) are the zonal spherical functions on 2", Ay = A\ (2") are the
numerically distinct eigenvalues of —A g, My, = My(2) is the (finite) dimension of the
eigenspace of A\, 8 = 6(x,y) is the distance between z,y € 2" and Vol(Z") the volume of
A . We point out that in the simply-connected cases (see below) the associated multiplicity

function My (2") is given by

(a+B+2k+ DT (a+ B+ k+ DTS+ DT(k + d/2)

M () = 2.4.3
K(2) T(k+ D(a+ B+ 2)T(d/2)T(k+ B+ 1) (243)
Likewise the volume admits the formulation
d.d/2
Vol(2) = 2r LB+ D) (2.4.4)

S T(B+1+d/2)

On the other hand, for 2" non-compact, K¢ is given by the spectral integral

Kp(z,y) = ca / F(? + )P (V) d, wye 2,  (2.4.5)
0
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where .7\ = .Z\(r; Z') are the zonal spherical functions on 2, p? + A\? are the generalised
eigenvalues of —A gy, u(A) = p(A; 27) is the Plancherel measure on 27, r = r(z,y) is the
distance between z,y € 2" and

27T (a4 1)

Cd = Ta+2 (2.4.6)

Here the Plancherel measure is given by u(\) = [c(A)c(=M)]™! = |c(\)| 72 where c is
the Harish-Chandra function associated to 2~ given by (at least for when Im(\) < 0) by

the formula

— lim %\ (7 6( —iA)r _ 4p—i>\r(a + 1)F(2i)‘)
(W) = 8, Falrs 2)elr 7 = L(p+iNDEA+ (e +1—B)/2) (24.7)

As for spherical functions we first note that the radial part of the Laplacian is given

by the operator

2 /
[~ Ahrad = o - ‘j((jf s (2.4.8)

where A(#) is the area of the sphere of radius 6 centered at the origin in 2. For spaces
of compact type, A(0) is given in (2.4.9), whilst for non-compact spaces see (2.4.17). For
more on analysis on symmetric spaces relating to the discussion here see [28, 30, 62, 99| as
well as [6, 27, 67, 70, 94]. See also Appendix A.7 for a description of the above spectral-

geometric quantities for individual spaces.

Rank one symmetric spaces of compact type. These spaces are the sphere S"* =
SO(n + 1)/SO(n), the real projective space RP™ = SO(n + 1)/O(n), the complex
projective space CP"™ = SU(n 4+ 1)/S(U(n) x U(1)), the quaternionic projective space
HP" = Sp(n + 1)/(Sp(n) x Sp(1)) and finally the Cayley Plane P?(Cay) = F*/Spin(9).
Note that all these spaces with the exception of S! and RP"™, n > 1, are simply-connected.

Now, referring to (2.4.8), in the compact case we have
A(6) = wa_1 [(sin0/2)/2)** T (cos 0/2)2P T (2.4.9)

where wg_1 = Vol(S%™1), and a, 8 > —1 are real parameters associated to 2. This leads

to the radial part of —A having the form

2

0 1 1 0
A9 rad =502 + 5(2(1 +1)cot0/2 — 5(2/3%— 1)tan6/2 50

2

=52t [(26 +1)cot B+ (o — 5) cot 6/2] % (2.4.10)
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With a change of variables ¢ = cosf one arrives at the Jacobi operator as encountered

earlier

d? d
L = (1—1?)— — o — 2)t]—. 2.4.11
- Bt (ar a2l (2411)
As a result it is seen that the zonal spherical functions % (0; 2°) (k > 0) here can be

expressed as
F(0; 2) =P (cos0) = oFy (—k, k + a+ B+ 1;a + 1;sin2(6/2)) . (2.4.12)

In light of this description of the zonal spherical functions, the spectral sum (2.4.2),

with a slight abuse of notation, can be rewritten as

Kr(h) = kz_o é{)’ﬂlgimxk)@gﬂ(cos 0). (2.4.13)

Now proceeding formally it is seen that the Maclaurin expansion of the kernel Kr can

be written as

. 92l a?l & 92[

ZZ; (21)!8621KF(9)‘90 - lz(; il 2] (2.4.14)

Proposition 2.4.1. The Maclaurin spectral coefficients by [Kp; 2] for 1 > 0 are given by

_ 1
~ Vol(Z)

where ) = i (—k, k + 2p,a+ 1; 6.(0); X).

bau[Kr; 27 Te[FZ)(—Ay), 1>0, (2.4.15)

Proof. Upon referring to (2.4.14) it suffices to note that

% N Me(Z) L ap O o
balr: 21 = Hgm KF(O)‘e:o = Vol(z) T ) gga P (cos O]
S M(Z) L ap B
- Z FO® ) 2.4.1

where in passing to the second line we have used Theorem 2.1.1 in the form (2.3.5) with

P(X) = X?!. This completes the proof. O

Rank one symmetric space of non-compact type. These spaces are the real hyper-
bolic space RH" = SOg(n,1)/SO(n), the complex hyperbolic space CH" = SU(n, 1)/S(U(n)x
U(1)), the quaternionic hyperbolic space HH" = Sp(n,1)/(Sp(n) x Sp(1)), and the Cay-
ley plane H?(Cay) = F}/Spin(9). Now again, referring to (2.4.8), in the non-compact

case we have

A(0) = wy_1(sinh 8)*F(cosh §) 2+, (2.4.17)
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where «, 8 > —1 are real parameters associated with 2" as in Table 3. Therefore the

radial part of the Laplacian is seen to have the form
2

57~ [(2cc + 1) cothr + (28 4 1) tanh 7] 9
”

[_A%]rad = - or’ (2418)

The change of variables t = coshr leads again to the Jacobi operator Z®#. Hence upon

recalling the equation

d? d
(12 1)dt§ (a—ﬁ+(a+ﬁ+2)t)d% +(p* + A%y =0, (2.4.19)

it follows that the zonal spherical functions .%y(r; Z°) here can be expressed as

T, &) = @i‘k’iﬂ.)\) (coshr)

=oF (p+1iX p—iXja+ 1;—sinh?(r/2)). (2.4.20)

With the aid of this description of the zonal spherical functions, the spectral integral

(2.4.5), with a slight abuse of notation, can be rewritten as
Kp(r) =cq / F(p* + AQ)@af L (coshr)p(N) d. (2.4.21)
0

Now proceeding formally it is seen that the Maclaurin expansion of the kernel Kr can

be written as

o 2l 321 oo 2l
ZZ 20) [l )‘ 0 ; )] b lKr 2] (2.4.22)

Proposition 2.4.2. The Maclaurin spectral coefficients by [Kp; 2] for 1 > 0 are given by
bou|Kp; 2] = Te[FZ|(-Ay), 1>0, (2.4.23)

where Zy = Hi(p + i\, p — i\, o + 1;E,0(1); X), ZF(X) = % (—X) and the trace on the

right is associated with the kernel
Kra:(r) = cd/o F(p*> 4+ M) %} (p* + )\2),@0“’(6+ /\)(coshr)u()\) d\. (2.4.24)

Proof. Upon referring to (2.4.22) it suffices to note that

82l
920

o 8 o

= cq / F(p* + >\2)%’l*(p2 + A2 () dX, (2.4.25)
0

bulKp; 2] = Kp(r)

r=0

where in passing to the third line we have used Theorem 2.1.1 in the form (2.3.7) with
P(X) = X2 The proof is thus complete. O
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Chapter 3

A Representation Formula for a
PDO Action on Even
Compositions of the
Hypergeometric Function and its

Generalisations

3.1 Introduction and statement of the result

The Gauss hypergeometric function o F} = 9 F} (a, b; ¢; 2) is defined for |z| < 1 and a,b,c € C
with ¢ not a non-positive integer (i.e., ¢ # 0,—1,—2,...) by the series

— (a)k(b)r, 2*

2 F1(a,b;¢;2) = :
=0 (C)k k!

(3.1.1)

Here (z)p = x(x +1)...(x + k —1) for £ > 1 and (x)g = 1 is the rising factorial. The
series converges absolutely and locally uniformly inside the unit disk and can be seen to

satisfy the second order differential equation, !

d*w dw
z(1— z)@(z) +(c—(a+b+1)2) a(z) — abw(z) = 0. (3.1.2)

Let P = > p,X" be a polynomial in X = (Xji,...,X,) with coeflicients p,. Here X7 =

X7'...X]" and the sum extends over all multi-indices v = (71,...,7,) of non-negative

integers satisfying |y| =1 + -+ 74 < N for some fixed N € N. We associate with P the

'For further background see [4, 12, 93].
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partial differential operator % in ¢ variables

ol

— 3.1.3
OXJ'...0X]" (3.13)

N
Lo =PO)=po+ Y py
lvI=1

Setting z = (1—-t)/2 witht = 9(X) = g(X1) ... g(X,) where g = ¢g(X) is a smooth even
function of the single variable X in a neighbourhood of the origin X = 0 satisfying ¢g(0) = 1
and as before X = (X7,..., X,), we set ourselves the task of computing the action of Zp
on this multivariable function at X = 0. We prove that for an explicitly computable set of
scalars c;- = cj-(a, b, c; 4) — depending on the function g and the hypergeometric parameters

a, b, ¢ (this dependence will be presented below) — this action can be completely described

by the formula (see Theorem 3.3.1)

IN2]
Lo [oF1 (a,bie; (1= F(X))/2)] | =po+ > oy > ) (—ab) . (3.1.4)
=1 =l

Introducing the polynomials %, (X) = %#,(a,b,c;9; X) = Zyﬂl c}X J of the single variable

X and of degree || (with Z,(X) = 1) we can rewrite this as

[v/2]
Zo 2R (abia L= X)) = D poyy(—ab). (3.1.5)
|v|=0

The choice of z = [1 — g(X1)...9(X,)]/2 is prompted by applications to spectral the-
ory of Riemannian symmetric spaces of rank one. Here the zonal spherical functions
can be described in terms of the Jacobi and Gegenbauer functions and polynomials
(all being particular instances of the hypergeometric function) and with the choices of
g(X) = cos X and ¢g(X) = cosh X for the compact versus non-compact spaces respect-
ively. Such applications serve as a main motivation for this work. For related res-
ults see [4, 10, 12, 23, 41, 53, 70, 71, 99] and for further reading and background see
[36, 62, 64, 89, 94].

Let us finish off this introduction by giving a brief plan of the chapter. The above result
is proved in Section 3.3 after going through some auxiliary results, generalities and essential
notation in Section 3.2. Indeed as will be seen later the elementary symmetric polynomials
and the exponential or incomplete Bell polynomials enter the scene by way of giving
an explicit description of the polynomials %, = %,(a,b,c;¥;X) and their coefficients
C;Y = c}(a, b,c;9) (see Theorem 3.3.1). For this natural reason we quickly go through these
and prove an interesting extension of the Faa di Bruno formula to a multivariable context
(see in particular Theorem 3.2.2 and the subsequent examples). In Section 3.4 we specialise

the result to the two families of Jacobi and Gegenbauer functions and polynomials which
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are intimately tied with the zonal spherical functions on Riemannian symmetric spaces
of rank one. In the last two sections we discuss further extensions of the main result,
specifically, in Section 3.5 we establish the explicit form of the action identity for matrix
hypergeometric functions, that is, the hypergeometric function o F (A, B; C; z) with matrix
parameters and in Section 3.6 for the generalised hypergeometric function ,F; (a; b; z) with
vector parameters. These results can be seen as providing far reaching generalisations of
certain analytic and spectral objects and identities to contexts way beyond their natural
habitat of Riemannian symmetric spaces, the Laplacian spectrum and the zonal spherical

functions and as such have potential for many further interesting applications.

3.2 The combinatorics of the scalars b;[¥(X)]

To facilitate and formalise the application of the differential operator Zp to the hyper-
geometric function we start by taking a closer look at the monomial action P(9) = 97 at

X = 0, specifically,

(9 (X))

ol
xX=0 OMX;. ”quqf(%(X)) X=0’ (32.1)

Here 4(X) = g(X1)...9(X,) where g = g(X) is an even smooth function near X = 0
satisfying ¢(0) = 1 and f = f(¢) is a smooth function near ¢ = 1. Before proceeding further
we recall the Faa di Bruno formula, a generalisation of the chain rule for derivatives (cf.,
e.g., [36] pp. 137-9). This formula asserts that for sufficiently smooth functions f,g the
mth order derivative of the composition h(X) = f(g(X)) can be written

5;2 Z 9 mi(g'(X),9"(6), ..., g T (X)). (3.2.2)

Here B,, ; = Bm,j(Y) with 1 <j<mand Y = (Y1,Ys,...,Y,—j11) are the incomplete

Bell polynomials, defined by

Y k‘l Y k‘Q Ym—' k’mfjJrl
§ ! 2 (e (3.2.3)
kl'kg m ]+1 1' 2! (m -7+ 1)'

where the sum is taken over the set # of all admissible (k1, ko, ..., km—j+1), that is, finite
sequences of non-negative integers k1, ..., kpy—j41 such that
m—j+1 m—j+1

Y k=4, >k =m. (3.2.4)
=1 1=1
The incomplete Bell polynomials satisfy the generating function relation (for each fixed

j >0) (cf., e.g., [36], pp. 133: [3a], [3a])

00 J

t
2.y

1
J!

)

tn
ZBTLJ(Y]AYQ;"'?YH-F]'—I)E- (325)
n=j :
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It is also a straightforward consequence of the above that the incomplete Bell polynomials

satisfy the scaling identity

o BBy i (Y) = o BBy j (Y1, Yo, ..., Vi jt1)

= B j(aBY1,af?Ya, ..., af™ Y 1), (3.2.6)

Even composition in single and multivariables. We assume throughout this chapter
that ¢ = ¢g(X) is a smooth even function in a neighbourhood of X = 0 normalised by
g(0) = 1. The task is now to look at the action 97 f(¢(X)) as in (3.2.1) by invoking

(A.5.1) in the single and multivariable cases respectively.

The case ¥(X) = g(X). In the single-variable case the differential action can be simplified
greatly. We observe firstly that the derivative of an even function is odd and the derivative
of an odd function is even and secondly that any odd function vanishes at the origin.
Therefore all odd order derivatives of g = ¢g(X) and h = f(¢g(X)) must vanish at the
origin and so in discussing (3.2.1) we can restrict to derivatives of even order only. As a
matter of fact the differential identity (A.5.1) (with 2m replacing m) can here be shown

to reduce to

d2m m
axzn/ 9X ‘ Z_: dtJ Moy (3.27)

where via (A.5.1) we have defined a set of scalars b7'[g] given for j = 1,...,m by the
values of the Bell polynomials By, ; at the vector of consecutive derivatives of g at X = 0,
i.e., b7[g] = Bam,(0,9"(X),0,gW(X),..., gD (X)) x=o-

Remark 3.2.1. For the sake of future applications to the hypergeometric function in Section

3.4, writing f(t) = F(z) with z = (1 —t)/2, we have the identity

m

d>m 1—g(X) o B i f

dX2mF ( 2 ) - _mf(g(X)) . = g bj ﬁ 1 (328)
A b @iF
Z: Jdt < ) ‘ Z .7 dz] 2=0’

]:1
where b" = bi*[g] [compare also with (3.2.7)]. As the derivatives of (1 — g(X))/2 are of
the form —g\9)(X)/2, the latter can be alternatively visualised, using (A.5.1) and (3.2.6),
by noting
7((1  0)/2] =B 50, ~4"(X)/2,0,~g D (X)/2, .., ~gCm IV (X))
=(=2) Bami (0. 9"(X), 0,g9 (), ..., g (X)) .
=(—2)"'b}[g]. (3.2.9)
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The case ¥(X) = g(X1)...9(X,). We now aim to extend the identity (3.2.7) to our

multivariable context and prove that for given multi-index v = (v1,...,7,) there is a
computable set of scalars b} = bJ[¥(X)], for j = 1,...,|y], such that
od dj
M (g(X0) - g(X,))| = Db X)) (0] (3:210)
x=0 < dt? t=1

Since g = g(X) is even any of its odd order derivatives are odd and hence zero at X = 0.
Applying this to the product g(X1)...g(X,) it is plain that any odd order derivative of
f(g(X1)...9(Xy)) in any of the variable X1, ..., X, must vanish when we set each X; = 0.
Hence we can ignore any v with odd elements, or equivalently, just consider those multi-
indices of the form 2y = (271,...,27v,). To begin we apply a single variable derivative to
F(@(X)) = f(9(X1)...9(Xy)). For a positive integer ;, we write this as

o Fo Zal!
Wf(g(xl) . 9(Xy)) Nimo = 8X71271f(g(X1)) -
71 dJ
= Y b g(X0)] 5 )] (3:2.11)

j=1

where we notice that for the variables that aren’t differentiated (that is, all of the remaining
Xo,...,X, in this case), we can freely set X; = 0 in the first step so that ¢g(X;) =
1. Somewhat these extra variables have no effect on the outcome here. Next we try
differentiating with respect to two variables, say X1 and Xs. To this end we fix a multi-
index v = (71,72), and look to simplify the evaluation of the derivative

0% g f a2y
axXT gxT” (9(X1) ... 9(Xg)) o O f(g(X1) ... 9(Xq)) X0’ (3.2.12)
As before, we can set the irrelevant X;’s to zero immediately, and then perform the
derivative in X first via the single-variable formula (3.2.11) as

o2 §2re

8272 Y1 ) .
= o 20 TV (a(X2) lo(a)Y
2

J=1

O f(g(X1)...9(Xy)) f(9(X1)g(X2))

X1=X>2=0

3.2.13
oo (3.2.13)

Here fU) denotes the j* derivative of f. We now need to apply the derivative in X» to
the product fU)(g(Xs)) [g(X2))?. To do this, we define Fj(t) = fU)(t)t. Substituting this

into (3.2.13), we can again apply (3.2.11) and write

. ¥ o (k
(3.2.13) ij aXQW Fi( ’X = Zb ' Zb o ‘t . (3.2.14)
7j=1
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We can calculate the k™ derivative of F;(t) = fU)(t)t/ via the Leibniz rule as

k
3 I'G+1) FUHO )itk (3.2.15)
=

Fj—k—i—ﬁ—i-l)

We note that the above sum is understood to be zero when k — ¢ > j due to the poles of

the Gamma function at non-positive whole integers. Therefore we can freely set t = 1 as

71 Y2 k .
(3.214) = > b1y b > (;f) 0 E(‘;:?Jr 5 Futh (t)‘tzl. (3.2.16)

j=1 k=1 (=0

Rearranging the above as a sum over j = 1,..., |y| = 71 + 72 of fU)(t), we have

v 71 . T'(p+ )
(3216=3 3 b1 3 b < )mfw@\tl

Jj=1p=j—2 k=j—p
p>1 k>1

o]l

= > P (x)g (X)) (3:2.17)
j=1

where we have written
7 Y2
(1:72) _ Q% Y2 k L(p+1) 1
o lgaxa] = 3 B 3 o) (,F )il e
iy e

p=1 k>1

b§71 72) for a multi-

What we should observe from this description is that the coefficents
index (v1,72) are written as a nested sum of the coefficients b)' and b)* for the associated

scalars v1,v2 with p=1,...,v1 and k =1,..., v, respectively.

Theorem 3.2.2. Let g = g(X) be an even smooth function near the origin with g(0) =1
and let 9(X) = g(X1)...9(Xy) with X = (X1,...,Xy). Then

o]

8% f(%4( ‘ Zb7 X)) £ (¢ )‘ . (3.2.19)

t=1

The coefficients b][4(X)] = bj[g(X1) ... 9(Xq)] are defined recursively as

M=y Ya r 1
= 3 bllg(X1)...g(Xg0)] Y Mbmgm, (3.2.20)
P=Jj—"q k=j—p

p=>1 k>1

where b;y[g(Xl)...g(Xq_l)] are the coefficients associated to ¥ = (V1,...,7g—1), and
b/?[9(X,)] are the coefficients from (3.2.7) with m = ;.

Proof. We have already explored the two cases v = (1), and v = (71,72) as motivation

prior to the statement of the theorem, and arrived at the formula (3.2.18). We use this
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as the base case in an induction argument. We now assume that (3.2.19) holds for some

arbitrary ¥ = (y1,...,7¢—1), with the associated scalars bj. [9(X1)...9(Xq-1)] defined by

b [g(X1) ... 9(Xg-1)] (3.2.21)
#1=7q-1 Yol (FAD(p+1
= Z b}(j’Yl,..-y'Yq—Q)[g(Xl)...g(Xq—Q)] Z M Zq_l[g(Xq—l)]’
P=J—Yq—1 k=j—p
p>1 k>1

which is equivalent to (3.2.20) rolled back by one iteration. We can then derive the coeffi-

cients b} [g(X1) ... g(Xy)] = b] for v = (y1,...,7-1,7)- Applying 0% to f(g9(X1) ... 9(Xy))s
we can evaluate the derivatives in the first ¢ — 1 variables by our assumption on 7, intro-

ducing the scalars b;-y[g(Xl) g X)) = bj given in (3.2.21) as

821l

PFICN, = o 000 0|
) ¢
o -82*f(9(X ). 9(Xq)) ]
= T o~ 1)... _
anvq _ q )%éqo o
aQ»yq i |:Y| B ) )
= > b1 (g(Xy)) [9(X,) (3.2.22)
¢ =l Xg=0

In the third step we have set the variables that aren’t differentiated to zero, as we know
they have no effect on the result. Again writing Fj(t) = f @) (¢)t7, with its derivatives given
in (3.2.15), we follow on from (3.2.22) as

0% f(%(X 7 0 X 3.2.23
FEX)|, = ] )] (3.2.23)
[Y=q Ya dk
_ Y Yq
= 36 Bl S )|
7=1 k=1
M= 7 k B\
5 PG+ e, e
_ bY qu [g(Xq)] Z (Z) f(]+£)tj+€ k _
= J po — Fj—k+¢+1) t=1
Isolating the derivatives f)(¢) and simplifying, we arrive at
2y —
FIX)|_ =Fle(X) . g(X)| (3:224)

vl 1vl=q Yq

. T 1 k -
DI BRI o G FEIUI R

j=lp=j—vq k=j—p J
p>1 k>1

where we have denoted b} = bJ[g(X1)...g(Xy)], by = bplg(X1)...9(X,1)], and b)* =
b/?[9(X,)]. This gives us the result by an induction argument. O



44

Remark 3.2.3. As a counterpart of what was stated earlier in Remark 3.2.1, and by writing

f(t)

= F(z) with z = (1 —t)/2 as before, it is easily seen that here, we have

PRI -4(X))/| =0T fIX)| = 3.5 X)) 510
= 3Bl R - )], = Y2 g

Two Examples. For the sake of clarity and illustration of the above let us now discuss

two relevant and useful examples.

e When ¢(X) = cos X. A common example of an even function satisfying ¢g(0) = 1

is g(X) = cos X. The periodic pattern of the derivatives of ¢ allows us to compute
the coefficients bl" in (3.2.7) (cf., e.g. [36, 89, 55]) as
b’ [cos X] = Bop, j(—sin X, —cos X, ...)|x=0 = Bam,;(0,—1,0,1,...)  (3.2.25)

J

and so

Cvjem e et
b;”[cosX]:( 1?:+ 2(2? <2)2<5>(2q—€)2m. (3.2.26)

J: =0 q=0

Alternatively we can express b} [cos X]| via the recursive relation

(—1)™ for j=1
b [cos X] = { — <j2b§”—1 + (25 — l)b’jﬂjll) forl<j<m
0 for j > m.

From (3.2.7) and Remark 3.2.1 and with b}* = b7*[cos X| we can write

d2m
dXQm

F([1 - cos X]/2)‘ - i(—z)—jbm‘ﬂi (3.2.27)

X=0 4 b dzd =0
J=1

We also see that the conclusion of Theorem 3.2.2 holds for g(X) = cos X, and so

together with Remark 3.2.3 we have

—jb’Ydjl

) - 3.2.28
7 dzI z:0’ ( )

O F([1 — cos X; ... cos Xq]/2)‘X:O => (-2

where in the last equation b;-’ = b]- [¢(X)] with 4(X) = cos X1 ...cos Xg.

When ¢(X) = cosh X. Related to the above example, if g(X) = cosh X then we

can similarly write (cf., again [36, 89] and the references therein) as b[cosh X] =
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Bom,j(sinh X, cosh X, ... )|x=0 = Bam,(0,1,0,1,...) and so
1 J .
2m
b7’ [cosh X] = i z; ( ) —20)%™, (3.2.29)

Similar to the case of the ordinary cosine here we can alternatively express b [cosh X]

by the recursive formula

1 for j =1
b [cosh X] = { (—1)m+1 (ij;"*1 + (25— 1)b;":11) for1<j<m
0 for j > m.

