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Summary

The behaviour of quantum �eld theories at di�erent energy scales is encoded by its renormal-

isation group (RG) �ow. To be physical and fundamental, their high-energy limit needs to be

controlled by an ultraviolet �xed point – a property called asymptotic safety. Recent develop-

ments have proven that in strictly four spacetime dimensions and beyond the well-known case

of asymptotic freedom, a family of theories with weakly interacting UV �xed points exists in

a perturbatively exact setting. This thesis is dedicated to further investigate this phenomenon.

Following a thorough introduction, this work consist of three main parts.

The �rst part is concerned with technical aspects of computing perturbative renormalisation

group equations. We revisit literature results and correct several long-standing errors. Moreover,

we present a novel software package to facilitate these calculations, and highlight its advantages

over existing tools.

The second part is focused on the phenomenon of perturbatively exact asymptotic safety. We

systematise the search for such theories to identify new classes of models. For an important

benchmark model with unitary gauge symmetry and Dirac fermions, we extend the RG anal-

ysis to the highest available loop order. We determine the size of the conformal window and

the mechanisms limiting it. Furthermore, we �nd two novel classes of asymptotically safe theo-

ries involving orthogonal or symplectic gauge groups and Majorana fermions. We also discover

new large-N equivalences amongst seemingly di�erent quantum �eld theories, leading to new

dualities, and a triality amongst asymptotically safe theories.

In the third part, realistic models of particle physics are constructed. The Standard Model is cou-

pled to an extended sector via electroweak, Yukawa and Higgs portal interactions. We demon-

strate that safety until the Planck scale and stability of the Higgs potential is achieved in these

theories. Moreover, we show that both discrepancies of electron and muon anomalous magnetic

moments can be accounted for simultaneously without explicit lepton �avour violation.
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1 Introduction

1.1 Motivation

Quantum �eld theory (QFT) is the backbone of our modern understanding of high-energy physics

in the quantum regime and beyond. Fusing the bizarre principles of quantum mechanics and

special relativity, it provides the language that spells out the state-of-the-art notion of particle

physics. The crown jewel of this framework is the Standard Model (SM) [5–9], which lays claim

to describe most of the observable physics within the quantum realm of our universe. The SM

incorporates three of the four most fundamental forces of nature: the electromagnetic, weak

and strong interactions, mediated by photon, W ±
and Z 0 bosons, as well as gluon exchanges.

Moreover, it contains all known elementary building blocks of matter: leptons and quarks. With

the Higgs boson [10–12], the last postulated piece to render the SM a consistent QFT [13] has

been discovered [14–16].

However, this does not mean the theory is complete. In spite of its success in capturing and ap-

propriately quantifying many phenomena in particle physics, the SM does not paint a full picture

of our universe. An ideal theory would contain all fundamental forces and elementary particles,

be valid at all energy scales, and correctly predict all of nature. By design, the SM is foremost a

minimal and e�ective rather than fundamental description of measurable physics, omitting as-

pects that are experimentally inaccessible. This includes all phenomena at energy scales beyond

our current technological reach. For instance, it does not incorporate the fundamental interac-

tion of gravity. While the macroscopic nature of gravity is on solid theoretical ground owning

to general relativity, its consistent and predictive quantum description has remained a contro-

versial topic. Nevertheless, quantum gravity e�ects are expected to take hold around the Planck

energy scale, unaccounted for by the SM. Therefore, it is not surprising that the theory fails

to answer important cosmological questions regarding the nature of dark matter, dark energy,

in�ation and the matter-antimatter asymmetry [17, 18]. Other than gravity, no new physics be-

yond the Standard Model (BSM) is predicted in the vast energy range between the electroweak

and the Planck scale. This is at tension with certain discrepancies between experimental and SM

predictions, such as neutrino masses [19], lepton anomalous magnetic moments [20–22], vari-

ous �avour anomalies [20] and arguably the metastability of the Higgs potential [23–25]. From

a more philosophical perspective, the SM is also not satisfactory as a fundamental theory of na-

ture. It contains several parameters that are determined by measurements but not predicted by

an underlying mechanism. This includes the �avour textures in the Yukawa sector, as well as the

hierarchy and strong CP problem [26]. Moreover, the existence of Landau poles [27] suggests

that the physics contained by the theory has strongly coupled ultraviolet (UV) dynamics [28,29],

which is at odds with being a fundamental description in this regime – a systematic bug that

cannot be avoided by any valid choice of model parameters (quantum triviality) [30].
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From this perspective, the Standard Model can be interpreted as a low-energy approximation of

a more complete theory. In order to establish consistency with observations and to make predic-

tions at higher energies, it is in dire need of an extension. However, neither theoretical concerns

nor experimental data point towards a de�nite direction for constructing such a BSM theory.

This lack of an uni�ed guiding principle has led to a philosophical schism in model building.

Many ansätze rely on assumptions of symmetry or mathematical elegance, e.g. supersymme-

try, but have so far either failed to make veri�able predictions or are excluded by experimental

data [20].

In this thesis, we will champion the paradigm of asymptotic safety. At its core, the principle

dictates for a QFT to be consistent and well-de�ned at all scales [31]. In particular, the paradigm

demands that theories are physical and predictive even in the high-energy limit. This is achieved

if all their couplings remain at �nite values as the energy scale approaches in�nity. Hence, the

objective is to construct theories that exhibit such an UV �xed point of couplings, controlling the

high-energy dynamics of the model. As a paradigm for constructing SM extensions, asymptotic

safety is completely based on physical assumptions. In fact, it is by de�nition the only true

principle of UV completion. While other ansätze merely shift the range of validity towards a

higher energy scale, asymptotic safety is devoid of such a constraint.

Moreover, a theory capturing all fundamental physics of the universe is expected to be asymp-

totically safe. In that sense, the concept has originally been developed as a criterion for a theory

of quantum gravity [32]. Utilising functional renormalisation group methods [33, 34], evidence

for the existence of a UV �xed point in various approximations of quantum gravity has been

gathered. This includes minimal Einstein-Hilbert theories [35–37], extensions with higher or-

ders of the Ricci scalar [38–44] and other curvature terms [45–48] as well as gravity coupled

to matter [49–52]. A more sophisticated overview is provided by the reviews [37, 53–59] and

the references therein. Alternatively, UV �xed points of gravity have also been identi�ed with

diagrammatic methods slightly above two spacetime dimensions [32, 60, 61] or a large number

of matter �elds [62–64]. Further examples of asymptotic safety are also known away from four

space-time dimensions, including Yang-Mills theories in d = 4 + � dimensions [65–67], four-

fermion Gross-Neveu models either slightly above two [68,69] or exactly three dimensions for a

large number of �avours [70,71], as well as  (N ) scalar theories in d = 3 [72–74] and non-linear

� models [75–78] in d = 2 + �, both with a large-N limit.

If no new physics is present between the electroweak and the Planck scale, the onset of asymp-

totically safe quantum gravity can predict parameters in the SM [79–83]. However, in order to

address its drawbacks by a BSM theory within an experimentally veri�able energy regime, we

will employ the asymptotic safety scenario to particle theories without gravity and in exactly

four space-time dimensions. If all couplings are to remain su�ciently weak, this implies a strict

canon of possible interactions among scalar �elds, fermions and gauge bosons. For such a QFT,

the asymptotic safety paradigm is well-established in form of the older concept of asymptotic

freedom – a special case where the UV �xed point is non-interacting. Most famously, the discov-

ery of asymptotic freedom in Quantum Chromodynamics (QCD) [84,85] has been pivotal in un-

derstanding the strong interaction. Moreover, the concept has also been employed to construct

UV complete SM extensions. However, these models are constrained by their non-interacting
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high-energy dynamics in gauge group, matter content and coupling strengths [86–88].

Although explored almost as early as asymptotic freedom [89], interacting UV �xed points have

remained a mystery in theories of particle physics. On the other hand, infrared (IR) �xed points

have been studied extensively in the context of the conformal window of QCD. That is, the

parameter range in the number of quarks �avoursNf for which the strong gauge coupling reaches

the Banks-Zaks �xed point [90, 91] in the IR, instead of giving rise to chiral symmetry breaking

and con�nement. The window spans from an upper limit which is perturbatively determined by

the loss of asymptotic freedom to Nf ≤ 16, towards a lower bound marked by the onset of strong

dynamics, estimated to Nf ≥ 12… 6 by various methods [92–109], whereby Nf = 6 is realised in

QCD.

More recently, a new milestone has been established when the existence of weakly-interacting

UV �xed points has been proven in non-abelian gauge theories with suitable Yukawa interaction

[110, 111]. The progress was spear-headed by the construction of QCD-like theory, where the

existence of an UV �xed point can be guaranteed [112, 113]. The discovery has sparked many

investigations of various aspects [2,3,67,114–120], and represents a promising new direction for

BSM model building [4,121–125]. This novel ansatz marks the entry of asymptotic safety beyond

freedom into the realm of particle physics, and is also the starting point of this thesis. We will

mostly neglect a second mechanism proposing a UV �xed point in the presence of a large number

of matter �elds [126–135], as its validity has been questioned [136].

The modus operandi of this work is to investigate QFTs for weakly coupled �xed points of their

renormalisation group �ow. However, almost all �xed points can be described by a confor-

mal �eld theory (CFT) [137, 138]. This invites a complementary strategy, focusing on the �xed

points themselves and leveraging their potent conformal symmetry, independently of the models

wherein the points occur. Each CFT description is determined by conformal data such as scal-

ing dimensions and structure constants, for which unitarity bounds [139] apply. The data can

be extracted e.g. from the renormalisation group [140] or the conformal bootstrap [141–143].

The latter technique has recently been retro�tted to four dimensions [144] with progress being

made towards gauge theories [145], see [146,147] for reviews. Furthermore, the renormalisation

group �ow among conformal �xed points is constrained by the a-theorem [148–151] and Weyl

consistency conditions [152, 153].

Outline. The remaining part of this introduction is dedicated to brie�y review the theoretical

underpinnings of this thesis. First, we will recall the renormalisation group as fundamental fea-

ture of any QFT, and highlight how it encodes the scale dependence. After that, we will formally

introduce �xed points of this �ow and the terminology surrounding them. This will lead us to a

de�nition of asymptotic safety, and how it insures UV completion and predictivity. Subsequently,

it is argued how the picture is simpli�ed in a weak coupling regime and how perturbation theory

is a powerful instrument of investigation. We arrive at theorems that outline necessary features

of a theory to exhibit asymptotic safety. Next, the most basic example of such a model, a sim-

ple gauge-Yukawa theory, is investigated in a general manner. Cataloguing its �xed points and

phases, the mechanism of asymptotic safety is uncovered. Thereafter, we will develop a program

to guarantee the existence of the UV �xed point, and arrive at the Litim-Sannino model. In the

last section, we will then provide an outlook for the main part of the thesis.
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1.2 Renormalisation group

Scales. Most physical systems look di�erent depending on what scale they are investigated at,

which may be a characteristic length, energy or similar. In particular, even if the classical ac-

tion is scale invariant, quantum �uctuation may introduce such a parameter (e.g. dimensional

transmutation [154]). Hence, it is possible to understand a system at a certain scale, but not at

another: nuclear physics can be formulated e�ectively without a notion of quantum chromody-

namics. In particular, high-energy details of a theory wash out in the low-energy limit, unless

they are protected by a symmetry [155].

To connect the physics between the scales we can measure, and extrapolate beyond them, the

understanding of how a system changes as we vary the scale is crucial. This is encoded in the

renormalisation group (RG). The need for such a formalism was �rst encountered with the de-

velopment of Quantum Electrodynamics (QED) by Tomonaga [156], Schwinger [157–160], Feyn-

man [161–163] and Dyson [164,165] which required a renormalisation procedure that introduced

an associated cut-o� scale. An RG theory around transformations of this cut-o� was �rst intro-

duced by Stückelberg and Petermann [166], but went unnoticed, until explored by Gell-Mann and

Low [167]. The formalism has been modernised by Callan and Symmanzik [168,169], and we will

give an overview in this section. Based on the work of Kadano� [170], a more intuitive picture of

the RG was developed by Wilson [171–174], which has led to functional formalisms [33, 34, 175]

discussed below.

Renormalisation Group Equations. In Quantum Field Theory (QFT), the introduction of a

renormalisation scale � is a consequence of the regularisation of UV divergences from momentum

integrals. Consider a generic theory with action S, containing the �elds �a and corresponding

currents Ja. All physical information is contained in correlation functions of the shape

⟨�a1(x1) … �an (xn)⟩ = i
−n [J ]−1(

�
�Ja1(x1)

…
�

�Jan (xn))
 [J ] |||J=0 (1.1)

where

 [J ] = ∫ � eiS[�]+i ∫ d4x Ja(x)�a(x)
(1.2)

is the partition function. However, (1.1) will in general involve momentum integrals that are

(UV) divergent for large values. In a multiplicative renormalisation procedure,

�bare

i ↦ �i(�) + ��ct

i , �bare

a ↦ (
√
Z ab(�) + �

√
Z ct

ab)�b , (1.3)

the classical (bare) couplings �bare

i and �elds �bare

a are replaced by renormalised quantities �i(�),√
Z ab�b , depending on a renormalisation scale �, and counter-terms ��ct

i , �
√
Z ct

ab absorbing the

UV divergences. Note that

√
Z is called �eld strength renormalisation. The renormalisation

group equations (RGEs) can then be formulated using � and 
 functions [168,169] describing the

running of these renormalised quantities with a change of �

�i (�j) =
)�i
) ln �

, 
ab (�j) =
√
Z−1ac

)
√
Z cb

) ln �
. (1.4)



1.2 Introduction 12 Renormalisation group

Besides the ambiguity of the regularisation mechanism, many renormalisation schemes exist as

the counter terms ��ct

i and �
√
Z ct

ab may contain arbitrary �nite parts. This dependency, as well

as the choice of the renormalisation scale �, drops out when computing physical quantities :

d
d ln �

= (
)

) ln �
+ �i

)
)�i

+ ∫ d4x �b(x) 
ab
�

��a(x))
 = 0 . (1.5)

However, the physical interpretation of the renormalisation group highly depends on these afore-

mentioned details. Throughout this work, we will use dimensional regularisation, computing

quantum �uctuations at d = 4 − � and the modi�ed minimal subtraction or in short MS scheme

[176]. Therein, counter-terms only contain the regularised UV singularities as � → 0 as well as a

universal constant that can be absorbed in a rede�nition of the scale �, leading to the expansion

�bare

i = ���i [�i + ��ct

i (�j)] , ��ct

i =
∞
∑
n=1

c(i)n �−n. (1.6)

Here, �i is a number that mere depends on the type of coupling �i . As the bare coupling is

independent of the renormalisation scale, the condition

d
d ln �

�bare

i =
[

)
) ln �

+∑
j
�j

)
)�j ]

�bare

i = 0 , (1.7)

together with (1.6) and � functions being UV �nite implies that the latter can be extracted from

the �rst order poles of the coupling counter-terms

�i = −��i�i − �ic(i)1 +∑
j
�j�j

)c(i)1
)�j

, (1.8)

suggesting an intimate link between the removal of UV divergencies via counter-terms and the

renormalisation group. The same argument relates the anomalous dimensions 
ab to the poles

of the �eld strength renormalisation counter-terms:

�
√
Z ct =

∞
∑
n=1

zn�−n, 
 = −∑
i
�i�i

)z1
)�i

. (1.9)

Following the conventions (1.3), each bare interaction vertex

vabc…i = �i �a�b�c … (1.10)

requires a counter-term �vi to cancel in�nities from proper vertex corrections, relating to counter-

terms for both the �eld strength renormalisation of external legs and the coupling

�vi = [
��ct

i + �i ∑
legs

(�
√
Z ct

)(
√
Z−1)]

. (1.11)
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This relation is re�ected by the general shape of the � functions

��i = �vi +∑
legs


 ⋅ v, (1.12)

retaining terms that are either vertex (�vi) or leg corrections (
 ⋅ v).
In spite of this simple connection to the �rst-order poles of counterterms cancelling UV diver-

gencies, a strong physical interpretation of this scheme is di�cult, other choices provide a better

understanding of the renormalisation group. But this lack of attachment to the physical world

is a virtue – the scale � can be considered a free parameter, which choice does not change the

theory, as de�ned by its observables. However, this does not mean that � is completely spuri-

ous, and the renormalisation group physically irrelevant. The Wilsonian renormalisation group

provides an alternative formulation allowing for a more straightforward interpretation.

Wilsonian renormalisation group. The concept of the renormalisation group and its inter-

pretation has been generalised by Wilson [173] on quantum actions SΛ containing all possible

operators. Therein, UV divergences are regulated by choosing a momentum cut-o� scale Λ

Λ [J ] = ∫
p2<Λ2

� eiSΛ[�]+i ∫ d4x J (x)�(x). (1.13)

A renormalisation group transformation then amounts to changing the cut-o�. If the new scale

is lower, Λ′ < Λ, the �elds are decomposed into soft and hard modes � = �′ + ' with momenta

below and above Λ′, and the hard modes integrated out

Λ′ [J ′] = ∫
p2<Λ′2

�′ ∫
Λ′2≤p2<Λ2

' eiSΛ[�
′+']+i ∫ d4x J ′(x)�′(x)

= ∫
p2<Λ′2

�′ eiSΛ[�
′]+i ∫ d4x J ′(x)�′(x).

(1.14)

Hence, each renormalisation point corresponds to a di�erent QFT, retaining a unique number

of momentum modes, related by the renormalisation group. As the cut-o� is sent to in�nity

Λ → ∞, the action becomes sensitive to high-energy e�ects. This is the key di�erence to the

procedure introduced before – although cut-o� schemes are also available therein – where scale

is considered a regularisation parameter of the very same theory, no degrees of freedom are

integrated out by changing it.

A slight generalisation of the Wilsonian ansatz represents the Polchinski RG [175], where the

cut-o� is replaced by a smooth UV regulator C−1Λ

Λ [J ] = ∫ � eiSint[�]+i ∫ d4x[
1
2� C

−1
Λ (−)2) � +J�], CΛ (p2) =

{
p−2 for p2 ≪ Λ2

0 for p2 ≫ Λ2
. (1.15)

This approach is considered more practical to implement, as it leads to an exact �ow equation

)Sint

) ln Λ
=
1
2 ∫ d4p

[
tr
)CΛ (p2)
) ln Λ

�2Sint

��(p) ��(−p)
−
�Sint

��(p)
)CΛ (p2)
) ln Λ

�Sint

��(−p)]
(1.16)
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for the interaction part of the action Sint.

Taking a complementary perspective to the Wilsonian approach of a low-energy action, the func-

tional renormalisation group is formulated in terms of an e�ective action, which is generated by

the UV modes that are integrated out. In order to separate those degrees of freedom, an infrared

(IR) regulator Rk has to be introduced instead. After Wick rotation, the euclidean partition func-

tion

k [J ] = ∫ � e−S[�]−∫ d4x[
1
2� Rk(−)2) � −J�], Rk (p2) =

{
k2 for p2 ≪ k2

0 for p2 ≫ k2
, (1.17)

can be Lengendre-transformed to obtain the quantity

Γk ['] = − lnk [J ] + ∫ d4x [J' − 1
2' Rk (−)

2) '] , (1.18)

which is called e�ective average action, and functional of the classical �eld ' (averaged over the

unregulated momentum space). If the scale k is lowered to zero, the regulator disappears and

the full e�ective action Γ0 ['] = Γ ['] is obtained. In the opposite limit k → ∞, the average

action only contains high-energy quantum �uctuations and becomes the bare action Γ∞ ['] =
S [']. Transformations of the RG scale towards this limit are reminiscent of changing the coarse-

graining of Γk , by averaging only over shorter and shorter distances. This �ow can be described

by the exact Wetterich equation [33, 34]

)Γk [']
) ln k

=
1
2
tr ∫ d4p

[
)Rk (p2)
) ln k (

�2Γk
�' (−p) �' (p)

+ Rk (p2))

−1

]
. (1.19)

The Wetterich (1.19) and Polchinski (1.16) �ows are UV �nite due to the properties of the regu-

lator. In fact, both formalisms are related by a Legendre transformation [34].

Both notions of the renormalisation group are self-consistent and arise from di�erent methods

of regularising the UV dynamics of the same physical systems within a QFT descriptions. Hence,

both approaches are in fact equivalent formulations of the same physics. Practically, each proce-

dure comes with its own advantages and disadvantages, but all physical phenomena must appear

in each of them. This includes also the notion of UV completion, which means taking the limit

Λ → ∞ in the Wilsonian renormalisation group picture, and is intertwined with the consistency

of the renormalisation procedure � → ∞ in the other formulation (or equivalently to zero if it is

a length scale). These considerations will lead us to discuss �xed points next.

1.3 Fixed points

After having established that quantum �uctuations of a theory induce renormalisation group

running, we will now review the exception from this phenomenon: �xed points. In the following,

we will collect some general properties and then highlight the importance of �xed points for UV

completion.

De�nition. Fixed points are a set of couplings g∗i at which the renormalisation group �ow ter-
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interacting FP

Figure 1.1: Renormalisation group running of coupling � with the renormalisation scale � (blue

line) via )�/) ln � = −B �2 +C �3 between the non-interacting, Gaussian �xed point � = 0 (lower

left) to an interacting �xed point � = � ∗ = B/C (top right). Close to the Gaussian, the �ow follows

a logarithmic behaviour as in (1.22), while power-law running as in (1.23) is found in the vicinity

of � ∗. The direction of the �ow is immaterial in this plot, the sign of the abscissa is arbitrary.

minates. They can be formally identi�ed by a collective zero point of all � functions

�i (g∗j ) =
)gi
) ln �

|||gj=g∗j
= 0 . (1.20)

Therefore, trajectories in coupling space can only reach a �xed point in an asymptotic limit

� → ±∞, so that they can be classi�ed as UV or IR. At such a point, the QFT becomes scale in-

variant even at quantum level, with each operator Λ = (
Λ
Λ′)

Δ
Λ′ transforming via its scaling

dimensionΔ, which are physical observables. In most cases the theories even exhibit a complete

conformal symmetry [137,138]. As correlators at a �xed point become ⟨�(0)�(r)⟩ ∝ r−Δ�2 , no �-

nite correlation length exists, and microscopic phenomena extend to macroscopic scales. Hence,

critical phenomena such as second order phase transitions [171, 172] are associated with �xed

points. In consequence, close to criticality all physical systems can be categorised into univer-

sality classes, in which the �xed points correspond to the same conformal �eld theory, leading

to some features being universal within each class.

Attractivity, Predictivity. To quantify if a �xed point is UV or IR, trajectories in coupling space

have to be investigated around it. Unless the �xed point is in an extremum of the � function, it

can be expanded via

�i (g) = Mij(gj − g∗j ) + Cijk(gj − g
∗
j )(gk − g

∗
k) +  [(g − g∗)3] , (1.21)

where Mij = )�i/)gj |g=g∗ is called the stability matrix. Its eigenvalues, the critical exponents #i
indicate that the RG �ow around the �xed point is given by a power law

gi(�) = g∗i + c⃗ ⋅ v⃗i (
�
�0)

#i
+ … , (1.22)

where v⃗i are the corresponding eigenvectors, and c⃗ is a direction in coupling space. Trajectories

with #i < 0 are called relevant, they are UV attractive or IR repulsive. On the other hand, irrele-

vant eigendirections have #i > 0, and are IR attractive or UV repulsive. The case #i = 0 is called
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UV critic
al surface

IR araction

Figure 1.2: Example �ow diagram in the space of two couplings, arrows are directed from the UV

to the IR. The �xed point (black dot) has one relevant (purple) and one irrelevant (red) eigendirec-

tion. The high-energy complete theories live on the UV critical surface, which is one-dimensional

(purple line).

marginal; the RG evolution is then logarithmically in the scale parameter

gi (�) = g∗i + ai ln(
�
�0)

+ … , (1.23)

where ai as well as the couplings gi are obtained by diagonalising (1.21). An example trajectory

in the two-loop approximation exhibiting both regimes is displayed in Fig. 1.1.

Critical exponents are physical observables and invariant under a suitable reparametrisation

gi ↦ g′i as

M ′
ij =

)
)g′j

�′i
|||∗ =

)gl
)g′j

)
)gl (

)g′i
)gk

)gk
) ln �)

|||∗

=
)gl
)g′j (

)g′i
)gk

)
)gl

�k + �k
)2g′i
)gk)gl)

|||∗ = (
)g′i
)gk)

Mkl (
)gl
)g′j )

,
(1.24)

since all � functions vanish at the �xed points regardless of the parametrisation. Hence, the

transformation M ′ ↦ T M T −1 leaves the eigenvalue spectrum invariant.

Further, the submanifold in coupling space containing all trajectories attracted to a �xed point

are referred to as its critical surface. Its dimension corresponds to the number of parameters

that can be chosen freely while still being attracted to the �xed point. The dimensionality of the

repulsive submanifold however corresponds to the number of parameters that are predicted in

terms of the critical surface ones. An example is displayed in Fig. 1.2, featuring a system of two

couplings, which represent the coordinate axes. UV complete theories require RG trajectories

that lie in the critical surface, which is one-dimensional (purple line). Hence, one coupling is

completely predicted by the other.

UV completion and asymptotic safety. An essential criterion for UV completion of a theory

is that the limit � → ∞ of the renormalisation scale must be well-de�ned and physical. As all

physical observables are independent of �, it is a parameter free to be chosen – including the

limit � → ∞. Hence, this notion of UV completion of a theory re�ects the consistency of its
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renormalisation group procedure. In the Wilsonian renormalisation group, the limit implies that

a theory exists where all high-momentum modes p2 →∞ are included, that is free of unphysical

properties such as poles. This is indeed a reasonable de�nition of UV completion. Excluding the

possibility of limit cycles [31], this requires the following ingredients:

a) A UV �xed point g∗i of all dimensionless couplings exist. This requires (1.20) with gi =
�−diGi , where the coupling Gi in the action has the mass dimension di . Hence, any quantity

computed in terms of g∗i is UV �nite.

b) Its UV critical surface is �nite-dimensional. Otherwise, the theory might still be UV com-

plete, but non-predictive as an in�nite set of open parameters exist.

c) The UV �xed point needs to be situated in a physical regime and connects to the IR through

trajectories that are physical as well.

Theories that exhibit these properties are called asymptotically safe. The concept has been named

by Weinberg [32] as a non-perturbative generalisation of renormalisability. It is a general crite-

rion for UV completion for quantum �eld theories, and can be used for predictive model building.

In that sense, restricting the parameter space onto the UV critical surface is not �ne-tuning, but

a prediction by UV completion. Hence, the concept is in contraposition to e�ective �eld theory

approaches, where all couplings are �xed by (in principle, in�nitely many) measurements in the

IR instead.

Many studies have been conducted regarding asymptotic safety of quantum gravity in various

approximations, as well as many other theories, using Wilsonian renormalisation group tech-

niques, large-N limits and � expansions around critical dimensions, see [58] for a review and

references therein.

Here, we will mostly be interested in asymptotic safety in strictly d = 4 and a weak coupling

regime, excluding gravity. In such a regime, the phenomenon of asymptotic freedom [84, 85] is

well known and even predates the notion of asymptotic safety. In fact, it is a special case of

asymptotic safety where the UV �xed point is non-interacting (g∗i = 0). However, for a long time

no weakly coupled theory exhibiting asymptotic safety beyond freedom has been identi�ed, leav-

ing the latter as the only viable mechanism for UV completion. This has led to the development

of GUT extension of the SM, embedding away abelian gauge groups that are incompatible with

complete asymptotic freedom [86–88]. The situation has changed only recently with the seminal

work [112], demonstrating safety beyond freedom in a gauge-Yukawa theory that is perturba-

tively exact. As these developments form the foundations of this work, they will be discussed in

more detail in the following, sections, starting with implications of the weak coupling regime.

1.4 Perturbation theory

In the context of Quantum Field Theory, the spirit of perturbation theory is to expand the action

of a system around that of a free theory, treating all interactions as small �uctuations that can

be systematically arranged as convergent series. For example, consider an interacting theory

 (�) = 0 (�) + g I (�) with 0 being the free �eld theory, and g I the interaction Lagrange

density. The full partition function  is expanded around the exactly solvable partition function
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of the free �eld theory 0

 [J ] = ∫ � ei ∫ d4x (�(x)) + J (x)�(x)

= eig ∫ d4x I [
�

�J (x) ] 0 [J ]

= (1 + ig ∫ d4x I [
�

�J (x)] −
1
2g

2
∬ d4x d4x ′I [

�
�J (x)] I [

�
�J (x′)] + …)0 [J ] .

(1.25)

The argument is that for the series to converge, the coupling constant g needs to be su�ciently

small. Hence, terminating the series at a �nite (loop) order is a good approximation. This ap-

proach has been very successful for weakly coupled theories, especially due to the technique of

Feynman diagrams.

Canonical scaling. Moreover, this implies an ordering principle for operators in the action. As

quantum �uctuations are assumed to be small, the scaling behaviour of each operator is given

by its canonical dimension. Couplings with classically positive mass dimensions are relevant,

quantum �uctuations do not change its scaling. On the other hand, higher order operators are

considered irrelevant. Merely for classically marginal couplings, where the scaling exponents

are solely determined by quantum �uctuations, the situation is unclear a priori. Hence, for �nite

�eld content, the number of marginal and relevant operators is �nite as well, rendering such a

theory predictive.

Perturbative renormalisability. By de�nition, each perturbative expansion, including the one

for the RG �ow equations, is a power series in the coupling constants. Hence, dimensional anal-

ysis suggests that perturbative theories de�ned in terms of classically marginal and relevant

couplings in the UV, only require the same kind of operators to measured in the IR to determine

the relevant RG �ow. Such theories are called (perturbatively) renormalisable.
1

As the renor-

malisation scale dependence is entirely absorbed in those couplings, renormalisable actions are

self-similar under RG transformations [177, 178]. On the other hand, if arbitrary operators with

negative mass dimension (non-renormalisable operators) are involved, each loop order of a per-

turbative expansion requires the knowledge of operators of couplings with even lower mass

dimension.

Template theory and master formulas. The set of renormalisable operators is highly de-

pendent on the number of spacetime dimensions. For d = 4, only gauge couplings g, Yukawa

interactions Y and scalar quartic couplings � are dimensionless. Moreover, scalar � and fermion

masses m as well as scalar cubic interactions ℎ have a positive mass dimension. This allows the

bare Lagrangian of a template theory to be formulated as

 = −
1
4
F ��A FA�� +

1
2
D��aD��a + i †j �

�D� j + gh + gf

−
1
2 (Y

a
jk  j" k�a + Y

a∗
jk  

†
j " 

†
k �a) −

1
4!
�abcd �a�b�c�d

−
1
2 [mjk  j" k + m∗

jk  
†
j " 

†
k ] −

�2ab
2!
�a�b −

ℎabc
3!

�a�b�c .

(1.26)

1
There are additional requirements, such as a gauge symmetry for spin one �elds.
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where gf, gh are gauge �xing and ghost terms and  i , �a being Weyl fermions and real scalar

�elds, with universal indices running over all particle species, generations, �avours, colours and

so on. In the same sprit, a sum over all gauge groups is implied. More details will be provided in

Ch. 2. The ansatz is extremely powerful, as any renormalisable theory can be embedded into this

template. In fact, RG equation can be extracted in this general form, resolving only momentum

integral and spinor contractions, but retaining the universal index structure. Early works up to

two-loop order in gauge, Yukawas and quartics and �eld strength anomalous dimensions in the

MS scheme [179–184] have been recomputed and extended for masses and scalar cubic [1, 185].

For gauge couplings, the full three-loop results are available [186–190]. Moreover, the running

of vacuum expectation values (VEVs) has been computed up to two-loop order [191,192]. For the

pure scalar part of (1.26), general RGEs have been determined at three and four loops [150,193].

Constraints on four-loop gauge and three-loop Yukawa RG equations are provided in [190]. A

handy introduction into universal index contraction is given in [194]. In more specialised cases,

higher order corrections have also been computed. For  = 1 supersymmetric theories a similar

template approach exists for the DR scheme, with all results available at two-loop order [191,192,

195–198] and even three-loop for gauge couplings and superpotential parameters [199–201]. In

non-supersymmetric simple gauge theories with charged fermions, gauge � functions are known

up to 5-loop [202–205]. Moreover, four-loop RG equations are available in some scalar-Yukawa

theories [206–208] and 6-loops in O (N ) [209–211] and O (N ) × O (M) scalar theories [212–214].

For the Standard Model, all � functions have been computed up to three-loop [215–220], and

four-loop [221] for all gauge couplings.

Theorems of asymptotic safety. The universal structure of weakly coupled �-functions in four

dimensions implies strict theorems on the existence of asymptotic safety in a weakly coupled

regime:

1. Gauge interactions are strictly required for asymptotic safety. [111, 222]

2. In order to achieve asymptotic freedom, all gauge subgroups must be non-abelian. [222]

3. In order to achieve asymptotic safety beyond freedom, non-abelian gauge interactions,

with or without abelian subgroups, as well as Yukawa interactions are required. This im-

plies that gauge bosons, fermions and scalars have to be present in the theory. [110, 111]

These theorems hold for arbitrary gauge and global symmetries and representations. The last

point, depending on global and local symmetries, often implies that besides gauge and Yukawa

couplings scalar quartic interactions must also be taken into account. In the next section, we will

demonstrate these theorems for simple gauge-Yukawa theories.

1.5 Simple gauge-Yukawa theories

Now, we will consider a QFT with single but arbitrary gauge group with interaction g, that

can contain both scalar and fermionic matter, weaved together in a single Yukawa coupling y.

The number of scalar quartic interactions �i on the other hand depends on gauge and global

symmetries and representations. Using the de�nitions

�g =
g2

(4�)2
, �y =

y2

(4�)2
, �i =

�i
(4�)2

, (1.27)
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the general structure of the RGEs �g,y,i = )�g,y,i/) ln � at leading, non-trivial order (2-loop in

gauge couplings, 1-loop in Yukawas, quartics) is:

�g = �2g (−B + C �g − D �y) ,

�y = �y (E �y − F �g) ,

�i = H ijk�j�k − I ijg �g�j + I
ij
y �y�j + J

i
g �

2
g − J

i
y �

2
y .

(1.28)

Here, the coe�cients B, C , D, E, F , H ijk
, I ijg,y and J ig,y depend on the details of the quantum �eld

theory, and can be extracted from [182–185]. At these loop orders, the system is universal for

mass independent renormalisation schemes. The coe�cients B and C are only sensitive to the

non-abelian self-interaction and charged matter content, and read

B = 22
3 C

G
2 − 4

3nFS
F
2 − 1

3nSS
S
2 ,

C = − 683 (CG
2 )

2 + 4nFSF2 (CF
2 + 5

3C
G
2 ) + 4nSS

S
2 (C

S
2 + 1

6C
G
2 ) .

(1.29)

The quantities SR2 , CR
2 and dR , are the Dynkin index, quadratic Casimir invariant and dimension

of the gauge representations, while nR are the �eld multiplicities of the fermions (R = F), scalars

(R = S) and gauge bosons (R = G). If more than one type of fermions and scalars are present, a

sum over the indices F and S of matter interactions in (1.29) is implied. The group invariants are

de�ned via

SR2 �
AB = tAab t

B
ba, CR

2 ab = t
A
ac t

A
cb , dR = �aa, (1.30)

where tAab denotes the generator of representation R. For irreducible representations, one has

CR
2 ab = CR

2 �ab . Moreover, this leads to the relation CR
2 dR = SR2 dG .

As obvious from (1.29), the non-abelian self-interactions of the gauge bosons counteract in�uence

of the charged matter sector. Scalars and fermions drive B negative and C positive, causing �g
to become more positive, but the pure gauge contribution have the opposite e�ect. While the

coe�cients B and C can take either sign, the Yukawa coe�cients are manifestly positive for any

quantum �eld theoryD, F ≥ 0 and E > 0, whereD = F = 0 is only the case for uncharged fermions

in the Yukawa interaction [182–185]. The signs of quartic coe�cients H and Jg,y depend on the

sign of the �i . However, for most scalar sectors, the choice of positive �i – corresponding to a

potential bounded from below – also means H , Jg,y and Jg,y are positive. This implies that gauge

and Yukawa interactions have a diametral e�ect in the quartic RGEs. Uncharged scalars lead to

Jg = Ig = 0, while Jy = Iy = 0 is symptomatic for scalars not involved in the Yukawa interactions.

However, systems of several quartic interactions may also have some Jg,y = 0 due to the choice of

basis. Furthermore, the quartic sector is algebraically decoupled from the gauge-Yukawa system

in (1.28): �i appear in �g at �rst at three- or four-loop order, depending if the scalar is charged,

and two-loop in the �y . However, quartics are absent from this leading approximation, such that

potential �xed point values � ∗g,y can be extracted from �g = �y = 0 �rst, and only then plugged

into the quartic RGEs. However, unless Jg,y = 0, the quartic system is, unlike the gauge or Yukawa

one, not technically natural, such that the �i cannot be switched o�. The �xed point solutions � ∗i
extracted from �i

|||�g,y=� ∗g,y = 0 may then end up being complex or within a con�guration where
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FP Type � ∗g � ∗y #1 #2 Condition Fig. 1.3
G UV [IR] 0 0 0 0 B > 0 [B < 0] ¬ ­ ® [¯ ° ]

BZ IR
B
C 0

B2
C −BFC B, C > 0 ­ ®

GY IR [UV]
B
C′

BF
C′E eq. (1.39) eq. (1.39) B, C′ > 0 [B, C′ < 0] ® [¯ ]

Table 1.1: Overview of gauge-Yukawa �xed points, critical exponents, conditions and phase di-

agrams in Fig. 1.3.

the scalar potential is unstable at the �xed point. In this case, the �xed point in the gauge-Yukawa

system is invalidated, and referred to as pseudo-�xed point. Nevertheless, we will now turn to

the potential �xed points in the gauge-Yukawa subsystem.

Fixed points of the gauge-Yukawa system. Now, we will review all possible �xed points

of the gauge-Yukawa system [110], summarised in Tab. 1.1. We encounter the non-interacting

Gaussian and interacting Banks-Zaks �xed points, which are well-known within non-abelian

gauge theories in connection with the phenomena of asymptotic freedom and the IR conformal

window, respectively. For this work, the novel gauge-Yukawa �xed point is crucial importance,

as it doubles either as IR �xed point, or enable asymptotic safety beyond freedom. Without gauge

interactions, it is easy to verify from (1.28) that no �xed point can arise: the Yukawa RG becomes

�y = E �2y with E > 0, which only admits the trivial solution �y = 0 at all scales.

The Gaussian �xed point G with � ∗g,y = 0 is an UV �xed point for B > 0 in (1.28), in which case the

theory is asymptotically free [84, 85]. According to (1.29), this is only achievable in non-abelian

gauge theories CG
2 ≠ 0, and with not too much charged matter content. Otherwise, we have

B < 0, G is fully IR attractive and asymptotic freedom is lost.

Including the gauge two-loop order term in (1.28) with vanishing Yukawa interactions �g =
−B �2g + C �3g +  (�4), we �nd the infrared Banks-Zaks (BZ) [90, 91] �xed point, given that

B > 0, C > 0 ⇒ �BZ

g = B/C, �BZ

y = 0 . (1.31)

The critical exponents

#BZ

1 = B2/C > 0, #BZ

2 = −BF/C < 0, (1.32)

indicate infrared attraction in the gauge, and UV attraction in the Yukawa direction. Hence, the

BZ is only present in an asymptotic free regime. For B ≈ 0, it exists within a perturbative regime

0 < �BZ

g < �BZ,max

g , bounded from above by the onset of strong-coupling e�ects. As argued

before, starting from B ≈ 0 and decreasing matter content from the theory drives the coe�cient

B up while C decreases, pushing �BZ

g towards �BZ,max

g . In QCD-like theories, this range of matter

content that allows for BZ is often referred to as (IR) conformal window, see [90, 91, 109, 223]

and references therein. Away from the asymptotic free regime, i.e. B < 0, the existence of an UV

attractive version of the BZ, requiring C < 0, is excluded in any quantum �eld theory [110]. This

can be inferred by rewriting (1.29)

C = − 3411BC
G
2 + 4nFS

F
2 (CF

2 + 7
11C

G
2 ) + 4nSS

S
2 (C

S
2 − 1

11C
G
2 ) , (1.33)

which for B ≤ 0 has only a negative contribution for charged scalars in a representation that
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has, CS
2 < 1

11C
G
2 . However, the quadratic Casimir of any representation R ful�ls, compared to the

respective adjoint G of the group

CR
2 ≥ 3

8C
G
2 ⇒ C > 0 for B ≤ 0 . (1.34)

The argument can be extended to semi-simple gauge theories [110] and manifestly excludes

weakly interacting UV �xed points in any pure gauge theory with matter.

The only recourse at the leading, non-trivial order is Yukawa interaction that is present at two-

loop level in �g (1.28). Borrowing a common index notation for the Yukawa interaction

yuk = y ℎaij �a i" j + h.c., with normalisation ℎ†aijℎaji = ℎ
2, (1.35)

the new coe�cients from (1.28) read

D = d−1G [C
F
2 ikℎaijℎ

†
ajk] ,

E = ℎ−2ℎ†aij [ℎbjkℎ
†
bklℎali + ℎajkℎ

†
bklℎbli + 4ℎbjkℎ

†
aklℎbli + ℎbji (ℎ

†
aklℎblk + ℎ

†
bklℎalk)] ,

F = 6ℎ−2ℎ†aij [C
F
2 jkℎaki + ℎajkC

F
2 ki] .

(1.36)

Apart from the trivial solution, �y = 0 is also achieved for the nullcline condition �y = F
E�g , which

e�ectively shifts the two-loop coe�cient in �g = −B �2g + C′�3g +  (�4) via

C′ = C −
DF
E

< C . (1.37)

This allows for the gauge-Yukawa (GY) �xed point

B > 0, C′ > 0 or B < 0, C′ < 0 ⇒ �GY

g = B/C′, �GY

y = BF/EC′ , (1.38)

and its critical exponents

#GY

1,2 =
B
2C′2 [

BC + FC′ ∓
√
(BC + FC′)2 − 4BFC′2] . (1.39)

While in the asymptotic free regime (B > 0, C′ > 0), both critical exponents are positive 0 <
#1 < #2, and GY is completely IR attractive. Due to the sign of the shift (1.37), the �xed point

then coexists with the BZ with �GY

g > �BZ

g and the UV attractive Gaussian. Beyond asymptotic

freedom, an interacting UV version of GYwithB, C′ < 0may exist in spite ofC > 0, as #1 < 0 < #2
admits an UV attractive direction. Hence, the theory exhibits asymptotic safety beyond freedom.

At B ≈ 0, the critical exponents are approximately

#GY

1 ≈ B2/C′ , #GY

2 ≈ BF/C′ , (1.40)

which shows some similarity to (1.32). Hence, around the perturbative region B ≈ 0, the GY �xed

point is either UV or IR, with the sign of C′ |B=0 determining either case. As it turns out, theories

with interacting UV �xed points are relatively rare [224], with [112] being the �rst case ever
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constructed. As the crucial mechanism for interacting UV �xed points is the Yukawa-induced

shift (1.37) on the coe�cient C , the ratio

�BZ

g

�GY

g
=
C′

C
= 1 −

DF
CE

< 1 (1.41)

is useful to quantify its relative size, with positive values indicating that the GY is IR, and the

more negative the bigger - and hence the more robust - the shift.

Figure 1.3: Phase diagrams of simple gauge-Yukawa theories in the �g,y plane, depending on

the coe�cients B, C and C′. The arrows point from the UV to the IR. Gaussian (G),

Banks-Zaks (BZ) and gauge-Yukawa (GY) �xed points are marked by black dots,

separatrices as red lines. The red shaded area in ¬, ­ and ® highlights asymptotic

freedom.

Phase diagrams. Collecting all conditions on �xed points, each theory may exhibit the phase

diagrams ¬–° of Fig. 1.3, projected in the gauge-Yukawa plane. These exhibit asymptotic

freedom with any interacting �xed point ¬, the Gaussian and BZ ­, or the GUV, BZ as well as

the infrared GYIR �xed point ®. Beyond asymptotic freedom, the Gaussian is IR attractive, and

the theory is either not UV complete ° or asymptotically safe due to the GYUV ¯. In the latter,

the critical surface is one-dimensional in the gauge-Yukawa plane, and is given by the separatrix

connecting to the Gaussian, giving rise to a weakly coupled theory in the IR, or towards the

strong coupling regime in the IR, governed by non-perturbative e�ects.

The scalar quartic sector may critically a�ect these diagrams: any of the interacting �xed points

may be invalidated, and even asymptotic freedom could be lost if the Gaussian becomes discon-

nected from a physical region. On the other hand, there might also be multiple quartic solutions

for each of the gauge-Yukawa �xed points.
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Representation dependence. Phases ¬–° in a weakly coupled regime can be connected the

observations made earlier about signs of matter and gauge boson contributions to (1.29). Fig. 1.4
illustrates the phase boundaries schematically depending on the number of charged matter �elds.

Two di�erent kinds of quantum �eld theories exist, distinguished by containing GYIR (type I) or

GYUV (type II) [224, 225].

¬ ® °

°

­

¯­¬

Type I

Type II

asymptotic freedom infrared freedom

charged

matter

Figure 1.4: Dependency of phases ¬–° on the matter multiplicities imply two di�erent types

I and II of quantum �eld theories.

Non-abelian gauge theories with no matter exhibit ¬, with C ≤ 0 ≤ B. Continuously increasing

the number of charged matter degrees of freedom, B as in (1.29) decreases but C grows. Due

to (1.34), C turns positive before B becomes negative, leading to BZ emerge from in�nity. The

�xed point comes into a perturbative regime as B → +0, leading to the phase ­. The parameter

C′ < C (1.37) increases likewise, and may become positive before B → 0 (type I) or thereafter

(type II). In the �rst case, the GYIR �xed point emerges from in�nity and becomes increasingly

perturbative, eventually leading to phase ®. If C −C′ is very small, the phase ­ is very narrow.

With B → 0,GYIR andBZmerge with the Gaussian, leading to phase ° as asymptotic freedom is

lost. For type II families, C′ < 0 and hence ­ remains the case until B = 0. Barring the boundary

case C′|B=0 = 0 between I and II, the latter then exhibits asymptotic safety when freedom is lost

via ¯. As BZ merges into the Gaussian, GYUV emerges and is pushed towards higher values

beyond freedom. This lasts until C′ turns positive, leading to °. However, the transition ¯
→° is in a strongly coupled regime. Hence, it is not a priori clear how vast this UV conformal

window is. Moreover, while B is linear in �eld dependencies but C′ has a more complicated

dependency, certain theories may have C′ becoming positive and then negative again, giving

rise to a second window. However, its non-perturbative nature casts these predictions unreliable

within our approximation. Similarly, the lower end of the IR conformal windows, giving by the

transitions ¬ →­ and ­ →® cannot be determined with perturbative methods.

