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Three Essays on Individual Responses to Weather and Climate

Summary

Motivated by the desire to inform climate policy, this dissertation consists of a compilation of three
essays devoted to unravelling the significance of weather and climate as drivers of social welfare
in two different contexts: the impact of weather fluctuations on labour markets and the import-
ance of heterogeneity in determining individuals’ preferences for climate. Chapter 2 investigates
the existence of weather-related changes in earnings and working times in the Mexican labour
market. Leveraging quasi-random day-to-day variation in an individual’s exposure to weather, I
provide evidence of extreme-rainfall days causing economy-wide meaningful reductions in working
times. However, I observe no average heat effects on either earnings or working times, but only
a small cold-related drop in minutes worked. Further analysis reveals considerable heterogeneity
in temperature and precipitation effects across industries as well as job- and individual-specific
characteristics, with non-trivial earnings losses observed for individuals working in unprotected
working environments. Applying a residential choice model, Chapter 3 tests for the importance of
origin climates in driving climate preferences of Mexican migrants to the United States (U.S.). I
find temperature preferences to differ significantly between migrants originating from colder and
warmer Mexican municipalities. Building upon the findings from Chapter 3, Chapter 4 further
investigates heterogeneity in the amenity value of temperatures and individuals’ willingness to pay
(WTP) for mitigation of global warming. The study employs a two-stage random utility sorting
model to analyse location choice decisions of Mexican migrants to the U.S. The econometric model
captures both observed heterogeneity and unobserved preference heterogeneity in temperatures.
Evaluation of the first stage is done following a Bayesian estimation procedure. Examining hetero-
geneity in individual climate valuations reveals significant differences in the marginal willingness
to pay (MWTP) for preferable temperatures across both demographic and clinal characteristics.
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Chapter 1

Introduction

The year 2019 has seen a global uprising of youth demonstrating for a greater effort

by politicians to combat global warming. The Fridays-for-Future movement comes after

years of stagnation in the international effort to develop effective global policies to prevent

average temperatures from rising above a threshold of 2°C higher than pre-industrial levels.

Climate change remains a prominent issue in global politics. Uncertainty around the social

cost of carbon has led to significant disagreement among political leaders with respect to

committing to climate-change mitigation. However, that uncertainty does not preclude

consensus about the existence of climate change.

In fact, the scientific literature provides persuasive evidence that global warming has

reached between 0.8 to 1.2°C above pre-industrial temperature levels. The Intergovern-

mental Panel on Climate Change (IPCC) projects that with unchanged trends in global

warming, average temperatures will reach 1.5°C above pre-industrial levels between 2030

and 2052 (Intergovernmental Panel on Climate Change 2013, hereafter IPCC). Alongside

rises in average temperatures, scientists further project warming of extreme temperatures

and likely increases in the frequency and intensity of extreme precipitation events and

droughts in certain regions of the globe.

While the scientific literature at large acknowledges the importance of climate as a

determinant of economic and social well-being, measuring the damage of climate change

remains an intractable problem in the climate-policy debate. In this regard, developing

a better understanding of current impacts of climate and weather has the potential to
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discipline damage estimates and contribute to evidence-based policy responses to climate

change (Dell et al. 2014; Deschênes and Greenstone 2007). Motivated by the desire to

inform climate policy, this dissertation consists of a compilation of three essays devoted

to unravelling the significance of weather and climate as drivers of individuals’ welfare in

two different contexts: the impact of weather fluctuations on labour markets and the im-

portance of heterogeneity in determining individuals’ preferences with respect to climate.

A recent strand of research documents a causal relationship between local labour-

market outcomes and short-term weather fluctuations. A report by the United Nations

Development Programme (UNDP) identifies Central America as an area highly exposed

to weather-related labour-market effects (Kjellstrom et al. 2016). However, research on

the region is limited largely to impacts on the agricultural labour market. Chapter 2 seeks

to fill the gap in the literature by investigating the existence of weather-related changes

in earnings and working time in the Mexican labour market over the period 2000 to

2016. The analysis draws upon comprehensive data from the Mexican labour-force survey

Encuesta Nacional de Ocupación y Empleo (ENOE) (Instituto Nacional de Estad́ıstica y

Geograf́ıa 2011, hereafter INEGI) combined with fine-scaled temperature and precipitation

data from the North American Regional Reanalysis (NARR) model (National Centers for

Environmental Prediction 2017, hereafter NCEP).

I employ a high-dimensional fixed-effects regression model controlling for time-, industry-

and municipality-specific confounding factors. Leveraging quasi-random day-to-day vari-

ation in an individual’s exposure to weather (within sector, municipality, and season), I

provide evidence of extreme-rainfall days causing economy-wide meaningful reductions in

working times. While the results presented in Chapter 2 indicate no average heat effects

on either earnings or working times, but only a small cold-related drop in minutes worked,

further analysis reveals considerable heterogeneity in temperature and precipitation ef-

fects.

Particularly workers employed in labour-intensive and service-oriented industries exper-

ience weather-related earnings and working-time fluctuations. Concerning precipitation, I

estimate reductions of up to 70 minutes in response to heavy rainfall in weather-exposed

sectors (e.g. Agriculture and Construction) and labour-intensive manual industries (e.g.

Manufacturing and Trade). Moreover, I observe nontrivial earnings losses for individuals
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working in unprotected working environments. The design of relevant climate-change mit-

igation policies should carefully consider the latter regressive dimension of weather-related

labour-market fluctuations.

A final contribution of the chapter is the provision of a rough cost estimate of pre-

dicted annual labour-market changes based on a counterfactual analysis. The hope is that

providing a rough measure of associated welfare implications ultimately helps to inform

decisions on designing protective labour-market policies targeted at those most vulnerable

to weather-related earnings losses.

A second strand of literature within environmental economics aims to measure the

amenity value of climate. Despite the suggestive evidence on the significance of climate

in shaping an individual’s life, very little is known about the value that people attach

to living in a comfortable climate. In light of rising climate-change awareness, the topic

recently saw a resurgence as monetary measures of individuals’ valuation of climate today

provide numerical estimates of the potential benefits of limiting global warming. Compared

with the costs of greenhouse-gas abatement, the latter estimates allow for cost-benefit

comparisons of alternative climate-change abatement policies and, thus, help inform the

climate-change policy debate.

A potentially serious drawback of most of the earlier work on the topic is the assumption

of preference homogeneity among individuals from different climatic regions. The human-

biology literature provides ample evidence of systematic differences in human thermal

comfort and sensitivity across climatic zones.1 Economic research on the amenity value

of climate largely ignores these findings.2 Chapter 3 aims to provide new insights into

the importance of accounting for clinal3 heterogeneity in climate preferences. For this

purpose, I estimate a residential location choice model of bilateral migration movements

1. See James (2010) for an overview of research on climate-related morphological variation and physiolo-
gical adaptations of humans.

2. During a comprehensive review of the literature using the relevant research databases and library
catalogues as well as back and forward tracing of related journal articles, only two studies by Scott et
al. (2005) and Fan et al. (2012) were found to allow for heterogeneous differences in climate preferences by
origin region. See Chapter 3 for more detail.

3. The term clinal goes back to Sir Julian Huxley, a British evolutionary biologist (Huxley 1938). The
human-biology literature uses the term clinal to refer to a gradual change in a character or feature across
the distributional range of a species or population, usually correlated with an environmental transition such
as humidity, rainfall, and temperature. For example, it has been observed that pigmentation changes with
distance from the equator, due to different levels of UV radiation. In this thesis, the term clinal-preference
heterogeneity is used to indicate systematic differences in the valuation of climate over geographical vari-
ation in migrants’ origin climates, i.e. the climate to which an individual is accustomed.
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between Mexico and the United States (U.S.) over the period 1970 to 2016, allowing for

clinal variation in the weight given to climate amenities in the decision.

I draw upon a unique dataset with detailed geographical information on both origin

and destination locations of migrants, which I combine with Metropolitan Statistical Area

(MSA)-specific social and economic data and information on the local climate. Inform-

ation on migration movements, including coordinates of the origin and the destination,

is taken from the Mexican Migration Project (MMP) (The Princeton University and the

University of Guadalajara 2017, hereafter MMP) and combined with data from the U.S.

census and other official data sources. Climate data is retrieved from the CRU TS4.01

dataset produced by the Climatic Research Unit (CRU) at the University of East Anglia

(University of East Anglia Climatic Research Unit, Harris, Ian C. and Jones, Philip

D. 2017, hereafter CRU). The empirical estimation method builds upon McFadden’s Res-

idential Location Choice Model (McFadden 1974), which I modify by including a vector of

the ratio between origin and destination climate allowing identification of clinal preference

heterogeneity directly through measurable spatial variation in origin climate.

Results from the study emphasise the importance of accounting for heterogeneity in

climate preferences. The findings reveal a general preference among migrants for settling

in locations with warmer summer and winter temperatures relative to their origin climate.

Employing a split-sample analysis shows that the utility of migrants from warmer origins

is five times more responsive to both average and extreme temperatures, while preferences

regarding precipitation are similar between the two samples. Consequently, to assume

preference homogeneity across different climatic regions may result in biased estimates

of the amenity value of temperatures. This finding is relevant for measuring the social

cost of carbon, where local amenity estimates have been used to generalise the benefits of

climate-change mitigation for the rest of the world.

Chapter 4 builds upon the findings of the previous chapter by investigating the im-

portance of preference heterogeneity in driving individuals’ temperature valuations and

their willingness to pay (WTP) for mitigation of global warming. Benefitting from recent

advancements in estimation procedures, I apply a two-stage random utility sorting model

to analyse location-choice decisions. The analysis exploits the same migration survey as

appears in Chapter 3, but with the sample limited to migration taking place between 2000
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and 2012, due to lack of individual-level wage data for the previous years.

The first stage consists of a mixed logit model of the discrete location choice, which

overcomes the restrictive identically and independently distributed (IID) error structure

assumed in Chapter 3. Evaluation of the mixed logit model follows a Bayesian estimation

procedure, given the computational advantages of the Bayesian approach over the clas-

sical frequentist method (Train 2001). The model captures both observed heterogeneity

related to clinal and demographic characteristics of the migrant and unobserved individual

heterogeneity in temperature preferences. It further controls for individual earnings, the

cost of migration, the prevalence of migrant networks, and destination- and time-specific

confounding factors. Similarly to Chapter 3, clinal preference heterogeneity is identi-

fied by exploiting the spatial gradient in migrants’ origin temperatures, however, with

the difference that in Chapter 4 temperature tastes are allowed to vary randomly across

individuals.

In the second stage, estimated MSA fixed effects from the first stage are regressed on

local amenities, including climate. Location-specific constants represent the composite

part of utility attributed to local amenities in the location choice. I address the potential

issue of endogeneity in the second-stage regression by, on the one hand, including a large

set of location-specific amenities aside from climate in the regression and, on the other

hand, by exploiting an instrumental variable (IV) estimation method developed by Bayer

and Timmins (2007). Results from the specification tests indicate a bias in Ordinary

Least Squares (OLS) estimates. As a last step, coefficients from the first and second stage

are converted into WTP estimates for local amenities to provide a monetary measure for

observed differences in climate valuations.

Examining heterogeneity in individual climate valuations, I observe significant differ-

ences in the marginal willingness to pay (MWTP) for friendlier summer temperatures

across both the life cycle and differences in origin temperatures. I find migrants from

warmer Mexican regions to be willing to pay for living in cities with lower summer and

winter temperatures, while migrants from colder Mexican regions are willing to forgo earn-

ings to experience warmer winters. These results suggest that greater awareness among

individuals of the negative impacts of higher seasonal temperatures causes migrants to

prefer locations with colder temperatures. By contrast, lack of exposure to warmer tem-
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peratures prior to the migration makes individuals choose MSAs with warmer winters.

I supplement these results by providing estimates of the WTP for projected future

changes in mean summer and winter temperatures for the period 2040 to 2069. Increases in

summer temperatures are estimated to result on average in a welfare reduction of between

US$423 and $596 per person. At the same time, warmer winter temperatures increase

people’s welfare by between $660 and $1,246. Importantly, studying heterogeneity in the

WTP for warming of winter temperatures, I find predicted welfare gains of migrants from

colder regions to exceed predicted gains of individuals from warmer regions. Overall, the

findings lend support to the hypothesis that clinal preference heterogeneity is an important

driver of individuals’ temperature valuations. Insofar as the WTP for the abatement

of global warming is largest among individuals aware of the negative impacts of heat,

measurements derived from populations with access to air conditioning and relatively

moderate temperatures will underestimate the WTP for climate-change mitigation.

Finally, Chapter 5 provides a summary of the conclusions from the preceding empirical

chapters. Moreover, I reflect on the limitations of each study and discuss an agenda for

the potential of future research in light of the findings of this thesis.
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Chapter 2

Labour-Market Responses to

Weather Fluctuations:

Evidence from Mexico

Abstract

This chapter examines Mexican labour-market responses to temperature and precipitation fluc-
tuations to gain insight into the potential labour-productivity consequences of climate change. I
apply a higher-dimensional fixed-effect model to identify weather-driven changes in earnings and
working time, exploiting the plausibly exogenous within sector, municipality and season day-to-
day variation in an individual’s exposure to temperatures and precipitation. Using data from the
Mexican labour force survey ENOE (INEGI 2011) combined with fine-scaled climate data from the
NARR model (NCEP 2017), I find that average working-time responses are limited to cold days and
days with heavy rainfall. Temperatures below 10°C reduce working times of Mexicans by just three
minutes, while extreme rainfall causes working days to shorten by 30 minutes (> 30 mm). Focusing
on heterogeneity in the weather effects, I estimate heat- and extreme-rainfall effects of up to 70
minutes for industries exposed to the weather and workers in unprotected employment situations;
this type of workers are further vulnerable to weather-induced earnings fluctuations. Providing a
rough impact assessment, I conduct a counterfactual analysis to estimate annual weather-related
losses due to weather conditions deviating from the optimal level. On average, extreme heat and
heavy precipitation reduce potential earnings by 0.20% and 0.05%, respectively. The calculated
total loss in annual working times due to cold days amounts to 0.02% and 0.12% for extreme
rainfall. Assuming no future adaptation and mitigation of labour markets to climate change, an
increase in average temperatures by 2°C is projected to result in an additional heat-related earnings
loss of 0.02% for Mexico, with losses concentrated in the least protected segments of the Mexican
labour force.

2.1 Introduction

Growing climate-change awareness has given rise to an emerging body of literature on the

impact of weather on economies. Several studies identify a causal link between adverse
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weather and aggregate economic slowdowns in developing countries.1, 2 These findings gave

rise to an emerging body of literature aimed at isolating the underlying mechanisms of

weather-driven aggregate productivity changes. Early studies of the field focus primarily

on uncovering the relationship between agricultural yield and the phenomena of extreme

temperatures and precipitation shocks. Empirical evidence confirms economically mean-

ingful agricultural productivity losses in response to sustained heat and lack of rainfall

(see Burke and Emerick 2016; Deschênes and Greenstone 2007; Feng et al. 2010; Mendel-

sohn et al. 1994; Schlenker and Roberts 2009; Solomou and Wu 1999). However, volatility

of crop growth cannot explain temperature-driven productivity losses in manufacturing

observed for both developing and developed countries. For example, a study by Hsiang

(2010) covering the Caribbean identifies a causal relationship between increasing temper-

atures and non-agricultural production losses (−2.4% per 1°C) that considerably exceed

those experienced by the agricultural industry (−0.1% per 1°C).

This chapter examines the direct impact of short-term weather fluctuations on labour

markets as one channel of weather-driven productivity changes. Leveraging quasi-random

day-to-day weather fluctuations in a fixed-effects model, I examine the impact of precip-

itation and temperature changes on weekly working times and earnings in Mexico for the

period 2005 to 2016.3 The analysis draws upon comprehensive individual-level informa-

tion from the Mexican labour-force survey ENOE (INEGI 2011) combined with fine-scaled

climate data from the NARR model (NCEP 2017). Exploiting detailed information on

municipal-, individual- and job-specific characteristics, this chapter sheds new light on the

heterogeneity of weather-induced labour-market changes.

The identification strategy employed in this chapter follows closely to the influential

work by Graff Zivin and Neidell (2014).4 I apply a higher-dimensional fixed-effect estima-

1. Using an international panel dataset covering 125 countries, Dell et al. (2012) find higher annual
average temperatures to cause reductions in both agricultural and non-agricultural output growth in de-
veloping countries, with some suggestive evidence of a permanent effect. Focusing on rainfall impacts,
Barrios et al. (2010) identify reductions in annual precipitation levels to be a critical determinant of the
poor economic performance of African countries during the second half of the 20th century.

2. Dell et al. (2014), Carleton and Hsiang (2016) and Cavallo and Noy (2009) provide comprehensive
reviews of the current body of literature.

3. In this chapter, earnings refers to any income generated within the working week; this could include
tips or bonuses paid within the reference week. Income earned over longer periods, such as salaries, is
rescaled to the week level.

4. Using data from the American Time Use Survey, Graff Zivin and Neidell (2014) exploit spatial
variation in temperatures and precipitation to examine daily temperature impacts on individual time-
allocation choices. The authors find heat-related reductions in working times for weather-exposed industries
of over one hour on days with temperatures above 37.8°C (100°F).
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tion strategy which allows causal identification of weather-driven changes in earnings and

working time by exploiting the plausibly exogenous within sector, municipality and season

day-to-day variation in an individual’s exposure to temperatures and precipitation. To

isolate weather impacts, I control for various worker and job characteristics, seasonality

by industry, year and month, as well as municipality-specific confounding factors. In line

with Graff Zivin and Neidell (2014), I avoid specifying the functional form of weather

variables by assuming a nonparametric structure of the weather variables in the form

of weather bins. To further isolate potential channels of weather effects—that is, direct

weather exposure, high ambient temperatures, or possible demand-side changes—I ex-

plore heterogeneity in predicted weather effects by industry and work location as well as

individual and employment characteristics.

The analysis reveals three sets of results. First, I find no evidence of average heat

effects on within-municipality earnings or working times, but only a small cold-related

drop in minutes worked, caused by days with temperatures below 10°C. The lack of heat-

effects is surprising, given contradictory evidence of significant labour-supply reductions

for the U.S. (Graff Zivin and Neidell 2014) and Australia (Kjellstrom et al. 2009). Second,

the results indicate strong economy-wide working-time responses to heavy-rainfall days.

Extreme-precipitation days (> 30 mm) reduce working times by around 30 minutes.

Second, further analysis reveals considerable heterogeneity in temperature and precipit-

ation effects across industries and job- and individual-specific characteristics. Particularly

workers employed in labour-intensive and service-oriented industries experience weather-

related earnings and working-time fluctuations. Similar to Connolly (2008), the results

suggest a strong link between rainfall and working times in weather-exposed (Agriculture

and Construction) and manual labour-intensive industries (Manufacturing). An important

revelation of this study is the nontrivial earnings losses observed for individuals working

in unprotected employments. Particularly informal workers, those with temporary em-

ployment contracts and flexible earnings, are affected by adverse weather.

The results, while suggestive, highlight the distributional dimension of extreme temper-

atures and rainfall impacts on labour markets, which should be taken into consideration

for the design of climate-change mitigation and adaptation policies. Although estimates of

short-term weather impacts should not be generalised to make an inference with regard to
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climate change, they nevertheless highlight current policy shortcomings leaving the least

protected workers most vulnerable to adverse weather. Thus, labour-market policies aimed

at mitigating the adverse impacts of climate change can learn from today’s estimates to

protect workers now and in the future.

Lastly, the chapter provides a rough cost estimate to establish the magnitude and the

welfare implications of weather fluctuations. A better understanding of the total welfare

loss attributable to weather fluctuations is essential for providing sound policy advice

on mitigating adverse labour-market effects. Back-of-the envelope calculations estimate

annual heat-related earnings losses to amount to around 0.2%, while working times are

reduced by roughly 0.02%. Cold days (<14°C) account for a reduction of around 0.04%,

which, however, is offset by longer working time on warmer days. Again, the heterogeneous

estimates highlight distributional implications of weather impacts on labour markets. For

instance, workers with incomes below the official minimum wage are estimated to earn

20% less per year due to temperature impacts. Similarly, extreme-rainfall days reduce

potential earnings for these workers by roughly 50%.

Projecting a future two-degree temperature (°C) increase over the previous estimates,

I predict heat-related earnings losses (>30°C) to rise by about 0.02% (assuming zero

adaptation and unchanged labour market characteristics). The reduced frequency of cold

days under a two-degree scenario results in an overall small positive effect on total annual

working hours. However, the projections emphasise the disproportionate burden of climate

change on the least protected workers. For those with earnings falling below the official

minimum wage rate, I predict a two-degree temperature (°C) rise to cause an additional

income loss of around 10% due to temperatures above 22°C, causing a total loss of 43% of

potential annual earnings.

This chapter contributes to a growing body of literature examining the direct impact of

short-term weather fluctuations on labour markets—effects on labour supply and demand,

labour and firm-level productivity and earnings.5 To the best of my knowledge, this is

the first study to explore weather impacts on non-agricultural earnings and working times

for a Latin American country.6 A report published by the UNDP on the impacts of heat

5. See Heal and Park (2016) for a reflection on the current state of the literature.
6. A literature review was conducted using the relevant research databases and library catalogues as

well as back and forward tracing of related journal articles to identify relevant articles examining the
relationship between weather and labour markets.
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and climate change on the workplace identifies Central America as an area highly exposed

to weather-related labour-market effects (Kjellstrom et al. 2016). Despite the growing

interest in the field, empirical studies are mainly focussed on the U.S. and Asia.7

Empirical evidence on the role of weather fluctuations in shaping Latin American labour

markets is limited to the rural labour market.8 While the agricultural sector is arguably

affected by weather fluctuations, adverse impacts of rainfall and temperature will likely

extend beyond rural labour markets, affecting both urban9 and non-agricultural labour

markets. In Mexico only about 10% of the labour force is employed in the agricultural

sector, compared to 20% in trade, 15% in manufacturing and 12% in nonfinancial services.

Recent studies focussing on the manufacturing sector document economically meaningful

heat-related short-run labour and firm-level productivity losses, reductions in earnings

and labour supply responses (Adhvaryu et al. 2018; Cachon et al. 2012; Cai et al. 2018;

Chen and Yang 2019; Park and Behrer 2016; Sudarshan et al. 2015; Zhang et al. 2018).10

Therefore, disregarding consequences outside the agrarian sector might substantially un-

derestimate weather-related costs to labour markets. Hence, this chapter sheds new light

on impacts for this understudied part of the world, examining both urban and rural labour

markets and covering a wide spectrum of industries and occupations.

This study, further, provides new evidence on individual-level heterogeneity in labour-

market responses to weather. Sensitivity of earnings and working times to weather fluc-

tuations likely varies by individual and job-specific characteristics. For instance, previ-

ous country- and region-level studies document a negative relationship between extreme

7. An exception is a recent interdisciplinary study of weather-effects on outdoor work in the European
Union by Orlov et al. (2019).

8. Jessoe et al. (2018) identify a negative causal relationship between Harmful-Degree Days (HDD)
during the growing season and rural employment in Mexico, with the strongest impact estimated for older
and off-farm workers.

9. Urban heat island effects, caused by heat absorption in road tar-seal or concrete surfaces (Oke 1973),
can have severe implications for working conditions in cities becoming increasingly problematic with global
warming (IPCC 2013).

10. Using firm-level data from Chinese manufacturing plants, Chen and Yang (2019) and Zhang et
al. (2018) document an inverted-U shape relationship between temperatures and firm-level total factor pro-
ductivity (TFP) and output, with evidence of a significant heterogeneity in the effects across industry and
season (Chen and Yang 2019). Studying administrative employment data from China, Cai et al. (2018) find
heat-related labour-productivity losses with no evidence of work-time adjustments. Cachon et al. (2012)
document weather-related plant-level production losses for the U.S. automobile sector. Studying pro-
duction line data for the Indian garment sector, Adhvaryu et al. (2018) observe a negative, non-linear
temperature effect on production-line efficiency, highlighting the productivity and energy-saving benefits
associated with the introduction of heat-saving technology (LED). A second study identifies negative im-
pacts of heat on worker productivity and absenteeism in Indian diamond cutting factories (Sudarshan
et al. 2015).
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weather and income as well as Gross Domestic Product (GDP) per capita (Barrios et

al. 2010; Dell et al. 2012). Studies examining individual-level impacts on earnings out-

side the agricultural sector are rare, with empirical research relying primarily on average

district wages.11 However, regional studies may mask heterogeneity in the response of

earnings at a lower geographical level.

In this regard, this chapter explores the link between job and employment character-

istics and the sensitivity of individual earnings to weather fluctuations. For example, I

investigate the role of payment flexibility in weather-related earnings fluctuations. If pay

is not tightly linked to workers’ performance, one would expect earnings of employees

with long-term fixed-wage contracts to be unaffected by day-to-day weather changes. A

further question touched upon in this context is the distributional implications of weather

impacts on labour markets. Households in less developed regions are particularly vulner-

able to detrimental weather effects, due to their primary employment in weather-exposed

industries and their limited access to adaptation and mitigation mechanisms available to

less deprived households (e.g. air conditioning and heating) (IPCC 2013). Studying dif-

ferences among workers within an industry can shed important light on the distributional

consequences of weather-driven earnings fluctuations.12

The rest of the chapter is organised as follows: Section 2.2 summarises the relationship

between both temperatures and rainfall and labour market outcomes. In Section 2.3, I

describe a theoretical model explaining weather impacts on labour supply decisions and

optimal wage setting. Section 2.4 briefly discusses the empirical strategy, followed by a

description of the different datasets employed in the regression analysis. The empirical

results are presented in Section 2.6, including counterfactual cost estimates, followed by

a discussion of various robustness checks. The chapter closes with a summary of the key

findings, any caveats of the study and a brief note on the implications for policy and

research.

11. Colmer (2020) finds a direct negative impact of temperature increases on Indian district agricultural
and manufacturing wages, with the effect size varying by the rigidity of the local labour market. County-
level annual payroll data for the U.S. suggest that heat exposure significantly reduces payroll per capita
in weather-exposed industries (Park and Behrer 2016). In contrast, a study by Burgess et al. (2014) on
Indian mortality find no evidence of urban wage responses to adverse weather. Using Brazilian household
data, Mueller and Osgood (2009) find long-term drought effects on wages to be limited to the rural sample.

12. See Park et al. (2018) for a discussion of the distributional welfare implications of heat exposure.
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2.2 Background: Weather Fluctuations and Labour Market

Performance

Prolonged heat exposure has been identified as an occupational health problem for a con-

siderable time (Kjellstrom et al. 2009). The epidemiological literature provides substantial

scientific evidence of a causal relationship between heat exposure and reduced physical

work capacity (Kerslake 1972), diminished mental task performance (Ramsey 1995), ad-

verse health effects, such as heat stress and heat strokes (Bouchama and Knochel 2002)

and increased mortality (Centers for Disease Control and Prevention, USA 2008). Natural

human response mechanisms, such as thermoregulatory control mechanisms that include

sweating, shivering and vasoactivity, prevent the body from severe damage caused by

heat exposure (e.g. brain and heart failure). Higher external temperatures diminish the

ability to transfer body heat to the external environment, thereby increasing the risk of

heat exhaustion and heat stroke. To prevent such life-threatening outcomes, the body

reacts by reducing physical activity, including brain activity, resulting in diminished men-

tal ability. Work involving heavy physical exertions is particularly prone to heat impacts,

as physically active workers experience less effective thermoregulation and faster onset of

fatigue.

Similar processes apply to the exposure to harmful cold temperatures. Exposure to

cold temperatures during working hours results in vasoconstriction and drops in tissue

temperatures, causing numbness in the extremities, reduced dexterity in hands and loss in

strength (Parsons 2014). Controlled experiments and empirical studies stress the negative

relationship between adverse temperatures and labour productivity (Niemelä et al. 2002;

Piil et al. 2019), cognitive performance (Graff Zivin et al. 2018), mental task ability

(Seppänen et al. 2006; Wargocki and Wyon 2007) and the risk of workplace accidents

(Binazzi et al. 2019).

Besides temperatures, one further expects rainfall to impede labour markets. Heavy

showers may endanger external work, render weather-exposed activities more physically

intense, cause environmental degradation, interrupt supply chains by delaying transporta-

tion and destroying infrastructure, disrupt the daily commute or cause closure of schools,

which forces parents to remain at home with their miners. Higher levels of precipitation
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also likely reduce the attractiveness of outdoor recreational activities, thus incentivising

the substitution of indoor work for leisure (Connolly 2008). Using data from the American

Time Use Survey, Connolly (2008) assesses work-leisure substitution effects attributed to

daily rainfall fluctuations. She finds working hours to increase by an additional 30 min per

day on rainy days, with a corresponding earnings increase. However, for weather-exposed

industries, Connolly (2008) estimates a reversed relationship, with working times falling

by more than one hour on rainy days.

Understanding the responsiveness of Mexican labour markets to weather fluctuations

can shed new light on the current costs of adverse temperatures and precipitation in a

different climatic and cultural context. Moreover, the rich data exploited in this study

allow investigating the multiple channels through which day-to-day changes in weather

influence earnings and working times.

2.3 Conceptual Framework

To motivate the empirical strategy, this section describes a simple formal model illustrating

the impact of weather on both labour supply and demand. The discussion closely follows

the model developed by Hanna and Oliva (2011) on the impact of polution on labour

markets. I start by describing a worker’s optimal choice of working time under the influence

of an environmental condition. The environmental variable in the model is defined as the

realisation of weather during the working week. Considering the above biological and non-

biological mechanisms through which weather can affect labour markets, it is reasonable

to assume that most adverse effects of temperature and rainfall will be concentrated at the

extremes of the distribution. Hence, for simplification, I focus on adverse-weather days in

the discussion of model predictions. The simple model developed in the section allows me

to predict how workers’ labour-supply decisions are affected by the weather.

2.3.1 Labour Supply and Adverse Weather

Consider a partial equilibrium framework where individuals maximise their utility with

respect to consumption, c, and hours worked, h. Utility is given by u(c, h;α) and is

separable in c and h. I further assume that utility is increasing in consumption and

decreasing in hours worked, so uc > 0 and uh < 0. Moreover, the utility function is
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assumed to be concave and, thus, ucc < 0 and uhh < 0.

The random variable α represents the realisation of weather during the working week,

which affects the marginal utility of both consumption and hours worked. The relation-

ship between the environmental condition and working time as well as consumption is

ambiguous.

The individual faces the following optimisation problem:

max
h,c

u(c, h;α) s.t. mc = wh+ y∗ , (2.1)

where w is the hourly wage rate and m the price of consumption. Individuals are

assumed to be wage takers. At this point, wages are defined exogenously and, hence, are

unaffected by the environmental variable. I will discuss the implications of relaxing the

assumption in Section 2.3.2.

The maximisation problem can be rewritten using the indirect utility function:

max
h

v(h) = λ(α) · wh− g(h;α) (2.2)

The first term, λ(α), represents the optimal path of the marginal utility of income. It

captures changes in an individual’s income in response to an individual’s re-optimisation

decision of working time and consumption. The function g(h;α) captures the disutility of

hours worked for a given level of α:

g(h;α) = −
∫ h

0
uh(x;α)dx . (2.3)

Solving the maximisation problem in (2.2) yields the following first-order condition:

λ(α)w = gh(h;α) (2.4)

The relationship between the optimal level of working time and the environmental

variable can be inferred by the derivative of (2.4) with respect to α. Rearranging the
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resulting expression to solve for dh/dα I obtain the following:

dh

dα
=
−ghα + ∂λ

∂αw

ghh
(2.5)

From the assumptions about the concavity of the utility function, it follows that ghh

is positive. Therefore, the sign of the change in hours worked in response to worsening

weather depends on the two terms in the nominator. The first term captures an indi-

vidual’s “substitution” between leisure and work as the environmental variable changes.

The nature of the impact of α on the marginal disutility of work likely depends on a

combination of the extent of weather exposure during the working day and the physical

intensity of the job. Following Graff Zivin and Neidell’s (2014) approach, I distinguish

between two types of workers according to the extent of weather exposure: those who are

sheltered from negative impacts of weather during the working day (‘low risk’) and those

that are not (‘high risk’). This category also includes physical-intensive work in insuffi-

ciently ventilated facilities. If the indoor climate is strongly correlated with the outdoor

climate, manual labour-intensive work will be affected by outdoor weather conditions.

It is fair to assume that the disutility of work for high-risk labourers increases as the

weather conditions deteriorate. Working conditions for this type of workers are optimal

for midrange temperatures and low levels of precipitation. Therefore, ghα is convex. In

contrast, low-risk workers work primarily indoors. As such, they are not directly affected

by the weather and, thus, might respond to adverse weather conditions by substituting

indoor work for outdoor recreational activities. Hence, for low-risk workers, ghα is concave

with positive values for adverse-weather days. Consequently, I expect the substitution

effect of adverse weather to work in the opposite direction for the two risk groups.

The second term in the numerator of (2.5) captures the “income effect”. The direction

of the term depends on a combination of several underlying factors.13 First, income grows

with the number of hours worked, enabling a higher level of consumption. However, as the

number of hours worked increase, so does the disutility of work relative to the marginal

utility of consumption, thereby reducing an individual’s willingness to work additional

hours. Consequently, changes in the income level imply a re-optimisation of both working

13. See Appendix A.1 for the mathematical derivation of ∂λ/∂α.
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time and consumption, affecting both the disutility of work14 and the utility of additional

consumption.

Second, the re-optimisation of consumption in response to adverse weather results in

a change in the marginal utility of income (λ(α)). The direction of the change depends

on whether consumption is a substitute or complement for adverse weather. I expect

consumption, on average, to fall on days with bad weather, since consumption in such

weather conditions is less attractive.15 Hence, I expect ucα to be concave with a single

peak at comfortable temperatures and precipitation.

Assuming adverse weather is a substitute for consumption, the direction of the income

effect (∂λ/∂αw) of adverse weather for high-risk workers is ambiguous due to two opposing

effects: an increase in the disutility of work and a reduction in the marginal utility of

consumption. If the effect of adverse weather on consumption exceeds the effect on the

disutility of work, the income effect will be positive and vice versa. In contrast, I expect

the income effect to be negative for low-risk workers as both the disutility of work and the

utility of consumption decreases with adverse weather.

In sum, the partial equilibrium model predicts adverse-weather days to decrease work-

ing times of high-risk workers except if adverse weather is a strong substitute for con-

sumption and the positive income effect dominates. Similarly, as long as the positive

substitution effect dominates the negative income effect, the model predicts a positive

impact of adverse-weather days on labour supply of low-risk workers. Next, I will relax

the assumption that wages are unaffected by adverse weather.

2.3.2 Optimal Wages Setting and Weather

In the previous section, I have assumed that wages are unaffected by weather fluctuations.

In this case, changes in earnings are purely caused by adjustments in the number of hours

worked. However, this assumption likely does not hold in certain contractual structures,

14. As discussed above, adverse weather will increase the disutility of work for high-risk workers (ghα is
convex), while reducing it for those employed in low-risk professions (ghα is concave).

15. You could also argue the opposite, that the marginal utility of consumption increases on bad weather
days. For example, weather-exposed workers might use bad weather days for shopping and to run other
errands. However, research on the retail sector suggests that consumption on average responds negatively
to adverse weather (Starr-McCluer 2000). In terms of the model, changes in the assumption would affect
the sign of the income effect. However, it is fair to assume that the income effect will only dominate the
substitution effect at high-income levels or if consumption responds heavily to adverse weather. Except
for the case of severe natural disasters, this is unlikely to be the case.
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where wages reflect workers productivity (i.e. a piece-rate contract). Under a productivity-

mapped wage regime, labour-productivity losses on adverse-weather days will lead to

reductions in hourly wages.

Assume a profit-maximising firm that produces output using the following produc-

tion function Q(h · φ(α),K), where φ(α) is the number of labour-efficiency units per

hour worked. For simplicity, I assume the production function is homogeneous of de-

gree one. The firm sells the product at a price p and pays an hourly wage of w. The

profit-maximisation problem yields the following optimal wage rate:

w(α) = f(h · φ(α),K)φ(α)p . (2.6)

Here, f(·,K) is defined as the marginal productivity of labour-efficiency units for a

given K. If labour productivity of weather-exposed workers falls on adverse-weather days,

then ∂/∂αφ(α) < 0. In equilibrium, f(h · φ(α),K) is equal to the labour supply SL.

Therefore,

∂w(α)

∂α
= SL

∂φ(α)

∂α
p < 0 (2.7)

Considering the above result, the optimal labour-supply response for someone under a

productivity-mapped wage regime will be sensitive to weather-related wage fluctuations.

Besides the effects discussed in Section 2.3.1, labour supply for such workers will depend on

a wage-substitution effect and a wage-income effect (see Appendix A.1 for a full derivation).

The first is unambiguously negative. Lower wages for each additional hour worked will

decrease the substitution effect on the labour supply. Thus, lower wages amplify the

negative substitution effect of adverse weather on labour supply for high-risk workers and

weaken the positive impact for low-risk workers.

At the same time, the marginal utility of income increases due to a lower wage for

current hours worked and every additional hour spent working. Therefore, lower wages

yield a positive income effect on labour supply, reducing the negative income effect for

low-risk professions and increasing the positive impact for the high-risk type (assuming

adverse weather is not a strong substitute).
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Above, I have assumed that prices are unaffected by weather. Allowing for demand

shocks in response to adverse weather changes (2.7) to:

∂w(α)

∂α
= SL

∂φ(α)

∂α
p(α) + SLφ(α)

∂p(α)

∂α
(2.8)

On average, I expect customer demand to fall on adverse-weather days and, thus,

∂p(α)/∂α < 0. Allowing for customer-demand shocks in the model amplifies the negative

productivity shock on wages under a flexible-wage regime.

2.4 Empirical Strategy

The identification strategy of weather impacts on local labour markets exploits the tem-

poral and spatial variation of weather. The impact of short-term fluctuations in weather

is isolated using a higher-dimensional fixed-effect identification method. I estimate the

reduced-form baseline regression specified as follows:

Yit = α+ ΘWrt + ΦXit + δr + γs × ηyq + λm + εit (2.9)

where Y denotes the outcome of interest, here weekly earnings (in 2010 Mexican pesos)

and working time (in minutes), for individual i at time t, where t is the survey calendar

reference week. W is a vector of weather bins for municipality r. The vector Θ measures

the effect of weather on the outcome variable Y . The model comprises a vector X of

individual characteristics, which includes age, age squared, education, marriage status and

gender, as well as job-specific characteristics, such as the industry, the firm size, whether

the individual works in formal employment, has a permanent or temporary contract and

lives in a rural or urban area. These variables are not expected to be affected by day-to-day

weather fluctuations but are likely to influence the outcome variable.

The regressions further include three sets of fixed effects: municipality δr, sector-specific

quarter and year γs×ηyq as well as month fixed effects λm. Municipality fixed effects control

for observable and potential unobservable confounding variables at the municipality level,

such as time-invariant municipality labour-market characteristics. They further account

for historical climate at location r and, thus, for adaptation to the climatic conditions
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at a municipal level. Year fixed effects in ηyq control for time-varying changes in the

dependent variable, which are common across Mexico, such as time-specific cross-regional

macroeconomic shocks. Quarter and month fixed effects capture seasonality in labour

markets and weather.16 Moreover, considering industry-specific business cycles, such as

harvest periods in the agricultural sector, additional industry-specific seasonal and annual

controls are added to the regression. Under this higher-dimensional fixed-effect strategy,

time-invariant municipality-specific confounding factors and time-specific cross-regional

sectoral changes will not bias the estimates.17 Therefore, assuming weather realisations

are randomly distributed over time, then Equation (2.9) yields unbiased estimates of the

vector Θ (Burgess et al. 2014; Deschênes and Greenstone 2007; Guerrero Compeán 2013).

A major concern when working with weather data is the choice of the appropriate

functional form of the weather variables. Past studies often apply simple measures, such

as ‘levels’ (Dell et al. 2012; Feng et al. 2010; Hsiang and Jina 2014; Hsiang 2010; Yang

and Choi 2007), anomalies (Anderson et al. 2013; Barrios et al. 2010; Fishman et al. 2019;

Hidalgo et al. 2010; Theisen 2012) and degree-days definitions (Aroonruengsawat and

Auffhammer 2011; Burke and Emerick 2016; Deschênes and Greenstone 2007; Graff Zivin

et al. 2018; Jessoe et al. 2018). Averaging weather across the working week provides a

straightforward measure of weather. However, weekly averages may mask daily fluctu-

ations and extremes. Equally, degree-days potentially miss the complexity of the impact

of weather by excluding medium-range temperatures from the assessment. Nonlinearities

may be crucial in the context of human behavioural responses to weather, considering the

nonlinear sensitivity of the human body to weather.18

Following the current standard in the literature, the issue of nonlinearity in responses

is overcome by binning the temperature and precipitation data (Wrt). This approach

avoids specifying the functional form of weather variables by assuming a nonparametric

structure of the variables.19 The weather bins are defined as the weekly sum of days

16. The robustness section tests the sensitivity of the findings to alternative fixed effects and time-trend
specifications.

17. A further decision concerning the empirical specification relates to the inclusion of a lagged dependent
variable. In light of the short time span of the panel structure with t = 5 (five quarters per individual), a
lagged dependent variable approach is inadequate as it would likely suffer from Nickell bias (Nickell 1981).

18. Many recent studies highlight the importance of accounting for nonlinearities in the impact of weather.
Examples are Burgess et al. (2014), Burke et al. (2015), Deschênes (2014), Kjellstrom et al. (2009),
Seppänen et al. (2006) and Wargocki and Wyon (2007).

19. For alternative studies exploiting a binned weather-variable approach see Barreca et al. (2016), Bur-
gess et al. (2014), Graff Zivin and Neidell (2014), Guerrero Compeán (2013), Guiteras (2009) and Schlenker
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in which temperature and precipitation fall into the corresponding bin. The analysis is

limited to daily mean temperatures and total precipitation, due to data limitations on

daily maximum and minimum temperatures.20, 21

Daily average temperatures are distributed over 16 bins, defined as follows: temper-

atures below 10°C and above 34°C. Temperatures between these two extremes are spread

over 12 two-degree-wide bins (i.e. 10-12°C, 12-14°C, . . . , 32-34°C), with the 20-22°C bin

defined as the base temperature. Hence, coefficient estimates are interpreted as the impact

of temperature deviations from the optimal temperature bin of 20-22°C. For rainfall, the

range of daily accumulated precipitation is divided into nine bins: five two-millimetre-wide

bins 0-2 mm, 2-4 mm, . . . , 8-10 mm; one bin for zero-rainfall days; three bins for days with

extreme rainfall of 10-20 mm, 20-30 mm and exceeding 30 mm. I expect the direction of

zero-rainfall days to vary by workers’ exposure. Hence, exclusion of the 2-4 mm bin from

the regressions allows a straightforward interpretation of heterogeneous dry-day effects.

Due to the low frequency of extreme-weather days, higher temperatures and precip-

itation levels are collapsed into above 34°C and 10-20 mm, 20-30 mm and above 30 mm

bins in an effort to obtain precise estimates, while allowing a meaningful interpretation

of effects. There is an apparent trade-off between including bins with a low frequency

of observations and collapsing the bins into greater units. Low-frequency bins result in

low precision in the estimates, while excluding bins limits the prediction of nonlinearities

at extreme levels of the distribution. Given the existing evidence of adverse heat effects

setting in at around 30°C (Barreca et al. 2016; Deschênes and Greenstone 2011; Graff

Zivin and Neidell 2014), heat-stress effects in the regressions should be identified by bins

exceeding this threshold. Likewise, precipitation levels above 10 mm fall into the top 5%

of the Mexican rainfall distribution and, thus, the top three precipitation bins will cap-

and Roberts (2009).
20. Ideally, one would like to use maximum as opposed to mean temperatures, considering that heat stress

is associated with extreme temperatures, and given that for most jobs the highest productivity is reached
during the daytime (Deschênes and Greenstone 2011; Graff Zivin and Neidell 2014; Park and Behrer 2016).
The length of the study period and the wide geographical area covered in the research prohibits the use
of hourly data for the construction of maximum and minimum temperature variables. In light of the lack
of high-resolution homogenised weather data on daily maximum and minimum temperature for the study
period, the analysis relies on mean temperatures.

21. In addition to mean temperatures, alternative temperature measures employed in the robustness
section are the Heat Index (HI) and the Wet Bulb Globe Temperature (WBGT) Index as measures of
apparent temperature. Both indices combine the effect of temperature and humidity. The WBGT is
recommended by the International Standard Organisation as a measure of occupational heat-stress. By
and large, the results are consistent across different temperatures measures, though precision in weather
coefficients is greatest using an average temperatures specification.
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ture ‘extreme’ rainfall events. Despite collapsing bins at the top end of the distribution,

the final bin structure should provide enough flexibility for nonparametric estimation of

weather impacts without suffering from lack of precision.

The empirical analysis further intends to isolate the potential channels of weather effects

by examining heterogeneity in weather sensitivity. I estimate different model specifications

which include interactions between weather bins and information on the industry, work

location (office and outdoor work), employment formality and contract length, as well as

differences in age, gender and education.22

A potential methodological issue is the problem of ‘over-controlling’, which in this

context becomes problematic when control variables are directly or indirectly influenced

by the weather (Dell et al. 2014, 743) . For example, individuals might consider average

weather conditions in their job choice. An individual sensitive to heat might choose not

to work in a weather-exposed occupation. Therefore, industry fixed effects will partially

capture an individual’s responsiveness to weather exposure. Consequently, while including

other time-varying characteristics will increase the precision of the estimates, the ceteris-

paribus assumption of the coefficient interpretation may not be valid. Hence, careful

choices must be made about including further controls in the regression.23

One key limitation of this study is the inability to differentiate between demand- and

supply-side effects in driving changes in earnings and labour supply as discussed in the

theoretical model (see Section 2.3 and Appendix A.1). For instance, rainfall will reduce

demand for outdoor activities or services, such as car cleaning. Moreover, labour demand

for workers may fall in response to weather-related labour-productivity losses. If demand

for a particular service or output is positively (negatively) affected by extreme temperat-

ures or precipitation, this would result in an indirect positive (negative) effect of adverse

weather on working times and earnings, which cannot be differentiated from a direct effect

caused by weather exposure.

Research on the retail sector provides some evidence of non-permanent weather-related

22. The robustness section provides results based on alternative subsample and individual fixed-effects
regressions. Yet, the low precision in estimates suggests that the more restrictive fixed-effects specifications
significantly reduce the variation in the weather bins, rendering estimation problematic. See Appendix A.6
for an more in-depth discussion of the problematic.

23. To address the issue, I follow Dell et al.’s (2014, 743) advice and estimate separate models with and
without control variables. On the whole, estimates are robust to the exclusion of additional controls.
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changes in customer demand (Starr-McCluer 2000). However, there remains a gap in the

literature regarding demand-side responses for non-retail industries. Unfortunately, firm-

level records with information on customer demand behaviour is rare for Mexico and

access is restricted. Therefore, I attempt to address this issue by differentiating between

industries for which demand is more or less sensitive to within-season weather fluctuations.

2.5 Description of the Data

Labour-market observations

The empirical analysis draws upon labour-market data from the ENOE (Mexican Labour

Force Survey) conducted by the Instituto Nacional de Estad́ıstica, Geograf́ıa e Informática

(INEGI) from 2005 till 2016. ENOE is a nationally representative labour-force survey com-

prising a rotating panel of five consecutive quarters. The sampling of survey respondents

follows a two-stage procedure: geographical stratification of areas, followed by a random

selection of households into the survey sample. During each survey round, one-fifth of the

sample households are dropped from the study, and a new cohort is added. The rolling

panel structure implies that each quarterly release of the survey contains information on

five different survey cohorts.

ENOE provides a rich dataset of information on individuals’ employment situation,

their job characteristics, as well as the sociodemographic characteristics of the household.

The final sample consists of 2,632,000 individuals located in 1,251,954 households spread

over 1,676 municipalities.24 Appendix A.2 provides a map of surveyed municipalities

visualising the spatial variation in the data.

Table 2.1 presents summary statistics of baseline characteristics for the sample indi-

viduals.25 The empirical analysis is confined to the legal working population between the

ages of 14 and 98.26 The sample is equally split between men and women, with an average

24. The ENOE stratification process excluded 780 of Mexico’s 2,456 municipalities. This process implies
that ENOE is nationally representative at the state level.

25. In view of the labour-force survey being a rotating panel, the summary statistics are generated using
the first interview round for each surveyed individual.

26. An advantage of ENOE is the extensive data cleaning and verification effort by INEGI, resulting in
a very clean dataset with few missing information. Besides validating the accuracy of the data entries and
deleting duplicates, data cleaning for this research project included limiting the dataset to the working
population between the age 14 and 98 – the official Mexican government definition of the working age.
Workers absent from work for holidays, educational training, and health or family reasons were dropped
from the dataset to reduce measurement error in the outcome variable. Moreover, merging of the weather
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Table 2.1: Summary Statistics Labour Market Survey

Variable Mean Std. Dev. 5th 95th %ile

individual characteristics
age 38.13 14.21 18.00 64.00
female (%) 52.01
married (%) 38.99
rural (%) 15.80
macro area (%) 64.61

education

max secondary (%) 55.79
preparatory (%) 17.01
university (%) 25.31
postgraduate (%) 1.56

labour-market characteristics
weekly wage in 2010 prices 1,006.70 1,406.22 0.00 2,924.5
weekly working hours (h) 42.24 18.00 8.00 72.00
days worked per week 5.45 1.30 2.00 7.00
unemployment rate (municipality) 0.04 0.02 0.00 0.08

firm size

micro (%) 61.93
small (%) 14.62
medium (%) 9.42
large (%) 14.03

contract type

informal (%) 27.66
permanent (%) 29.83
piecework (%) 13.24
weekly earnings (%) 50.28
< minimum wage (%) 19.75

work location

office (%) 39.44
outdoor (%) 14.22
domestic (%) 10.42

sector

agriculture (%) 10.79
extractive industry (%) 1.00
manufacturing (%) 15.26
construction (%) 8.17
trade (%) 20.54
restaurants (%) 7.54
transport & communication (%) 4.90
professional & financial services (%) 6.33
social services (%) 8.47
diverse services (%) 11.13
government (%) 5.88

age of around 38 years. Around 40% of the sample has completed tertiary education. On

average, individuals earn about 1,000 pesos per hour (in 2010 prices), with the top 5% of

earners in the sample receiving almost three times as much. Average working times are

42.24 hours per week spread over five and a half working days. The largest employment

data with the labour-force survey involved several verification tests to ensure the merge happened on the
correct calendar week. Similar attention was paid to the calculation of polygon averages for the weather
variables.
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sector by far is the trade industry, followed by manufacturing and diverse services. The

agricultural sector employs only around 10% of the labour force, which emphasises the

importance of analysing weather impacts outside of the agricultural industry.

Of interest is further information on the employment situation of workers. Almost

one-third of respondents work in informal employment and only one-third of workers have

a permanent contract. Moreover, half of the sample reported being paid on a weekly

basis, and almost 20% earn an hourly wage that falls below the official minimum wage.

Regarding work locations, roughly 40% of workers report to work indoors, while 15% are

exposed to elements during working hours. The remaining share of labourers either work

from home or have no consistent work location.27

Weather Data

Table 2.2: Summary Statistics Weather Variables

Mean Std. Dev. 5th–95th %ile

avg. temperature (°C) 22.24 5.75 12.78 31.42
avg. daily Heat Index (°C) 25.52 6.33 17.62 38.02
avg. Wet Bulb Globe Temp. (°C) 19.78 4.69 12.39 27.75
avg. daily total percip. (mm) 2.10 3.38 0.00 9.05

Figure 2.1: Distribution of daily mean temperature and total precipitation over
bins per week

(a) Temperature (b) Precipitation

Notes: Period of observation 2005-2016. The bar height captures the incidence of days with weather falling into the
respective bin across municipality per week.

Using the calendar reference week of the survey, I match observations from the labour-

force survey to fine-scaled weekly weather data from the NARR model (NCEP 2017)

27. To the extent that the information provided in ENOE only allows a rough categorisation of weather
exposure, I expect the analysis to underestimate the true effect of weather on working times and earnings.
For instance, plumbing work may take place indoors or outdoors and, thus, cannot be easily categorised
as ‘exposed’ or ‘nonexposed’.
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developed by the National Centers for Environmental Prediction (NCEP). The NARR

dataset consists of a long-term, high-frequency, high-resolution, and dynamically consist-

ent meteorological and land-surface hydrology dataset. It covers climate data from 1979

to 2017, with weather data provided eight times daily in the form of a 0.3°-resolution grid

(32 km at the lowest latitude). Reanalysis data collects information from ground stations,

satellites and other sources, such as rawinsondes. The use of reanalysis data for empir-

ical research has several advantages compared to station data. Firstly, reanalysis data

does not suffer from missing observations as often incurred with station data. Moreover,

homogenising of the data implies that values are comparable across regions and time.

Lastly, consideration of the topography in reanalysis models can reduce the inaccuracy in

the temperature and precipitation measurements across physical features of an area. At

the same time, the validity of using reanalysis data in this study hinges on the accuracy

of the model in predicting weather across the study region.28 As shown by Mesinger et

al. (2006), NARR has a good track record of accurately measuring extreme-weather events

for Mexico.

The weather data is aggregated to weekly bins (Monday to Sunday) at the municipality

level to match the survey reference period.29 Mexican municipalities present useful geo-

graphic units of local economic characteristics, providing uniform measures of, for example,

local labour- and housing-market conditions. Treating place characteristics of states as

uniform is inadequate, given the vast variation in within-state topography, climate and in-

dustrial structure. It is reasonable to assume that municipalities experience homogeneous

weather considering the average size of municipalities of around 800 km2—about the size

of New York City. Nevertheless, depending on the topography, weather can vary substan-

tially even within small geographical areas. Along with the potential issue of inaccuracy

in reanalysis data, it is likely that the final temperature and precipitation variables entail

some measurement error, causing an attenuation bias in the impact estimates.

This study follows the current standard method for geographical aggregation of reana-

lysis data, by using a two-step procedure that first generates weekly bins for every grid

point and then averages grid points over municipality polygons (Dell et al. 2014, p.

28. See Auffhammer et al. (2013) on potential pitfalls of using reanalysis data for empirical research.
29. The robustness section examines the implications of applying alternative temporal aggregations to

the weather variables. The regressions exhibit very similar impacts, with some loss in precision and a
decline in the effect size with lengthening of the measurement period.
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745).30, 31 This sequence is essential for correctly accounting for nonlinear effects of weather.

Averaging over the geographic area before binning the observations could lead to a mis-

representation of the extreme-weather days due to smoothing over extreme observations

(Dell et al. 2014, p. 745). To better understand the reasoning behind the aggregation

steps, consider this simplified example, where municipality r includes only two grid points

with temperatures of 27°C and 34°C with equal weights. Assume that labour supply drops

significantly for temperatures above 32°C. The mean temperature for the municipality is

30.5°C. Averaging temperature before aggregation would imply an incorrect prediction of

a reduction in labour supply caused by temperatures of 30.5°C. Instead, binning the tem-

perature before aggregation would assign half a day to each of the corresponding bins and,

thus, allows correct identification of heat effects associated with temperatures exceeding

32°C. Note that the sequential aggregation method results in fractional days in bins, but

total days per week and municipality sum to seven days.

Between 2005 and 2016 Mexico experienced average temperatures of 22.35°C with a

standard deviation (sd) of 5.75°C. Daily precipitation totals on average 2.10 mm (sd 3.37

mm), with the 95th percentile of the distribution reaching 9.04 mm. Figure 2.1 depicts the

incidence of days falling into the respective temperature and precipitation bins on average

per municipalities over the survey time.32 As expected, few days fall into the extreme

temperature and precipitation bins.

2.6 Results

I begin the analysis by estimating a basic regression specification including the weather

variables, additional controls and the higher-dimensional fixed effects, with December,

quarter four in the year 2010 in Mexico City as the base.33 Standard errors are clustered

at the municipality level, due to the stratification method of ENOE and to control for

30. Note that in 2011, municipality Othón P. Blanco in the South-Eastern state Quintana Roo lost 40%
of its territory to the newly founded municipality Bacalar. The original municipality boundaries from 2005
are kept throughout the study to ensure consistency in the geographic boundaries and characteristics of
municipalities over time.

31. Raster point weights used to calculate the geometric averages per polygon were generated using the
extract command of the raster package in R.

32. Studying summary statistics by Mexican macro-regions in Appendix A.3 reveals significant spatial
variation in the number of days per bin.

33. As mentioned in the data section, the correct functional form of the weather variables is heavily
debated. Following the literature, the discussion focusses on the preferred specification using weather bins.
Appendix A.5 provides alternative estimates based on simpler linear and polynomial variable specifications.
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geographical clustering in the climate variables (Abadie et al. 2017; Cameron and Miller

2015).34 Subsequently, I test for heterogeneity in the predicted weather effects by including

interaction terms between the weather bins and different variables of interest.

2.6.1 Baseline Results

Figures 2.2 and 2.3 present coefficient plots of weather impacts for earnings and working-

time regressions, respectively. The baseline results indicate a negative but small effect

of cold days, with temperatures below 10°C causing a working-time reduction of around

two minutes. Contrary to findings for the U.S. (Graff Zivin and Neidell 2014), coefficient

estimates in Plot 2.3a suggest no distinct relationship between heat and working time. In

contrast, the rainfall coefficients in 2.3b reveal strong impacts of extreme rainfall days. On

days with precipitation exceeding 30 mm economy-wide working times are on average 30

min shorter. Concerning earnings, the coefficient plots in Figure 2.2 indicate no average

effect of weather fluctuations on weekly earnings.

The municipality estimates mask potentially important heterogeneity in weather im-

pacts. For example, the extent of occupational weather exposure is likely to be an import-

ant determinant of the sensitivity of earnings and working times to weather fluctuations.

