
   

 

A University of Sussex PhD thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



Augmenting NNLL resummations with

event-generators and multi-jets

Augmenting ARES

Luke Arpino

Submitted for the degree of Doctor of Philosophy

University of Sussex

September 2019



Declaration

The contents of Chapters 4 and 5 are based on work done in collaboration with Andrea

Banfi and Basem Kamal El-Menoufi, resulting in the publication of ref. [1]. The contents

of Chapter 6 are based on work done in collaboration with Andrea Banfi, Nikolas Kauer

and Sebastian Jäger, resulting in the publication of ref. [2].

I hereby declare that this thesis has not been and will not be submitted in whole or in

part to another University for the award of any other degree.

Signature:

Luke Arpino



iii

UNIVERSITY OF SUSSEX

Luke Arpino, Doctor of Philosophy

Augmenting NNLL resummations with event-generators and multi-jets

Augmenting ARES

Summary

This work extends the ARES framework for NNLL resummations: automating calculations
via the use of fixed-order event generators, and, extending the ARES method to multi-jet
observables. We extend the ARES method to multi-jet observables in electron-positron
annihilation, and we use this extension to perform the first NNLL resummation of the
D-parameter, a three-jet event-shape.We introduce a new method to interface resumma-
tions to fixed-order event generators. Utilising this new method we interface jet-veto
resummations with the fixed-order code MCFM. The result is a new code capable of re-
summing jet-veto effects in all processes that proceed via a colour-singlet, and completely
differential in leptonic final states. We use the code to resum jet-veto effects in WW final
states at the Large Hadron Collider, and place constraints on the unique dimension-six
operator coupling gluons to the Higgs field.
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Chapter 1

Introduction

The story of elementary particle physics is one of remarkable success. Our knowledge

of elementary particles has grown from the discovery of the first subatomic particle (the

electron) in 1897, to a theory that is capable of explaining the electromagnetic force, the

strong nuclear force and the weak nuclear force—three of the four fundamental forces—

to incredible experimental precision. To describe the interactions between elementary

particles at such high levels of precision we must use the language of quantum field theory

(QFT), a unification of quantum mechanics and special relativity. In the language of

QFT, elementary particles are described in terms of quantum fields, and their dynamics

via the interaction of these quantum fields. QFTs are the basis for theories that attempt

to describe interactions at the smallest possible length scales.

Our best description of elementary particles is encoded in the Standard Model (SM)

of particle physics. The SM is a renormalisable gauge QFT, that is invariant under the

action of the local product group SU(3)c × SU(2)L × U(1)Y . The gauge groups in the

SM encode different forces, the SU(3)c gauge group describes the strong force, and the

product group SU(2)L × U(1)Y described the electroweak force. The SU(2)L × U(1)Y

symmetry is spontaneously broken according to the Higgs mechanism, giving rise to the

electromagnetic and weak nuclear forces. In this thesis we will only concern ourselves

with the SU(Nc) sector, the dynamics of which are described by the theory of quantum

chromodynamics (QCD).

The phenomena of QCD are rich and varied across many different energy scales. At

low energies QCD is responsible for the hadrons (bound states of quarks and gluons) and

the existence of the atomic nucleus. At high energies QCD is the dominant mechanism

of interactions at colliders. In this thesis we will only consider QCD at high energies. At

high energies QCD behaves like a free theory and is will described by perturbation theory,
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where the strong coupling constant acts as a small parameter. The fixed-order1 perturb-

ative treatment of QCD is remarkably successful, and, broadly, agrees very well with

experimental data. However in certain kinematic regimes these predictions can become

unreliable. Problems arise when particle dynamics occur at multiple scales. For reliable

predictions it is thus essential that we take into account these multi-scale dynamics. This

is usually done by performing an all-orders2 resummation.

The main subject of this thesis is the resummation of final-state observables in QCD.

Considering only a particular (although still rather generic) class of hadronic observable,

a general method for their resummation can be devised. At next-to-leading-logarithmic

(NLL) accuracy this exists in the form of CAESAR [3] a framework and a computer program.

And at next-to-next-to-leading-logarithmic (NNLL) accuracy this exists in the form of

ARES [4], also a framework and a computer program. Within the scope of CAESAR and

ARES are many observables that can be resummed, for example most event shape variables

including: Thrust, the C-parameter and the D-parameter.

There is always more phenomenology that is of considerable interest that we can study,

one such case is that of three-jet events. There is a wealth of three-jet data from the

Large Electron-Positron (LEP) collider, for which more accurate predictions are necessary

for good agreement between theory and experiment. Another such case is the need for

differential distributions. Such distributions provide far more information than simple rate

calculations, and are necessary for accurate measurements of certain parameters, such as

the coupling of the Higgs field. In this thesis we extend the ARES framework to cover these

cases, paving the way for new phenomenological studies.

In chapter 2 we review the kinematic details necessary for the calculation of cross

sections in scattering experiments. Along the way we will introduce some of the notation

that will be used throughout the thesis, remaining as general as possible in our consider-

ations. We will then introduce QCD, concerning ourselves only with perturbative QCD

(pQCD). We cannot possibly give a complete review of pQCD, so we will review some

of the important aspects of pQCD in the infrared regime: the class of observables that

can be reliably calculated in pQCD and the factorisation of QCD matrix elements in the

soft and/or collinear limit. In chapter 3 we introduce jets, and, the intimately related, jet

observables. Such observables can be used to probe every aspects of QCD and the SM of

particle physics.

In chapter 4 we come to the original work that I have carried out. We extend the ARES

1By fixed-order we mean that we consider only a fixed number of terms in the perturbative series.
2By all-orders we mean that we consider all orders in the strong coupling constant.
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method of resummation to three-jet event shapes in e+e− annihilation at NNLL accuracy.

Careful consideration of all possible contributions is necessary, and we find many new

and interesting features not present in the two-jet case. Following this in chapter 5 we

apply the new ARES method to resum the D-parameter in near-to-planar three-jet events

at NNLL accuracy, the first such resummation at this accuracy.

Finally, in chapter 6 again we extend the ARES method, so as to produce predictions

that are differential in the kinematics of the final-state. We focus on the production of a

colour-singlet in the presence of a jet veto. We then examine the phenomenology of WW

production in the presence of a jet veto, and use the differential production cross section

to put constraints on a simple Beyond the Standard Model (BSM) operator.
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Chapter 2

Quantum Chromodynamics

Before we begin our incursion into the realms of Quantum Field Theory (QFT) and

Quantum Chromodynamics (QCD), we will first briefly review how to calculate meas-

urable quantities in QFT.

2.1 The cross section

The experiments that probe the behaviour of elementary particles, especially in the re-

lativistic regime are scattering experiments. In scattering experiments we either collide

two beams of particles together or we smash a single beam of particles into a fixed target.

We measure the resulting final state particles to understand the dynamics of the under-

lying collision. The likelihood of a particular final state can be expressed in terms of the

cross section, a quantity that is intrinsic to the colliding particles and independent of the

experimental setup. It is the cross section that allows us to compare measurements taken

from different experimental configurations to one another.

Considering two bunches of particles of type a and b, with length `a, `b, density ρa, ρb
and a cross-sectional area A that is common to the two bunches, we can define the cross

section as

σ ≡ Number of scattering events
ρa `a ρb `bA

. (2.1)

We are usually interested in more than just counting the number of particles, we would

like to measure the momenta of the final state particles. We can still use the cross sec-

tion definition of Eq. (2.1) to do this, only now by specifying the exact momenta the

cross section is infinitesimal. The solution to this is to define a differential cross section

dσ/(d3p1 . . . d
3pm), which is infinitesimal in the momenta of the final state particles. In-

tegrating the differential cross section over the momenta of the final state particles we
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recover the total cross section.

