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Summary

Dark Matter (DM) and its nature is one of the most interesting problems in modern
physics. DM constitutes the 27% of the total content of the Universe and evidence of its
existence have been accumulated at diferent scales thanks to its gravitational infuence on
ordinary matter. One of the most interesting proposals to study this problem is to assume
that DM is made of particles.

We study models where a massive spin-two resonance acts as the mediator between
Dark Matter (DM) and the SM particles. The interaction of DM and SM is through the
energy-momentum tensor and we explore the scenarios where DM is a fermion, a scalar
and a vector field.

We identify the effective interactions when the mediator is interated out, and match
them to the gravitational form factors in order to study the DM-nucleon scattering that
will be helpful in the phenomenological analysis.

Up to this day, only gravitational efects of DM have been observed but we hope to
obtain information that will help us to identify its nature through these three different
approaches: direct detection searches, indirect detection techniques and production at
colliders. In the context of this work, we obtain the limits on the parameter space of the
Gravity Mediated Dark Matter model using the relic density conditions, direct detection
bounds and collider searches for the spin-two mediator.
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Chapter 1

Introduction

The nature of Dark Matter (DM) is one of the biggest mysteries in physics nowadays as

it represents a big part of the matter content of our galaxy and the Universe in general.

According to the measurement made by Planck, it constitutes the 27% of the Universe [1]

and the only effect that provide us of evidence of its existence came from the gravitational

effect on the visible matter.

It was proposed as a solution of different astronomical and cosmological observations

that were deviated from the predictions made by the theory and until this day it is the

best explanation to most of these observed discrepancies [2]. As for visible matter, the

approach behind the DM idea from a particle physics point of view is that DM is made out

of particles. The Standard Model (SM) is the model that describes all the fundamental

particles and their interactions but we know it has some problems that need to be fixed

and for this reason we have proposed extensions or some new models that contain the SM

at a different scale. Models Beyond the SM usually contain one or more particles that can

potentially play the role of a DM component but not all models can pass the necessary

requirements [3].

The interaction of DM and the SM is useful as we want to be able to identify its

nature. In some models, this interaction happens using a particle as a portal or through

electroweak interactions, this means that DM can annihilate or decay into SM particles,

but signals of these type of interactions have not been observed.

Different techniques are used in order to detect the corresponding signals [4]. The three

main approaches are direct detection, where the DM particle interacts directly with the

matter in our detector provoking an effect that can be measured; indirect detection consists

in observing the products produced by the decay or annihilation of DM in some place in

the Universe and these products can be gamma rays, protons, positrons, neutrinos and
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other particles, each type with a corresponding footprint that allow us to say something

about the original particle or particles; and finally, the production of DM in colliders that

would result in some particular signals in the event reconstructions as missing energy and

mono jets. More details of this discussion are describe in chapter 2. Also, it is presented

a brief description of the different strategies in current and future experiments for direct

detection and also how to compute the detection rates.

In this work, we use the fact that only gravitational interaction has been observed

between visible and dark matter to study the possible signals on direct detection exper-

iments. The Gravity Mediated Dark Matter (GMDM) model can be a good set up to

explain DM-SM interactions. In this model, DM only interacts with the SM content

through the exchange of gravity mediators [5], in particular the graviton that came from

the compactification of a warped 5-dimension. The model is described a bit more in

chapter 3 with a brief discussion about the dual description of this type of models.

To be able to do this study, in chapter 4 you can find the corresponding effective

field theory of the interaction of different types of DM with the nucleons in order to do a

complete computation of the limits on the nucleon-DM cross section over the parameter

space of the GMDM model, the computation of the differential event rates for different

nuclei and different experiments [6] and also the effect of the relic abundance of the DM

candidate in this scenario that will allow to set constrains on the parameter space of the

model as well.

Finally, the conclusions obtained for this study are described in chapter 5.
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Chapter 2

Dark Matter searches

In this chapter, a general introduction to the problem of Dark Matter is given, starting

with a bit of the historic background and the evidence of its existence. Also, a quick review

of the main points to consider a particle a good candidate for DM and some examples.

And finally, an introduction of the different detection techniques is described.

2.1 The dark nature of Dark Matter and the evidence of its

existence

Dark Matter (DM) is one of the main components of the Universe and corresponds to the

27% of the total amount of energy in it [1]. As its name states, we call this matter dark

because it cannot emit or absorb light and for this reason, the only effect that we have

observed is the gravitational effect over other bodies at different scales [2].

This concept of DM was introduced to explain the discrepancies observed in the move-

ment of luminous objects in the sky at different scales, as the stars in a galaxy or galaxies

in a cluster, and the predictions from the established theory, Newton’s gravitational the-

ory, that work very well to explain the physical phenomena at large scale. The collection

of evidence coming from the astronomical observations that we are talking about are going

to be explained below in more detail.

The first evidence corresponds to the studies in the 30’s of Fritz Zwicky [7]. Measuring

the mass of a system, as a galaxy cluster, is very difficult to do in a direct way but using

the virial theorem, that postulates the relation between the average kinetic energy of a

bound system with the average gravitational potential, it is possible to find a relation

between mass and the radial velocity of the bodies in the system, that can be measured

easily thanks to the Doppler shift. Zwicky studied the radial velocities of different galaxies
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in the Coma Cluster and he observed that these galaxies seem to move faster than the

amount of observed matter will allow using the virial theorem. He computed the mass of

these objects and he found that the mass needed to explain this movement was bigger than

the amount computed from the visible galaxies. To solve this discrepancy, he proposed

that invisible matter was the reason behind the observations but the community thought

that this discrepancy will be fixed once the tools and techniques improve with time.

It was until 1960 when Jean Oort concluded that the discrepancy measured by Zwicky

was real and then we start thinking that an additional component of the interstellar

medium could exist that has not been detected yet.

The second evidence, and the one that it is called the first significant clue of a discrep-

ancy at the galactic scale, corresponds to rotation curves of galaxies [8]. Rotation curves

are graphs that show the angular velocity of the stars and gas in a galaxy as a function of

the distance to the center of the galaxy. The curves are obtained tracking of the movement

of hydrogen, the main component of stars. In Figure 2.1, we can see the predicted beha-

viour compared with the measurements of the spiral galaxy M33. The predicted behaviour

can be explained if we compared the the gravitational potential with the kinetic energy

of a star in the galaxy. In this case, V = −GM
r and K = 1

2mv
2 and combining this two

expressions we can find the relation between the velocity and the distance to the center

of the galaxy as v =
√

2G
r . That is the dotted line in the Figure 2.1.

Figure 2.1: This is the rotation curve of the of the M33 galaxy [9].

The third one corresponds to gravitational lensing. In this case, the Bullet cluster is

an important example of this phenomena. The Bullet Cluster is a pair of galaxy clusters

that are colliding and during the process, it was observed that the effect of gravitational
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lensing occurs not in the area where the dust and gas are interacting but the effect is

observed in the outer part. This is difficult to explain if we consider that there is only

stars, gas and dust involved in the collision as a very large amount of mass is required to

be located in the area where the lensing effects is observed, therefore this indicates that

invisible, non interacting and very massive matter pass through during the collision and

now its located in the area where we can see its effect.

And the fourth evidence corresponds to the development of simulations of the Universe.

Scientist that try to replicate the right structure of the universe in the present days through

the numerical solution of the evolution equations consider for their simulation DM as the

main matter component. This is, it is necessary to include in the simulations the right

amount of DM and let it evolve in time to obtain the observed structure of the Universe.

In Figure 2.2, the Millenium simulation is shown as an example of these remarkable results

[10].

Figure 2.2: The dark matter density field on various scales. The zoom sequence displays

consecutive enlargements byfactors of four, centred on one of the many galaxy cluster

halos present in the simulation [10].
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2.2 DM candidates

The model that describes all the visible matter that we know is the very successful Stand-

ard Model of Particle Physics. Despise that up until now this model describes very well all

the experimental measurements done at the colliders, we know it has unsolved and very

important questions that need to be explained. Among the problems, we have the mass of

the neutrinos and the hierarchy problem just to mention some of them. New extensions

to the SM are proposed to solve one or more of these issues.

Depending of the way how DM particles moves, it can be classified in 3 types: cold,

warm and hot. Their velocities are directly related with the size and mass of the particles

and also with the.

The problem that we are interested in this work is Dark Matter nature. Unfortunately,

the SM does not contain a particle that is a good candidate to be the main component

of cold DM. Neutrinos were once thought as the SM candidate but they have been ruled

out as their velocities are near the speed of light and then it cannot form structures as it

is observed in the Universe but still these particles can be consider part of warm or hot

dark matter that it is not being consider in this work [3].

Cold DM is the component of DM that moves at non relativistic velocities and it is

the reason behind the formation of structure in the Universe. Many of the models beyond

the SM contain one or more particles that can be considered to be DM but not all of them

can pass the tests [3].

As it was mentioned by Taoso, Bertone and Masiero, these particles need to satisfy a

list of probes:

• Do they give the right relic abundance?

• Are they cold?

• Are they neutral?

• Is it self-interactive?

• Do they change the formation of structure?

• Do they change the results from BBN?

• Is it possible to observe it?

A special remark on the observational aspects of this test is considered as it is expected

to be able to identify the nature of the particle or particles that form DM using all the
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different strategies that scientists have developed for this matter.

Some of the most popular candidates are the weakly interactive massive particles or

WIMPS and this type of particles can be part of very well known BSM models as SUSY,

models with extra dimensions and more. Also, there are some popular candidates with

very small masses too, as the axions [11].

The easiest way to try to explain the DM content is using only one type of particle to

explain the evidence but this is just the first path as there is no evidence that support this

idea as the DM can be formed by a variety of particles as it is the case for visible matter

but only experiments and astronomical observations can give us the right answer.

2.3 Relic Abundance

After the Big Bang, most of the Universe’s constituents were in thermal equilibrium and

departures from this equilibrium led to important relics. For example, from neutrino

decoupling we observed now a neutrino background, or from the decoupling of background

radiation we now observe the Cosmic Microwave Background (CMB) [2].

If a particle species was in thermal equilibrium, as the Universe expands, there is a

point when it can decouple from the plasma, in other words, it is no longer in thermal

equilibrium and reaches the thermal freeze out.

Once the species decouple, its particle number density evolution is decreasing as R−3,

where R is the scale factor of the Universe.

The freeze out happens when the rate of annihilation and creations of this species

drops below the expansion rate of the Universe and therefore the density remains constant.

This means than in some stage, the annihilations and creations of the particle were more

frequent and this frequency decreased as the Universe is expanding until some point that it

is very difficult for a particle to interact and then its density freezes and remains constant.