We note in particular that here we have the remarkable identity b}*[cosh X| =

(—=1)™b}*[cos X]. Again Remark 3.2.1 gives us

K hX]/Q)‘ - i(—m—ﬂ m@F (3.2.30)
e o x=0 g -
with b" = b"[cosh X] whilst Theorem 3.2.2 and Remark 3.2.3 give us
O*F([1 — cosh Xy ...cosh X ]/2)‘ = i(—Q)—jb”.ﬁ , (3.2.31)
L x=0 e I dzi 12=0

where we have set b;y = b;’[%(X)] with ¢(X) = cosh X ...cosh X.

3.3 A differential identity on the hypergeometric function

Before presenting the main theorem, we introduce a set of scalars s] which we define as

the coefficients of Y7 in the polynomial

p—1 P
[ +x0) =) s(Xo,..., X, 1)V, (3.3.1)
k=0 7=0
for scalars Xo, ..., X,—1. As a matter of fact these scalars can be described by the element-
ary symmetric polynomials as S,—;(Xo, ..., Xp-1) = s?, where S;(Xo, ..., Xp—1) denotes

the sum of the distinct products of length j of the variables Xy, ..., X},_1. In particular,

we have
S=1, s, =Y Xi, ... s=][]Xe (3.3.2)
0

<.
I

~
Il

Theorem 3.3.1. Let g = g(X) be an even smooth function near the origin with g(0) =1
and let 9(X) = g(X1)...9(Xq). Consider the constant coefficient partial differential
operator Zp as in (3.1.3). Then for a,b € C and c € C\Ny we have

[N/2] h
LR (bl =IXN2] =+ 3 D labet) oty (323

[v|=1
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The scalars c} = c}(a, b,c;9) are given explicitly by the formula
R ol il
(a.b,e: %) = (—1)H S 27 (X))t [[(e+p) " (3.3.4)
i=j p=0

where bZ[%(X)] =b][g(X1)...9(Xy)] are defined in Theorem 3.2.2, and the scalars s;'- =
sé-(a +b) are defined in (3.3.1) with X = k(k + a +b).

Proof. We begin by applying %p to 2Fi(a,b;c;2) at z = [1 — 9(X)]/2, where ¥(X) =
g9(X1)...9(X,) noting that any odd derivative in any of the variables vanishes [see the
paragraph following (3.2.10)]. Thus we have

[v/2]
ZLpl2Fi(a,b;c; [1 — g(X)]ﬂ)]‘X:o = Z P20 9 F (a,b;¢; [1 — 9(X)]/2)
[v|=0

X=0

Since oF} (a,b;c; z) is a smooth function we can apply Theorem 3.2.2 and Remark 3.2.3

to the derivatives within the summation above. With this we have
|’Y| ) dj
P5F (0, b1 - 9(X))/D)| =3 (-2 B (b |

X=0 “ IV dz =0
J=1

where we note b/[%] = bJ[g(X1)...g(X,)]. Next by differentiating (3.1.1) we can derive

a recursive relation for the derivatives of the hypergeometric function

d7 (b
deQFl(avb;CQ'Z):(OL)]()]F(a+jvb+j§c+j§Z)~ (3.3.5)

(c);

With this, and recalling that o F}(a, b; ¢;0) = 1, we can continue by writing

o @3 (0);
0¥ o Fy (a,b; c;[1 — g(X)]/2)(X:O = Z(—Q)—ij.[%] o (3.3.6)
Jj=1

The product (a);(b); can be expanded into a polynomial in ab upon noting

j—1 j—1 j—1 i
(@);®);=Ja+p [J0+a) =[] (@0+Ela+b+k])=>> sl[ab], (3.3.7)
p=0 q=0 k=0 =1

where we have used (3.3.1) with Y = ab and X} = k[a + b+ k| to introduce the scalars

s{ . Returning to (3.3.6), we can now assert that

vl bI¥) I
02k bics L =S (XD =D (=27 3 sflat'

X=0

77 (3.3.8)

Note that we have arranged the sum to be over powers of —ab. The reason for this will
be clear in later applications. It now suffices to define the generalised hypergeometric

coefficients as in (3.3.4) and the conclusion follows. O
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3.4 The Jacobi and Gegenbauer function families ,@ﬁ’ﬁ (2)

and ¢ (z2)

The hypergeometric function oF; = 2F}(a,b;c; z) unifies and generalises several families
of orthogonal functions and polynomials. Of particular interest are the Jacobi family

L@ﬁ"ﬁ(z), which we define for «, 5 > —1 by (see also [4, 55, 70])
gzﬁtﬁ(z) =oF (—p,p+a+B8+1a+1;(1-2)/2), peC. (3.4.1)

For © = k € N these become the normalised Jacobi polynomials, which act as the zonal
spherical functions on rank-one symmetric spaces of compact type for certain ranges of
a and S when z = cos#. Similarly for p = —(iA + (o + 8 + 1)/2) we recover the zonal
spherical functions on rank-one symmetric spaces of non-compact type when z = cosh 6
(see, e.g., [62, 70, 99]). Substituting for a, b, and ¢ from (3.4.1) in Theorem 3.3.1, gives

the following result.

Theorem 3.4.1. Let 9(X) = g(X1)...9(Xy) for an even and smooth function g = g(X)
near the origin with g(0) = 1. Let % = P(0) be as in (3.1.3) and let Wﬁ"ﬂ be as in (3.4.1)
with a, 8 > —1 and p € C. Then

[N/2] el
a7ﬂ — 1
2o [ZpP @] [, =+ |Zl P Glnrat s, (342
Y= =

where p(p+ o+ B+ 1) are the generalised eigenvalues of the Jacobi operator. The scalars

T =

5

c}(a,ﬁ;g) are given explicitly by

i oL bl s
I, 3;9) =Y (—1) ﬂm

=7

(3.4.3)

where b][9] = bl[g(X1)...9(Xy)] are defined in Theorem 3.2.2, and the scalars s;- =
sé(oz + B) are defined in (3.3.1) with X = k(k+a+8+1).

The Jacobi function can be specialised further to the Gegenbauer function 47, which

we arrive at by setting a = =v —1/2 for v > —1/2 as

CY(z) = Py () = o Fy (—p e+ 2050 4+ 1/25 (1 - 2)/2). (3.4.4)

As with the Jacobi function, setting u = k£ € N results in the normalised Gegenbauer
polynomials %}/, which act as the zonal spherical functions on the sphere S™ and the real
projective space RP™ when z = cosf. On the other hand, setting u = —(i\ + v) gives us

the zonal spherical functions on the hyperbolic upper-half space H™.
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Theorem 3.4.2. Let 9(X) = g(X1)...9(Xy) for an even and smooth function g = g(X)
near the origin satisfying g(0) = 1. Let Zp be as in (3.1.3) and let € be as in (3.4.4)
with v > —1/2 and p € C. Then

N2
Z [62(9(X))] )X =Pt Y p Y e+ )P (3.4.5)
[v|=1 J=1

where u(pw + 2v) are the generalised eigenvalues of the Gegenbauer operator. The scalars

c;y = ¢; T(v;9) are given explicitly given by

bl b

Gi) = 3 ()

_ 4.
i=j 2'(v +1/2); (3.46)

where b) (9] = b][g(X1) ... 9(X,)] are defined in Theorem 3.2.2, and the scalars sé. = sé-(u)
are defined in (3.3.1) with Xy = k(k + 2v).

3.5 The P(0) action on the matrix hypergeometric function
o F1 =2F1(A,B; C; 2)
Here we consider the hypergeometric function with n X n matrix parameters A, B, and

C, with (C + kI) an invertible matrix for every integer k > 0. (Here I =1, is the n x n

identity matrix.) Recall that this is defined, for complex z, by the infinite series

e k
z

2Fi(A,B;C;2) =) (A klﬁ, (3.5.1)
k=0 '

where the matrix extension of the rising factorial is given by (F)o = I and for k£ > 1 by
(F)y = FF +1I)...(F+ (k— 1)I). The series can be shown to converge for all |z| < 1
and similar to the case of the Gauss hypergeometric function conditions can be given on
the parameters A, B and C to imply convergence for |z| = 1 (cf., e.g., [64]). Note that
for A = al, B = bl and C = cI we recover the Gauss hypergeometric function in that
oF1(A,B; C; z) = 9Fy(a, b; ¢; 2)I. Now, returning to (3.5.1), since the series is convergent

for |z] < 1, differentiation, and using the relation (F),,+; = (F)m(F 4+ mlI);, leads to

j o0 k=i
L OFI(ABIC:2) = Y (AB) () (k1) (k—j + 1))

k=j
oo Zk;

= Z(A)j-i-k(B)j—&-k(C)j_jkE (3.5.2)
k=0
00 zk

=D _(A);(A+j1)k(B);(B + jI)s(C + D (C); ' 7

=
Il
o
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Evaluating at z = 0 then gives d//dz/oF (A, B;C; 2)|,—0 = (A)j(B)j(C)j_l. In passing
we also note that if A and B or if B and C commute, then by a basic commutativity
argument, we can rewrite the series on the right in (3.5.2) as a hypergeometric series (with
shifted matrix parameters) and hence arrive at
& . . . _
—2F1(A B C;2) = (A);(B); [F1(A + 51, B + 5T, C + jT; 2)] (C);
for when A and B commute or alternatively for when B and C commute:

&’ . . . _
—2Fi(AB; C;2) = (A); 2F1(A + jI,B 4 jT; C + jI; )] (B),(C); .

Naturally we would like to see how the differential operator .Zp behaves when applied to
this matrix parameter extension of the hypergeometric function. The following statement

gives an answer to the question. (Compare with Theorem 3.3.1.)

Theorem 3.5.1. Let 9(X) = g(X1)...9(Xy) for an even smooth function g = g(X) near
the origin with g(0) = 1. Let Zp = P(0) be as in (3.1.3) and let A,B and C € C™*" with
(C + kI) being invertible for every integer k > 0. Then

IN/2) b bv ]
Lo F(A B G 1= 9(X)]/2)]| _ =pol+ >

B lv|=1 Jl

Here b}[%] are as defined in Theorem 3.2.2. If additionally A, B commute then,

(B);(C);!. (3.5.3)

J

N2l il b[ ] .
(3.5.3) =pol+ D p2y > Y (-1 ==SH-ABJ(C); Y, (3.5.4)

|v|=1 7=11i=j

where 8% = S;_j(Xo, ..., Xi—1) with X, = k(A + B + kI).

Proof. We closely follow the proof of Theorem 3.3.1, as the steps are very similar. We
begin by noting that setting z = 0 in the definition (3.5.1) gives us the pointwise identity
9F1(A,B;C;0) = I. Now directly applying the operator %p to oF1(A,B;C;z2) at z =
(1-9(X))/2, where 9(X) = g(X1) ... g(X,), and recalling that the odd derivatives vanish,

we have
|N/2]
LHS of (3.5.3) = Z p2,0*72F1(A, B; C; [1 — %(X)]/Q)‘
=0 =
[N/2] ] b” ;
=pol+ > png ]WQFl (A.B;G2)| (3.5.5)
lvI=1

An application of the recursive formula for the derivatives of the hypergeometric matrix

function given prior to the theorem now leads to the result. Next if A, B commute then

Jj—1 J
(A);(B); = [[IAB + p(A+B+pI)] = ) _S/[AB]* (3.5.6)
p=0 (=1
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where the matrices SZ as stated are defined by the extension of the elementary symmetric
polynomials S;_; to C"*™ (i.e., n x n matrix arguments) evaluated at X}, as described (see
the start of Section 3.3). Substituting back in (3.5.3) and rearranging the sums gives to

the conclusion. O

3.6 Extension of Theorem 3.3.1 to the generalised hyper-

geometric function ,F, = ,F,(a;b;2)

The Gauss hypergeometric function oF) = 9Fj(a,b;c;z) can be seen as a special case of
the generalised hypergeometric function ,F,. = ,F,(a;b;z), where, here a = (a1,...,ap)
and b = (b1,...,b,) with no by (1 < ¢ < r) a non-positive integer. Indeed this is defined,

for complex z, by the series (see [4, 12, 93, 55])

s Z-)_ (al)k Z’C
Fo(a;b;2) = § =l (3.6.1)
P = T =1 (bj)r K!

The series converges for all finite values of z when p < r and all |2|] < 1 when p =7 +1
but diverges for all z # 0 when p > r + 1. In the case p = r + 1 the series converges
absolutely for all |2| = 1if R(>, b; — >, a;) > 0 and converges conditionally for all |z| =1
and z # 1if =1 < R(>_, b; — >, a;) < 0 while the series diverges if R(D> ", b, — >, a;) < —1.
Clearly when any of the parameters a; (with 1 < ¢ < p) is a non-positive integer the series
terminates and becomes a polynomial in z. The generalised hypergeometric series satisfies

the differential recursive formula

dm (a1)m(a2)m - - (ap)m F

dz—mpFr(a; b;z) = Om B2 - (o) ? r(a+m;b+m;z) (3.6.2)
where indiscriminately we have written a+m = (a1 +m, ..., a,+m) and likewise b+m =
(b1 +m,...,b, +m). It also can be seen to satisfy the differential equation

S d d v7(.d
zj[[l <Zdz + aj> pFr(asbsz) = Zdzjl;‘[l (Zdz +b; — 1) pFr(a;b; 2). (3.6.3)

A general product of rising factorials can be written as

p k-1 p k D J
[a)s =TT [ (@i +5) =) _sj(a) <H ai) : (3.6.4)
i=1 Jj=01=1 §=0 i=1

sk

J (a) defined as the coefficients for the sum on the right. Arguing now as

giving us scalars

in the proof of Theorem 3.3.1 with the suitable adjustments leads to the following result.

Theorem 3.6.1. Let 9(X) = g(X1)...9(Xy) for an even smooth g = g(X) near the
origin with g(0) = 1. Let £p = P(0) be as in (3.1.3) and let a = (a1,...,ap) and
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b = (b1,...,b,) with no by (1 <€ <r) a non-positive integer. Then

[N/2) Il P J
% [, Fr (a; b; [1-54(){)]/2)}‘ C=pot+ Y pngc (—HaZ) (3.6.5)
=1

- =t
where the scalars ijy = A(a, b;¥) are given explicitly by

T

o] b”/ i—
[T+ 5%~ (3.6.6)
(=1

1
Y= H‘]Z
¢, =c/(a,b¥)=
k=0
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Chapter 4

Funk-Hecke Formula and Spectral
Functions on Compact Symmetric

Spaces of Rank one

4.1 Introduction

Let P = ) p,X" be a polynomial in X = (Xi,...,X,) with coefficients p,. Here X7 =
X7'... X, and the sum extends over all multi-indices v = (71,...,7,) of non-negative
integers satisfying |y| =1 + -+ + 74 < N for some fixed N € N. We associate with P the

partial differential operator Zp in ¢ variables

ol

Zp =P(0) =po+ Z pw@X“—

. 4.1.1)
e (
[v|=1 a

Let @O"’B @O"ﬁ( t) with a, 8 > —1 and integer k > 0 denote the normalised Jacobi
polynomial (see Appendix A.3). By setting ¢ = cos X ...cos X, with X,..., X, real
variables we set ourselves the task of computing the action of %p on this multivariable
function at the origin (Xi,...,X;) = 0. We prove that for an explicitly computable set of
scalars c}(a, B) (that will be given) this action can be completely described by the formula

(c¢f. Theorem 4.2.2)

LV/2] vl :
a, «, J
{fp@k 5} (cos X7 ...cos X)) o =po + ;1 p%;c;(a’ﬁ) {/\k ﬁ} , (4.1.2)

where )\O"B = k(k+a+B+1) are the eigenvalues of the Jacobi operator £, ). Expressed

differently, by introducing the polynomials %, = %, (o, 5; X) = Z'f"l ]( B)X7 of the
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single variable X and of degree |y| we can rewrite this as

|v/2]
[Zp@?’ﬂ} (cos X7 ...cos X)) g = 0 + Z pw%’v()\g’ﬁ). (4.1.3)

IyI=1

Apart from being interesting in its own right the above representation formula has many
nice applications to analysis as well as spectral geometry of compact rank-one symmetric
spaces that are discussed in the rest of the chapter. Among these are the description
and calculation of the Maclaurin spectral coeflicients associated with Schwartz kernels of
numerous functions of the Laplace-Beltrami operator (e.g., those of the heat kernel and
Riesz spectral projections). Also as a result of this analysis we give an extension of the
celebrated Funk-Hecke formula to all compact rank-one symmetric spaces and present
some novel operator trace representation for functions of the Laplacian by linking to
suitable theta series and other related function families. To the best of our knowledge this
is the first formulation of the Funk-Hecke identity (originally for spheres [51, 60], [49])
in the context of compact symmetric spaces. For more on Jacobi polynomials and their
significance in analysis on symmetric spaces see [4, 9, 12, 24, 55, 62, 68, 70, 71, 99] and
for further related results see [6, 8, 21, 23, 27, 28, 41, 42, 61, 67, 79, 82, 94] as well as
[30, 52, 54, 59, 87, 88| and the references therein.

4.2 A partial differential action % on &} P

In this section we state two main theorems. Theorem 4.2.1 gives a combinatorial identity
where we derive a set of scalars b;’ that classify a special case of a higher order chain
rule for a multi-index partial derivative. Then in Theorem 4.2.2 we prove the differential
identity relating to the action of the operator % in (4.1.1) on the normalised Jacobi
polynomials. Some applications of this action identity to analysis on compact symmetric
spaces will be discussed later in Sections 4.3 and 4.5. Other application will be discussed
in a forthcoming paper of the authors. To motivate the discussion let us take a smooth
function f = f(t) and consider the differentiation formula that holds for suitable scalars
b (1 <j<m):

d2m

———f (cos X)

X ,  m>1 (4.2.1)

t=1

=D b f(t)
j=1

This identity can be derived directly or else by using the classical Faa di Bruno’s formula

X=0

leading to the explicit description

b7 = By (g'(X), o g<2m*j+1>(X)) ] 9(X) = cos X, (4.2.2)

)
X=0
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with Ba, ; denoting the incomplete Bell polynomial (see [3], pp. 204-207). Note that
here we have restricted to the even derivatives only since any odd derivative of f(cos X)
evaluated at X = 0 will vanish. The scalars by" can also be seen by direct computation to

satisfy the recursive formula

(—1)m if j =1
b = § = (426t + (2 — byRY) 1< <m (4.2.3)
0 if 7 > m.

In the following theorem, we generalise the formula (4.2.1) to several variables. Recall

that for a multi-index v = (y1,...,74) of non-negative integers we have

ol
37:m7 1V =7+t (4.2.4)

Theorem 4.2.1. For f = f(t) a smooth function in a neighbourhood of t = 1 and with

07 as above we have

[l
0% flcos X1 ... cos X)) ) = Z bvf @t L v l>q, (4.2.5)

where the scalars b;-y on the right are defined recursively as

[7]—q 1
= > b Z b ;p:n) (4.2.6)

p=j—vq k=j—p
p>1 k>1

Here b;y are the coefficients associated to ¥ = (y1,...,74—1) and bzq are the coefficients

from (4.2.1) with m = .

Proof. Again we focus on the even derivatives only. Here we use an induction argument
starting with the case v = (1) where we only perform derivatives in a single variable
X1, and any other variable is just set to 0. Since cos0 = 1, the variables that aren’t

differentiated have no effect, and so this case is exactly as in (4.2.1) as

o

71
8X71271f (cos X7 ...cos X)) ’X:o = g ijljc(J)(t)‘t:17 (4.2.7)

where fU)(t) denotes the j** derivative of f(t). Next we introduce a second derivative in

the variable Xy by writing v = (71,72). Evaluating the derivative in X first, via (4.2.1),
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we have

o21+272

27y —
0“7 f(cos Xy ... cos X)) . IXT XD

f(cos Xy ...cos X)) (4.2.8)

X;=0
5?2 [ Fo Zat!
= 72’\/2 T%f(COSXl COS XQ) ]
0Xy" | 0X] X1=0] 4,0
522 e . .
= 3X72272 Z b;’lfo)(cos X2)[cos Xa)’
j= X2=0

Note that we have freely set the irrelevant variables to zero above. Now defining a function

Fi(t) = fO(t)t7, we can write (4.2.8) as

) 71 y (9272
_ 1
0% f(cos X, . ..cole)‘Xzo } b] = 272F (cos Xa)| (4.2.9)
where we can evaluate the X9 derivative using (4.2.1) as
m 72 "
2 _ % g
9“7 f(cos X ... cos Xl)‘X:o = Z b)! Z by F (75)’15:1
7j=1 k=1
Y1 , ., dk ) ‘
_ Y1 2 J J
>0 Z b [f (t)t } Lzl. (4.2.10)
j=1 k=1
We can calculate the k™ derivative of F;(t) = fU)(t)t7 as
d* b rG+1) , .
— U ()7 =hH 4.2.11
and hence (4.2.10) becomes
= k+p( )F(] 4 1)
#1f(cos X1...cos X))| 1Y b G| @212
0“7 f(cos Xy ...cos X ]E:lb Zb Z TG k—l—p—i—l)f (t)t:1 ( )
Rearranging (4.2.12) to isolate the derivatives of f(t), we have
Y1+72
2 — 7 ()
9 ’Yf(cole...cole)‘Xio _ Z; b7 0 (t)‘t:1, (4.2.13)
j:
where b} = byl 72) are explicitly given by
F(p +1)
bt b}? 4.2.14
B SR pvd Tl a2
p=j—2  k=j-p
p>1 k>1

which corresponds to the formulation (4.2.6) in the case where v = (y1,72).
Now for a multi-index v = (y1,...,7,) weset ¥ = (71,...,7g—1). Assuming that (4.2.5)

and (4.2.6) hold for 4, we can derive the result for v by an identical argument as above.
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Applying 9* to f(cos Xi ...cos X;) for [ > ¢, we can use our assumption to write
82%1 82|“~/|
X=0 9X; 19X .. 9X

9% f(cos X7 ... cos X;) f(cole...cole)’

aQ'yq o] o '
= D01 (cos Xo)leos XP| (4.2.15)
q

j=1
This form is familiar from (4.2.8), and so again writing F;(t) = £ (t)t we can follow the

steps (4.2.9)-(4.2.14) to arrive at

Nl = )0(p+1) y

2 )
0“7 f(cos X ... cos X) ‘ Z Z bW Z b Yy Y1) -t (4.2.16)
J=lp=j—vq k=j—p
p>1 k>1
where taking b;-y as in (4.2.6) gives us the result. O

Before stating the following theorem, we require some notation to be defined. For a

set of scalars p1,...,pi—1, let d; be the coefficients of X7 in the polynomial
i—1
[T =) Zd X7 P> (4.2.17)
p=0

Theorem 4.2.2. Let % be the differential operator defined in (4.1.1). Then the norm-

alised Jacobi polynomial @,‘:’5, a, B > —1, satisfies the differential identity

[N/2] ol ;
[Dfpe@,‘:’ﬂ} (cos X7 ...cos X)) - =po+ Z D2y Zc [Ag’ﬁ] ) (4.2.18)
B ly|=1

Here )\2’6 =k(k+a+ p+1) denotes the eigenvalues of the Jacobi operator (A.3.3). The

scalar coefficients c;»y(a, B) are explicitly given by
v b’de i—1

Z H (a+14+1)" (4.2.19)

where b] are the scalars defined in Theorem 4.2.1, and dé- are the scalars defined in (4.2.17)
by setting X = )\g’ﬁ for fized k and p, = )\;’6.

Proof. We begin by directly applying Zp to ,@?’B(COS X1 ...cos Xj), then setting each X;
to zero. Recalling that @?’5(1) = 1, we have

LHS (4.2.18) = po 2 (cos X1 .. . cos X,)‘X +

N
+ Z pw(mﬂs’ﬁ(cole . .cole)‘
Ivl=1

X=0

N
=po + Z pyavﬁg"g(cole . ..cole)‘ . (4.2.20)

[v|=1
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The next step is to note that if any ~; is odd that the associated derivative will vanish due
to cos Xj ...cos X, being an even function. Hence we can ignore any odd derivatives and
consider only multi-indices 2y. We know &7 # is smooth and so satisfies Theorem 4.2.1.