Of course, families of theories may posses several parameters counting matter �elds, e.g. num-

bers of various fermions, scalars. Some changes may even result in a transition between I and

II within one family. In a similar vein, this could happen for di�erent gauge groups, dimensions

and representations.

Beyond simple gauge-Yukawa. Theories with several gauge and Yukawa interactions exhibit

a rich system of potential BZ and GY �xed points, where a number of these couplings may be

non-vanishing [114]. At leading order, for ng gauge couplings and ny Yukawas, up to (2ng − 1)
BZ-type and (2ng − 1) (2ny − 1)GY-type solutions may exist, the actual number highly depending
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on details of the theory. The generalised gauge �-function is

�gi = �
2
gi [−Bi + Cij �gj − Di� �y� ] , (1.42)

with Bi and Cii given by (1.29) with {G, F , S} ↦ {Gi , Fi , Si}, as well as manifestly positive coef-

�cient

Cij |j≠i = 4 [nFi S
Fi
2 C

Fj
2 + nSi S

Si
2 C

Sj
2 ] ≥ 0. (1.43)

As a side note, this suggests a generalisation of (1.34), as Cij |Bi≤0 > 0 ∀i, j. One gauge sector can

e�ectively stabilise another via

Be�

i = Bi − Cij �
∗
gj
|||j≠i + Di� �

∗
y� , (1.44)

which may reinstate asymptotic freedom even though it should be lost from the matter content

alone (Bi < 0 < Be�

i ), providing an alternative mechanism of UV completion, again relying on

Yukawa contributions being large enough. This is a double-edged sword, as larger gauge con-

tributions in (1.44) may even spoil e�ective asymptotic freedom. In supersymmetric theories,

the asymptotically safe phase ¯ does not exist [226, 227], however asymptotic safety can still

be achieved for semi-simple gauge groups, when one of the gauge interactions is asymptotically

free [115], due to the (1.44).

Higher orders. The perturbative ansatz (1.28) and any conclusions drawn from it are only valid

in a regime of su�ciently small couplings. This is trivially the case for the Gaussian �xed point

G and its vicinity. The interacting �xed points BZ and GY on the other hand require for the one-

loop coe�cient |B| ≪ 1 to lie within this region. In terms of Fig. 1.4, the domain of applicability of

perturbation theory corresponds to a strip around both sides of the vertical middle axis separating

asymptotic and infrared freedom.

The condition |B| ≪ 1 can always be achieved in the large-N Veneziano limit [228], whereby

�xed points arise as a systematic Taylor series in a small expansion parameter under increasing

loop orders [2, 91]. This will be employed in the next section, as we continue to study simple

gauge theories with matter where asymptotic safety is achieved through ¯, but perturbativity

of GYUV is guaranteed from the onset.

Beyond the Veneziano limit, a �nite size of the BZ conformal window is obtained using various

perturbative and non-perturbative techniques [92–109], and for the GY conformal window, see

[2]. It is therefore reasonable to expect that conformal windows have a �nite extensions even

away from the Veneziano limit.

1.6 Exact asymptotic safety

Exact asymptotic safety means that the existence of the UV �xed point is protected by some

mechanism. In particular, weakly coupled �xed points are guaranteed to be present starting from

a minimal order to all higher ones in perturbation theory. Hence, the system is either exactly

solvable, or all higher orders of the approximation scheme are controlled in the sense that they do

not spoil the �xed point. For instance, asymptotic freedom in renormalisable QFTs is determined
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at one-loop level in perturbation theory, as it is a series expansion around the potential �xed point

itself. For asymptotic safety beyond freedom, rigorous proofs for the existence of interacting

�xed points are rare, and usually require another ordering principle. One example are theories

just above the critical dimension of asymptotic freedom. Consider for instance a theory with

a single coupling G, canonically marginal in dc dimensions, and g = �d−dcG its dimensionless

version. The RG �ow is given by

�g = (d − dc) g + �g,c (g) , (1.45)

and if the �ow at d = dc is asymptotically free, i.e. �g,c = −B g2 + (g3), then slightly above this

critical dimension d = dc + � [229] an interacting UV �xed point g∗ = �/B +  (�2) exists. Each

additional order gn+2 in �g,c only contributes via �n+1 to g∗. The theory is under perturbative

control, and asymptotic safety is generated due to an interplay of classical scaling and quantum

�uctuations. Notable examples of this principle include large-Nf Gross-Neveu [68,69] and large-

N non-linear � models [75–78] both at d = 2+�, Einstein-Hilbert gravity at d = 2+� [32,35,60,61],

or Yang-Mills at d = 4 + � [65–67].

Alternatively, systematic expansions may be possible purely within quantum corrections, facil-

itated by large-N limits. At d = 3, this is the case for large-N scalar O(N ) theories [72–74] and

the large-Nf Gross-Neveu models [70,71]. In this work, the Veneziano limit with large Nf and Nc
will be employed for gauge-Yukawa models in d = 4. In this setup has been utilised to rigorously

proof the existence of the infrared Banks-Zaks �xed point [90, 91], and will be elaborated in the

following sections. The distinct case of large-Nf resummations in d = 4 gauge theories has re-

cently sparked discussions about the possible existence of a UV �xed point [126–136]. However,

the potential �xed point is not exact as in the cases described above.

Veneziano limit. Now, we will demonstrate how strict perturbative control can be established

in d = 4 gauge theories in the limit of a large number of colours and �avours. The idea has �rst

been formulated in [228] and is known as the Veneziano limit. The mechanism relies, much like

the expansion around the critical dimension, on having the �rst coe�cient in the perturbative

gauge � function small and tunable. Indeed, the coe�cient B in (1.28) controls all �xed point

values and critical exponents in Tab. 1.1. Its de�nition (1.29) indicates that B can indeed be made

small, but not continuously. For instance, in a SU (Nc) gauge theory with Nf Dirac fermions, one

obtains

B = 4
3 [

11
2 Nc − Nf ] , (1.46)

which can only be made arbitrarily small and non-zero for both Nc , Nf → ∞. In a perturba-

tive expansion, the contributions with leading powers of Nc,f in each order stem from planar

diagrams. The expansion coe�cients can be rendered �nite by absorbing these leading coef-

�cients of Nc,f into coupling de�nitions [230]. We will refer to those as ’t Hooft couplings,

e.g. �g = Nc g2/(4�)2 in the example above. Now, the Veneziano limit can be established by

Nc , Nf → ∞ while keeping the ratio Nf /Nc �nite and an open parameter. Rewriting (1.28) in

terms of the ’t Hooft couplings, some theories then allow for the coe�cient B to be related to

this ratio. For instance, introducing � = Nf
Nc +

11
2 and absorbing a factor Nc into the ’t Hooft

couplings �g turns (1.46) into B = − 43�, whith � being continuously tunable - its general de�ni-
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tion depends on each theory. In fact, this property is the key to establish perturbative control,

the cancellation of suppression of subleading terms in the large-Nc,f is not a requirement, but a

side-e�ect. This allows for a transition back to a �nite-Nc,f theory. Now, consider perturbative

expansion at l,m and n loop orders for the gauge, Yukawa and quartics � functions, subsequently

referred to as (l, m, n), in the Veneziano limit. Solving this system for �xed points, gives for the

’t Hooft couplings � ∗i = ∑∞
n=1 a

(n)
i �n. It turns out each coe�cient a(n)i ∀ i can be completely deter-

mined by solving the RGEs at (n + 1, n, n), with higher loop orders only contributing to higher

order coe�cients. Hence, the leading, non-trivial order is (2, 1, 1). Besides being able to move in-

teracting �xed points continuously close to the Gaussian, this stability of �xed point values and

hence critical exponents against higher orders is another aspect of the Veneziano limit, which

establishes an additional ordering principle on top of perturbation theory. Finally, perturbative

control is of course established for 0 < |�| ≪ 1, and either sign of �. Hence, only two cases are

possible regarding the phases of Fig. 1.3: the theory is either in ® for � < 0 and ° for � > 0, or

the theory exhibits the phases ­ for � < 0 and ¯ for � > 0. This can be probed by computing

Δ =
C′

C
|||B→0

, (1.47)

which is reached at � → 0. Due to (1.37) and (1.34), the quantity is bounded from above with

1 ≤ Δ < 0 implies ®, while Δ < 0 suggests the phase ¯ instead. As we are interested in

asymptotic safety, the latter case is the interesting one for us.

Gauge sector. We will now discuss strategies to construct perturbatively exact theories exhibit-

ing weakly interacting UV �xed points in a simple gauge-Yukawa theory. The leading, non-trivial

order of the Veneziano limit is (2, 1, 1), and since the limit � → 0 needs to be possible, the system

(1.28) must contain the solution, being of GYUV type. Hence, we require B < 0 and C′ < 0. As the

second condition can only be achieved due to the Yukawa-induced shift in (1.37), matter degrees

of freedom that are not involved in the Yukawa interaction are always counterproductive. Those

spectator �elds are either uncharged and hence completely decoupled, or only give a positive

contribution to C and hence C′ in (1.37). Moreover, in order to have B ∝ �, we need to be able to

balance both gauge and matter terms in (1.29) against each other in a continuous fashion while

taking Nc,f → ∞. Hence, U (1) gauge groups are excluded due to CG
2 = 0. Furthermore, none of

the exceptional Lie groups G2, F4, E6, E7 and E8 can be utilised either, since they do not provide a

parameter Nc , and their Casimir CG
2 is just a constant. Only unitary, orthogonal and symplectic

gauge groups are viable.

At large Nc , the adjoint Casimirs of SU (Nc) is CG
2 = Nc , or CG

2 = 1
2Nc for SO(Nc) and Sp(Nc). This

has strict consequence for the possible choices of matter �elds, as their Dynkin indices may at

most scale SR2 ∝ Nc , but not higher. Otherwise, the matter term in (1.29) overpowers the non-

abelian interaction at large-Nf ,c . These representation are collected in Tab. 1.2. More strictly,

this means:

1. The theory needs to containNi →∞ fermionic and/or scalar matter �elds which transform

under the fundamental representation of SU (Nc), SO(Nc) or Sp(Nc), as these are the only

choices with SR2 = 1
2 ∝ N 0

c .

2. The theory may contain a �nite numbers nj of matter �elds in a two-index representation
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Group R dR SR2 CR
2

SU (N ) fun. N 1
2

N 2−1
2N

antisym.
1
2N(N − 1) 1

2 (N − 2) (N+1)(N−2)
N

sym.
1
2N(N + 1) 1

2 (N + 2) (N−1)(N+2)
N

adj. N 2 − 1 N N
SO(N ) fun. N 1

2
1
4 (N − 1)

adj.
1
2N(N − 1) 1

2 (N − 2) 1
2 (N − 2)

sym.
1
2 (N + 2)(N − 1) 1

2 (N + 2) 1
2N

Sp(N ) fun. N 1
2

1
4 (N + 1)

antisym.
1
2 (N − 2)(N + 1) 1

2 (N − 2) 1
2N

adj.
1
2N(N + 1) 1

2 (N + 2) 1
2 (N + 2)

Table 1.2: List of all representations in unitary, orthogonal and symplectic gauge groups, up

to two indices, and their respective dimensions dR , Dynkin indices SR2 and quadratic

Casimir CR
2 .

SR2 ∝ Nc of the gauge group, which is bounded by the condition B (Ni , nj) ||Ni=0 > 0.
2

3. The theory may contain an arbitrary amount of uncharged matter.

As the limit implies Nf ∝ Nc (in the following, we may drop the indices wherever appropriate),

it makes sense to visualise each �eld in a notation similar to ’t Hooft’s double lines [230] and

birdtrack diagrams [231,232], with gauge- and �avour indices denoted by wiggly ( ) and straight

lines ( ) . The one-loop coe�cient then strictly requires double-lined �elds B ∝ − .

At two-loop level, the coe�cient then scales C ∝ N 2
, see (1.29).

Yukawa sector. The Yukawa coe�cients D, E and F in (1.28) are also sensitive to uncharged

�elds involved in the Yukawa interaction. Since at least two �elds in the Yukawa interaction

have to be charged and hence double-lined, two possible topologies of contractions arise: and

. Here, the Yukawa vertex is depicted, with each external leg being either its scalar or one of

its fermions. For the sake of the argument, it does not matter which leg corresponds to which

�eld, nor what indices (solid lines) are gauge or global ones. Rather, features three double-

index �elds ( ) while has two double-index and one �eld without a large index ( ). We

will now show that the case is not useful at large N . Consider for each �eld i in the Yukawa

interaction having overall �i large lines, gauge and �avour, attached to them. The powers of N
in the coe�cients of (1.28) can then be inferred from simple counting of loops, and read

B ∝ N , C ∝ N 2, D ∝ N∑i
�i
2 −1, E ∝ N∑i

�i
2 −�min , F ∝ N , (1.48)

where �min denotes the smallest of all �i . This dependency enters because in the large-N limit,

only contributions from the �eld strength renormalisation of external legs survive in coe�cient

E, while proper vertex corrections are subleading. This can be easily understood on a diagram-

matic level e.g. for the Yukawa vertex , giving rise to a leg correction ( + perm.) ∝
N , while the vertex one ∝ 1 is indeed subleading. In general, the leg with the least

2
In a purely two-index theory, it is possible to establish a similar limit where a non-continuous parameter � =
∑j ajnj − c takes the place of the �.
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external lines then sets the leading power of N . This means C − C′ ∝ N �min
, and in order to have

the two-loop shift (1.37) compete with coe�cient C , each �eld needs to be double-indexed.

Yukawa taxonomy. In summary, the families of theories with a simple gauge group and single

Yukawa interaction, allowing for the Veneziano limit, can be categorised by their large index

structure of their Yukawa interactions. We will denote these 5 classes as , , , and

, which depicting the Yukawa vertex, while the left leg marks the scalar, and the right ones

are fermionic. It will be proven in Ch. 4, that theories with uncharged fermions , one scalar

, one fermion or all �elds being in a two-index gauge representation have Δ > 0,
and do not allow for asymptotic safety, leaving as the only viable choice. Indeed, has

been shown to contain a universality class of asymptotically safe theories [3, 112]. In this setup,

the coe�cients B, C and F in (1.28) are only sensitive to the fermions, as scalars are uncharged.

Hence, the scalars only a�ect D and E in the two-loop shift C′ = C − DF/E. In consequence,

while the fermion content is �xed by tuning B ≈ −0, the more scalars can be embedded in the

global symmetry, the stronger the shift towards C′ < 0. It will be demonstrated in Ch. 6 that the

number of real scalar degrees of freedom (DOF) NS = 11
2 NWeyl allows for asymptotic safety, while

NS = 11
4 NWeyl does not, with NWeyl being the number of Weyl fermions.

Scalar sector. Having established that scalar �elds need to be double-indexed, this implies that

at least two quartic interaction may be formulated:

u tr [�†� �†�] ∝ , v (tr [�†�])
2 ∝ , (1.49)

with the ’t Hooft coupling �u ∝ N u for the single trace, and �v ∝ N 2 v for the double trace

quartic interaction
3
. If the symmetry allows it, additional operators are present, which can be

classi�ed in the same fashion.

Litim-Sannino model. Putting everything together, we brie�y introduce the model in [112]

which has inspired the recent research of d = 4 exact asymptotic safety beyond freedom, and

will be the onset of investigations in this work:

 = − 1
4F

��
A FA�� + Q i /D Q + tr [)��†)��] + gh + gf

− y [Q
L†
i �ijQR

j + Q
R†
i �†ijQ

L
j ] − u tr [�

†��†�] − v tr [�†�] tr [�†�] .
(1.50)

The theory features a SU (Nc) gauge group, Nf quark-like Dirac fermions Q in the fundamental

representation (with chiral components QL,R) as well as an uncharged meson-like scalar �, which

is a complex Nf × Nf matrix. The model has a chiral SU(Nf ) × SU(Nf ) �avour symmetry and a

single value Yukawa coupling y, as well as two scalar quartics u and v as discussed. It allows for

the Veneziano limit to be taken, with the expansion parameter

� =
Nf
Nc

−
11
2
, (1.51)

in the range (− 112 , ∞). For � < 0, the theory is asymptotically free, and for 0 < � < �max, asymptotic

safety is realised by an interacting gauge-Yukawa �xed point. A more detailed analysis will follow

3
This operator is compatible with the maximal O (NS ) symmetry of a scalar theory.
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in Ch. 5.

Due to this novel property, the model has sparked lots of interests. Aspects of its vacuum stability

have been explored in [113]. The RG analysis has been extended to higher loop order, mapping

out the UV conformal window [2], which will be the subject Ch. 5. A large-N triality of the model

has been uncovered in [3], see Ch. 6. Extensions to semi-simple gauge groups [114], higher-order

scalar operators [233, 234], as well as  = 1 supersymmetry has been studied [115]. Further

works investigate the model away from d = 4 dimensions [67], radiative symmetry breaking

[116], the inclusion of gravity [117] and several more aspects [118–120]. Moreover, the theory

has been embedded in SM extensions [4,121,122] and several phenomenological implication have

been considered [4, 121], addressing issues such as anomalous magnetic moments of muon and

electrons [123], dark matter [124] and in�ation [125].

1.7 Outline

Now, as the motivation behind this work has been detailed, and all necessary terminology and

supplementary material introduced, the main sections will be outlined, highlighting their im-

portance. In summary, this thesis consists of three thematic parts, ranging from rather formal

to practical topics: techniques of perturbative RG studies (Ch. 2 and Ch. 3), perturbatively exact

asymptotic safety in toy models (Ch. 4, Ch. 5 and Ch. 6), as well as phenomenological applica-

tions in SM extensions (Ch. 7 and Ch. 8).

As for the �rst part, this works is concerned with the renormalisation group study of weakly

coupled quantum �eld theories in d = 4 in general. The main tool of investigation in this regime

is perturbation theory, and the determination of � functions within this approximation is a central

part of each of the studies presented.

Techniques and tools. Ch. 2 revisits the formal foundations of this methodology, by reviewing

the template formulas for RGEs of arbitrary renormalisable QFTs. Several errors are identi�ed

and corrected within the most recent recomputation of these results [185], stemming from several

main sources. For one, o�-diagonal loop corrections to the �eld strength renormalisation have

been neglected, leading to discrepancies in models with scalar mixing. Secondly, the dummy

�eld method employed to obtain the running of masses and scalar cubics from the quartic and

Yukawa � functions has been applied incorrectly, resulting in errors already at one-loop order. A

numerical study of both improvements is undertaken, and the dummy �eld method is reviewed

very thoroughly. Moreover, a careful cross-check is performed with the RGE templates of  = 1
supersymmetric theories, accommodating for the di�erence in renormalisation schemes. The re-

sults of this work have been factored into all major public tools for the automated determination

of � functions. A third literature error in the Yukawa two-loop RGEs has been pointed out to us

only recently. Overall, this work represents an important milestone in all perturbative RG stud-

ies and model building, and has superseded [185] as the state-of-the-art catalogue for template

formulas of generic QFTs up to two-loop order.

However, due to the sheer complexity of using these formulas in any realistic theory, they are of

little practical use without the computational tools to exploit them. Unfortunatly, pre-existing
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software solutions are scarce and all ill-equipped to process the models of interest in this work.

In Ch. 3, the new public software package ARGES will be introduced, which stands out by its

unique approach to the problem. The setup and functionality are detailed by example, and as its

design is laid out, di�erences to other frameworks and how ARGES is superior in handling the

tasks ahead are highlighted.

Exact asymptotic safety. Having provided the tools, the second part of this thesis focuses

on the phenomenon of weakly coupled asymptotic safety in gauge-Yukawa theories, providing

the building blocks for more realistic theories. The onset of this has been the seminal works

[112, 113], which have identi�ed a QCD-like theory exhibiting an interacting UV �xed point

within a perturbatively exact framework in d = 4.
As a starting point, Ch. 4 picks up the trail of Sec. 1.6 for constructing theories with exact asymp-

totic safety. It is proven that theories with uncharged scalars, having a Yukawa contraction like

are the only viable candidates for this property. Quantifying the degree of asymptotic safety

via the quantity (1.47), a lower bound as well as a hierarchy of all possible models is unveiled.

Arguments are brought forward that the theories in [3,112] are indeed of special importance, as

they represent the most asymptotically safe ones to be constructed.

In Ch. 5, missing two-loop contributions have been computed that extend these early �ndings

up to a complete next-to-leading order in the �-expansion for the RG equations, �xed point cou-

plings, critical exponents and anomalous dimensions. The extend of the UV conformal window

is computed for the �rst time and with various methods and orders of approximation. This has

allowed for a careful understanding of the mechanisms limiting the window, such as the insta-

bility of the scalar potential, �xed point mergers, as well as the onset of the strong coupling

regime. This chapter remains the currently highest order analysis of the theory in [112,113] and

its implications are of utmost importance for UV safe model building.

After the discovery in [112, 113], the intriguing question had remained whether there are other

theories with exact asymptotic safety, or if this model is unique. In Ch. 6, both answers are found

to be yes. Two more models are identi�ed that have a guaranteed interacting UV �xed point, fea-

turing orthogonal or symplectic gauge groups. It is shown that these theories require Majorana

fermions for asymptotic safety, while the one in [112, 113] only works with Diracs and a uni-

tary gauge symmetry. In spite of their di�erent symmetries and fermions, not only form these

3 families a universality class, but even a triality. The mechanisms behind this phenomenon are

uncovered: negative dimensionality theorems and orbifolding in the large-N limit protect not

only this equivalence, but suggest the existence of many more duality webs.

Particle Physics. Part three of the thesis connects the knowledge obtained in the second one

with real-world particle physics. In Ch. 7, directions and challenges for asymptotically safe BSM

model building are highlighted. A new approach is introduced, where a BSM sector of colourless

vector-like fermions and uncharged meson-like scalars is intertwined with the SM in a �avourful

way. A set of six potential BSM extensions is obtained and the RG �ow up to the Planck scale

is studied in a novel bottom-up approach. Parameter spaces that provide safety and stability are

mapped out, and phenomenological aspects are discussed.
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In Ch. 8, a phenomenological study follows for a subset of these models that are safe until the

Planck scale, stabilise the Higgs potential and can account for both discrepancies of muon and

electron magnetic moments. Outstandingly, the latter is achieved without explicitly breaking

lepton �avour universality. A parameter space is carved out from experimental bounds, and a

prediction for the anomalous magnetic moment of the tauon is obtained.

In a �nal chapter, conclusions will be drawn and outlooks given.
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2 Revisiting RGEs

2.1 Introduction

Renormalisation Group Equations (RGEs) are important as they provide the necessary link be-

tween the physics at di�erent energy scales. The two-loop RGEs for all dimensionless param-

eters in general gauge theories have been derived already more than 30 years ago [179–184].

More recently, these results have been re-derived by Luo et al. [185] including the �-functions

for dimensionful parameters. The latter results are based on the �-functions of dimensionless

couplings by applying a so called “dummy �eld” method [195]. However, no independent direct

calculation of the two-loop �-functions for scalar and fermion masses and scalar trilinear cou-

plings exists so far in the literature. One of the aims of this paper is to provide a more detailed

(pedagogical) discussion of the dummy �eld method and to critically examine the �-functions for

the dimensionful parameters. As a result we will correct the �-functions for the fermion masses.

We also �nd di�erences for the purely scalar couplings in certain models with respect to the

literature. These di�erences arise from not always justi�ed assumption about the properties of

the wave-function renormalisation. We provide an independent cross-check using well tested

supersymmetric RGEs which con�rms our results. We believe that these corrections and valida-

tions are non-trivial and important in view of the wide use of the RGEs. Still, an independent

direct calculation of the dimensionful �-functions would be useful.

The general equations have been implemented in the Mathematica package SARAH [235–239]

and in the Python package PyR@TE [240, 241]. More recent results which are (partially) included

in these packages such as kinetic mixing [242] or running VEVs [191, 192] will not be discussed

in this paper. The overarching purpose is to present the current state-of-the art of the two-loop

�-functions and to collect the corrected expressions such that all the relevant information is at

hand in one place.

2.2 The Lagrangian for a general gauge theory

In this section we review the Lagrangian for a general renormalisable �eld theory following [185].

The following particle content is considered:

• V A
� (x) (A = 1,… , d) are gauge �elds of a compact simple group G where d is the dimension

of G.

• �a(x) (a = 1, … , N�) denote real scalar �elds transforming under a (in general) reducible

representation of G. The Hermitian generators of G in this representation will be denoted

ΘA
ab (A = 1,… , d ; a, b = 1, … , N�). Since the scalar �elds are real, the generators ΘA

are

purely imaginary and antisymmetric.
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•  j(x) (j = 1, … , N ) are left-handed complex two-component fermion �elds transforming

under a representation ofG which is in general reducible as well. The Hermitian generators

are denoted by tAjk (A = 1,… , d ; j, k = 1, … , N ).

The most general renormalisable Lagrangian can be decomposed into three parts,

 = 0 + 1 + (gauge fixing + ghost terms) , (2.1)

where 0 is free of dimensional parameters and 1 contains all terms with dimensional param-

eters. Here, 0 reads

0 = −
1
4
F ��A FA�� +

1
2
D��aD��a + i †j �

�D� j

−
1
2 (Y

a
jk j� k�a + Y

a∗
jk  

†
j � 

†
k �a) −

1
4!
�abcd�a�b�c�d , (2.2)

where FA�� (x) is the gauge �eld strength tensor de�ned in the usual way in terms of the structure

constants f ABC of the gauge group and the gauge coupling constant g:

FA�� = )�V
A
� − )�V A

� + gf ABCV B
� V

C
� . (2.3)

The covariant derivatives of the scalar and fermion �elds are given by

D��a = )��a − igΘA
abV

A
� �b , (2.4)

D� j = )� j − igtAjkV
A
�  k . (2.5)

Furthermore, Y a
jk (a = 1, … , N� ; j, k = 1, … , N ) are complex Yukawa couplings and � = i�2 is

the two-component spinor metric (�2 is the second Pauli matrix). Finally, �abcd denotes quartic

scalar couplings which are real and invariant under permutations of the set of indices {a, b, c, d}.

The Lagrangian containing the dimensionful parameters is given by

1 = −
1
2 [(mf )jk j� k + (mf )∗jk 

†
j � 

†
k ] −

m2
ab
2!

�a�b −
ℎabc
3!

�a�b�c . (2.6)

Here mf is a complex matrix of fermion masses, m2
is a real matrix of scalar masses squared,

and ℎabc are real cubic scalar couplings. Our goal is to revisit the one- and two-loop �-functions

for these dimensionful couplings which have been derived in Ref. [185], employing the so-called

“dummy �eld” method which has been initially proposed in Ref. [195].

2.3 Renormalisation Group Equations

We are interested in the scale dependence of the Lagrangian parameters which, in general, is

governed by RGEs. The RGEs can be calculated in di�erent schemes. We are going to consider

only dimensional regularisation with modi�ed minimal subtraction, usually called MS, for four

dimensional �eld theories. In this scheme the �-functions, which describe the renormalisation
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group running of the model parameters (Θi), are de�ned as

�i = �
dΘi

d�
, (2.7)

where � is an arbitrary renormalisation scale. �i can be expanded in a perturbative series:

�i = ∑
n

1
(16�2)n

� (n)i , (2.8)

where � (1)i and � (2)i are the one- and two-loop contributions to the running which we are inter-

ested in. Generic expressions of the one- and two-loop �-functions for dimensionless parameters

in a general quantum �eld theory were derived in Refs. [182–184].

2.4 The dummy field method

In principle, one could calculate the renormalisation constants for the dimensionful couplings

(the fermion masses (mf )jk , the squared scalar masses m2
ab , and the cubic scalar couplings ℎabc)

and derive the �-functions directly from them. However, this is tedious and has not been at-

tempted so far in the literature. Instead, a “dummy �eld” method has been employed in Ref. [185]

applying an idea, to our knowledge, �rst mentioned in Ref. [195]. Since a detailed description

of this method is lacking in the literature we provide a careful discussion of it in this section.

The idea is to introduce a scalar “dummy �eld”, i.e. a non-propagating real scalar �eld with no

gauge interactions. The dummy �eld will be denoted by an index with a hat, �d̂ , and satis�es the

condition D��d̂ = 0. As a consequence, expressions with two identical internal dummy indices

(corresponding to a propagating dummy �eld) have to vanish. Furthermore, since D��d̂ = 0, all

gauge boson - dummy scalar vertices vanish as well: ΓV�a�d̂ = ΓV�d̂�d̂ = ΓVV�a�d̂ = ΓVV�d̂�d̂ = 0.
Let us now consider the Lagrangian 0 (2.2) in the presence of the same particle content plus

one extra scalar dummy �eld (�d̂ ) and separate the terms with the dummy �eld. Using D��d̂ = 0,
�abd̂d̂ + �ad̂bd̂ + �d̂abd̂ + �ad̂d̂b + �d̂ad̂b + �d̂ d̂ab = 6�abd̂d̂ , �abcd̂ + �abd̂c + �ad̂bc + �d̂abc = 4�abcd̂ , and

�ad̂d̂d̂ + �d̂ad̂d̂ + �d̂ d̂ad̂ + �d̂ d̂ d̂a = 4�ad̂d̂d̂ one easily �nds (writing the sums over the scalar indices

explicitly):

0 = −
1
4
F ��A FA�� +

N�
∑
a=1

1
2
D��aD��a + i †j �

�D� j

−
1
2
(
N�
∑
a=1

Y a
jk j� k�a + h.c.) −

N�
∑

a,b,c,d=1

1
4!
�abcd�a�b�c�d

−
1
2
(Y d̂

jk j� k�d̂ + h.c.) − 6
N�
∑
a,b=1

1
4!
�abd̂d̂�a�b�d̂�d̂ − 4

N�
∑

a,b,c=1

1
4!
�abcd̂�a�b�c�d̂

− 4
N�
∑
a=1

1
4!
�ad̂d̂d̂�a�d̂�d̂�d̂ −

1
4!
�d̂ d̂ d̂ d̂�d̂�d̂�d̂�d̂ . (2.9)

A few comments are in order:

• The �rst two lines reproduce the Lagrangian 0 (2.2) with the original particle content
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without the dummy �eld.

• The terms in the third line reproduce the Lagrangian 1 (2.6) if one makes the following

identi�cations:

Y d̂
jk�d̂ = (mf )jk , �abd̂d̂�d̂�d̂ = 2m

2
ab , �abcd̂�d̂ = ℎabc . (2.10)

Note that these are the correct relations while the notation below Eq. (21) in [185] is rather

sloppy:

Y d̂
jk = (mf )jk , �abd̂d̂ = 2m

2
ab , �abcd̂ = ℎabc . (2.11)

• The terms in the fourth line of Eq. (2.9) do not spoil the relations in Eq. (2.10) or (2.11). First

of all, the second last term is only gauge invariant if �a is a gauge singlet. Furthermore, it

is an e�ective tadpole term which can be removed by a shift of the �eld �.
4

The last term

is just a constant. In any case, contributions from the interactions in the fourth line to

the �-functions of the other dimensionful parameters would involve at least one internal

dummy line which gives a vanishing result.

The relations (2.11) have been used in Ref. [185] to derive the �-functions for the fermion masses

from the known ones for the Yukawa interactions. Likewise, the �-functions for the scalar masses

and the trilinear scalar couplings were obtained from the scalar quartic �-functions. This was

achieved by removing contributions with a summation of d̂-type indices and terms with d̂ in-

dices appearing on the generators Θ. However, a subtlety arises due to the wave-function renor-

malisation of external dummy scalar lines which leads to e�ective tadpole contributions. Such

contributions should be removed from the �-functions for the Yukawa interactions and quartic

couplings but are not necessarily eliminated by just suppressing the summation over d̂-indices

and associated gauge couplings. For this reason, we re-examine in the following sections all the

�-functions for the dimensionful parameters by verifying the dummy method on a diagram by

diagram basis.

2.5 Beta functions for dimensionful parameters

We now apply the dummy method to obtain the �-functions of the dimensionful parameters

using the generic results for the dimensionless parameters given in Refs. [182–185]. In Sec. 2.5.1,

we start with the fermion mass term. The trilinear scalar couplings will be discussed in Sec. 2.5.2

before we turn to the scalar mass terms in Sec. 2.5.3. First of all, it is necessary to introduce

a number of group invariants and de�nitions for certain combinations of coupling constants.

These de�nitions will be used to write the expressions for the �-functions in a more compact

form.

Group invariants C2(F ) is the quadratic Casimir operator for the (in general) reducible fermion

4
For the same reason such a term is not included in 1 in Eq. (2.6).
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representation:

C2(F ) ∶=
d
∑
A=1

tAtA , i.e. [C2(F )]ij ≡ C ij
2 (F ) =

d
∑
A=1

N 
∑
k=1

tAikt
A
kj , (2.12)

where i, j = 1, … , N . Due to Schur’s lemma, C2(F ) is a diagonal N × N matrix with the same

eigenvalues for each irreducible representation. Similarly, C2(S) is the quadratic Casimir operator

for the (in general) reducible scalar representation:

C2(S) ∶=
d
∑
A=1

�A�A , i.e. [C2(S)]ab ≡ Cab
2 (S) =

d
∑
A=1

N�
∑
c=1

�Aac�
A
cb , (2.13)

where a, b = 1, … , N� . Again due to Schur’s lemma, C2(S) is a diagonal N� × N� matrix. Fur-

thermore, S2(S) and S2(F ) denote the Dynkin index of the scalar and fermion representations,

respectively,

tr[�A�B] =∶ S2(S)�AB , tr[tAtB] =∶ S2(F )�AB , (2.14)

and C2(G) is the quadratic Casimir operator of the (irreducible) adjoint representation

C2(G)�AB ∶=
d
∑
C,D=1

f ACDf BCD . (2.15)

Coupling combinationsWe start with twoN ×N matrices formed out of the Yukawa matrices

Y a
ij :

Y2(F ) ∶=
N�
∑
a=1

Y †aY a , Y †2 (F ) ∶=
N�
∑
a=1

Y aY †a , (2.16)

where the sum includes all ‘active’ (propagating) scalar indices but not the dummy index. It

should be noted that Y †2 (F ) ≠ [Y2(F )]†; instead it represents the quantity Y2(F )where the Yukawa

coupling Y a
has been replaced by its conjugate Y †a. Furthermore, the following N� ×N� matrices

are needed below:

Y ab
2 (S) ∶=

1
2
tr[Y †aY b + Y †bY a] , (2.17)

H 2
ab(S) ∶=

1
2

N�
∑
c=1

tr[Y aY †bY cY †c + Y †aY bY †cY c] , (2.18)

H 2
ab(S) ∶=

1
2

N�
∑
c=1

tr[Y aY †cY bY †c + Y †aY cY †bY c] , (2.19)

Λ2ab(S) ∶=
1
6

N�
∑

c,d,e=1
�acde�bcde , (2.20)

Y 2Fab (S) ∶=
1
2
tr[C2(F )(Y aY †b + Y bY †a)] . (2.21)

There is one crucial comment in order concerning the properties of these objects: in previous
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works it is assumed that Y ab
2 (S) = Y2(S)�ab and Λ2ab(S) = Λ2(S)�ab holds. These properties are

derived from group theoretical arguments. We agree with them as long as the considered model

does not contain several scalar particles with identical quantum numbers. However, if this is the

case than these relations are no longer valid. Or, in other words, the matrices Y ab
2 and Λ2ab are

diagonal in the space of irreducible representations but not necessarily in the space of particles in

the considered model. The consequence is that contributions from o�-diagonal wave-function

corrections may arise which are not included in Refs. [182–185]. This is one source for the

discrepancies between our results and previous ones. This does not only a�ect the dimensionful

parameters but also the quartic scalar couplings.

RGEs for dimensionless parameters The �-function for the dimensionful parameters are ob-

tained from those of the dimensionless parameters using the dummy �eld method. The one- and

two-loop expressions for the running of a Yukawa coupling are given by

� Ia =
1
2
[Y +2 (F )Y

a + Y aY2(F )] + 2Y bY +aY b + 2�Y bY ab
2 (S) − 3g2{C2(F ), Y a} , (2.22)

� I Ia =2Y cY +bY a(Y +cY b − Y +bY c) − Y b [Y2(F )Y +a + Y +aY +2 (F )] Y
b

−
1
8 [Y bY2(F )Y +bY a + Y aY +bY +2 (F )Y

b] − 4�Y bc
2 (S)Y

bY +aY c − 2�Y bH̄ 2
ab(S)

−
3
2
�Y bc

2 (S)(Y
bY +cY a + Y aY +cY b) − 3�Y bH 2

ab(S) − 2�abcdY
bY +cY d

+
1
2
Λ2ab(S)Y

b + 3g2{C2(F ), Y bY +aY b} + 5g2Y b{C2(F ), Y +a}Y b

−
7
4
g2[C2(F )Y +2 (F )Y

a + Y aY2(F )C2(F )]

−
1
4
g2[Y bC2(F )Y +bY a + Y aY +bC2(F )Y b] + 6g2H a

2t + 10�g
2Y bY 2Fab (S)

+ 6g2[Cbc
2 (S)Y

bY +aY c − 2Cac
2 (S)Y

bY +cY b] +
9
2
g2Cbc

2 (S)(Y
bY +cY a + Y aY +cY b)

−
3
2
g4{[C2(F )]2 , Y a} + 6g4Cab

2 (S){C2(F ), Y
b}

+ g4 [−
97
6
C2(G) +

10
3
�S2(F ) +

11
12
S2(S)] {C2(F ), Y

a} −
21
2
g4Cab

2 (S)C
bc
2 (S)Y

c

+ g4Cab
2 (S) [

49
4
C2(G) − 2�S2(F ) −

1
4
S2(S)] Y

b , (2.23)

where the de�nition of H a
2t can be found in App. 2.9.1 and the factor � = 1/2 for 2-component

fermions and � = 1 for 4-component fermions. The underlined term di�ers from Refs. [183, 185]

by a swapped index.
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For the quartic coupling, we are going to use the following expressions:

� Iabcd =Λ
2
abcd − 8�Habcd + 2�Λ

Y
abcd − 3g

2ΛSabcd + 3g
4Aabcd , (2.24)

� I Iabcd =
1
12

∑
per

Λ2af �f bcd − Λ̄
3
abcd − 4�Λ̄

2Y
abcd + �

⎡
⎢
⎢
⎣
8H̄ �

abcd −
1
6
∑
per

[3H 2
af + 2H̄

2
af ] �f bcd

⎤
⎥
⎥
⎦

+ 4�(H Y
abcd + 2H̄

Y
abcd + 2H

3
abcd )

+ g2
⎡
⎢
⎢
⎣
2Λ̄2Sabcd − 6Λ

2g
abcd + 4�(H

S
abcd − H

F
abcd ) +

5
3
�∑
per

Y 2Faf �f bcd
⎤
⎥
⎥
⎦

− g4
{
[
35
3
C2(G) −

10
3
�S2(F ) −

11
12
S2(S)] Λ

S
abcd −

3
2
ΛSSabcd −

5
2
A�abcd −

1
2
Ā�abcd

+ 4�(BYabcd − 10B̄
Y
abcd )

}

+ g6
{

[
161
6
C2(G) −

32
3
�S2(F ) −

7
3
S2(S)] Aabcd −

15
2
ASabcd + 27A

g
abcd

}
, (2.25)

where the quantities Λ2abcd , Habcd , ΛYabcd , ΛSabcd , and Aabcd in Eq. (2.24) are described in Sec. 2.5.2,

while the de�nitions for the quantities Λ̄3abcd , . . . , Agabcd in Eq. (2.25) can be found in App. 2.9.2.

Here, ∑
per

denotes a sum over all permutations of uncontracted scalar indices. Our equations (2.24)

and (2.25) di�er from the results in Refs. [184,185] in the terms which are underlined. The reason

is that only the possibility of diagonal wave-function renormalisation is included Refs. [184,185]

as discussed above.

Finally, to have all RGEs at one place, we give here also the �-functions for the gauge coupling

although we will not use them in the following:

� Ig = − g
3
[
11
3
C2(G) −

4
3
�S2(F ) −

1
6
S2(S)] , (2.26)

� I Ig = − 2�g3Y4(F ) − g5 [
34
3
C2(G)2 − � (4C2(F ) +

20
3
C2(G)) S2(F )

− (2C2(S) +
1
3
C2(G)) S2(S)] . (2.27)

2.5.1 Fermion mass

The �-function of the fermion mass term can be obtained from the expressions of the Yukawa

coupling by considering the external scalar as dummy �eld. We follow a diagrammatic approach;

for each class of diagrams we provide the coupling structure and show the resulting diagram to-

gether with its expression after applying the dummy �eld method. In accord with the discussion

in Sec. 2.4, the following mappings are performed:

a → d̂ , Y a →Y d̂ →mf , Y †a → Y †d̂ →m†
f , �abcd → �d̂bcd → ℎbcd .

The fermion mass insertions will be represented by black dots in the Feynman diagrams. We re-

call that dummy scalars do neither couple to gauge bosons nor propagate. There are two gener-

ically di�erent wave function correction diagrams contributing to the running of the Yukawa
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couplings: those stemming from either external fermions or scalars. For external fermions, the

transition between the Yukawa coupling and fermion mass term looks as follows, where the grey

blob depicts all loop corrections to the external line:

→

Y †2 (F )Y
a + Y aY2(F ) → Y †2 (F )mf + mf Y2(F ) (2.28)

{C2(F ), Y a} → {C2(F ), mf } (2.29)

Y bY2(F )Y †bY a + Y aY †bY †2 (F )Y
b → Y bY2(F )Y †bmf + mf Y †bY

†
2 (F )Y

b
(2.30)

Y bc
2 (S)(Y

bY †cY a + Y aY †cY b) → Y bc
2 (S)(Y

bY †cmf + mf Y †cY b) (2.31)

g22 (C2(F )Y
†
2 (F )Y

a + Y aY2(F )C2(F )) → g22 (C2(F )Y
†
2 (F )mf + mf Y2(F )C2(F )) (2.32)

g22 (Y
bC2(F )Y †bY a + Y aY †bC2(F )Y b) → g22 (Y

bC2(F )Y †bmf + mf Y †bC2(F )Y b) (2.33)

g2Cbc
2 (S)(Y

bY †cY a + Y aY †cY b) → g2Cbc
2 (S)(Y

bY †cmf + mf Y †cY b) (2.34)

g4{|C2(F )|2, Y a} → g4{|C2(F )|2, mf } (2.35)

g4C2(G){C2(F ), Y a} → g4C2(G){C2(F ), mf } (2.36)

g4(x1S2(F ) + x2S2(S)){C2(F ), Y a} → g4(x1S2(F ) + x2S2(S)){C2(F ), mf } . (2.37)

Here, x1 and x2 are real numbers (cf. Eq. (2.23)).

Thus, we �nd counterparts for all contributions in both cases. The wave-function renormal-

isation part stemming from the external scalar is completely di�erent: after applying the re-

placement with dummy �elds, we �nd only tadpole contributions. However, those are usually

absorbed into a re-de�nition of the vacuum, i.e., they don’t contribute to the �-function of the

fermion mass term, and the correct replacements are

→

Y bY ab
2 (S) → 0 (2.38)

Y bH 2
ab(S) → 0 (2.39)

Y bH 2
ab(S) → 0 (2.40)
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Λ2ab(S)Y
b → 0 (2.41)

g2Y bY 2Fab (S) → 0 (2.42)

g4Cab
2 (S){C2(F ), Y

b} → 0 (2.43)

g4Cab
2 (S)C

bc
2 (S)Y

c → 0 (2.44)

g4Cab
2 (S)[x1C2(G) + x2S2(F ) + x3S2(S)]Y

b → 0 . (2.45)

However, we �nd di�erences compared to the results of Ref. [185], where the following replace-

ments have been made:

Y bY ab
2 (S) →

1
2
Y btr[m†

f Y
b + Y †bmf ] (2.46)

Y bH 2
ab(S) →

1
2
Y btr[mf Y †cY bY †c + m†

f Y
cY †bY c] (2.47)

Y bH 2
ab(S) →

1
2
Y btr[mf Y †bY bY †2 (F ) + m

†
f Y

bY2(F )] (2.48)

Λ2ab(S)Y
b →

1
6
ℎcde�bcdeY b

(2.49)

g2Y bY 2Fab (S) →
1
2
g2Y btr[C2(F )(mf Y †b + Y bm†

f )] (2.50)

g4Cab
2 (S){C2(F ), Y

b} → 0 (2.51)

g4Cab
2 (S)C

bc
2 (S)Y

c → 0 (2.52)

g4Cab
2 (S)[…]Y

b → 0 . (2.53)

Thus, there is a disagreement between Eqs. (2.38) and (2.46) entering the one-loop beta-function

for mf . Furthermore, there are di�erences between Eqs. (2.39)–(2.42) and Eqs. (2.47)–(2.50) af-

fecting the two-loop beta-function.

We now turn to the vertex corrections. At one-loop level, there is only one diagram which needs

to be considered:

→

Y bY †aY b Y bm†
f Y

b
(2.54)

At the two-loop level, there are many more contributions. The explicit diagrams are given in

Appendix 2.9.1. While we completely agree with Ref. [185] for the one-loop vertex corrections,

we also found di�erences at the two-loop level. Those stem from diagrams involving both, wave-

function corrections of scalars as well as vertex corrections, as depicted in Fig. 2.1. According to

our reasoning, these diagrams are also converted into tadpole diagrams which drop out.

Summarising our results, we �nd that the one-loop �-functions of fermion masses have one term
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→

Figure 2.1: Two-loop diagram which does not contribute to the �-function of the fermion mass

when replacing the external scalar by a dummy �eld as indicated here. The contri-

bution depicted on the right hand side was included in Ref. [185].

less than the expression given in Ref. [185] and are given by the following form:

� Imf
=
1
2 [Y

†
2 (F )mf + mf Y2(F )] + 2Y

bm†
f Y

b − 3g2{C2(F ), mf }. (2.55)

At the two-loop level, we obtain

� I Imf
= 2Y cY †bmf (Y †cY b − Y †bY c) − Y b

[Y2(F )m
†
f + m

†
f Y

†
2 (F )] Y

b

−
1
8 [Y

bY2(F )Y †bmf + mf Y †bY
†
2 (F )Y

b
] − 4�Y

bc
2 (S)Y

bm†
f Y

c

−
3
2
�Y bc

2 (S)(Y
bY †cmf + mf Y †cY b) − 2ℎbcdY bY †cY d

− 2ℎbcdY bY †cY d + 3g2{C2(F ), Y bm†
f Y

b} + 5g2Y b{C2(F ), m†
f }Y

b

−
7
4
g2 [C2(F )Y

†
2 (F )mf + mf Y2(F )C2(F )]

−
1
4
g2 [Y bC2(F )Y †bmf + mf Y †bC2(F )Y b]

+ 6g2 [tA∗mf Y †btA∗Y b + Y btAY †bmf tA] + 6g2Cbc
2 (S)Y

bm†
f Y

c

−
3
2
g4{[C2(F )]2 , mf } +

9
2
g2Cbc

2 (S)(Y
bY †cmf + mf Y †cY b)

+ g4 [−
97
6
C2(G) +

10
3
�S2(F ) +

11
12
S2(S)] {C2(F ), mf } . (2.56)

Here, we disagree in several terms as discussed above. The numerical impact of these di�erences

compared to earlier results is brie�y discussed at the example of a speci�c model in Sec. 2.7.