This comoving density is called the relic abundance of a certain species of particles.

In the case of DM, this density corresponds to a value of Ωh2 = 0.1199.

The current value of ΩDM is obtained indirectly from the fit of the global cosmic

parameters from different observations as the CMB anisotropies, the galaxies spacial dis-

tributions, and other astrophysical observations [12].

To obtain the density of particles of a certain specie is necessary to solve the Boltzmann

equation. This equation is the rule for the evolution of the distribution function as it can

be written as an equation for the number of particles as it is shown in different references
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as [2, 3]. The Boltzmann equation is

L[f ] = C[f ], (2.1)

where L is the Liouville operator, C is the collision operator and f is phase space distri-

bution function of the species that decoupled.

If the Friedman-Robertson-Walker model is considered, the phase space is homogen-

eous and isotropic, this means that f is a function of the Energy and time,

f = f(|~p|, t) = f(E, t), (2.2)

and considering also the Robertson-Walker metric in the Liouville operator, it can be

written in the following form

L̂[f(E, t)] = E
∂f

∂t
− Ṙ

R
|~p|2 ∂f

∂E
. (2.3)

The number density is defined in terms of the phase space density as follow

n(t) =
g

(2π)3

∫
d3pf(E, t), (2.4)

where g is the number of internal degrees of freedom. Using this definition and integration

by parts on equation 2.3, we can write the Boltzmann equation 2.1 in the following form

dn

dt
+ 3

Ṙ

R
n =

g

(2π)3

∫
d3p

E
C[f(E, t)]. (2.5)

To write down the form of the right-hand side of this equation, consider that the

process of interest for the species of particles ψ, whose evolution we are focusing on, is

ψ + a+ b+ · · · ↔ i+ j + · · · .

The collision term for this process is

g

(2π)3

∫
d3p

E
C[f ] = −

∫
dΠψdΠadΠb · · · dΠidΠj · · · (2π)4δ4(Pψ + Pa + Pb + · · · − Pi − Pj − · · · )[

M2
ψ+a+b+···↔i+j+···fafb · · · fψ(1± fi)(1± fj) · · ·

−M2
i+j+···↔ψ+a+b+···fifj · · · (1± fa)(1± fb) · · · (1± fψ)

]
, (2.6)

where fψ,a,b,··· ,i,j,··· are the phase space densities of species ψ, a, b, · · · , i, j, · · · , the signs

(+) applies for bosons, (−) for fermions, δ4 enforces energy and momentum conservation,

M2 is the matrix elements squared of the corresponding process and it is averaged over

initial and final spins and also includes the appropriate symmetry factors for identical

particles and

dΠ ≡ g

(2π)3

d3p

2E
. (2.7)
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In order to simplify the previous equation, some assumptions are considered. First, in

our problem, only one or two species will have equilibrium phase space distribution func-

tions so the set of integral-partial differential equations is reduced to a single equation for

the specie of interest. Second, CP invariance is considered and thenM2
i+j+···→a+b+···+ψ =

M2
ψ+a+b+···→i+j+··· ≡M2. And third, Maxwell-Boltzmann statistics is used for all species.

Therefore, in the absence of Bose condensate or Fermi degeneracy, the factor (a±f) ≈ 1

and we can write the phase space densities for all species in kinetic equilibrium as

fi(Ei) = exp(−(Ei − µi)/T ). (2.8)

Finally, Boltzmann equation can be written as

ṅψ + 3Hnψ = −
∫
dΠψdΠadΠb · · · dΠidΠj · · · (2π)4δ4(Pi + Pj + · · · − Pa − Pb − · · · − Pψ)

(fafb · · · fψ − fifj · · · ). (2.9)

This can be written also as

dn

dt
+ 3Hn = −〈σv〉

(
n2 − (neq)2

)
, (2.10)

where σv is the total annihilation cross section times velocity, the brackets means the

thermal average, H is the Hubble parameter and neq is the particle density in thermal

equilibrium.

For Cold DM, we are talking about massive particles moving at non relativistic velo-

cities so using the Maxwell-Boltzmann approximation we have

neq = g

(
mT

2π

)3/2

exp−m/T , (2.11)

where m is the particle mass and T is the temperature.

Now, changing the variable

Y ≡ n

s
, Y eq ≡ neq

s
, (2.12)

where s is the entropy density s = 2π2g∗T
3/45 and g∗ is the number of relativistic degrees

of freedom,and using the conservation of entropy per volume (sa3 = constant), we get

ṅ+ 3Hn = sẎ , (2.13)

and then

sẎ = −〈σv〉 s2
(
Y 2 − (Y eq)2

)
. (2.14)
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Now, we can do another change of variables x ≡ m/T so we can write the previous

equation as
dY

dx
= −〈σv〉 s

Hx

(
Y 2 − (Y eq)2

)
. (2.15)

For non relativistic heavy states, we can use the approximation of 〈σv〉 as an expansion

in powers of the non-relativistic velocity v2

〈σv〉 = a+ b〈v2〉+O(〈v4〉) ≈ a+ 6b/x, (2.16)

and using M= Y − Y eq , we finally obtain

M′= −Y eq′ − f(x) M (2Y eq+ M), (2.17)

where the prime sign means the derivative d/dx and

f(x) =

√
πg∗
45

mMpl (a+ 6b/x)x−2. (2.18)

Introducing the quantity xF ≡ m/TF , where TF is the freeze out temperature of the

relic particle, it is possible to solve analytically the previous equation in two limits, before

the freeze out x� xF and after the decoupling x� xF

M= − Y eq′

2f(x) M2 Y eq
para x� xF , (2.19)

M′= −f(x) M2 para x� xF . (2.20)

Integrating the last equation between the values xF and ∞ and using MxF�M∞, we

can obtain the value M∞ and we get

Y −1
∞ =

√
πg∗
45

MPlmx−1
F (a+ 3b/xF ). (2.21)

For a generic specie of particles X, the solution is

ρX = mXnX = mXs0Y∞, (2.22)

where s0 = 2889.2 cm−3 is the entropy density nowdays when we assume that there are

three species of neutrinos. The relic density can be finally written in terms of the critical

density as

ΩXh
2 ≈ 1.07× 109 GeV−1

MPl

xF√
g∗

1

(a+ 3b/xF )
, (2.23)

where a and b are expressed in GeV−2 and g∗ is evaluated at the freeze out temper-

ature. As a convention, we write the density in terms of the Hubble parameter h =

H0/100 kms−1Mpc−1.
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To complete the calculation of the relic density, we need to compute the annihilation

cross section and from this we can extract the parameters a and b which depend on the

mass of the DM particle.

Sometimes it is useful to do an estimation of the order of magnitude of the relic density

and for this we can use the following approximation [13]:

ΩXh
2 ≈ 3× 10−27 cm3 s−1

〈σv〉
. (2.24)

2.4 Detection techniques

Even if DM does not absorb or emit radiation that can be observed with our telescopes,

we hope to be able to identify its nature in other ways, this is through the weak interaction

with the SM particles or through new interactions beyond the standard model, as portals.

There are a few ways to detect DM and a brief introduction to some of the different

approaches is discussed in this section.

The following diagram from 2.4 is very useful when the different mechanisms of detec-

tion of DM are explained.

Figure 2.3: Schematic illustration of DM interactions and their corresponding experi-

mental detection techniques. Fig.(a) shows Indirect detection experiments that study DM

annihilation to SM particles. Fig. (b) shows the scattering of DM and SM particles used in

Direct Detection experiments. Fig. (c) shows the production of DM particles at colliders

from the annihilation of SM particles. And Fig. (d) shows the interaction through a medi-

ator particle between DM and SM particles. This process is also a production mechanism

of DM in colliders and if the theory predicts the creation of DM through some mediator,

then the inverse process will also occur [14].

For the experiments of direct and indirect detection there are two quantities that are

very important to compute the rates of detection. The first one is the density of DM and

the first estimation of this quantity was done by J. H. Jeans in 1922 [2]. In direct detection

it is very important to know the density in our local region in the Milky Way but for some
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other type of experiments, it is important to know the distribution of DM in the galactic

halo. The local DM density is considerably well known compared for example with the

density in the galactic center, and it corresponds to ρ0 = 0.3 GeV/cm3 [2]. This density is

determined through the observation of the rotation curves. In particular, it is very hard

to measure the Milky Way rotation curve due to our position in the galaxy.

The second quantity needed is the velocity distribution of DM as a function of the

distance to the center of the galaxy and it is computed again using the measurements of

the rotation curves. For direct detection the local value is relevant and we have that the

mean velocity is v̄ = 〈v2〉1/2 ∼= 270 km/s. In chapter ??, this subject is explained in more

detail.

In the followind sections the three mechanisms will be described but direct detection

is explained in more detail as it is one of the main focus of this thesis.

2.4.1 DM production at colliders

This section is about how we use colliders to probe the existence of DM. In this case, it

is expected that DM particles can be produce in colliders, like the Large Hadron Collider

(LHC) at CERN, from the collision of SM particles and these processes would leave a

particular signal when we reconstruct the corresponding events. As in these experiments,

the total momentum is expected to be zero and considering that DM should be stable and

live as long as the age of the Universe, the main signals of DM production correspond to

missing transverse energy as the WIMPs can escape from all the different detector layers

leaving no trace as these particles do not interact strongly or electromagnetically with

the mass of the detector. Missing transverse energy has been a very relevant tool in the

process of discover new particles, for example, the W boson was discovered using this

approach in the UA1 experiment in 1983. Also, other way used to search for DM particles

is the observation of deviations in the Higgs invisible width and other SM prediction in

events called mono-X, where X can be W or Z bosons, photons and leptons.

Many different signatures employed to search for DM at LHC, will become especially

relevant if a signal is observed in any DM detection experiments as collider searches are

highly complementary to the other detection methods as they cannot determine if what

they see is the DM or any other neutral particle as all of them can pass outside the detector

and can be seen as missing energy. The main advantage of collider detections is that these

measurements do not suffer from astrophysical uncertainties and that there is no lower

limit to their sensitivity on DM masses.
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The leading generic diagrams responsible for DM production at colliders involve the

pair-production of WIMPs and a gluon, photon or a weak gauge boson Z, W in the initial

or final state, which is necessary to balance the momentum of the WIMPs so that they are

not produced back-to-back resulting in negligible missing energy. Therefore, the search

is based on selecting events with high missing energy due to the WIMPs and a single jet

(monojet), photon (monophoton) or boson candidate.

Figure 2.4: This diagram illustrates the process of DM production at the collider. It is

necessary to produce DM in association with SM states in order to observe these signals.