The analysis exploits the detailed information of ENOE on individual and job-specific

characteristics to test for differentials in weather effects using interaction effects. Tables

2.3 and 2.4 provide a summary of significant heterogeneous weather effects estimated using

interaction terms. I will discuss the summarised findings in more detail for the remainder

of this section.

34. The robustness section demonstrates the validity of the results to two-dimensional cluster specific-
ations such as at the sate-year level. In light of the stratification method and the robustness of results,
municipality-level clusters is the preferred specification in the analysis.
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Figure 2.2: Weather Bins Coefficient Plots - Earnings Regression

(a) Temperature
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Notes: Figure depicts marginal effects of weather bins on weekly earnings (in 2010 pesos). N=7,390,147 and
i=2,632,000. The 95% confidence interval indicated by markers. Each figure displays the estimated impact of the
weather variable on weekly earnings based on Equation 2.9 in the methodology section. Covariates include marital
status, age, gender, education, rural, industry, contract type, firm size, as well as municipality, industry-specific
year and quarter as well as month fixed effects. The omitted category is (20-22] °C and (2-4] mm precipitation.
Appendix A.4 provides the corresponding regression tables. Standard errors are clustered at the municipality level.

Figure 2.3: Weather Bins Coefficient Plots - Working Time Regression
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Notes: The figure depicts marginal effects of weather bins on weekly minutes worked. For all regressions N=7,390,147
and i=2,632,000. The 95% confidence interval indicated by markers. Each figure displays the estimated impact of
the weather variable on weekly minutes worked based on Equation 2.9 in the methodology section. Covariates
include marital status, age, gender, education, rural, industry, contract type, firm size, as well as municipality,
industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] °C and (2-4] mm
precipitation. Appendix A.4 provides the corresponding regression tables. Standard errors are clustered at the
municipality level.
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Table 2.3: Summary Table Significant Impacts - Earnings Regressions

Temperature Impacts in 2010 Mexican Pesos

positive negative

Cold industry
Restaurant Services 6.512∗ Extractive -37.55∗∗

Tradea 12.19∗∗∗ Construction -15.63∗∗∗

Agriculturea -8.007∗∗∗

Social Servicesa -13.58∗∗

work location
domestica 8.041∗

job characteristics
< minimum wagea 8.033∗∗ weekly pay -9.290∗∗

uniona -6.631∗

individual characteristics
14-19 years olda 8.994∗

tertiary schooling 6.107∗ max secondary -5.098∗

Heat industry
Extractive 157.7∗∗∗ Manufacturing -16.88∗∗∗

Professional Services 9.861∗ Trade -9.128∗∗∗

Social Services 20.74∗ Restaurant Services -17.99∗∗

Agriculturea 8.555∗ Diverse Services -11.94∗∗∗

work location
office worka 6.751∗ non-office work -9.371∗∗∗

domestic -16.82∗∗∗

rural -9.858∗∗

job characteristics
union 10.88∗∗∗ non-union -14.70∗∗∗

less frequent than weekly pay 12.66∗∗∗ weekly pay -20.91∗∗∗

informal -16.62∗∗∗

temporary -6.382∗∗∗

< minimum wage -22.82∗∗∗

piecework -18.23∗∗∗

individual characteristics
female -8.635∗∗∗

40-49 years old 9.022∗ 14-19 years old -23.32∗∗∗

50-59 years old 8.640∗∗ 20-29 years old 14.08∗∗∗

> 60 years old -7.223∗

university 18.28∗∗ max secondary -13.98∗∗∗

postgraduate 86.67∗∗∗ tertiary -3.560∗

Table continues on next page

2.6.2 Industry Estimates

As discussed in the theoretical section, workers’ weather sensitivity likely varies with the

extent of weather exposure and physical intensity of the job, both of which can roughly be

identified by the employment industry. Figures 2.4 and 2.5 present the marginal effects for

interactions between the weather bins and industrial dummies. As predicted by the model

outlined in Section 2.3, the industry estimates indicate significant working-time responses
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Table 2.3: Summary Table - Earnings Regressions (Continued)

Precipitation Impacts in 2010 Mexican Pesos

positive negative

Dry industry
Agriculture 20.36∗∗∗ Extractive Industry -59.86∗∗∗

Government 18.04∗∗ Social Servicesa -9.641∗∗

work location
outdoor 8.823∗∗∗ non-office work -3.876∗∗∗

domestic -12.69∗∗∗

job characteristics
formal 3.232∗ informal -9.945∗∗∗

permanent 6.426∗ temporary -3.367∗∗

union 8.352∗ non-union -8.801∗∗∗

less frequent than weekly pay 3.895∗ weekly pay -7.674∗∗∗

piecework -10.31∗∗∗

individual characteristics
male 5.702∗∗∗ female -9.763∗∗∗

40-49 years old 5.938∗∗ 14-19 years old -18.29∗∗

50-59 years old 6.477∗∗ 20-29 years old -6.328∗∗∗

Wet industry
Extractive Industry 81.55∗ Diverse Services -17.91∗

Restaurant Servicesa -18.72∗∗∗

work location
office worka 14.12∗∗ non-office work -13.90∗∗∗

domestic -17.21∗∗

rural -12.39∗∗∗

job characteristics
permanenta 12.55∗∗ temporary -12.55∗∗∗

union 17.32∗ non-union -22.29∗∗∗

informal -15.03∗∗∗

< minimum wage -26.77∗∗∗

piecework -18.23∗∗

weekly pay -33.06∗∗∗

individual characteristics
female -16.81∗∗∗

30-39 years old 9.022∗ 14-19 years old -27.68∗∗∗

20-29 years old -13.34∗∗

universitya 16.34∗ max secondary -13.51∗∗∗

postgraduatea 89.77∗

a Impact for other than maximum (minimum) bin. Significance levels: ∗ 10 percent, ∗∗ 5 percent,
∗∗∗ 1 percent. Standard errors are clustered by municipality. Covariates include marital status, age,
gender, education, rural, contract type, and firm size, as well as municipality, month, and industry-
year-quarter fixed effects.
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Table 2.4: Summary Table Significant Impacts - Working Time Regressions

Temperature Impacts in Minutes Worked

positive negative

Cold industry
Social Services 8.640∗ Manufacturing -9.721∗∗∗

Transporta 23.54∗∗∗ Construction -16.35∗∗∗

Agriculturea -18.84∗∗∗

work location
office -3.053∗∗∗

urban -3.607∗∗∗

metro area -2.533∗∗

outdoora -20.43∗∗∗

job characteristics
informala 6.306∗∗∗ formal -3.051∗∗

permanenta -2.922∗∗

non-union -3.049∗

non-piecework -2.674∗∗

piecework -9.802∗∗

weekly pay -7.451∗∗∗

less frequent than weekly paya -3.167∗∗

individual characteristics
male -6.792∗∗∗

14-19 years old 14.65∗∗∗ 30-39 years old -9.102∗∗∗

40-49 years old -5.019∗∗

50-59 years olda -3.780∗

university 4.161∗ max secondary -6.975∗∗∗

Heat industry
Professional Services 6.545∗ Manufacturing -8.683∗∗

Governmenta 11.10∗∗ Transport -30.03∗∗∗

work location
officea 6.954∗∗∗ non-office -4.987∗∗∗

rurala -10.20∗∗∗

job characteristics
formal 4.968∗∗∗ informal -18.67∗∗∗

permanenta 8.604∗∗∗ temporary -3.594∗∗

uniona 4.442∗∗ non-uniona -5.742∗∗

< minimum wage -12.48∗∗∗

individual characteristics
20-29 years old 4.166∗∗ > 60 years old -5.926∗

tertiarya 3.866∗ max secondary -4.544∗∗∗

university 6.943∗∗

postgraduatea 14.76∗∗∗

Table continues on next page
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Table 2.4: Summary Table - Working Time Regressions (Continued)

Precipitation Impacts in Minutes Worked

positive negative

Dry industry
Agriculture 40.36∗∗∗ Construction -9.075∗∗∗

Social Services 13.89∗∗∗ Trade -13.37∗∗∗

Restaurant Services -7.619∗∗

Transport -30.34∗∗∗

work location
outdoor 31.52∗∗∗

office work 3.733∗∗∗

domestic 5.426∗

job characteristics
formal 5.404∗∗∗ informal -12.90∗∗∗

permanent 7.335∗∗∗ temporary -2.570∗∗

non-union 2.737∗ uniona -3.304∗∗∗

< minimum wage -8.414∗∗∗

less frequent than weekly pay 3.979∗∗∗ weekly pay -6.212∗∗∗

individual characteristics
female 3.126∗∗

40-49 years old 2.847∗ 14-19 years old -14.03∗∗∗

> 60 years old 10.15∗∗∗

university 5.446∗∗∗∗

postgraduate 8.603∗

negative

Wet industry
Agriculture -69.49∗∗∗ Manufacturing -30.71∗∗∗

Construction -70.92∗∗∗ Trade -20.90∗∗∗

Restaurant Servicesa -17.82∗∗ Transport -23.53∗∗

Professional Services -13.35∗ Social Services -17.65∗∗

work location
outdoor -63.91∗∗∗ non-office work -42.47∗∗∗

urban -19.35∗∗∗ rural -63.39∗∗∗

metro area -21.07∗∗∗

job characteristics

formal -16.07∗∗∗ informal -58.77∗∗∗

temporary -39.73∗∗∗

non-union -32.73∗∗∗ union 14.17∗∗∗

< minimum wage -46.47∗∗∗ non-piecework -31.65∗∗∗

less frequent than weekly pay -21.57∗∗∗ weekly pay -42.11∗∗∗

individual characteristics
male -35.52∗∗∗ female -16.26∗∗∗

14-19 years old -42.92∗∗∗ 20-29 years old -16.32∗∗∗

30-39 years old -23.90∗∗∗ 40-49 years old -32.62∗∗∗

50-59 years old -36.61∗∗∗ > 60 old -34.57∗∗∗

max secondary -42.45∗∗∗ tertiary -9.686∗∗

a Impact for other than maximum (minimum) bin. Significance levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1
percent. Standard errors are clustered by municipality. Covariates include marital status, age, gender,
education, rural, contract type, and firm size, as well as municipality, month, and industry specific year
and quarter fixed effects.
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to both heat and cold days for weather-exposed and manual labour-intensive industries.

Days with temperatures exceeding 22°C reduce working times by around eight minutes

in the manufacturing sector and by more than half an hour in the transport sector. In

contrast, working times in the government and the professional service sector (low risk

industries) are prolonged by around three to twelve minutes. The results provide some

suggestive evidence of heat-related increases in working times in the extractive sector, but

the coefficient for the maximum-temperature bin is insignificant.

Predicted cold effects are more consistent. I find working-time reductions to range

roughly between 10 to 19 min per day with temperatures below 12°C for agricultural,

construction and manufacturing workers.35 Similar to Connolly (2008) and in line with

the theoretical model, I observe rainfall-related working-time reductions during heavy-

rainfall days of up to 70 min in weather-exposed industries, including agriculture 69.49

min (−16.19% of daily working time), construction 70.92 min (−14.29%) and transport

23.53 min (−4.20%); half an hour for physical-intensive work in manufacturing (−6.40%);

and up to 20 min in service-oriented industries (−2 to −4%).

35. Note that the marginal effect for the minimum temperature bin is insignificant for the agricultural
sector. Agricultural production in Mexico is primarily located in regions with moderate or tropical climate
all year round. Hence, the number of observations in the lowest temperature bin for the industry is small,
limiting the identification of effects for the temperature range.
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As expected, zero-rainfall days have a strong positive effect on working times in the ag-

ricultural sector of an additional 40 min per day (+10.33%), with a corresponding increase

in daily earnings by 23.40%. In terms of the model, this suggests that the substitution

effect of a lower disutility of agricultural work on dry days dominates the income effect of

a higher utility from recreational activities. However, the impact of day-to-day changes

in weather on the agricultural sector will likely vary by season. During harvest season,

agricultural workers will react very differently to extreme rainfall than outside the growing

season. Moreover, prolonged heat and drought will, for example, result in greater usage

of irrigation. Hence, aside from direct effects on labour productivity and the disutility

of work, weather fluctuations will likely cause agricultural production line adjustments.

Therefore, observed responses in working times and earnings should be interpreted as the

equilibrium outcome of the re-optimisation of the firm and the individual maximisation

problem.

In contrast to the agricultural sector, I observe minor adverse effects of dry days on

working times in the construction (−1.83%), trade (−2.91%) and restaurant services in-

dustry (−1.64%), suggesting substitution effects between recreational activities and work-

ing time on zero-rainfall days in line with Connolly (2008). Similarly, working times in

the transport industry drop by half an hour on zero-rainfall days (−5.41%).

While the impacts on weather-exposed and manual labour-intensive industries can

be attributed to direct weather impacts, it is uncertain, whether work-time reductions

in service-oriented industries are caused by lower customer demand or changes in la-

bour productivity.36, 37 For example, shorter working hours in the transportation sector

on zero-rainfall days could result both from lower traffic congestion (higher labour pro-

ductivity) as well as fewer passengers (lower output price). Research on the retail sector

demonstrates a negative relationship between extreme-weather days and customer-demand

(Starr-McCluer 2000), speaking in favour of demand-side driven working-time responses

36. In terms of the model, a fall in customer demand would result in a lower price in the output sec-
tor and a lower equilibrium level of labour supply for workers under a flexible wage regime. Similarly,
labour-productivity impacts would cause changes in productivity-mapped wages and, through equilibrium
mechanisms, in the optimal level of labour supply.

37. I assume here that service-oriented industries belong to the low-risk category. However, in the context
of Mexico, this categorisation might not be appropriate considering the low air-conditioning penetration
rate. A high correlation between outdoor and indoor climate may imply that nonfinancial-service industries
belong in the high-risk category. In this case, labour supply would respond directly to adverse weather
days. As working time falls, so would earnings for workers paid on an hourly basis.
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for occupations with customer contact. However, a study on the impact of rainfall on

labour supply in the New York taxi market shows that despite higher returns per hour

(higher occupancy rate and shorter mileage travelled) supply drops on rainy days (Farber

2015). This suggests that taxi drivers dislike driving in the rain (higher disutility of work

relative to the utility of consumption) and, therefore, cut short working days. Heat could

have similar effects on labour supply in the transport sector.

The corresponding earnings estimates provide some evidence of demand-side effects for

service-oriented industries. Aside from direct heat and cold effects on earnings of manual

labour-intensive industries (agricultural, construction and manufacturing),38 impacts on

earnings are limited to trade and nonfinancial services, such as the restaurant sector.

In contrast to working times, earnings in the transport sector are unaffected by adverse

weather. In terms of the model, this suggests that higher customer demand and labour

productivity in the transport sector result in higher hourly wages. This causes a re-

optimisation of working times to a lower level given the negative income effect, thus, leaving

earnings in the transport sector unaffected. In contrast, reductions both in earnings and

working times for other nonfinancial service industries suggest negative customer-demand

responses on adverse-weather days causing a fall in earnings and, consequently, labour

supply. Nevertheless, adverse weather impacts on labour productivity of nonfinancial

service employees cannot be ruled out as an explanation (see Equation 2.8). Observed

effects likely result from a combination of both demand- and supply-side impacts.

A surprising result in Figure 2.4 is the unusual earnings increases (declines) in re-

sponse to heat (cold) days in the extractive industry. While extreme-rainfall and heat

days raise average earnings in the sector by around 81.55 pesos (+21.14%) and 157.7

pesos (+41.3%), zero-rainfall days and cold temperatures lower income by −59.86 pesos

(−15.68%) and −37.55 pesos (−9.84%), respectively. The results indicate no correspond-

ing working-time adjustments for the industry. This suggests the implementation of heat-

and rainfall-related effort-compensation schemes in the Mexican extractive industry as

a means of incentivising employees to work in adverse temperatures and rain despite a

higher disutility of work. Unfortunately, I have not come across any anecdotal evidence

of weather-dependent compensation programs in the sector. However, Kahn (2016) em-

38. These findings are consistent with scientific evidence of temperature-related reductions in cognitive
ability, physical task performance and higher injury risk for weather-exposed and physically-active jobs.
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phasises that compensating wage differentials will rise with future climate change and

deteriorating work conditions in weather-exposed industries.

Occupational health problems caused by prolonged heat exposure are not uncommon

among Mexican miners (Trabajo y Previsión Social 2017). High external temperatures can

result in life-threatening underground temperatures in mines. Similarly, surface mining is

directly exposed to the elements with limited possibilities of shelter. At the same time,

employment in the extractive industry is disproportionally well protected, with over 95%

workers having a formal work contract and 78% being union members with a permanent

position. Therefore, workers in the extractive industry seem to posses the bargaining

strength to demand compensation for working in adverse weather.

2.6.3 Work Location

To better understand the underlying mechanisms of the observed industry differentials, I

explore information on work locations and occupational codes to categorise individuals into

office, domestic and outdoor workers. An outdoor dummy variable identifies occupations

predominantly exposed to the elements (e.g. agricultural-field and external-construction

workers). Moreover, I investigate differentials between rural, urban and metropolitan

locations. Figure 2.7 presents marginal effects on weekly working time by job location.

Days with temperatures between 10-12°C lower working times of outdoor workers by 20

min (−4.80%), while heat days prolong working days for both outdoor and office workers.

Models 3 to 5 provide some evidence for heat-stress impacts on non-office, domestic and

rural work. However, the effects are small and predicted effects of maximum-temperature

bins are mostly insignificant.

More revealing are the precipitation estimates. As expected, the precipitation res-

ults depict a strong association between rainfall and weather-exposed working times (high

risk). Extreme-rainfall days (> 30 mm) shorten rural and outdoor working days by ap-

proximately one hour (14%). In contrast, outdoor labourers work roughly half an hour

longer on zero-rainfall days.

Earnings effects presented in Figure 2.6 are consistent with a story of labour-productivity

losses in response to heat exposure. The results indicate heat- and rainfall-related reduc-

tions in earnings for outdoor, non-office and rural workers. As expected, rainfall impacts on



42

Figure 2.6: Work Location Marginal Effects on Earnings
outdoor vs indoor
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Figure 2.6: Work Location Marginal Effects on Earnings (continued)
metro vs non-metro area
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings (in 2010 pesos). The 95% confidence
interval indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract
type, firm size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted
category is (20-22] °C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure 2.7: Work Location Marginal Effects on Working Time
outdoor vs indoor
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Figure 2.7: Work Location Marginal Effects on Working Time (continued)
metro vs non-metro area
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] °C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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earnings are stronger for the rural labour market which employs the majority of weather-

exposed workers. Zero-rainfall days raise earnings of outdoor workers by 8.27%, resembling

earlier findings for the agricultural sector. Similarly, domestic workers benefit from dry

days, with a small increase in earnings, despite shorter working times. This increase in

earnings likely stems from a rise in customer demand for domestically produced products

considering that 60% of domestic workers are employed in service industries. Considering

the positive effect of heat on working times of office workers, the small rise in earnings on

days with temperatures between 32°and 34°C for this type of worker indicates the existence

of work-leisure substitution effects and the remuneration of overtime.

2.6.4 Employment Characteristics

From a policy perspective, it is important to identify potential distributional welfare con-

sequences of weather-driven labour-market changes. In this respect, I study differentials

between protected and unprotected groups of workers, exploring heterogeneity by job

formality, contact duration and earnings levels below the legally binding minimum wage.

Results are presented in Figures 2.9 and 2.8. Negative heat-stress effects on minutes

worked are limited to individuals working in unprotected employments (informal, tempor-

ary, non-union member and below-minimum-wage earners). As predicted by the model,

heat days have a prolonging effect on working times of formal workers (low risk). I pre-

dict the largest heat-stress effect for informal workers with a work-time decline of 19 min

on days with temperatures above 34°C (−4.33%). Moreover, adverse precipitation effects

are considerably larger for unprotected workers. On days with precipitation exceeding 30

mm, working times of informal workers fall by around an hour (13.64%), whereas formal

workers are unaffected.

Similarly, the marginal effects in Table 2.9 reveal nontrivial earnings losses for individu-

als working in unprotected work environments. Informal workers experience a significant

drop in earnings of up to 16.62 pesos (11.01%) on days with temperatures exceeding 22°C

or precipitation above 10 mm. Similar impacts are observed for temporary workers and

non-union members. Workers in vulnerable work environments are primarily employed in

the trade, construction, manufacturing and nonfinancial service industries. As such, they

are either directly affected by weather or indirectly through changes in product demand.

I observe the largest relative earnings loss for labourers with hourly earnings falling be-
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Figure 2.8: Job Characteristics Marginal Effects on Working Time
formal vs informal
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Figure 2.8: Job Characteristics Marginal Effects on Working Time (continued)
above vs below official minimum wage
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] °C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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low the official minimum wage, employed mainly in agriculture, manufacturing and trade.

Days with temperatures exceeding 34°C or with rainfall exceeding 30 mm reduce daily

earnings of below-minimum-wage earners by more than 50%. These findings raise concern

about distributional welfare implications of weather impacts on labour markets, consid-

ering that predominantly poor workers are employed in unprotected work environments.

As such, it is important to understand who’s earnings are affected.

2.6.5 Wage Rigidity and Weather Impacts on Earnings

Well-documented short-run wage rigidities may limit the flexibility of earnings to adjust

to temperature-induced productivity changes (Castellanos et al. 2004; Crawford 2001;

Dwyer, Leong et al. 2000; Kahn 1997; McLaughlin 1994). I exploit information on pay-

ment frequency to identify workers with piece-rate contracts and those receiving weekly

payments, compared to salaried workers with fixed-payment contracts. Notably, industries

with significant earnings responses have relatively large shares of workers with earnings

paid on a weekly or more frequent basis (construction 80.9%, diverse services 73.6%, man-

ufacturing 68.4%, restaurant services 61.2% and transport 60.5%). As predicted by the

model, negative temperature and precipitation effects on earnings are limited to workers

with flexible-payment contracts. At the same time, the results suggest that heat has a

positive impact on earnings for salaried employees (i.e. non-piecework and less frequent

payment contracts in Figure 2.9). In terms of the model, this suggests that salaried (low

risk) employees substitute work time for leisure on adverse weather days. The increase in

labour supply leads to an increase of earnings due to remuneration of overtime.

Interestingly, estimates in Figure 2.8 indicate no corresponding heat effect on working

time for workers on flexible-earnings contracts (piece-work and weekly-payment contracts).

However, negative cold and rainfall effects on working times are stronger for this type of

worker, which indicates a reduction in labour demand and wages paid to workers with

flexible-payment contracts on adverse-weather days. Interestingly, the negative impact

of extreme rainfall on working times is largest for workers with flexible weekly earnings,

while the effect on working times of those paid by number of units produced is insignificant

despite losses in earnings. This suggests that employees on piecework contracts are unable

to mitigate adverse labour-productivity effects by adjusting working times during adverse-
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Figure 2.9: Job Characteristics Marginal Effects on Earnings
formal vs informal
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Figure 2.9: Job Characteristics Marginal Effects on Earnings (continued)
above vs below official minimum wage
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings (in 2010 pesos). The 95% confidence
interval indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract
type, firm size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted
category is (20-22] °C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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weather days.39

2.6.6 Individual Characteristics

The human-biology literature reports significant gender and age differences in the body’s

ability to cope with temperature stress. Together with unequal employment selection by

different demographic groups, particularly into vulnerable and weather-exposed working

environments, I expect potential significant demographic differentials in weather impacts.

Figures 2.10 and 2.11 present estimates by gender, age and education level. In line with

scientific evidence, heat stress causes significant declines in working times of women and

elderly workers. In contrast, days with temperatures below 10°C only significantly alter

working times of male workers and those aged 14 to 49, with the cold effect reversing

direction at the age of 29 (from positive to negative). Given the lower employment share

of women in weather-exposed occupations, female working times unsurprisingly are less

sensitive to extreme-rainfall days. Estimates by level of education demonstrate a reversal

of heat-related working-time adjustments from a reduction to a prolonging effect for edu-

cation levels beyond secondary education, while rainfall effects disappear for more highly

educated individuals.

Regarding earnings, estimates in Figure 2.10 further stress the distributional dimen-

sions of weather impacts, with women, the young and the least educated being dispro-

portionately affected by adverse weather conditions. Female earnings fall by 16.81 pesos

(10.11%) and 8.64 pesos (5.19%) on extreme rainfall and heat days, whereas earnings of

men are unaffected except for a small positive effect of zero-rainfall days. Women are

primarily employed in manufacturing and service-oriented industries, with female work-

ers having twice as frequent direct customer contact, compared to their male counterpart

(40.3% versus 21.1%). Hence, besides biological differences in temperature sensitivity,

female earnings might be more responsive to weather-related customer-demand changes.

Moreover, women carry out a greater share of care responsibilities and domestic tasks,

which may prevent recovery from heat strain during non-working hours, resulting in greater

tiredness and other symptoms of heat exhaustion during the next working day (Pogačar

et al. 2018). Similarly, the share of women paid on a pro rata basis is significantly larger.

39. These results are in line with findings for blueberry pickers on piece-rate contracts in California,
who’s productivity drops significantly at temperatures above 25°C and below 15°C, whereas labour supply
remains unaffected (Stevens 2017).
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Figure 2.10: Individual Characteristics Marginal Effects on Earnings
male vs female
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings (in 2010 pesos). The 95% confidence
interval indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract
type, firm size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted
category is (20-22] °C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.



54

Hence, the loss in earnings and the reduction in working times is likely the consequence of

a combination of a negative wage effect due to reduced labour productivity and the direct

impact of heat exposure.

Figure 2.11: Individual Characteristics Marginal Effects on Working Time
male vs female
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] °C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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2.6.7 Counterfactual Cost Estimate

The final set of results consists of a counterfactual analysis intended to provide a rough

estimate of the annual cost associated with the above weather impacts.40 A better un-

derstanding of the total costs implied by weather-induced working time and earnings fluc-

tuations to the Mexican economy provides valuable information to policymakers. Such

numerical figures allow cost-benefit comparisons with potential policy interventions pro-

tecting workers from adverse impacts, such as mandatory insurance policies. Nonetheless,

it is important to stress at this point that any figures provided in this section are crude

back-of-the-envelope estimates as the calculation is based on a highly abstract counter-

factual scenario. Consequently, the results presented here should be considered as an

indication of the importance of labour market impacts for the Mexican economy rather

than absolute values.

I calculate weather-driven annual changes in earnings and working times in 2016 using

the information on the total number of days per weather bin in 2016 and the coefficient

estimates from the previous regressions. I compare these cost estimates with the potential

annual earnings and working times, assuming a counterfactual scenario with year-round

temperatures of 20-22°C and 2-4 mm precipitation. Estimated reductions in earnings

provide an indicative monetary valuation of the annual costs of weather impacts to em-

ployees, while working-time losses represent costs to employers.

Three important conclusions can be drawn from the cost estimates (see Appendix A.10

for the results). First, average effects are relatively small. Annual weather-related losses in

working times amount to 1 million days in 2016 (around −0.037% of total annual potential

working days), of which half is lost due to temperatures below 10°C. The predicted annual

temperature-related losses in earnings total 3.5 billion pesos (−0.175% or approximately

US$279.9 million). Slightly lower are the cost estimates for rainfall impacts. Estimated

changes in earnings caused by rainfall fluctuations total just 571.8 million pesos (−0.029%

or $46.2 million), despite zero-precipitation days costing more than 1.75 billion pesos

(−0.088% or approximately $141.5 million).

40. This section is the result of the fruitful discussion with Olivier Deschênes and other participants at
the 6th IZA Workshop on Environment and Labour Markets. One key result of the workshop was that
research in this field should aim to provide numerical measures of the economic costs as an orientation for
policymakers.
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Second, the largest accumulated annual weather-driven cost is estimated for bins with

small marginal effects but a high annual frequency of days in the corresponding temper-

ature and precipitation range. For example, zero-rainfall days cost almost 2 billion pesos

in annual earnings, while the loss in earnings due to extreme-rainfall days (> 10 mm)

amounts to 1 billion pesos. Accordingly, the accumulation of minor daily weather impacts

can result in considerable medium- and long-term losses in earnings and working times.

Third, the findings reveal considerable earnings losses for the most vulnerable part of

the labour force. Again, the largest relative reduction in potential earnings and working

times is predicted for below-minimum-wage earners—up to 2% for working times and over

50% for earnings.41 From the industry estimates one can infer that the largest absolute

temperature-driven earnings losses are incurred in the nonfinancial service industry, and

the agricultural and construction sector. However, in relative terms, temperatures fluc-

tuations have the largest (positive) impact on earnings in the extractive industry, despite

the smaller share of workers being employed by the sector. This again highlights the im-

portance of compensation schemes in motivating employees to work in adverse weather

conditions.

Projecting a future two-degree temperature (°C) increase over the previous set of es-

timates, predicted economy-wide annual heat-related (>30°C) earnings losses increase by

roughly 0.02%, with a similar total effect. The lower number of cold days, however, has

a small positive effect on the total hours lost due to extreme temperatures (see Tables

A.10.9 and A.10.10 in Appendix A.10). The heterogeneous estimates highlight the dis-

tributional aspects of climate change impacts with disproportionate increases in costs for

the most vulnerable. For example, I predict an additional income loss for workers with

earnings falling below the official minimum wage rate of around 4%, whereas total earnings

of permanent workers at the same time rise due to reimbursement of overtime.

Evidently, these cost predictions must be considered with extreme caution. Not only is

the counterfactual scenario far from reality (constant temperatures and rainfall), but the

estimation also does not allow for substitution of labour across working weeks (aside from

effects captured by sector-specific temporal fixed effects). Moreover, the calculation does

41. Considering the large temporal variation in earnings for workers in this income group, counterfactual
earnings are estimated with a large uncertainty. Consequently, the estimate of 50% is likely overestimated.
However, the result demonstrates the large uncertainty surrounding weather-induced earnings fluctuations
for low-income earners.
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not account for holidays or sick leave. A further limitation is the assumption of homogen-

eity in individual responses to weather impacts and the lack of job-switches or changes in

employment characteristics within a quarter. Nevertheless, the results show that minor

daily effects can potentially accumulate to substantial annual costs if encountered fre-

quently. Without any adaptation and mitigation, both a higher frequency of extreme

events and the higher intensity of weather events would imply a surge in the economic

costs associated with weather-driven changes in the Mexican labour market. Furthermore,

the predictions emphasise the distributional implications of global warming on labour mar-

kets, which should be taken into consideration by policymakers, with low-income workers

being disproportionately affected by adverse weather.

2.7 Robustness Checks

In this section, I implement several specification checks to test the structural validity of

the key findings.

Alternative Cluster and Fixed-Effects Specification

I find the main results to be robust to more complex two-dimensional clustering at the

regional and panel level (see estimates with alternative cluster specifications in Appendix

A.12). Second, the estimates are robust to the inclusion of time trends in lieu of fixed

effects (see Appendix A.11 for results), suggesting that the higher-dimensional fixed effects

adequately control for seasonal time correlation.

One concern with the municipality-level fixed-effects specification is potential individual

selection bias driving the results. Workers sensitive to adverse temperatures may select

into employment in climate-controlled environments, causing a downward bias in estim-

ates. Ideally, one would like to apply an individual fixed-effects specification to control

for confounding factors at the worker level. Applying this specification, I observe signific-

ant differences between subsample estimates and the previous results. For example, after

controlling for individual unobservables, temperatures above 34°C significantly reduce out-

door working times. Likewise, adverse rainfall and heat effects on unprotected workers are

noticeably smaller. In addition, contrary to the findings in the previous section, heat and

extreme-rainfall days have a positive effect on earnings for most industries.
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These contradictory findings may result from individual fixed effects removing a size-

able portion of the variation in individuals’ exposure and sensitivity to weather, thereby

prohibiting inference of impacts on labour-market segments with limited within-group

variation.42 For example, individual fixed effects control for individual- and job-specific

characteristics, which are shown to be important drivers of weather-sensitivity. Similarly,

industry-specific municipality fixed effects control for geographical differences in the in-

dustry’s exposure and preparedness to cope with weather shocks. While one cannot rule

out individual selection bias, the contradicting results under an individual fixed-effects spe-

cification may arise purely from construction. More frequent panel survey data with large

within-individual weather variation can help overcome the trade-off between controlling

for individual selection bias and identification of heterogeneous effects.

Subsample Regressions

In addition to modelling interaction effects, I estimate subsample regressions for the vari-

ables of interest. Results presented in Appendix A.8 are largely consistent with estimates

presented in the previous section. Similar to individual fixed effects, I observe a loss in

precision, in particular for the industry regressions. Again, industry-specific municipality

fixed effects remove much of the within-sector variation in weather exposure and readiness

to cope with weather fluctuations, causing weather effects to disappear in industry-specific

regressions.

Alternative Temperature Measures

Following the literature, I further test whether alternative measures of apparent temper-

ature are better predictors of heat impacts. Apparent temperature composites have the

advantage of taking into account humidity and provide a better estimate of the temperat-

ure effect on the human body. Alternative measures applied as a robustness check are the

HI and the WBGT. The calculation used for construction of both apparent temperature

measures and the main results are provided in Appendices A.7.1 and A.7.2. Note that

the two new measures yield noticeably different distributions of days per bin, compared to

the original mean temperature measure. Studying the distribution of the HI bins reveals

42. As discussed in Appendix A.6, individual fixed effects remove a sizeable portion of weather-bin vari-
ation.



59

a large spike in days with temperatures above 34°C. Moreover, there is a small increase

in the average number of days below 10°C. In contrast, the WBGT indicates fewer days

with temperatures above 22°C, with significantly more days in the lowest bin.

Estimates based on the HI are very similar to the baseline temperature predictions.

Cold effects are slightly stronger, while heat effects on average are smaller. The WBGT

estimates again are comparable to the baseline temperature estimates, although I observe

minor changes in the size of predicted heat impacts (See Appendix A.7.2). The WBGT

estimates seem to do better at capturing effects at the top end of the distribution, while

the HI is a stronger predictor of cold effects. However, discrepancies in effects are to a large

extent explained by differences in the distributions of days per bin across the alternative

temperature measures. Overall, the gains from using the more complex temperature

measurements seem to be minimal in the case of Mexico. Considering the negligible

differences in estimates, I chose to present results using mean temperatures in the main

analysis, as the specification provides a readily interpretable unit of measurement for

policymakers.

Temporal Aggregation of Weather Variables

As briefly touched upon in the data section, estimated weather impacts are likely sensitive

to the temporal aggregation of the climate variables. Provided that wages are rigid in the

medium term, one would expect earnings of salaried workers to respond to weather changes

with some delay. Salaries may only be affected by prolonged heat waves or extreme-rainfall

periods. To test for medium-term impacts, the regressions are re-estimated using weather

variables aggregated over one month and three months before the survey reference date

(Appendix A.13). Overall, the new regressions exhibit very similar impacts despite some

loss in precision and effect size as the measurement period increases. Overall, the findings

suggest that temperature has a sustained medium-term impact, while rainfall affects earn-

ings and working times only in the short term. Examining industry differences using the

alternative temporal specifications yields robust estimates for all but the transport sec-

tor, where the negative extreme cold effects with prolonged time periods turn significant.

Moreover, low temperatures in the recent past (one and three months) are predicted to

increase current working times of agricultural workers. The results suggest that workers in

the agricultural (transport) industry mitigate negative weather impacts by shifting work-
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ing time from days with adverse (comfortable) weather to those with more comfortable

(adverse) working conditions.

Short-Term Substitution Effects

Given the previous findings, I test for unobserved working time substitution outside the

reference week, offsetting short-term impacts. To do so, I add lagged weather bins to the

regression. Results are presented in Appendix A.14. Average municipality effects indicate

a lasting effect of extreme-rainfall and heat days on working time beyond the reference

week, with no effect on earnings. The lagged industry-specific marginal effects indicate

some short-term substitution of working time in response to heat days among agricultural

workers, but the effects are insignificant. More interesting are the results for the trade

sector, where heat days in the previous week significantly increase working time in the

next week, while heat during the reference week has the opposite effect. This finding

further supports the notion of working-time fluctuations in the trade sector being primar-

ily caused by weather-related short-term fluctuations in customer demand. A study by

Starr-McCluer (2000) shows that adverse weather leads to a postponement of purchasing

decisions but causes no long-term losses in retail demand. Exploring substitution effects

by job characteristics, I find union workers to shift working times across weeks in response

to adverse temperatures, while non-union members show no such behaviour. Hence, union

membership seems to provide protection against adverse-weather effects or the flexibility

to substitute working time for leisure to optimise utility in light of adverse weather effects.

Long-Term Adaptation Effects

Aside from substitution effects, I am interested in identifying potential adaptation effects

across Mexico. For this reason, I split the dataset into municipalities with temperatures

below and above the historical Mexican average temperature of 24.94°C. As expected,

coefficient plots in Appendix A.15 reveal that heat (cold) effects on earnings and working

times are stronger in areas with colder (warmer) historical mean temperature. The results

hint at industries adapting to some extend to the local climatic conditions to reduce the

negative impacts of heat and cold shocks.43 However, the differences are predominantly

43. Evidently, this is a crude differentiation of climate zones that might mask adaptation beyond simple
temperature effects. However, studying adaptation effects to temperature, Park and Behrer (2016) find
averages to yield similar results to more complex classifications by heat days. Nevertheless, splitting regions
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insignificant.

Municipality-Level Regressions

As a final robustness check, the dataset is collapsed to municipality level. The reduced

sample size enables the use of daily, as opposed to weekly, weather bins. Accordingly, the

dependent variables change to total minutes worked per day and daily earnings, calculated

as weekly earnings divided by the number of days worked in the reference week.44 A

disadvantage of using aggregate data is potential information-aggregation bias through the

loss of heterogeneous variation provided on the individual level.45 Hence, the municipality

level results should be interpreted with caution.

Several notable observations can be made about the municipal estimates presented in

Appendix A.16. Different from the individual-level regressions, days with temperatures

exceeding 28°C cause a small negative reduction in average daily municipality earnings

(see Figure A.16.1). Moreover, the effect of heavy rainfall on working times decreases to

a seven-minute reduction on days with precipitation exceeding 30 mm (Figure A.16.2).

Thus, using daily as opposed to weekly working time data seems to provide a more precise

measure of extreme temperature effects, while failing to capture prolonged extreme rainfall

effects beyond the working day. However, results based on interaction effects between

weather bins and job characteristics reaffirm earlier findings of significant heterogeneity in

effects.

To conclude this section, the main results are shown to be robust to all but the

individual-level fixed-effects specification, where the lack of within-individual variation

in weather may preclude identification of impacts. Given the largely consistent results,

the robustness checks substantiate the finding of both temperature- and rainfall-driven

fluctuations in working times and earnings in Mexican labour markets.

by climatic zones may yield stronger adaptation effects.
44. This approximation likely introduces measurement error causing an attenuation bias in the earnings

results.
45. See Goodfriend (1992) and more recent Blundell and Stoker (2005) for a discussion of information-

aggregation bias.
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2.8 Discussion and Conclusion

In this chapter, individual-level information taken from the Mexican labour-force survey

is combined with a fine-scale weekly weather dataset to investigate the impact of day-

to-day weather changes on weekly earnings and working times in Mexico. The results

suggest the sensitivity of labour markets to both daily temperatures and rainfall changes.

Unusually high levels of rainfall significantly reduce hours worked throughout the economy.

During days with precipitation exceeding 30 mm, the average working time across the

economy drops by half an hour. Responses to daily changes in temperatures are more

complex. Contrary to findings for the U.S. (Graff Zivin and Neidell 2014), the results

presented here suggest no average impacts of heat on the economy, while working times

drop by just three minutes on days with temperatures below 10°C. To better understand

the mechanisms behind contrasting temperature results, interaction effects are exploited

to examine heterogeneity in weather impacts. The results provide suggestive evidence that

individual and job-specific characteristics play an essential role in determining workers’

sensitivity to temperature and precipitation impacts.

Similar to Connolly (2008) and Graff Zivin and Neidell (2014), I identify a strong link

between weather-driven working-time fluctuations and direct rainfall and temperature ex-

posure. On days with precipitation exceeding 30 mm, working times of weather-exposed

workers drop by more than one hour (e.g. agriculture, construction and trade). Sectoral

estimates further depict minor heat-related working-time reductions for the manufacturing

sector on heat days, with a corresponding minor decline in earnings. This result emphas-

ises the often inadequate industrial ventilation and air conditioning in Mexican factories.

Effective climate control is an important instrument for preventing heat stress of phys-

ically active workers. Without appropriate ventilation, indoor factory temperatures can

rise to unhealthy levels due to a combination of high external temperatures, waste heat

from machinery and heat strain from physical work.

A further intriguing finding of this study is sizeable heat-related earnings increases

in the extractive industry, indicating the existence of temperature-related compensation

schemes in the sector (Rosen 2002). Workers in Mexico’s mining industry are known

to be particularly vulnerable to heat stress (Trabajo y Previsión Social 2017). High ex-
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ternal temperatures raise underground temperatures in mines to life-threatening levels.

Meanwhile, surface miners are directly exposed to the sun and heat.

An important revelation of this study is the estimation of nontrivial earnings losses

for individuals working in unprotected work environments. Particularly informal work-

ers, those in temporary employment contracts, or with flexible incomes are vulnerable

to earnings fluctuations caused by adverse weather. The result, while suggestive, reaf-

firms the distributional dimension of weather impacts on labour markets. The distribu-

tional consequences of weather effects should be taken into consideration in the design of

climate-change mitigation and adaptation policies.

The final contribution is the provision of a rough cost estimate to establish the mag-

nitude and the welfare implications of weather-driven labour-market changes. These es-

timates helps to inform the climate-change policy debate by quantifying the costs of day-

to-day weather impacts on earnings and working times. Using a counterfactual analysis,

I estimate that heat-related earnings losses in 2016 amount to 0.2% of potential earnings,

while annual working times throughout the Mexican economy are reduced by roughly

0.02% by days with temperatures above 30°C. Cold days alone account for a reduction by

around 0.04%, which is offset partly by longer working times on warmer days.

The cost calculations further underline the economically meaningful losses in earnings

for the most vulnerable part of the labour force. For instance, below-minimum-wage

earners lose about 30% of potential annual income due to days with temperatures exceeding

22°C. Heavy-rainfall days with precipitation exceeding 10 mm reduce potential yearly

earnings of informal workers by 0.62%.

Projecting a future two-degree temperature (°C) increase over the estimates raises

predicted heat-related (>30°C) earnings losses by roughly 0.02%. However, the lower

frequency of cold days has a positive effect on total annual working time. Again, some

workers will be affected disproportionately by climate change. For those with earnings

falling below the official minimum wage rate, a two-degree temperature rise is estimated to

cause an additional heat-related income loss of approximately 10%, thus totalling earnings

losses due to high temperatures to 43% for these workers.

Considering the crude assumptions underlying the estimation,46 the above cost estim-

46. 1. Counterfactual of all-year-round constant temperatures of 20-22°C and precipitation levels of 2-4
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ates should be considered with caution. Estimated impacts of day-to-day weather changes

on earnings and working times should not be generalised for the expected changes caused

by global warming. Adaptation and long-term changes to the labour market will mitigate

future negative impacts. Changes in the structure of labour markets, such as industry

employment shares, are likely to alter the importance of weather effects in the future.

Therefore, an interesting line of research arising from the present study is the scope for

adaptation of the Mexican labour market to future weather extremes.

Despite the inaccuracy in estimates, the cost estimates highlight current labour-market

policy shortcomings. In light of the projected increase in the frequency of extreme weather

event, we can learn from current cost estimates that labour-market reforms aimed at

mitigating the adverse impacts of future extreme weather on workers should focus on

protecting those in informal working environments. Particularly earnings of poor workers

seem vulnerable to weather impacts. Hence, in terms of climate policy, preventing an

increase of temperatures and the frequency of extreme events will likely protect low-income

households from an increase in earnings uncertainty.

A further question which remains of interest is the identification of demand-side effects

and the role of worker’s health in driving results. However, the question could not be

answered to full satisfaction given the lack of firm-level data and information on individu-

als’ health. This lack of information prohibits the differentiation between demand- and

supply-side effects and the causal identification of the root causes for observed changes in

earnings and working times. Ideally, future research on the topic should combine firm-

and work-level data to overcome the issues faced in this chapter. A better knowledge of

demand-side effects and the role of physiological factors would allow for improved target-

ing of policies to those most vulnerable to weather shocks, rather than those with the

flexibility to adapt to weather extremes.

The potential ramifications of the findings are diverse. The results demonstrate adverse

effects on weather-exposed and physically active occupations. Adequate investment in in-

sulation and air conditioning, especially for manual labour-intensive industries such as min-

ing and manufacturing, are potential solutions to combat the negative impacts of extreme-

mm. 2. The lack of holidays or sick-leave in the estimation. 3. No job-switches or changes in employment
characteristics within the quarter. 4. No heterogeneity in individual responses to adverse weather. 5. No
substitution effects across time.
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temperature events for these sectors. Moreover, poor households are primarily employed

in weather-affected occupations and, as such, are more vulnerable to temperature and

rainfall-driven income losses. Increasingly volatile weather caused by climate change will

further exacerbate adverse welfare consequences, with wide-ranging adverse consequences

from health, reduction in human capital and inter-generational poverty (Daoud et al. 2016;

Guha-Sapir et al. 2013). Therefore, climate-change adaptation policies for the Mexican la-

bour market should prioritise reducing impacts for the least protected workers. Provision

of adequate jobs for vulnerable labourers and the development of effective labour-market

policies, such as job security and risk-management strategies for weather-related uncer-

tainties, are needed to protect workers from the negative impacts of adverse temperatures

and rainfall.
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Chapter 3

Clinal Heterogeneity in Climate

Preferences:

A Study of Bilateral U.S.-Mexican Migration

Abstract

The central objective of this chapter is to examine the influence of origin climate on migrants’
preferences regarding destination climates. I apply a McFadden residential location-choice model
to a novel dataset of international migration from Mexico to U.S. MSAs between 1970 and 2016.
The unique dataset provides detailed geographical information on both origin and destination
locations, which I exploit to test for systematic differences in climate preferences by origin climates.
Controlling for economic and demographic destination characteristics, I find Mexican migrants to
prefer settlement in MSAs with warmer average temperatures but colder summers (compared
to their home location). Split-sample estimates for migrants from warmer and colder Mexican
regions further suggest greater responsiveness of the utility for migrants from warmer origins to
both average and extreme temperatures. The findings indicate that climate change is likely to alter
the desirability of locations by changing both destination and origin climates. The findings have
important implications for climate-change mitigation policies. The estimated clinal variation in
climate preferences implies significant differences in individuals’ WTP for the mitigation of climate
change depending on the climate to which an individual is accustomed. Therefore, assuming
preference homogeneity in amenity models may considerably bias the predicted WTP for climate-
change mitigation.

3.1 Introduction

Recent developments in the field of climate-change mitigation policies have renewed the

interest in the amenity value of climate as a numerical measure for the willingness of

individuals to pay for climate-change mitigation. Starting in the late 1970s, a growing body

of literature attempted to derive numerical estimates of the desirability of climate. The
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literature finds overwhelming support for a general attraction of individuals to friendlier,

more moderate climate (warmer winter months with nonextreme summer months) (Albouy

et al. 2016; Alperovich et al. 1977; Brown and Scott 2012; Graves 1976; Greenwood and

Hunt 1989; Scott et al. 2005; Sinha et al. 2018; Sinha and Cropper 2013). The recent

resurgence of research in the field arose in response to the need to provide more accurate

measurements of WTP for comfortable climate. With uncertain wealth effects of global

warming, amenity-value estimates provide useful measures of the WTP for climate-change

mitigation. Compared with the costs of abatement policies, such calculations can help to

inform the climate-change policy debate.

One concern with the existing research on the amenity value of climate, is the typical

assumption of individual preference homogeneity with respect to climate. The human-

biology literature provides substantive evidence of systematic differences in individuals’

climate preferences both by demographic characteristics and an individual’s acclimatisa-

tion to a certain climatic environment. As early as 1848, Bergmann generalised the cor-

relation between climate and human morphology in ecogeographic rules (Bergmann 1848;

Ruff 2002). Clinical tests provide comprehensive evidence on the existence of clinal differ-

ences in human-body adaptation to climate (Beall et al. 2012). These scientific findings

are largely ignored by economic research on the amenity value of climate.1

If climate preferences are shaped by the climate to which an individual is accustomed,

location-choice models should allow for taste variation by origin climates to reduce the oth-

erwise potential bias in climate preferences. This chapter addresses this crucial and often

overlooked assumption and examines the importance of clinal2 heterogeneity in individu-

als’ climate valuations. Exploiting information on migration movements from Mexican

municipalities to MSAs in the U.S., I estimate a residential location-choice model with

climate valuations varying by the migrants’ origin climate.3

1. During a comprehensive review of the literature using the relevant research databases and library
catalogues as well as back and forward tracing of related journal articles, only two studies by Scott et
al. (2005) and Fan et al. (2012) where found to allow for heterogeneous differences in climate preferences
by origin region.

2. The term clinal goes back to Sir Julian Huxley, a British evolutionary biologist (Huxley 1938). The
human-biology literature uses the term clinal to refer to gradual change in a character or feature across the
distributional range of a species or population, usually correlated with an environmental transition such
as humidity, rainfall, and temperature. For example, it has been observed that pigmentation changes with
distance from the equator, due to different levels of UV radiation. In this chapter, the term clinal-preference
heterogeneity is used to indicate systematic differences in the valuation of climate over geographical vari-
ation in migrants’ origin climates.

3. Given the focus on metropolitan areas, this implies that the empirical analysis examines preference
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The empirical analysis draws upon a unique dataset linking migrants’ origin climate

to destination climates, which consists of a migration survey of the MMP (MMP 2017)

combined with information on U.S. MSAs collected from the U.S. census and other official

data sources. I use micro-level geographical information provided by the MMP on both

migrants’ origin and destination locations to identify the climate at the migrant’s origin,

thus, reducing measurement uncertainty in an individual’s acclimatisation to a particular

climate.

I estimate a McFadden’s residential location-choice model (McFadden 1974), which in-

cludes a vector of differences in origin and destination climate. To address concerns about

omitted variable bias and network effects, the model further controls for economic and

demographic characteristics and the presence of migrant networks at each destination, re-

cognising the multidimensionality of individuals’ migration decisions. The approach taken

here differs from previous studies by linking heterogeneous preferences for destination

climate directly to measurable spatial differences in origin climate.

Findings presented in this chapter demonstrate the importance of accounting for hetero-

geneity in climate preferences. The results suggest that Mexican migrants prefer locating

in MSAs with warmer average temperatures but colder summers, compared to their home

municipality. Results from split-sample regressions for migrants from warmer and colder

Mexican regions provide further support for clinal heterogeneity in climate preferences.

The utility of migrants from warmer origins is estimated to be five times more respons-

ive to both average and extreme temperatures, while the results indicate no differences

in preferences for rainfall. Future changes in temperature and precipitation will affect

the desirability of locations with potential long-term effects on the direction of migration

streams. Moreover, observed clinal variation in climate preferences indicates considerable

differences in individuals’ WTP for climate-change mitigation. Assuming preference ho-

mogeneity in choice models may, therefore, bias the predicted WTP for abating climate

change.

The remainder of this chapter is organised as follows: The next section provides a

short review of the existing literature on climate preferences in Section 3.2, followed by

a discussion of the McFadden residential location-choice model employed in the empirical

heterogeneity for migrants residing in urban areas.
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analysis in Section 3.3. Section 3.4 describes the data sources used to compile the final

dataset and explains the construction of the climate variables. Estimation results are

presented in Section 3.5 with subsequent robustness checks. The chapter ends with a brief

conclusion highlighting the implications of this chapter’s findings for future research in

the field.

3.2 Literature Review

Grounded in Lee’s (1966) seminal study of the determinants of migration, researchers have

been studying the influence of amenities on migrants’ location decisions. Coming from

urban economic theory, during the late 1970s, models were developed explicitly including

climate as a push- or pull-factor of migration. Greenwood (1969) tested for the impact of

temperatures on interstate U.S. migration between 1955 and 1960, finding that migrants

preferentially move to hotter states. Graves (1976) improved upon Greenwood’s research

by analysing changes in more disaggregated census data on inter-MSA migration rates

between 1960 and 1968. Profiting from greater precision in the climate variables, Graves

finds below-zero-degrees Celsius temperature frequencies to be negatively correlated with

net migration rates. Graves (1980) improves upon earlier research by including several

climate regressors and splitting the census sample into different demographic groups. The

author finds older individuals to prefer modest, constant temperatures in contrast to

younger people, who are attracted by warmer temperatures.4 A more recent study by

Rappaport (2007) examines changes in U.S. county populations since the Second World

War and finds evidence for increasing migration toward areas with on average warm winters

and with cooler, less humid summers. Rappaport motivates his findings with a possible

increased valuation of nice weather as a consumption amenity, probably due to broad-

based rising per-capita income (Rappaport 2007, p. 375).

Several recent studies have attempted to measure the value of climate amenities fol-

lowing a traditional hedonic income approach. These studies compute the amenity value

of climate—what people are willing to forgo for experiencing friendlier climate—by meas-

uring the implicit price of destination amenities, which is estimated by exploiting the

4. Similar studies were conducted by Alperovich et al. (1977), Clark and Hunter (1992), Cushing (1987),
Greenwood and Hunt (1989), Greenwood et al. (1991) and Mueser and Graves (1995), as well as Renas
and Kumar (1983).
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spatial distribution of characteristics and the revealed preferences of migrants for some

places over others. Alternatively, Cragg and Kahn (1997) run a hedonic estimation of the

implicit demand for climate based on observed interstate migration from the 1990 U.S.

Integrated Public Use Microdata Series (IPUMS) sample. Assuming perfect within-state

labour mobility, the authors test whether wages and housing prices compensate for the

superior climate. Cragg and Kahn (1997) find individuals’ marginal utility to be posit-

ively correlated with higher winter temperatures, while higher summer temperatures are

negatively correlated.

A common problem with earlier studies is the failure to control for location-specific

unobservables. Exclusion of location controls is likely to bias estimates for climate variables

due to the inherent spatial correlation between climate and other local characteristics,

such as the industrial composition of the local economy (e.g. the size of the local tourism

sector). Recent technological improvements in the computational strength of statistical

software packages, as well as more advanced estimation techniques, have given rise to

improved studies on residential location choices allowing the inclusion of complex fixed

effects and modelling preference heterogeneity. Albouy et al. (2016) estimate a hedonic

model, regressing a vector of destination-specific characteristics, including climate, on a

quality-of-life index by U.S. IPUMS. Again Albouy et al. (2016) confirm a preference of

individuals for moderate temperatures.

Several studies allow for systematic differences in preferences by including interac-

tion terms between location-specific variables and individual demographic characteristics

(Brown and Scott 2012; Fan et al. 2012), or by estimating their migration model for

separate demographic groups (Beine and Parsons 2015; Clark and Hunter 1992; Clark

et al. 1996; Graves 1979, 1980). Brown and Scott (2012) predict a weaker impact of local

climate amenities for highly educated Canadian labour migrants. A recent study by Sinha

et al. (2018) finds significant age differences in the marginal willingness of U.S. intra-state

migrants to pay for summer and winter temperatures. However, little evidence exists

on clinal heterogeneity in climate preferences. The amenity-value literature has widely

ignored the issue, the main reason being the lack of computational power or access to

micro-level data providing location-specific information on the origin of migrants.

Studies by Scott et al. (2005) and Fan et al. (2012) are rare exceptions. Scott et
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al. (2005) allow individual preferences to vary by region of origin. The authors study

the implications of differences in human capital on residential location choices by running

separate regressions for different immigrant nationalities in the U.S. Their findings suggest

individuals’ preferences for destination climate differ by nationalities. Besides the broad

climatic definition of origin climates by nationality, an additional drawback of Scott et

al.’s (2005) study is the use of an arbitrary climate index, restricting the identification

of heterogeneity in preferences to overall climate composition instead of specific climatic

factors.

An alternative study allowing for heterogeneous climate preferences was conducted by

Fan et al. (2012). The authors run a two-stage random utility sorting model to examine the

relationship between temperature extremes and residential choice of different demographic

groups for the 2000 IPUMS sample. In the regressions, Fan et al. (2012) include interaction

terms between destination climate and the migrant’s birthplace, categorised in U.S. macro-

regions Northeast, West, South, and state of California. Fan et al. (2012) find that on

average, individuals throughout the U.S. get disutility from extreme heat. However, the

extent of disutility differs by U.S. region, with people born in the Western macro-region

disliking extreme heat most.

Although both papers provide some first evidence for the existence of a relation between

clinal preference heterogeneity and the location choice of migrants, both studies fall short

providing a comprehensive explanation of these observed differences. The geographic

dimension used by Scott et al. (2005) (nations) and Fan et al. (2012) (macro-regions)

comprise a large variety of regional climates and, thus, are inadequate geographic units

for identification of clinal climate-preference heterogeneity. Consequently, the relationship

between origin climates and immigrants’ preferences for destination climates has not yet

been examined satisfactorily.

Unlike previous studies, this chapter exploits micro-level geographical origin informa-

tion on Mexican migrants to the U.S. to examine clinal variation in climate preferences.

My approach differs from Scott et al. (2005) and Fan et al. (2012) inasmuch as it links

clinal differences in climate preferences directly to the spatial gradient in origin climates

and, thus, to the human-biological explanation for heterogeneity in climate preferences.
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3.3 Residential Location-Choice Model

The analysis relies upon the concept of random utility maximisation as the underlying

decision rule of migrants in the residential location-choice model (Anas 1983; Anderson

and Papageorgiou 1994; Ben-Akiva and Lerman 1985; Halperin and Gale 1984). Follow-

ing McFadden (1974), the model considers rational, utility-maximising individuals faced

with the choice over a finite, discrete set of alternative locations with location-specific

attributes. Assuming uncertainty about alternative specific payoffs, at any given time

individuals maximise the expected present value of the realised future payoffs for the full

set of alternative locations subject to moving costs.5 The model extends the McFad-

den’s alternative-specific choice model (McFadden 1978), by including a climate vector

consisting of climate differences between the migrants’ origin and the destination location.