2.5.2 Trilinear coupling

We now turn to the purely scalar interactions. The �-functions of the cubic interactions are

obtained from the expressions for the quartic couplings by replacing one external scalar by a

dummy �eld. The translation of the wave-function contributions between both cases is straight-
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forward and can be summarized as follows:

→

ΛYabcd =
1
6
∑
per

Y af
2 (S)�f bcd → ΛYabc =

1
2
∑
per

Y af
2 (S)ℎf bc (2.57)

ΛSabcd = ∑
i
C2(i)�abcd → ΛSabc = ∑

i
C2(i)ℎabc (2.58)

1
6
∑
per

Λ2af (S)�f bcd →
1
2
∑
per

Λ2af (S)ℎf bc (2.59)

1
6
∑
per
(3H 2

af (S) + 2H
2
af (S))�f bcd →

1
2
∑
per
(3H 2

af (S) + 2H
2
af (S))ℎf bc (2.60)

1
6
∑
per

Y 2Faf (S)�f bcd →
1
2
∑
per

Y 2Faf (S)ℎf bc (2.61)

XΛSabcd → XΛSabc (2.62)

ΛSSabcd = ∑
i
|C2(i)|2�abcd → ΛSSabc = ∑

i
|C2(i)|2ℎabc (2.63)

In this notation, the index i is summed over all uncontracted scalar indices. Furthermore, ’X ’

denotes the combination of group invariants multiplying ΛSabcd in Eq. (2.25). As discussed above,

we have modi�ed the parts which involve Yukawa or quartic couplings compared to Ref. [185].

The reason is that in these cases new contributions can be present due to o�-diagonal wave-

function renormalisation corrections. There are three generically di�erent vertex corrections

which contribute to the RGE of the quartic interaction. However, since the dummy �eld does not

interact with the gauge sector, those kind of contributions do not appear in the case of the cubic

interaction. Therefore, the translation at the one-loop level becomes:

→

Λ2abcd =
1
8
∑
per

�abef �ef cd Λ2abc =
1
2
∑
per

�abef ℎef c (2.64)
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→

Habcd =
1
4
∑
per

Tr(Y aY †bY cY †d )
Habc = 1

2 ∑per Tr(mf Y †aY bY †c

+m†
f Y

aY †bY c)
(2.65)

→ %
Aabcd =

1
8
∑
per
{�A, �B}ab{�A, �B}cd 0 (2.66)

The explicit form of the two-loop diagrams as well as their expressions in both cases are given in

Appendix 2.9.2. We �nd agreement between our results and those of Ref. [185] at the one- and

two-loop level up to the di�erences from o�-diagonal wave-function renormalisations. Thus, the

�-functions at the one- and two-loop levels are

� Iℎabc =Λ
2
abc − 8�Habc + 2�Λ

Y
abc − 3g

2ΛSabc , (2.67)

� I Iℎabc =
1
4
∑
per

Λ2af (S)ℎf bc − Λ̄
3
abc − 4�Λ̄

2Y
abc

+ �
[
8H̄ �m

abc + 8H̄
ℎ
abc −

1
2
∑
per

[3H 2
af (S) + 2H̄

2
af (S)] ℎf bc]

+ 4�(H Y
abc + 2H̄

Y
abc + 2H

3
abc)

+ g2
[
2Λ̄2Sabc − 6Λ

2g
abc + 4�(H

S
abc − H

F
abc) + 5�∑

per
Y 2Faf (S)ℎf bc]

− g4
{

[
35
3
C2(G) −

10
3
�S2(F ) −

11
12
S2(S)] Λ

S
abc

−
3
2
ΛSSabc −

5
2
A�abc −

1
2
Ā�abc + 4�(B

Y
abc − 10B̄

Y
abc)

}
, (2.68)

where the invariants are de�ned in Eqs. (2.64)–(2.65) and (2.221)–(2.237).

2.5.3 Scalar mass

Finally, we turn to the terms involving two scalar couplings. The procedure is very similar to

the case of the cubic scalar coupling, and we �nd the following relations for the wave-function
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corrections to the terms appearing for the quartic scalar coupling:

→

ΛYabcd =
1
6
∑
per

Y ae
2 (S)�ebcd → ΛYab = 2∑

per
Y ae
2 (S)m

2
eb (2.69)

ΛSabcd = ∑
i
C2(i)�abcd → ΛSab = 2∑

i
C2(i)m2

ab (2.70)

1
6
∑
per

Λ2ae(S)�ebcd → 2∑
per

Λ2ae(S)m
2
eb (2.71)

1
6
∑
per
(3H 2

af (S) + 2H
2
af (S))�f bcd → 2∑

per
(3H 2

af (S) + 2H
2
af (S))m

2
f b (2.72)

1
6
∑
per

Y 2Faf (S)�f bcd → 2∑
per

Y 2Faf (S)m
2
f b (2.73)

XΛSabcd → XΛSab (2.74)

ΛSSabcd = ∑
i
|C2(i)|2�abcd → ΛSSab = 2∑

i
|C2(i)|2m2

ab . (2.75)

Again, ’X ’ denotes the combination of group invariants multiplying ΛSabcd in Eq. (2.25).

Again, we need to consider the three generically di�erent diagrams which contribute to the

running of the quartic functions. The one with vector bosons in the loop vanishes due to inserting

dummy �elds, while for the other two diagrams additional terms arise.

→

Λ2abcd =
1
8
∑
per

�abef �ef cd 2m2
ef �abef + 2ℎaef ℎbef (2.76)
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→

Habcd =
1
4
∑
per

Tr(Y aY †bY cY †d )
Hab = ∑per Tr(Y aY †bmfm

†
f + Y

†aY bm†
f mf

+ 12Y
†amf Y b†mf + 1

2Y
am†

f Y
bm†

f )
(2.77)

→ %
Aabcd =

1
8
∑
per
{�A, �B}ab{�A, �B}cd 0 (2.78)

The two-loop diagrams are given in Appendix 2.9.3. We also �nd agreement between our results

here and the ones given in Ref. [185] up to the wave-function renormalisation. One needs to be

careful about some factor of
1
2 due to �m2

ab
= 1

2��abd̂d̂ , which we have included here explicitly into

the de�nition of the �-function form2
ab , while it has been partially absorbed into other de�nitions

in Ref. [185]. Thus, with our conventions the one- and two-loop �-functions read

� Im2
ab
=m2

ef �abef + ℎaef ℎbef − 4�Hab + �Λ
Y
ab −

3
2
g2ΛSab , (2.79)

� I Im2
ab
=
1
2
∑
per

Λ2af (S)m
2
f b −

1
2
Λ̄3ab − 2�Λ̄

2Y
ab

+ �
[
4H̄ �

ab −∑
per

[3H 2
af (S) + 2H̄

2
af (S)]m

2
f b]

+ 2�(H Y
ab + 2H̄

Y
ab + 2H

3
ab)

+ g2
[
Λ̄2Sab − 3Λ

2g
ab + 2�(H

S
ab − H

F
ab) + 10�∑

per
Y 2Faf (S)m

2
f b]

− g4
{

[
35
6
C2(G) −

5
3
�S2(F ) −

11
24
S2(S)] Λ

S
ab

−
3
4
ΛSSab −

5
4
A�ab −

1
4
Ā�ab + 2�(B

Y
ab − 10B̄

Y
ab)

}
, (2.80)

where we used the objects de�ned in Eqs. (2.76)–(2.77) and (2.238)–(2.254).

2.6 Comparison with supersymmetric RGEs

We have now re-derived the full one- and two-loop RGEs for the dimensionful parameters.

While we agree with Ref. [185] concerning the bilinear and cubic scalar interactions (up to

wave-function renormalisation), we �nd di�erences in the fermion mass terms. Therefore, we
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want to double-check our results by comparing to those obtained using supersymmetric (SUSY)

RGEs. The general RGEs for a softly broken SUSY model have been independently calculated in

Refs. [195–197] and the general agreement between all results has been discussed in Ref. [198].

Thus, there is hardly any doubt that these RGEs are absolutely correct. Therefore, we want to

test our results with a model in which we enforce SUSY relations among parameters. After a

translation from the MS to the DR scheme one should recover the SUSY results.

Since a supersymmetric extension of the SM yields many couplings which are generically all of

the same form, we opt for a more compact theory. We consider a toy model with one vector

super�eld B̂ and three chiral super�elds

Ĥd ∶ Q = −
1
2
, (2.81)

Ĥu ∶ Q =
1
2
, (2.82)

Ŝ ∶ Q = 0 , (2.83)

where Q denotes the electric charge. The superpotential consists of two terms
5

W = �ĤuĤd Ŝ + �ĤuĤd (2.84)

and the soft-breaking terms are

−LSB = (B�HdHu + T�HdHuS +
1
2
MBB̃2 + h.c.)+

m2
Hd |Hd |

2 + m2
Hu |Hu |

2 + m2
S |S|

2 . (2.85)

This model contains all of the relevant generic structure we need to test. Making use of the

results of Ref. [195], which are also implemented in the package SARAH, we �nd the following

expressions for the one- and two-loop RGEs for the di�erent parts of the model:

1. Gauge Couplings

� (1)g =
1
2
g3 (2.86)

� (2)g =
1
2
g3( − 2|�|

2 + g2) (2.87)

2. Gaugino Mass Parameters

� (1)MB
= g2MB (2.88)

� (2)MB
= 2g2(g

2MB + �∗( − MB� + T�)) (2.89)

3. Trilinear Superpotential Parameters

� (1)� = �(3|�|
2 − g2) (2.90)

5
We neglect terms ∝ Ŝ2, Ŝ3 which are not essential for our argument.
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� (2)� = �( − 6|�|
4 + g2|�|2 + g4) (2.91)

4. Bilinear Superpotential Parameters

� (1)� = −�( − 2|�|
2 + g2) (2.92)

� (2)� = �( − 4|�|
4 + g4) (2.93)

5. Trilinear Soft-Breaking Parameters

� (1)T� = 2g
2MB� − ( − 9|�|

2 + g2)T� (2.94)

� (2)T� = −30|�|
4T� + g2|�|2( − 2MB� + 3T�) + g

4
( − 4MB� + T�) (2.95)

6. Bilinear Soft-Breaking Parameters

� (1)B� = 2g
2MB� + 4|�|2B� + 4��∗T� − g2B� (2.96)

� (2)B� = (2g
2|�|2 − 8|�|4 + g4)B� − 2�(10|�|

2�∗T� + 2g4MB + g2MB |�|2) (2.97)

7. Soft-Breaking Scalar Masses

� (1)m2
Hd
= −2g2|MB |2 + 2(m

2
Hd + m

2
Hu + m

2
S)|�|

2 + 2|T� |2 −
1
2
g2( − m

2
Hd + m

2
Hu) (2.98)

� (2)m2
Hd
= 6g4|MB |2 − 8(m

2
Hd + m

2
Hu + m

2
S)|�|

4 − 16|�|2|T� |2

+ g4m2
Hd + g

2|�|2(m
2
Hu − m

2
Hd) (2.99)

� (1)m2
Hu
= −2g2|MB |2 + 2(m

2
Hd + m

2
Hu + m

2
S)|�|

2 + 2|T� |2 +
1
2
g2( − m

2
Hd + m

2
Hu) (2.100)

� (2)m2
Hu
= 6g4|MB |2 − 8(m

2
Hd + m

2
Hu + m

2
S)|�|

4 − 16|�|2|T� |2

+ g4m2
Hu + g

2|�|2( − m
2
Hu + m

2
Hd) (2.101)

� (1)m2
S
= 2((m

2
Hd + m

2
Hu + m

2
S)|�|

2 + |T� |2) (2.102)

� (2)m2
S
= 2( − 4(m

2
Hd + m

2
Hu + m

2
S)|�|

4 + �∗(g
2M ∗

B(2MB� − T�)+

�( − 8|T� |
2 + g2(m

2
Hd + m

2
Hu + m

2
S))) + g

2T ∗�( − MB� + T�)) (2.103)

As before, we have suppressed the pre-factors
1

16�2 and
1

(16�2)2 for the one- and two-loop �-

functions. With these functions, the running of all parameters at the one- and two-loop level

is �xed. However, for later comparison, it will be convenient to know the �-functions for some

products of parameters as well. That is done by applying the chain rule:

� (1)1
8 g2

=
1
4
g� (1)g =

1
8
g4 , (2.104)

� (2)1
8 g2

=
1
4
g� (2)g = −

1
4
|�|2g4 +

1
8
g6 , (2.105)
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� (1)|�|2 =�(�
(1)
� )∗ + �∗� (1)� = 2|�|2(3|�|

2 − g2) , (2.106)

� (2)|�|2 =�(�
(2)
� )∗ + �∗� (2)� = 2|�|2( − 6|�|

4 + g2|�|2 + g4) , (2.107)

� (1)|�|2− 14 g2
=2�� (1)� −

1
2
g� (1)g = −2|�|2g2 + 6|�|4 −

1
4
g4 , (2.108)

� (2)|�|2− 14 g2
=2�� (2)� −

1
2
g� (2)g = −12|�|6 −

1
4
g6 +

5
2
g4|�|2 + 2g2|�|4 , (2.109)

� (1)��∗ =�(�
(1)
� )∗ + �∗� (1)� = �∗�(−2g2 + 5|�|2) , (2.110)

� (2)��∗ =�(�
(2)
� )∗ + �∗� (2)� = �∗�(−10|�|4 + 2g4 + g2|�|2) , (2.111)

� (1)|�|2 =�(�
(1)
� )∗ + �∗� (1)� = −2|�|2( − 2|�|

2 + g2) , (2.112)

� (2)|�|2 =�(�
(2)
� )∗ + �∗� (2)� = 2|�|2( − 4|�|

4 + g4) . (2.113)

We now consider the same model written as a non-supersymmetric version. In this case, we have

one gauge boson B, four fermions

H̃d ∶ Q = −
1
2
, (2.114)

H̃u ∶ Q =
1
2
, (2.115)

S̃ ∶ Q = 0 , (2.116)

B̃ ∶ Q = 0 , (2.117)

and three scalars

Hd ∶ Q = −
1
2
, (2.118)

Hu ∶ Q =
1
2
, (2.119)

S ∶ Q = 0 . (2.120)

The full potential for this models involves a substantial amount of di�erent couplings

V = (T1S|Hd |2 + T2S|Hu |2 + T3HdHuS + h.c.)
+ m2

1 |Hd |
2 + m2

2 |Hu |
2 + m2

3 |S|
2

+ �1|S|2|Hd |2 + �2|S|2|Hu |2 + �3|Hd |2|Hu |2 + �4|Hd |4 + �5|Hu |4

+ (M1B̃B̃ + M2H̃d H̃u + BHdHu + h.c.)

+ (Y1SH̃d H̃u + Y2S̃Hd H̃u + Y3S̃H̃dHu −
1√
2
gd B̃H̃dH ∗

d +
1√
2
guB̃H̃uH ∗

u + h.c.) . (2.121)

We think that this rather lengthy form justi�es our approach to consider only a toy model, but

not a realistic SUSY theory. We have neglected couplings that would be allowed by the sym-

metry of this theory, but vanish as we match to the SUSY model. In particular, CP even and

odd part of the complex �eld S will run di�erently unless speci�c (SUSY) relations among the
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parameters exist. Therefore, one would need to decompose S into its real components and write

down all possible potential terms involving these �elds. However, we are only interested in the �
functions in the SUSY limit where no splitting between these �elds is introduced. Therefore, we

retain the more compact notation in (2.121). We can now make use of our revised expressions

to calculate the RGEs up to two-loop. For this purpose, we modi�ed the packages SARAH and

PyR@TE accordingly. The lengthy expressions in the general case are given in Appendix 2.10. In

order to make connection to the SUSY case, we can make the following associations between

parameters of these models:

gd = gu = g , (2.122)

Y1 = Y2 = Y3 = � , (2.123)

�1 = �2 = |�|2 , (2.124)

�3 = |�|2 −
1
4
g2 , (2.125)

�4 = �5 =
1
8
g2 , (2.126)

T1 = T2 = �∗� , (2.127)

T3 = T� , (2.128)

M1 =
1
2
MB , (2.129)

M2 = � , (2.130)

m2
1 = m2

Hd + |�|2 , (2.131)

m2
2 = m2

Hu + |�|2 , (2.132)

m2
3 = m2

S , (2.133)

B = B� . (2.134)

By doing that, we obtain the following RGEs:

1. Gauge Couplings

� (1)g =
1
2
g3 (2.135)

� (2)g =
1
2
g3( − 2|�|

2 + g2) (2.136)

2. Quartic scalar couplings

� (1)�1 = �
(1)
�2 = 2|�|

2
(3|�|

2 − g2) (2.137)

� (2)�1 = �
(2)
�2 = 2|�|

2
( − 6|�|

4 +
5
4
g2|�|2 +

17
8
g4) (2.138)

� (1)�3 = −2g
2|�|2 + 6|�|4 −

1
4
g4 (2.139)

� (2)�3 = −12|�|
6 −

17
8
g6 +

31
4
g4|�|2 + g2|�|4 (2.140)

� (1)�4 = �
(1)
�5 =

1
8
g4 (2.141)
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� (2)�4 = �
(2)
�5 =

7
8
g4|�|2 − g2|�|4 +

1
16
g6 (2.142)

(2.143)

3. Yukawa Couplings

� (1)gd = �
(1)
gu =

1
2
g3 (2.144)

� (2)gd = �
(2)
gu =

1
2
g3( −

22
8
|�|2 +

11
8
g2) (2.145)

� (1)Y1 = �(3|�|
2 − g2) (2.146)

� (2)Y1 = �( − 6|�|
4 +

1
4
g2|�|2 +

11
8
g4) (2.147)

� (1)Y2 = �
(1)
Y3 = �(3|�|

2 − g2) (2.148)

� (2)Y2 = �
(2)
Y3 = �( − 6|�|

4 +
11
8
g2|�|2 +

13
16
g4) (2.149)

4. Fermion Mass Terms

� (1)M1
=
1
2
g2MB (2.150)

� (2)M1
= g2(

9
8
g2MB + �∗( − MB� + T�)) (2.151)

� (1)M2
= −�( − 2|�|

2 + g2) (2.152)

� (2)M2
= �( − 4|�|

4 +
11
8
g4 −

1
4
g2|�|2) (2.153)

5. Trilinear Scalar couplings

� (1)T1 = �
(1)
T2 = ��

∗
( − 2g

2 + 5|�|2) (2.154)

� (2)T1 = �
(2)
T2 = ��

∗
( − 10|�|

4 +
17
4
g4 + 2g2|�|2) (2.155)

� (1)T3 = 2g
2MB� − ( − 9|�|

2 + g2)T� (2.156)

� (2)T3 = −30|�|
4T� + g2|�|2( − 2MB� + 3T�) + g

4
( − 4MB� +

7
4
T�) (2.157)

6. Scalar Mass Terms

� (1)B =2g2MB� + 4B� |�|2 + 4��∗T� − B�g2 (2.158)

� (2)B =( − 8|�|
4 +

5
2
g2|�|2 +

7
4
g4)B� − 2�(10|�|

2�∗T� + 2g4MB + g2|�|2MB) (2.159)

� (1)m2
1
= − 2g2|MB |2 + 2|�|2(m

2
Hd + m

2
Hu + m

2
S) + 2|T� |

2 +
1
2
g2(m

2
Hd − m

2
Hu)

+ (4|�|
2 − 2g2)|�|

2
(2.160)
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� (2)m2
1
=
11
2
g4|MB |2 − 8(m

2
Hd + m

2
Hu + m

2
S)|�|

4 − 16|T� |2|�|2

+
1
2
|�|2g2(2m

2
Hu − m

2
Hd) +

1
4
g4( + 2m

2
Hu + 9m

2
Hd)

+ |�|2(
3
2
|�|2g2 − 8|�|4 +

17
4
g4) (2.161)

� (1)m2
2
= − 2g2|MB |2 + 2|�|2(m

2
Hd + m

2
Hu + m

2
S) + 2|T� |

2 +
1
2
g2(m

2
Hu − m

2
Hd)

+ (4|�|
2 − 2g2)|�|

2
(2.162)

� (2)m2
2
=
11
2
g4|MB |2 − 8(m

2
Hd + m

2
Hu + m

2
S)|�|

4 − 16|T� |2|�|2

+
1
2
|�|2g2(2m

2
Hd − m

2
Hu) +

1
4
g4( + 2m

2
Hd + 9m

2
Hu)

+ |�|2(
3
2
|�|2g2 − 8|�|4 +

17
4
g4) (2.163)

� (1)m2
3
=2((m

2
Hd + m

2
Hu + m

2
S)|�|

2 + |T� |2) (2.164)

� (2)m2
3
= − 2(4(m

2
Hd + m

2
Hu + m

2
S)�

2 + g2�2)�
∗ 2 − 2g2(�

2�∗ 2 + T ∗�(MB� − T�))

+ �∗(g
2�(2m

2
Hd + 2m

2
Hu + 4|MB |2 + 8|�|2 + m2

S) − 2(8�T
∗
� + g

2M ∗
B)T�) (2.165)

We see that all one-loop expressions as well as the two-loop �-function of the gauge coupling

agree with the SUSY expressions. The remaining discrepancies at two-loop are due to the dif-

ferences between MS and DR scheme. In order to translate the non-SUSY expressions to the

DR-scheme, we need to apply the following shifts [243]

gd,u → gd,u(1 −
1

16�2
⋅
1
8
g2) , (2.166)

Y1 → Y1(1 +
1

16�2
⋅
1
4
g2) , (2.167)

Y2,3 → Y2,3(1 −
1

16�2
⋅
1
8
g2) , (2.168)

�3 → �3 −
1

16�2
⋅
1
4
g4 , (2.169)

�4,5 → �4,5 −
1

16�2
⋅
1
8
g4 , (2.170)

M2 → M2(1 +
1

16�2
⋅
1
4
g2) , (2.171)

which have to be applied to the expressions of the one-loop � functions to obtain the correspond-

ing two-loop shifts. In addition, one must take into account that for the quartic couplings and

the Yukawa couplings an additional shift appears ‘on the left hand side’ of the expression, e.g.

�DR

Y =
d
dt
YDR =

d
dt (

YMS

(1 +
c

16�2
g2)) = �

MS

Y (1 +
c

16�2
g2) + 2gY

MS
c

16�2
�g (2.172)

with some coe�cient c depending on the charges of the involved �elds.

We �nd the following shifts for the di�erent couplings:

Δ�1 = −
1
2
g2|�|4 −

9
4
g4|�|2 (2.173)



2.7 RGEs revisited 53 Numerical impact

Δ�3 =
15
8
g6 −

21
4
g4|�|2 + g2|�|4 (2.174)

Δ�4 =
1
16
g6 −

9
8
g4|�|2 + g2|�|4 (2.175)

Δgd = −
3
16
g5 +

3
8
g3|�|2 (2.176)

ΔY1 =
3
4
g2�|�|2 −

3
8
g4� (2.177)

ΔY2 =
3
16
g4� −

3
8
g2�|�|2 (2.178)

ΔM1 = −
1
8
g4MB (2.179)

ΔM2 =
1
4
g2�|�|2 −

3
8
g4� (2.180)

ΔT1 = −
1
4
g2�(4|�|

2 + 9g2)�
∗

(2.181)

ΔT3 = −
3
4
g4T� (2.182)

ΔB = −
1
4
Bg2(2|�|

2 + 3g2) (2.183)

Δm2
1 = −

1
4
g2( − 2g

2|MB |2 + 2|�|2(3|�|
2 + m2

Hd) + g
2
(2m

2
Hu + 5m

2
Hd + 9|�|

2
)) (2.184)

Δm2
2 = −

1
4
g2( − 2g

2|MB |2 + 2|�|2(3|�|
2 + m2

Hu) + g
2
(2m

2
Hd + 5m

2
Hu + 9|�|

2
)) (2.185)

Δm2
3 = g

2
(2�

2�∗2 + 2�2(�∗)2 + |�|2( − 8|�|
2 + m2

S)) (2.186)

This gives a complete agreement between the two-loop �-functions of both calculations. Thus,

our revised results for the RGEs of a general quantum �eld theory are con�rmed.

2.7 Numerical impact

2.7.1 Running of fermion mass terms

We brie�y want to discuss the numerical impact on the changes in the �-function for the fermion

mass term. Di�erences in the running will only appear in models in which the Lagrangian con-

tains fermionic terms

 ⊃ YSf1f2 + �f1f2 + h.c. (2.187)

with a Yukawa-like coupling Y between two Weyl fermions f1, f2 and a scalar S as well as a

fermion mass term �. Both terms can only be present if S is a gauge singlet and if f1, f2 form a

vector-like fermion pair. As concrete example, we consider the case of heavy top-like states and

a real singlet, i.e.

T ′ ∶ (3, 1)− 13 , (2.188)

T̄ ′ ∶ (3, 1) 1
3
, (2.189)

S ∶ (1, 1)0 , (2.190)
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Figure 2.2: The running mass �T of the vector-like top partners at one- and two-loop level for

two di�erent choices of the Yukawa coupling YT . Here, we show the results using the

incorrect (‘old’) expressions in literature as well as our derived expressions (‘new’).

The other parameters are set to �HS = 0, �S = 1, �HS = � = 1 TeV.

and the potential reads

V =VSM +
1
4
�SS4 +

1
2
�SH |H |2S2 + �SH |H |2S +

1
3
�S3 +

1
2
m2
SS

2

+ (YT ST̄ ′T ′ + �T T̄ ′T ′ + h.c.) . (2.191)

The one- and two-loop �-functions are computed using our corrected expression and read

� (1)�T = 2Y
2
T �

∗
T −

2
5(
20g23 + g

2
1)�T + �T |YT |

2 , (2.192)

� (2)�T =
1
450(

667g41 − 240g
2
1g

2
3 − 46600g

4
3)�T +

4
15(

2g21�T + 40g
2
3�T − 15�YT)|YT |

2

−
37
4
�T |YT |4 +

2
15
Y 2T( − 105|YT |

2 + 8(20g
2
3 + g

2
1))�

∗
T , (2.193)

while the di�erences compared to the old results are

Δ� (1)�T = −6�TY
2
T , (2.194)

Δ� (2)�T = YT (−2�HS�HS − �S�S + �TYT (27Y
2
T − 2g

2
1 − 40g

2
3 ) − 12�

∗
TYT |YT |

2) . (2.195)

The numerical impact of this di�erence is depicted in Fig. 2.2 where we assumed a value of

1 TeV for �T at the scale Q = 1 TeV and used di�erent values YT . As expected from Eq. (2.194),

the discrepancy between the old and new results rapidly grows with increasing YT . Thus, the

correction in the RGEs is crucial for instance to study grand uni�ed theories which also predict

additional vector-like fermions with large Yukawa couplings to a gauge singlet.
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2.7.2 O�-diagonal wave-function renormalisation

We now turn to the numerical impact of the o�-diagonal wave-function renormalisation which

is not included in the previous works. For this purpose, we consider the general Two-Higgs-

Doublet-Model type-III with the following scalar potential:

V =m2
1 |H1|

2 + m2
2 |H2|

2 + �1|H1|4 + �2|H2|4 + �3|H1|2|H2|2 + �4|H†
2 H1|

2

+ (
1
2
�5(H†

2 H1) + �6|H1|
2(H†

1 H2) + �7|H2|
2(H†

1 H2) − M12H†
1 H2 + h.c.) (2.196)

and the Yukawa interactions

Y = −(YdH
†
1 dq + YeH

†
1 el − YuH2uq + �dH

†
2 dq + �eH

†
2 el − �uH1uq + h.c.) . (2.197)

Due to the presence of all Yukawa interactions allowed by gauge invariance, the anomalous

dimensions of the Higgs doublets H1 and H2 are no longer diagonal, but a mixing is induced

proportional to Tr(Yi�i) with i = e, d, u. If we neglect for the moment all terms involving either

the electroweak gauge couplings (g1, g2), a lepton or down-quark Yukawa coupling (Yd , Ye , �d ,

�e), the one-loop �-functions for the quartic coupling read

� (1)�1 = 24�
2
1 + 2�

2
3 + 2�3�4 + �

2
4 + |�5|2 + 12|�6|2

+ 12�1Tr(�u�
†
u) + 6Re(�6)Tr(�uY

†
u ) − 6Tr(�u�

†
u �u�

†
u) , (2.198)

� (1)�2 = 24�
2
2 + 2�

2
3 + 2�3�4 + �

2
4 + |�5|2 + 12|�7|2

+ 12�2Tr(YuY
†
u ) + 6Re(�7)Tr(�uY

†
u ) − 6Tr(YuY

†
u YuY

†
u ) , (2.199)

� (1)�3 = 2|�5|
2 + 2�24 + 4�

2
3 + 6Re(�6 + �7)Tr(�uY

†
u ) + 4|�7|

2 + 4|�6|2 + 16Re(�6�∗7)

+ 6�3Tr(�u�
†
u + YuY

†
u ) + 4(�1 + �2)(3�3 + �4) − 12Tr(�u�

†
uYuY

†
u ) , (2.200)

� (1)�4 = 4�4(2�3 + �1 + �2 + �4) + 8|�5|
2 + 6Re(�6 + �7)Tr(�uY

†
u ) + 2�

∗
6(5�6 + �7)

+ 2�∗7(5�7 + �6) + 6�4Tr(�u�
†
u + YuY

†
u ) − 12Tr(�uY

†
u Yu�

†
u) , (2.201)

� (1)�5 = 2(2(2�3 + 3�4 + �1 + �2)�5 + 5�
∗ 2
6 + 2�∗6�

∗
7 + 5�

∗ 2
7 + 3(�

∗
6 + �

∗
7)Tr(�uY

†
u )

+ 3�5(Tr(�u�
†
u) + Tr(YuY

†
u )) − 6Tr(�uY

†
u �uY

†
u )) , (2.202)

� (1)�6 = 24�1�6 + 6�3(�6 + �7) + 4�4(2�6 + �7) + �
∗
5(10�

∗
6 + 2�

∗
7) + 3�

∗
5Tr(�uY

†
u )

+ 3(2�1 + �3 + �4)Tr(Yu�
†
u) + 3�6Tr(3�u�

†
u + YuY

†
u ) − 12Tr(�u�

†
uYu�

†
u) , (2.203)

� (1)�7 = 4�4�6 + 8(3�2 + �4)�7 + 6�3(�6 + �7) + �
∗
5(10�

∗
7 + 2�

∗
6) + 3�

∗
5Tr(�uY

†
u )

+ 3(2�2 + �3 + �4)Tr(Yu�
†
u) + 3�7Tr(3YuY

†
u + �u�

†
u) − 12Tr(Yu�

†
uYuY

†
u ) . (2.204)

The underlined terms stem from the o�-diagonal wave-function renormalisation and are miss-

ing in the results of Refs. [182–185]. In Fig. 2.3 we show the numerical impact of the additional

one-loop contributions on the running of the quartic couplings for two di�erent points. The
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Figure 2.3: The running of di�erent quartic couplings in the THDM-III with and without the

contributions of o�-diagonal wave-function renormalisation to the �-functions of

the quartic couplings. Here, we have used the input parameters �1 = �3 = �4 = 0.5,
�5 = −0.05, �6 = �7 = −0.45, tan � = 2 and M12 = 5002 GeV

2
at Q = mt . On the left,

we have used �U ,33 = 0.5, �2 = 0.5, tan � = 2, and on the right �U ,33 = 1, �2 = 0.15,
tan � = 50. All other �i are zero.

chosen sets of the quartic couplings, tan � and M12 result in a tree-level Higgs mass of 125 GeV.
6

We see that the additional terms can lead to sizeable di�erences already for �u,33 = 0.5 and small

tan � = 2. This is due to Tr(�uY †u ). When increasing �u,33 to 1 and tan � = 50, one obtains

Tr(�uY †u ) ≃ 1 and the impact on the running couplings is tremendous.

Of course, there are also di�erences at the two-loop level. Those read within the same approxi-

mation:

Δ� (2)�1 =
1
4
(6�∗5�

∗ 2
6 + 6�6((2�2 + �3 + �4)�∗7 + �5 (�6 + �7))

+ �6�tYt (−27�2u − 27Y
2
u + 80g

2
3 ) + �

∗
6(12�2�7 + 24�1�6 − 27�

3
uYt − 27�tY

3
u

+ 6(�3 + �4)(2�6 + �7) + 6�∗5�
∗
7 + 80�tg

2
3Yt )) , (2.205)

Δ� (2)�2 =
1
4
(�7(6�5(�6 + �7) + �tYt (−27�2u − 27Y

2
u + 80g

2
3 ))

+ 6�∗6((2�1 + �3 + �4)�7 + �
∗
5�
∗
7) + �

∗
7(12�1�6 + 24�2�7 − 27�

3
uYt − 27�tY

3
u

+ 6(�3 + �4)(2�7 + �6) + 6�∗5�
∗
7 + 80�tg

2
3Yt )) , (2.206)

Δ� (2)�3 =
1
4
((�6 + �7)(6�5(�6 + �7) + �tYt (−27�2u − 27Y

2
u + 80g

2
3 )) + 6�

∗
5�
∗ 2
6 + 6�∗5�

∗ 2
7

+ 12(�∗5�
∗
6�
∗
7 + (2�2 + �3 + �4)(|�7|

2 + |�6|2) + 2(�1 + �2 + �3 + �4)Re(�∗7�6))

+ (�∗7 + �
∗
6)(−27�

3
uYt − 27�tY

3
u + 80�tg

2
3Yt ) , (2.207)

Δ� (2)�4 =
1
4
((�6 + �7)(6�5(�6 + �7) + �tYt (−27�2u − 27Y

2
u + 80g

2
3 )) + 6�

∗
5�
∗ 2
6 + 6�∗5�

∗2
7

+ 12(�∗5�
∗
6�
∗
7 + (2�2 + �3 + �4)(|�7|

2 + |�6|2) + 2(�1 + �2 + �3 + �4)Re(�∗7�6))

+ (�∗7 + �
∗
6)(−27�

3
uYt − 27�tY

3
u + +80�tg

2
3Yt ) , (2.208)

6
While it is in principle possible to renormalise the Higgs sector of the THDM-III on-shell, large radiative corrections

can occur when extracting the MS parameters which enter the RGEs [244]. Therefore, the given example is meant

as an illustration on the di�erence in the running, but the input parameters in the running will change when

including those corrections.
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Δ� (2)�5 =
1
2
(�∗6 + �

∗
7)(6(2�1 + �3 + �4)�

∗
6 + 6(2�2 + �3 + �4)�

∗
7 + 6�5(�6 + �7)

+ �tYt (−27�2u − 27Y
2
u + 80g

2
3 )) , (2.209)

Δ� (2)�6 =
1
4
((2�1 + �3 + �4)(12(�1�6 + �2�7) − 27(�3uYt + �tY

3
u ) + 6(�3 + �4)(�6 + �7)

+ 80�tg23Yt ) + �
∗
5(12(2�1 + �3 + �4)�

∗
6 + 12(�1 + �2 + �3 + �4)�

∗
7

+ 6�5(�6 + �7) + �tYt (−27(�2u + Y
2
u ) + 80g

2
3 ))) , (2.210)

Δ� (2)�7 =
1
4
(6�∗5�

∗,2
6 + �6(6(2�2 + �3 + �4)�∗7 + 6�5(�6 + �7) + �tYt (−27(�

2
u + Y

2
u )

+ 80g23 )) + �
∗
6(12�2�7 + 24�1�6 − 27(�

3
uYt + �tY

3
u ) + 6(�3 + �4)(2�6 + �7)

+ 6�∗5�
∗
7 + 80�tg

2
3Yt )) . (2.211)

2.8 Conclusions

In this paper, we have revisited the general RGEs with the goal to present the current state-of-

the-art and to correct some mistakes in the literature. In particular, the known expressions for the

scalar quartic couplings [184,185] assume a diagonal wave-function renormalisation which is not

appropriate for models with mixing in the scalar sector. We therefore have corrected/generalized

the expressions for the �-functions of the quartic couplings in (2.24) and (2.25). While �nalizing

this work, a related paper appeared on the arxiv [245] which con�rms our �ndings concerning

the couplings in the scalar sector. Furthermore, we have carefully re-examined the dummy �eld

method and have provided a detailed description of it, which has so far been missing in the

literature. We then have used this method to re-derive the �-functions for the dimensionful

parameters (fermion masses, scalar masses, and the cubic scalar couplings). For cubic scalar

couplings and scalar masses, the only di�erences to Ref. [185] are due to the aforementioned

o�-diagonal wave-function renormalisation. However, discrepancies for the fermion mass �-

functions in [185] have been found and reconciled in (2.55) and (2.56). We have also performed

an independent cross-check of our results using well-tested supersymmetric RGEs and we �nd

complete agreement.

We have illustrated the numerical impact on the changes in the �-function for the fermion mass

terms using a toy model with a heavy vector-like fermion pair coupled to a scalar gauge singlet.

Unsurprisingly, the correction to the running of the fermion mass rapidly grows with increasing

Yukawa coupling. Thus it is crucial to use the corrected RGEs if one wants to study for instance

grand uni�ed theories which predict additional vector-like fermions with large Yukawa couplings

to a gauge singlet. In addition, we have demonstrated the importance of the correction to the

�-functions of the scalar quartic couplings using a general type-III Two-Higgs-Doublet-Model.

As can be seen in Fig. 2.3 the corrections to the running couplings are non-negligible and can

become very large in certain regions of the parameter space.

All the corrected expressions have been implemented in updated versions of the Mathematica

package SARAH and the Python package PyR@TE. We hope that this paper will be a useful resource

in which all the relevant information on the two-loop �-functions is at hand in one place.
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2.9 Appendix: Dummy field method at two-loop

In this appendix, we list all two-loop vertex corrections which are needed to obtain the � func-

tions for dimensionful parameters.

2.9.1 Fermion mass

→

Y cY †bY a(Y †cY b − Y †bY c) Y cY †bmf (Y †cY b − Y †bY c) (2.212)

→

Y b(Y2(F )Y †a + Y †aY †2 (F ))Y
b Y b(Y2(F )m†

f + m
†
f Y

†
2 (F ))Y

b
(2.213)

→

Y bc
2 (S)Y

bY †aY c Y bc
2 (S)Y

bm†
f Y

c
(2.214)



2.9 RGEs revisited 59 Appendix: Dummy �eld method at two-loop

→

�abcdY bY †cY d ℎabcY aY †bY c
(2.215)

→

g2{C2(F ), Y bY †aY b} g2{C2(F ), Y bmf Y b} (2.216)

→

g2Y b{C2(F ), Y †a}Y b g2Y b{C2(F ), m†
f }Y

b
(2.217)

→

g2H a
2t = g2(tA∗Y aY †btA∗Y b

+Y btAY †bY atA)
g2(tA∗mf Y †btA∗Y b+
Y btAY †bmf tA)

(2.218)
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→

g2Cbc
2 (S)Y

bY †aY c g2Cbc
2 (S)Y

bm†
f Y

c
(2.219)

→ %

g2Cac
2 Y

bY †cY b 0 (2.220)

2.9.2 Cubic scalar coupling

1. Scalar-only contributions:

→

Λ3abcd =
1
4
∑
per

�abef �cegℎ�df gℎ Λ3abc =
1
2
∑
per
[ℎaef �begℎ�cf gℎ + �abef �cegℎℎf gℎ]

(2.221)

2. Scalar-Fermion contributions:

→
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Λ2Yabcd =
1
8 ∑per Y

f g
2 (S)�abef �cdeg

Λ2Yabc =
1
2
∑
per

Y f g
2 (S)�abef ℎceg (2.222)

→

H �
abcd =

1
8 ∑per �abefTr(Y cY †eY dY †f

+Y †cY eY †dY f )

H ℎ
abc + H

�m
abc =

1
4 ∑per ℎaefTr(Y bY †eY cY †f

+Y †bY eY †cY f )+
1
4 ∑per �abefTr(mf Y †eY cY †f

+Y †cY em†
f Y

f )
(2.223)

→

H Y
abcd =

∑per Tr(Y2(F )Y †aY bY †cY d )

H Y
abc = ∑per Tr(Y2(F )[m

†
f Y

aY †bY c

+Y †amf Y †bY c + Y †aY bm†
f Y

c

+Y †aY bY †cmf ])

(2.224)

→

H Y
abcd =

∑per
1
2Tr(Y eY †aY eY †bY cY †d

+Y †eY aY †eY bY †cY d )

H Y
abc =

1
2 ∑per Tr(Y em†

f Y
eY †aY bY †c+

Y eY †aY em†
f Y

bY †c

+Y eY †aY eY †bmf Y †c+
Y eY †aY eY †bY cm†

f + h.c.)
(2.225)
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→

H 3
abcd =

1
2 ∑per Tr(Y aY †bY eY †cY dY †e)

H a
abc =

1
2 ∑per Tr(mf Y a†Y eY †bY cY †e

+Y am†
f Y

eY †bY cY †e

+Y aY †bY em†
f Y

cY †e

+Y aY †bY eY †cmf Y †e)
(2.226)

→

H F
abcd =

∑per Tr({C2(F ), Y a}Y †bY cY †d )

H F
abc = ∑per Tr({C2(F ), mf }Y a†Y bY †c

+{C2(F ), Y a}m†
f Y

bY †c

+{C2(F ), Y a}Y †bmf Y †c

+{C2(F ), Y a}Y †bY cm†
f )

(2.227)

→

H S
abcd = ∑

i
C2(i)Habcd H S

abc = ∑
i
C2(i)Habc (2.228)

3. Scalar-Vector contributions

→

Λ2Sabcd =
1
8
∑
per

C f g
2 (S)�abef �cdeg Λ2Sabc =

1
2
∑
per

C f g
2 (S)ℎaef �bceg

(2.229)
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→

Λ2gabcd =
1
8
∑
per

�abef �cdgℎ�Aeg�
A
f ℎ Λ2gabc =

1
2
∑
per

ℎaef �bcgℎ�Aeg�
A
f ℎ

(2.230)

→

A�abcd =
1
4
∑
per

�abef {�A, �B}ef {�A, �B}cd
A�abc =

1
2 ∑per ℎaef {�A, �B}ef {�A, �B}bc

(2.231)

→

A�abcd =
1
4
∑
per

�abef {�A, �B}ce{�A, �B}df
A�abc =

1
2 ∑per ℎaef {�A, �B}be{�A, �B}cf

(2.232)

→ %
Agabcd =

1
8 f

ACEf BDE ∑per{�A, �B}ab{�C , �D}cd
0 (2.233)

→ %
XAabcd = X{�A, �B}ab{�A, �B}cd 0 (2.234)
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→ %
ASabcd =

∑i C2(i){�A, �B}ab{�A, �B}cd
0 (2.235)

4. Scalar-Fermion-Vector contributions

→

BYabcd =
1
4 ∑per{�A, �B}abTr(tA∗tB∗Y cY †d

+Y ctAtBY †d )

BYabc =
1
4 ∑per{�A, �B}abTr(tA∗tB∗mf Y †c

+mf tAtBY †c + tA∗tB∗Y cm†
f

+Y ctAtBm†
f )

(2.236)

→

BYabcd =
1
4 ∑per{�A, �B}abTr(tA∗Y ctBY †d )

BYabc = 1
4 ∑per{�A, �B}abTr(tA∗mf tBY †c

+tA∗Y ctBm†
f )

(2.237)

2.9.3 Bilinear scalar

1. Scalar-only contributions:

→

Λ3abcd =
1
4 ∑per �abef �cegℎ�df gℎ

Λ3ab = �abef ℎeglℎf gl + 2m2
ef �aegl�bf gl

+2∑per ℎaef ℎf gl�begl
(2.238)
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2. Scalar-Fermion contributions:

→

Λ2Yabcd =
1
8
∑
per

Y f g
2 (S)�abef �cdeg Λ2Yab = 2Y

f g
2 (S)(m2

eg�abef + ℎaef ℎbeg)

(2.239)

→

H �
abcd =

1
8 ∑per �abefTr(Y cY †eY dY †f

+Y †cY eY †dY f )

H �
ab = 1

2�abefTr(mf Y †emf Y †f + h.c.)
+m2

efTr(Y aY †eY bY †f + h.c.)
+∑per ℎaefTr(Y bY †emf Y †f + h.c.)

(2.240)

→

H Y
abcd =

∑per Tr(Y2(F )Y †aY bY †cY d )

H Y
ab = 2∑per [Tr({Y2(F ), m†

f mf }Y †aY b)+

Tr(Y2(F )Y †amf (Y †bmf + m
†
f Y

b)+

Y2(F )m†
f Y

a(Y †bmf + m
†
f Y

b))]
(2.241)
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→

H Y
abcd =

∑per
1
2Tr(Y eY †aY eY †bY cY †d

+Y †eY aY †eY bY †cY d )

H Y
ab = ∑per [Tr(Y

eY †aY eY †bmfm
†
f +

Y em†
f Y

em†
f Y

aY †b+
(Y eY †aY em†

f + Y
em†

f Y
eY †a)×

(Y bm†
f + mf Y †b) + h.c.)]