2.4.2 Indirect detection

The indirect detection techniques tries to observe the particles produced in the annihilation

or decay of DM particles. These products can be antiprotons, positrons, gamma rays or

neutrinos. Depending on the nature of the secondary particles, we have different types of

experiments.

Gamma ray observation is a very popular way to try to identify what DM is made of as

these particles travel in the space without being absorbed for the interstellar medium and

it is considered a smoking gun for DM detection since no other known physical processes

can give rise to similar signal. Another interesting feature is that the energy spectrum

of the photons is related directly with the mass of the original particles. Gamma rays

observatories like Fermi-LAT [?], that is an imaging high-energy gamma-ray telescope

located as the primary instrument in the Fermi spacecraft launched into a near-earth

orbit on 11 June 2008; or the High Altitude Water Cherenkov (HAWC) [?], a facility

located in Sierra Negra volcano near Puebla, Mexico, and other are able to measure a

broad spectrum of gamma rays coming from different regions in the sky.

As we have no idea if DM is a completely stable particle or just its life time is longer

than the age of the Universe, in some extensions of the Standard Model that contain DM

candidates, the stability of the DM particles is guaranteed imposing a symmetry that

prohibits its decay. But its important to notice that the signals coming from annihilation
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or decays need different detection strategies.

To improve the probabilities to detect particles coming from annihilation, it is necessary

to study regions where the density of DM is large as this enhances the production of the

secondary particles and therefore the flux. For example, the direction of the center of the

galaxy is a good place to search for annihilations as particle density in this region is very

large and the probability of DM annihilation is larger too.

In the case of the decay of DM, the direction that is considered better to detect these

events are the galactic poles as moving away from the galactic center has the advantage

of reducing the astrophysical background considerably and the expected flux has less

uncertainties as the DM density profile in those areas is better known than the inner dark

matter density profile, leading to more robust results. In the end, for any of the two

scenarios, the angular size of the detector is a very important feature, as if the telescope

is bigger, it can collect more information.

Also, it is expected that DM accumulates around black holes and this may lead to

detectable annihilation signals as we expect that DM is distributed in an extremely cuspy

way around these objects, allowing them to be bright sources of gamma rays and other

annihilation product.

Also, the formation of structures have some important consequences as substructure

can have a deep impact on the predicted annihilation signals as the subhalos are denser

than the host halo and this enhances the rate of annihilation as it is proportional to the

density squared [15]. Also, the decay signal is directly proportional to mass density and

therefore, its effect on halo emission profiles from dark matter decay is negligible except

when dealing with individual massive objects within a host halo. Very luminous groups can

act as individual sources and also, for example in the Milky Way, massive objects as the

Sun moving through the galaxy halo can trap gravitationally a sufficiently large amount

of DM particles in its center enhancing the probability of annihilation that can produce

particles such as neutrinos. The neutrinos can escape from the Sun with a minimum

absorption and be detected in many of the large neutrino detectors in the Earth.

Even if detection depends on the local density of DM and the velocity distribution,

this involves minimum astrophysical uncertainties compared with other techniques as the

annihilation rate is determined by the total number of WIMPS captured along the billions

of years and not on properties as the distribution of DM in the galaxy, the magnetic

properties of the star or the radiation fields, and it is the reason why to study this approach

is very interesting.



15

One of the main missions of a neutrino telescope is looking for an excess of high

energy neutrinos coming from the Sun that will be relate to DM annihilation in its center.

Neutrino detectors cannot detect neutrinos directly as they rarely interact with matter and

all the neutrino information is obtained by the kinematic information acquire by the not

so common collisions between a neutrino and the atoms of the detector. This process are

so unsual that the observation of the event generally involve instrumenting a large volume

of water or ice. Usually, the product of the interaction is a muon (or a charged lepton

in general) but these particles can be also created by cosmic rays and therefore, these

type of detectors are buried deeply in the ground to protect it from other background

sources as this one. One example of this kind of experiments is the IceCube Neutrino

Observatory [16] constructed at the AmundsenScott South Pole Station in Antarctica.

Muons are charged particles and if the muon produced by the neutrino-atom interaction

inside the medium moves faster than the speed of light in the corresponding medium (ice or

water), Cherenkov radiation is produced along the muon path. This light can be detected

by the photomultipliers deployed for this purpose in the detector structure.

Current limits from indirect detection are already beginning to constrain the canonical

thermal relic annihilation cross section for WIMP dark matter, and the next several years

will be a key time as the reach of upcoming experiments is expected to dramatically

increase and bring new light to this remarkable DM problem.

2.4.3 Direct detection

Direct detection experiments are a very promising and interesting way to try to probe

directly DM interaction in the Milky Way and therefore identify its nature and the idea

behind them is really simple to explain [17]. In these experiments, we try to observe and

measure the signals produced as the result of the interaction of a DM particle from our

own galaxy halo that travelled through the Earth and the matter in our detectors. These

signals can be the recoil energy of the nuclei after the scattering, the ionization of the

nuclei, an increase in the temperature or we can produce photons or phonons.

We can classify the DM-detector scattering as elastic or inelastic, and spin dependent

or spin independent.

In the elastic scattering, the target nucleus interacts with the WIMP as a whole and

then we can measure the spectrum of recoil energy of the target. WIMP with masses of

(10− 1000) GeV/c2 will produce nuclear recoils in the range of (1− 100) keV [18].

For the inelastic scattering the WIMPS interact with the orbital electrons of the target



16

nucleus and the possible results can be the excitation of these electrons or the ionization

of the nucleus. Also, the excitation of the nucleus can happen sometimes but this case is

more difficult to study as the background is more complicated to set in this case.

The spin dependent interactions come from the coupling of the DM spin with the

spin of the nucleon and in this case, the cross section is proportional to J(J + 1). The

best limit to date comes from PICO-60, excluding spin-dependant cross sections above

2.5× 10−41 cm2 for a WIMP with mass of 25 GeV [19,20].

For spin independent, the cross section increases with the mass of the nucleus and

it dominates over the spin dependent scattering as we use already heavy nucleus in the

detectors.

Nowadays, many experiments for direct detection are operating or are in development

and thanks to them we have had a significant growth in techniques and technologies that

allow us to measure the different types of signals and has caused the rapid progress of this

field. Some of these experiments are: Xenon1T [21], PandaX-II [22] and LZ [23] using

liquid Xenon; DarkSide-50 [24] that uses liquid Argon; SuperCDMS [25], CDMSlite [26]

and CDEX [27] using Germanium; DAMIC [28] using silicon; PICASSO [29] and PICO-

60 [30] using Flourine and COUPP [31] using Flourine and Iodine; DAMA [32], KIMS [33]

and the future COSINUS [34] using Sodium iodine; CRESST-II [35] using CaWO4 and

others.

Many experiments have established strong limits in the interaction cross section of

nucleons and DM but experiments keep improving with the hope of making a discovery

with time. The most constraining experiments for large DM masses is Xenon1T [21], and

for a lower range of masses DarkSide-50 [24] is one of the most constraining for its low

velocity threshold. In Figure (2.5), we can see the current limits for spin independent

cross section from the most recent experiments.

Detection rates

The main ingredients for the computation of the event rates in direct detection experiments

are the local density of DM, the velocity distribution of WIMPS close to the Sun and the

WIMP-nucleon cross section [12].

The local density of DM in our solar system is an interesting data. The first estimation

was done by J.H. Jean in 1922. For this he analysed the movement of the nearby stars

transverse to the galactic plane and concluded that the density of DM should be approx-

imately equal to the density of visible matter as stars, gas and dust. The latest estimation
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Figure 2.5: Limits on DM-nucleon Spin-independent cross section for the latest direct

detection experiments [36].

based on a more detailed model of our galactic system that includes the measurement of

the rotation curve for the Milky Way found a similar result [2]

ρlocalDM = (0.39± 0.03) GeV/cm3. (2.25)

The shape of DM Halo far away from the galactic center is mostly established but

the profile in the internal part of the galaxy is not well known. This is the reason why

study massive disc galaxies is important as the rotation curves from them can reveal

evidence that supports a specific profile for the DM Halo. The observations from the X-

ray Observatory Chandra coming from Abell 2029 suggest that the profile is compatible

with a cusp profile.

Differential event rate

The differential event rate per unit time per unit recoil energy for DM-nucleon elastic

scattering is given [37] by

dR

dER
=

〈
ρχmT

µ2
Tmχv

dσ

d cos θ

〉
(2.26)

where 〈〉 indicate average over the halo velocity distribution and all the required remaining

information come from three different sources. First, the DM density ρχ in the solar system

and the relative velocity v between dark matter and nucleus come from astrophysics.
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Second, the nucleus mass mT and the reduced mass of the DM-nucleus system µT come

from detector physics. And finally, the differential scattering cross section with respect to

the cosine of the scattering angle θ in the center of mass frame dσ
d cos θ comes from particle

physics and it is given by

dσ

d cos θ
=

1

2jχ + 1

1

2j + 1

∑
s

1

32π

|M|2

(mχ +mT )2
(2.27)

where jχ, j are the spins of dark matter and nucleus, respectively, andM is the scattering

amplitude.

Here, we note that 〈 〉 is the average over the halo velocity distribution, namely,∫
vmin=q/(2µT) d

3vf(v) where f(v) is the velocity distribution function and vmin is the min-

imum relative velocity to make the nuclear recoil happen for a given momentum transfer

q.

The event rate per unit time per unit recoil energy per detector mass is given [37] by

dRD
dER

= NT ·
ρχmT

32πm3
χm

2
N

·

〈
1

v

∑
i,j

∑
N,N ′=n,p

c
(N)
i c

(N ′)
j F

(N,N ′)
ij (v2, q2)

〉
(2.28)

where NT is the number of target nuclei in a given detector, c
(N)
i are the coefficients of

non-relativistic nucleon operators, ONR
i , in the effective Lagrangian, and F

(N,N ′)
ij (v2, q2)

are the nucleon form factors, with symmetric property under (i,N)↔ (j,N ′). As we can

see, this quantity depends on the detector material and mass.

Other thing that we have to keep in mind for the rate computations is the annual

modulation of the signals due to the Earth annual rotation around the Sun and at the

same time, the relative movement of the sun through the DM halo [38], thus, the velocity

distribution function must contain this information [39]. The observation of this modu-

lation would be a smocking-gun signature on DM experiments. Two experiments report

annual modulation in the signals, DAMA [40] and CoGeNT [41]. As we can note, in some

part of the year the orbital velocity is parallel to the WIMP wind and this will increase the

apparent WIMP velocity and therefore the rate and in a different season, it is anti-parallel

and this will have the opposite effect. Diurnal direction modulation due to Earth rotation

about its axis can have an effect also.
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Chapter 3

Gravity-mediated or Composite

Dark Matter

Until now, all the evidence of the existence of dark matter is due to its gravitational effect

on other objects and therefore the only thing that we know for sure about its behaviour is

that DM interacts gravitationally with the SM matter. This chapter is a small review of the

basic idea in the work done by Hyun Min Lee, Myeonghun Park and Veronica Sanz [5,42]

about a model called Gravity Mediated Dark Matter where the gravity mediators are the

bridge between the visible and invisible world.