Usually as physicists we are interested only in specific combinations of momenta that

define an observable, a quantity with a specific kinematic dependence on the final state

momenta. The differential cross section for a completely general observable (or set of

observables) is given by the following expression

dσ =
1

F

∑
{m}

1

S{m}
dΦm(p1, . . . , pm) |Mm(pa, pb → p1, . . . , pm)|2F (m)

J (p1, . . . , pm) , (2.2)

where working from left to right the new terms in Eq. (2.2) are

• The flux factor F , which takes care of the correct normalisation with respect to the

incoming particles in accordance with Eq. (2.1).

• The sum
∑

{m}, which denotes the sum over all the configurations with m particles

in the final state.

• The Bose symmetry factor S{m}, which ensures that contributions due to indistin-

guishable final states are not double counted.

• The phase space for m final state particles dΦm.

• The squared matrix element for a 2 → m scattering |Mm(pa, pb → p1, . . . , pn)| 2.

The squared matrix element contains all of the dynamics of the theory, and encodes

the transition probability for any given scattering process.

• A phase space weight function F (m)
J , called a jet function, which defines the measure-

ment. Inside the jet function we can include phase space cuts (encoded asΘ-functions

of the final state momenta), or observable definitions (encoded as δ-functions). The

jet function can be made up of many different terms encoding simultaneous distri-

butions in many observables taken over complicated phase space cuts. The simplest

example of a jet function is F (m)
J = 1, in which case Eq. (2.2) reduces to the total

cross section. There are some technical limitations on the kinds of observables that

can be included in the jet function, and we will come to these restrictions later.

To calculate cross sections we need to understand both the kinematics and dynamics

of the scattering process. The dynamics are encoded in the square matrix elements of

Eq. (2.2), and to calculate these we must specify a QFT. We will dedicate the rest of this

chapter to a review of QCD, taking our time to walk through the elements that are most

important for the resummations that we will perform in Chapters. 4, 5 and 6.
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2.2 QCD: The theory of the strong force

Before we can write down the QCD Lagrangian density we must specify the field content

of the theory. The dynamical degrees of freedom in QCD are those of quarks and gluons,

these can be written in the language of fields as

• Quark fields, which are spin-12 Dirac fields Ψα
a,f with the indices α, a and f cor-

responding respectively to a Dirac spinor index, a colour index in the fundamental

representation of the gauge group and a flavour index. Generically we will consider

a theory with nF different quark flavours—in the SM there are six different flavours

of quarks.

• Gluon fields, which are spin-1 bosonic fields AA
µ with the indices µ and A corres-

ponding respectively to a Lorentz vector index and a colour index in the adjoint

representation of the gauge group.

In defining the degrees of freedom in terms of fields we have mentioned a gauge symmetry

without pinning down a specific group. The dynamics of the strong interaction are in fact

governed by the non-Abelian gauge group SU(Nc), where in the SM Nc = 3 [5–7]. We

report the details of the SU(Nc) Lie algebra in appendix A.

Now that we understand the field content and the gauge group structure of the theory,

we can write the standard Lagrangian density for a generic Yang-Mills theory [8] with

minimally coupled matter fields

LQCD = −1

4
GA

µνG
A,µν +

nF∑
f=1

Ψ̄a(i /D −m)abΨb , (2.3)

where on the gluon side we have GA
µν , which represents the field strength tensor, defined

as

GA
µν = ∂µA

A
ν − ∂νA

A
µ − gsf

ABCAA
µA

B
ν , (2.4)

where gs is the strong coupling constant. On the quark side we have the four-component

Dirac spinor Ψ1. Finally we have introduced the Feynman slashed shorthand to denote

contraction with the γ-matrices and the covariant derivative, which is defined as

(Dµ)ab = ∂µδab + igs
(
AA

µ t
A
)
ab
. (2.5)

1We have omitted the explicit flavour index f , because it is always possible to diagonalise the mass

matrix of the quarks in flavour space [9, 10]
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The QCD Lagrangian Eq. (2.3) is invariant under the local gauge transformation

Ψ(x) → Ψ′(x) = U(x)Ψ(x)

Aµ(x) → A′
µ(x) = U(x)Aµ(x)U

−1(x) +
i

gs
(∂µU(x))U−1(x) ,

(2.6)

where U(x) = exp
(
iθA(x)tA

)
and Aµ = AA

µ t
A.

The Lagrangian Eq. (2.3) allows us to specify a generating functional for the theory

in terms of the path integral

ZQCD[J, η, η̄] =

∫
DAµDΨDΨ̄×

× exp

[
i

∫
d4x

(
LQCD +AµJ

µ + Ψ̄η + η̄Ψ
)]

,

(2.7)

from which we can calculate Green’s functions of the theory2:

〈Ω|T
{
F [Aµ,Ψ, Ψ̄]

}
|Ω〉 = N

∫
DAµDΨDΨ̄F [Aµ,Ψ, Ψ̄] eiSQCD[Aµ,Ψ,Ψ̄] , (2.8)

where SQCD is the QCD action

SQCD[Aµ,Ψ, Ψ̄] ≡
∫

d4xLQCD[Aµ,Ψ, Ψ̄] , (2.9)

F [Aµ,Ψ, Ψ̄] is a functional of the fields, T denotes the time-ordering of the quantum

fields, |Ω〉 is the vacuum state of the full interacting theory and N is a normalisation

factor, fixed by demanding that 〈Ω|Ω〉 = 1. From the Green’s functions of Eq. (2.8)

we can compute the S-matrix elements, and, subsequently other measurable quantities

by making use of the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [11, 12],

which relates S-matrix elements to scattering amplitudes.

By construction, the action Eq. (2.9) is invariant under the local gauge transformation

Eq. (2.6), this poses a problem to the path integral formulation of the Green’s functions

as defined by Eq. (2.8), in the path integral we sum over physically equivalent field con-

figurations. This redundancy can be removed by the addition of a suitable gauge fixing

term [13] to the Lagrangian Eq. (2.3). A particularly convenient choice for calculations is

the family of covariant gauges defined by

LGF = − 1

2ξ

(
∂µAA

µ

)2
, (2.10)

this gauge fixing term must be accompanied by a ghost Lagrangian to preserve unitarity3

LGhost =
(
∂µχA

)† (
DAB

µ χB
)
, (2.11)

2To be pedantic Green’s functions are vacuum expectation values of time-ordered products of fields.
3The Ghost fields serve as negative degrees of freedom that cancel the effect of unphysical gluon polar-

isations that emerge from the gauge fixing procedure.
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where χA is a ghost fields, a complex scalar field that obeys Fermi-Dirac statistics—the field

is anti-commuting. ξ is a free parameter called the gauge parameter, it defines which of the

family of covariant gauges that we use. Now that we have specified the renormalised QCD

Lagrangian complete with gauge fixing and ghost terms we can determine the Feynman

rules of QCD, we report them in our conventions in appendix. B.

2.3 The ultraviolet structure of QCD

Beyond leading order in perturbation theory, the Lagrangian in Eq. (2.3) does not by

itself allow us to compute physical quantities. A problem arises when we wish to compute

radiative corrections to processes involving particles charged under SU(Nc). When we

compute virtual (loop) corrections to a process involving particles charged under SU(Nc),

we encounter divergences when the momenta of the particles running in the loop become

arbitrarily large. For example consider the one-loop two-point diagram given by

I =

p

p+ k

k

−p

I =

∫
d4k

(2π)4
1

(k + p)2k2
∼ lim

Λ→∞

∫ Λ

0
dk k3

1

(k2)2
∼ lim

Λ→∞

∫ Λ

0

dk

k
∼ lim

Λ→∞
log Λ . (2.12)

Singularities of this form are called ultraviolet (UV) divergences, and are built into the

formulation of QFT: we must sum over all possible momentum values of this virtual

particle. This amounts to saying that we consider the quantum field theory to be valid

up to an arbitrarily high energy scale. Naturally we do not believe this is true, and we

expect that at some high energy scale the QFT will cease to be predictive4.