Consider a population of individuals i = 1, . . . , I with homogeneous preferences, choos-

ing their optimal location among a set of locations, with Uidot being the utility for a

migrant from origin location o moving to location d in time period t. Uidot can be written

as:

Uidot = Vidot − Cidot(.) + εidot (3.1)

where Vidot is the observable, deterministic utility, Cidot denotes the migration cost of

moving from origin location o to destination d (assumed to be constant across individuals),

and εidot is a random error component accounting for the unobservable component of

utility.

For a utility-maximising migrant Vidot depends on a linear combination of the destination-

specific factors Zdt, including controls for the presence of migrant networks, and differences

in climate between origin and destination location Adot. Assuming an IID Type I Extreme

Value (Gumbel) distribution for the error term (McFadden 1974), the parameters of the

above utility function are obtained through maximum likelihood estimation, where the

5. An implicit assumption of the model is full information about the quality of local amenities—including
climate—and the moving costs to each destination. This is arguably a strong assumption. However, given
the focus on climate valuations and the long history of migration between the Mexico and the U.S., I
expect migrants to have on average enough information to rank locations by the attractiveness of their
climate.



73

log-likelihood function is given by:

lnL =
∑

I DO T

Hidot ln
exp[z′dtβ + a′dotδ − c′dotµ]

D∑
d=1

exp[z′Dtβ + a′Dotδ − c′Dotµ]

, (3.2)

where

Hidot =

 1 if individual i from origin o chooses destination d in time period t

0 otherwise.


See Appendix B.1 for a discussion of the intermediary steps. Note that individual

characteristics contained in εidot drop out, when taking the ratio of the exponentiated linear

combinations. Therefore, individual characteristics can only enter the model through

interaction effects with the destination-specific controls or fixed effects.

The universal choice set in this study consists of 321 U.S. MSAs. Considering the

large number of alternatives in the dataset, estimating the above location-choice model

over the full set of destinations is not computationally feasible.6 Moreover, it would be

undesirable, as such a model would be behaviourally unrealistic, as migrants unlikely

consider the universal set of alternatives in their decision process (Fotheringham 1988). A

solution for the computational problem is provided by McFadden (1978) and Ben-Akiva

and Lerman (1985), who show that the choice set can be restricted under the assumption of

an IID structure of the error term across alternatives. This assumption requires the model

to fulfil the Independence from Irrelevant Alternatives (IIA) property, which necessitates

individual choice probabilities for any two alternatives to remain unaffected (independent)

by the inclusion or exclusion of any alternative from the universal choice set. The IIA is

a very restrictive requirement, and alternative models have been developed, which do not

rely on the IIA assumption, such as the multinomial probit and the more complex mixed

logit model.

The size of the universal choice set in this study renders the application of a multinomial

probit infeasible. The model requires solving a multidimensional integral over the universal

choice set for the evaluation of choice probabilities, which precludes the estimation in this

6. Repeated attempts to estimate the model over the full set of alternatives failed to converge. Therefore,
I decided to apply a choice-pruning method to reduce the number of alternatives to a feasible number.
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context (Ben-Akiva and Lerman 1985; Train 2009). Alternatively, one could apply a

mixed logit model structure, which allows for a random component in the utility function

removing the IIA restriction.7 There are, however, two drawbacks to this method. First,

the introduction of the random component makes the computation increasingly difficult.

Secondly, the estimation of the model over a large choice set is again infeasible. Therefore,

the conventional approach is to use some choice set pruning methods. However, studies

find that the potential bias introduced from choice set restrictions is more severe in a mixed

logit model. Application of a mixed logit model, therefore, necessitates the selection of

a larger sample of alternatives (Guevara et al. 2014), which complicates the estimation

considerably. Experimenting with a mixed logit model in the present context, I experienced

problems with the concavity of the likelihood function due to the inclusion of a large

number of fixed effects.

Bearing in mind the computational difficulties of the above models, I opted to rely

on the more simplistic standard logit model, assuming an IID structure for the random

error term. As Train points out in his discussion of the advantages and disadvantages of

an IID error structure, the logit model is known to do fairly well in approximating the

average tastes of the population (Train 2009, p. 44). This research aims to develop a

better understanding of clinal preference heterogeneity and, thus, to estimate systematic

taste variations in the population. The logit model may provide a useful approximation

of average taste variation, given the robustness of the logit formula to misspecification

(Train 2009, p. 44). I gain further confidence in this approach from the findings by Scott

et al. (2005), who using a model similar to the one applied in this chapter, test for possible

violations of the IIA and find the assumption to hold for their approach.

The literature proposes two types of choice set pruning for logit models. The first ap-

proach ignores the behavioural complexity of a dynamic social search process and assumes

that individuals choose from the global set of alternatives. The computational burden of

using the universal set is reduced by drawing a random subset of alternatives for each

individual (Train 2009, p. 49). McFadden (1978) shows that this simple choice set restric-

tion mechanism yields asymptotically consistent parameter estimates. The second, less

frequently applied method attempts to model the underlying dynamic search process by

7. A recent study by Sinha et al. (2018) uses a two-stage mixed model strategy to estimate the amenity
value of climate using U.S. census data.
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formulating behaviourally plausible rules describing individuals’ decision processes. These

rules are then used to reduce the universal choice set to a feasible size. While the de-

terministic approach has greater behavioural plausibility, conducting a comparison test

between the two different pruning methods Zolfaghari et al. (2012) find no evidence of

a better performance of the deterministic method in predicting choice outcomes. The

authors conclude that the underperformance of the deterministic method likely results

from the inaccuracy of the model in describing individual behaviour. In view of missing

information on individual decision processes, I refrain from modelling the dynamic search

process and opt for a random choice set restriction.8

I assume individuals form their residential location choice based on the universal choice

set and draw a random subset of destination locations, including the migrant’s chosen

MSA. For the purpose of this research, the utility-maximising decision of migration is

treated as weakly separable from the settlement decision to concentrate on modelling the

second decision stage. This approach is commonly applied in the location-choice literature

(Brown and Scott 2012; Scott et al. 2005; Sinha et al. 2018; Sinha and Cropper 2013).

My estimation, nevertheless, entails a computational trade-off, as the estimation becomes

increasingly computationally expensive the larger the set of alternatives. Nerella and Bhat

(2004) use simulation methods to examine the model performance of a multinomial logit for

different sample sizes of alternatives. The Monte Carlo results from the study suggest that

the optimal level of drawn alternatives lies at around one-quarter of the universal choice

set (with a minimum of one-eighth). Following Nerella and Bhat’s (2004) suggestion, the

number of alternatives is restricted to a subset of 74 random destinations per individual

which are added to the chosen destination.9

A caveat of the alternative-specific choice model that should be highlighted here is

8. As a robustness check, I apply a more complex matching procedure for the choice set pruning,
where alternatives are matched to the chosen destination based on the similarity in socioeconomic and
geographical characteristics. Estimates based on the matching technique are comparable to those retrieved
using random choice set pruning. Given the similarity in results, I chose to rely on the random choice
sampling approach, given its theoretical foundation.

9. As part of the robustness checks, I experiment with the choice set size. I find that increasing the
number of random alternatives beyond 49 MSAs yields no significant changes in parameter estimates.
Given the recommendation by Nerella and Bhat (2004), I decided to draw 74 random destinations to
reduce any potential bias. To further test the robustness of the results with respect to the choice set
composition, I developed a bootstrap program calculating standard errors by resampling the set of random
alternatives in each iteration process. The bootstrap standard errors based on this estimation method are
similar to the standard logit model with clustered standard errors at the municipality level. Given the high
computational burden of the bootstrap program, I rely on the standard method for the main analysis.
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the complicated way in which individual characteristics can be included in the model.

The only way in which individual regressors can enter the logistic regression is through

interaction effects with the alternative-specific constants. Inclusion of such interaction

effects is highly computational expensive, causing significant problems with convergence.

Moreover, the interpretation of the parameters is not intuitive in a location-choice setting,

where effects of individual characteristics imply a change in the average attractiveness of

a location.

An additional problematic issue stems from the natural correlation in climate variables.

For instance, winter and summer temperatures are naturally related. Multicollinearity in

logit models is problematic, as it can lead to unreliable and unstable coefficient estim-

ates. Correlation in the climate variables will increase the variance of the estimator, thus

reducing precision in estimates. To reduce the problem, regressors are demeaned which

increases the precision in estimates. However, the problem of multicollinearity cannot be

overcome completely given the relatively small sample size. Hence, small changes in the

underlying sample could potentially cause significant changes in the estimated coefficients.

This could be particularly problematic in subsample regressions. As the underlying sample

changes, so might imprecise coefficients. Therefore, interpretation of coefficients with a

large variance should be done with caution, particularly in subsample comparisons.

3.4 Data and Variables

Considering the context of the bilateral migration between Mexico and the U.S., I consider

MSAs and Mexican municipalities as the appropriate geographical level of analysis.10

Any higher regional aggregation level (e.g. states) would introduce measurement error in

amenity variables and, thus, reduce the precision of the estimates. It would be inadequate

to treat place characteristics of states such as California as uniform, given the vast within-

state variation in topography, climate, and economic factors. Besides, census statistics

of the year 2000 highlight that 95% of all foreign-born individuals living legally in the

U.S. reside in metropolitan areas (Wilson and Singer 2011). Besides, MSAs present useful

geographic units of local economic characteristics, providing uniform measures such as for

local labour and housing-market conditions.

10. Maps of Mexican municipalities and U.S. MSAs are provided in Appendix B.2 and B.3, respectively.
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The set of MSAs is further reduced to the contiguous U.S. Based on the economic,

cultural and demographic differences, I expect migration to the islands of Hawaii and

Puerto Rico to be motivated differently compared to migration to the contiguous U.S.

Further, the state of Alaska is excluded from the analysis due to the distance from Mexico

and limited availability of location-specific information for Alaskan MSAs.11

The final dataset is compiled from various sources. Information on migration move-

ments from Mexico to the U.S. was retrieved from the MMP survey dataset, which was

merged with official statistics on MSAs coming from the U.S. census and other publicly

available datasets. I used interpolated raster weather data to construct the climate vari-

ables. The rest of the section provides more detailed information on different data sources

and the variables used in the empirical estimation.

Mexican Migration Data

The MMP is a collaborative research project based at Princeton University and the Univer-

sity of Guadalajara and run by Princeton University (MMP 2017).12 It provides a unique

cross-sectional database collecting information on social as well as economic factors of

Mexican-U.S. migration. It consists of annual household surveys conducted since 1982. In

each wave, a small number of households from selected communities are interviewed, with

additional communities added in each consecutive survey round. One important aspect of

the MMP is the coverage of illegal migration. Over 85% of the observed migration in the

sample is illegal.13

The MMP covers a comprehensive set of survey questions on demographic character-

11. Appendix B.3 provides a full list of U.S. destinations.
12. The analysis focusses on international as opposed to internal migration for two reasons: First, limited

information on origin locations of internal migrants limits identification of origin climates. Second, the
smaller variation in origin and destination climates within a single country may prevent identification of
clinal heterogeneity in climate tastes. The use of international migration data necessitates careful modelling
of networks at destination locations as well as migration costs as both will have greater importance in
international migration. One argument against the use of international migration data could be a potential
selection bias causing climate preferences of international migrants to differ from those migrating nationally.
Considering the similarity in climate across Mexico, this could suggest that only migrants with preferences
for a different climate move internationally. However, as discussed in the results section, I find migrants to
prefer settling in locations with similar temperatures (if not warmer) to origin locations. In line with the
human-biology literature (Beall et al. 2012), this suggests that climate preferences are developed through
exposure and adaptation to a specific climate, speaking against the possibility of systematic differences in
climate tastes among the two sets of migrants.

13. Migration movements between the U.S. and Mexico during the 1980s and 1990s were primarily illegal
(Durand and Massey 2019). Considering the study period, the MMP provides a more accurate repres-
entation of migration movements compared to official administrative, which captures mainly documented
migration movements.
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istics of household heads and spouses. A unique feature of the dataset is the provision

of detailed information on individual bilateral migration experiences for almost 170,000

Mexicans, including the geographical origin and destination information. This geographic

information is exploited to identify the origin and destination climates corresponding to

each migration. The survey provides retrospective life-history migration information of

household heads corresponding to 66,818 person-years. For the empirical analysis, the

study relies on 46 years of bilateral migration movements between Mexico and the U.S.

between 1970 and 2016,14 covering 161 communities in 126 Mexican municipalities.15

The final sample comprises 13,013 individuals with complete information on 21,624

movements between Mexico and the U.S. These movements consist of 1,909 unique origin

and destination combinations. Figure 3.1 shows a map of reported migration movements

within the survey, separated into northern and southern Mexican municipalities for better

visibility. Darker coloured lines imply a larger flow of migrants for this particular route.

Observed migrations exhibit a clear preference for the states of California (62.7%) and

Texas, both historical destinations of Mexican migrants.16 The most frequent sample

destinations are: Los Angeles-Long Beach (25.6%), Chicago 9.0%), San Diego (6.7%),

Fresno (4.6%), and Houston (4.1%). Historically, Fresno has the highest population share

of Mexican migrants among U.S. MSAs.

The analysis is further restricted to prime-aged adults (16-70 years) participating in the

labour force. Moreover, I exclude migration for education, family reunion and retirement

reasons. Residential location choices related to these migration types are likely to differ

from labour migration and should be analysed separately.17 Table 3.1 describes the char-

acteristics of the sample migrants. Around 73% of the recorded migration in the sample is

permanent (defined as migration with a duration of at least 12 months). More than 40% of

sample individuals migrated more than once. The sample primarily consists of unmarried

men (85%) with an average age of 30 years at the time of migration. Eighty-five percent

of the recorded border crossings in the sample are illegal. Almost 50% of individuals have

14. Due to lack of readily accessible location-specific data for U.S. MSAs before 1970, only migration
starting from 1970 is considered in the empirical analysis.

15. Appendix B.2 provides a full list of surveyed Mexican municipalities with a corresponding map illus-
trating the wide geographical distribution in survey municipalities.

16. Census data show that in 2012, roughly 59% of all foreign-born living in Texas were from Mexico
(41% in California).

17. The majority of reported migration movements in the dataset is work-related, with only 9% of mi-
grants not participating in the workforce, among whom female homemakers account for 7%.
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Figure 3.1: Sample Migration Flows split by Origin in Northern and Southern
Mexican Municipalities

(a) Migration from Northern Mexican Municipalities

(b) Migration from Southern Mexican Municipalities

Notes: The saturation of the lines between the Mexican origin community and the U.S. metropolitan

area varies by the size of the flow.
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Table 3.1: Sample Summary Statistics Mexican Migrants

U.S. Total West Midwest South North East

variables mean sd mean sd mean sd mean sd mean sd

age 30.03 9.47 29.97 9.47 30.80 9.51 30.07 9.58 28.08 8.58
duration (months) 47.87 68.39 46.92 68.09 59.71 75.20 43.12 64.69 42.65 56.96
migration distance (km) 2,722.6 887.3 2,798.3 759.2 3,213.2 239.2 1,650.2 800.1 4,227.3 251.7
migration time (h) 28.86 28.40 29.47 31.62 26.88 15.84 28.28 23.44 26.78 12.87
male (%) 85.92 85.62 84.16 87.22 92.91
working (%) 91.05 91.65 87.10 92.33 88.42
legal migration (%) 12.81 12.97 12.49 12.88 10.40
secondary (%) 25.44 24.26 26.44 29.91 25.06
tertiary (%) 11.19 10.79 12.96 10.97 13.48
higher (%) 5.46 5.40 6.12 5.51 3.78
permanent migration (%) 72.99 71.35 85.04 68.59 79.91
married (%) 26.60 24.22 31.63 31.96 30.97
relative in U.S. (%) 46.10 47.68 43.76 42.13 41.13
trip 1 (%) 55.44 53.14 64.72 56.36 61.94
trip 2-5 (%) 33.72 35.14 29.51 32.62 26.00
trip 6-10 (%) 5.05 5.28 3.65 5.76 2.60
trip ≥ 10 (%) 4.08 4.43 1.53 3.61 9.22

N 12,986 8,869 1,698 1,996 423
Frequency (%) 100.00 68.30 13.08 15.37 3.26

Notes: Sample statistics are based on working-age population during first year of migration from the Mexican
Migration Project Survey 161 restricted over the period 1970-2016.

a relative or friend who previously migrated to the U.S.

Other studies stress the importance of controlling for migration costs in location-choice

models (Bayer and Timmins 2007). To limit the potential bias associated with moving

costs, the model controls for the road-travel distance between the origin and destination

locations as a proxy for moving expenses.18 On average, individuals migrated a distance

of 2,723.31 km to their new home, which corresponds to a travel time of 28.5 hours by car.

Road distance provides only a rough proxy of migration costs. However, MSA fixed effects

further control for differences in the administrative costs of settlement between states and

MSAs, as well as the availability of low-cost long-distance transport to a specific location.

MSA Location-Specific Data and Variables

Non-climate control variables included in the regressions are summarised in Table 3.2.19

I control for demographic and economic characteristics, such as the population size, the

unemployment rate, per capita income and the Consumer Price Index (CPI), as well as

network effects.20 Population size will capture the benefits of larger cities that come along

18. The road-distance and travel-time measures are retrieved by querying the Google Distance Matrix
API V3 with the help of the traveltime3 Stata command written by Stefan Bernhard.

19. More geographically disaggregated statistics by state can be found in Table B.4.1 in Appendix B.4.
20. The economic and demographic information was collected from different official U.S. statistical offices.

Data on the CPI and unemployment statistics are retrieved from the U.S. Bureau of Labour Statistics (U.S.
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with urban agglomeration, such as access to public services, including public transport.

Given the focus on labour migration, it is important to control for differences in unem-

ployment to capture the availability of jobs at the destination. The regressions further

include per capita earnings and the CPI to control for earnings and living cost differentials

between MSAs.

In light of the historical context of bilateral migration flows between Mexico and the

U.S., one might be concerned about networks playing an important role in driving loca-

tion decisions of Mexican migrants (Bauer et al. 2002). The presence of network effects

is problematic if climate preferences of historical and current networks are systematic-

ally different from those of sample migrants. Studying the relationship between seasonal

temperatures and U.S. county population growth, Rappaport (2007) finds that starting

in the 1920s U.S. residents have moved to places with nicer weather. Rappaport explains

this change in migration flows with the introduction of air conditioning, a shift in the

industrial composition of U.S. employment from agriculture to manufacturing, population

ageing and the overall rise in incomes. Hence, climate preferences of today’s Mexican

migrants may differ systematically from preferences of their ancestors.

I address the issue of potential bias due to network effects by controlling for the pop-

ulation share of residents with Mexican roots and the migration experience of the origin

municipality. The Mexican population share accounts for the size of local migrant networks

as well as immigration and integration policies of the local government. Furthermore, I

follow the approach by Bauer et al. (2002) and include two origin-specific measures of

migration networks controlling for the stock and the flow of migrants from municipality o

to MSA d at the moment of the migrants location decision at time t. I first calculate the

cumulative migration experience of migrants from municipality o to each MSA d for each

year t:

EXPdoT =

T∑
t=0

N∑
i=1

Miodt (3.3)

Here, Miodt is a dummy variable indicating, whether a migrant from municipality o mi-

Bureau of Labor Statistics 2014). Information on the population size and the ethnic compositions stems
from the U.S. Census (Manson et al. 2011). Unemployment rates are collected from the Local Area
Unemployment Statistics and the U.S. Census (Manson et al. 2011; U.S. Bureau of Labor Statistics 2014).
Historical data on average wages are from the Quarterly Census of Employment and Wages (Bureau of
Labor Statistics 2017). Appendix B.5 provides a complete variable list, with definitions, and the respective
source.
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grated to the MSA d at time t. As a next step, I divide the cumulative stock variable

by the total U.S. experience of migrants from that municipality. This yields a measure of

the concentration of a municipality’s migration experience to a particular MSA at time t

(stock).

Municipality Migration Experience = NETdot =
EXPdoT∑O
o=1EXPdoT

× 100 . (3.4)

Lastly, I calculate the percentage difference in the relative size of networks between two

consecutive years to capture changes in the flow of migrants across time (herd effects):

Herd = Hdot = NETdot −NETdo(t−1) . (3.5)

Together with information on the Mexican MSA population share, EXPdoT and Hdot will

control for both origin- and ethnicity-related network effects as well as for the historical

climate preferences of Mexican immigrants.

Table 3.2: Summary Statistics on Location Specific Characteristics by U.S.
Census Region

Total West Midwest South North East

variables mean sd mean sd mean sd mean sd mean sd

pc income (in 1000s) 15.47 9.55 16.07 9.87 15.42 8.73 14.29 8.61 17.37 11.51
population (in 1000s) 693.9 1,127.6 809.9 1,329.6 583.5 1,091.5 548.0 777.5 1,020.6 1,442.2
Mexicans (%) 5.73 11.82 14.86 13.02 1.97 2.50 6.37 14.72 0.54 0.89
municipality migration
experience (%)

0.05 0.31 0.16 0.55 0.03 0.24 0.03 0.26 0.01 0.08

herd (%) -0.01 0.19 -0.02 0.31 -0.01 0.14 -0.00 0.18 -0.00 0.05
rural housing (%) 77.64 13.23 84.21 10.94 78.14 10.30 75.88 13.41 74.38 15.74
unemployment rate 5.16 2.45 6.20 3.35 4.81 2.00 4.97 2.28 5.00 1.98
CPI 265.6 132.0 374.4 189.2 227.8 82.2 234.3 84.9 274.0 138.9

N 15,018 2,713 3,644 5,802 2,859
Frequency (%) 100.0 18.1 24.3 38.6 19.0

Climate Data and Variables

Previous studies in the field primarily focus on different seasonal temperature measures,

such as mean summer and winter temperatures. In line with the research question, I focus

on climate variables with significant variation over the alternative destinations, as well as

between origin and destination locations. Following the standard in the literature, the
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Figure 3.2: Historical Average Temperature 1940-2016
Temperature Normals by MSA and Municipality

3.72 26.64

avgtmp

Map based on Longitude (generated) and Latitude (generated).  Color shows details about avgtmp. The data is filtered on avgtmp, which excludes
-0.6126682.

Notes: The figure shows 1940-2016 average temperature normals in °C. Data from CRU TS3.21, Climatic

Research Unit, East Anglia University.

analysis uses both seasonal climate measures and annual averages.21 22

Regressions further include proxies for humidity (vapour pressure) and daily sunshine

exposure (cloudy days).23 Appendix B.5 provides a full variables list with definitions and

sources. Due to the inherent correlation between different climate factors, it is impossible

to include all climate regressors simultaneously in the regression. Therefore, I estimate

separate regressions with different sets of climate variables.

For the construction of the climate normals, I rely on interpolated weather data from

the CRU TS4.01 dataset produced by the CRU at the University of East Anglia (CRU

21. Graves (1980), for example, uses measures of cold and warmth as well as temperature deviation, wind
speed and humidity. Rappaport (2007) uses mean temperatures for January and July, the middle of the
climatological winter and summer, as well as average precipitation. Cragg and Kahn (1997, 1999) use
average February and July temperatures. Scott et al. (2005) generate a climate index for their estimation.
Sinha et al. (2018) and Sinha and Cropper (2013) focus on average winter (December to February) and
summer (June to August) temperatures.

22. Alternatively, one could use heating and cooling degree days. However, given the considerable time
and spatial dimension of the climate data, the computation of degree-day variables was impractical, as it
requires aggregation of daily weather data to compute the thirty-year climate normals.

23. In the context of Mexico, humidity may be an important factor influencing individuals’ thermal com-
fort by limiting human thermoregulatory control mechanisms, such as sweating and precapillary vasodila-
tion. While short-term heat acclimatisation, on average, takes around two weeks, complete acclimatisation
to an unfamiliar thermal climate may take several years, depending on physiological and psychological
factors such as age, sex, body composition, metabolic rate, diet and fitness (Koppe et al. 2004). The traits
vary with clinal differences in human bodies (Makinen 2010).
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Figure 3.3: Historical Total Monthly Precipitation 1940-2016
Temperature Normals by MSA and Municipality

9.6 150.0

avgpre

Map based on Longitude (generated) and Latitude (generated).  Color shows details about avgpre. The data is filtered on avgtmp, which excludes
-0.6126682.

Notes: The figure shows 1940-2016 average total precipitation normals in mm. Data from CRU TS3.21,

Climatic Research Unit, University of East Anglia.

2017). The CRU time-series dataset provides monthly, homogenised, high-resolution grids

(0.5x0.5 degree24) created from historical climate observations of more than 4,000 weather

stations. All climate variables are constructed as thirty-year arithmetic averages over

Mexican municipality and MSA polygons prior to the year of migration.

U.S. Climate

Figures 3.2 and 3.3 present maps of average temperature and monthly precipitation for

the period 1940 to 2016. Mean temperatures for the 321 U.S. MSAs average at 13.34°C,

with a sd of 5.01°C (see Table 3.3). Studying seasonal climate variables exhibits mean

winter temperatures (December to February) of 2.92°C (sd of 7.30°C) compared to summer

temperatures of around 23.03°C (sd of 3.51°C). Statistics in columns five to eight highlight

significant regional differences in temperatures. Minimum and maximum temperatures

range from a daily high of 31°C in the Yuma MSA (AZ) to a low of minus 4°C in the

western Fort Collins-Loveland MSA (CO). Total monthly precipitation averages 83 mm

(sd of 29.87 mm). Summer and winter precipitation differ by roughly 25 mm. Tacoma

MSA (WA) has the highest monthly rainfall among destination locations with an average

24. The grid corresponds to a geographic area of approximately 56x52km2 to 56x42km2.



85

of 137.3 mm per month. In contrast, Yuma MSA (AZ) on average experiences only 9.7

mm monthly precipitation. Around 50% of days in the U.S. are covered by clouds. Daily

vapour pressure averages 123.3 Hectopascal (hPa).

Table 3.3: Historical Climate Normals United States

U.S. Total West Midwest South North East

variable Mean SD Mean SD Mean SD Mean SD Mean SD

average
temperature (°C)

13.34 5.01 11.77 3.60 9.73 2.31 17.80 3.30 9.51 1.57

maximum
temperature (°C)

19.42 5.03 18.80 3.91 15.52 2.40 23.97 3.03 15.11 1.54

minimum
temperature (°C)

7.29 5.18 4.78 3.71 3.97 2.32 11.67 3.66 3.94 1.70

summer (Jun-Aug)
temperature (°C)

23.03 3.51 19.91 3.28 21.92 1.68 26.30 1.94 20.75 1.25

winter (Dec-Feb)
temperature (°C)

2.92 7.30 3.92 5.05 -3.84 3.34 8.41 4.93 -2.37 2.15

sd mean
temperature (°C)

8.00 2.09 6.52 1.79 10.18 0.87 7.12 1.38 9.13 0.39

average
precipitation (mm)

83.40 29.87 51.40 30.69 73.22 11.99 97.42 23.14 92.51 7.04

summer (Jun-Aug)
precipitation (mm)

91.78 45.42 22.73 19.42 96.25 10.75 115.79 41.14 97.85 8.45

winter (Dec-Feb)
precipitation (mm)

75.72 40.26 87.21 64.02 44.97 18.37 85.11 33.33 83.07 12.21

cloud cover (%) 59.77 7.15 52.52 9.85 63.83 3.53 57.99 4.12 65.26 3.38

vapour pressure
(hPa)

12.33 4.37 8.79 2.14 10.23 1.27 16.00 3.28 9.83 0.74

Notes: All climate variables are calculated 30-year averages prior to the migration year.

Mexican Climate

As expected, average temperatures for Mexico are significantly higher at almost 20°C (sd

2.95 °C). Table 3.4 exhibits significant temperature variation across sample municipalities.

Tenango Del Valle in state México (2,600 m above sea level) experiences mean temperature

of just 13°C. The highest maximum temperature is reached in the Mexican municipality of

Huitzuco de los Figueroa (958 m above sea level) in the Southern state of Guerrero. Mex-

ican average monthly precipitation is significantly lower compared to the U.S., with 73.5

mm. Moreover, the partially tropical country experiences greater seasonality in rainfall

levels. Winter precipitation comes to just 16.46 mm, while summer precipitation amounts

to over 150 mm. The municipality of Huimanguillo in the state of Tabasco experiences the

highest average rainfall in the sample, with 206.0 mm per month. Vapour-pressure nor-

mals range from a minimum of 70 hPa (Nuevo Casas Grandes, Chihuahua) to a maximum
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Table 3.4: Historical Climate Normals Mexico

Mexico
Baja

California
Zona
Norte

Occidental
y Bajio

Central
Mexico

South
Mexico

variable Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

average
temp. (°C)

19.87 2.95 17.85 0.10 18.68 2.84 19.54 2.00 20.46 3.37 22.44 3.83

maximum
temp. (°C)

27.64 2.55 26.71 0.08 26.71 1.80 27.72 1.66 27.75 3.30 28.92 2.67

minimum
temp. (°C)

12.15 3.64 9.04 0.28 10.70 4.07 11.40 2.47 13.23 3.93 16.00 5.00

summer
temp. (°C)

22.14 2.97 20.89 0.19 24.07 2.81 21.78 1.78 21.94 3.31 23.75 4.43

winter
temp. (°C)

16.44 3.49 13.63 0.21 12.54 3.97 16.08 2.44 17.75 3.49 20.04 3.20

sd mean
temp. (°C)

2.63 0.96 3.11 0.06 4.67 1.58 2.57 0.38 2.16 0.37 1.86 0.35

average
precip. (mm)

73.51 34.25 42.51 6.25 48.53 22.61 63.27 16.11 88.31 35.48 144.00 55.26

summer
precip. (mm)

159.38 60.80 102.53 18.70 114.49 54.36 161.62 44.65 174.19 50.71 221.94 91.70

winter
precip. (mm)

16.46 23.32 9.03 1.27 17.13 8.27 9.18 2.40 18.85 24.57 66.42 61.31

cloud cover
(%)

57.01 5.32 51.50 0.16 48.74 2.62 53.64 2.51 62.11 4.60 62.51 1.25

vapour pressure
(hPa)

14.46 4.48 10.93 0.42 11.62 4.56 13.63 2.95 15.75 4.50 20.10 5.89

Notes: All climate variables are calculated 30-year averages prior to the migration year.

of 260 hPa (Jalpa de Méndez, Tabasco), more than double the U.S. average.

Table 3.5: Ratio of U.S. / Mexican Climate Normals

variable US/Mex Mean St. Dev. 90% Conf. Int P-Value

avg temperature (°C) 0.68 0.27 0.32 1.18 0.000
max temperature (°C) 0.71 0.19 0.45 1.04 0.000
min temperature (°C) 0.63 0.48 -0.00 1.57 0.000
summer temperature (°C) 1.06 0.21 0.75 1.42 0.000
winter temperature (°C) 0.16 0.46 -0.47 0.97 0.000
sd temperature (°C) 3.37 1.28 1.45 5.64 0.000
avg precipitation (mm) 1.40 0.84 0.40 2.97 0.000
summer precipitation (mm) 1.01 3.11 0.04 1.75 0.000
precipitation Dec-Feb (mm) 7.82 6.19 0.99 19.39 0.000
cloud cover (%) 1.08 0.17 0.78 1.34 0.000
vapour pressure (hPa) 0.93 0.40 0.42 1.72 0.000

Notes: All variables are calculated ratios in 30-year averages prior to the mi-
gration year. The ratio is calculated as the U.S. devided the Mexican climate

Deviations U.S.-Mexican Climate

The identification strategy necessitates significant variation in climate across the U.S. and

Mexico, and between origin-destination pairs. Table 3.5 provides summary statistics for

calculated ratios in climate normals between U.S. destination and Mexican origin locations.



87

All ratios are statistically different from zero. On average, temperatures in U.S. MSAs is

6.5°C colder than for the Mexican sample locations. However, summer temperatures are

higher for the U.S. As expected, the U.S. experiences lower daily minimum temperatures.

As noted earlier, Mexico experiences greater variation in annual precipitation, higher

levels of vapour pressure and more frequent cloudy days. The geographical variation in

destination or origin ratios in climate builds the basis for the subsequent empirical test

for clinal heterogeneity in climate preferences.

3.5 Results

To make the results comparable to other studies, I begin the analysis by estimating a

simple regression model including U.S. destination climate. All regressions include MSA

fixed effects, with the base location Los Angeles MSA (California). The alternative-specific

constants represent the destination-specific composite part of utility attributed to unob-

served local amenities. Considering the sampling procedure applied to the MMP, I follow

the advice of the literature by clustering the standard errors at the Mexican state-year

level (Abadie et al. 2017; Cameron and Miller 2015; Wooldridge 2003). State-year clusters

will control for systematic correlation in the unobservables among migrants from the same

origin state and migration wave.25 Table 3.6 presents the estimated odds ratios for the

baseline regression of the residential location-choice model. The coefficients for the altern-

ative specific regressors are interpreted as follows: An odds ratio higher than one implies

that a positive change in the regressor for one metropolitan area increases the frequency

at which the destination is chosen, while the relative attractiveness of alternative locations

declines (i.e. an increase in the odds of the destination being selected). Accordingly, an

increase in the population size at location d increases the probability of a migrant choosing

this location and reduces the likelihood of settlement in any alternative destination (on

average and inter alia).

Estimated odds ratios for all destination-specific controls except log per capita income

are statistically significant. As expected, higher costs of migration reduce the likelihood

of settlement. Lower living costs (CPI) and lower unemployment levels increase the de-

25. The Appendix reports the robustness of the results to alternative clusters. Destination specific
amenities are cluster robust to the introduction of municipality level clusters. However, given the small
number of sample municipalities, clustering at the municipality level is too restrictive for the identification
of origin specific tastes.
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sirability of an MSA. Moreover, migrants prefer MSAs with relatively larger populations

and lower levels of urbanisation (share of rural housing). Contrary to the initial belief,

increases in the relative population share of the Mexican community reduce the desirab-

ility of a destination. However, the odds ratio for the net migration experience for the

municipality, capturing the relative U.S. experience of the origin municipality, suggests

that a large stock of migrants from the same origin increase the likelihood of settlement

at a location. The contrasting results may be explained by intensified job competition

from a large Mexican population share, while a larger network of migrants stemming from

the same municipality make a location more attractive for settlement. Contrary to Bauer

et al. (2002), I find that an increased flows of migrants to a location (relative to all other

destinations) reduces the chances of a new migrant moving to this particular MSA. This

suggests that migrants move in waves causing herd effects to be negative, with recent lar-

ger streams of migrants leaving to a location reducing the likelihood of future migrations

following the same direction.

Of interest are the different climate variables included in Models 1 to 8. The estimated

odds ratios for the U.S. climate variables are comparable to the findings of other studies,

such as Fan et al. (2012) and Sinha and Cropper (2013). In absolute terms, Mexican

migrants settle in cities with warmer mean temperatures (Model 1 and 2) and avoid

extreme temperatures (Model 3 to 7) (reduction from increasing maximum temperatures

and increase from rising minimum temperatures). Moreover, the results indicate that

locations with year-round lower rainfall levels see a greater inflow of migrants, but the

coefficients for the alternative precipitation measures are insignificant (Model 6 to 9).

However, the percentage rate of cloud days per month has a positive impact on a location’s

attractiveness.

To test for clinal heterogeneity, I estimate a further set of regressions, replacing the U.S.

destination climate variables with climate ratios between destination and origin locations.

The interpretation of the estimates of climate ratios is very different from the US climate

variables. Keeping in mind the construction of the variables as the ratio between U.S. and

Mexican climate normal, the estimated odds ratios in Table 3.7 should be interpreted as

follows: Referring to the predicted odds ratio for average temperatures in Model 1, the

warmer the U.S. destination compared to the Mexican origin location (i.e. U.S./Mexico) the
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more likely for a migrant to settle at this particular destination. Estimates for Models 1 and

2 indicate a preference of individuals for locations with, on average, warmer temperatures

than origin municipalities and a dislike for colder places. The odds ratios for minimum

and maximum temperature differences further support the result. Similarly, the larger the

ratio in the maximum and minimum temperatures the greater the likelihood of settlement.

Consequently, locations with colder extreme temperatures relative to the origin are chosen

less frequently.

As discussed in the data section, Mexican average and maximum temperatures exceed

those of the sample MSAs, while U.S. summers are slightly warmer than those of the

Mexican municipalities. Therefore, the temperature effects suggest a general desire of

Mexicans to locate in destinations with, if not warmer, at least similar temperature vari-

ation. Locations with historically colder summer temperatures (compared to the origin)

are more appealing to migrants (Models 7 to 9), however only the estimate for summer

temperatures in Model 8 is significant. Concerning precipitation, I observe an attraction

of migrations to locations with lower average and winter but higher summer precipitation

levels (Models 5 to 8). Interestingly, the odds ratio for the destination-origin climate ratio

for percentage cloud cover is less than one. Hence, the lower the sunshine exposure of a

destination relative to the origin, the less attractive the location becomes to a migrant. A

final important observation is that models using differences perform slightly better than

the models restricting tastes to be uniform across different origin climates. This finding

lends further support to the hypothesis of clinal differences in climate preferences.

Besides the ratio-specifications, I further estimate split-sample regressions for migrants

from Mexican municipalities with temperatures above and below the historical mean tem-

perature of 19.23°C. Regressions including U.S. destination climate are presented in Table

3.8. In general, the interpretation of the split-sample results is nontrivial. The variance of

the latent variable in nonlinear models is unidentified. Therefore, the underlying scaling

factor for coefficients in each regression differs, therefore precluding direct comparison of

the predicted odds ratios.

The scaling problem in nonlinear models is well known in the literature (Allison 1999;

Cramer 2003; Train 2009; Williams 2009). To make the results interpretable, I follow the

advice by Train (2009, p.25) and rescale the odds ratios by the estimate for the percentage
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share of the Mexican population26 to retrieve relative odds of the climate variables com-

pared to the percentage share of residents with Mexican ethnicity.27 Assuming identical

weights given to the Mexican population share in both samples, rescaling the coefficients

cancels out the difference in the unobserved variance for each regression.

Rescaled odds ratios are presented in Table 3.9. Note that the direction of the ef-

fect should be inferred from the unscaled odds ratio, while scaled effects should only be

considered to identify systematic differences in the effect size across the two samples. I

find the odds ratio of average temperatures to be larger for migrants from colder Mex-

ican regions. For every additional degree in destination temperatures, individuals from

cold regions gain 1.1 times the utility of those from warm regions. However, allowing for

nonlinearity in the temperature effects reveals that the utility of individuals from warm

regions is more sensitive to maximum temperatures, while migrants from cold regions have

stronger preferences regarding minimum temperatures.

I observe a general attraction of individuals from warmer (colder) origins to places

with higher (lower) maximum temperatures. The impact of maximum temperatures is

roughly four times stronger for the hot sample, although this result must be considered

with caution considering the insignificant estimate for the alternative regression. Migrants

from cold regions are up to ten times more sensitive to changes in minimum temperatures,

yet the direction of the impact is the same for both samples. The relative importance

given to precipitation levels in Models 6,7 and 8 is similar for the hot and cold sample,

with migrants from warmer regions having slightly stronger preferences for lower levels of

precipitation. Again, the result should be treated with caution, given the lack of precision

in the cold-sample estimates. The relative size of the predicted odds ratios for vapour

pressure suggests a negative impact of humidity on utility, but the predicted effect is only

statistically different from zero for the cold sample.

To get a feeling for the importance of clinal climate-preference heterogeneity, I estimate

subsample regressions by age, education, the migration duration (i.e. permanent versus

26. This variable was chosen as the difference between the two subsamples is statistically indifferent from
zero.

27. The relative scale of estimates from each regression reflects the relative size of the unobserved variance
of the two subsamples. Rescaling the estimates using the prediction for the Mexican population share allows
us to compare their relative importance in each model (For a more detailed discussion of the scaling issue
see Train 2009, p.25). Hence, differences in the coefficients between the two subsamples are interpreted
relative to the weight given to the Mexican population share in the location choice of migrants.
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temporary migration) and by the existence of personal networks. Migrants are split into

those migrating at an age above or below 35 years, migrants with an education level of

up to tertiary schooling or above, those migrating permanently or only temporarily and

migrants with and without a network at the chosen destination. Table B.7.1 in Appendix

B.7 displays the subsample regression results for the preferred model specifications, with

corresponding rescaled odds ratios in Table B.7.2.

Again, overall, migrants prefer destinations with higher average temperatures. How-

ever, the utility of temporary migrants is more sensitive to warmer destination temperat-

ures as the utility of permanent migrants. Similarly, migrants younger than 35 years and

migrants with higher education levels have stronger preferences regarding average temper-

atures, compared to the alternative subsample. The same is true for winter temperatures.

However, interestingly, summer temperatures have a stronger effect on higher educated

migrants potentially due to better access to air conditioning. Interestingly, differences for

migrants without and with networks are small, suggesting that networks have no influ-

ence on climate tastes. Overall, differences in the effect size by age, education, migration

duration and networks are comparable to predicted clinal differences.

Several specification tests were conducted to check the robustness of the results. First,

the US-climate and subsample results are robust to more conservative cluster specifica-

tions. However, the climate-ratio estimates loose significance once clusters are restricted to

the municipality or state level. This is unsurprising considering that the sample consists of

161 communities located in 109 municipalities in 24 states. Restricting clusters to the mu-

nicipality level, therefore, precludes the identification of taste variation by origin climates

(see Table B.9.1 in Appendix B.9). Given the sampling procedure of the MMP survey and

the construction of the origin climate variables, I believe that state-year clusters are the

appropriate specification in this study.

One further potential weakness of the identification strategy in this chapter could stem

from the choice-set restriction, of randomly selecting a subsample of 74 alternatives. I

inspect the sensitivity of the results to alternative choice-set sizes by experimenting with

the number of alternatives. Table B.8.1 in Appendix B.8 provides results for the preferred

model specification using different numbers of alternatives. As noted earlier, increasing the

number of alternatives beyond 59 does not significantly alter the results. Alternatively, I
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apply a different choice-pruning mechanism, where alternatives are matched to the chosen

location by similarity in non-climate amenities. The estimates based on matching are

comparable to those based on random choice-set pruning (see Appendix B.10), therefore,

supporting the implementation of a more simplistic random choice-pruning approach.

As a further test of the validity of the random choice set pruning method, I developed a

bootstrap program that re-estimates the regression model, drawing a new set of 74 random

alternatives for each iteration.28 The results in Appendix B.11 highlight the robustness

of the findings to bootstrapping of the random alternative choice-set. Given the high

computational burden of the bootstrap program and the indistinguishable results from

the more complex method, the main analysis relies on the evaluation of the standard logit

model.

In summary, the findings suggest systematic clinal differences in climate preferences

of Mexican migrants. The predicted deviations in climate preferences between the two

subsamples closely resemble differences in the two regions’ origin climates. Warmer areas

of Mexico, referred to as Tierras Calientes, offer year-round warmth with tropical levels of

humidity and heavy precipitation during the rainfall season lasting from June to October.

Therefore, migrants from tropical areas are accustomed to heat and moisture, explaining

the results for predicted effects of maximum temperatures, precipitation, and vapour pres-

sure. The results presented in this study suggest that ignoring clinal climate-preference

heterogeneity in amenity-value estimates could overestimate the WTP for climate-change

mitigation for individuals living in warmer climatic regions. This finding, however, does

not conflict with the general recommendation to invest in climate-change mitigation. The

baseline results confirmed that on average sample migrants gain disutility from extreme

temperatures. However, the extent to which extreme temperatures reduce welfare differs

by an individual’s climate familiarity.

28. The code for the bootstrap program bsasclogit is provided in Appendix B.12.



93

Table 3.6: U.S. Destination Climate

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Location specific characteristics

migration 0.795∗∗∗ 0.796∗∗∗ 0.795∗∗∗ 0.795∗∗∗ 0.794∗∗∗ 0.795∗∗∗ 0.796∗∗∗ 0.795∗∗∗ 0.796∗∗∗

distance (-12.07) (-12.06) (-12.18) (-12.13) (-12.27) (-12.20) (-12.13) (-12.18) (-12.03)

log 0.976 0.952 1.000 0.979 0.978 0.856 0.862 0.866 0.896
pc income (-0.07) (-0.15) (0.00) (-0.06) (-0.07) (-0.49) (-0.47) (-0.45) (-0.34)

unemployment 0.913∗∗∗ 0.909∗∗∗ 0.906∗∗∗ 0.903∗∗∗ 0.915∗∗∗ 0.904∗∗∗ 0.928∗∗∗ 0.918∗∗∗ 0.922∗∗∗

rate (-4.18) (-4.35) (-4.46) (-4.56) (-4.14) (-4.51) (-3.60) (-4.05) (-3.86)

CPI 0.616∗∗∗ 0.616∗∗∗ 0.578∗∗∗ 0.578∗∗∗ 0.735∗∗∗ 0.604∗∗∗ 0.653∗∗∗ 0.625∗∗∗ 0.627∗∗∗

(-5.50) (-5.50) (-6.18) (-6.19) (-3.39) (-5.36) (-4.56) (-4.99) (-5.30)

% rural 1.035∗∗∗ 1.034∗∗∗ 1.030∗∗ 1.030∗∗ 1.019 1.020 1.007 1.009 1.018
housing (3.39) (3.34) (2.94) (2.95) (1.45) (1.74) (0.51) (0.72) (1.45)

log 2.583∗∗∗ 3.110∗∗∗ 2.697∗∗∗ 2.961∗∗∗ 2.521∗∗∗ 3.056∗∗∗ 2.576∗∗∗ 2.997∗∗∗ 2.528∗∗∗

population (4.04) (4.87) (4.27) (4.75) (3.88) (4.58) (3.91) (4.29) (3.76)

% population 0.871∗∗∗ 0.870∗∗∗ 0.872∗∗∗ 0.872∗∗∗ 0.889∗∗∗ 0.875∗∗∗ 0.887∗∗∗ 0.880∗∗∗ 0.879∗∗∗

Mexican (-12.78) (-12.87) (-12.95) (-12.95) (-9.55) (-12.30) (-9.66) (-11.63) (-11.56)

net migration 1.621∗∗∗ 1.620∗∗∗ 1.616∗∗∗ 1.615∗∗∗ 1.623∗∗∗ 1.617∗∗∗ 1.621∗∗∗ 1.619∗∗∗ 1.621∗∗∗

municipality (17.64) (17.61) (17.65) (17.61) (17.58) (17.58) (17.55) (17.61) (17.54)

herd 0.966 0.966 0.965 0.965 0.967 0.964 0.965 0.965 0.966
(-1.51) (-1.52) (-1.57) (-1.58) (-1.48) (-1.57) (-1.53) (-1.57) (-1.53)

Climate variables

avg temperature 7.573∗∗∗ 34.96∗∗∗

US (6.05) (4.50)

avg temperature2 0.953∗

US (-2.24)

max temperature 0.797 3.732 9.505 6.544
US (-0.74) (1.13) (1.87) (1.57)

min temperature 9.584∗∗∗ 10.20∗∗∗ 8.132∗∗∗

US (8.23) (8.16) (4.93)

max temperature2 0.964 0.976 0.970
US (-1.37) (-0.93) (-1.08)

summer temp. 2.065∗ 3.204∗∗ 2.417∗

US (2.00) (3.00) (2.41)

winter temp. 2.091∗∗∗ 1.831∗∗ 2.040∗∗

US (3.35) (2.65) (3.12)

precipitation 0.958 0.954 0.963
US (-1.68) (-1.82) (-1.46)

summer precip. 0.974 0.973
US (-1.57) (-1.69)

winter precip. 0.969∗∗ 0.975∗

US (-2.83) (-2.26)

cloud cover 1.627∗∗ 1.745∗∗∗

US (2.66) (4.60)

vapour press. 0.345∗ 0.618
US (-2.46) (-1.41)

MSA FE × × × × × × × × ×

LL -33,163.6 -33,155.4 -33,128.8 -33,125.0 -33,179.0 -33,097.1 -33,116.0 -33,100.4 -33,135.7
# cluster 683 683 683 683 683 683 683 683 683
N 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800
Cases 21,624 21,624 21,624 21,624 21,624 21,624 21,624 21,624 21,624

Notes: The table presents odds ratios with the respective significance level of * p<0.1; ** p<0.05; *** p<0.01. T-
statistics presented in parentheses.
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Table 3.7: Climate Ratios U.S. Destination / Mexican Origin

(1) (2) (3) (4) (5) (6) (7) (8) (9)

avg temperature 5.976∗∗∗ 11.83∗∗

US (5.29) (2.81)

avg temperature 1.477∗∗∗ 3.024∗

ratio US/Mex (4.65) (2.42)

avg temperature2 0.973
US (-1.22)

avg temperature2 0.793
ratio US/Mex (-1.65)

max temperature 0.698 1.238 2.619 2.745
US (-1.03) (0.16) (0.69) (0.76)

max temperature 1.454 5.202 11.10 1.521
ratio US/Mex (1.11) (1.07) (1.63) (0.29)

min temperature 8.826∗∗∗ 9.180∗∗∗ 6.678∗∗∗

US (7.90) (7.63) (4.31)

min temperature 1.058∗ 1.056 1.177∗

ratio US/Mex (2.00) (1.91) (2.09)

max temperature2 0.981 0.992 0.984
US (-0.67) (-0.30) (-0.57)

max temperature2 0.664 0.580 0.911
ratio US/Mex (-0.85) (-1.18) (-0.21)

summer temp. 2.365∗ 3.387∗∗ 2.434∗

US (2.33) (3.18) (2.45)

summer temp. 0.832 0.744∗ 0.894
ratio US/Mex (-1.40) (-2.25) (-0.85)

winter temp. 1.906∗∗ 1.830∗∗ 1.951∗∗

US (2.86) (2.66) (2.90)

winter temp. 1.071 0.928 1.043
ratio US/Mex (1.96) (-1.41) (1.23)

summer precip. 0.972 0.971
US (-1.64) (-1.81)

summer precip. 1.015∗∗∗ 1.015∗∗∗

ratio US/Mex (7.94) (7.70)

winter precip. 0.970∗∗ 0.976∗

US (-2.67) (-2.09)

winter precip. 0.999 0.999
ratio US/Mex (-0.57) (-0.86)

precipitation 0.963 0.960 0.967
US (-1.45) (-1.51) (-1.27)

precipitation 0.970 0.952∗ 0.961∗

ratio US/Mex (-1.54) (-2.46) (-2.13)

cloud cover 1.686∗∗ 1.993∗∗∗

US (2.87) (5.09)

cloud cover 0.614 0.468∗

ratio US/Mex (-1.38) (-2.21)

vapour press. 0.451 0.630
US (-1.85) (-1.34)

vapour press. 0.855 1.168∗∗

ratio US/Mex (-1.75) (2.97)

MSA FE × × × × × × × × ×
controls × × × × × × × × ×

LL -33,129.9 -33,121.2 -33,100.7 -33,097.6 -33,135.7 -33,014.3 -33,085.7 -33,032.7 -33,099.7
# cluster 683 683 683 683 683 683 683 683 683
N 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800
Cases 21,624 21,624 21,624 21,624 21,624 21,624 21,624 21,624 21,624

Notes: The table presents odds ratios with the respective significance level of * p<0.1; ** p<0.05; *** p<0.01. T-
statistics presented in parentheses. Regression tables including full destination controls are presented in Appendix
B.6.
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3.6 Conclusion

This chapter estimates a discrete location-choice model to examine clinal heterogeneity

in climate preferences exploiting a newly constructed dataset. The findings suggest that

the value attached to destination climates in residential location choices of Mexican mi-

grants to the U.S. differs by the climate at the migrant’s origin. I find that Mexican

migrants prefer settling in cities with warmer average and extreme temperatures, but

colder summer temperatures, compared to their home locations. Migrants dislike moving

to destinations with colder temperatures than their home municipality. Split sample re-

gressions for migrants from warm and cold Mexican climatic areas further support these

results. Migrants on average gain disutility from extreme temperatures. Studying het-

erogeneity in the predicted effect by origin climates reveals significant differences in the

size of the impact. Estimates suggest that the utility of migrants from warmer Mexican

regions is more sensitive to increases in average temperatures. The observed differences

become more pronounced if considering temperature extremes. Comparing results across

different split-sample regressions, I find estimated clinal differences to be comparable to

those over age, education, migration duration and differences across migrants with and

without networks.

While the results provide some initial evidence of clinal heterogeneity, several method-

ological drawbacks should be highlighted here. In light of the historical context of bilateral

migration flows between Mexico and the U.S., a concern could be network effects driving

location choices. Given the interest in population averages, the presence of network effects

is problematic if climate preferences of networks are systematically different from current

migrants. Although I control for network effects by including measures of the migrant

stock and flow, unobserved individual variation in network strengths are unaccounted for.

A further concern is unobserved individual heterogeneity in preferences. Individual loc-

ation choices are likely influenced by migrants’ characteristics and individual tastes. For

example, an important determinant of location choices are family structures, i.e. whether

migrants are joined by their family or migrating alone. Due to the complexity of including

individual characteristics in the alternative-specific choice model, the link between indi-

vidual characteristics and climate valuations cannot be explored further in this chapter.
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Moreover, modelling heterogeneity in preferences, aside from clinal differences, is limited

to subsample regression analysis. Given the unknown underlying scaling factor used in the

logit model, comparison of coefficients across two samples is problematic. Chapter 4 aims

at disentangling complex interlinkages between individual characteristics and climate pref-

erences, exploiting a Bayesian approach for the estimation of the location-choice model.

The Bayesian method overcomes both the problem of convergence and the restrictiveness

in modelling individual heterogeneity experienced in this chapter.

A line of research not exploited in this thesis, but of great value to the climate-change

debate, is replication of this study in a different climatic context. Generalisation of the

findings presented here to different climatic areas might shed important light on how

climate change will alter future location choices of migrants due to adaptation of climate

preferences to new climatic environments in the long term. Further data collection on

climate-related migration is essential to replicate this study in a different context.

Despite the limitations, the findings presented in this chapter have several policy im-

plications. Although climate preferences only play a minor role in location decisions, the

results suggest that climate change will alter the attractiveness of locations by affecting

temperatures and precipitation and, in the long term, climate preferences. Concerning

migration, this might imply changes in the direction of future migration flows. Moreover,

the results provide suggestive evidence of significant clinal variation in climate preferences

which implies non-negligible differences in individuals’ WTP for the mitigation of climate

change. Assuming preference homogeneity in choice models may considerably bias the

predicted WTP for abating climate change, with the direction of the bias depending on

the origin climate. This question will be explored in the next chapter.
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Chapter 4

Capturing Heterogeneity in

Individual Temperature

Valuations:

A Two-Stage Random Utility Approach

Abstract

This chapter investigates the importance of preference heterogeneity in driving individuals’
temperature valuations and their WTP for mitigation of global warming. I apply a two-stage ran-
dom utility sorting model to analyse location-choice decisions, drawing on survey data of Mexican
migration to the U.S. The econometric model captures both observed heterogeneity related to clinal
and demographic characteristics of the migrant and unobserved preference heterogeneity in tem-
peratures. The first stage consists of a mixed logit model of the discrete-location choice, controlling
for the cost of migration, the prevalence of migrant networks and MSA fixed effects. Heterogeneous
preferences are modelled using interaction effects and allowing for random individual variation in
climate regressors, capturing unexplained individual-taste variation. Evaluation of the mixed logit
model follows a Bayesian estimation procedure. In the second stage, estimated MSA-specific fixed
effects, capturing destination-specific mean utility, are regressed on local amenities. On average,
I find migrants to value warmer winters and cooler summers. Further, the results demonstrate
significant differences in the MWTP for friendlier summer temperatures across both demographic
and clinal characteristics, lending support to the hypothesis of clinal preference heterogeneity play-
ing an important part in forming individuals’ temperature valuations. I supplement these results
with estimates of the WTP for projected future temperature changes. Increases in summer tem-
peratures are estimated to cause welfare losses of between US$1,245 and $1,755 per person per
year. At the same time, warmer winter temperatures increase people’s welfare only by between
$102 and $193 (per person and year). Moreover, the predictions highlight that heterogeneity plays
an important part in driving individuals’ WTP for climate change. Insofar as the WTP for the
abatement of global warming is largest among individuals aware of the negative impacts of heat,
measurements derived from populations with access to air conditioning and relatively moderate
temperatures will underestimate the WTP for climate change mitigation.
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4.1 Introduction

A growing scientific consensus projects that climate change will alter local climates by, on

the one hand, raising average temperatures and, on the other hand, increasing the intensity

and frequency of extreme weather events (IPCC 2013). In light of these projections, an

emerging body of literature examines potential impacts of future adverse climate, as well

as people’s WTP for the mitigation of negative welfare effects. Despite the suggestive

evidence on the significance of climate in shaping an individual’s life (see literature reviews

by Dell et al. 2014; Parker 1995), very little is known about people’s climate preferences

and the value they attach to living in a more preferential climate.

As discussed in the previous chapter, a potentially serious drawback of earlier work is

the assumption of preference homogeneity among individuals. Chapter 3 presents suggest-

ive evidence of clinal1 and demographic differences in climate tastes of Mexican immigrants

to the U.S. This chapter intends to provide further insights into the importance of hetero-

geneous differences in driving the amenity value of temperatures and, thus, an individual’s

WTP for mitigation of global warming.

Benefiting from recent advancements in estimation procedures, I apply a two-stage

random utility sorting model to analyse location-choice decisions of Mexican migrants to

the U.S. over the period 2000 to 2012, using the same migration survey as in Chapter 3.2

The model captures both observed heterogeneity attributed to demographic characteristics

and clinal differences in migrants’ acclimatisation as well as unobserved heterogeneity

related to individual tastes. Results from the two-stages are used to calculate individuals’

current WTP for living in a preferred climate, which in turn is used to project the welfare

effects of predicted global warming for the sample locations.