3.1 Model with Warped Extra Dimensions

The motivation to introduce extra dimensions has been changing in time since the first

publication of Kaluza in 1984 [43]. In this first work, the main idea was to deal with

the problem of unification of gravity and electromagnetism in 4+1 dimensions. This work

came after the theoretical aspects of the General Relativity (GR) were well established

and pointed out how the forces known at that time can be described in a unified way

if one spatial extra dimension is splitted. With the posterior work of Klein [44], who

introduce the concept of an extra dimension, this idea is related with an associated com-

pactification scale and it was the the starting point to generate a set of theories called

Kaluza-Klein models. The consequences of these models are the introduction of a scheme

of components corresponding to a spin-2 gµν , spin-1 Aµ and spin-0 ḡ55 fields transforming

in a 4 dimensional Lorentz group. At low energies, the Kaluza-Klein theory describes 4D

gravity, a U(1) gauge theory and a real scalar field with dilaton couplings that can be in-

terpreted as oscillations that generate the radion field (For a review see [45] and references
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therein). Although some efforts have been done to generate non-Abelian gauge theories

using exotic properties of extra dimensions, up today there is not a satisfactory model

that can generate the SM gauge group with its chiral properties using only a geometric

structure. Nevertheless it is important to mention that the introduction of a very large

(of the order fo milimeters) compactified space can eliminate the large hierarchy between

the electroweak scale and the fundamental scale of gravity. Some authors [46–48] had

proposed an interesting idea, which resides in the introduction of three-branes allowing

gravity to propagate only on the extra dimensions. Although from the phenomenological

point of view is difficult to fit into the observations, this propousal is one of the main

motivations to pursuing alternative models as the one where gauge and fermions fields are

allowed to propagate in the extra dimensions. A interesting model of this kind can bee

seen in [49].

In the search of more realistic versions of extra dimensions models, we can distinguish

two elements. On one side, singularities of the geometric structures called branes and on

the other hand, fields that propagates on this structures. Thus a model is defined setting

the localization of fields in these different structures that compose the extra dimensions.

Conventionally, this imply that extra dimensions with significant curvature allow that only

some fields could propagate in the bulk . For the purpose of this thesis, we mention only

two cases: (i) when only gravity propagates on the bulk as the Randall-Sundrum (RS)

model [50, 51] and (ii) the case when gravity and additional field mediators propagate in

the bulk . Both cases have the advantage that they solve the hierarchy problem without

large extra dimensions introducing a factor into the metric that changes abruptly with the

extra dimension. In the particular case of the RS model, an orbifold S1/Z2 is introduced

and there are two branes on the opposite sides of a extra dimension. In this model

a cosmological constant in the bulk serves as the source of the gravity. This model is

characterized by the metric

ds2 = e−2krcφηµνdx
µdxν + r2

cdφ
2 (3.1)

As a consequence, the fields that are confined in the brane have a physical mass regulated

by a decreasing exponential factor of the form m = m0e
−krcπ. Fixing the value of krc,

the weak scale can be generated from the effective Planck scale of the model. Also, the

Kaluza-Klein gravitational modes have mass splitting and couplings of the order of TeV.

In order to avoid fine tunning for krc, the introduction of a scalar field that exist in the

bulk action was proposed in [52]. Such field have two characteristics, it takes vacuum

expectation values (VEV’s) on the branes and generate a potential in the action that have
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a minimum at

krc =

(
4

π

)
k2

m2
ln

(
vh
vv

)
. (3.2)

Here, vh and vv are the VEV’s in the corresponding branes φ = 0 (hidden) and φ = π

(visible) respectively. Taking the condition vh << vv and k2/m2 ∼ 10, reasonable values

for the weak scale can be obtained. In general, the RS model metric can be written as [53]

ds2 = e−2k|φ|T (z)gµνdx
µdxν − T 2(z)dφ2, (3.3)

where gµν(z) and T (z) are the 4-dimensional graviton and radion respectively. In order to

obtain a suitable value of krc to solve the hierarchy problem, the mass of the radion must

be of the order of TeV. This makes the model very interesting from the phenomenological

point of view and this will be the starting point of the model described below.

To face the problem of explain the relic abundance of DM, has been proposed many

models of weak interactions between SM particles and DM. We can mention the Super-

symmetric models [54–56] and Universal Extra dimensional models [57–61]. In the context

of the extensions of the SM, some models assume the interaction of the DM only through

a particle called a portal. The nature of this interacting particle that serves as a bridge

between SM fields and DM is determined by the symmetries of the SM extensions. we can

mention two important examples of portals: the Higgs portal and the dark photon.

In the case of Higgs portal is stablished by the extension of the scalar and Yukawa

sector of SM though the introduction of SU(2) singlets [62, 63] or doublets in the context

of a hidden gauge sector as in [64–68] to mention some examples.

Nevertheless, up today, the only known interaction between baryonic matter and DM

is gravity. Based in this observation is assume a realistic model that naturally contain

exclusively gravitational interactions. It worth to mention that term natural is not related

with the naturalness argument introduce in some extended theories to fix the scale o New

Physics effects as in Supersymmetry models. In this work is stated that natural models

to describe the DM matter interaction are those that contain only gravity-mediators. The

particular model used in this thesis, produce thermally the correct abundance of DM in the

Universe in contrast with those models that introduce heavy DM particles or WIMPZILAS

to produce non-thermally relic abundance [69–72]. The typical gravity-mediators of models

mentioned above are the radion and the massive graviton that arise from warped extra

dimensions. Hello Let start considering the following class of five-dimensional metrics,

ds2 = w(z)2
(
ηµνdxµdxν − dz2

)
, (3.4)
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Figure 3.1: Set up for the GMDM model with extra dimensions [5].

where z is the coordinate in the 5th dimension and w(z) is a smooth, decreasing or

constant function of this coordinate. This is a generalization of the the metric (3.1) where

w(z) = 1/(kz) and k is the curvature of the five-dimensional (5D) space-time. Here we are

considering also warped extra-dimensions as in Anti-deSitter (AdS) models.

The fifth dimension is compactified on an interval z ∈ [z0, z1], and four-dimensional

(4D) branes are located at both ends of the extra-dimension. The brane located at z0 is

called the Matter-brane and contain all SM particles. In the brane at z1 is located the

Higgs and the DM particles, we call this brane the Dark-brane. A visual description of

this model taken from [5] is shown in Fig. 3.1

Fields located on branes become truly 4D fields but gravity and its excitations do

necessarily propagate in the full 5D space-time. In this set-up, the fields associated to the

Higgs and DM fieldsare restricted to the Dark-brane because its role in the electroweak

symmetry breaking. An example of this idea could be a composite Higgs sector [73–77]

where DM could be part of the pseudo-Goldstone sector and it is protected by a left-over

symmetry.

However, in this model DM is considered scalar, vector and fermionic particles and it

will be described by its general properties: DM is a singlet under the SM with a mass at the

electroweak scale and it is stable due to a quantum number conserved by the Dark-brane

dynamics.

As a singlet of the SM, DM interacts exclusively through gravitational interactions.

The interaction of the massless graviton with any field is suppressed by MPl, and the

leading interactions come from exchanging other gravitational fields, specifically gravity
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mediators as the radion and the Kaluza-Klein (KK) massive gravitons.

Gravity and gauge fields live in the bulk of the extra-dimensions, it has fully 5D

dynamics, but their localization is different. Massless gauge bosons are de-localized in

the bulk, with a flat profile and gravity mediators (KK-graviton and radion) are peaked

towards the Dark-brane as a result of the warping. And the SM matter fields are localized

on the Matter-brane.

The graviton and the radion are described by the tensor and scalar fluctuations of the

metric, introduced as an expansion in 3.4

ds2 = w(z)2
(
e−2r(ηµν +Gµν)dxµdxν − (1 + 2r)2dz2

)
. (3.5)

where Gµν and r are 5D fields propagating in the extra-dimension. The expression (3.5)

was chosen to solve the hierarchy problem with the mechanism of the RS model and also

to introduce an ad. hoc. propagation in the bulk of the gravity-mediators.

We focus on the Kaluza-Klein (KK) resonance of the fields, including the effect of the

whole tower. As usual we express

Gnµν(x, z) = Gnµν(x)fnG(z) (3.6)

rn(x, z) = rn(x)fnr (z) (3.7)

for the nth KK resonance of the graviton and nth resonance of the radion respectively. In

the following we adopt the notation without the n index for this resonances treating this

resonances in a generic way.

We consider the general interactions of a KK graviton Gµν and the radion r to a pair

of particles. The interaction arises by expanding the metric in 3.5 at linear order in r and

Gµν in the action

S ⊃
∫
ddx
√
−gL ⊃

∫
ddx
√
−gw(z)2 (2rT −GµνTµν) (3.8)

Inserting the bulk profile of the fields and integrating out the extra-dimension, we

obtain the 4D effective Lagrangian at dimension-five,

LKK = −c
G
i

Λ
GµνT

µν
i +

cri√
6Λ

rTi, (3.9)

where Tµνi is the energy-momentum tensor of species i and Ti is its trace. Λ is the

compactification scale, related to the position of the Dark brane, Λ = 1/zDark v TeV . The

coefficients cr,Gi arise by dimensional reduction from the 5D theory to the 4D low-energy

effective theory and are given by
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cGi ∝
∫
dzfG(z)fi(z)

2 (3.10)

cri ∝
∫
dzfr(z)fi(z)

2 (3.11)

where we have use the generic expressions (3.6) and fi(z)
2 ∝ δ(z− z′) is the restriction on

the i field lying on the brane at z. As was mentioned before, the gauge fields de-localized

in the bulk implies fi ∝ constant.

The KK gravitons Gµν satisfies traceless and transverse conditions, Gµµ = ∂µG
µν = 0,

which leads to a rather generic interactions,

LKK = − 1

Λ
Gµν

[
TDMµν − cGV FµλF λν + cGψ

(
i

4
ψ̄(γµDν + γνDµ)ψ − i

4
(Dµψ̄γν +Dνψ̄γµ)ψ

)]
− 1

Λ
GµνcGH

(
DµH

†DνH +DνH
†DµH

)
(3.12)

with the traceless part of the energy-momentum tensor for DM given by

TDMµν = cGX(−XµλX
λ
ν +m2

XXµXν), vector DM, (3.13)

TDMµν = cGχ

(
i

4
χ̄(γµ∂ν + γν∂µ)χ− i

4
(∂µχ̄γν + ∂νχ̄γµ)χ

)
, fermion DM (3.14)

TDMµν = cGS ∂µS∂νS, scalar DM (3.15)

Here, the c’s are KK graviton couplings which are determined by the overlap between

the wave functions of the KK graviton and fields in extra dimensions.