In a renormalisable theory UV divergences can be absorbed in a redefinition of the

parameters (the strong coupling constant, gauge fixing parameter and quark masses) and

fields of the Lagrangian. we must construct a new renormalised Lagrangian replacing the

fields and parameters by their new renormalised counterparts. The values of the redefined

parameters are then set by comparing the theory to experimental measurements. In prac-

tice it is usually much simpler in massless QCD, where we only have two parameters: the

coupling constant and the gauge fixing parameter. When considering only gauge invari-

ant quantities we only have one parameter left: the coupling constant. The renormalised
4In fact one can consider QFTs to be low energy effective field theories (EFTs) of some currently

unknown high energy theory.
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coupling constant and fields are the only new ingredients necessary to perform calculations

in massless QCD.

Before we can absorb the divergences into the renormalised quantities, we must isolate

them. A particularly convenient and elegant way to do this is to make use of Conventional

Dimensional Regularisation (CDR)[14–16], a regularisation scheme that preserves both

Lorentz and gauge invariance. Throughout this thesis we will work with CDR in d = 4−2ε

dimensions. In the context of CDR, divergences appear as poles in the parameter ε. By

making use of CDR we are able to isolate the UV divergences. Considering again the

integral in Eq. (2.12) we regulate using CDR and keep only the leading divergent terms

I =

∫
ddk

(2π)d
1

(p+ k)2
1

k2
=

i

16π2
1

ε
+O(1) , (2.13)

we see the expected single pole structure that corresponds to a UV divergence.

Next we must supplement the regularisation procedure with a renormalisation condi-

tion. In QCD there is no physically motivated renormalisation scheme, this is in stark

contrast to Quantum Electrodynamics (QED) where the on-shell scheme emerges quite

naturally as the renormalisation condition. This freedom leads us to choose a renor-

malisation scheme that is convenient for performing calculations, the modified minimal

subtraction scheme (MS). In the MS scheme the counterterms are chosen such that they

contain only the poles and some universal terms that appear due to the use of CDR (log 4π

and γE terms). Really the MS scheme is a family of renormalisation conditions depending

on an arbitrary scale µ at which the subtraction of the UV divergences is performed— the

scale µ has dimensions of mass and is introduced due to our use of CDR.

Renormalising the bare coupling constant α0
s in the MS scheme with the subtraction

taking place at a scale µ leads to

α0
sµ

2ε
0 Sε = αs(µ

2)µ2ε
[
1− αs(µ

2)
β0
ε

+ α2
s(µ

2)

(
β20
ε2

− β1
2ε

)
+O

(
α3
s(µ

2)
)]

, (2.14)

where the coupling constant αs is related to coupling gs in Eq. (2.4) by the relation

αs =
g2s
4π

, (2.15)

Sε = (4π)εe−εγE , the typical phase space factor of CDR and µ20 is a mass parameter

introduced in CDR to ensure that the coupling constant of the Lagrangian remains di-

mensionless. The coefficients β0 and β1 are the first two coefficients of the QCD β-function.

We report their expressions in Eqs. (C.2) and (C.3). We can write the relation between

the bare and renormalised coupling parameter Eq. (2.14) more compactly as

α0
s = Zαs(µ

2)αs(µ
2) , (2.16)
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where Zαs is the coupling renormalisation factor. We know that the bare parameters

of the theory are independent of µ, they cannot depend on the arbitrary scale that we

introduced for the purposes of renormalisation

µ2
d

dµ2
α0
s = 0 . (2.17)

From the µ independence of the bare coupling parameter we can derive the QCD β-function
dαs(µ

2)

d log µ2
= β(αs(µ

2)) ≡ −αs(µ
2)

1

Zαs(µ
2)

dZαs(µ
2)

d log µ2
. (2.18)

The β-function describes the dependence of the renormalised coupling parameter on the

arbitrary subtraction scale µ. The β-function can be expanded as a perturbative series in

the coupling constant

β(αs) = −εαs(µ
2)− α2

s(µ
2)

∞∑
n=0

βnα
n
s (µ

2) , (2.19)

usually we are only interested in the d = 4 part of the β-function, the second term on

the right hand side of Eq. (2.19). The running of the coupling constant Eq. (2.18) can be

solved in the perturbative regime, and at lowest order we find

αs(µ
2) =

αs(µ
′2)

1 + αsβ0 log
µ2

µ′2

, (2.20)

where µ′ is an initial scale at which the coupling is known. We will now call the scale µ by

its conventional name, the renormalisation scale. Looking at Eq. (2.20) we can determine

the behaviour of the coupling constant as we vary the renormalisation scale:

1. Asymptotic freedom: µ→ ∞

At high energies QCD becomes more weakly interacting and tends towards a free

theory in the very high energy limit. This means that for processes characterised by

very high momentum transfer, perturbation theory provides an excellent approxim-

ation to the full theory.

2. Confinement: µ→ 0

At low energies QCD becomes strongly interacting, and perturbation theory fails.

This behaviour is a consequence of the sign of the QCD β-function, which is turn is due

to the field content of QCD.

2.4 The infrared structure of pQCD

In calculating QCD cross sections we encounter not only UV divergences, but also infrared

(IR) divergences. These singularities differ from those of UV origin in that they cannot

be renormalised away as parameters in our Lagrangian.
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We can trace physical origin of IR divergences by considering a simple 2 → 2 scattering

process with an outgoing quark-antiquark pair and then allowing the outgoing quark to

emit a further gluon. Such a process is shown in Fig. 2.1 where pq, pq̄ and pg are the

q

q̄

g

pq + pg

pq

pq̄

pg

Figure 2.1: Feynman diagram for a generic scattering and a qq̄g final state.

momenta of the quark, antiquark and gluon respectively. Let us examine the amplitude

for the gluon emission, to do this we consider the fermion propagator before the emission

of the gluon, expanding the denominator in terms of energies and angles we find

1

(pq + pg)2
=

1

2EqEg(1− cos θqg)
. (2.21)

We see that if either the energy of the gluon Eg, or the angle of the emission between the

quark and gluon θqg goes to zero the propagator diverges. We refer to the Eg → 0 limit

as soft, and the θqg → 0 limit as collinear, these are the two types of IR singularities. We

may also be concerned that the Eq → 0 limit also gives rise to a singularity. This is not

the case however, if we take into account the spinor of the outgoing quark we find that

the limit Eq → 0 gives rise only to an integrable singularity.

The IR singularities are related to long-distance physics, outside the realms of standard

perturbation theory. We can see this by examining the fermion propagator further. The

propagator is off-shell by an amount ∆E2 ∼ 2pq · pg. This small off-shell contribution

means that the virtual quark is long lived, surviving for a time ∆t ∼ 1/(2pq · pg)5 before

the gluon is radiated, this longevity corresponds to long distance effects. The virtual

quark is able to travel an arbitrary distance if the radiated gluon is sufficiently soft and/or

collinear.

The origin of IR singularities is intrinsic to the construction of QFT. We assumed that

we could construct asymptotic states that are free of all interactions, this is not justified

if a particle can propagate an infinite distance before radiating soft particles. It may seem
5Including the boost to take into account the motion of the quark-gluon system gives us this contribution.



12

like all is lost and we will be unable to compute anything observable in pQCD, but we are

saved by the theorem of Kinoshita, Lee and Nauenberg (KLN) [17, 18] which states:

Observable transition probabilities are free of IRC singularities, provided that

we sum over all indistinguishable configurations.