The first stage consists of a mixed logit model of the discrete location choice, which

among climate amenities controls for migration costs, the prevalence of networks and

1. The term clinal goes back to Sir Julian Huxley, a British evolutionary biologist (Huxley 1938). The
human-biology literature uses the term clinal to refer to gradual change in a character or feature across the
distributional range of a species or population, usually correlated with an environmental transition such
as humidity, rainfall, and temperature. For example, it has been observed that pigmentation changes with
distance from the equator, due to different levels of UV radiation. In this chapter, the term clinal-preference
heterogeneity is used to indicate systematic differences in the valuation of climate over geographical vari-
ation in migrants’ origin climates.

2. As in Chapter 3, the utility-maximising decision of migration is treated as weakly separable from the
migration decision.
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destination-specific confounding factors. MSA fixed effects included in the first stage cap-

ture destination-specific mean utility after accounting for individual heterogeneity. The

approach taken here differs from Chapter 3, as individual taste variation in climate pref-

erences is modelled using interaction effects and random variation in coefficients. Clinal-

preference heterogeneity again is identified through the spatial gradient in origin temper-

atures. The mixed logit model is evaluated following a Bayesian estimation procedure due

to the computational advantages over the classical frequentist method (Train 2001).

Analogous to the traditional hedonic approach, in the second stage the MSA fixed ef-

fects from the first stage are regressed on destination-specific amenities, including climate.

I address the potential issue of endogeneity in the second stage by including a large set

of destination characteristics into the regression and exploring alternative model specific-

ations, including an IV approach. The IV results indicate that OLS estimates suffer from

an endogeneity bias.

Results from the first-stage regressions indicate that migrants are more likely to settle

in locations with warmer summer and colder winter temperatures. Moreover, the baseline

estimates exhibit, on average, a positive relationship between seasonal temperature pref-

erences, i.e. individuals preferring warmer winters also enjoy warmer summers and vice

versa. Studying climate impacts from the second stage reveals that the composite mean

utility declines with warmer summer temperatures but rises with warmer winters.

Combining estimates from the first and second stage, I find individuals on average are

willing to pay between US$371 and $686 per person per year to live in a location with

one degree lower summer temperatures. At the same time, migrants are willing to forgo

annual earnings of between $70 and $133 to enjoy one degree warmer winters. Examining

heterogeneity in the MWTP for temperatures, the results indicate that the WTP for

living in preferential temperatures changes considerably over the life cycle. Moreover, I

find migrants from warmer Mexican regions willing to forgo income to live in locations

with colder summer and winter temperatures. However, individuals originally from colder

Mexican regions see warmer winter temperatures as an amenity. It seems that greater

awareness in individuals of the adverse effects of heat due to previous exposure at the

origin makes migrants prefer locations with colder seasonal temperatures. These findings

lend support to the notion that clinal-preference heterogeneity is an important driver of
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individual temperature valuations.

As a last step, based on MWTP measures I calculate the WTP for projected changes in

mean summer and winter temperature under alternative climate scenarios for the period

2040 to 2069. Modelled temperature data was retrieved from the ECHAM5 (Roeckner

et al. 2003) and the Community Climate System Model (CCSM3) (Collins et al. 2006).

On average, the projected future increase in summer temperatures is estimated to reduce

welfare by between $1,245 to $1,755 per person per year. At the same time, warmer winter

temperatures result in welfare gains of between $102 and $193 per person per year. As

expected, heterogeneity in the WTP for global warming is large, with predicted welfare

gains due to warming of winter temperatures reaching up to $10,320 annually per migrant

aged 55 and above.

The remainder of this chapter is organised as follows: First, I provide a short summary

of the relevant literature, followed by a detailed description of the model and the empirical

strategy employed in the analysis. Section 4.5 provides a short description of the different

data sources used to create the final dataset. The results of the two-stage sorting model are

presented in Section 4.6, followed by an analysis of the estimated MWTP for temperature

changes and, lastly, by a discussion of projected welfare effects of global warming. The

chapter ends with a brief conclusion highlighting the implications of the findings for future

empirical work.

4.2 Literature Review

Deliberate attempts to measure the amenity value of climate date back to Hoch and

Drake (1974) and Nordhaus (1996), who found interstate net migration to decline with

rising temperatures, indicating a general attraction of U.S. residents to warmer climates.

In light of rising climate-change awareness, the topic recently saw a resurgence also due

to methodological innovations and advances in computing power. Deriving a monetary

measure of individuals’ valuation of climate today can be used to predict the negative (or

positive) effect of temperature changes under alternative climate-change scenarios on in-

dividual well-being. Such estimates provide a numerical measure for the potential benefits

of limiting further temperature rises. Compared with the abatement costs of interven-

tions, estimates of the amenity value of climate can help inform the climate-change policy
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debate, where the costs and benefits of policy interventions remains a much-debated topic.

Measuring climate valuations poses an econometric challenge, considering that the

amenity is not marketed. Traditionally, two alternative approaches using revealed prefer-

ence techniques have been used to measure climate preferences: hedonic-regression meth-

ods (Rosen 1974) and the discrete-choice approach (Cragg and Kahn 1997, 1999). Both

approaches can be used to derive a monetary estimate of individuals’ or households’ valu-

ation of climate, i.e. how much a person is willing to pay for friendlier climate. Revealed

preference methods are particularly attractive for deriving numerical measures of climate

valuations, as their estimates rely on observed behaviour and market prices in contrast to

potentially arbitrary survey responses evaluated in conjoint analyses.

Based on the seminal work of Lancaster (1966) and Rosen (1974) and the important

contributions of Roback (1982), the hedonic-price approach assumes that in a frictionless

world, individuals would relocate to alternative locations if they offer preferable combina-

tions of amenities. Hence, under hedonic theory, location-specific earnings and living-cost

differentials will compensate individuals for less favourable amenities at a location. In

terms of climate, the theory would imply that individuals are willing to forgo some of

their earnings to live in a favourable climate, or the minimum compensation a household

would need to be paid in order to be willing to relocate to a place with inferior climate. The

hedonic literature refers to this as the ‘compensating surplus’ measures of welfare change

(Hicks 1939). Consequently, an individual’s implicit valuation of marginal changes in the

level or quality of a nonmarketed amenity can be inferred from regressing location-specific

amenities on the hedonic property and wage price.

Over the past two decades, various papers have applied the hedonic approach to delib-

erately measure the amenity value of climate. For example, Englin (1996) and Mendelsohn

(2001) provide estimates for the U.S. and Cavailhès et al. (2009), Maddison (2001), Mad-

dison and Bigano (2003), Meier and Rehdanz (2017) and Rehdanz and Maddison (2009)

for Europe. Englin (1996) uses the approach to measure the amenity value of rainfall

using information on housing prices in Washington State. Englin’s (1996) results suggest

that house owners are willing to pay more for properties in locations with, on average,

lower annual rainfall levels, but larger seasonal variation. Using an international dataset

covering 79 countries, Maddison and Rehdanz (2011) analyse the influence of temperature
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and precipitation on life satisfaction and estimate a negative relationship between degree

days and well-being. A recent study by Albouy et al. (2016) estimates a hedonic model

for U.S. public-use microdata areas with an index of life quality as the hedonic outcome

variable. Albouy et al. find individuals prefer moderate temperatures with the predicted

MWTP for abating excess heat being significantly larger than that for extreme cold.

Aside from the hedonic-regression method, researchers have implemented a discrete-

choice approach to capture households’ attraction to location-specific amenities in the

residential-location choice. Going back to Cragg and Kahn (1997), the discrete-choice

approach assumes that households choose their residence based on the relative utility

they receive from alternative locations, where utility depends on potential earnings, living

costs and other location-specific attributes of each destination. If individuals are free to

choose where to live, climate becomes a choice variable. Residential-location choice models

identify individual preferences by exploiting the variation in characteristics across space

and time and the revealed choice of residence. In their seminal work, Cragg and Kahn

(1997) examine the impact of different climate variables on individuals’ propensity to move

across U.S. states. Controlling for wages, the costs of housing and employment prospects,

Cragg and Kahn (1997) observe people to be attracted to moderate temperatures (warmer

winters and modest summer temperatures).3

Considering the primary research aim, the discrete-choice approach offers several ad-

vantages over the hedonic approach. Most importantly, the method allows for greater

flexibility in incorporating heterogeneous individual preferences through the inclusion of

interactions effects and random coefficients in a mixed logit model specification. Secondly,

Bayer et al. (2009) demonstrate the importance of controlling for migration costs in the

analysis of amenity values. Ignoring market frictions can substantially bias estimates of

amenity values. Compared to the hedonic approach, explicit modelling of market frictions

in a choice model is trivial.

A small number of studies attempt to identify heterogeneous differences in the amenity

value of climate through estimation of subsample regressions and modelling of interaction

effects. This literature provides suggestive evidence of significant taste variation by age,

level of education, and by origin nation and state (Brown and Scott 2012; Cragg and

3. Alternative studies with similar results were conducted by Bayer et al. (2009), Brown and Scott
(2012), Fan et al. (2012), Scott et al. (2005), Sinha et al. (2018) and Sinha and Cropper (2013).
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Kahn 1997; Fan et al. 2012; Scott et al. 2005; Sinha et al. 2018; Sinha and Cropper

2013). Recently, Sinha et al. (2018) apply a mixed logit model approach allowing for

random variation in households’ climate valuations to estimate a location-choice model

of households sorting into U.S. MSAs. Exploiting U.S. Census data, the authors find

preferences for winter and summer temperatures to be antagonal, i.e. households preferring

warm winters gain disutility from warmer summers and vice versa. Moreover, the WTP

for living in comfortable climate is considerably larger among older residents.

Although the above studies provide evidence of the importance of heterogeneity in driv-

ing temperature valuations, clinal differences have largely been ignored in the literature.4

Given the findings of the previous chapter, this chapter aims to provide further insights

into the significance of clinal heterogeneity in driving temperature valuations and, thus,

the WTP for the abatement of global warming. Considering the rising global concern

about climate change, a better understanding of today’s amenity value of temperatures is

an important contribution to the climate-change policy debate.

4.3 Methodology: A Random Utility Sorting Model

The theoretical framework for specifying the underlying decision rule of migrants’ residential-

location choice is based on the concept of random utility maximisation. In line with the

theory, migrants form a relative judgement about alternative locations based on their pref-

erences regarding potential housing and consumption, as well as other destination-specific

amenities. These preferences, in turn, are a function of individual-specific tastes for destin-

ation attributes and demographic and socioeconomic characteristics. Individual-specific

tastes influence how the migrant evaluates alternative-specific characteristics.

Individual location choices are modelled using a structural approach developed by Tim-

mins (2007) and extended by Fan et al. (2012) and Sinha et al. (2018) to explicitly model

individual-preference heterogeneity. The first stage consists of a discrete-choice model

of migrants’ residential-location choices including location-specific fixed effects. MSA-

specific constants represent the composite part of utility attributed to local amenities.

4. During a comprehensive review of the literature using the relevant research databases and library
catalogues as well as back and forward tracing of related journal articles, only two studies by Scott et
al. (2005) and Fan et al. (2012) where found to allow for heterogeneous differences in climate preferences
by origin region.
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In the second stage, estimated fixed effects are regressed on local amenities to retrieve

individuals’ MWTP for preferable climate.

The analysis assumes the following utility function for migrant i moving to destination

j:

Uij = Cβci H
βH
i Zβzj eβ

T
qi(Xi×Tj)+βmMij+Nij+ζj+ηij (4.1)

where Ci and Hi are the consumption level of the numeraire good and housing, respect-

ively. Zj is a vector of location-specific amenities, including information on local climate

Tj . Preference heterogeneity is modelled by including a vector Xi containing individual-

specific variables interacted with Tj . The coefficient on the interaction, βTqi, is random

with distribution N(b,Ω). The standard interpretation of the βTqi’s is taste-parameters

specifying the weight given by individuals to different amenities in their location-choice

decisions. Mij denotes migration costs from the migrant’s origin to location j, while Nij

indicates the presence of networks at the destination. ζj represents the location-specific

unobservable heterogeneity and ηij denotes the individual-specific idiosyncratic error term.

Migrants maximize their utility subject to a destination-specific budget constraint given

by:

Ci + ρjHi = Iij .
5 (4.2)

Iijt represents income at MSA j, whereas ρjt denotes the location-specific price of hous-

ing. Solving the first order conditions and taking logs yields the following indirect utility

function6:

lnVij = βI ln Iij + βTqi(Xi × Tj) + βmMij +Nij + Θj + ηij , (4.3)

where

Θj ≡ −βH ln ρj + βz lnZj + ζj . (4.4)

The fixed effects Θj capture the composite part of utility for MSA j that is constant

across migrants. In the second stage, I decompose this average effect by regressing Θj on

location-specific amenities, including destination climates.

5. Traditionally, migration costs do not enter the budget constraint as these are a one-off cost often
financed through savings.

6. See Bayer et al. (2009) and Fan et al. (2012) for the complete mathematical derivation.
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Retrieving MSA fixed effects requires information on a migrant’s income Iij for all

potential locations in the choice set. In reality, one only observes income for migrant i at

the final destination j. However, I use information from the American Community Sur-

vey (ACS) on similar persons residing in the alternative destinations to predict potential

income Îij of migrant i for non-chosen destinations. Section 4.4.3 describes the hedonic

regression used to retrieve earnings estimates. Inserting Îij into Equation 4.3 yields

lnVij = βI ln Îij + βTqi(Xi × Tj) + βmMij +Nij + Θj + υij . (4.5)

The above error term υij is composed by the idiosyncratic error from the utility ηij and

the income equation εIij .

As discussed in Chapter 3, the stochastic error component of the utility function υij

in the standard logit model is assumed to be IID in accordance with the Generalized

Extreme Value distribution Type-I (Gumbel). This error specification is very restrictive, as

it requires two individuals who, based on observable characteristics, are indistinguishable

to have identical tastes for amenities entering the model. Hence, the coefficients βTqi

(individual climate preference) would be required to be fixed across migrants. Given the

research aim of identifying heterogeneity across the population, it is undesirable to assume

constant taste parameters across the population. As noted earlier, climate valuations likely

vary not only by observed but also by unobserved individual characteristics. Ignoring this

taste variation might lead to biased estimates of the WTP for comfortable climate.

In addition, the IID assumption gives rise to the IIA property. This property requires

that the relative probability of choosing one alternative over another is unaffected by the

addition or omission of a location to the choice set. In the presence of vast contrasts in

attributes among destinations, this could be violated as changes in the composition of the

choice set might alter relative valuations of attributes.

The analysis makes an attempt at relaxing the IID error specification using a mixed

logit model, which resolves the limitation of the standard logit model by explicitly al-

lowing for random taste parameters, substitution among alternatives, and correlation in

unobserved covariates.7 In contrast to the standard logit model, the stochastic component

7. See Train (2009) Chapter 6 for an comprehensive description of the mixed logit model.
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of the utility ηijt ≡ βTqi + υIij in RUMs is allowed to be correlated across alternatives with

Cov(ηij , ηik) = E(βTqji(Xi × Tj) + υij)(β
T
qki

(Xi × Tk) + υik) = βTqji
′ΩβTqki , (4.6)

where Ω is the covariance of βTqi. As such, the mixed logit provides the highly desirable

flexibility to model individual choice situations with various substitution patterns among

alternatives.

In the presence of random effects, the probability of choice j is the integral of standard

logit probabilities over a density of the random parameters βTqi. Assuming a log-linear

indirect utility function as in Equation 4.5, the conditional logit probability is given by

P (lnVij ≥ lnVik ∀ k 6= j) =

∫
e
βI ln Îij+β

T
qji

(Xi×Tj)+βmMij+Nij+Θj

J∑
k=1

e
βI ln Îik+βTqki

(Xi×Tk)+βmMik+Nik+Θk

f(βTqji|β̄,Ω)dβTqji.
(4.7)

Thus, the probability of the model is defined as a mixture of the standard logit function

integrated over all values of βTqi and weighted by the mixing distribution f(βTqi).

The choice probability in Equation 4.7 has no closed-form solution. Consequently,

evaluation of the choice probability requires simulation for the close approximation of the

integral.

4.4 Estimation of the Model

4.4.1 Estimation Method for the First Stage

The first stage of the model (Equation 4.7) is evaluated using Bayesian estimation proced-

ures. Bayesian methods were first introduced to the estimation of choice models by Albert

and Chib (1993), Allenby and Lenk (1994) and McCulloch and Rossi (1994).8 The use

of the Bayesian approach in mixed logit estimations is known to benefit from two com-

putational advantages over classical frequentist procedures (Train 2009). First, Bayesian

methods do not require the maximisation of a likelihood function, which is known to be

numerically difficult, as convergence can be sensitive to the appropriate specification of

8. See Train (2009, Chapter 12) for an introduction into Bayesian statistical methods for choice analysis.
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starting values.9 Besides, successful convergence does not guarantee maximisation, due to

the issue of local versus global maxima.

A second desirable property is the relatively simple conditions under which Bayesian

estimation procedures yield consistent and efficient estimates. Train (2009, Chapter 12)

shows that Bayesian estimation procedures for mixed logit models can lead to asymp-

totically equivalent estimates to the maximum likelihood approach if the conditions of

the Bernstein-von Mises theorem are satisfied.10 In addition, individual-level parameters

can be easily obtained. A further important advantage is that Bayesian procedures are

considerably faster to compute under most model specifications. Bearing in mind these

advantages, the Bayesian approach is preferred over the frequentist approach.

As discussed in detail by Ruud (1996) and later by Train (2001), mixed logit models

with only random parameters are nearly unidentified empirically, given that in logit mod-

els only ratios of parameters are economically meaningful, due to the underlying scaling

parameter. Thus, at least one coefficient in a mixed logit model should be held con-

stant across cases (here migrants). In the context of a residential location-choice model,

the optimal strategy is to keep the alternative-specific constants fixed across individuals.

Moreover, Train (2009) advises to keep the coefficient for the hedonic income measure fixed

across individuals. Random variation in the price index introduces further complexity in

measuring the WTP distribution, due to variation in the scale across individuals (Train

2009, p.351).11 The remaining IID error term constitutes the random component of these

constants.

Introducing fixed coefficients in a Bayesian mixed logit framework considerably com-

plicates the estimation method (Train 2001). A second layer of Gibbs sampling is required

in the simulation to ensure that fixed parameters are kept constant across the population,

while the algorithm draws the random coefficients for each individual.12 I apply Train’s

(2001) estimation procedure which, using Bayes rule, yields the following posteriors for

9. As noted in Chapter 3, I was unable to achieve convergence experimenting with a mixed logit approach
evaluated using simulated maximum likelihood estimation techniques.

10. See Train (2009, pp. 327) for a detailed description of the Bernstein-von Mises theorem in the context
of discrete choice models.

11. As a sensitivity analysis, the results include estimates of a location-choice model allowing for random
variation in the income variable. Removing the restriction of constant income weights across individuals
inflates coefficients on summer and winter temperatures with a negative covariance between the coefficient
on income and temperatures.

12. See Train (2001, pp. 7-8) for a comprehensive explanation of the estimation procedure.
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the Gibbs sampling:

Λ(βi|α, β̄,Ω) ∝ L(yi|α, βi)f(βi|β̄,Ω) (4.8)

As a simplification, α and βi indicate composite vectors containing fixed and random

parameters in (4.7). Metropolis-Hastings sampling is used to draw the βi’s, respectively.

Moreover, I assume individual βi’s to be IID with a multivariate normal distribution of

mean β̄ and covariance matrix Ω. For convenience, I assume natural conjugate priors, with

the prior for β̄ being normal and the prior on Ω being the inverted Wishart distribution.

Therefore, Λ(β̄|Ω, βi∀i) = N(0,Ω/N), where draws of Ω are obtained from its posterior

conditional on β̄ and βi for all N. Λ(Ω|β̄, βi) is the posterior of the inverted Wishart with

K+N degrees of freedom and scale matrix (KI+NS̄)/(K+N). K is the number of random

parameters with K-dimensional identity matrix I. S̄, defined as (1/N)
∑

i(βi− β̄)(βi− β̄)′,

is the sample variance of the βi’s around the known mean β̄.13

Finally, the posterior for the fixed effects α conditional on the βi’s is defined as

Λ(α|βi) ∝
∏
i

L(yi|α, βi) . (4.9)

Draws of (4.8) and (4.9) and are obtained through Metropolis-Hastings sampling.

4.4.2 Choice-Set Pruning in Large Choice Sets

The choice set of alternatives in this study consists of 255 U.S. MSAs. Estimation of a

mixed logit model with alternative-specific characteristics, therefore, results in a prohib-

itively large dataset, rendering evaluation of the model over the full set of destinations

highly computationally expensive. Besides, as noted in Chapter 3, such a model is beha-

viourally unrealistic, considering that individuals are unlikely to consider the full set of

alternatives in their decision (Fotheringham 1988).

As discussed in the previous chapter, the problem of unrealistically large sets of altern-

atives in the case of a simple logit model with an IID error term can be overcome through

sampling a random subset of alternatives (Ben-Akiva and Lerman 1985; McFadden 1978).

Relaxation of the IIA property in the mixed logit model, however, implies that McFadden’s

13. See Train (2009, pp. 337–340) for a detailed description of how to obtain a draw of the inverted
Wishart.
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(1978) theoretical proof of parameter consistency under random sampling of alternatives is

no longer valid. The pruning method introduces further noise into the mixed logit model,

causing potential bias in parameter estimates.

With the renewed interest in the application of mixed logit models, several studies have

set out to examine empirically how choice-set sampling affects parameter and standard

error estimates (Brownstone et al. 2000; Keane and Wasi 2013; Nerella and Bhat 2004;

von Haefen and Domanski 2013). Facing a universal choice set of 689 alternative vehicles,

Brownstone et al. (2000) performed experiments to evaluate the effect of increasing the

number of alternatives in a mixed logit regression from 28, and found no systematic bias in

estimated parameter coefficients. Nerella and Bhat (2004) examine the bias in coefficient

estimates of mixed logit models based on a simulation study with 200 alternatives and

random samples of alternatives varying between 2.5% and 75%. Estimated coefficients

vary considerably by size of the choice set. Based on their findings, Nerella and Bhat

(2004) recommend drawing a minimum of 25% of alternatives to limit potential bias from

the choice-set pruning.

A more in-depth analysis of the potential sampling bias for different latent-class models

was conducted by von Haefen and Domanski (2013), who found random sampling to per-

form well in mixed logit models as the number of alternatives increases. Lastly, Guevara

et al. (2014) formally demonstrate the consistency of parameters under random sampling

of alternatives in mixed logit models as the number of drawn alternatives approaches the

universal choice set. Using simulation methods, the authors observe that the näıve ap-

proach outperforms alternative sampling methods, correcting for the sampling probability

of alternatives. However, the simulation results stress that the potential bias introduced

from choice-set restrictions is more severe in a mixed logit model than in the standard

logit. Thus, application of a mixed logit model necessitates the selection of a larger sample

of alternatives.

Considering the theoretical and empirical evidence of the viability of the näıve choice

pruning approach in the context of a mixed logit model choice, the analysis draws a random

sample of 74 alternatives in addition to the migrant’s chosen location.14

14. Experimentation with the choice-set size reveals no significant changes in parameter estimates from
increasing the number of random alternatives beyond 59 MSAs.
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4.4.3 Hedonic Price Regressions and Endogeneity

Before estimating the first-stage choice model in Equation 4.7, one requires individual-

level information on earnings Îij and location-specific housing prices for all alternative

locations. Since information on earnings is only observed for the chosen alternative, I

follow the literature by estimating a location-specific hedonic income equation to compute

potential earnings of individuals for the full set of alternatives (Bayer et al. 2009; Bayer

and Timmins 2007; Fan et al. 2018; Sinha et al. 2018). I use information from the IPUMS

of the ACS (U.S. Census Bureau 2018) to estimate an MSA-level regression, controlling

for non-random sorting as in Dahl (2002):

lnwij = δj + λjMi + κ1jP (Dj ,MI|EDU) + κ1j [P (Dj ,MI|EDU)]2 + ςIij . (4.10)

Here, wij is measured as annual wage earnings of individual i residing at MSA j. The

vector Mi includes a set of individual characteristics: age, gender, level of education and

occupation type,15 as well as whether the individual is of Mexican ethnicity and a migrant,

and whether the immigration took place within the relevant study period (2000 to 2012).

A common problem in hedonic income regressions is the selection bias stemming from

more highly educated individuals choosing locations with higher returns to schooling,

potentially causing a problematic upward bias in the returns to education. To address

this issue, I apply the semi-parametric control mechanism suggested by Dahl (2002), where

P (Dr,MI|EDU) measures the percentage of Mexican immigrantsMI with education level

EDU residing in region Dr.
16 Results for the hedonic income regression are presented in

Appendix C.2.

15. Mexican occupation codes are converted into two-digit ISCO-88 occupation codes based on the cross-
walk provided by Mahutga et al. (2018, Appendix D) to match occupations between the MMP and the
ACS.

16. The control mechanism requires observations for each combination of education level and destination
to function correctly. This requirement is fulfilled at the Census Region level. Regions are defined as: New
England (CT, ME, MA, NH, RI, VT), Middle Atlantic (NJ, NY, PA), East North Central (IL, IN, MI,
OH, WI), West North Central (IA, KS, MN, MO, NE, SD, ND), South Atlantic (DE, DC, FL, GA, MD,
NC, SC, VA, WV), East South Central (AL, KY, MS, TN), West South Central (AR, LA, OK, TX, WY),
Mountain (AZ, CO, ID, MT, MV, NM, UT), and Pacific (AK, CA, HI, OR, WA).
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4.4.4 Estimation of the Second Stage

Having obtained estimates of the composite utility measures θj from the first-stage regres-

sion, evaluation of the second stage

Θj ≡ −βH ln ρj + βz lnZj + ζj (4.4 revsited)

requires information on location-specific housing prices ρj . Following Sinha et al. (2018),

the natural log of annual housing costs Phj of household h in MSA j is regressed on

information on property ownership Oh and a vector of dwelling characteristics Dh using

data from the ACS.

lnPhj = ln ρj + λjOh + γjDh + ςHij . (4.11)

Annual housing costs are computed as the sum of annual rent or mortgage payments,

property taxes and insurance, and utility costs, such as water and gas. The dummy Oh

indicates whether the property is owned or rented. After netting out dwelling attributes,

the parameter ρj captures the effective housing price index in location j. ln ρj is estimated

as the MSA-specific constants from the hedonic housing price regression in (4.11).

Complications in the estimation of Equation 4.4 could further arise from endogeneity

in ρj and Zj caused by people’s sorting into locations with preferential amenities. Housing

prices and amenities are likely correlated with unobserved attributes in ζj leading to biased

OLS estimates. The problem of endogeneity in ρj can be overcome by moving βH ˆln ρj to

the left-hand side of the equation. Equation 4.4 then becomes:

Θj − βH ˆln ρj = βz lnZj + ζij (4.12)

By means of the Cobb-Douglas properties of the utility function, the coefficient βH can be

approximated by multiplying the income coefficient from the first-stage regression with the

median share of income spent on housing in the ACS sample used to estimate Equation

4.11.

The remaining issue of endogeneity in Zj is addressed by testing the sensitivity of

estimates to inclusion of additional controls and the implementation of an IV approach
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after Bayer and Timmins (2007). The instrument is constructed as follows:

IVj =
1

N

N∑
i=1

P̃ij =
1

N

N∑
i=1

Ṽij
J∑
k=1

ṼiJ

, 17 (4.13)

where P̃ij captures the proximity of substitute locations determined by the utility space.

Ṽij is the utility an individual receives from location j based on exogenous amenities.

Ṽij is retrieved by, first, estimating Equation 4.12 using simple OLS, which yields biased

estimates of the indirect utility. Second, coefficient estimates from the first- and second-

stage regressions are used to calculate each migrant’s indirect utility Ṽij at location j,

based on only exogenous amenities.18 The predicted share of similar locations based on

exogenous location attributes will provide a good approximation of agglomeration effects

if the impact of location size on utility is not large compared to that of the exogenous

amenities.

4.5 Choice Setting and Data

The primary data on migration movements are again taken from the MMP, the same

migration survey as in Chapter 3. Different from the previous chapter, the analysis is

limited to migration movements which took place between 2000 and 2012. Lack of MSA-

specific individual-level earnings and property prices data, required for the estimation of

Îij and ρj , implies that information on earlier migration movements is lost.19 The reduced

sample consists of 1,128 individuals from 59 different municipalities and a total of 1,254

observed migration movements. Again, alternative destinations in the location choice of

migrants are defined as contiguous U.S. MSAs, excluding the state of Alaska. Due to

unavailability of price data for some locations, the final set of alternatives consists of 255

MSAs. The total number of observations after drawing a random subset of alternative

17. Different from Bayer and Timmins (2007) the Ṽij ’s in the numerator and denominator are not ex-
ponentiated due to large values prohibiting the application of an exponential transformation. Alternative
methods of normalisation were exploited, but differences compared to results based on absolutes were
considered negligible.

18. Following Bayer and Timmins (2007), besides population measures also the parameters sectoral earn-
ings are excluded from the construction of the instrument, as they likely do not fulfil the exogeneity
criterion.

19. Although the loss of earlier migration movements considerably reduces the sample size, the restric-
tion implies that estimated climate valuations reflect today’s preferences. Changes in the access to air
conditioning as well as to protective clothing during the last two decades may likely have altered climate
preferences in the recent past, likely changing climate valuations.
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destinations is 94,050.

Mexican Migration Data

Table 4.1: Sample Summary Statistics Mexican Migrants

U.S. Total West Midwest South North East

variables mean sd mean sd mean sd mean sd mean sd

age 30.79 9.07 30.85 8.75 30.61 9.30 31.17 9.75 29.68 7.90
duration 31.13 32.77 36.47 38.33 30.06 26.34 23.07 23.40 25.50 33.37
migration distance 3,152.1 989.1 3,428.9 984.9 3,273.6 227.6 2,198.8 952.9 4,108.5 188.9
migration time 39.30 42.43 38.00 34.15 35.12 30.13 38.08 27.09 69.00 113.43

Î 3,341.0 2,386.9 3,212.5 2,259.5 3,326.6 2,316.3 3,764.5 2,761.2 2,806.3 1,870.3
male 90.43 89.10 90.51 91.12 97.22
married 53.72 51.63 52.19 57.92 59.72
parent 3.55 2.49 0.73 5.79 13.89
legal migration 11.08 10.52 8.03 14.67 13.89
college graduate 20.66 20.08 20.07 22.39 20.83
permanent 78.19 83.37 82.12 69.11 58.33
network 38.48 37.67 37.96 38.22 47.22
trip 1 58.95 59.85 62.77 56.76 45.83
trip 2-5 35.46 34.99 33.58 37.07 40.28
trip 6-10 3.55 3.44 2.55 4.63 4.17
trip ≥ 10 1.24 0.57 0.73 0.77 9.72
mean temperature
Mex

20.16 2.85

N 1,128 523 274 259 72
Frequency (%) 100 46.4 24.3 23.0 6.4

Notes: Sample statistics are based on working-age population during first year of migration from the Mexican
Migration Project Survey 161 restricted over the period 2000-2012.

As in Chapter 3, the analysis is restricted to prime-aged adults (16-75 years) particip-

ating in the labour force. Estimates of amenity values based on the two-stage model rely

on the capitalisation of amenities into incomes and housing prices.20 This approach may

not be appropriate for retirement migration, as this type of migrants do not draw their

income purely from wages earnings. As such, the estimated income coefficient might not

be representative for retired migrants leading to biased WTP-estimates. Individual-level

characteristics considered in the analysis are migrants’ age, the marital status, the edu-

cation level, the occupation, whether the migrant resided in the same location during a

previous trip, and finally whether the individual has relatives living in the MSA.21

Table 4.1 provides summary statistics for sample migrants. The minor differences in

the statistics compared with Table 3.1 in Chapter 3 are explained by the loss in observa-

tions prior to 2000. Interestingly, the average migration distance is longer for movements

20. The two-stage model explicitly controls for income, while housing prices are only captured implicitly
through the implemented price correction in the second-stage regression (see Equation 4.12).

21. Information on migrants’ marital status and occupation are considered for the estimation of potential
earnings Îij .
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starting in 2000. While age and gender composition of the sample remain almost un-

changed, a larger share of migrants is married with completed college education at the

time of emigration. Moreover, the share of legal migration crossing is lower. Interestingly,

Mexicans that migrated between 2000 and 2012 are more likely to migrate to the U.S.

for more than one year. Furthermore, fewer migrants benefit from a personal network

in the U.S. Studying regional differences across census regions reveals that migration to

the South and North Eastern census regions tends to be less permanent with a higher

prevalence of repeated circular migration. Moreover, the share of legal migrants is larger

compared to other census regions.

Mexican temperature normals are relatively warm throughout the year, with annual

mean temperatures of 20.16°C (sd of 2.85°C). I exploit information on Mexican temper-

atures to differentiate between migrants originating in municipalities with warmer and

colder temperatures than the historical median.

MSA Location-Specific Data and Variables

Non-climate control variables included in the second-stage regressions are summarised in

Table 4.2. Ideally, one would like to include population size as an explanatory variable in

the second-stage regression to capture benefits that come along with agglomeration effects

of large cities. However, measures of population size should be used with caution, due

to the simultaneity problem discussed earlier. Alternatively, studies have suggested using

population density or land area to control for agglomeration effects (Sinha et al. 2018). I

examine the sensitivity of estimates to the inclusion of the alternative population meas-

ures. The model further includes hourly wages earned in business service, construction

and production occupations, and the violent crime rate.22 Additional amenities included

in the second stage are information on city scores from the Places Rated Almanac; Mil-

lennium Edition (Savageau and D’Agostino 2000) on health, transportation, education,

arts and recreational facilities. Lastly, I control for elevation and distance to the nearest

coast.23

22. The economic and demographic information was collected from different official U.S. statistical offices.
Data on hourly wages are retrieved from the U.S. Bureau of Labour Statistics (U.S. Bureau of Labor
Statistics 2014). Information on the population size was collected from the U.S. Census (Manson et
al. 2011). Crime rates stem from the United States Department of Justice, Federal Bureau of Investigation
(2019, hereafter FBI).

23. Both variables are generated by querying the Google Elevation and Distance Matrix API.



117

Table 4.2: Summary Statistics on Location Specific Characteristics by U.S.
Census Region

U.S. Total West Midwest South North East

variables mean sd mean sd mean sd mean sd mean sd

population 873.49 1,300.75 1,042.56 1,538.59 695.14 1,235.98 739.62 920.97 1,276.08 1,739.23
(in 1,000s)
population 190.75 340.19 128.04 180.16 122.46 95.28 124.08 91.99 526.89 711.72
density
area 6.32 8.74 12.47 17.37 4.94 4.58 5.33 3.46 3.81 3.02
(km2)
hourly wage 1,644.4 308.0 1,792.5 263.3 1,837.8 220.5 1,359.4 131.4 1,842.8 259.5
business
hourly wage 1,333.2 171.3 1,321.1 138.7 1,434.1 198.7 1,261.9 157.6 1,356.8 91.9
construction
hourly wage 2,268.8 257.0 2,398.1 261.3 2,210.8 187.2 2,188.7 207.2 2,400.9 338.5
production
violent crime 3,939.2 1,403.6 4,109.1 1,037.1 3,994.9 1,494.0 4,347.8 1,338.2 2,709.7 1,071.0
(per 1000)
health 1,250.7 1,081.7 1,023.4 1,022.3 1,373.8 1,005.8 1,080.5 803.2 1,718.2 1,589.6
score
transportation 4,295.4 1,476.7 4,656.2 1,593.0 4,470.7 1,269.5 3,963.1 1,437.4 4,390.8 1,621.2
score
education 2,827.75 322.04 2,669.69 332.53 2,799.48 241.82 2,813.80 303.84 3,085.73 321.25
score
arts 3,469.9 5,044.3 3,593.1 4,065.8 3,327.3 3,813.6 2,650.7 3,029.3 5,483.8 9,373.8
score
recreational 1,912.1 834.9 2,489.7 1,019.4 1,750.4 481.6 1,792.4 827.8 1,788.3 799.0
score
distance to 209.21 273.68 353.06 450.27 211.73 207.51 201.24 216.37 59.64 64.20
coast (km)
elevation 302.23 384.75 737.31 640.60 266.31 65.30 166.70 234.27 180.92 159.99
(m)

N 255 48 66 99 42
Frequency (%) 100 18.8 25.9 38.8 16.4

Notes: Sample statistics are based 255 Metropolitan Statistical Areas in the year 2010.

Climate Data and Variables

Table 4.3: Summary Statistics Climate variables

Total West Midwest South North East

variables mean sd mean sd mean sd mean sd mean sd

average temperature (°C) 13.21 4.73 11.82 3.61 9.49 2.08 17.86 3.25 9.71 1.54
max temperature (°C) 19.27 4.89 18.75 4.06 15.14 2.18 23.98 3.02 15.26 1.51
min temperature (°C) 7.19 4.73 4.92 3.60 3.88 2.06 11.78 3.58 4.18 1.67
summer temperature (Jun-Aug) 0.86 3.43 -2.27 3.52 -0.44 1.59 4.15 1.84 -1.29 1.24
winter temperature (Dec-Feb) -14.07 6.75 -12.90 4.79 -20.79 2.98 -8.15 4.82 -18.82 2.08
precipitation (mm) 84.45 27.41 55.59 32.37 75.43 10.09 100.49 24.39 93.81 7.22
cloud cover (%) 60.00 7.19 53.07 10.25 64.56 3.45 57.91 3.77 65.68 3.67
vapour pressure (hPa) 121.88 39.39 87.95 20.31 101.70 11.56 161.28 33.02 99.49 7.73

N 255 48 66 99 42
Frequency (%) 100 18.8 25.9 38.8 16.4

Notes: All climate variables are calculated 30-year averages prior to the migration year.
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Table 4.3 summarises the climate variables included in the empirical analysis. As

in Chapter 3, climate variables are constructed as thirty-year arithmetic averages over

MSA polygons based on interpolated weather data taken from the CRU TS4.01 dataset

provided by the CRU at the University of East Anglia (CRU 2017). Considering the

evidence of nonlinearity in climate preferences in Chapter 3, the empirical analysis tests

for heterogeneous preferences using both seasonal climate specifications, such as summer

and winter temperatures, and annual means, maxima and minima.24 Besides temperature

measures, the regressions include measures for mean total monthly precipitation, humidity

(vapour pressure) and daily sunshine exposure (percentage rate of cloud cover).

4.6 Results from the Two-Stage Sorting Model

The Baseline: Testing for Endogeneity

Table 4.4 presents the posterior means and distributions of the coefficient estimates for the

baseline first-stage mixed logit model.25 In a classical sense, the results can be interpreted

as the coefficient estimate and the standard deviation. I performed 40,000 iterations of the

Gibbs Sampling, with the first 30,000 considered as a burn-in. The posterior means are

based on the next 10,000 draws, of which every tenth draw is retained. The distribution

of random coefficients is simulated using 10,000 draws from N(β̄,Ω) per individual. The

simulated log-likelihood value is calculated based on 5,000 draws per migration movement.

Convergence was confirmed via visual inspection of trace and density plots. Running the

procedure using three chains with different starting values yields very similar posterior

means.

Table 4.4 reports the mean and the standard deviation of the distribution of the random

variables as well as the correlation between coefficient estimates for summer and winter

temperatures. The first-stage model includes fixed parameters for the natural log of income

and migration distance as well as MSA and year fixed effects. Throughout all models,

the base location is defined as Chicago (IL) in 2010. Random parameters in the model

24. Due to the high natural correlation in climate, issues of collinearity in parameters render it impossible
to include all temperature variables simultaneously in the regression. Consequently, alternative model
specifications are evaluated, including different sets of temperature variables.

25. Note that the concept of null-hypothesis significance testing is not appropriate in a Bayesian context.
Therefore, to be consistent in the presentation of results across the two-stages, significance stars are not
provided throughout the chapter.
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Table 4.4: First Stage: Bayesian Mixed Logit Model

Model (1)

Hierarchical Bayes

1st Stage
Coef Std Ω

(Std Err)
fixed coefficients

ln Î 1.142
(0.359)

ln migration -6.645
distance (0.724)

random coefficients
same location 15.95 99.15

previous migration (2.016) (29.18)

relative 10.70 60.70
same MSA (1.321) (17.02)

summer 2.150 3.280
temperature (0.484) (1.77)

winter -7.030 5.690
temperature (0.45) (1.825)

precipitation -0.610 0.367
(0.089) (0.08)

vapour 2.670 16.48
pressure (1.003) (5.589)

cloud 1.918 2.044
cover (0.482) (0.871)

correlation: winter 0.4384
summer temperature

MSA FE ×
year FE ×

simulated LL -1910.9
N 94,050
cases 1,254

Notes: The table presents the posterior means and distributions of the coefficient estimates,
the mean and the standard deviation of the distribution of the random variables and the
correlation between coefficient estimates for summer and winter temperatures. To improve
convergence, climate variables have been rescaled in units of 10. Model is evaluated using
40,000 iterations of the Gibbs Sampling, with the first 30,000 considered as a burn-in. The
posterior means are based on the next 10,000 draws, of which every tenth draw is retained.
The distribution of random coefficients is simulated using 10,000 draws from N(β̄,Ω) per in-
dividual. The simulated log-likelihood value is calculated based on 5,000 draws per migration
movement.

are: mean summer and winter temperature normals, average monthly precipitation, mean

vapour pressure, average number of cloud days per month, and two dummies for the
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presence of networks (same location and relatives).26 The two variables indicate repeated

migration movements to the same destination and the presence of any relatives or friends at

a destination.27 In the first stage, coefficients should be interpreted as relative changes in

the attractiveness of a location after controlling for the location-specific composite utility,

captured by the MSA fixed effects.

Studying results from the first stage, I find parameter estimates for income and migra-

tion distance to have the expected sign, with higher earnings increasing the attractiveness

of a location, while moving farther away from home reduces the likelihood of settlement.

Turning to the random coefficients, the presence of relatives in the MSA or previous mi-

gration trips to the same location are important drivers of migrants’ location choices.

Concerning climate, migrants are attracted to locations with on average warmer summers

and colder winters. This result differs from findings in Chapter 3, where I found the coef-

ficient for winter temperatures to be positively related to the probability of settlement. A

further difference to previous results is the positive coefficient for vapour pressure. The

contrasting results may stem from the difference in the model specification, with the ap-

proach taken here not only allowing for random variation in coefficients, but also explicitly

modelling correlations in the random variation across climate regressors. Given the nat-

ural correlation in climate variables, the weight a person gives to temperatures in the

migration decision is likely to be correlated with preferences for humidity and sunshine.

Accounting for such correlations may considerably alter predicted preferences. Therefore,

observed differences between Chapter 3 and the baseline results indicate the presence of

significant individual taste variation in climate preferences.

Unobserved individual heterogeneity in the first stage is captured through the variance-

covariance matrix Ω. Appendix C.1 provides the variance-covariance matrix for the

baseline model. Elements along the diagonal of the matrix indicate unexplained vari-

ation in the corresponding amenity’s influence on choice probabilities, while off-diagonal

(covariance) elements explain how sensitive the tastes for attributes are to changes in other

amenities (i.e. changes in preferences for summer temperatures in response to changes in

vapour pressure). The variance-covariance estimates reveal several significant elements,

26. To improve convergence, climate variables have been rescaled in units of 10.
27. The approach taken here differs from Chapter 3, as the mixed logit specification allows for the

exploitation of individual-level information on the presence of networks provided by the MMP.
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particularly with respect to networks and the main variables of interest, summer and

winter temperature. Diagonal elements for summer temperature and vapour pressure

show large unexplained heterogeneity in the weight given to both amenities in individuals’

location decisions. Unsurprisingly, coefficients for temperature and vapour pressure have

a negative covariance. Humidity directly affects human thermal comfort by reducing the

ability of the body to cope with external heat stress. Therefore, the stronger an indi-

vidual’s taste for warmer temperatures, the greater the disutility the person experiences

from rising humidity levels.

Moreover, I observe a large heterogeneity in the weight given to networks in the choice

process. An intriguing finding is the positive covariance between the presence of network

ties and the coefficients for all climate amenities except vapour pressure. This suggests

that stronger networks ties increase the relative weight given to summer and winter tem-

peratures and precipitation. At the same time, greater weight given to the presence of

networks reduces the coefficient for vapour pressure. These observations emphasise the

existence of significant individual taste variation in climate preferences, which remains

unaccounted for in the standard logit.

Table 4.5 presents estimates for the second-stage. Besides climate variables, the regres-

sions include amenities listed in Table 4.2. Columns one to five present OLS estimates

with robust standard errors. In Models 2 to 5, I include additional region fixed effects

and test for agglomeration effects by adding alternative measures of population size to the

regression. Model 6 reports estimates using the IV estimation method outlined in Section

4.4.3. Before going into detail regarding the differences across models, it is important to

note that the interpretation of coefficients differs from the first-stage regression. In the

second stage, coefficient estimates explain changes in the composite utility of a destination.

I find warmer summer temperatures reduce the composite utility of a destination,

while locations with warmer winter temperatures on average have a higher composite

utility. While the number of cloud days and vapour pressure are negatively related to

the composite utility of an MSA, precipitation has a small positive effect. Across the

different models, most of the coefficients for non-climate amenities are significant with the

expected sign. Exceptions are the coefficients for production wages, violent crimes and

for the arts and recreational-facilities scores. I estimate a negative impact of production
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Table 4.5: Second Stage: Specification Tests OLS versus IV

(1) (2) (3) (4) (5) (6)

OLS region FE
region &
ln pop

region &
pop dens

region &
ln area

region &
IV

2nd Stage Coef Coef Coef Coef Coef Coef
(Std Err) (Std Err) (Std Err) (Std Err) (Std Err) (Std Err)

summer -5.898 -4.914 -5.736 -5.267 -6.902 -4.721
temperature (0.088) (0.119) (0.122) (0.124) (0.138) (0.121)

winter 7.557 7.515 6.592 7.710 7.952 7.648
temperature (0.068) (0.114) (0.108) (0.114) (0.116) (0.114)

precipitation 0.190 0.120 0.156 0.113 0.131 0.147
(0.010) (0.012) (0.011) (0.012) (0.011) (0.011)

cloud cover -1.045 -0.938 0.257 -0.884 -0.244 -1.419
(0.140) (0.192) (0.184) (0.192) (0.188) (0.191)

vapour pressure -3.240 -3.257 -3.497 -3.270 -3.451 -3.159
(0.038) (0.042) (0.040) (0.042) (0.042) (0.042)

ln hourly wage 4.775 3.195 0.619 3.105 3.176 3.363
business (0.544) (0.581) (0.585) (0.580) (0.582) (0.580)

ln hourly wage -6.614 -2.183 -2.056 -2.926 -2.693 -2.661
production (0.436) (0.448) (0.446) (0.448) (0.442) (0.450)

ln hourly wage 24.07 25.92 24.20 27.45 26.87 26.13
construction (0.472) (0.591) (0.591) (0.571) (0.594) (0.594)

violent crime 0.097 0.145 0.105 0.150 0.118 0.143
rate (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

health score 0.104 0.082 0.037 0.078 0.062 0.079
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

transport score 0.068 0.061 0.050 0.058 0.052 0.059
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

education score 0.002 0.001 0.001 0.001 0.001 0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

the arts score -0.007 -0.001 -0.001 0.004 0.002 -0.001
(0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

recreational -0.100 -0.112 -0.134 -0.117 -0.136 -0.108
facilities score (0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

distance to -0.002 0.000 0.000 0.000 0.000 -0.001
coast (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

elevation -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ln population 1.015
(0.028)

population density -0.001
(0.000)

land area 0.960
(0.022)

region FE × × × × ×
IV ×

adjusted R2 0.568 0.603 0.609 0.604 0.609 0.604
N 94,050 94,050 94,050 94,050 94,050 94,050

Notes: Robust standard errors presented in parentheses. Models 1 to 5 are estimated using Ordinary Least Squares.
Model 6 is evaluated using the Instrumental Variableestimation method outlined in Section 4.4.3. Models 2 to 6
include region fixed effects. Regions are defined as: New England (CT, ME, MA, NH, RI, VT), Middle Atlantic
(NJ, NY, PA), East North Central (IL, IN, MI, OH, WI), West North Central (IA, KS, MN, MO, NE, SD, ND),
South Atlantic (DE, DC, FL, GA, MD, NC, SC, VA, WV), East South Central (AL, KY, MS, TN), West South
Central (AR, LA, OK, TX, WY), Mountain (AZ, CO, ID, MT, MV, NM, UT), and Pacific (AK, CA, HI, OR, WA).
Models 3 to 5 include alternative population controls as specified. Climate variables have been rescaled in units of
10.
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wages on the composite utility indicating that MSAs with a large production sector on

average have a lower living quality (measured in utility terms). The positive coefficient

for the violent crime rate is likely explained by the correlation between this type of crimes

and economic inequality. Research has shown that inequality, which generally rises with

higher living standards, increases violent crime rates, with social deprivation increasing the

propensity to engage in violence (see for example Kelly 2000). The negative relationship

between arts and recreational-facilities scores and composite utility may be explained by

local authorities in less attractive locations investing more in local facilities to improve

the living quality of the MSA.

Ideally, one would like to control for the location’s population size in the second stage,

as the provision and quality of services and amenities changes as cities grow (agglomeration

effects). However, population size itself is an outcome variable of a sorting process among

locations. Therefore, adding measures of population size to the model may introduce an

endogeneity bias to the OLS regression. Including the natural log of population in Model

3 results in a significant drop in the coefficient for business wages indicating that the

estimates suffer from an endogeneity bias. As an alternative to population size, studies

have suggested to use population density and land area, which might be less correlated

with the error term since both are only indirectly an outcome of the sorting process (Sinha

et al. 2018). Models 4 and 5 yield more similar coefficient estimates for business wages.

Comparing estimates based on the IV method (Model 6) and the simple OLS estimates

(Model 1), I observe small differences in the estimated coefficients for both climate and

non-climate amenities, with some suggestive evidence of a bias in OLS estimates.

Except for Model 3, differences across the alternative models (2-6) are small. However,

small changes in coefficients can cause considerable differences in the estimates of WTP for

amenities. Considering the econometric rationale for the IV approach and the similarity

of results, the remainder of the analysis will be evaluated using IV estimation methods

as in Model 6. For completeness, alternative estimates using simple OLS are provided in

Appendix C.3.
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Table 4.6: First Stage: Alternative Mixed Logit Specification

Base Model (7) (8) (9) (10) (11)

region &
IV

RD: Î
linear

mig distance
mig distance

married
no mig

distance
RD: ln mig

distance

1st Stage Coef Std Ω Coef Std Ω Coef Std Ω Coef Std Ω Coef Std Ω Coef Std Ω
(Std Err) (Std Err) (Std Err) (Std Err) (Std Err) (Std Err)

ln Î 1.142 1.622 1.866 1.258 1.861 -0.957 -0.016
(0.359) (0.603) (0.55) (0.722) (0.677) (0.612) (0.473)

ln migration -6.645 -7.294 -7.760 -8.499 4.114
distance (0.724) (0.761) (0.627) (0.507) (1.634)

migration -1.476
distance (0.202)

ln migration -0.031
distance
×married

(0.328)

same location 15.95 99.15 22.20 264.3 29.95 514.5 21.52 241.0 82.27 5122.6 20.40 196.7
previous
migration

(2.016) (29.18) (1.901) (50.67) (2.041) (77.04) (1.761) (47.32) (18.45) (2256.0) (2.733) (70.84)

relative 10.70 60.70 6.577 15.65 8.819 38.16 10.28 56.27 43.29 666.8 8.304 29.98
same MSA (1.321) (17.02) (0.561) (6.647) (0.596) (8.48) (1.011) (21.04) (6.5) (276.1) (0.788) (8.234)

summer 2.150 3.280 -0.002 2.122 1.323 2.574 2.189 5.416 2.159 71.64 0.335 4.465
temperature (0.484) (1.77) (0.271) (0.761) (0.159) (0.832) (0.526) (0.906) (1.046) (29.8) (0.338) (1.296)

winter -7.030 5.690 -5.628 1.991 -6.458 3.137 -9.491 4.452 -6.476 34.02 -6.225 5.350
temperature (0.45) (1.825) (0.199) (0.945) (0.404) (1.11) (0.469) (1.789) (0.662) (12.73) (0.354) (1.769)

precipitation -0.610 0.367 -0.895 0.330 -0.753 0.273 -0.571 0.349 -0.657 0.451 -0.209 0.353
(0.089) (0.081) (0.137) (0.075) (0.061) (0.049) (0.082) (0.079) (0.14) (0.119) (0.077) (0.071)

vapour 2.670 16.48 0.543 1.708 3.336 7.149 2.314 12.84 2.630 14.19 0.079 4.144
pressure (1.003) (5.589) (0.254) (0.879) (0.571) (3.34) (0.705) (4.297) (0.712) (4.931) (0.45) (1.236)

cloud 1.918 2.044 2.540 1.480 1.075 1.354 0.613 2.734 1.724 7.501 1.620 3.884
cover (0.482) (0.871) (0.399) (0.539) (0.346) (0.499) (0.211) (0.754) (0.211) (3.359) (0.429) (1.195)

correlation: 0.438 0.006 0.396 0.241 -0.921 0.245
temperature

MSA FE × × × × × ×
year FE × × × × × ×

simulation LL -1910.9 -1908.6 -1965.7 -1905.8 -2033.2 -1902.6
N 94,050 94,050 94,050 94,050 94,050 94,050
cases 1,254 1,254 1,254 1,254 1,254 1,254

Notes: The table presents the posterior means and distributions of the coefficient estimates, the mean and the
standard deviation of the distribution of the random variables and the correlation between coefficient estimates for
summer and winter temperatures. To improve convergence, climate variables have been rescaled in units of 10.

Alternative Specifications of the First-Stage Mixed Logit Model

Next, I examine the sensitivity of the baseline climate estimates to alternative specific-

ations of the first-stage mixed logit model (Tables 4.6 and 4.7). Allowing for random

variation in Î changes climate coefficients in both the first and second stage of Model

7. The coefficient for summer temperatures shrinks considerably in the first stage of the

model and loses its significance. Moreover, I find summer temperatures to explain less of
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Table 4.7: Second Stage: Alternative Mixed Logit Specification

Base Model (7) (8) (9) (10) (11)

region &
IV

RD: Î
linear

mig distance
mig distance

married
no mig

distance
RD: ln mig

distance

2nd Stage Coef Coef Coef Coef Coef Coef
(Std Err) (Std Err) (Std Err) (Std Err) (Std Err) (Std Err)

summer -5.898 -4.159 -3.357 -5.911 0.866 -2.267
temperature (0.088) (0.094) (0.074) (0.098) (0.108) (0.087)

winter 7.557 8.653 7.359 10.73 8.504 9.161
temperature (0.068) (0.072) (0.052) (0.074) (0.075) (0.072)

precipitation 0.190 0.438 0.370 0.210 0.238 0.295
(0.010) (0.009) (0.008) (0.009) (0.012) (0.008)

cloud -1.045 -4.260 -4.128 -4.662 -7.755 -6.009
cover (0.140) (0.151) (0.107) (0.133) (0.147) (0.128)

vapour -3.240 -3.063 -1.885 -1.215 -1.643 -2.679
(0.038) (0.044) (0.030) (0.037) (0.048) (0.038)

ln hourly wage 4.775 -4.165 -0.580 5.576 5.693 -6.196
business (0.544) (0.614) (0.474) (0.572) (0.608) (0.526)

ln hourly wage -6.614 -0.347 -14.72 -4.108 -4.139 -3.095
production (0.436) (0.478) (0.460) (0.421) (0.483) (0.434)

ln hourly wage 24.07 24.19 26.99 14.78 6.897 28.792
construction (0.472) (0.628) (0.400) (0.519) (0.557) (0.486)

violent crime 0.097 0.072 0.024 0.041 0.224 -0.160
rate (0.005) (0.005) (0.004) (0.007) (0.006) (0.006)

health score 0.104 0.076 0.059 0.084 0.070 0.104
(0.003) (0.003) (0.002) (0.003) (0.003) (0.003)

transport 0.068 0.005 0.032 0.029 0.028 0.055
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

education 0.002 0.001 0.002 0.001 0.001 0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

the arts -0.007 0.010 0.001 0.008 0.008 -0.005
(0.000) (0.001) (0.000) (0.001) (0.001) (0.000)

recreational -0.100 -0.044 -0.014 0.012 0.030 -0.026
facilities (0.002) (0.003) (0.002) (0.002) (0.003) (0.002)

distance to -0.002 0.001 -0.001 -0.001 0.001 -0.002
coast (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

elevation -0.001 -0.004 -0.001 -0.003 -0.003 -0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

region FE × × × × × ×

adjusted R2 0.568 0.556 0.576 0.611 0.498 0.576
N 94,050 94,050 94,050 94,050 94,050 94,050

Notes: Robust standard errors presented in parentheses. Regressions include additional region fixed
effects. All regressions are estimated using the Instrumental Variable estimation method outlined
in Section 4.4.3. Climate variables have been rescaled in units of 10.

the observed differences in mean utility across locations, while winter temperature have a

stronger effect.

Misspecification of migration costs causes notable changes in the first-stage estimates.

Applying a linear specification (Model 8), dropping costs all together (Model 10) or al-
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lowing random variation in the coefficient for migration distance (Model 11) turns the

coefficient for income insignificant. Introducing random variation in the coefficient for mi-

gration costs causes the effect of summer temperatures and vapour pressure to disappear.

This change is explained by the natural correlation of the instrument for migration costs

(distance to the origin) with distance from the equator, which itself is a strong predictor

of the local climate. Therefore, allowing for random variation in the coefficient for migra-

tion distance will remove some of the individual choice variation attributed to variation in

local temperatures in the base model. Since migrants, on average, prefer more southern

locations, the correlation between migration distance and winter temperatures is weaker.