The massless gauge fields do not contribute to the trace of the energy-momentum

tensor at the tree level, but they generate trace anomalies at the loop level that are highly

suppressed.

Regarding the masses of the KK-graviton, it is mG . Λ and the exact relation depends

on the metric. In AdS models the mass of the KK-graviton is related to k, Planck mass

MPl and Λ by

mG =
k

MP
xGΛ, (3.16)

where one expects k .MPl . In other metrics, the relation between the curvature and

the graviton mass would be different but, generally speaking, one expects that a healthy

theory satisfies mG . Λ to make consistent the gravity-mediator with the electroweak

scale.

On the other hand, the radion mass is a model-dependent parameter, related to the

mechanism of stabilization of the extra-dimension. In absence of stabilization the radion

is exactly massless [78,79].
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Chapter 4

Dark Matter Direct Detection

from model with spin-2 mediators

We consider a massive spin-2 particle as the mediator that couples to dark matter and

the SM particles. In this case we consider that the spin of DM is arbitrary, this means,

we consider the cases where DM are scalars, fermions and vector particles. The coupling

of the different type of particles to the spin-2 resonance is through the energy-momentum

tensor [5, 42, 80–82]. In this case, after integrating out the mediator, we can identify

the effective interactions between dark matter and the SM quarks up to dimension-8

and match them to the gravitational form factors for nucleons beyond a zero momentum

transfer. Using this we can study direct detection, production of DM in colliders and relic

density.

4.0.1 Effective interactions between dark matter and quarks

As it was mentioned before, the spin-2 mediator couples to the SM and DM particles

through the energy-momentum tensor, as follows [5, 42,80,81],

Lint = −cSM

Λ
GµνT SM

µν −
cDM

Λ
GµνTDM

µν . (4.1)

In this case, the mediator couplings for the SM particles can vary, depending on the

location in the extra dimension [5, 42]. Then, the tree-level scattering amplitude between

DM and SM particles through the spin-2 mediator is given by

M = −cDMcSM

Λ2

i

q2 −m2
G

TDM
µν (q)Pµν,αβ(q)T SM

αβ (−q) (4.2)
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where q is the 4-momentum transfer between dark matter and the SM particles and the

tensor structure for the massive spin-2 propagator is given by

Pµν,αβ(q) =
1

2

(
GµαGνβ +GναGµβ −

2

3
GµνGαβ

)
(4.3)

with

Gµν ≡ ηµν −
qµqν
m2
G

. (4.4)

We note that the sum of the spin-2 mediator polarizations is given by

∑
s

εµν(q, s)εαβ(q, s) = Pµµ,αβ(q). (4.5)

The tensor Pµµ,αβ satisfies traceless and transverse conditions for on-shell spin-2 mediator,

such as ηαβPµµ,αβ(q) = 0 and qαPµµ,αβ(q) = 0 [5].

Due to energy-momentum conservation

qµT
µν = 0 (4.6)

we can rewrite the scattering amplitude replacing Gµν by ηµν and then we can divide the

amplitude into trace and traceless parts of energy-momentum tensor, as follows,

M =
icDMcSM

2m2
GΛ2

(
2TDM

µν T SM,µν − 2

3
TDMT SM

)
=

icDMcSM

2m2
GΛ2

(
2T̃DM

µν T̃ SM,µν − 1

6
TDMT SM

)
(4.7)

where T̃
SM(DM)
µν is the traceless part of energy-momentum tensor given by T̃

SM(DM)
µν =

T
SM(DM)
µν − 1

4ηµνT
SM(DM) with T SM(DM) being the trace of energy-momentum tensor.

The energy momentum tensor for the SM quarks denoted by ψ [5] is, in momentum

space,

Tψµν = −1

4
ūψ(p2)

(
γµ(p1ν + p2ν) + γν(p1µ + p2µ)− 2ηµν(/p1

+ /p2
− 2mψ)

)
uψ(p1) (4.8)

where uψ(p) is the Dirac spinor for ψ. Here, the SM fermion is incoming into the vertex

with momentum p1 and is outgoing from the vertex with momentum p2. Then, the trace

of the energy-momentum tensor for ψ is given by

Tψ = −1

4
ūψ(p2)

(
− 6(/p1

+ /p2
) + 16mψ

)
uψ(p1). (4.9)

The traceless part of the energy-momentum tensor for ψ is given by

T̃ψµν = −1

4
ūψ(p2)

(
γµ(p1ν + p2ν) + γν(p1µ + p2µ)− 1

2
ηµν(/p1

+ /p2
)
)
uψ(p1). (4.10)
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4.0.2 Gravitational form factors for nucleons

So far, all the study has been done considering the interaction of DM with quarks but

for the study of DM direct detection is necessary to consider the interaction with the

nucleons instead. To go from quarks to nucleons we need to do the match of the terms

in the energy-momentum tensor to the nuclear matrix elements. In the case of the trace

part (4.9), we can do this match as follows,

〈N(p2)|Tψ|N(p1)〉 = −FS(q2)mN ūN (p2)uN (p1) (4.11)

where FS(q2) is the form factor for the scalar current, given at q = 0 by FS(0) = fNTψ [83].

Here, we note that fNTq denote the mass fractions of light quarks in a nucleon. The values

for fNTψ considered in this study are shown in Table 4.1.

On the other hand, the most general structure of the energy-momentum tensor (4.8)

is matched to the nuclear matrix elements writing it in terms of three gravitational form

factors A(q2), B(q2), C(q2) [84–86],

〈N(p2)|Tψµν |N(p1)〉 = ūN (p2)
(
A(q2)γ(µpν) +B(q2)

1

2mN
ip(µσν)λq

λ

+C(q2)
1

mN
(qµqν − ηµνq2)

)
uN (p1)

= ūN (p2)
( 2

mN
A(q2)pµpν + (A(q2) +B(q2))

1

2mN
ip(µσν)λq

λ

+C(q2)
1

mN
(qµqν − ηµνq2)

)
uN (p1) (4.12)

where pµ = 1
2(p1 +p2) and q = p2−p1 and ( ) means the symmetrization of indices. Using

the Gordon identity to rewrite the previous expresion as follow,

〈N(p2)|Tψµν |N(p1)〉 = ūN (p2)
( 2

mN
A(q2)pµpν + (A(q2) +B(q2))

1

2mN
ip(µσν)λq

λ

+C(q2)
1

mN
(qµqν − ηµνq2)

)
uN (p1) (4.13)

we note that the second term is the anomalous gravitational magnetic moment operator.

As it is shown in Ref. [84–86], one can check that the form factors A(q2), B(q2) and

C(q2) are the only ones that are consistent with Lorentz invariance, qµT
ψ,µν = 0, and CP

symmetry.

Now, we want to find the matching for the traceless part. For this, let’s start consid-

ering the energy-momentum tensor for on-shell nucleons,

TNµν = −1

2
ūN (p2)γ(µpν)uN (p1)

= −1

2
ūN (p2)

( 2

mN
pµpν +

1

2mN
ip(µσν)λq

λ
)
uN (p1). (4.14)
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With this expression, we can rewrite the above nuclear matrix elements in equation

(4.13) as

〈N(p2)|Tψµν |N(p1)〉 = −2(A(q2) +B(q2))TNµν (4.15)

+
1

mN
ūN (p2)

(
− 2B(q2)pµpν + C(q2)(qµqν − ηµνq2)

)
uN (p1)

where TNµν is the energy-momentum tensor for nucleons. Then, using equation (4.16)

and its trace, we obtain the nuclear matrix elements for the traceless part of the energy-

momentum tensor as

〈N(p2)|T̃ψµν |N(p1)〉 = −2(A(q2) +B(q2))T̃Nµν +
1

mN
ūN (p2)

[
− 2B(q2)

(
pµpν −

1

4
gµνp

2
)

+C(q2)
(
qµqν −

1

4
ηµνq

2
)]
uN (p1). (4.16)

Now, for nucleons with zero momentum transfer, the above result (4.16) [87–89] be-

comes

〈N(p)|T̃ψµν |N(p)〉 = − 1

mN
FT (0)

(
pµpν −

1

4
m2
Ngµν

)
ūN (p)uN (p) (4.17)

where the form factor for the twist-2 quark operator is given by FT (0) ≡ −2A(0) =

ψ(2) + ψ̄(2) and ψ(2) + ψ̄(2) are the second moments of the parton distribution functions

(PDFs) of the corresponding particle. Also, B(q2), C(q2) remain unfixed due to lack

of the extra information on the form factors for a nonzero momentum transfer. The

second moments of PDFs in a proton have scale dependence, so we evaluate them at the

scale µ = mZ because the effective couplings are matched at the scale of the mediator

particle [88]. The values are shown in Table 4.2.

fNTψ Value

fpTu 0.023

fpTd 0.032

fpTs 0.020

fnTu 0.017

fnTd 0.041

fnTs 0.020

Table 4.1: The mass fractions for protons and neutrons [88]

The same results can be obtain in a holographic description of QCD with the hard-

wall or soft-wall model in a five-dimensional Anti-de Sitter (AdS) spacetime (to read an
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Twist-2 Value

u(2) 0.22

ū(2) 0.034

d(2) 0.11

d̄(2) 0.036

s(2) = s̄(2) 0.026

c(2) = c̄(2) 0.019

b(2) = b̄(2) 0.012

Table 4.2: The second moments of PDFs calculated at the scale µ = mZ using the CTEQ

parton distribution [88].

introduction to this topic go to reference [86]) where the gravitational form factors can

be described by the three-point correlation function between the zero-mode graviton and

a fermion in the bulk on the boundary of the AdS spacetime. In this case, the relation

between the gravitational form factors is given by A(q2) 6= 0 and B(q2) = C(q2) = 0 even

for a nonzero momentum transfer [86]. This allows us to do the matching of the quark

operators in equation (4.16) to the nucleon form factors with a general momentum transfer

by the overall form factor FT (q2) as follows,

〈N(p2)|T̃ψµν |N(p1)〉 = FT (q2)T̃Nµν (4.18)

with FT (q2) ≡ −2A(q2). This form factor has been explicitly computed in a holographic

set-up with a soft wall model. This would be the dual of theories with a conformal UV

limit and a softly broken symmetry at low energies. The breaking is then spontaneous

and the features of the soft wall allow for switching on an non-zero expectation value for

an operator with finite canonical dimension or a non-AdS background mass of the dual

fields as it is explained in Reference [90].

