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Abstract

Ultra-cold atoms have small kinetic energy and are therefore very sensitive to external

fields that act on the atoms. By having fine control over the positioning of the ultra-cold

atom cloud we can use the atom cloud as a sensor for magnetic fields. By imaging these

atom clouds we can infer a spatial map of the magnetic field. This spatial map will have

a resolution proportional to the distance between the source of the magnetic field and the

atom cloud which can be on the order of 0.1 µm. In the first half of the thesis, we invest-

igate the two colour magneto-optical trap. This is a simple technique that can lead to a

multiplicative increase in the number of atoms in a magneto-optical trap with a simple

change to the optical setup. Using the two colour magneto-optical trap we have observed

an increase of 5 times in the number of trapped atoms. An increase in the number of

atoms in a magneto-optical helps with later cooling processes that are not lossless such as

evaporative cooling which in turn helps the realisation of the ultra-cold atom microscope.

In the second half of the thesis, we demonstrate how a 2d current density can be recovered

from a 2d magnetic field map generated by the ultra-cold atom microscope. We then

go on to show the sensitivity and responsivity of a cold atom cloud and a Bose-Einstein

condensate. We then use the results of the previous section to simulate the measurement

of currents in a silver nanowire network. Properties of the silver nanowire network can

be simulated and aid in showing the abilities and limitations of the ultra-cold atom mi-

croscope. We found that the ultra-cold atom microscope can directly measure currents

in low-density silver nanowire networks. In a high-density silver nanowire network, the

average distance between the wires becomes too small to resolve. Hot-spots, areas of high

current density can still be identified using the ultra-cold atom microscope. The ultra-

cold atom microscope could then be used as a tool to aid the research look to use silver

nanowires in many industrial applications such as touch screens.
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Chapter 1

Introduction

This thesis presents work we undertook towards the implementation and operation of

the Bose-Einstein condensate microscope (BEC-M). The BEC-M will be used to measure

magnetic fields, on a microscopic scale and spatially close to the sample of interest. In this

introduction, we will introduce the key concepts used in this thesis and give an overview of

this work in a broader context. To understand the BEC-M we break the subject down into

two major fields. First, we will give an overview of the steps involved in forming a BEC

and consider other applications of the BEC. Second, we discuss magnetometers, using the

BEC as a magnetometer and using the BEC magnetic magnetometer to measure currents

in a silver nanowire network.

1.1 Magneto-optical traps

The magneto-optical trap (MOT) is the first stage used in the process of cooling atoms

down towards condensing into a BEC. Magneto-optical traps were first demonstrated in the

late 80’s and early 90’s [Raab et al., 1987, Phillips and Metcalf, 1987, Chu, 1992]. This

work led to a Nobel prize in physics for Steven Chu, Claude Cohen-Tannoudji and William

D. Phillips in 1997 [Phillips, 1998b]. Recently there has been research into a variety of

novel methods for generating the magneto-optical trap. These include, a pyramid MOT

[Pollock et al., 2009], 3d printed traps [Saint et al., 2018], grating MOT [Lee et al., 2013].

A review of the different trap types can be found in [Barker et al., 2019]. The goal of

these techniques is to trap and cool the atoms to as low a temperature as possible. The

temperature in a magneto-optical trap is limited by re-scattering of light this temperature

is called the Doppler temperature [Metcalf, 1989]. The Doppler temperature depends

on the atomic species and for 87Rb the Doppler temperature is 146 µK. There are sub-
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Doppler cooling mechanisms that allow the Doppler temperature limit to be surpassed

[Steane and Foot, 1991]. The final number of atoms trapped in a the MOT is governed by

the interplay between the rate at which atoms are loaded into the trap and the rate atoms

are lost from the trap [Prentiss et al., 1988, Marcassa et al., 1993]. Further details are

provided in chapter two where we present the theory behind laser cooling and Magneto-

optical trapping.

In chapters three and five we investigate a different type of MOT called the two colour

(or dual colour) magneto-optical trap due to the second frequency of cooling light. In

chapter three we discuss theoretical models to try and explain the effects of the two colour

MOT and in chapter five we present the results of experiments done on the two colour

MOT. The two colour magneto-optical trap (TCMOT) was first demonstrated by Qiang

et al. in [Qiang et al., 2012]. This method involved adding a second cooling beam to

the standard setup. More details on the specifics of the setup can be found in chapters

four and five. The TCMOT gave a in a three-fold increase in the number of atoms in

the trap. In this thesis we further the investigation into the two colour magneto-optical

trap, characterising the effects of the second cooling laser and showing the results of

experiments to further the theoretical understanding of the two colour magneto-optical

trap. There are other ’Two colour’ experiments however these use a different scheme to

the one outlined in this thesis [Metcalf and van der Straten, 2001] [Kawasaki et al., 2015].

In [Metcalf and van der Straten, 2001] the two frequencies of light are used in an optical

trap and are far detuned from resonance. In [Kawasaki et al., 2015] each frequency of

light has the opposite circular polarisation to excite systems with a small or zero Zeeman

splitting in the excited state.

1.2 Bose-Einstein condensate

In 1995, the first BEC was demonstrated experimentally. This was first done by Eric Cor-

nell and Carl Wieman [Anderson et al., 1995] and was shortly followed by Wolfgang Ket-

terle [Levi, 2001]. This work was awarded a Nobel prize in physics in 2001 [Ketterle, 2002,

Cornell and Wieman, 2002]. A Bose-Einstein condensate (BEC) occurs when the wave

function of the individual atoms begin to overlap and can be described as one continuous

wave function. The measure of wavefunction overlap is given by the phase space density.

The phase space density is a unit-less measure of the number of atoms occupying a given

volume in phase space. To increase the atoms phase space density we can either reduce

the momentum of the atoms and therefore temperature or decrease the spatial distance



4

between the atoms via methods such as increasing the tightness of the trap. The transition

from a thermal atom cloud to a BEC occurs at a critical temperature that depends on

the density of atoms in the trap [Dalfovo et al., 1999]. The critical temperature is usually

hundreds of nano-Kelvin. To go from the micro-Kelvin temperatures of the MOT down

to the temperatures required for the BEC a different cooling mechanism other than laser

cooling is needed. This cooling is done via evaporation which is the same mechanism that

cools hot drinks. The atom cloud is suspended using magnetic fields and by applying a

radiofrequency field at a precise frequency the hottest atoms are allowed to escape which

lowers the average temperature of the remaining atoms [Petrich et al., 1995]. The process

of evaporative cooling inherently loses atoms from the trap, therefore, requiring a large

initial collection of atoms in the magnetic trap.

1.3 Magnetometry

Magnetometry is the measurement of magnetic fields. There are two types of magneto-

meter, scalar and vector. A scalar magnetometer measures the magnitude of the magnetic

field whilst a vector magnetometer can resolve the individual components of the magnetic

field. Today there is a wide range of magnetometers to choose from, a review of mod-

ern magnetometers is given in [Edelstein, 2007]. Current magnetometers have a pay off

between high sensitivity and resolution so that magnetometers with high spatial resolution

will have poor sensitivity and magnetometers with high sensitivity will have poor spatial

resolution. Optically pumped magnetometers have been shown to have a sensitivity of less

than 1 fTHz1/2 but with a resolution of 2 mm [Kominis et al., 2003]. On the other end of

the scale Nitrogen vacancy (N-V) center magnetometers has a micro-Tesla sensitivity and

∼ 500 nm [Rondin et al., 2014, Tetienne et al., 2017].

1.3.1 Bose-Einstein condensate microscopy

The Bose-Einstein condensate microscope (BEC-M) was first demonstrated to measure

magnetic fields in 2005 [Krüger et al., 2005]. Since then the BEC-M has been used as a

magnetometer on several occasions [Yang et al., 2017, Vengalattore et al., 2007]. Ultra-

cold atoms have been shown to lie in the middle of this sensitivity-resolution payoff with

pico-Tesla sensitivity and micrometre resolution [Wildermuth et al., 2005, Supplementary

Figure 2]. To measure magnetic fields from a sample of interest, the BEC can be held

in a so-called 1d magnetic trap, where the gradient of the magnetic fields is large in two

directions and small in the third. This has the effect of confining the atoms into a long
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thin cylinder. In the weak trapping direction, the atoms are sensitive to inhomogeneous

external fields in the direction of the weak trapping axis. The external magnetic fields

changes the local atom density of the BEC, this change in the local atom density is

measured using absorption imaging, which is covered in more detail in chapter four. By

measuring the changes in local atom density we can measure the external magnetic field.

In this configuration, the BEC is a one-axis vector magnetometer. The BEC could also be

placed in a 2d optical trap and measure a 2d scalar magnetic field, which has the advantage

of measuring and area simultaneously. The sensitivity of the BEC magnetometer depends

on the number of atoms in the BEC, the trapping frequencies and the resolution of density

variations. High-resolution imaging allows for variations as small as one atom per micron

to be measured. The magnitude of the density variations can be controlled by tuning the

strength of the interactions between the atoms [Chin et al., 2010].

1.4 Silver nanowires

The BEC-M is ideally suited for directly measuring the current in silver nanowires. Over

the last decade, the demand transparent conductors have increased at an unprecedented

pace. Currently, Indium tin oxide (ITO) is the most widely used transparent conductor.

Recently there has been a lot of interest in alternate transparent conductors to reduce

the demand for ITO [Minami, 2008] [Kumar and Zhou, 2010]. Silver nanowires (AgNWs)

and reduced graphene oxide/silver nanowire (R/AgNWs) networks have shown to be a

promising contender to ITO [Park et al., 2015][Hong et al., 2015].

However, there are still problems to overcome, such as junction burnout and wire drift

[Fantanas et al., 2018][Langley et al., 2014], before silver nanowires can replace ITO. Cur-

rently researches use conductive atomic force microscopy (CAFM) [Shaw et al., 2016],

lock-in thermography (LiT) [Sannicolo et al., 2016] and

Kelvin probe microscopy [Vinaji et al., 2009] to probe the properties of the AgNW net-

works. However, with such methods, it is not currently possible to directly measure the

current in the AgNW network on a microscopic scale. Direct measurements of current

flow in silver nanowires would allow effects such as the emergence of winner-takes-all con-

nectivity paths [Manning et al., 2018] and spontaneous changes in current paths due to

heating [Das et al., 2016] to be investigated. This would allow further development of

silver nanowires in industry.
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1.4.1 Measuring silver nanowires with the BEC-M

In chapter seven we go show the results of a simulation of the BEC-M measuring cur-

rents in a silver nanowire network. To directly measure the current paths in a silver

nanowire network we would move the atom cloud over the surface and measure the dens-

ity changes in the BEC. These density changes allow one component of the magnetic field

generated by the silver nanowires to be measured. The smaller the distance between the

BEC and the surface of the sample, the better the magnetic field can be resolved spa-

tially. This is due to the smoothing of the magnetic field as the distance to the source

increases [Roth et al., 1989]. The minimum distance between the BEC and the surface

is limited by the lifetime of the BEC near the surface. Effects such as the Casimir force

[Casimir and Polder, 1948] and Johnson Nyquist noise limits the lifetime of the BEC. The

rate at which a scan of the silver nanowires can be taken is limited by the rate at which

a BEC is made. This can be done in as little as one second [Rudolph et al., 2015]. Cur-

rently, each image of the BEC is destructive so that a new cloud needs to be formed for

the next run. Non-destructive measurement techniques such as Phase-contrast imaging

[Durfee and Ketterle, 1998] could be used to further increase the repetition rate of imaging

the atomic cloud.

1.4.2 Thesis layout

• Chapter 2: This chapter begins with a detailed description of light-atom interactions

and a derivation of the optical Bloch equations which is relevant for chapter 3. We

then go on to present theoretical concepts used in magneto-optical trapping.

• Chapter 3: This chapter uses the derivation of the optical Bloch equations in chapter

2 and modifies the equations to include a second light field. The consequences of

adding the second light field are then explored.

• Chapter 4: Presents a technical description and methods of the experimental ap-

paratus. We outline modifications required for the two colour magneto-optical trap

experiment.

• Chapter 5: In this chapter, we present the characterisation of the TCMOT. We then

present and discuss the results of the measurement of the force of the TCMOT.

Finally, we give a framework in which the TCMOT can be optimised for other ultra-

cold atom experiments.
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• Chapter 6: In this chapter, we give a theoretical framework for the ultra-cold atom

microscope. We outline the method to calculate the sensitivity and responsivity of

both the thermal atom cloud and the BEC. We then compare the thermal atom

cloud to the BEC-M and outline when to use thermal atoms instead of a BEC.

• Chapter 7: Silver nanowires are an interesting sample to test the BEC-M. In this

chapter, we first outline the steps used to simulate the silver nanowire network. We

then demonstrate how the current paths can be recovered from measurements of the

magnetic fields above the silver nanowires. We then show results of the simulations

of the BEC-M measuring the magnetic fields from silver nanowires. This includes a

comparison to CAFM data.

• Chapter 8: This chapter summaries the work done in the thesis and concludes with

a discussion on future work including a discussion of possible methods for solving

the unconstrained inverse problem that was outlined in chapter 7.

1.4.3 List of acronyms

• Magneto-optical trap (MOT)

• Two colour magneto-optical trap (TCMOT)

• Bose-Einstein condensate (BEC)

• Bose-Einstein condensate microscope (BEC-M)

• Acoustic optical modulator (AOM)

• Radio frequency (RF)

• Silver nanowires (AgNW)

• Atomic force microscope (AFM)

• conductive atomic force microscope (CAFM)

• Printed circuit board (PCB)



Chapter 2

Light atom interactions theory

The magneto-optical trap (MOT) uses lasers and magnetic fields to cool and trap atoms

and is a fundamental tool in cold atom experiments [Lu et al., 1996]. One of the main

topics covered in this thesis is the so-called two colour magneto-optical trap (TCMOT). It

is necessary to understand the theory behind the single colour MOT to gain insight into the

TCMOT. In this section, we will present the theory for a two-level atom interacting with

a light field using a density matrix formalism. It is still worth presenting a formalism that

will be used when applying these methods to the TCMOT. We will show how the density

matrix formalism is used to describe the cooling and trapping of the atoms using magnetic

fields and laser light. The methods will use a semi-classical approximation such that we

treat the light as a wave rather than individual photons. The majority of material in this

section is covered by [Metcalf and van der Straten, 2001, Foot et al., 2005, Steck, 2007,

Cohen-Tannoudji et al., 1998, Le Kien and Hakuta, 2004]. This chapter will also cover a

theoretical description of some of the experimental aspects of the MOT such as loading

rate and Zeeman splitting.

2.1 Light atom interactions

In this section we introduce the description of the two-level atom interacting with the light

field. We will use the density matrix formalism as described in [Cohen-Tannoudji et al., 1998]

to show how the state of the two-level atom changes when it interacts with a light field.

2.1.1 The two-level atoms

The two-level atom is a theoretical model used to gain insights into real atom-light in-

teractions. A two-level atom would have a single outer electron which can only occupy

8
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one of two energy levels, the ground state denoted by |g〉 and the excited state denoted

by |e〉 [Le Kien and Hakuta, 2004]. This is represented diagrammatically in figure (2.1).

The electron can also occupy a linear superposition of the ground and excited states

[Davis, 1996].

Figure 2.1: The energy diagram of the two level atom with an incident laser beam. The

ground and excited states are denoted by |g〉 and |e〉 respectively. ωeg is the difference

in angular frequency between the ground and excited states. ωL represents the angular

frequency of an incident laser beam and ∆ = ωL − ωeg.

The ground state and excited states have associated energy, Ee and Eg respectively.

It is often a standard practice to set Eg to zero. The Hamiltonian for a two-level atom in

[Cohen-Tannoudji et al., 1998, p. 388]

H0 =

h̄ωe 0

0 h̄ωg

 , (2.1)

where ωk = Ek/h̄. This Hamiltonian describes the two-level atom in the absence of an

external field and will remain the same thorough this section and in the two colour theory

section.

2.1.2 Wave function

The evolution of a quantum system in time is given by the time dependant Schrödinger

equation [Kosloff and Kosloff, 1983]. The time dependant Schrödinger equation is given
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by.

H |ψ〉 =
i

h̄

∂

∂t
|ψ〉 . (2.2)

The Schrödinger equation is linear with respect to the wave function |ψ〉, this means that a

solution to the Schrödinger equation can be expressed as [Metcalf and van der Straten, 2001]

|ψ〉 =
n∑
k=1

ck |φk〉 . (2.3)

Here |φk〉 are the eigen-states of the Schrödinger’s equation and ck is the probability

amplitude to find |ψ〉 in the state |φk〉. ck is a complex value that sets both the magnitude

and phase of the state |φk〉. n is the number of eigen-states the sysem has. The two level

system has two eigenstates and therefore n = 2. These probability amplitudes are usually

time dependant, for example, for the two level system the general solution is given by,

|ψ〉 = ce |φe〉+ cg |φg〉 . (2.4)

This only holds when the system is in a pure state [Metcalf and van der Straten, 2001]. If

the system is in a mixed state then a more complete formalism is needed. In the absence

of external fields the time evolution of ce and cg is [Le Kien and Hakuta, 2004]

ce(t) = e−ωetce(0)

cg(t) = e−ωgtcg(0).
(2.5)

The magnitude of ce and cg is constant but ce and cg rotate in complex space. The angular

frequency of the rotation for ce and cg is ωe and ωg respectively.

2.1.3 Density operator

In experiments we can not directly measure |ψ〉 and will instead measure the expectation

value for an operator [Cohen-Tannoudji et al., 1998, p. 353]. We then describe the system

in terms of its density operator

ρ = |ψ〉 〈ψ| . (2.6)

In the case of a pure state, ρ is given by,

ρij = cic
∗
j , (2.7)

where ∗ denotes the complex conjugate. The diagonal terms ρii = |ci|2 given the prob-

ability that the system is in state i. The off-diagonal terms give the coherence’s between

state i and j. The coherence is dependant of the phase difference between the two states

ci and cj . For the two level atom the off diagonal of the density matrix is,

ρeg(t) = ce(t)c
∗
g(t) = ce(0)cg(0)e−(ωe−ωg)t. (2.8)
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This rotates in complex space at a rate

ωeg = ωe − ωg. (2.9)

This result is used later in section (2.1.5).

When the system is described by a statistical mixture this definition of the density

operator no longer holds. The density operator is now defined as

ρ =
∑
k

pk |φk〉 〈φk| , (2.10)

where pk is the probability that the system is in state k. The two-level system the

density matrix is defined as

ρ =

cec∗e cec
∗
g

cgc
∗
e cgc

∗
g

 =

ρee ρeg

ρ∗eg ρgg

 (2.11)

2.1.4 Interaction Hamiltonian

The interaction between the two level atom and an incident light field is described by the

interaction Hamiltonian [Steck, 2007].