This lets us rewrite (4.2.20) as

[N/2]
LIS (4218) = po + Z p27827°@l?76(005 Xi...cos Xl)‘ _
Ivl=1
N2 y
- |Zl e ]Zl bJ dti 32 7 ’t:{ (4.2.21)
¥

We now refer to the recursive formula for derivatives of the Jacobi polynomial (A.3.4),

which gives

] ol ¥ :
JdtJ 1 & 2ﬁr(a+j+1)(k:—g)'F(k:+a+ﬂ+1) —_
ié bIT( + 1IN (k + j +a + B+ 1) w2.)
« 2T (a4 + 1) (k= )T (k+a+B+1) -

The last equality follows by noting that ﬁ(aﬂ pti )(1) = 1. Using the fact that I'(z4+1) =

2I'(z), we can reduce (4.2.22) by taking advantage of

. i1
27T (a+1) .73 .

e B tk+1 4.2.23
T(a+j+1) ;%W ) ( )

Similarly, we can reduce the remaining Gamma functions in (4.2.22) as

T(k+j+atB+DI(k+1) T i
F(k+a+B8+1)I(k+1-)) Ig(k+o‘+ﬁ+1+p)g}(’“_q)

=[[R(k+a+8+1)—plp+a+p+1)).

This product is equal to (4.2.17) with X = /\Z”B and p, = /\ff”B, meaning we can write

Pk tjta+ B+ DT T a8 s _ = iy
F(k+a+ﬁ+1)r(k+1_j)—pl:[0(/\k Ap )—;d,[kk I (4.2.24)

Substituting (4.2.23) and (4.2.24) into (4.2.22) gives the greatly reduced form
vl vl ;
LHS (4.2.22) 22 JbVH (a+k+1) Zd [)\ ’ﬁ} = [Agﬁ] (. B),
=0

Jj=1

where we have set c;y(oa, B) as given by (4.2.19). This completes the proof. O
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4.3 Jacobi polynomials &} P as spherical functions and Mac-

laurin spectral coefficients b3’ [K ]

One of the main interests in the normalised Jacobi polynomials {2, Bk > 0} is that
for suitable choices of parameters o and 8 they represent the zonal spherical functions on
compact Riemannian symmetric spaces of rank-one 2" = G/H (see Table 3).

These spaces are completely classified and with d = dim(:Z") and n > 1 can be listed
as: the sphere S” = SO(n+1)/SO(n) with d = n, the real projective space RP" = SO(n+
1)/0O(n) with d = n, the complex projective space CP" = SU(n + 1)/S(U(n) x U(1))
with d = 2n, the quaternionic projective space HP™ = Sp(n + 1)/(Sp(n) x Sp(1)) with
d = 4n and P?(Cay) = F*/Spin(9) the Cayley plane with d = 16 (see, e.g., [21, 62, 99]).

Table 3 provides the parameters o and S associated to each of these spaces, hence
identifying the associated normalised Jacobi polynomials as their zonal spherical functions.
Likewise Table 1 and Table 2 provides a summary of relevant spectral-geometric data. Let
us pause briefly to discuss some necessary background on the geometry and spectral theory
of these spaces. Firstly, all these spaces with the exception of S! and RP”, n > 1, are
simply-connected, whilst 71 (RP") & Zs for n > 2 and 71(S') & 7 (RP!) & Z. Next, the
geodesic flow on each of these spaces is periodic (all geodesics are closed when sufficiently
continued) and more importantly all prime geodesics have equal length, hereafter, denoted
by ,(Z) (see, e.g., [66], Theorem 5.2.1).

Recall that on a compact closed Riemannian manifold (., g), the Laplace-Beltrami op-
erator —A_y, as a closed self-adjoint operator in L?(., dvg) with dvy, = \/det gdzidzs . .. dayg,

is given in local coordinates by

—A = det ggjkak) : (4.3.1)

1 d
_\/m%; 9; (
It has a spectrum ¥ = X(#;—A_4) C [0,00) consisting solely of (non-negative) eigen-
values 0 = A\g < A1 < A < ... with A\; " oo as j " oo. Furthermore, the normalised
eigenfunctions {¢; : j > 0} can be chosen to form an orthonormal basis for the Hilbert
space L2( ,dv,). Here —A 4¢; = \j¢; while ||¢;]|;2 = 1 for all j, and (¢;, dg)p2 = 0
for j # k.

Now for a given F' = F(X) with X > 0 in the functional calculus of —A ,, by

considering F(—A _4), we can write for ¢ € L?(.#) in the operator domain,

F(-A )¢ (z) = /ﬂ Kp(e,9)o(y) dugly), o€ .4, (43.2)
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where Krp = Kp(z,y), the Schwartz kernel of F(—A , ), is given by the spectral sum
Kr =3 F()\)o; ® ¢;, specifically,
Kp(z,y) =Y F(\)¢;(x)d;(y), zye.#. (4.3.3)
A;ET
For a compact rank-one symmetric space 2 = G/H of a compact Lie group G, with
H the isotropy group of a point in 2, one can use the well known addition formula for
the matrix coefficients of irreducible unitary representations to write (4.3.3), with a slight

abuse of notation Kp(x,y) = Kr(0), in the form

Kr= 3 Gy PO
=g%ﬁﬁ§%u%w%ﬁmw» (3.

Here {.Z1(0) : k > 0} are the zonal spherical functions on 2", more specifically, .7 (0) =
oF (=k,a+ B+ 1+ ka+1;(1 —cosh)/2) = @?"B(COS 6), ! where oF} is the familliar
Gaussian hypergeometric function. Furthermore, § = 6(x,y) is the geodesic distance
between points = and y in 2", Vol(:Z") denotes the volume of 2" (see Table 2), and My (.Z")
denotes the multiplicity of the numerically distinct eigenvalues )\2’6 =klk+a+p8+1)
(see Table 1). To comment on the zonal spherical functions further, recall that the radial

part of the Laplacian on 2~ can be written as

9 A'9) 9
(_A,%”)rad - _@ - A(@) %7

(4.3.5)
where A(6) stands for the area of the sphere of radius 6 > 0 in 27, specifically, given by
A(0) = wy_1 [(sin k) /k]** T (cos k)T (4.3.6)

Here wg_; = Vol(S%!) and in the simply-connected case, k& = 1/2, whilst in the non

simply-connected case k =1 (see, e.g., [99] pp. 28-9). Thus

(8= - 2~ [Leas otz - 220+ 1anoye| 2
Z )rad = 892 2 o co 2 an 69
O 98 1)coth+ (- B) ot/ 2 (4.3.7)
= 902 co [0} co 90’ O

which after the change of variables ¢ = cosf reduces to the Jacobi operator (A.3.3),
justifying the appearance of ﬁg’ﬁ in (4.3.4). Regarding the other geometric and spectral

data associated to 2, in the simply-connected case, we have explicit formulae

247208 + 1)
Vol(Z) = Tatiiy (4.3.8)

'Note that in the case of 2" = RP", we have . (0) = 25" (cos6).
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noting d = 2a+2. Setting p = (a++1)/2, we have )\z"ﬁ = (p+k)?—p? = k(k+a+3+1)
for the numerically distinct eigenvalues whilst the multiplicity function takes the form

Mp(Z) = M,?’ﬁ where

yod _ (et B+2k+ DI(a+ B+ k+ DB+ DIk +a+1)
e Tk+ 1) (a+ B+ 2)0(a+)T(k+3+1)

(4.3.9)

We present the numerically distinct eigenvalues and associated multiplicities for each com-

pact rank-one symmetric space in Table 1 at the end of this section.

Maclaurin spectral coefficients. For the purpose of future reference, we now intro-
duce a sequence of scalars {bgl’ﬁ = bg‘l’ﬁ [K]:1>0, a,8 > —1}, hereafter referred to as the
Maclaurin spectral coefficients associated to a given kernel K. To this end, we first intro-
duce an infinite scale of polynomials 225" (X), which we build from the scalar coefficients

¢ (e, B) from Theorem 4.2.2 at | = ¢ = 1. Indeed here we set

m
ZEP(X) = Ma. X, m=>1, (4.3.10)
j=1
and for the sake of convenience Z; B (X) = 1. Disassociating for the moment any con-

nections between the parameters «, 8 and rank-one symmetric spaces we proceed to the

following definition.

Definition 4.3.1. Assume o, > —1 and let K € L?(] — 1,1[; (1 — t)*(1 + t)?dt). Then

the Maclaurin spectral coefficients associated with K are defined by

X T(a+B+2)
047/8 — avﬁ O!,ﬁ Oé,ﬁ avﬁ >
by K] ;0 ()T (5 1)Mk FOC)Z) " (A7), 1> 0. (4.3.11)

Here M,?’B is the multiplicity function as in (4.3.9) and )\2’5 =k(k+a+8+1).

Naturally when K = Kp denotes the Schwartz kernel associated with the operator

F(—A ) then we can write the above spectral coefficients in operator trace form

1
Vol(Z)

b3 [Kr] = T[F%°)(~Ay), 120. (4.3.12)

In other words bgl’ﬁ [Kr] is the trace of the operator Vol(.2")~! [F%ﬁﬁ |(=Ag ). Let us give
the motivation behind this definition and how the polynomials %;" % arise in the analysis.
With a slight abuse of notation, we now formally write the Maclaurin expansion about
0 = 0 of the kernel Kr as in (4.3.4) as

2 g2l H2

20! o),
=0 =0

— 02 S Mip(2) o vas 02 ap
= FA")—= ' . 4.3.1
Gl & Vo)t M ggm P ey (313)
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Applying Theorem 4.2.2 with [ = ¢ = 1 to the derivatives on the right-hand side above,

noting the appearance of the Maclaurin coefficients from (4.3.12),

< g2 92 x g2 X2 Mi(2) o l z s
@WKF( )’0 0 2 (21)! Vol(ﬁ&”)F()\k )ch<a,5) [Ak }
=0 1=0 k=0 j=1
0% N Mi(Z) L apy By as
i)t 2= Vol(z) - kT ),

921 T; FHM(~Dg) X 02,
Vol 2 —Z;@l)b [Kp].  (4.3.14)

To clarify concepts we now present some examples of F' = F/(X) along with their asso-
ciated Maclaurin spectral coefficients {b5; ool — by, PIK [KF]:1>0}. Here we first consider the
spectral projections Py, that is, orthogonal projections of L?(.2") onto the kth eigenspace
Hy, (with k > 0 fixed). Next we consider the heat semi-group {T} = e!®# : ¢ > 0}, and
then with the aid of this we move on to considering an interesting and fairly large class of

operators of the Laplace transform type.

e Choosing F = F}, such that F = 0 on £(2; —A\{A®"} and F(X??) = 1 we have
P, = F(—Ag) with Vol(2)KFp = Mk(%)@?’ﬁ(cos 6). Here it is seen that

My(Z)

B 1 _
bar | F]_Vol(%)

B(NPY, 1> 0. (4.3.15)

e For the heat semi-group {e'2% : ¢ > 0}, we set F(X) = Fy(X) = e **. Here
the appearance of the exponential function results in a simplified description of the

associated Maclaurin coefficients b;l’ﬁ [#4], with .4(0) denoting the heat kernel

M (2 _yas, g
H(0) = Z VOkIE%;e Ak toy ’ﬁ(cos 0), t>0. (4.3.16)
k=0

As a matter of fact the Maclaurin spectral coefficients bgl’ﬁ [#]], for t > 0, and with
the aid of the differential operator %la’ﬁ (—d/dt) acting on the heat trace can be

written in as

bgjﬁ[%] = Vol(lﬁ/')Tr[Ft%laﬂ](_A%)
— \A/{)ﬁgﬁ; Z cé-(a, B) [AZ"BT 6_,\g,ﬁt
k=0 —
o0 l
- Z \]\/ﬁg; > (e, ) [~d/de e
7=1

o d t
Vol(lﬂif)%l ’ <dt> Tr [e A%] . (4.3.17)
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e An interesting extension of the previous example arises when F'(X) is of Laplace

transform type, specifically,
F(X) = L[g](X) =/ gt)e X dt, X >0, (4.3.18)
0

for some, say, L'-integrable function ¢g. In this case the Maclaurin spectral coeffi-
cients are linked via Fubini’s theorem to those of the heat kernel with bo"ﬁ = ba [KF)

as

1

o, f3 a,f3

= [r|F —Ay
b2l v, 1(%) I‘[ t@l ]( Jo")

M o0 o
30 M) g | st ar
k=0 0

:Ammwa)M“£U§:4(5»Vﬂ N (4.3.19)

(
_ [T o~ Mp(2) g (A _pnes _/°° B
= [ o o) < dt)e = [ atonsoA e

4.4 Orthogonality in a weighted Hilbert space and a Funk-
Hecke identity on 2~

The normalised Jacobi polynomials {L@g‘ Bk >0, a, f > —1} form a complete orthogonal
system in the weighted Hilbert space L2, = L?(]—1, 1[;w®?(t)dt), with the weight function
weB(t) = (1-t)*(14t)? (¢f. [71]). Note that due to the integrability of the weight function
w®# near the endpoints of the interval we have ¢ ([—1,1]) C L2. Now for functions

f,g € L2, we have the inner-product on L2, defined as
1
(. 0)rz = /1 FOTOWE (1) dt = / FOFD( — (1 + 1)° dt. (4.4.1)

We also define (2 = {£=(&:5>0): ) |£j|2ch-“’ﬁ < oo} with w8 = (w;"ﬁ) a sequence of
positive weights. This is a weighted sequence space with associated inner product given
by
oo
& me = &mu”. (44.2)
§=0
Now by basic Hilbert space theory and an orthogonality argument using the polyno-

mials {9?’8 1k >0, a,8> —1}, for given K € L2, we can write

0o a,f
<K7 gk7 >L3\,
Z Bgoﬁﬁ aZB _ akvﬂ(K) — .

— (4.4.3)
= [EandlF®
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Here the sequence ( Bk > 0) lies in the weighted sequence space £2, where by direct

calculation the weight w is seen to be given via the induced L2-norm

1
8 || P2, = / 17 P01+ 0

20T (0 + 1) D(k+ 1D)I(k+B8+1)
 2k+a+B+1 Tk+a+B8+ 1) (a+k+1)

(4.4.4)

Note that the last equation uses (A.3.2) together with 207 (t) = PP () /P2’ (1). Moreover

a direct calculation using orthogonality gives the L2-norm squared of K as

K72 = ZW

208K (0 +1)2 T(k+1DI(k+B+1)

- £ 2k +a+f+1 F(k+a+ﬁ+1)r(a+k+1)|a’“

2op? = l(ap” 1k > 0)|17

(4.4.5)

Thus it is plain that K € L2(] — 1,1} w®?(t)dt) <= (ag’ﬂ(K) :k>0)e?,; Now
moving forward for given function F, we build an associated kernel K for the operator

F(—Ag) by invoking the spectral sum (4.3.4). Upon comparing this with (4.4.3) it is

then plain that we can write the associated ( of ) as
a76
o3 (Krs P30z _ M(2) sy _ Me(2) =08
apy”(Kp) = = (A7) = [KF] (4.4.6)
k H@?’BH%Z Vol(Z") k Vol(Z") k

This therefore leads us naturally to the following results, which presents an explicit formula

for the eigenvalues of the operator F(—A ) as well its trace.

Theorem 4.4.1. The eigenspaces (Hy, : k > 0) of F(—Ayg) (with kernel K ) are precisely

the same as those of —A g :
F(-Ay)¢ = [KrlyP6, ¢ €My, (4.4.7)

where the eigenvalues are given by

ap_ (2m)Y2 11\ .5
[Krl; = 2T(d/2) KF JoFi —jra+B+i+La+l—— |wi(t)dt
9 d/2 o
QSTWM/ Krp(t) 2, Py =) +t)Pat. (4.4.8)

Proof. We arrive easily at (4.4.8) by rearranging (4.4.6) and substituting using (4.4.3).
Indeed taking advantage of the explicit formulae (4.3.9) for the multiplicity and (4.4.4)
for the Ly-norm, after immediately cancelling some terms we can write,

(a+DI'(B+1)
[a+B+2)

a a r
M;(2)||275 |75 = 20+ (4.4.9)
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Combining this with (4.3.8), we then have

Vol(2) _ 2%et2patlp(g 4 1) D(a+B+2)
Mj(%)lle@f’ﬁllig Ma+p+2) 220840+ 1DT(B+1)
(27T)d/2
_ 4.4.10
28T(d/2)’ ( )
and so the conclusion follows at once. O

Theorem 4.4.2. Under the above assumptions on the operator F(—Ag) and its kernel

Kp, the trace of F(—Ag) is given by

Tr[F(-Ay)] o My(2) - _ o
ez kZ:OVol(% kz Kp(1) = b3P[Kp].  (4.4.11)

Furthermore, we have the following Plancherel type identity:

I'(d/2)T(B+1+4d/2) Aa,ﬁQ
HKFH%VQV - 93d/2—B rd (B+1) ZMk ’KF]k ‘ . (4.4.12)

Proof. By definition the trace of F'(—A ) is the sum of its eigenvalues (counting multipli-
cities). So referring to (4.4.6) the first two equalities in (4.4.11) follow. The next equality
follows when we refer to (4.4.3) and recall that 2} B (1) = 1, with the final equality fol-
lowing by setting [ = 0 in the definition of the Maclaurin spectral coefficients (4.3.12).
Finally (4.4.12) follows by acknowledging (4.4.5) together with (4.4.6) and (4.4.9). O

Remark 4.4.3. With a2’ as in (4.4.6), we may formally write (4.3.13)-(4.3.14) as

LHS (4.3.13) = i GQZ,i k’ﬁa yﬁ’ﬂ(cow)‘

062 9=0

RN a5 () 02 Te[FA")(—Ay)
Z 'Zak #(A) = 2@ ve(z) (4.4.13)

with %" # as defined in (4.3.12). Furthermore we write bgl’ﬂ [KF] as

T [F2)°)(~A y)
Vol(Z)

bgiﬁ[KF] =

oo a7ﬁ a7ﬁ
-y '%’Z(Ak)/l Kp(t) 280 (1) (1 — (1 +)° dt. (4.4.14)
-1

= 1720013,

The ¢-series. In what follows we specialise the above discussion to each of the compact
rank-one symmetric spaces 2 encountered before. For future reference it is convenient to
introduce a summability notation, namely,

S(X;via, f) =D wXif(Xp), (4.4.15)
k=0
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where X = (X : k > 0) is a sequence with X > 0, v = (yx : kK > 0) C [0,1], a is a
positive integer, and f = f(X), X > 0 is a smooth function with sufficiently fast decay at
infinity. We call (4.4.15) the ¢-series associated with (X;~;a, f). When v, = 1 we write
#(X;a, f) = ¢(X;7;a, f). 2 Before moving forward, let us recall the classical Jacobi type
U-series U1, 02,3 as (see [28, 86])

o0 [o¢]
=Y edt=1+42> 7 (4.4.16)
j=—00 j=1
oo o
=3 @)+ e UV sty =2 jeI (4.4.17)
Jj=0 j

These functions together with their derivatives can be used to describe various heat related
quantities on compact rank-one symmetric spaces in a convenient way (cf., e.g., [7, 23, 28]).

Let us now present some basic examples of ¢-series:

e Let f(X) = fi(X) = e X, Then with X = (k : k > 0), v = 1 we have ¢(X;0, f;) =
[91(t) + 1]/2, whilst for a = 2m with m > 0 we have

(X 2m, f,) = Zka —t — (—1)ym{™ (1) /2, (4.4.18)

where ﬁgm) denotes the m'" derivative of ¥; as in (4.4.16). In contrast, if X =
(k+1/2:k > 0), then with 92 as in (4.4.17), we have ¢(X; 1, f;) = ¥2(t)/2, whilst

for a = 2m + 1 with m > 0 we have

d(X;2m+1, f;) = Z (k + 1/2)2m+1e-t(k+1/2)*
k:O

Z jEmHle=ti® — (—1)my{™ (1) /2. (4.4.19)

7=1/2
Finally, if X = (k : k > 0), then with 93 as in (4.4.17) we have ¢(X; 1, f;) = 93(¢)/2,

whilst for ¢ = 2m + 1 with m > 0 we have

$(X;2m+1, f) = > Kl = (—1)myl™ (1) /2. (4.4.20)

e Let f(X) be of Laplace transform type, i.e., f(X) = L[g](X) as in (4.3.18). Then

with es(X) = e~*¥, the ¢-series can be written as

6(X:7:a, ) kaxk | st as = [T o)y wxpe e as
0

k=0
:/000 9(s)(—d/ds)*d(X;v;0,es) ds. (4.4.21)

2In applications to symmetric spaces below we have X = k + p so that X? — p? = AL
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4.5 Applications to compact rank-one symmetric spaces Z =

G/H: Trace computations and ¢-series

As a further application of the ongoing discussion here we give explicit trace formulation
of F(—Ag) for the spaces 2~ = G/H in Section 4.3. Notation and terminology used here

are precisely as introduced earlier in Sections 4.3 and 4.4.

The case 2" = S". Here « = = (n — 2)/2 and the zonal spherical functions are
given through the normalised Gegenbauer polynomials (see Appendix A.3) as Z(6) =
oF (=k,k +n — 1;n/2;(1 — cosh)/2) = ngn_2)/2’(n_2)/2(cos 0) = ‘?a”k(n_l)/2(cos 0) with
k> 0.

Furthermore in light of Theorem 4.4.1 the eigenvalues F()\g’ﬁ ) = F(A}) can in turn be

expressed as

n— 27n/2 1 n— -
F()\n) [KF]( 2)/2,(n=2)/2 _ Iw(li;/Q)/lKF(t)%k( 1)/2(t)(1 - t2)(n 2)/2dt. (451)

Proposition 4.5.1. The operator trace of F = F(—A) with —A the Laplace-Beltrami

operator on the unit sphere S™ is given by

(n

d(X;2m+2,f)  forn >3 odd,

-3)/

Z
Tr[F(-A)] = V2 - (4.5.2)
Z

n—l

o(X;2m+1,f)  forn > 2 even,

where X = (X =k +(n—1)/2:k >0), f(X)=F(X%—- (n—1)%/4), and the scalars aT,
and b7, are defined in (A.4.1) and (A.4.2) respectively, with b3 = 1.

Proof. Extracting the multiplicity M (S™) from Table 1, we write

Mk(S”)—(2k+n—1)rgi:1;k?) - (k+n7:1 /27 H k+ ). (4.5.3)

Now fix a sequence X = k + (n — 1)/2, reflecting the eigenvalues A} = k(k +n — 1) on
the unit sphere so that X7 — (n — 1)2/4 = A%. For n > 3 odd, we can then re-write this
via (A.4.1) as

(n=3)/2 (n—3)/2
(X? —j%) = Z ar, X2m+2, (4.5.4)
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This allows us to write the trace of F = F(—A) for n > 3 odd as

=2 L, o
i ﬁ > X R (X, (4.5.5)
m=0 " k=0

where we have defined f(X) = F(X? — (n — 1)%/4). Note that f(Xz) = F(\}) as in
(4.5.1). Next for n > 2 even, with X}, and f(X) as before, we can proceed from (4.5.3)
using (A.4.2), as

n—2 1
n—2 2 T2
Jj=1 ‘7:%
(n—2)/2
2b7
= > m_ X (4.5.6)
= (n—1)!

where for n = 2 we can easily take b3 = 1. This leads to the trace of F = F(—A) for

n > 2 even being given by

o0

(n-2)/2

- n n Qb?n 2m—+1
—A)] =Y M(SHFO) = > T > XP(X). (4.5.7)
k=0 m=0 k=0
Recalling the definition of ¢(X;a, f) as in (4.4.15), this completes the proof. O

The case 2" = RP". As indicated earlier in Section 4.3 the real projective space is not
simply-connected, however, for n > 2, it has the unit sphere S™ as its universal and double
cover. This leads to the zonal spherical functions on RP™ corresponding precisely to those
of S for k even. In particular here we have we Z(0) = oF1(—2k,2k +n — 1;n/2; (1 —
cosh)/2) = 1@5272)/2’@72)/2 (cosf) = %2(,?71)/2(0% 0).

Moreover by virtue of a similar relation between eigenvalues here we have the identity

n n— 2 n/2 n n—
F(\p) = [Kplyy 22022 = 7;/2 / Kp)@ V21— ) n=D2qt (4.5.8)

Proposition 4.5.2. The operator trace of F = F(—A) with —A the Laplace-Beltrami

operator on the real projective space RP" is given by

(n—3)/2 947
o _ml)'qﬁ(X; 2m+2,f)  forn >3 odd,
Tr[F(—A)] = (nﬁg)o/z - (4.5.9)
( I qﬁ(X 2m+1,f) forn > 2 even,
n—
m=0

where X = (X =2k + (n—1)/2;k > 0), f(X) = F(X%2— (n—1)2/4), and the scalars a",
and bl are defined in (A.4.1) and (A.4.2) respectively.