(2.242)

→

H 3
abcd =

1
2 ∑per

Tr(Y aY †bY eY †cY dY †e)

H 3
ab = ∑per [Tr(Y

aY †bY em†
f mf Y †e

+mfm
†
f Y

eY †aY bY †e

Y am†
f Y

e(Y †bmf + m
†
f Y

b)Y †e

+mf Y †aY e(Y †bmf + m
†
f Y

b)Y †e)]
(2.243)

→
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H F
abcd = ∑per

Tr({C2(F ), Y a}Y †bY cY †d )

H F
ab = 2∑per Tr[{C2(F ), mf }Y a†(Y bm†

f + h.c.)
+{C2(F ), Y a}m†

f (Y
bm†

f + h.c.)
+{C2(F ), Y a}Y †bmfm

†
f

+{C2(F ), mf }m
†
f Y

aY †b]
(2.244)

→

H S
abcd = ∑

i
C2(i)Habcd H S

ab = ∑
i
C2(i)Hab (2.245)

3. Scalar-Vector contributions

→

Λ2Sabcd =
1
8
∑
per

C f g
2 (S)�abef �cdeg Λ2Sab = 2C

f g
2 (S)(�abefm

2
eg + ℎaef ℎbeg)

(2.246)

→

Λ2gabcd =
1
8
∑
per

�abef �cdgℎ�Aeg�
A
f ℎ Λ2gab = 2(�abefm

2
gℎ + ℎaef ℎbgℎ)�

A
eg�

A
f ℎ

(2.247)
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→

A�abcd =
1
4 ∑per �abef {�A, �B}ef {�A, �B}cd

A�ab = 2m
2
ef {�

A, �B}ef {�A, �B}ab

(2.248)

→

A�abcd =
1
4 ∑per �abef {�A, �B}ce{�A, �B}df

A�ab = 2m
2
ef {�

A, �B}ae{�A, �B}bf

(2.249)

→ %
Agabcd =

1
8 f

ACEf BDE ∑per{�A, �B}ab{�C , �D}cd
0 (2.250)

→ %
XAabcd = X{�A, �B}ab{�A, �B}cd 0 (2.251)

→ %
ASabcd =

∑i C2(i){�A, �B}ab{�A, �B}cd
0 (2.252)
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4. Scalar-Fermion-Vector contributions

→

BYabcd =
1
4 ∑per{�A, �B}abTr(tA∗tB∗Y cY †d

+Y ctAtBY †d )
BYab = {�

A, �B}abTr(tA∗tB∗mfm
†
f

+mf tAtBm
†
f )

(2.253)

→

BYabcd =
1
4
∑
per
{�A, �B}abTr(tA∗Y ctBY †d ) BYabc = {�

A, �B}abTr(tA∗mf tBm
†
f )

(2.254)

2.10 Appendix: Full two-loop RGEs

In this appendix, the full �-functions for all parameters of the non-supersymmetric toy model in

Sec. 2.6 are listed up to two-loop order.

2.10.1 Gauge couplings

� (1)g =
1
2
g3 (2.255)

� (2)g =
1
8
g3( − 2|Y2|

2 − 2|Y3|2 − 4|Y1|2 + 6g2 − |gd |2 − |gu |2) (2.256)

2.10.2 �artic scalar couplings

� (1)�4 = 20�
2
4 + 2�4|gd |

2 − 2|Y2|4 − 3g2�4 + 4�4|Y2|2 −
1
2
|gd |4 +

3
8
g4 + �21 + �

2
3 (2.257)

� (2)�4 = −
25
16
g6 − 4�31 +

5
4
g4�3 + 2g2�23 − 4�

3
3 +

63
8
g4�4 − 10�21�4 − 10�

2
3�4 + 28g

2�24

− 240�34 − 2�
2
1 |Y1|

2 −
1
4
g4|Y2|2 +

5
2
g2�4|Y2|2 − 40�24 |Y2|

2 − 2�23 |Y3|
2 + 2�4|Y2|4

+ 2|Y1|2|Y2|4 + 2|Y3|2|Y2|4 + g3dg
∗ 3
d − 3�4Y2|Y1|2Y ∗2 + 8Y

3
2 Y

∗ 3
2

+
1
4
gdg∗ 2d (2( − 2guY3Y

∗
2 + gd�4 + gd |Y1|

2 + gd |Y3|2) + gd |gu |
2
) − 3�4Y3|Y2|

2Y ∗3

−
1
2
g∗u(2gu�

2
3 − 2gu |Y2|

4 + 4gd( − �4 + �3)Y2Y
∗
3 + |Y2|2(3gu�4 + 4gdY2Y

∗
3))
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−
1
8
g∗d(g

4gd − 10g2gd�4 + 160gd�24 + 12gd�4|Y3|
2 + 16gu�3Y3Y ∗2 − 16gu�4Y3Y

∗
2

+ 16guY2Y3Y ∗ 22 + 4gd |Y1|2(3�4 − 4Y2Y
∗
2) − 16gdY3|Y2|

2Y ∗3

+ 2gdg∗u(3gu�4 + 4gdY2Y
∗
3 − 4gu |Y2|

2
)) (2.258)

� (1)�3 = +
3
4
g4 + 2�1�2 − 3g2�3 + 4�23 + 8�3�4 + 8�3�5 + 2�3|Y2|

2 + 2�3|Y3|2

+ g∗d( − 2gd |Y3|
2 + 2guY3Y ∗2 − gd |gu |

2 + gd�3) − 4Y3|Y2|
2Y ∗3

+ g∗u(2gdY2Y
∗
3 − 2gu |Y2|

2 + gu�3) (2.259)

� (2)�3 = −
25
8
g6 − 4�21�2 − 4�1�

2
2 +

43
8
g4�3 − �21�3 − 8�1�2�3 − �

2
2�3 + 2g

2�23 − 10�
3
3

+ 5g4�4 + 16g2�3�4 − 48�23�4 − 40�3�
2
4 + 5g

4�5 + 16g2�3�5 − 48�23�5 − 40�3�
2
5

− 4�1�2|Y1|2 −
1
4
g4|Y2|2 +

5
4
g2�3|Y2|2 − 4�23 |Y2|

2 − 16�3�4|Y2|2 −
1
4
g4|Y3|2

+
5
4
g2�3|Y3|2 − 4�23 |Y3|

2 − 16�3�5|Y3|2 − 3�3|Y2|4 + 10|Y3|2|Y2|4 − 3�3|Y3|4

+ 10|Y2|2|Y3|4 −
3
2
�3Y2|Y1|2Y ∗2 −

1
4
g2dg

∗ 2
d (3�3 − 10|Y3|

2 − 5|gu |2)

− 3gugdg∗ 2d Y3Y
∗
2 −

3
2
�3Y3|Y1|2Y ∗3 + 5�3Y3|Y2|

2Y ∗3 + 12Y2Y3|Y1|
2Y ∗2Y

∗
3

−
1
4
gug∗ 2u ( − 10gu |Y2|

2 + 12gdY2Y ∗3 + 3gu�3)

+ g∗d( −
1
8
g4gd +

5
8
g2gd�3 − 2gd�23 − 8gd�3�4 +

5
2
gd�3|Y3|2 +

5
4
gd |gu |4 + 5gd |Y3|4

+ 2gu�3Y3Y ∗2 − 8gu�4Y3Y
∗
2 − 8gu�5Y3Y

∗
2 − 6guY2Y3Y

∗ 2
2

+ Y ∗1(2gdY1|Y3|
2 − 4guY1Y3Y ∗2 −

3
4
gd�3Y1) + 6gdY3|Y2|

2Y ∗3 − 6guY
2
3 Y

∗
2Y

∗
3

+ g∗u(3gdgu |Y1|
2 − 3g2dY2Y

∗
3 + 3gdgu |Y3|

2 + 3gu(gdY2 − guY3)Y
∗
2 +

5
4
gdgu�3))

−
1
8
g∗u(g

4gu − 5g2gu�3 + 16gu�23 + 64gu�3�5 − 40gu |Y2|
4 − 16gd�3Y2Y ∗3

+ 64gd (�4Y2Y ∗3 + �5Y2Y
∗
3) + 48gdY2Y3Y

∗ 2
3 + 16|Y1|2(2gdY2Y

∗
3 + 3

8gu�3

− guY2Y ∗2) + 4|Y2|
2
(12(gdY2 − guY3)Y

∗
3 − 5gu�3)) (2.260)

� (1)�1 = 2�1|Y2|
2 + 2�2�3 + 2|Y1|2(�1 − 2Y2Y

∗
2) + 4�

2
1 + 8�1�4 −

3
2
g2�1

+ |gd |2(�1 − 2Y1Y
∗
1) (2.261)

� (2)�1 =
39
16
g4�1 + g2�21 − 10�

3
1 +

5
4
g4�2 − �1�22 + 4g

2�2�3 − 8�1�2�3 − 4�22�3 − �1�
2
3

− 4�2�23 + 16g
2�1�4 − 48�21�4 − 40�1�

2
4 − 3g

4|Y1|2 +
5
2
g2�1|Y1|2 − 4�21 |Y1|

2

+
5
4
g2�1|Y2|2 − 4�21 |Y2|

2 − 16�1�4|Y2|2 − 4�2�3|Y3|2 −
1
4(

− 10|Y1|2 + 3�1)|gd |
4

− 3�1|Y1|4 + 10|Y2|2|Y1|4 − 3�1|Y2|4 + 10|Y1|2|Y2|4 − 2g2Y2|Y1|2Y ∗2

+ 5�1Y2|Y1|2Y ∗2 −
3
2
�1Y3|Y1|2Y ∗3 −

3
2
�1Y3|Y2|2Y ∗3 + 12Y2Y3|Y1|

2Y ∗2Y
∗
3

−
1
4
g∗u(8gu�2�3 + 3gu�1|Y2|

2 − 4gd�1Y2Y ∗3 + 8gd�2Y2Y
∗
3
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+ |Y1|2(24gdY2Y
∗
3 + 3gu�1 − 8guY2Y

∗
2))

+
1
8
g∗d(5g

2gd�1 − 16gd�21 − 64gd�1�4 − 6gd�1|Y3|
2 + 40gd |Y1|4

− 3gd |gu |2(�1 − 8Y1Y
∗
1) + 8gu�1Y3Y

∗
2 − 16gu�2Y3Y

∗
2

+ 4|Y1|2(12(gdY2 − guY3)Y
∗
2 + gd( − 2g

2 + 4Y3Y ∗3 + 5�1))) (2.262)

� (1)�5 = 20�
2
5 + 2�5|gu |

2 − 2|Y3|4 − 3g2�5 + 4�5|Y3|2 −
1
2
|gu |4 +

3
8
g4 + �22 + �

2
3 (2.263)

� (2)�5 = −
25
16
g6 − 4�32 +

5
4
g4�3 + 2g2�23 − 4�

3
3 +

63
8
g4�5 − 10�22�5 − 10�

2
3�5 + 28g

2�25

− 240�35 − 2�
2
2 |Y1|

2 − 2�23 |Y2|
2 −

1
4
g4|Y3|2 +

5
2
g2�5|Y3|2 − 40�25 |Y3|

2 + 2�5|Y3|4

+ 2|Y1|2|Y3|4 + 2|Y2|2|Y3|4 + g3ug
∗ 3
u − 3�5Y3|Y1|2Y ∗3 − 3�5Y3|Y2|

2Y ∗3 + 8Y
3
3 Y

∗ 3
3

+
1
2
gug∗ 2u ( − 2gdY2Y

∗
3 + gu�5 + gu |Y1|

2 + gu |Y2|2)

−
1
8
g∗u(g

4gu − 10g2gu�5 + 160gu�25 + 16gd�3Y2Y
∗
3 − 16gd�5Y2Y

∗
3 + 16gdY2Y3Y

∗ 2
3

+ 4gu |Y1|2(3�5 − 4Y3Y
∗
3) + 4gu |Y2|

2
(3�5 − 4Y3Y

∗
3))

−
1
4
g∗d(2gd(2�

2
3 − 2|Y3|

4 + 3�5|Y3|2) − gd |gu |
4 + 8guY3( − �5 + �3 + |Y3|2)Y

∗
2

+ |gu |2(3gd�5 − 4gdY3Y
∗
3 + 4guY3Y

∗
2)) (2.264)

� (1)�2 = 2�1�3 + 2�2|Y3|
2 + 2|Y1|2( − 2Y3Y

∗
3 + �2) + 4�

2
2 + 8�2�5 −

3
2
g2�2

+ |gu |2( − 2Y1Y
∗
1 + �2) (2.265)

� (2)�2 = g
4
(
5
4
�1 +

39
16
�2) − �

2
1�2 + g

2�22 − 10�
3
2 − 4(�1�

2
3 + �

2
1�3 − g

2�1�3) − 8�1�2�3

− �2�23 + 16g
2�2�5 − 48�22�5 − 40�2�

2
5 − 3g

4|Y1|2 +
5
2
g2�2|Y1|2 − 4�22 |Y1|

2

− 4�1�3|Y2|2 +
5
4
g2�2|Y3|2 − 4�22 |Y3|

2 − 16�2�5|Y3|2 −
1
4(
3�2 − 10|Y1|2)|gu |

4

− 3�2|Y1|4 + 10|Y3|2|Y1|4 − 3�2|Y3|4 + 10|Y1|2|Y3|4 −
3
2
�2Y2|Y1|2Y ∗2

− 2g2Y3|Y1|2Y ∗3 + 5�2Y3|Y1|
2Y ∗3 −

3
2
�2Y3|Y2|2Y ∗3 + 12Y2Y3|Y1|

2Y ∗2Y
∗
3

+
1
8
g∗u(5g

2gu�2 − 16gu�22 − 64gu�2�5 − 6gu�2|Y2|
2 + 40gu |Y1|4 − 16gd�1Y2Y ∗3

+ 8gd�2Y2Y ∗3 + 4|Y1|
2
( − 12gdY2Y

∗
3 + 12guY3Y

∗
3 − 2g

2gu + 4guY2Y ∗2 + 5gu�2))

−
1
8
g∗d(3gd |gu |

2
( − 8Y1Y

∗
1 + �2)

+ 2(8gd�1�3 + 3gd�2|Y3|
2 + 8gu�1Y3Y ∗2 − 4gu�2Y3Y

∗
2

+ |Y1|2(24guY3Y
∗
2 + 3gd�2 − 8gdY3Y

∗
3))) (2.266)
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2.10.3 Yukawa couplings

� (1)gd =
1
4(
2gd |Y1|2 + 2gd |Y3|2 − 3g2gd + 4g2dg

∗
d + 4gd |Y2|

2 − 8guY3Y ∗2 + gd |gu |
2
) (2.267)

� (2)gd =
1
32(

− 7gd |gu |4 − 10g3dg
∗ 2
d + g∗u(28gdgu |Y1|

2 + 2gu( − 7gdY2 + 24guY3)Y
∗
2

+ gd(16gdY2Y
∗
3 − 32gu�3 − 56gu |Y3|

2 − 7g2gu)) − |gd |2(2(12gdY2Y
∗
2

− 8guY3Y ∗2 − 31g
2gd + 64gd�4 + 7gdY1Y ∗1 + 7gdY3Y

∗
3) + 7gdgug

∗
u)

− 2(14gd |Y1|
4 − 2(16gu�3Y3 + (24guY3 − 7gdY2)|Y3|

2 + g2(5gdY2 − 4guY3))Y
∗
2

+ 8Y2(3gdY2 − 4guY3)Y
∗ 2
2 + 2|Y1|2(4gd(4�1 + g

2
) + (7gdY2 − 8guY3)Y

∗
2)

+ gd(( − 11g
2Y3 + 32�3Y3)Y

∗
3 + 14|Y3|

4 + 2( − 4(8�
2
4 + �

2
1 + �

2
3) + g

4
)))) (2.268)

� (1)gu =
1
4(
2gu |Y1|2 + 2gu |Y2|2 − 3g2gu + 4g2ug

∗
u + 4gu |Y3|

2 − 8gdY2Y ∗3 + gu |gd |
2
) (2.269)

� (2)gu =
1
32(

− 7gu |gd |4

− g∗d(7g
2gdgu + 32gdgu�3 − 28gdgu |Y1|2 + 56gdgu |Y2|2 + 14gdgu |Y3|2 + 7gdg2ug

∗
u

− 16g2uY3Y
∗
2 − 48g

2
dY2Y

∗
3)

− 2(2g
4gu − 8gu�22 − 8gu�

2
3 − 64gu�

2
5 − 11g

2gu |Y2|2 + 32gu�3|Y2|2 − 10g2gu |Y3|2

+ 14gu |Y1|4 + 14gu |Y2|4 + 24gu |Y3|4 + 5g3ug
∗ 2
u + 8g2gdY2Y ∗3 − 32gd�3Y2Y

∗
3

+ 14guY3|Y2|2Y ∗3 − 48gdY
2
2 Y

∗
2Y

∗
3 − 32gdY2Y3Y

∗ 2
3

+ |gu |2(12guY3Y
∗
3 − 8gdY2Y

∗
3 − 31g

2gu + 64gu�5 + 7guY1Y ∗1 + 7guY2Y
∗
2)

+ 2|Y1|2(4gu(4�2 + g
2
) + (7guY3 − 8gdY2)Y

∗
3))) (2.270)

� (1)Y3 =
1
4((

2guY3 − 4gdY2)g
∗
u + Y3(2|Y1|

2 + 2|Y2|2 − 3g2 + 8|Y3|2) + Y3|gd |
2
) (2.271)

� (2)Y3 =
1
32(

− 7Y3|gd |4 + g∗d(gd( − 7guY3 + 24gdY2)g
∗
u + Y3( − 8( − 2guY3

+ 7gdY2)Y
∗
2 + gd(11g

2 − 14|Y3|2 − 32�3))) − 2(2gu(3guY3 − 4gdY2)g
∗ 2
u

+ g∗u(4g
2gdY2 − 16gd�3Y2 − 5g2guY3 + (7guY3 − 24gdY2)|Y2|

2 − 8gdY2|Y3|2

+ (7guY1Y3 − 8gdY1Y2)Y
∗
1 + 12guY

2
3 Y

∗
3) + Y3(14|Y1|

4 + 14|Y2|4

+ 2|Y1|2( − 14Y2Y
∗
2 + 4(4�2 + g

2
) + 7Y3Y

∗
3) + |Y2|2(14Y3Y

∗
3 + 32�3 + 7g

2
)

+ 2(10|Y3|
4 + ( − 31g

2Y3 + 64�5Y3)Y
∗
3 − 4(8�

2
5 + �

2
2 + �

2
3) + g

4
)))) (2.272)

� (1)Y2 =
1
4(
2( − 2guY3 + gdY2)g

∗
d + Y2(2|Y1|

2 + 2|Y3|2 − 3g2 + 8|Y2|2 + |gu |2)) (2.273)

� (2)Y2 =
1
32(

− 4gd(3gdY2 − 4guY3)g
∗ 2
d + g∗d(( − 7gdY2 + 24guY3)|gu |

2

+ 2(5g
2gdY2 − 4g2guY3 + 16gu�3Y3 − 12( −

2
3
guY3 + gdY2)|Y2|

2 − 7gdY2|Y3|2

+ (8guY1Y3 − 7gdY1Y2)Y
∗
1 + 24guY

2
3 Y

∗
3))
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− Y2(7|gu |
4 + g∗u( − 11g

2gu + 14gu |Y2|2 + 32gu�3 − 8(2gdY2 − 7guY3)Y
∗
3)

+ 2(2g
4 − 8�21 − 8�

2
3 − 64�

2
4 + 7g

2|Y3|2 + 32�3|Y3|2 + 14|Y1|4 + 20|Y2|4 + 14|Y3|4

+ 2|Y1|2(16�1 − 14Y3Y
∗
3 + 4g

2 + 7Y2Y ∗2) + 2|Y2|
2
(64�4 − 31g

2 + 7Y3Y ∗3)))) (2.274)

� (1)Y1 =
1
4
Y1(2|Y2|

2 + 2|Y3|2 − 6g2 + 8|Y1|2 + |gd |2 + |gu |2) (2.275)

� (2)Y1 = −
1
32
Y1(7|gd |

4 + 7|gu |4 + g∗d(32gd�1 − 11g
2gd − 14gd |gu |2 + 14gd |Y1|2

− 32guY3Y ∗2 + 56gd |Y2|
2
) + g

∗
u(14gu |Y1|

2 + (32�2 − 11g2)gu − 8(4gdY2

− 7guY3)Y
∗
3) + 2(20|Y1|

4 + 14(|Y2|4 + |Y3|4) − 8(�21 + �
2
2) − 11g

2(g2 + |Y3|2)

+ 32�2|Y3|2 + |Y2|2(32�1 − 11g
2 − 28Y3Y ∗3) + 14|Y1|

2
(Y2Y

∗
2 + Y3Y

∗
3 −

26
7
g2))) (2.276)

2.10.4 Fermion mass terms

� (1)M1
=
1
2
M1(|gd |

2 + |gu |2) (2.277)

� (2)M1
=
1
16(

M1|gd |4 + gu(16gdT3Y
∗
1 + guM1g∗ 2u + M1( − 12|Y3|

2 + 17g2

− 2|Y1|2 − 2|Y2|2)g
∗
u) + M1|gd |2( − 12Y2Y

∗
2 + 17g

2 − 2Y1Y ∗1 − 2Y3Y
∗
3)) (2.278)

� (1)M2
=
1
4
M2(2|Y2|

2 + 2|Y3|2 + 4|Y1|2 − 6g2 + |gd |2 + |gu |2) (2.279)

� (2)M2
=
1
32(

22g4M2 + 64g2M2|Y1|2 + 22g2M2|Y2|2 + 22g2M2|Y3|2 − 7M2|gd |4

− 7M2|gu |4 + 8M2|Y1|4 − 28M2|Y2|4 − 28M2|Y3|4 − 64Y1|Y2|2T ∗1 − 64Y1|Y3|
2T ∗2

+ g∗d(14gdM2|gu |2 − 32gdY1T ∗1 + M2(11g
2gd − 2gd |Y1|2 + 32guY3Y ∗2

− 56gd |Y2|2)) − 4M2Y2|Y1|2Y ∗2 − 4M2Y3|Y1|2Y ∗3 + 56M2Y3|Y2|2Y ∗3

+ g∗u( − 32guY1T
∗
2 + M2(11g

2gu − 2gu |Y1|2 + 8(4gdY2 − 7guY3)Y
∗
3))) (2.280)

2.10.5 Trilinear scalar couplings

� (1)T3 =
1
2(

g∗d(8M1Y1g∗u + gdT3)

+ T3(2|Y1|
2 + 2|Y2|2 + 2|Y3|2 − 3g2 + 4�1 + 4�2 + 4�3 + |gu |2)) (2.281)

� (2)T3 =
1
16(

− 2g∗ 2d (3g
2
dT3 + 40gdM1Y1g∗u − 64M1Y1Y3Y ∗2)

+ g∗d( − 80guM1Y1g∗ 2u + 2g∗u( − 32�3M1Y1

− 32M1Y 21 Y
∗
1 − 48M1Y1|Y2|2 − 48M1Y1|Y3|2 + 5gdguT3 + 8g2M1Y1)
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+ T3( − 12gd |Y1|
2 + 16guY3Y ∗2 + gd( − 12|Y3|

2 − 16(�1 + �3) + 5g
2
)))

+ T3g∗u( − 12gu |Y1|
2 − 12gu |Y2|2 + 16gdY2Y ∗3 − 16gu�2 − 16gu�3 + 5g

2gu)

+ g∗ 2u (128M1Y1Y2Y ∗3 − 6g
2
uT3) + T3(19g

4 + 8g2�1

− 16�21 + 8g
2�2 − 96�1�2 − 16�22 + 64g

2�3 − 96�1�3 − 96�2�3 − 16�23
− 64(2�1�4 + 2�3�4 − �24 + 2�2�5 + 2�3�5 − �

2
5) + 10g

2|Y3|2 − 32�2|Y3|2

− 32�3|Y3|2 − 24(|Y1|4 + |Y2|4 + |Y3|4) + 4|Y1|2(10(Y2Y
∗
2 + Y3Y

∗
3) + 5g

2

− 8(�1 + �2)) + 2|Y2|
2
( − 16(�1 + �3) + 20Y3Y

∗
3 + 5g

2
))) (2.282)

� (1)T1 = 2�3T2 + 2T1|Y2|
2 + 4�1T1 − 4Y1|Y2|2M ∗

2 + 8�4T1 −
3
2
g2T1

+ |gd |2( − 2Y1M
∗
2 + T1) + T1|Y1|

2
(2.283)

� (2)T1 =
39
16
g4T1 + g2�1T1 −

21
2
�21T1 +

1
2
�22T1 − 4�2�3T1 − �

2
3T1 + 16g

2�4T1

− 48�1�4T1 − 40�24T1 +
5
4
g4T2 − 2�1�2T2 + 4g2�3T2 − 4�1�3T2 − 4�2�3T2

− 4�23T2 +
5
4
g2T1|Y1|2 − 4�1T1|Y1|2 +

5
4
g2T1|Y2|2 − 4�1T1|Y2|2 − 16�4T1|Y2|2

− 4�3T2|Y3|2 −
3
2
T1|Y1|4 − 3T1|Y2|4 − 3g4Y1M ∗

2 − 2g
2Y1|Y2|2M ∗

2 + 4�1Y1|Y2|
2M ∗

2

+ 10Y1|Y2|4M ∗
2 −

1
4
|gd |4( − 10Y1M

∗
2 + 3T1) + 10Y

2
1 |Y2|

2M ∗
2Y

∗
1 +

7
4
T1Y2|Y1|2Y ∗2

+
1
8
g∗d(5g

2gdT1 − 16gd�1T1 − 64gd�4T1 + 7gdT1|Y1|2 − 6gdT1|Y3|2

− 3gd |gu |2( − 8Y1M
∗
2 + T1) + 8guT1Y3Y

∗
2 − 16guT2Y3Y

∗
2

+ 8Y1M ∗
2(2gd�1 + 2gd |Y3|

2 + 5gd |Y1|2 + 6gd |Y2|2 − 6guY3Y ∗2 − g
2gd))

−
3
4
T1Y3|Y1|2Y ∗3 −

3
2
T1Y3|Y2|2Y ∗3 + 12Y1Y3|Y2|

2M ∗
2Y

∗
3 −

3
8
g∗uguT1|Y1|

2

−
1
8
g∗u(2(4gdY2(2T2 + 6Y1M

∗
2 − T1)Y

∗
3 + 8gu�3T2 + gu |Y2|

2
(3T1 − 8Y1M

∗
2))) (2.284)

� (1)T2 = 2�3T1 + 2T2|Y3|
2 + 4�2T2 − 4Y1|Y3|2M ∗

2 + 8�5T2 −
3
2
g2T2

+ |gu |2( − 2Y1M
∗
2 + T2) + T2|Y1|

2
(2.285)

� (2)T2 =
5
4
g4T1 − 2�1�2T1 + 4g2�3T1 − 4�1�3T1 − 4�2�3T1 − 4�23T1 +

39
16
g4T2 +

1
2
�21T2

+ g2�2T2 −
21
2
�22T2 − 4�1�3T2 − �

2
3T2 + 16g

2�5T2 − 48�2�5T2 − 40�25T2

+
5
4
g2T2|Y1|2 − 4�2T2|Y1|2 − 4�3T1|Y2|2 +

5
4
g2T2|Y3|2 − 4�2T2|Y3|2

− 16�5T2|Y3|2 −
3
2
T2|Y1|4 − 3T2|Y3|4 − 3g4Y1M ∗

2 − 2g
2Y1|Y3|2M ∗

2

+ 4�2Y1|Y3|2M ∗
2 + 10Y1|Y3|

4M ∗
2 −

1
4
|gu |4( − 10Y1M

∗
2 + 3T2) + 10Y

2
1 |Y3|

2M ∗
2Y

∗
1

−
3
4
T2Y2|Y1|2Y ∗2 −

1
8
g∗d(3gdT2|Y1|

2 + 3gd |gu |2( − 8Y1M
∗
2 + T2)

+ 2(4guY3(2T1 + 6Y1M
∗
2 − T2)Y

∗
2 + gd(8�3T1 + |Y3|2(3T2 − 8Y1M

∗
2))))
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+
7
4
T2Y3|Y1|2Y ∗3 −

3
2
T2Y3|Y2|2Y ∗3 + 12Y1Y3|Y2|

2M ∗
2Y

∗
3 +

1
8
g∗u(5g

2guT2

− 16gu�2T2 − 64gu�5T2 + 7guT2|Y1|2 − 6guT2|Y2|2 − 16gdT1Y2Y ∗3 + 8gdT2Y2Y
∗
3

+ 8Y1M ∗
2(2gu�2 + 2gu |Y2|

2 + 5gu |Y1|2 − 6gdY2Y ∗3 + 6gu |Y3|
2 − g2gu)) (2.286)

2.10.6 Scalar mass terms

� (1)B =
1
2(
2B|Y2|2 + 2B|Y3|2 − 3Bg2 + 4B�3 + 4T3T ∗1 + 4T3T

∗
2 + B|gu |

2

+ g∗d(8M1M2g∗u + Bgd)) (2.287)

� (2)B = +
19
16
Bg4 +

1
2
B�21 − 2B�1�2 +

1
2
B�22 + 4Bg

2�3 − B�23 − 8B�3�4 + 4B�
2
4

− 8B�3�5 + 4B�25 +
5
8
Bg2|Y2|2 − 2B�3|Y2|2 +

5
8
Bg2|Y3|2 − 2B�3|Y3|2 −

3
2
B|Y2|4

−
3
2
B|Y3|4 +

1
2
g2T3T ∗1 − 2�1T3T

∗
1 − 2�2T3T

∗
1 − 6�3T3T

∗
1 − 8�4T3T

∗
1 − 2T3|Y1|

2T ∗1

− 2T3|Y2|2T ∗1 +
1
2
g2T3T ∗2 − 2�1T3T

∗
2 − 2�2T3T

∗
2 − 6�3T3T

∗
2 − 8�5T3T

∗
2

− 2T3|Y1|2T ∗2 − 2T3|Y3|
2T ∗2 + 4M2T3|Y2|2Y ∗1 + 4M2T3|Y3|2Y ∗1 −

3
4
BY2|Y1|2Y ∗2

+ g∗ 2d ( − 5gdM1M2g∗u + 8M1M2Y3Y ∗2 −
3
8
Bg2d)

−
1
16
g∗d((64�3M1M2 + 64M1M2|Y1|2 + 96M1M2(|Y2|2 + |Y3|2) − 10Bgdgu

− 16g2M1M2)g
∗
u + 80guM1M2g∗ 2u + 16gdT3T ∗1 + B(12gd |Y3|

2 + 16(gd�3 − guY3Y ∗2)

− 5g2gd + 6gd |Y1|2)) − BY3(
3
4
|Y1|2 −

5
2
|Y2|2)Y ∗3 + g

∗ 2
u (8M1M2Y2Y ∗3 −

3
8
Bg2u)

+ g∗u(
1
16
B(16gdY2Y

∗
3 − 12gu |Y2|

2 − 16gu�3 + 5g2gu − 6gu |Y1|2) − guT3T
∗
2) (2.288)

� (1)m2
1
= −

3
2
g2m2

1 + 8�4m
2
1 + 2�3m

2
2 + 2�1m

2
3 + 4|T1|

2 + 2|T3|2 + 2m2
1 |Y2|

2

+ |gd |2( − 2M2M ∗
2 − 8M1M ∗

1 + m
2
1) − 4Y2|M2|2Y ∗2 (2.289)

� (2)m2
1
= (

39
16
g4 − �21 − �

2
3 + 16g

2�4 − 40�24)m
2
1 + (

5
4
g4 + 4g2�3 − 4�23)m

2
2 − 4�

2
1m

2
3

− 3g4|M2|2 + g2|T1|2 − 10�1|T1|2 − 48�4|T1|2 − 2�1|T2|2 − 4�3|T2|2

+
1
2
g2|T3|2 − 6�1|T3|2 − 6�3|T3|2 − 8�4|T3|2 − 4�1m2

3 |Y1|
2 +

5
4
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3 ARGES

3.1 Overview

In ancient greek mythology, Arges is the name of a cyclops who, after being exiled by the Titans

was eventually freed by Zeus to forge lightning bolts for his battle against their former masters.

In this tradition of being a helping hand in times of struggle, we introduce the computational

tool ARGES — Advanced Renormalisation Group Equation Simpli�er. Written in the Wolfram

Language, it was tested for Mathematica versions 8.0 – 12.0 [246] and is available via [247]

under GNUGeneral Public License [248]. As the name suggests, ARGES is a framework to calculate

perturbative MS renormalisation group �ows of renormalisable QFTs in d = 4. To that end, it

requires information about the input QFT in terms of its gauge group, matter content and other

interaction terms.

The framework pro�ts from the ansatz for a general QFT (1.26), which acts as a template in which

any renormalisable QFT can be embedded. This allows the computation to be broken down into

two steps.

In a �rst step, momentum integrals and spinor traces are resolved, and all RGEs expressed in

terms of generalised couplings. These can be mapped back onto the desired QFT in the second

step. However, resolving the remaining contraction of indices running over �eld species, gener-

ations, �avours, and gauge components is a highly complicated task. Moreover, the embedding

is non-trivial, as fermions need to be decomposed into Weyl components, scalars into real and

imaginary parts, and indices of Yukawa couplings, masses and scalar interactions have to be

symmetrised. In fact, with increasing features of the QFT, such as more �eld content and inter-

actions, this second step becomes more involved than the �rst one. At higher loop orders, the

complexity increases even further.

ARGES utilises known literature results for the template RGEs up to the highest available loop

order and automatises the second step of mapping those results back onto the input theory. The

framework provides �-functions of the gauge coupling up the three-loop order [182, 185–190],

as well as RG equations for Yukawa interactions [1, 183, 185], scalar quartics [1, 184, 185] and

cubics [1,184,185], fermion and scalar masses [1,183–185], vacuum expectation values [191,192]

as well as scalar and fermion anomalous dimensions [183–185] at two-loop order.

3.2 Design & comparison with other frameworks

The design goals of ARGES are complementary to the two other software packages available with

the same scope, namely SARAH 4 [235–239] and PyR@TE 2 [240, 241].
7

Both are quite di�erent in

7
At the time of writing, PyR@TE 3 is still in development.
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their implementation – PyR@TE is a highly specialised python package accepting a single input

�le and command line parameters. It allows for theories ranging from simplest toy models to

complicated SM extensions. SARAH on the other hand is a large Mathematica package and in fact

a wider framework with many more capabilities. Geared towards realistic theories, it requires

complex inputs, and is the backend of various scienti�c software. However, the inner workings of

PyR@TE and SARAH are conceptually quite similar, while ARGES takes a slightly di�erent approach.

The key di�erences in ARGES functionality will be highlighted in the following.

Index contractions are user input. With the exception of interaction terms involving gauge

bosons, contractions of gauge and global indices over each interaction vertex have to be speci�ed

as input. ARGES knows only very little about the Lie algebras, and shifts the responsibility of

formulating a gauge invariant action, consistent with the desired symmetries, to the user. The

advantage however is that the user has full control over the shape of the action, eliminating

any uncertainty e.g. about coupling normalisations. In comparison, SARAH and PyR@TE link to

external packages Susyno [249] and its python clone PyLie [250] that automatise the search for

index contractions, providing a much less �ne-grained control, especially in cases where more

than one contraction is possible. Although the automatisation avoids explicit violations of gauge

invariance, all three codes may give inconsistent results if not all interactions allowed by the

symmetries of the QFT are manually included.

Groups, representation and multiplicites can be variables. As opposed to PyR@TE and

SARAH, ARGES allows for gauge groups to be either completely undetermined, formulating the

results in terms of general gauge invariants (1.30), or to be an entire family of like SU (N ), with-

out specifying N . More so, the representations for each �eld can be kept a variable as well, and

so does the number of generations. This ties in with the previous point: ARGES is agnostic to

symmetries and algebras, and treats everything as an index. That allows for a systematic study

of a large ranges of models, and represents a main advantage over existing codes.

Gauge invariants are not resolved by default. ARGES does not resolve gauge invariants as in

(1.30) by default. In general, they are also considered user input, but for simple representations

of U (1), SU (N ), SO(N ) and Sp(2N ) gauge groups, invariants can be computed automatically and

are available as substitution rules.

Scalars can carry �avour, non-matrix Yukawas are allowed. In SARAH and PyR@TE, only

fermions carry a single �avour index, while scalars do not. This constrains Yukawa couplings

to be of matrix form yij  i �  ′j + h.c. In ARGES, scalars carry two such indices instead which

can be contracted freely, also allowing for Yukawa vertices with a single coupling, but a matrix

multiplication in the �elds y  i �ij  ′j +h.c. This expands the space of possible input models with

respect to SARAH and PyR@TE.

Disentanglement of RGEs by the user. Due to the RG template formulas being computed for

generalised couplings �abc…, a single �-function )�abc…/) ln � = �(�)abc… can be extracted for

each choice of external �elds, which depends on the gauge- and �avour indices (a, b, c … ) of the

latter. At tree level, this may correspond to linear combination of several couplings in the input

theory �abc… = ∑i ℎiabc…�i . Hence, several choices of external indices have to be computed, each

coupling disentangled by solving the system at tree level, and matched up with the correspond-
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ing linear combinations of �-functions at loop level. Even for a single coupling, this might be

necessary to �x the correct normalisation.

PyR@TE and SARAH automatise this procedure, however, these attempts can be unsuccessful and

causes the applications to hang or crash. This may occur in valid models, but is bound to happen

if couplings speci�ed simply cannot be disentangled. In ARGES, the disentanglement is up to

the user, which bears two more advantages other than stability of the program: for one, there

are several choices of external indices, and the user is free to chose the one minimising the

computation e�orts for the RGEs, e.g. with the most symmetries of external legs. Secondly, the

mechanism provided allows the user to input external indices as variables as well, and reconcile

tree- with loop-level contractions, thus identifying if couplings allowed by the symmetry have

been omitted, but are switched on by the renormalisation group running.

E�cient handling of unknown interactions. In fact, ARGES allows index contraction to be

merely de�ned by a number of relations, providing a mechanism to insert such information and

allow for an e�cient computation of RGEs. An example will be given later in this work.

At the time of writing, ARGES is limited to irreducible representations, while reducible ones can

be handled by SARAH and PyR@TE. Moreover, it does not allow for kinetic mixing of U (1) gauge

groups, implemented in SARAH. All three packages assume an R� gauge �xing.

3.3 Setup

ARGES is designed to be easily distributable, the code has no external dependencies and is located

in a single �le ARGES.m. Moreover, another design goal is that ARGES does neither require nor

encourage a notebook, or any graphical user interface in general, access to a Mathematica kernel

is su�cient. The source code can be acquired from [247], e.g. by cloning the git repository.

git clone https :// github.com/TomSteu/ARGES

The relevant �le can be loaded by the kernel directly via

Get ["~/ path/to/ARGES.m", ARGES ‘];

or alternatively, moved into a location contained in $Path manually, using Install[__] or the

graphical user interface and included via:

<<ARGES ‘

If no output is produced by whatever the method of choice, then the installation was successful.

Next, we will proceed with an example on how to de�ne a valid input model.

3.4 ARGES by example

Now, we will demonstrate the basic and advanced functionality of ARGES by application, in good

faith that a generalisation is obvious.

3.4.1 Defining a model

The input required by ARGES can either be provided by a model �le or in an interactive session.

ARGES is very well capable of competing with SARAH and PyR@TE in processing realistic models
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like SM-extensions, but we will proceed with the model in [112], and the Lagrangian (1.50) to

demonstrate the strength of ARGES, as this theory cannot be implemented in neither SARAH nor

PyR@TE. The reasons for that are in fact manifold: neither the general SU (Nc) gauge group can

be handled by these packages, nor the multiplicity of Nf Dirac fermions. The Nf × Nf two-index

scalar cannot be used as input, and specifying the correct contractions of the Yukawa vertex

and quartics is problematic, and so is disentangling both quartic RGEs.
8

For ARGES, no such

limitations apply, and we start by loading the code.

1 <<ARGES ‘
2 Reset [];

ARGES is stateful, and Reset[] wipes any previous input without a�ecting the kernel memory.

It is not necessary to invoke for the �rst run, but recommended in notebooks as cells may be

re-evaluated. Next, the gauge sector will be speci�ed, starting with the number of gauge groups.

3 NumberOfSubgroups = 1;
4 Gauge[g, SU[Nc], {Nc^2 - 1}];

Then, the functions Gauge[__] are called once for each gauge group, which implies the or-

dering of gauge indices. The �rst argument is the symbol of the gauge coupling, followed by

the group, or any place holder for an unknown unspeci�ed one thereof. Finally a list of length

NumberOfSubgroups denotes the multiplicity of the gauge bosons
9

under each gauge group, in

the implied ordering. Next, the matter content can be speci�ed. We will start with registering

the fermions in terms of their Weyl components.

5 WeylFermion[QL , Nf, {Nc}];
6 WeylFermion[QR , Nf, {Nc}];

Hereby, the �rst argument is the name of the fermion, the second the number of �avours and

the third a list of its gauge multiplicities in the same order as before. For U (1) gauge groups, the

charge of the �eld is to be inserted here. Scalar matter can be inserted with

7 ComplexScalar[H, {Nf, Nf}, {1}];

which will add two real components Re[H] and Im[H]. Whenever the complex �eld is speci�ed

somewhere, the decomposition H = (Re[H] + iIm[H]) /
√
2 is then automatically inserted. Alter-

natively, one may add the components manually via RealScalar[_,_,_] with the same calling

conventions. The syntax is similar to the fermionic case, only the second argument is now a list

of two elements, as scalars always carry two �avour indices. We are now in the position to add

interactions. A Yukawa term with a single coupling y is inserted via

8 Yukawa[y, H, adj[QL], QR, {KroneckerDelta [#2 ,#3]&} , (KroneckerDelta
[#1 ,#3] KroneckerDelta [#2 ,#4])& ];

The second to fourth argument represent the scalar and fermionic �elds involved. The �fth

argument is a list of NumberOfSubgroups elements, each being a function of three arguments

representing the contractions of gauge indices of the scalar and two fermionic �elds involved,

in the order of appearence at this vertex. To optimise the simpli�cation, Mathematica’s built-in

8
As long as only the intact SU(Nf ) × SU(Nf ) �avour symmetry is considered, there is a trick to promote these to

two gauge symmetries with vanishing couplings which should in principle allow model input.

9
In the U (1) case, it marks the charge instead.



3.4 ARGES 82 ARGES by example

function KroneckerDelta[_,_] should be used for each contraction. The �nal argument is the

contraction function of �avour indices and expects four arguments, the �rst two being indices

of the scalar, and the second two for each of the fermions, again in the order of appearance.

Obviously, we have used Mathematica’s capability to de�ne anonymous functions as (_)&, with

the nth argument denoted by #n. In the same manner, quartics can now be added, keeping in

mind that scalars have two �avour indices each.

9 ScalarQuartic[u, adj[H], H, adj[H], H, {1&}, (KroneckerDelta [#2 ,#3]
KroneckerDelta [#4 ,#5] KroneckerDelta [#6 ,#7] KroneckerDelta

[#8 ,#1])& ];
10 ScalarQuartic[v, adj[H], H, adj[H], H, {1&}, (KroneckerDelta [#2 ,#3]

KroneckerDelta [#4 ,#1] KroneckerDelta [#6 ,#7] KroneckerDelta
[#8 ,#5])& ];

Similarly, the functions ScalarCubic[__], ScalarMass[__] and FermionMass[__] exist. In

addition, YukawaMat[__] and FermionMassMat[__] de�ne couplings as matrices in the fermion

�avours and assume the last argument to be simply a normalisation constant. The model is now

de�ned, and we can already compute all the gauge invariants available via

11 ComputeInvariants [];

which will be stored as a substitution rule in subInvariants.

3.4.2 Obtaining output

Now, the model from the previous section

1 <<ARGES ‘
2 Reset [];
3 NumberOfSubgroups = 1;
4 Gauge[g, SU[Nc], {Nc^2 - 1}];
5 WeylFermion[QL , Nf, {Nc}];
6 WeylFermion[QR , Nf, {Nc}];
7 ComplexScalar[H, {Nf, Nf}, {1}];
8 Yukawa[y, H, adj[QL], QR, {KroneckerDelta [#2 ,#3]&} , (KroneckerDelta

[#1 ,#3] KroneckerDelta [#2 ,#4])& ];
9 ScalarQuartic[u, adj[H], H, adj[H], H, {1&}, (KroneckerDelta [#2 ,#3]

KroneckerDelta [#4 ,#5] KroneckerDelta [#6 ,#7] KroneckerDelta
[#8 ,#1])& ];

10 ScalarQuartic[v, adj[H], H, adj[H], H, {1&}, (KroneckerDelta [#2 ,#3]
KroneckerDelta [#4 ,#1] KroneckerDelta [#6 ,#7] KroneckerDelta

[#8 ,#5])& ];
11 ComputeInvariants [];

will be analysed. �-functions for the gauge coupling g can be obtained via

In[1]:= (4 �)^2 �[g, 1] //. subInvariants // Expand
Out[1]= -11/3 Nc g^3 + 2/3 Nf g^3

where the second argument indicates the loop order. For any other couplings, RG equations are

extracted by specifying external �elds and their indices. In order to properly normalise and disen-

tangle the system of couplings, this has to be done at tree level �rst. For the Yukawa interaction,

the syntax is
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In[2]:= �[Re[H], adj[QL], QR , {i1 , i2, 1}, {j1 , a}, {j2, b}, 0]
Out[2]= y �i1,j1 �i2,j2 �a,b / Sqrt[2]

where the �rst three arguments specify the scalar and fermions at the vertex of interest, followed

by lists of the quantum numbers of each �eld, in that order. The leading elements of that list

are �avour (one for fermions, two for scalars), and the remaining components gauge indices.
10

Finally the last argument is again the loop order, with 0 indicating tree-level. From this output,

the desirable normalisation and index structure can be read o�. Now, the one-loop �-function of

y is extracted by changing the last argument, and taking the correct normalisation into account.

In[3]:= (4 �)^2 Sqrt [2] �[Re[H], adj[QL], QR , {1,1,1}, {1,1}, {1,1}, 1]
//. subInvariants // Expand

Out[3]= 3/Nc g^2 y - 3 Nc g^2 y + Nc y^2 conj[y] + Nf y^2 conj[y]

For the scalar quartics, syntax and procedure is very similar.

In[4]:= �[adj[H], H, H, H, {1,1,1}, {1,1,1}, {1,1,1}, {1,1,1}, 0] //
Expand

Out[4]= u + v
In[5]:= �[adj[H], H, H, H, {2,2,1}, {2,2,1}, {1,1,1}, {1,1,1}, 0] //

Expand
Out[5]= v/3
In[6]:= bv = 3 (4 �)^2 �[adj[H], H, H, H, {2,2,1}, {2,2,1}, {1,1,1},

{1,1,1}, 1] //. subInvariants // Expand
Out[6]= 12 u^2 + 16 Nf u v + 16 v^2 + 4 Nf^2 v^2 + 4 Nc v y conj[y]
In[7]:= bu = - bv + (4 �)^2 �[adj[H], H, H, H, {1,1,1}, {2,2,1}, {1,1,1},

{1,1,1}, 1] //. subInvariants // Expand
Out[7]= 8 Nf u^2 + 24 u v + 4 Nc u y conj[y] - 2 Nc y^2 conj[y]^2

In fact, this syntax �[__], followed by the �elds and then respective lists of indices, is universal

for all couplings apart from gauge interactions. Finally, �eld anomalous dimensions can simply

be obtained as follows.