In this context, Ref. [86] finds an explicit form of the form factor, which decreases with

q2 as shown in Fig. 4.1, and admits an expansion near q2 ' 0 as follows

FT (q2) ' −2(1− q2/(0.55 GeV)2 . . .). (4.19)

For simplicity, we assume that this is the case and also we take FT (q2) ≈ FT (0).

Further improvements in the analysis could be done by simultaneously expanding the

form factor coupling FT (q2) and following the standard procedure of non-relativistic ex-

pansion described in the next Section.
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Figure 4.1: Gravitational form factor −FT (q2)/2 as a function of the momentum transfer

q in GeV. The black line corresponds to the exact expression obtained in Ref. [86] and the

same input parameters. The red-dashed line corresponds to the quadratic approximation.

4.1 Effective operators for DM-nucleon scattering

In this section, we discuss the effective Lagrangian for the elastic scattering between fer-

mion and scalar dark matter and nucleons due to the spin-2 mediator.

4.1.1 Fermion dark matter

In momentum space, the energy-momentum tensor for a fermion DM χ is,

Tχµν = −1

4
ūχ(k2)

(
γµ(k1ν + k2ν) + γν(k1µ + k2µ)− 2ηµν(/k1 + /k2 − 2mχ)

)
uχ(k1) (4.20)

where the fermion DM particle is incoming into the vertex with momentum k1 and it is

outgoing from the vertex with momentum k2. We separate this tensor in the trace and

traceless parts. The trace is given by

Tχ = −1

4
ūχ(k2)

(
− 6(/k1 + /k2) + 16mχ

)
uχ(k1). (4.21)

And the traceless part is given by

T̃χµν = −1

4
ūχ(k2)

(
γµ(k1ν + k2ν) + γν(k1µ + k2µ)− 1

2
ηµν(/k1 + /k2)

)
uχ(k1). (4.22)

We consider the elastic scattering between the DM fermion and the nucleon. In this

case, the nucleon is incoming into the vertex with momentum p1 and it is outgoing with

momentum p2.

From equations (4.22) and (4.18), the relevant effective interactions for the traceless
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parts are

16T̃χµν〈N(p2)|T̃ψ,µν |N(p1)〉 = FT

[
(2(p1 + p2) · (k1 + k2))(ūχ(k2)γµuχ(k1))(ūN (p2)γµuN (p1))

−(ūχ(k2)(/k1 + /k2)uχ(k1))(ūN (p2)(/p1
+ /p2

)uN (p1))

+2(ūχ(k2)(/p1
+ /p2

)uχ(k1))(ūN (p2)(/k1 + /k2)uN (p1))
]

(4.23)

Using the Dirac equation /puN (p) = mNuN (p) we get

16T̃χµν〈N(p2)|T̃ψ,µν |N(p1)〉 = FT

[
(2(p1 + p2) · (k1 + k2))(ūχ(k2)γµuχ(k1))(ūN (p2)γµuN (p1))

−4mχmN (ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

+2(ūχ(k2)(/p1
+ /p2

)uχ(k1))(ūN (p2)(/k1 + /k2)uN (p1))
]

(4.24)

Using Gordon identities,

ūχ(k2)γµuχ(k1) =
1

2mχ
ūχ(k2)

(
(k1 + k2)µ − iσµρqρ

)
uχ(k1), (4.25)

ūN (p2)γνuN (p1) =
1

2mN
ūN (p2)

(
(p1 + p2)ν + iσνλqλ

)
uN (p1), (4.26)

we can rewrite the vector operators in terms of scalar and tensor operators and obtain

16T̃χµν〈N(p2)|T̃ψ,µν |N(p1)〉 = FT

[
(P ·K)

2mχmN

(
(K · P )(ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

+(ūχ(k2)uχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

−(Pµūχ(k2)iσµρqρuχ(k1))(ūN (p2)uN (p1))

−(ūχ(k2)iσµρqρuχ(k1))(ūN (p2)iσµλq
λuN (p1))

)
−4mχmN (ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

+
1

2mχmN

(
(K · P )2(ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

−(Pµūχ(k2)iσµρqρuχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

+(K · P )(ūχ(k2)uχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

−(K · P )(Pµūχ(k2)iσµρqρuχ(k1))(ūN (p2)uN (p1))

)]
(4.27)

where Pµ ≡ (p1 + p2)µ, Kµ ≡ (k1 + k2)µ and qµ ≡ (k1 − k2)µ = (p2 − p1)µ. Using

2p1 · k1 = s −m2
N −m2

χ = 2p2 · k2 and 2p1 · k2 = −u + m2
N + m2

χ = 2p2 · k1 for nucleon

momenta, we note the approximate formula,

P ·K = (p1 + p2) · (k1 + k2) = s− u ' 4mχmN . (4.28)
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where use is made of s ' (mχ +mN )2 and u ' (mχ −mN )2 in the non-relativistic limit.

The above nucleon operators can be matched to non-relativistic nucleon operators as in

Ref. [37], with the exception, the operator in the 7th line in equation (4.27), which is

suppressed for a small momentum transfer as will be shown later.

From equations (4.21) and (4.11), the effective interactions for trace parts are

Tχ〈N(p2)|Tψ|N(p1)〉 = mχmNFS(ūχ(k2)uχ(k1))(ūN (p2)uN (p1)). (4.29)

Thus, the trace parts contain only scalar-scalar operators.

Consequently, from equations (4.27) and (4.29), we get the scattering amplitude between

fermion dark matter and nucleon as follows,

Mχ =
icχcψ

2m2
GΛ2

〈N(p2)|
(

2T̃χµν T̃
ψ,µν − 1

6
TχTψ

)
|N(p1)〉

=
icχcψ

2m2
GΛ2

{
1

8
FT

[
(P ·K)

2mχmN

(
(K · P )(ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

+(ūχ(k2)uχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

−(Pµūχ(k2)iσµρqρuχ(k1))(ūN (p2)uN (p1))

−(ūχ(k2)iσµρqρuχ(k1))(ūN (p2)iσµλq
λuN (p1))

)
−4mχmN (ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

+
1

2mχmN

(
(K · P )2(ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

−(Pµūχ(k2)iσµρqρuχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

+(K · P )(ūχ(k2)uχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

−(K · P )(Pµūχ(k2)iσµρqρuχ(k1))(ūN (p2)uN (p1))

)]
−1

6
mχmNFS(ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

}
. (4.30)

Therefore, there appear five effective interactions between fermion dark matter and

nucleon due to the spin-2 mediator, each of which matches with non-relativistic operators

[37] as in Table 4.3. Here, we note that the non-relativistic nucleon operators are given [37]

by

ONR
1 = 1, ONR

2 = (v⊥)2, ONR
3 = i~sN · (

~q

mN
× ~v⊥),

ONR
4 = ~sχ · ~sN , ONR

5 = i~sχ · (
~q

mN
× ~v⊥) ONR

6 = (~sχ ·
~q

mN
)(~sN ·

~q

mN
). (4.31)

Here, ~sχ, ~sN are the spins of dark matter and nucleon, respectively, and the momentum

transfer i~q and the relative velocity between dark matter and nucleon after scattering ~v⊥

are Galilean, Hermitian invariants [37]. There is a relation of these quantities as follows

~v⊥ = ~v +
~q

2µN
(4.32)
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where ~v is the initial relative velocity and µN is the reduced mass of the DM-nucleon system

and it satisfies ~v⊥ ·~q = 0. We note that ONR
1,2,3 give rise to only the spin-independent elastic

scattering while ONR
4,5,6 lead to the spin-dependent elastic scattering. All the appearing

operators are T -even and P -even.

Oi
∑

kONR
k

F (χ̄χ)
(
N̄N

)
4mχmNONR1

F (χ̄χ)
(
KνN̄iσ

νλqλN
)

4m2
χ~q

2ONR1 − 16m2
χm

2
NONR3

F (Pµχ̄iσ
µρqρχ)

(
N̄N

)
−4m2

N~q
2ONR1 + 16mχm

3
NONR5

F (χ̄iσµρqρχ)
(
N̄iσνλqλN

)
16mχmN (~q2ONR4 −m2

NONR6 )

F (Pµχ̄iσ
µρqρχ)

(
KνN̄iσ

νλqλN
)
−4mχmN (~q2ONR1 − 4m2

NONR3 )

×(~q2ONR1 − 4mχmNONR5 )

S (S∗S)(N̄N) 2mNONR1

S i(S∗∂µS − S∂µS∗)(N̄γµN) 4mSmNONR1

V N̄N 2mNf(ε1, ε
∗
2)ONR

1

V εα1,2N̄iσαλq
λN 4im2

N

(
~sN · (~ε1,2 × ~q

mN
)
)

V 4im2
N

(
~sN · (~ε1,2 × ~q

mN
)
)

mχ

(
~q2ONR

1 − 4m2
NONR

3

)
Table 4.3: Effective operators for fermion (F), scalar (S) and vector (V) dark matter.

As a result, from the scattering amplitude at the nucleon level given in equation (4.30),

the effective interactions between fermion dark matter and nucleons are given by

Lχ,eff =
cχcψ

2m2
GΛ2

[{
FT

(
1

2
(P ·K)2 +

mχ

2mN
(P ·K)q2 +

mN

2mχ
(P ·K)q2 − 2m2

χm
2
N +

1

4
q2

)
−2

3
FSm

2
χm

2
N

}
ONR

1 − FTmN

(
2mχ(P ·K) +mNq

2
)
ONR

3 − FT (P ·K)q2ONR
4

−FTmN

(
2mN (P ·K) +mχq

2
)
ONR

5 + FTm
2
N (P ·K)ONR

6 + 4FTm
3
NmχONR

3 ONR
5

]
.

(4.33)

Then, using equation (4.28), the above effective Lagrangian becomes

Lχ,eff =
cχcψ

2m2
GΛ2

[{
FT

(
6m2

χm
2
N + 2(m2

χ +m2
N )~q2 +

~q4

4

)
− 2

3
FSm

2
χm

2
N

}
ONR

1

−FTm2
N

(
8m2

χ + ~q2
)
ONR

3 − 4mχmNFT ~q
2ONR

4 − FTmNmχ

(
8m2

N + ~q2
)
ONR

5

+4mχm
3
NFTONR

6 + 4FTm
3
NmχONR

3 ONR
5

]
. (4.34)

Here, we note that a factor
∫ d3p

(2π)3
√

2E
a

(†)
N per each nucleon state or

∫ d3p

(2π)3
√

2E
a

(†)
χ per
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each dark matter state, with dimension E, are to be multiplied as overall factors such that

the above effective Lagrangian for nucleons has a dimension 4.