68

Proof. We omit the full proof as it follows from the proof of Proposition 4.5.1, with
the notable differences being the multiplicity My (RP™) as in Table 1, the eigenvalues
Al = 2k(2k +n — 1), and definition of X} = 2k + (n — 1)/2 so that we again have
X% — (n—1)?/4 = A7. This in turn means that f(Xz) = F(\?) as in (4.5.8). O

The case 2" = CP". Here « =n — 1, § = 0 and the zonal spherical functions are given
by Z,(0) = o Fi(—k,n+k;n;(1—cosf)/2) = e@g_l’o(cos 6). Moreover in light of Theorem
4.4.1,

(2m)"

FOW) = Kel = 0y

/ 1 Kr(t)2) ()1 — )"t at. (4.5.10)
-1

Proposition 4.5.3. The operator trace of F = F(—A) with —A the Laplace-Beltrami

operator on the complex projective space CP™ is given by

n—1 n
> n,(icquﬁ(x; 2m+1,f)  forn >3 odd,
ENIES FE M
— e d(X52m £ 3, ) forn 2 2 even,
mZ::O nl(n —1)!

[e=]

(4.5.11)

V]

where X = (X =k+n/2:k>0), f(X)=F(X%?-n?/4), and the scalars c*, and d?, are
defined in (A.4.3) and (A.4.4) respectively.

Proof. With the multiplicity My (CP™) given as in Table 1, we fix X} = k + n/2 so that
X2 —n?/4= Xt = k(k +n) and write

2 n—1
Mi(CP™) = %;n [ngnj;k?)] - n!(?fl)! [0+ (45.12)
j=1

Now for n > 3 odd we proceed from (4.5.12), noting that the terms (k+j) in the range j =
1,...,n—1 can be re-written in the form (X7 —j?) in the range j = 1/2,3/2,...,(n—2)/2.
Together with (A.4.3), this allows us to write

2Xe it 2
ny __ k 2 2\2 n y2m+1

[NIES

m=0

[NIES

j=

Hence the trace of F = F'(—A) for n > 3 odd can be written as

fe'e) n—1 n o]
TF(-A)] = SO MUCPTFO) = Y e S XER(KE — n/4)
k=0 m=0 " k=0
n—1

=2 2C?n1)' DX (X, (4.5.14)
" k=0

| —
A nl(n
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where we define f(X) = F(X? — n?/4) resulting in f(X;) = F(A}), as in (4.5.10). Next
for n > 2 even, with f(X) and X} as above, we have via (A.4.4)
20X, Tt ox}
My(CP") = oy jljluc +9 = ST jf_[1<X% -7’
2R emes
- nl(n —1)! mZ::Odek

This leads to the trace of F = F(—A) for n > 2 even taking the form

00 n—2 00
Tr[F(-A)] = ZMk(CP JE(AR) = Z m ZXQ 3 F(X),
k=0 m=0
where we have arrived at the result after substitution of (4.4.15). O

The case 2 = HP". Here o = 2n— 1, § = 1 and the zonal spherical functions are given

by Z,(0) = oF1(—k,2n+ k 4+ 1;2n; (1 — cos§)/2) = @En_l’l(cos ). Moreover

ny _ 11 _ (2m)* [ 2n—1,1 a2n—1
FOR) = K™ = pps [ Kr0Z2 0a— 0P e i (455)

Proposition 4.5.4. The operator trace of F = F(—A) with —A the Laplace-Beltrami

operator on the quaternionic projective space HP™ is given by

n—1 n
EUCVEDY mnf(;”max; om 41, f), (4.5.16)

where X = (X, =k+ (2n+1)/2:k > 0), f(X) = F(X? — (2n + 1)?/4), and the scalars
ep are defined in (A.4.5).

Proof. Let X = k + (2n + 1)/2 with X2 — (2n + 1)2/4 = A? = k(k + 2n + 1). Then

referring to Table 1 we can write the multiplicity as

ny __ 2X (k—l—Qn) 2n—1 .
M (HP") = (2n — 1)!(k2n+ DI(k+1) jl;[l (k +])2
2X n—3/2 |
= o= 1)!(;71 1) [X2 —(2n — 1)2/4] ]1_1[/2()(2 _j2)2

2en X2m+1
@n - 1120+ 1)

|
[
107
L

(4.5.17)

m=0

where we have applied (A.4.5). Substituting for this in the trace of F = F(—A) results in

the representation

2n—1 [e’)
M, (HP™)F(A\}) X2mHlp(X2 — (2n 4+ 1)%/4
];)k mz:on_l 2n+1'z_:k (X — (2n+1)7/4)
2n—1 26"
_ m Z X2 f (X)), (4.5.18)

(2n —1)!(2n +1)! £
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where we have defined f(X) = F(X? — (2n + 1)?/4) so that we have f(X)) = F(\}), as
n (4.5.15). The result follows after acknowledging (4.4.15). O

The case 2 = P?(Cay). Here Z(0) = oFi(—k,k + 11;8; (1 — cos§)/2) = 2] (cos b)

are the zonal spherical functions (o = 7, 8 = 3) and the eigenvalues F(\}, o ) = F()\;) are
exactly
32
Fiw) = [Kr)f# = 32 TH(1)(1— £2)5(1 — 1)° dt. (4.5.19)

Proposition 4.5.5. The operator trace of F = F(—A) with —A the Laplace-Beltrami

operator on the Cayley plane 2 = P?(Cay) can be written
. 12f,
Tr[F(-A)] = ) 7¢(x o2m + 1, f), (4.5.20)

where X = (X, = k+11/2 : k > 0), f(X) = F(X? —121/4), and the scalars f,, are
defined in (A.4.6).

Proof. Let Xj, = k + 11/2 with X? — 121/4 = A\? = k(k + 11). The multiplicity on the

Cayley plane 2" = P?(Cay) can be written as

7 10
12X, T(k+8)T(k+11) 12Xy ‘ .
B = k+3) [Jk+4)- 45.21
T T(k+ DO(k+4) 7! j:l( +J)jz4( +37) (4.5.21)

Transforming and writing each product on the right in terms of Xy, we have

k . ‘
My = =y [T %= [T (@ - 7)
=12 j=1/2
12X
- 7'1117 (X7t — 1/4)* (X} — 9/4)° (X} — 25/4)(X] — 49/4)(X}; — 81/4)
_ 2]—&-1
B 7'11v Z J (4.5.22)

where we have applied (A.4.6). Thus the trace of F = F(—A) can be written as

00 7

_ 12f, 2m+1
S OMF) =) ﬁ XM P(XE — 121/4) (4.5.23)
k=0 m=0 k=0

T 126, & . 12f,,
= 7‘72 WXFHF(X 277 (X;7;2m + 1, f)
m=0 k=0 m=0
where f(Xj) = F (M) as in (4.5.19). This completes the proof. O

Remark 4.5.6. Replacing F' with F %{l # in each proposition gives bgl’ﬁ [KF| by virtue of

the trace formulation (4.3.12).
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Chapter 5

The Proportionality Principle on
Symmetric Spaces and Maclaurin

Spectral Functions

5.1 Introduction

Let (#,g) be a d-dimensional Riemannian manifold without boundary, and let —A ,
denote the Laplace-Beltrami operator on .#. Then by basic spectral theory there exists a
resolution of the identity (E) : A > 0) describing the spectral measure dE), such that for
a function F' = F(X) with X > 0 in the Borel functional calculus of —A , we may write

the operator F'(—A_y) via the integral
F(—=A_y) :/ F(X) dE). (5.1.1)
0

As stated earlier, if .# is compact then there exists a complete orthonormal basis of
eigenfunctions (¢; : j > 0) in L2(.#; dv,), specifically (¢;, ®k)r2(ay) = O foreach j # k > 0,
and ||¢;l|z2(.x) = 1 for each j > 0. The associated spectrum of eigenvalues %(—A ) =
(Aj : j > 0) may be arranged in ascending order 0 = X\g < Ay < Xp < --- 7 00, each
having finite multiplicity M}y, whilst —A _4¢; = A;j¢;. Here the spectral projection dE)
becomes the orthogonal projection onto the eigenspace associated to A € ¥(—A 4 ), that
is dEx = ) ¢; ® ¢j. The integral (5.1.1) is thus seen to reduce to a spectral sum. In
contrast, in the non-compact case we require the full integral (with no reduction) due to

the presence of a continuous part of the spectrum.

In this chapter we study the heat semi-group (7'(t) : t > 0), given in the setting above
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by F' = Fy(X) = e *X. Here (5.1.1) becomes
etha — / e A dEj,. (5.1.2)
0

Furthermore, on the level of the heat kernel H 4 (t;z,y), which is the Schwartz kernel of
the operator (5.1.2), with « and y spatial variables on .#, we can write
oo
H (8 3,) = /0 e~ dE) (2, ). (5.1.3)
In the compact case T'(t) is of trace class, and it was shown in [82], using PDE tech-
niques and the heat parametrix, that the heat trace TrT'(t) = O(t; .#) satisfies the short-

time asymptotics
O(t; M) :/ H 4t x,x) dog ~ ;iaj(///)tj, t N\ 0. (5.1.4)
/// M (47Tt)d/2 =

Here the so-called Minakshisunaram-Pleijel heat coefficients (a; = a;(.#) : j = 0,1,...)
are a set of scalars that arise as integrals of polynomials of the Riemann curvature tensor
and its associated derivatives.

We now specialise to the case of symmetric spaces 2" = G/H of rank one (of both
compact and non-compact type). A complete list of these spaces was given earlier in
Chapter 2, however for the sake of the reader’s convenience this will appear again below
(see Section 5.2). Naturally in the compact case , where we denote 2~ = 2., we still have
(5.1.4) by default with 2. replacing .# . Interestingly, a similar expansion can be shown
to hold in the non-compact case (see [29]). For the sake of future reference, this takes the

form
1 < :
@(t, e%‘nc) = /'%/nC H%’ne(t7x, x) d'Ug = W jgo aj(%nc)t]. (515)

By a well-known proportionality principle (see [29]), for a pair of symmetric spaces 2. and
Zne in duality (compact vs. non-compact), we have the following relationship between

the associated Minakshisundaram-Pleijel coefficients
aj(Z) = (—1)a;(Zne)- (5.1.6)

The Maclaurin heat coefficients b3,(t; 2) for £ > 0 were introduced and studied earlier
in the thesis. Recall that in the context of symmetric spaces of rank one, the heat kernel is
a function of the geodesic distance between z and y, specifically H o (t;x,y) = Ha (t;1).

Then we have

d2€
et 27) = WHEK(E ¥) (5.1.7)

=0
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One of the main aims of this chapter is to extend the proportionality principle (5.1.6) to
the context of the b5, (t; 27) functions. A prime motivation for this is the fact that the
5(t; Z7) family generalises the heat trace as b (t; 27) = O(t; Z7).
In Section 5.3 we calculate the asymptotics (¢ N\, 0) for the Maclaurin heat coefficients
b, (t; Z¢) on each rank-one symmetric space of compact type Z., and we show that they

can be represented in the form

oo £—1 ¢—p

n (4. j+m-+
Dot Zo) ~ D) d/w ZZ izt N0, (5.1.8)

7=0 p=0 m=0

In each case, one can arrive at the asymptotics for the heat trace bf(t; Z:) by setting
£ =0, p=0, and m = 0, together with removing the summations over p and m, resulting

in p0(2:) = p;(2%) where

O(t; 2.) = bi(t; Zo) ~ (D) d/QZpJ A (5.1.9)

Once the series expansion of the exponential term is incorporated into the summation in
(5.1.9), using the Cauchy product for power series, one arrives at (5.1.4). Returning to
the asymptotics for b5, (t; Z¢) in (5.1.8), we give explicit formulae for p%g(%;) for each
of the compact symmetric spaces of rank-one. In Section 5.4 we mirror this by explicitly
arranging the Maclaurin heat coefficients on each non-compact rank-one symmetric space

e as an infinite series of the form

goo(lﬁp

Do(t; Zne) = ) d/H ZZ > Pt TP, (5.1.10)

7=0 p=0 m=0

Again we note that setting £ = m = p = 0 and removing the summation over p and m

results in q?,’g(t%’nc) = q;(Zne), where we have
e_p2t s .
O(t; Xne) = bl (t; Xne) = quj(%m)tﬂ, (5.1.11)
j=0

where incorporating the exponential term results in (5.1.5).

In Section 5.5, which can be seen as the climax of this chapter, we estabish the pro-
portionality principle for the Maclaurin heat coefficients b5, (t; 27). As a matter of fact,
defining the so-called generalised Minakshisundaram-Pleijel heat coefficients a;((.2"), in

the compact case through the short-time asymptotic expansion

by (t; Ze) ~ 2, N0, (5.1.12)

1 oo
(d4nt) 2+ > 25
J=0
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and in the non-compact case through the infinite series

7 1 .
bQZ(t; %—nc) = W Z ajj(e%/‘nc)t‘j, (5113)
7=0

we show using explicit calculations that for a pair of spaces in duality (compact vs. non-

compact) we have p;nl;é(%) = (—1)j+p+mq;nl;e(%nc), with the quantities pgnf(%) and

q?j‘]’f(%nc) here referring to those introduced in (5.1.8) and (5.1.10) respectively. This will

subsequently lead to the proportionality principle

aj,0(2e) = (=1)aj0(Zne)- (5.1.14)

5.2 The Maclaurin heat coefficients on rank-one symmetric
spaces

Let Z be a d-dimensional rank-one symmetric space. The radial part of the Laplace-

Beltrami operator has the form

02 A) o
Al =50 = ) v

(5.2.1)

where A(v) is the area of the sphere of radius v centered at the origin in 2. A suitable
change of variables reduces this to the well-known Jacobi operator, whose eigenfunctions
are precisely given by the Jacobi function L@ﬁ"ﬁ = ,@ﬁ"ﬁ(z), with o, 3 > —1 and pu € C.

For the sake of clarity, these are defined in terms of the hypergeometric function as
PrP(z) =oF1 (—pp+a+ B+ La+1;(1-2)/2), peC. (5.2.2)

The particular interest in the Jacobi functions here stems from the fact that for suitable
choices of z, and certain ranges of u, «, and 3, (see Table 3), (5.2.2) represents the zonal

spherical functions on rank-one symmetric spaces of both compact and non-compact types.

Heat coefficients on a compact space Z.. The rank-one symmetric spaces of compact
type are the unit sphere S = SO(n+1)/SO(n), the real projective space RP™ = SO(n+
1)/O(n), the complex projective space CP™ = SU(n+1)/S(U(n)xU(1)), the quaternionic
projective space HP™ = Sp(n + 1)/(Sp(n) x Sp(1)), and the Cayley Plane P?(Cay) =

F*/Spin(9). In the compact case, referring to (5.2.1), one has

A= A(0) = wy_1 [(sin6/2) /2> (cos 6/2)% T, (5.2.3)



75

where wg_1 = Vol(S?1), and a, 8 > —1 are real parameters associated to 2, (see Table

3). This leads to the radial part of the Laplace-Beltrami operator on 2 having the form

[~Ag]rad = G 1(2 +1) t9/2—1(26+1)t 0/2 9
= —a—2—[(26+1) t60 + (a— ) t9/2]g (5.2.4)
= 892 CO Q CO 89’ s L.

which after a change of variables 6 — arccost becomes the well-known Jacobi operator

d? d
b — (1) (g — Nt)—. 2.
L ( )op —(a=B+(atB+2)t)— (5.2.5)
The heat kernel on a compact rank-one symmetric space is given by

Mp( 2. . Y
Hy, (tz,y) = M@k’ﬂ(cosﬁ)e A (5.2.6)
k=0 ¢

where «, 8 are the parameters associated to 2., My(Z:) is the multiplicity function
associated to the numerically distinct eigenvalues )\g’ﬁ = k(k+ a+ 8+ 1) of the Jacobi
operator (A.3.3), given by

(a+p+2k+ D) a+B+k+1)I(B+ 1) (k+d/2)
Fk+ 1) (a+B+2)0d/2)I(k+5+1) ’

My(Z) = (5.2.7)

Vol(Z:) denotes the volume of the space Z¢, and 6 denotes the geodesic distance between
the points =,y € Z.. Furthermore, @?’B are the zonal spherical functions associated to
the space 2., which in the case of a rank-one symmetric space of compact type are given
exactly by the normalised Jacobi polynomials 287 (t) = P (t)/ PP (1). We define these
via (5.2.2) as

PP (cos0) = o Fi(—k,k+ a+ B+ Lo+ 15 (1 — cos0)/2). (5.2.8)

We now define the Maclaurin heat coeflicients b3,(t; Z.) for compact rank-one sym-
metric spaces. To motivate the name we abuse notation slightly to write Hg (t;0) =
Hy (t;z,y) as in (5.2.6), which we then take the Maclaurin expansion about # = 0 of so

that the coefficients of #%¢/(2¢)! are given by

d2€
2€(t7 %) e mHﬁ”(t, 9) 920. (529)
The name of these coefficients is motivated by how they are seen to arise as the coefficients
of the Maclaurin expansion of the heat kernel about # = 0. We note that the derivatives

will pass onto the Jacobi polynomial @?”B (cos®) as in (5.2.6). Referring to Lemma A.6.3

and (5.2.10), the Maclaurin heat coefficients b},(t; Z.) can then be written as

bt 20) = & (—d/dt)O(t; 2;). (5.2.10)
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In particular we have bf (t; Z.) = O(t; Z¢), and so the Maclaurin heat coefficients are seen

to somewhat generalise the trace of the heat kernel.

On a non-compact space Z,.. The rank-one symmetric spaces of non-compact type are
the real hyperbolic space RH" = SOq(n,1)/SO(n), the complex hyperbolic space CH" =
SU(n,1)/S(U(n) x U(1)), the quaternionic hyperbolic space HH" = Sp(n,1)/(Sp(n) x
Sp(1)), and the hyperbolic Cayley plane H?(Cay) = F1/Spin(9). Here we have

A(r) = wg_1 (sinh(r))?** (cosh(r)) 2P+, (5.2.11)

and hence the radial part of the Laplace-Beltrami operator on 2. is

2

AV — [(2ac+ 1) cothr + (28 + 1) tanh r] 887' (5.2.12)

nc]rlld = _ﬁ

We rescale this to define a new operator £*? as

L = 572" 3 [(204 +1) cothg +(26+1) tanhg ;T (5.2.13)

Moreover, the heat kernel Hy:, (t;z,y) is given in this case by the integral

226-11(a 41 . _
Hy, (t;z,y) = 7r0‘(+2>/0 @A’B(r)e t(’\2+p2)u()\) dA. (5.2.14)

where r is the geodesic distance between points z,y € Zne, p° + A? are the eigenvalues of
the operator £%” as in (5.2.13), where we denote p = (a + 4 1)/2, and @i"ﬂ(r) are the

zonal spherical functions on %, given via the Jacobi function as

@‘;’6(7“) = ,@f’g\ip(cosh r)=oF (p+i\ p—iXja+1;(1 —coshr)/2). (5.2.15)

Here () = |C(N\)| 72 denotes the Plancherel measure, where C()) is the Harish-Chandra
function

i 0Bl — AT (a4 DT(2iA)
C) = lim () = S T T (@ 1= B)/2)"

(5.2.16)

Next we define the Maclaurin heat coefficients bf,(t; Z5.) for a non-compact space.
Writing H g, .(t;7) = Hg,.(t; x,y), with r the geodesic distance between z and y, we can

define the Maclaurin heat coefficients by

20

Hy, (tr)| . (5.2.17)

s . —
p0(t; Zne) = ] |

Similar to the compact case, the derivatives above fall directly onto the Jacobi function.
Referring to Lemma A.6.4 and (A.6.25) in this case, we can write the Maclaurin heat

coefficients b5, (t; Znc) as

Bo(ts Zne) = 200 (d]d1)O(t; L) (5.2.18)
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Again we see that when ¢ = 0 we have bf (t; Znc) = O(t; Zne)-
Table 3 illustrates the duality of the spaces of compact and non-compact type, showing
that the spaces that correspond to one-another share not only their dimension, but also

the parameters a and (.

5.3 Expansion of by,(t; 27) as t \(0 on compact 2

On a rank-one symmetric space 2" = Z. of compact type, the trace of the heat kernel is

given by
1 > .8
t, Z) = ——— My(2)e Mt ¢ 3.1
(1 22) = iy 2o M, 0>, (5:3.1)

with the multiplicity My(Z:) given in (5.2.7). In what follows we specialse to each of
the rank-one symmetric spaces 2. and provide an explicit asymptotic formula for the
Maclaurin heat coefficients b5, (t; Z.) by first writing the trace of the heat kernel O(¢; 2¢)
in terms of the classical Jacobi theta functions, before using the known asymptotics for
these functions. We can then use the relation (5.2.10) to derive the asymptotics for
by, (t; Ze).

We can arrange the asymptotics of the Maclaurin heat coefficients bi,(¢; Z¢) in the
form (5.1.8) where in the following propositions we present the explicit value of p%f(%”c).

In each case we will first write the multiplicity function in terms of a polynomial
of X, = k + p, where p = (o + B = 1)/2. This is because we then have X? — p? =
k(k 4+ a+ B+ 1) = A}. We also define a general term

m m E —p m
G = (2) = ( . >p2 hy_p (@, B), (5.3.2)

where hf; = hf;(oz, B) are given in Lemma A.6.3, for suitable values of o and 8 depending

on the space Z. (see Table 3).

The case Z. = S" = SO(n + 1)/O(n). Here we have « = 8 = (n — 2)/2. Hence
p=(n—1)/2and d =n, X;, = k+ (n—1)/2, whilst the volume and multiplicity are given
in Table 1.

Proposition 5.3.1 (2. =S"). Forn > 3 odd, p;';’f(S") =0 for j > (n—3)/2, whilst for
0<j<(n-—23)/2 we have

mlan m n m,l
Pip (57) = (=)™ (n/2)tp-m—jaln3)/2-;%} (5.3.3)
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with a7 given in (A.4.1). Forn > 2 even, with b} as in (A.4.2), we have

(D)™ (1/2) bl s ;G for0<j<n/2-1

ml any __ e
(S") = { (n=2)/2 (—=1)7+=Por By (K + j —n/2) G for i > 2 (5.3.4)
C(n/2)T(j+p—L+m—n/2) I j=n/2,

k=0
with %1(X) is as in (A.6.3), and g}g’e = %@’Z(Sn) as in (5.3.2).
Proof. With My(S™) = Mj, as in Table 1, we can write for n > 3 odd
n—2 (n—3)/2 2(X2 - jz (n—3)/2 o nX2J+2

2X,
_n—kl Uk+‘] H n—l'7

j=0

M

T (5.3.5)
7=0

where we have used (A.4.1) to write the multiplicity in a polynomial form. Now writing

the eigenvalues AP = k(k+n — 1) = X? — p?, the trace of the heat kernel (5.3.1) is then

given by
0o (n—3)/2
.Qn n+1/2 nv2i+2 _H(X2_,2
Ot:8") = a(nt1)/2 Z (n—1)! Z aj Xy e
k:o j=0
(n—=3)/2 n o]
— Z etPQF((”JF 1)/2) 3 Zp2j+2€—tp2
= an+1)/2 (n —1)! =
¢’ T(n+1)/2) "
= n(_1yi+190+1)
T onnt1)/2 (TL _ 1)[ Z a]( 1) 191 (t) (536)

=0

Here we have collected the inner sum into derivatives of the Jacobi theta function 19{-Jrl
provided in Appendix A.6. We then substitute for its asymptotics to arrive at a formula
for the asymptotics of the trace of the heat kernel. Next for n > 2 even, we write the
multiplicity M (S™) as

1

n—=2
7 732 (n—2)/2 n
n 2Xik 1 w2 2 267 i
M) = o ||1 (XE -7 =3 0: TR (5.3.7)
Jj=3 J=

Therefore the heat trace ©(t;S™) is given in this case as

e D+ 1)/2) NG 2] i e
e(t7S):7r(7"""1)/2kZZ(n—1)'X e kTP
=07

o

k

n

(n—2)/2

—2

0j=0
2 L((n+1)/2) 2j+1 ,~tX7
TR (n— 1) |ZX

j=0
(n—2)/2 n
tQF((n“‘l)/Q b 2j+1,—t
> 27 D/2 (n — 1) Z 2p™ v (5.3.8)
j=0 p=1/2
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Hence referring to the formula for ¥2(¢) in Appendix A.6 we have

02 (n—2)/2
O(t:S") = F(EZfB,/Q oy Z bt (— 19 (1), (5.3.9)

Substituting for the asymptotics for ﬂgj )(t) given in the appendix, we arrive at a formula
for the asymptotics of the trace of the heat kernel in this case also. Referring to (5.2.10),
we then apply Z;(—d/dt) to these formulae for the trace of the heat kernel, resulting in
a formula for by, in each case. Reindexing these for positive powers of ¢, we may extract

the desired values of p’; E(S”) O

The case 2. = CP" =SU(n+1)/S(U(n) x U(1)). Here we have « =n — 1 and 3 = 0.
Hence p =n/2,d = 2n, X; = k+n/2, and the volume and multiplicity are given in Table
1.