The general interaction Hamiltonian is [Metcalf and van der Straten, 2001],

HI = −~d · ~E, (2.12)

where ~d is the transition dipole matrix and ~E is the electric field. In the case of the light

field interacting with the two level atom the electric field is described as,

~E =
E0~ε

2
(e−iωLt + eiωLt). (2.13)

Here ~ε is the polarisation vector, E0 is the amplitude of the laser field and ωL is the

frequency of the light. The full interaction Hamiltonian is given by,

HI = − h̄
2

(|e〉 〈g|+ |g〉 〈e|)(Ωe−iωLt + Ω∗eiωLt). (2.14)

Here Ω is the Rabi frequency, |e〉 〈g| and |g〉 〈e| describe the coherence between the ground

and excited states.

For a more indepth derrivation of these equations see [Metcalf and van der Straten, 2001,

Steck, 2007]. As we saw in 2.1.3 |e〉 〈g| and |g〉 〈e| rotate in the complex plane at a rate

−ωL and ωL respectively. We perform a rotating wave approximation by expanding HI

and removing terms rotating at ωL + ωeg whilst keeping terms that rotate at ωL − ωeg we

find,

HI = − h̄
2

(
Ω |e〉 〈g| e−iωLt + Ω∗ |g〉 〈e| eiωLt

)
. (2.15)
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This equation describes the interaction of the light field with the two level atom. Com-

bining the interaction Hamiltonian with the Hamiltonian for a two level atom we find

H = H0 +HI = h̄

(
ωe |e〉 〈e|+ ωg |g〉 |g〉 −

1

2

(
Ω |e〉 〈g| e−iωLt + Ω∗ |g〉 〈e| eiωLt

))
(2.16)

We will use this equation in the next section to calculate the time evolution of the density

matrix and derive the optical Bloch equations.

2.1.5 Time evolution of the density matrix

The time evolution of the density matrix is given by [Bason et al., 2009]

dρ

dt
= − i

h̄
[H, ρ], (2.17)

where [.,.] denotes the commutation relation. As both H and ρ are matrices the commut-

ation relation is the difference in the multiplication of matrices.

dρ

dt
=

 − i
2(Ω∗ρege

iωLt − Ωρ∗ege
−iωLt) −iωegρeg + iΩe−iωLt(ρgg − ρee)

iωegρ
∗
eg − iΩ∗e−iωLt(ρgg − ρee) i

2(Ω∗ρege
iωLt − Ωρ∗ege

−iωLt)

 . (2.18)

We now have equations for the evolution of the elements of ρ̇.

ρ̇ee = − i
2

(Ω∗ρege
iωLt − Ωρ∗ege

−iωlt)

ρ̇gg =
i

2
(Ω∗ρege

iωLt − Ωρ∗ege
−iωlt)

ρ̇eg = −iωegρeg + iΩe−iωLt(ρgg − ρee).

(2.19)

We have not included ρge as ρge = ρ∗eg. We then perform a rotational co-ordinate trans-

formation to remove time dependant parts of equations (2.19)

ρ̃eg = ρege
iωLt. (2.20)

We now apply the transformation to equations (2.19), remembering that

˙̃ρeg = ρ̇ege
iωLt + iωLρ̃eg. (2.21)

Finally giving a set of time-dependent coupled differential equations,

ρ̇ee = − i
2

(Ω∗ρ̃eg − Ωρ̃∗eg)

ρ̇gg =
i

2
(Ω∗ρ̃eg − Ωρ̃∗eg)

˙̃ρeg = i∆ρ̃eg +
iΩ

2
(ρgg − ρee),

(2.22)

where ∆ = ωL−ωeg and so is negative for red detuned laser light. These equations describe

the two-level system interacting with a light field.
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2.1.6 Optical Bloch equations

In the previous section we described the interaction of the two level atom with a light

field. This picture has so far neglected decay into the ground state either by collisions or

spontaneous emission. In this derivation we only consider spontaneous decay. Spontaneous

decay is added in to these equations using the Lindblad superoperator [Steck, 2007]

dρ

dt
= − i

h̄
[H, ρ] + ΓD[σ]ρ. (2.23)

Where the Lindblad superoperator is defined as,

D[σ]ρ = σρσ† − 1

2

(
σ†σρ+ ρσ†σ

)
. (2.24)

In this case σ and σ† are |g〉 〈e| and |e〉 〈g| respectively. Using the matrix forms of |e〉 〈g|

and |g〉 〈e| we can now express the Lindblad superoperator as

D[|e〉 〈g|]ρ =

ρee ρeg
2

ρ∗eg
2 −ρee.

 (2.25)

Putting together equations (2.23), (2.25) and (2.19) and combining ρgg and ρee into

the difference between populations, w = ρgg − ρee we finally get,

ẇ = Γ(1− w)− i

2
(Ω∗ρ̃eg − Ωρ̃∗eg) (2.26a)

˙̃ρeg = (i∆− Γ

2
)ρ̃eg +

iΩw

2
. (2.26b)

These equations can be solved numerically and have been shown in figure (2.2)
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Figure 2.2: The figure shows the probability an atom is in the excited state for two different

detunings of the incident light. Initially the system oscillates with a frequency Ω. These

oscillations exponentially decay leaving the system in a steady state. In both cases Ω = Γ.

Whilst a fully analytic solution to these equations is not possible

[Metcalf and van der Straten, 2001], it is possible to find an analytic solution to the

steady-state values of the system. These are given by [Metcalf and van der Straten, 2001].

w(t→∞) =
1

1 + s
. (2.27a)

ρeg(t→∞) =
iΩ

2(Γ
2 − i∆)(1 + s)

, (2.27b)

where

s =
s0

1 + (2∆
Γ )2

(2.28)

and

s0 = I/Is =
2|Ω|2

Γ2
. (2.29)

Here, I is the intensity of the incoming light field and Is is the saturation intensity which

depends on the exact transition so s0 is a measure of saturation.
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2.1.7 Scattering rate

The scattering rate is defined as the excited state decay time multiplied by the probability

the atom is in the excited state [Phillips, 1998a],

γs = Γρee. (2.30)

As the probability of being in the excited state ρee is limited to 1
2 , the maximum scattering

rate is limited to Γ/2. The scattering rate affects several different mechanisms involved in

laser cooling.

Figure 2.3: Scattering rate as function of detunting for different s0 values. The detuning

and scattering rate are measured in units of Γ. At larger optical intensities the peak

scattering rate approaches the saturation values of Γ/2.

At higher optical power the width of the peak increases, this is called power broaden-

ing. Figure (2.3) shows that for low optical power s0 < 10 that the scattering rate is a

Lorentzian function with a linewidth of Γ. This scattering rate concept will be important

when considering the TCMOT as it is fundamental in understanding the effects of the two

colour MOT and the push beam.

2.1.8 Force on a two-level atom

The main motivation behind the theory above is to derive a model for the force on an atom

from a laser with a given frequency and intensity. We could begin with a naive model
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for the force on a two-level atom. First, when an atom absorbs a photon the momentum

carried by the photon, h̄k, is transferred to the atom [Nichols and Hull, 1903]. Second,

the atom re-emits the photon. The direction of the re-emitted photon from the atom is

random. Over a large number of emissions the momentum kick from this photon will

average to zero. The rate at which one absorption and re-emission cycle happens is Γρee.

Combining all these elements the force, which is equal to the rate of momentum transfer,

is given by

F = h̄kΓρee. (2.31)

However, this does not give a complete picture of force on the two-level atom. Instead,

a more complete picture can be derived by first, starting with the Ehrenfest equation for

the force,

F = 〈F 〉 = −

〈
∂H

∂x

〉
. (2.32)

Using the result that 〈A〉 = Tr(ρA) and that H0 has no spatial dependence we find that,

F = − h̄
2

(
∂Ω

∂x
ρ∗eg +

∂Ω∗

∂x
ρeg

)
. (2.33)

To calculate ∂Ω/∂x we use a logarithmic derivative. The derivative of the log of a function

is,
∂ log(f(x))

∂x
=
∂f(x)/∂x

f(x)
. (2.34)

We can rearrange this equation for ∂f(x)/∂x,

∂f(x)

∂x
= f(x)

∂ log(f(x))

∂x
. (2.35)

The logarithmic derivative is used in cases where it is easier to calculate the derivative

of the log of a function than the function its self. Applying the logarithmic derivative to

∂Ω/∂x we find,
∂Ω

∂x
= (qr + iqi)Ω, (2.36)

where,

(qr + iqi) =
∂ log(Ω)

∂x
. (2.37)

The separation of ∂Ω/∂x into real and imaginary parts is motivated by the end result of

this derivation . Substituting equation (2.36) into (2.33) gives,

F =
h̄

2

(
qr

(
Ωρ∗eg + Ω∗ρeg

)
+ iqi

(
Ωρ∗eg − Ω∗ρeg

))
. (2.38)
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The corresponding equation in [Metcalf and van der Straten, 2001], equation (3.9) is miss-

ing a factor of 1/2 which has been included here. For a travelling wave with an electric

field given by

E(x) =
E0

2

(
ei(kx−ωt) + e−i(kx−ωt)

)
. (2.39)

From this we find that,
∂ log Ω

∂x
= k (2.40)

therefore qr = 0 and qi = k. A physical way to interpret qr and qi is that qr is the gradient

of the amplitude of the wave, as is found in standing waves. Where qi is the gradient of

the phase of the wave, as has been shown for the travelling wave [Steck, 2007]. We can

substitute equations (2.27b) for the steady state solution for ρeg into (2.38) we find that

F = h̄kΓρee, (2.41)

which is the same result as was found from the naive view of the momentum transfer. The

naive approach will break down in the next chapter when we consider two light fields with

different but similar frequencies.
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Figure 2.4: Force from a single light field with Ω = Γ and ∆ = −Γ. Initially the two force

calculations give different values however once the Rabi oscillations have decayed the two

equations give the same result.

Doppler shift of the incident light is incorporated into the system of equations by

adding a velocity-dependent term to the detuning of the laser from resonance. In one
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dimension the velocity dependant frequency shift is,

∆± = ∆∓ k · v. (2.42)

The ∓ term accounts for the direction of the two counter-propagating beams as the fre-

quency shift of the light is directional dependant. Using this modification we can calculate

the force from a pair of counter-propagating beams on a two-level atom. The intensity of

the beams is assumed low enough that the scattering rate from each beam can be treated

separately.
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Figure 2.5: Force on an atom as a function of velocity. There are two counter-propagating

beams. Each beam has an intensity of Ω = Γ and a detuning of ∆ = −Γ. The sum of the

forces as a function of velocity is depicted by the black curve. When the velocity of the

atoms is less than Γ/k then the force is approximately linear

The force applied by the incident beams on the atoms depends on velocity of the atoms.

This dependence leads to the deceleration of the atoms. Without positional based trapping

the velocity dependant deceleration of the atoms is called optical molasses. To trap the

atoms spatially we add a linear magnetic field gradient to induce a position dependence

on the force. This is covered in more detail in (2.2).
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2.1.9 Doppler temperature

It should be noted that the concept of temperature does not strictly apply to atoms in

a MOT as it is not in equilibrium. Instead, in later sections, we will use temperature

as a way to express the energy using the relation kbT = mv2 where kb is the Boltzmann

constant. Optical molasses cools the atoms to a finite temperature where the random

re-emissions of photons can no longer be averaged to zero. The re-emission of the photons

causes the atoms to undergo a random walk in momentum space. The heating rate is

given by [Foot et al., 2005]

Ėheat =
h̄2k2

2m
γρee. (2.43)

Here h̄2k2/2m is the energy the atom gains from each re-emitted photon and γρee is the

rate at which this process happens. At the cooling limit, the velocities of the atoms are

small therefore the force can be expanded to the first order in velocity giving,

F = −αv, (2.44)

and the cooling rate is given by

Ėcool = F v̇ ' −αv2, (2.45)

where α is approximated by the linear part of the force velocity curve.

−αv ' 8h̄k2∆s0

Γ(1 + s0 + (2∆
Γ )2)2

v. (2.46)

The negative sign arises from ∆ if the laser were blue detuned then the force would

accelerate the atoms away from the centre of the trap. Equating the heating rate with the

cooling rate we get an expression for the steady-state velocity, which we express as v2 so

that it is easier to relate to the temperature.

v2 =
h̄2k2

2mα
ρee. (2.47)

The heating rate gives a limit to how much the atoms are be cooled by laser light. For

an ideal system with s0 = 2 and ∆ = −Γ/2, which minimises the laser cooling limit is

called the Doppler temperature and is given by TD = 146 µK. This assumes there are no

sub-Doppler cooling mechanisms, such as Sisyphus cooling [Foot et al., 2005], that allow

for colder temperatures to be reached in experiments.
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2.2 Magneto-optical trapping

Atoms in optical molasses will undergo a random walk in phase space [Foot et al., 2005].

The random walk will eventually result in the atoms leaving the cooling region. To trap

the atoms spatially there needs to be a restoring force pushing the cold atoms back towards

the centre of the MOT.

2.2.1 Hyperfine splitting

It was shown by Pieter Zeeman [Feynman, 1965] that the hyperfine levels of an atomic

transition can be split by an external magnetic field. A more complete model for this

splitting can be found at [Foot et al., 2005], however, the majority of the details are not

necessary for the understanding of laser cooling. Below 0.1 T the distance between Zeeman

sub-levels is a linear function of the magnetic field. If we consider the two-level atom in

one dimension, the magnetic field causes the excited state to split into 3 energy levels.

Figure 2.6: A breakdown of a MOT setup in 1d. The red arrows represent the incident

laser beams on the two-level atom. The dotted line represents the energy level of the laser

light. Each beam is circularly polarized. The σ+ light will interact with the mf = +1

state whilst σ− will interact with mf = −1 state. At the position x1 the Zeeman shift has

changed the excited state energy levels such that the σ− light is closer to resonance than

the σ+ light.

In a magnetic field with a linear gradient, the magnitude of the energy levels splitting
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is position-dependent. The linear gradient is generated by a pair of anti-Helmholtz coils

[Bergeman et al., 1987]. Consider an atom at rest in figure (2.6), the σ− beam is closer to

resonance than the σ+ beam due to the splitting of energy levels. This causes an imbalance

in the force, accelerating the atom towards the centre of the trap.

The detuning of the light is now expressed as [Metcalf and van der Straten, 2001],

∆± = ∆∓ k · v ± µ′Ax

h̄
, (2.48)

here A is the gradient of the magnetic field which for most MOT experiments is between

8 G/cm−15 G/cm. µ′ is the effective magnetic moment [Metcalf and van der Straten, 2001]

For a real ensemble of atoms all magnetic states need to be considered when calculating µ′.

When the atoms are being cooled and trapped the velocity distribution becomes squeezed.

The atoms are pushed towards the velocity class such that ∆± = 0 where the force between

the two counter-propagating beams is zero. This squeezing is highlighted in figure (2.7)

in the next section.

2.2.2 Capture velocity

In a MOT the diameter of the beams defines a region in which the atoms are decelerated.

An atom is captured when it enters this region with a velocity lower than a capture velocity.

The most basic way to describe the capture velocity is to consider an atom that enters the

trapping region at vc and reaches the other side of the trapping region with v = 0 where

the atom will be pushed back into the trap. Atoms with a velocity v > vc will escape

the trap. As the trapping force is non-linear and depends on both position and velocity

it is very difficult to analytically calculate the capture velocity of a MOT. The capture

velocity can, however, be calculated numerically in 1d. To calculate the trajectories of

the atoms in 1d we use Matlab’s ode45 function to numerically solve a set of differential

equations. The ode45 function numerically solves differential equations using a 4th or 5th

order Runge-Kutta formula [Dormand and Prince, 1980]. In one time step we solve the

optical Bloch equations stated in (2.26a) and (2.26b), the force on the atom using equation

(2.41) and the equations of motion of the atom assuming the acceleration on the atom is

a = F/m where m is the mass of the atom and F is the force calculated from (2.41).
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Figure 2.7: Trajectories for a range of different initial velocities. The initial position is

−26 mm from the centre of the trap. Only the trajectory with an initial velocity of 60 m/s

is not trapped. The capture velocity for this setup is 55.7 m/s.

Numerical estimation of the capture velocity is done using a shooting method. By

calculating the first position at which a trajectory has a velocity of zero, or if the trajectory

leaves the trapping region, we can use an interval bisection method to iterate the initial

velocity to find vc.
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Figure 2.8: (a) Shows the trajectories for atoms whose velocity is close to the critical

velocity. The simulation stops when the velocity is zero or the time exceeds the allowed

run-time. The trapping region is ±26 mm Only the last point exceeded the set time for

the simulation. The trajectories continue into the negative velocities, this is not shown on

the plot as these trajectories are trapped. (b) Shows the position at which an atom, for

a given initial velocity, reaches zero velocity. The blue line indicates the boundary of the

trapping region. The area below the line is within the trapping region. Any atom that

reaches zero velocity before exiting the trapping region is trapped. The final position as a

function of initial velocity can be fitted to an exponential allowing for an estimate of the

capture velocity to be calculated.

In figure (2.8b) we show that the final position is very sensitive to initial conditions once

the atoms have enough velocity to pass through the centre of the trap. The exponential

fit is not perfect which suggests either some numerical errors or some real deviation of the

system from an exponential behaviour.

2.2.3 Loading rate

In our experiments using the MOT, the atoms are cooled and captured from a hot back-

ground gas. In other experiments, a 2d MOT is used to pre-cool the atoms before the

atoms are pushed into the trap. The rate at which the atoms are captured, along with

other loss rates that we will go into more detail in this section define the steady-state atom

number in the trap. The number of atoms in a MOT changes according to the differential

equation [Steane et al., 1992],

Ṅ = R− γN − βN
2

V
. (2.49)

This equation can be understood as a constant loading rate from the background
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vapour R competing with the two-loss rates, first, γ is the loss due to collisions with

the hot background vapour. This is a two-body loss rate depends on the background

pressure of the chamber and the number of atoms in the trap. The second loss rate term

βN2/V is due to light assisted collisional losses. Here β is the light loss rate and V is the

volume of the atom trap. The light loss is caused by an atom re-emitting a photon that is

absorbed by a second atom. The second atom can gain enough energy from this collision

to leave the trap. This loss rate is a so call three-body loss rate as it relies on three

elements interacting. For a more in-depth look into cold collisions, the reader can read

[Weiner et al., 1999]. For a MOT containing more than 106 atoms the average density n̄

becomes constant [Overstreet et al., 2005] therefore we can re-write the equation (2.49)

as,

Ṅ = R−N(γ + βn̄). (2.50)

Assuming N(0) = 0 so that the trap starts empty, the differential equation can be solved

to give

N = Rτ(1− e−t/τ ), (2.51)

where the characteristic time τ equals

τ = 1/(γ + βn̄). (2.52)

The characteristic time is the average time an atom spends in the MOT. The loading rate

and loss rates determine the steady-state atom number in the MOT. This will become

more important when considering the two colour MOT and why the two colour MOT can

support a larger atom number. Measuring γ and β directly is usually done by turning off

the repump laser and measuring the decay in atom number [Marcassa et al., 1993]. The

atom number in the MOT then decays, the characteristic time of this decay will change

from quadratic to linear. In our experiment, we can not turn off the background pressure

so suddenly but we will show that β can be measured using the two colour MOT.