This explains why the coefficient for winter temperatures remains largely unaffected. In

Model 9, I test for differences in the impact of migration cost by marital status. However,

the interaction term is small and insignificant.

These results highlight the importance of accounting for migration costs in the es-

timation of climate valuations, as misspecification not only affects climate variables, but

also the precision of the income estimate. Precise estimation of the income coefficient

is essential for accurate capitalisation of amenity estimates for the calculation of WTP

measures.

Alternative Temperature Measures

In Tables 4.8 and 4.9 I examine differences across alternative temperature specifications.

First, I test the sensitivity of temperature estimates to the omission of non-temperature

climate variables. Dropping precipitation, vapour pressure and cloud cover variables from

the regression reduces the size of both temperature coefficients and increases the coefficient

for income in the first stage. In the second stage, the coefficient for summer temperat-

ure changes its sign from negative to positive. As noted earlier, in the baseline mixed

logit model the coefficients for seasonal temperatures and vapour pressure are negatively

correlated (see Appendix C.1). Moreover, the coefficients for cloud cover and winter tem-

peratures have a large positive covariance. Both cloud cover (i.e. sunshine exposure) and

the exposure to humidity are known to directly affect well-being. Therefore, failure to

control for other climate variables in the model results in biased temperature coefficients.

Restricting temperature tastes to be constant across seasons (Model 13) increases the
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Table 4.8: First Stage: Alternative Climate Specifications

Base Model (12) (13) (14) (15)

region &
IV

no alt
climate

avg tmp avg tmp2 max min
tmp

1st Stage Coef Std Ω Coef Std Ω Coef Std Ω Coef Std Ω Coef Std Ω
(Std Err) (Std Err) (Std Err) (Std Err) (Std Err)

ln Î 1.142 2.297 1.550 2.096 0.716
(0.359) (1.017) (0.469) (0.664) (0.498)

ln migration -6.645 -4.980 -7.725 -8.127 -6.452
distance (0.724) (0.496) (0.417) (0.77) (0.758)

same location 15.95 99.15 29.18 462.3 29.33 454.1 34.71 650.3 20.02 185.4
previous mig (2.016) (29.18) (5.422) (165.3) (2.934) (85.67) (6.6) (343.4) (2.97) (72.05)

relative 10.70 60.70 9.035 52.93 14.36 162.90 18.61 208.2 11.17 72.76
same MSA (1.321) (17.02) (1.193) (20.71) (2.262) (70.86) (2.034) (51.9) (1.036) (17.54)

summer 2.150 3.280 1.503 1.805
temperature (0.484) (1.770) (0.640) (1.053)

winter -7.030 5.690 -6.566 1.238
temperature (0.45) (1.825) (0.297) (0.436)

average -8.646 12.11 7.565 16.71
temperature (0.602) (4.916) (0.561) (5.941)

average -1.102 0.148
temperature2 (0.026) (0.016)

maximum -8.752 4.040
temperature (0.428) (1.984)

minimum -0.126 3.949
temperature (0.445) (2.234)

precipitation -0.610 0.367 -1.023 0.296 -0.270 0.314 -0.609 0.393
(0.089) (0.081) (0.095) (0.061) (0.095) (0.104) (0.075) (0.075)

cloud 2.670 16.48 3.569 11.46 9.462 8.141 3.302 11.46
cover (1.003) (5.589) (0.518) (3.24) (0.433) (4.078) (0.421) (3.436)

vapour 1.918 2.044 2.518 1.035 -1.316 2.177 1.473 1.328
pressure (0.482) (0.871) (0.293) (0.273) (0.228) (0.836) (0.367) (0.385)

correlation 0.4384 0.5161 -0.0269 0.1044
temperature

MSA FE × × × × ×
year FE × × × × ×

simulated LL -1910.9 -1901.8 -1900.1 -1941.1 -1902
N 94,050 94,050 94,050 94,050 94,050
cases 1,254 1,254 1,254 1,254 1,254

Notes: The table presents the posterior means and distributions of the coefficient estimates, the mean and
the standard deviation of the distribution of the random variables and the correlation between coefficient es-
timates for summer and winter temperatures. To improve convergence, climate variables have been rescaled
in units of 10.

coefficients for the non-temperature climate controls across the two stages. Results from

the first stage depict a large unexplained variation in the coefficient for mean temperatures.

Alternatively, Model 14 tests for nonlinearity in mean temperatures. In line with findings

from Chapter 3, the estimates indicate a concave relationship between mean temperatures

and the probability of settlement. However, composite utility grows at an increasing rate
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with rising mean temperatures. Lastly, using annual means of daily extreme temperatures

yields a negative effect of average daily maximum and minimum temperatures on the

location choice and a positive effect on the composite utility. However, the coefficient for

income in Model 15 is insignificant. Therefore, estimates of the MWTP for changes in

daily minimum and maximum temperatures should be considered with caution.

Overall, the results demonstrate the importance of accounting for nonlinearity in tem-

perature preferences across seasons and daily peak temperatures, which are masked using

annual means. Although Model 13 overall performs best among the different specifica-

tions, the remainder of the discussion will focus on the baseline model to allow comparison

of the results with other studies.

Heterogeneity in Temperature Valuations

Turning next to examining heterogeneity in climate valuations, Tables 4.10 and 4.11

present results including interaction terms with age, education and a control for origin

temperatures. In Model 16, I interact seasonal temperatures with a dummy indicating

whether a migrant is younger or older than 55 years at the time of emigration. Estimates

from the first stage suggest that older migrants have weaker preferences for temperatures

in the location choice. However, much of the variation in the tastes of older migrants

remains unexplained. Turning to the second stage, I find winter and summer temper-

atures to have a strong positive impact on the composite utility of older migrants that

significantly differs from the effect for younger migrants. The result suggests that tem-

peratures are more important for the overall well-being of older migrants. Unsurprisingly,

differentiating between migrants with and without college education (Model 17) reveals

that temperatures matter less in location choices and overall well-being of better educated

migrants.

Model 18 tests for clinal heterogeneity in temperature preferences. The model includes

an interaction term between both seasonal temperatures variables and a dummy indicat-

ing whether mean temperatures at the migrant’s origin municipality exceed the historical

Mexican median temperature (19.23°C). Studying results from the first stage, I find mi-

grants from warmer Mexican locations to give less weight to temperatures in the location

choice. This finding contradicts with results from Chapter 3, where I observed a stronger
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positive preference of migrants from warmer locations for summer temperatures.

The contrasting findings may be explained by the relatively large unexplained variation

in the temperature variables. Again, requiring preference to be constant across the popula-

tion may mask significant taste variation, an important driver of temperature preferences.

Concerning composite utility, I observe colder summer and warmer winter temperatures to

have a positive impact on the composite utility of migrants from colder Mexican regions.

In contrast, the composite utility of migrants from warmer origins decreases with lower

summer and winter temperatures. Altogether, results from Models 16 to 18 highlight dif-

ferences in temperature valuations across the life-cycle and the temperatures to which an

individual is accustomed.
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Table 4.9: Second Stage: Alternative Climate Specifications

Base Model (12) (13) (14) (15)

region &
IV

no alt
climate

avg tmp avg tmp2 max min
tmp

2nd Stage Coef Coef Coef Coef Coef
(Std Err) (Std Err) (Std Err) (Std Err) (Std Err)

summer -4.721 2.452
temperature (0.121) (0.108)

winter 7.648 7.398
temperature (0.114) (0.079)

average 7.939 11.24
temperature (0.116) (0.281)

average 0.294
temperature2 (0.010)

maximum 6.744
temperature (0.160)

minimum 1.094
temperature (0.171)

precipitation 0.147 0.808 0.091 0.296
(0.011) (0.010) (0.012) (0.010)

cloud -1.419 -5.618 -10.50 -0.765
cover (0.191) (0.143) (0.179) (0.164)

vapour -3.159 -3.612 -0.244 -2.447
pressure (0.042) (0.047) (0.041) (0.039)

ln hourly wage 3.363 -0.832 4.421 -1.847 -6.501
business (0.580) (0.619) (0.552) (0.590) (0.555)

ln hourly wage -2.661 1.326 -2.978 2.193 -6.148
production (0.450) (0.477) (0.424) (0.478) (0.479)

ln hourly wage 26.13 13.45 14.00 21.20 32.08
construction (0.594) (0.611) (0.580) (0.568) (0.512)

violent crime 0.143 0.034 0.026 0.112 0.168
rate (0.005) (0.006) (0.005) (0.007) (0.005)

health 0.079 0.075 -0.019 0.094 0.050
score (0.003) (0.003) (0.003) (0.003) (0.003)

transport 0.059 0.050 0.033 0.042 0.036
score (0.001) (0.001) (0.001) (0.001) (0.001)

education 0.002 0.002 0.003 0.001 0.002
score (0.000) (0.000) (0.000) (0.000) (0.000)

the arts -0.001 0.000 0.012 0.006 0.005
score (0.000) (0.000) (0.000) (0.000) (0.000)

recreational -0.108 0.024 0.050 -0.135 -0.069
facilities score (0.003) (0.002) (0.002) (0.003) (0.002)

distance to -0.001 0.000 -0.001 0.000 0.002
coast (0.000) (0.000) (0.000) (0.000) (0.000)

elevation -0.001 0.002 -0.001 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

region FE × × × × ×
IV × × × × ×

adjusted R2 0.604 0.545 0.605 0.606 0.560
N 94,050 94,050 94,050 94,050 94,050

Notes: Robust standard errors presented in parentheses. Regressions include ad-
ditional region fixed effects. All regressions are estimated using the Instrumental
Variable estimation method outlined in Section 4.4.3. Climate variables have been
rescaled in units of 10.
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Table 4.10: First Stage: Heterogeneous Climate Differences

Base Model (16) (17) (18)

region &
IV

age ≥ 55 education clinal

1st Stage Coef Std Ω Coef Std Ω Coef Std Ω Coef Std Ω
(Std Err) (Std Err) (Std Err) (Std Err)

ln Î 1.142 2.100 2.406 1.779
(0.359) (0.698) (0.834) (0.686)

ln migration -6.645 -8.460 -7.605 -8.198
distance (0.724) (0.674) (0.495) (0.61)

same location 15.95 99.15 35.63 761.89 15.72 100.53 30.27 540.86
previous migration (2.016) (29.18) (3.038) (137.64) (2.183) (37.28) (2.978) (117.32)

relative 10.70 60.70 9.886 43.59 11.92 97.26 9.903 50.17
same MSA (1.321) (17.02) (0.799) (7.992) (1.221) (28.76) (0.816) (9.87)

summer 2.150 3.280 5.418 2.897 2.589 5.200 1.727 2.144
temperature (0.484) (1.77) (0.308) (1.109) (0.31) (2.045) (0.223) (0.569)

winter -7.030 5.690 -5.601 3.327 -4.334 2.470 -3.922 3.346
temperature (0.45) (1.825) (0.385) (0.975) (0.396) (0.942) (0.363) (1.54)

age ≥ 55 -0.265 183.65
summer tmp (1.809) (33.75)

age ≥ 55 1.385 82.09
winter tmp (1.24) (16.07)

college graduate -0.147 2.119
summer tmp (0.316) (0.798)

college graduate 0.246 4.059
winter tmp (0.39) (1.939)

mex hot -1.942 2.169
summer tmp (0.275) (0.552)

mex hot 0.803 2.077
winter tmp (0.278) (1.024)

precipitation -0.610 0.367 -0.193 0.361 -0.868 0.323 -0.684 0.376
(0.089) (0.081) (0.095) (0.088) (0.123) (0.066) (0.09) (0.073)

vapour 2.670 16.48 -5.952 5.191 -1.167 2.105 -2.275 3.961
pressure (1.003) (5.589) (0.269) (1.941) (0.273) (1.278) (0.298) (1.709)

cloud cover 1.918 2.044 3.320 3.167 4.307 1.913 4.157 1.922
(0.482) (0.871) (0.279) (1.214) (0.581) (0.621) (0.294) (0.569)

MSA FE × × × ×
year FE × × × ×

simulated LL -1910.9 -1900.8 -1904.6 -1878.1
N 94,050 94,050 94,050 94,050
cases 1,254 1,254 1,254 1,254

Notes: The table presents the posterior means and distributions of the coefficient estimates,
the mean and the standard deviation of the distribution of the random variables and the cor-
relation between coefficient estimates for summer and winter temperatures. To improve con-
vergence, climate variables have been rescaled in units of 10.
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Table 4.11: Second Stage: Heterogeneous Climate Differences

Base Model (16) (17) (18)

region & IV age ≥ 55 education clinal

2nd Stage Coef Coef Coef Coef
(Std Err) (Std Err) (Std Err) (Std Err)

summer -4.721 -6.680 -3.654 -2.145
temperature (0.121) (0.153) (0.136) (0.258)

winter 7.648 5.117 9.071 31.37
temperature (0.114) (0.154) (0.135) (0.713)

age ≥ 55 11.80
summer temperature (1.150)

age ≥ 55 59.99
winter temperature (5.076)

college graduate 0.021
summer temperature (0.018)

college graduate -0.064
winter temperature (0.064)

mex hot 0.939
summer temperature (0.368)

mex hot -40.49
winter temperature (1.164)

precipitation 0.147 -0.085 0.623 0.353
(0.011) (0.011) (0.011) (0.011)

cloud -1.419 2.244 -7.298 -6.070
cover (0.191) (0.196) (0.181) (0.205)

vapour -3.159 -4.086 -4.430 -4.292
pressure (0.042) (0.044) (0.042) (0.046)

ln hourly wage 3.363 10.63 12.36 4.412
business (0.580) (0.614) (0.656) (0.650)

ln hourly wage -2.661 -5.149 -5.133 -2.087
production (0.450) (0.480) (0.489) (0.494)

ln hourly wage 26.13 16.82 11.34 18.04
construction (0.594) (0.626) (0.606) (0.634)

violent crime 0.143 0.150 0.054 0.152
rate (0.005) (0.005) (0.005) (0.006)

health 0.079 0.089 0.062 0.101
score (0.003) (0.003) (0.003) (0.003)

transport 0.059 0.038 0.063 0.055
score (0.001) (0.001) (0.001) (0.001)

education 0.002 0.001 0.000 0.001
score (0.000) (0.000) (0.000) (0.000)

the arts -0.001 0.001 0.007 0.003
score (0.000) (0.000) (0.001) (0.001)

recreational -0.108 0.015 0.007 -0.004
facilities score (0.003) (0.002) (0.002) (0.002)

distance to -0.001 0.000 0.001 0.000
coast (0.000) (0.000) (0.000) (0.000)

elevation -0.001 -0.003 -0.002 -0.001
(0.000) (0.000) (0.000) (0.000)

region FE × × × ×
IV × × × ×

adjusted R2 0.604 0.675 0.622 0.611
N 94,050 94,050 94,050 94,050

Notes: Robust standard errors presented in parentheses. Regressions include additional region fixed effects. All
regressions are estimated using the Instrumental Variable estimation method outlined in Section 4.4.3. Climate
variables have been rescaled in units of 10.
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4.7 The Marginal Willingness to Pay for Preferential Tem-

peratures

In this section, I measure the MWTP for preferential location amenities combining results

from the first- and second-stage regression. Following the approach by Sinha et al. (2018),

coefficients of amenity variables have been converted to the MWTP by dividing the mean

coefficient and the standard error from the first and second stage by the coefficient on

income from the mixed logit regression. The result is multiplied by the sample mean

predicted income to yield a monetary measure of the amenity value of a marginal change

in the amenity. Non-linear amenities have been evaluated at the population weighted

average.28

Endogeneity and the Marginal Willingness to Pay

As we can see from Table 4.12, estimates of the MWTP for a one-degree reduction in

summer temperatures across alternative specifications of the second-stage regression range

between US$371 and $686 per person per year.29 Estimates of the MWTP for warmer

winter temperatures lie between $70 and $133 per person per year, ignoring the negative

value for Model 3 as it likely suffers from an endogeneity bias. Overall, the estimates of

the MWTP for warmer winter temperatures are insignificant. Concerning endogeneity,

controlling for agglomeration effects and potential endogeneity in Models 2 to 6 reduces

MWTP estimates for non-climate amenities. If we believe in the strength of the instru-

ment, these observations suggest that the simple OLS yields biased estimates.

Comparing the baseline IV estimates with other studies, I find the general observa-

tion of individuals preferring colder summers and warmer winters to resemble findings of

Cragg and Kahn (1997) and Fan et al. (2012) and Sinha et al. (2018). The predicted

MWTP for summer and winter temperatures here is notably smaller than, for example,

those estimated by Sinha et al. (2018). Part of the discrepancy between Sinha et al.’s

28. For example, the MWTP for summer temperature in Model 6 was calculated as follows:
MWTP summer temperature = [ 1

2
(2.150 − 4.721)/1.142] ∗ 3298.32/10 ≈ −371, where 3298.32 is the

sample mean predicted income, divided by 10 to rescale the unit of measurement to changes by one °C.
29. This result should be interpreted as the willingness to forgo annual earnings for a 1°C reduction in

mean temperatures during the months June to August. Given the inherent correlation in temperatures
across the year, the coefficient on summer temperatures will also capture changes in temperatures of
adjacent months.
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Table 4.12: Marginal Willingness to Pay First-Stage Specification

(1) (2) (3) (4) (5) (6)

OLS region FE
region &
ln pop

region &
pop dens

region &
ln area

region &
IV

MWTP MWTP MWTP MWTP MWTP MWTP

mean: summer $ -541 $ -399 $ -518 $ -450 $ -686 $ -371
temperature ($ 83) ($ 87) ($ 88) ($ 88) ($ 90) ($ 87)

mean: winter $ 76 $ 70 $ -63 $ 98 $ 133 $ 89
temperature ($ 75) ($ 81) ($ 81) ($ 81) ($ 82) ($ 81)

mean: preciptation $ -61 $ -71 $ -66 $ -72 $ -69 $ -67
($ 14) ($ 15) ($ 14) ($ 15) ($ 15) ($ 15)

mean: cloud $ 235 $ 250 $ 423 $ 258 $ 350 $ 181
cover ($ 165) ($ 173) ($ 171) ($ 173) ($ 172) ($ 172)

mean: vapour $ -191 $ -193 $ -228 $ -195 $ -221 $ -179
pressure ($ 75) ($ 76) ($ 75) ($ 76) ($ 76) ($ 76)

ln hourly wage $ 1 $ 1 $ 0 $ 1 $ 1 $ 1
business ($ 0) ($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

ln hourly wage $ -1 $ -0 $ -0 $ -1 $ -1 $ -1
production ($ 0) ($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

ln hourly wage $ 5 $ 5 $ 5 $ 5 $ 5 $ 5
construction ($ 0) ($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

violent crime $ 281 $ 419 $ 304 $ 434 $ 340 $ 412
rate ($ 14) ($ 14) ($ 15) ($ 14) ($ 15) ($ 14)

health $ 301 $ 237 $ 106 $ 226 $ 178 $ 229
score ($ 8) ($ 8) ($ 9) ($ 8) ($ 7) ($ 8)

transport $ 197 $ 177 $ 145 $ 168 $ 151 $ 170
score ($ 3) ($ 3) ($ 4) ($ 4) ($ 3) ($ 3)

education $ 7 $ 4 $ 4 $ 4 $ 3 $ 4
score ($ 0) ($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

the arts $ -20 $ -3 $ -3 $ 11 $ 6 $ -4
score ($ 1) ($ 1) ($ 1) ($ 2) ($ 1) ($ 1)

recreational $ -289 $ -325 $ -386 $ -338 $ -392 $ -313
facilities score ($ 7) ($ 7) ($ 7) ($ 7) ($ 8) ($ 7)

distance to $ -5 $ -1 $ -1 $ -1 $ 1 $ -2
coast ($ 0) ($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

elevation $ -3 $ -3 $ -3 $ -3 $ -4 $ -3
($ 0) ($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

ln population $ 0
($ 0)

population $ -3
density ($ 0)

land area $ 0
($ 0)

Notes: Standard errors provided in parentheses. Amenity coefficients have been
converted to the MWTP by dividing the mean coefficient and the standard
error from the first and second stage by the coefficient on income from the
mixed logit regression. The result is multiplied by the sample mean predicted
income to yield a monetary measure of the amenity value of a marginal change
in the amenity.

a Nonlinear amenity variables are evaluated at population-weighted means in
order to compute the Marginal Willingness to pay.
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(2018) estimates and the results presented here is explained by the lower predicted income

level of Mexican immigrants. If one considers the MWTP for changes in temperatures

relative to mean predicted income, the results suggest that Mexican migrants attach a

considerably larger relative value to summer temperatures compared to the average U.S.

citizen. Moreover, the insignificant estimate for winter temperatures may be explained by

the shorter duration of migration from Mexico to the U.S. On average, sample migrants

remain in the U.S. for two and a half years. Hence, other factors, such as economic consid-

erations, might play a greater role in driving location choices. Moreover, requiring tastes

for winter temperatures to be homogeneous masks heterogeneity in the valuation of winter

preferences across sample migrants.

Alternative Temperature Measures

With respect to alternative temperatures, I find the MWTP estimates for non-linear tem-

perature specifications in Table 4.13 to be similar. Note that for low temperature ranges

the MWTP for increases in mean temperatures using a quadratic specification (Model

14) is positive, with the value turning negative as the mean temperature rises. Requiring

temperature valuations to be constant across seasons and the temperature range changes

the MWTP for cloud days, vapour pressure and the score for provision of health services

and recreational services. The first two changes are again explained by the natural cor-

relation in climate variables. The change in the MWTP of recreational activities suggests

that the attractiveness of such facilities is closely related to the average temperature of

a location. Locations with all year-round comfortable weather may provide lower qual-

ity indoor facilities etc. The link between temperatures and the quality of recreational

facilities is weaker for seasonal and daily peak temperatures and, as such, remains un-

accounted for in the base model. The drop in the estimate of the MWTP for improved

health facilities indicates that mean temperature is a poor predictor of the prevalence of

temperature-related illnesses in a particular location. Heat- and cold-related illnesses can

result in significant costs to the health care sector. Consequently, uncontrolled seasonal

variation in temperature-related illnesses causes biased estimates of the WTP for better

health care provision.
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Individual Heterogeneity

The final set of results in this section concerns heterogeneity in temperature valuations

across age, education and differences in the temperature to which an individual is accus-

tomed. The MWTP estimates are presented Table 4.14. I find older migrants to be willing

to pay $806 per year to live in locations with one degree warmer summer temperatures

and $4,782 for those with warmer winters. In contrast, prime-aged migrants are willing to

forgo $99 of their annual wage income to live in locations with one degree lower summer

temperatures. Moreover, younger migrants have no significant preferences over winter

temperatures. The large difference in the magnitude of MWTP between prime-aged mi-

grants and migrants aged 55 may stem from the use of wage income and housing prices as

the hedonic price measure for the two-stage model. The capitalisation of amenities based

on the two price measures might not be appropriate for older migrants, who can rely on

alternative income sources aside from wage earnings. Moreover, wages of older migrants

may differ less across U.S. locations than those of younger migrants. If older migrants

still sort across locations based on climate preferences, climate valuations for this group

of migrants are likely overestimated. Moreover, the relatively small sample share of older

migrants (5%) may imply that the estimates are not representative for the rest of the

population.

Results from Model 17 indicate no significant differences in the MWTP for temperat-

ures by education. However, introducing interaction terms between education and tem-

peratures reduces the MWTP for lower summer temperatures and increases the MWTP

for warmer winters across the two sub-groups (compared to the base model). Testing for

clinal heterogeneity, I observe significant differences in the MWTP for winter temperat-

ures between migrants from warmer and colder Mexican municipalities. Migrants from

colder areas are willing to forgo $2,545 to live in an MSA with one degree warmer winter

temperatures (per year). In contrast, migrants from warmer locations are willing to pay

$1,135 annually to live somewhere with one degree colder winter temperatures. One would

expect individuals accustomed to warmer climates to be less sensitive to heat. However,

the estimates indicate that migrants from warmer regions are more aware of the negative

impact of warm winters on well-being and, thus, prefer locations with year-round lower

temperatures. Estimates of the MWTP for rising summer temperatures are both negative
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but insignificant.

Interestingly, controlling for demographic and clinal differences in temperatures sig-

nificantly affects the MWTP for non-temperature climate amenities. Most importantly,

the MWTP for fewer cloud days becomes negative and significant. At the same time, the

MWTP for lower rainfall and humidity levels declines and turns insignificant for the latter.

This observation again highlights the problem of multicollinearity in logistic regressions

as discussed in Chapter 3 on page 76.

Overall, the large differences in preferences for winter temperatures explains to some

extent the insignificant result found in the baseline model. The results suggest a greater

variation in tastes regarding winter temperatures. While differences in tastes for summer

temperatures are limited to life cycle differences. In general, the results highlight the

importance and complexity of accounting for heterogeneity in individuals WTP for climate

amenities. Despite the application of a more flexible mixed logit approach, issues arising

from multicollinearity render disentangling of heterogeneous differences problematic.
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Table 4.13: Marginal Willingness to Pay Alternative Climate Specification

Base Model (13) (14) (15)

region &
IV

avg tmp avg tmp2 max min

MWTP MWTP MWTP MWTP
(Std Err) (Std Err) (Std Err) (Std Err)

mean: summer $ -371
temperature ($ 87)

mean: winter $ 89
temperature ($ 81)

mean: average $ -75
temperature ($ 76)

mean: average $ -37
temperature2a ($ 9)

mean: maximum $ -463
temperature ($ 136)

mean: minimum $ 223
temperature ($ 142)

mean: precipitation $ -67 $ -23 $ -14 $ -72
($ 15) ($ 11) ($ 8) ($ 19)

mean: cloud $ 181 $ -218 $ -82 $ 585
cover ($ 172) ($ 70) ($ 48) ($ 135)

mean: vapour $ -179 $ -116 $ -123 $ -224
pressure ($ 76) ($ 36) ($ 21) ($ 93)

ln hourly wage $ 1 $ 1 $ -0 $ -2
businessa ($ 0) ($ 0) ($ 0) ($ 0)

ln hourly wage $ -1 $ -0 $ 0 $ -2
productiona ($ 0) ($ 0) ($ 0) ($ 0)

ln hourly wage $ 5 $ 2 $ 2 $ 10
constructiona ($ 0) ($ 0) ($ 0) ($ 0)

violent crime $ 412 $ 56 $ 177 $ 773
rate ($ 14) ($ 11) ($ 10) ($ 21)

health $ 229 $ -40 $ 149 $ 232
score ($ 8) ($ 7) ($ 4) ($ 13)

transport $ 170 $ 71 $ 66 $ 166
score ($ 3) ($ 2) ($ 2) ($ 6)

education $ 4 $ 6 $ 2 $ 7
score ($ 0) ($ 0) ($ 0) ($ 0)

the arts $ -4 $ 26 $ 10 $ 25
score ($ 1) ($ 1) ($ 1) ($ 2)

recreational $ -313 $ 107 $ -213 $ -318
facilities score ($ 7) ($ 4) ($ 5) ($ 11)

distance to $ -2 $ -2 $ -0 $ 11
coast ($ 0) ($ 0) ($ 0) ($ 0)

elevation $ -3 $ -2 $ 0 $ 1
($ 0) ($ 0) ($ 0) ($ 0)

Notes: Standard errors provided in parentheses. Amenity coeffi-
cients have been converted to the MWTP by dividing the mean
coefficient and the standard error from the first and second stage
by the coefficient on income from the mixed logit regression. The
result is multiplied by the sample mean predicted income to yield
a monetary measure of the amenity value of a marginal change in
the amenity.

a Nonlinear amenity variables are evaluated at population-weighted
means in order to compute the Marginal Willingness to pay.
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Table 4.14: Marginal Willingness to Pay Heterogeneous Climate Specification

Base Model (16) (17) (18)

region &
IV

age ≥ 55 education clinal

MWTP MWTP MWTP MWTP
(Std Err) (Std Err) (Std Err) (Std Err)

mean: summer $ -371 $ -99 $ -73 $ -39
temperature ($ 87) ($ 36) ($ 31) ($ 45)

mean: winter $ 89 $ -38 $ 325 $ 2,545
temperature ($ 81) ($ 42) ($ 36) ($ 100)

mean: age ≥ 55 $ 806
summer temperature ($ 269)

mean: age ≥ 55 $ 4,782
winter temperature ($ 538)

mean: college graduate $ -82
summer temperature ($ 53)

mean: college graduate $ 337
winter temperature ($ 67)

mean: mex hot $ -132
summer temperature ($ 104)

mean: mex hot $ -1,135
winter temperature ($ 233)

mean: precipitation $ -67 $ -22 $ -17 $ -31
($ 15) ($ 8) ($ 9) ($ 9)

mean: cloud $ 181 $ -291 $ -580 $ -774
cover ($ 172) ($ 37) ($ 31) ($ 47)

mean: vapour $ -179 $ -60 $ -8 $ -13
pressure ($ 76) ($ 25) ($ 43) ($ 32)

ln hourly wage $ 1 $ 1 $ 1 $ 1
business ($ 0) ($ 0) ($ 0) ($ 0)

ln hourly wage $ -1 $ -1 $ -0 $ -0
production ($ 0) ($ 0) ($ 0) ($ 0)

ln hourly wage $ 5 $ 2 $ 1 $ 2
construction ($ 0) ($ 0) ($ 0) ($ 0)

violent crime $ 412 $ 236 $ 75 $ 282
rate ($ 14) ($ 8) ($ 7) ($ 10)

health $ 229 $ 140 $ 85 $ 187
score ($ 8) ($ 4) ($ 4) ($ 6)

transport $ 170 $ 60 $ 86 $ 103
score ($ 3) ($ 2) ($ 2) ($ 2)

education $ 4 $ 1 $ -0 $ 1
score ($ 0) ($ 0) ($ 0) ($ 0)

the arts $ -4 $ 2 $ 10 $ 5
score ($ 1) ($ 1) ($ 1) ($ 1)

recreational $ -313 $ 23 $ 9 $ -7
facilities score ($ 7) ($ 4) ($ 3) ($ 5)

distance to $ -2 $ 0 $ 2 $ -1
coast ($ 0) ($ 0) ($ 0) ($ 0)

elevation $ -3 $ -5 $ -3 $ -3
($ 0) ($ 0) ($ 0) ($ 0)

Notes: Standard errors provided in parentheses. Amenity coefficients have been converted to the MWTP by dividing
the mean coefficient and the standard error from the first and second stage by the coefficient on income from the
mixed logit regression. The result is multiplied by the sample mean predicted income to yield a monetary measure
of the amenity value of a marginal change in the amenity.
a Nonlinear amenity variables are evaluated at population-weighted means in order to compute the Marginal Will-
ingness to pay.
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4.8 The Willingness to Pay for Projected Warming

In order to assess individuals’ WTP for future climate change, results from the two-stage

sorting model are used to predict the WTP for projected changes in mean summer and

winter temperatures over the period 2040 to 2069. Temperature projections stem from the

ECHAM5 (Roeckner et al. 2003) and the CCSM3 (Collins et al. 2006) model under the

A2 and B1 climate scenarios defined by the Special Report on Emission Scenarios (SRES)

(Nakicenovic et al. 2000). Projected increases in summer and winter temperatures for

the sample destinations range between 3.36°C to 4.73°C and 1.14°C to 2.16°C. Based on

estimates from the baseline model, I predict warming of summer temperatures to reduce

welfare by between $1,245 and $1,755 per person per year. At the same time, increases in

winter temperatures are estimated to boost welfare by $102 to $193 per person per year.

Once I allow for heterogeneity in temperature valuations, predicted welfare effects increase

in size.

Accounting for life-cycle effects, younger individuals are estimated to pay $333 to $469

per year to prevent summer temperatures from rising and $44 to $82 to keep winter

temperatures at the current level. In contrast, estimated welfare gains for migrants aged

55 resulting from warmer summers range between $2,707 and $3,813 annually per person.

In addition, the welfare of older migrants would benefit considerably from rising winter

temperatures, with welfare predicted to rise by up to $10,320 per migrant per year.

Concerning clinal differences, I find welfare gains of migrants from colder regions caused

by warming of winter temperatures to outweigh welfare losses of migrants from warmer re-

gions. Migrants from warm municipalities are willing to pay up to $2,449 under ECHAM7

SRA2 to prevent winter temperatures from rising. However, welfare gains for migrants

from colder regions are estimated to reach up to $5,492 per person per year. As discussed

in Chapter 3, the division of migrants into warmer and colder regions does not capture

the full diversity in origin climates and, as such, is only a crude measure of clinal variation

in origin climates. Nevertheless, the results further lend support to the notion of clinal

differences in temperature preferences.

Notwithstanding, the above estimates of the WTP for rising temperatures must be

considered with caution. Adaptation to global warming, such as the installation of air
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conditioning, will likely reduce the adverse effects of rising temperatures. Such changes

are only captured in this study as long as they mirror recent adaptation to climate change

by today’s generation. However, unprecedented technological change leading to changes

in climate tastes would not be accounted for in the model. Moreover, the natural correl-

ation in climate variables implies that estimates change significantly due to the inclusion

and exclusion of variables or changes in the variable specification. Further research into

alternative estimation methods for measuring the amenity value of climate—which over-

come the problem of multicollinearity but do not suffer from selection bias as the hedonic

income approach—is required.

4.9 Conclusion

This chapter employs a two-stage location-choice model to examine heterogeneity in

individual temperature valuations using information on bilateral migration movements

between Mexico and the U.S. The first stage consists of mixed logit model allowing for

variation in climate valuations both by observed attributes, such as age, education and

the climate to which an individual is accustomed, as well as unobserved individual tastes.

Analogous to the traditional hedonic approach, the second stage regresses estimated MSA

fixed effects from the mixed logit model on destination-specific amenities, including cli-

mate. The study implements an IV estimation technique to account for endogeneity in the

second-stage regression. Estimates from the baseline model suggest that Mexican migrants

on average are willing to forgo earnings to avoid warmer summer temperatures ($371 per

year for every °C decrease) and to enjoy warmer winter temperatures ($89), although the

estimate is not significantly different from zero.

Examining demographic and clinal heterogeneity in individual climate valuations, I

observe significant life-cycle differences in temperature preferences. While older migrants

are willing to pay around $5,000 per year in order to enjoy living in a location with warmer

summer and winter temperatures, prime-aged migrants give up earnings in order to live

in places with lower summer and winter temperatures. Moreover, migrants from warmer

Mexican regions regard colder summer and winter temperatures as an amenity, while in-

dividuals from colder regions are willing to pay to increase winter temperatures. This

suggests that exposure to warmer temperatures, and thus awareness of the negative im-
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pacts of heat, yields a negative relationship between individuals’ utility and temperatures.

In contrast, lack of exposure prior to the migration causes individuals to prefer locations

with on average warmer winters.

Using climate forecasts under two alternative climate scenarios, the study predicts

individuals’ WTP for future changes in mean summer and winter temperature over the

period 2040 to 2069. Estimates from the baseline model yield predicted welfare losses

between $1,245 and $1,755 per person per year due to increases in summer temperatures.

At the same time, I forecast annual welfare gains of between $102 to $193 per individual due

to raised winter temperatures. Again, the magnitude of the WTP for warming fluctuates

significantly across observable characteristics of migrants. I predict an additional annual

welfare of up to $10,230 per person due to rising winter temperatures for migrants aged

55 and above. Although the large positive welfare impact is substantially greater than

predicted losses, it is important to remind oneself that only a handful migrants fall into

this category. Therefore, the absolute welfare effect is unclear.

Lastly, origin climates play an important role in determining individuals’ idea of optimal

temperatures and consequently their WTP for the abatement of global warming. The

results suggest that migrants from warmer Mexican regions are willing to forgo earnings

to prevent both summer and winter temperatures from rising, while migrants from colder

regions would pay up to $5,492 to increase winter temperatures by 2.16°C over the next

50 years. Notably, the estimated welfare gains of migrants from colder regions exceed

predicted losses of those immigrating from warmer regions.

These results underscore the importance of taking preference heterogeneity into ac-

count when thinking about the potential welfare gains of abating global warming. Assum-

ing preference homogeneity across demographic and clinal differences in populations may

considerably bias the predicted welfare gains from abating climate change. Insofar as the

WTP for the abatement of global warming is largest among individuals aware of the negat-

ive impacts of heat, measurements derived from populations with access to air conditioning

and relatively moderate temperatures will underestimate the WTP for the mitigation of

climate change. The natural question arises, whether clinal differences documented here

are reflective of what one might expect across other climatic zones. Replication of this

study based on a larger sample, with migrants from diverse climatic origins, has the poten-
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tial to give further insights into the extent of clinal differences in temperatures valuations

of today’s population.

Lastly, alternative estimation methods to the mixed logit model should be explored,

which may overcome the problem of multicollinearity experienced in this study. Con-

sequently, more careful research is needed to, on the one hand, verify the magnitude of

demographic and clinal differences and, on the other hand, to ensure external validity of

the climate-amenity estimates.
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Chapter 5

Conclusion

This thesis is a collection of three empirical chapters in the field of environmental eco-

nomics, investigating climate impacts on individuals’ welfare. I address this overarching

question in two separate research contexts: first, by studying weather-related fluctuations

in labour markets and, second, by examining the importance of heterogeneity in people’s

climate preferences.

In the following, I will provide a short summary of the key findings from the three

empirical chapters, identify any challenges faced in conducting the research and provide a

short outlook into further research prompted by this thesis.

Before going in detail into each essay, it is worth discussing a shared concern in all three

empirical studies. The empirical analysis in all three chapters relies on gridded weather

data in the form of reanalysis (NARR), interpolated (CRU) and modelled climate data

(ECHAM5 and CCSM3). Auffhammer et al. (2013) discuss in detail the pitfalls of using

modelled weather data in empirical analysis and note the inherent measurement error

associated with the data type. These are particularly concerning in Chapter 2, which

studies day-to-day weather deviations in contrast to climate normals used in the later

chapters, which are less prone to error. However, a study by Mesinger et al. (2006)

finds that the NARR has a good track record of accurately measuring extreme weather

events for Mexico, supporting the use of the dataset in the present research context.

Nevertheless, climate and weather variables exploited in this thesis should be regarded

as approximations, and interpretation of coefficients should be done in light of potential



146

errors in the data.

Chapter 2 investigates the impact of day-to-day weather changes on weekly earnings

and working times in Mexico. Leveraging quasi-random day-to-day changes in weather,

I find unusually high levels of rainfall cause a meaningful reduction in working times

across the Mexican economy. Contrary to findings for the U.S. (Graff Zivin and Neidell

2014), results from Chapter 2 suggest no average impacts of heat across the economy,

whilst revealing a drop in working times by just three minutes on days with temperatures

below 10°C. On further examination, regressions allowing for heterogeneity in weather

impacts indicate that individual and job-specific characteristics play an essential role in

determining workers’ sensitivity to temperature and precipitation impacts. In particular,

the results confirm earlier findings in the literature of adverse heat and rainfall effects on

weather-exposed and physically active occupations.

An important revelation of Chapter 2 is the estimation of nontrivial earnings losses for

individuals working in unprotected working environments. Particularly informal workers,

those in temporary employment contracts or with flexible incomes are vulnerable to earn-

ings fluctuations caused by adverse weather. Whilst costs estimates indicate that annual

heat-related earnings losses in the year 2016 roughly amount to just 0.3% of potential

earnings and 0.04% of working times, I find these losses to be overwhelmingly borne by

the poor. This result provides suggestive evidence of regressive weather impacts on labour

markets, which ought to be considered in the design of climate-change adaptation policies.

A key limitation of the paper is the inability to account for weather-related labour-

productivity changes. For instance, the results suggest that formal workers increase their

working time in response to heat. However, if labour productivity falls with increasing

temperatures, the economic impact of heat in formal working environments is uncertain

and could well be negative. A further important caveat in the study is the limited informa-

tion concerning workers’ health and changes in product demand. This lack of data hinders

identification of physiological mechanisms and differentiation between demand versus sup-

ply effects. The inclusion of additional data, particularly on the firm level, is an important

area for improvement, given the very different policy implication related to the two al-

ternative channels. A better understanding of the underlying mechanisms would allow for

improved targeting of policies to those most vulnerable to weather shocks, rather than
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those with the flexibility to adapt to weather extremes. In this respect, future research

should aim to link labour-market data with information on firm-level productivity and

product demand to differentiate between demand and supply effects.

Adaptation to adverse weather unquestionably will partly offset negative future impacts

of weather on labour markets. For example, in the long-run workers adversely affected by

weather might decide to switch jobs in order to mitigate negative welfare consequences.1

Consequently, the presented evidence on wage and working-hour responsiveness to day-

to-day weather changes should not be generalised for the expected changes due to global

warming. However, there are a few lessons to be learned from the findings. First, these

results document the negative impact of heat exposure on outdoor and manual-labour

intensive work. Adequate ventilation and air conditioning, whilst effective instruments

for preventing workers’ heat stress, are largely non-existent in Mexican factories. A com-

bination of high external temperatures, waste heat from machinery, and heat strain from

physical work can raise body temperatures to unhealthy levels with potentially serious

health effects. Equally, lack of protection from direct sunlight and external heat leaves

outdoor workers particularly vulnerable to heat stress. While evidence from the extraction

sector suggests the existence of temperature-related compensation schemes in the industry,

such schemes seem to be absent in other industries.

Traditional methods, such as long lunch-breaks (‘siesta’) during peak temperatures of

the day or flexible working-time schemes can reduce some of the strain. However, with con-

tinued global warming, such methods will become less effective as rises in daily minimum

temperatures will render work outside peak temperatures equally unhealthy. Considering

these results, these traditional methods seem to be ineffective to prevent earnings losses

of workers in unprotected work environments. Furthermore, increasingly volatile weather

due to climate change will further exacerbate adverse welfare consequences indicated by

these results. An important step toward mitigating negative weather effects will be to

reduce informal employment to ensure better protection of workers from earnings volatil-

ity. Given the complexity of weather effects, labour-market programs aimed at protecting

workers from adverse temperatures and precipitation, such as weather insurance programs,

should be made accessible to workers across all industries and employment types. Besides,

1. A study by Colmer (2020) demonstrate that Indian agricultural workers mitigate adverse welfare
effects of weather shocks by switching to manufacturing jobs.
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stricter policies on workplace health and safety standards, especially with regard to heat

exposure, are potential solutions to combat the negative impacts of extreme temperature.

Tax incentives for firms investing in proper workplace temperature regulation could be

used to ensure compliance.

Unlike Chapter 2, the remaining empirical chapters investigate individual climate pref-

erences. Chapters 3 and 4 address a crucial assumption in research on the amenity value

of climate, clinal-preference homogeneity. This assumption is often overlooked in research.

Evidence from the human-biology literature emphasises systematic differences in human

thermal comfort and sensitivity across climatic zones. Motivated by these scientific find-

ings, Chapter 3 provides initial evidence of systematic differences in preferences regarding

temperatures, driven by the climate to which an individual is accustomed. Building upon

this research, Chapter 4 investigates how the assumption may cause biased estimates of

the WTP for the abatement of climate change.

Exploiting a unique dataset of bilateral migration movements between Mexico and the

U.S., Chapter 3 estimates a discrete location-choice model to examine clinal heterogen-

eity in climate preferences. The chapter identifies clinal heterogeneity by using climate

differences between origin and destination location, as well as subsample regressions. The

results provide suggestive evidence that climate valuations vary by temperatures at the

migrant’s origin. Relative to their home location, Mexican migrants prefer settling in

cities with warmer average and minimum temperatures but colder summer temperatures

compared to their home municipality. Moreover, results from the subsample regressions

reveal a greater temperature sensitivity of the utility of migrants from warmer Mexican

regions, compared to migrants from colder areas. The observed differences become more

pronounced in the case of temperature extremes. Estimated clinal differences in temperat-

ure preferences are comparable to those related to age, education and migration duration.

Whilst the results provide some initial evidence of clinal heterogeneity, several meth-

odological drawbacks should be highlighted here. Ideally, one would like to control for

individual characteristics in the regressions, as they likely influence individuals’ location

choice. Yet, since individual characteristics are constant across alternatives, identification

of the importance of individual-level characteristics in driving location decisions is diffi-

cult within the standard logit framework. While in theory other models such as the mixed
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logit provide greater flexibility in incorporating individual characteristics into the model,

I found these models fail to converge. The problem of convergence of more complex mod-

els is not uncommon within the location-choice literature, given the inclusion of a large

number of fixed effects.

A more pressing concern is the natural correlation in climate variables. For instance,

winter and summer temperatures are naturally related. Multicollinearity in regressors

within a logit setting is problematic, as it can lead to unreliable and unstable coefficient

estimates. Ideally, one would want to increase the sample size to reduce the problem of

collinearity in regressions. However, this is not possible in the present context. Alternat-

ively, demeaning of variables can reduce the collinearity in variables. This is the approach

followed here. However, while improving precision in estimates, this method cannot fully

overcome the issue of collinearity.

In this respect, it is important to consider the implications of the issue for estimates in

Chapter 3. Correlation in the climate variables will increase the variance of the estimator,

thus reducing precision in estimates. Hence, small changes in the underlying sample

could potentially cause significant changes in the estimated coefficients. This could be

particularly problematic in subsample regressions. As the underlying sample changes, so

might imprecise coefficients. Therefore, interpretation of coefficients with a large variance

should be done with extreme caution, particularly in subsample comparisons. Ideally,

other estimation methods allowing for collinearity should be exploited.

Motivated by these insights, Chapter 4 applies a different methodological approach,

allowing for both individual heterogeneity and correlation among climate regressors. The

chapter employs a two-stage random utility sorting model to investigate the importance of

clinal heterogeneity in driving individuals’ WTP for preferential temperatures, using the

same dataset as Chapter 3. In the first stage, I estimate a mixed logit model of the discrete

location choice of Mexican migrants to the U.S. The model allows for heterogeneity in the

climate valuations by both observed attributes, such as age, education and the climate to

which an individual is accustomed, and unobserved individual tastes.

Analogous to the traditional hedonic approach, in the second stage, MSA fixed effects

retrieved from the mixed logit model are regressed on destination-specific amenities, in-

cluding climate. I further implement an IV estimation technique to account for endogeneity
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in the second-stage regression. Estimates from the baseline model suggest that Mexican

migrants on average are willing to forgo earnings to avoid warmer summer temperatures

(US$371 per °C per person per year) and to enjoy warmer winters ($89).

In-depth analysis of heterogeneity in individual climate valuations reveals significant

differences in the MWTP for friendlier temperatures. Chapter 4 further substantiates

the notion that origin climates play an important role in determining individuals’ idea of

optimal temperatures and consequently their WTP for the abatement of global warming.

Results from the sorting model indicate that migrants from warmer regions gain disutility

from increasing summer and winter temperatures, while individuals from colder regions

enjoy warmer winter temperature. This suggests that exposure to warmer temperatures

and, hence, greater awareness of adverse heat effects, yields a negative relationship between

individuals’ utility and temperatures. At the same time, lack of exposure prior to the

migration causes individuals to prefer locations with warmer winter temperatures.

These estimates of the amenity value of temperatures can help to inform the climate-

change debate by providing a numerical estimate of the benefits of abating global warming.

In this respect, I use climate forecasts under two alternative climate scenarios to predict

individuals’ WTP for future changes in mean summer and winter temperature over the

period 2040 to 2069. On average, I predict welfare losses of between $1,245 to $1,755 per

person per year due to increases in summer temperatures, and welfare gains of around

$102 to $193 due to warmer winters. Again, the magnitude and direction of the WTP for

warming fluctuate significantly across observable characteristics of migrants. Concerning

clinal differences, I find estimated welfare gains of migrants from colder regions to exceed

losses predicted for individuals from warmer regions.

As shown here, the Bayesian hierarchical-model approach provides a solution to some

of the computational issues faced in Chapter 3. The greater flexibility in the hierarch-

ical structure of the regression model and the considerably smaller computational burden

makes the method particularly useful in the analysis of climate valuations. The approach

facilitates the study of some of the interlinkages between individual characteristics and the

amenity value of temperatures. A remaining issue is the problem of choice-set pruning.

With greater diversity in potential locations, choice-set restrictions will become even more

problematic. Some efforts made in the transport theory might be promising, but more
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research is required to identify the merits of alternative methods within the location-choice

literature. Moreover, the mixed logit model cannot overcome some of the issues caused

by multicollinearity in amenity attributes. Therefore, research on the amenity value of

climate should concentrate on the development of alternative estimation methods, which

are more stable in the presence of natural correlation in regressors.

Several important conclusions can be drawn from the findings in Chapter 4. Com-

parison to other studies shows that the estimated WTP for temperature changes based

on the sample migrants are considerably smaller than estimates produced based on the

U.S. Census (Sinha et al. 2018). This finding is unsurprising, given the considerably lower

income level of migrants. With regard to climate-change policy, we learn that estimates

from developed countries should not be generalised to less developed countries, not even

if adjusting measures by the relative size of earnings across countries. Robustness checks

indicate a negative correlation between the relative weight given to income and temperat-

ures in location decisions. Hence, the more a person considers income in her choice, the

less weight is given to temperatures. Consequently, the WTP of global warming is likely

to change disproportionately with rising income.

Moreover, the evidence presented here emphasises the need to account for clinal-

preference heterogeneity in the estimation of the WTP for abating climate change. Insofar

as the WTP for the abatement of global warming is largest among individuals aware of

the negative impacts of heat, measurements derived from populations with access to air

conditioning and relatively moderate temperatures may result in a serious underestima-

tion of the WTP for mitigation of climate change. The natural question arises of whether

clinal differences documented here are reflective of what one might expect across other

climatic zones. In consequence, more careful research is needed to verify the magnitude

of clinal differences and to ensure external validity of climate-amenity estimates. This is

essential for accurate cost-benefit analyses of climate-change mitigation policies. In this

sense, it is important to replicate this study on a global scale to allow for generalisation

of the results and to improve identification and precision in heterogeneous effects.

A further line of research is the extent to which climate change will influence migration

flows by altering the attractiveness of locations in the long term. In this context, one

might ask how quickly temperature valuations will adapt to global warming and whether
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preferences assimilate as global temperatures rise above a certain threshold. To address

these research questions, further data collection on climate-related migration is essential.

Lack of detailed information on the origins of migrants in census data prevents the identi-

fication of clinal differences in climate valuations. Instead, global migration surveys with

greater diversity in origin and destination climates are required. In conclusion, further re-

search on the amenity value of temperatures is required in order to provide useful insights

for the climate-change policy debate, and there is much scope for improvements.
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Roeckner, Erich, G Bäuml, Luca Bonaventura, Renate Brokopf, Monika Esch,
Marco Giorgetta, Stefan Hagemann, Ingo Kirchner, Luis Kornblueh, Elisa
Manzini et al. 2003. The Atmospheric General Circulation Model ECHAM 5. PART
I: Model Description.

Rosen, Sherwin. 1974. ‘Hedonic Prices and Implicit Markets: Product Differentiation
in Pure Competition’. Journal of Political Economy 82, no. 1 (February): 34–55.
https://www.jstor.org/stable/1830899.

. 2002. ‘Markets and Diversity’. American Economic Review 92 (1): 1–15.

Rothfusz, Lans P. 1990. The Heat Index Equation. Texas, USA: National Oceanic and
Atmospheric Administration, National Weather Service, Office of Meteorology.

Ruff, Christopher. 2002. ‘Variation in Human Body Size and Shape’. Annual Review of
Anthropology, 211–232. https://doi.org/10.1146/annurev.anthro.31.040402.085407.

Ruud, Paul. 1996. Approximation and Simulation of the Multinomial Probit Model: An
Analysis of Covariance Matrix Estimation. Working Paper. Department of Econom-
ics, Berkeley. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.8116%
5C&rep=rep1%5C&type=pdf.

Savageau, David, and Ralph D’Agostino. 2000. Places Rated Almanac; Millennium
Edition. 2019-17-06.

Schlenker, Wolfram, and Michael J Roberts. 2009. ‘Nonlinear Temperature Effects
Indicate Severe Damages to US Crop Yields under Climate Change’. Proceedings
of the National Academy of Sciences 106, no. 37 (September): 15594–15598. https:
//doi.org/10.1073/pnas.0906865106.

https://doi.org/10.3390/ijerph16050716
https://doi.org/10.3390/ijerph16050716
https://doi.org/10.1007/s00484-018-1530-6
https://doi.org/10.1080/00140139508925092
https://doi.org/10.1016/j.regsciurbeco.2006.11.004
https://doi.org/10.1093/oep/gpn028
https://doi.org/10.1007/bf01284235
http://www.jstor.org/stable/1830947
https://www.jstor.org/stable/1830899
https://doi.org/10.1146/annurev.anthro.31.040402.085407
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.8116%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.8116%5C&rep=rep1%5C&type=pdf
2019-17-06
https://doi.org/10.1073/pnas.0906865106
https://doi.org/10.1073/pnas.0906865106


164

Scott, Darren M, Paul A Coomes and Alexei I Izyumov. 2005. ‘The Location
Choice of Employment-Based Immigrants Among US Metro Areas’. Journal of Re-
gional Science 45, no. 1 (January): 113–145. https : / / doi . org / 10 . 1111 / j . 0022 -
4146.2005.00366.x.

Seppänen, Olli, William J Fisk and QH Lei. 2006. ‘Effect of Temperature on Task
Performance in Office Environment’, edited by Quanhong Lei.

Sinha, Paramita, Martha L Caulkins and Maureen L Cropper. 2018. ‘Household
Location Decisions and the Value of Climate Amenities’. Journal of Environmental
Economics and Management 92 (November): 608–637. https://doi.org/10.1016/j.
jeem.2017.08.005.

Sinha, Paramita, and Maureen L Cropper. 2013. The Value of Climate Amenities:
Evidence from US Migration Decisions. NBER Working Paper No. 18756. National
Bureau of Economic Research, February. https://doi.org/10.3386/w18756.

Solomou, Solomos, and Weike Wu. 1999. ‘Weather Effects on European Agricultural
Output, 1850–1913’. European Review of Economic History 3, no. 3 (November): 351–
373. https://doi.org/10.1017/S1361491699000167.

Standardization, International Organization for. 2017. Ergonomics of the Thermal
Environment – Assessment of Heat Stress using the WBGT (Wet Bulb Globe Tem-
perature) Index. ISO 7243:2017. https://www.iso.org/standard/67188.html.

Starr-McCluer, Martha. 2000. The Effects of Weather on Retail Sales. 2000-08. Board
of Governors of the Federal Reserve System (U.S.) http://www.federalreserve.gov/
pubs/feds/2000/200008/200008pap.pdf.

Stevens, Andrew. 2017. Temperature, Wages, and Agricultural Labor Productivity. Work-
ing Paper. Department of Agricultural & Resource Economics, University of Califor-
nia – Berkeley. https://are.berkeley.edu/sites/default/files/job-candidates/paper/
stevens jmp jan16.pdf.

Sudarshan, Anant, E. Somanathan, Rohini Somanathan and Meenu Tewari.
2015. The Impact of Temperature on Productivity and Labor Supply: Evidence from In-
dian Manufacturing. Working Papers 244. Centre for Development Economics, Delhi
School of Economics, June.

Theisen, Ole Magnus. 2012. ‘Climate Clashes? Weather Variability, Land Pressure,
and Organized Violence in Kenya, 1989–2004’. Journal of peace research 49, no. 1
(January): 81–96. https://doi.org/10.1177/0022343311425842.

Timmins, Christopher. 2007. ‘If You Cannot Take the Heat, Get Out of the Cerrado. . .
Recovering the Equilibrium Amenity Cost of Nonmarginal Climate Change in Brazil’.
Journal of Regional Science 47 (1): 1–25. http://www.cdedse.org/pdf/work244.pdf.

Trabajo y Previsión Social, Secretaŕıa del. 2017. Seguridad y Salud en el Trabajo en
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Appendix A

Appendix to Chapter 2

A.1 Mathematical Derivation

A.1.1 Worker Utility-Maximisation Problem

A worker faces the following utility-maximisation problem:

max
h,c

u(c, h;α) s.t. mc = wh+ y∗ . (2.1 revisited)

where m is the cost of consumption and w is the hourly wage rate. The first order
conditions are given by:

uc(c, h;α) = λm (A.1)

−uh(c, h;α) = λw (A.2)

wh−mc = 0 (A.3)

Next, I derive an expression for de/dα and dc/dα by differentiating (A.1) and (A.2) with
respect to α and rearranging the resulting expressions.

dh

dα
=

∂λ
∂αw + uhα

−uhh
(A.4)

dc

dα
=

∂λ
∂αm− ucα

ucc
(A.5)

To derive an expression for dλ/dα, I totally differentiate the budget constraint (A.3) to
obtain:

w
dh

dα
− dc

dα
= 0 (A.6)
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Inserting (A.4) and (A.5) into (A.6) and solving for ∂λ
∂α yields:

∂λ

∂α
=
w uhα
uhh
−mucα

ucc

−[ w
2

uhh
+ m2

ucc
]

(A.7)

Given that both ucc < 0 and uhh < 0, the denominator in (A.7) is positive. It is easy
to show that ∂λ

∂α of adverse weather days is positive for high-risk workers [negative for
low-risk workers], except if consumption and extreme weather are a strong substitute
[compliment]. If uhα is concave (high-risk workers) [convex for low-risk workers], the first
term in the numerator is positive [negative] for adverse weather days. Consumption and
adverse weather are substitutes if ucα is concave (with negative values at weather extremes)
and strong substitutes if for extreme weather days 0 > w

p
uhα
uhh

ucc > ucα. Only in the latter

case, ∂λ
∂α is positive for high-risk workers for adverse-weather days. For low-risk workers,

∂λ
∂α is negative as long as consumption and adverse weather are no strong compliments
ucα >

w
p
uhα
uhh

> 0.