Proposition 5.3.2 (Z. = CP"). For n > 3 odd, we have

¢ (=1)"(n)e-p-m—jcn- 1—3‘(%7;2 Jor0<j<n-1
7.n7 n = n—1 . _ " R
p]:p (CP ) (_1)3"‘3 pckggl(kj + ] _ n) m,é forj . (5 3 10)
k=0 Fn)L'(j+p—~L+m—mn) P >n,

with ¢ given in (A.4.3), and $1(X) given in (A.6.3). Forn > 2 even, we have

( 1) n2]( )ﬁpm]%i);z fOT 0§]§7’L—2
S ()P Bo(k G- n) s
L(n)L(j—L+m+p—1—n) PP

m,{ n
p]"p (CP ) -

for j >mn,
k=0

. n . . m,l m., n .
with d as in (A.4.4), $2(X) as in (A.6.3), and 9, =9, " (CP") as in (5.3.2).

Proof. For n > 1 odd, the multiplicity M (CP"™) = M}, can be written using (A.4.3) as a

polynomial in X}, as

2Xy, g 2j+1
My = ———% X2 - 2?2 = "X s 5.3.11
]:

Hence the trace of the heat kernel ©(¢; CP™) is given by

2 o vl ocn ; 2_ 2
O(t: CP") = J X2]+1 —t(XF—p*)
(5 CP™) 4%2: Tn) k ©
k=0 7=0
2€tp2 n—1 7]1 ) , 02 n—1 C
- X2t —tX} Gr).  (5.3.12
4nqn 3:0 (n) Z 4”7r = F(n 2 (1) ( )
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On the other hand, for n > 2 even, we can use (A.4.4) to write

) n—2
_ 2Xk 2 n y25+3
My, = T D) H (X2 - 4% (n—l)!,zodjx’f . (5.3.13)
: ]:

Therefore in this case the trace of the heat kernel ©(¢; CP") = O(¢) is given by

o0 n—2 gn 26tp2 n—2 dqn >

_ J 2g+3 —t(X2 2) j 2g+3 —tX?
o) = e 2 X (s = e LT L

tp?2 m=2 yn
= (1 ), (5.3.14)

gngn = I'(n)
where this time we have arranged the inner sum as derivatives of the Jacobi theta function
of the third kind, given in Appendix A.6. Again substituting for the asymptotics of
79§j )(t) and ﬁgj +1)(t) (also given in Appendix A.6) we arrive at the asypmptotic values
of b§(t; CP™). We then apply Z;(—d/dt) to these, as in the previous proof, resulting in
by, (t; CP™). After a re-indexing for positive powers of ¢, we may then extract the values

of pr;E(CP”). O

The case Z. = HP" = Sp(n+1)/(Sp(n) x Sp(1)). Here we have « =2n—1 and g =1,
and hence p = (2n +1)/2, d = 4n, and X, = k+ (2n + 1)/2. Moreover, the volume and

multiplicity are given in Table 1.

Proposition 5.3.3 (Z. = HP"). Forn > 1, we have

N .
, (=1)™(2n)r—p—m—je5,_1 j%ﬁ; for0<j<2n-1
ny _ .
pjp (HP™) = 2071 PR By (k45— 21) s (5.3.15)

n
(-1 |
! > 2
2 TRmIG +p—L4m—2n) v T2

with €] as in (A.4.5), 1(X) as in (A.6.3), and %JZL)’K = %%’E(HP”) as in (5.3.2).

Proof. We begin by writing the multiplicity My (HP"™) = M}, using (A.4.5) as

2n—1
M, =
- DIen+ DIk £ 1) Jl;[l(k”)
n—3/2 2n—1 nv2j+1
2X (X} — (2n - 1)*/4) 2 2ej X},
— X —. 3.1
(2n — 1)!(2n +1)! jym( ko JZO '(2n)(2n + 1)! (5.3.16)

Therefore the heat trace ©(t;HP™) is given in this case in terms of the Jacobi theta
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functions of the second kind as
oo 2n—1 nX2]+1 2 9
G(t;HPn = 42nﬂ.2n Z Z k_p )
k=0 j5=0
t 2 2n—1 n o0
- 2e p2 Z (p+1/2) 2J+1 —t(p+1/2)2
n
(47T) 7=0 p:O
t 2 2n—1 n

o Z s —1)79 1), (5.3.17)

We then substitute for the asymptotics of ﬁgj )(t) as in Appendix A.6 to arrive at the
asymptotics for by (¢; HP™). For the general £ > 0 case we apply %;(—d/dt) to this, before

rearranging for a positive power of ¢ to extract the value of p;':;;g(HP"). O

The case 2. = P?(Cay) = F*/Spin(9). Here we have a = 7 and 3 = 3, therefore
p=11/2,d =16, and X} = k+ 11/2. We also have the volume and multiplicity in Table
1.

Proposition 5.3.4 (2. = P?(Cay)). We have

‘ (0" ®epomifri ]y for0<j<7
Py (P*(Cay)) = ¢ 7 (—1)I+-Pf, B (k + 5 — )gmé (5.3.18)
m, .
kOF(S) (J+p—L+m—8) IP for j > 8,

with f; as in (A.4.6), %1(X) as in (A.6.3), and gﬂ;z = %%’E(PQ(Cay)) as in (5.3.2).

Proof. In this case we can arrange the multiplicity using (A.4.6) as

My, = ﬁ?ﬁ’: (X7 — 1/4)2(XE — 9/4)2(X} — 25/4)(X} — 49/4)(X} — 81/4)
= 7'11' Z S X (5.3.19)

Hence the trace of the heat kernel ©(¢; P?(Cay)) = O(t) is given by

7 00
12f etp 2
t) = fXQJJr1 —t(X7—p?) _ 2]+1 —tXx?
T 12fet’ & 7
= it A 2j+1 ,—t(p+1/2)2
- Z; 7131(4m)8 Z;) p+1/2)% P 7, 477 TTAE Z@ 1), 19 . (5.3.20)
j= p= j

We then substitute for the asymptotics of ﬁgj ) (t) as in Appendix A.6 for the asymptotics
of b2 (t; P?(Cay)). For the general £ > 0 case we apply %y(—d/dt) to this to get the
asymptotics of b,(t; P2(Cay)), at which point we arrange and re-index for positive powers

of t, and extract the value of pm Z(Pz(Cay)). O
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5.4 Expansion of b},(t; Z) on non-compact Z°

The trace of the heat kernel ©(t; Z,.) on a rank-one symmetric space 2. of non-compact
type is given by

28—-1 o]
Olts 250) = G [T O ) an (5.4.)

where p = (a + 3+ 1)/2, and u(A\) = |C(\)|~2 is the Plancherel measure, where C()) is
the Harish-Chandra function given in (5.2.16), so that u(\) has the explicit form

) = ICGA+ (a+ B+ 1)/2)PIT(iA+ (a — B+ 1)/2)?
HAA) = |20+BF1=20A12|T (v + 1) 2T (20N |2 :

(5.4.2)

As in the compact case, we can arrange the Maclaurin heat coefficients b5, (t; Zpc) as
a series of the form (5.1.10) where in the following propositions we present the values of
q%g(%m) for each space.

As in the compact case, we define a general term below that will aid in the following

formulations of the values of q;-r;;g( Zne)-

m m e - P m
gj,p’g Zgj,p’g(%nc) = < m >P2 Hi_, (e, B), (5.4.3)

where Hf; = Hf;(a, B) are given in Lemma A.6.3, for suitable values of a and 8 depending

on the space Z,.. Moreover p = (aw+ 5+ 1)/2. Here we also make use of the identity

F(n/2-35) TG=n/2+1) :(_1)mr("/2+m—j)
['(n/2) T(j—m-—n/2+1) I'(n/2) ’

(5.4.4)

The case 2, = RH" = SOy(n,1)/SO(n). Here we have a = = (n — 2)/2. Hence
p=(n—1)/2 and d = n. These values are shared with S”. Here the Plancherel measure

is given for n > 1 odd by

(n—3)/2
T .
p(A) = NOPPEE IT 2+, (5.4.5)
=0
whilst for n > 2 even we have
(n—3)/2
mAtanh(mwA .
u() = W)QSH'L [T 02+, (5.4.6)
j=1/2

Note that for n = 2, the product above is simply set to 1.

Proposition 5.4.1 (2 = RH"). Forn >3 odd, g} (RH") = 0 for j > (n—3)/2, whilst
for 0 <j <(n-—3)/2 we have

m,¢ n - n m,l
Ay (RH") = (=1)7(10/2)0-p-m— Al 329 (5.4.7)
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where A} are given in (A.4.7). For n > 2 even we have

(1) () 2)mpmm—iBL jo 1" for0<j<n/2-1
ml n
q~7’(RH ): (n—2)/2 n ozx _ _ j+n/2+m+1
i 3 BB (k + j —n/2)(~1) N o i

& T(n/QT(j+p—L+m—n/2) "7

(5.4.8)
with BY as in (A.4.8), #7(X) as in (A.6.3), and Efjtr;’e = %;;’E(RH") as in (5.4.3).
Proof. We first derive the trace of the heat kernel for n > 3 odd. Using (A.4.7) on the
Plancherel measure (5.4.5), the trace ©(t; RH") of the heat kernel as in (6.2.4) can be

written as
e—t(n—1)2/4 ) 2 (n—3)/2 ) )

—tn—1)2 (n—3)/2 o
_ e t( 1) /4 Z A’Z / 2€—t)\2)\2k+2 d)\
0

/2T (n /2)2" part
o—tin—1)2/a  (n23)/2
" e gy M) 549)

Therefore we have

emtn=12/4 A2 pg |39y
n/2
xy? 2 T/
For n > 2 even, we use (A.4.8) on the Plancherel measure as in (5.4.6), which lets us write

the trace of the heat kernel O(¢; RH™) = O(t) as

O(t; RH") = — L An(n=3)/2—k, (5.4.10)

e_tpz 00 2 (n—3)/2 ) ,
Ot) = ——— [ 2Xe ™ tanh(m) A2 4 5% dA
0= —arom [, 2wy [ 0f )
j=1/2
— (n—2)/2 o N .
_ n —t 2k+1
_W Z B} / 2e~ tanh(TA)AZFFL d)
o—tr? ("_2)/2 Dk+1) (1) ;
- B} Bi(5+ k). 5.4.11
72T (n2)2" kzzo k| T +; (+k) (5.4.11)

where we have used Lemma A.6.1 to evaluate the integral. This leads to the trace of the
heat kernel O(¢; RH"™) = O(t) being given by

o—tn—1)2/a ("=2)/2 By J+1

(4mt)n/2 — I'(n/2)

[(k+1) +§:

O(t) = tht1-n/2
7=0

Y(J+ k)tH"/?] (5.4.12)

Next to calculate b5, (¢; RH™) from these, we apply Z(d/dt) as in (A.6.24) to the heat
traces in odd and even dimensions. In evaluating this action, we use the Gamma function
identity (5.4.4) to simplify the result, followed by a re-indexing for positive powers of ¢
before extracting the values of qm Z(RH”) O
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The case 2, = CH" = SU(n,1)/S(U(n) x U(1)). Here we have « =n — 1 and 5 = 0,
as with CP™. Hence p = n/2, and d = 2n. The Plancherel measure p(\) as in (5.4.2) is
given for n > 1 odd by by

(n—2)/2
mAtanh(m\) 9 .9\
n(A) = @ TT(n))?2 H (A +47)7 (5.4.13)
j=1/2
and for n > 2 even by
A3 coth( m 22
N = gap e T H A2+ (5.4.14)

Proposition 5.4.2 (2 = CH"). For n > 1 odd, we have

( 1)Z p(n)éfpfmfjcn 1 jgmg for0<j<n-1
a7 (CH") = { n- 1( VI Cr B (ki +j —n) e o> (5.4.15)
TG +p—L+m—ny v 00T =T

=0

with C} as in (A.4.9) and $7(X) as in (A.6.3). Forn > 2 even we have

(_1)£ pDan( )KpmjgmZ for 0<j<n-2

—~ (—)MDEBa(k 4 =)
rm)I'(j—4+m+p—1—mn) 7P

/b (CH") =

for j =mn,
k=0

. n R . ml m,l n .
with D} as in (A.4.10), #(X) as in (A.6.3), and &, " =9, " (CH") as in (5.4.3).

Proof. With the Plancherel measure as in (5.4.13), we can write Ocun(t) = O(t) via
(A.4.9) as

e 1’ > A2 22 2, 22
O(t) = / 2 tanh(mw\)Ae™ (A" 4759 dX
22ngnT(n) Jo j1_1[/2
et S > 2%k+1—tA2
= = C? 2 tanh(mw A\ N dA
22nﬂ-nr(n) —~ k /0 an (7T ) €
e [T+ & (—1y!
= = c? P ( k)t 5.4.16
L L

Here we have used Lemma A.6.1 to evaluate the integral. Rearranging this we may extract

the statement of q; for n > 1 odd. Next for n > 2 even, using (A.4.10), we can write the
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trace of the heat kernel as

et ™ o3 2 = 2 | 2\2

e P - > 2
= _————— Y DV / 2e7 coth(mA) A2 d)
22nT(n)mn kzo k 0

B et 2 D1 [k +2)
© 2207 (n)mn kzo k tk+2

= Jj=

oo

DR (5.4.17)

In evaluating the integral in the middle inequality, we have used Lemma A.6.1. A re-
arrangement then allows us to extract q; in this case. We then apply 2,(d/dt) to the above
to obtain the statement for b5,(t; CH™), and hence extract the statements of qg';;é((CH”)

in each case. ]

The case 2, = HH" = Sp(n,1)/(Sp(n) x Sp(1)). Here we have « =2n—1 and 8 =1,
and so p = (2n+1)/2, and d = 4n. For n > 1, the Plancherel measure p(\) as in (5.4.2)

is given by
—3/2
mAtanh(mA) " )
p(n) = ST A2+ (2n—1)%/4] J] A +592 (5.4.18)
j=1/2
Proposition 5.4.3 (2 = HH"). Forn > 1, we have
e (1) P(2n)—p-m—Es 1 ;" for0<j<2n—1
m
q;, (HH") = ¢ 2n=1 _ J\jtm+1pn g _ (5.4.19)
J:p (-1) ErBr(k+7—2n) my for j > on,

— L(n)(j+p—L+m—2n) P

. n - * - m,Z m,é n -
with E} as in (A.4.11), #7(X) as in (A.6.3), and &¥;" =4, " (HH") as in (5.4.3).

Proof. With the Plancherel measure as in (5.4.18) in this case, we can use (A.4.11) to
write the heat trace O(t; HH") = ©(t) as

i o n—3/2
@(t) = 4”'62’”/ 2e,t)\2)\ tanh(ﬂ')\) |:)\2 + (2” - 1)2/4] H (AQ +j2)2d)\
24n 20T (2n) Jo Z1/2
]:
e_tp2 2n—1 \2 ok
=N E [ 2™ tanh i
T 2] Z / e~ tanh(m A AN
et X [Tk+1) & (—1)7H!
=" EL Zi k)t 4.2
27 20T (2n) kzo tk+1 +JZO (3 + k)Y (5.4.20)

We may then write

A I P UE S VIR SN GV
0= tapen ; k)i 2n 4.21
O(t) (4rt)2n kzo T(2n) | th+1-2n +Z 17 +E) , (5.4.21)

M
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which after a rearrangement leads to the value of q;. Applying 2,(d/dt) to the above
statement, we arrive at the value of b5, (t; HH"), which after a re-indexing for a positive

power of ¢ provides the desired value of q;nI;Z(HH"). O

The case 2. = H?>(Cay) = F%/Spin(9). Here we have a = 7 and 8 = 3, and so
p=11/2, and d = 16. The Plancherel measure p(\) as in (5.4.2) is given by

wAtanh(7\)

p(X) = ST (R)2 (A2 4+ 81/4) (N2 4 49/4) (A% 4 25/4) (A2 + 9/4)2 (V2 + 1/4)%. (5.4.22)

Proposition 5.4.4 (2" = H?(Cay)). Here we have

' ( )E p( )6 p—m— ]F7 ]gjﬂze fOTOSj <7
q;y (H*(Cay)) = ¢ 7 FHmHIE, gt (5.4.23)

— F(n)F(j +p €+m 8)

with Fj as in (A.4.12), #7(X) as in (A.6.3), and g;g)’ﬁ = %;Z’E(H%Cay)) as in (5.4.3).

Proof. Using (A.4.12) on the Plancherel measure (5.4.22) we can write the heat trace
O(t; H*(Cay)) = O(t) as

25 7121t/41’\ 8 o0
o(t) = 6—9() / e u(A) dA
Q 0
e—121t/4 T 0 "
= STee7ag F 2\ tanh(mA)e™ ™" dA
2167 (8) 73 kzo k/o anh(7A)e
e—121t/4 T T(k + 1) 00 J+1 ‘
= T (8)S 2 tm Ly B Gk (5.4.24)
k=0 =0

Rearranging for a positive power of ¢, we may extract the value of q;. Next we apply
2,(d/dt) to the above statement to arrive at the value of b%,(t; H*(Cay)), which we then

re-indexing for a positive power of ¢. This provides the desired value of q;-'ff(HQ(Cay)). O]

5.5 Proportionality Principle for 0},(t; Z")

The trace of the heat kernel ©(¢; 2,,.) on a compact d-dimensional rank-one symmetric
space Z. has the asymptotics given by (5.1.4), whilst on a non-compact rank-one sym-
metric space Z,. the trace are given by (5.1.5). In the case that 2. is dual to %,
the Minakshisundaram-Pleijel coefficients a;(2") for each space satisfy the proportional-
ity (5.1.6). In this section we extend this proportionality to the level of the Maclaurin
heat coefficients b3,(t; Z7).
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Generalised Minakshisundaram-Pleijel coefficients on Z.. In (5.2.10) we defined
the Maclaurin heat coefficients associated to a compact rank-one symmetric space. Con-
sidering the asymptotic expansion (5.1.4), we can apply Zy(—d/dt) with %Z;(X) as in
(A.6.20) to then write the asymptotics of the Maclaurin heat coefficients on a compact

space as

n Q 1 = j
Usi(t: 20) ~ % ’ﬂ<fd/dt>W > a2

1 o0
e 25717 Z"Z "

A2l L,
- hé 1)P titep, 5.1
47Ttd/2+ezaJ (Ze) Z ]_d/2+1_ ») (5.5.1)

After re-indexing this for a positive power of ¢, we have

(4m)* > - Derr(—d/2+1) |
oo(t; o) ~ ——L— Htp
& &) (4mt)d/2+¢ i} Z;) —d/2—l+p+1)
[e) Z 1
(4)* ' DEPD(j —d/2 + 1) ,
~— h (2| P
(4rt)d/2+e = pz =rr( —d/2—€+p+ 1)a 5(Ze)
oo £—1
e D) DN EATLD 552
7=0 p=0

where we have collected several terms into bg (Ze) as

P —d/2 +1)
(j—d/2—L+p+1)

b p(22) = hi_p(4w>f§ a;(2e)- (5:5.3)

Now rearranging (5.5.2) so that we have increasing powers of ¢, we arrive at the following

proposition.

Proposition 5.5.1. On a compact rank-one symmetric space Z., the Maclaurin heat

coefficients have the asymptotics
1 > .
ne(t; Ze) ~ (Art)d/2+t D a2, 0. (5.5.4)
§=0

Here the generalised Minakshisundaram-Pleijel coefficients a;o(Zc) for a compact space

are given for bg’p(ﬁifc) as in (5.5.3) by

a;0(Z. quj . (5.5.5)
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Proof. Here we have rearranged (5.5.2) to sum over increasing powers of t. We note that
the sum over p there only runs over p = 0,...,¢ — 1, and that the value j — ¢ in (5.5.5)

may go outside this range. However in these cases the value of b Z) is zero because

q.j— q(

the value of hf,(a, B) is zero by definition outside these ranges. O

Generalised Minakshisundaram-Pleijel coefficients on Z,,.. In this case we define
the Maclaurin heat coefficients associated to a non-compact rank-one symmetric space
Zne in (A.6.25). Considering the expansion (5.1.5), we can then apply 2y(d/dt) to write

a similar expansion of b5, (t; Z5.) as

1 > ,
2 . _ Q’,ﬂ .
Bo(t; Zne) = 25 (d/dt)7(4ﬁt) 7 §‘_ (L)t

dr
_ l d2
— ME aj( e § hpdtpt] / (5.5.6)

As above in the compact case before, this leads to the arrangement

oo -1

(1. — j+
Bolt; Zne) = ) d/WZZb P (5.5.7)

7=0 p=0
where this time we have defined bgp(%mj) as

L(j—d/2+1)
N(j—d/2—0+p+1)

bf ) (Zne) = Hf,(47r)e ai(Zne)- (5.5.8)

A similar re-arrangement into increasing powers of ¢ leads to the following proposition.

Proposition 5.5.2. On a non-compact rank-one symmetric space Zn., the Maclaurin

heat coefficients exhibit the expansion

1 > .
Bults Zne) = e 2 2Tt (5.5.9)
=0

where the generalised Minakshisundaram-Pleijel coefficients ajo(Zne) for a non-compact

space are given for bl . (Zne) is given in (5.5.8) by

4.J—q

14
a4 Zb L (5.5.10)

Proof. Here we have arranged (5.5.7) into increasing powers of ¢, noting again that the

range p there can be exceeded by j — ¢ in (5.5.10) since Hf; = 0 outside this range. O

The generalised proportionality principle. We can compare (5.5.4) and (5.5.9) using
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Remark A.6.5 together with the proportionality principle (5.1.6) to see that for a pair of

dual spaces we have

b, (22) = (=1)77b5 ,(Zne) (5.5.11)

and hence via (5.5.5) and (5.5.10) we have the generalised proportionality

a (% Zb@ 20 = (1Y) (Zne) = (—1Y a0 Zne)- (5.5.12)

q=0

We summarise this in the following theorem.

Theorem 5.5.3. Let 2. and 2. be a dual pair of rank-one symmetric spaces. Then the

generalised Minakshisundaram-Pleijel heat coefficients a; (Z") have the proportionality
aj0(22) = (=1)a;(Zne), (5.5.13)
where aj () is given in (5.5.4), and aj(Zne) in (5.5.9).