2.3 Phase space density

The phase space density is a measure of the number of atoms within the thermal wavelength

and is an important parameter when it comes to Bose-Einstein condensation.

The wavelength of a thermal atom is given by [Proukakis et al., 2017],

λT =

(
2πh̄2

mkbT

) 1
2

. (2.53)
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Phase space density is then defined as [Townsend et al., 1995],

PSD = n0λ
3
T , (2.54)

In a MOT experiment depending on the atomic species, the value of the phase space

density is usually on the order of 10−5 − 10−6. The phase space density is limited by

both the temperature and the maximum density of atoms in the trap. The density in the

MOT is limited by photon re-absorption. This can be limited in a few ways as shown

in [Vengalattore et al., 2004, Radwell et al., 2013, Rosi et al., 2018]. This formula will be

further used in chapter 6 when looking at the formation of BECs.



Chapter 3

Two-colour theory

3.1 Introduction

The two colour magneto-optical trap (TCMOT) was first demonstrated by Cao Qiang et

al in [Qiang et al., 2012]. In this experiment, they took a standard magneto-optical trap

setup and added a second cooling beam. This setup led approximately to a three times

increase in atom number. We later replicated the experiment and also found an increase

in atom number [Gadge, 2018]. To try and optimise the setup we need a theoretical

understanding of the TCMOT. We will use the theoretical framework presented in chapter

two and apply it to the TCMOT to gain further insight into the underlying mechanisms.

In chapter five we will try to use the theory outlined in this chapter to explain the results

from the two colour experiment.

3.2 Two colour Magneto-optical trap

We will look at the two colour theory following the steps as outlined in chapter two. To

simplify these calculations, we use the same two level model used in chapter two. The

energy level diagram for the two level TCMOT is shown below in figure (3.1). We define

the difference in frequency between the two beams as,

δ = ω1 − ω2. (3.1)

The mean detuning of the two beams is given by ∆ which is the same ∆ as in the single

colour case.
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Figure 3.1: The energy level diagram for the TCMOT (not to scale). The ground and

excited state and denonted by |g〉 and |e〉 respectively. The two frequencies are separated

by δ. ∆ is the mean detuning of the two beams and is equivalent to detuning ∆ in the

single colour case in (2.1). The total detuning from resonance for the two cooling beams

is ∆± δ/2.

3.3 Equations of motion

In this section, we derive the equations governing the two-level atom in the presence of

two light fields. In the first part of the section, we show that there are multiple ways to do

the co-ordinate rotation as was done in 2.20. We then choose one of the transformations

for the rest of the chapter and show that the choice of transformation does not affect the

measurable outcomes such as force and excited-state probability.

3.3.1 Modified Hamiltonian

We begin by adding a second light field to the interaction Hamiltonian and applying the

same rotating wave approximation done in (2.15),

HI = − h̄Ω1

2

(
|e〉 〈g| e−iω1t + |g〉 〈e| eiω1t

)
− h̄Ω2

2

(
|e〉 〈g| e−iω2t + |g〉 〈e| eiω2t

)
. (3.2)

This time the rotating wave approximation removes the two fast rotating terms with a

similar frequency. HI is now the sum of the two laser fields that are interacting with the

two-level atom.

We then follow the same procedure in section (2.1.6) to calculate the optical Bloch

equations. Starting with the master equation,

dρ

dt
= − i

h̄
[ρ,H] + ΓD[|e〉 〈g|]ρ, (3.3)
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we then find,

ρ̇ee = − i
2

(
(Ω1e

−iω1t + Ω2e
−iω2t)ρ∗eg − (Ω∗1e

iω1t + Ω∗2e
iω2t)ρeg

)
− Γρee

ρ̇gg =
i

2

(
(Ω1e

−iω1t + Ω2e
−iω2t)ρ∗eg − (Ω∗1e

iω1t + Ω∗2e
iω2t)ρeg

)
+ Γρee

ρ̇eg = −

(
iωeg +

Γ

2

)
+
i

2
(Ω1e

−iω1t + Ω2e
−iω2t)(ρgg − ρee).

(3.4)

In these equations there are no interaction terms between the two laser beams. We now

have two physically sensible choices when it comes to choosing a rotating frame of reference.

First, we can rotate with one of the lasers such that

ρ̃eg = ρege
iω1t. (3.5)

Which leads to,

ẇ = Γ(1− w)− i

2

(
(Ω1 + Ω2e

iδt)ρ∗eg − (Ω∗1 + Ω∗2e
−iδt)ρeg

)
(3.6a)

˙̃ρeg = (i∆− Γ

2
)ρeg +

iw

2
(Ω1 + Ω2e

iδt). (3.6b)

In this case ∆ = ω1 − ωeg. These equations are equivalent to transforming the Rabi

frequency such that,

Ω→ Ω1 + Ω2e
iδt. (3.7)

Second, we can choose the rotation to be the average of the two laser frequencies

ρ̃eg = ρege
i(ω1+ω2)t/2. (3.8)

Which leads to

ẇ = Γ(1− w)− i

2

(
(Ω1e

−iδt/2 + Ω2e
iδt/2)ρ∗eg − (Ω∗1e

iδt/2 + Ω∗2e
−iδt)ρeg

)
(3.9a)

˙̃ρeg = (i∆− Γ

2
)ρeg +

iw

2
(Ω1e

−iδt/2 + Ω2e
iδt/2). (3.9b)

This is equivalent to transforming the Rabi frequency such that,

Ω→ Ω1e
−iδt/2 + Ω2e

iδt/2. (3.10)

Ultimately there is no physical difference between the two cases. Both transformations

give the same value for real observable such as the probability of being in the excited state

and the force on the atom.
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Figure 3.2: Probability of being in the excited state for the single colour light field (blue)

and two light fields (black). The two colour solution to ρee no longer reaches a steady-state

and oscillates at a rate of δ. It is worth noting that the average ρee for the two colour case

is always lower than that of the single colour case. Here Ω1 = Ω2 = Γ and ∆ = −3Γ.

Figure (3.2) shows the difference between the two colour and single colour probability

of being in the excited state ρee. First the ρee no longer reaches a steady-state equilibrium

but instead, ρeg oscillates at a rate of δ. The oscillation arises from the modulated intensity

due to the beat note between the two cooling beams. When the intensity of the incident

light becomes very small the system decays to the ground state, then as the intensity

increases, the system is driven into the excited state. Usually, in cold atom experiments,

the optical power incident on the atoms is much greater than the saturation intensity of

Is. When the optical power is low, the long term state of ρee is approximated using a

cosine fit. However, at larger optical powers this approximation breaks down.
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Figure 3.3: Comparison between two colour and single colour with Ω = 20Γ and for the

two colour Ω1 = Ω2 = Ω/2. The cosine approximation has broken down but the period

of oscillation has not changed. We see that ρee tends towards the limit of 1/2 with some

oscillations which have a frequency of Ω.

In figure (3.3) we can see that the area under the two colour curve is less than that

of the single colour. This implies that the atom spends less time in the excited state

in the TCMOT. In all these simulations we have assumed that the laser frequency is

monochromatic. This approximation leads to some nonphysical results as δ → 0 there is

a discrete step between the average ρee in the single colour case and the two colour case.

In a real experiment, we expect a smooth transition from the single to the two colour

MOT. In the experiment, the laser has a linewidth on the order of 1 kHz. This linewidth

would serve to smooth out the transition. Unfortunately, we have not found anything in

the literature where the laser linewidth is not treated as monochromatic.

3.3.2 Rotating frame transformation

When deriving the equations that describe the time evolution of the density matrix we

made a transformation in equation (2.20) and in (3.5,3.8). The transform applies a rotation

to the coherence term of the density matrix ρeg so that only slowly varying terms remain.

In the single colour case, the choice of rotation frequency is obvious. However, in the two

colour case the choice of transformation is arbitrary but we need to be sure that our choice
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of transform does not affect physical variables such as the probability that the two level

atom is in the excited state.

0 10 20 30 40 50

-0.4

-0.2

0

0.2

0.4

(a)

0 10 20 30 40 50

-0.4

-0.2

0

0.2

0.4

(b)

Figure 3.4: Comparison between two different choices of the rotation. The black curve

using the rotation frequency used in (2.20). The red dashed line shows the effect of

increasing the frequency of the transformation by a small amount ε. With the small

change in frequency ρeg is no longer constant but instead rotates in the complex plane. In

this case ε = Γ/2.(a) and (b) shows the real and imaginary components of ρeg respectively.

In figures (3.4a) and (3.4b) ρ̃eg is a stroboscopic measure of ρeg. While choosing a

different frequency for the transform of ρeg → ρ̃eg can lead to an apparent change in ρeg

measurable parameters such as ρee should remain unchanged. This is shown in figure 3.4a

and 3.5b where we measure ρee and the force from the laser respectively. When considering

the TCMOT there is no longer a clear choice for the transformation frequency as there

are now two intuitive choices for the transformation frequency. These choices are covered

in more detail later in the chapter, here we are checking that our choice of transformation

does not change the physical result.
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Figure 3.5: (a) Probability of the two level atom being in the excited state ρee for both

transforms. (b) Force on the two-level atom for both transforms. There is no difference

between the two choices of rotation rate. Note the legend indicates which transform was

used for each line.

Here, as expected, we have shown that the frequency of the co-ordinate transformation

does not effect physical parameters of the system. This is an obvious result but needed to

be checked for completeness.

3.4 Force in 1d

With a numerical solution for ρ̃eg we can now calculate the force on the atom in 1d. As

ρ̃eg no longer reaches a steady-state, we have yet to find an analytic expression for ρ̃eg. We

follow the method outlined in (2.1.8) remembering that Ω has been redefined in equation

(3.10). Also that the density matrix ρ no longer has a steady state.
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Figure 3.6: Force on the two-level atom that is at rest from one light field pushing the

atom in the negative x-direction. The force was calculated using 2.38 and 3.9. The

force oscillates at a rate of δ. It is worth noting that the force periodically becomes

positive. A positive force means that the light field becomes attractive. Intuitively this

seems impossible as from a quantum perspective this would indicate photons with negative

momentum. The average of the force, which is measured between the two red lines to

capture two full oscillations is non-zero, as shown by the red dotted line. In this plot

δ = Γ/2, ∆ = −3Γ and each beam has equal power with Ω = Γ.

Here we see that the force on the atom oscillates with a non-zero average force. How-

ever, the force does at times become positive. On the timescale at which the atoms move

the force will undergo many oscillations, We can, therefore, average the force over many

cycles. Again following the example set in section (2.2.1) we can now add in the velocity

and position dependence to the equations by modifying the ∆ giving,

∆ = ∆± v · k ∓ µ′B. (3.11)

We can now compare force-velocity curves between single and two colour in one di-

mension as we did in figure (2.5).
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Figure 3.7: Force vs velocity, for the two colour case the force is time-averaged over several

periods. The two colour curve is taken at δ = 3 MHz. The two colour force is lower at all

points than the single colour force. The gradient of the force for small v has decreased in

the two colour case. This gradient is a measure of α the damping rate in the MOT. The

peak force in the two colour case is at the same location as the single colour as δ is to

small for the peak to split.

In figure (3.7) we find that the force is lower at all velocities. For small velocities, the

damping rate is given by the gradient of the force around v = 0. In figure (3.8) we show

how the gradient around v = 0 depends on δ.
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Figure 3.8: Gradient of the force about v = 0. as δ increases the gradient returns to a single

colour value. There is a small deviation at δ = 1 MHz which could be due to numerical

errors. When δ > 2Γ then the behaviour of the system becomes non-monotonic. The

discontinuity between δ = 0 and δ 6= 0 is due to the monochromatic nature of the light in

the simulation. At δ = 0 there is no beat note reducing the average force on the atom.

For any δ 6= 0 there is a beat note that reduces the average force on the atom.

As noted earlier, we find an unrealistic result where the gradient decreases discontinu-

ously between δ = 0 and the first measured value of δ. From section (2.1.9) the lower force

implies that the steady-state temperature of a TCMOT will be higher than the single

colour MOT. This is due to the reduced cooling rate of α which depends on the gradient

of the force for small velocities.

3.4.1 Capture velocity

In section (2.2.2) we showed how the capture velocity could be calculated. Here we will

follow the same calculations for the TCMOT. Due to the reduced force from the TCMOT,

we have predicted a lower capture velocity for the TCMOT than the single colour MOT.
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Figure 3.9: Capture velocity as a function of δ. At larger values of δ the capture velocity

does not change as rapidly as was shown in figure (3.8). It is interesting to note that the

capture velocity becomes larger than the single colour case at large δ. Here Ω1 = Ω2 = Γ/2

and ∆ = −3Γ. The discontinuity is due to the monochromatic nature of the light used

in the calculations. When δ 6= 0 there is a beat note that reduces the magnitude of the

average force on the atom.

Again we see the same drop in capture velocity as we saw in the gradient of the force.

Looking ahead to the results in chapter 5, we know that the peak atom number and

minimum force for the two colour MOT occur at δ ' Γ/2. None of the simulations done

in this chapter can predict why the minimum occurs where it does. This could be due to

the simulation not including the linewidth, or it could be due to another underlying factor

that we have not simulated.

3.5 Conclusion

In this chapter, we derived the optical Bloch equations for a two-level atom with two

incident light fields with a relatively small difference in frequency δ. To derive the equations

we followed the same steps shown in chapter two. We found that with two frequencies

the optical Bloch equations no longer reached a steady-state and instead oscillates with

a frequency δ. We then went on to explore how the measurable variable ρee changes

with different parameters such as beam power and δ. We then used the optical Bloch
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equations to calculate the scattering rate and force on an atom from the incident laser

light. We found an un-intuitive result that the force from a single beam can become

negative, and therefore attracting the atom towards the laser beam. The time-averaged

force was still calculated to be repulsive. This change in the force on the atom leads to

several predictions of the effect of the two light fields on the MOT. These changes are,

an increase in the volume of the MOT due to a reduction in trap stiffness, an increase in

temperature of the MOT due to the reduced damping co-efficient also increases the size

of the MOT. The capture velocity decreases due to a range of different effects. We will

use these predictions to direct the experimental investigations in chapter five.



Chapter 4

Experimental set up

In the previous chapters, we have discussed magneto-optical traps (MOT) in great depth.

In this section, we will look at the necessary experimental apparatus for creating a MOT.

As the setup used to generate a magneto-optical trap is complex we will break it down into

subsections and address each section in turn. The equipment used in these experiments

is highly sensitive to environmental factors such as temperature changes and vibrations.

To minimise vibrations effects the experiment is mounted on an optical table. An optical

table is a standard piece of equipment for many experiments involving free-space optical

elements. The optical table has pneumatic legs to dampen vibrations and equally-spaced

threaded holes so that experimental equipment can be clamped to the table. The lab is

also air-conditioned to maintain the temperature inside the laboratory. The experiment is

physically separated into two sections on the optics table, at one end there are the optics

which are used to prepare the laser light before the laser light is sent to the other end

of the optics table to the vacuum chamber via optical fibres. The experiments require

ultra-high vacuum (10−10mbar to 10−11mbar which corresponds to a mean free path of

106m [Berman, 2014] so that the majority of atoms pass through the chamber without

interacting with another atom.
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Figure 4.1: An image of our experimental setup with major components labelled.

Here we will give a brief overview of what each component is shown in 4.1 does. In

this chapter, we will go more in-depth into most parts listed here.

1. The imaging system uses two lenses with a magnification of ∼0.25 and a focal point

15 cm from the centre of the vacuum chamber. The light is collected by a camera

and the images are sent to a computer for processing.

2. The optical fibre brings light from the laser to the atoms. The MOT gun serves

three purposes. First, it circularly polarises the laser light, second, the MOT gun

expands the light from the fibre to a 2-inch diameter and finally, it collimates the

light from the optical fibre.

3. The vacuum chamber isolates the atoms from the environment and allows an ultra-

high vacuum to be maintained.

4. The mirror is at 45 degrees so that it gives better optical access for the vertical MOT

guns and means the MOT guns can be mounted horizontally.

5. The anti-Helmholtz coils generate a linear magnetic gradient that is used to trap the

atoms in the magneto-optical trap.

6. Compensation coils are used to cancel out the external magnetic fields inside the

vacuum chamber.
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7. The fluorescence detection system is used to capture light from the magneto-optical

trap.

8. The dispensers are used to inject rubidium into the vacuum chamber.

9. The imaging MOT gun shines weak on resonance light onto the atoms during ab-

sorption imaging. The imaging light is aligned with the centre of the atom cloud

and the imaging system.

Figure (4.1) shows the vacuum side of the experimental setup. The optical setup is

covered later in this chapter in section (4.1.3).

4.1 Laser systems

In chapter two we looked at how laser light is used to cool a two-level atom. In the

experiment, we use 87Rb as it has one outer electron which gives an energy level structure

that is similar to the two-level atom. However, there are extra complexities that arise

from interactions with the atomic nucleus. The energy level structure of 87Rb is shown in

figure (4.2).
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Figure 4.2: Energy level scheme for 87Rb D2 line [Steck, 2001]. The cooling light is locked

to the 1× 3 peak. The frequency of the cooling light is then increased by 191 MHz to be

20 MHz red detuned from the F ′ = 3 energy level. The frequency of the imaging light is

increased by 211.8 MHz to be on resonance with the F ′ = 3 energy level. The repumper

light is locked to the F ′ = 1 peak, the frequency is then shifted up by 157 MHz to the

F ′ = 2 energy level.

We use the F = 2→ F ′ = 3 transition to cool the atoms, and this transition is therefore

named the cooling transition. There is a small chance for the atom will be excited in the

F = 2→ F ′ = 2. In this state, the electron can decay back into the F = 1 state where it

can no longer be addressed by the cooling laser. Due to the lack of interaction with the

cooling light this state is called a dark state. Whilst the rate at which atoms fall into the

dark state is low the rate is still high enough that it needs to be compensated for. To move

the atoms out of the dark state we use a second light source. The repump light excites

the atoms from the F = 1→ F ′ = 2 state where the atoms can spontaneously decay back

into the F = 2 state.

4.1.1 Laser locking

The laser light for the experiment is generated by a pair of TApro lasers from Toptica in

a separate laser lab. These lasers can output 3 W and have a frequency range of 660 nm

to 1495 nm. The cooling laser is locked to the 1× 3 peak and the repumper laser is locked

to the F ′ = 1 peak. The repumper and cooling light is coupled into separate optical
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fibres which take the laser light to the experimental setup. Approximately 80 mW of

repumper light is sent to the lab which is sufficient to meet the power requirements of the

experiment. The laser lab cannot provide enough cooling light for the experiment, using

a Toptica BoosTA pro the 30 mW of cooling light from the laser lab is amplified to 2.6 W

and maintains the frequency of the seed light.