In[8]:= (4 �)^2 
 [adj[H], H, {1,1,1}, {1,1,1}, 1] //. subInvariants //
Expand

Out[8]= Nc y conj[y]
In[9]:= (4 �)^2 
 [adj[QL], QL, {1,1,1}, {1,1,1}, 1] //. subInvariants //

Expand
Out[9]= - � g^2 /(2 Nc) + Nc �/2 g^2 + Nf/2 y conj[y]

This concludes the presentation of ARGES basic input and output functionality, which should

be su�cient for a �rst instruction. In the next section we will turn towards a more advanced

example, demonstrating a more specialised use of ARGES.

3.4.3 Advanced capabilities

Under the hood, ARGES optimises index summations by employing simpli�cation rules like re-

solving KroneckerDelta contractions directly instead of brute-forcing Sum[__]. This is critical

for ARGES’ performance, as such contraction sums are typically very long. Internally, they are

simpli�ed as expressions of the shape SimplifySum[__], and only in the last step converted

10
In case of a U (1) gauge group, a dummy index 1 has to be provided.
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back to Mathematica’s built-in function Sum[__] (the syntax is compatible), if required.
11

This

simpli�cation can be enforced on any expression using SimplifyProduct[_].

The user may inject custom simpli�cation rules into this mechanism by adding them to the

list subSimplifySum. This will be demonstrated by example of a theory with a SU (n) global

symmetry and real scalars in the adjoint. The action of interest is

 = 1
2)��

A)��A − 1
2m

2�A�A − 1
4�1 (�

A�A)
2 − 1

2�2�
A�B�C�D (TABCD + TDCBA) , (3.1)

where the the object

TABC… = tr [tAtBtC …] . (3.2)

are traces of tA, the generator of the fundamental representation of SU (n). These structures are

di�cult to resolve in general, but due to the completeness relation

tAabt
A
cd =

1
2 (�ad�bc −

1
n�ab�cd) , (3.3)

the Dynkin index de�nition, and the tracelessness of the generators, the following relations can

be inferred

T = tr [1] = n,

TA = 0,

TAB = 1
2�

AB,

∑
A
T B1..Bi AC1..Cj AD1..Dk = 1

2 (T
B1..Bi D1..DkTC1..Cj − 1

nT
B1..Bi C1..Cj D1..Dk)

∑
A
T B1..Bi AC1..CjTD1..Dk AE1..El = 1

2 (T
B1..Bi E1..El D1..Dk C1..Cj − 1

nT
B1..Bi C1..CjTD1..Dk E1..El) .

(3.4)

This also holds when index ranges like B1..Bi are empty. Using ARGES, the model (3.1) can be

analysed by entering (3.4) into subSimplifySum using patterns. It can be assumed that sums

over gauge and �avour indices are expanded and each term contained in SimplifySum[__]

expression which is not nested.

1 <<ARGES ‘
2 Reset [];
3

4 NumberOfSubgroups =0;
5 RealScalar[phi , {n^2-1,1}, {}];
6 ScalarMass[m2, phi , phi , {}, KroneckerDelta [#1 ,#3]/2&];
7 ScalarQuartic[�1, phi , phi , phi , phi , {}, KroneckerDelta [#1 ,#3]

KroneckerDelta [#5 ,#7]/4&];
8 ScalarQuartic[�2, phi , phi , phi , phi , {}, (T[#1 ,#3 ,#5 ,#7] + T

[#7 ,#5 ,#3 ,#1]) /2&];
9

10 subSimplifySum = {
11

12 T[] -> n,
13 T[_] :> 0,

11
Disabling this last step with DisableNativeSums[] may in fact give a performance boost.
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14 T[A_ , B_] :> 1/2 KroneckerDelta[A,B],
15

16 SimplifySum[c_ T[B___ , A_ , C___ , A_, D___], sum1___ , {A_ , __},
sum2___] :> SimplifySum[c/2 (T[B, D] T[C] - T[B C D]/n ), sum1 ,
sum2],

17 SimplifySum[T[B___ , A_, C___ , A_, D___], sum1___ , {A_, __}, sum2___]
:> SimplifySum [1/2 (T[B, D] T[C] - T[B C D]/n ), sum1 , sum2],

18

19 SimplifySum[c_ T[B___ , A_ , C___] T[D___ , A_ , E___], sum1___ , {A_, __
}, sum2___] :> SimplifySum[c/2 (T[B, E, D, C] - T[B C] T[D, E]/
n ), sum1 , sum2],

20 SimplifySum[T[B___ , A_, C___] T[D___ , A_ , E___], sum1___ , {A_ , __},
sum2___] :> SimplifySum [1/2 (T[B, E, D, C] - T[B C] T[D, E]/n )
, sum1 , sum2],

21 SimplifySum[c_ T[B___ , A_ , C___]^2, sum1___ , {A_, __}, sum2___] :>
SimplifySum[c/2 (T[B, C, B, C] - T[B C]^2/n ), sum1 , sum2],

22 SimplifySum[T[B___ , A_, C___]^2, sum1___ , {A_ , __}, sum2___] :>
SimplifySum [1/2 (T[B, C, B, C] - T[B C]^2/n ), sum1 , sum2]

23 };

While the �rst three lines in subSimplifySum are the same as in (3.4), the second and third

block cover the last two lines in (3.4) respectively, and account for complications due to possible

prefactors and squares in the expression. Commencing with the evaluation, mass anomalous

dimensions can be obtained in the usual way.

In[1]:= �[phi , phi , {1,1}, {1,1}, 0]
Out[1]= m2/24
In[2]:= (4 �)^2 24/m2 �[phi , phi , {1,1}, {1,1}, 1] // Expand
Out[2]= 2 �1 + 2 n^2 �1 + 4 n �2
In[3]:= (4 �)^4 24/m2 �[phi , phi , {1,1}, {1,1}, 2] // Expand
Out[3]= - 10 �1^2 - 10 n^2 �1^2 - 40 �1 �2 - 15 �^2 - 5 n^2 �2^2

In the quartic sector, the structures T[___] will reappear at both tree and loop level, and �-

functions can be extracted from their prefactors. Alternatively, the T[___] may be completely

removed by contracting external indices. In fact, we can even enforce the evaluation of the

algebra as de�ned above by calling SimplifyProduct[_] on the contraction de�ned in terms

of SimplifySum[__] instead of Sum[__]. At tree level, one possibility is for instance

In[4]:= c1 = SimplifyProduct[
SimplifySum[

12 �[phi , phi , phi , phi , {a,1}, {a,1}, {1,1}, {1,1}, 0],
{a, 1, n^2-1}

]
]

Out[4]= �1 + n^2 �1 + 2 n �2
In[5]:= c2 = SimplifyProduct[

SimplifySum[
96 T[a, b, c, d] �[phi , phi , phi , phi , {a,1}, {b,1}, {c,1}, {

c,1}, 0],
{a, 1, n^2-1}, {b, 1, n^2-1}, {c, 1, n^2-1}, {d, 1, n^2-1}

]
]

Out[5]= 2 n �1 + 4 n^3 � - 4 �2 + 5 n^2 �2 + n^4 �2
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which is indeed free of the trace. This has to be matched up with the loop-level expressions

In[6]:= b1 = SimplifyProduct[
SimplifySum[

12 (4 �)^2 �[phi , phi , phi , phi , {a,1}, {a,1}, {1,1}, {1,1},
1],

{a, 1, n^2-1}
]

] // Simplify
Out[6]= 2 (7 + 8 n^2 + n^4) �1^2 + 8 n (7 + n^2) �1 �2

+ (95 + 24 n - 95 n^2 + 56 n^3)/(4 n) �2^2
In[7]:= b2 = SimplifyProduct[

SimplifySum[
96 (4 �)^2 T[a, b, c, d] �[phi , phi , phi , phi , {a,1}, {b,1},

{c,1}, {c,1}, 1],
{a, 1, n^2-1}, {b, 1, n^2-1}, {c, 1, n^2-1}, {d, 1, n^2-1}

]
] // Simplify

Out[7]= 4 n (7 + 15 n^2 + 2 n^4) �1^2 - 8 (12 - 17 n^2 - 7 n^4) �1 �2
+ 4 n (1 - 11 n ^2 - n^4) �2^2

which is left as a trivial exercise to the reader.

3.5 Conclusion

We have introduced ARGES, a new framework for the computation of renormalisation group

equations. A comparison with existing software has detailed that ARGES is di�erent by design,

following a more algebraic than numerical approach to resolve index contractions. Setup, input

and output are very straightforward, and yet the code is highly specialised and powerful, o�er-

ing a maximum of user control. ARGES can be applied for simple toy models to most complex

BSM theories – its interactive API invites a quick and dynamic working style. Moreover, ARGES

handles models no existing framework is able to process, including theories with general gauge

groups and representations, matrix scalars, highly complex potentials and even unknown vertex

contractions. Its unique capability to insert information into the simpli�cation process allows to

adapt for computational challenges.

The sheer increase of complexity in computing RGE for complicated theories and high loop or-

ders spells out the requirement for automation tools, and ARGES complementary design under-

pins its claim for niche among existing software, without undermining them.

In fact, ARGES has been utilised for every single chapter of this thesis. Due to the shortcomings of

SARAH and PyR@TE when dealing with models like the one in [112], which are of special interest

in this work, ARGES has played a key role in computing RGEs for [2–4] in particular, as well as

the content of Ch. 4. Moreover, it was critically tested against the other tools, and employed

in [1].
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4 Theorems for exact asymptotic safety

4.1 Introduction

In this chapter, we will connect to [110], which has provided theorems outlining the �eld content

and interactions of theories exhibiting weakly coupled asymptotic safety in d = 4. The objective

is to re�ne the results of [110] to perturbatively exact QFTs, and constrain the structure and

parameter space of models where asymptotic safety can be guaranteed. This is by no means

a vain aspiration, as such models may represent a very functional building block to construct

asymptotically safe QFTs.

As a prerequisite, the reader is strongly recommended to revisit Sec. 1.5 and Sec. 1.6, as it explains

all the necessary technicalities required in su�cient detail. Nevertheless, we will reiterate the

points most important.

It has been shown in [110,111] that the existence of a weakly interacting UV �xed point requires

an non-abelian gauge sector as well as a Yukawa interaction. This implies both fermionic and

scalar matter �elds. For this study, we restrict ourselves to simple gauge groups and a single

Yukawa interaction, but will highlight some aspects of a generalisation. In order to establish a

strict perturbative control, the Veneziano limit [228] is employed, suggesting that each �eld has

a number of large indices running from 1..Ni → ∞, besides small ones from 1..nj that remain

�nite. The key mechanism is that after introducing ’t Hooft couplings, the one-loop coe�cient

B of the gauge �-function (1.28) is controlled by a continuously tunable expansion parameter

B ∝ −�, which is given by � = ∑i ci Ni/Nj . Near the limit � → +0, all quantities controlled by �
become perturbatively exact.

In this setting, the existence of asymptotic safety is determined by coe�cients of 2-loop gauge

and 1-loop Yukawa �-functions (1.28), see (1.29), (1.36) and (1.37). The quantity Δ as in (1.47) is

indicative if the corresponding GY �xed point is indeed UV with Δ < 0 or IR with 1 ≥ Δ ≥ 0, in

which case asymptotic safety is absent.

4.2 Classification

It has been argued in Sec. 1.6 that due to the large-N limit, balancing powers ofN in order to have

the coe�cient B in (1.28) tunable, and Δ ≠ 1 requires SU (Nc), SO(Nc) or Sp(Nc) gauge groups,

as well as that each �eld has exactly two large indices in the range 1..Ni → ∞, irrespective

of whether these belong to the gauge or �avour symmetries. All relevant representations are

collected in Tab. 6.1. The large index contraction at the Yukawa vertex is then schematically

depicted as . Here, the left leg corresponds to the scalar, while the right ones are the

fermions at the Yukawa vertex, while solid lines denote large indices. If we distinguish gauge

indices as wiggly ( ) and �avour indices by straight lines ( ), depicting 2-index representations
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(symmetric, antisymmetric, adjoint) as double lines, we �nd �ve classes of Yukawa contractions

that can be illustrated as , , , and . The case is invalid, as suitable

gauge sector is either decoupled or missing completely. The contraction on the other hand

is special because all large indices belong to the gauge sector. Its group dimension provides the

only large parameter N . Without a second such quantity N ′
from a global symmetry, no tunable

ratio N ′/N exists, which is problematic for establishing perturbative control. We will investigate

the case nevertheless.

The 5 classes , , , and leave out certain details about the actual QFTs

involved, which may however be decisive for asymptotic safety. These details are:

(a) The gauge groups and representations.

(b) Symmetrisations/antisymmetrisations in any of the indices.

(c) Possible spectator �elds.

(d) If scalars real or complex.

(e) If fermions are Majorana or Dirac.

(f) The contractions of the small indices 1..nj .
Accounting for each of those intricacies make a extensive study very tedious. In the following,

a careful analysis will be conducted taking these details into consideration, computing the coef-

�cients B − F in the large-N limit. Since we are mostly interested in the minimal reachable value

of Δmin, spectator �elds not involved in the Yukawa interaction will be neglected, as they only

increase Δ. In detail, we will compute the coe�cients B − F in (1.28), using �g = g2/(4�)2 and

�y = y2/(4�)2.

4.2.1 Uncharged scalars

First, we will consider the class , where the scalar is uncharged. In this general discussion, we

will consider NL,R Weyl fermions  L,R
in the fundamental of a unitary, orthogonal or symplectic

gauge group, bearing Nc gauge indices. Moreover, Ns uncharged real scalars � are included. The

Yukawa coupling is given by

yuk = −yijk �i  
L†
aj  

R
ak + h.c. , (4.1)

where yijk is a general contraction of the global indices. This ansatz with Ns real degrees of

freedom allows to account for the scalar to be either real or complex, and many global symmetries

to be implemented. In fact, even a scalar singlet would be covered by this approach. The case

of charged spectators is not considered here, as discussed earlier. As only the large-N results are

relevant, it is su�cient to de�ne the contraction in terms of the following trace relations

y∗ikl yjkl = y
2 �ij , y∗ijl yikl = y

2 Ns
NL

�jk , y∗ijl yijm = y2
Ns
NR

�lm, (4.2)

which are consistent with y∗ijk yijk = y
2 Ns . Here, the single coupling y is the Yukawa interaction.

A normalisation alternative to y2 could have been chosen, but the di�erence washes out in any

physical observable, such as (1.47), which we are interested in. Due to leaving out further details

of yijk , index contractions cannot be fully resolved in vertex corrections to coe�cient E of (1.28).
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However, these terms are subleading in the large-N limit. The coe�cients B–F (1.28) read

B = 2
3 [11 C

G
2 − NL − NR] ,

C = 2
3 [−34 (C

G
2 )

2 + (5CG
2 + 3C

F
2 ) (NL + NR)] ,

D = 2Ns , E = 4Nc + Ns
NL +

Ns
NR , F = 12 CF

2 ,

(4.3)

where CG,F
2 are quadratic Casimirs invariants of the adjoint and fundamental representations in

either of the SU (Nc), SO(Nc) or Sp(Nc), using SF2 = 1
2 , dF = Nc and dG = 2CF

2 Nc . The condition

B = 0 can be established via the replacement CG
2 = 1

11 (NL + NR), which yields

Δ = 1 −
8CF

2NsNLNR
[CF

2 +
7
121 (NL + NR)] [NL + NR] [4NcNLNR + Ns (NL + NR)]

. (4.4)

Further analysis now requires to specify the gauge group. In the SU (Nc) case, anomaly cancella-

tion requires NL = NR = Nf , and one obtains Nc = 2
11Nf . For both SO(Nc) and Sp(Nc), no triangle

anomalies arise, but it turns out the the expression (4.4) is minimised for NR = NL = Nf , and one

obtains Nc = 4
11Nf .

In the case ofNf Majorana fermions  , the SU (Nc) gauge group is excluded as no invariant gauge

contraction can be be written down. The Yukawa interaction is replaced by

yuk = − 12yijk f
ab�i  ᵀ

ja "  bk + h.c. , (4.5)

with f being the gauge contractions of fundamental indices in SO(Nc) or Sp(Nc). This results in

the parameters

B = 2
3 [

11
2 Nc − Nf ] , C = 1

6Nc [13Nf − 34Nc] ,

D = Ns , E = 2Nc + 2Ns
Nf
, F = 3Nc .

(4.6)

Finally, we parametrise the content of real scalar degrees of freedom via Ns = sN 2
f , collecting the

results

Δ =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

100−88s
100+275s for SU (Nc) Dirac

50−88s
50+275s for SO(Nc) , Sp(Nc) Majorana

200−88s
200+275s for SO(Nc) , Sp(Nc) Dirac.

(4.7)

In any case, more scalar matter with the same fermion content improves the asymptotic safety

of the gauge-Yukawa �xed point, with an universal asymptotic value for s → ∞

Δmin = − 8
25 . (4.8)

For complex scalars and SU (Nc) Dirac fermions (s = 2) as well as SO(Nc) or Sp(Nc) Majoranas

(s = 1), a triality of asymptotically safe theories [3] exist with

Δ3 = − 38
325 . (4.9)

The same models with real scalars (s ↦ s/2) or Dirac fermions with orthogonal or symplectic
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s = 2 gauge groups and complex ones, belong to a larger equivalence class Δ = 4/125 without

asymptotic safety. If the scalars are real in the latter case, the class is Δ = 112/475 instead. Many

more example theories exist, in fact the spectrum of Δ3 ≤ Δ < 1 is continuous. For instance,

we may de�ne a projection  on any matrix scalar �ij which just sets an arbitrary number of

its components to zero. As the scalar is uncharged, replacing it with �ij ↦ ( �)ij everywhere

in the Yukawa and scalar potential completely decouples the components projected out. This

renders the parameter s continuously tunable in the large-N limit.

The question remains if theories with Δ3 > Δ > Δmin exist. Their construction is non-trivial, in-

troducing for instance a double copy of the scalar with an otherwise identical Yukawa contraction

does not change the value of Δ. This is because the change can be reabsorbed into �eld and cou-

pling rede�nitions, butΔ is an independent physical quantity. The case is di�erent when building

a complex scalar out of two real components, as the global symmetry is modi�ed. This indicates

that symmetries may play a key role constructing asymptotically safe theories. The maximal

�avour symmetry is SU (NL + NR) [SU(Nf )] for theories with Dirac [Majorana] fermions. In the

Dirac case, the fermion bilinear in the Yukawa interaction breaks it down SU (NL) × SU (NR). The

triality with Δ = Δ3 corresponds to the choices of models respecting the highest symmetry and

hence the biggest global representation, guaranteeing the largest number of scalars. This, in turn,

suggest that Δ is maximised in these cases.

4.2.2 Uncharged fermion

The class is comparatively uncomplicated as the option for Majorana fermions is excluded.

Instead, Ns real scalars � and Nf Weyl fermions  , both with Nc gauge indices as well as Nn
uncharged fermions � are coupled together via the Yukawa interaction

yuk = −yijk �ia  
†
ja �k + h.c. , (4.10)

following the relations

y∗ikl yjkl = y
2Nn
Ns

�ij , y∗ijl yikl = y
2Nn
Nf

�jk , y∗ijl yijm = y2 �lm. (4.11)

The requirement for � to be complex in some cases is here transferred to the choice of Ns and

detail of the contraction. Once more, small global symmetries are then absorbed into the choice

of Ns,f ,n. For a unitary gauge group, charged spectator fermions are required for anomaly can-

cellation. We will ignore this for the sake of discussion, computing only a lower bound for the

actual Δ. The the loop coe�cients read

B = 2
3 [11C

G
2 − Nf − 1

4Ns] ,

C = 2
3 [−34 (C

G
2 )

2 + CG
2 (5Nf + 1

2Ns) + 3C
F
2 (Nf + Ns)] ,

D = Nn , E = Nc + Nn
Nf
+ 4Nn

Ns , F = 6 CF
2 .

(4.12)
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This leads to the quantity

Δ =
N ′
n (100N

2
f + 28NfNs + 9N

2
s ) + NfNs (10Nf + 3Ns)

2 + N 2
f N

2
s

(4Nf + Ns) (25Nf + 9Ns) (N ′
n + NfNs)

, (4.13)

with N ′
n = 44Nn for an SU (Nc) or N ′

n = 22Nn for SO(Nc), Sp(Nc) gauge groups. Choosing

N ′
n = nN 2

f and Ns = sNf , the expression simpli�es and gives a lower bound

Δ = 1 −
33ns

(1 + n)(4 + s)(25 + 9s)
>
8
11

, (4.14)

which is reached in the limit of in�nitely many neutral fermions with n → ∞ and s = 10
3 . As

Δ > 0, asymptotic safety cannot be achieved within this class.

4.2.3 Two-index fermion

Turning towards the case , we have once more a topology that does not allow for Majorana

fermions. With the scalar � and fermion  as in the case , the only di�erence are now

n Weyl fermions � in a two-index representation R of the gauge group. The multiplicity n is

integer-valued and remains �nite in the Veneziano limit. In the Yukawa sector, the interaction

yuk = −yijk ℎabI �ia  
†
jb �I k + h.c. (4.15)

now contains two generalised contractions, the global one with

y∗ikl yjkl = y
2 �ij , y∗ijl yikl = y

2Ns
Nf

�jk , y∗ijl yijm = y2
Ns
n
�lm, (4.16)

as well as a gauge index contraction

ℎ∗abI ℎdbI =
dR
Nc

�ad , ℎ∗abI ℎadI =
dR
Nc

�bd , ℎ∗abI ℎabJ = �I J . (4.17)

Computing the coe�cients of (1.28), one obtains:

B = 2
3 [11C

G
2 − 2nS

R
2 − Nf − 1

4Ns] ,

C = 2
3 [−34 (C

G
2 )

2 + 5CG
2 (Nf + 2nSR2 ) + 3 C

F
2 (Ns + Nf +

4nNc
dR (SR2 )

2
)] ,

D = Ns [
dR
Nc + 2 S

R
2 ] , E = dR

Nc [4 +
Ns
Nf ] +

Ns
n , F = 6 CF

2 [1 +
2Nc
dR S

R
2 ] .

(4.18)

Besides the usual relations, the Casimir of the two-index fermion has been replaced by the equiv-

alent expression CR
2 = 2Nc

dR C
F
2 SR2 . This leads to a long expression for Δ, which simpli�es when

considering all possibilities for the representation R. While the global symmetry can be very

complicated, only three distinct cases for the gauge symmetry exist according to Tab. 6.1:

(a) The gauge group is SU (Nc) and the 2-index fermion is in the adjoint representation R = G.

In this case, n < 6 is required for the limit B → 0.
(b) The gauge group is SU (Nc) and R is the 2-index symmetric or antisymmetric representa-

tion. This suggests n < 12 is required for the perturbative exactness.
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(c) The gauge group is SO(Nc) or Sp(Nc) and the representation R is the symmetric or anti-

symmetric one. This also requires n < 6.
Using again the parametrisation Ns = s Nf , one obtains:

Δ =
⎧⎪⎪
⎨⎪⎪⎩

1 − 27n(11−2n)s(4+s)
(25+2n+9s)(44s+n(s2+16)) for (a) and (c)

1 − 27n(11−n)s(4+s)
(25+n+9s)(88s+n(s2+16)) for (b)

, (4.19)

which are positive and reach the minimum

Δmin ≈ 0.2204 at s ≈ 3.269 and

⎧⎪⎪
⎨⎪⎪⎩

n = 2 for (a) and (c)

n = 4 for (b)

, (4.20)

thus excluding asymptotic safety. It is curious that for n ↦ 2n in (b), (4.19) and the requirement

n < 6 becomes universal. Moreover, this implies (a) and (b) to have the same count of degrees of

freedom in the large-N limit. Hence, we suspect that all cases are related by orbifold projections

and negative dimensionality theorems [3].

4.2.4 Two-index scalar

The case requires to combine the strategies of the previous cases. We will assume n real

scalars � in a 2-index representation R of the gauge group, where n remains a �nite integer. Both

fundamental Majorana or Dirac fermions may be employed. We will �rst assume the latter with

chiral components  L,R
and �avour multiplicity NL,R , as well as a Yukawa interaction

yuk = −yijk ℎI ab �I i  
L†
ja  R

kb + h.c. . (4.21)

The �avour and gauge contractions are then given by

y∗ikl yjkl = y
2 �ij , y∗ijl yikl = y

2 n
NL

�jk , y∗ijl yijm = y2
n
NR

�lm, (4.22)

as well as

ℎ∗I ab ℎJ ab = �I J , ℎ∗I ab ℎI db =
dR
Nc

�ad , ℎ∗I ab ℎI ad =
dR
Nc

�bd . (4.23)

Moreover, the parametrisation N 2
f = NLNR and k = (NL + NR)/Nf ≥ 2 is introduced for conve-

nience, leading to the coe�cients

B = 2
3 [11 C

G
2 − 1

2n S
R
2 − kNf ] ,

C = 2
3 [−34 (C

G
2 )

2 + 5CG
2 (kNf + n

5 S
R
2 ) + 3C

F
2 (kNf +

8nNc
3dR (SR2 )

2
)] ,

D = 2 n dR
Nc , E = 4 + k n dR

NfNc
, F = 12CF

2 .

(4.24)

ForNf Majorana fermions, the same coe�cients B, C and F are obtained with k = 1 and dR = 1
2N

2
c ,

the others are

D = ndR
Nc , E = 2 + 2 n dR

NfNc
. (4.25)

Once again, this leads to several distinct cases for the gauge representation:
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(a) The gauge group is SU (Nc), which is only viable with Dirac fermions and k = 2, and the

scalar is in the adjoint representation. This requires n < 22.
(b) The gauge group is SU (Nc), which is only viable with Dirac fermions and k = 2, and the

scalar is in the symmetric or antisymmetric representation. This requires n < 44.
(c) The gauge group is SO(Nc) or Sp(Nc), R is either the symmetric or antisymmetric repre-

sentation, the fermions are of Dirac-type with k ≥ 2, requiring n < 22.
(d) The gauge group is SO(Nc) or Sp(Nc), R is either the symmetric or antisymmetric repre-

sentation, the fermions are of Majorana-type with k = 1, requiring n < 22.
Hence, only case (c) allows for a variable parameter k, as it is �xed in the other cases by either

the Majorana nature or anomaly cancellation. Computing the quantity Δ in (c) yields

Δ(c) = 1 −
12n(22 − n)

5(10 + n)(44 + n(k2 − 2))
, (4.26)

which is minimised by the choice k = 2, meaning NL = NR . Collecting all cases, one obtains

Δ ≥
⎧⎪⎪
⎨⎪⎪⎩

11
5 +

32
10+n −

484
5(22+n) for (a), (c) and (d)

11
5 +

64
20+n −

968
5(44+n) for (b)

, (4.27)

which leads to a minimal coe�cient Δmin = 26
35 , reachable in all cases with n = 6 [n = 12 for

(b)], excluding asymptotic safety. We observe the same phenomenon regarding the rede�nition

n ↦ 2n in case (b) as already for , and we draw the same conclusions.

4.2.5 All fields 2-index gauged

For completeness, we will brie�y consider the case , although a smooth limit B → 0 is

not possible, as the fermions and scalars have �nite integer multiplicities nL,R and nS . Allow-

ing for these multiplicities to be continuous, there are four distinct cases of gauge groups and

representations to consider

(a) The gauge group is SO(Nc) or Sp(Nc), the fermions are of Dirac-type and each �eld is

either in the symmetric or antisymmetric representation. No triangle anomalies arise. The

quantity Δ is minimised for nL = nR and nL + nR = nf .
(b) The gauge group is SO(Nc) or Sp(Nc), the nf fermions are Majoranas.

(c) The gauge group is SU (Nc) and the fermions are of Dirac-type. For each �eld i = {L, R, S}
a variable ci can be introduced, depending on whether the representation is the adjoint

(ci = 1) or the symmetric/antisymmetric one (ci = 1/2). They give rise to di�erent Dynkin

indices Si2 = ci Nc and dimensions di = ci N 2
c of the representations. Rewriting di = NcSi2, a

rede�nition of multiplicities ni ↦ ni/ci absorbs these distinctions. As before the quantity

Δ is minimised for nL = nR = 1
2nf . This case also cancels all anomalies.

(d) The case of nf SU (Nc) Majorana fermions is only viable with adjoint representations for

all �elds in order to avoid anomalies and retain gauge invariance for the contraction over

the Yukawa vertex.

Universally for all cases, the shape of the gauge coe�cient

B ∝ Nc (22 − 4nf − nS) (4.28)
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allows to substitute for nS as long as nf < 11
2 . As this class is an edge case, we will refrain from

giving coe�cients in (1.28) for each of the cases in detail. Instead, we will provide the quantity

Δ ≥ 1 −
6 nf ( 112 − nf )
220 − 52nf + 3n2f

≳ 0.398 at nf ≈ 4.12, (4.29)

which is universal. The smallest Δ for n being integers have Δmin = 2
5 at nf = 4 and nS = 6, for

which B = 0.

4.3 Discussion

Summary. We have computed Δmin for each of the perturbatively exact classes , ,

, and , summarised in Fig. 4.1.

Δmin

01 Δ3

GYIR GYUV

Figure 4.1: Minimal values of Δ (1.47) for each Yukawa topology. The value Δ3 is given by (4.9).

This proves that merely the class may exhibit perturbatively exact asymptotic safety beyond

freedom. Moreover, a lower bound for the spectrum of Δ was discovered: 1 ≥ Δ ≥ −8/25. It is

clear that has a densely populated spectrum 1 ≥ Δ ≥ Δ3, and we have conjectured that

Δ3 > Δ > −8/25 is not realised by any consistent QFT. This would mark the theories [3, 112] as

the most asympotically safe ones.

In the following, we will give an outlook on how these results generalise beyond the limitations

of our analysis. We will start with loosening the restrictions of the gauge group.

Semi-simple gauge groups. The advocated notion of perturbative exactness is in fact compat-

ible with having several gauge interactions, as long as the restriction of exactly two large indices

per �eld is honoured. Up to two-loop order, the gauge �-function is then given by

�gi = �
2
gi [−Bi + Cij �gj − Di �y] ,

�y = �y [E �y − Fi �gi] .
(4.30)

The usual coe�cients Bi andCii (1.29) experience the gauge subgroups j ≠ i as global symmetries,

i.e. their matter representations are just global multiplicities. However, the new coe�cient Cij as

in (1.43) interweaves the gauge sectors. Inserting the nullcline condition E �y = Fi �gi into (4.30),

gives �gi = �2gi [−Bi + C
′
ij �gj] where

C′ij = Cij −
DiFj
E

. (4.31)

Due to the technical naturalness of each gauge symmetry, several GY solutions exist at this loop

order, where each gauge coupling is either interacting or vanishing. Cases with one Yukawa

coupling and a single gauge group interacting at the �xed point then fall back onto the 5 classes

above.
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Free sectors. As already observed earlier, several gauge groups in (4.30) introduce an e�ective

one-loop coe�cient

Be�

i = Bi − Cij≠i �gj + Di �y , (4.32)

for a vanishing coupling �gi . Hence, asymptotic freedom might be enabled although it should

be lost, if Bi < 0 < Be�

i . This requires at least one non-vanishing coupling gj , admitting a GY
�xed point. A consequence are �xed points like GUV × GYIR: asymptotic freedom in a non-free

coupling g1 may be established, even though the �xed point is of infrared gauge-Yukawa-type

in the g2-direction [114, 115]. In particular, this mechanism is relevant for small-index gauge

sectors, for instance U (1) gauge groups. The violation of our requirements for two large indices

for the gauge �eld is without consequence, as it is decoupled at the �xed point. Being una�ected

by the Veneziano limit, such gauge sectors are matter dominated. Considering the example with

a small gauge sector with coupling g1, and a large one with g2, large-N scalings read

B1,2 ∝ N 2,1, C11,22 ∝ N 2, C12 ∝ N 3, D1,2 ∝ N 3,2, E ∝ N , F2 ∝ N . (4.33)

At the �xed point, we have � ∗g1 = 0 and � ∗y =
F2
E �

∗
g2 . Hence, in the vicinity of the G × GY, the

e�ective coe�cient reads

Be�

1 = B1 − C12� ∗g2 + D1�
∗
y = B1 − [C12 −

D1F2
E ] �

∗
g2 = B1 − B2 [

C′12
C′22 ]

. (4.34)

Keeping in mind that � ∗g2 ∝ N −1
since we have not employed ’t Hooft couplings, yields Be�

1 ∝ N 2
,

which is indeed the same scaling as for the unshifted coe�cient B1.

Interacting subgroups. In order to retain perturbative control, the condition Bi ≈ ∓0 is manda-

tory for all groups with � ∗gi ≠ 0. In practice, this is non-trivial to achieve, especially when ad-

ditional conditions for anomaly cancellation are required. Moreover, a Yukawa interaction is

necessary, as the matrix Cij in (4.30) only has positive components in this case. For each non-

vanishing gauge coupling, the values � ∗gi ≠ 0 can be determined via 0 = −Bi + C′ij � ∗gj . Therefore

the eigenvalues of C′ are decisive for the UV attractiveness of these GY-type �xed points. In

our case of a single Yukawa coupling, the system is parametrised by (4.30), and the matrix C′

computed via (4.31). If C′ was diagonal, the case of semi-simple gauge groups would just de-

couple into independent discussions of each simple subgroup. The question is how o�-diagonal

elements C′ij compare to diagonal ones like C′ii . If they have negative signs, the mechanism for

asymptotic safety is strengthened by these elements, while it is weakened in the positive case.

Let us now accommodate two gauge couplings g1 ( ) and g2 ( ). This is not possible in ,

and we will drop this case. Inserting the nullcline condition E � ∗y = Fi � ∗gi as well as using the

de�nitions (4.31), (1.43) and (1.36), one can parametrise

C′ij≠i = Gi C
funj
2 . (4.35)

Here, C funj
2 denotes the quadratic Casimir of the fundamental representation. This factorises the

in�uence of both gauge groups on the o�-diagonal elements of C′.
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Borrowing the notation from the case , we obtain

∶ G1 = 2Ns − 6DE−1 = 2Ns
Nn (Nf + Ns) + NcNfNs
Nn (4Nf + Ns) + NcNfNs

> 0, (4.36)

The �rst two terms stem from (1.43) and denote Dynkin indices of �elds charged under both

subgroups. In the last term the prefactor is determined by F2, see (1.36). The result also suggests

that G2 > 0 when ( ) ↔ ( ). This means does not allow for an interacting UV �xed point

beyond asymptotic freedom of both subgroups. In a similar vein,

∶ G1 = 2Nf + 2Ns − 6DE−1 =
Ns
n
+
2 (2Nf − Ns)

2

4Nf + Ns
> 0,

∶ G1 = 2Ns + 2Nf − 18DE−1 = 2
Nn (2Nf − Ns)

2 + NcNfNs (Nf + Ns)
Nn (4Nf + Ns) + NcNfNs

> 0,

(4.37)

where the �rst and second line use the results of and respectively. Moreover, the

expression of G1 for is universal for all choices of viable gauge groups and representations.

Hence or equivalently are excluded from developing an interacting UV �xed point

beyond freedom, for any parameter choices. The same guarantees cannot be given for ,

and the respective cases with ( ) ↔ ( ). Here, G1,2 are negative for some parameter regions. In

all of those cases one of the subgroups is in the class, which is already unique for enabling

GYUV with a simple gauge setting. We conclude that within our setup, a subsector is a

necessary requirement for asymptotic safety beyond freedom, but will not pursue a more detailed

analysis within this work.

Multiple Yukawa couplings. Considering several Yukawa couplings yn which are non-overlapping,

i.e. they do not share any attached �elds, the system becomes

�gi = �
2
gi [−Bi + Cij �gj − Din �yn] ,

�yn = �yn [En �yn − Fni �gi] .
(4.38)

It is obvious from (1.29) that matter contributions are linear in coe�cients Bi and Cij . Hence,

they can be split up into matter belonging to the non-overlapping Yukawa sectors as well as an

o�set B0i , C0ij from gauge-boson self-interactions. Assuming there are no leftover spectator �elds,

this means Bi = B0i + ∑n Bni , Cij = C0ij + ∑n Cn
ij . Coe�cients Din, En and Fin on the other hand are

properties of the Yukawa couplings (1.36) and do not decompose further like Bi and Cij . Inserting

the nullcline condition, we obtain

C′nij = C
n
ij −

DinFnj
En

, C′ij = C
0
ij +∑

n
C′nij . (4.39)

Overall, the conditions Bi ≈ 0 implies that in spite of the theory gaining more diversity, there is

not more charged matter admitted than before. Moreover, Cij |B=0 > 0 remains true. The question

arises if multiple Yukawas improve the situation for a GYUV �xed point. Consider a single gauge

group, but with many non-overlapping Yukawas. While the gauge group remains �xed, the

matter multiplicities are scaled back by �n for each Yukawa sector with ∑n �n = 1 and 0 < �n ≤ 1.
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In particular, this means Bn ∝ �n and Cn ∝ �n for each model, ensuring B = 0 = B0 + ∑n Bn.

Furthermore, B0, C0 and each Fn are independent of all �m. We have seen that

, ∶ Dn ∝ � 2n , En > �n (En ||�n=1 ) ,
, ∶ Dn ∝ �n, En ∝ �n,

(4.40)

while the scaling of the small multiplicities in is not clear. For the other cases, the inequalities

||||
�nC0 + Cn −

DnFn
En

||||
≤ �n

||||
C0 + C′n ||�n=1

||||
⇒ C − C′ ≤ max

n [
DnFn
En

|||�n=1]
(4.41)

hold. This scaling behaviour shows that at B = 0, two-loop shifts C − C′ of a theory with a sin-

gle Yukawa interaction cannot be improved by having several non-overlapping Yukawa sectors.

Therefore, remains a crucial requirement for GYUV. If the �elds are overlapping, additional

contributions to Dn and En arise. However, a complete analysis is complicated and beyond the

scope of this discussion.

Scalar quartic sector. Inserting potential �xed point solutions of the gauge-Yukawa system

into the scalar quartic RGEs provides an additional set of constraints. In particular, �xed points

might be invalidated by becoming complex (merger) or result have an unstable scalar potential.

The general shape of the RG system has been introduced in (1.28). The exact number of quartics

varies even within each class, and not many statements can be made without descending into

more details of the theory. In this sense, it is not possible to make general remarks, in particular

about the stability of the scalar potential. However, some observations can be made from the

shape of the �-functions.

Due to all �elds being matrix-like, quartics are either single (ui) or double traced (vi) in the large

indices, see (1.49). In the large-N limit, leading contributions of each type then scale ∝ N ui and

∝ N 2 vi respectively. At one-loop order, scalar self-interactions decompose into

∝ N ui uj , ∝ N ui vj and ∝ N 2 vi vj . Both points together imply that single-trace

quartics form another algebraically decoupled system at this order, given by

�ui = (4�)
−2N [H ijkuj uk − I ijg g

2 uj + I ijy y
2 uj + J ig g

4 − J iy y
4] . (4.42)

Signs of the coe�cients depend on coupling de�nitions, but in most cases they can all be cho-

sen non-negative. Evaluating �ui = 0 means solving a set of quadratic equations. The main

sources of complex solutions are the inhomogeneity terms J ig of the gauge interaction. Within

the Yukawa classes, once again only stands out by having all Jg = Ig = 0 due to the scalar

being uncharged. This improves the resilience of the quartic sector against complex solutions,

while inviting negative ones. For example, consider a theory with only one gauge, Yukawa and

single-trace quartic coupling each. The solutions are

u∗ =
g∗2

2H [Ig −
F
E Iy ±

√
(Ig − F

E Iy)
2 + 2H (

F 2
E2 Jy − Jg)] (4.43)

over the GY �xed point, and the same expression with Iy , Jy ↦ 0 over a BZ one. In both cases,

complex values are indeed absent for Jg = 0.
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The only inhomogeneities in the double-trace quartic system stem from subleading single-trace

self-interactions:

�vi = (4�)
−2 [H̃ ijk

uu uj uk + N H̃ ijk
uv uj vk + N

2 H̃ ijk
vv vj vk − N Ĩ ijg g

2 vj + N Ĩ ijy y
2 vj] . (4.44)

Once again, we have Ĩg = 0 for . This suggests that some of the vi may need to be negative

to achieve �vi = 0, which endangers vacuum stability.

Equivalences. Each class investigated here contains several universality classes of conformal

�eld theories at the GY �xed point, irrespective of whether it is GYUV or GYIR. These theories

may even be equivalent away from the �xed point in the weakly coupled regime, due to a gen-

eralised orbifold equivalence and negative dimensionality theorems [3]. Indications of this have

been spotted within our analysis, and the topic will be elaborated in Ch. 6.
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5 UV conformal window for asymptotic
safety

5.1 Introduction

In recent years the asymptotic safety conjecture [32] has grown into a powerful paradigm of its

own, with many applications ranging from quantum gravitation to particle physics and critical

phenomena [57]. It states that quantum �eld theories remain well-de�ned and predictive up

to highest energies provided they are governed by an interacting UV �xed point under their

renormalisation group evolution of couplings [171]. Asymptotic safety generalises the notion of

asymptotic freedom [84, 85]. The most striking new e�ects are residual interactions in the UV

which modify canonical power counting and the dynamics of theories at shortest distances [41].

Asymptotic safety has originally been proposed to cure the high energy behaviour of 4d quan-

tum gravity by means of an interacting UV �xed point [32]. A lot of progress has been made

over the past decades to substantiate the feasibility for an asymptotically safe version of quan-

tum gravity [35, 37, 41, 54, 56, 57, 251–253]. In 3d settings, asymptotic safety is known to arise

in models with scalars, or fermions, or both. In suitable large-N limits, exact results at weak

coupling are available from the renormalisation group [68, 69, 71, 74], including models with su-

persymmetry or spontaneously broken scale invariance [254–256]. Lattice results are available

for non-linear sigma models [257]. More recently, it has been discovered that asymptotic safety

is operative in 4d gauge theories with matter [112]. For this to happen at weak coupling, all three

types of elementary �elds – gauge �elds, fermions, and scalars – are required, together with suit-

able Yukawa couplings [110]. By now, necessary and su�cient conditions alongside strict no-go

theorems for asymptotic safety of general gauge theories are known [110, 258]. Explicit proofs

for asymptotic safety have been given for simple [112], semi-simple [114] and supersymmetric

gauge theories coupled to matter [115]. Coleman-Weinberg resummations [113], the impact of

interactions with negative canonical mass dimensions [233] and �xed points for models away

from 4d [67] have also been investigated. Asymptotically safe extensions of the Standard Model

and their signatures at colliders have �rst been put forward in [121].

An important open question relates to the size of the conformal window for asymptotically safe

gauge theories, meaning the range in parameter space where a viable interacting UV �xed point

persists. While interacting UV �xed points are under good control at weak coupling, much less

is known about asymptotic safety at strong coupling [41]. On the other hand, IR conformal

windows of QCD-like theories have been studied more extensively. There, conformal windows

are known to extend into the domain of strong coupling [96, 259–261]. Similar insights into

UV conformal windows would be most useful, both conceptually, and from the viewpoint of

phenomenology and model building.
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In this paper, we access the conformal window with the help of perturbation theory. It is shown

how �xed points, scaling exponents, and anomalous dimensions are obtained as a systematic

power series in a small parameter (Sect. 5.2). We analyse the systematics of perturbative ap-

proximations for general theories with weakly interacting �xed points and compare the order-

ing principle with conventional perturbation theory and Weyl consistency condition. The work

of [112] is extended to derive the requisite beta functions, �xed points, anomalous dimensions,

and scaling exponents at the complete next-to-next-to-leading order (Sect. 5.3). A consistent pic-

ture for the conformal window is uncovered by comparing various levels of approximation, with

vacuum stability o�ering the tightest constraints (Sect. 5.4). Implications for model building and

cosmology are indicated as well. We close with a brief discussion (Sect. 5.5). Some technicalities

are summarised in an Appendix (App. 5.5).

5.2 Asymptotic safety

In this section, we recall the model of [112] in the Veneziano limit, and provide its beta function

for all canonically massless couplings up to 3-loop (2-loop) order in the gauge (Yukawa, scalar)

beta functions, and all anomalous dimensions up to 2-loop. We also discuss the underlying sys-

tematics for expansions in perturbation theory.

5.2.1 The model

We consider 4d massless quantum �eld theories with SU (NC ) gauge �elds Aa� with �eld strength

F a�� , coupled to NF �avors of fermions Qi in the fundamental representation. The theory also

contains a scalar singlet “meson” �eld H , a NF × NF complex matrix uncharged under the gauge

group, which interacts with the fermions via a Yukawa term. The theory has a global SU (NF ) ×
SU (NF ) �avor symmetry. The action is taken to be the sum of the Yang-Mills action, the fermion

and scalar kinetic terms, the Yukawa term, and the scalar self-interaction Lagrangean

L = LYM + L kin. + L Yuk. + L pot. (5.1)

where

L YM = − 12 tr F
��F��

L kin. = tr (Q i /D Q) + tr ()�H† )�H)

L Yuk. = −y tr (QL H QR) + h.c.

L pot. = −u tr (H†H H†H) − v (tr H†H)2 .

(5.2)

tr is the trace over both color and �avor indices, and the decomposition Q = QL + QR with

QL/R = 1
2 (1 ± 
5)Q is understood. The theory has four canonically marginal couplings given by

the gauge coupling g, the Yukawa y and two quartic scalar couplings u and v. The theory is

renormalisable in perturbation theory.
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5.2.2 Veneziano limit

To prepare for the Veneziano (large-N ) limit with �nite couplings [228], we rescale the four

canonically dimensionless couplings with suitable powers of �eld multiplicities,

�g =
g2 NC
(4�)2

, �y =
y2 NC
(4�)2

, �u =
u NF
(4�)2

, �v =
v N 2

F
(4�)2

. (5.3)

The theory is then characterised by two free parameters NC and NF , related to the �eld mul-

tiplicities. In the Veneziano limit, these are send to in�nity while the ratio is kept �xed. This

procedure reduces the set of free parameters down to one, which we chose to be

� =
NF
NC

−
11
2
. (5.4)

In the Veneziano limit, � is a continuous parameter taking values within [−11/2, ∞]. For � < 0,
the theory is asymptotically free in all couplings. Trajectories running out of the Gaussian �xed

point are trivially “UV complete”. For � > 0, asymptotic freedom of the gauge sector is lost. In

this regime, and for su�ciently small �, the theory develops an interacting UV �xed point. Strict

perturbative control for an asymptotically safe UV �xed point is guaranteed as long as

0 ≤ � ≪ 1 , (5.5)

which is the regime of interest for the rest of this work.

5.2.3 Renormalisation group

Quantum e�ects and the energy-dependence of couplings are encoded in the RG beta functions,

which are obtained in the MS renormalisation scheme [182–185, 187]. For small coupling, the

perturbative loop expansion is reliable, and we write

� = � (1) + � (2) + � (3) + ⋯ (5.6)

for any of the beta functions � ≡ d�/d ln �. Here, we denote with � (n) the n th
loop contribution.

Some technicalities in the derivation of beta functions from general expressions are summarised

in App. 5.5.