In the context of scattering amplitudes in pQCD this means that when we sum over all

possible configurations, the IRC singularities from the virtual corrections exactly cancel

against those of the real corrections. This holds at every order in perturbation theory,

ensuring that we have an observable prediction that is finite at any order.

2.5 Hadronic cross section in e+e− annihilation

Having considered the IR behaviour of QCD it is instructive to carry out a simple cal-

culation to see how it works in practice. Electron-positron annihilation into hadrons is

a process with a long history, it is a cornerstone of QCD phenomenology and is perhaps

the simplest process that can be described using pQCD. The simplicity arises from two

particular features:

1. The initial state particles have well defined energies

In a lepton collider we can prepare initial states electrons with energies fixed by the

experimental configuration, this allows us to determine the centre of mass energy of

the event at a very high level of accuracy. In contrast at a collider involving hadrons

we can prepare the energy state of the hadrons as in a lepton collider however the

centre of mass energies of the hard scattering process depend on the the energies of

the quarks and gluons – referred to as partons in the context of collider physics –

that make up the hadrons and as a result the centre of mass energy varies between

collisions depending on the momentum fraction of the reacting partons.

2. The interaction proceeds via an s-channel electroweak interaction

Processes mediated by electroweak interactions provide a “clean” final state envir-

onment to study QCD effects. All of the measured partons must belong to the final

state of the event, the incoming leptons do not radiate any partons. Again contrast

this with collisions involving initial-state hadrons, where we may see partons due to

initial state radiation, hadron remnants or due to secondary interactions between

remnants of the initial hadrons.
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2.5.1 Leading order

To begin we will first compute the leading order contribution to e+e− → hadrons, this

is due to the process e+e− → qq̄. The Feynman diagram and kinematics for this process

is shown in Fig. 2.2. Where, for simplicity, we will neglected the contribution due to the

pe−

pe+

q

γ?

pq

pq̄

e−

e+

q

q̄

Figure 2.2: Feynman diagram for e+e− → qq̄.

Z boson in our calculation. Using Eq. (2.2) we can write down the cross section of the

leading order process

σhad,0(s) =
1

2s

∫
dΦ2

1

4

∑
spins.

∣∣M(e+e− → qq̄)
∣∣2 , (2.22)

where we sum over the final spin states of the quarks and averaging over the initial spin

states of the leptons and include the flux factor 1/2s.

The squared amplitude summed over final state spins, colours and quark flavour and

averaged over initial state spins can be factorised into a tensor describing the leptonic part

Lµν and a tensor describing the hadronic part Hµν

1

4

∑
spins.

|M| 2 = Lµν 1

s2
Hµν , (2.23)

where s is given by

s = q2 = (pe− + pe+)
2 = 2pe− · pe+ = (pq + pq̄)

2 = 2pq · pq̄ , (2.24)

where all of the fermions are assumed to be massless.

The leptonic tensor corresponds to the square of the leptonic part of the Feynman

diagram in Fig. 2.2 and is given explicitly by the cut diagram

Lµν =
1

4

pe+

pe−

µ ν = e2
(
pµ
e−p

ν
e+ + pµ

e+
pνe− − pe− · pe+ gµν

)
. (2.25)
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The expression for Hµν is very similar to Lµν except with momenta pq, pq̄ replacing

pe− , pe+ , an additional prefactor taking into account the different electric charges of the

different quark flavours Qf and the number of colours Nc. Taking these into account the

hadronic tensor is

Hµν = 4Nce
2
∑
f

Q2
f (p

µ
q p

ν
q̄ + pµq̄ p

ν
q − pq · pq̄ gµν) . (2.26)

Further both of these tensors satisfy

qµL
µν = qµHµν = 0 , (2.27)

as a consequence of gauge invariance.

We can now write down an expression for the squared matrix element. But first we

must decide on which variables to use. In the following we adopt Mandelstam variables,

defined for 2 → 2 scattering kinematics as follows

s = (pe− + pe+)
2 , t = (pe− − pq)

2 , u = (pe− − pq̄) . (2.28)

The Mandelstam variables have some convenient properties: they are Lorentz invariant,

which allows us to keep the expression for the squared matrix element as general as pos-

sible. At no point did we have to specify a reference frame. Further to this the Mandelstam

variables satisfy the following sum

s+ t+ u = 0 . (2.29)

In terms of the Mandelstam variables we find the squared matrix element is

1

4

∑
spins.

∣∣M(e+e− → qq̄)
∣∣2 = 2e4Nc

∑
f

Q2
f

t2 + u2 − εs2

s2
. (2.30)

This is a compact expression of the squared matrix element and is Lorentz invariant by

virtue of our choice of Mandelstam variables. However Eq. (2.30) includes more inform-

ation than we need for this calculation. In fact Eq. (2.30) contains information on the

spin correlations between the initial and final states (this is referred to as the event ori-

entation). The observables that we will study in this thesis will not depend on the event

orientation and so we should find a way to remove it and simplify our calculations.

To remove the event orientation we first consider the more general cross section for

e+e− → X, where X is a final state containing only quarks and gluons. In d-dimensions

this cross section can be written as follows

σdX =
1

2s
Lµν

1

s2

∫
dΦXH

µν
X , (2.31)
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where we note that only the hadronic tensor depends on the momenta of the final state

particles. In Eq. (2.31) we integrate over the momenta of the final state particles, following

this integration the only remaining free variable is q2(= s), and the only available quantities

to carry the Lorentz indices of Hµν
X are gµν and qµ. Hence the most general result of this

integration must be of the form∫
dΦX Hµν

X = H1(q
2)gµν +H2(q

2)qµqν . (2.32)

To make further progress we contract Eq. (2.32) with qµ and impose gauge invariance

using Eq. (2.27), the result is as follows

qµ

∫
dΦX Hµν

X =
(
H1(q

2) + q2H2(q
2)
)
qν = 0 . (2.33)

In general qν 6= 0 and thus the only way to satisfy Eq. (2.33) is relate H1 and H2 according

to H1(q
2) = −q2H2(q

2). Now we must isolate H1 so that we can cast it into an explicit

form, from which we can calculate it. To do this we contract Eq. (2.32) with negative of

the metric tensor

− gµν

∫
dΦX Hµν

X = −gµν
(
gµν − qµqν

q2

)
H1(q

2) = −(d− 1)H1(q
2) , (2.34)

for convenience we define HX(q2) = −H1(q
2)/(d− 1), and rewrite Eq. (2.32) as∫

dΦX Hµν
X =

1

d− 1

(
−gµν + qµqν

q2

)
HX(q2) . (2.35)

Combining Eq. (2.32) with HX(q2) defined in Eq. (2.35) we can isolate HX(q2) and find

HX(q2) = −gµν
∫

dΦX Hµν
X . (2.36)

We are now in a position to write down the orientation averaged cross section. We replace

the Hadronic tensor in Eq. (2.31) with the averaged version from Eq. (2.35) to find

σdX =
1

2s
(−gµνLµν)

1

s2
HX(q2)

=
1

2s
e2

1

2

d− 2

d− 1

1

s
HX(q2) .

(2.37)

Finally we can drop the integration over the final state momenta in Eq. (2.37) and work

at the level of the matrix elements. Returning to the case of e+e− → qq̄ we can write the

orientation averaged matrix element as follows〈
1

4

∑
spins.

∣∣M(e+e− → qq̄)
∣∣2〉 = e2µ4−d 1

2

d− 2

d− 1

1

s
(−gµνHµν)

= e4µ2(4−d) (d− 2)2

d− 1
Nc

∑
f

Q2
f .