Proof. Although a proof is provided prior to the statement, we may also refer to the
explicit calculations in Section 5.3 and Section 5.4. There we arrange the asymptotics for

b, (t; Z) as

oo 0—1 £—p

(4. +m+

2((75, 'Q//.C) 47Tt d/2+£ E E E p tj P (5514)
7=0 p=0 m=0

and we arrange bb,(t; Zn.) as

gooélfp

2e(ts Zne) = (4t) d/2+€ ZZ D Ay (Lt T (5.5.15)

7=0 p=0 m=0

where we present the explicit values of p%f(e%”c) and q%e(%nc) for each rank-one sym-
metric space. It is clear by inspection of these explicit values, and careful use of Remark

A.6.5 and Remark A.4.1, that for a dual pair 2, and 2, we have the deeper relationship

Pl (Ze) = (—1)™ PRGN (2e). (5.5.16)

Next we arrange (5.5.14) in increasing powers of ¢, resulting in

n (9 eP*t(am)t & d J—k=il( gy | 4
2€(t’ e) ~ (47rt d/2+e Z Ph,i )|t
k=0 1=0

1 ad ,
(4nt) d/2+z Z Bje(Ze)t! = Artyantt PEE AL (5.5.17)
7=0
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where a; ¢(Z) are the generalised Minakshisundaram-Pleijel heat coeflicients on a compact

space, and we have defined the coefficients B (.Z¢) as

J J—k

Bjo(Z:) = (4m)" > > " pl T (20). (5.5.18)

k=0 i=0

A similar rearrangement of (5.5.15) leads to the analogous coefficients for a non-compact

space being defined by

e Pt (4r)t S [ j—k—i j
g@(t; e%'nc) = 7() quiﬁk ,Z(%nc) t!

d/2+1¢
(47Tt) / j 0 Lk=0 i=0

1 > :
47Tt (Art\d/2+L Z B]’ C%- W Z aj,f(%nc)tj, (5519)
i=0

where a;j ¢(Znc) are the generahsed Minakshisundaram-Pleijel heat coefficients for a non-

compact space, and we have written

J
Bj,f('%nc) - (47()( Z qgg_ik_z’f(f%nJ- (5520)
k=0 i=0
With this, we invoke (5.5. 16) for a dual pair 2. and 2. and write

" (Ze) = (—1)Bju( Zne). (5.5.21)

We note that it is enough to show that B;¢(2:) = (—1)7B; (%), since the sign of the
power of the exponential terms in (5.5.17) and (5.5.19) does not affect the resulting power
of (—1). We see this by writing

00 9] P2
2 .
etp E B]’f(%)tj = E Tt]
Jj=0 J=0

where using the Cauchy product aj;.(%:) is given explicitly by

P

Il
o

= a2, (5.5.22)
=0

J

T p2ih)
aj(Ze) = Z G- k)|Bk,£(<%:)- (5.5.23)
k=0 ’

Now similarly for B ,(Z5.), we take a negative power of the exponential and write

> ) > 020 ° . > .
Y Bl Znd)t = | DI ST B (el | = Y aje(Zac)t, (5.5.24)
J=0 =0 J: i=0 20
where a; ¢(Zyc) is given by
j ik p2(j_k)
aj0(Zne) = Z(—l)]‘ G Bro(Zne)- (5.5.25)
k=0 ’

Hence given B; /(Zne) = (—1)/B;¢(Zne) as in (5.5.21), then from (5.5.23) and (5.5.25) we
clearly see a;¢(2:) = (—1)7a;¢(Z5c) as desired. This completes the proof. O
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Chapter 6

Generalised Spectral Zeta
Functions: The Residues, Poles,

and the Proportionality Principle

6.1 Introduction

With the same notation for the Laplacian, and all its associated spectral quantities as
in the previous chapter (in the interest of brevity, we do not repeat this here), we define
the spectral zeta function ((s;.#) for a compact Riemannian manifold (.#,g) by the

Dirichlet-type series

C(s;.4) = ; M[’;(k]///) Res > d/2. (6.1.1)

This can be extended by analytic continuation to a meromorphic function on the complex
plane C with its poles s = s; lying on the real axis where, specifically depending on the

dimension being even or odd, they occur only at points !

0,1,2,...,d/2—1 for d even,
si=df2—j,  j= (6.1.2)
0,1,2,... for d odd.

It is well-known that the spectral zeta function can be written as the Mellin transform

of the trace of the heat kernel H 4 (t;z,x) = O(t; .4 ), specifically

Clsiott) = Y [T et @(tsa) 1)t = 5o M) [t

L(s) = I(s)
_ LM (A [Ty, N M)
== 3); IWE /0 d ; TR (6.1.3)

1We come to the residues at the poles of ((s;.#) later on in the chapter.
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This relationship links the residues of the spectral zeta functions to the short-time asymp-
totics of the heat trace as formulated via the Minakshisundaram-Pleijel heat coefficients
aj(A). In fact a direct analysis leads to the identity

aj(A)

Ress—s;((s; A ) = (4m)4/21(d/2 — 5)°

(6.1.4)

Recall that the scalars a;(.#) are the quantities arising from the short-time asymptotic

expansion
R :
i ~ . J
O(t; ) ()17 ; aj(,  tN\0. (6.1.5)
Commenting further, in odd dimensions the spectral zeta function has zeros at negative
integers whilst (0, #) = —1. In contrast in even dimensions, we have
. _agp(A) . _(=D)FR! _
C(0; 4 ) = Umir L (k)= () agok(A), k=1,2,.... (6.1.6)

From this point onwards we specialise the discussion to the setting of rank-one sym-
metric spaces 2" = G/H. In the compact case, with 2~ = 2., we have all of the above
statements subject to .# = Z.. In the non-compact case Z" = 2., the spectrum of the
Laplace-Beltrami operator has a continuous part, and so ((s; Z,.) cannot be defined by
a Dirichlet-type series as in the compact case. However, motivated by the identity (6.1.3)
and the functional calculus of the Laplace-Beltrami operator, one can formally define the
spectral zeta function ((s; Z,.) by taking the Mellin transform of the heat trace on a

non-compact space Hy., (t;x,2) = O(t; Zne) ? as

C(s5 Zne) = (Zne) /Ooo (A;‘&Zz)s dA, (6.1.7)

with ¢(Zne) a scaling factor (see (6.2.8)), and p = (a+ f + 1)/2, with the parameters «
and [ associated to each symmetric space of rank one given in Table 3.

Although the above integral (6.1.7) bares no immediate resemblance to the Dirichlet-
type series (6.1.1), a remarkable fact is that they do share the same set of poles as in
(6.1.2), and furthermore the residues at a given pole s; of ((s; Zy.), for 25 non-compact

is exactly

aj(Zne)

Ress—s, Q%nc = = 6.1.8
@omsy G185 Fne) = (arar (4j2— ) (6:15)
where a; (%) are coefficients in a series expansion of ©(t; Zy.) given by
SR :
O(t; Zne) = (Ant)i2 > (2ot (6.1.9)
=0

2Note that due to the space being symmetric the heat trace becomes independent of the variable .
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In [29] the expansions (6.1.5) and (6.1.9) were studied in depth, and the so-called
Proportionality Principle was formulated, stating that for a compact symmetric space 2.

and its non-compact dual %, we have the relation
ai(2.) = (—1)a;(Zne). (6.1.10)

We can then deduce a similar proportionality between the residues of a shared pole s; of

C(s; Z:) and ((s; Zne) by invoking the identites (6.1.4) and (6.1.8), hence obtaining
Ress—s,((s; 2¢) = (—1)Ress—s, ((8; Zne)- (6.1.11)

Following the approach, analysis, and results in Chapter 5 on the Maclaurin heat
coefficients b5, (t; 27), and the above motivating discussion, in this chapter, by defining a
generalised spectral zeta function (y(s; 2") as the Mellin transform of b,(¢; Z7), we aim
at formulating and proving a generalised proportionality principle analogous to (6.1.12)
between the residues of (y(s; Z¢) and (y(s; Zne) at their respective poles. More specifically

the relation

Ress=s,;Ce(s; Ze) = (—1)jResszsj§g(s; Zne)s £>0. (6.1.12)

6.2 Zeta functions on rank-one symmetric spaces

Compact rank-one symmetric spaces and their zeta functions. Here we specialise

to the case where 2~ = 2. is a compact rank-one symmetric space. These are given by the

unit sphere S" = SO(n+1)/SO(n), the real projective space RP™ = SO(n+1)/0(n), the

complex projective space CP™ = SU(n+1)/S(U(n) x U(1)), the quaternionic projective

space HP™ = Sp(n + 1)/(Sp(n) x Sp(1)), and the Cayley Plane P?(Cay) = F*/Spin(9).
We can define the heat kernel Hy (¢;x,y) explicitly by the spectral sum

— M (20)

a,B —tAF
Vol(,%”)gz (cosB)e % . (6.2.1)

Here 6 denotes the geodesic distance between x and y on 2, and ,@,(: % are the normalised
Jacobi polynomials satisfying 9;:‘ B (0) = 1. In this case the spectral zeta function is given

by

N Ze)
C(s; Z2) _kzzo k+a+ﬁ+1)] (6.2.2)
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where k(k +a + [+ 1) = )\g’ﬁ are the numerically distinct eigenvalues of the Jacobi

operator, and the associated multiplicity function M (2:) is given explicitly by

a+ B+ 2k+ D (a+ B +k+ DB+ 1)T(k+d/2)
T(k+ DI (o + B+ 2)T(d/2)T(k+ B+ 1) ’

My (Ze) = ( (6.2.3)

Here a and [ are fixed parameters associated to each space (see Table 3), where d =

dim(2,) = 20 + 2.

Zeta functions on a non-compact rank-one symmetric space. Let 2. be a rank-
one symmetric space of non-compact type. The these are the real hyperbolic space RH" =
SOy(n,1)/SO(n), the complex hyperbolic space CH" = SU(n,1)/S(U(n) x U(1)), the
quaternionic hyperbolic space HH"™ = Sp(n,1)/(Sp(n) x Sp(1)), and the hyperbolic Cay-
ley plane H?(Cay) = F/Spin(9).

By taking the Mellin transform of the trace of the heat kernel ©(t; 25..) = Hz;,.(t; z, x)
we aim to derive a spectral zeta function in this setting, analogous to that on the compact

dual space Z.. Here the heat kernel is given by the integral

22710 (1) [ _
Hy, (tz,y) = 7T°‘(+2)/o o7 (1) MV 4 (0) d, (6.2.4)

where @;“"8 (r)= ,@f’g\_ ,(coshr) are the Jacobi functions, (A2 + p?) are the eigenvalues of
the Laplace-Beltrami operator on 25, with A € C, and p()\) = |C(\)|~2 is the associated

Plancherel measure given by

TEA+ (a+ B+ 1)/2)PIDEA+ (o — B+ 1)/2)]?

= - 2.
'M(A) |2a+5+172z>\|2|r(a+ 1)|2’F(2i)\)|2 ’ (6 5)
where C'(\) denotes the Harish-Chandra function
; 4P~ (a4 1)I(2iX
C(\) = Tim 857 (r)ele= N7 — o+ D2 (6.2.6)

r Ao T(p+iNT(EA+ (a+1—B)/2)

Here a and f are fixed parameters associated to the space 2., with p = (a+ 5+ 1)/2,
and we note that a pair of dual spaces share the same values for these parameters (see

Table 3).

Setting = y in the heat kernel (6.2.4), we define its trace by the integral

22,6’71F 1 00
Olt; 2c) = o (t0.0) = O [Ty an 62)
T 0

Taking the Mellin transform of this, we can then define a spectral zeta function on a
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non-compact rank-one symmetric space Zn. as

1

G55 i) = 175 MO 2] () = s [ 7000 25

226-17( a+1 o1 e

= () / t / PIu(N) dx dt
228~ 1F(a+

= — /0 (A2+p) d. (6.2.8)

As in the compact case, in odd dimensions ((s; Z,.) has zeros at negative integers,

and also satisfies ((0; Z,.) = —1. Mirroring (6.1.6), in even dimensions we have the point
values
aq/2(Zne) —1)Fk!
(0: 25 = 2220 —

(47-‘-)d/2 — 1, C(—k, ‘%‘TLC) = Wad/Q_i_k(%nc), k= 1, 2, e (629)

where aj(Z5.) are the coefficients in the expansion (6.1.9). What is most interesting is
that the poles of ((s; Znc) occur at the same points as those of ((s; Z:) as well. They are
at s = s; = d/2 — j, where for odd dimensional spaces - that is, the real hyperbolic space
RH™ with n > 3 odd - j runs over all non-negative integers, and for even dimensional
spaces j runs over 0,1,...,d/2 — 1. Furthermore, the residue at a given pole is given by

(6.1.8), mirroring the residue on a compact space in (6.1.4).

The Maclaurin heat coefficients 05,(t; 27). We focus on briefly defining the Maclaurin
heat coefficients b3,(t; 27), that are seen to generalise the heat trace on both compact and
non-compact spaces. In both of these cases, b5,(t; Z7) are seen to arise in the Maclaurin
expansion of the heat kernel Hy (t;x,y). If 27 = 2. is a compact rank-one symmetric
space, the heat kernel is given in (6.2.1). To first introduce the Maclaurin heat coefficients,

we abuse notation slightly to write H o (t;0) = Ho (t;z,y), and define

d2£
Hoy(t:0) . (6.2.10)

20(t; Ze) = o2l " g=0

The name of these coefficients is motivated by how they are seen to arise as the coefficients
of the Maclaurin expansion of the heat kernel about 8 = 0. We note that the derivatives
will pass onto the Jacobi polynomial ,@,‘:’B(cos 0) as in (6.2.1). Referring to Lemma A.6.3
and (A.6.21), the Maclaurin heat coefficients bi,(¢; Z.) can then be written as

by (t; 22) = BP (—d/dt)O(t; 27). (6.2.11)

On a non-compact rank-one symmetric space, the story is similar. In this case the heat

kernel Hy:, (t;z,y) is given in (6.2.4), and so writing Hy:, (t;7) = Hg;, (t;z,y), with r
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the geodesic distance between x and y, we can define the Maclaurin heat coefficients by

d2£
W‘Hﬁ{nc(t;’r) T:(). (6212)

oe(t; Zne) =
Similar to the compact case, the derivatives above fall directly onto the Jacobi function.
Referring to Lemma A.6.4 and (A.6.25) in this case, we can write the Maclaurin heat

coefficients b5, (t; Znc) as
Be(ts Zne) = 20°7(d/dt)O(t; Ze). (6.2.13)

We note that in both (6.2.11) and (6.2.13), when ¢ = 0 we see the trace of the heat
kernel arising as bj(¢; ) = O(t; 27).

The generalised spectral zeta function (y(s; 27). From the relation between the
Maclaurin heat coefficients b3,(t; 2°) and the trace of the heat kernel given in (6.2.11)
and (6.2.13) for compact and non-compact spaces respectively, we are motivated to take
the Mellin transform of b5,(t; Z7) with the aim of defining a more general spectral zeta
function. In the compact case first, we define (;(s; Z¢) = Vol(Z¢)[MUb5,(t; Z¢)](s)/T'(s)
so that using the definition (6.2.13) in conjunction with Lemma A.6.3 we have

Vol(Ze) [ o1 _ .
it /0 7 [Bu(—d/dt)O(t; 27)] dt

1
1 0 dp
- phé s—1 %t
ey 2V ZMk / e

Ce(s; Ze) =

p=1
Y4 00 Y4
— Zh Z [Ak p th,q . (6.2.14)

p=1 =1
Next on a non-compact space, we define (y(s; %nc) = [MbY,(t; Zne)] (5)/T(s) so that using

(6.2.13) and Lemma A.6.4 we can write

(MBS, (t; Zne)] Zr / pr & —O(t; Zne) dt. (6.2.15)

1
I'(s) dtp

Hence we may define a new zeta function (y(s; &), with £ > 0, as

Celss Zne) = D (-1 s n/ £~ 1/ (A2 + p2)Pu(N)e " 407 dx at
p:

l
_ 1PHC e p)
= 3 (-1pHe (5{)/ ey

p=1 0
¢
= D _(“1PH((s = 13 Zne). (6.2.16)
p=1

where for convenience we have denoted c(2.) = 22971 (a4 1) /72*?2 as the scaling factor

in the definition of ©(t; Z5,) in (6.2.4).
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6.3 Explicit calculations of the zeta function (/(s; Z")

In what follows we will provide explicit formulae for the spectral zeta function (y(s; 2") for
each rank-one symmetric space of both compact and non-compact type. First we require
some auxilliary results that will assist in evaluating each case. We define two functions

P and Ay as

o ol1iax | Ba(x+1)] _ Baxyo)

where Bs,, denotes the 2n! Bernoulli number.

Lemma 6.3.1. For any non-negative integer k, we have

0 2tanh(7r)\) o1 g
7)\ +1 )\ = +2 23Bk3+1,5_k_1
/0 (A2 +p?)° P ( )
< 1 (T,
jz_:o p¥+2 Gl T(s) F(k +3), (6.3.2)

with B(x,y) denoting the well-known Beta function, and %1(X) as in (A.6.3). Similarly

we have

/ M/\Qk+3 dr = pH 2Bk +2,s —k —2)
0

(A2 4 p?)*
N Z p2s1+2j (_]1|)J F(;(—;)J)QQ(/’C +7+1), (6.3.3)
=0

with B(x,y) denoting the Beta function, and %2(X) as in (A.6.3).

Proof. We make use of the identity

2

tanh(Tr:U) =1- W

(6.3.4)

which allows us to split the integral on the left-hand side of (A.6.7) as

* 2 tanh(mA) g1 o W’f“ AN+ 0P ok
A S A R e

The first integral above can be written as

/oo 2>\2k+1 2k+1 25/ )\/p 2k+1 d)\
0 ()\24'/02) o (Ml
% 9 2k+1
P 25/0 pp+ L (6.3.6)

We now refer to the integral identity

o 1 a a
a—1 2\b—1 I - N N
/0 p* (14 p%) dp—2B(2,1 b 2), (6.3.7)
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which allows (A.6.11) to be evaluated as

0o 2)\2k+1
/0 0 A d\ = p P2 BB (k41,5 -k —1). (6.3.8)

For the second integral, we apply the generalised binomial theorem to write

1 _ p*25 _ i —S _25_2j)\2j
R~ T g )
X (=1 T 1 L
-y .,) Ls+3) 252525 (6.3.9)
= 7t T

This allows us to write the second integral explicitly as

0 4 )\2 2 ) 00 4)\2k+2j+1
/ ( +7§7r/)\ N = . ﬂ)/’*w?ﬂ / ———d\. (63.10)
0 ]. +e =0 . ) 0 ]. +e

o0

To evaluate the integral here, we refer to the identity

< gl 1—2ny [Bon| _ #i(n—1)
_ (1 —gt-2myBonl _ , 3.11
/0 1+ e2m dz = ) 4n 4 (6:3.11)

This completes the first result. The proof of the second result follows the above closely,

using a different set of integral identites. Firstly instead of (A.6.9) we use

2

Next instead of (A.6.16) we use
oo gp2n—l By ﬁg(n — 2)
— dx=(-1)"= = ()2 6.3.13
The result follows. O

We will make use of the Hurwitz zeta function (g (s, ¢), which for future reference is

defined as

(s,q) = Z q+m Re(s) > 1. (6.3.14)

m=0
The Hurwitz zeta function can be extended via analytic continuation to a meromorphic
function on C\{1}, with a simple pole at s = 1 with residue 1. In each case below we
formulate (y(s; 27) so that the ¢ = 0 case (that is, the spectral zeta function) follows by
suitably setting the value p = 0 throughout, with the sum over p disappearing. This also
requires the knowledge that hf = Hé =1

The case 2. = S" vs. %2, = RH". Here we have a = = (n — 2)/2, and hence
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p=(n—1)/2 and d = n. We begin with the compact case, where the multiplicity M (S™)
is given by

2k +n—1)(k+n—2)!
El(n —1)!

M, (S™) = (6.3.15)

We also fix a parameter X = k + p, so that the eigenvalues of —Agn satisfy A} =
k(k+n—1)=X2—p*

Proposition 6.3.2. Let 2" =S". Then for n > 3 odd, the zeta function (;(s;S™) can be

written as
SR P
Clsi8") = > D T(n) (&~ PhmCr(2s —ptm—j) +2,p+1),  (6:3.16)
m=0 p=1 j=0
with a% as in (A.4.1) and Cy(s,q) as in (6.3.14). Forn > 2 even, we have
oo /£ nT72 2h€bnp2m
G5 = 30 30N T s (s —p+m =)~ Lp 1) (6317
m=0p=1 j=0 )

with b} as in (A.4.2) and (g (s,q) as in (6.3.14). In each case p = (n —1)/2, and
{0 _ W ;
h, = hy,(c, B) are defined in Lemma A.6.3.

Proof. For n > 3 odd, with the multiplicity function My(S™) given in (6.3.15) and X} =
k4+p=k+ (n—1)/2, we can write

n—2 (n—3)/2 (n=3)/2 o_n yv2j+2
n 2Xy . 2 2a7 X,
My(8") = =, [T+ = ] IT §: o (6318)
j=1 =0 =

In the final step we have used (A.4.1) to represent My(S™) as a polynomial. Substituting
this into (6.2.2), ((s;S™) is given in this case by
(n—3)/2

an o0 2]+2 (n—3)/2 an o0 X2]+2 2s
;S = = . (6.3.19
(8= 3 n_llZXz RS n_l.Zl_p/Xk> (6.3.19)
j=0 =1 7=0 =1
Given that p/ Xy < 1 by definition, we can use the binomial expansion as
(n—3)/2 0 2m
D(s+m) [ p
Sn _ X2]+2 2s P
(s IO Z D )\ X
7=0 m=0
2 (n3)/2 > p S+ m) —
_ —25—2m+-2j542
=T 2 Y iZXk
:() m=0 k=1
(n—3)/2 9
2 n p (s +m) .
— . — (g (25 +2m -2+ 2,1

where we have arranged the second infinite sum as a Hurwitz zeta function. This completes

the ¢ = 0 case for odd dimensions.
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In the case that n > 2 is even, we can arrange the multiplicity M (S™) differently as

-3 (n—2)/2 n
") 2X, " 2b7 ;
ME = 5 H (Xi-= X oy (6:3:20)
j=1 j=0 )
2

where we have used (A.4.2). Substituting this into the spectral zeta function, we proceed

as in the odd dimensional case above via the binomial expansion as

9 (n—2)/2 00 X2]+1
Z b 2\s
= — (X — %)

(n—2)/2 )

Z b Z Panl;'lf +m) ZXQJH 25-2m.

((s:8") =

where we can similarly arrange the inner sum as a Hurwitz zeta function. We can then

substitute these into (6.2.14) to arrive at the results. O

Next for the non-compact case, depending on the dimension of RH"™ the Plancherel

measure (6.2.5) is reduced to

(n—3)/2
pzp 1L 02459, n=3odd
" o h(mA) e (6.3.21)
s ann(m .
[T (n/2)27—2]? H (A +74%), n>2even,
j=1/2

Note that for n = 3 and n = 2 respectively above, the products are set to 1.

Proposition 6.3.3. Let 2" = RH"™. Then for n > 3 odd, the zeta function ((s; RH™)

can be written as

LR (C1pHEAT Tk
! +1/2T(s —p—k—1/2)
. .3.22
(s; pz:; z% 471' n/2p (n/2) p25=2k=1=2pT (5 — p) ) (6.3.22)

with A} as in (A.4.7). For n > 2 even, we have

. ¢ (n—2)/2 (_1)pH£ N
Co(s;RH") =) (@) 2T 73) B

p=1 k=0

FNk+DI(s—p—k—1)
p25—2k—2—2pr(8 _p)

(6.3.23)

= (=1)7 (s .
_ZO( ]') P(25 QP_ZQJ% (k+]) )

<

with B} as in (A.4.8), and %(X) as in (A.6.3). In each case p = (n —1)/2, and
L _ 4 ;
H, = H,(a, B) are defined in Lemma A.6.4.
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Proof. In the case n > 3 odd, we have the Plancherel measure p(\) as in (6.3.21), and

hence using (A.4.7) we can write the spectral zeta function (o(s; RH") = ((s; RH") as

0o (n=3)/2
ol RE) = 2”17r"/12f(n/2) /0 (2 +1p2>s LG5
(n—3)/2 y
m Z / )\2 oy (6.3.24)
The integral above can be evaluated as in (A.6.13), and so we have
1 (n=3)/2 1 1
Co(s; RH™) = G kzo AR p2kti=2sp (k + s — k- 2) : (6.3.25)

Now for n > 2 even, we have pu(\) as in (6.3.21), and so via (A.4.8) we have
(n—3)/2

2 ° Xtanh(wA\) 9 .9
‘RH") = A d\
CO(S, ) (47‘(’)"/2F(7’L/2) / (>\2 + p2)s '];[/2 ( +.7 )
(n—2)/2
°° tanh(m\)
A%“ dX. 6.3.26
" (4n) n/2r (n/2) Z / (A2 + p?) ( :

Referring to Lemma A.6.2 to evaluate the integral above, we then substitute these into

(6.2.16) to arrive at the results for odd and even dimensions. O

The case 2. = CP" vs. Z,. = CH". Here we have « = n — 1 and 8 = 0, leading to
p =n/2 and d = 2n. The multiplicity function My (CP") is given by

2
M;(CP") = %:n (FEIZJS)) (6.3.27)

Moreover we again fix the parameter X = k + p = k + n/2 so that the eigenvalues of
—Acpn satisfy A\ = k(k+n) = X7 —

Proposition 6.3.4. Let 2" = CP™. Then for n > 1 odd, the zeta function (y(s; CP™) is
given by

oo@nthan

(s;CP™) = ZOZ; 0 F(mynlml n'm' —p)mCa2(s—p+m—j)—1,p+1), (6.3.28)
m=0p=1 j=

with ¢t as in (A.4.3) and (x(s,q) as in (6.3.14). For n > 2 even, we have

— 2h€ dn 2m

oo £
C(s:CPY) = Y Z W(S —P)mCu(2(s+m—p—j)—3,p+1) (6.3.29)
m=0p=1 j=0 T

with d} as in (A.4.4) and Ch(s,q) as in (6.3.14). In each case p = n/2 and the scalars
{ _ W ;
h, = hy,(c, B) are defined in Lemma A.6.3.
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Proof. For n > 1 odd, the multiplicity function M (CP") as in (6.3.27) can be arranged

as a polynomial in Xy =k + n/2 of the form

20X, e PR

_ k 2 :2\2 2g+1

M(CP") = — = [T x7-3%)7= ﬁE X, (6.3.30)
( ) j=1/2 ( j=0

where we have made use of (A.4.3). Substituting this into (6.2.2), the spectral zeta
function ((s; CP") = (o(s; CP™) is given by

Co(s;CP"™) =

Tl —1)!
nl(n —1)! — =

<

We arrange the inner sum as a Hurwitz zeta function (g (s, q), as in the previous proof.