In concrete terms, the gauge beta function �g up to three loops is given by

� (1)g =
4
3
� �2g ,

� (2)g = (25 + 26
3 �) �

3
g − 2 ( 112 + �)

2 �y �2g ,

� (3)g = ( 7016 + 53
3 � −

112
27 �

2) �4g

− 278 (11 + 2�)
2�3g�y + ( 112 + �)

2(20 + 3�) �2y�2g .

(5.7)

Up to three loop, the running of the gauge coupling is only sensitive to the gauge and Yukawa

coupling. Subleading terms of the order ∼ 1/NF and ∼ 1/NC do not contribute in the Veneziano

limit and have been suppressed.
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Couplings Orders in perturbation theory Scheme

� gauge 1 1 2 2 2 3 3 3

� Yukawas 0 1 1 1 2 2 2 3

� quartics 0 1 0 1 2 1 2 3

LO NLO 2NLO PT
LO

′
NLO

′
2NLO

′ FP
LO

′′
NLO

′′
2NLO

′′ Weyl

Table 5.1: Approximation schemes sorted according to the loop orders retained in the various

beta functions, comparing perturbation theory (PT), �xed point consistency condi-

tions (FP) [112, 113], and Weyl consistency conditions (Weyl), each to leading (LO),

next-to-leading (NLO) and next-to-next-to-leading (2NLO) order.

The Yukawa beta function �y up to two loops is given by

� (1)y = (13 + 2�) �2y − 6 �y �g ,

� (2)y = 20�−93
6 �2g�y + (49 + 8�)�g�2y

−4[(11 + 2�)�y − �u]�u�y − (
385
8 + 23�

2 + �2
2 )�

3
y .

(5.8)

The Yukawa beta function depends on the gauge and Yukawa couplings, at any loop order. From

two loop level onwards, it also depends on the scalar coupling �u . In the Veneziano limit, neither

(5.7) nor (5.8) depends on the double-trace scalar coupling �v , at any loop order.

The beta function for the single trace scalar quartic coupling �u up to two loops is given by

� (1)u = −(11 + 2�) �2y + 4�u(�y + 2�u) ,

� (2)u = �u�y[10�g − 16�u − 3(11 + 2�)�y]

+(11 + 2�)[(11 + 2�)�y − 2�g]�2y − 24�3u .

(5.9)

The beta function �v for the double trace quartic scalar coupling is given by

� (1)v = 12�2u + 4�v (�v + 4�u + �y) ,

� (2)v = 8�v�y[ 54�g − 4�u − �v − (
33
8 +

3
4�)�y]

+(11 + 2�)[(11 + 2�)�y + 4�u]�2y − 8�
2
u[12�u + 5�v + 3�y] .

(5.10)

Starting from the two loop level, both scalar beta function additionally depend on the gauge

coupling. Our result is also in accord with the �ndings of [262] which state that �v is quadratic

in �v to all loop orders in the Veneziano limit.

Some of the expressions have previously been given in [112]. The main new additions here

are the 2-loop scalar terms in (5.9) and (5.10). In the Veneziano limit, the subsystem (�g , �y ) is

independent of (�u , �v) at the leading non-trivial order which is two (one) loop in the gauge

(Yukawa, scalar) couplings. Beyond this order, the subsystem (�g , �y , �u) remains independent of

�v .
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5.2.4 Anomalous dimensions

We also provide results for the anomalous dimensions associated to the fermions and scalars

[182,185]. If mass terms are present, their renormalisation group �ow is induced through the RG

�ow of the gauge, Yukawa, and scalar couplings. Following [114], we de�ne the scalar anomalous

dimensions as ΔH = 1 + 
H , where 
H ≡ 1
2d ln ZH /d ln �, and the fermion anomalous dimension

as 
Q ≡ d ln ZQ/d ln �. Within perturbation theory, the one and two loop contributions read


H = �y − 3
2 (

11
2 − �) �

2
y + 5

2�y �g + 2�
2
u ,


Q = ( 112 + �) �y + � �g − (� − 2� − 1
4�

2) �2g

− (11 + 2�) �g �y − ( 25316 +
17
4 � +

1
4�

2) �2y ,

(5.11)

up to corrections of order (�3). Here, � denotes the R� gauge �xing parameter. The anomalous

dimension for the scalar mass term follows from the composite operator ∼ M2 tr H†H with 
M =
d lnM2/d ln �. The anomalous dimension for the fermion mass operator is de�ned asΔQ = 3+
MQ

with 
MQ ≡ d lnMQ/d ln �. Within perturbation theory, we �nd


M = 8�u + 4�v + 2�y − ( 332 + 3�) �
2
y − (16�u + 8�v − 5�g) �y − 20 �2u ,


MQ = ( 112 + �) �y − 3 �g + (22 + 4�) �g �y − ( 314 −
5
3�) �

2
g − (

253
16 +

17
4 � +

�2
4 )�

2
y

(5.12)

up to terms of order (�3). We note that 
M is manifestly positive at leading order. For 
MQ we

observe that the gauge and Yukawa contributions arise with manifestly opposite signs at leading

order. Hence these may take either sign respectively, depending on whether the gauge or Yukawa

contributions dominate. Utilizing (5.12), mass terms then evolve according to

�M2 = 
M M2 − 8 �y M2
Q + (�3) ,

�MQ = 
MQ MQ + (�3) .
(5.13)

The �ow of mass terms already mixes to leading order in the couplings, even in the Veneziano

limit. Additional mixing contributions are present as soon as NC and NF take �nite values.

5.2.5 Systematics

Next, we discuss the systematics of �xed point searches in perturbation theory, Tab. 5.1. Our

considerations in this section apply to any 4d theory with weakly-coupled �xed points, and are

more general as such than the concrete asymptotically safe model introduced above.

Theories in 4d without gauge interactions cannot develop weakly coupled �xed points [110,258].

Hence, gauge interactions must invariably be present to generate �xed points at weak coupling.

Scalar or Yukawa couplings may also be present, depending on the particulars of the matter

content. If so, scalar quartic and Yukawa couplings and their beta functions arise alongside those

for the gauge couplings. We then denote the approximations which retain terms up to order k,

n, and m in the loop expansion of the gauge, Yukawa, and scalar beta functions by

(k, m, n) . (5.14)
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Whenever unambiguous, we drop the commas inbetween. Evidently, without scalars, we have

n = m = 0 throughout. One might wonder which approximation orders lead to self-consistent

�xed points.

Within perturbation theory, and without any other a priori information about the theory, it seems

natural to retain beta functions up to the same loop order for all couplings, corresponding to the

sequence

PT: (n, n, n) . (5.15)

The �rst few approximations are the leading order (111), the next-to-leading order (222), and the

next-to-next-to-leading order (333), as indicated in Tab. 5.1.

In theories with weakly interacting �xed points, however, further information is available. In

fact, close to �xed points the naive perturbative ordering is upset owing to interactions. It has

been established in [110,258] that any weakly interacting �xed point requires the one loop gauge

coe�cient to be parametrically small.
12

If we denote the small parameter which controls the

smallness of the gauge one loop coe�cient by � (in the model (5.7), the one-loop coe�cient reads

− 43�), this structure implies that � (1)g ∼ � �2g ≪ �2g . In such settings, the leading order approxima-

tion is (100) rather than (111) owing to the parametric slowing-down of the gauge coupling as

opposed to the other sectors. Barring exceptional cancellations, this structure also implies that

the one and two loop gauge contributions are of the same order of magnitude � (1)g ∼ � (2)g ∼ �3,
close to interacting �xed points � ∗ ∼ �, see (5.6). On the other hand, Yukawa and scalar beta

functions at one loop cannot be made parametrically small. Consequently, the approximation

which provides the �rst order at which a consistent �xed point � ∗ = (�) for all couplings arises

is (211): in the gauge sector the �xed point materialises due to cancellations between the one and

two loop terms, and in the Yukawa and scalar sectors through cancellations at one loop [110,258].

All higher loop contributions are parametrically smaller and obey � (n) ∼ �n+1 for the gauge beta

function once n ≥ 2 as well as � (n) ∼ �n+1 for the Yukawa and the scalar beta functions for all

n ≥ 1. This pattern proceeds systematically to higher order [114]. It follows that the sequence of

approximations with consistent interacting �xed point (FP) solutions is given by

FP: (n + 1, n, n) . (5.16)

We denote this approximation as nNLO
′
. It determines the �xed point � ∗(�) = � ∗|n NLO’ +(�n+1)

for all couplings, with � ∗|n NLO’ an exact polynomial in � up to including terms of order �n. The

�rst few approximations are the leading (100), the next-to-leading (211), and the next-to-next-

to-leading (322) order, see Tab. 5.1.

Finally, a third sequence of approximations exploits information related to Weyl consistency

conditions [150, 153]. Weyl consistency conditions have formally been derived for weakly cou-

pled theories on classical gravitational backgrounds. On the level of the path integral they state

that two independent Weyl rescalings commute with each other. In terms of the couplings

{gi} ≡ {g, y, u, v} with � functions �i = dgi/d ln �, the Weyl consistency conditions take the

form of integrability conditions )� j/)gi = )� i/)gj in that they relate partial derivatives of the

12
Strictly speaking, it is required that the ratio of the one-loop and the two-loop gauge coe�cient is a perturbatively

small number. If so, it can then always be achieved that the gauge one loop coe�cient is small by a suitable

reparametrisation of the gauge coupling.
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various � functions to each other, and � i ≡ � ij�j . The functions � ij play the role of a metric in

the space of couplings. Weyl consistency conditions are expected to hold in the full theory, and

hence it might seem desirable to satisfy them even within �nite perturbative approximations.

Note that the metric � ij itself is a function of the couplings which is why Weyl-consistent solu-

tions relate di�erent orders of perturbation theory. For the gauge-Yukawa theory studied here, a

perturbative expression for the metric � has been given in [263]. Accordingly, Weyl-consistent

approximations are given by the sequence

Weyl: (n + 1, n, n − 1) . (5.17)

We denote this approximation as nNLO
′′

. The �rst few approximations are the leading (100),

the next-to-leading (210), and the next-to-next-to-leading (321) order, see Tab. 5.1. Notice that

the FP (5.16) and Weyl (5.17) approximations only di�er in the scalar sector, where the former

retains an additional loop order. However, in any QFT, scalar couplings only enter the Yukawa

beta functions starting at two loop order, and the gauge sector at even higher loop level. For

this reason, the higher loop term in the scalar sector only generates subleading corrections for

the gauge and Yukawa �xed point. This pattern implies that power series expansions of �xed

points at nNLO
′

or nNLO
′′

accuracy coincide for the gauge, Yukawa (scalar) couplings, modulo

subleading terms of order ∼ �n+1 (∼ �n), for all n.

The PT and Weyl schemes up to 2NLO and 2NLO
′′

have recently been used to investigate the

vacuum stability of the Standard Model [23, 264]. For the model at hand (5.1), (5.2), the ap-

proximations NLO
′′

, NLO
′
, and 2NLO

′′
have been investigated in [112, 113]. Below, we extend

approximations to the complete 2NLO
′

order (322) in the spirit of (5.16), and compare the PT, FP,

and Weyl approximation schemes quantitatively.

5.2.6 Away from four dimensions

As an aside, we note that the power counting detailed in Tab. 5.1 applies uniquely to weakly inter-

acting QFTs in 4d . Away from four dimensions, the gauge, Yukawa and quartic self-interactions

have a non-vanishing canonical mass dimension, and their �-functions receive a tree level con-

tribution which alters the power counting in Tab. 5.1. Speci�cally, in d = 4 − � dimensions, the

tree level parameter |� | ≪ 1 now controls the perturbative expansion and the existence of �xed

points. Barring exceptional cancellations, the leading non-trivial order with a consistent inter-

acting �xed point � ∗i = (�) is one-loop (111), where quantum �uctuations cancel the tree level

terms for some or all couplings (see [67] for a recent example). This pattern proceeds to higher

order, as is well-known from, e.g., the Wilson-Fisher �xed point [229].

5.3 Results at 2NLO’

In this section, we summarise our results for �xed points, anomalous dimensions, vacuum sta-

bility, and scaling exponents at the complete 2NLO
′

order.
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5.3.1 Fixed points

It is straightforward if tedious to identify the weakly interacting �xed points at order �2 of the

system (5.7), (5.8), (5.9) and (5.10). Given the polynomial nature of the beta function, however, a

large variety of (potentially spurious) �xed points arises. Those �xed points which are propor-

tional to � in the leading order are under strict perturbative control and can be viewed as “exact”.

Using the beta functions at (322) accuracy, and performing a systematic expansion (5.16) up to

subleading corrections of order �3, we �nd

� ∗g =
26
57

� + 23
75245 − 13068

√
23

370386
�2 ,

� ∗y =
4
19

� +
43549 − 6900

√
23

20577
�2 ,

� ∗u =
√
23 − 1
19

� +
365825

√
23 − 1476577
631028

�2 ,

� ∗v = −
1
19 (2

√
23 −

√
20 + 6

√
23) � −

(
321665
13718

√
23

−
27248
6859

+
33533
6859 −

452563
13718

√
23√

20 + 6
√
23 )

�2 .

(5.18)

Results are accurate at the cited order, meaning that higher loop corrections will only generate

subleading terms of order �3. Results agree with the (321) approximation adopted previously

[112] in all but the �2-terms of the scalar quartic couplings. The reason for this is that the scalar

couplings interfere with the Yukawa and gauge beta functions starting at the second and fourth

loop level, respectively, see (5.8). In consequence, at (322), only the O(�) coe�cient of the scalar

couplings contribute to the O(�2) value of the Yukawa coupling, whence agreement with (321).

Quantitatively, we have

� ∗g = 0.4561� + 0.7808�2 + 3.8922�3 ,

� ∗y = 0.2105� + 0.5082�2 + 2.4222�3 ,

� ∗u = 0.1998� + 0.4403�2 + 1.8780�3 ,

� ∗v = −0.1373� − 0.6318�2 − 3.6685�3 .

(5.19)

All terms have coe�cients of order unity. We have also indicated the �3 terms which originate

from subleading contributions in � at 2NLO’ accuracy; they are only indicative as further higher

loop corrections beyond (322) will modify them. Also note that all terms at order �2 arise with

the same sign as those at order �. This implies that the �g and �y remain positive for all �, as they

must, o�ering no limitations on the domain of validity. It would be very useful to know whether

the radius of convergence (in �) comes out �nite, or not. Same sign correction terms hint at a

slow rate of convergence in � and the presence of complex conjugate poles in the complexi�ed

�eld plane [265, 266].

5.3.2 Vacuum stability

We now turn our attention to the stability of the vacuum. It is well-known that the scalar cou-

plings control the stability of the ground state. The stability for scalar potentials as in (5.1) has
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�rst been investigated in [267]. In the Veneziano limit, and in terms of the couplings used here,

it is required that [112, 113]

� ∗u > 0 and � ∗u + �
∗
v > 0 . (5.20)

The �rst approximation with non-trivial scalar couplings is NLO
′

(211). At one loop, the �xed

point in the scalar sector is fuelled by the Yukawa �xed point. Most importantly, vacuum stability

has been established quantitatively [112], with

� ∗u + �
∗
v
|||(211) = 0.0625� + O (�2) . (5.21)

Notice the smallness of the leading coe�cient. It arises through the cancellation of the leading

order �xed point values of the single and double trace couplings, which by themselves are twice

or thrice as large as their sum, (5.18). It has also been shown that the Coleman-Weinberg-type

resummation of leading logarithmic corrections does not alter the conclusion [113]. A �rst step

beyond the leading order (211) has been performed in [112] by using the Weyl-consistent (321)

approximation. The result

� ∗u + �
∗
v
|||(321) = 0.0625� + 0.1535�

2
(5.22)

shows that the induced subleading, higher loop e�ects from the gauge-Yukawa sector are sup-

portive of vacuum stability, for all �. This can also be understood from observing that the scalar

quartic couplings are at one loop proportional to the Yukawa coupling; and since the latter grows

with subleading corrections, so does (5.22) over (5.21). At (322) accuracy, however, we �nd the

complete �2-correction from (5.18). Quantitatively, we have

� ∗u + �
∗
v
|||(322) = 0.0625� − 0.1915�

2 + O (�3) . (5.23)

Notice that the leading and the subleading terms now arise with opposite signs. At order �2, this

comes about because the double-trace scalar coupling receives larger (and negative) corrections

than the single trace coupling. We also observe that the two loop terms in the scalar beta function

outweigh the gauge-Yukawa corrections in (5.22).

5.3.3 Anomalous dimensions

For the �eld and mass anomalous dimensions, using (5.11) and (5.12) in conjunction with (5.18),

we �nd


H
|||(322) = 0.211 � + 0.462 �2 ,


Q
|||(322) = (1.158 + 0.456 � ) � + (1.249 + 1.197 � + 0.052 � 2) �2 ,


M
|||(322) = 1.470 � + 0.521 �2 ,


MQ
|||(322) = −0.421 � + 0.926 �2 ,

(5.24)

up to terms of order (�3), and where � denotes the gauge �xing parameter in R� gauge. We

observe that the subleading corrections have the same sign as the leading order ones, except

for the mass anomalous dimension 
MQ . Results are compatible with unitarity bounds. With

increasing �, the anomalous dimension 
M exceeds the classical dimension starting at about � =
1.36 at (211) or � = 1.00 at (322). For the fermion mass anomalous dimension, this happens
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at � = 1.29 at (322). This implies that mass terms become irrelevant operators in the UV for

su�ciently large �. We interpret this phenomenon as the onset of strong coupling where the

validity of perturbation theory becomes questionable.

5.3.4 Scaling exponents

Next we discuss universal exponents which are obtained as eigenvalues of the stability matrix

)�i/)�j |∗. We order the eigenvalues according to magnitude, #1 < 0 < #2 < #3 < #4.13
Scaling

exponents have been known at (211) and (321) accuracy previously [112]. Our results for the

scaling exponents at 2NLO
′

are

#1 = −
104
171

�2 +
2296
3249

�3 ,

#2 =
52
19

� +
136601719 − 22783308

√
23

4094823
�2 ,

#3 =
8
19

√
20 + 6

√
23 � +

2
√
2 (50059110978 + 10720198219

√
23)

157757 (10 + 3
√
23)

9/2 �2 ,

#4 =
16
19

√
23 � +

4 (68248487
√
23 − 255832864)

31393643
�2 .

(5.25)

The new coe�cients are �2-corrections to the irrelevant eigenvalues #3 and #4, which are the

only terms sensitive to the two-loop scalar beta functions; the ∼ �2 contribution to #2 is only

dependent on the scalar couplings to one-loop. Note that the rational coe�cients in #1 and #2
arise from the gauge-Yukawa subsector, whereas all irrational coe�cients arise with contribu-

tions from the scalar subsector. It is interesting to note that the relevant scaling exponent #1 is

completely determined to O(�3) already at (210) order, as noted in [112]. However, in contrast

to the other exponents, and expectation, increasing our approximation to (322) does not �x any

further coe�cients, as the ∼ �4 coe�cient is sensitive to four-loop (three-loop) contributions to

the gauge (Yukawa) beta functions. Numerically, we have

#1 = −0.6082�2 + 0.7067�3 + 3.322�4 ,

#2 = 2.737� + 6.676�2 + 18.44�3 ,

#3 = 2.941� + 1.041�2 − 2.986�3 ,

#4 = 4.039� + 9.107�2 + 44.43�3 ,

(5.26)

where we additionally show the next subleading coe�cient in each case (e.g. the �4-term in #1
and the �3-terms for the other exponents). The latter terms are subject to corrections from the

next loop level, and quantify subleading e�ects already present within the (322) approximation.

5.4 UV conformal window

We are now in a position to investigate the size of the UV conformal window for asymptotic

safety for theories with action (5.1) using perturbation theory.

13
This relates to the convention used in [112] under the exchange #3 ↔ #4.
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Figure 5.1: The UV conformal window with asymptotic safety (yellow band) from �xed points

and scaling exponents, (5.27), also showing regimes with asymptotic freedom (green)

and e�ective theories (grey). Dots indicate the �rst few integer solutions (5.33).

5.4.1 Limits for interacting fixed points

The results of the previous sections have established a UV �xed point to second order in � ≪ 1.
With increasing �, the conformal window for the UV �xed point is limited through one of several

mechanisms:

a) Strong coupling. With increasing �, regimes with parametrically strong coupling in � can

arise either through algebraic poles of �xed point couplings �(�) at �nite �, or in the limit

� → ∞. In the latter case, we impose � ∗ < 1 to delimit the range of validity.

b) Fixed point mergers. Fixed point conditions for approximations beyond (211) are at least

quadratic (or higher) order in one of the couplings. Consequently, additional strongly

coupled IR �xed point solutions may arise. With increasing �, these may collide with the

asymptotically safe UV �xed point, and then disappear in the complex plane, setting an

upper limit on �. Equivalently, this is signalled by the vanishing of the relevant scaling

exponent.

c) Vacuum instability. The signs and size of the scalar couplings are solely constrained by

the requirement of vacuum stability (5.20). Consequently, the change of sign for the linear

combination (5.20) with increasing � indicates the onset of instabilities.

d) Negative coupling. Regions with parametrically weak gauge or Yukawa coupling �(�) → 0
for increasing � > 0 o�er upper limits due to a change of sign of these couplings and the

subsequent disappearance of �xed points into the unphysical regime.

From the point of view of practical applications, it is crucial to understand up to which �nite

maximal value � < � max the conformal window is going to persist, and which mechanism is

responsible for generating an upper bound, if any.
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Couplings Orders in perturbation theory

� gauge 2 2 2 2 2 3 3 3 3

� Yukawas 1 1 1 2 2 1 1 2 2

� quartics 0 1 2 1 2 1 2 1 2

� strict 2.192a 2.192a 0.135c 16.16a 0.222c 0.029b 0.029b 0.145b 0.095c
� subl. 1.048a 1.048a 0.116c 3.112b 0.208c 0.027b 0.027b 0.117b 0.087c

Table 5.2: Maximal values � strict and � subl. for the parameter � up until which asymptotic safety

is realised. Limits arise due to a) strong coupling, b) �xed point mergers, or c) vacuum

instability.

5.4.2 Bounds from fixed points and exponents

A �rst estimate for an upper bound follows from the complete results at (211) and (322) order for

the couplings (up to second order in �), and the scaling exponents (up to fourth order in �). Since

all couplings receive same-sign corrections at (322), (5.18), the scenario d) cannot arise. Requir-

ing � ∗ < 1 leads to � < 2 approximately. However, vacuum stability o�ers tighter constraints. We

conclude from (5.23) that the two loop scalar corrections impose an upper bound for the confor-

mal window through the onset of vacuum instability, approximately given by � max ≈ 0.326.
Let us see whether some of the incomplete higher order corrections o�er a similar, or even tighter

bound. From the relevant eigenvalue (5.25), an upper limit � max ≈ 0.861 arises from sign change

of #1 through the incomplete �3 term, indicating a �xed point merger [112]. Considering incom-

plete �4 contributions from (322), the upper bound is reduced to � max ≈ 0.335. A sign change

in #3 would arise at even larger � and can be ignored. No constraints arise from anomalous di-

mensions. Based on the explicit power series expressions for couplings and exponents at 2NLO
′
,

we conclude that the conformal window is limited through the onset of vacuum instability (5.23)

and the vanishing of the relevant eigenvalue (5.25),

� max ≈ 0.326 … 0.335 , (5.27)

see Fig. 5.1. It is interesting to observe that the tightest bound from incomplete higher order terms

comes out very close to (yet, larger than) the vacuum stability bound. In this light, we view (5.27)

as indicative for the range of validity at this order. Constraints through parametrically strong or

weak coupling do not play any role. As we will see next, the UV conformal window becomes

more strongly constrained once bounds from beta functions are taken into consideration.

5.4.3 Stabilising vs destabilising fluctuations

Next, we investigate constraints arising directly from the beta functions rather than their power

series solutions. We will see that this leads to tighter constraints yet. As a �rst step, it is interest-

ing to ask into which direction the higher loop corrections are going to shift the beta functions.

Inserting the order � �xed point results from [112] into the higher loop terms, we �nd the leading

shifts

� (3)g
|||(211) = 2.48 �

4, � (2)y
|||(211) = −0.49 �

3, � (2)u
|||(211) = 0.26 �

3, � (2)v
|||(211) = 0.99 �

3. (5.28)
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Higher loop contributions to the gauge (Yukawa, scalar) sectors do not appear until order �4 (�3),
as is necessarily the case. At the leading non-trivial order in �, the �xed point at the leading order

(211) shifts the subleading gauge and scalar beta functions upwards, but the Yukawa beta func-

tion downwards, see (5.28). In general, upward shifts Δ� > 0 at some �nite couplings potentially

destabilise UV �xed points, simply because beta functions might no longer be able to generate

a non-trivial zero once upward shifts become too large. For the same reason, downward shifts

Δ� < 0 always stabilise interacting UV �xed points, simply because � > 0 for su�ciently small

couplings, which guarantees that a solution to � = 0 can still be found for �nite positive cou-

plings. Altogether this means that higher loop corrections (5.28) to the running of the Yukawa

(gauge, scalar) coupling stabilise (de-stabilise) the �xed point. It remains to be seen how this

“competition of �uctuations” balances out quantitatively across the various beta functions and

loop orders.

5.4.4 Bounds from beta functions

Next, we determine bounds from beta functions quantitatively [268]. We adopt two strategies

to determine � max from beta functions, for each set of loop orders. The �rst “strict” strategy,

whose bounds we call � < � strict, uses the loop orders as indicated in Tab. 5.2. In addition, all

terms in the beta functions (5.6) which are parametrically larger than �n+1 at the n-th loop order

are suppressed (couplings count as � ∼ �). The rationale for this strict approach is that the

approximate beta functions are now stripped of those higher order contributions (in �), which

are not (yet) accurately determined due to the absence of higher loop terms. As such, the scheme

primarily acknowledges the power counting � ∼ �, as dictated by the �xed point. The bounds

� strict are sensitive to the competition between the stabilising Yukawa and the destabilising gauge

and scalar loop contributions at higher order (5.28).

The second strategy is agnostic to these �ner considerations and employs the plain loop level

approximation as discussed in Tab. 5.2, without touching the explicit � dependence within loop

coe�cients. This strategy retains subleading terms in � and we refer to its bounds as � subl.. With

the result (5.18) at hand, we can estimate what the e�ect of these subleading terms is going to be

by inserting the �xed point solutions to order �2 back into the beta functions at (322), �nding

�g
|||(322) = 10.24 �

5, �y
|||(322) = −1.71 �

4, �u
|||(322) = 1.70 �

4, �v
|||(322) = 7.24 �

4. (5.29)

Subleading terms contribute starting at order �5 (�4) in the gauge (Yukawa, scalar) sectors, as

expected from (5.18). Most notably, we �nd that the subleading terms shift the gauge and scalar

beta functions upwards and the Yukawa beta function downwards. This is the exact same pattern

as observed in (5.28), albeit smaller by a power in �. Moreover, once � ≈ 0.14 (0.25), the scalar

(gauge, Yukawa) shifts (5.29) are of the same size as (5.28). Since the bounds � subl. are sensitive to

the combined e�ect of (5.28) and (5.29), our line of reasoning suggests that the bounds � subl. must

follow the same pattern as � strict albeit being slightly tighter due to the additional shift (5.29).

In Tab. 5.2 we summarise results for � strict and � subl., also indicating which mechanism is limiting

the domain of validity for each case.
14

At the lowest orders (210), (211) and (221), we observe

14
In cases where � strict and � subl. are constrained by the same mechanism, |� strict − � subl.| gives a reasonable estimate

for the error of the expansion.
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that � strict is constrained via � ∗ < 1. At (221), mergers in the Yukawa sector could have arisen.

However, the growth of the coupling with � is much slower due to a large negative quadratic

correction, �g = 0.456� − 3.061�2 + O(�3), leading to a wider UV conformal window and the

avoidance of mergers. In (210) and (211) bounds for � subl. arise from the onset of strong coupling

through a pole at �nite �. In these cases, the e�ective gauge two loop coe�cient changes sign

and �ndings can no longer be trusted in perturbation theory. At (221), instead, the bound for

� subl. arises through a proper �xed point merger. As soon as two-loop e�ects in the scalar sector

are retained, such as in (212) and (222), we �nd that the onset of vacuum instability dominates

the upper limit. Quantitatively, the bounds are weaker in (222) than in (212). Hence, two loop

Yukawa (scalar) terms increase (decrease) the domain of validity and the conformal window.

Turning to three loop e�ects, we observe that (311) is limited by �xed point mergers through

�uctuations in the gauge sector. The new e�ect is triggered by a large positive quadratic correc-

tion �g = 0.456� + 3.841�2 + O(�3) which accelerates the growth of the gauge coupling, the exact

opposite of what happens in (221). The e�ect clearly dominates over the bounds found at the

preceeding orders (210), (211) and (221). This continues to be true at (312), where gauge �uctua-

tions o�er a tighter constraint than vacuum stability. Including two loop Yukawa contributions,

however, we �nd that the domain of validity is substantially enhanced — by a factor of four in

(321) and a factor of about three in (322). While in (321) the upper limit arises due to mergers, in

(322) it comes about through vacuum instability.

We now return to the induced shifts (5.28) and (5.29). From Tab. 5.2, and for all settings consid-

ered, it is evident that the bound � subl. is systematically tighter than the bound � strict,

� subl. ≤ � strict . (5.30)

The result thus validates our semi-quantitative considerations based on induced shifts of beta

functions, see (5.28) and (5.29). We will now discuss our results from the viewpoint of perturba-

tion theory (5.15) vs. �xed point (5.16) vs. Weyl (5.17) consistency conditions (see Tab. 5.1). The

highest systematic perturbative approximation is NLO, or (222), where bounds in the range of

� max ≈ 0.21 arise through vacuum instability. In the Weyl consistency scheme 2NLO
′′

, or (321),

the bound is pushed towards � max ≈ 0.13 due to mergers. In this work, we have argued that the

consistent �xed point approximation 2NLO
′
, or (322), should be favoured. Its bound � max ≈ 0.09

is even lower than the one in the Weyl scheme, and, as in the PT scheme, dominated by vacuum

instability rather than mergers. Taking the most advanced approximations as benchmarks, we

conclude that the UV conformal window extends up to

� max ≈ 0.09 … 0.13 , (5.31)

see Fig. 5.2. The bounds (5.31) from beta functions are stronger than the bounds from their

perturbative solutions (5.27). Also, all couplings and anomalous mass dimensions are still small

(below 0.06 and 0.15, respectively) and in the range (5.31) where perturbation theory is viable.

In summary, competing e�ects due to higher loop contributions in the gauge, scalar and Yukawa

sector constrain the size of the UV conformal window. While higher loop terms in the Yukawa

sector continue to stabilise the �xed point, those in the gauge and scalar sector destabilise it.
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The combined e�ect is such that vacuum stability comes out as the most constraining factor.

Subleading terms in � in all beta function coe�cients always lead to tighter constraints (5.30).

The fact that the constraints for � subl. and � strict are quantitatively close to each other is a strong

sign for the intrinsic consistency of results.

5.4.5 Bounds from strong coupling

We brie�y comment on the prospect for asymptotic safety when � becomes large [112]. In-

creasing � implies that the one-loop term (5.7) is no longer small and perturbative control is

lost. For an interacting �xed point to exist, cancellations between di�erent loop orders must

take place. For NF → ∞ and at �nite NC , corresponding to the limit 1/� → 0, the running of

couplings is fully dominated by fermion loops, and gluon loops can be neglected. An in�nite

order resummation for the U (1) [127] and SU (N ) [128] beta functions can be achieved, showing

a non-perturbative UV �xed point in the gauge sector with � � ∗g of order unity (5.3). However,

subleading corrections in 1/NF may spoil the result and must be investigated before de�nite con-

clusions can be taken [129]. Also, the Yukawa and scalar couplings do not play a role and can be

omitted (�y = �u = �v = 0). Based on continuity in (NF , NC ) it has been argued that a �ngerprint

of the �xed point should be visible at loop level [112]. Then, assuming that the UV �xed point

exists non-perturbatively for su�ciently large and �nite NF , NC , we may use the loop expan-

sion to estimate a lower bound for its conformal window. Speci�cally, for large �, the leading

n-loop contribution scales as cn�n−1�n+1g (n > 1) where cn is of order unity and independent of �.

Cancellation with the one loop term gives the estimate � ∗g ∼ �(2−n)/(n−1) from the nth loop order

(cn < 0) [269, 270]. Quantitatively, the three loop beta function (5.7) indicates that a strongly

coupled �xed point obeys � > � min, with

� min =
3
224

(159 + 19
√
505) ≈ 7.49 . (5.32)

The bound arises from strong coupling with �g → ∞ for � → � min. Technically, it is due

to a competition between subleading three loop terms and the two loop term. In the domain

� > � min the e�ective gauge coupling

√
�� ∗g is of order unity. The �xed point has one relevant

eigendirection and the scaling exponent is large and bounded from above, #(�) ≤ −20.69, with

� ≈ 44.6 at the maximum. Moreover, the scaling exponent diverges (# → −∞) at the bound

(5.32), and in the limit � → ∞ [112]. Hence, the expected characteristics of the �xed point at

strong coupling are quite di�erent from those at small � where couplings and exponents are both

parametrically small.

5.4.6 Implications for model building and cosmology

Finally, we discuss a few implications of our results for model building and cosmology [57]. It

has already been shown that asymptotic safety o�ers novel opportunities for model building, in-

cluding explicit BSM scenarios and phenomenological signatures with the Standard Model gauge

group SU (3)C ×SU (2)W ×U (1)Y [121]. Moreover, estimates for the UV conformal window in terms

of matter �eld multiplicities and representations have equally been derived [121].

For the model at hand, and using the bound (5.27) from �xed points and scaling exponents at
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Figure 5.2: The UV conformal window with asymptotic safety (yellow bands) from beta func-

tions, also showing regimes with asymptotic freedom (green) and e�ective theories

(grey). The lower yellow band corresponds to the full 2NLO
′

result, the upper yel-

low band covers the range (5.31), and symbols indicate the �rst few integer solutions

(5.34) and (5.35).

2NLO
′
, we obtain the smallest pair of integer values for (NC , NF ) compatible with asymptotic

safety. The �rst few integer solutions within (5.27) are

(NC , NF ) = (3, 17), (4, 23), (5, 28), (5, 29), (6, 34), (7, 39), (7, 40), … (5.33)

as indicated in the yellow band of Fig. 5.1. Solutions cover all special unitary gauge groups with

NC > 2. Starting from NC = 5 onwards, multiple solutions for the corresponding fermion �avour

multiplicities NF become available. Bounds for the conformal window from beta functions (5.31)

are tighter. Considering the bound from (321), Tab. 5.2, the �rst few integer solutions are

(NC , NF ) = (5, 28), (7, 39), (8, 45), (9, 50), (10, 56), (11, 61), (12, 67), … (5.34)

corresponding to the entire yellow band in Fig. 5.2. For the few leading values for (NC , NF ),
the bound (5.34) is the same irrespective of whether one uses the limit � subl. (as has been done

in [112]), or the limit � strict. Moreover, solutions for SU (3), SU (4) and SU (6) are no longer avail-

able. The asymptotically safe solution with the smallest number of �elds corresponds to SU (5)
with 28 �avours of fermions in the fundamental representation. This is quite close to the SU (5)
GUT candidate [271], which, with NF = 24 �avours of fermions, remains marginally asymptot-

ically free. Hence, (5.34) suggests that asymptotic safety can already be achieved in a GUT-like

scenario, with just a few more �avours of fermions (to destabilise asymptotic freedom), plus ad-

ditional elementary mesons and Yukawa couplings (to generate asymptotic safety). Extending

approximations to the complete (322) level, the bounds are shifted and the UV conformal window
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narrows down, starting with

(NC , NF ) = (7, 39), (9, 50), (11, 61), (12, 67), … (5.35)

corresponding to the lower yellow band in Fig. 5.2. Once again, the few leading integer solutions

in (5.35) do not depend on having used either � strict or � subl. to �x the conformal window. In

particular, the cases (NC , NF ) = (5, 28), (8, 45) and (10, 56) have dropped out due to the onset of

vacuum instability in the fundamental meson sector, turning the �rst viable candidate into SU (7).
Asymptotic safety has also been considered as a mechanism for in�ation by including UV ef-

fects from quantum gravity and matter [272, 273]. General scenarios have been classi�ed and

conditions for cosmological �xed points with in�ationary expansions in the early universe are

known [273] (see [47, 274] for settings where in�ation arises purely quantum gravitationally). It

has also been speculated that in�ation may arise from asymptotically safe toy models [112,113],

neglecting quantum gravity altogether [125,275]. Compatibility with the 2015 Planck data [276]

at the 2�-level requires a large conformal window up to � ≈ 0.7 … 0.8 if minimal coupling is

assumed [125]. This scenario seems �rmly excluded in the light of (5.27) and (5.31). Without

minimal coupling, the conformal window (5.31) imposes large values for the non-minimal cou-

pling � ≫ 1 of scalar matter to gravity (substantially larger than the conformal value � = 1
6 ) to

achieve compatibility with data [276].

It is interesting to check how �nite N corrections beyond the Veneziano limit [268], higher loop

corrections beyond 2NLO
′
, higher-dimensional operators [233], or strong coupling e�ects, are

going to modify the UV conformal window and the bounds (5.31), (5.34) and (5.35). This is left

for future work.

5.5 Discussion

The existence of exact and interacting UV �xed points in particle physics o�ers many opportu-

nities for model building [121]. For any practical applications, however, it is equally important

to understand the size of the corresponding conformal window. Here, we have investigated

the conformal window for the gauge-Yukawa theory (5.1). Extending the �ndings of [112] we

have obtained exact results for �xed points, anomalous dimensions, and scaling exponents up

to second order in the small parameter (5.4), the highest order in perturbation theory presently

available. The underlying ordering principle, which due to the �xed point is di�erent from what

one would expect normally, is also explained in detail (Tab. 5.1).

The conformal window follows from �xed points and beta functions. We have also compared

di�erent approximation orders and clari�ed the role of subleading corrections (Tab. 5.2). Limits

invariably arise through a competition of �uctuations. Higher loops in the Yukawa sector en-

hance the conformal window, countered by higher loops in the gauge sector. Higher loops in the

scalar sector tend to destabilise the quantum vacuum. With increasing coupling strength, the

conformal window terminates either through �xed point mergers or via the onset of vacuum in-

stability. Despite their qualitatively di�erent origins, constraints are quantitatively similar, with

vacuum stability o�ering the tightest one, (5.31). Moreover, the conformal window based on

the convergence of �xed points and scaling exponents (Fig. 5.1) is less constrained than the one
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based on beta functions (Fig. 5.2). Some phenomenological implications have been worked out

for particle physics and cosmology.

It has also been noted that another conformal window may exist in the regime where the pa-

rameter � becomes large [112, 127–129]. If so, the underlying mechanism is non-perturbative.

Presently, results are available at the leading order in 1/�. Assuming the �xed point exists at �-

nite 1/�, a rough estimate for its conformal window has been given based on perturbation theory,

(5.32).

As a �nal point, we note that the theory remains perturbative in the entire conformal window,

much unlike the IR conformal windows in QCD-like theories [261]. The culprit for this is the

scalar sector which controls the stability of the ground state. It would be good to con�rm these

results non-perturbatively, also in view of higher dimensional operators and �niteN corrections.

Technicalities

In Sec. 5.2, and starting from known general expressions in theMS renormalisation scheme [182–

185, 187], we have derived all beta functions and anomalous dimensions for our model both

manually, and with the help of a purpose-made algebraic code. In this appendix we provide

some details on the extraction of the two-loop contributions to the running of the scalar quartic

couplings. We follow closely the notation of [185] and [182–184]. Our conventions for the most

general Yukawa and quartic scalar sel�nteractions are

L Yuk. = − 12 (Y
a
jk Φ

aΨjΨk + h.c.) ,

L pot. = − 1
4!�abcd Φ

aΦbΦcΦd ,
(5.36)

where Ψj denote Weyl fermions, and Φa real scalars. Below, we will �nd it convenient to view

the Yukawa couplings as symmetric matrices in the fermionic indices Y a
, with (Y a)jk = Y a

jk .

Due to the scalars being gauge singlets in our model (5.1), (5.2), the number of non-zero contribu-

tions reduces drastically, and a general expression for the two-loop beta function of the quartics

can be given. Writing the scalar beta functions as �abcd ≡ �)��abcd , and also using conventions

as in (5.6), we have

� (2)abcd = ∑
e=a,b,c,d

1
2 (Λ

2
ee − 3H

2
ee − 2H

2
ee + 10Y

2F
ee ) �abcd

− Λ3abcd − 2Λ
2Y
abcd + H

�
abcd + 2H

Y
abcd + 4H

Y
abcd + 4H

3
abcd − 2H

F
abcd . (5.37)

For convenience, we have scaled the loop factor (4�)4 into the couplings. The terms in the �rst

line of (5.37) are the two-loop corrections to the scalar legs, with

Λ2ab = 1
6�acde�bcde ,

H 2
ab = 1

2Tr [Y
aY †bY cY †c + Y †aY bY †cY c] ,

H 2
ab = 1

2Tr [Y
aY †cY bY †c + Y †aY cY †bY c] ,

Y 2Fab = 1
2 g

2 Tr [C2(F ) (Y aY †b + Y bY †a)] .

(5.38)
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The terms in the second line of (5.37) are the various vertex corrections, de�ned as

Λ3abcd = 1
4 ∑
perms

�abef �cegℎ�df gℎ,

Λ2Yabcd = 1
16 ∑

perms
�abef �cdegTr [Y †f Y g + Y †gY f ] ,

H �
abcd = 1

8 ∑
perms

�abefTr [Y cY †eY dY †f + (Y ↔ Y †)] ,

H Y
abcd = ∑

perms
Tr [Y †aY bY †cY dY †eY e] , (5.39)

H Y
abcd = 1

2 ∑
perms

Tr [Y †aY eY †bY cY †dY e + (Y ↔ Y †)]

H 3
abcd = 1

2 ∑
perms

Tr [Y aY †bY eY †cY dY †e] ,

H F
abcd = g

2 ∑
perms

Tr [{C2(F ), Y a}Y †bY cY †d] ,

where ∑perms denotes the sum over all permutations of the indices a, b, c, d . Traces are taken

over all fermion indices, and the matrix C2(F ) is the quadratic Casimir for the fermions.

Next, we need to map and evaluate expressions in the conventions of our model (5.1), (5.2) and

(5.3). The algebra is somewhat tedious since the scalar couplings �abcd in (5.36) are fully sym-

metrised, di�erently normalised than those in the model considered here, and de�ned in terms of

�elds decomposed into real degrees of freedom. One simpli�cation is that the contribution from

the �eld strength renormalisation is, of course, equal for each of the quartic couplings �abcd .

By a suitable choice of outer indices, renormalisation group equations for �u , �v in (5.3) are ob-

tained. For example, for the double-trace coupling, taking the outer legs as Φa, Φb = ( ReH)ii
and Φc , Φd = ( ReH)jj with i ≠ j, leads to

1
4!�aacc = �v/(12N 2

F ). For the single trace coupling,

taking Φa = ( ReH)ii , Φb = ( ReH)ij , Φc = ( ReH)jj and Φd = ( ReH)ji with i ≠ j leads to

1
4!�abcd = �u/(24NF ), and similarily for the map from Y a

jk onto �y .

With these considerations in mind we �nd the two loop contributions to �)��u,v from (5.37),

(5.38) and (5.39). In terms of (5.4), and neglecting subleading terms of (1/N ) in the Veneziano

limit, we obtain from (5.38)

∑e Λ2ee = 16�2u , ∑e H 2
ee = 2(11 + 2�)�2y ,

∑e H
2
ee = 0 , ∑e Y 2Fee = 2�g�y ,

(5.40)

where the sum runs over any four scalar indices. The two-loop vertex corrections (5.39) to the

�ow of the single-trace quartic coupling �)��u , normalised to account for the map from �abcd to

�u in (5.37), are

H F
u = (11 + 2�)�g�2y , Λ3u = 32�3u ,

H Y
u = 1

2 (11 + 2�)
2 �3y , Λ2Yu = 8�y�2u ,

H Y
u = 0 , H 3

u = 0 , H �
u = 0 .

(5.41)

Similarly, the vertex corrections (5.39) to the �ow of the double-trace coupling �)��v , now nor-
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malised to account for the map from �abcd to �v , are given by

Λ3v = 48 �2u (2�u + �v) , H �
v = 4(11 + 2�)�2y�u ,

Λ2Yv = 4 �y (3�2u + 4�u�v + �2v) , H 3
v = 1

4 (11 + 2�)
2�3y ,

H Y
v = 0 , H Y

v = 0 , H F
v = 0 .

(5.42)

Combining (5.40), (5.41) and (5.42) leads to the �nal result (5.9) and (5.10). The expressions for

the two-loop anomalous dimensions (5.11), (5.12) have been deduced from general expressions

using similar techniques.
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6 Majorana fermions and large-N
equivalences

6.1 Introduction

Equivalences or dualities between seemingly di�erent theories can provide valuable insights

into the dynamics of quantum �elds at weak and strong coupling. Well-known examples in-

clude equivalences between SU , SO, and Sp gauge theories in the limit where the rank of the

gauge group is large [277], electric-magnetic duality in supersymmetric theories [278], the sem-

inal AdS/CFT conjecture [279], or equivalences between theories related by orbifold/orientifold

projections [280–285] where parent and child theories achieve coinciding perturbative expan-

sions in the planar limit, and, under some conditions, non-perturbative equivalence [286, 287].

Large N equivalences have also seen many applications in QCD-like theories including on the

lattice [288–290].

On a di�erent tack, the discovery of interacting ultraviolet �xed points in QCD-like theories,

�rst conjectured in [89], has sparked a lot of interest [2, 4, 67, 110–115, 121–123, 233, 258, 291]. It

has led to a general classi�cation of 4d quantum �eld theories including necessary and su�cient

conditions and strict no-go theorems for weakly interacting �xed points [110, 111]. In the large

N limit, proofs for asymptotic safety with Dirac fermions are available with [115] and without

supersymmetry [2, 112, 114, 233]. Key ingredients are Yukawa interactions which can stabilise

non-free gauge couplings [110]. At �nite N , these ideas are used to UV complete the Standard

Model [121, 122, 291] and to study aspects of �avour and vacuum stability [4, 123].

In this paper, we explain how asymptotic safety materialises in theories with Majorana fermions

and elementary mesons, and how this compares to settings with Dirac fermions.
15

With the

help of perturbation theory, the renormalisation group (RG), negative dimensionality theorems,

and ideas from string theory, we also put forward new classes of large N equivalences amongst

gauge-Yukawa theories with di�erent gauge or global symmetries, and di�erent types of matter

�elds. Results include a triality of asymptotically safe theories with SU , SO or Sp gauge groups

with identical phase diagrams and scaling exponents at ultraviolet critical points, and dualities

between asymptotically free gauge-matter theories with identical infrared critical points, and

more.