(2.38)
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What is particularly striking about this matrix element is that it has no dependence on

the external momenta, it is a constant. And so we are free to integrate inclusively over

the two-particle phase space to determine the leading order cross section

σdhad,0 = σhad,0 µ
2(4−d)

(
4π

s

) 4−d
2 3

√
π(d− 2)2

2dΓ
(
d+1
2

) , (2.39)

where σhad,0 is the cross section in d = 4, and is given by

σhad,0 =
4πα2

3s
Nc

∑
f

Q2
f . (2.40)

2.5.2 Next-to-leading order

To compute the next-to-leading order (NLO) corrections we must include all possible

diagrams that give rise to squared matrix elements that are O(αs) in the strong coupling

constant: there are two such contributions.

1. The real correction:

Due to the emission of an extra particle, the square of the real matrix element is

O(αs).

2. The virtual correction:

Due to the inclusion of a loop, the interference of the virtual matrix element and the

LO matrix element is O(αs).

The real correction

First let us consider the real correction due to the emission of an additional particle.

There is only one process with an extra parton that is compatible with QCD, which is

e+e− → qq̄g. There are two Feynman diagrams for this process as the gluon can be

emitted from either the quark or the anti-quark. These Feynman diagrams are shown in

Fig. 2.3.

As before we appeal to Eq. (2.2) to write the cross section of the real process

σRhad,1 =
1

2s

∫
dΦ3

1

4

∑
spins.

∣∣M(e+e− → qq̄g)
∣∣2 , (2.41)

notice that we are now integrating over a three-particle phase space due to extra emission.

And once again we are able to decompose the squared matrix element into a leptonic

tensor (the same tensor as before) and a hadronic tensor (different to the previous tensor).

Considering the orientation averaged squared matrix element we have

1

4

∑
spins.

∣∣M(e+e− → qq̄g)
∣∣2 = e2

s

1

2

d− 2

d− 1

∑
spins.

|M(γ? → qq̄g)|2 , (2.42)
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γ?

q

q̄

g

q

pq + pg

pq

pq̄

pg

(1)

γ?

q

q̄

g
q

pq

pq̄ + pg

pq̄

pg

(2)

Figure 2.3: Feynman diagrams for e+e− → qq̄g.

where we only need to calculate the hadronic tensor by considering the decay matrix

element γ? → qq̄g. The calculation is a straightforward exercise in γ-matrix algebra and

we find the following result in d dimensions∑
spins.

|M(γ? → qq̄g)|2 = 32παsµ
2ε
RCF e

2Nc

∑
f

Q2
f

×
[
(1− ε)sq̄g

sqg
+

(1− ε)sqg
sq̄g

+
2 [sqq̄ (sqq̄ + sqg + sq̄g)− εsqgsq̄g]

sqgsq̄g

]
. (2.43)

Three particle final states containing no information on event orientation can be para-

metrised in a very convenient way in terms of energy fractions defined as follows

xi =
2q · pi
q2

, i = q, q̄, g , (2.44)

where we consider only the final state particles in the determination of the energy fractions

and we label them according to their flavour, further in the centre of mass frame the energy

fractions adopt the particularly simple form xi = 2Ei/
√
s. From the definition we are able

to derive some constraints on the energy fractions. To begin we compute the sum of all

the energy fractions∑
i

xi =
2q · (pq + pq̄ + pg)

s
=

2√
s
(Eq + Eq̄ + Eg) = 2 . (2.45)

Making use of energy-momentum conservation the xi satisfy

0 ≤ xi ≤ 1 , xi + xj ≥ 1 , with i 6= j , and i, j = q, q̄, g . (2.46)

These properties are sufficient to determine the matrix element and phase space in terms

of xi. The real cross section takes the form

σRhad,1 = σhad,0CF
αs

2π

∫ 1

0
dxq

∫ 1

1−xq

dxq̄
x2q + x2q̄

(1− xq)(1− xq̄)
. (2.47)

Notice that in Eq. (2.47) we have the usual IR divergences of massless pQCD:
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• xq → 1,

corresponds to the antiquark and gluon becoming collinear.

• xq̄ → 1,

corresponds to the quark and the gluon becoming collinear.

• xq → 1 and xq̄ → 1,

corresponds to the emission of a soft gluon.

The virtual correction

Next we consider the virtual correction due to a loop.

q

pq + k

pq

pq̄ − k

pq̄

kγ?

q

q̄

Figure 2.4: Feynman diagram for the one loop correction to γ? → qq̄.

Again we start from the symbolic expression for the cross section of the virtual cor-

rection, which is given by

σVhad,1 =
1

2s

∫
dΦ2

1

4

∑
spins.

2Re
[
M(0)?(e+e− → qq̄)M(1)(e+e− → qq̄)

]
, (2.48)

notice that we are integrating over a two particle phase space, there are no extra resolved

emissions in this integral. We also see that the matrix element structure is a bit different

to what we have encountered so far. The virtual correction is determined by interfering

the one loop correction with the tree level. Rather than computing the matrix element
1

4

∑
spins.

2Re
[
M(0)?(e+e− → qq̄)M(1)(e+e− → qq̄)

]
(2.49)

directly, it’s easier to consider the one loop QCD correction to the QED vertex instead.

This is determined from the integral

ū(pq)Γ
µv(pq̄) = −ig2sµ2εCF

∫
ddk

(2π)d

ū(pq)γ
ρ(/pq + /k)γµ(/k − /pq̄)γρv(pq̄)

[(pq + k)2 + iε][(k − pq̄)2 + iε][k2 + iε]
, (2.50)

from which we can easily determine the virtual corrections using the technique of Feynman

parameters to evaluate this integral.
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The total correction

Carrying out the evaluation of equations (2.41) and (2.48) in CDR we find respectively

σRhad,1 = σhad,0CF
αs

2π

1

Γ(1− ε)

(
4πµ2R
s

)ε [
2

ε2
+

3

ε
− π2 +

19

2
+O(ε)

]
, (2.51)

σVhad,1 = σhad,0CF
αs

2π

1

Γ(1− ε)

(
4πµ2R
s

)ε [
− 2

ε2
− 3

ε
+ π2 − 8 +O(ε)

]
. (2.52)

Both contributions to the NLO cross section contain IR divergences. Summing them to

obtain the NLO correction to the cross section we find

σhad,1 = σRhad,1 + σVhad,1 = σhad,0CF
αs(µ

2)

2π

1

Γ(1− ε)

(
4πµ2

s

)ε [
3

2
+O(ε)

]
, (2.53)

which is finite—as we had anticipated due to the KLN theorem. We can now safely take

the ε → 0 limit and add the LO cross section to find the prediction for the total cross

section at NLO accuracy

σhad(s) = σhad,0

(
1 +

3

2
CF

αs

2π
+O

(
α2
s

))
. (2.54)

2.6 Matrix element factorisation

Now that we have performed a simple calculation in pQCD it is essential to consider the

IR limits with more generality. In doing so we can determine systematically where they

will occur. Understanding these limits will allow us to determine the singular structure

of QCD amplitudes at all-orders in αs. It is this factorisation that allows us to compute

resummations in QCD, which is the core subject of this thesis. For now we will system-

atically identify the IR limits of QCD squared matrix elements. Computations in pQCD

are technically quite involved and thus good organisation of our calculations is essential.

To that end we must introduce some rather abstract notation. Such notation is necessary

to determine the limits of QCD in the generality that we desire.

We consider renormalised matrix elements with m coloured particles in the final state.

Any number of non-coloured particles may also be present, but any notion of these particles

will be suppressed in our notation. We will label resolved partons with i, j, k, . . . and

unresolved ones by r and s.