4.1.2 Acoustic optical modulators

To be able to perform an ultra-cold atom experiment we need to be able to finely control the

frequency of the lasers. The frequency of the light is controlled using an acoustic-optical

modulator (AOM). The AOM is comprised of a crystal and a resonator that creates a

standing wave in the AOM crystal. The standing wave acts as a diffraction grating that

can increase or decrease the frequency of light passing through the crystal depending

on the order of diffraction [Donley et al., 2005]. The frequency of the standing wave is

controlled by a radio frequency (RF) input to the AOM. The efficiency of the AOM can

be controlled by the power of the RF and the angle of the AOM to the incident light. The

AOM in the experiment is set up in a double pass scheme so that changing the frequency

of the AOM does not change the position of the beam. A description of the general set

up and usage of an AOM can be found in [Donley et al., 2005] [McCarron, 2007]. The

AOM also acts as a fast switch that stops the laser light from reaching the experiment.

In the two colour experiment, we want to maximise the frequency range over which the

AOM efficiency remains constant. We found that to maximise the range over which the

power remains constant we needed to minimise the cable that connects the AOM to the

RF driver. This is due to impedance miss matches between the cable and the AOM

[Stutzman and Thiele, 2012].
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Figure 4.3: (a) Optical power after a single pass through the AOM. There are two drops

in power one around 90 MHz and 105 MHz. The distance between the drops in power

increases as the RF cable length is decreased. (b) Close up of the range used in the two

colour experiment. The short cable has the smallest change in power over the frequency

range.

Figure (4.3a) shows how the efficiency of the AOM changes with frequency. The

efficiency is calculated by measuring the power in the laser light before and after the

AOM. The AOM was optimised for 95.5 MHz. There are sharp drops in power that move

further apart in frequency space when the cable length is shortened due to a miss-match

in impedance between the AOM driver, cable and AOM.

4.1.3 Optical layout

The experimental setup we use a six beam MOT. In this configuration, three pairs of

counter-propagating beams of light are made to overlap in the centre of the chamber.

Each beam of light has the same optical power and is circularly polarised. To get the six

beams of light with equal powers and control the frequency of the laser light we use a

collection of optical elements outlined in figure (4.4).
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Figure 4.4: Optical layout for the two colour experiment. The laser light from the BoosTA

is split into four AOM lines using polarising beam splitter cubes. The light from cooler

one and cooler two are first mixed and then separated into 6 optical fibres. The push

beam and imaging beams are coupled into separate fibres. The imaging AOM is kept off

during the MOT loading due to changes in AOM efficiency when the AOM is warming

up. Due to this the shutter is placed before the imaging AOM rather than after as is the

case for the other beams. The repump light, the orange line is coupled into the far left

fibre coupler with orthogonal polarisation to the cooling light.

The repumper frequency is shifted by an AOM from F ′ = 1 to F ′ = 2. The repumper

light is then coupled into the left-most optical fibre along with the cooling light. The

cooling light (red) from the laser lab is coupled into the BoosTA where the light is amplified

to 2.6 W. The intensity profile of the BoosTA has multiple lobes and is difficult to get good

fibre coupling efficiency with such an intensity profile. The telescope is used to reshape

the light from the BoosTA to be more circular. The laser light from the BoosTA is split

into 4 sections by half-wave plates and polarising beam splitter cubes. The majority of

the power goes into cooler 1 and cooler 2. A small amount of optical power (> 1 mW goes

to the imaging beam and push beam. The push beam is used to measure the forces on

the MOT as explained in section (5.3.2). Excess power is absorbed by a high power beam

dump at the end of the line of polarising beam splitter cubes. Cooler 1 and cooler 2 are

combined with polarising beam splitter cubes shown in fig (4.5).
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Figure 4.5: Close up on the setup to mix the two cooling lasers. Cooling laser 1 (Green)

and cooling laser (2) is spatially overlapped at cube 1. The outputs at cube 2 have equal

power and equal polarisation for each cooling beam. The black lines indicate half-wave

plates used to control the polarisation of the beams.

The two cooling beams of light are equally split into six paths and coupled into optical

fibres. Before the optical fibres, we placed a PBS to clean up the incoming polarisation.

Adding the polarisation cleaning cube can not be done in beam one due to the repumper

having orthogonal polarisation to the cooling lasers, a PBS here would reflect the repumper

light rather than transmit the repumper light and so stop the repumper light from reaching

the atoms. A half-wave plate is used to align the polarisation of the laser light to the fast

axis of the optical fibre. This minimises the polarisation fluctuations caused by stress in

the fibre.

To get an accurate measure for the time of flight, we need to be able to quickly turn

the lasers off. Whilst the timing is controlled by a computer the physical act of turning

the laser off combines two methods. First, the AOM can be turned off so that all the

optical power is in the 0th order where light is then blocked. The switching time of the

AOM is on the order of ns, however, a small amount of light can leak through the AOM

and reach the experiment. To completely block the light we use a shutter which can be

triggered remotely. There is a delay of a several ms between when the shutter receives a

signal and when the shutter is fully open or closed. This delay is on the order of 10 ms

and can vary depending on the direction of the shutter if it is opening or shutting. These

delays are incorporated into the control system to minimise the time delay. Combining

these two methods we gain both fast switching of the laser light and a high extinction of

the laser light.

Before the laser light enters the chamber the light is first passed through a ’MOT gun’

[Gadge, 2018]. This comprises of a series of optical elements. First, the light is circularly

polarised with a quarter-wave plate, then the light is expanded and collimated. The exact
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profile of the light from the MOT gun depends on the precise alignment of optical elements.

The average 1/e2 of the MOT guns used for cooling is 25.7 mm.

4.2 Imaging

In our experiment we use a combination of fluorescence imaging and absorption imaging.

Absorption imaging uses a weak on resonance laser light (imaging light) that is shone

on the atom cloud. By measuring the shadow the atoms leave on the intensity profile

of the imaging light the size and atom number can be calculated [Reinaudi et al., 2007].

Absorption imaging is a destructive imaging technique as the atom cloud is dispersed

during the imaging sequence. For each image, a new cloud needs to be loaded. We perform

absorption imaging several ms after the optical and magnetic fields have been turned off so

that the optical density of the MOT decreases and the cloud shape becomes more Gaussian

which allows for a more accurate estimation of the atom number. Absorption imaging can

not be used to do in trap imaging as it requires the atoms to be in the ground state to

interact with the imaging light. To measure the size of the atom cloud in the trap we

image the fluorescence profile of the atom cloud. In situ imaging of the atoms in the trap.

This is done to calculate the density of atoms in the trap which is an important parameter

in (5.2). A narrow band filter around 780.2 nm is used to reduce the levels of background

light. An alternative imaging method uses phase rotation of light to measure the atom

cloud in a magnetic trap in a semi non-destructive manner [Bradley et al., 1997].

4.2.1 Absorption imaging

Absorption imaging uses low power laser light that is resonant with the F = 2→ F ′ = 3

transition. The atoms in the atomic cloud absorb the light and re-scatters the light in a

random direction. This causes a drop in the intensity of the imaging beam over the size

of the atom cloud and the shadow is detected on a CCD camera. Absorption images are

taken in the absence of other light fields so that the atoms are in the ground state and

will not interact with the imaging light. Absorption images are also usually taken without

magnetic fields however the presence of a magnetic field can be accounted for by modifying

the atomic scattering rate. Combining the absorption images with reference light and dark

image we can calculate the optical density of the atom cloud [Smith et al., 2011].

Images were acquired with an Image source camera (DMK 23U618) which has 640x480

pixels and each pixel is 5.6 µm × 5.6 µm. Each pixel has 8bits of memory so each pixel

reads between 0 and 255. reads between 0 and 255. Calibration of the imaging system was
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done by fitting the centre of mass of an atom cloud to the parabolic trajectory when falling

under gravity. We found the magnification to be 0.259 where we expected a magnification

of 0.25.

Figure 4.6: (a) Atoms image: Imaging light is absorbed by the atoms causing the dark spot

on the image. (b) Light image: The light image is taken to measure the intensity profile

of the imaging light. (c) Dark image: This image is taken so that the background light

can be subtracted out. (d) Optical density image: This is the final result of an absorption

image. By fitting this image to a Gaussian we can estimate the number of atoms in the

cloud. Each image is 13.84 mm× 10.38 mm.

In figure (4.7) we scan the frequency of the imaging light and estimate the atom

number. Using the measured atom number we can calibrate the frequency of the imaging

beam by calculating the frequency at which we find the largest atom number. When the

frequency of the imaging beam is on resonance with the F = 2 → F ′ = 3 transition the

atoms will maximally scatter the light (see section 2). This can also be used to measure

the linewidth of the F ′ = 3 energy level.
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Figure 4.7: Estimated atom number vs the frequency of the imaging light. The blue line is

a fit of a Lorentz profile with a linewidth of 5.9 MHz. The frequency of the imaging AOM

was set to where the observed atom number is highest. This corresponds to a frequency

of 106.5 MHz

4.2.2 Temperature

An important property of an atomic cloud is the temperature of the atoms. To measure

the temperature of the atom cloud we remove the trapping fields. The atom cloud falls

under gravity and expands ballistically. By fitting the optical density profile of the cloud

to a 2d Gaussian function the size of the atom cloud can be calculated.

Figure 4.8: Optical density images of atoms in free fall. The centre of mass of the atoms

follows a parabolic trajectory as the atoms accelerate under gravity. The atom cloud

expands and becomes less dense as the time of flight increase. This atom cloud has an

average temperature of 13.4 µK. The colour bar denotes the magnitude of the optical

density.

The expansion of the cloud can be described by a convolution of the atoms momentum
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and initial position. The size of the atom cloud after a time of flight t is given by

σ(t)2 =

√
σ2

0 +
kBT

m
t2. (4.1)

Here σ(t) is the size of the atom cloud after expanding for a time t, σ0 is the initial size of

the atom cloud, T is the temperature of the atom cloud, m is the atomic mass and kB is

the Boltzmann constant. By measuring the size of the atom cloud (σ) at a range of time

of flights, we can calculate the gradient and therefore the temperature. For a large time

of flight, the thermal term begins to dominate over the initial cloud size and the gradient

of σ asymptotically approaches kBT/m.
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Figure 4.9: The expansion of the atom cloud in time of flight. At early times σ0 dominates

and at later times the expansion of the atom cloud becomes dominant. The temperature

was measured to be 12.8 µK in the y-direction and 13.6 µK in the x-direction.

As the atoms are free-falling the maximum time of flight is set by the field of view. The

field of view is limited by the windows to the vacuum chamber. In the experiment, the

maximum time of flight was ∼ 30 ms before the atom cloud became significantly clipped

by the field of view.

4.2.3 Fluorescence imaging

In the two colour MOT experiment, we measure the volume and density of the atom

cloud. Due to the high temperature of the atom cloud in the two colour MOT (see (5.2.3)
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the cloud would expand rapidly when the fields were turned off for absorption imaging.

To accurately measure the size of the atom cloud in the trap without measuring the

temperature of the MOT we use fluorescence imaging. In fluorescence imaging we collect

the light that has been re scattered from the atom cloud. To do this we focus the re-

scattered light from the MOT onto a camera or photodetector. The images were taken at

the end of the sequence when the atom cloud was fully loaded. Some consideration needs

to be given to the scattering rate of the atom cloud between the single colour and two

colour MOT when looking at the images as we expect the two colour scattering rate to be

reduced by two-colour effects.
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Figure 4.10: (a) In trap fluorescence image for a single colour MOT (b) In trap fluorescence

image for a two-colour MOT at δ = 0. The in trap images give a more accurate value

for the size of the atom cloud. The in-trap cloud has a less Gaussian profile that can be

detrimental when estimating the volume.

The images in figures (4.10a) and (4.10b) show that the atom cloud has a roughly

Gaussian profile with some minor deformities. The fluorescence light was captured for

100 µs, light and dark images were also taken for reference.

4.2.4 Fluorescence detection

Measurement of the fluorescence from the MOT can be done in real-time. This is done

by capturing the fluorescence light onto a photo-diode. The photo-diode returns a voltage

proportional to the fluorescence. The voltage is then read and displayed by an oscillo-

scope. The amount of fluorescence is proportional to the number of atoms in the trap

[Jooya et al., 2013]. An absorption image is still required to calibrate the output voltage

to the atom number.
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Figure 4.11: Magneto-optical trap loading curve. When the loading sequence beings at

∼ 15 s the voltage increase suddenly due to the background light. The signal increases in

proportion to the number of atoms in the trap. The loading time was 180 s. There is a

visible discretisation of the signal due to limitations of the camera.

Figure (4.11), shows the fluorescence as atoms are loaded into the trap. The loading

time is 180 s and the atom number in the trap saturates before 180 s. Initially, the lasers

are off and the output voltage is just from the background counts. When the light fields

are turned on the voltage suddenly increases, this is due to the photo-diode capturing

light that is scattered of the vacuum chamber. The voltage then increases proportionally

to the atom number following equation (2.49).

4.3 Magnetic fields

As discussed in Chapter 2, the MOT requires a linear magnetic field gradient to apply a

position dependant force to the atoms [Phillips, 1998a]. To generate this field we use a pair

of coils in an anti-Helmholtz configuration. A complete description of the anti-Helmholtz

fields can be found in [Youk, 2005]. The coils used to generate the anti-Helmholtz field

are 16 cm apart and generate a gradient of 0.269 G/cm/ampere.



52

0 2 4 6 8 10 12 14 16

Magnetic field gradient [G/cm]

0

0.5

1

1.5

2

2.5

3

A
to

m
 N

u
m

b
e
r 

x
1
0

7

Figure 4.12: Atom number as a function of magnetic field strength. The atom number

peaks at 12 G/cm. This corresponds to a current of 44.6 A, at this current the coils would

begin heating up. In the two colour experiments we used 35 A which corresponds to

9.4 G/cm.

The laboratory environment is subject to stray magnetic fields. For example, the

earth magnetic field ranges from 0.25 G−0.65 G and the orientation can vary depending on

location. These stray magnetic fields can cause the magnetic zero from the anti-Helmholtz

to drift from the centre of the vacuum chamber. To offset these external magnetic fields

we used 3 pairs of coils in Helmholtz configuration, one pair of coils for each Cartesian

axis. A Helmholtz coil generates a uniform constant magnetic in the region between the

coils pointing from one coil to the other. We refer to this constant field as a bias field.

The magnetic field zero is aligned to the centre of the trapping beams by using the atom

cloud. When the trapping field was turned off the atom cloud would expand uniformly

as there is no positional trapping. If there was an external field the magnetic field would

cause a directional bias of the force on the atoms. This extra force would accelerate the

atoms. By tuning the currents in the bias coils we could offset the stray fields so that the

atom cloud would expand uniformly.
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4.4 Vacuum system

The vacuum chamber is a 6.0” Spherical Octagon from Kimball physics1. The vacuum

chamber is mounted over the optical table on pillars to give full access to each direction

of the vacuum chamber (see fig (4.1)). We used a roughing pump and a turbopump

to evacuate the air out of the chamber then we gradually heat the vacuum chamber to

∼ 150 ◦C. This process is called bake out and is done to accelerate the rate at which

material is removed from the vacuum chamber walls. The bakeout was done for one and a

half weeks after which the chamber was allowed to cool. When the pressure in the vacuum

chamber dropped below 1×10−8mbar then the ion pump was turned on. This was done at

a temperature of 100 ◦C. The final pressure in the vacuum chamber was 5.5× 10−10mbar.

1https://www.kimballphysics.com/



Chapter 5

Results of the two-colour

magneto-optical trap experiment

5.1 Introduction

The two colour magneto-optical trap (TCMOT) was first demonstrated in

[Qiang et al., 2012] where the TCMOT was shown as a method to increase the number of

atoms trapped in a MOT. The increase in the number of trapped ultra-cold atoms helps

the formation of a Bose-Einstein condensate (BEC) in multiple ways. First, evaporative

cooling kicks atoms out of the trap to reduce the temperature of the remaining atoms in

the trap [Ketterle and Van Druten, 1996]; a larger starting number of atoms allows for a

faster and less efficient ramp to be used. A large atom number of atoms also increases the

thermalization rate of the atoms in the trap, which can be beneficial in the long term as

often the limiting factor in BEC experiments is the lifetime of the BEC. As we will show

in chapter 6 the sensitivity of the BEC microscope is also benefited by a larger number of

atoms. To better use the TCMOT as a source of atoms for the BEC-M we first needed to

get a better understanding of the properties and underlying mechanisms of the TCMOT.

Here we will present the experimental data in 3 parts: first, we go over the character-

isation of the physical properties of the TCMOT as a function of δ, the relative detuning,

between the two red lasers. We will then present the results from the so-called push beam

experiment which is used to directly measure the forces in the TCMOT. Finally, we will

show the results of experiments to allow the TCMOT to be utilised with other cold atom

systems. As before in chapter 3 we define,

δ = ω1 − ω2, (5.1)

54
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where ω1 and ω2 are the frequencies of the two cooling lasers. It should, therefore, stand

that the TCMOT should be the same for δ and −δ. However, due to experimental con-

siderations, this is never exactly the case. The introduction of the second frequency intro-

duces a beat note between the two light fields. The combined laser light has an intensity

modulation at a frequency of δ.

5.2 Characterisation of the two colour magneto optical trap

It is necessary to point out that we define two types of ”single colour” magneto-optical trap

(MOT). First, there is the single colour MOT which has only one cooling frequency. Second

is the pseudo-single colour MOT which has two cooling frequencies with a difference of

almost zero, however, we have measured a 120KHz difference in frequency the two cooling

frequencies. This frequency difference is small when compared to the non zero values of δ

so it is ignored. From here on when δ = 0 MHz we are using the pseudo-single colour case.

In these experiments, we choose the average frequency of the two cooling lasers to be

∆ = −2π×20 MHz. As it has been shown earlier by [Gadge, 2018], that the atom number

peaks for both single and two colour MOTs at ∆ = −2π × 20 MHz.

5.2.1 Atom Number

The most appealing aspect of the TCMOT and why it has been considered for research

is the increase in atom number in the trap. The change in atom number as δ is varied is

shown in 5.1.
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Figure 5.1: Relative atom number as a function of detuning. The atom number has been

normalised to the single colour atom number. The atom number peaks at ±Γ/2 = 3 MHz

and falls to a constant value as δ > Γ. The red line indicates the atom number for a true

single colour MOT. The maximum atom number was 2.92× 108. We observe a six times

increase in atom number at the optimal two colour detuning.