15
Here we distinguish theories with Dirac and Majorana fermions by the Yukawa interaction. If the scalar acquires a

vacuum expectation value, the Yukawa term gives rise to either a Dirac or a Majorana mass in terms of the Weyl

components for each fermion.
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Invariant SU (N) SO(N) Sp(N)

dR N N N
CR
2

1
2 (N − 1/N ) 1

4 (N − 1) 1
4 (N + 1)

dG N 2 − 1 1
2N(N − 1) 1

2N(N + 1)
CG
2 N 1

2 (N − 2) 1
2 (N + 2)

Table 6.1: Dimensions and quadratic Casimirs of fundamental and adjoint representations with

Dynkin index SR2 = 1
2 .

6.2 Majorana fermions

We consider non-abelian gauge theories coupled to Majorana fermions Ψi and singlet complex

scalar �elds Hij . Majorana fermions are their own charge conjugates Ψc = Ψ whose left- and

right-handed chiral components

Ψ =
1√
2
( ,  c)ᵀ (6.1)

relate to the same Weyl �eld  with charge conjugation  c = " ∗ and " = ( 0 1
−1 0 ). Real repre-

sentations ensure that both Weyl components undergo identical gauge transformations, whose

generators are purely imaginary and antisymmetric ta = − (ta)ᵀ = − (ta)∗. For theories with

chiral Yukawa interactions the requirement for real representations can be weakened to include

pseudo-real ones which are real up to a transformation (ta)ᵀ = −M taM−1
. In either case chiral

gauge anomalies cancel due to the vanishing of

dabc ≡ 1
2 tr [t

a {tb , tc
}
] = 0 . (6.2)

To ensure strict perturbative control, we use a suitable large N limit [228] which necessitates the

Majorana fermions to be in the fundamental representation. The latter implies that unitary or

any of the exceptional gauge groups are excluded, which leaves us with orthogonal or symplectic

gauge groups.

Orthogonal gauge symmetry SO(N). We begin with a theory of Nf Majorana fermions in the

fundamental representation of an SO(N ) gauge theory, interacting with gauge-singlet complex

scalar �elds H . The theory has a global SU(Nf ) �avour symmetry with the Weyl components

transforming in the fundamental and the scalars in the two-index symmetric representationHij =

� ∗
g � ∗

y � ∗
u � ∗

v #1 #2 #3 #4 Type

FP1 − 8
75� 0 0 0

16
225 �

2 8
25 � 0 0 IR

FP2
52
57�

8
19�

2(√23−1)
19 � a

UV
� − 104171 �

2 52
19 �

8
19

√
20 + 6

√
23 � 16

19
√
23 � UV

FP3 − 103 � − 43�
1−2

√
3

3 � aIR � 20
9 �

2 −10 �−8 (1 + 4
3
√
3)

1/2 � − 32√
3 � IR

Table 6.2: Interacting �xed points and scaling exponents to leading order in �, with a UV =
2
19 [(20 + 6

√
23)1/2 − 2

√
23] and a IR = 4

3
√
3 − (1 + 4

3
√
3)1/2. The �xed points FP2 (FP1,3)

are UV (IR) and physical for small positive (negative) �, respectively.
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H(ij). The Lagrangian reads

L = − 14F
a
��F a�� + tr ( † i� �D�  ) + tr ()�H†)�H)

− 12 y tr ( 
ᵀℎH"  +  †ℎH†"  ∗) − u tr (H†H)2 − v (tr H†H)2

(6.3)

where F a�� denotes the non-abelian �eld strength, the trace sums over gauge and �avour indices,

and gauge-contractions of fermion bilinears (� � ) = ��ℎ���� are symmetric with ℎ�� = ℎ��

and ℎ��ℎ�
 = ��
 . The four canonically marginal couplings {g, y, u, v} of the perturbatively

renormalisable theory are the gauge, Yukawa, single, and double trace quartic, respectively. Next,

we investigate the renormalisation group equations for the running couplings [182–185] and

search for perturbative �xed points of the theory [110]. Perturbative control is achieved using a

Veneziano limit [228] where the dimension of the fundamental representation dR and the number

of fermion �avours Nf are send to in�nity while their ratio is kept �xed (see Tab. 6.1 for our

conventions of group-theoretical parameters). The parameter

� =
Nf
N

−
11
2

(6.4)

becomes continuous and may take any value within the range − 112 < � < ∞. For � < 0, the theory

is asymptotically free, while asymptotic freedom is absent for � > 0. Following ’t Hooft [230],

we introduce rescaled couplings suitable for a planar or large N limit

�x =
dR x2

(4�)2
, �u =

Nf u
(4�)2

, �v =
N 2
f v

(4�)2
, (6.5)

where x = g or y, and beta functions �i ≡ d�i/d ln �. To the leading non-trivial orders in per-

turbation theory which is two loop in the gauge and one loop in the Yukawa and quartic beta

functions, we �nd

�g = �2g [
2
3� + ( 254 +

13
6 �) �g −

1
2 (

11
2 + �)

2 �y] ,

�y = �y [( 132 + �) �y − 3�g] ,
�u = 4�2u + 2�y�u − ( 112 + �) �

2
y ,

�v = 2�2v + 8�u�v + 6�2u + 2�y�v .

(6.6)

In any 4d quantum �eld theory, the weakly coupled �xed point solutions to �i = 0 are either of

the Banks-Zaks or of the gauge-Yukawa type [110, 111]. For small � they arise as a strict power

series in � where subleading terms up to order �n are obtained from the loop order (n + 1, n, n)
in the gauge, Yukawa, and quartic beta functions [2, 114]. Also, any weakly coupled �xed point

corresponds to a (unitary) conformal �eld theory [138]. Our results are summarised in Tab. 6.2. In

the regime with asymptotic freedom the theory (6.3) with (6.6) displays a Banks-Zaks �xed point

FP1. Infrared gauge-Yukawa �xed points are absent. In the regime where asymptotic freedom is

lost, the gauge-Yukawa �xed point FP2 arises with (� ∗g , � ∗y , � ∗u , � ∗u + � ∗v) ≈ (0.91, 0.42, 0.40, 0.13) �
and a stable quantum vacuum [113, 292]

� ∗u ≥ 0 , � ∗u + �
∗
v ≥ 0 . (6.7)
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Figure 6.1: Phase diagram with asymptotic safety (� = 0.01), projected onto the (�g , �y ) plane.

Arrows point from the UV to the IR. Asymptotically safe trajectories emanate from

the gauge-Yukawa �xed point FP2 and run along a separatrix towards either a weakly

or a strongly coupled IR regime.
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Figure 6.2: Cross-over of running couplings from asymptotic safety to infrared freedom in units

of � ∗g with �c = Λ exp tc .

A secondary �xed point in the scalar sector does not lead to a stable vacuum and has been

discarded. The universal exponents #1 < 0 < #2,3,4 establish that the �xed point is UV and the

scaling power-law rather than logarithmic, and that the UV critical surface is one-dimensional

corresponding to a single relevant coupling. The phase diagram with RG trajectories in the

(�g , �y )-plane is displayed in Fig. 6.1. Switching on mass terms for the vector-like fermions or the

scalars adds additional relevant directions (not shown), because perturbatively small anomalous

dimensions cannot turn these into irrelevant operators. By the same token, higher dimensional

interactions remain strictly irrelevant [233]. The separatrix which connects the UV �xed point

with the free IR �xed point is shown in Fig. 6.2. The scale �c = Λ exp tc with Λ the high scale

and �g(tc) = 2
3�

∗
g [113] characterises the cross-over between the two �xed points and is the

analogue of ΛQCD in QCD. A second separatrix exists towards a regime with strong coupling and

con�nement in the IR (not shown). Finally, we note that all previously known quantum �eld

theories in four dimensions with exact asymptotic safety involve unitary gauge symmetry and

Dirac fermions [2, 112, 114, 115]. In this light, the theory (6.3) with (6.6) o�ers the �rst proof of

existence for asymptotic safety in gauge theories with SO(N ) gauge symmetry, and in theories

with Majorana fermions.
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Symplectic gauge symmetry Sp(N). Next, we turn to a theory of Nf Majorana fermions in

the fundamental representation of an Sp(N ) gauge theory interacting with gauge-singlet complex

scalar �elds H . In our conventions N is an even integer, and Sp(2) ≃ SO(3) ≃ SU (2). The theory

has a global SU(Nf ) �avour symmetry with Weyl components transforming in the fundamental

and H in the two-index antisymmetric representation Hij = H[ij]. To avoid a Witten anomaly

[293] Nf has to be an even integer as well. The perturbatively renormalisable Lagrangian of the

theory takes the form

L = − 14F
a
��F a�� + tr ( †i� �D�  ) + tr ()�H†)�H)

− 12 y tr ( 
ᵀf H"  +  †f H†"  ∗) − u tr (H†H)2 − v (tr H†H)2

(6.8)

where we recall that gauge-contractions of fermion bilinears (� � ) = �� f ���� are antisymmetric

with f �� = −f �� and f �� f�
 = −��
 . A Veneziano limit is established using (6.4) and rescaled

couplings (6.5). Introducing the parameter � as in (6.4), we �nd the RG beta functions for all

couplings to the leading non-trivial order in perturbation theory. Denoting the ‘t Hooft couplings

(6.5) for the theories (6.3) and (6.8) as �SOi and �Spi respectively, we �nd the remarkable result that

the RG beta functions (6.6) for the theory (6.3) agree exactly with those of the theory (6.8), after

the identi�cation of couplings

�SOi = �Spi . (6.9)

Consequently the �xed points and scaling exponents (FP1 and FP2 in Tab. 6.2), and the RG tra-

jectories and phase diagrams (Figs. 6.1 and 6.2) of the theories (6.3) and (6.8) are identical in

the Veneziano limit. However, we also note that the equivalence is mildly violated beyond the

Veneziano limit at large yet �nite N and Nf due to subleading corrections of order 1/N and 1/Nf
which arise with the same magnitude but opposite sign. Finally, we emphasise that the theory

(6.8) yields the �rst rigorous example for asymptotic safety in a symplectic gauge theory coupled

to matter. The result thus establishes that asymptotic safety can be achieved in 4d quantum �eld

theories with any of the non-exceptional gauge groups, and for su�ciently large N .

6.3 Dirac fermions

Next, we consider theories of Nf Dirac fermions Ψi interacting with non-abelian gauge �elds

and gauge-singlet complex scalar �elds Hij . The theories have a global SU (Nf ) × SU (Nf ) �avour

symmetry with the elementary scalars H transforming in the bifundamental. The perturbatively

renormalisable Lagrangian is given by

L = − 14F
a
��F

��
a + tr (Ψ i /D Ψ) + tr ()�H†)�H)

−y tr (ΨLHΨR + ΨRH†ΨL) − u tr (H†H)2 − v (tr H†H)2
(6.10)

where F a�� denotes the non-abelian �eld strength, the trace sums over all indices and the de-

composition Ψ = ΨL + ΨR with ΨL/R = 1
2 (1 ± 
5)Ψ is understood. Due to the fermions being

vector-like, gauge-anomalies cancel by design and no restriction on their representations apply.

In addition to the gauge coupling g and the Yukawa coupling y, we observe two independent

quartic self interactions u and v, which provides us with a set of four canonically marginal cou-
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plings {g, y, u, v}. In the following, we consider the Dirac fermions in the fundamental gauge

representation of SU (N ), SO(2N ) and Sp(2N ). We also establish a Veneziano limit using the pa-

rameter (6.4) and adopt the same set of ‘t Hooft couplings (6.5) as in the cases with Majorana

fermions.

Unitary gauge symmetry SU (N). For unitary gauge groups, the theory (6.10) has been studied

in a number of works [2,112,113,294,295]. In the regime with asymptotic freedom, it can display

a Banks-Zaks �xed point. Once asymptotic freedom is lost, it develops a weakly interacting

asymptotically safe UV �xed point [112] with a stable quantum vacuum [113]. The corresponding

UV conformal window has been determined up to the complete next-to-next-to-leading order in

perturbation theory which is three loop in the gauge and two loop in the Yukawa and quartic

couplings [2]. The main observation here is that the theory (6.10) with SU gauge symmetry

and Dirac fermions is intimately related to the theories (6.3) with SO and to (6.8) with Sp gauge

symmetry and Majoranas. Introducing the parameter � as in (6.4) and denoting the couplings

(6.5) for the theory (6.10) with unitary gauge symmetry as �SUi , we �nd that beta functions in

the Veneziano limit are identical to those of the theories (6.3) and (6.8), given by (6.6), provided

we rescale the ‘t Hooft couplings by a factor of two,

�SOi = �Spi = 2 �SUi . (6.11)

Consequently �xed points are either of the Banks-Zaks (FP1) or the gauge-Yukawa-type (FP2)

and take the values given in Tab. 6.2 after rescaling. Phase diagrams and RG trajectories in these

theories are also identical up to (6.11), and given by Figs. 6.1 and 6.2. Most notably, universal

scaling exponents, which are insensitive to the normalisation of couplings, are identical between

the two theories, and take the values given in Tab. 6.2.

SO(2N) gauge symmetry. Next, we consider settings with Nf Dirac fermions in the funda-

mental representation of SO(2N ) gauge symmetry, again coupled to scalars in the bifundamental

two-index representation of the global SU (Nf )×SU (Nf ) �avour symmetry, and with action (6.10).

Notice that since Dirac fermions have twice as many degrees of freedom as Majorana fermions,

and to ensure that the de�nition for the small parameter � (6.4) remains unchanged, the dimen-

sion of the gauge group has been taken twice as large as in the case with SU gauge symmetry.

Then, to the leading order in perturbation theory and in the Veneziano limit, we �nd

�g = �2g [
2
3� + ( 254 +

13
6 �) �g −

1
2 (

11
2 + �)

2 �y] ,

�y = �y [( 152 + �) �y − 3�g] ,
�u = 8�2u + 4�y�u − ( 112 + �) �

2
y ,

�v = 4�2v + 16�u�v + 12�2u + 4�y�v

(6.12)

for models (6.10) with orthogonal gauge symmetry. In stark contrast to the previous examples,

no interacting UV �xed points are found as soon as asymptotic freedom is absent [110]. However,

the beta functions (6.12) admit interacting �xed points provided the theory is asymptotically free

(� < 0). These are either of the Banks-Zaks (FP1) or of the gauge-Yukawa-type (FP3), with �xed

point coordinates and scaling exponents summarised in Tab. 6.2. The gauge-Yukawa �xed point

FP3 at (� ∗g , � ∗y , � ∗u , � ∗u + � ∗v) ≈ −(3.33, 1.33, 1.23, 0.58) � also displays a stable quantum vacuum (6.7).



6.4 Majoranas & large-N equivalences 125 Large N equivalences

Figure 6.3: Phase diagram with asymptotic freedom (� = −0.01) projected onto the (�g , �y ) plane.

Arrows point from the UV to the IR. Dots show the Gaussian (G), the Banks-Zaks

(BZ), and the infrared gauge-Yukawa (GY) �xed points. The inset highlights the two-

dimensionality of the UV critical surface (red shaded area) which becomes e�ectively

one-dimensional in the cross-over to the IR.

The universal exponents 0 < #1,2,3,4 establish that the �xed point FP3 is fully attractive in all

canonically marginal couplings thus corresponding to an IR sink [121], and that the scaling is

power-law rather than logarithmic. The phase diagram in regimes with asymptotic freedom is

shown in Fig. 6.3. We notice that the Banks-Zaks �xed point is parametrically small compared to

the gauge-Yukawa �xed point (see the inset in Fig. 6.3). It implies that the UV critical surface at

the Gaussian �xed point, which is two-dimensional, e�ectively becomes one-dimensional, given

by the separatrix connecting the Gaussian and the GY �xed point.

Sp(2N) gauge symmetry. Finally, we turn to the models (6.10) with Nf Dirac fermions in the

fundamental of Sp(2N ) gauge symmetry, coupled to scalars in the bifundamental two-index rep-

resentation of the global SU (Nf ) × SU (Nf ) �avour symmetry. Using (6.4), introducing couplings

as in (6.5), and following the same steps as before, we �nd once more that the beta functions in

the Veneziano limit come out identical to those found in (6.12) after a straight identi�cation of

couplings (6.9). It follows that the running of couplings, the phase diagrams, and the conformal

critical points of theories (6.10) are identical, irrespective of whether we impose an orthogonal

or symplectic gauge symmetry.

6.4 Large N equivalences

In this section, we investigate the kinematical equivalences detected in the previous sections from

the point of view of weak-coupling dualities and orbifold projections, and discuss implications

for asymptotic safety.

Negative dimensionality theorems. Some of our results can be understood with the help

of so-called negative dimensionality theorems [231, 296–299]. They state that for any SO(L) in-
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Figure 6.4: Triality of asymptotic safety, and large N equivalences amongst matter-gauge the-

ories with global SU (2Nf ) �avour symmetry and Majorana fermions (top), and a

theory with a global SU (Nf ) × SU (Nf ) �avour symmetry and Dirac fermions (bot-

tom). The horizontal arrow emphasises that RG �ows, phase diagrams, and critical

points are identical. Top-down arrows indicate equivalence after orbifold reduction.

variant scalar there exists a corresponding Sp(L) invariant scalar, and vice versa, obtained by

exchanging symmetrisations and antisymmetrisations, replacing the SO(L) symmetric bilinear

invariant ℎ�� by the Sp(L) antisymmetric bilinear invariant f�� , and replacing L by −L. Simi-

larly, for any SU (M) invariant scalar exchanging symmetrisations and antisymmetrisations is

equivalent to replacing M by −M . Schematically, we write the theorems as

SO(L) = Sp(−L) , SU (M) = SU (−M) , (6.13)

where overlines indicate the transposition of Young tableaux for all representations, correspond-

ing precisely to the interchange of symmetrisation and antisymmetrisation [231, 296–299].

Symplectic vs orthogonal gauge groups. Let us now clarify how the negative dimension-

ality theorems impact on our models. On the level of the local symmetries in the models with

Majorana fermions (6.3), (6.8), the relations (6.13) interchange orthogonal and symplectic gauge

theories. When applied to the global SU (Nf ) symmetry the transposition of global represen-

tations accounts for the di�erent symmetrisations of the scalars, interchanging H(ij) with H[ij],
and all of this accompanied by the analytic continuation of �eld multiplicities towards negative

values
16

N ↦ −N , Nf ↦ −Nf . (6.14)

Fingerprints of the negative dimensionality theorems (6.13) can be seen on the level of the renor-

malisation group equations. For theories with Majorana fermions, we have con�rmed at the

leading orders in perturbation theory that the beta functions for the gauge, Yukawa and quar-

tic couplings of the theory (6.3) are identical to the beta functions of the theory (6.8) for any N
and Nf , provided we make the replacement (6.14) in the latter together with {g2, y2, u, v} ↦
{−g2, −y2, −u, v}. This implies that the gauge, Yukawa, and the single and double trace quartic

16
Note that this analytic continuation is a purely mathematical feature, the existence of a consistent QFT with negative

degrees of freedom or �ipped spin statistics is not implied.
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Figure 6.5: Duality of conformal �xed points, and largeN equivalences of matter-gauge theories

with global SU (Nf ) × SU (Nf ) �avour symmetry.

Model Lagr.
Gauge

symmetry

Global

symmetry

Gauge

bosons

Fermion

type

Weyl

components
Scalars

Real scalar

components

1 (6.3) SO(2N ) SU (2Nf ) 2N 2
Majorana 2N ⋅ 2Nf H(ij) 4N 2

f
2 (6.8) Sp(2N ) SU (2Nf ) 2N 2

Majorana 2N ⋅ 2Nf H[ij] 4N 2
f

3 (6.10) SU (N ) SU (Nf ) × SU (Nf ) N 2
Dirac N ⋅ 2Nf Hij 2N 2

f

4 (6.10) SO(2N ) SU (Nf ) × SU (Nf ) 2N 2
Dirac 2N ⋅ 2Nf Hij 2N 2

f
5 (6.10) Sp(2N ) SU (Nf ) × SU (Nf ) 2N 2

Dirac 2N ⋅ 2Nf Hij 2N 2
f

Table 6.3: Gauge, fermionic, and scalar degrees of freedom in the Veneziano limit of models

discussed in the main text.

‘t Hooft couplings

{N g2, N y2, Nf u, N 2
f v} (6.15)

are strictly invariant and remain positive even within the theory which has negativeN andNf , as

they must [300]. For pure quantum gauge theories the invariance ofN g2 under (6.13) is explained

in [297]. Moreover, we have also con�rmed that the exact same equivalence holds true for beta

functions and running couplings in theories with Dirac fermions (6.10) coupled to orthogonal

or symplectic gauge �elds. In summary, we conclude that the negative dimensionality theorems

manifest themselves in the quantum theory through the equivalence of ‘t Hooft couplings and

their beta functions for any N and any Nf . We expect this equivalence to hold true to any order

in the perturbative loop expansion. For positive N and Nf , the large N equivalence of the

theories (6.3) and (6.8), and of the theories (6.10) with either SO or Sp gauge symmetry, is now

simple to understand, the key point being that the explicit dependence of beta functions on �eld

multiplicities arises, in the Veneziano limit, only through the parameter � given in (6.4). Since

� is insensitive to the combined sign change (6.14), the mapping of negative �eld multiplicities

in the partner theory back to positive ones leaves all beta functions for ‘t Hooft couplings (6.15)

invariant. The price to pay (for having positive �eld multiplicities on either side of the duality)

is that the equivalence holds only in the large N limit. In fact, in either theory the subleading

corrections start at order 1/N and 1/Nf and enter with the same magnitude but opposite signs

(once more owing to the negative dimensionality theorems) thus breaking the duality beyond

large N . This pattern explains the equivalence of beta functions for ‘t Hooft couplings as well as

the structure of subleading corrections found in the previous sections, and illustrated in Figs. 6.4
and 6.5. There are two further points worth noting with regards to large N equivalences. First,

counting the number of gauge �elds, Weyl fermions, and real scalar �elds in either of these, we

�nd that dual theories have the exact same number of degrees of freedom (see Model 1 vs Model
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2, and Model 4 vs Model 5 in Tab. 6.3). This no longer holds true beyond large N . Second, we

also emphasize that dual theories described here, in all cases, have the same global symmetry

but di�erent gauge symmetry. This supports the view that global symmetry is a property of the

system, whereas gauge symmetry is a property of the description of the system [301].

Unitary gauge groups. For the theories with Dirac fermions (6.10) and SU gauge symmetry

we con�rm that beta functions for ‘t Hooft couplings are mapped onto themselves under the

replacement (6.13), (6.14), valid for all N . Moreover, subleading corrections in the large N limit

arise as inverse even powers of �eld multiplicities 1/N 2
and 1/N 2

f and are insensitive to a change

in sign (6.14), meaning that the theory is e�ectively self-dual and mapped onto itself for any N ,

Nf , as it must. The result generalises to SU gauge theories with matter sectors di�erent from

(6.10).

Orbifold equivalence. We now turn to the equivalence of theories between Dirac fermions

coupled to unitary gauge �elds, and Majorana fermions coupled to orthogonal or symplectic

gauge �elds, illustrated in Fig. 6.4. Theories have di�erent global symmetries, and those with

Dirac fermions contain exactly half as many gauge, Weyl, and scalar degrees of freedom as those

with Majorana fermions in the Veneziano limit (see Models 1 and 2 vs Model 3 in Tab. 6.3).

Still, after the identi�cation of couplings via the map (6.11), all three theories have identical beta

functions, phase diagrams, conformal �xed points, and scaling exponents. This pattern suggests

that the theories are related by orbifolding. Orbifold projections in quantum �eld theory link

a parent theory to a child theory with the help of a discrete subgroup of the parent’s global

symmetry [281–286,288,289] (see [287,290] for reviews). "Orbifolding" eliminates those degrees

of freedom from the parent theory which are not invariant under the discrete subgroup, leading

to the child theory. At the perturbative level, orbifold equivalence is based on the observation

that planar diagrams of the parent and child theories coincide to all loop orders, possibly up to

a rescaling of couplings, and that correlation functions of gauge-invariant operators obey the

same set of closed equations [281]. In has also been shown that the equivalence of theories

holds non-perturbatively as long as the global symmetry used for the orbifolding is not broken

spontaneously [288]. In the setting illustrated in Fig. 6.4, the Majorana models (6.3) and (6.8) with

SO(2N ) or Sp(2N ) gauge symmetry and SU(2Nf ) global symmetry represent parent theories.

Then, using a suitable Z2 symmetry in the gauge and �avour groups [289] leads in both cases

to the child theory (6.10) with Dirac fermions, SU (N ) gauge symmetry, and SU(Nf ) × SU(Nf )
global symmetry [302]. In the Veneziano limit, the orbifold equivalence between parent and child

theories is exact, explaining the links observed in Fig. 6.4. The factor of two which appears in the

rescaling (6.11) re�ects that the parent theories contain twice as many gauge, Weyl, and scalar

degrees of freedom as the child theory, see Tab. 6.3. In the literature, some orbifold/orientifold

reductions have been reported which relate supersymmetric with non-supersymmetric theories

[285,287]. On the account that asymptotic safety in supersymmetry necessitates the gauge group

to be semi-simple [115, 227], however, we do not expect to �nd a supersymmetric parent for the

non-supersymmetric theories with weakly coupled ultraviolet �xed points and simple gauge

group studied here.

Dirac vs Majorana fermions. Another important observation of this study is that SO and
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Sp gauge theories with Majorana fermions and elementary mesons can develop asymptotically

safe UV �xed points while their counterparts with Dirac fermions cannot. To appreciate the

origin for this we write the leading loop contributions to the gauge and Yukawa beta functions

as )t�g = �2g (−B + C�g − D�y ) and )t�y = �y (E�y − F�g) with C, D and B, E, F denoting universal

two-loop and one-loop coe�cients respectively. A necessary condition for weakly interacting

UV �xed points is given by [110]

C′ ≡ C − D F/E < 0 . (6.16)

A generic asymptotically non-free theory (B < 0) has loop coe�cients C, D, E, F > 0 [110], im-

plying C′ ≤ C . The condition (6.16) states that asymptotic safety requires the (Yukawa-shifted)

two loop term to become negative, C′ < 0. In all theories with exact asymptotic safety (meaning

FP2 in Tab. 6.2) we �nd the universal shift

C′/C = −
38
325

, (6.17)

assuming small 0 < � ≪ 1. Hence, the Yukawa interactions roughly induce a −112% correction

to the two-loop gauge coe�cient, which is large enough to change the sign of C and to enable

asymptotic safety. Replacing Majorana by Dirac fermions in the theories with SO or Sp gauge

symmetry e�ectively changes the scalar matter content. In fact, adjusting N and Nf such that

theories display the same number of gauge �elds and Weyl fermions, we �nd that the settings

with Dirac fermions only feature half as many scalar degrees of freedom (see Models 1 and 2

vs Models 4 and 5 in Tab. 6.3). Although scalars are gauge singlets, they propagate in loops

and modify the Yukawa loop coe�cient E which is proportional to the number of degrees of

freedom [224]. Here, the coe�cient E| Majorana ∝ 2Nf + 2N reduces down to E|Dirac ∝ Nf + 2N
and gives the �rst term in �y of (6.6) and (6.12), respectively, after ‘t Hooft normalisation. With

all other coe�cients untouched, we �nd

C′/C =
4
125

(6.18)

instead of (6.17). This corresponds to a −97% correction of the two-loop gauge coe�cient C ,

which is narrowly too small to change the overall sign ofC . The result (6.18) explains why models

with Dirac fermions and SO or Sp gauge symmetry may display interacting infrared �xed points,

but cannot develop interacting ultraviolet ones, much unlike their counterparts with Majoranas.

As a �nal remark, we note that the ratio (6.18) also dictates the ratio of gauge couplings at the

Banks-Zaks �xed point compared to the gauge-Yukawa �xed point in asymptotically free SO and

Sp gauge theories with Dirac fermions (6.10). There, we found that � BZ

g /� GY

g |∗ = C′/C provided

that 0 < −� ≪ 1 (see FP1 and FP3 in Tab. 6.2). Hence, the parametric smallness of the ratio of �xed

point couplings, as observed in Fig. 6.3, can now be attributed to the "near-miss" of asymptotic

safety due to (6.18).



6.5 Majoranas & large-N equivalences 130 Discussion and conclusions

6.5 Discussion and conclusions

As a proof of principle, we have established that asymptotic safety arises in matter-gauge theories

with Majorana fermions, and in theories with SO and Sp gauge symmetry (6.3), (6.8). Together

with the earlier discovery of asymptotic safety with Dirac fermions in SU gauge theories (6.10),

our results clarify that interacting ultraviolet �xed points can readily be realised for either type

of fermions and for any of the classical gauge groups. Intriguingly though, SU gauge symmetry

does require fermions to be Dirac, whereas SO, Sp gauge symmetry does require fermions to be

Majorana. We have also put forward new classes of large N equivalences between seemingly

di�erent gauge-matter theories. Equivalences between pure SU , SO and Sp gauge theories in

the planar limit have been known for a long time. Here, we have explained how equivalences

arise amongst theories with di�erent local symmetries, di�erent matter content, and, possibly,

di�erent global symmetries. Invariably, they imply identical all-order RG �ows, phase diagrams,

and conformal critical points (Tab. 6.2). Examples (Tab. 6.3) include a triality of asymptotic safety

(Figs. 6.1 and 6.4) or dualities amongst theories with identical infrared critical points (Figs. 6.3
and 6.5). Based on the underlying structure, many more large N equivalences arise in gauge

theories with matter and Yukawa interactions, also o�ering new directions for orbifold reduc-

tions [287, 302]. Finally, we note that our theories, at interacting �xed points, correspond to

unitary conformal �eld theories. This link allows the extraction of conformal data such as scal-

ing dimensions [2, 112, 114, 115] or structure coe�cients [303] directly from the renormalisation

group [140], and in a manner complementary to the conformal bootstrap [147]. It will be inter-

esting to see whether the equivalences discovered here (Figs. 6.4 and 6.5) extend to all conformal

data. This is left for future work.
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7 Asymptotic safety beyond the Standard
Model

7.1 Model

In this chapter, we will consider more realistic QFT descriptions of asymptotically safe particle

physics. This means each candidate theory has to be e�ectively described by the Standard Model

(SM) within experimentally accessible energy regimes. Before the electroweak symmetry break-

Field Gen. U (1)Y SU (2)W SU (3)C
Fermions L 3 −1/2 2 1

E 3 −1 1 1
Q 3 +1/6 2 3
U 3 +2/3 1 3
D 3 −1/3 1 3

Scalars H 1 +1/2 2 1

Table 7.1: Field content of the Standard Model of particle physics with number of generations

and gauge multiplicities.

ing, the SM consists of a U (1)Y × SU (2)W × SU (3)C gauge group, describing hypercharge, weak

isospin and colour charge, as well as the matter content is listed in Tab. 7.1. Besides the gauge

interactions, there is also a Yukawa and scalar sector due to interactions the Higgs �eld H :

yuk, SM = −Y ij
e H L†i Ej − Y

ij
d H Q†

i Dj − Y
ij
u H

† Q†
i Uj + h.c.,

H = −�2 H†H − � (H†H)
2 .

(7.1)

SM extensions. As stated above, the goal is to construct a suitable extension of the Standard

Model. The strategy to achieve asymptotic safety is to use the model (1.50) as a building block,

and embed it into the BSM theory. The advantage of this approach is that the mechanism of

asymptotic safety is well understood. Although the Veneziano limitNf ,c →∞ as a key ingredient

is not realistic, it has been shown in Ch. 5 that �nite values of Nf ,c within a reasonable magnitude

are compatible with the asymptotic safety phenomenon.

Several ansätze for the embedding may be pursued. For instance, gauge and �avour groups as

well as particle sectors of both SM and the safe template theory can be kept distinct. This retains

the quantities Nf ,c to ensure asymptotic safety. However, interactions of both sectors are limited

to a few portal terms, which may lead to decoupling in the UV and narrows corrections to the

SM in the IR.

To avoid this, both SM and template sector can be coupled together by gauge interactions. The

U (1) triviality problem can also be addressed in that manner. For instance, the SM gauge group
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may be embedded in a GUT scenario, or the template gauge group may be replaced with the

SM one, an alley pursued in [121, 122]. In the latter case, the SM �eld content of Tab. 7.1 are

supplemented byNf BSM fermions L,R
i , in the representations (Y , R2, R3), as well as a completely

uncharged Nf × Nf scalar matrix Sij . In addition to the SM interactions (7.1), the BSM ones

yuk, BSM = −y  L†
i Sij  R

j + h.c.,

S = −�2S tr [S
†S] − u tr [S†SS†S] − v tr [S†S]

2 − � H†H tr [S†S]
(7.2)

are also included in the action. This approach does not violate �avour symmetry of the BSM

sector explicitly and retains the quantity Nf , while trading Nc for Y and R2,3, forfeiting perturba-

tive exactness. Although strict perturbative control is lost [122], many potential �xed points can

be identi�ed that allow for matching onto the SM as low as at the TeV scale. This gives experi-

mental experimental access to signatures such as long-lived particles, R-hadrons and Drell-Yan

production [121].

Connecting �avour. So far, only the gauge symmetries of the SM and BSM sector have been

joined, while keeping the �avour symmetries decoupled. In the SM, each Weyl fermion con-

tributes its own subgroup, yielding U (3)L × U (3)E × U (3)Q × U (3)U × U (3)D overall. These groups

are being broken by the SM Yukawa interactions (7.1) except for U (1) groups for lepton and

baryon number as well as hypercharge.

On the BSM side, the �avour symmetry is U (Nf ) L × U (Nf ) R × U (Nf )SL × U (Nf )SR , which gives

rise to a general Yukawa interaction yijkl  L
i Sjk  R

l + h.c. The Yukawa term yijkl = y �ij�kl breaks

this group down to U (Nf ) L × U (Nf ) R × U (1)PQ.

We will now seek to interweave the SM and BSM global symmetries by adding a new Yukawa

interaction, coupling to the SM Higgs,  L
or  R

and one of the SM fermions. This will also

provide a connection phenomena of �avour physics. In order to identify �avour groups, we �x

Nf = 3. The weak hypercharge, weak isospin and colour representation of the BSM fermions are

constrained by writing down the aforementioned Yukawa interaction. Tab. 7.1 is supplementing

by a 3 × 3 gauge singlet scalar matrix S, and 3 vector-like fermions  L,R
in representations listed

in Tab. 7.2.

In all of the models A-M of Tab. 7.2, we can formulate Yukawa interactions and scalar potentials

yuk = yuk, SM + (� − y  L†
i Sij  R

j + h.c.) ,

pot = �2H H
†H + �2S tr [S

†S] + �det [det S + det S†]

− � (H†H)
2 − � H†H tr [S†S] − u tr [S†SS†S] − v tr [S†S]

2 ,

(7.3)

where y is the pure BSM Yukawa interaction inherited from the template theory, � the SM Higgs

quartic, u and v are the single and double trace BSM quartics and � a scalar portal coupling

between the sectors. Mass terms �H and �S are present for the Higgs and the BSM scalar alike,

as well as a cubic interaction �det owning to the choice Nf = 3.

Yukawa sector. Mixing between the Higgs and the BSM scalar is implied through the portal

� , while SM–BSM fermion mixing occurs through Yukawa terms within � , which is model

dependent. In the following, we will focus on models A-F where the BSM fermions are lepton-
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Model U (1)Y SU (2)W SU (3)C # BSM Yukawas

A −1 1 1 3 L†H  R  L†S E
B −1 3 1 2 L† ⊗ H  R

C −1/2 2 1 3  L†H E L†S  R

D −3/2 2 1 2  L†H†E
E 0 1 1 2 L†H† R

F 0 3 1 2 L† ⊗ H† R

G +2/3 1 3 3 Q†H  R  L†S D
H +2/3 3 3 2 Q† ⊗ H  R

I −1/3 1 3 3 Q†H† R  L†S U
J −1/3 3 3 2 Q† ⊗ H† R

K +1/6 2 3 4  L†H D  L†H†U Q†S  R

L +5/6 2 3 2  L†H†D
M −7/6 2 3 2  L†H U

Table 7.2: Representations of L,R
and number of BSM Yukawa coupling matrices for each model.

By design, this number is at least two, the term  L†S  R
is always present. For models C,D and

K-M with weak doublets, one may choose to replace the representation 2 ↦ 2, which can be

absorbed into a �eld rede�nition  L,R ↦ " L,R
. The symbol ⊗ indicates a bilinear in the adjoint

representation of SU (2)W .

like colour singlets, giving rise to the Yukawa sector

A

� = −�ij L
†
ia Ha  

R
j − �

′ L†
i Sij Ej , B

� = − �ij L
†
ia t

A
ab Hb  

R
jA,

C

� = −�ij  
L†
ia Ha Ej − �′L†a Sij  

R
ja , D

� = − �ij  
L†
ia "ab H

†
b Ej ,

E

� = −�ij L
†
ia "ab H

†
b  

R
j , F

� = − �ij L
†
ia "ab t

A
bc H

†
c  

R
jA,

(7.4)

where a, b, … denote SU (2)W fundamental indices. In the following, we will simplify the RG

analysis by assuming

�ij = � �ij for models A-F. (7.5)

This melds SM and BSM �avour symmetries by identifying U (3)L with U (3) R groups in models

A, B, E, F and U (3)E with U (3) L in models C and D. Models A and C are special, BSM fermions

 R
and  L

have the same representations as the SM �elds E and L, respectively. Hence, an

additional Yukawa term ∝ �′ to be formulated, which breaks the �avour symmetry even further,

by identifyingU (3)E[U (3)L]withU (3) R [U (3) L] in model A [C]. Together with (7.5), this absorbs

the entire BSM �avour group into the SM one. A third such theory is not realised in the set of

colour singlets A-F, as a sterile neutrino is missing in the SM. This leaves model E without a

�′-interaction, and  R
takes the place of a right-handed neutrino.

Scalar potential. For each of the models A-M in Tab. 7.2, the scalar potentialpot is universal. Its

classical moduli space implies the existence of two distinct vacua V ±
, which depend on the sign

of the BSM quartic u. In accordance with [113, 267], conditions for the stability of the potential

are found to be

V + ∶

{
� > 0, u > 0, u + 3 v > 0,
� > −2

√
� (u/3 + v)

V − ∶

{
� > 0, u < 0, u + v > 0,
� > −2

√
� (u + v)

. (7.6)
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When the BSM scalar acquires a vaccum expectation value (VEV), the remaining U (Nf ) L ×
U (Nf ) R BSM symmetry group is softly broken dependent on the vacuum con�guration

⟨Sij⟩ =

{
vs �ij for V +

vs �iṅ�jṅ (no sum) for V − , (7.7)

where in V +
, a diagonal U (3) �avour symmetry is retained, while for V −

a single one of the

diagonal components acquires a VEV, violating �avour universality. In particular, this breaks SM

�avour symmetries via the �, �′ Yukawa interactions. In general, o�-diagonal mass terms are

introduced through VEVs and the portal coupling � , resulting in scalar mixing between SM and

BSM sector. In the same manner, BSM fermions acquire mass and mix with the SM ones via �′

and � Yukawas as the Higgs acquires a VEV as well.

7.2 Running couplings

Next, we will investigate the RG �ows �i = )�i/) ln � in terms of the quantities �c = c2/(4�)2, for

c being gauge or Yukawa interactions, and �q = q/(4�)2 with quartics q.

7.2.1 Top-down approach

Starting on the side of the full theory, �-functions can be solved directly to gain a set of potential

�xed point. Their UV critical surface is computed and trajectories towards the IR analysed for

matching against the SM.

Leading order. Now, we will investigate the two-loop gauge and one-loop Yukawa system of

RGEs. As quartics decouple algebraically, we can solve the gauge-Yukawa sector �rst. This will

be referrred to as the (2,1,0) approximation. As all BSM matter in models A-F is colourless, the

strong coupling �3 is expected to remain asymptotically free, suggesting � ∗3 = 0. To avoid the

triviality problem, the hypercharge coupling needs to have an interacting �xed point � ∗1 ≠ 0,
or be stabilised by the weak coupling as in (1.44). Both of those mechanisms require Yukawa

contributions � ∗�,�′,y to be sizeable. In models E and F, �1 is independent of �y , and � ∗� is too small

to avert the triviality of �1. Surprisingly, model C does not provide a �xed point solving this

problem either, leaving only A, B and D with viable �xed point candidates.

For model A, these candidates are listed in Tab. 7.3, see there for details of the notation. The

Gaussian is a saddle point due to the coe�cients (1.29) B1 < 0 < B2, no BZ1 and BZ12 can exist for

theU (1)Y gauge group. BZ2 is infrared, with only �� being relevant, as BSM fermions are SU (2)W
singlets. The �xed point GY2� is a complete infrared sink. Moreover, there is a line of �xed

points covering all solutions GY1�′ , GY1y and GY1�′y, �xing a value of the quantity ∝ (��′ + �y).

Any other linear combination of these couplings then represents a second, degenerate parameter

giving rise to a marginal eigendirection. However, this phenomenon is lifted by higher-order

corrections. Taking into account the relation �y/�y = ��′/��′ + 2�� , the points GY1��′y and

GY12��′y cannot occur. This leaves only four candidates of which GY1��′ and GY1�y can be

matched onto the SM, while GY12��′ and GY12�y cannot, see Fig. 7.1. In models B and D, similar

observations can be made, a complete discussion is contained in [304].
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FP � ∗1 � ∗2 � ∗� � ∗�′ � ∗y rel. irrel. Matching

G 0(+) 0(−) 0(+) 0(+) 0(+) 1 4 –

BZ2 0(+) 0.543 0(+) 0(+) 0(+) 1 4 –

GY2� 0(+) 0.623 0.311 0(+) 0+ 0 5 –

GY1�′y 2.746 0(+) 0− 4.120 − � ∗y � ∗y 2 2 –

GY1��′ 1.063 0(−) 0.886 1.594 0+ 2 3 3

GY12��′ 1.105 0.569 1.205 1.657 0+ 1 4 7

GY1�y 2.151 0(−) 0.782 0− 3.032 3 2 3

GY12�y 2.267 0.200 0.933 0− 3.165 2 3 7

Table 7.3: Real �xed points of model A in the (2,1,0) approximation. FP indicates if the �xed point

is the Gaussian (G), Bankz-Zaks (BZ) or gauge-Yukawa (GY) type. Non-vanishing couplings at

each �xed point are given as indices. Fixed point values, as well as number of relevant (rel.) and

irrelevant (irrel.) eigendirections are listed. For vanishing couplings, a superscript −/+ indicates

if it is relevant/irrelevant, parentheses mean that the �ow is logarithmic rather than a power law.

The entry GY1�′y is actually a line of �xed points, giving rise to an exactly marginal coupling.

A dash in the last column indicates that a point is not a �tting UV candidate, a 3 means that it

can be matched against the SM, while 7 denotes the opposite.

Figure 7.1: Matching of model A in the (2,1,0) approximation. Right panel: schematic phase

diagram of various �xed points from Tab. 7.3 in the (��′ , �2) plane, arrows point from the UV to

the IR. Middle panel: RG �ow from of UV �xed point GY12��′ , which cannot be matched against

the SM, as the coupling �2 is captured in the IR sink GY2� . Left panel: RG �ow from GY12��′

which is matched against the SM around at the TeV scale.

Higher loop orders. The potential UV �xed points GY1��′ , GY12��′ , GY1�y and GY12�y in

Tab. 7.3 all have components of order one, suggesting that the (2,1,0) approximation in per-

turbation theory is not su�cient. Indeed, �xing all gauge groups, representation and Nf = 3
has carried us far away from the perturbative control of earlier chapters [121, 122]. This brings

the applicability of perturbation theory into question. Nevertheless, we will proceed cautiously

about the result obtained, in good faith that the foundational principle of Yukawa couplings sta-

bilising the gauge sector may still hold in this regime. However, there is no reason to believe that

the (� + 1, � , � ) approximation scheme is reliable. Studies of �xed points in various combinations

of loop orders are tedious and show little evidence of recurring patterns. Moreover, the complex-

ity of solving the RG system grows exponentially with the number of couplings and loop orders,

which becomes numerically challenging. This leads us to switch strategy in the next section.
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7.2.2 Bo�om-up approach

Planck safety. To overcome the shortcomings of the previous section, we will follow the dia-

metrical approach of starting at the SM matching scale, and investigate the RG running towards

the deep UV. This requires the adopting of a more practical notion of safety until the Planck

scale, instead of the existence of a UV �xed point. We will subsequently refer to the property as

Planck safety. Consequently we demand that no singularities in the RG evolution such as Lan-

dau poles arise. Moreover, no vacuum instability between the SM matching and the Planck scale

must occur. In this range, an agnostic view toward quantum gravity is justi�ed, as its dynamics

are suppressed by the Planck mass, and their in�uence beyond it are not clear.

BSMcritical surface. At the matching scale �0, some running couplings are predicted by the SM,

while the rest are free parameters. The set of initial conditions of these pure BSM couplings at �0
corresponding to Planck-safe trajectories form the BSM critical surface in parameter space. In our

particular search, we assume that the BSM fermions acquire a universal mass ∝ MF  L†
i  R

i +h.c.,

which represents our matching scale, and is set to

�0 = MF = 1TeV. (7.8)

We will suppress any threshold corrections and higher order operators in the matching pro-

cedure, consistent with MF being assumed large with respect to the electroweak scale. Utilis-

ing [20, 24], we �x six SM parameters

�1(�0) ≈ 8.30 ⋅ 10−4, �2(�0) ≈ 2.58 ⋅ 10−3, �3(�0) ≈ 7.08 ⋅ 10−3,

�t (�0) ≈ 4.61 ⋅ 10−3, �b(�0) ≈ 1.22 ⋅ 10−6, ��(�0) ≈ 6.09 ⋅ 10−4,
(7.9)

where we have only considered top and bottom Yukawas and completely neglected any lepton

Yukawa in Ye , due to its small size. As a consequence, our models assume the lepton �avour

symmetry to be approximately restored in the UV, which is compatible with the (7.5).

Hence, �ve dimensionless parameters ��,y,�,u,v (�0) remain in models B and D-F, while A and C

have six, also including ��′ (�0). This means the BSM critical surface is a 5 or 6 - dimensional

manifold to scan over. With a �xed matching scale a certain (direction dependent) reliability ra-

dius of the BSM critical surface around �BSM = 0 is implied for each con�guration of �-function

loop orders utilised in the running. The bottom-up approach provides therefore a more system-

atic control than the top-down one. In our case, two-loop running is used for all couplings, but

before BSM theories are studied, the pure SM case is revisited, for which three-loop corrections

are available.