The effect of hours worked can now be inferred from equation (A.4). First, note that
the denominator is positive. Hence, the sign of dh/dα depends on the two terms in the
nominator. Remember that for high-risk workers, uhα is negative and positive for low-risk
workers. If consumption and adverse weather days are strong substitutes, both terms
in the numerator are negative for high-risk workers and dh

dα < 0. If ∂λ
∂α > 0, then dh

dα
is negative for weather-exposed workers if the substitution effect dominates the income
effect ( ∂λ∂αw < −uhα). For low-risk workers, dh

dα > 0 if consumption and adverse weather
are strong compliments, or the positive substitution effect dominates the negative income
effect − ∂λ

∂αw < uhα.

A.1.2 Productivity-Mapped Wage Regimes

When labour productivity is reduced by adverse weather and wages are adjusted for
changes in productivity, then adverse weather days affect equilibrium wages. In this case,
equation (A.4) and (A.6) become:

dh

dα
=

∂λ
∂αw + ∂w

∂αλ+ uhα

−uhh
(A.8)

w
dh

dα
+
∂w

∂α
h− dc

dα
= 0 (A.9)

and finally, ∂λ/∂α becomes

∂λ

∂α
=
w uhα
uhh
−mucα

ucc

−[ w
2

uhh
+ m2

ucc
]

+
dw

dα

[ wλuhh − h]

−[ w
2

uhh
+ m2

ucc
]

(A.10)

Equation A.10 now consists of two terms. The first is identical to (A.7). The second
term is explained by the traditional relationship between increased wages and income:
since adverse weather days decrease earnings per hour worked (dwdαh) and reduce income

from each additional hour worked (dwdα
wλ
uhh

), the marginal utility of income will increase.
Therefore, productivity-mapped wages will amplify the negative substitution effect of high-
risk workers and reduce the positive effect for low-risk workers, given the additional neg-
ative term (∂w∂αh) in (A.9). As discussed above, depending on the complementarity of
consumption and adverse-weather days, the income effect might work in the opposing dir-
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ection of the substitution effect. At high levels of hours worked, the income effect could
potentially dominate the substitution effect. In this case, the labour supply elasticity
would be negative. However, I consider this situation unlikely to apply to the Mexican
labour force due to the lack of empirical evidence of a negative elasticity (see Arceo Gómez
and Campos-Vázquez (2010)).

A.2 Maps of Mexican Municipalities

Figure A.2.1: Map of Mexican Municipality

Notes: 780 municipalities coloured in green are not included in the final sample.
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A.3 Distribution of Temperatures and Precipitation across
Region and Season

Figure A.3.1: Regional differences in temperatures and precipitation

(a) Temperature (°C)

(b) Precipitation (mm)
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Figure A.3.2: Quarterly differences in temperatures and precipitation

(a) Temperature (°C)

(b) Precipitation (mm)

A.4 Baseline Model Regression Tables
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Table A.4.1: Baseline Model Regression Table

(1) (2)

weekly earnings minutes worked

Temperature:
≤ 10°C -0.267 -3.293∗∗∗

(-0.16) (-2.74)

10-12°C -0.177 -1.345
(-0.07) (-1.21)

12-14°C -0.562 -1.222
(-0.33) (-1.38)

14-16°C -0.331 0.0356
(-0.36) (0.04)

16-18°C 0.594 -0.00098
(0.58) (-0.00)

18-20°C 1.014 -0.0502
(0.94) (-0.07)

20-22°C – –

22-24°C -1.088 0.0726
(-1.18) (0.11)

24-26°C 0.778 -0.351
(0.86) (-0.54)

26-28°C -0.191 0.257
(-0.17) (0.39)

28-30°C -0.367 1.136∗

(-0.33) (1.86)

30-32°C -2.628{**} -0.754
(-2.21) (-0.98)

32-34°C -1.31 0.0207
(-0.51) (0.02)

> 34°C -2.415 -0.781
(-1.31) (-0.60)

Precipitation:

= 0 mm -0.36 0.366
(-0.28) (0.38)

0-2 mm 0.279 -0.522
(0.22) (-0.55)

2-4 mm – –

4-6 mm 0.205 -0.595
(0.08) (-0.37)

6-8 mm -1.683 -0.894
(-0.79) (-0.48)

8-10 mm 1.447 0.232
(0.59) (0.12)

10-20 mm -0.377 -2.464∗

(-0.22) (-1.87)

20-30 mm -0.347 -12.05∗∗∗

(-0.13) (-5.08)

> 30 mm -4.89 -28.12∗∗∗

(-1.01) (-8.48)

Table continues on next page
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Table A.4.1: (Continued)

(1) (2)

weekly earnings minutes worked

Controls:

married 110.7∗∗∗ -20.53∗∗∗

(24.34) (-9.08)

female -320.7∗∗∗ -468.6∗∗∗

(-42.92) (-67.03)

age 39.33∗∗∗ 42.45∗∗∗

(25.81) (48.86)

age2 -0.413∗∗∗ -0.491∗∗∗

(-29.31) (-52.22)

secondary 89.09∗∗∗ 9.415∗∗∗

(15.65) (2.82)

preparatory 178.5∗∗∗ -36.95∗∗∗

(16.36) (-7.16)

university 509.5∗∗∗ -150.1∗∗∗

(22) (-20.29)

postgraduate 961.3∗∗∗ -13.82∗∗

(24.92) (-2.32)

unemp. rate -405.1∗∗∗ -494.2∗∗∗

(-2.96) (-10.03)

rural -61.66∗∗∗ -48.05∗∗∗

(-6.38) (-5.99)

medium 67.12∗∗∗ 97.36∗∗∗

(9.03) (14.24)

large 158.0∗∗∗ 54.09∗∗∗

(12.17) (6.12)

informal -186.3∗∗∗ -505.2∗∗∗

(-27.08) (-48.21)

permanent 168.2∗∗∗ 77.20∗∗∗

(23.58) (12.78)

constant 8.603 1895.9∗∗∗

(0.21) (73.04)

mun. fe × ×
sec time fe × ×
year fe × ×
qtr fe × ×

adjusted R2 0.115 0.146
F Stat. 1216.4 599.5
DF -5731675 -5731675
# clusters 1676 1676
N 7390147 7390147

Notes: Standard errors (in parentheses) are clustered
by municipality. Significance levels: ∗ 10 percent, ∗∗

5 percent, ∗∗∗ 1 percent. Covariates include marital
status, age, gender, education, rural, sector, contract
type, firm size, as well as municipality, month, and sec-
tor specific year and quarter fixed effects.
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A.5 Simple Weather Variables

Considering the controversy around the correct specification, prior to implementing a more
flexible functional-form approach, I estimate several initial regressions using noncomplex
specifications of weather variables. These more simple regressions serve the purpose of
comparability of the estimates with other studies, as well as providing a reference point
for the more complex structural models in the main regression analysis. I employ four
different temperature indicators in the analysis: (1) weekly mean temperatures (in ° C),
(2) weekly mean Wet Bulb Globe Temperature (WBGT) (in ° C), (3) weekly mean Heat
Index (HI) (in ° C), and (4) weekly total harmful degree-days (HDD) (in ° C). Harmful
degree-days capture the detrimental impact of extreme heat, taking into account the dur-
ation of the heat wave by summing excessive degrees over an upper threshold over time.
This heat indicator is constructed as the sum of the difference in temperatures above
35°C and the threshold. Alternative measures suggested by the literature are the WBGT
(Kjellstrom et al. 2018) measure and the HI (Heyes and Saberian 2019; Kim et al. 2006),
which measures the apparent temperature by factoring relative humidity with actual air
temperature. The formulas for the calculation for each alternative temperature measure
are provided in Appendices A.7.2 and A.7.1. Moreover, all the regressions include weekly
total precipitation (in mm).

A.5.1 Simple Linear Weather Variables

Table A.5.1 summarises the key predictions for the effect of linear weather variables on
earnings. We estimate a significant negative impact of the heat index on weekly earnings
in the municipality fixed-effects regression. An increase of 1°C measured in the form of the
HI reduces weekly earnings by 0.504 Mexican pesos, or one standard deviation increase
in the heat index reduces average weekly earnings by 3.19 pesos. Note that the predicted
coefficients for mean temperature and WBGT are of comparable size but insignificant.
Secondly, the results indicate no significant linear relationship between precipitation and
earnings. Similarly, the work-time estimates suggest a negative linear relationship between
HI and working time. A one-standard-deviation increase in the HI reduces average weekly
working time by 2.78 minutes. Contrary to the earnings regressions, I predict a negative
association between precipitation and weekly working times. An increase in total weekly
precipitation by one standard deviation (3.38 mm) reduces average working times in the
municipality by 1.40 minutes.
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Table A.5.1: Linear Weather Specification – Earnings Regression

(1) (2) (3) (4)

mean tempeartue (°C) -0.486
(-0.88)

WBGT (°C) -0.501
(-0.69)

HI (°C) -0.504∗∗∗

(-2.68)

HDD (°C) 0.00426
(0.16)

total wkly precip (mm) -0.0311 -0.0236 -0.0300 -0.0116
(-0.54) (-0.41) (-0.48) (-0.18)

mun. fe × × × ×
sec time fe × × × ×
year fe × × × ×
qtr fe × × × ×

adjusted R2 0.115 0.115 0.115 0.115
F Stat. 1176.1 1169.6 1171.3 1166.0
DF (554,1675) (554,1675) (554,1675) (554,1675)
# clusters 1,676 1,676 1,676 1,676
N
Ind. 2,632,000 2,632,000 2,632,000 2,632,000

Notes: Standard errors (in parentheses) are clustered by municipality. Significance
levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent. Covariates include marital status, age,
gender, education, rural, sector, contract type, firm size, as well as municipality, month,
and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation.

Table A.5.2: Linear Weather Specification – Working Time Regression

(1) (2) (3) (4)

mean tempeartue (°C) -0.00471
(-0.02)

WBGT (°C) -0.0572
(-0.15)

HI (°C) -0.441∗∗∗

(-3.33)

HDD (°C) -0.0419
(-0.78)

total wkly precip (mm) -0.415∗∗∗ -0.417∗∗∗ -0.431∗∗∗ -0.419∗∗∗

(-12.14) (-12.11) (-12.48) (-12.44)

mun. fe × × × ×
sec time fe × × × ×
year fe × × × ×
qtr fe × × × ×

adjusted R2 0.146 0.146 0.146 0.146
F Stat. 580.4 581.3 582.5 581.2
DF (554,1675) (554,1675) (554,1675) (554,1675)
# clusters 1,676 1,676 1,676 1,676
N
Ind. 2,632,000 2,632,000 2,632,000 2,632,000

Notes: Standard errors (in parentheses) are clustered by municipality. Significance
levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent. Covariates include marital status, age,
gender, education, rural, sector, contract type, firm size, as well as municipality, month,
and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation.
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Polynomial Weather Variables

Before moving to the preferred weather-variable specification, I estimate further sets of
regressions, including polynomial weather specifications. Table A.5.3 lists the earnings re-
gression estimates. Including squared and cubic terms, I predict a statistically significant
concave relationship between mean temperatures and earnings, with the optimal temper-
ature reached at around 17.81°C, after which income starts declining. Our predictions for
the impact of precipitation remain insignificant.

Our predictions for the working-time polynomial regressions indicate nonlinearities in
the impact of temperatures on minutes worked (see Table A.5.4). Both mean temperatures
and the WBGT estimates outline a cubic relationship between working times and temper-
ature. Based on mean temperature estimates, working times increase up to a temperature
of approximately 22°C, after which they decline until reaching a temperature of 40°. Once
this extreme level is reached, working times again rise rapidly. Our results further suggest
that rainfall decreases working times at an increasing rate, with the quadratic specification
providing the best fit for the relationship between rainfall and working times.
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Table A.5.3: Polynomial Weather Specification – Earnings Regression

(1) (2) (3) (4) (5) (6) (7) (8)

mean temp. (°C) 2.238 3.165
(1.61) (0.73)

mean temp.2 (°C) -0.0609∗∗ -0.106
(-2.28) (-0.50)

mean temp.3 (°C) 0.000671
(0.21)

WBGT (°C) 3.705∗∗ 7.665
(1.97) (0.90)

WBGT2 (°C) -0.104∗∗ -0.312
(-2.39) (-0.70)

WBGT3 (°C) 0.00345
(0.45)

HI (°C) -0.186 4.239
(-0.14) (0.82)

HI2 (°C) -0.00548 -0.162
(-0.22) (-0.87)

HI3 (°C) 0.00175
(0.82)

HDD (°C) -0.133 -0.0953
(-1.21) (-0.55)

HDD2 (°C) 0.0004∗ 0.0001
(1.83) (0.15)

HDD3 (°C) 0.0000
(0.46)

total wkly -0.0213 -0.0661 -0.0002 -0.0373 -0.0039 -0.0439 0.0269 0.0035
precip. (mm) (-0.27) (-0.48) (-0.00) (-0.25) (-0.04) (-0.29) (0.31) (0.02)
total wkly -0.0002 0.0007 -0.0003 0.0004 -0.000248 0.0005 -0.0004 0.0001
precip.2 (mm) (-0.23) (0.34) (-0.34) (0.22) (-0.31) (0.27) (-0.52) (0.03)
total wkly -0.0000 -0.0000 -0.0000 -0.0000
precip.3 (mm) (-0.48) (-0.40) (-0.45) (-0.26)

mun. fe × × × × × × × ×
sec time fe × × × × × × × ×
year fe × × × × × × × ×
qtr fe × × × × × × × ×

adjusted R2 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115
F Stat. 1212.8 1213.3 1205.2 1211.1 1190.6 1198.7 1201.6 1222.8
DF (556,1675) (558,1675) (556,1675) (558,1675) (556,1675) (558,1675) (556,1675) (558,1675)
# clusters 1,676 1,676 1,676 1,676 1,676 1,676 1,676 1,676
N 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147
Ind. 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000

Notes: Standard errors (in parentheses) are clustered by municipality. Significance levels: ∗ 10 percent, ∗∗ 5 percent,
∗∗∗ 1 percent. Covariates include marital status, age, gender, education, rural, sector, contract type, firm size, as well
as municipality, month, and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation.
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Table A.5.4: Polynomial Weather Specification – Working Time Regression

(1) (2) (3) (4) (5) (6) (7) (8)

mean temp. (°C) 2.778∗∗∗ 5.592∗∗

(3.42) (1.99)
mean temp.2 (°C) -0.0592∗∗∗ -0.196

(-3.25) (-1.47)
mean temp.3 (°C) 0.00209

(1.02)
WBGT (°C) 3.421∗∗∗ 12.12∗∗∗

(2.89) (2.71)
WBGT2 (°C) -0.0834∗∗∗ -0.542∗∗

(-2.91) (-2.37)
WBGT2 (°C) 0.0077∗∗

(2.02)
HI (°C) -0.313 0.238

(-0.50) (0.11)
HI2 (°C) -0.00132 -0.0201

(-0.12) (-0.26)
HI2 (°C) 0.0002

(0.25)
HDD (°C) 0.0415 0.0983

(0.36) (0.87)
HDD2 (°C) -0.0002 -0.0006

(-1.01) (-1.22)
HDD2 (°C) 0.0000

(0.82)
total wkly -0.193∗∗∗ -0.112 -0.192∗∗∗ -0.110 -0.211∗∗∗ -0.135 -0.183∗∗∗ -0.0920
precip. (mm) (-2.95) (-1.13) (-2.90) (-1.11) (-3.22) (-1.38) (-2.85) (-0.96)
total wkly -0.0021∗∗∗ -0.0036∗∗ -0.0021∗∗∗ -0.0036∗∗ -0.0020∗∗∗ -0.0035∗∗ -0.0022∗∗∗ -0.0038∗∗

precip.2 (mm) (-3.60) (-2.28) (-3.58) (-2.26) (-3.46) (-2.19) (-3.70) (-2.46)
total wkly 0.0000 0.0000 0.0000 0.0000
precip.2 (mm) (0.92) (0.91) (0.88) (1.04)

mun. fe × × × × × × × ×
sec time fe × × × × × × × ×
year fe × × × × × × × ×
qtr fe × × × × × × × ×

adjusted R2 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146
F Stat. 595.3 595.8 596.1 595.8 599.3 598.0 597.3 612.2
DF (556,1675) (558,1675) (556,1675) (558,1675) (556,1675) (558,1675) (556,1675) (558,1675)
# clusters 1,676 1,676 1,676 1,676 1,676 1,676 1,676 1,676
N 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147
Ind. 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000

Notes: Standard errors (in parentheses) are clustered by municipality. Significance levels: ∗ 10 percent, ∗∗ 5 percent,
∗∗∗ 1 percent. Covariates include marital status, age, gender, education, rural, sector, contract type, firm size, as well
as municipality, month, and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation.
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A.6 Residual Variation

In view of the spatiotemporal higher dimensional fixed-effects structure of the regression
specification, it is essential to analyse how much variation in the weather variables is
stripped away by the fixed effects. Following Guiteras (2009) and Jessoe et al. (2018), I
regress each weather measure on various definitions of fixed effects and time trends (none;
municipality fixed effects; municipality fixed effects and year trend; municipality fixed
effects and higher polynomial year trends; municipality, quarter, and year fixed effects;
municipality, region×year, and quarter fixed effects; municipality and state×year, and
quarter fixed effects; individual, year and quarter fixed effects). The residual variation of
each regression provides a measure of the remaining variation left for the identification
of weather impacts. I follow Guiteras’s (2009) approach and run separate regressions for
each bin b on the various fixed-effects specifications. I next calculate the absolute value
of the residuals from each regression. Each entry in Table A.6.1 depicts the mean across
municipalities over time. The mean value times the number of municipality-by-quarter
observations yields the number of observations available to identify the weather impact for
the respective interval. The final numbers in Table A.6.1 can be interpreted as the mean
number of days per district-year-quarter available for the identification of the impact of
each bin, after controlling for the particular spatiotemporal error structure. The larger the
number of remaining observations, the better and more precise will be the identification
of the weather-bin impacts.

Ideally, one would like to have a significant residual variation above reasonable cut-off
points. As becomes evident from the results, the remaining variation declines substantially
with more complex time fixed effects. Results differ only a little between time trends and
year fixed effects, with year fixed effects removing slightly more variation in the weather
variables. Considering the short period of data collection, the loss in variation suggests
abnormal weather for one or more years compared to the overall trend. Year dummies
will remove some of this unusual variation. However, in light of the modest difference in
residual variation between year trends and year fixed effects, I prefer to include year fixed
effects, as this specification more appropriately controls for exogenous shocks to labour
markets. The sector-specific year and quarter fixed effects reduce the residual variation in
the climate variables substantially. In light of seasonality both in climate and in sectoral
productivity, dropping industry-specific quarterly fixed effects from the regression could
generate substantial bias in the estimates.

The final specification test based on individual fixed effects again results in a signific-
ant loss in variation, which may render the identification of weather impacts using this
empirical strategy difficult. In light of the previous findings, all the regressions include
industry-specific year and quarter, as well as month and municipality fixed-effects specific-
ation.1 It is important to note that given the loss in weather variation under the preferred
fixed effects strategy, any interpretation of large weather fluctuations should be made with
caution. The latter requires a large variation in individual weather exposure over the five
weekly observations in the panel.

1. Section 2.7 tests the robustness of the preferred specification to the introduction of different fixed-
effects structures.
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A.7 Apparent Temperature Measures

A.7.1 The Heat Index

An alternative measure suggested by the literature is the HI (Heyes and Saberian 2019;
Kim et al. 2006), which measures the perceived temperature by factoring relative hu-
midity with actual air temperature. In the construction of the HI, I follow the U.S.
National Weather Service approach (National Oceanic and Atmospheric Administration
and National Weather Service 2017, hereafter NOAA and NWS) by using Lans P. Rothfusz
(Rothfusz 1990) equation and applying several adjustments to it. The Rothfusz equation
is given by:

HI =− 42.379 + 2.04901523× T + 10.14333127×RH − 0.22475541× T ×RH
− 0.00683783× T 2 − 0.05481717×RH2 + 0.00122874× T 2 ×RH
+ 0.00122874× T ×RH2 − 0.00000199× T 2RH2 ,

where T is temperature in °F and RH is relative humidity in percent. Further adjustments
must be made for the following combinations of RH and T .

If RH less than 13 per cent and temperature between 80 and 112°F

HIadj = HI − 13−RH
4

×
√

17− |T − 95|
17

. (A.11)

If RH is greater than 85 per cent and the temperature is between 80 and 87°F:

HIadj = HI +
RH − 85

10
× 87− T

5
. (A.12)

The use of the Rothfusz regression is not appropriate for temperatures below 80°F. At
these temperatures, a more simple formula is used:

HI = 0.5× (T + 61 + (T − 68)× 1.2 +RH ∗ 0.094) . (A.13)

Finally, for the purpose of comparability with the average temperature measurement, I
transformed the unit of measurement from °F to ° C.

Table A.7.1 below shows the implication of different temperature ranges for health.

Table A.7.1: Health effects of different Heat Index bands

27-32°C Caution: Fatigue is possible with prolonged exposure and or physical activity.

32-41°C Extreme Caution: Sunstroke, muscle cramps, and/or heat exhaustion possible
with prolonged exposure and/or physical activity.

41-54°C Danger: Sunstroke, muscle cramps, and/or heat exhaustion likely. Heatstroke
possible with prolonged exposure and/or physical activity.

over 54°C Extreme Danger: Heatstroke likely.

Results
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Figure A.7.1: Distribution of daily Heat Index bins per week

Notes: Period of observation 2005-2016. The bar height captures the incidence of days with weather falling into

the respective bin across municipality per week.

Figure A.7.2: HI Weather Bins Coefficient Plots - Earnings Regression

(a) Temperature

−15

−10

−5

0

5

10

w
ee

kl
y 

ea
rn

in
gs

<10 12 14 16 18 20 22 24 26 28 30 32 34 >34

®

(b) Precipitation

−15

−10

−5

0

5

w
ee

kl
y 

ea
rn

in
gs

0 2 4 6 8 10 10−20 20−30 >30

®

Notes: Figure depicts marginal effects of weather bins on weekly earnings. N=7,390,147, Ind.=2,632,000. The 95%
confidence interval indicated by markers. Covariates include marital status, age, gender, education, rural, industry,
contract type, firm size, as well as municipality, industry-specific year and quarter as well as month fixed effects.
The omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality
level.
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Figure A.7.3: HI Weather Bins Coefficient Plots - Working Time Regression
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Notes: The figure depicts marginal effects of weather bins on weekly minutes worked. N=7,390,147, Ind.=2,632,000.
The 95% confidence interval indicated by markers. Covariates include marital status, age, gender, education, rural,
industry, contract type, firm size, as well as municipality, industry-specific year and quarter as well as month fixed
effects. The omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the
municipality level.
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Figure A.7.6: HI Work Location Marginal Effects on Earnings
outdoor vs indoor

(a) Heat Index
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Figure A.7.6: HI Work Location Marginal Effects on Earnings (continued)
metro vs non-metro area
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.7.7: HI Work Location Marginal Effects on Working Time
outdoor vs indoor

(a) Heat Index
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Figure A.7.7: HI Work Location Marginal Effects on Working Time (continued)
metro vs non-metro area
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.7.8: HI Job Characteristics Marginal Effects on Earnings
formal vs informal
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Figure A.7.8: HI Job Characteristics Marginal Effects on Earnings (continued)
above vs below official minimum wage
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.7.9: HI Job Characteristics Marginal Effects on Working Time
formal vs informal
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Figure A.7.9: HI Job Characteristics Marginal Effects on Working Time
(continued)

above vs below official minimum wage
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.7.10: HI Individual Characteristics Marginal Effects on Earnings
male vs female
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.7.11: HI Individual Characteristics Marginal Effects on Working Time
male vs female
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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A.7.2 Wet Bulb Globe Temperature

This Appendix presents results using the WBGT as an alternative measure of temperature.
The WBGT measure traditionally is constructed using the information on temperature,
humidity, wind speed, sun angle and cloud cover (solar radiation) and is recommended
by the International Standard Organisation as occupational heat-stress index (Standard-
ization 2017). In contrast to the heat index, WBGT attempts to measure heat stress in
the sunlight while the heat index is calculated for shady areas. The WBGT has been
applied frequently as an apparent temperature measure in the context of labour markets
(Kjellstrom et al. 2009; Lemke and Kjellstrom 2012; Sudarshan et al. 2015). Lemke and
Kjellstrom (2012) show that the WBGT can be approximated using the following formula:

WBGT = 0.567Ta + 0.216ρ+ 3.38,

ρ = (RH/100)× 6.105 exp(
17.27Ta

237.3 + Ta
) (A.14)

where Ta represents air temperature in ° C and ρ vapour pressure calculated from relative
humidity (RH).

Figure A.7.12: Distribution of Wet Bulb Globe Temperature bins per week

Notes: Period of observation 2005-2016. The bar height captures the incidence of days with weather falling into

the respective bin across municipality per week.

Results
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Figure A.7.13: WBGT Weather Bins Coefficient Plots - Earnings Regression

(a) WBGT
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Notes: Figure depicts marginal effects of weather bins on weekly earnings. N=7,390,147, Ind.=2,632,000. The 95%
confidence interval indicated by markers. Covariates include marital status, age, gender, education, rural, industry,
contract type, firm size, as well as municipality, industry-specific year and quarter as well as month fixed effects.
The omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality
level.

Figure A.7.14: WBGT Weather Bins Coefficient Plots - Working Time
Regression
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Notes: The figure depicts marginal effects of weather bins on weekly minutes worked. N=7,390,147, Ind.=2,632,000.
The 95% confidence interval indicated by markers. Covariates include marital status, age, gender, education, rural,
industry, contract type, firm size, as well as municipality, industry-specific year and quarter as well as month fixed
effects. The omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the
municipality level.
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Figure A.7.17: WBGT Work Location Marginal Effects on Earnings
outdoor vs indoor

(a) WBGT
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Figure A.7.17: WBGT Work Location Marginal Effects on Earnings (continued)
metro vs non-metro area

(g) WBGT
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.7.18: WBGT Work Location Marginal Effects on Working Time
outdoor vs indoor

(a) WBGT
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Figure A.7.18: WBGT Work Location Marginal Effects on Working Time
(continued)

metro vs non-metro area

(g) WBGT

−200

−100

0

100

200

m
in

ut
es

 w
or

ke
d

<10 12 14 16 18 20 22 24 26 28 30 32 34 >34

non−metro

metro

®

(h) precipitation

−60

−40

−20

0

20

m
in

ut
es

 w
or

ke
d

0 2 4 6 8 10 10−20 20−30 >30

non−metro

metro

®

domestic vs non-domestic

(i) WBGT

−100

0

100

200

300

m
in

ut
es

 w
or

ke
d

<10 12 14 16 18 20 22 24 26 28 30 32 34 >34

non−domestic

domestic

®

(j) precipitation

−40

−20

0

20

m
in

ut
es

 w
or

ke
d

0 2 4 6 8 10 10−20 20−30 >30

non−domestic

domestic

®

Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.7.19: WBGT Job Characteristics Marginal Effects on Earnings
formal vs informal

(a) WBGT
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Figure A.7.19: WBGT Job Characteristics Marginal Effects on Earnings
(continued)

above vs below official minimum wage

(g) WBGT
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.7.20: WBGT Job Characteristics Marginal Effects on Working Time
formal vs informal

(a) WBGT
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Figure A.7.20: WBGT Job Characteristics Marginal Effects on Working Time
(continued)

above vs below official minimum wage

(g) WBGT
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.7.21: WBGT Individual Characteristics Marginal Effects on Earnings
male vs female
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.7.22: WBGT Individual Characteristics Marginal Effects on Working
Time

male vs female
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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A.8 Subsample Regressions
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Figure A.8.3: Work Location Subsample Effects on Earnings
outdoor vs indoor
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Figure A.8.3: Work Location Subsample Effects on Earnings (continued)
metro vs non-metro area
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Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.8.4: Work Location Subsample Effects on Working Time
outdoor vs indoor
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Figure A.8.4: Work Location Subsample Effects on Working Time (continued)
metro vs non-metro area
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Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95%
confidence interval indicated by markers. Covariates include marital status, age, gender,
education, rural, industry, contract type, firm size, as well as municipality, industry-specific
year and quarter as well as month fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation. Standard errors are clustered at the municipality level.
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A.9 Individual Fixed Effects

This Appendix presents individual fixed-effects regressions. Estimated average effects are
comparable to the baseline results with municipality fixed effects. A striking result is
split-sample industry-specific weather effects on earnings (Figure A.9.3). After controlling
for individual-specific temperature and rainfall sensitivity and exposure, extreme heat
consistently has a positive effect on earnings. Cold temperatures above 10°C reduce earn-
ings across sectors, while extreme cold effects are more diverse. Similarly, I find extreme
and zero-rainfall days have a positive effect on earnings. In contrast to earnings, sectoral
working-time subsample impacts are very similar to the municipality regressions (Figure
A.9.4).

Similar to the preferred specification, I observe heat- and extreme-rainfall-related earn-
ings losses for outdoor and non-office work with corresponding reductions in working times
(see Figure A.9.5 and A.9.6). Estimated heat impacts on outdoor working times increase
in size and significance. On average, extreme rainfall impacts become stronger using an
individual fixed-effects specification. Cold effects affect both outdoor and indoor working
times.

Heterogeneous estimates by job and individual characteristics again differ significantly
from the municipality-level results. Earlier strong effects on informal workers, minimum-
wage earners, and those with flexible earnings disappear. Moreover, after controlling for
unobserved individual heterogeneity, systematic gender, age and education differences in
the weather impact on earnings disappear. Again, heat effects on working times turn
negative or insignificant, while extreme precipitation impacts are mostly consistent with
the earlier findings.

In summary, the individual fixed-effects regressions results suggest that individual sens-
itivity and exposure to temperature are an essential determinant of the direction and size
of weather-related earnings and working-time fluctuations. The latter should be taken
into consideration when estimating labour-market effects.

Figure A.9.1: Ind. FE Weather Bins Coefficient Plots – Earnings Regressions
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Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Each figure displays the estimated impact of the weather variable on weekly earnings. Covariates include
individual, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.9.2: Ind. FE Weather Bins Coefficient Plots – Working Time
Regressions
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Notes: The figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Each figure displays the estimated impact of the weather variable on weekly earnings.
Covariates include individual, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.9.5: Ind. FE Work Location – Earnings Regressions
outdoor vs indoor
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Figure A.9.5: Ind. FE Work Location – Earnings Regressions (continued)
metro vs non-metro area
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Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated
by markers. Covariates include individual, industry-specific year and quarter as well as month fixed effects. The
omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.9.6: Ind. FE Work Location – Working Time Regressions
outdoor vs indoor
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Figure A.9.6: Ind. FE Work Location – Working Time Regressions (continued)
metro vs non-metro area
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Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95%
confidence interval indicated by markers. Covariates include individual, industry-specific
year and quarter as well as month fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.9.7: Ind. FE Job Characteristics – Earnings Regressions
formal vs informal

(a) temperature

−10

−5

0

5

w
ee

kl
y 

ea
rn

in
gs

<10 12 14 16 18 20 22 24 26 28 30 32 34 >34

formal

informal

®

(b) precipitation

−10

−5

0

5

10

w
ee

kl
y 

ea
rn

in
gs

0 2 4 6 8 10 10−20 20−30 >30

formal

informal

®

permanent vs temporary

(c) temperature

−10

−5

0

5

w
ee

kl
y 

ea
rn

in
gs

<10 12 14 16 18 20 22 24 26 28 30 32 34 >34

temporary

permanent

®

(d) precipitation

−20

−10

0

10

20

w
ee

kl
y 

ea
rn

in
gs

0 2 4 6 8 10 10−20 20−30 >30

temporary

permanent

®

union vs non-union

(e) temperature

−10

−5

0

5

10

w
ee

kl
y 

ea
rn

in
gs

<10 12 14 16 18 20 22 24 26 28 30 32 34 >34

non−union

union

®

(f) precipitation

−20

−10

0

10

20

w
ee

kl
y 

ea
rn

in
gs

0 2 4 6 8 10 10−20 20−30 >30

non−union

union

®



236

Figure A.9.7: Ind. FE Job Characteristics – Earnings Regressions (continued)
above vs below official minimum wage
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Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include individual, industry-specific year and quarter as well as month fixed
effects. The omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the
municipality level.
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Figure A.9.8: Ind. FE Job Characteristics – Working Time Regressions
formal vs informal
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Figure A.9.8: Ind. FE Job Characteristics – Working Time Regressions
(continued)

above vs below official minimum wage
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Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include individual, industry-specific year and quarter as well as month fixed
effects. The omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the
municipality level.
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Figure A.9.9: Ind. FE Individual Characteristics – Earnings Regressions
male vs female
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textitNotes: Figure depicts marginal effects of weather bins on weekly earnings (in 2010 pesos). The 95% confidence
interval indicated by markers. Covariates include individual, industry-specific year and quarter as well as month
fixed effects. The omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the
municipality level.
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Figure A.9.10: Ind. FE Individual Characteristics – Working Time Regressions
male vs female
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Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include individual, industry-specific year and quarter as well as month fixed
effects. The omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the
municipality level.
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A.10 Counterfactual Cost Estimates

A.10.1 2016 Weather Cost Estimates
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A.10.3 Two-Degree Temperature Increase Cost Projections
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A.11 Alternative Fixed Effects Specifications

The following tables show re-estimations of the key models using different fixed-effects
specifications and alternative time trends.
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Table A.11.1: Alternative Fixed Effects – Earnings Regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Temperature
≤ 10°C -1.066 -1.632 -1.058 -1.554 -2.237 -1.807 -2.019 -1.746 -0.267

(-0.62) (-0.97) (-0.62) (-0.90) (-1.35) (-1.08) (-1.19) (-1.10) (-0.16)
10-12°C -1.149 -1.549 -1.261 -1.659 -2.380 -2.214 -2.486 -3.084∗ -0.177

(-0.50) (-0.68) (-0.55) (-0.72) (-1.09) (-1.02) (-1.12) (-1.93) (-0.07)
12-14°C -1.259 -1.793 -1.503 -1.732 -2.555∗ -2.455∗ -2.668∗ -1.996∗ -0.562

(-0.80) (-1.19) (-0.99) (-1.12) (-1.86) (-1.78) (-1.88) (-1.72) (-0.33)
14-16°C -0.667 -1.223 -0.863 -0.877 -1.920∗∗ -1.730∗ -1.771∗ -1.875∗∗ -0.331

(-0.74) (-1.34) (-0.94) (-0.95) (-2.13) (-1.90) (-1.96) (-2.14) (-0.36)
16-18°C 0.131 -0.315 -0.0431 0.0291 -0.793 -0.683 -0.601 -0.368 0.594

(0.13) (-0.33) (-0.04) (0.03) (-0.89) (-0.76) (-0.64) (-0.49) (0.58)
18-20°C 1.060 0.780 0.877 1.071 0.543 0.581 0.774 0.838 1.014

(1.00) (0.75) (0.83) (1.00) (0.53) (0.56) (0.73) (0.91) (0.94)
20-22°C – – – – – – – – –
22-24°C -1.183 -1.257 -1.292 -1.304 -1.137 -1.117 -1.022 -1.152 -1.088

(-1.28) (-1.40) (-1.42) (-1.41) (-1.25) (-1.22) (-1.08) (-1.47) (-1.18)
24-26°C 0.752 0.807 0.736 0.783 0.955 0.976 1.077 1.361∗ 0.778

(0.85) (0.92) (0.84) (0.87) (1.17) (1.18) (1.29) (1.68) (0.86)
26-28°C -0.289 -0.0198 -0.230 -0.112 0.186 0.112 0.272 0.141 -0.191

(-0.27) (-0.02) (-0.21) (-0.10) (0.17) (0.10) (0.25) (0.15) (-0.17)
28-30°C -0.273 0.258 -0.0644 0.0811 0.930 0.791 0.883 0.945 -0.367

(-0.25) (0.24) (-0.06) (0.07) (0.92) (0.79) (0.87) (1.00) (-0.33)
30-32°C -2.683∗∗ -2.301∗∗ -2.841∗∗∗ -3.018∗∗∗ -1.363 -1.619 -1.782∗ -0.405 -2.628∗∗

(-2.47) (-2.07) (-2.60) (-2.75) (-1.36) (-1.63) (-1.79) (-0.45) (-2.21)
32-34°C -1.296 -0.342 -0.694 -1.105 0.611 0.558 0.210 0.186 -1.310

(-0.49) (-0.13) (-0.26) (-0.42) (0.24) (0.22) (0.08) (0.12) (-0.51)
> 34°C -2.374 -1.970 -2.422 -2.400 -0.927 -1.110 -1.085 -0.467 -2.415

(-1.27) (-1.06) (-1.32) (-1.30) (-0.54) (-0.64) (-0.63) (-0.40) (-1.31)
Precipitation

= 0 mm -0.298 -0.926 -0.466 -0.375 -1.883 -1.533 -0.929 -0.550 -0.360
(-0.24) (-0.76) (-0.38) (-0.31) (-1.51) (-1.23) (-0.76) (-0.52) (-0.28)

0-2 mm 0.0905 -0.149 0.320 0.386 -0.901 -0.562 -0.218 -0.296 0.279
(0.07) (-0.12) (0.26) (0.31) (-0.72) (-0.45) (-0.18) (-0.25) (0.22)

2-4 mm – – – – – – – – –
4-6 mm -0.131 -1.015 -0.616 -0.351 -0.936 -0.558 -0.126 -0.884 0.205

(-0.05) (-0.43) (-0.26) (-0.15) (-0.40) (-0.24) (-0.05) (-0.47) (0.08)
6-8 mm -1.969 -2.221 -2.044 -1.956 -2.049 -1.847 -1.597 -3.392∗ -1.683

(-0.92) (-1.02) (-0.95) (-0.90) (-0.94) (-0.86) (-0.73) (-1.68) (-0.79)
8-10 mm 1.656 1.908 2.260 1.883 2.189 2.557 2.322 2.364 1.447

(0.67) (0.77) (0.92) (0.76) (0.90) (1.05) (0.95) (1.10) (0.59)
10-20 mm -0.521 -0.843 -0.420 -0.818 -0.448 -0.0101 -0.242 -0.467 -0.377

(-0.30) (-0.47) (-0.24) (-0.46) (-0.26) (-0.01) (-0.14) (-0.31) (-0.22)
20-30 mm -0.564 -2.016 -1.352 -0.476 -1.885 -1.257 -0.272 -1.255 -0.347

(-0.21) (-0.72) (-0.48) (-0.18) (-0.67) (-0.45) (-0.10) (-0.47) (-0.13)
> 30 mm -4.273 -4.632 -3.862 -3.069 -4.949 -4.236 -3.450 -4.065 -4.890

(-0.86) (-0.89) (-0.75) (-0.62) (-0.95) (-0.81) (-0.69) (-1.11) (-1.01)

controls × × × × × × × × ×
month fe ×
qtr fe × × × × ×
year fe ×
year trend × × ×
year trend2 × ×
year trend3 ×
qtr trend × × ×
qtr trend2 × ×
qtr trend3 ×
mun×year ×
sector time fe ×

adjusted R2 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.117 0.115
F Stat. 561.0 571.5 564.3 566.2 580.2 567.8 574.9 – 1216.4
DF (59,1675) (49,1675) (50,1675) (51,1675) (46,1675) (47,1675) (48,1675) (48,1675) (573,1675)
# clusters 1,676 1,676 1,676 1,676 1,676 1,676 1,676 1,676 1,676
N 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147
# ind. 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000

Notes: Standard errors (in parentheses) are clustered by municipality. Significance levels: ∗ 10 percent, ∗∗

5 percent, ∗∗∗ 1 percent. Covariates include municipality, month, and sector specific year and quarter fixed
effects.
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Table A.11.2: Alternative Fixed Effects – Working Time Regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Temperature
≤ 10°C -2.832∗∗ -2.919∗∗ -2.691∗∗ -2.602∗∗ -2.992∗∗∗ -2.823∗∗ -2.799∗∗ -2.849∗∗ -3.293∗∗∗

(-2.48) (-2.56) (-2.39) (-2.32) (-2.67) (-2.53) (-2.52) (-2.54) (-2.74)
10-12°C -0.523 -0.646 -0.531 -0.460 -0.454 -0.389 -0.359 -0.496 -1.345

(-0.49) (-0.61) (-0.50) (-0.43) (-0.43) (-0.36) (-0.34) (-0.49) (-1.21)
12-14°C -0.729 -0.823 -0.708 -0.667 -0.581 -0.542 -0.519 -1.077 -1.222

(-0.86) (-0.97) (-0.84) (-0.79) (-0.70) (-0.65) (-0.62) (-1.29) (-1.38)
14-16°C 0.190 0.0705 0.213 0.216 0.339 0.414 0.419 0.114 0.0356

(0.24) (0.09) (0.27) (0.27) (0.44) (0.54) (0.55) (0.14) (0.04)
16-18°C -0.199 -0.297 -0.189 -0.202 -0.0416 0.00169 -0.00727 -0.314 -0.000977

(-0.30) (-0.45) (-0.28) (-0.30) (-0.06) (0.00) (-0.01) (-0.48) (-0.00)
18-20°C -0.381 -0.347 -0.309 -0.344 -0.160 -0.145 -0.166 -0.297 -0.0502

(-0.52) (-0.48) (-0.42) (-0.47) (-0.22) (-0.20) (-0.23) (-0.42) (-0.07)
20-22°C – – – – – – – – –
22-24°C -0.0356 -0.0351 -0.0491 -0.0469 -0.541 -0.533 -0.543 -0.0610 0.0726

(-0.05) (-0.05) (-0.07) (-0.07) (-0.75) (-0.74) (-0.76) (-0.09) (0.11)
24-26°C -0.137 -0.174 -0.202 -0.211 -0.896 -0.887 -0.899 -0.00687 -0.351

(-0.20) (-0.26) (-0.30) (-0.31) (-1.30) (-1.28) (-1.30) (-0.01) (-0.54)
26-28°C -0.215 -0.0756 -0.159 -0.180 -1.171∗ -1.200∗ -1.218∗ 0.0513 0.257

(-0.32) (-0.11) (-0.24) (-0.27) (-1.73) (-1.78) (-1.80) (0.08) (0.39)
28-30°C 0.956 1.088∗ 0.960 0.934 0.744 0.689 0.679 1.129∗ 1.136∗

(1.54) (1.75) (1.53) (1.50) (1.14) (1.06) (1.04) (1.82) (1.86)
30-32°C -0.340 -0.263 -0.478 -0.446 -1.026 -1.127 -1.109 -0.0513 -0.754

(-0.42) (-0.33) (-0.60) (-0.56) (-1.26) (-1.39) (-1.36) (-0.07) (-0.98)
32-34°C 0.767 0.759 0.619 0.692 -0.338 -0.359 -0.321 0.889 0.0207

(0.67) (0.67) (0.55) (0.61) (-0.30) (-0.32) (-0.28) (0.85) (0.02)
> 34°C 0.339 0.449 0.269 0.265 0.0301 -0.0421 -0.0449 0.0468 -0.781

(0.25) (0.33) (0.20) (0.20) (0.02) (-0.03) (-0.03) (0.04) (-0.60)
Precipitation

= 0 mm 0.526 0.684 0.867 0.851 -1.666∗ -1.528∗ -1.594∗ 1.469 0.366
(0.56) (0.71) (0.90) (0.88) (-1.84) (-1.68) (-1.76) (1.62) (0.38)

0-2 mm -0.520 -0.351 -0.165 -0.177 -2.120∗∗ -1.987∗∗ -2.024∗∗ -0.0182 -0.522
(-0.56) (-0.37) (-0.17) (-0.19) (-2.27) (-2.13) (-2.18) (-0.02) (-0.55)

2-4 mm – – – – – – – – –
4-6 mm -0.829 -0.843 -0.685 -0.732 -1.163 -1.013 -1.061 -0.768 -0.595

(-0.52) (-0.53) (-0.43) (-0.46) (-0.72) (-0.63) (-0.66) (-0.49) (-0.37)
6-8 mm -0.884 -0.979 -0.908 -0.924 -1.409 -1.329 -1.356 -0.517 -0.894

(-0.47) (-0.51) (-0.47) (-0.49) (-0.75) (-0.70) (-0.72) (-0.28) (-0.48)
8-10 mm 0.659 0.476 0.616 0.683 0.197 0.342 0.368 -0.532 0.232

(0.34) (0.25) (0.32) (0.35) (0.10) (0.18) (0.19) (-0.28) (0.12)
10-20 mm -2.553∗ -2.618∗∗ -2.450∗ -2.378∗ -2.651∗∗ -2.479∗ -2.454∗ -1.660 -2.464∗

(-1.95) (-1.98) (-1.84) (-1.79) (-2.03) (-1.88) (-1.87) (-1.30) (-1.87)
20-30 mm -12.48∗∗∗ -12.12∗∗∗ -11.85∗∗∗ -12.01∗∗∗ -12.12∗∗∗ -11.87∗∗∗ -11.98∗∗∗ -11.37∗∗∗ -12.05∗∗∗

(-5.17) (-5.04) (-4.93) (-4.99) (-5.03) (-4.93) (-4.98) (-4.87) (-5.08)
> 30 mm -29.34∗∗∗ -28.61∗∗∗ -28.30∗∗∗ -28.45∗∗∗ -29.15∗∗∗ -28.87∗∗∗ -28.96∗∗∗ -27.50∗∗∗ -28.12∗∗∗

(-8.77) (-8.42) (-8.38) (-8.46) (-8.54) (-8.51) (-8.56) (-8.33) (-8.48)

controls × × × × × × × × ×
month fe ×
qtr fe × × × × ×
year fe ×
year trend × × ×
year trend2 × ×
year trend3 ×
qtr trend × × ×
qtr trend2 × ×
qtr trend3 ×
mun×year ×
sector time fe ×

adjusted R2 0.146 0.145 0.145 0.145 0.145 0.145 0.145 0.146 0.146
F Stat. 328.9 393.2 383.5 375.3 396.1 385.2 377.2 – 599.5
DF (59,1675) (49,1675) (50,1675) (51,1675) (46,1675) (47,1675) (48,1675) (48,1675) (573,1675)
# clusters 1,676 1,676 1,676 1,676 1,676 1,676 1,676 1,676 1,676
N 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147
# ind. 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000

Notes: Standard errors (in parentheses) are clustered by municipality. Significance levels: ∗ 10 percent, ∗∗

5 percent, ∗∗∗ 1 percent. Covariates include municipality, month, and sector specific year and quarter fixed
effects.
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A.12 Alternative Cluster Specification

Results presented in this section are estimated specifying clusters at the state-panel-group
level.

Table A.12.1: Alternative Cluster Specification – Earnings Regressions

(1) (2) (3) (4) (5)

Temperature
≤ 10°C -0.267 -0.267 -0.267 -0.267 -0.267

(-0.16) (-0.11) (-0.12) (-0.12) (-0.11)
10-12°C -0.177 -0.177 -0.177 -0.177 -0.177

(-0.07) (-0.06) (-0.07) (-0.06) (-0.05)
12-14°C -0.562 -0.562 -0.562 -0.562 -0.562

(-0.33) (-0.28) (-0.33) (-0.30) (-0.24)
14-16°C -0.331 -0.331 -0.331 -0.331 -0.331

(-0.36) (-0.21) (-0.21) (-0.25) (-0.20)
16-18°C 0.594 0.594 0.594 0.594 0.594

(0.58) (0.40) (0.47) (0.47) (0.35)
18-20°C 1.014 1.014 1.014 1.014 1.014

(0.94) (0.60) (0.84) (0.69) (0.56)
20-22°C – – – – –
22-24°C -1.088 -1.088 -1.088 -1.088 -1.088

(-1.18) (-0.70) (-0.77) (-0.87) (-0.66)
24-26°C 0.778 0.778 0.778 0.778 0.778

(0.86) (0.54) (0.73) (0.59) (0.51)
26-28°C -0.191 -0.191 -0.191 -0.191 -0.191

(-0.17) (-0.11) (-0.15) (-0.13) (-0.10)
28-30°C -0.367 -0.367 -0.367 -0.367 -0.367

(-0.33) (-0.23) (-0.25) (-0.24) (-0.21)
30-32°C -2.628∗∗ -2.628 -2.628∗ -2.628 -2.628

(-2.21) (-1.24) (-1.82) (-1.61) (-1.19)
32-34°C -1.310 -1.310 -1.310 -1.310 -1.310

(-0.51) (-0.43) (-0.45) (-0.44) (-0.43)
> 34°C -2.415 -2.415 -2.415 -2.415 -2.415

(-1.31) (-0.96) (-1.21) (-1.03) (-0.90)
Precipitation

= 0 mm -0.360 -0.360 -0.360 -0.360 -0.360
(-0.28) (-0.21) (-0.18) (-0.21) (-0.17)

0-2 mm 0.279 0.279 0.279 0.279 0.279
(0.22) (0.17) (0.13) (0.17) (0.14)

2-4 mm – – – – –
4-6 mm 0.205 0.205 0.205 0.205 0.205

(0.08) (0.07) (0.06) (0.06) (0.06)
6-8 mm -1.683 -1.683 -1.683 -1.683 -1.683

(-0.79) (-0.49) (-0.56) (-0.57) (-0.47)
8-10 mm 1.447 1.447 1.447 1.447 1.447

(0.59) (0.40) (0.44) (0.46) (0.36)
10-20 mm -0.377 -0.377 -0.377 -0.377 -0.377

(-0.22) (-0.15) (-0.17) (-0.16) (-0.14)
20-30 mm -0.347 -0.347 -0.347 -0.347 -0.347

(-0.13) (-0.09) (-0.09) (-0.10) (-0.09)
> 30 mm -4.890 -4.890 -4.890 -4.890 -4.890

(-1.01) (-0.77) (-0.96) (-0.79) (-0.65)

controls × × × × ×
mun. fe × × × × ×
sec time fe × × × × ×
year fe × × × × ×
qtr fe × × × × ×
clust var munid munid year munid wave munid panel state year

adjusted R2 0.156 0.156 0.156 0.156 0.156
DF 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147
# clusters 1,676 1,688 1,681 1,728 44
N 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147
Ind. 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000

Notes: Standard errors (in parentheses) are clustered by municipality. Significance
levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent. Covariates include municipality,
month, and sector specific year and quarter fixed effects.
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Table A.12.2: Alternative Cluster Specification – Working Time Regressions

(1) (2) (3) (4) (5)

Temperature
≤ 10°C -3.293∗∗∗ -3.293∗ -3.293∗∗∗ -3.293∗∗ -3.293∗

(-2.74) (-1.91) (-2.77) (-2.02) (-1.75)
10-12°C -1.345 -1.345 -1.345 -1.345 -1.345

(-1.21) (-1.17) (-0.96) (-0.86) (-1.03)
12-14°C -1.222 -1.222 -1.222 -1.222 -1.222

(-1.38) (-1.26) (-1.37) (-1.21) (-1.02)
14-16°C 0.0356 0.0356 0.0356 0.0356 0.0356

(0.04) (0.03) (0.04) (0.04) (0.03)
16-18°C -0.000977 -0.000977 -0.000977 -0.000977 -0.000977

(-0.00) (-0.00) (-0.00) (-0.00) (-0.00)
18-20°C -0.0502 -0.0502 -0.0502 -0.0502 -0.0502

(-0.07) (-0.05) (-0.06) (-0.05) (-0.05)
20-22°C – – – – –
22-24°C 0.0726 0.0726 0.0726 0.0726 0.0726

(0.11) (0.08) (0.09) (0.08) (0.08)
24-26°C -0.351 -0.351 -0.351 -0.351 -0.351

(-0.54) (-0.30) (-0.43) (-0.37) (-0.29)
26-28°C 0.257 0.257 0.257 0.257 0.257

(0.39) (0.25) (0.28) (0.30) (0.23)
28-30°C 1.136∗ 1.136 1.136∗ 1.136 1.136

(1.86) (1.12) (1.66) (1.30) (1.12)
30-32°C -0.754 -0.754 -0.754 -0.754 -0.754

(-0.98) (-0.69) (-1.02) (-0.81) (-0.60)
32-34°C 0.0207 0.0207 0.0207 0.0207 0.0207

(0.02) (0.01) (0.02) (0.01) (0.01)
> 34°C -0.781 -0.781 -0.781 -0.781 -0.781

(-0.60) (-0.46) (-0.50) (-0.48) (-0.51)
Precipitation

= 0 mm 0.366 0.366 0.366 0.366 0.366
(0.38) (0.22) (0.40) (0.30) (0.22)

0-2 mm -0.522 -0.522 -0.522 -0.522 -0.522
(-0.55) (-0.35) (-0.57) (-0.44) (-0.34)

2-4 mm – – – – –
4-6 mm -0.595 -0.595 -0.595 -0.595 -0.595

(-0.37) (-0.23) (-0.32) (-0.29) (-0.24)
6-8 mm -0.894 -0.894 -0.894 -0.894 -0.894

(-0.48) (-0.35) (-0.46) (-0.40) (-0.31)
8-10 mm 0.232 0.232 0.232 0.232 0.232

(0.12) (0.09) (0.10) (0.09) (0.09)
10-20 mm -2.464∗ -2.464 -2.464∗ -2.464 -2.464

(-1.87) (-1.45) (-1.66) (-1.37) (-1.20)
20-30 mm -12.05∗∗∗ -12.05∗∗∗ -12.05∗∗∗ -12.05∗∗∗ -12.05∗∗∗

(-5.08) (-3.35) (-4.46) (-3.99) (-3.05)
> 30 mm -28.12∗∗∗ -28.12∗∗∗ -28.12∗∗∗ -28.12∗∗∗ -28.12∗∗∗

(-8.48) (-5.87) (-7.22) (-6.77) (-5.59)

controls × × × × ×
mun. fe × × × × ×
sec time fe × × × × ×
year fe × × × × ×
qtr fe × × × × ×
month fe × × × × ×
clust var munid munid year munid wave munid panel state year

adjusted R2 0.163 0.163 0.163 0.163 0.163
DF 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147
# clusters 1,676 1,688 1,681 1,728 44
N 7,390,147 7,390,147 7,390,147 7,390,147 7,390,147
Ind. 2,632,000 2,632,000 2,632,000 2,632,000 2,632,000

Notes: Standard errors (in parentheses) are clustered by municipality. Significance
levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent. Covariates include municipality,
month, and sector specific year and quarter fixed effects.
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A.13 Alternative Time Specifications

Table A.13.1: Alternative Time Specification – Earnings Regressions

(1) (2) (3)

week month 3 months

Temperature
≤ 10°C -0.267 -3.943∗ -11.23∗∗∗

(-0.16) (-1.67) (-2.85)
10-12°C -0.177 3.969 18.81∗∗

(-0.07) (0.80) (2.12)
12-14°C -0.562 -1.365 -1.985

(-0.33) (-0.44) (-0.37)
14-16°C -0.331 0.657 7.440∗∗

(-0.36) (0.41) (2.39)
16-18°C 0.594 -0.400 0.533

(0.58) (-0.18) (0.13)
18-20°C 1.014 0.374 4.380

(0.94) (0.17) (0.90)
20-22°C – – –
22-24°C -1.088 -2.242 2.250

(-1.18) (-1.05) (0.50)
24-26°C 0.778 -1.311 0.482

(0.86) (-0.80) (0.14)
26-28°C -0.191 -1.496 0.267

(-0.17) (-0.82) (0.08)
28-30°C -0.367 -1.919 1.524

(-0.33) (-1.03) (0.47)
30-32°C -2.628∗∗ -4.073∗ -3.452

(-2.21) (-1.89) (-0.66)
32-34°C -1.310 -4.658 -0.248

(-0.51) (-1.08) (-0.02)
> 34°C -2.415 -4.626 -5.494

(-1.31) (-1.51) (-0.90)
Precipitation

= 0 mm -0.360 -0.316 -0.441
(-0.28) (-0.41) (-0.80)

0-2 mm 0.279 0.961 0.410
(0.22) (1.33) (0.71)

2-4 mm – – –
4-6 mm 0.205 -0.587 -0.730

(0.08) (-0.37) (-0.56)
6-8 mm -1.683 1.166 0.945

(-0.79) (0.84) (0.91)
8-10 mm 1.447 0.110 -0.0804

(0.59) (0.07) (-0.07)
10-20 mm -0.377 0.107 0.258

(-0.22) (0.09) (0.30)
20-30 mm -0.347 -0.0603 -0.206

(-0.13) (-0.04) (-0.16)
> 30 mm -4.890 -1.091 -1.114

(-1.01) (-0.36) (-0.51)

controls × × ×
mun. fe × × ×
sec time fe × × ×
year fe × × ×
qtr fe × × ×
month fe × × ×

adjusted R2 0.115 0.115 0.115
F Stat. 1,216 1,211 1,253
DF (573,1675) (573,1675) (573,1675)
# clusters 1,676 1,676 1,676
N 7,390,147 7,390,147 7,390,147
Ind. 2,632,000 2,632,000 2,632,000

Notes: Standard errors (in parentheses) are
clustered by municipality. Significance levels: ∗

10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent. Covari-
ates include municipality, month, and sector spe-
cific year and quarter fixed effects.
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Table A.13.2: Alternative Time Specification – Working Time Regressions

(1) (2) (3)

week month 3 months

Temperature
≤ 10°C -0.267 -3.943∗ -11.23∗∗∗

(-0.16) (-1.67) (-2.85)
10-12°C -0.177 3.969 18.81∗∗

(-0.07) (0.80) (2.12)
12-14°C -0.562 -1.365 -1.985

(-0.33) (-0.44) (-0.37)
14-16°C -0.331 0.657 7.440∗∗

(-0.36) (0.41) (2.39)
16-18°C 0.594 -0.400 0.533

(0.58) (-0.18) (0.13)
18-20°C 1.014 0.374 4.380

(0.94) (0.17) (0.90)
20-22°C – – –
22-24°C -1.088 -2.242 2.250

(-1.18) (-1.05) (0.50)
24-26°C 0.778 -1.311 0.482

(0.86) (-0.80) (0.14)
26-28°C -0.191 -1.496 0.267

(-0.17) (-0.82) (0.08)
28-30°C -0.367 -1.919 1.524

(-0.33) (-1.03) (0.47)
30-32°C -2.628∗∗ -4.073∗ -3.452

(-2.21) (-1.89) (-0.66)
32-34°C -1.310 -4.658 -0.248

(-0.51) (-1.08) (-0.02)
> 34°C -2.415 -4.626 -5.494

(-1.31) (-1.51) (-0.90)
Precipitation

= 0 mm -0.360 -0.316 -0.441
(-0.28) (-0.41) (-0.80)

0-2 mm 0.279 0.961 0.410
(0.22) (1.33) (0.71)

2-4 mm – – –
4-6 mm 0.205 -0.587 -0.730

(0.08) (-0.37) (-0.56)
6-8 mm -1.683 1.166 0.945

(-0.79) (0.84) (0.91)
8-10 mm 1.447 0.110 -0.0804

(0.59) (0.07) (-0.07)
10-20 mm -0.377 0.107 0.258

(-0.22) (0.09) (0.30)
20-30 mm -0.347 -0.0603 -0.206

(-0.13) (-0.04) (-0.16)
> 30 mm -4.890 -1.091 -1.114

(-1.01) (-0.36) (-0.51)

controls × × ×
mun. fe × × ×
sec time fe × × ×
year fe × × ×
qtr fe × × ×
month fe × × ×

adjusted R2 0.115 0.115 0.115
F Stat. 1,216 1,211 1,253
DF (573,1675) (573,1675) (573,1675)
# clusters 1,676 1,676 1,676
N 7,390,147 7,390,147 7,390,147
Ind. 2,632,000 2,632,000 2,632,000

Notes: Standard errors (in parentheses) are
clustered by municipality. Significance levels: ∗

10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent. Covari-
ates include municipality, month, and sector spe-
cific year and quarter fixed effects.
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Figure A.13.3: Work Location Marginal Effects on Earnings (Month)
outdoor vs indoor
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Figure A.13.3: Work Location Marginal Effects on Earnings (Month) (continued)
metro vs non-metro area
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.13.4: Work Location Marginal Effects on Working Time (Month)
outdoor vs indoor
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Figure A.13.4: Work Location Marginal Effects on Working Time (Month)
(continued)

metro vs non-metro area
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.13.5: Job Characteristics Marginal Effects on Earnings (Month)
formal vs informal
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Figure A.13.5: Job Characteristics Marginal Effects on Earnings (Month)
(continued)

above vs below official minimum wage
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.13.6: Job Characteristics Marginal Effects on Working Time (Month)
formal vs informal
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Figure A.13.6: Job Characteristics Marginal Effects on Working Time (Month)
(continued)

above vs below official minimum wage
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.13.7: Individual Characteristics Marginal Effects on Earnings (Month)
male vs female
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.13.8: Individual Characteristics Marginal Effects on Working Time
(Month)

male vs female
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.13.11: Work Location Marginal Effects on Earnings (Quarter)
outdoor vs indoor
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Figure A.13.11: Work Location Marginal Effects on Earnings (Quarter)
(continued)

metro vs non-metro area
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.13.12: Work Location Marginal Effects on Working Time (Quarter)
outdoor vs indoor
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Figure A.13.12: Work Location Marginal Effects on Working Time (Quarter)
(continued)

metro vs non-metro area
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.13.13: Job Characteristics Marginal Effects on Earnings (Quarter)
formal vs informal
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Figure A.13.13: Job Characteristics Marginal Effects on Earnings (Quarter)
(continued)

above vs below official minimum wage
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.13.14: Job Characteristics Marginal Effects on Working Time
(Quarter)

formal vs informal
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Figure A.13.14: Job Characteristics Marginal Effects on Working Time
(Quarter) (continued)

above vs below official minimum wage
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.13.15: Individual Characteristics Marginal Effects on Earnings
(Quarter)

male vs female
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated by
markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm size, as well
as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category is (20-22] ° C
and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.13.16: Individual Characteristics Marginal Effects on Working Time
(Quarter)

male vs female
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Statistics: N=7,390,140, Ind.=2,631,998.
Notes: Figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include marital status, age, gender, education, rural, industry, contract type, firm
size, as well as municipality, industry-specific year and quarter as well as month fixed effects. The omitted category
is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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A.14 Substitution Effects

Figure A.14.1: Heterogeneous Effects Work Time with lagged weather of
previous week
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Notes: Figure depicts marginal effects for the lagged and reference week weather bins. The number of observations
and of individuals for the plotted regressions are N=7,390,147 and i=2,632,000. Markers identify the 95% confidence
interval. Covariates include marital status, age, gender, education, rural, sector, contract type, firm size, as well
as municipality, month, and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation. Standard errors are clustered at the municipality level.