As shown in 5.1 we find that the peak atom number for the TCMOT is 5.9 times that

of the atom number in the pseudo-single MOTs. It is also interesting to note that the

TCMOT atom number tends to a constant value at large |δ|. This value is still larger than

the pseudo-single MOT atom number. This suggests that the mechanism that increases

the atom number in the TCMOT becomes frequency independent as δ becomes larger

than Γ. Here Γ is the linewidth of the atomic transition, for 87Rb = 2π × 6.07 MHz. This

will have a limit for very large values of δ. When δ ' ∆ as one of the beams will be on

resonance or blue detuned and no longer cool the atoms. The experiment could not reach

this limit due to limitations with the acoustic optical modulators (AOMs). In an ideal

experiment, we expect the atom number to be symmetrical about 0, however, there are

imbalances in atom number and relative position which are caused by two effects. First, if

there is an imbalance in the optical power between the cooling lasers then peaks become

mismatched in height. Second, there is a slight difference in the frequencies at 0 MHz of

120 kHz this causes a shift of the plot horizontally equal to 120 kHz.
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5.2.2 Loading rate

As the final atom number is given by the balance between loading rates and loss rates

we measured the loading curves of the TCMOT and found that the loading time of the

TCMOT is much longer than that of the single and pseudo-single colour MOTs.
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Figure 5.2: Relative loading rate curves for single (red) and two colour (blue) MOTs. The

loading curves have been normalised to the final single colour level. The loading times are

not normalised. The curves were fit to equation (2.49). In this setup, the loading time of

the two colour MOT is 4.9 times longer than the loading time of the single colour MOT.

This is proportional to the difference between the number of atoms in each trap.

We can see that in figure (5.2) at long times the atom number reaches a constant value

where there is an equal number of atoms entering and leaving the trap. Given the MOT

reaches a constant atom number we can re-arrange to give a relation between the number

of trapped atoms and the volume of the atomic cloud. Whilst it would be cluttered to

show all the loading curves for different values of δ we found that the loading times follow

the same trend as the atom number, where the loading time is maximum at δ = ±Γ/2.

We can measure the loading rate indirectly by fitting the curves to equation (2.49).
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Figure 5.3: Relative loading rates as a function of δ. The blue points are taken from the

fluorescence of the MOT and indicate a decrease in the loading rate as the atom number

decreases. The red points are normalised to the measured atom number and these points

don’t exhibit the same decrease in loading rate that the fluorescence. The last point on

the plot at δ = 10 MHz seems to be anomalous. This data was taken from one scan of

loading rates measured by fluorescence.

Figure (5.3) shows that when normalised by atom number the loading rate remains

constant. The decrease in the blue points where the atom number increase indicates

that the scattering rate has decreased which is predicted by theory. However, the actual

loading rate number of atoms loaded remains constant which goes against the theoretical

predictions. In section (2.2.3) we showed that the loading time τ depends on 3 factors.

First, the background loss rate γ, remains constant and only depends on the background

pressure which depends only on the experimental apparatus. The second mechanism for

the loss of atoms from the MOT is the light-induced losses. The light-induced loss rate

depends on two parameters first, β a time constant for the collisions and the average

density of the MOT n̄. Here we will go through the process to calculate the peak density

of the TCMOT. We measure the size of the atoms cloud by fitting the fluorescence image

to a 2D Gaussian. The results can be seen in figure (4.9).
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Figure 5.4: (a) σx and σy as a function of δ measured in the trap with fluorescence

imaging. The atom cloud is larger in the y direction that in the x direction and the

difference becomes more pronounced at larger values of δ. (b) Relative volume of the

MOT cloud as a function of δ measured in the trap with fluorescence imaging. The

volume was normalised to δ = 0 MHz and the peak volume was 19.5 mm3.

Due to the geometry of the magnetic field generated by the Helmholtz coils being

cylindrical symmetry, we assume that the atom cloud is also has a cylindrical symmetry

and therefore σx = σz. We can then estimate the volume of the atom cloud using,

V = (2π)3/2σ2
xσy. (5.2)

Equation (5.2) comes from estimating the density profile of a MOT to be Gaussian and

integrating over space [Barrett, 2017]. As the image only captures a 2d projection of the

cloud a full estimation can be difficult but has been attempted in [Overstreet et al., 2005].

Combining the atom number with the volume we can calculate the density of the TCMOT

as a function of δ.

n̄(δ) = N(δ)/V (δ) (5.3)

Following convention the density is measured in Atoms/cm3.
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Figure 5.5: Atomic density as a function of δ. We can see that the density is minimum at

δ = Γ/2. This shows that the volume of the TCMOT increases faster than the atom num-

ber in the TCMOT. At large δ we see the density tending to a limit of 3.5×1010Atomscm−3

which is lower than the single colour value

The density is a minimum at δ = 3 MHz ' Γ/2 however, the peak is broadened making

the exact value of δ where the minimum occurs unclear.

Again from equation (2.49) when Ṅ = 0 then we can show,

V =
β

R− γN
N2. (5.4)

If γN << R and β is constant then V ∝ N2.
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Figure 5.6: Volume as a function of N2 where N is the number of atoms in the trap. The

data was taken for a range of two colour detunings. The linear relation between N2 and

V implies that the light-induced loss rate β is constant.

We see in figure (5.6) that the gradient is between N2 and V linear. This implies

that the light loss collisions between two atoms β remains constant for both the single
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colour and TCMOT. This contradicts the proposed explanation for the two colour MOT

as presented by [Qiang et al., 2012]. The increase in atom number and loading time can

now be attributed solely to an increase in the volume of the trapped cloud. Therefore the

question becomes what causes the increase in this volume. As a first-order approximation

we can assume that in the steady-state the damping term is negligible we can now estimate

the size of the MOT in one direction using

kbT = κx2, (5.5)

here kb is the Boltzmann constant, T is the temperature of the atom cloud and κ is the

restoring force that pushes the atoms towards the centre of the trap. The large volume

can arise due to a weaker trap or a larger temperature of the atoms in the MOT.

5.2.3 Temperature

One of the defining characteristics of a MOT cloud is the temperature of the cloud. The

method to measure the temperature of an atom cloud is outlined earlier in chapter 3. In

figure (5.7) we measure the temperature of the atom cloud as a function of δ.
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Figure 5.7: Temperature vs detuning. The temperature peaks at ±2 MHz. This is different

from the peak atom number which peaks at ±3 MHz. There is a consistent miss-match

between the temperature in the x and y directions. This is due to the different trapping

frequency from the anti-Helmholtz coils which has twice the magnetic gradient in the

y-direction than the x-direction.
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There appears to be some disagreement between the value of δ where the peak tem-

perature occurs and where the peak atom number occurs. In all cases, the two colour

temperature is much higher than that of the single colour value of ∼ 100 µK. There is

the possibility that at δ = 3 MHz the very hot part of the atom cloud escaped before

being imaged. Even if the atoms could not leave the imaging region in the 5 − 15 ms of

time of flight, the density of atoms could fall enough such that the atoms could not be

differentiated from background noise.

5.3 Measuring the forces on the two colour MOT

To try and understand the TCMOT it is necessary to understand the forces that act on the

atoms in the trap. To achieve this we followed the examples shown in [Kim et al., 2005]

and [Xu et al., 2002]. In these papers, they displaced the atom cloud from its equilibrium

position using an on resonance beam. When the beam is turned off the atom cloud returns

to an equilibrium position undergoing damped harmonic motion. In a standard MOT set

up the damping coefficient, β, is such that the motion of the atom cloud is critically

damped. To observe oscillations of the atom position we minimise the power in the MOT

beams. In the usually operating regime of the MOT the light intensity is many orders of

magnitude than the saturation intensity. In this regime, the damping frequency exceeds

the trapping frequency leading to the atoms being over-damped.
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Figure 5.8: A basic top down image of the push beam layout. The push beam displaces

the atom cloud perpendicular to the imaging beam as indicated by the green arrow. The

push beam had a total power of 0.22 mW with a 1/e2 of 26 mm.

This set up is slightly complicated by the restoring force having components from two

of the cooling beams. Therefore the total force on the atoms will be roughly FT = 2
√

2F

depending on the exact angle of the beams to the atoms.

5.3.1 Damped harmonic oscillator theory

In this section we will go over the basic theory of the damped harmonic oscillator and

how we will use this to recover the damping coefficient α and the spring constant κ. The

motion of a damped harmonic oscillator is described by

mẍ+ αẋ+ κx = 0. (5.6)

As 5.6 is a homogeneous second order differential equation, 5.6 has a solution of the form,

x = eλt, (5.7)

where λ is is the roots of the auxiliary equation

mλ2 + αλ+ κ = 0. (5.8)

Depending on the magnitude of the damping constant α and the spring constant k the

system can be in one of three regimes. Which regime depends on the value of the discrim-

inant

ζ = α2 − 4mκ. (5.9)
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First, in the overdamped regime, the position of the oscillator decays exponentially

towards the point of equilibrium. This case happens when ζ < 0. Second, Critical damped

where the oscillator returns to the origin in the minimum time and ζ = 0. The third case

is where the oscillator is under-damped, ζ < 0. Here the oscillator will cross the origin

several times. An under-damped oscillator is described by,

x = Ae−γtcos(ω1t− φ), (5.10)

where

ω1 =
√
ω2

0 − γ2 (5.11)

and φ is a phase shift determined by the initial velocity of the oscillator. Equation (5.10)

describes an oscillator with an exponentially decaying amplitude. The frequency of the

oscillations are effected by the magnitude of the damping. To recover α and κ we use the

relations

α = 2γm, (5.12)

and

κ = ω2
0m. (5.13)

5.3.2 Push beam experiment

Using the theory in chapters two and three we can estimate the values of α and κ. The

functions for α and κ are taken from [Metcalf and van der Straten, 2001].

α =
|∆|
Γ

8h̄k2s0

(1 + s0 + (2∆±
Γ )2)2

, (5.14a)

κ =
∂B

∂x

|∆|
Γ

8ks0µ
′

(1 + s0 + (2∆±
Γ )2)2

. (5.14b)

Where ∆± is the same as in equation (2.48). Here ∂B
∂x = 1

2
∂B
∂z and µ′ is the effective

magnetic moment for the transition. In this theory, κ can be expressed as a function of

α as both α and κ are functions of the scattering rate of the atoms in the trap. The

scattering rate is given by,
|∆|
Γ

8s0

(1 + s0 + (2∆±
Γ )2)2

, (5.15)

which is a function of detuning and intensity of the light. Therefore, we can express α

and κ as,

κ =
µ′

h̄k

∂B

∂x
α. (5.16)
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This will come up again later in the results section when the two colour MOT breaks this

dependence of κ on α. The absorption images can give accurate information on the position

of the atoms however the density distribution is often not Gaussian especially for larger

displacements and turning points. This makes atom number estimates more inaccurate.

We fit the position of the cloud position using a 2d Gaussian. At large displacements, this

can become inaccurate due to the deformation of the cloud.

(a) 0 ms (b) 14 ms (c) 50 ms

Figure 5.9: Optical density images of the atom cloud for different release times which

shows the atom cloud in different stages of the oscillation. Each image is 480 pixels by 640

pixels or 10.4 mm by 138 mm. The relative detuning between the two beams was 3 MHz

(a) The atom cloud after loading with the push beam on. The atom cloud is displaced

from the usual equilibrium position. The image was taken 0 ms after the push beam is

turned off. (b) The atom cloud at the leftmost position in the oscillation. The cloud has

deformed so that there is a central region from which atoms stream out to the left. The

image was taken 14 ms after the push beam was turned off. (c) The final image was taken

50 ms after the push beam was turned off. The atom cloud is at the equilibrium position

and is no longer oscillating.

5.3.3 Method

To observe under-damped oscillations we minimised the optical power in the cooling beams

whilst still retaining 1×107 atoms in the trap. The optical power was 3 mW/beam/cooler

with a 1/e2 of 27.03 mm. The push beam had total power of 0.22 mW with a 1/e2 of

26.5 mm. The push beam was aligned to the centre and the atoms so that the height

displacement of the atoms by the push beam was minimised. At the MOT gun, the push

beam light was circularly polarised however the polarisation of the push beam light into

the optical fibre was not controlled therefore the final polarisation of the push beam light

was random. The coils had a current of 35 A which translates to a magnetic field gradient

of 9.8 Gcm−1. During the loading of the atom cloud, the push beam was on such that the
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atoms were loaded into the displaced position. The atoms were loaded in the trap for 90 s

after which the push beam was turned off. We take images at 2 ms intervals with 500 µs

time of flight. The short time of flight is necessary for fields from the anti-Helmholtz coils

to go to zero so that it does not interfere with absorption imaging. The initial position

the atom cloud varied by ∼ 1 mm due to changes in the spring constant. This change is

accounted for in the curve fitting when calculating α and κ.

5.3.4 Results

We found that α and κ have been reduced with a minimum at δ ' 3 MHz. This section

will go into more detail. Initially, in figure (5.10) we show a visual difference between the

pseudo-single case and the two colour at δ = 3 MHz case.

Figure 5.10: Top: Composite image of the atom cloud oscillating taken at δ = 0 MHz.

Bottom: Composite image of the atom cloud oscillating taken at δ = 3 MHz. The lower

plot δ = 3 MHz visually has a different spring constant and damping co-efficient

In the top image of figure (5.10) the atoms undergo a half an oscillation before reaching

a steady state. In the bottom image of figure (5.10) the atoms undergo several oscillations.

In both cases, the optical power remains the same so the only difference between the two

cases is the frequency difference between the two cooling lasers.

We aligned the push beam to the centre of the window and so that the beam passed
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through the window at 90◦ Whilst we only wanted oscillations to occur in one dimension

there was some oscillation in the y direction that we could measure and possibly some in

the z direction which would be towards the camera and therefore we could not measure

motion in that direction.
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Figure 5.11: 2d view of the atoms undergoing damped harmonic motion. This image gives

a more complete description of the motion of the atoms. The different values of δ also have

a slightly different trap centre in the y-direction. Note that the scaling of the two-axis is

not the same and that the Y-axis is ∼ 1/10 the size of the x-axis.

It can be seen here that the orthogonal displacements were greater in the 3MHz case.

We can attempt to re-create the 3d path of the atom cloud as it returned to the equilibrium

position. Now that we have compared individual cases we scan δ and measure κ and α.

We only ran the scan from δ = 0 MHz to δ = 7 MHz as beyond δ = 0 MHz the results

become consistent as demonstrated by the atom number.
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Figure 5.12: α and κ as a function of δ. Both α and κ have a similar profile to the atom

number, where the minimum value of α and κ happens at δ ' Γ/2.

Figure (5.12), α and κ both decrease as the atom number increases. The decrease in

the force was predicted in the theory, however, as shown in fig (5.3) that the loading rate

remains constant with δ. As the force decreases we would also expect a decrease in loading

rate. This phenomenon is as yet unexplained. As we showed in equation (5.16) that κ is

a function of α. To show the relation between the two and calculate the gradient, we plot

α vs κ.
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Figure 5.13: Plot of α vs κ. From equation (5.16) and the theoretical predictions, we

expect the fit of the data to pass through zero. The theoretical prediction was made by

estimating the light intensity and magnetic field gradient for the δ = 0 MHz case. This

was then used to simulate the atom trajectories. The trajectories were then fitted using

the same fitting routine that fit the data.

As shown equations (5.16) we expect κ = ηα, where η is some gradient that depends

on the scattering rate.

The result in figure (5.13) shows that κ = ηα + c where c is an offset. This offset

suggests that there is a trapping force that is independent of the scattering rate of the

TCMOT. One source of the additional spring constant could be from a positional trapping

force that arises from the beat note. The result is surprising but can help to explain the

properties of the two colour MOT and differentiates the two colour MOT from a single

colour MOT with lower beam power. The trapping force is higher than it would be for a

single colour MOT with the same value of α. The the lower value of α leads to a higher

steady-state temperature as shown in equation (2.45). The higher temperature increases

the size of the atom cloud as shown in equation (5.5). In the single colour, case decreasing

the intensity of the cooling beams would have a two-fold effect on the MOT size whereas
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the effect is reduced in the two colour MOT when comparing equal α values.

5.4 Utilising the two colour MOT

Atom number is not the sole desirable property of a cold atom source. It is useful to

maximise the phase space density of the MOT whilst retaining a large atom number as

methods such as evaporate cooling cause atoms to be expelled from the trap. The two

colour MOT has a large atom number but has a low density and a large cloud size. We

then looked for a way to increase the phase space density of the MOT.

5.4.1 MOT compression

In this section, we demonstrated a method for cooling and compressing the two colour

magneto-optical trap. We call this method ”MOT compression” as it reduces the size of

the MOT and increases the density of the MOT. This method returns the TCMOT to

a single colour MOT but retains the two colour atom number due to the two different

time scales over which the MOT returns to single colour. We will then go on to compare

properties of the two colour MOT with MOT compression and the single colour MOT.

After the MOT had completed the loading cycle we tried turning off one of the cooling

lasers and returning the other cooling laser to the optimum frequency (optimum for atom

number).
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Figure 5.14: A plot of the cloud size as after the second cooling frequency has been turned

off. The image insets are optical density images at different points in the MOT compression

stage. These images show visually the increase in density of the atom cloud. The single

colour MOT has an in-trap size of 0.9 mm. The blue line is a guide for the eye.

Here in figure (5.14) we see that the atom cloud collapses in size over ∼ 3 ms. This

compression is on the same time scale as the rate at which thermal atoms are cooled. The

decrease in size is due to the increase in α so that the steady-state temperature decreases.

This is true even when we turn off one of the beams to perform the MOT compression

as opposed to making the two cooling lasers have the same frequency. We can assume

that the MOT will have no memory of its initial conditions, therefore, we assume that the

atom number would return to the single colour value.
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Figure 5.15: Fluorescence measure with a photo-diode. The atom number is proportional

to the fluorescence and therefore the atom number. This then shows the rate at which

atoms leave the trap

We can see in figure (5.15) that over a long time the atoms begin to leave the trap.

The trend follows the loading rate differential equation (2.49) with different initial con-

ditions. In this case, the loss rates exceed the loading rate and the trap loses atoms at

an exponentially decreasing rate. Fortunately, the cooling and loss rate times scales are

vastly different so that there is a window in which the atom cloud can be loaded into a

magnetic trap.
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Single colour

Two colour

Two colour +

 MOT compression
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Figure 5.16: Left to right: Images taken at increasing time of flight 1-9ms with 2ms

spacing. Top: true single colour The density colour map goes from yellow (high density)

to blue (low density). The TCMOT + MOT compression has a higher central density

than both the TCMOT and single colour MOT after 11 ms time of flight.

Figure (5.16) shows optical density images for three different cases, single colour, two

colour and two colour with compression. The single colour and two colour with MOT

compression have both been cooled using optical molasses. We can see that the two colour
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MOT with compression has a higher optical density after 11 ms time of flight. The single

colour MOT and two colour MOT with compression have similar expansion rates whereas

the two-colour case the MOT seems to expand rapidly. This is because both atom clouds

have a similar temperature of ∼ 13 µK whist the two colour MOT is at a much larger

temperature (500 µK).