The colour indices of the partons are denoted by ci, and span A = 1, . . . , N2
c − 1 for

gluons and a = 1, . . . , Nc for quarks and anti-quarks. Spin indices are denoted by si,

and span µ = 1, . . . , d for gluons and s = 1, 2 for massless fermions. We introduce an

orthogonal basis of unit vectors |c1, . . . , cm〉⊗ |s1, . . . , sm〉 in the space of colour and spin,
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in such a way that the amplitude of a process involvingm external partons, M{cI ,sI}
m ({pI})

with definite colour, spin and momenta {pI} can be written as

Mc1...cm;s1...sm
m (p1, . . . , pm) ≡

(
〈c1 . . . cm| ⊗ 〈s1 . . . sm|

)
|Mm(p1, . . . , pm)〉 . (2.55)

Thus |Mm〉 is an abstract vector in colour and spin space and its normalisation is fixed

such that the squared amplitude summed over colours and spins is∑
colour.

∑
spin.

|Mc1...cm;s1...sm
m (p1, . . . , pm)| 2 = 〈Mm(p1, . . . , pm)|Mm(p1, . . . , pm)〉 (2.56)

The matrix element has the following loop expansion:

|Mm〉 = |M(0)
m 〉+ |M(1)

m 〉+ . . . , (2.57)

where |M(0)
m 〉 denotes the tree-level contribution, |M(1)

m 〉 the one-loop contribution, and

so on.

As for the colour structure, it is convenient to associate a colour charge Ti with the

emission of a gluon from each parton i. If the emitted gluon has colour index c, the

colour-charge operator is:

Ti ≡ T c
i |c〉 (2.58)

and its action onto the colour space is defined by

〈c1, . . . , ci, . . . , cm|T c
i |b1, . . . , bi, . . . , bm〉 = δc1b1 . . . T

c
cibi

. . . δcmbm (2.59)

where T c
aibi

is the colour-charge matrix in the representation of the final state particle i,

i.e. TA
BC = −ifABC (or equivalently TA

CB = ifCAB) if the emitting particle i is a gluon

and TA
ab = (tA)ab if the emitting particle i is a quark (in the case of an emitting anti-quark

TA
ab = (t̄A)ab = −(tA)ab).

The colour-charge algebra is:

Ti ·Tj = Tj ·Ti if i 6= j ; T2
i = Ci (2.60)

where Ci is the Casimir operator, i.e. Ci = CA if i is a gluon and Ci = CF if i is a quark

or antiquark.

Note that by definition, each vector |Mm〉 is a colour-singlet state. Therefore colour

conservation is simply (
m∑
i=1

Ti

)
|Mm〉 = 0 . (2.61)

A more complete review of this notation and the colour-space formalism can be found in

Refs. [19–22].

Now that we have set up our notation we can set about determining the behaviour of

a general QCD matrix element when a single parton becomes soft and/or collinear.



21

2.6.1 Collinear factorisation

In general for a single parton becoming collinear, this behaviour is captured in the universal

collinear factorisation formula

Cir|M(0)
m+1| = 8παsµ

2ε 1

sir
〈M(0)

m | P̂ (0)
(ir)→i+r |M

(0)
m 〉 , (2.62)

where P̂ (0)
(ir)→i+r is the unregulated leading-order Altarelli-Parisi (AP) splitting function

describing the process of a particle of flavour (ir) splitting into two particles of flavours

i and r. We will derive explicit expressions for these functions in this section. Cir is

an operator that takes the collinear limit of the particles i and r keeping only the most

singular term.

The limit where the momenta pi and pr become collinear can be precisely defined by

letting k⊥ → 0 in the Sudakov parametrisation of the momenta

pµi = zip
µ + kµ⊥ −

k2⊥
zi

nµ

spn
(2.63)

pµr = zrp
µ − kµ⊥ −

k2⊥
zr

nµ

spn
(2.64)

where zi + zr = 1, the momentum p denotes the collinear direction and n is an auxiliary

vector required to specify the transverse component k⊥. The following relations hold for

massless partons in this parametrisation

p2 = n2 = p2i = p2r = 0 , k⊥ · p = k⊥ · n = 0 , k2⊥ < 0 , (2.65)

notice that by construction p, n, pi and pr are light-like and k⊥ is space-like. There is

one further identity that we observe in the collinear limit that will be necessary for our

analysis

sir = −
k2⊥
zizr

, k⊥ → 0 . (2.66)

Through the Sudakov decomposition we have a notion of collinearity. To determine

which diagrams we must compute we appeal to the following theorems:

1. The leading collinear singularities are due to the collinear splitting of an

external parton

2. In a physical gauge, the interference Feynman diagrams obtained from the

squared matrix element |M(0)
m+1|

2
in Eq. (2.62) are collinearly suppressed

[23–25].

Making use of this theorem we need only to consider the cut graphs that account for the

splitting of a single external parton. There are three distinct cases that must be considered,
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we will now treat them each in turn. To make the notation more tractable we will adopt

the following shorthands. We denote the spin dependant part of the gluon propagator by

dµν(p, n) = −gµν +
pµnν + nµpν

p · n
, (2.67)

where p is the gluon momentum and n is an auxiliary light-like vector, and we will denote

all of the momenta pi, pr, . . . by their Latin subscripts i, r, . . . .

Collinear q → q + g splitting

pir pi

pr

pir

Figure 2.5: Cut diagram for the process q → q + g

In the case of a quark splitting into a quark and a gluon, we must compute the cut

diagram in Fig. 2.5. From this diagram we derive the squared matrix element

Cq→qg = CF g
2
sµ

2ε /i + /r

sir
γµ/iγνdµν(r, n)

/i + /r

sir

= CF g
2
sµ

2ε /i + /r

sir
γµ/iγν

[
−gµν +

rµnν + nµrν
r · n

]
/i + /r

sir

= 4παsµ
2εCF

/i + /r

sir

[
−γµ/iγµ +

/r/i/n+ /n/i/r

r · n

]
/i + /r

sir
,

(2.68)

where we have included the propagator of the quark with momentum pir = pi + pr as this

is necessary to compute the full m+1 parton matrix element. Some straightforward Dirac

algebra yields

Cq→qg = 4παsµ
2εCF

1

sir

[
(d− 2)/r +

2

srn

(
2sin/i + sin/r + srn/i − sir/n

)]
. (2.69)

We now insert the Sudakov parametrisation of Eq. (2.63) to expose the collinear limit

Cq→qg = 4παsµ
2εCF

1

sir

[
(d− 2)zr +

1

zr
(2z2i + zizr + zrzi)

]
/p+O

(
k−1
⊥
)

= 8παsµ
2ε 1

sir
CF

[
1 + z2i
zr

− εzr

]
/p+O

(
k−1
⊥
)
.

(2.70)

We have kept only the most singular terms, those scaling as O
(
k−2
⊥
)
. And from Eq. (2.70)

we can extract the LO AP splitting kernel which is a matrix in the spin state of the



23

unresolved parton. We insert a complete set of spin states into Eq. (2.62) and find

Cir|M(0)
m+1| = 8παsµ

2ε 1

sir

∑
s,s′

〈M(0)
m |s〉 〈s| P̂ (0)

q→qg |s′〉 〈s′|M(0)
m 〉 . (2.71)

The m+1 parton matrix element is factorised into an m parton matrix element and a uni-

versal collinear splitting function. The collinear splitting function has a universal prefactor

8παsµ
2ε/sir and a spin dependent piece given by the AP splitting kernel. Comparing to

Eq. (2.70) we see that the AP splitting kernel takes the form

〈s| P̂ (0)
q→qg(zi, zr, k⊥; ε) |s′〉 = CF

[
1 + z2i
zr

− εzr

]
δss′ , (2.72)

which is diagonal in the spin state of the unresolved parton6. We have dropped the factor /p

that appears in Eq. (2.70) as it belongs to the m parton matrix element. This is because in

our computation we included the quark propagators, which take into account the external

spinors. These spinors belong to the m parton matrix element and thus are not a part of

the AP splitting kernel.

Collinear g → q + q̄ splitting

pir

pi

pr

pir

µ ν

Figure 2.6: Cut diagram for the process g → q + q̄

In the case of a gluon splitting into a quark and an antiquark, we must compute the

6The q → q + g splitting function is diagonal in spin space due to helicity conservation which is a

consequence of the vector nature of the quark-gluon vertex.