Standard Model running. The RG evolution of SM is displayed in Fig. 7.2 from the matching

scale of 103 GeV, past the Planck scale at MPl ≈ 1019 GeV (grey band) until the deep UV for

demonstrational purposes, ignoring contributions from quantum gravity. All parameters remain

weakly coupled |�i | ≤ 10−2 before MPl and run relatively slowly, with �2,3 as well as �t,b being

asymptotically free, while �1 exhibits a Landau pole beyond the Planck scale around � ≈ 1041 GeV.

Mainly driven by �t contributions, the Higgs coupling �� becomes negative around 1010 GeV but

recovers at 1029 GeV until the Landau pole. The negativity heralds the metastability of the Higgs
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Figure 7.2: RG running of the hypercharge (blue), weak (red) and strong (yellow) gauge cou-

plings, the norm of the Higgs quartic (purple) and top and bottom Yukawas (green, solid and

dashed) in the SM at three-loop order over the renormalisation scale �. The grey band marks

the range two orders of magnitude around the Planck scale, where quantum gravity e�ects take

hold. Trajectories are extended past this region to illustrate their stability. The fate of the Landau

pole therein is unknown.

potential [23–25] and will be utilised as an indicator. If we allow for metastability, the SM already

�ts the criterion of Planck-safety.

Feeble BSM couplings. A natural starting point for exploring the BSM critical surface is around

vanishing BSM couplings when the running is most insensitive to the loop order. If the BSM cou-

plings are chosen feebly small, e.g. �BSM < 10−6, their in�uence is negligible for the SM running

and they e�ectively decouple, remaining in the feeble regime. This is displayed in Fig. 7.3. The

models A-F are then SM extensions with additional electro-weakly charged matter. This shifts

the Landau pole of �1 closer to the IR, and in models B, D and F even introduces one for �2. Con-

sequently models A, C and E remain Planck safe with Higgs metastability, while in model B [D

and F] Landau poles in �1 [�2] occur before the Planck scale. Curiously, for the weak triplet mod-

els B and F, the Higgs sector appears to be stabilised. In all cases the behaviour does not change

signi�cantly when BSM couplings are increased but remain one order of magnitude smaller than

the SM ones. In order to move Landau poles in models B, D and F, one needs to advance to a

weakly coupled BSM regime.

Weakly coupled regime. Scanning the BSM critical surface regions where couplings are al-

lowed in the same order of magnitude or higher as SM ones is tedious due to its high dimension-

ality. However, a loose classi�cation certain regions by the magnitude of BSM Yukawa couplings

��,�′,y is possible. In fact, these Yukawas play a double role: they slow down the RG running

in the gauge sector and move Landau poles towards the UV, while they may also stabilise the

quartic sector of the scalars they couple to. This stabilisation is only visible beyond the leading

orders in perturbation theory. We even �nd walking regions where the RG evolutions of Yukawas

and quartics are almost deadlocked due to the vicinity of (pseudo) �xed points, moving Landau

poles and ensuring stable potentials. This causes certain cases to stand out like isles of stability,

in particular:

(a) �y ≠≠≠ 0, ��,�′ ≈ 0: This scenario, depicted in Fig. 7.4, is most similar to the mechanism

of asymptotic safety in the template theory. The value of �y ||MF slows down the running

of �1,2 and moves all Landau poles past MPl. �y ||MF is �xed on a broad range of scales by
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Figure 7.3: RG running of all gauge couplings, Yukawas and quartics at two-loop order over the

renormalisation scale for models A-F. All BSM couplings are feebly small �BSM < 10−6.

a walking regime also stabilising the BSM potential �u,v . The Higgs on the other hand

remains metastable, unless �� ||MF is larger than a model-dependent value. Except for the

triplet models B and F, non-zero values of �� eventually destabilise the walking and lead

into poles.

(b) �� ≠≠≠ 0, �y,�′ ≈ 0: The opposite case to (a) is plotted in Fig. 7.5. A walking regime occurs

on the SM side, driven by �� . This stabilises the Higgs potential, while �v self-stabilises on

the BSM side. Small initial values of BSM couplings are driven to zero. However, a Landau

pole still occurs before MPl in model D, and is barely moved past it in B.

(c) ��,�′ ≠≠≠ 0, �y ≈ 0: For model A and C, the additional Yukawa coupling allows to have a

walking regime involving SM and BSM sectors, see Fig. 7.6, stabilising both at the same

time. This locks all couplings except for �1,2,3,� which run only slowly from below until

far beyond the Planck scale. When �nally the trajectory breaks free from the pseudo �xed

point with � ∗1,2,3,y,� = 0, it is absorbed into a proper UV one. Smaller values for �� ||MF re-

quire larger |�� | ||MF , but Higgs stability is not guaranteed.
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Figure 7.4: Two-loop RG evolution of gauge, Yukawa and quartic couplings in models A-F with

�y ||MF ≈ 10−2 to 10−1 and ��,�′ ||MF ≈ 0. The grey band marks the range two orders of magnitude

around the Planck scale. Corrections due to quantum gravity are neglected.

BSM critical survey. As the BSM Yukawa coupling play a key role for Planck safety, slices of

the BSM critical surface can be visualised by scaning over ranges of ��,y ||MF and ��,�′ ||MF for

model A and C, while �xing the other BSM parameters e.g. to orders of magnitude below the

SM ones. This is shown in Fig. 7.7 and Fig. 7.8, wherein the colours indicate the vacuum at the

Planck scale of the RG trajectory with these matching conditions. Both plots re�ect that for very

small Yukawas, models A, C and D are either in the stable vacua V ±
(depending if �u ||MF ≷ 0,

blue or green) or with the Higgs coupling metastable 0 > �� > −10−4 (yellow) at the Planck scale.

In models B, D and F however poles are reached before MPl (red). For small �� ||MF and larger

�y ||MF , the case (a) is visible in Fig. 7.7, but it turns out to have an unstable Higgs potential for

model D (�� < −10−4, brown). There is also a remarkable band for certain values of �y ||MF where

the BSM potential is unstable (grey). In the same manner, case (b) can be found in each �gures.

The interference of both cases cause poles around the region ��,y ||MF ≳ 10−2. In Fig. 7.8, case (c)
with ��,y ||MF ≳ 10−2 exhibits a stable V +

vacuum. For smaller �� ||MF , model A remains stable,

but the Higgs potential in model C does not for the �xed values of �� ||MF . This concludes and

summarises our survey of the BSM critical surface.
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Figure 7.5: Renormalisation group �ow of all dimensionless parameters in models A-F at two-

loop order. �� is larger than �y and � ′� = 0. Quantum gravity corrections are neglected.

Figure 7.6: Two-loop running couplings over the renormalisation scale in models A and C with

�y = 0 and ��,�′ ≠ 0. The stability of the trajectories beyond MPl without gravity is also shown.
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Figure 7.7: BSM critical surface for models A-F with {��′ , �� , �u , �v} |MF = {0, 5, 1, 4} ⋅ 10−5.
Depending on values

{
�� , �y

} ||MF the colours indicate if the vacuum atMPl is stable in V ±
(blue,

green), �u,v |M
Pl

are stable but �� |MPl
< 0 (yellow for �� |MPl

> −10−4, otherwise brown), unstable

(grey) or poles are reached before this scale (red).

Figure 7.8: BSM critical surface for models A and C with matching conditions{
�y , �� , �u , �v

} ||MF = {0, 5, 1, 4} ⋅ 10−5 in dependence of {�� , ��′} ||MF . The colouring is

the same as for Fig. 7.7.
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7.3 Phenomenology

In this section, we will highlight a few phenomenological aspects of models A-F in Tab. 7.2. An

extended discussion can be found in [304].

Scalar mixing. After electroweak symmetry breaking, mixing between the SM Higgs ℎ and the

BSM scalar component s occurs. Both are related to the unbroken �elds H , S via

H =
1√
2 (

√
2ℎ+

vℎ + ℎ + iℎ′)
, Skk = 1√

2 (vsk + sk + i s
′
k) . (7.10)

In the case of a �avour-n speci�c vacuum V −
, we have vsi = vs �in and the BSM scalar s = sn,

while for V +
one obtains vsi = vs/

√
3 and si ↦ s/

√
3 for all i. The rotation into mass eigenstates

ℎ1,2 is parametrised by the mixing angle �

(
ℎ1
ℎ2)

=
(
cos � − sin �
sin � cos �)(

ℎ
s)

. (7.11)

The mass matrix can be extracted from (7.3) and is given by

VS =
1
2 (

ℎ
s)

ᵀ

(
m2
ℎℎ m2

sℎ

m2
sℎ m2

ss)(
ℎ
s)

. (7.12)

In the following, we introduce the auxiliary variable n with n = 1 for vacuum V −
and n = 3 for

V +
. Inserting the relations

�2H = � v2ℎ + 1
2� v

2
s , �2S = 1

2� v
2
ℎ + (u/n + v) v

2
s + n−1

4
√
6 �det vs (7.13)

from expanding the potential (7.3) around the minima in ℎ and s at tree level gives the compo-

nents

m2
ℎℎ = 2� v

2
ℎ , m2

sℎ = � vsvℎ , m2
ss = 2(u/n + v) v

2
s + 3n−14

√
6 �det vs , (7.14)

which yield the mass eigenvalues

m2
1,2 =

1
2 [m

2
ss + m

2
ℎℎ ∓

√
(m2

ss − m2
ℎℎ)

2 + 4m4
sℎ] (7.15)

of the respective scalars ℎ1,2. This gives rise to the mixing angle

tan 2� =
2msℎ

m2
ss − m2

ℎℎ
≈

�√
�(u/n + v)

mℎℎ

mss
+ (

m2
ℎℎ

m2
ss )

, (7.16)

where the latter part is obtained in the limit of large mass splitting with mss ≫ mℎℎ and �det = 0.
The mixing angle enters each SM vertex when rotating into the mass basis. In particular, it is

detectable as a deviation from SM decay rates, which become Γ (ℎ1 → X) = cos2 � Γ (ℎ → X).
Higgs signal strength measurements [20] then suggest

sin 2� < 0.2, (7.17)
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implying a lower mass bound on the BSM scalar s. The 17 additional scalar degrees of freedom

give rise to a plethora of interactions, which are very distinct from those of e.g. Two-Higgs-

Doublet models.

Fermion mixing. In a similar vein, mass mixing also occurs among the left- and right-chiral

SM and BSM fermions,

(
f iL
F iL)

=
(
cos � iL − sin � iL
sin � iL cos � iL)(

Li
 L
i )

,
(
f iR
F iR)

=
(
cos � iR − sin � iR
sin � iR cos � iR)(

Ei
 R
i )

. (7.18)

Here the index i counts both �avours and SU (2)W components. The exact values of � iL,R do not

only depend on the model A–F, but also the vacuum V ±
. For instance, model A in V +

gives rise

to a mass matrix

VF = (
L� i
 L
i )

†

(
Y ij
e
vℎ√
2 �ij vℎ√2

�′�ij vs√
6 y �ij vs√

6 + MF �ij)(
Ej
 R
j )

+ h.c., (7.19)

while the neutrino L�i is not involved in the mixing. In the limit of large BSM masses vℎ ≪ vs , MF

and small SM Yukawas Ye ≈ 0, the mixing angles read

tan � �iL =
vℎ �

√
2MF + vs√

3y +
v2s �′2

3
√
2MF

+  (v3ℎ) , tan � �iR =
vs �′√

6MF + y vs
+  (v2ℎ) , (7.20)

and give rise to the mass eigenvalues

mf i =
vℎ√
2 [y�i −

vs � �′√
6MF + y vs ]

+ (v3ℎ) , mF i = MF +
vs√
6
y +

vs � �′√
6MF + y vs

vℎ√
2
+ (v2ℎ) , (7.21)

where Y ij
e = y�i � ij and �ij = � �ij . The mixing a�ects SM interactions in each of the models. In

particular, the coupling to the Z 0 boson is modi�ed in the electroweak sector. In general, this

yields

VZf f =
g2

2 cos �W
Z� [� i
 � (g� ,V + g� ,A 
5) �i + g� � i
 � (1 − 
5) �i + g  i


� i]

=
g2

2 cos �W
Z� [f � i


� (g̃�i ,V + g̃�i ,A 
5) f� i + g̃�i f �i

� (1 − 
5) f�i + … ]

(7.22)

where the modi�ed coupling prefactors read

g̃�i ,V =
1
2 (g� ,V + g� ,A) cos

2 � �iR +
1
2 (g� ,V − g� ,A) cos

2 � �iL +
1
2g (sin2 � �iR + sin

2 � �iL ) ,

g̃�i ,A =
1
2 (g� ,V + g� ,A) cos

2 � �iR −
1
2 (g� ,V − g� ,A) cos

2 � �iL +
1
2g (sin2 � �iR − sin

2 � �iL ) ,

g̃�i = g� cos
2 ��iL + 1

2g sin2 ��iL .

(7.23)

Experimental constraints for each |g̃X − gX | ≲ 10−3 [20] suggest that the fermion mixing is small.

In combination with the observation that one of the mixing angles follows �L/R ∝ � vℎ
MF

in each of
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Figure 7.9: Drell-Yan observables Y (solid lines) and W (dashed) (7.25) at the leading order (7.26)

for models A (green), B (red), C (blue), D (solid yellow, dashed blue) and F (dashed red). Due to

BSM fermions being uncharged, model A [F] does not contribute toW [Y ], and model E provides

no predictions for either. Doublet [triplet] models C and D [B and F] give identical contributions

to W . Lowest experimental bounds from data LEP are marked in black and projections for LHC

sensitivity at 13 TeV in grey [306].

the models for vs → 0, an upper bound

�� ≲ 4 ⋅ 10−4(
TeV

MF )

2

(7.24)

on the Yukawa � is implied.

As the BSM sector is colourless, mixing with SM quarks and constrains from the strong sector

are avoided. Moreover, U (1)B−L remains intact, which protects the stability of the proton.

Fermionmass bounds. The BSM fermions in models A-F are colourless, but carry weak isospin

and hypercharge, rendering them detectable in electroweak precision measurements. The only

exception is model E, where the BSM matter sector is completely uncharged. The fermion mass

MF can be constrained from charged and neutral current Drell-Yan processes through the param-

eters Y and W [305], given by

Y ,W =
1
10
�1,2 c1,2

M2
W

M2
F

(Be�,SM

1,2 − Be�

1,2) with c1 = 3
5 and c2 = 1. (7.25)

Here, Be�

1,2 are the e�ective one-loop coe�cients from �1,2 as in (1.44), which are

(Be�,SM

1 − Be�

1 ) = 8 dR2 Y
2
F +  (�) , (Be�,SM

2 − Be�

2 ) = 8 SR22 +  (�) , (7.26)

depending on the hypercharge as well as dimension and Dynkin index of the SU (2)W represen-

tation for the BSM fermions. Experimental bounds [306] then suggest MF to be in the order of a

few hundred GeV, see Fig. 7.9. This justi�es the choice MF = 1 TeV in the previous section. No

similar bounds arise for the BSM scalar as it is uncharged.

Production. Tree-level production channels are listed as processes a - g in Fig. 7.10. Due to all
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BSM matter being colourless, s-channel productions of  in either pp- or �� -colliders are only

due to electroweak vector boson fusion (a, b) or Higgs exchange (c). For �� -machines, t-channel

processes with Higgs or BSM scalar exchanges are also available (d, e). The BSM scalar may be

produced via the Higgs portal �� (f ) at any collider, or for models A and C via the second Yukawa

� ′� , again for an �� experiment (g).

f

f

ψ

ψ

γ, Z

(a)

u

d

ψ−Q

ψQ−1

W

(b)

f

f

`+

ψ−

h

(c)

`− ψ−

ψ+`+

h, S

(d)

`− ψ−

`+`+

h

(e)

f

f

S/h

S†

h

(f )

`− S†

S/h`+

ψ

(g)

Figure 7.10: Production channels of the BSM particles at pp and �� colliders, with f = � , q. In

diagram (f ) the S and S† labels are schematic for model A.

Decay. As the BSM fermions are heavy, the leading decay channel is through the Yukawa inter-

action coupling to the Higgs

Γ( q → � qℎ) =
�
4
C2 � �� MF (1 −

m2
ℎ

M2
F )

2

and C2 � =

{
1/2 in models B, F

1 otherwise

. (7.27)

For �� ≈ 10−4 and MF ≈ 1 TeV, this implies a prompt decay Γ−1 ≈ 10−24 s. As each model has a

di�erent �-interaction, the decay channel allows to di�erentiate between them. The fermionic

components not coupling to the Higgs decay via  q →  q∓1W ±
�rst, leaving displaced vertex

signatures [307]. Models A and C also permit decay via the second Yukawa with the decay rate

Γ( q → � qS) =
�
2
��′ MF (1 −

M2
S

M2
F )

2

. (7.28)

if the BSM scalar is light. In the same manner, the BSM scalar decays via the Yukawas y and �′ in

the channel S →   for MS > 2MF as well as S → � for MS > MF . Decays into gauge bosons

are loop suppressed. Moreover, mixing in both BSM fermions (7.18) and scalars (7.11) open up

more decay channels with Higgs and leptonic �nal states for the heavy mass eigentstates FL,R
and ℎ2. These are kinetically favourable, but suppressed by the mixing angles � iL,R and � , which
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Figure 7.11: Allowed regions for ��e� , �
��
� and MF from LFV decays. Due to the proximity of

upper limits on the branching ratios (� → e
) and (� → �
) only the latter is

shown. The projected sensitivity of the MEG-II experiment [309] is denoted by the

grey line.

are bound to be small. Nevertheless, this means that none of the heavy BSM �elds are stable

in general. However, the plethora of gauge and Yukawa interactions as well as the Higgs portal

complicates the discussion of dark matter. Suitable candidates are the BSM scalar in either theory,

or the electrically neutral BSM fermions in models C, D, E and F. In fact, the entire BSM sector

in model E is uncharged, with  resembling a sterile neutrino that avoids the bounds in Fig. 7.9,

and could be subject to additional Majorana mass terms. If dark matter candidates can be made

suitably stable by adjusting the parameter space of couplings and masses is a non-trivial issue,

that will be explored in future works.

More Yukawa bounds. We have already argued that the magnitude of � is bounded from above

via (7.24). Moreover, o�-diagonal components of �ij may give rise to charged lepton �avour

violation (LFV) via decays �i → �j
 . Assuming m�i,j , mℎ ≪ MF and mj ≪ mi , the decay width

reads [308]

Γ(�i → �j
) =
�e
576 (� ij� )

2 m5
i

M4
F

with � ij� = (4�)
−2∑

n
�∗in�jn, (7.29)

where n sums over all BSM �avours.
17

Experimental bounds on branching ratios for � and �
decays are available [20], as well as projections for the MEG-II experiment [309], see Fig. 7.11.

Finally, models A and C introduce an electric dipol moment d� of SM leptons at one-loop order.

The current experimental bounds on de and d� , posed by the ACME and Muon g-2 collaborations

respectively [310, 311] result in the constraints

|||sin 2� Im [�e 1�
′]
||| < 2.2 ⋅ 10

−13 ⋅ (4�)2
MF

TeV

,

|||sin 2� Im [�� 2�
′]
||| < 3.0 ⋅ 10

−2 ⋅ (4�)2
MF

TeV

,
(7.30)

17
Hence, � ↦ �ᵀ in (7.29) is required for some models.
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which is the formulation for model A, the same conditions with �� i�′ ↦ �i��′ hold for model C.

Another important prediction are the anomalous magnetic moments of electron and muon ae,� ,
as the Yukawa � present in each model gives a new contributions. To account for a� , models A,

C and D require �� ≈ (1.4 ± 0.4)(MF /TeV)2 while B and F necessitate �� ≈ (4.2 ± 1.2)(MF /TeV)2,
all of which are excluded due to the bound (7.24). Moreover, model E cannot explain the muon

discrepancy at all. In summary, only models A and C are not excluded a priori, having a second

interaction via �′ at their disposal. In Ch. 8 we will show that they can even explain both ae,�
without explicitly breaking lepton �avour universality.

7.4 Conclusion

In this chapter, we have explored a novel approach for model building, connecting ideas of

asymptotic safety and �avour physics. Investigating a subset with colourless BSM matter, our

results indicate that these models may remain well-de�ned until the Planck scale and the Higgs

potential could be stabilised. Due to electroweak interactions and mixing with the leptonic and

SM Higgs sector, the models are predictive and veri�able within the current experimental reach.
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8 Anomalous magnetic moments from
asymptotic safety

8.1 Prelude

This chapter is concerned with leptonic anomalous magnetic moments, for which we will provide

a small overview here, mostly neglecting experimental aspects. A comprehensive review with

focus on the muon can be found in [312, 313].

Semi-classically, the intrinsic magnetic dipol moment �⃗ of a spin-
1
2 fermion Ψ with charge q,

momentum p⃗, mass m and spin S⃗ can be read o� from the Pauli equation

i)tΨ = [
1
2m (p⃗ − qA⃗)

2
+ qΦ − �⃗ ⋅ B⃗] Ψ with �⃗ =

q
2m

g S⃗. (8.1)

Here, Φ and A⃗ are an external electric and magnetic potential, and B⃗ = ∇⃗ × A⃗ the corresponding

magnetic �eld. The gyromagnetic factor g is predicted by expanding the Dirac equation around

|p⃗ − qA⃗|2 ≪ m2
to g = 2. What is commonly referred to as the anomalous magnetic moment is

the relative deviation from this value

a = (g − 2)/2. (8.2)

In QFT, the corresponding interaction of an external (classical) �eld A� is contained in the e�ec-

tive operator ΨΓ� ΨA� . This corresponds to diagram Fig. 8.1(a).

Figure 8.1: Some diagrams related to anomalous magnetic moments: (a) generic vertex diagram,

(b) Schwinger contribution, (c) hadronic vacuum polarisation, (d) hadronic light-by-

light scattering. For (a), the blob stands for any interaction, while in (c) and (d)

hadronic ones are denoted.

In momentum space, one obtains

u(p) Γ� u(p′) = (iq) u(p) [F1 (k
2) 
 � +

i
2m [F2 (k2) + F3 (k2) 
5] � ��k�] u(p

′) , (8.3)

where k� = p� − p′� and � �� = i
2 [


� , 
 � ] is the spin operator. In the classical limit with vanishing
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momentum transfer to the external �eld, one obtains

F1(0) = 1, F2(0) = a. (8.4)

In fact, only the knowledge of leading and subleading coe�cients in Γ� around k2 = 0 is required,

and the anomalous magnetic moment can be projected out [312] via

a = tr [
( /p + m) [
 � , 
 � ] ( /p + m)
8(d − 2)(d − 1)(iq)m (

)
)k�

Γ�
|||k2=0) +

m2
 � − (d − 1)mp� − d /pp�

4(d − 1)(iq)m2 (Γ�
|||k2=0)] . (8.5)

Especially the muon anomalous magnetic moment a� has been determined to high precision

both in experimental measurements as well as theory prediction [20]. However, a discrepancy

prevails:

aexp

� = 116592091(54)(33) ⋅ 10−11,

aSM

� = 116591803(42)(26) ⋅ 10−11.
(8.6)

On the theory side, the contributions can be classi�ed as pure QED parts, electroweak interac-

tions involving massive vector bosons and scalars, and hadronic terms involving strong interac-

tions

aSM

� = aQED

� + aEW

� + aHad

� . (8.7)

The QED corrections amount the main contribution to aSM

� and are computed up to 5-loop order

in perturbation theory [314]:

aQED

� =
�
2�

+ 0.765857425(17) (
�
� )

2
+ 24.05050996(32) (

�
� )

3

+ 130.8796(63) (
�
� )

4
+ 753.3(1.0) (

�
� )

5

= 116584718.95(0.08) ⋅ 10−11

(8.8)

where �−1 = 137.035999049(90) is the �ne structure constant. The leading term, corresponding

to diagram Fig. 8.1(b) was computed by Schwinger [157] and gives by far the largest correction

with �/(2�) = 116140973.3(2.5) ⋅ 10−11, which is already 99.6% of aSM

� .

The electroweak contributions are suppressed by the very mass scale, and have been computed

to two-loop order with three-loop leading logarithms, amounting to

aEW

� = 153.6(1.0) ⋅ 10−11. (8.9)

The hadronic part aHad

� is less straightforward to compute due to its non-perturbative nature.

The leading order in � is given by hadronic vacuum polarisation, as displayed in Fig. 8.1(c).

Using dispersion relation techniques [315, 316], the quantity can be related to the cross section

�(e+e− → hadrons) via the optical theorem. This provides at leading order [20]:

aHad, LO

� = 6923(42)(3) ⋅ 10−11, (8.10)

which is in fact the largest contribution after (8.8). At next-to-leading order, the contribution is

negative aHVP,NLO

� = −(98.4 ± 0.6) ⋅ 10−11. However, hadronic light-by-light corrections, shown in
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Fig. 8.1(d), also play a role, introducing large theoretical uncertainties [20]

aHad, NLO

� = 7(26) ⋅ 10−11. (8.11)

Collecting the results (8.8), (8.9), (8.10) and (8.11) reproduces (8.6).

8.2 Introduction

Measurements of the electron and muon anomalous magnetic moments exhibit intriguing dis-

crepancies from standard model (SM) predictions [20–22]. Adding uncertainties in quadrature,

the deviations

Δa� ≡ aexp

� − aSM

� = 268(63)(43) ⋅ 10−11 ,

Δae ≡ aexp

e − aSM

e = −88(28)(23) ⋅ 10−14
(8.12)

amount to 3.5 � (2.4 � ) for the muon (electron). Recent theory predictions for a� �nd up to 4.1 �
[317, 318]. There are two stunning features in the data. First, the deviations Δa� and Δae have

opposite sign. Second, their ratio Δae/Δa� = −(3.3 ± 1.6) ⋅ 10−4 is an order of magnitude smaller

than the lepton mass ratio me/m� and an order of magnitude larger than the square of the mass

ratio (me/m�)2. Theory explanations of the data (8.12) with either new light scalars [319–322],

supersymmetry [323–325], or bottom-up models [326,327] invariably involve a manifest breaking

of lepton �avour universality.

In recent years, asymptotic safety has been put forward as a new idea for model building [121,

291]. It is based on the discovery [112] that particle theories may very well remain fundamental

and predictive in the absence of asymptotic freedom due to interacting high energy �xed points

[32, 89, 171]. For weakly coupled theories, general theorems for asymptotic safety are available

[110,111] with templates covering simple [2,112], semi-simple [114], and supersymmetric gauge

theories [115]. Yukawa interactions and new scalar �elds play a prominent role because they

slow-down the growth of asymptotically non-free gauge couplings, which can enable interacting

�xed points [110] including in extensions of the standard model [121–123, 291].

In this letter, we show that asymptotically safe extensions of the SM may o�er a natural expla-

nation for the data (8.12). The primary reason for this is that Yukawa interactions, which help

generate interacting �xed points, can also contribute to lepton anomalous magnetic moments.

We demonstrate this idea in two concrete models by introducing Yukawa couplings between or-

dinary leptons and new vector-like fermions, and by adding new scalar �elds which admit either

a �avourful or �avour universal ground state. The stability of SM extensions all the way up to

the Planck scale is exempli�ed using the renormalisation group (RG) running of couplings for a

wide range of BSM parameters.

8.3 New vector-like fermions and scalar ma�er

In the spirit of [112], we are interested in SM extensions involving NF �avours of vector-like

colour-singlet fermions  i and N 2
F complex scalar singlets Sij . In their simplest form, the new

fermions couple to SM matter only via gauge interactions [121, 291]. The new ingredient in this

letter are Yukawa couplings between SM and BSM matter. To make contact with SM �avour we
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set NF = 3. We then consider singlet or doublet models where the new fermions are either SU (2)
singlets with hypercharge Y = −1, or SU (2) doublets with Y = − 12 . In our conventions, electric

charge Q and weak isospin T3 relate as Q = T3 + Y . Within these choices, and denoting the SM

lepton singlets, doublets and Higgs as E, L and H , respectively, we �nd three possible Yukawa

couplings �, �′ and y with

singlet

Y
= −�LH R − �′ES† L − y  LS R + h.c.

doublet

Y
= −�EH† L − �′ LS R − y  LS R + h.c.

(8.13)

and �avour traces are understood to simplify the subsequent RG analysis. E�ects of the Yukawa

coupling y have been studied in [121, 122, 291]. The scalar potential of either model reads

V = � (H†H)2 + � H†Htr [S†S] + u tr [S†SS†S] + v (tr [S†S])
2 , (8.14)

where u, v, � and � are quartic and portal couplings. We further introduce mass terms for the

scalars and vector-like fermions. The potential (8.14) admits vacuum con�gurations V +
and V −

characterized by

V + ∶

{
� > 0, u > 0, u + 3 v > 0,
� > −2

√
� (u/3 + v) ,

V − ∶

{
� > 0, u < 0, u + v > 0,
� > −2

√
� (u + v) .

(8.15)

Either of these allow for electroweak symmetry breaking. Moreover, in V +
, and for suitable

mass parameters, the diagonal components of S each acquire the same vacuum expectation value

⟨S��⟩ ≠ 0 and the ground state is �avour universal. In V −
a �nite vacuum expectation value

⟨S��⟩ ≠ 0 arises only for one �avour direction giving rise to a �avourful vacuum.

8.4 Explaining anomalous magnetic moments

We are now in a position to explain the data (8.12) in SM extensions with (8.13) and (8.14). The

relevant leading loop e�ects due to the couplings �, �′, and � are shown in Fig. 8.2, also using

S = ⟨S⟩ + s. Any lepton �avour � = e, �, � receives a contribution from BSM scalar-fermion loops

with chiral �ip on the lepton line induced by the coupling �′ (see Fig. 8.2a). It scales quadratically

with the lepton mass,

Δa� =
NF �′2

96�2
m2
�

M2
F
f1(

M2
S

M2
F )

, (8.16)

and represents a minimal lepton �avour dependence with f1(t) = (2t3+3t2−6t2 ln t −6t +1)/(t −1)4

positive for any t , and f1(0) = 1. This manifestly positive contribution is the dominant one

for a� . Contributions through Z - and W -loops are parametrically suppressed as (g22 ) and by

fermion mixing [304]. Comparing (8.16) with the muon data for small scalar-to-fermion mass

ratioM2
S /M2

F ≪ 1 yields the Yukawa coupling ��′ within (0.48±0.15)( MF
TeV )

2
, which is large for TeV-

range fermion masses MF . Fixing Δa� to the muon data (8.12)) con�rms that the corresponding

contribution (8.16) for the electron would come out too small and with the wrong sign Δae ≃
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Figure 8.2: Leading loop contributions to Δa� (� = e, �, � ), including a) BSM scalar-fermion-

loops with a lepton chiral �ip (cross on solid line), and b) chirally enhanced contri-

butions through scalar mixing (cross on dashed line) provided ⟨S��⟩ ≠ 0, and a BSM

fermion  � chiral �ip (cross on solid line).

6 ⋅ 10−14 (see Fig. 8.3).

Additionally, chirally enhanced contributions, which are linear in the lepton mass, may arise

through a portal-mediated scalar mixing where the chiral �ip is shifted to a  line (Fig. 8.2b).

The key observation is that chiral enhancement naturally explains the electron data (Fig. 8.3). In

practice, this can be realized with either V +
or V −

.
18

If the ground state is V −
, it must point into

the electron direction (only ⟨See⟩ ≠ 0) or else (8.12) cannot be satis�ed. Overall, this leads to

Δae =
me

MF

��′ sin 2�
32�2 [f2(

m2
s

M2
F )

− f2(
m2
ℎ

M2
F )] +

m2
e

m2
�
Δa� (8.17)

where mℎ,s are the Higgs and the BSM scalar mass, and the last term accounts for (8.16). The

loop function f2(t) = (3t2 − 2t2 ln t − 4t + 1)/(1 − t)3 is positive for any t and f2(0) = 1. The mixing

angle � between the scalar s�� and the physical Higgs ℎ is �xed via

tan 2� =
�√

�(u + v)
mℎ

ms (
1 + (m2

ℎ/m
2
s )) . (8.18)

In (8.17), the term linear in the electron mass provides a unique o�set for the electron Δae ,
sketched in Fig. 8.3. It dominates parametrically over the quadratic term and can have either

sign set by the Yukawas �, �′ and the portal coupling � .

As an estimate, comparing (8.17) with the electron data assumingm2
ℎ/M

2
F ≪ 1 and simultaneously

�xing (8.16) to match the muon data, we �nd |� sin 2�| ≃ (2.9±1.2)⋅10−4 ( MF
TeV)

2 .The full parameter

window explaining the data is indicated in Fig. 8.4 assuming V −
. Corrections from Z - and W -

exchange, which contribute di�erently in the singlet and doublet models, are suppressed by small

fermion mixing angles and not sizeable enough to be seen in Fig. 8.4. Also shown are limits on

MF (grey) from Drell-Yan processes [123,305,306] and on perturbativity in ��′ (red). We observe

MF within (0.05 − 2) TeV for ��′ within (10−2 − 1), with � sin 2�/(4�) deeply perturbative (green)

for small portal coupling � . The dual parameter space (�′ ≪ �) where Fig. 8.2a is replaced by

the corresponding Higgs-fermion loops, is ruled out by Z → �� data [20], which constrains left-

handed (right-handed) fermion mixing angles in the singlet (doublet) model to be of (10−2) or

smaller.

18
Hence, lepton �avour universality is either intact (V +) or broken spontaneously (V −).
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Figure 8.3: Leading contributions to Δae,� from Fig. 8.2a (blue band) and Fig. 8.2b (red band),

which, in combination (green band), explain the electron and muon data (cross) si-

multaneously. The chirally enhanced o�set is either �avour universal or points into

the electron direction (green arrow). Band widths are indicative of a 20% mass split-

ting between fermion �avours from leading loops; the hatched region is inaccessible.

If the vacuum is V +
, all lepton anomalous magnetic moments receive a chirally enhanced con-

tribution from Fig. 8.2b, similar to the �rst term in (8.17). The o�set in Fig. 8.3 is then slightly

tilted and points along the direction of the red band. Due to the smallness of the tilt, results

and constraints are similar to those for V −
in Fig. 8.4. As either of the relevant contributions

in Fig. 8.2 are �avour-diagonal and real irrespective of the vacuum con�gurations, they do not

contribute to lepton decay and electric dipole moments [304].

8.5 Running of couplings up to the Planck scale

We now turn to the RG running of couplings and conditions under which models are stable and

predictive up to the Planck scale. We normalize couplings to loop factors,

�x =
x2

(4�)2
, �z =

z
(4�)2

, (8.19)

where x = g1, g2, g3, yt , yb , y, �, �′ are any of the gauge, top, bottom or BSM Yukawa couplings,

and z = �, u, v, � are the quartic and portal couplings. Models are matched onto the SM at the

scale set by the fermion mass. For the running above MF , we retain all 12 RG beta-functions up

to two-loop order in all couplings [182–185].

The left panel of Fig. 8.5 shows benchmark trajectories up to the Planck scale M Pl for models

starting in the vacuum V −
at the scale MF . For some initial conditions �

BSM
|MF at the low scale,

such as those used in Fig. 8.5, we �nd that the running is stable up to the Planck scale. We

also observe from Fig. 8.5 that the Higgs potential becomes stable (remains metastable) in the

singlet (doublet) model. Higgs stability in the doublet model can be achieved for larger portal and

quartic couplings. Some couplings in Fig. 8.5 run slowly all the way up to the Planck scale. Others
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Figure 8.4: Window for Yukawa and portal couplings which simultaneously explain the muon

and electron data (8.12) as functions of the BSM fermion mass MF , and MS = 0.5 TeV.

Grey-shaded areas are excluded by Drell-Yan searches, the red-shaded area indicates

strong coupling. All results refer to V −
, very similar ones are found for V +

(not

shown).

show a slow or fast cross-over to near-constant values due to near-zeros of beta functions [328]

which arise from a competition between SM and BSM matter. In the absence of quantum gravity,

the evolution of couplings ultimately terminates in an interacting UV �xed point corresponding

to asymptotic safety (singlet benchmark) with asymptotic freedom prevailing in the weak and

strong sectors [110, 121, 291]. In some cases, trajectories remain safe up to the Planck scale

(doublet benchmark) but blow up at transplanckian energies. For other initial conditions we also

�nd unsafe trajectories which terminate in subplanckian Landau poles (see [304] for a detailed

study of initial conditions �
BSM

|MF ).

The right panel of Fig. 8.5 shows the vacua of singlet and doublet models at the Planck scale in

terms of the Yukawa couplings (�� , ��′)|MF at the matching scale. Integrating the RG between MF

and M Pl, we �nd wide ranges of models whose vacua at the Planck scale are either V +
(blue), or

a stable V with a metastable Higgs sector (�� ≳ −10−4) such as in the SM [23, 24] (yellow). For

other parameter ranges we also �nd V −
(green), or unstable BSM potentials (grey), or Landau

poles below the Planck scale (light red). Most importantly, the anomalous magnetic moments

(8.12) are matched for couplings in the red-shaded areas. Here, constraints from Higgs signal

strength [20] imply an upper bound on �� corresponding to a lower bound for the scalar mass

of about 226 GeV (for MF = 1 TeV). Similar results are found for V +
at the low scale (not shown)

except that regions with V −
in Fig. 8.5 turn into V +

. We conclude that models are stable and

Planck-safe for a range of parameters �
BSM

|MF .

8.6 Collider production and decay

Models predict new scalars and fermions in the TeV energy range. Their phenomenology is

characterized by an enlarged �avour sector with a large Yukawa coupling �′ and moderate or
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Figure 8.5: Benchmark trajectories (MF = 2MS = 1 TeV) between the matching scale MF and

the Planck scale (left), and parameter scans of vacua at the Planck scale (right) for a)
the singlet model (top) and b) the doublet model (bottom) using (�� , �u , �v , �y )|MF =
(5, −1, 4, 0) ⋅ 10−5. High scale vacua are shown as functions of the Yukawa couplings

(�� , � ′�)|MF . Parameters within the red-shaded areas are compatible with data (8.12);

white dots refer to the benchmarks on the left.

small couplings �, � . We identify collider signatures through production and decay [304]. We

denote the fermions in the singlet model by  −1s and the isospin components in the doublet

model by  0d and  −1d ; superscripts show electric charge. The  0d is lighter than the  −1d by Δm =
M −1 − M 0 = g22 sin �2W mZ /(8�) ≃ 0.4GeV [329]. All fermion �avours can be pair-produced in

pp and �� machines via s-channel 
 or Z exchange, and through W ±
exchange at pp-colliders

(doublet model only). Lepton colliders allow for pair-production from t-channel S at order �′2,
which is sizeable (see Fig. 8.4). Single  production together with a lepton arises from s-channel

Z - andW -boson contributions via fermion mixing. S production occurs only via the Higgs portal,

or at lepton colliders with t-channel  in association with ℎ at order � �′ or in pairs at order (�′)2.
If kinematically allowed, the charged fermions decay as  −1 → S� and the neutral ones as

 0d → S� . If these channels are closed, the  −1 decay to Higgs plus lepton instead. The decay

rate Γ( −1 → ℎ�−) = �2
64�MF (1 − m2

ℎ/M
2
F )2 provides the lifetime estimate Γ−1 ≈ 10−27�−1� M−1

F TeVs.

The neutral fermion  0d cascades down slower, yet still promptly through W -emission with

 0d,i →  −1∗d,i W
+∗ → ℎ�−i W +∗

. If kinematically allowed, the BSM scalars S undergo tree level

decay into   ̄ via y, and into  � via �′. At one-loop arise the decays S → 

 , ZZ , Z
 , and

S → WW (doublet model only) from y . Although there is no genuine lepton �avour violation

(LFV) as �avour in the S-decay process is conserved, the mixing between the  and the SM lep-

tons introduces very distinct LFV-like �nal states Sij → �±i �∓j . The LFV-like decays at the order

��′vℎ/MF or (�′)2(vsvℎ/2MF )2 are the leading ones for negligible y and MS/MF ≪ 1.
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8.7 Discussion

We have shown that extensions of the standard model with new vector-like leptons and sin-

glet scalars (8.13), (8.14) explain the muon and electron anomalous magnetic moments (8.12)

simultaneously. Yukawa couplings mixing SM and BSM matter and a Higgs portal coupling are

instrumental to generate both minimal (8.16) and chirally enhanced (8.17) contributions, which,

when taken together, match the data naturally (Fig. 8.3). Another salient feature is that the Higgs

potential remains stable up to the Planck scale, unlike in the SM [23,24]. Further predictions are

a strongly and a weakly coupled Yukawa sector, and new matter �elds with masses in the TeV

range (Fig. 8.4) which can be tested at colliders.

An intriguing aspect of our models is that they predict the deviation of the tau anomalous mag-

netic moment from its standard model value solely based on the data (8.12) and the vacuum, and

irrespective of any other speci�cs. Provided the ground state distinguishes electron �avour we

have

Δa� ≡ a exp

� − a SM

� = (7.5 ± 2.1) ⋅ 10−7 , (8.20)

and Δa� = (8.1 ± 2.2) ⋅ 10−7 otherwise. Although the present limit on Δa� is four orders of

magnitude away [20], it would be very interesting to test this in the future. We also note that

with small CP phases, the electric dipole moment of the electron can be as large as the present

bound de < 1.1 ⋅ 10−29e cm [310]. In settings with �avour universal vacua the bound extends to

all lepton electric dipole moments d� , which would make an experimental check for the muon

and the tau very challenging.

The new ingredients to address the anomalous magnetic moments are key for achieving safe and

controlled SM extensions up to the Planck scale (Fig. 8.5), and extend the ideas for asymptotically

safe model building initiated in [121, 291]. More work is required to explore the full potential of

asymptotic safety for �avour and particle physics.
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9 Conclusion

This thesis contains several landmarks of the journey from formal aspects of a general RG analy-

sis, through the realm of asymptotic safety in perturbative exact toy models and towards realistic

UV completions of particle physics.

Renormalisation group analysis. Ch. 2 revisits the theoretical backbone to compute pertur-

bative RGEs. Among the main results are equations (2.22)–(2.26), (2.55), (2.56), (2.67) and (2.79),

correcting several errors in the pre-existing literature. These formulas are very powerful, as they

apply to any perturbatively renormalisable QFT. In particular, there are no restriction regarding

the �eld content and interactions. Hence, the results bene�t the wider research community –

either being employed directly or as the backend of scienti�c software tools.

There are only two reservations of this framework. Firstly, it is manifestly perturbative and

limited by the loop orders available for each of the master formulas. This boundary can be

stretched by future computational e�orts. Moreover, mapping the template expressions onto

the theory of interest is a very complex and error-prone task that requires automation. This is

addressed in Ch. 3, introducing the software package ARGES. As we have highlighted, ARGES is

a general-purpose framework for computing RG equations, competitive with existing software

available. However, due to various design di�erences, ARGES also works with QFTs that cannot

be processed by any alternative tools. Hence, the program enables the automated extraction of

RGEs not only for models speci�c to this thesis, but almost any renormalisable QFT.

Perturbatively exact asymptotic safety. After the removal of technical hurdles, Ch. 4–Ch. 6

are concerned with weakly coupled asymptotic safety. We follow the footsteps of the Litim-

Sannino model [112,113], where this property has been proven rigorously in the Veneziano limit.

However, it was neither known if other QFTs with such an interacting UV �xed points exist, nor

if there are strict exclusion principles. Hence, Ch. 4 combines the requirements for asymptotic

safety and the Veneziano limit, classifying models with a simple gauge group and single Yukawa

interaction. The results indicate that only theories featuring charged fermions, coupling to a suf-

�ciently large number of neutral scalars via a Yukawa term, allow for weakly interacting UV �xed

points. Gathered evidence suggests that this might hold beyond the limitations of this ansatz. A

quanti�cation of asymptotic safety is introduced, identifying that the safest QFTs are those with

in�nitly many scalar �elds per fermion. However, no example could be constructed. Instead, we

argue that the Litim-Sannino model and equivalent formulations are maximally asymptotically

safe. Hence the question arises whether this model and its unitary gauge symmetry is of unique

importance. This is addressed in Ch. 6, which uncovers two similar theories in the same uni-

versality class. Exact asymptotic safety appears to require complex scalars and Dirac fermions

transforming under a unitary gauge group, or Majorana ones with either orthogonal or symplec-

tic gauge. Remarkably, all three families are equivalent even away from the �xed point. Hence,
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the results obtained in Ch. 5 are universal among them. All renormalisation group equations

are computed up to the highest available loop order. Based on this, it was possible to probe the

extent of the UV conformal window. A systematic study has strengthened the lore that Yukawa

interactions are crucial for asymptotic safety. At higher loop order, they are found to widen the

window while gauge and quartic interactions narrow it.

BSMmodel building. The last two chapters abandon the exact regime in favour of realistic UV

completions for Standard Model of particle physics. The guiding principle is to achieve asymp-

totic safety until the Planck scale. A set of models is presented in Ch. 7, extending the SM �eld

content by electroweakly charged vector-like fermions and a neutral scalar meson. Another

novel ingredient was an additional Yukawa coupling between BSM fermions and SM Higgs, in-

tertwining both �avour sectors. A bottom-up approach from SM matching to the Planck scale

lent itself quite naturally to this analysis. It is found that the mechanism of Yukawa couplings

slowing the running of gauge interaction prevails, to the point where Landau poles are shifted

beyond the Planck scale. Moreover, beyond the leading order running, these Yukawas stabilise

the scalar potential. Remarkably, this may even remove the metastability of the SM Higgs, due to

the BSM portal Yukawa sector. The key role to stabilise both gauge and quartic quantum correc-

tions hints at a fundamental necessity of Yukawa interactions. Several (partial) walking regimes

around pseudo-�xed points are identi�ed, which enable this double-stabilisation, and are visible

as isles of stability on the BSM critical surface. Additionally, a basic overview of phenomenolog-

ical implications and constraints are provided.

In this regard, Ch. 8 demonstrates how open questions of the SM can be addressed. The discrep-

ancies in both muon and electron anomalous magnetic moments between SM prediction and ex-

perimental data can be accounted for simultaneously in two of the models. This is achieved with-

out explicitly breaking lepton �avour universality or introducing supersymmetry, as required by

other ansätze. Instead, scalar mixing provides two distinct contributions that can be tuned to

explain the anomalies, while providing stability and safety until the Planck scale.

Many avenues of research connected to this thesis remain open for future endeavours. For in-

stance, it would be interesting to further pursue the webs of equivalences that have become

apparent among various QFTs in the large-N limit. Moreover, the discovered triality of asymp-

totic safety could be employed for constructing BSM theories with orthogonal or symplectic

gauge symmetries. However, some questions also remain in the BSM theory presented here, for

instance about stability of the Higgs potential. Additional candidate theories featuring coloured

fermions have been neglected so far.
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