Single Colour Two colour

Atom Number 3.27× 107 1.95× 108

Temperature 13.6 µK 13.6 µK

Density 4.06× 1010 3.3× 1010

Atoms/cm3

PSD 5.33× 10−6 4.52× 10−6

Table 5.1: A comparison between the single and two colour magneto optical traps after

molasses cooling. The temperature and atom density are similar however the atom number

of the TCMOT is much larger than the single colour MOT.

This table shows that the two colour MOT can be used to get a similar phase space

density to that of a single colour MOT whilst having ∼ ×6 the number of atoms. The

density of the two colour MOT is lower than the single colour MOT by a small amount.

The two colour MOT was compressed using to a pseudo-single colour MOT rather than a

full single colour MOT. A full single colour MOT should recover an equal density as the

single colour MOT.

5.5 Conclusion

In this chapter, we presented a novel method of improving the atom number in the

magneto-optical trap. This was achieved by adding a second cooling beam that has a

slightly different frequency from the first cooling beam. We showed that this setup resul-

ted in a five to six times increase in the number of atoms in the trap. In the paper by Cao

Qiang et al [Qiang et al., 2012] they stated that the increase in atom number was due to

the increase in the trapping volume, which we have confirmed experimentally. In the pa-

per they attributed this to a change in the light-induced loss rate, we have experimentally

shown that this is not the case. We have found that the increase in volume is instead due
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to a reduction in the cooling efficiency of the TCMOT and a reduction in the stiffness of

the trap. The increased atom number is beneficial for the formation of BECs in multiple

ways. First, the increased atom number offsets the losses due to evaporative cooling and

secondly, the increased atom number and density result in shorter rethermalization time.

However, the TCMOT increases the time it takes to fully load atoms into the trap. This

can be offset by the use of a 2d MOT which is used in other experiments for the rapid

loading of the magneto-optical trap [Berthoud et al., 1998].



Chapter 6

Ultra-cold atom magnetic

microscopy

Magnetic microscopy is the measurement of magnetic fields on a microscopic scale. Ultra-

cold atoms make effective magnetometers due to the low energy scales needed to effect

the atoms [Wildermuth et al., 2005]. This makes the atoms very sensitive to magnetic

fields. By confining the atoms in a one-dimensional trap, we can make the atoms sensitive

to a single component of the magnetic field allowing ultra-cold atoms to act as a vector

magnetometer. We measure magnetic fields with the ultra-cold atom magnetic microscope

by measuring variations in atom density. This variation in atom density is proportional

to the magnetic field being measured which we will refer to as Bext. These magnetic fields

are usually generated by wires but can arise from other sources.

Magnetic microscopes are used in a range of applications from measuring current flow in

graphene [Tetienne et al., 2017] to measuring individual domains in [Nolting et al., 2000].

A range of magnetic microscopy techniques is summarised in [Freeman and Choi, 2001].

In this section, we will consider the use of ultra-cold atoms as a magnetic microscope

and derive the sensitivity and responsivity of a cold atom microscope in the thermal and

Bose-Einstein condensate (BEC) regime.

To accurately map out the spatial magnetic field of a sample we need fine spatial

control of the atom cloud. To achieve this control we can use magnetic traps or optical

traps and in some cases a mix of both. There is a verity of ways to create a magnetic

trap for the atoms, these include atom chips [Folman et al., 2008], permanent magnets

[Vuletic et al., 1998] and printed circuit boards (PCB) [Roy et al., 2017]. In this chapter,

we will consider the cold atom magnetic microscope that strongly confines atoms in two

axes and has weak confinement of the atoms in the third axis. In this type of trap, the

75
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atom cloud is elongated in the weakly confined axis so that the trap is effectively one

dimensional. We denote the magnetic field in the weak trapping direction as B‖ and the

magnetic field in the strong trapping direction as B⊥. Outside the trap centre B⊥ is much

greater than Bext.

In the strong trapping direction, the magnitude of the magnetic fields of the trap is

much larger than the external magnetic field component. Therefore, the atoms are not

affected by the external magnetic field in the strongly confined directions. In the weak

trapping direction, the external magnetic field component is larger than the trapping fields

and therefore can affect the spatial atomic density along the weak trapping axis. This

allows the ultra-cold atom microscope to act as a vector magnetometer as it measures one

direction of the magnetic field. The other directions of the magnetic field can be measured

by changing which axis is weakly confined.

The responsivity of a system is defined by the input-output gain of a detector system.

In the case of the cold atom microscope, we define responsivity as the magnitude of the

change in atom density with a change in the measured magnetic field. The sensitivity of the

system is a measure of what is the smallest change in the magnetic field that can be detec-

ted by the system. The sensitivity of the system depends on how precisely we can measure

the change in atom density. How precisely we can measure the change in atom density de-

pends on the imaging system measuring the atom density. Experiments have been shown

to measure better than 1 atom/µm in absorption imaging [Wildermuth et al., 2005].

The potential energy a neutral atom gains due to a magnetic field depend on the

magnetic sub-level the atom is occupying. An atom in a magnetic field has a Zeeman

energy [Foot et al., 2005], (a more in-depth discussion of Zeeman splitting is covered in

2.2.1),

V = mfgfµb| ~B|. (6.1)

Here mf is quantum number associated with the Zeeman state of the atom, gf is the

Lande g factor for an electron and µb is the Bohr magneton. The atoms If the atom

passes through a global zero in the magnetic field it can undergo a Majorana spin-flip

[Brink and Sukumar, 2006]. The spin-flip changes the state of the atom from a trapped

state to an anti-trapped state where the atom is expelled from the trap. To avoid Majorana

spin-flip losses a homogeneous offset field is applied to the trap to remove the magnetic

global zero.
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6.0.1 Ioffe-Pritchard trap

The potential of a harmonic trap is given by,

V = V0 +
m

2
(ω2
xx

2 + ω2
yy

2 + ω2
zz

2). (6.2)

where m is the mass of the atom in the trap and ωi is the frequency of the trap in the ith

direction. In the real world, it is not possible to generate a perfect harmonic trap over a

large volume. It is possible to generate a harmonic potential over a small volume with the

potential becoming more anharmonic away from the centre of the trap. We will look at the

Ioffe-Pritchard trap as an example of a trapping potential that approximates a harmonic

potential over a small region [Pethick and Smith, 2008]. We also add in a small external

field that will be measured by the cold atoms. As we mentioned in the introduction, B⊥

is much greater than Bext(x, y), therefore, we can say that Bext only has z dependence.

The Ioffe-Pritchard trap is defined as [Pethick and Smith, 2008, p. 64],

Btrap(x, y, z) = (B0 +Bext)


0

0

1

+B
′′


−xz

−yz

z2 − 1
2(x2 + y2)

+B
′


x

−y

0

 (6.3)

We then calculate the magnitude of the magnetic field |B|

|B| = (B0 +Bext)

√√√√1 +
r2

2(B0 +Bext)

(
B′

(B0 +Bext)
− B′′

2

)
, (6.4)

where r =
√

(x2 + y2). We then Taylor expand equation (6.3) to the first order giving,

|B| = B0 +Bext + r2

(
B
′

B0 +Bext
− B

′′

2

)
+
z2B

′′

2
. (6.5)

where B
′′

is the curvature of the trap, B
′

is the gradient of the quadrapole trap and B0 is

the magnitude of the offset field. These values relate to the trapping frequencies by,

ω‖ =

√
B′′mfggµb

m

ω⊥ =

√
mfggµb
m

(
B′

B0
− B′′

2

)
.

(6.6)

Usually, the trapping frequencies are defined from B
′

and B
′′

however in our simula-

tions we define the trapping frequencies then calculate B
′

and B
′′

for the Ioffe-Pritchard

trap. The total potential experienced by the atoms is,

V (r) = V0 + Vext +
1

2
mω2
⊥r

2 +
1

2
mω2
‖z

2, (6.7)
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where,

Vext = mfgfµbBext (6.8)

Here we have shown that the Ioffe-Pritchard trap approximates the harmonic trap over

a small volume. We have also shown that the perturbing magnetic field can be separated

from the trap. We can, therefore, consider variations in the external field as variations

in the potential of the magnetic trap without needed to add the fields in a vector. We

express the total magnetic field as

V (r) = V0 + Vext + V‖ + V⊥. (6.9)

6.1 Thermal atoms

In this section, we will show how thermal atoms in an Ioffe-Pritchard trap respond to a

weak external magnetic field. When the temperature of the atoms is above the critical

temperature of condensation, the density distribution of the atoms is described by the

Boltzmann distribution,

n(r) = n0e
−V (r)
kbT . (6.10)

The peak atom density n0 is calculated by dividing the total number of atoms N by the

volume of the atom cloud occupies. However, to get a finite volume we must use a non

zero value for ω‖. n0 is therefore given by,

n0 =
N∫∫∫

e

1
2mω

2
⊥r

2+1
2mω

2
‖z

2

kbT d3r

. (6.11)

This equation is solved using the identity

∫ ∞
−∞

e
x2

β dx =
√
πβ (6.12)

This then gives

n0 = Nω2
⊥ω‖

(
2πkbT

m

)− 3
2

. (6.13)

To go from a 3d density distribution to a 1d density distribution we integrate over the

transverse directions again using the identity above to get,

n1d(z) =

∫∫
n(r)dxdy =

2πkbT

mω2
⊥
n0e
−
V‖+Vext
kbT (6.14)

Figure (6.1) below shows the 1d density profile for atom clouds in the ideal potential at

three different temperatures.
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Figure 6.1: Gaussian distributions of thermal atoms in an Ioffe-Pritchard trap looking

along the transverse direction. As the temperature increases, the width of the atom cloud

becomes exponentially larger. Even at 100 µK the atom cloud becomes spread out over

many µm. This highlights the importance of the atom cloud being cold for microscopy.

ω⊥ = 2π × 2 kHz, ω‖ = 2π × 10 Hz and each cloud has 1× 104 atoms.

To recover the magnetic field in the transverse direction we can reverse this equation

to get

Vext = mfgfµbBext = −kbT ln(n1d) + V‖. (6.15)

Depending on the relative direction of the magnetic field the atom density can increase

or decrease. This equation breaks down when the external field becomes more than a

perturbation, such that Vext ∼ V‖.

6.1.1 Responsivity

The responsivity of the thermal atoms in the magnetic trap is defined as change in the

local 1d atom density n1d in the presence of an external field Bext. The responsivity is

expressed in a differentail form as shown in [Estève, 2004],

∂n

∂B
= −2πµbn0

mω2
⊥
e
−µbBext

kbT . (6.16)

Expanding all the terms we get

∂n

∂B
= −

(
m

2π(kbT )3

) 1
2

Nµbω‖e
−µbBext

kbT . (6.17)
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As Bext is a small perturbation we can expand equation 6.17 to first order to find

∂n

∂B
= −

(
m

2π(kbT )3

) 1
2

Nµbω‖(1−
µbBext
kbT

) (6.18)

Therefore the responsivity of the thermal atom microscope is dependent on both atom

number and temperature. There is also an interesting dependence on ω‖. The responsivity

and sensitivity improve with a larger ω‖ due to the higher density however many of the

approximations made so far have assumed that ω‖z = 0, so a larger ω‖ decreases the range

that we can consider this approximation to be true.

6.1.2 Sensitivity of thermal atoms to external magnetic fields

An external magnetic field will change the local atom density in a trapped thermal atom

cloud. This change in density can be measured and used to infer the change in the

external magnetic field. For thermal atoms in a magnetic trap the relationship between

atom density and the change in the external magnetic field is given by,

∆Bext = − ∆n1d

Nµbω‖

(
2π(kbT )3

m

) 1
2

. (6.19)

The minimum change in atom density is limited by the experimental imaging system.

The response of the atomic cloud to the external magnetic field can be tuned via, the

temperature of the atomic cloud, the total number of atoms in the atomic cloud which

increase the peak density and decrease the longitudinal trapping frequency. A 87Rb cloud

with 1× 105 atoms at 1 µK has a sensitivity of 5.81 nT. At 10 µK the sensitivity worsens

to 183.8 nK.

6.2 Bose-Einstein condensate

A Bose-Einstein condensate (BEC) is a state of matter which shows macroscopic quantum

behaviour. The theory behind Bose-Einstein condensation is covered in great depth in the

literature [Dalfovo et al., 1999, Pethick and Smith, 2008, Ketterle et al., 1998]. The BEC

forms when atoms in a gas cloud are brought to very low temperatures. To stop the atoms

that form the BEC from condensing into a solid at the low temperatures requires that the

gas cloud has a very low density. At very low temperatures atoms act less like particles

and more like waves. As we saw in (2.3) the equation for the de Broglie wavelength is,

λT =

(
2πh̄2

mkbT

) 1
2

. (6.20)
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As the temperature, and therefore kinetic energy, of an atom, decreases the thermal

wavelength of the atom increases. In a uniform medium, the condition for condensation

is,

n0λ
3
T = ζ(3/2) ' 2.61, (6.21)

where n0 is the density of atoms and ζ(3/2) is the Riemann zeta function evaluated at

3/2. The function n0λ
3
T is called the phase space density and is a unit-less measure

of the number of states in a unit volume in phase space. Equation (6.21) states that

the condensation condition occurs when there are 2.61 atoms per λ3
T in phase space.

Rearranging (6.21) for temperature we find that phase transition to BEC occurs when,

Tc =
2πh̄2

mkb

( n

ζ(3/2)

)2/3
. (6.22)

The temperature calculated in equation (6.22) assumes there are no interactions between

atoms. A repulsive interaction decreases the density of the atoms and would, therefore,

decrease the critical temperature, while an attractive interaction would increase the density

and increase the critical temperature [Wilkens et al., 2000].

6.2.1 Gross-Pitaevskii equation

The Gross-Pitaevskii equation (GPE) is a modified time-dependent Schrödinger equation

to include the interaction between atoms and is given by [Griffin et al., 1996],(
− h̄2

2m
∇2 + Vext(r) + g|ψ(r, t)|2

)
ψ(r, t) = ih̄

∂

∂t
ψ(r, t), (6.23)

where m is the mass of the atomic species. The non-linear interaction term g|ψ(r, t)|2 is

scaled by the coupling constant g which is given by,

g =
4πh̄2as
m

. (6.24)

Here as is the s-wave scattering length, which for 87Rb, as = 5.18 nm [Egorov et al., 2013].

A positive coupling constant g equates to repulsive interactions between atoms in the BEC.

It should be noted that g is only dependent on the atomic species and the scattering length

as. In some experiments the scattering length can be controlled via Feshbach resonances

[Chin et al., 2010] and can even be made negative, therefore making g negative which

causes the atoms in the trap to attract to each other. The non-linear term |ψ(r, t)|2 makes

the GPE a non-linear equation that makes exact analytic solutions difficult except in very

specific cases such as for a free particle and a soliton in 1d.
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Thomas-Fermi approximation

For a sufficiently large BEC, we can solve the GPE without the kinetic energy term as the

kinetic energy of the atoms is much smaller than the other energy scales involved and can,

therefore, be ignored [Pethick and Smith, 2008, p. 168]. This approximation is called the

Thomas-Fermi approximation. Solving the GPE without the kinetic energy term we find,

n(r) =


1
g (µ− V (r)), if µ > V (r)

0, otherwise

(6.25)

Here µ is the chemical potential which is calculated by normalising 6.25 to a number of

atoms N . In the case of the harmonic oscillator,

µ =
1

2
h̄ωho

(
15asN

aho

) 2
5

(6.26)

where we define

ωh0 = (ωxωyωz)
1
3 (6.27)

which is the average frequency of the trap and the characteristic length of the ground state

in the trap,

ah0 =

√
h̄

mωh0
. (6.28)

We can see in these equations that the atoms fill the potential up to the chemical potential

giving the atom density the same shape as the trap.
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Figure 6.2: Distribution of atoms in a BEC in an Ioffe-Pritchard trap along the transverse

direction. The atoms fill the trap to the chemical potential giving a sharp cut off giving

the atom cloud density the shape of the potential. Note that the x-axis in this plot is 1/4

the size of the thermal atom plot. ω⊥ = 2π× 2 kHz, ω‖ = 2π× 10 Hz and the width of the

BEC is 842 nm.

6.2.2 Local density approximation

The local density approximation allows us to analytically calculate the 1d density dis-

tribution. The chemical potential µ is set by normalising the atom density to the total

number of atoms [Gerbier, 2004]. The local density approximation changes the chemical

potential spatially depending on the value of the potential. The local chemical potential

is given by [Gerbier, 2004],

µl.e[n1d] = µ− V. (6.29)

Here l.e stands for local estimation. We can then relate the local chemical potential to the

atom density in the trap by,

µl.e[n1d] = h̄ω⊥
√

1 + 4an1d. (6.30)

Combining equations 6.29 and 6.30 and rearranging for n1d we find,

n1d =

((
µ− (V‖ + Vext)

h̄ω⊥

)2

− 1

)
1

4as
. (6.31)

This gives us an equation for the one-dimensional density in the trap.
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6.2.3 Responsivity

As before with the thermal atoms, we will calculate the response of the atom cloud. First,

we fully expand equation 6.31 then differentiate by the change in magnetic field to get ∂n
∂B ,

∂n1d

∂B
= −µµb − µbV

2ash̄
2ω2
⊥
. (6.32)

We then assume that ω2
‖z

2 ∼ 0 so that the only change to the density is due to the

external field. For 87Rb, mfgf ' 1, therefore we shorten the expression of the potential

to, Vext = µbBext, giving,
∂n1d

∂B
= −

µµb − µ2
bBext

2ash̄
2ω2
⊥

. (6.33)

This has the same trend as the thermal atoms where the responsivity decreases linearly

with Bext. We find that the responsivity of the atom cloud decreases as the perpendicular

trapping frequency ω⊥ is increased.

6.2.4 Sensitivity

As shown before with the thermal atoms, we can re-arrange the equation for the respons-

ivity of the atom cloud to calculate the sensitivity of the BEC,

∆B = −
2∆n1dash̄

2ω2
⊥

µµb
. (6.34)

For a 87Rb cloud with 1 × 105 atoms at 1 µK has a sensitivity of 548 pT which is

roughly 10 times more sensitive than the thermal cloud at 1 µK. It is worth noting that

the sensitivity is dependent on the transverse trapping frequency, where a smaller trapping

frequency leads to a smaller i.e better sensitivity. This sensitivity comes with a reduction in

the spatial resolution of the trap as the atom cloud occupies a larger area in the transverse

direction. It also leads to a decrease in the chemical potential and therefore a decrease in

the range of measurable magnetic fields. This is summarised below in figure 6.3.
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Figure 6.3: Figure showing how the chemical potential and sensitivity change depending

on transverse trapping frequency ω⊥. The left plot shows that the sensitivity improves

when ω⊥ decreases. The right plot shows that the chemical potential decreases when ω⊥

decreases. The decrease in chemical potential decreases the range of magnetic fields that

can be measured by the BEC. By tuning ω⊥ we can control the sensitivity to magnetic

fields and range of magnetic fields that can be measured by the BEC-M.