24

cut diagram in Fig. 2.6. From this diagram we derive the squared matrix element

Cµν
g→qq̄ = 4παsµ

2εTR
dµρ(i+ r, n)

sir
Tr γρ/iγσ/r

dσν(i+ r, n)

sir

= 16παsµ
2ε 1

s2ir
TR

[
−gµρ + 2

(i+ r)µnρ + nµ(i+ r)ρ

s(ir)n

]
×
[
iρrσ + rρiσ − 1

2
gρσsir

] [
−gσν + 2

(i+ r)σnν + nσ(i+ r)ν

s(ir)n

]
= 16παsµ

2ε 1

s2ir
TR [Fµν

0 + Fµν
1 + F νµ

1 + Fµν
2 ]

(2.73)

where the functions Fµν
p are defined according to the power of s(ir)n = sin + srn in the

denominator. These functions take the explicit form

Fµν
0 = iµrν + rµiν − 1

2
gµνsir (2.74)

Fµν
1 =

1

s(ir)n
[−iµ(i+ r)νsrn − rµ(i+ r)νsin + nµ(i+ r)νsir] (2.75)

Fµν
2 =

1

s2(ir)n
[2(i+ r)µ(i+ r)νsinsrn] . (2.76)

We now insert the Sudakov parametrisation of Eq. (2.63) to expose the collinear limit

Fµν
0 = 2zizrp

µpν + (zr + zi)(k
µ
⊥p

ν + pµkν⊥)− 2kµ⊥k
ν
⊥

+
sir
spn

(z2i + z2r )(p
µnν + nµpν)

1

2
gµνsir +O

(
k−3
⊥
)
, (2.77)

Fµν
1 + F νµ

1 = −4zizrp
µpν + (zi − zr)

(
kµ⊥p

ν + pµkν⊥
)
+O

(
k−3
⊥
)
, (2.78)

Fµν
2 = 2zizrp

µpν + 2zizr
sir
spn

(pµnν + nµpν) +O
(
k−3
⊥
)
. (2.79)

Inserting these pieces back into the expression for Cg→qq̄ we find

Cµν
g→qq̄ = 16παsµ

2ε 1

s2ir
TR

[
−1

2
gµνsir − 2kµ⊥k

ν
⊥ +

sir
spn

(pµnν + nµpν)

]
+O

(
k−1
⊥
)

= 8παsµ
2ε 1

sir
TR

[
−gµν + 4zizr

kµ⊥k
ν
⊥

k2⊥
+
pµnν + nµpν

p · n

]
+O

(
k−1
⊥
)
.

(2.80)

This expression contains gauge dependent terms in the form of nµ dependence. Due to

gauge invariance these terms must vanish when the collinear splitting term is contracted

with the full squared matrix element, and so we drop it from our explicit form of the AP

splitting kernel. Again we insert a complete set of spin states, onto this for the unresolved

gluon into Eq. (2.62) and this time we find

Cir|M(0)
m+1| = 8παsµ

2ε 1

sir

∑
µ,ν

〈M(0)
m |µ〉 〈µ| P̂ (0)

g→qq̄ |ν〉 〈ν|M(0)
m 〉 . (2.81)

Comparing this to Eq. (2.80) we see that AP splitting kernel takes the form

〈µ| P̂ (0)
g→qq̄(zi, zr, k⊥; ε) |ν〉 = TR

[
−gµν + 4zizr

kµ⊥k
ν
⊥

k2⊥

]
, (2.82)
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which is not diagonal in the spin state of the unresolved gluon. In this case we see that

Eq. (2.80) does not contain explicit forms of the external polarisation vectors εµ and εν?.

This is because

Cµν
g→qq = dµσ(i+ r)Cσλ

g→qqdνλ(i+ r) , (2.83)

we see that the factors for the external gluons are present but hidden, recalling that

dµν(p) = εµ(p)ε
?
ν(p).

Collinear g → g + g splitting

pir

pi

pr

pir

µ ν

Figure 2.7: Cut diagram for the process g → g + g

In the case of a gluon splitting into a pair of gluons, we must compute the cut diagram

in Fig. 2.7. From this diagram we derive the squared matrix element

Cµν
g→gg = 4παsµ

2εCA
dµρ(i+ r, n)

sir
Vραβ(i+ r,−i,−r)dαγ(i, n)Vσγδ(−i− r, i, r)dβδ(r, n)

dσν(i+ r, n)

sir

= 4παsµ
2ε 1

s2ir
CA [Fµν

0 + F νµ
0 + Fµν

1 + F νµ
1 + Fµν

2 ]

(2.84)

where we again define functions Fµν
p in terms of the power of s(ir)n in the denominator.
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This time the functions take the explicit form

Fµν
0 = −(1− ε)(i+ r)µ(i+ r)ν − 4iµrν + 2iµrν

srn
sin

+ 2rµrν
sin
srn

+
4sir
sinsrn

(srnr
µnν + sini

µnν − sirn
µnν)

+ 2

(
srn
sin

+
sin
srn

)
(iµrν + (i+ r)µnν − gµνsir) , (2.85)

Fµν
1 =

2

s(ir)n
[iµ(i+ r)ν(1− 2ε)(sin − srn) + (i+ r)µ(i+ r)ν(1− ε)

+ nµ(i+ r)νsir +
s2in
srn

(i+ r)µ(i+ r)ν

−
(
srn
sin

+
sin
srn

)
(iµ(i+ r)νsin + nµ(i+ r)νsir)

]
, (2.86)

Fµν
2 = − 2

s(ir)n

[
2(1− ε)(i+ r)µ(i+ r)ν(sin + srn)

2
]
. (2.87)

We simplify these expression using straightforward algebra, add together all of the terms,

insert the Sudakov parametrisation and keep only the leading singular pieces to find

Cµν
g→gg = 4παsµ

2εCA

[
4sir
zizr

gµν(1− 2zizr)− 8(1− ε)(zir
µ − zri

µ)(zir
ν + zri

ν)

+
sir
spn

4

zizr

(
(iµnν + nµiν)(zr − zi) + ((i+ r)µnν + nµ(i+ r)ν)((3− 2zi)zi − 2)

)]
+O

(
k−1
⊥
)
.

(2.88)

We cast the expression into its more conventional form by extracting the universal singular

term 1/sir and find

Cµν
g→gg = 4παsµ

2εCA
1

s2ir

[
8(1− ε)kµ⊥k

ν
⊥ − 4

(
zi
zr

+
zr
zi

)
gµνsir

−4

(
zi
zr

− zr
zi

)
sir
nµpν + pµpν

spn

]
+O

(
k−1
⊥
)

= 8παsµ
2ε 1

sir
2CA

[
−gµν

(
zi
zr

+
zr
zi

)
− 2(1− ε)zizr

kµ⊥k
ν
⊥

k2⊥

−
(
zi
zr

+
zr
zi

)
nµpν + pµnν

p · n

]
+O

(
k−1
⊥
)
.

(2.89)

From Eq. (2.89) we find the LO AP splitting kernel

〈µ| P̂ (0)
g→gg(zi, zr, k⊥; ε) |ν〉 = 2CA

[
−gµν

(
zi
zr

+
zr
zi

)
− 2(1− ε)zizr

kµ⊥k
ν
⊥

k2⊥

]
. (2.90)

Again the factors from the external gluons are not explicitly present.