For a zero momentum transfer with ~q = 0, the above effective Lagrangian (4.33) is

reduced to scalar operators ONR
1 only, that are relevant for the usual computation of the

total cross section. But, other operators also contribute to the differential cross section

with respect to the momentum transfer or the recoil energy.

4.1.2 Scalar dark matter

The energy-momentum tensor for a scalar DM S is, in momentum space,

TSµν = −
(
m2
Sηµν + Cµν,αβk

α
1 k

β
2

)
(4.35)

where

Cµν,αβ ≡ ηµαηνβ + ηναηµβ − ηµνηαβ (4.36)

and the scalar DM is incoming into the vertex with momentum k1 and is outgoing from

the vertex with momentum k2. Then, the trace part of the energy-momentum tensor is

given by

TS = −
(

4m2
S − 2(k1 · k2)

)
, (4.37)

and the traceless part is given by

T̃Sµν = −
(
k1µk2ν + k2µk1ν −

1

2
ηµν(k1 · k2)

)
. (4.38)

We consider the elastic scattering between the DM scalar and the nucleon, S(k1) +

N(p1) → S(k2) + N(p2), where the nucleon is incoming into the vertex with momentum

p1 and it is outgoing with momentum p2. Doing as in the fermion case, from equation

(4.38) and equation (4.18), the relevant effective interactions for the traceless parts are

4T̃Sµν〈N(p2)|T̃ψ,µν |N(p1)〉 = FT

(
2ūN (p2)(/k1k2 · (p1 + p2) + /k2k1 · (p1 + p2))uN (p1)

−2mN (k1 · k2)(ūN (p2)uN (p1))
)

(4.39)

Therefore, using k1 · (p1 + p2) = k2 · (p1 + p2) = (s − u)/2 and Gordon identity, we can

rewrite the above result as

4T̃Sµν〈N(p2)|T̃ψ,µν |N(p1)〉 = FT

[(P ·K)

2mN

(
(P ·K)(ūN (p2)uN (p1)) +Kν ūN (p2)iσνλqλuN (p1)

)
−2mN (k1 · k2)(ūN (p2)uN (p1))

]
. (4.40)
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In a similar way, the effective interactions for the trace part is

4TS〈N(p2)|Tψ|N(p1)〉 = 8mNFS(2m2
S − k1 · k2) (ūN (p2)uN (p1)). (4.41)

Consequently, from equations (4.40) and (4.41), we get that the scattering amplitude

between scalar dark matter and nucleon is

MS =
icScψ

2m2
GΛ2

〈N(p2)|
(

2T̃Sµν T̃
ψ,µν − 1

6
TSTψ

)
|N(p1)〉

=
icScψ

2m2
GΛ2

[
FT

(
(P ·K)

4mN

(
(P ·K)(ūN (p2)uN (p1)) + (Kν ūN (p2)iσνλqλuN (p1))

)
−mN (k1 · k2)(ūN (p2)uN (p1))

)
− 1

3
mNFS(2m2

S − k1 · k2) (ūN (p2)uN (p1))

]
.(4.42)

Here, we note that using the Gordon identity, the tensor operator N̄iσνλqλN can be

written as the sum of vector and scalar operators.

Therefore, there appear two effective interactions between scalar dark matter and

nucleon due to the spin-2 mediator, each of which matches to the non-relativistic nucleon

operator [83] as shown in Table 4.3. We can see that only the scalar operator at the

non-relativistic level appears for scalar dark matter. Now from equation (4.42), we obtain

the effective Lagrangian for scalar dark matter as follows

LS,eff =
cScψ

2m2
GΛ2

[
2FT

(
mSmN (P ·K)−m2

N (k1 · k2)

)
− 2

3
FSm

2
N (2m2

S − k1 · k2)

]
ONR

1

(4.43)

Using equation (4.28) and q2 ' 2 ~k2 · ~k1, the above effective Lagrangian becomes

LS,eff =
cScψ

2m2
GΛ2

[
2FTm

2
N

(
4m2

S −
~q2

2

)
− 2

3
FSm

2
N (2m2

S −
~q2

2
)

]
ONR

1 . (4.44)

For a zero momentum transfer, the above effective Lagrangian (4.43) is reduced to scalar

operators ONR
1 only.

4.2 Differential scattering event rates with spin-2 mediator

In this section, we discuss the differential event rates for the spin-independent scatter-

ing between dark matter and nucleus in our model, for mock and current experiments of

dark matter direct detection.

To compute the differential scattering event rates in our model, we take the model

parameters that are consistent with the limits from DM direct detection experiments and

use the package called DMFormFactor [37,91] to perform this computation.
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Figure 4.2: Differential event rates for fermionic dark matter (left) and scalar dark matter

(right) for different experiments in Table 4.4 for Λ = 1 TeV and cχ = cψ = 1.

Nucleus Z A Exposure (Kg-day)

F 9 19 200000

Na 11 23 14000

Ge 32 73 36500

I 53 127 78000

Xe 54 129 73000

Xe 54 131 73000

Table 4.4: Mock experiments considered for the computation of differential scattering

event rates in this model.

The input parameters for the package of DMFormFactor [37,91] are the spin and mass

of DM, the information about the Galactic Halo (such as the escape velocity and the local

DM density), our model parameters such as the couplings and mass of the graviton and

the scale Λ, and finally the information about the detector we are considering. In our

case, we use the parameters for different mock experiments with some of the most relevant

isotopes as shown in Table 4.4. Using the information in Table 4.4, the Lagrangians

for the interactions in (4.34) and (4.44) and taking a zero momentum transfer q → 0

approximation, we obtain the results for the differential event rates as a function of the

recoil energy (ER) in units of keV as in Figs. (4.2) and (4.3), for the cases with fermionic

and scalar dark matter for Λ = 1 TeV and 3 TeV, respectively. For the fermionic case, the



37

20 40 60 80 100
10-7

10-5

0.001

0.100

ER (KeV)

dR
D
/d
E
R
(K
eV

-
1
)

mDM=300 GeV, mG=140 GeV, Λ=3 TeV

19F

19F

73Ge

127I

129Xe

131Xe
20 40 60 80 100

10-7

10-5

0.001

0.100

ER (KeV)

dR
D
/d
E
R
(K
eV

-
1
)

mDM=300 GeV, mG=140 GeV, Λ=3 TeV

19F

19F

73Ge

127I

129Xe

131Xe

20 40 60 80 100
10-7

10-5

0.001

0.100

ER (KeV)

dR
D
/d
E
R
(K
eV

-
1
)

mDM=500 GeV, mG=260 GeV, Λ=3 TeV

19F

23Na

73Ge

127I

129Xe

131Xe
20 40 60 80 100

10-7

10-5

0.001

0.100

ER (KeV)

dR
D
/d
E
R
(K
eV

-
1
)

mDM=500 GeV, mG=260 GeV, Λ=3 TeV

19F

23Na

73Ge

127I

129Xe

131Xe

Figure 4.3: The same as in Fig. 4.2, but with different masses for DM and spin–2 mediators

and Λ = 3 TeV.
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Figure 4.4: Differential event rates for fermion DM (left) and scalar DM (right) for current

experiments for Λ = 1 TeV and cχ = cψ = 1.

last operator in the Lagrangian ONR
3 ONR

5 is a new type of interaction term that is allowed

when the mediator is a spin 2 particle. But, the ONR
3 ONR

5 term is velocity-suppressed

so it is not included in our study. Therefore, the differential event rates for fermion and

scalar dark matter are similar when the DM mass and the mass and coupling of the spin-2

mediator are the same but later it will be shown that the annihilation cross sections of

dark matter crucially depend on the spin of dark matter.
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Figure 4.5: The same as in Fig. 4.4 but considering different masses for DM and spin-2

mediators and a value of Λ = 3 TeV.

Experiment (Nucleus) Z A Exposure (Kg-day)

LUX (Xe) 54 129 33500

XENON1T (Xe) 54 131 36500

PandaX-II (Xe) 54 136 54000

SuperCDMS (Ge) 32 73 1690

CDMSlite (Ge) 32 73 70

XENON10 (Xe) 54 131 15

Table 4.5: Detector information for the current experiments considering in this study for

the computation of differential scattering event rates in this model.

Also, we obtained similar plots, considering the detectors used in current DM exper-

iments as XENON1T [92], PandaX-II [22], SuperCDMS [25], LUX [93], CDMSlite [26],

and XENON10 [94], with the detector parameters shown in Table 4.5. Some results for

differential event rates with WIMP dark matter are shown in Figs. 4.4 and 4.5, for values

of Λ = 1 TeV and 3 TeV, respectively, with the parameters that are consistent with other

limits on the parameters space that came from relic density condition, ATLAS dijet and

direct detection bounds that are discussed in the next section.
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4.3 Bounds from relic density and direct detection

In this section we consider the annihilation cross sections for the different types of dark

matter in order to determine the relic density and how this computation put conditions

over the parameter space of our model. Then, we discuss a bit more the direct detection

limits on the total spin-independent elastic scattering cross section and the dijet bounds

on the spin-2 mediator from the LHC.

4.3.1 Fermion dark matter

The annihilation cross section for χχ̄→ ψψ̄ is given [5, 42,80] by

(σv)χχ̄→ψψ̄ = v2 ·
Ncc

2
χc

2
ψ

72πΛ4

m6
χ

(4m2
χ −m2

G)2 + Γ2
Gm

2
G

(
1−

m2
ψ

m2
χ

) 3
2
(

3 +
2m2

ψ

m2
χ

)
. (4.45)

Thus, the annihilation of fermion dark matter into quarks becomes p-wave suppressed.

When mχ > mG, there is an extra contribution to the annihilation cross section, due to

the t-channel for both models [5, 42,80], as follows,

(σv)χχ̄→GG =
c4
χm

2
χ

16πΛ4

(1− rχ)
7
2

r4
χ(2− rχ)2

(4.46)

with rχ =
(
mG
mχ

)2
. Then, the t-channel annihilation is s-wave, so it becomes dominant in

determining the relic density for heavy fermion dark matter.

4.3.2 Scalar dark matter

The annihilation cross section for SS → ψψ̄ is given [5, 42,80] by

(σv)SS→ψψ̄ = v4 ·
Ncc

2
Sc

2
ψ

360πΛ4

m6
S

(m2
G − 4m2

S)2 + Γ2
Gm

2
G

(
1−

m2
ψ

m2
S

) 3
2
(

3 +
2m2

ψ

m2
S

)
. (4.47)

Thus, the annihilation of scalar dark matter into quarks becomes d-wave suppressed.