Figure A.14.2: Lagged Working Time Effects by Job Characteristics
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Figure A.14.2: (continued)
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Notes: Figure depicts marginal effects for the lagged and reference week weather bins. The number of observations
and of individuals for the plotted regressions are N=7,390,147 and i=2,632,000. Markers identify the 95% confidence
interval. Covariates include marital status, age, gender, education, rural, sector, contract type, firm size, as well
as municipality, month, and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.14.3: Lagged Working Time Effects by Work Locations
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Figure A.14.3: (continued)
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(f) Precipitation

−30

−20

−10

0

10

m
in

ut
es

 w
or

ke
d

0 2 4 6 8 10 10−20 20−30 max

Lagged Period

Reference Week

®

(g) Temperature

−15

−10

−5

0

5

m
in

ut
es

 w
or

ke
d

<10 12 14 16 18 20 22 24 26 28 30 32 34 >34

Lagged Period

Reference Week

®

(h) Precipitation

−60

−40

−20

0

20

m
in

ut
es

 w
or

ke
d

0 2 4 6 8 10 10−20 20−30 max

Lagged Period

Reference Week

®

Notes: Figure depicts marginal effects for the lagged and reference week weather bins. The number of observations
and of individuals for the plotted regressions are N=7,390,147 and i=2,632,000. Markers identify the 95% confidence
interval. Covariates include marital status, age, gender, education, rural, sector, contract type, firm size, as well
as municipality, month, and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation. Standard errors are clustered at the municipality level.
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A.15 Adaptation Effects

Differences between historically warm and cold regions

Figure A.15.1: Average Adaptation Effects

(a) earnings
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(b) working time
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Notes: Figure depicts marginal effects for the lagged and reference week weather bins. The number of observations
and of individuals for the plotted regressions are N=7,390,147 and i=2,632,000. Markers identify the 95% confidence
interval. Covariates include marital status, age, gender, education, rural, sector, contract type, firm size, as well
as municipality, month, and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.15.2: Adaptation Effects Earnings by Job Characteristics
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(e) piecework
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(f) weekly pay
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Notes: Figure depicts marginal effects for the lagged and reference week weather bins. The number of observations
and of individuals for the plotted regressions are N=7,390,147 and i=2,632,000. Markers identify the 95% confidence
interval. Covariates include marital status, age, gender, education, rural, sector, contract type, firm size, as well
as municipality, month, and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.15.3: Adaptation Effects Working Time by Job Characteristics
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(e) piecework
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(f) Weekly pay
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Notes: Figure depicts marginal effects for the lagged and reference week weather bins. The number of observations
and of individuals for the plotted regressions are N=7,390,147 and i=2,632,000. Markers identify the 95% confidence
interval. Covariates include marital status, age, gender, education, rural, sector, contract type, firm size, as well
as municipality, month, and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.15.4: Adaptation Effects Earnings by Work Location
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(b) office
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(c) domestic
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(d) rural
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Notes: Figure depicts marginal effects for the lagged and reference week weather bins. The number of observations
and of individuals for the plotted regressions are N=7,390,147 and i=2,632,000. Markers identify the 95% confidence
interval. Covariates include marital status, age, gender, education, rural, sector, contract type, firm size, as well
as municipality, month, and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation. Standard errors are clustered at the municipality level.

Figure A.15.5: Adaptation Effects Working Time by Work Locations
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(b) office
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(c) domestic
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(d) rural
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Notes: Figure depicts marginal effects for the lagged and reference week weather bins. The number of observations
and of individuals for the plotted regressions are N=7,390,147 and i=2,632,000. Markers identify the 95% confidence
interval. Covariates include marital status, age, gender, education, rural, sector, contract type, firm size, as well
as municipality, month, and sector specific year and quarter fixed effects. The omitted category is (20-22] ° C and
(2-4] mm precipitation. Standard errors are clustered at the municipality level.
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A.16 Municipality Level Regressions

Figure A.16.1: Municipality Level Daily Earnings Regression
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Notes: The figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include industry, municipality, year, quarter and day of the week fixed effects.
The omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality
level.

Figure A.16.2: Municipality Level Working Time Regression
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(b) Precipitation
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Notes: The figure depicts marginal effects of weather bins on weekly minutes worked. The 95% confidence interval
indicated by markers. Covariates include industry, municipality, year, quarter and day of the week fixed effects.
The omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality
level.
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Figure A.16.3: Municipality Level Heterogeneous Effects on Daily Earnings
formal vs informal
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Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated
by markers. Covariates include industry, municipality, year and quarter as well as day of the week fixed effects. The
omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Figure A.16.4: Municipality Level Heterogeneous Effects on Daily Working Time
formal vs informal
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Notes: Figure depicts marginal effects of weather bins on weekly earnings. The 95% confidence interval indicated
by markers. Covariates include industry, municipality, year and quarter as well as day of the week fixed effects. The
omitted category is (20-22] ° C and (2-4] mm precipitation. Standard errors are clustered at the municipality level.
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Appendix B

Appendix to Chapter 3

B.1 McFadden Alternative-Specific Choice Model

Consider a population of individuals i = 1, . . . , I with homogeneous preferences, choosing
their optimal location among a set of locations, with Uidot being the utility for a migrant
from origin location o moving to location d in time period t. Uidot can be written as:

Uidot = Vdot − Cdot(.) + εidot (B.1)

where Vdot is the observable, deterministic utility, Cdot denotes the migration cost of
moving from origin location o to destination d (assumed to be constant across individuals),
and εidot is a random error component accounting for the unobservable component of
utility. Assuming Uidot 6= 0, the migrant will choose location d over m if:

Uidot > Uimot ∀d, d 6= m. (B.2)

The model assumes that Vdot for a utility-maximising migrant depends on a linear com-
bination of the destination-specific factors Zdt, and differences in climate between origin
and destination location Adot. This yields

Uidot = Zdt +Adot − Cdot + εidot . (B.3)

McFadden (1974) shows that under the assumption of the error term following an
independent and IID Type I Extreme Value (Gumbel) distribution, the probability of an
individual moving from o to d can be expressed as:

Prob[Udot = max
D

Udot] =
exp[Zdt +Adot − Cdot]

D∑
d=1

exp[ZDt +ADot − CDot]
(B.4)

Note that individual characteristics contained in εidot drop out when taking the ratio of the
exponentiated linear combinations. Therefore, the conditional probability of individual i
from origin o choosing destination d is given by:

Probdot =
exp[Z ′dtβ +A′dotδ − cdotµ]

D∑
d=1

exp[Z ′Dtβ +A′Dotδ − c′Dotµ]

(B.5)
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B.2 Map and List of Mexican Municipalities and States

Figure B.2.1: Map of Mexican Municipalities
Mexican Municipalities in Sample

country
Mexican Municipality

Map based on Longitude (generated) and Latitude (generated).  Color shows details about country. The view is filtered on country, which keeps Mexican
Municipality.

Mexican municipalities coloured in red.

Table B.2.1: List of Mexican Sample Municipalities

Municipality State Region Municipality State Region

1 Calvillo
Aguascal-
ientes

Baja California 64 Tlazazalca Michoacan
Occidental y
Bajio

2
Pabellan De
Arteaga

Aguascal-
ientes

Baja California 65 Uruapan Michoacan
Occidental y
Bajio

3 Tijuana
Baja
California

Baja California 66 Zamora Michoacan
Occidental y
Bajio

4 Casas Grandes Chihuahua Zona Norte 67 Axochiapan Morelos Central Mexico
5 Chihuahua Chihuahua Zona Norte 68 Cuautla Morelos Central Mexico
6 Juarez Chihuahua Zona Norte 69 Tepalcingo Morelos Central Mexico
7 Rosales Chihuahua Zona Norte 70 Zacualpan Morelos Central Mexico

8 Comala Colima
Occidental y
Bajio

71 Compostela Nayarit
Occidental y
Bajio

9 Cuauhtamoc Colima
Occidental y
Bajio

72 Ixtlan Del Rao Nayarit
Occidental y
Bajio

10 Tecoman Colima
Occidental y
Bajio

73 Hualahuises Nuevo Leon Zona Norte

11 Durango Durango Zona Norte 74 Santa Catarina Nuevo Leon Zona Norte

12 Nuevo Ideal Durango Zona Norte 75
Oaxaca De
Juarez

Oaxaca South Mexico

13
Panuco De
Coronado

Durango Zona Norte 76
Putla Villa De
Guerrero

Oaxaca South Mexico

14
Santiago
Papasquiaro

Durango Zona Norte 77
San Juan
Comaltepec

Oaxaca South Mexico

15 Coatepec Harinas Edo Mexico Central Mexico 78
Zimatlan De
Alvarez

Oaxaca South Mexico

16
Ixtapan De La
Sal

Edo Mexico Central Mexico 79 Atlixco Puebla Central Mexico

Continued on next page
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Table B.2.1(Continued)

Municipality State Region Municipality State Region

17 Malinalco Edo Mexico Central Mexico 80 Chinantla Puebla Central Mexico
18 Ocuilan Edo Mexico Central Mexico 81 Coatzingo Puebla Central Mexico
19 Tenancingo Edo Mexico Central Mexico 82 Domingo Arenas Puebla Central Mexico

20
Tenango Del
Valle

Edo Mexico Central Mexico 83 Epatlan Puebla Central Mexico

21 Tonatico Edo Mexico Central Mexico 84 Huejotzingo Puebla Central Mexico

22 Abasolo Guanajuato
Occidental y
Bajio

85 Piaxtla Puebla Central Mexico

23 Irapuato Guanajuato
Occidental y
Bajio

86 Puebla Puebla Central Mexico

24 Lean Guanajuato
Occidental y
Bajio

87 Tepeaca Puebla Central Mexico

25 Manuel Doblado Guanajuato
Occidental y
Bajio

88
Tepexi De
Rodriguez

Puebla Central Mexico

26 Morolean Guanajuato
Occidental y
Bajio

89 Tulcingo Puebla Central Mexico

27 Romita Guanajuato
Occidental y
Bajio

90 Zapotitlan Puebla Central Mexico

28 Salvatierra Guanajuato
Occidental y
Bajio

91
Cadereyta De
Montes

Queretaro
Occidental y
Bajio

29 San Felipe Guanajuato
Occidental y
Bajio

92 Ezequiel Montes Queretaro
Occidental y
Bajio

30
San Francisco Del
Rincan

Guanajuato
Occidental y
Bajio

93 Pinal De Amoles Queretaro
Occidental y
Bajio

31
San Luis De La
Paz

Guanajuato
Occidental y
Bajio

94 San Joaquan Queretaro
Occidental y
Bajio

32 Uriangato Guanajuato
Occidental y
Bajio

95 Tequisquiapan Queretaro
Occidental y
Bajio

33 Yuriria Guanajuato
Occidental y
Bajio

96 Cerritos
San Luis
Potosi

Occidental y
Bajio

34
Acapulco De
Juarez

Guerrero Central Mexico 97 Ciudad Del Maaz
San Luis
Potosi

Occidental y
Bajio

35
Huitzuco De Los
Figueroa

Guerrero Central Mexico 98 El Naranjo
San Luis
Potosi

Occidental y
Bajio

36
Iguala De La
Independencia

Guerrero Central Mexico 99
Mexquitic De
Carmona

San Luis
Potosi

Occidental y
Bajio

37
Tepecuacuilco De
Trujano

Guerrero Central Mexico 100 Rioverde
San Luis
Potosi

Occidental y
Bajio

38 Ixmiquilpan Hidalgo Central Mexico 101 San Luis Potosa
San Luis
Potosi

Occidental y
Bajio

39 San Salvador Hidalgo Central Mexico 102 Santo Domingo
San Luis
Potosi

Occidental y
Bajio

40 Acatic Jalisco
Occidental y
Bajio

103 Tamasopo
San Luis
Potosi

Occidental y
Bajio

41 Amacueca Jalisco
Occidental y
Bajio

104 Concordia Sinaloa Zona Norte

42 Ameca Jalisco
Occidental y
Bajio

105 Cosala Sinaloa Zona Norte

43 Arandas Jalisco
Occidental y
Bajio

106 San Ignacio Sinaloa Zona Norte

44 Atenguillo Jalisco
Occidental y
Bajio

107 Huimanguillo Tabasco South Mexico

45
Caaadas De
Obregan

Jalisco
Occidental y
Bajio

108 Jalpa De Mandez Tabasco South Mexico

46 El Salto Jalisco
Occidental y
Bajio

109 Paraaso Tabasco South Mexico

47 Guadalajara Jalisco
Occidental y
Bajio

110 Hueyotlipan Tlaxcala Central Mexico

48 Juanacatlan Jalisco
Occidental y
Bajio

111 Xicotzinco Tlaxcala Central Mexico

Continued on next page
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Table B.2.1(Continued)

Municipality State Region Municipality State Region

49 La Huerta Jalisco
Occidental y
Bajio

112 Actopan Veracruz Central Mexico

50 Mexticacan Jalisco
Occidental y
Bajio

113
Alto Lucero De
Gutiarrez Barrios

Veracruz Central Mexico

51
San Diego De
Alejandraa

Jalisco
Occidental y
Bajio

114 Landero Y Coss Veracruz Central Mexico

52
San Miguel El
Alto

Jalisco
Occidental y
Bajio

115 Papantla Veracruz Central Mexico

53 Tapalpa Jalisco
Occidental y
Bajio

116 Teocelo Veracruz Central Mexico

54
Tepatitlan De
Morelos

Jalisco
Occidental y
Bajio

117 Xalapa Veracruz Central Mexico

55
Unian De San
Antonio

Jalisco
Occidental y
Bajio

118 Cenotillo Yucatan
Yucatan
Peninsula

56
Valle De
Guadalupe

Jalisco
Occidental y
Bajio

119 Dzan Yucatan
Yucatan
Peninsula

57 Zapopan Jalisco
Occidental y
Bajio

120 Mana Yucatan
Yucatan
Peninsula

58
Zapotlan El
Grande

Jalisco
Occidental y
Bajio

121 Oxkutzcab Yucatan
Yucatan
Peninsula

59 Chavinda Michoacan
Occidental y
Bajio

122 Jerez Zacatecas
Occidental y
Bajio

60 Los Reyes Michoacan
Occidental y
Bajio

123 Juchipila Zacatecas
Occidental y
Bajio

61 Morelia Michoacan
Occidental y
Bajio

124
Nochistlan De
Mejaa

Zacatecas
Occidental y
Bajio

62 Nahuatzen Michoacan
Occidental y
Bajio

125 Pinos Zacatecas
Occidental y
Bajio

63 Tingaindan Michoacan
Occidental y
Bajio

126 Zacatecas Zacatecas
Occidental y
Bajio
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B.3 List of US Metropolitan Statistical Areas and States

Figure B.3.1: Map of US Metropolitan AreasUS Metropolitan Statistical Areas in Sample
country
US Metro-Area

Map based on Longitude (generated) and Latitude (generated).  Color shows details about country. The data is filtered on avgtmp, which excludes -0.6126682.
The view is filtered on country, which excludes Mexican Municipality.US Metropolitan Statistical Areas coloured in red.

Table B.3.1: List of US Metropolitan Statistical Areas

MSA State Region MSA State Region

1 Phoenix-Mesa Arizona West 162
Melbourne-
Titusville-Palm
Bay

Florida South

2 Tucson Arizona West 163 Miami Florida South
3 Yuma Arizona West 164 Naples Florida South
4 Bakersfield California West 165 Ocala Florida South
5 Chico-Paradise California West 166 Orlando Florida South
6 Fresno California West 167 Panama City Florida South

7
Los Angeles-Long
Beach

California West 168 Pensacola Florida South

8 Merced California West 169 Punta Gorda Florida South

9 Modesto California West 170
Sarasota-
Bradenton

Florida South

10 Oakland California West 171 Tallahassee Florida South

11 Orange County California West 172
Tampa-St.
Petersburg-
Clearwater

Florida South

12 Redding California West 173
West Palm
Beach-Boca Raton

Florida South

13
Riverside-San
Bernardino

California West 174 Columbus GA-AL South

14 Sacramento California West 175 Augusta-Aiken GA-SC South
15 Salinas California West 176 Albany Georgia South
16 San Diego California West 177 Athens Georgia South
17 San Francisco California West 178 Atlanta Georgia South
18 San Jose California West 179 Macon Georgia South

19
San Luis Obispo-
Atascadero-Paso
Robles

California West 180 Savannah Georgia South

Continued on next page
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Table B.3.1(Continued)

MSA State Region MSA State Region

20
Santa
Barbara-Santa
Maria-Lompoc

California West 181 Louisville KY-IN South

21
Santa
Cruz-Watsonville

California West 182 Lexington Kentucky South

22 Santa Rosa California West 183 Owensboro Kentucky South
23 Stockton-Lodi California West 184 Alexandria Louisiana South

24
Vallejo-Fairfield-
Napa

California West 185 Baton Rouge Louisiana South

25 Ventura California West 186 Houma Louisiana South

26
Visalia-Tulare-
Porterville

California West 187 Lafayette Louisiana South

27 Yolo California West 188 Lake Charles Louisiana South
28 Yuba City California West 189 Monroe Louisiana South
29 Boulder-Longmont Colorado West 190 New Orleans Louisiana South

30 Colorado Springs Colorado West 191
Shreveport-Bossier
City

Louisiana South

31 Denver Colorado West 192 Baltimore Maryland South

32
Fort
Collins-Loveland

Colorado West 193 Hagerstown Maryland South

33 Greeley Colorado West 194
Biloxi-Gulfport-
Pascagoula

Mississippi South

34 Pueblo Colorado West 195 Jackson Mississippi South

35 Boise City Idaho West 196
Charlotte-
Gastonia-Rock
Hill

NC-SC South

36 Billings Montana West 197 Asheville North Carolina South
37 Great Falls Montana West 198 Fayetteville North Carolina South
38 Las Vegas NV-AZ West 199 Goldsboro North Carolina South

39 Reno Nevada West 200

Greensboro-
Winston-Salem-
High
Point

North Carolina South

40 Albuquerque New Mexico West 201 Greenville North Carolina South

41 Las Cruces New Mexico West 202
Hickory-
Morganton

North Carolina South

42 Santa Fe New Mexico West 203 Jacksonville North Carolina South

43
Portland-
Vancouver

OR-WA West 204
Raleigh-Durham-
Chapel
Hill

North Carolina South

44 Eugene-Springfield Oregon West 205 Rocky Mount North Carolina South
45 Medford-Ashland Oregon West 206 Wilmington North Carolina South
46 Salem Oregon West 207 Enid Oklahoma South
47 Provo-Orem Utah West 208 Lawton Oklahoma South

48
Salt Lake
City-Ogden

Utah West 209 Oklahoma City Oklahoma South

49 Bellingham Washington West 210 Tulsa Oklahoma South

50 Bremerton Washington West 211
Charleston-North
Charleston

South Carolina South

51 Olympia Washington West 212 Columbia South Carolina South

52
Richland-
Kennewick-Pasco

Washington West 213 Florence South Carolina South

53
Seattle-Bellevue-
Everett

Washington West 214
Greenville-
Spartanburg-
Anderson

South Carolina South

54 Spokane Washington West 215 Myrtle Beach South Carolina South
55 Tacoma Washington West 216 Sumter South Carolina South
56 Yakima Washington West 217 Memphis TN-AR-MS South
57 Casper Wyoming West 218 Chattanooga TN-GA South

Continued on next page
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Table B.3.1(Continued)

MSA State Region MSA State Region

58 Cheyenne Wyoming West 219
Clarksville-
Hopkinsville

TN-KY South

59
Davenport-Moline-
Rock
Island

IA-IL MidWest 220
Johnson City-
Kingsport-Bristol

TN-VA South

60 Sioux City IA-NE MidWest 221 Texarkana TX-AR South

61
Evansville-
Henderson

IN-KY MidWest 222 Jackson Tennessee South

62
Bloomington-
Normal

Illinois MidWest 223 Knoxville Tennessee South

63
Champaign-
Urbana

Illinois MidWest 224 Nashville Tennessee South

64 Chicago Illinois MidWest 225 Abilene Texas South
65 Decatur Illinois MidWest 226 Amarillo Texas South

66 Kankakee Illinois MidWest 227
Austin-San
Marcos

Texas South

67 Peoria-Pekin Illinois MidWest 228
Beaumont-Port
Arthur

Texas South

68 Rockford Illinois MidWest 229 Brazoria Texas South

69 Springfield Illinois MidWest 230
Brownsville-
Harlingen-San
Benito

Texas South

70 Bloomington Indiana MidWest 231
Bryan-College
Station

Texas South

71 Elkhart-Goshen Indiana MidWest 232 Corpus Christi Texas South
72 Fort Wayne Indiana MidWest 233 Dallas Texas South
73 Gary Indiana MidWest 234 El Paso Texas South

74 Indianapolis Indiana MidWest 235
Fort
Worth-Arlington

Texas South

75 Kokomo Indiana MidWest 236
Galveston-Texas
City

Texas South

76 Lafayette Indiana MidWest 237 Houston Texas South
77 Muncie Indiana MidWest 238 Killeen-Temple Texas South
78 South Bend Indiana MidWest 239 Laredo Texas South
79 Terre Haute Indiana MidWest 240 Longview-Marshall Texas South
80 Cedar Rapids Iowa MidWest 241 Lubbock Texas South

81 Des Moines Iowa MidWest 242
McAllen-
Edinburg-Mission

Texas South

82 Dubuque Iowa MidWest 243 Odessa-Midland Texas South
83 Iowa City Iowa MidWest 244 San Angelo Texas South

84
Waterloo-Cedar
Falls

Iowa MidWest 245 San Antonio Texas South

85 Lawrence Kansas MidWest 246 Sherman-Denison Texas South
86 Topeka Kansas MidWest 247 Tyler Texas South
87 Wichita Kansas MidWest 248 Victoria Texas South
88 Cumberland MD-WV MidWest 249 Waco Texas South
89 Duluth-Superior MN-WI MidWest 250 Wichita Falls Texas South

90
Minneapolis-St.
Paul

MN-WI MidWest 251
Norfolk-Virginia
Beach-Newport
News

VA-NC South

91 St. Louis MO-IL MidWest 252 Charlottesville Virginia South
92 Kansas City MO-KS MidWest 253 Danville Virginia South
93 Ann Arbor Michigan MidWest 254 Lynchburg Virginia South

94 Benton Harbor Michigan MidWest 255
Richmond-
Petersburg

Virginia South

95 Detroit Michigan MidWest 256 Roanoke Virginia South

96 Flint Michigan MidWest 257
Huntington-
Ashland

WV-KY-OH South

97
Grand Rapids-
Muskegon-Holland

Michigan MidWest 258
Parkersburg-
Marietta

WV-OH South

Continued on next page
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Table B.3.1(Continued)

MSA State Region MSA State Region

98 Jackson Michigan MidWest 259 Wheeling WV-OH South

99
Kalamazoo-Battle
Creek

Michigan MidWest 260 Charleston West Virginia South

100
Lansing-East
Lansing

Michigan MidWest 261
New
London-Norwich

CT-RI Northeast

101
Saginaw-Bay
City-Midland

Michigan MidWest 262 Bridgeport Connecticut Northeast

102 Rochester Minnesota MidWest 263 Danbury Connecticut Northeast
103 St. Cloud Minnesota MidWest 264 Hartford Connecticut Northeast

104 Columbia Missouri MidWest 265
New
Haven-Meriden

Connecticut Northeast

105 Joplin Missouri MidWest 266 Stamford-Norwalk Connecticut Northeast
106 Springfield Missouri MidWest 267 Waterbury Connecticut Northeast
107 St. Joseph Missouri MidWest 268 Worcester MA-CT Northeast
108 Fargo-Moorhead ND-MN MidWest 269 Boston MA-NH Northeast
109 Grand Forks ND-MN MidWest 270 Lawrence MA-NH Northeast
110 Omaha NE-IA MidWest 271 Lowell MA-NH Northeast
111 Lincoln Nebraska MidWest 272 Bangor Maine Northeast
112 Bismarck North Dakota MidWest 273 Lewiston-Auburn Maine Northeast
113 Cincinnati OH-KY-IN MidWest 274 Portland Maine Northeast

114 Akron Ohio MidWest 275
Barnstable-
Yarmouth

Massachusetts Northeast

115 Canton-Massillon Ohio MidWest 276 Brockton Massachusetts Northeast

116
Cleveland-Lorain-
Elyria

Ohio MidWest 277
Fitchburg-
Leominster

Massachusetts Northeast

117 Columbus Ohio MidWest 278 New Bedford Massachusetts Northeast
118 Dayton-Springfield Ohio MidWest 279 Pittsfield Massachusetts Northeast

119
Hamilton-
Middletown

Ohio MidWest 280 Springfield Massachusetts Northeast

120 Lima Ohio MidWest 281
Portsmouth-
Rochester

NH-ME Northeast

121 Mansfield Ohio MidWest 282 Newburgh NY-PA Northeast
122 Toledo Ohio MidWest 283 Manchester New Hampshire Northeast

123
Youngstown-
Warren

Ohio MidWest 284 Nashua New Hampshire Northeast

124 Rapid City South Dakota MidWest 285
Atlantic-Cape
May

New Jersey Northeast

125 Sioux Falls South Dakota MidWest 286 Bergen-Passaic New Jersey Northeast
126 La Crosse WI-MN MidWest 287 Jersey City New Jersey Northeast

127
Appleton-
Oshkosh-Neenah

Wisconsin MidWest 288
Middlesex-
Somerset-
Hunterdon

New Jersey Northeast

128 Eau Claire Wisconsin MidWest 289 Monmouth-Ocean New Jersey Northeast
129 Green Bay Wisconsin MidWest 290 Newark New Jersey Northeast
130 Janesville-Beloit Wisconsin MidWest 291 Trenton New Jersey Northeast

131 Kenosha Wisconsin MidWest 292
Vineland-Millville-
Bridgeton

New Jersey Northeast

132 Madison Wisconsin MidWest 293
Albany-
Schenectady-Troy

New York Northeast

133
Milwaukee-
Waukesha

Wisconsin MidWest 294 Binghamton New York Northeast

134 Racine Wisconsin MidWest 295
Buffalo-Niagara
Falls

New York Northeast

135 Sheboygan Wisconsin MidWest 296 Dutchess County New York Northeast
136 Wausau Wisconsin MidWest 297 Elmira New York Northeast
137 Fort Smith AR-OK South 298 Glens Falls New York Northeast
138 Anniston Alabama South 299 Jamestown New York Northeast
139 Birmingham Alabama South 300 Nassau-Suffolk New York Northeast
140 Decatur Alabama South 301 New York New York Northeast

Continued on next page
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Table B.3.1(Continued)

MSA State Region MSA State Region

141 Dothan Alabama South 302 Rochester New York Northeast
142 Florence Alabama South 303 Syracuse New York Northeast
143 Gadsden Alabama South 304 Utica-Rome New York Northeast

144 Huntsville Alabama South 305
Steubenville-
Weirton

OH-WV Northeast

145 Mobile Alabama South 306 Philadelphia PA-NJ Northeast

146 Montgomery Alabama South 307
Allentown-
Bethlehem-Easton

Pennsylvania Northeast

147 Tuscaloosa Alabama South 308 Altoona Pennsylvania Northeast

148
Fayetteville-
Springdale-Rogers

Arkansas South 309 Erie Pennsylvania Northeast

149
Little Rock-North
Little Rock

Arkansas South 310
Harrisburg-
Lebanon-Carlisle

Pennsylvania Northeast

150 Pine Bluff Arkansas South 311 Johnstown Pennsylvania Northeast

151
Wilmington-
Newark

DE-MD South 312 Lancaster Pennsylvania Northeast

152 Dover Delaware South 313 Pittsburgh Pennsylvania Northeast

153 Washington
District of
Columbia

South 314 Reading Pennsylvania Northeast

154 Daytona Beach Florida South 315
Scranton-Wilkes-
Barre-Hazleton

Pennsylvania Northeast

155 Fort Lauderdale Florida South 316 Sharon Pennsylvania Northeast

156
Fort Myers-Cape
Coral

Florida South 317 State College Pennsylvania Northeast

157
Fort Pierce-Port
St. Lucie

Florida South 318 Williamsport Pennsylvania Northeast

158 Fort Walton Beach Florida South 319 York Pennsylvania Northeast

159 Gainesville Florida South 320
Providence-Fall
River-Warwick

RI-MA Northeast

160 Jacksonville Florida South 321 Burlington Vermont Northeast

161
Lakeland-Winter
Haven

Florida South

Note: Metropolitan Area Definitions according to 1999 Census definitions.
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B.4 Further Summary Statistics

Table B.4.1: Summary Statistics on Location Specific Characteristics by US
States

U.S. State
avg wkly

wage (in 1000)
pc income
(in 1000)

population
(in 1000)

Mex pop
(%)

unemp
rate

CPI
net mig
exp (%)

herd (%)
rural

housing (%)

Alabama 0.49 13.67 279.55 1.10 5.45 234.91 0.00 -0.00 67.49
Arizona 0.46 12.87 272.05 2.09 5.01 233.82 0.00 0.00 68.46
Arkansas 0.48 13.51 1,197.93 28.09 8.08 356.60 0.11 -0.01 88.35
California 0.58 16.65 1,168.54 20.27 7.11 423.96 0.31 -0.04 86.03
Colorado 0.54 17.19 507.18 11.17 4.68 225.19 0.04 -0.00 84.07
Connecticut 0.62 21.93 1,108.81 0.60 4.65 234.61 0.00 -0.00 82.12
Delaware 0.58 21.25 4,506.72 1.24 3.51 235.03 0.04 -0.01 89.38
Florida 0.49 15.89 332.06 0.95 4.98 235.03 0.04 0.00 70.56
Georgia 0.49 15.95 638.14 1.96 4.88 234.44 0.01 -0.00 84.51
Hawaii 0.45 13.87 717.43 1.30 5.14 235.23 0.02 0.00 77.86
Idaho 0.50 15.85 203.53 2.77 3.77 225.25 0.00 -0.00 82.87
Illinois 0.48 13.67 372.74 7.89 4.56 409.78 0.00 -0.00 82.80
Indiana 0.45 16.35 1,158.80 2.78 5.02 225.42 0.23 -0.06 81.26
Iowa 0.47 14.63 361.55 2.15 5.04 225.92 0.01 0.00 76.48
Kansas 0.44 15.40 254.61 4.14 4.05 225.66 0.00 -0.00 86.60
Kentucky 0.46 14.50 513.51 1.04 4.87 232.02 0.03 0.01 80.07
Louisiana 0.48 13.33 403.05 0.90 4.96 232.67 0.00 -0.00 75.31
Maine 0.58 18.60 1,502.07 0.29 5.03 234.40 0.00 -0.00 80.81
Maryland 0.51 15.91 887.91 0.39 5.49 235.03 0.02 -0.00 71.92
Massachusetts 0.46 14.63 230.83 0.25 4.72 235.03 0.00 -0.00 53.40
Michigan 0.52 15.29 880.94 2.33 6.20 224.31 0.00 0.00 70.55
Minnesota 0.51 16.20 795.79 0.84 4.32 223.55 0.04 0.01 70.89
Mississippi 0.44 14.24 812.92 1.33 4.48 223.69 0.00 0.00 77.85
Missouri 0.47 14.26 367.70 0.85 5.14 235.23 0.00 -0.00 77.33
Montana 0.49 14.98 101.11 2.04 4.51 225.34 0.00 -0.00 83.13
Nebraska 0.46 13.68 462.44 2.03 4.78 234.58 0.09 -0.01 63.75
Nevada 0.46 15.28 118.19 1.21 3.55 225.66 0.00 0.00 76.35
New Hampshire 0.50 16.14 459.40 2.29 2.88 225.66 0.00 -0.00 90.31
New Jersey 0.55 18.40 512.75 0.37 3.79 233.98 0.00 0.00 64.63
New Mexico 0.63 19.32 851.62 1.38 5.68 234.23 0.00 -0.00 89.28
New York 0.49 15.92 308.03 25.02 4.97 233.54 0.01 -0.01 81.15
North Carolina 0.55 16.41 758.01 8.85 5.41 420.90 0.07 -0.04 91.82
North Dakota 0.55 16.07 1,312.93 0.50 4.99 232.94 0.03 -0.01 70.24
Ohio 0.51 14.93 772.03 0.77 5.63 242.26 0.00 0.00 80.28
Oklahoma 0.45 14.11 481.96 3.15 3.85 234.73 0.01 -0.00 82.75
Oregon 0.52 15.16 615.17 5.05 6.23 416.28 0.13 -0.07 78.19
Pennsylvania 0.52 14.91 822.77 0.40 5.05 408.97 0.02 0.00 69.23
Rhode Island 0.54 18.33 1,515.82 0.32 5.81 235.03 0.00 -0.00 87.77
South Carolina 0.46 13.57 381.94 1.13 5.24 234.17 0.00 0.00 66.70
South Dakota 0.43 15.73 120.13 1.15 3.22 224.27 0.00 0.00 78.25
Tennessee 0.45 13.49 569.76 1.08 4.94 234.22 0.00 -0.00 72.79
Texas 0.49 13.76 585.61 24.12 5.10 234.26 0.08 -0.01 82.69
Utah 0.47 13.21 754.80 4.76 3.94 425.53 0.00 0.00 95.06
Vermont 0.45 15.25 502.96 0.68 4.17 233.96 0.00 0.00 69.20
Virginia 0.46 16.58 180.88 0.22 3.77 235.03 0.00 0.00 55.02
Washington 0.54 15.95 501.17 7.57 6.12 415.44 0.00 0.00 77.11
West Virginia 0.51 16.22 306.59 2.19 4.57 224.90 0.00 -0.00 76.95
Wisconsin 0.49 13.86 221.67 0.24 5.76 234.24 0.00 0.00 63.15
Wyoming 0.52 16.57 71.90 5.00 4.21 224.24 0.00 0.00 84.06
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B.5 Data Description

Table B.5.1: Variable Definitions and Data Source

Variable Definition Source

Individual characteristics
age at mig. age at migration Mexican Migration Project
male male migrant "
married married at migration "
secondary edu. max. secondary education (7-9 yrs) "
tertiary edu. max. tertiary education (10-12 yrs) "
> tertiary education beyond tertiary education (> 12 yrs) "
trip duration US duration of migration trip "
legal migrant legal migrant "
same placeprev. mig. previous migration experience to same MSA "
migrant network Relatives/friends with previous migration to US "
trips # # of trips made by migrant "
migration dist. Travel distance between municipality and MSA (100 km) Google Distance
mig. travel time Travel time between municipality and MSA (h) Matrix API

Location characteristics

tot. population Total Population MSA U.S. Census & Yearbooks
% pop. sharelatino hispanic pop. share Hispanic or Latino origin (%) "
% pop. share Mexican foreign born from Mexico (%) "
% pop. shareforeign born Population share of foreign born (%)
% unemployment unemployment rate (%) US Census &
avg. wkly wage (US$100) average weekly income (US$100) Bureau of Labor Statistics
CPI Consumer Price Index "

Climate normals: calculated as pre-migration 30 yr mean

avg temp. mean temperature (°C) Climatic Research
max temp. maximum temperature (°C) Unit TS4.01
min temp. minimum temperature (°C) "
temp. Jun-Aug mean temperature Jun-Aug (°C)a "
temp. Dec-Feb mean temperature Dec-Feb (°C)a "
max temp. Jul July maximum temperature (°C)a "
min temp. Jan January minimum temperature (°C)a "
std temp. standard deviation of mean temperature "

precip. total monthly precipitation (mm) "
precip. Jun-Aug mean total precipitation Jun-Aug (mm)a "
precip. Dec-Feb mean total precipitation Dec-Feb (mm)a "
wet days wet day frequency (Days) "

cloud days daily cloud cover (%) "
vapour press. daily vapour pressure (x10 Hectopascals) "
a This variable definition from the fact that in the Northern Hemisphere January and July are the middle
of the climatological winter and summer.

Total Population MSA-level population data is only available for census years and State
and MSA yearbooks. Data were obtained for the years 1970, 1974, 1977, 1982, 1986, 1990,
1991, 1997, 2000, 2002, 2006, 2010 and 2012. Population data for the intercensual years
was estimated assuming and exponential growth function.

Mexican Population Share Information on the size of the Mexican community in destin-
ations is available for Census years 1970, 1980, 1990, 2000 and 2010-2012. The intercensual
MSA-level Mexican population are predicted using a second-degree polynomial regression.
The final share Mexican born individuals is calculated dividing the Mexican population
size by the total population.

Unemployment Rate Information on employment data is available for the year 1070,
1974 and for all years starting from 1976. Data for the missing years 1971 to 1973 was
predicted based on state trends and the growth rate during the subsequent years.



314

B.6 Full Regression Tables

Table B.6.1: Climate Ratio US Destination and Mexican Origin

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Location specific characteristics

migration 0.794∗∗∗ 0.796∗∗∗ 0.795∗∗∗ 0.793∗∗∗ 0.793∗∗∗ 0.817∗∗∗ 0.798∗∗∗ 0.810∗∗∗ 0.797∗∗∗

distance (-12.09) (-11.96) (-12.19) (-12.02) (-13.13) (-8.03) (-12.78) (-8.43) (-11.27)

log pc 0.966 0.951 0.990 0.976 0.975 0.848 0.853 0.856 0.880
income (-0.10) (-0.15) (-0.03) (-0.07) (-0.08) (-0.52) (-0.50) (-0.49) (-0.40)

unemployment 0.912∗∗∗ 0.909∗∗∗ 0.905∗∗∗ 0.903∗∗∗ 0.915∗∗∗ 0.901∗∗∗ 0.928∗∗∗ 0.915∗∗∗ 0.918∗∗∗

rate (-4.24) (-4.37) (-4.51) (-4.58) (-4.12) (-4.74) (-3.62) (-4.17) (-4.10)

CPI 0.617∗∗∗ 0.620∗∗∗ 0.579∗∗∗ 0.580∗∗∗ 0.732∗∗∗ 0.623∗∗∗ 0.659∗∗∗ 0.646∗∗∗ 0.638∗∗∗

(-5.49) (-5.40) (-6.16) (-6.11) (-3.47) (-4.97) (-4.51) (-4.64) (-5.05)

% rural housing 1.034∗∗∗ 1.034∗∗∗ 1.030∗∗ 1.030∗∗ 1.019 1.019 1.007 1.006 1.018
(3.40) (3.39) (2.98) (2.99) (1.46) (1.61) (0.51) (0.52) (1.49)

log population 2.703∗∗∗ 3.067∗∗∗ 2.776∗∗∗ 2.958∗∗∗ 2.534∗∗∗ 3.006∗∗∗ 2.575∗∗∗ 3.110∗∗∗ 2.397∗∗∗

(4.20) (4.82) (4.34) (4.71) (3.87) (4.73) (3.91) (4.69) (3.69)

% population 0.871∗∗∗ 0.871∗∗∗ 0.872∗∗∗ 0.872∗∗∗ 0.889∗∗∗ 0.877∗∗∗ 0.886∗∗∗ 0.882∗∗∗ 0.879∗∗∗

Mexican (-12.80) (-12.79) (-12.93) (-12.90) (-9.53) (-11.82) (-9.76) (-11.40) (-11.46)

net migration 1.618∗∗∗ 1.617∗∗∗ 1.613∗∗∗ 1.612∗∗∗ 1.617∗∗∗ 1.611∗∗∗ 1.620∗∗∗ 1.612∗∗∗ 1.619∗∗∗

municipality (17.58) (17.56) (17.56) (17.51) (17.43) (17.38) (17.45) (17.38) (17.56)

herd 0.967 0.966 0.965 0.965 0.967 0.965 0.965 0.964 0.965
(-1.50) (-1.50) (-1.56) (-1.56) (-1.47) (-1.57) (-1.53) (-1.61) (-1.54)

Table continues on next page
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Table B.6.1: (Continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Climate variables

avg temp. 5.976∗∗∗ 11.83∗∗

US (5.29) (2.81)

avg temp. 1.477∗∗∗ 3.024∗

ratio US/Mex (4.65) (2.42)

avg temp.2 0.973
US (-1.22)

avg temp.2 0.793
ratio US/Mex (-1.65)

max temp. 0.698 1.238 2.619 2.745
US (-1.03) (0.16) (0.69) (0.76)

max temp. 1.454 5.202 11.10 1.521
ratio US/Mex (1.11) (1.07) (1.63) (0.29)

min temp. 8.826∗∗∗ 9.180∗∗∗ 6.678∗∗∗

US (7.90) (7.63) (4.31)

min temp. 1.058∗ 1.056 1.177∗

ratio US/Mex (2.00) (1.91) (2.09)

max temp.2 0.981 0.992 0.984
US (-0.67) (-0.30) (-0.57)

max temp.2 0.664 0.580 0.911
ratio US/Mex (-0.85) (-1.18) (-0.21)

summer temp. 2.365∗ 3.387∗∗ 2.434∗

US (2.33) (3.18) (2.45)

summer temp. 0.832 0.744∗ 0.894
ratio US/Mex (-1.40) (-2.25) (-0.85)

winter temp. 1.906∗∗ 1.830∗∗ 1.951∗∗

US (2.86) (2.66) (2.90)

winter temp. 1.071 0.928 1.043
ratio US/Mex (1.96) (-1.41) (1.23)

precipitation 0.963 0.960 0.967
US (-1.45) (-1.51) (-1.27)

precipitation 0.970 0.952∗ 0.961∗

ratio US/Mex (-1.54) (-2.46) (-2.13)

summer precip. 0.972 0.971
US (-1.64) (-1.81)

summer precip. 1.015∗∗∗ 1.015∗∗∗

ratio US/Mex (7.94) (7.70)

winter precip. 0.970∗∗ 0.976∗

US (-2.67) (-2.09)

winter precip. 0.999 0.999
ratio US/Mex (-0.57) (-0.86)

cloud cover 1.686∗∗ 1.993∗∗∗

US (2.87) (5.09)

cloud cover 0.614 0.468∗

ratio US/Mex (-1.38) (-2.21)

vapour press. 0.451 0.630
US (-1.85) (-1.34)

vapour press. 0.855 1.168∗∗

ratio US/Mex (-1.75) (2.97)

MSA FE × × × × × × × × ×

LL -33,129.9 -33,121.2 -33,100.7 -33,097.6 -33,135.7 -33,014.3 -33,085.7 -33,032.7 -33,099.7
# cluster 683 683 683 683 683 683 683 683 683
N 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800
Cases 21,624 21,624 21,624 21,624 21,624 21,624 21,624 21,624 21,624

Notes: The table presents odds ratios with the respective significance level of * p<0.1; ** p<0.05; *** p<0.01. T-
statistics presented in parentheses.
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B.7 Subsample Regressions

Table B.7.1: Alternative Subsample Regressions - US Climate

Migrant status Migration age Education Network

temporary permanent ≥ 35 < 35 > 10 ≤ 10 relative no relative

avg temp. US 10.50∗∗∗ 6.001∗∗∗ 4.670∗∗∗ 9.516∗∗∗ 13.26∗∗∗ 6.702∗∗∗ 7.285∗∗∗ 7.164∗∗∗

(4.94) (5.60) (4.30) (6.17) (5.51) (5.34) (4.76) (6.17)

MSA FE × × × × × × × ×
controls × × × × × × × ×

LL -12,737.4 -19,468.1 -10,874.8 -22,045.7 -3,865.7 -29,046.4 -17,261.7 -15,311.1
# cluster 559 661 606 654 510 674 614 645
N 634,050 987,750 521,775 1,100,025 218,850 1,402,950 883,650 738,150
Ind. 8,454 13,170 6,957 14,667 2,918 18,706 11,782 9,842

max temp. US 1.019 0.801 0.927 0.740 0.847 0.764 0.906 0.904
(0.04) (-0.63) (-0.20) (-0.88) (-0.29) (-0.85) (-0.26) (-0.30)

min temp. US 10.88∗∗∗ 7.368∗∗∗ 4.979∗∗∗ 13.21∗∗∗ 14.76∗∗∗ 8.935∗∗∗ 8.317∗∗∗ 7.757∗∗∗

(4.91) (6.99) (4.48) (8.54) (5.90) (7.27) (5.85) (6.81)

MSA FE × × × × × × × ×
controls × × × × × × × ×

LL -12,727.0 -19,451.0 -10,869.1 -22,015.9 -3,859.9 -29,017.2 -17,248.4 -15,297.9
# cluster 559 661 606 654 510 674 614 645
N 634,050 987,750 521,775 1,100,025 218,850 1,402,950 883,650 738,150
Ind. 8,454 13,170 6,957 14,667 2,918 18,706 11,782 9,842

summer temp. US 2.480 2.126∗ 2.786∗ 2.183 5.024∗∗ 2.271∗ 2.553∗ 2.039∗

(1.75) (2.03) (2.47) (1.93) (2.91) (2.16) (2.03) (1.98)

winter temp. US 2.687∗∗ 1.837∗∗ 1.463 2.442∗∗∗ 2.024∗ 1.970∗∗ 2.169∗∗ 1.942∗∗

(2.95) (2.81) (1.53) (3.60) (2.30) (2.85) (2.68) (3.07)

precip. US 0.964 0.974 0.969 0.957 1.017 0.960 0.980 0.950∗

(-1.13) (-1.07) (-1.15) (-1.60) (0.54) (-1.54) (-0.70) (-1.97)

MSA FE × × × × × × × ×
controls × × × × × × × ×

LL -12,717.1 -19,460.6 -10,866.6 -22,023.9 -3,860.5 -29,022.4 -17,239.9 -15,304.0
# cluster 559 661 606 654 510 674 614 645
N 634,050 987,750 521,775 1,100,025 218,850 1,402,950 883,650 738,150
Ind. 8,454 13,170 6,957 14,667 2,918 18,706 11,782 9,842

Notes: The table presents odds ratios with the respective significance level of * p<0.1; ** p<0.05; *** p<0.01.
T-statistics presented in parentheses.
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Table B.7.2: Alternative Subsample Regressions - US Climate (rescaled)

Migrant status Migration age Education Network

temporary permanent ≥ 35 < 35 > 10 ≤ 10 relative no relative

% pop Mexican 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

avg temp. US 11.630∗∗∗ 7.049∗∗∗ 5.230∗∗∗ 11.097∗∗∗ 15.371∗∗∗ 7.696∗∗∗ 8.424∗∗∗ 8.106∗∗∗

MSA FE × × × × × × × ×
controls × × × × × × × ×

LL -12,737.4 -19,468.1 -10,874.8 -22,045.7 -3,865.7 -29,046.4 -17,261.7 -15,311.1
# cluster 559 661 606 654 510 674 614 645
N 634,050 987,750 521,775 1,100,025 218,850 1,402,950 883,650 738,150
Ind. 8,454 13,170 6,957 14,667 2,918 18,706 11,782 9,842

% pop Mexican 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

max temp. US 1.128 0.939 1.038 0.861 0.980 0.876 1.046 1.022

min temp. US 12.049∗∗∗ 8.633∗∗∗ 5.576∗∗∗ 15.366∗∗∗ 17.074∗∗∗ 10.249∗∗∗ 9.608∗∗∗ 8.763∗∗∗

MSA FE × × × × × × × ×
controls × × × × × × × ×

LL -12,727.0 -19,451.0 -10,869.1 -22,015.9 -3,859.9 -29,017.2 -17,248.4 -15,297.9
# cluster 559 661 606 654 510 674 614 645
N 634,050 987,750 521,775 1,100,025 218,850 1,402,950 883,650 738,150
Ind. 8,454 13,170 6,957 14,667 2,918 18,706 11,782 9,842

% pop Mexican 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

summer temp. US 2.714 2.482∗ 3.094∗ 2.523 5.820∗∗ 2.584∗ 2.930∗ 2.285∗

winter temp. US 2.940∗∗ 2.144∗∗ 1.625 2.822∗∗∗ 2.345∗ 2.241∗∗ 2.489∗∗ 2.176∗∗

precip. US 1.055 1.137 1.076 1.107 1.178 1.092 1.125 1.065∗

MSA FE × × × × × × × ×
controls × × × × × × × ×

LL -12,717.1 -19,460.6 -10,866.6 -22,023.9 -3,860.5 -29,022.4 -17,239.9 -15,304.0
# cluster 559 661 606 654 510 674 614 645
N 634,050 987,750 521,775 1,100,025 218,850 1,402,950 883,650 738,150
Ind. 8,454 13,170 6,957 14,667 2,918 18,706 11,782 9,842

Notes: The table presents rescaled odds ratios for the regressions presented in Table 3.8 with the respective signi-
ficance level of * p<0.1; ** p<0.05; *** p<0.01. T-statistics presented in parentheses. All predicted effects should
be interpreted relative to the importance of migration distance in the respective model.
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B.8 The IIA and the Number of Random Alternatives

Table B.8.1: Experimenting with the Number of Alternatives

Number of Alternatives

# 30 # 40 # 50 # 60 # 70 # 75 # 80 # 90 # 100

Location specific characteristics

migration 0.799∗∗∗ 0.800∗∗∗ 0.800∗∗∗ 0.804∗∗∗ 0.807∗∗∗ 0.810∗∗∗ 0.809∗∗∗ 0.811∗∗∗ 0.815∗∗∗

distance (-9.01) (-8.97) (-8.87) (-8.78) (-8.63) (-8.43) (-8.45) (-8.36) (-8.17)

log pc income 0.816 0.856 0.850 0.860 0.878 0.856 0.872 0.902 0.898
(-0.75) (-0.54) (-0.55) (-0.49) (-0.42) (-0.49) (-0.42) (-0.31) (-0.31)

unemployment 0.918∗∗∗ 0.918∗∗∗ 0.914∗∗∗ 0.914∗∗∗ 0.914∗∗∗ 0.915∗∗∗ 0.916∗∗∗ 0.916∗∗∗ 0.915∗∗∗

rate (-4.19) (-4.11) (-4.28) (-4.29) (-4.24) (-4.17) (-4.10) (-4.10) (-4.09)

CPI 0.621∗∗∗ 0.624∗∗∗ 0.632∗∗∗ 0.638∗∗∗ 0.645∗∗∗ 0.646∗∗∗ 0.649∗∗∗ 0.649∗∗∗ 0.648∗∗∗

(-5.14) (-5.00) (-4.86) (-4.80) (-4.67) (-4.64) (-4.61) (-4.59) (-4.57)

% rural housing 1.015 1.011 1.011 1.010 1.008 1.006 1.005 1.003 1.003
(1.29) (0.90) (0.92) (0.81) (0.66) (0.52) (0.39) (0.26) (0.22)

log population 2.849∗∗∗ 3.079∗∗∗ 3.178∗∗∗ 3.186∗∗∗ 3.138∗∗∗ 3.110∗∗∗ 3.073∗∗∗ 3.069∗∗∗ 3.098∗∗∗

(4.25) (4.55) (4.73) (4.76) (4.71) (4.69) (4.64) (4.61) (4.63)

% population 0.897∗∗∗ 0.892∗∗∗ 0.888∗∗∗ 0.885∗∗∗ 0.882∗∗∗ 0.882∗∗∗ 0.882∗∗∗ 0.883∗∗∗ 0.883∗∗∗

Mexican (-9.88) (-10.70) (-11.05) (-11.13) (-11.37) (-11.40) (-11.42) (-11.23) (-11.18)

net migration 1.913∗∗∗ 1.785∗∗∗ 1.727∗∗∗ 1.699∗∗∗ 1.631∗∗∗ 1.612∗∗∗ 1.595∗∗∗ 1.551∗∗∗ 1.542∗∗∗

municipality (13.33) (14.38) (15.67) (16.82) (17.02) (17.38) (17.59) (17.82) (18.27)

herd 0.956 0.962 0.967 0.978 0.962 0.964 0.957 0.944∗ 0.954∗

(-1.12) (-1.21) (-1.21) (-0.96) (-1.62) (-1.61) (-1.83) (-2.48) (-2.36)

summer temp. US 4.322∗∗∗ 3.854∗∗∗ 3.622∗∗∗ 3.349∗∗ 3.285∗∗ 3.387∗∗ 3.477∗∗ 3.339∗∗ 3.323∗∗

(3.78) (3.54) (3.34) (3.18) (3.11) (3.18) (3.23) (3.10) (3.08)

summer temp. 0.674∗∗ 0.662∗∗ 0.714∗ 0.708∗∗ 0.739∗ 0.744∗ 0.743∗ 0.751∗ 0.742∗
US
Mex

(-2.93) (-3.14) (-2.57) (-2.64) (-2.32) (-2.25) (-2.26) (-2.18) (-2.25)

winter temp. US 1.661∗ 1.739∗ 1.771∗ 1.845∗∗ 1.848∗∗ 1.830∗∗ 1.820∗∗ 1.815∗∗ 1.832∗∗