6.3 Comparison of sensitivity and responsivity

Both thermal atoms and a BEC can be used as a magnetic microscope using the regime

presented above. Choosing which to use depends on the measurement being made. In

table 6.1 we compare some scaling parameters of the two magnetometers.

Thermal atoms BEC

Atom number ∆B ∝ N ∆B ∝ N−
2
5

Temperature ∆B ∝ T
3
2 -

ω⊥ - ∆B ∝ ω2
⊥

Radial Size ∼ 10 µm ∼ 1 µm

Table 6.1: A summary of the how the sensitivity of the BEC-M and thermal cloud scales

with different experimental properties.

The sensitivity of the thermal cloud is improved by reducing the temperature of the

atom cloud. Cooling the atom cloud too far can lead to the atoms condensing into a
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Bose-Einstein condensate.

6.4 Other methods of measuring current paths

Whilst this section has looked extensively at the BEC-M there are other methods for

measuring the magnetic and the magnetic fields from silver nanowires. The list of methods

is not exhaustive but covers the major competitors to the BEC-M. The measurement of

currents from the silver nanowire network by the BEC-M are covered in the next chapter.

6.4.1 Conductive atomic force microscope

The conductive atomic force microscope (CAFM) is a variant mode of the atomic force

microscope. The CAFM measures both the height and current flow between the tip and

the surface of the sample [Lanza, 2017]. The CAFM does not directly measure the current

but instead creates a conductivity map that measures the conductivity of a sample ground

electrode [Shaw et al., 2016]. When using the CAFM on silver nanowires the conductivity

measurement can lead to dead sections of nanowires appear to conduct current where a

direct current measurement would show otherwise. The spatial resolution of the CAFM

is set by the tip size [Shaw et al., 2016]. The average tip size for CAFM is ∼ 20 nm which

gives a much higher resolution that the BEC-M which is diffraction-limited to ∼ 780 nm.

6.4.2 Thermal imaging

By measuring the thermal radiation from the silver nanowires current paths can be directly

measured. Direct measurement of the current paths in silver nanowires using a thermal

microscope has been demonstrated by [Sannicolo et al., 2016]. The microscope used an

InSb camera with 640× 512 pixels with each pixel being 15 µm. The system has a 10 µA

current sensitivity. One issue with the thermal imaging is the relatively high currents

needed for the camera to detect the thermal radiation.

6.4.3 Nitrogen vacancy centres

Nitrogen vacancy centres (N-V centres) are another method used to measure microscopic

magnetic fields. N-V centres have not been used to directly measure current paths in

silver nanowires. In a paper by Jean-Philippe Tetienne et al [Tetienne et al., 2017] N-V

centres were used to measure the current flow in a sheet of graphene. The N-V centre

was able to achieve a current sensitivity of 20 nA with a spatial resolution of 50 nm. The
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spatial resolution exceeds what the BEC-M can achieve, however, the BEC-M is an order

of magnitude more sensitive. The image acquisition time for the N-V centres is on the

order of hours.

6.5 Conclusion

The scaling behaviour of the thermal and BEC magnetometers responsivity is dependant

on the magnitude of the external field compared to a characteristic energy scale of the

magnetometer. For thermal atoms, the energy scale is set by the temperature of the atom

cloud. At large magnetic fields, the responsivity of the thermal atoms asymptotically

approaches zero. In practice, the limit on the number of detectable atoms will set an

upper bound for the measurable magnetic field. The energy scale of the BEC is set by the

chemical potential µ. The responsivity of the BEC changes linearly until the magnetic

energy equals the chemical potential, µbBext = µ. At this point, all the atoms have been

removed from that part of the trap and any increase in the magnetic field can not be

measured.

To summarise, thermal atoms can be used to measure larger magnetic fields (∼ 1 µT)

at the cost of sensitivity and spatial resolution due to the larger width of the cloud. The

BEC-M can measure smaller magnetic fields and has a better spatial resolution than the

thermal cloud. This comes at the cost of a smaller dynamic range of measurable magnetic

fields.



Chapter 7

Bose-Einstein condensate

microscope simulations

7.1 Introduction

In the last chapter, we showed that ultra-cold atoms can be used as sensors for micro-

scopic magnetic fields. In this chapter, we will simulate a Bose-Einstein condensate (BEC)

above a random network of silver nanowires. We will show that the BEC can measure

the magnetic fields generated by the current in the silver nanowires and that we can use

this measurement to reconstruct the currents in the silver nanowires. As we discussed in

the introduction the need for transparent conductors has grown at a rapid pace over the

last few years as it is used in solar panels and touch screens. Currently the majority of

transparent conductors are made using indium tin oxide (ITO). Currently the price of in-

dium is increasing, as of 2019 the price of indium was $390 which was 4% more than 2018

[USGS, 2020]. 36% of indium was sourced in china [USGS, 2020]. To solve these political

and economic issues there is considerable research into alternate transparent conductors

[Kumar and Zhou, 2010]. Silver nanowires could be a strong candidate to replace ITO as

a transparent conductor[Van De Groep et al., 2012]. In this chapter, we will begin by de-

scribing how the silver nanowire networks are simulated. We will then describe the method

for calculating the current distribution in the nanowire network using graph theory. We

will then calculate the magnetic field generated by the silver nanowires using an analytic

method. This method assumes that the silver nanowires are infinitely thin with a finite

length. Next, we use the results from chapter six to simulate the BEC in an Ioffe-Pritchard

trap with the external magnetic perturbations from the silver nanowires. Measuring the

density distribution of the simulated BEC we can recover a 1d magnetic field distribu-

88
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Figure 7.1: Flow chart showing the order of simulation. We can compare the results of

sections on the same level. For example, we can compare the magnetic field from the

nanowires that has been calculated analytically to the magnetic field measured by the

BEC.

tion. By scanning the BEC over the network we build up a 2d image of the magnetic

field above the silver nanowires. Finally, we will use an inverse method that is outlined

in more detail later in the chapter to recover the current density in the silver nanowires.

The order of calculations is summarised in 7.1. Usually calculating currents in complex

systems we use Kirchhoff’s laws [Balberg et al., 1983, Mutiso and Winey, 2013]. Due to

the large number of connections, it is difficult to solve the system of equations by hand.

Instead, we turn to graph theory and a gradient descent method to calculate the current

in the silver nanowires. We will go into more detail later in the chapter. The magnetic

fields generated by the current in the silver nanowire network are calculated analytically

using a method outlined in [Barrett, 2017]. Once we have described the simulation we

will the go on to present the results obtained using this simulation. These include simu-

lations of silver nanowires at a range of different wire densities that are characterised by

the transmittance of the network and the re-construction of the current using the BEC-

M. We will also present height and current data that was taken by a conductive atomic

force microscope (CAFM). We use this data to construct a network of straight wires that

approximate the real data. From this, we calculate a measurement of the magnetic fields

by the BEC-M and compare this to the conductivity map taken by the CAFM.
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7.2 Simulating the nanowire network

In this section, we will describe in detail the process used to generate the nanowire net-

works. We will then go on to show how fixing the transmittance of the nanowire networks

to defines the number of wires in the network. We show how the wire crossings are calcu-

lated. Finally, we go into graph theory to show how the currents in the nanowire networks

are calculated.

7.2.1 Randomly generated nanowire networks

We first define a domain in which the nanowires are allowed to be generated. Then we

choose the number of nanowires, which depends on the chosen optical transmittance of

the nanowires. This is covered in more detail in section (7.2.3). For each nanowire,

we randomly generate an x and y co-ordinate for one end of the nanowire within the

bounded region. We then randomly generate an angle from 0−2π sampled from a uniform

distribution and a length which is chosen from a log-normal distribution see figure (7.2b).

Using the angle and length we define the coordinates of the other end of the silver nanowire.

The second end can leave the domain but is limited by the length of the nanowire. If we

were to force all the wires to be within the defined region we could induce edge effects that

can produce anomalous results in the simulations. The domain in which the nanowires

can be generated is much larger than the length of the nanowires. We define 〈L〉 as the

mean length of the nanowire and σ is the variance in the length of the nanowires. At

the top and bottom of the nanowire network, we add a long wire that spans the width of

the domain (see fig (7.2a)). These wires simulate the electrodes through which current is

passed.
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Figure 7.2: (a) An example set of nanowires. The straight wires at y = 0 µm and y =

100 µm are added non-randomly and represent as electrodes. These wires define the start

and endpoints for the current flow. (b) Distribution of the lengths of the silver nanowires.

As there can not be negative length nanowires the distribution bunches up towards zero.

In this case 〈l〉 = 12.6 µm and 〈σ〉 = 4.6 µm and there are a total of 622 wires.

7.2.2 Percolation theory

Percolation theory describes many properties of random networks such as we find in silver

nanowires [Mertens and Moore, 2012]. The exact properties of the network depend on the

shape of the constituent particles, for example, many of the constants are different for a

network of thin sticks and spheres [Ni et al., 2018]. Given the nanowires have no length

we estimate the nanowires density measure as [Large, 2016],

η =
1

A

n∑
i

l2i . (7.1)

Here A is the area of the domain, li is the length of the ith wire and N is the total number

of wires. η is a measure of the fractional area the nanowires cover. As the nanowires

in the simulation are one dimensional the area covered by a nanowire is taken to be a

square with side length l, where l is the length of the nanowire. There is a critical density

ηc, when the density of the network η is greater than the critical density we can expect

connectivity over a long-range and when the density is less than the critical density we

can expect some local connectivity but no connectivity over the whole network. For silver

nanowires the critical density ηc = 5.63726 [Li and Zhang, 2009]. When the density of

nanowires is similar to the critical density the network is at the percolation threshold. At

a density above the percolation threshold the connectivity of nanowire network extends

over large distance.
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7.2.3 Transmittance

The density of a nanowire network can be measured by amount of light that passes through

the nanowire network. This is called the transmittance of the nanowire network and is

given by

T = 10−Qextφs . (7.2)

Here T is the transmittance and is defined by two factors Qext and φs. Qext is the

extinction efficiency of light on the nanowires [Haverkate and Feiner, 2006]. Qext depends

on the interaction between the nanowire and the incident photons, Qext therefore depends

on the thickness of the nanowire and the frequency of the incident photon. For this work we

used the values given in [Large, 2016] which are Qext = 0.3 for d = 30 nm and Qext = 1.6

for d = 120 nm where d is the thickness of the nanowires. In equation (7.2), φs is the

area fraction of the surface covered by silver nanowires. We can express φ in terms of the

length and number of the nanowires and the are of the defined region,

φs =
N〈L〉d
A

. (7.3)

Here N is the number of wires, as before 〈L〉 is the average length of the wires, d is the

thickness of silver nanowires and A is the domain area. We can rearrange this equation

so that we can define the desired transmittance and use that to calculate the number of

nanowires required to achieve that transmittance.

N = − A

d〈L〉Qext
log10(T ) (7.4)

7.2.4 Calculating wire crossings

Now that we have generated the silver nanowires, we calculate the crossing points between

wires. There are several methods for doing this such as the Bentley-ottoman algorithm

[Bartuschka et al., 1997] and the box-counting method [Li and Zhang, 2009]. For these

simulations, we use a brute force method that compares each wire with every other

nanowire. This method scales as O(N2) where N is the number of nanowires, which

is not optimal. However, the calculation of the magnetic fields from the nanowires takes

much longer than any other calculation in the simulation therefore the time taken to cal-

culate the wire crossings is negligible. To detect if two wires cross we define each wire as

a unit vector. As long as the wires are not parallel the crossing point will occur when

a~r1 = b~r2. (7.5)
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Here r1 and r2 are the vectors of the nanowires, a and b are both numerical constants.

We can solve the equation for a and b. There are three different cases depending on the

values of a and b and are covered below in figure (7.3).

a b c

Figure 7.3: Figure showing the three-wire crossing cases a.) Case one: the wires cross in

this case both a and b are less than one. b.) Case two: the wires do not cross but one of a

or b is less than one. c.) Case three: the wires do not cross and both a and b are greater

than one.

We then check if each nanowire is connected to the bottom electrode. Any wire not

connected to the ground electrode is removed from the list of crossings as these nanowires

will not be carrying current. If the second electrode is not in the list of connected wires

then we know that the current does not flow across the region.

7.3 Generating currents in the nanowire network

The distribution of current in a grid of resistors is usually solved using Kirchhoff’s laws

[Feynman, 1964]. Calculating every current path between two points is an NP-hard prob-

lem which means that the problem scales exponentially. Instead, we will use graph theory

to calculate the potential at each wire intersection. In this section, we will go through in

steps the process to calculate the potential and current flow across the network.

7.3.1 Nanowire resistance

In the silver nanowires networks, there are two sources of resistance. First, the resistance

from the bulk of the nanowire, the resistivity of a silver nanowire with a 30 nm diameter is

ρ = 1.59×10−8Ω m [Griffiths, 1962, p. 301]. For a nanowire with a diameter of 30 nm gives

a resistance per unit length of 22.35 Ωm−1. The second source of resistance comes from

the contacts between two silver nanowires, this resistance is called the junction resistance

and is studied in [Li and Zhang, 2010, Garnett et al., 2012]. In the simulations, we set

the junction resistance to 100 Ω to be in line with the calculations in [Bellew et al., 2015].

The simulation of the junction resistance can be made more complex however this would
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not add to these simulations and so were left out.

7.3.2 Graph theory

Graph theory is well covered in the literature [West et al., 1996] but we will be following

the method outlined in [Large, 2016]. To better convey the ideas in this section we will

use the case of one wire crossing the two-wire electrodes shown in figure (7.4a). First, a

graph is a mathematical object constructed of nodes and edges. An edge connects two

nodes and can have a weighting, edges can also be directional but this is not needed for

the problem at hand. The node of a graph is formed when two or more edges meet. The

value of a node is given by the sum of the weights of the edges that connect to the node.

The degree matrix is a matrix that has a lead diagonal comprised of the weights and is

zero elsewhere. The weighting of the edges is defined as,

w =
1

R
, (7.6)

here R is a resistance. As mentioned in the section above there are two sources of res-

istance, the bulk resistance of the nanowire and the resistance of the junction. This

information is stored in the so-called adjacency matrix. An adjacency matrix is a square

matrix of size N where N is the number of nodes. The adjacency matrix is a representation

of the connection of each node with each other node and the weighting of w.
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Figure 7.4: (a) A three wire network with two electrodes, top and bottom, and one

nanowire connected to each electrode at (a) and (b). (b) The graph of the wire network

shown in figure (a). The black arrows have been added to indicate the connection each edge

of the graph represents. The edge from 1 to 2 represents the junction resistance between

top electrode to the wire at (a) on figure (a). The edge 2-3 represents the resistance

that arises from the wire between (a) and (b) on figure (a). The edge 3-4 represents the

junction resistance between the wire and the bottom electrode at (b) on figure (a). (c)

Visualisation of the degree matrix for the demonstration problem. The degree matrix is

a square matrix size N, the only non zero terms are on the lead diagonal. (d) Adjacency

matrix for the corresponding graph. The wire has a lower resistance than the junctions

and therefore has a higher weighting.

We can combine the adjacency matrix and the degree matrix into what is known as

the Laplace matrix which is defined as,

L = D −A. (7.7)
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Here D is the degree matrix and A is the adjacency matrix. In the example case, we find

L =


1/100 −1/100 0 0

−1/100 (1/22 + 1/100) −1/22 0

0 −1/22 (1/22 + 1/100) −1/100

0 0 −1/100 1/100

 (7.8)

We can now use the equation,

L~v =~i, (7.9)

to solve for the potentials across the wires. Equation (7.9) is effectively Kirchhoff’s laws

expressed in matrix form. Here ~i is a list of sources and sinks in the network. We define

the problem to only have one source (the input on the bottom electrode) and one sink

(the output on the top electrode).

To solve for ~v we use an inbuilt MATLAB function call preconditioned gradient decent

(PCG). This method attempts to minimise the residuals when solving equation (7.9).

When the number of nodes becomes large the Laplace matrix also becomes large. The

Laplace matrix lends itself to a sparse representation. The current along an edge is given

by the difference in voltage in the nodes divided by the resistance of the wire I = V/R

otherwise known as Ohm’s law.

7.3.3 Calculating magnetic fields

We calculate the magnetic fields from the silver nanowires in a volume above the nanowire

network where the BEC is simulated. For each wire in the network, i.e wires that carry

current, we calculate the magnetic field at each of the points in the 3d grid. We used the

Biot-Savart law and a method outlined in [Barrett, 2017] to calculate the magnetic field

from an infinitely thin wire. The vector components of the magnetic fields are summed to

create a final magnetic field map for the silver nanowires. The junctions between nanowires

do not generate a magnetic field.

7.4 Inverse methods

We want to recover the current density from the silver nanowires, in this section, we

present the method to calculate the current density from the measured magnetic field.

The magnetic field generated by a current density J(r) is given by the Biot-Savart law,

B(r) =
µ0

4π

∫
J(r′)× (r − r′)
|r − r′|3

d3r′. (7.10)
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The magnetic field is given by a convolution of the current density with a propagation

function called the Greens function. In this case the Greens function is defined as ,

G(x− x′, y − y′, z) =
µ0d

4π

1

[(x− x′)2 + (y − y′)2 + z2]
. (7.11)

Here, d is the thickness of the medium the current is flowing in. We have set the surface

of the current medium at z′ = 0. The Greens function smooths B(r) proportionally to

the distance from the current source. To calculate the current density from the magnetic

field we solve the inverse problem. When the current density is unconstrained the inverse

problem is ill-defined due to there being multiple solutions valid solutions for a given

magnetic field distribution. When the current density is confined in one direction the

inverse problem becomes well defined with a unique solution. We will use the coordinate

system shown in figure (7.5).

Figure 7.5: Uniform current flowing in the x-direction, represented by arrows, which

generates a magnetic field in the y-z direction. Perturbations in the direction of the

current flow generate a magnetic field in the x-z direction. Whilst there is no current flow

in the z-direction the current can still fill the medium which has a thickness d.