When mS > mG, there is an extra contribution to the annihilation cross section, due

to the t-channel for both models [5, 42,80], as follows,

(σv)SS→GG =
4c4
Sm

2
S

9πΛ4

(1− rS)
9
2

r4
S(2− rS)2

(4.48)

with rS =
(
mG
mS

)2
.
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4.3.3 Vector dark matter

The annihilation cross section for XX → ψψ̄ is given [5, 42,80] by

(σv)XX→ψψ̄ =
4Ncc

2
Xc

2
ψ

27πΛ4

m6
X

(4m2
X −m2

G)2 + Γ2
Gm

2
G

(
3 +

2m2
ψ

m2
X

)(
1−

m2
ψ

m2
X

) 3
2

.(4.49)

Thus, the annihilation of vector dark matter into quarks becomes s-wave suppressed. In

this case, smaller spin-2 mediator couplings to the SM quarks or vector dark matter can

be consistent with the correct relic density, as compared to the other cases. But, indirect

detection signals from the annihilation of vector dark matter are promising [42].

As mX > mG, there is an extra contribution to the annihilation cross section, due to

the t-channel in both models [5, 42,80], as follows,

(σv)XX→GG =
c4
Xm

2
X

324πΛ4

√
1− rX

r4
X(2− rX)2

(
176 + 192rX + 1404r2

X − 3108r3
X

+1105r4
X + 362r5

X + 34r6
X

)
(4.50)

with rX =
(
mG
mX

)2
.

4.3.4 Bounds on WIMP dark matter

Taking a zero momentum transfer for the DM-nucleon scattering, we use the nucleon

matrix elements for twist-2 operators given in equation (4.17) and simply obtain the total

cross section for spin-independent elastic scattering between dark matter and nucleus as

σSIDM−A =
µ2
A

π

(
ZfDM

p + (A− Z)fDM
n

)2
(4.51)

where µA = mχmA/(mχ + mA) is the reduced mass of the DM-nucleus system and mA

is the target nucleus mass, Z is the number of protons, A is the atomic number and the

nucleon form factors are given by the same formula for all the spins of dark matter as

fDM
p =

cDMmNmDM

4m2
GΛ2

( ∑
ψ=u,d,s,c,b

3cψ(ψ(2) + ψ̄(2)) +
∑

ψ=u,d,s

1

3
cψf

p
Tψ

)
, (4.52)

fDM
n =

cDMmNmDM

4m2
GΛ2

( ∑
ψ=u,d,s,c,b

3cψ(ψ(2) + ψ̄(2)) +
∑

ψ=u,d,s

1

3
cψf

n
Tψ

)
(4.53)

where DM = χ, S,X for fermion, scalar and vector dark matter, respectively. The results

are the same as those for the general effective interactions with zero momentum transfer

in equation (4.34), (4.43) and (4.44).

The above DM-nucleus scattering cross section is related to the normalized-to-proton

scattering cross section σSIDM−p, that is usually presented for experimental limits by

σSIDM−p = (µN/µA)2σSI
DM−A/A

2 (4.54)



41

XENON1T

fermion DM

scalar DM

vector DM

1 10 102 103
10-3

10-2

10-1

1

mDM (GeV)

mG

Λ

mG=100 GeV, cψ=cχ=cS=cx=1

XENON1T

fermion DM

scalar DM

vector DM

1 10 102 103
10-3

10-2

10-1

1

mDM (GeV)

mG

Λ

mG=150 GeV, cψ=cχ=cS=cx=1

XENON1T

fermion DM

scalar DM

vector DM

1 10 102 103
10-3

10-2

10-1

1

mDM (GeV)

mG

Λ

mG=200 GeV, cψ=cχ=cS=cx=1

Figure 4.6: Parameter space of fermion and scalar dark matter in mDM vs mG/Λ. The

gray regions are excluded by XENON1T. We took cχ = cS = cu,d,s,c,b,t = 1 and mG =

100, 150, 200 GeV on left, middle and right, respectively.

with µN = mDMmN/(mDM +mN ).

In Fig. 4.6, we depict in the parameter space for mDM vs mG/Λ the region where the

DM relic density overcloses the Universe in red, blue and orange for fermion, scalar and

vector dark matter, respectively. The regions in gray are ruled out by the direct detection

experiment in XENON1T [92]. We have taken mG = 100, 150, 200 GeV from left to right

plots and the couplings of DM and quarks to the spin-2 mediator are the same as cχ = cS =

cu,d,s,c,b,t = 1 in all the plots. As a result, we find that the non-resonance regions saturating

the relic density, away from the resonance with mG ∼ 2mDM, are tightly constrained by

XENON1T bounds. The non-resonance regions below mDM = 200 − 300 GeV have been

already excluded, but the non-resonance regions with larger DM masses and the resonance

region can be probed by updated XENON1T and future direct detection experiments.

In Fig. 4.7, we impose in the parameter space for mDM vs mG the same conditions

from the relic density and the limits from XENON1T. The relic density is saturated

by the DM annihilation into quarks along the red, blue and orange lines, for fermion,

scalar and vector dark matter, respectively. The regions in gray are ruled out by the

direct detection experiment in XENON1T [92]. We also overlaid in cyan regions the

bounds from dijet resonance searches with mono-photon at the LHC [95]. In the case with

mG > 2mDM, for which the spin-2 mediator decays invisibly into a pair of dark matter, the

ATLAS dijet limit on Λ scales by
√

BR(G→ qq̄) =
√

15
19

(√
15
16

)
with q = u, d, s, c, b for

mG > 2mt(mG < 2mt), which leads only to a very mild change in the cyan region in Fig.

4.7. We have taken Λ = 1, 3, 5 TeV from left to right plots and the same couplings of DM

and quarks to the spin-2 mediator as cχ = cS = cu,d,s,c,b,t = 1 in all the plots. In the case

with Λ = 1 TeV, the WIMP parameter space, in particular, the non-resonance region,
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Figure 4.7: Parameter space of fermion and scalar dark matter in mDM vs mG. The gray

and cyan regions are excluded by XENON1T and ATLAS dijet searches, respectively. The

cyan regions was computed using MadGraph and the RS model. We took Λ = 1, 3, 5 TeV

on left, middle and right, respectively. The other parameters are the same as in Fig. 4.6.

is tightly constrained by both XENON1T and dijet bounds. But, for larger values of

Λ = 3, 5 TeV, a wide parameter space opens up and can be tested by updated XENON1T

and future experiments.

4.3.5 Bounds on light dark matter

Some results for the corresponding differential event rates with light fermion or scalar dark

matter below 10 GeV are shown for CDMSlite and XENON10 experiments in Figs. 4.8

and 4.9. Here, we have chosen the parameters that are consistent with direct detection

bounds, in particular, from XENON10 and cryogenic direct detection experiments such as

CDMSlite and CRESST.

In Fig. 4.10, we considered the case with light dark matter of mass below 10 GeV. In

this case, cryogenic direct detection experiments [96] such as CDMSlite [26] and CRESST

[35] with low thresholds for recoil energy are relevant for mDM = 1.45− 9 GeV and 0.71−

9 GeV, respectively, and the CDMSlite experiment rules out the parameter space in green

region too. We note that the bounds from CRESST or XENON10 are less stringent that

the one from CDMSlite, so we don’t show them in Fig. 4.10. We have taken Λ = 1, 3, 5 TeV

from left to right plots and the couplings of DM and quarks to the spin-2 mediator are the

same as cχ = cS = cu,d,s,c,b,t = 1 in all the plots. As a consequence, for a low Λ = 1 TeV,

the region where dark matter annihilation into a pair of spin-2 mediators explains the

correct relic density is almost excluded by direct detection, except for mDM . 2 GeV. The

resonance region with mG ∼ 2mDM survives the direct detection bounds. On the other
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Figure 4.8: Differential event rates for light fermion (left) or scalar (right) dark matter for

current experiments for Λ = 1 TeV and cχ = cψ = 1.
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Figure 4.9: The same as in Fig. 4.8, but for Λ = 3 TeV.

hand, for larger values of Λ = 3, 5 TeV, the more non-resonance region belowmDM ' 6 GeV

survives.
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Figure 4.10: Parameter space of light dark matter below 10 GeV. The gray, green and

purple regions are excluded by XENON1T, CDMSlite and DarkSide-50, respectively. We

took Λ = 1, 3, 5 TeV on left, middle and right, respectively. The other parameters are the

same as in Fig. 4.6.
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Chapter 5

Conclusions

In this chapter, there are some remarks about the conclusion and results obtained in this

work [6] and also a description of the future work that can be done exploring this model.

5.1 Conclusions

Direct detection limits on the interaction of DM-DM cross section are getting more re-

strictive with time and getting closer to the neutrino floor, as no signals of this interaction

has been observed. This result may seen a bit dark in our search for answers about the

origin and nature of DM but it still helps us to check the viability of the models proposed

as solutions of the mentioned problem.

After all the computation presented in the previous chapter using the EFT techniques

and the tools and packages that helps us performing the direct detection rates more easily,

we obtained the expansion of the corresponding DM-SM interactions from the GMDM

model that are important for the computation of direct detection limits. We passed using

gravitational form factors from the quark world to the nucleon interaction.

From this expansion and then doing the corresponding matching of each term with

the non-relativistic operators for nucleons, we found that this operators have specific

correlations, depending on the spin of dark matter. We have to note 2 things: that in

the fermion case a new term appeared in the expansion that needs to be explore in more

detail and that in the vector case, we found also new terms that could not been match

with the NR operators known for vector particles and these terms need to be study more

deeply.

All this work, done for each type of DM, allow us to compute and show the differential

event rates for spin-independent DM-nucleon scattering at current direct detection exper-
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iments and for some mock experiments that explore the use of different material in the

construction of the corresponding detector.

We were able to impose bounds on the parameter space (for the mass and couplings

of the spin-2 mediator) of the GMDM model coming from the limits on the DM-SM

cross section obtained from the latest and more restrictive direct detection experiment

XENON1T and also we used the relic density condition as well as the LHC dijet searches

to set extra constrains on this parameter space. We did this for the heavy (mass order of

WIMPs) and for light DM cases.

We can extend this work doing a more detail exploration of the interaction terms

in the mentioned cases (fermion and vector DM) as the way how to deal with them to

further computations (for example, if it is possible to extend the current tools to include

them) and also we need to include the interaction with the gluons, as in the first place we

just worked with the quark terms, that will add some extra information and then we can

explore a bit more the rates for the current or future experiments to see if any of them

can be able to see a signal produced by this process.
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