(2.23) (2.43) (2.54) (2.70) (2.69) (2.66) (2.63) (2.61) (2.65)

winter temp. 0.915 0.921 0.923 0.922 0.926 0.928 0.933 0.936 0.938
US
Mex

(-1.60) (-1.49) (-1.46) (-1.50) (-1.44) (-1.41) (-1.31) (-1.25) (-1.21)

precip. US 0.962 0.962 0.964 0.961 0.960 0.960 0.959 0.957 0.957
(-1.51) (-1.49) (-1.39) (-1.49) (-1.53) (-1.51) (-1.58) (-1.62) (-1.61)

precip. 0.955∗ 0.953∗ 0.953∗ 0.953∗ 0.953∗ 0.952∗ 0.953∗ 0.953∗ 0.953∗
US
Mex

(-2.40) (-2.52) (-2.44) (-2.41) (-2.41) (-2.46) (-2.40) (-2.39) (-2.39)

cloud days US 1.878∗∗∗ 1.897∗∗∗ 1.914∗∗∗ 1.964∗∗∗ 1.988∗∗∗ 1.993∗∗∗ 2.005∗∗∗ 1.977∗∗∗ 1.980∗∗∗

(4.31) (4.50) (4.68) (4.91) (5.04) (5.09) (5.15) (5.07) (5.07)

cloud days 0.482∗ 0.497∗ 0.516 0.489∗ 0.474∗ 0.468∗ 0.472∗ 0.472∗ 0.458∗
US
Mex

(-2.08) (-2.01) (-1.90) (-2.07) (-2.17) (-2.21) (-2.18) (-2.18) (-2.26)

vapour press. US 0.517 0.600 0.603 0.614 0.627 0.630 0.621 0.653 0.660
(-1.87) (-1.49) (-1.47) (-1.41) (-1.35) (-1.34) (-1.38) (-1.23) (-1.21)

vapour press. 1.208∗∗∗ 1.204∗∗∗ 1.187∗∗ 1.185∗∗ 1.170∗∗ 1.168∗∗ 1.164∗∗ 1.157∗∗ 1.156∗∗
US
Mex

(3.52) (3.50) (3.25) (3.21) (2.98) (2.97) (2.90) (2.82) (2.82)

MSA FE × × × × × × × × ×

LL -19,471.9 -23,416.6 -26,611.4 -29,343.3 -31,850.1 -33,032.7 -34,121.2 -36,202.1 -37,949.6
# cluster 691 687 684 684 684 683 683 683 683
N 652,950 868,360 1,083,800 1,299,300 1,514,240 1,621,800 1,728,640 1,942,380 2,156,000
Ind. 21,765 21,709 21,676 21,655 21,632 21,624 21,608 21,582 21,560

Notes: The table presents odds ratios with the respective significance level of * p<0.1; ** p<0.05; *** p<0.01. T-
statistics presented in parentheses.
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B.9 Alternative Cluster Specifications
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Table B.9.1: Alternative Cluster Specifications

robust mun×yr state×yr municipio mex state

Location specific characteristics

migration 0.810∗∗∗ 0.810∗∗∗ 0.810∗∗∗ 0.810∗∗ 0.810∗

distance (-18.78) (-10.05) (-8.43) (-3.02) (-2.13)

log 0.856 0.856 0.856 0.856 0.856
pc income (-1.22) (-0.57) (-0.49) (-0.44) (-0.35)

unemployment 0.915∗∗∗ 0.915∗∗∗ 0.915∗∗∗ 0.915∗∗ 0.915∗

rate (-7.93) (-4.25) (-4.17) (-2.86) (-2.23)

CPI 0.646∗∗∗ 0.646∗∗∗ 0.646∗∗∗ 0.646∗∗∗ 0.646∗∗∗

(-9.21) (-5.04) (-4.64) (-3.64) (-4.35)

% rural 1.006 1.006 1.006 1.006 1.006
housing (0.94) (0.54) (0.52) (0.50) (0.56)

log poulation 3.110∗∗∗ 3.110∗∗∗ 3.110∗∗∗ 3.110∗∗ 3.110∗∗

(8.18) (4.65) (4.69) (2.71) (3.23)

% population 0.882∗∗∗ 0.882∗∗∗ 0.882∗∗∗ 0.882∗∗∗ 0.882∗∗∗

Mexican (-16.52) (-11.71) (-11.40) (-6.43) (-6.02)

net migration 1.612∗∗∗ 1.612∗∗∗ 1.612∗∗∗ 1.612∗∗∗ 1.612∗∗∗

municipality (21.45) (17.93) (17.38) (7.36) (7.39)

herd 0.964 0.964 0.964 0.964 0.964
(-1.88) (-1.65) (-1.61) (-1.59) (-1.38)

Climate variables

summer temperature 3.387∗∗∗ 3.387∗∗ 3.387∗∗ 3.387∗∗ 3.387∗∗

US (6.60) (3.09) (3.18) (2.79) (3.07)

summer temperature 0.744∗∗∗ 0.744∗ 0.744∗ 0.744 0.744
ratio US/Mex (-3.91) (-2.27) (-2.25) (-0.76) (-0.75)

winter temperature 1.830∗∗∗ 1.830∗∗ 1.830∗∗ 1.830∗ 1.830∗

US (6.34) (2.97) (2.66) (2.26) (2.25)

winter temperature 0.928∗∗ 0.928 0.928 0.928 0.928
ratio US/Mex (-2.73) (-1.55) (-1.41) (-0.55) (-0.44)

precipitation 0.960∗∗∗ 0.960 0.960 0.960 0.960
US (-4.30) (-1.88) (-1.51) (-1.18) (-1.46)

precipitation 0.952∗∗∗ 0.952∗ 0.952∗ 0.952 0.952
ratio US/Mex (-6.92) (-2.52) (-2.46) (-0.93) (-0.96)

cloud cover 1.993∗∗∗ 1.993∗∗∗ 1.993∗∗∗ 1.993∗∗ 1.993∗

US (9.61) (5.26) (5.09) (2.69) (2.57)

cloud cover 0.468∗∗∗ 0.468∗ 0.468∗ 0.468 0.468
ratio US/Mex (-6.03) (-2.38) (-2.21) (-0.72) (-0.62)

vapour pressure 0.630∗∗ 0.630 0.630 0.630 0.630
US (-2.64) (-1.43) (-1.34) (-1.10) (-0.88)

vapour pressure 1.168∗∗∗ 1.168∗∗∗ 1.168∗∗ 1.168 1.168
ratio US/Mex (5.26) (3.33) (2.97) (1.21) (0.90)

MSA FE × × × × ×

LL -33,032.7 -33,032.7 -33,032.7 -33,032.7 -33,032.7
# cluster — 2,332 683 109 24
N 1,621,800 1,621,800 1,621,800 1,621,800 1,621,800
Cases 21,624 21,624 21,624 21,624 21,624

Notes: The table presents odds ratios with the respective significance level of *
p<0.1; ** p<0.05; *** p<0.01. T-statistics presented in parentheses.
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B.10 Alternative Choice-Set Pruning

This Appendix presents the results for the preferred model specification using an alternat-
ive choice-set pruning mechanism based on matching destinations, using a propensity score
matching technique on observable destination characteristics. I apply nearest neighbour
matching of destination locations based on CPI, per capita income, poverty rate, unem-
ployment rate, labour-force share, total population, population share of residents with
Latino Hispanic background, median age of the population, population share with less
than nine years of education and those with college education, geographic area, latitude
and longitude, and the year.
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Table B.10.1: Matched Choice Set 50 - US Climate

(7) (8) (9)

Location specific characteristics

migration distance 0.790∗∗∗ 0.792∗∗∗ 0.791∗∗∗

(-5.38) (-5.34) (-5.33)

log pc income 0.881 0.933 0.905
(-0.29) (-0.16) (-0.23)

unemployment rate 0.910∗∗∗ 0.935∗ 0.925∗∗

(-3.48) (-2.33) (-2.75)

CPI 0.769∗ 0.800 0.790
(-2.24) (-1.87) (-1.85)

% rural housing 1.020 1.008 1.011
(1.40) (0.63) (0.76)

log population 2.204 1.711 1.938
(1.91) (1.32) (1.48)

% population Mexican 0.865∗∗∗ 0.882∗∗∗ 0.873∗∗∗

(-7.66) (-6.86) (-7.22)

net migration 2.056∗∗∗ 2.070∗∗∗ 2.063∗∗∗

municipality (5.83) (5.89) (5.86)

herd 0.921 0.923 0.922
(-0.86) (-0.84) (-0.84)

Climate variables

max temperature US 24.19∗

(2.11)

max temperature2 US 0.928
(-1.84)

min temperature US 10.68∗∗∗

(3.91)

summer temperature US 1.604 2.595
(0.91) (1.66)

winter temperature US 2.175∗∗ 1.957∗

(3.06) (2.34)

precipitation US 0.923∗∗ 0.920∗

(-2.58) (-2.57)

cloud cover US 1.364 1.718∗∗

(1.05) (2.63)

vapour pressure US 0.422 0.540
(-1.31) (-1.25)

summer precipitation US 0.955∗∗

(-3.20)

winter precipitation US 0.968
(-1.95)

MSA FE × × ×

LL -14190.267 -14199.145 -14195.771
# cluster 109.0 109.0 109.0
N 523,866 523,866 523,866
Cases 21,765 21,765 21,765

Notes: The table presents odds ratios with the respective signific-
ance level of * p<0.1; ** p<0.05; *** p<0.01. T-statistics presen-
ted in parentheses.
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Table B.10.2: Matched Choice Set 50 - Climate Ratios US/Mexico

(7) (8) (9) (10)

max temperature US 8.345
(1.31)

max temperature 3.261
ratio US/Mex (0.61)

max temperature2 US 0.941
(-1.82)

max temperature2 0.687
ratio US/Mex (-0.63)

min temperature US 8.806∗∗∗

(4.59)

min temperature 1.221∗

ratio US/Mex (2.23)

summer temperature US 2.148 3.264∗∗ 2.347∗

(1.82) (2.75) (2.09)

summer temperature 0.637∗∗ 0.567∗∗∗ 0.656∗∗

ratio US/Mex (-3.10) (-3.70) (-2.88)

winter temperature US 1.879∗ 1.802∗ 1.841∗

(2.50) (2.35) (2.43)

winter temperature 1.150∗∗∗ 0.996 1.115∗∗

ratio US/Mex (3.46) (-0.07) (2.74)

precipitation US 0.926∗∗ 0.923∗∗ 0.936∗

(-2.85) (-2.90) (-2.45)

precipitation 0.979 0.964 0.968
ratio US/Mex (-1.12) (-1.88) (-1.75)

cloud cover US 1.465 2.008∗∗∗

(1.91) (4.53)

cloud cover 0.497∗ 0.416∗

ratio US/Mex (-2.02) (-2.49)

vapour pressure US 0.591 0.586
(-1.00) (-1.25)

vapour pressure 0.821∗ 1.138∗

ratio US/Mex (-2.02) (2.25)

summer precipitation US 0.952∗∗

(-2.88)

summer precipitation 1.019∗∗∗

ratio US/Mex (9.33)

winter precipitation US 0.966∗∗

(-2.92)

winter percipitation 1.002
ratio US/Mex (1.31)

MSA FE × × × ×
controls × × × ×

LL -14,132.7 -14,151.7 -14,141.9 -14,177.5
# cluster 694 694 694 694
N 523,866 523,866 523,866 523,866
Cases 21,765 21,765 21,765 21,765

Notes: The table presents odds ratios with the respective significance level
of * p<0.1; ** p<0.05; *** p<0.01. T-statistics presented in parentheses.
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Table B.10.3: Matched Choice Set 50 - Hot Cold Sub-Samples

(7) (8) (9)

hot cold hot cold hot cold

max temperature US 2169.2∗∗∗ 8.880
(3.35) (1.05)

max temperature2 US 0.856∗∗ 0.961
(-3.14) (-0.72)

min temperature US 1.768 14.04∗∗∗

(0.55) (3.60)

summer temperature US 2.246 1.463 2.234 3.567
(1.71) (0.58) (1.94) (1.61)

winter temperature US 1.491 3.027∗∗ 1.415 2.670∗

(1.55) (3.24) (1.36) (2.39)

precipitation US 0.920∗ 0.935 0.930∗ 0.922
(-2.30) (-1.66) (-2.02) (-1.88)

cloud cover US 1.228 1.671 1.135 1.956∗∗

(0.55) (1.46) (0.40) (2.92)

vapour press. US 1.120 0.180 1.246 0.266
(0.18) (-1.91) (0.40) (-1.92)

summer precipitation US 0.969 0.948∗∗

(-1.33) (-2.96)

winter precipitation US 0.974 0.971
(-1.66) (-1.32)

MSA FE × × × × × ×
controls × × × × × ×

LL -4,382.8 -8,638.1 -4,396.7 -8,636.2 -4,396.5 -8,628.3
# cluster 54 55 54 55 54 55
N 195,887 327,979 195,887 327,979 195,887 327,979
Cases 8,153 13,612 8,153 13,612 8,153 13,612

Notes: The table presents odds ratios with the respective significance level of * p<0.1;
** p<0.05; *** p<0.01. T-statistics presented in parentheses.
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B.11 Bootstrap Results

In this Appendix, I present the results from the bootstrap regressions using a newly written
command bsasclogit. The internal Stata bootstrap program for asclogit is not appropriate
for the analysis, as the program randomly drops observations, including the true chosen
alternative, thereby significantly reducing the sample size during the estimation process.
To test the robustness of the results to the implemented choice-set restriction, I designed
a new bootstrap program that estimates standard errors by resampling the random subset
of alternatives for each bootstrap iteration. The Stata code for the program is presented
in the subsequent Appendix B.12.
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Table B.11.1: Bootstrap Results for Model 6

(6)

US/Mex US hot cold

Location specific characteristics

migration distance 0.815∗∗∗ 0.784∗∗∗ 0.757∗∗∗ 0.908∗∗∗

(-64.13) (-57.61) (-81.34) (-20.48)

log pc income 0.773∗∗∗ 0.801∗∗∗ 0.920 0.689∗∗∗

(-9.97) (-8.88) (-1.82) (-10.81)

unemployment 0.899∗∗∗ 0.908∗∗∗ 0.937∗∗∗ 0.871∗∗∗

rate (-25.67) (-22.49) (-10.97) (-27.37)

CPI 0.631∗∗∗ 0.606∗∗∗ 0.779∗∗∗ 0.564∗∗∗

(-27.15) (-23.72) (-8.00) (-22.52)

% rural housing 1.018∗∗∗ 1.022∗∗∗ 1.001 1.023∗∗∗

(7.01) (7.74) (0.28) (9.27)

log population 2.830∗∗∗ 2.633∗∗∗ 1.794∗∗∗ 4.424∗∗∗

(19.05) (16.30) (7.07) (19.46)

% population 0.888∗∗∗ 0.890∗∗∗ 0.907∗∗∗ 0.869∗∗∗

Mexican (-45.87) (-42.99) (-28.25) (-35.20)

net migration 1.605∗∗∗ 1.668∗∗∗ 1.469∗∗∗ 1.565∗∗∗

municipality (26.02) (18.25) (20.15) (15.04)

herd 0.930∗∗∗ 0.917∗∗ 0.920∗∗ 0.935∗

(-3.57) (-3.11) (-3.28) (-2.22)

Climate variables

max temperature US 5.702∗∗∗ 14.22∗∗∗ 220.1∗∗∗ 5.688∗∗∗

(5.36) (9.71) (17.40) (5.08)

max temperature2 US 0.972∗∗∗ 0.959∗∗∗ 0.911∗∗∗ 0.986
(-4.57) (-6.73) (-13.29) (-1.81)

min temperature US 6.051∗∗∗ 6.240∗∗∗ 1.397∗ 9.861∗∗∗

(24.85) (13.92) (2.10) (11.72)

precipitation US 0.958∗∗∗ 0.959∗∗∗ 0.917∗∗∗ 0.977∗∗∗

(-15.14) (-8.32) (-15.80) (-4.16)

cloud cover US 1.728∗∗∗ 1.552∗∗∗ 1.390∗∗∗ 1.865∗∗∗

(15.54) (9.66) (5.22) (6.26)

vapour presure. US 0.388∗∗∗ 0.339∗∗∗ 0.722∗ 0.185∗∗∗

(-12.93) (-9.92) (-2.65) (-16.37)

max temperature 1.770
ratio US/Mex (1.33)

max temperature2 0.868
ratio US/Mex (-1.06)

min temperature 1.169∗∗∗

ratio US/Mex (14.67)

precipitation 0.971∗∗∗

ratio US/Mex (-13.15)

cloud cover 0.539∗∗∗

ratio US/Mex (-12.84)

vapour pressure 0.874∗∗∗

ratio US/Mex (-8.59)

MSA FE × × × ×

LL -33,871.1 -27,437.5 -13,678.6 -18,771.1
N 1,674,668 1,116,590 740,826 933,783
Cases 22,398 22,398 9,908 12,490

Notes: The table presents odds ratios with the respective significance
level of * p<0.1; ** p<0.05; *** p<0.01. T-statistics presented in par-
entheses.
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Table B.11.2: Bootstrap Results for Model 7

(7)

US-Mex US hot cold

Location specific characteristics

migration 0.799∗∗∗ 0.791∗∗∗ 0.762∗∗∗ 0.911∗∗∗

distance (-77.62) (-70.42) (-77.37) (-22.75)

log pc income 0.785∗∗∗ 0.798∗∗∗ 0.942 0.710∗∗∗

(-9.67) (-9.75) (-1.10) (-8.92)

unemployment 0.929∗∗∗ 0.928∗∗∗ 0.950∗∗∗ 0.904∗∗∗

rate (-23.73) (-22.72) (-10.74) (-19.41)

CPI 0.641∗∗∗ 0.649∗∗∗ 0.883∗∗∗ 0.540∗∗∗

(-24.98) (-24.82) (-4.51) (-24.88)

% rural housing 1.006∗ 1.004 0.997 1.003
(2.46) (1.75) (-0.79) (0.94)

log population 2.193∗∗∗ 2.315∗∗∗ 1.420∗∗∗ 3.889∗∗∗

(15.86) (19.51) (4.30) (19.25)

% population 0.893∗∗∗ 0.895∗∗∗ 0.901∗∗∗ 0.881∗∗∗

Mexican (-40.55) (-42.50) (-22.88) (-31.54)

net migration 1.627∗∗∗ 1.590∗∗∗ 1.472∗∗∗ 1.584∗∗∗

municipality (24.87) (23.74) (17.84) (18.92)

herd 0.969 0.930∗∗ 0.942∗ 0.959
(-1.43) (-3.49) (-2.27) (-1.74)

Climate characteristics

summer temperature US 2.636∗∗∗ 2.418∗∗∗ 2.746∗∗∗ 1.640∗∗∗

(14.17) (15.99) (10.11) (5.41)

winter temperature US 1.977∗∗∗ 1.977∗∗∗ 1.262∗∗∗ 3.094∗∗∗

(16.31) (18.65) (4.13) (21.57)

summer precipitation US 0.972∗∗∗ 0.977∗∗∗ 0.980∗∗∗ 0.962∗∗∗

(-11.00) (-9.63) (-4.89) (-10.64)

winter precipitation US 0.975∗∗∗ 0.975∗∗∗ 0.982∗∗∗ 0.976∗∗∗

(-16.55) (-15.66) (-7.28) (-12.42)

summer temperature 0.786∗∗∗
US
Mex

(-8.32)

winter temperature 1.071∗∗∗
US
Mex

(8.99)

summer precipitation 1.016∗∗∗
US
Mex

(47.49)

winter precipitation 1.000
US
Mex

(-1.24)

MSA FE × × × ×

LL -34,037.3 -34,113.4 -13,761.9 -18,719.2
N 1,674,713 1,674,860 740,795 933,771
Ind. 22,398 22,398 9,908 12,490

Notes: The table presents odds ratios with the respective significance level
of * p<0.1; ** p<0.05; *** p<0.01. T-statistics presented in parentheses.
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Table B.11.3: Bootstrap Results for Model 8

(8)

US/Mex US hot cold

Location specific characteristics

migration distance 0.808∗∗∗ 0.791∗∗∗ 0.753∗∗∗ 0.908∗∗∗

(-58.41) (-72.08) (-62.28) (-18.51)

log pc income 0.770∗∗∗ 0.781∗∗∗ 0.842∗∗ 0.661∗∗∗

(-10.25) (-11.16) (-3.14) (-11.48)

unemployment 0.914∗∗∗ 0.917∗∗∗ 0.950∗∗∗ 0.884∗∗∗

rate (-22.46) (-25.91) (-8.68) (-19.79)

CPI 0.653∗∗∗ 0.629∗∗∗ 0.739∗∗∗ 0.587∗∗∗

(-24.29) (-26.46) (-7.97) (-18.85)

% rural housing 1.004 1.006∗ 0.999 1.018∗∗∗

(1.75) (2.62) (-0.13) (4.55)

log population 2.852∗∗∗ 2.683∗∗∗ 1.414∗∗ 4.363∗∗∗

(20.08) (20.10) (3.36) (17.97)

% population 0.892∗∗∗ 0.890∗∗∗ 0.916∗∗∗ 0.878∗∗∗

Mexican (-43.19) (-47.85) (-15.08) (-32.22)

net migration 1.606∗∗∗ 1.589∗∗∗ 1.570∗∗∗ 1.816∗∗∗

municipality (26.45) (22.96) (15.29) (15.40)

herd 0.930∗∗∗ 0.929∗∗ 0.973 0.932∗

(-3.72) (-3.44) (-0.70) (-2.14)

Climate variables

summer temperature US 3.953∗∗∗ 3.652∗∗∗ 3.461∗∗∗ 4.297∗∗∗

(19.22) (19.80) (8.57) (11.61)

winter temperature US 1.828∗∗∗ 1.793∗∗∗ 1.348∗∗∗ 2.594∗∗∗

(14.63) (17.20) (4.44) (14.20)

precipitation US 0.959∗∗∗ 0.955∗∗∗ 0.939∗∗∗ 0.974∗∗∗

(-13.57) (-12.31) (-7.99) (-4.59)

cloud cover US 1.948∗∗∗ 1.643∗∗∗ 1.118∗ 1.911∗∗∗

(23.45) (16.02) (2.55) (14.76)

vapour pressure US 0.530∗∗∗ 0.575∗∗∗ 0.727 0.236∗∗∗

(-10.11) (-7.76) (-1.97) (-13.00)

summer temperature 0.697∗∗∗

ratio US/Mex (-11.51)

winter temperature 0.925∗∗∗

ratio US/Mex (-6.66)

precipitation 0.953∗∗∗

ratio US/Mex (-19.86)

cloud cover 0.407∗∗∗

ratio US/Mex (-16.16)

vapour pressure 1.198∗∗∗

ratio US/Mex (15.08)

MSA FE × × × ×

LL -33,880.2 -34,101.6 -10,899.0 -14,733.6
N 1,674,668 1,674,860 493,934 622,544
Cases 22,398 22,398 9,908 12,490

Notes: The table presents odds ratios with the respective significance level
of * p<0.1; ** p<0.05; *** p<0.01. T-statistics presented in parentheses.
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B.12 Bootstrap asclogit Stata Program

*****************************************************************************

**************** BSASCLOGIT BOOTSTRAP PROGRAM - ECLASS *********************
/* ********************************************************************** */

/* Author: Antonia Schwarz

*/

/* Date: February 18, 2015 */

/* File: bsasclogit.ado */

/* Version: 1.2 */

/* Purpose: Bootstrap program over random choice set for asclogit */

/* ********************************************************************** */

/* ********************************************************************** */

/* Special thanks to Emmanuelle Pierard, Neil Buckley, James Chowhan from */

/* the McMaster Research Data Centre at Statistics Canada for their PDF */

/* Bootstrapping Made Easy: A Stata ADO File. For the original code see */

/* http://www.yorku.ca/nbuckley/papers/Bootstrapping_for_Regressions_in_ */

/* Stata_031017.pdf */

/* ********************************************************************** */

program define bsasclogit, eclass sortpreserve byable(recall)

version 12.1

syntax varlist [if] [in] [, CMDname(string) ///

case(varname numeric) ///

CHOICE(varlist) ///

BYSample(varlist) ///

Reps(integer 50) ///

CMDOps(string asis) ///

ITERATE(integer 500) ///

NTRUE(integer 1) ///

NALTern(integer 9) ///

BSci ///

SAVing(string asis) ///

replace ///

LEVEL(integer 90) ///

noHEADer ///

BOOTSample

*]

quietly {

_get_diopts diopts options, ‘options’

mlopts mlopts rest, ‘options’

* Preserve the original dataset, set parameter values and set-up temporary

matrices

preserve

set more 1

tempvar esamplevar

tempname bhat bsVC bsbhat bsbetas
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* This sets the touse variable = 1 if observation is in our sample for the

number of alternatives

tempvar insample random sample

marksample touse

keep if ‘touse’==1

gen ‘random’ = runiform()

sort ‘bysample’ ‘random’ ‘choice’

by ‘bysample’: gen ‘insample’ = _n

gen ‘sample’=cond(‘insample’<=‘naltern’ | ‘choice’==1,1,0)

* The next line runs the wanted regression and checks for errors

capture noi ‘cmdname’ ‘varlist’ if ‘sample’==1 ‘in’, ‘cmdops’

if _rc ˜= 0 {

noi di in red " "

noi di in red ‘"Error doing: ‘cmdname’ ‘varlist’ ‘if’ ‘in’, ‘cmdops’"’

noi di in red " "

noi di in red "The regression command you have typed in resulted in an

error, please investigate"

error _rc

}

else {

* Print regression Results

estimates store est1

estimates table est1, se t p

estimates stats est1

gen ‘esamplevar’=e(sample)

* Collect local names for output and format table

global title ‘"‘e(title)’"’

global case ‘=abbrev("‘e(case)’",24)’

global altvar ‘=abbrev("‘e(altvar)’",17)’

global k_alt ‘e(k_alt)’

global N_case ‘e(N_case)’

global N ‘e(N)’

global alt_min ‘e(alt_min)’

global alt_avg ‘e(alt_avg)’

global alt_max ‘e(alt_max)’

global crittype =upper(substr(‘"‘e(crittype)’"’,1,1)) + ///

substr(‘"‘e(crittype)’"’,2,.)

global chi2type ‘"‘e(chi2type)’"’

global chi2 ‘e(chi2)’

global dfm ‘e(df_m)’

global clustvar ‘"‘e(clustvar)’"’

global vce ‘"‘e(vce)’"’

global ll ‘e(ll)’

global prob ‘e(p)’

global keq ‘e(k_eq)’

global ic ‘e(ic)’

global converged ‘e(converged)’

* e(b) is a 1x(k+1) coefficient vector if the model has a constant and k is

the number of

* variables other than the constant

matrix ‘bhat’=e(b)

matrix ‘bsVC’=e(V)

* we store the variable names of the regressors and the number of regressors

in local macros
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local _varnames : colfullnames(‘bhat’)

local _k=colsof(‘bhat’)-1

local _k1=‘_k’+1

*************************************************

***** BOOTSTRAP *****

*************************************************

* Realboot is the actual number of successful bootstrap regressions run in

case we get any

* convergence/regression errors etc., it starts off at the specified number of

bootstrap weights

local _realboot ‘reps’

* The main bootstrap loop will run with each bootstrap weight in the supplied

bsweight varlist and

* exit with the matrix named BETAS containing all the bootstraps of our

coefficients, a

*(boot)x(k+1) dimensional matrix

local _i 1

tempvar sample

gen ‘sample’=0

* Start of bootstrap loop for reps number of replications

* Display Bootstrap Estimation performance

nois _dots 0, title(Bootstrap estimation running) reps(‘reps’)

forvalues nreps=1/‘reps’ {

* This sets the touse variable = 1 if observation is in our sample for the

number of alternatives

replace ‘random’ = runiform()

sort ‘bysample’ ‘random’ ‘choice’

by ‘bysample’: replace ‘insample’ = _n

replace ‘sample’=cond(‘insample’<=‘naltern’ | ‘choice’==1,1,0)

if "‘bootsample’"!="" {

tempfile totfile

save ‘totfile’, replace

bsample , cluster(‘bysample’)

}

* Run the regression with the chosen set of bootstrap weights, only use the

coefficients if there

* are no errors

capture ‘cmdname’ ‘varlist’ if ‘sample’==1 ‘in’, ‘cmdops’

iterate(‘iterate’)

if _rc==0 {

if e(converged)==1 {

* Store coefficients in the bootstrap matrix

matrix ‘bsbhat’=get(_b)

* bsbhat is a 1x(‘k’+1) (row) vector if the model has a constant. Need to

transpose

matrix ‘bsbhat’=‘bsbhat’’

* If we have the proper number of coefficients then add them to the bootstrap

matrix, otherwise

* do not add them (this most likely arises due to a regressor being dropped

due to multicollinearity
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if rowsof(‘bsbhat’)==‘_k1’ {

* If we are on the first bootstrap then create the bsbetas matrix, otherwise

append to it

matrix ‘bsbetas’=(nullmat(‘bsbetas’),‘bsbhat’)

nois _dots ‘nreps’ 0

}

else {

matrix drop ‘bsbhat’

local --_realboot

nois _dots ‘nreps’ 1 // shows x if dropped any

coefficient from regression

}

}

}

else {

local --_realboot

nois _dots ‘nreps’ 2 // shows e if error in estimation

}

if "‘bootsample’"!="" {

use ‘totfile’, clear

}

}

* End of bootstrap loop

* All the bootstraps have been completed now calculate the new standard errors

and display

* relevant statistics

* We must transpose the matrix to make each row now, then column, a new

variable

matrix ‘bsbetas’=‘bsbetas’’

* Generate the bootstrapped variance-covariance matrix, you can access this in

e(V) after running

* the BSWREG ado file

* Prepare result matrices for programming in MATA

tempname resmat restrue

if "‘bsci’"!="" {

matrix ‘resmat’=J(‘_k1’,8,0)

if "‘ntrue’"!="" {

matrix ‘restrue’=J(‘_k1’,8,0)

}

}

else {

matrix ‘resmat’=J(‘_k1’,6,0)

if "‘ntrue’"!="" {

matrix ‘restrue’=J(‘_k1’,6,0)

}

}

* Generate real matrices from temporary matrices to bring them into Mata

matrix define bhat=‘bhat’

matrix define bsbhat=‘bsbhat’

matrix define bsVC=‘bsVC’

matrix define bsbetas=‘bsbetas’

matrix define resmat=‘resmat’

matrix define restrue=‘restrue’
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*************************************************

***** MATA WITHIN BOOTSTRAP *****

*************************************************

* Calculate the new Variance Covariance Matrix from bootstrap results

mata: covarserror

("bsbetas","bsVC","bhat","resmat",‘_realboot’,‘_k1’,‘level’,

"restrue",‘naltern’,‘ntrue’)

matrix rownames resmat=‘varnames’

if "‘ntrue’"!="" {

matrix rownames restrue=‘varnames’

}

if "‘bsci’"!="" {

matrix colnames resmat=Coef StdError T-Stat low90 low90 lowbsci

highbsci

if "‘ntrue’"!="" {

matrix colnames restrue=Coef StdError T-Stat Conf90 Conf90

lowbsci highbsci

}

}

else {

matrix colnames resmat=Coef StdError T-Stat Conf90 Conf90

if "‘ntrue’"!="" {

matrix colnames restrue=Coef StdError T-Stat Conf90 Conf90

}

}

}

*************************************************

***** RESULTS *****

*************************************************

* Show the Results Table

Header if "‘header’"==""

display _n in gr "Boostraped Std. Errors" _col(60)

_coef_table , cmdextras level(‘level’) bmatrix(bhat) vmatrix(bsVC) //

diparm(__sep__ )

display _n in gr "Boostraped & Alternative Corrected Std. Errors" _col(60)

_coef_table , cmdextras level(‘level’) bmatrix(bhat) vmatrix(bsVC_true) //

diparm(__sep__ )

quietly {

* Set the eclass variables like the coefficients and the variance-covariance

matrix into their

* appropriate matrices so that F-tests and the like can be run

ereturn post bhat bsVC, dof(‘_realboot’)

ereturn matrix bsresult=resmat

ereturn matrix bsrestrue=restrue

ereturn scalar ll=$ll

ereturn scalar N=$N

ereturn scalar N_case=$N_case

ereturn scalar df_m=$dfm
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ereturn scalar chi2=$chi2

ereturn scalar N_case=$N_case

ereturn scalar k_alt=$k_alt

ereturn scalar k_eq=$keq

ereturn scalar k_indvars=$k_alt

ereturn scalar ic=$ic

ereturn scalar converged=$converged

ereturn local cmdline ‘"asclogit"’

ereturn local case ‘case’

ereturn local clustvar ‘cluster’

ereturn local title "Bootstrap Alternative-specific conditional logit"

ereturn local cmd "bsasclogit"

* Save the bootstrap raw data is the "SAVING" option has been used

if "‘saving’"˜="" {

save "‘saving’", ‘replace’

}

* Restore the original dataset

restore

mat drop bsVC_true bsbetas

macro drop title case altvar alt_min alt_avg alt_max crittype

chi2type clustvar vce prob

}

}

end

*************************************************

***** PROGRAM HEADER *****

*************************************************

* Header for result table

program define Header

version 12

display _n in gr ‘"$title"’ _col(48) "Number of obs" _col(67) "= " ///

in ye %10.0g $N

display in gr ‘"Case variable: $case"’ _col(48) ///

"Number of cases" _col(67) "= " in ye %10.0g $N_case

display

display in gr ‘"Alternative variable: $altvar"’ _col(48)

///

"Alts per case: min = " in ye %10.0g $alt_min _n _col(63) in gr ///

"avg = " in ye %10.1f $alt_avg _n _col(63) in gr "max = " ///

in ye %10.0g $alt_max _n

local lencr = length(‘"$crittype"’)

local h help j_robustsingular:

if ‘"$chi2type"’ == "Wald" {

local stat $chi2

local cfmt=cond($chi2<1e+7,"%10.2f","%10.3e")

if $chi2 >= . {

display in gr _col(51) ///

‘"{‘h’Wald chi2($dfm){col 67}= }"’ in ye ///

‘cfmt’ $chi2

}
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else {

display in gr _col(51) ‘"$chi2type chi2("’ in ye ///

‘"$dfm"’ in gr ")" _col(67) "= " in ye ///

‘cfmt’ $chi2

}

}

else if ‘"$clustvar"’!="" | $vce=="jackknife" {

/* F statistic from test after _robust */

local stat $F

local cfmt=cond($F)<1e+7,"%10.2f","%10.3e")

if $F < . {

display in gr _col(51) "F(" in ye %3.0f $dfm in gr ///

"," in ye %6.0f $dfr in gr ")" _col(67) "= " ///

in ye $cfmt ‘F’

}

else {

display in gr _col(51) ‘"{‘h’ F( $dfm, $dfr)}"’

_col(67) ///

‘"{‘h’= .}"’

}

}

else {

local stat $chi2

local cfmt=cond($chi2)<1e+7,"%10.2f","%10.3e")

display in gr _col(51) "LR(" in ye %3.0f $dfm in gr ")" ///

_col(67) "= " in ye $cfmt $chi2

}

display in gr ‘"$crittype = "’ in ye %10.0g $ll _col(51) in gr ///

"Prob > " %10.4f $chi2 _col(67) " = " in ye %10.4f $prob

end

*************************************************

***** PROGRAM MATA *****

*************************************************

* Mata Program for calculation of new Variance Covariance Matrix of boostraped

coefficients

version 12.1

mata:

void covarserror (string scalar bsbhatmat, string scalar bsvmatrix, ///

string scalar bhatmatrix, string scalar resmat, ///

real scalar realboot, real scalar _k1, ///

real scalar level, | string scalar restrue, real scalar naltern, real scalar

ntrue, string scalar bsci)

{

real matrix bsbhat,B,bsVC,bsV,bhat,S

real matrix _sdx,_t,_low,_high,_p, result1

real scalar i

if ("ntrue"!="") {

real matrix

_sdx_true,_t_true,_low_true,_high_true,_p_true,result2,bsVC_true

}
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if (bsci!="") {

real matrix _lowbsci, _highbsci,sbsbhat

real scalar _obslow, _obshigh

}

bsbhat=st_matrix(bsbhatmat)

bsVC=st_matrix(bsvmatrix)

B=variance(bsbhat)

bsV=diagonal(B)

bsVC[.,.]=B[.,.]*(realboot-1)/realboot

bsVC_true=B[.,.]*((realboot-1)/realboot)*(naltern+1)

st_replacematrix(bsvmatrix,bsVC)

st_matrix("bsVC_true",bsVC_true)

bhat=st_matrix(bhatmatrix)

bhat=bhat’

_sdx=J(_k1,1,0)

_t=J(_k1,1,0)

_low=J(_k1,1,0)

_high=J(_k1,1,0)

_p=J(_k1,1,0)

if ("ntrue"!="") {

_sdx_true=J(_k1,1,0)

_t_true=J(_k1,1,0)

_low_true=J(_k1,1,0)

_high_true=J(_k1,1,0)

_p_true=J(_k1,1,0)

}

if (bsci!="") {

_lowbsci=J(_k1,1,0)

_highbsci=J(_k1,1,0)

}

for (i=1;i<=_k1;i++) {

_sdx[i,1]=sqrt(((realboot-1)/realboot)* bsV[i,1])

_t[i,1]=abs(bhat[i,1]/_sdx[i,1])

_p[i,1]=2* norm((-1)* _t[i,1])

_low[i,1]=bhat[i,1]-invnormal(1-((1-(level/100))/2))* _sdx[i,1]

_high[i,1]=bhat[i,1]+invnormal(1-((1-(level/100))/2))* _sdx[i,1]

if ("ntrue"!="") {

_sdx_true[i,1]=sqrt(((realboot-1)/realboot)* bsV[i,1]*(naltern+1))

_t_true[i,1]=abs(bhat[i,1]/_sdx_true[i,1])

_p_true[i,1]=2* norm((-1)* _t_true[i,1])

_low_true[i,1]=bhat[i,1]-invnormal(1-((1-(level/100))/2))*
_sdx_true[i,1]

_high_true[i,1]=bhat[i,1]+invnormal(1-((1-(level/100))/2))*
_sdx_true[i,1]

}

if (bsci!="") {

sbsbhat=sort(bsbhat,i)
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_obslow= max(round(((1-(level/100))/2)* realboot,1))

_obshigh= max(round((1-((1-(level/100))/2))* realboot,1))

if (_obslow<1) {

_lowbsci[i,1]= sbsbhat[1,i]

_highbsci[i,1]= sbsbhat[realboot,i]

}

else {

_lowbsci[i,1]= sbsbhat[_obslow,i]

_highbsci[i,1]= sbsbhat[_obshigh,i]

}

}

}

if (bsci!="") {

result1=bhat,_sdx,_t,_p,_low,_high,_lowbsci, _highbsci

if (" ntrue"!="") {

result2=bhat,_sdx_true,_t_true,_p_true,_low_true,_high_true,

_lowbsci, _highbsci

}

}

else {

result1=result1=bhat,_sdx,_t,_p,_low,_high

if (" ntrue"!="") {

result2=bhat,_sdx_true,_t_true,_p_true,_low_true,_high_true

}

}

st_replacematrix(resmat,result1)

st_replacematrix(restrue,result2)

}

end
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Appendix C

Appendix to Chapter 4

C.1 Covariance Baseline Model

Table C.1.1: Variance Covariance Matrix Random Coefficients First Stage
Baseline Model

same place relative summer winter precip cloud vapour

same place 99.15
relative -4.452 60.70
summer temperature -14.74 2.327 3.280
winter temperature -11.23 14.16 1.890 5.690
precipitation -1.391 1.532 0.224 0.450 0.367
cloud cover 0.384 6.388 0.147 1.836 -0.011 2.044
vapour pressure 31.38 -17.87 -5.205 -7.681 -1.012 -1.324 16.48
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C.2 Hedonic Wage Regression

Table C.2.1: Hedonic Wage Regression

ln wage income

age 0.266∗∗∗

(0.0000)

age2(/100) -0.357∗∗∗

(0.0000)

male 0.898∗∗∗

(0.0002)

married 0.124∗∗∗

(0.0003)

immigrant -0.0662∗∗∗

(0.0004)

Mexican 0.178∗∗∗

(0.0006)

immigrant×Mexican 0.0347∗∗∗

(0.0009)

recent -0.728∗∗∗

immigrant (0.0006)

primary -1.925∗∗∗

(0.0004)

secondary 0.734∗∗∗

(0.0003)

tertiray 1.257∗∗∗

(0.0004)

higher 1.829∗∗∗

(0.0004)

joint prob 5.805∗∗∗

(0.015)

joint prob2 -9.952∗∗∗

(0.038)

constant 1.612∗∗∗

(0.001)

MSA FE ×
occupation FE ×

adjusted R2 0.313
N 1,220,093,714

Notes: Standard errors are presented in
parentheses. Significance level defined as
* p<0.1; ** p<0.05; *** p<0.01. Mex-
ican occupation codes are converted into
two-digit ISCO-88 occupation codes based
on the crosswalk provided by Mahutga et
al. (2018, Appendix D) to match occupa-
tions between the Mexican Migration Pro-
ject and the American Community Survey.

C.3 Ordinary Least Square Estimates

C.3.1 Ordinary Least Square Estimates of the Marginal Willingness to
Pay
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Table C.3.1: Second Stage: Alternative Mixed Logit Specification (OLS)

Base Model (7) (8) (9) (10) (11)

region &
IV

RD: Î
linear

mig distance
mig dist
married

no mig
distance

RD: mig
distance

2nd Stage Coef Coef Coef Coef Coef Coef
(Std Err) (Std Err) (Std Err) (Std Err) (Std Err) (Std Err)

summer -5.898 -4.159 -3.357 -5.911 0.866 -2.267
temperature (0.088) (0.094) (0.074) (0.098) (0.108) (0.087)

winter 7.557 8.653 7.359 10.73 8.504 9.161
temperature (0.068) (0.072) (0.052) (0.074) (0.075) (0.072)

precipitation 0.190 0.438 0.370 0.210 0.238 0.295
(0.010) (0.009) (0.008) (0.009) (0.012) (0.008)

cloud -1.045 -4.260 -4.128 -4.662 -7.755 -6.009
cover (0.140) (0.151) (0.107) (0.133) (0.147) (0.128)

vapour -3.240 -3.063 -1.885 -1.215 -1.643 -2.679
pressure (0.038) (0.044) (0.030) (0.037) (0.048) (0.038)

ln hourly wage 4.775 -4.165 -0.580 5.576 5.693 -6.196
business (0.544) (0.614) (0.474) (0.572) (0.608) (0.526)

ln hourly wage -6.614 -0.347 -14.72 -4.108 -4.139 -3.095
production (0.436) (0.478) (0.460) (0.421) (0.483) (0.434)

ln hourly wage 24.07 24.19 26.99 14.78 6.897 28.79
construction (0.472) (0.628) (0.400) (0.519) (0.557) (0.486)

violent crime 0.097 0.072 0.024 0.041 0.224 -0.160
rate (0.005) (0.005) (0.004) (0.007) (0.006) (0.006)

health 0.104 0.076 0.059 0.084 0.070 0.104
score (0.003) (0.003) (0.002) (0.003) (0.003) (0.003)

transport 0.068 0.005 0.032 0.029 0.028 0.055
score (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

education 0.002 0.001 0.002 0.001 0.001 0.002
score (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

the arts -0.007 0.010 0.001 0.008 0.008 -0.005
score (0.000) (0.001) (0.000) (0.001) (0.001) (0.000)

recreational -0.100 -0.044 -0.014 0.012 0.030 -0.026
facilities score (0.002) (0.003) (0.002) (0.002) (0.003) (0.002)

distance to -0.002 0.001 -0.001 -0.001 0.001 -0.002
coast (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

elevation -0.001 -0.004 -0.001 -0.003 -0.003 -0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

adjusted R2 0.568 0.556 0.576 0.611 0.498 0.576

Notes: Robust standard errors presented in parentheses. All regressions are estimated using
Ordinary Least Square. Climate variables have been rescaled in units of 10.
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Table C.3.2: Second Stage: Alternative Climate Specifications (OLS)

Base Model (12) (13) (14) (15)

simple
OLS

no alt
climate

mean tmp mean tmp2 max min

2nd Stage Coef Coef Coef Coef Coef
(Std Err) (Std Err) (Std Err) (Std Err) (Std Err)

summer -5.898 -4.695
temperature (0.088) (0.092)

winter 7.557 9.029
temperature (0.068) (0.041)

temperature 7.283 13.00
(0.096) (0.245)

temperature2 0.231
(0.009)

maximum 8.090
temperature (0.147)

minimum 0.198
temperature (0.177)

precipitation 0.190 0.926 0.173 0.395
(0.010) (0.010) (0.010) (0.007)

cloud -1.045 -5.838 -11.73 -2.782
cover (0.140) (0.118) (0.156) (0.131)

vapour -3.240 -4.175 -0.843 -2.702
pressure (0.038) (0.036) (0.036) (0.033)

ln hourly wage 4.775 -2.825 6.892 4.965 -1.781
business (0.544) (0.603) (0.527) (0.549) (0.516)

ln hourly wage -6.614 -10.91 -5.381 -7.138 -14.88
production (0.436) (0.443) (0.416) (0.494) (0.501)

ln hourly wage 24.07 32.53 15.84 25.70 38.64
construction (0.472) (0.477) (0.475) (0.465) (0.446)

violent crime 0.097 0.032 0.011 0.034 0.088
rate (0.005) (0.006) (0.006) (0.007) (0.005)

health 0.104 0.093 0.003 0.070 0.030
score (0.003) (0.003) (0.003) (0.003) (0.003)

transport 0.068 0.040 0.051 0.053 0.041
score (0.001) (0.001) (0.001) (0.001) (0.001)

education 0.002 0.001 0.003 0.002 0.002
score (0.000) (0.000) (0.000) (0.000) (0.000)

the arts -0.007 -0.002 0.003 0.000 0.000
score (0.000) (0.000) (0.000) (0.000) (0.000)

recreational -0.100 -0.012 0.070 -0.090 -0.034
facilities score (0.002) (0.002) (0.002) (0.003) (0.002)

distance to -0.002 0.000 -0.005 -0.004 -0.002
coast (0.000) (0.000) (0.000) (0.000) (0.000)

elevation -0.001 0.001 -0.001 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

region FE × × × × ×
IV × × × × ×

adjusted R2 0.568 0.499 0.550 0.560 0.505
N 94,050 94,050 94,050 94,050 94,050

Notes: Robust standard errors presented in parentheses. All regressions are estimated
using Ordinary Least Square. Climate variables have been rescaled in units of 10.
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Table C.3.3: Second Stage: Heterogeneous Climate Differences (OLS)

Base Model (16) (17) (18)

simple OLS age ≥ 55 education clinal

2nd Stage Coef Coef Coef Coef
(Std Err) (Std Err) (Std Err) (Std Err)

summer -5.898 -7.998 -4.222 -3.843
temperature (0.088) (0.102) (0.086) (0.213)

winter 7.557 5.440 7.469 33.27
temperature (0.068) (0.120) (0.076) (0.701)

age ≥ 55 16.51
summer temperature (1.072)

age ≥ 55 88.637
winetr temperature (4.917)

college graduate 0.015
summer temperature (0.018)

college graduate -0.057
winter temperature (0.066)

mex hot 2.211
summer temperature (0.345)

mex hot -44.344
winter temperature (1.172)

precipitation 0.190 0.033 0.725 0.558
(0.010) (0.009) (0.008) (0.009)

cloud -1.045 0.751 -5.634 -6.022
cover (0.140) (0.144) (0.129) (0.138)

vapour -3.240 -4.063 -4.454 -4.386
pressure (0.038) (0.042) (0.041) (0.043)

ln hourly wage 4.775 14.35 13.27 8.338
business (0.544) (0.562) (0.588) (0.589)

ln hourly wage -6.614 -5.884 -8.351 -4.942
production (0.436) (0.464) (0.464) (0.478)

ln hourly wage 24.07 13.79 13.48 14.66
construction (0.472) (0.472) (0.502) (0.502)

violent crime 0.097 0.164 0.070 0.164
rate (0.005) (0.005) (0.005) (0.005)

health 0.104 0.122 0.105 0.139
score (0.003) (0.003) (0.003) (0.003)

transport 0.068 0.046 0.066 0.056
score (0.001) (0.001) (0.001) (0.001)

education 0.002 0.000 -0.001 0.000
score (0.000) (0.000) (0.000) (0.000)

the arts -0.007 -0.002 0.001 -0.004
score (0.000) (0.000) (0.001) (0.000)

recreational -0.100 0.008 -0.001 -0.017
facilities score (0.002) (0.002) (0.002) (0.002)

distance to -0.002 -0.001 0.000 -0.001
coast (0.000) (0.000) (0.000) (0.000)

elevation -0.001 -0.004 -0.003 -0.002
(0.000) (0.000) (0.000) (0.000)

adjusted R2 0.568 0.660 0.599 0.599
N 94,050 94,050 94,050 94,050

Notes: Robust standard errors presented in parentheses. All regressions are estimated using Ordinary
Least Square. Climate variables have been rescaled in units of 10.
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Table C.3.4: MWTP Alternative Climate Specification (OLS)

Base Model (12) (13) (14) (15)

simple OLS
no alt

climate
avg tmp avg tmp2 max min

MWTP MWTP MWTP MWTP MWTP

mean: summer $ -541 $ -229
temperature ($ 83) ($ 53)

mean: winter $ 76 $ 177
temperature ($ 75) ($ 24)

mean: average $ -145
temperature ($ 74)

mean: average $ -38
temperature2a ($ 9)

mean: maximum $ -152
temperature ($ 133)

mean: minimum $ 17
temperature ($ 143)

mean: $ -61 $ -10 $ -8 $ -49
precipitation ($ 14) ($ 11) ($ 8) ($ 19)

mean: cloud $ 235 $ -241 $ -179 $ 120
cover ($ 165) ($ 68) ($ 46) ($ 127)

mean: vapour $ -191 $ -176 $ -170 $ -283
pressure ($ 75) ($ 35) ($ 21) ($ 92)

ln hourly wage $ 1 $ -0 $ 1 $ 1 $ -1
businessa ($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

ln hourly wage $ -1 $ -1 $ -1 $ -1 $ -4
productiona ($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

ln hourly wage $ 5 $ 3 $ 2 $ 3 $ 12
constructiona ($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

violent crime $ 281 $ 45 $ 24 $ 53 $ 407
rate ($ 14) ($ 9) ($ 12) ($ 11) ($ 22)

health $ 301 $ 134 $ 5 $ 110 $ 138
score ($ 8) ($ 4) ($ 7) ($ 4) ($ 13)

transport $ 197 $ 58 $ 108 $ 84 $ 189
score ($ 3) ($ 2) ($ 3) ($ 2) ($ 6)

education $ 7 $ 1 $ 6 $ 3 $ 11
score ($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

the arts $ -20 $ -2 $ 7 $ -0 $ 2
score ($ 1) ($ 1) ($ 1) ($ 1) ($ 2)

recreational $ -289 $ -17 $ 149 $ -142 $ -158
facilities score ($ 7) ($ 3) ($ 4) ($ 4) ($ 10)

distance to $ -5 $ -0 $ -10 $ -7 $ -10
coast ($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

elevation $ -3 $ 1 $ -2 $ 1 $ 2
($ 0) ($ 0) ($ 0) ($ 0) ($ 0)

Notes: Standard errors provided in parentheses. Amenity coefficients
have been converted to the MWTP by dividing the mean coefficient and
the standard error from the first and second stage by the coefficient on
income from the mixed logit regression. The result is multiplied by
the sample mean predicted income to yield a monetary measure of the
amenity value of a marginal change in the amenity.

a Nonlinear amenity variables are evaluated at population-weighted
means in order to compute the Marginal Willingness to Pay.
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Table C.3.5: MWTP Heterogeneous Climate Specification (OLS)

Base Model (16) (17) (18)

simple OLS age ≥ 55 education clinal

MWTP MWTP MWTP MWTP

mean: summer $ -541 $ -203 $ -112 $ -196
temperature ($ 83) ($ 32) ($ 27) ($ 40)

mean: winter $ 76 $ -13 $ 215 $ 2,722
temperature ($ 75) ($ 40) ($ 32) ($ 99)

mean: age ≥ 55 $ 1,073
summer temperature ($ 43)

mean: age ≥ 55 $ 7,057
winter temperature ($ 523)

mean: college graduate $ -121
summer temperature ($ 50)

mean: college graduate $ 228
winter temperature ($ 64)

mean: mex hot $ -171
summer temperature ($ 57)

mean: mex hot $ -1,316
winter temperature ($ 233)

mean: precipitation $ -61 $ -13 $ -10 $ -12
($ 14) ($ 8) ($ 9) ($ 9)

mean: cloud $ 235 $ -408 $ -466 $ -769
cover ($ 165) ($ 32) ($ 28) ($ 40)

mean: vapour $ -191 $ -58 $ -10 $ -21
pressure ($ 75) ($ 25) ($ 43) ($ 31)

ln hourly wage $ 1 $ 1 $ 1 $ 1
business ($ 0) ($ 0) ($ 0) ($ 0)

ln hourly wage $ -1 $ -1 $ -1 $ -1
production ($ 0) ($ 0) ($ 0) ($ 0)

ln hourly wage $ 5 $ 1 $ 1 $ 2
construction ($ 0) ($ 0) ($ 0) ($ 0)

violent crime $ 281 $ 258 $ 96 $ 304
rate ($ 14) ($ 8) ($ 7) ($ 10)

health $ 301 $ 192 $ 145 $ 257
score ($ 8) ($ 4) ($ 4) ($ 5)

transport $ 197 $ 72 $ 91 $ 105
score ($ 3) ($ 2) ($ 2) ($ 2)

education $ 7 $ 1 $ -1 $ 1
score ($ 0) ($ 0) ($ 0) ($ 0)

the arts $ -20 $ -4 $ 2 $ -7
score ($ 1) ($ 1) ($ 1) ($ 1)

recreational $ -289 $ 12 $ -2 $ -32
facilities score ($ 7) ($ 3) ($ 3) ($ 4)

distance to $ -5 $ -1 $ -0 $ -3
coast ($ 0) ($ 0) ($ 0) ($ 0)

elevation $ -3 $ -6 $ -4 $ -4
($ 0) ($ 0) ($ 0) ($ 0)

Notes: Standard errors provided in parentheses. Amenity coefficients have been converted to the MWTP by dividing
the mean coefficient and the standard error from the first and second stage by the coefficient on income from the
mixed logit regression. The result is multiplied by the sample mean predicted income to yield a monetary measure
of the amenity value of a marginal change in the amenity.
a Nonlinear amenity variables are evaluated at population-weighted means in order to compute the Marginal Will-
ingness to Pay.
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Table C.3.6: MWTP Second Stage Specification (OLS)

Base Model (7) (8) (9) (10) (11)

region &
IV

RD: Î &
wage

mig distance
mig dist
married

no mig
distance

RD: mig
distance

MWTP MWTP MWTP MWTP MWTP MWTP

mean: summer $ -541 $ -423 $ -267 $ -330 $ -521 $ 19,669
temperature ($ 83) ($ 37) ($ 30) ($ 55) ($ -199) ($ -4,321)

mean: winter $ 76 $ 308 $ 118 $ 110 $ -349 $ -29,892
temperature ($ 75) ($ 27) ($ 60) ($ 48) ($ -127) ($ -4,332)

mean: precip $ -61 $ -46 $ -50 $ -32 $ 72 $ -876
($ 14) ($ 15) ($ 9) ($ 8) ($ -26) ($ -857)

mean: cloud $ 235 $ -378 $ -104 $ -208 $ 883 $ 60,370
cover ($ 165) ($ 41) ($ 89) ($ 74) ($ -148) ($ -5,885)

mean: vapour $ -191 $ -53 $ -106 $ -53 $ -14 $ 10,777
pressure ($ 75) ($ 45) ($ 49) ($ 22) ($ -44) ($ -4,756)

ln hourly wage $ 1 $ -1 $ -0 $ 1 $ -1 $ 82
business ($ 0) ($ 0) ($ 0) ($ 0) ($ -0) ($ -7)

ln hourly wage $ -1 $ -0 $ -3 $ -0 $ 1 $ 41
production ($ 0) ($ 0) ($ 0) ($ 0) ($ -0) ($ -6)

ln hourly wage $ 5 $ 3 $ 5 $ 2 $ -2 $ -382
construction ($ 0) ($ 0) ($ 0) ($ 0) ($ -0) ($ -6)

violent crime $ 281 $ 147 $ 62 $ 72 $ -773 $ 32,494
rate ($ 14) ($ 11) ($ 12) ($ 13) ($ -21) ($ -1,231)

health $ 301 $ 155 $ 155 $ 149 $ -240 $ -21,094
score ($ 8) ($ 7) ($ 6) ($ 5) ($ -11) ($ -551)

transport $ 197 $ 10 $ 84 $ 51 $ -98 $ -11,162
score ($ 3) ($ 3) ($ 3) ($ 3) ($ -5) ($ -273)

education $ 7 $ 3 $ 6 $ 2 $ -4 $ -313
score ($ 0) ($ 0) ($ 0) ($ 0) ($ -0) ($ -11)

the arts $ -20 $ 20 $ 2 $ 14 $ -29 $ 954
score ($ 1) ($ 1) ($ 1) ($ 1) ($ -2) ($ -95)

recreational $ -289 $ -89 $ -38 $ 22 $ -103 $ 5,378
facilities score ($ 7) ($ 6) ($ 5) ($ 4) ($ -9) ($ -449)

distance to $ -5 $ 2 $ -2 $ -1 $ -2 $ 342
coast ($ 0) ($ 0) ($ 0) ($ 0) ($ -0) ($ -18)

elevation $ -3 $ -9 $ -3 $ -5 $ 9 $ 312
($ 0) ($ 0) ($ 0) ($ 0) ($ -0) ($ -14)

Notes: Standard errors provided in parentheses. Amenity coefficients have been
converted to the MWTP by dividing the mean coefficient and the standard error
from the first and second stage by the coefficient on income from the mixed logit
regression. The result is multiplied by the sample mean predicted income to yield
a monetary measure of the amenity value of a marginal change in the amenity.

a Nonlinear amenity variables are evaluated at population-weighted means in order
to compute the Marginal Willingness to Pay.
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