For n > 2 even, M;(CP™) can be arranged as

92X3 (n—2)/2 9 n—2 yiis
-k 22y _ 4 n v 25+
M= i — 1) ]Hl Xi =37 nz<n—1)!jZOdJXk , (6.3.31)

where we have made use of (A.4.4). Substituing this into (6.2.2), we have

Co(s;CP™) =

2 — pPMD(m + 8) 2j+3—25—2m
MDA ) P

Arranging the inner sum as a Hurwitz zeta function, we can then substitute both cases

into (6.2.14) to arrive at the statements of (y(s; CP"). O

Next for the complex hyperbolic space CH", the Plancherel measure (6.2.5) takes the

form
(n—2)/2
A tanh(7w\ .
e [T 02422, n=1odd
_ j=1/2
H = A3 coth(mA) (nﬁ/z()\z + 22, n>2even (0432
2n—2 2 ) = 4 cven.
22n=21(n) i

Proposition 6.3.5. Let 2" = CH"™. Then for n > 1 odd, the zeta function (;(s; CH™)

can be written as

n—1

pHZ
CH")
8 Z 4ﬂ- nl“
p=1 k:0

Nk+DI(s—p—k—1)
p2372k7272p1“(8 _ p)

(Y (s—p) B k+ )|,

| 25—2p+27
7! p PT2)

j=
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where C}! is given in (A.4.9), and %1(X) as in (A.6.3), whilst for n > 2 even

fez pr T'(k+2)0(s—p—k—2
ny _ P )
Ge(s;CH") =) Z (4m)" Dk 25—26=1=3p] (5 _ p)

X (1) (s .
N ( ]') p(28 2p—22]‘% (k+j+1) ’ (6334)

=0
Here D} is given in (A.4.10), and HB2(X) is given in (A.6.3). In each case p =n/2, and
Hf; = Hf,(a, B) are defined in Lemma A.6.4.

Proof. For n > 1 odd, with pu(\) given in (6.3.32) and using (A.4.9) we have

(n—2)/2
2 ° Atanh(7\) 9 .9\9
-CH") =
W CH) = Gy, Do AL e
o [°° tanh(mA) oy
T nr Zc /0 o2y A (6.3.35)

When n > 2 even, the Plancherel measure p()) is given in (6.3.32), and so via (A.4.10)

we can write the zeta function as

2 )\3coth 7r)\
. H'rz — D 2
Colss CH) = Ty Ok /0 RecEwer 13 7
h(
T nr Z / C;’;JFZA AZEEB gy, (6.3.36)

Referring to Lemma A.6.2 to evaluate each integral above, we then substitute the resulting

formulae into (6.2.16) to arrive at the results in each case. O

The case Z. = HP" vs. Z,. = HH". Here we have & = 2n — 1 and 5 = 1. Hence
p=(2n+1)/2 and d = 4n. The multiplicity function My (HP"™) is given explicitly by

2
py (EPm) — 2+ 20+ Dk +2n) (F(k + 2n))

(2n)(2n + 1)(k + 1) EIT(2n) (6:3:37)
In this case we fix X, =k+p =k+ (2n+1)/2, so that the eigenvalues of —Appn satisfy

A= k(k+2n+1) = X2 —

Proposition 6.3.6. Let 2" = HP"™. Then for n > 1, the zeta function (;(s; HP™) can be

written as

0o 2n— 12hZ n 2m

/
p)m .
;HP™) (2(s — ) —1,p+1). (63

with e} as in (A.4.5) and (x(s,q) as in (6.3.14). Here p = (2n + 1)/2, and the scalars
{ _ W ;
h, = h,(c, B) are defined in Lemma A.6.3.
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Proof. By suitably manipulating the Gamma functions, the multiplicity function My (HP™)
given in (6.3.39) can be arranged as a polynomial of the form

2X,(k + 2n) et

20— Di2n+ Dk + 1) Hl (k+3)°

My, (HP") =

2X4(X2 — (2n — 1)2/4) " ol genx 2t
- o -3

(2n —1)!(2n + 1)! n—l et 6339

j=1/2 j=0
Here we have used (A.4.5). Substituting this into (6.2.2), the spectral zeta function
C(s; HP™) = (o(s; HP™) can be written as

2n—1 oo X2j+1
JHP™) = Tk
ols: ) (2n — 1)( 2n+ )! Z € Z (X2 —p?)®
j= 1
2n—1
_ 2 < o i 2mF (s + m) ZX2]+1 2m—2s.
(2n — 1)!(2n + 1)! = J = m!

We now arrange the inner sum as a Hurwitz zeta function, as in the previous proofs, before

substituting into (6.2.14) to arrive at the formula for {,(s; HP"). O

In the non-compact case, the Plancherel measure (6.2.5) on HH" is given by

n—3/2
) = s 3+ (20— /4] TLotesr w2

Proposition 6.3.7. Let 2" = HH"™. Then for n > 1, the zeta function (o(s; HH™) can

be written as

2n—1 ( )pHg
(47)2nT(2n) *

FNk+1)I'(s—p—k—1)
p25—2k—2—2pr‘(8 _p)

o~ (=1 (s—p);
_ j‘ p25 2p+2]%1(k+j)

(6.3.41)

=0
where E} is given in (A.4.11), and %,(X) is defined in (A.6.3). Here p= (2n+1)/2, and
Hf) = Hf;(a, B) are defined in Lemma A.6.4.

Proof. For n > 1, u(A) is given in (6.3.40), and so using (A.4.11) we can write

n—3/2

—— 2 Atanh(7\) 2 9 9 .9\
GHE) = (s ) G e D4 20 0% Lo
]:
2n—1
* tanh(mA) | 9p41
) 2nr 7 Z:: / 0T E ) >\ dA. (6.3.42)

We refer to Lemma A.6.2 to evaluate the integral above, the result of which we then

substitute into (6.2.16) to arrive at the statement of (y(s; HH™). O
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The case 2, = P?(Cay) vs. 2. = H?(Cay). Here we have a = 7 and 3 = 3, and so
p = 11/2. Here the multiplicity function Mj(P?(Cay)) is given by

I'(k + 8)[(k + 11)
THLEIT (k + 4)

As in each of the previous cases, we fix the parameter X; =k + p = k + 11/2 so that the

M(P?(Cay)) = 6(2k + 11) (6.3.43)

eigenvalues of —Ap2 (g satisfy A\, = k(k + 11) = X2 -

Proposition 6.3.8. Let 2" = P%(Cay). Then the zeta function ((s;P?(Cay)) can be

written as
LS (L 12k

Ce(5:P*(Cay)) = DD > — (s = PImCu(2s = 2p+2m = 2j = 1,p+ 1),

p=0 m=0 5=0
(6.3.44)

with f, as in (A.4.6) and Cu(s,q) as in (6.3.14). Here p = 11/2, and the scalars hf) =
12 ; — —
hp(a,ﬂ) are defined in Lemma A.6.3 for o =11 and 8 = 3.

Proof. With the multiplicity function My(P?(Cay)) = My, as in (6.3.45), we have

My, = 17?1"1"’: (X7 — 1/4)2(XF — 9/4)%(X} — 25/4)(X} — 49/4) (X7 — 81/4)
— 7'11' Z S X (6.3.45)

Substituting this into (6.2.2) and proceeding as in the previous case, we can write the

spectral zeta function ((s; PQ(Cay)) as

2]+1

Co(s;P*(Cay)) = JZ T

j:() k:l

- 7!11:2 Z_: S+m ZXQJH e, (6.3.46)

where we can arrange the inner sum as a Hurwitz zeta function. We then substitute this

into (6.2.14) to complete the proof. O

For the non-compact case, the Plancherel measure on H?(Cay) is given by

mAtanh(mw\
p(A) = 2;)HE§)2)

Proposition 6.3.9. Let 2 = H?(Cay). Then the spectral zeta function ((s; H?(Cay))

(A2 +81/4) (A% 4+ 49/4)(N% + 25/4) (A2 + 9/4)2 (N2 + 1/4)%. (6.3.47)

can be written as

(—1)H,

e p 'k+1)l'(s—p—k—1
Cz(S;Hz(Cay)):ZZ(4W>8F(8)Fk (k+1I(s—p )

p237272k72p1“(8 _ p)

_Z(—l)] (s = p)j 2k + )|,

R = (6.3.48)
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Here Fy, is given in (A.4.12), %,(X) is given in (A.6.3), p =11/2, and Hf; = Hf;(a,,é’) are
defined in Lemma A.6.4.

Proof. In this case we have the Plancherel measure p(\) as in (6.3.47), and hence the zeta
function ¢(s; H?(Cay)) can be written using (A.4.12) as

C(s; HY(Cay)) = Z Fr / h WA%“ d. (6.3.49)
0

Evaluating the integral above using Lemma A.6.2, we substitute into (6.2.16) to arrive at

the result. O

6.4 The proportionality principle on (;(s; Z")

The Minakshisundaram-Pleijel heat coefficients on a pair of dual spaces 2. and %, are

related by the Proportionality principle
aj(e%) = (_1)jaj(=%nc)> (6'4'1)

with a;(Z:) as in (6.1.5) and aj(Z5c) as in (6.1.9) This relation has strong and far-
reaching implications in the analysis of Riemannian symmetric spaces. In particular, for
a dual pair of compact and non-compact rank-one symmetric spaces 2. and Z,., we
have at the following proportionality between the residues of the poles of the spectral zeta

function.

Proposition 6.4.1. For a dual pair Z. and 2, of rank-one symmetric spaces of compact
and non-compact type, the residues at the shared poles of the spectral zeta functions ((s; Z)
defined in (6.2.2) and (6.2.8) for the compact and non-compact spaces respectively satisfy
the proportionality

Resszsjg(s; Ze) = (—1)jResszst(s; Zne)- (6.4.2)

Proof. We recall that the residues of the poles in the compact case are given in (6.1.4) in
terms of the coefficients aj(Z), whilst in the non-compact case they are given in terms of
aj(Zne) in (6.1.8). Comparing these formulae and referring to the known proportionality

(6.4.1), we arrive at the result. O

In Section 6.2 we introduced the zeta function (;(s; Z"), defined on a rank-one sym-
metric space of compact or non-compact type in (6.2.14) and (6.2.16) respectively. In
what follows we give the locations of the poles of (y(s; Z") and provide the residues in

each case.
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The poles and residues of (y(s; 2") in odd dimensions. In the odd-dimensional case
- that is on S™ and RH" with n > 3 odd - we know that there are infinitely many points
that can be poles of the spectral zeta function ((s; Z7). These are at s = s; = d/2 — j, for
all non-negative integers j. Given that (y(s; Z") is a weighted sum of translations of the
spectral zeta function, its poles will be at points that are the same such translations of the
poles of the spectral zeta function. In particular, the poles of (y(s; 2") in odd dimensions
for both compact and non-compact cases are seen to be at points s = s; = d/2+{ — j for
all non-negative integers j. We easily arrive at the following results detailing the residues

at such poles.

Proposition 6.4.2. Let (y(s; Z:) be defined as in (6.2.14) with Z. = S™, n > 3 odd.
Then the poles of (¢(s;S™) are at points s = s; =n/2+L—j for j =0,1,2,..., where the

residue at the pole s; =n/2+ 0 — j is given by

V4
hfa;ik—e(S")
Resy—s,Ce(s;S™) It , > 3 odd, 6.4.3

Se=s; Ge(5; Z:I 471'”/2I’n/2+€—j—k:) n=2o ( )

where aj(S™) are the Minakshisundaram-Pleijel heat coefficients on S™.

Proof. The residues associated to a pole of (y(s; Z¢) are given by the sum of the residues at
the poles of the constituent elements of the sum (6.2.14), that is those of the spectral zeta
function ((s; 2.) weighted by h¢. These are given in (6.1.4), and so the result follows. [J

Proposition 6.4.3. Let (y(s; Zne) be defined as in (6.2.16) with Zn. = RH"™, n > 3 odd.
Then the poles of (o(s;RH™) are at s = s; = d/2+ 0 —j for j =0,1,2,..., where the
residue at the pole s; =n/2+ 0 — j is given by

4

ny )"Hiaj 1k —o(RH")
Resy—s, Co(s; RH") Zl 47T”/2Fn/2—|—€ TR m28odd (6.4.4)

where aj(RH") are the Minakshisundaram-Pleijel heat coefficients on RH™.

Proof. As in the previous proof, we take a sum as in the definition of (y(s; Z,,.) of residues
of the spectral zeta function ((s; Zy.), which are given in (6.1.8). Here the sum is weighted
by HE. O

The poles and residues of (y(s; Z") in even dimensions. Next we consider the more
general even dimensional case, where as before we see that the potential poles of (y(s; 2")

in both the compact and non-compact cases are at s = s; = d/2 + £ — j, however in this
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case j runs from j = 1,2,...,d/2 — 1. This is deduced immediately from knowing the

poles of the associated spectral zeta function in each case.

Proposition 6.4.4. Let (i(s; Z¢) be defined as in (6.2.14) with d = dim(%Z;) even. Then
the poles of Co(s; Z¢) are at s = s; =d/2+{—j for j =0,1,...d/2—1, where the residue
at the pole s; = d/2+ € — j is given by

ka]+k o(Ze)
(4m)42T(d)2 4+ — 5 — k)’

¢
Resssggs% Z

1

d > 2 even. (6.4.5)

Proof. As in the proof of Proposition 6.4.2, we sum the residues (6.1.4), weighted by hi,

to arrive at the result. OJ

Proposition 6.4.5. Let (s(s; Zne) be defined as in (6.2.16) with d = dim(2.) even. Then
the poles of (¢(s; Zne) are at s = sj =d/24+L—7j for j =0,1,...d/2—1, where the residue
at the pole s; = d/2 + { — j is given by

4

Hiajk—o(Zne)
Ress=s,;Ce(5; Zne) = 221 T2+ = — k) d > 2 even. (6.4.6)

Proof. As in the proof of Proposition 6.4.2, we sum the residues (6.1.8), weighted by H¢,

to arrive at the result. O

The following result ties together each of the previous sections, stating the Propor-

tionality principle on the level of the residues of (y(s; 2Z¢) vs. Co(s; Zne)-

Proposition 6.4.6. For a dual pair Z. and Zn. of rank-one symmetric spaces of compact
and non-compact type, the residues at the shared poles of the zeta functions (o(s; Z)
defined in (6.2.14) and (6.2.16) for the compact and non-compact spaces respectively satisfy
the proportionality

Ress=s,Ce(s; Ze) = (—1)jReSS:S].Cg(s; Zne)- (6.4.7)

Proof. With the residues on a compact space given in (6.4.3) and (6.4.5) (note that these
are the same formula on different spaces), we compare with the residues on a non-compact
space given in (6.4.4) and (6.4.6). Recalling that for a suitable dual pair 2, and 2.
of rank-one symmetric spaces we have hf = (—1)* Hi, with these scalars being defined in
Lemma A.6.3 and Lemma A.6.4 respectively, we again refer to (6.4.1) to arrive at the

result. O

Point values of (y(s; 2°) on compact and non-compact spaces. In both compact
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and non-compact cases, we see that the zeta function (y(s; Z") is given by a weighted sum
of translates of the associated spectral zeta function ((s; 2"). Moreover, we see that since
we have defined Zy(X) = 1 and Zp(X) = 1, we may formally define {y(s, Z°) = ((s; Z").
That is, the £ = 0 case of (y(s; Z") on both the compact and non-compact spaces is given
by the spectral zeta function.

By referring to the explicit formulae presented in Section 6.2, we arrive at the following
results on point values of (y(s; 2"). Firstly for the odd dimensional case: S" and RH"
with n > 3 odd.

Proposition 6.4.7. Let ((s; Z:) be defined as in (6.2.14) with Z. = S™, n > 3 odd.

Then we have:
o (y(—k;S™) =0, fork=0,1,2,...
o ((1;8") = (1)
Let Co(s; Zne) be as in (6.2.16) with Zne = RH", n > 3 odd. Then we have:
o ((—k;RH™) =0, for k=0,1,2,...
e G(LRH) =1

Proof. On both S™ and RH" with n > 3 odd, we know that ((s; 2") has zeros at negative
integers, and moreover satisfies ((0; Z°) = —1. Given that (;(s; Z") is defined in both com-
pact and non-compact cases as a sum of translates to the left (towards negative integers),
we easily deduce that the zeros of (;(s; Z") are simply the zeros of ((s;.2") translated one
to the left. For the value of (;(0; Z7), we substitute s = 0 into the formulae (6.2.14) and
(6.2.16), and notice that all but the first term of the sums vanish. In the compact case
we are left with ¢(0;S™)h¢ = (—1)“*!, whilst in the non-compact case we are left with

C(0; RH™)H{ = 1, where we have noted that h{ = (=1)¢, and H¢ = 1. O

Proposition 6.4.8. Let (y(s; Z¢) be defined as in (6.2.14), with dim(2.) even. Then we

have:
_1)¢ (e
o G(1;20) = (-1 + (( )3/2%/2 )+ Z d/2 1347245 (22)
p=1

¢ DF2(k + p)!
Z p)!

o Cg( k‘ 3{ 47T)d/2 h ad/2+k+p(%), ]{:0,1,2,...
p=1

where a;(Z:) are the Minakshisundaram-Pleijel heat coefficients given in the expansion
(6.1.5). Similarly, let (o(s; Zne) be defined as in (6.2.16) with dim(Z2,.) even. Then we

have:
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-1

1 —1)P
o Cu(1; Zne) =1 - Wadﬂ )+ Z d/2 p+1ad/2+p(‘% c)
p=1
‘ F(k +p)!
° Cé —Fk; %nc Z 47T dj2 H ad/2+k+p(<%nc)7

p=1

where a;(Z:) are the coefficients given in the expansion (6.1.9)

Proof. We arrive at the above result in each case by substituting for the appropriate
value of s in the definitions of (;(s; Z") in (6.2.14) and (6.2.16), and then referring to the
point values of the spectral zeta function in even dimensions given in (6.1.6) and (6.2.9)
for compact and non-compact spaces respectively. We note again that hf = (=1)¢, and

H{ = 1, simplifying the terms outside the sums when s = 1 in each case. O
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Appendix A

A.1 The hypergeometric function »F(z) = F(a,b;c; 2)

The hypergeometric function (see [4] pp. 61-123) is defined on the unit disk {z € C: |z| <
1} as

> (a P
F(a,b;c;2) = Z(zg)(,f)kk' (A.1.1)
k=0

with a, b, c € C and ¢ not a non-positive integer. The series converges uniformly inside the
unit disk, therefore representing a holomorphic function (in the z variable) whilst beyond
the unit disk it can be extended by usual analytic continuation. (For a discussion of the
behaviour on the circle of convergence see below.) Here (a),, denotes the Pochhammer

symbol
I'(a+m)

(a)m:a(a+1)...(a+m—1)zw,

(A.1.2)

where we have the second equality if a is not a non-positive integer. The Pochhammer
symbol is also known as the rising factorial (see [93], pp. 149-165). The hypergeometric

function satisfies the differential identity

d b
d—F(a,b;c;z) = G—F(a—i—l,b—i— e+ 1;2), (A.1.3)
2 c

from which we easily derive that for m derivatives

dm m(b)m
dz—mF(a, byc;z) = (a)(c)()F(a+m,b—|—m;c+m;z). (A.14)

From (A.1.1) we also have the point-wise identity F'(a,b;c;0) = 1.
The hypergeometric function arises as a solution to the hypergeometric differential
equation
d? d
2(1—z)d—;§+(0—(a+b+ 1)z)di:—abw:o. (A.1.5)
The hypergeometric differential equation can be reached from any second-order ordinary

differential equation with at most three regular points by a suitable change of variables.
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By the change of variables z = (1 —t)/2, and setting a = —k,b = a+ [+ k+ 1, and
¢ =« + 1, one can transform (A.1.5) into the well known Jacobi differential equation,

2
(1—t2)%+(ﬁ—a—(a+ﬁ+2)t)%+k(a+ﬂ+k+l)w:0, (A.16)

which is solved by the Jacobi polynomial w = @,ﬁa’ﬁ ) (t), a special case of the hypergeo-

metric function. For more background reading and reference on this see [1, 4, 12].

The Generalised Hypergeometric Function ,Fj(a;b; z). This generalises the Gauss
hypergeometric function in an obvious way. Like there it is defined for a = (a1,...,ap)

and b = (by,...,by) with no b; (1 < j < ¢) a non-positive integer, again initially by the

series,
o [Ti=i (@) 2*
F,(a;b;2) = saf=ly P8 L (A.1.7)
r kzzo [T5—1(6j)x k!

that converges for all finite values of z when p < ¢ and all |z|] < 1 when p = ¢ + 1.
The series diverges for all non-zero z when p > g+ 1. In the case p = ¢ + 1 the series
converges absolutely for all |z| = 1 if Re(D> ;bi — >, ai) > 0 and converges conditionally
for all |2] = 1 and z # 1 if —1 < Re(}>_;bi — > ,a)) < 0 while the series diverges if
Re(> ;bi — > ;ai)) < —1. Clearly when any of the parameters a; (with 1 < i < p) is
a non-positive integer the series terminates and becomes a polynomial in z. From the
definition it is seen that ,Fj(a;b;0) = 1. Moreover differentiating in z, we easily derive

the recursive relation !

m p .
dz—mqu(a; b;z) = %ﬂng(a +m;b+m;z). (A.1.8)
Jj= m

Proceeding forward we can now consider applying the differential operator .%p to the
function ,Fj(a;b;&(#)) as in Theorem 2.1.1. To this end first note that in this context
equation (2.1.7) becomes a product of p Pochhammer symbols, and plainly can be written

as, ; ) .
(a1)j(az); - (ap); = > H(a) [H az‘] : (A.1.9)

Here the scalars 5”2 (a) are the coefficients of the factor X = [[Y_, a; in the polynomial
expansion of the product on the left in X. Indeed to justify (A.1.9) and give a description
of the scalars 5’{ let

p

p(V) = [[(A+a0) =D Spelar, az,...,ap) X (A.1.10)
/=1 =0

'Here for brevity we have written a4+ m = (a1 +m,...,ap +m), b+m = (by +m, ..., by +m).
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Now for 0 < k < j —1 put Y, = p(k) — p(0). Then p(0) = S,(a1,a2,...,a,) = X and it is
plain that

p
Vi =p(k) = X =) Sy slar,a,...,a)k". (A.1.11)
/=1

As a result starting from the product on the left in (A.1.9) we can write

p j—1 j—1 i1
(a1)(ag); ... :HH k+a) =[] ptk) = J[IX +¥4)
(=1 k=0 k=0 k=0

S '—Z(}/Ebyla s 7}/j—1)XZ

I
Mb

T
o

Sj*@(yba Ylv e 71/}—1)X€

Il
M~

/=1
J . j A P £
=Y Ax=> Hla) [H ai] (A.1.12)
=1 /=1 =1

which is (A.1.9) as required. Note that for p = 2 and a = (a, b) we have %j(a) = sz as in
Theorem 2.1.1. Now with the operator .4p = Py (d/df) as before we can then state the

following theorem.

Theorem A.1.1. With the notation as in Theorem 2.1.1 and pFy(a;b;z) as above we

have the identity

p i
. H]
=1
N p
= > puHm (- Ha> , (A.1.13)
m=0 i=1

N m
Lo [ Fy(abi EO)]| = pot D pm Y (abs6)

where Hy,(X) = Hp(a, b; & X) is defined as Ho(X) =1 and for m > 1, as
Hi(X) =) cf'(a,b; &)XY, (A.1.14)
with the coefficients c'(a,b; &) defined explicitly as

'(a,b; &) i bﬁ ) (A.1.15)



114

A.2 Asymptotics of Jacobi theta functions 9, 15, 13 and their

derivatives

Here we present asymptotic data for the classical Jacobi theta functions and their deriv-

atives. For further details see [28, 86].