Here we will show the method used to solve the constrained inverse method, the ma-

jority of the method is covered by Roth et al in [Roth et al., 1989]. I will add some

comments and additions where necessary. We begin by considering the magnetic field in

the x direction which is given by,

Bx(x, y, z) =
dµ0

4π

∫ ∞
−∞

∫ ∞
−∞

Jy(x
′, y′)

[(x− x′)2 + (y − y′)2 + z2]
3
2

× dx′dy′. (7.12)

Here d is the thickness over which the current is flowing. As there is no current in the z

direction the Jz(r)y component of the cross product is zero. As this is a convolution it is
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easier to solve this problem in Fourier space. The convolution in Fourier space is given by,

bx(kx, ky, z) = g(kx, ky, z)jy(kx, ky, z), (7.13)

where b,j and g represent the Fourier transform of the magnetic field (B), current density

(J) and greens function (G) respectively. Fortunately the Fourier transform of the greens

function has an analytically solved [Gradshteyn and Ryzhik, 2014].

g(kx, ky, z) =
(µ0d

2

)
e−z
√
k2x+k2y . (7.14)

Here d is the thickness of the medium in which the current flows. We therefore recover

the current density Jy by

Jy = F−1

(
bx(kx, ky, z)

g(kx, ky, z)

)
. (7.15)

Where F−1 indicates the inverse Fourier transform. This is true so long as g(kx, ky, z) 6= 0

as Jy(r) would become undefined. We assume that the current flow is conserved such that

∇J(r) = 0, this is expressed in Fourier space by,

−ikxjx(kx, ky) = ikyjy(kx, ky). (7.16)

Using this result it is possible to recover Jx(r) for a measurement of Bx(r) using,

Jx(r) = F−1

(
2ky
µ0dkx

e
√
k2x+k2yzb(kx, ky, z)

)
. (7.17)

7.4.1 Filtering

Due to numerical errors and noise, it is necessary to apply a filter to jy before using the

inverse Fourier transform to recover Jy. We chose to use the Hann window to filter the

signal due to the minimal impact on resolution. The Hann window is defined as,

w[k] =


1
2 [1 + cos( πk

kmax
)], k < kmax

0, k > kmax

(7.18)

The cut-off frequency kmax sets the largest spatial frequency included when reconstructing

the current density. As the distance between the measured point and the current density

sets the length scale in the Greens function we can set the maximum spatial frequency to

be separation z where kmax = 2π/z.

7.5 Inverse method examples

Here we look at some examples of the inverse method at work. The first example demon-

strates that the inverse method can recover the magnitude of the current density in ideal
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conditions. The second example introduces noise into the equation and shows how accurate

our filter approximation is.

7.5.1 Single wire

Here we show that the inverse method can recover the current density for a single wire.

First, we generate a single wire with a finite width and height. The current flows in the

y-direction so that the magnetic fields are generated in the Bx direction.

Figure 7.6: Top left: Current density in a pair of rectangular wires 10 mm long, 1 mm

wide and 1 µm thick. Top right: Magnetic field measured at a height of 100 µm above

the wire. Bottom left: Reconstructed current density. Bottom right: Difference between

initial and measured current density. The error is largest around the edges of the wires

due numerical errors that arise from the Fourier transform of a square top hat function.

The inverse method works well when there is no noise. Once we introduce noise into

the system it becomes impossible to recover the exact underlying current density. Instead,

we can only look at the quality of the recovered image. When the initial current density is

known we can calculate the mean square error (MSE) and mean square deviation (MSD).

The mean square error is the squared difference between the measured current density

J(x, y) and the reconstructed current density Jr(x, y).
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Figure 7.7: (a) Initial current density distribution is J(x, y) = sinc(ωxX)sinc(ωyY ) where

ωx and ωy set the length scale of the oscillations . (b) Magnetic field calculated from the

current density at a height of 100 µm above the current density. The magnetic field was

calculated by solving the forward problem and then normally distributed noise was added

to the magnetic field. (c) Reconstructed current density from the magnetic field. The

maximum allowed frequency by the Hann window was kx = ky = 2π/z in this case

d = 100 µm. Note that the noise has been smoothed out, however, the noise has drowned

out the 2nd peaks from the sinc function. (d) The mean square error (MSE) between the

original current density and the calculated current density.

The mean squared deviation is given by,

MSD =

∫∫
|J(x, y)− Jr(x, y)|2dxdy∫∫

|J(x, y)|2dxdy
, (7.19)

and represents a single value that indicates how much the reconstructed current density

deviates from the current density. When using an image the current density is discretized

so the integrals are replaced by summations.
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Figure 7.8: (a) A two dimensional scan of the mean square error as a function of kxmax

and kymax. We take the log of the MSE to scale the plot. The red lines indicate where

kxmax and kymax are equal to 2π/z. (b) A cut along the line kx = ky to highlight the

shape of the surface in plot (a).

In figure (7.8a) we compared how our estimation for the ideal cutoff frequency compares

to the calculated ideal cutoff frequency for the filter. For these conditions we overestim-

ated the optimal cutoff frequency, however, the difference between the estimated cutoff

frequency and the optimum cutoff frequency is small enough to be acceptable. This global

minimum depends on the relative magnitude of the noise to the signal. The smaller the

signal to noise ratio the closer the minimum moves towards kx, ky = 0. Whilst our ap-

proximation that the ideal filter size is 2π/z isn’t perfect it is a reasonable first guess.

7.6 Results

In this section, we will show the results of the BEC-M simulations near silver nanowire

networks. We will begin by comparing BEC-M simulations to CAFM data taken by Dr

Manoj Tripathi for this purpose. We will then show the results of using the BEC-M on

simulated nanowire networks with a range of wire densities set by the transmittance.

7.6.1 Simulations with CAFM data

The CAFM was used to measure a portion of a silver nanowire network. The nanowires

in the network have a diameter of 120 nm. The CAFM was scanned over a 10 µm× 10 µm

region and recorded the height and conductivity of the nanowire network. Results of the

scan are shown below in figure (7.9a) and (7.9b).
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Figure 7.9: (a) Height data of the silver nanowire network as taken by AFM. (b) Con-

ductivity map of the silver nanowires. Note that the curved section lower left has a much

lower conductivity (∼ 0.1 nA) than the majority of the nanowire network.

To simulate the current paths in this network we create an approximate the network

made of straight wires as shown below in figure 7.10.
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Figure 7.10: Figure showing the straight wire approximation overlaid on the height data.

The start and endpoints of the wires are marked in red. Wires spanning the sample top

and bottom were added to simulate electrodes.

The start and endpoints of the wires were chosen manually. We used the method

outlined above to calculate the current in the wires starting from the bottom electrode to

the top electrode. We used the same values for the resistance of the wires and junctions

as given in the method. We then calculated the magnetic field 100 nm above the nanowire

network.
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Figure 7.11: (a) Wires with current are shown overlaid on the CAFM height map data.

The input current in the bottom electrode is 100 nA. (b) X component of the magnetic

field measured 100 nm above the nanowire network. At 100 nm the magnetic field closely

follows the shape of the wires.

We then simulate a BEC 100 nm above the nanowire network. It was shown in

[Sinuco-León et al., 2018] that a surface to BEC distance of 100 nm is possible. By meas-

uring the changes in the density distribution of the BEC we recover a current density

distribution that we can compare to the conductivity map taken with the CAFM. Whilst

these two values are not directly comparable it is worth looking at some key differences

between the two measurements.
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(a) (b)

Figure 7.12: (a) Simulated current density measured by the BEC-M. There has been

some spreading of the predicted current density due to the finite width of the BEC. (b)

Conductivity as measured by the CAFM. There are some areas in the CAFM data that

do not appear in the BEC-M data. These parts of the network are connected to ground

but do not carry current. This is most visible in the top left of the CAFM data where

there is a conductive wire with no corresponding current density.

In the top left corner of the CAFM data fig (7.12b) we can see where the nanowire

was connected one of the electrodes. In the corresponding BEC-M image fig (7.12a) we

don’t see any current measured. This highlights one of the major advantages of using the

BEC-M to measure current paths. In figure (7.12a) we see that there a region of increased

current density in the network. These areas of higher current can be indicative of hot

spots in the nanowire network. Hot spots can be an indication of where the network can

fail due to thermal effects. It is possible that the BEC-M can be used to measure the

location of hot-spots in these networks.

7.6.2 Silver nanowire network

Here we show the results from simulations of silver nanowire networks with three different

densities and optical transmittance. In these simulations, we set the nanowire thickness to

be 120 nm. At a transmittance of 93% the network is below the percolation threshold. To

ensure a network that connected the two electrodes we generated networks until a valid

network was found. The BEC was scanned at a height of 1 µm above the nanowires and

was scanned along from y = 0 µm to y = 100 µm with a 2 µm spacing.
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(d) (e) (f)

Figure 7.13: Figures (a),(b) and (c) show nanowire networks with a transmittance of 93%,

90% and 80% respectively. The wires are coloured depending on the relative current in

each wire. Black wires have zero current. Figures (d),(e) and (f) show the reconstructed

current densities from their respective networks. The input current was 1 µA. The trapping

potential was [ω⊥, ω‖] = 2π× [3 kHz, 1 Hz]. The trapping potential was chosen to minimise

the curvature of the trap over the 100 µm imaging length.

In the above figures, we can see that at low density it is possible to make out individual

wires. At higher densities, this becomes less clear however even at the 80% case still

possible. In the 90% case we can see the current merging from several wires. In all

3 current density maps, there are sections where the current flows in the negative y-

direction. This shows that the BEC-M can measure the current direction as well as the

magnitude. These areas appear as dark patches on the figures. In the 80% case we can see

a hot spot in the current in the lower right quadrant of the figure. This seems to indicate

that even when the silver nanowire density becomes so large that we are measuring the

sheet resistance hot spots in the current path will still be resolvable.

7.7 Conclusion

In this chapter, we outlined a method to simulate the current flow in the silver nanowire

networks. We then went on to demonstrate how the two-dimensional inverse problem could

be solved analytically. We also showed the effect of filtering has on recovering noisy data
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and proposed a simple way to generate an upper bound in frequency space for the filter.

We then went on to compare different methods of measuring current flow or conductivity

in silver nanowire networks and how these methods compared to the BEC-M. Finally, we

showed the results of the silver nanowire simulations, first with data taken by CAFM and

then on simulated random networks.



Chapter 8

Summary and outlook

In chapter two we gave a theoretical description of the interaction between light and a

two-level atom. We then went on to use this description to build a simple model for laser

cooling and trapping of atoms. In chapter three we used the methods outlined in chapter

two to derive a theoretical model for the two colour magneto-optical trap (TCMOT). We

predicted that the TCMOT should have a lower scattering rate than a single colour MOT

with the same intensity of incident laser light. The prediction of a lower scattering rate

and therefore lower force from the cooling beams in the TCMOT motivated the push

beam experiment in chapter five. We also predicted that the TCMOT should have a lower

capture velocity than the single colour MOT, however, this prediction was not verified

experimentally in chapter five. In Chapter four we show the experimental setup and

describe the processes we used to optimise the experiment. In chapter five we presented

the results from the TCMOT experiment. We found a maximum increase of six times in

atom number along with an increase in the size and temperature of the MOT. We then

presented a method to recover the phase space density of the TCMOT while retaining the

increased atom number. The measurement of the spring constant and damping coefficient

showed that both the spring constant and damping coefficients reduced with the TCMOT

with the minimum value of the coefficients at a relative detuning of δ = Γ/2. This

reduction implies that the scattering rate decreases for the TCMOT. This is in agreement

with the theoretical predictions given in chapter three however the theory fails to predict

a minimum scattering rate at δ = Γ/2.

In chapter six we show how both ultra-cold thermal atoms and a Bose-Einstein con-

densate (BEC) can be used for magnetic microscopy. First, we showed that one component

of the magnetic field of an external homogeneous field could be separated from the mag-

netic fields making up the magnetic trap. We then derived a relation between the atom

107
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density and the external magnetic field for both thermal atoms and the BEC. Using this

result we showed how the sensitivity and responsivity of the thermal atom cloud and the

BEC differs and gave cases for when each could be used as a magnetometer. In chapter

7 we simulated the use of the BEC-M to recover current densities in silver nanowire net-

works. We showed that the BEC-M could be used for a variety of densities of the silver

nanowires. We also compared the simulations of the BEC-M to CAFM data and high-

lighted the advantages to directly measuring the current in the silver nanowires as opposed

to the conductivity.

8.1 Future work

8.1.1 Two colour theory

While we have shown that the TCMOT can be used as a useful tool for cold atom experi-

ments, the theoretical understanding of the TCMOT is still missing some key components.

Most notable is the failure of the theory to predict the relative frequency δ, at which the

atom number is maximum. We will try to follow the dressed state picture for two rotating

frames as outlined in [Saiko et al., 2014]. It is also worth looking into the results shown

in (5.13) as it lies outside theoretical predictions and can act as a guide towards what is

missing in the theoretical picture.

8.1.2 Bose-Einstein microscope experiment

Whilst chapter 6 and 7 look only look at the BEC-M theoretically, we are taking steps in

our lab to realise the BEC-M experimentally. At the time of writing, we have modified the

experiment shown in chapter 4. The top window of the vacuum chamber has been replaced

with an electrical feed-through. On the feed-through, we have placed a new printed circuit

board (PCB), similar in design to the one shown in [Gadge, 2018]. The PCB has a series

of wires to trap and transport the atoms using magnetic fields from an optically bright

area to the sample area. This allows the experiment to have samples that would otherwise

be destroyed by or block the laser light used for magneto-optical trapping. On the PCB

there is a range of samples including 3d printed wires, silicon nitride membranes and silver

nanowire networks.
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8.1.3 Inverse methods in three dimensions

In chapter 7 we showed that the inverse problem has a unique solution when the current

density is confined to flow in two-dimensions. In real systems, currents are not confined

in 2d, therefore, we need to consider currents in all directions. Being able to reconstruct

currents in 3d has applications in a wide range of fields such as magnetoencephalography

[Barnes et al., 2004], superconductors [Kirtley et al., 1996] and measuring current flow in

novel materials [Langlois and Coeuret, 1989]. The magnetic field in each direction can

be generated by currents in the two orthogonal directions. Therefore there is no unique

solution to the inverse problem in three-dimensions. To solve the inverse problem we can

use one of two methods. First, we can measure the magnetic field at a range of heights

above the current flow region. The extra information gained from these measurements

should allow for the solution space to be constrained to a unique solution. Alternatively,

we can use a Bayesian inverse method. The Bayesian inverse method uses prior knowledge

about the system to constrain possible solutions. An outline of Bayesian inverse methods

can be found in [Stuart, 2010, Dashti and Stuart, 2016].
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PhD thesis.

[Fantanas et al., 2018] Fantanas, D., Brunton, A., Henley, S., and Dorey, R. (2018). In-

vestigation of the mechanism for current induced network failure for spray deposited

silver nanowires. Nanotechnology, 29(46):465705.

[Feynman, 1964] Feynman, R. P. (1964). Feynman lectures on physics. volume 2: Mainly

electromagnetism and matter. Reading, Ma.: Addison-Wesley, 1964, edited by Feyn-

man, Richard P.; Leighton, Robert B.; Sands, Matthew.

[Feynman, 1965] Feynman, R. P. (1965). Feynman lectures on physics. volume 3:

Quantum mechancis. Reading, Ma.: Addison-Wesley, 1965, edited by Feynman, Richard

P.; Leighton, Robert B.; Sands, Matthew.

[Folman et al., 2008] Folman, R., Kruger, P., Schmiedmayer, J., Denschlag, J., and Hen-

kel, C. (2008). Microscopic atom optics: from wires to an atom chip. arXiv preprint

arXiv:0805.2613.



113

[Foot et al., 2005] Foot, C. J. et al. (2005). Atomic physics, volume 7. Oxford University

Press.

[Freeman and Choi, 2001] Freeman, M. and Choi, B. (2001). Advances in magnetic mi-

croscopy. Science, 294(5546):1484–1488.

[Gadge, 2018] Gadge, A. (2018). A cold atom apparatus for the microscopy of thin mem-

branes. PhD thesis, University of Nottingham.

[Garnett et al., 2012] Garnett, E. C., Cai, W., Cha, J. J., Mahmood, F., Connor, S. T.,

Christoforo, M. G., Cui, Y., McGehee, M. D., and Brongersma, M. L. (2012). Self-

limited plasmonic welding of silver nanowire junctions. Nature materials, 11(3):241.

[Gerbier, 2004] Gerbier, F. (2004). Quasi-1D Bose-Einstein condensates in the dimen-

sional crossover regime. Europhysics Letters, 66(6):771–777.

[Gradshteyn and Ryzhik, 2014] Gradshteyn, I. S. and Ryzhik, I. M. (2014). Table of in-

tegrals, series, and products. Academic press.

[Griffin et al., 1996] Griffin, A., Snoke, D. W., and Stringari, S. (1996). Bose-einstein

condensation. Cambridge University Press.

[Griffiths, 1962] Griffiths, D. J. (1962). Introduction to electrodynamics. Prentice Hall

New Jersey.

[Haverkate and Feiner, 2006] Haverkate, L. and Feiner, L. (2006). Optical properties of

cylindrical nanowires.

[Hong et al., 2015] Hong, S., Yeo, J., Lee, J., Lee, H., Lee, P., Lee, S. S., and Ko, S. H.

(2015). Selective laser direct patterning of silver nanowire percolation network transpar-

ent conductor for capacitive touch panel. Journal of nanoscience and nanotechnology,

15(3):2317–2323.

[Jooya et al., 2013] Jooya, K., Musterer, N., Madison, K. W., and Booth, J. L. (2013).

Photon-scattering-rate measurement of atoms in a magneto-optical trap. Physical Re-

view A, 88(6):063401.

[Kawasaki et al., 2015] Kawasaki, A., Braverman, B., Yu, Q., and Vuletic, V. (2015).

Two-color magneto-optical trap with small magnetic field for ytterbium. Journal of

Physics B: Atomic, Molecular and Optical Physics, 48(15):155302.



114

[Ketterle, 2002] Ketterle, W. (2002). Nobel lecture: When atoms behave as waves: Bose-

einstein condensation and the atom laser. Reviews of Modern Physics, 74(4):1131.

[Ketterle et al., 1998] Ketterle, W., Durfree, D., and Stamper-Kurn, D. (1998). Making,

probing and understanding bose-einstein condensates, contribution to the proceedings

of the 1998 enrico fermi summer school on bose-einstein condensation in varenna, italy.

[Ketterle and Van Druten, 1996] Ketterle, W. and Van Druten, N. (1996). Evaporat-

ive cooling of trapped atoms. In Advances in atomic, molecular, and optical physics,

volume 37, pages 181–236. Elsevier.

[Kim et al., 2005] Kim, K., Lee, K.-H., Heo, M., Noh, H.-R., and Jhe, W. (2005). Measure-

ment of the trap properties of a magneto-optical trap by a transient oscillation method.

Physical Review A, 71(5):053406.

[Kirtley et al., 1996] Kirtley, J., Tsuei, C., Rupp, M., Sun, J., Yu-Jahnes, L. S., Gupta,

A., Ketchen, M., Moler, K., and Bhushan, M. (1996). Direct imaging of integer and

half-integer josephson vortices in high-t c grain boundaries. Physical review letters,

76(8):1336.

[Kominis et al., 2003] Kominis, I., Kornack, T., Allred, J., and Romalis, M. V. (2003). A

subfemtotesla multichannel atomic magnetometer. Nature, 422(6932):596.

[Kosloff and Kosloff, 1983] Kosloff, D. and Kosloff, R. (1983). A fourier method solution

for the time dependent schrödinger equation as a tool in molecular dynamics. Journal

of Computational Physics, 52(1):35–53.
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