191(8) =1 + 2 Z eszs’ (A.Q.l)
j=1
192(8) _ Z(QJ + 1)6*(j+1/2)257 (A.2.2)
§=0
dy(s) =2 je 7. (A2:3)
=0
For ¥ we have
191(8) — M‘i‘ 0(671/8), (A24)
9" (5) = (~1)™ 0 (m o+ 3/2)s™ Y2 4 O(e ™). (4.2.5)

For ¥5(s) and ¥3(s), we use the well known Bernoulli numbers Bo; [6, 28]. Indeed, we

have for 99
1 & (1 —2j—1
Y ~ = — 1—-27% By A.2.6
(m) (—D)™mm! | &~ s (—1) —2j-1 '
192 (S) ~ W +]_Zm m j 1 (1 — 274 ) B2]+2 (A27)
and for I3,
V3(s) Al+§§fi“4VB- (A.2.8)
3 s gl 2042 -
ﬁ(m"'l)(s) (_1)m+1(m +1)! N i gj—m—1 (_1)jB ' (A.2.9)
3 Sm+2 A (] —m— 1)| ]+ 1 2542 2.

A.3 Some identities on Jacobi polynomials

The Jacobi polynomials are defined via the well-known Gaussian hypergeometric function

as (see [4, 12, 55, 70, 71] for backgroud and further readings)

Ma+k+1)
ET'(a+1)

" Tk+a+B+1+)T(a+1+k) (t—1)
Tlk+a+B+1) Dla+j+1)25k—j)

PP (t) = 2P (—k,a+B+k+1;a+1;(1—1)/2)

|
(]

(A.3.1)
=0
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with & > 0 and «,8 > —1. The Jacobi polynomials form an orthogonal system in the
weighted Hilbert space L2 (—1,1) with w(t) = (1 — t)®(1 +¢)5. It can be seen that here

we have the orthogonality relation

1&W@M?W$M$ds 27 T(k+a+1)I(k+8+1)

/1 - 2k + F(k 4 ’Y)F(k + 1) Okt (A32)

where we have denoted v = o +  + 1. This orthogonality also implies the symmetry
Pka’ﬁ(—t) = (—l)kP,f’a(t). The Jacobi polynomials y = P,?’ﬁ are solutions to the Jacobi
differential equation

d*y

(l—tQ)@—(a—ﬁ—i—(oH—ﬂ—l—%t)

dy

o Thk+a+8+1)y=0. (A.3.3)

For m > 0, the derivatives of Py’ B (t) satisfy the recursive relation

am Fk+m+a+pB+1) atmpt
7]30‘75 1) = potmf+m
am e (0 27T(k+a+f+1) ™

(t). (A.3.4)
Noting that P,?’ﬁ(l) =I(a+k+1)/[['(a+ 1)k, we define the normalised Jacobi
polynomials ﬁg’ﬁ(t) = P,?”B(t)/P,?ﬁ(l) so that 9,?’6(1) = 1. These as seen are linked
to the zonal spherical functions on compact rank-one symmetric spaces (see Sections 4.3
and 4.4). Specialising to a = f =v — 1/2, for v > —1/2, one can recover the Gegenbauer
polynomials C(t) as
'v+1/2) T(k+2v)

=T Theri1/yr TR, (A.3.5)

The normalised Gegenbauer polynomials €}(t) = C}{(t)/C} (1), where C{(1) = I'(k +
2v)/[k!T'(2v)], are linked to the zonal spherical functions on the unit sphere S™ and real

projective space RP" when v = (n — 1)/2.

A.4 Polynomial expansions relating to M (2")

To facilitate the polynomial expansions of multiplicity functions My (2Z") in Section 4.5,

we define the sets of scalars aj},, bl» ,cl  d' respectively as the coefficients in the following
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polynomial expansions:

7 Z n—3
H(X2 — 3?2 = Z at X2m+2 o 5 (A.4.1)
7=0 m=0
7 - n—2
[T =Y epxen, r=""2 (A42)
:% m=0
S+ 2942 "3
[T&x2-522= ) qx* 7=, (A.4.3)
j:% m=0
5 2.5 n—9
[[x?=7272 =) dpx*", &= R (A.4.4)
j=1 m=0

Here n is a positive integer. In fact both (A.4.1) and (A.4.3) require n > 3 to be odd, and
likewise (A.4.2) and (A.4.4) require n > 4 to be even. Note that the products in (A.4.2)
and (A.4.3) run over (non-whole) half integers, that is, they iterate by j — j + 1 starting
from j = 1/2 . Moreover, we define the scalars e?, and f,, as the coefficients of X" in

the polynomials below.

n—3/2 2n—1
(X2 —(@2n-1%4] T[] X2=722= > X n>1, (A.4.5)
j=1/2 m=0

(X2 —81/4)(X? —49/4)(X? — 25/4)(X? — 9/4)*(X? — 1/4)? Z frn X2, (A.4.6)

On a similar note, we define the scalars A}, B}, C!, Di, E}!, and Fj, as the coefficients

in the following polynomials:

(n—3)/2 (n—3)/2
[T &x*+*= > AX** n>3odd (A.4.7)
§=0 k=0
(n—3)/2 (n—2)/2
[T x*+5= > Bix®, n>4even (A.4.8)
j=1/2 k=0
(n=2)/2
IT x>+ Z CrX?, n>3o0dd (A.4.9)
j=1/2
(n—2)/2
IT x*+5 Z DEX2 n >4 even, (A.4.10)
j=1
n—3/2 2n—1
(X2 + (2n - 1)%/4] T X?+457) Z ErX? n>1, (A.4.11)
j=1/2

(X2 4+ 81/4)(X? +49/4)(X? +25/4)(X? +9/4)*(X? 4 1/4)> Z FrX2k. (A4.12)

Note that the leading coefficient in each of the cases above, that is, the coefficient of the

highest power of X, is always equal to 1.
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Remark A.4.1. These polynomials bare a strong resemblance to those defined in (A.4.1)-
(A.4.6), and in fact for admissible ranges of n we have
aff = (~)ERRAL = (1)L = (-1

dz = (*1)]€ Z’ ez = (71)k+1EZ’ fk — (71)k+1Fk‘

A.5 Faa di Bruno’s Theorem and the Elementary Symmet-

ric Polynomials

The Bell Polynomials B]" and Faa di Bruno’s Theorem. The classical Fad di
Bruno’s theorem asserts that for sufficiently smooth functions f, g the mth order derivative

of the composition h(X) = f(g(X)) is given by

d™h LR .
e () = 3" FD (X)) B (X), (X, ..., g™ T (X)), (A5.1)
j=1
Here By, j = B, j(X) with 1 < j <m and X = (X1, Xo,..., X;—j4+1) are the incomplete

Bell polynomials, defined

. — m! 1 k1 ) ko Tm—jt1 Em—j+1

where the sum is taken over the set %" of all admissible (k1, ka, ..., km—j+1), that is, finite
sequences of non-negative integers k1, ..., kp—j+1 such that
m—j+1 m—j+1

Y k=4, > ki =m. (A.5.3)
=1 =1

The incomplete Bell polynomials satisfy the generating function relation (for each fixed

j=0)

1 > tl J > n
Il [Z Xl“] = Buj(X1, Xo,... » Xntj—1) ) (A5.4)
=1 n:j

and the computationally convenient recursive formula

m—j+1
m—1
Buj= ) ( 11 >Xle—l,j—1 (A.5.5)

We point out that the value of By, ;(X) on the finite sequence of factorials gives the

(unsigned) Stirling numbers of the first kind

B (0L, 11, (m — §)1) = |s(m, 5)| (A.5.6)
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[recall that by expanding the falling factorial we have z(z—1) ... (v—m~+1) = >0 s(m, §)ad)
whilst the value of B,, ;j(X) on the finite sequence of ones gives the Stirling numbers of
the second kind
Bn,;(1,1,...,1) = S(m, ) (A.5.7)

[recall that S(m, j) = 1/5! 37, (=D)' () (5 — ™).

To illustrate the above and also for the sake of its particular relevance in the earlier
parts of the thesis we look at the specific example of &(f) = cosf. Then b'[cosf] =
Bam,;(0,—1,0,1,...). Therefore bl [cos 0] = 0 for m odd, whilst for m even, say, m = 2I,

(—1)! ifj=1
b7 [eos 6] = § — (2650 + (2 — DB} Y) i1 <j<d (A5.8)
0 if j> 1.

The Elementary Symmetric Polynomials S;. The elementary symmetric polynomial
S; = S;(X) in the vector variable X = (X1, Xo,...,X,) with 0 < j < n is defined as the
sum of the distinct products of length j of the variables X1, Xo, ..., X,,. This specifically

means that we have So(X) =1, and for 1 < j < n in turn we have

SIX) =Y X S(X)= > XX, (A5.9)
k=1 1<k<I<n

Ss(X)= > XXX, ..o Su(X)=]] X (A.5.10)
1<k<l<m<n k=1

We then have the well-known identity (with n > 1)

ﬁ(A X)) = f: S (X)A"F = A" 4 S (X)AN 4 4 S, 1 (X)A+ Sp(X). (A5.11)
k=1 7=0

A.6 Integral and differential identities

Lemma A.6.1. For any non-negative integer k and t > 0, we have the integral identities

/0 gk tanh(rA)e ™ dA = w + g (_?!M%’I(j + k)t (A.6.1)
and similarly,
/0 g2k coth(mA)e ™ d\ = F(;LQ) - i (;.__13{’;!932(j)tj—’“, (A.6.2)
where for Bo, denoting the Bernoulli numbers we have defined
RB(X) =(1- 212X)B§)f11)” By (X) = B;(f;), (A.6.3)

where we similarly denote %,(X) = (—1)X 155 (X).
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Proof. The results follow by using the known identities

2 2

tanh(mz) =1 — et

together with the integrals

o gl |Bon|  Bi(n—1)
e dr = (127 = T A6.5
/0 T ez 0= v 4 (4.6:5)
and similarly
oo g2n—l By ﬁg(n - 2)
| o de= = 2 (A.6.6)
The result follows. O
Lemma A.6.2. For any non-negative integer k, we have
° 2tanh
/ tzn (7'[')\) )\2k+1 d\ = p2k+2*233(k + 1’ s—k — 1)
o (A*+p%)°
>~ 1 (=1yT j
-3 (VTG +) g oy ), (A.6.7)

ertEogt o T(s)

with B(z,y) denoting the well-known Beta function, and %1(X) as in (A.6.3). Similarly

we have

* 2coth(m) | opys3 it s

YT dA = *Bk+2,s—k—2

/0 (A2 + p?)s P ( )
1 (1Y T(s+)) .

- ]Z:; p¥t2 Gl T(s) Bo(k +j+1), (A.6.8)

with B(x,y) denoting the Beta function, and %B2(X) as in (A.6.3).

Proof. We make use of the identity

2

tanh(ﬂ'l') =1- W

(A.6.9)

which allows us to split the integral on the left-hand side of (A.6.7) as

/°°2tanh(77)\))\2k+1d)\ /mwd)\/oow)\%“w\ (A.6.10)
0 (>\2+p) 0 ()\2"1',02)8 0 1+62ﬂ)\ . 0.

The first integral above can be written as

/OO 2A2RH 2k+1 23/ )\/P 2k+1 d)\
0 ()\2+P2) o (Mo
0 9 2k+1
2k’+2 28/0' pp+1 (A611)

We now refer to the integral identity

> 1 _v/a a
a—1 2\b—1 _ = “ I
/0 P+ dp=5B (2,1 b 2), (A.6.12)



which allows (A.6.11) to be evaluated as

o) 2A2k+1
|, G D= EEE k), (A.6.13)

For the second integral, we apply the generalised binomial theorem to write

W22 (Wp2 1) =\
> (=1)I i L
= Z ( _1) MP—QS—QJ)\QJ' (A.6.14)
= 7' T

This allows us to write the second integral explicitly as

0 4()\2 + p2) s \2k+1 ) j I(s +]> g [ AN2k+2j+1
—_— dA 574 ——dA. A.6.15
[ e SRR [T o o)

To evaluate the integral here, we refer to the identity

e x2"’1 |BQ | %1 (n — 1)
L dp= (1ol 22nl . A6.1
/0 T eome @@= ) 4 (A.6.16)

This completes the first result. The proof of the second result follows the above closely,

using a different set of integral identites. Firstly instead of (A.6.9) we use

2
th =1—-— 7= A6.1
coth(mz) [ e (A.6.17)
Next instead of (A.6.16) we use
%o g2l Ban Pa(n —2)
| 1o de= e 2 (A6.18)
The result follows. O

Lemma A.6.3. The normalised Jacobi polynomials @?’B(t), k>0, a8 > —1, satisfy
the differential identity

d2

i 74 (cos ) ( th k(k+a+8+1)F, ¢>1. (A.6.19)

Here the set of scalars (h?(a,,@) : 1 < j <¥) are explicitly computable, and k(k+a+5+1)
are the eigenvalues of the Jacobi operator Note that with £ = 0 no derivatives take place,

so we may formally set h) = 1.

With the previous lemma in mind, we now introduce a sequence of polynomials %E"B
that will appear regularly throughout the rest of the thesis. We define % B (X), and for
>1

l
Z;P(X) =Y hh(o, B) X7 (A.6.20)

J=1
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We then see that the Maclaurin heat coefficients b3,(¢; 2%) can be written as

Dot Ze) = Z%’;g;%aﬁwﬁ) o Z\]‘/ﬁg;%w( d/dt)e~ "

= #(—d)dt) Hy. (2, 3) = B (—d]dt)O(t; 22), (A.6.21)
where H g (t;z,x) = O(t; Z¢) is the trace of the heat kernel on a compact space.

Lemma A.6.4. The Jacobi function L@f}’ﬁ(t), with p = —(iIA+p), p=(a+5+1)/2, and

a, B > —1, satisfies the differential identity

L
=> Hi(@ B[N+, =1 (A.6.22)

j=1

W@a’ﬁ(cosh T)

r=0

Here the set of scalars (H?(a,ﬁ) 11 < j <¥) are explicitly computable for a, 5 > —1, and
A2+ p? are the eigenvalues of the Jacobi operator on a non-compact space. Note that with

¢ =0 no derivatives take place, so we may formally set Hg =1.

Remark A.6.5. With H? the scalars as described in Lemma A.6.4, and hf the analogous

scalars described in Lemma A.6.3, we have the relation
¢ _ AN
Hj(a, B) = (=1)"hj(a, B). (A.6.23)

We now introduce a set of polynomials Q?”B for future reference, defined as 2 BX) =

1 and for £ > 0
200 (X Z HE(a (A.6.24)

With these, we see that the Maclaurin heat coefficients b5, (t; Z7.) defined in (5.2.17) can

be written as

26—1
3@(75; %nc) — 2I;+o;+1/ Q£ —p _)\2) —t(p? “‘2)#()\) d\
™
226-10 (o + 1) B
- 7rM/ (d/dt)e PPN (X)) dX
= 2y(d/dt)H . (t;z,2) = Z¢(d/dt)O(t; Zne), (A.6.25)

where Hy: (t;x,x) = O(t; Zne) is the trace of the heat kernel on a non-compact space.

A.7 Plancherel Measure pu(\; Z°) and Multiplicity Function
M(k; Z') for Z = G/H

Earlier in the thesis we encountered the Plancherel measure u(\) = p(A; Z) in the

case of the non-compact symmetric spaces, expressed in terms of the Harish-Chandra
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c-function. In the first part of this appendix we give the explicit form of this measure
for each individual family of such spaces. Then in the second part we turn to com-
pact symmetric spaces and give similar explicit formulations of the multiplicity function
M(k; ') = Mp(Z") as well as some other relevant spectral-geometric objects including

the spectrum X(—Ag) = {A\(Z") : £ > 0} and volume Vol(Z).

A.7.1 The non-compact case 2" = G/H

e 27 = RH" = SOy(n,1)/SO(n). For the real hyperbolic space we have d = n,
cg = 2"30'(n/2)/7"/**1 and the Plancherel measure depending as to whether n is

odd or even is given respectively by

22—n 2 an?)
) =7 [F(n/2)] T2+, (n >3 odd), (A.7.1)
j=0

w

71,7

(A + 5, (n > 2 even). (A.7.2)

2-n 72
p(A) = [Fz(n/2)] Atanh(m\)

=

Il
[

j
e 2 =CH" =8SU(n,1)/S(U(n) x U(1)). For the complezx hyperbolic space d = 2n,
cqa = I'(n)/(27™*1) and the Plancherel measure depending as to whether n is odd or

even is given by

_ mAtanh(7)) = ‘
n(\) = WE(AQ +3%2, (n>3o0dd) (A.7.3)
() = ;\n C?;h () H A+ 5% (n > 2 even). (A.7.4)

e 27 = HH" = Sp(n,1)/(Sp(n) x Sp(1)). For the quaternionic hyperbolic space

d = 4n, cg = 2I'(2n) /7*"*! and the Plancherel measure is given by

2n—3

M) = g+ o= 02 JL R+ 22 (A7)

]:

3

SIS

(Note that for n = 1 the product is omitted and we have HH' = RH*.)

e 2 = H?(Cay) = F}/Spin(9). For the Cayley hyperbolic space d = 18, cq =

25T(8) /7Y and the Plancherel measure is given by
mAtanh(mA) (5 81 2 49 2, 25
A= ———" —
) = o (3)2 <A * 4> <A 7))

X <)\2 + i>2 <)\2 - i>2 : (A.7.6)
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A.7.2 The compact case 2" = G/H

o 2=8"=80(n+1)/SO(n), RP" =SO(n+1)/O(n). For the sphere and the real
projective space the spectrum, the volume and the multiplicity function are in turn

as follows.

1. & = S" The distinct eigenvalues are given by A\¢(2") = k(n + k — 1) with
k>0, Vol(2) = 2r("+1/2 /T ((n +1)/2) and

Mu(2) = 2k +n— 1)w.

2. 27 = RP"™: As a result of S” being a double cover of RP™ (n > 2) we have
Me(Z) = Xap(S™) = 2k(n + 2k — 1) with & > 0, Vol(Z") = Vol(S")/2 =
(02T ((n +1)/2) and

(A7.7)

(2k +n —2)!
(2k)!(n — 1)1

e 27 =CP" = SU(n+ 1)/S(U(n) x U(1)). For the complex projective space the
distinct eigenvalues are given by Ap(2") = k(k +n) with £ > 0, Vol(Z") = 4"x" /n!

Mi(Z) = Moy (S") = (4k +n — 1) (A.7.8)

and the multiplicity function is given by

2k+n [I'(k+n
M(2) = [ é(n)k!

)r Vol(2) = 2™ (A.7.9)

n!

n

e 2 =HP" =Sp(n+1)/(Sp(n) x Sp(1)). For the quaternionic projective space the
distinct eigenvalues are given by Ax(2°) = k(k + 2n + 1) with £ > 0, Vol(Z") =
(4m)?" /T (2n + 2) and the multiplicity function is

(2k +2n + 1) (k + 2n) [F(k + an 2
2n)2n+1)(k+1) | kIT(2n)

Mp(Z') = (A.7.10)

e 2 = P?(Cay) = F4/Spin(9). For the Cayley projective plane the distinct eigen-
values are given by A\, = k(k + 11) with & > 0, Vol(2") = 3!(47)%/11! and the
multiplicity function is given by

T'(k+ 8)T(k + 11)

M(2) = 602k + 1) = o r e+ )

(A.7.11)

A.8 Explicit formulae for the spectral zeta function

Here we collect the explicit formulae for the spectral zeta function, which occurs as a
special case ((s; Z) = (o(s; Z") of the zeta functions (;(s; Z") defined in (6.2.14) and

(6.2.16). For convenience, we recall the Hurwitz zeta function as

o

1

Cu(s,q) = Wa

m=0

Re(s) > 1. (A.8.1)
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The case Z, =S" vs. Z,.=RH". Here we have for n > 3 odd

0o (n=3)/2 2an 2m

(s;S") Z Z Pty n—l (8)mCrr(2s +2m — 25 +2,p + 1), (A.8.2)
(n— 3)/2 n 2k+1-2s
A%Lp Dk+1/2)T(s—k—1/2)
RH") = . A.83
ol Z% (4m) "/2F (n/2) I'(s) ( )
Next for n > 2 even, we have
oo (n—2)/2 anme
S = — L ($)mla (25 +2m —2j — 1 1 A.8.4
CO(SaS) mE_:O ]go m‘(n_1>($) <H(S+ m J P+ )7 ( )
(n—2)/2
B? Nk+1)I(s—k—1)
;RH") = g
B = 2 R | )
—Z y”@*(m N (A.8.5)
p2512] O
Jj= 0
The case Z, = CP" vs. %,,.= CH". Here we have for n > 1 odd
oo n—1 2cn 2m
Co(s;CP™) = )~ Z (25 +2m —2j — 1, p+ 1), (A.8.6)
m=0 j=0
n—1
. o Cr MNk+1D(s—k—1)
ol CHY = D e )
_ Z 23+2] ‘! Bi(k+7)]. (A.8.7)
Next for n > 2 even, we have
oo n—2 an 2m
™ = 2s + 2 2] — 1 A8
o(s; CP™) mzozn_l (25 +2m —2j —3,p+1), (A.8.8)
n—2
O Dy ohra—2sL (K +2)T'(s —k —2)
CO(S7(CH )_ P (477)"F(n) p F(S)
Z 2s+2j ]'J,%’Q(k:ﬂ +1)]. (A.8.9)
=0 ”
The case 2. = HP" vs. Z,,.=HH". Here we have for n > 1
oo 2n—1 2m
2e5 "™ (8)m
:HP™) = J 25 +2m — 25 —1 1 A.8.10
2n—1
EY Nk+1DI(s—k—1)
;HH") = ’f
I = 2 Ty |~ 2 %)
— (=1 (8)j s ,
_ Z pst 7,%’1(/% + 7)1, (A.8.11)
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The case 2. = P?(Cay) vs. 2. = H?>(Cay). Here we have

12f
Co(s; P3(Cay)) Z Z 7J'p11' Cu(2s+2m —2j—1,p+1), (A.8.12)
m=0 j=0

" F, [T+ DT(Gs—k-1)

Gols; H (Cay)) = A7)8T'(8) p>e =220 (s)

el

—EZQH% WAk (As1)

A.9 Explicit formulae for the trace of the heat kernel

Here we collect the explicit formulae for p;(%£:) and q;(Zn.) as they appear in the expan-
sions (5.1.9) and (5.1.11) of the trace of the heat kernel.

The case 2. = S" vs. 2, = RH". Here we have for n > 3 odd p;(S") = 0 and
q;(RH") =0 for j > (n — 3)/2, whilst for 0 < j < (n — 3)/2 we have

p;i(S") = Wa?n_g)m_j, (A.9.1)
q;(RH") = W ta)/2 g (A.9.2)

Next for n > 2 even, we have

I'(n/2—j) . _n
—— b . fi <j<—--1
o) T P R N
Fn/2 j—n/2). T=9
I'(n/2 —j) ._n
— 1= J/BnR . < i< 2
- D(n/2) n-2/2 frosisg=to
; ™ =< (n— 9.4
R 5 TSV (404
['(n/2) (—=1)3tn/2+1(j — n/2)! o I=gy
The case 2. = CP" vs. 2, = CH". Here we have for n > 1 odd
(T'(n—17) , .
7 . <7<n-—
o () Cr—1—j for 0<j<n-1, e
pj( ) =qn-! o Bik+j—n) . (A.9.5)
Z(—l)g : ; for j > n.
2T =t
(T'(n—3j) ., :
27 . <7<n-—
. () n—1—j for 0<j<n-1, \
Z(—l)J : for j >n.
= I(n) (G —n)
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Next for n > 2 even, we have

cpmy— {0
Pi Vs, Ly A Bak+j—n)
D Y

cmy— {00

aj == DI By(k +j —n)
e+ Pk 2

|2V G

for 0<j<n-—2,

for j > n.

for j > n.

The case 2, = HP" vs. Z,.= HH". Here we have for n > 1

I'(2n)
p](HPn) = 4§ 2n—1

q](HHn) =< 2n-1 . ED %’f(k +j—2n)
kzzo Y o~ = 2n)

for 7 > 2n.

The case 2. = P*(Cay) vs. Z,. = H?>(Cay). Here we have

1" —

(E(S)J)ﬁj for 0 <7 <7,
(P2 —
p;(P*(Cay)) = (—Wi: fo Z1(k+5-8) i>8

STE) (-9 o

r(s _ i

<I§(&])F7j for 0<5<7,
q;(H*(Cay)) = { 7 . *  —

Z(—l)] Fr %1(1434-] 8) for j > 8.

2TE) T G

for 0<j<n-—2,

eQTL—].—j for 0 < j S 2n — 17

ey k+j—2
E (—1) Al ,+‘7 n) for j > 2n.
r'2n) (j—2n)!
\ k=0
W b1 for 0<j<2n—-1,

(A.9.7)

(A.9.8)

(A.9.9)

(A.9.10)

(A.9.11)

(A.9.12)
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