Spin averaged splitting kernels

Equations (2.72), (2.82) and (2.90) lead to the more familiar form of the d-dimensional

splitting functions after averaging over the polarisations of the unresolved parton (ir).
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The d-dimensional average is obtained by means of the factors

1

2
δss′ (2.91)

for a fermion, and (the gauge terms are proportional either to pµ or to pν)

1

d− 2
dµν(p) =

1

2(1− ε)
(−gµν + gauge terms) , (2.92)

with

− gµνdµν(p) = d− 2 , pµdµν(p) = 0 , (2.93)

for a gluon with on-shell momentum p. Denoting by
〈
P̂

(0)
(ir)→i+r

〉
the average of P̂ (0)

(ir)→i+r

over the polarisations of the parton (ir), we find〈
P̂ (0)
q→qg(zi, zr; ε)

〉
= CF

[
1 + z2i
zr

− εzr

]
, (2.94)〈

P̂ (0)
q→gq(zi, zr; ε)

〉
= CF

[
1 + z2r
zi

− εzi

]
, (2.95)〈

P̂
(0)
g→qq̄(zi, zr; ε)

〉
= TR

[
1− 2zizr

1− ε

]
, (2.96)〈

P̂ (0)
g→gg(zi, zr; ε)

〉
= 2CA

[
zi
zr

+
zr
zi

+ zizr

]
. (2.97)

2.6.2 Soft factorisation

In the soft limit a gluon can be emitted from any of the external legs, and as a result

we cannot use cut graphs, instead we must factorise at the level of the amplitude. We

introduce the operator

Ss 〈cs|M(0)
m+1〉 = gsε

λ
µ(s)J

µ(s) |M(0)
m 〉 , (2.98)

which takes the soft limit of the amplitude, keeping only the most singular term. The

factor J is the soft gluon current and cs is the colour of the soft gluon. For the squared

matrix element this implies the following factorisation

Ss|M(0)
m+1|

2
= 4παsµ

2εελµ(s)ε
λ
ν
?
(s) 〈M(0)

m |Jµ(s)Jν(s) |M(0)
m 〉

= −8παsµ
2ε

m∑
i,j=1

Sij(s) 〈M(0)
m |Ti ·Tj |M(0)

m 〉

+ gauge terms ,

(2.99)

where we have used ελµ(s)ελν (s) = dµν(s) and we have defined Sij(k) as

Sij(s) =
sij
sissjs

. (2.100)

Sij(s) is the so called eikonal factor.

In the case of a soft gluon emission we have the following theorem:
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1. The leading soft singularities are due to the emission of soft gluons off

external, or, in general, nearly on-shell partons [25, 26].

Soft gluon emission from a quark

M
pis

bi

ps

pi

s, µ

ai

Figure 2.8: soft gluon emission from a quark

For the case of a soft gluon emission from a quark line, we must compute the diagram

in Fig. 2.8. From this diagram we derive the amplitude

Mλ
m+1 = gsµ

ε(ts)aibi ū(i)γ
µ /i + /s

sis
ελµ(s)M̃m . (2.101)

Inserting the parametrisation s = λq and keeping only the most singular terms we find

Mλ
m+1 = gsµ

ε(ts)aibi
1

sis
ū(i)γµ/iελµ(s)M̃m +O

(
λ0
)

= −gsµε(ts)aibi ū(i)/iγ
µελµ(s)M̃m + 2gsµ

ε(ts)aibi
1

sis
ū(i)iµελµ(s)M̃m +O

(
λ0
)

= gsµ
ε(ts)aibi

iµ

i · s
ελµ(s)Mm +O

(
λ0
)

(2.102)

where we have used the Dirac equation ū(i)/i = 0.

Soft gluon emission from a gluon

M
pis

ρ, bi

ps

pi

µ, s

ν, ai

Figure 2.9: soft gluon emission from a gluon
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For the case of a soft gluon emission from a gluon line, we must compute the diagram

in Fig. 2.9. From this diagram we derive the amplitude

Mλλ′
m+1 = µε

i dρρ
′
(i+ s, n)

sis
Γais bi
νµρ′ (−i,−s, i+ s)ελµ(s, n)ε

λ′
ν (i, n)M̃m , (2.103)

where in the soft limit the three-gluon vertex takes the form

V νµρ(−i,−s, i+ s) = −(i+ 2s)νgµρ + (2i+ s)µgνρ − (i− s)ρgµν

= 2iµgνρ + [−(i+ s)ρgµν − iνgµρ] + [sµgνρ + 2sρgµν − 2sνgµρ]

' 2iµgνρ − [(i+ s)ρgµν + iνgµρ] .

(2.104)

We use dρρ′(i+ s, n)(i+ s)ρ = 0 and εν(i, n)iν = 0, to derive

i dρρ
′
(i+ s, n)Γais bi

νµρ′ (−i,−s, i+ s)ελν (i, n) = gs(−ifais bi)2iµ
[
dρρ

′
(i, n)gνρ

′
ελν (i, n)

]
= −gs(−ifais bi)2iµελν (i, n)

= gs(if
ais bi)2iµελν (i, n) .

(2.105)

Using this we find the final result

Mλλ′
m+1 = gsµ

ε(ifais bi)
iµ

i · s
ελµ(s, n)Mλ′

m +O
(
λ0
)
. (2.106)

We see that in the soft limit we have the same kinematic factor but a different colour

structure. These can be combined together into the soft gluon current, making use of the

abstract colour operator Ti as defined in Eq. (2.58) and Eq. (2.59)

Jµ(s) =

m∑
i=1

Ti
iµ

i · s
. (2.107)

The soft gluon can be emitted from any of the external legs, therefore the sum in the

previous formula runs over all the external partons. And colour conservation in Eq. (2.61)

implies that the current Jµ(s) is conserved

sµJ
µ(s) |M(0)

m 〉 =
m∑
i=1

Ti |M(0)
m 〉 = 0 . (2.108)

2.6.3 Soft-collinear overlap

There is a region of phase space in which the soft and collinear singularities overlap.

Physically his corresponds to a soft gluon becoming collinear with its emitter. Such a

situation provides the most singular IR contribution to the squared matrix element in
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QCD. To determine the form of the soft-collinear matrix element we must determine the

action of the collinear operator C on the soft operator S or more precisely

CirSr|M(0)
m+1|

2
. (2.109)

When the soft gluon (r) becomes collinear to its emitter (i) we can simplify the eikonal

factor by noting that in the collinear limit sik → zispk and skr = zrspk

Sij =
sij
sirsjr

→ zi
zr

1

sir
. (2.110)

So that we can write the soft and collinear limit as

CirSr|M(0)
m+1|

2
= −8παsµ

2ε 2

sir

∑
j 6=i

zi
zr

〈M(0)
m |Ti ·Tj |M(0)

m 〉 . (2.111)

Making use of colour conservation Eq. (2.61) we can simplify further to find

CirSr|M(0)
m+1|

2
= 8παsµ

2ε 2

sir

zi
zr
T2

i |M(0)
m | 2 , (2.112)

where we note there are no longer colour-correlations between the partons emitting and

absorbing the soft gluon. One further thing is that as we are in the soft limit zr ' 0 which

implies zi = 1− zr ' 1, so we can simplify further to find

CirSr|M(0)
m+1|

2
= 8παsµ

2ε 2

sir

1

zr
T2

i |M(0)
m | 2 . (2.113)

We can also consider taking the limit the other way around, first considering a collinear

emission and then taking the soft limit. The algebra is much the same as before, and we

find

SrCir|M(0)
m+1|

2
= 8παsµ

2ε 2

sir

1

zr
T2

i |M(0)
m | 2 . (2.114)

We find that for a single soft and/or collinear emission the soft and collinear operators

commute

[Sr,Cir]|M(0)
m+1|

2
= 0 . (2.115)

2.7 Infrared and collinear safety

So far we have examined how the cross-section can be calculated in QCD, the cross-section

is a special kind of observable, called an inclusive observable. An inclusive observable is

one where the phase space weight function FJ in Eq. (2.2) is set equal to 1. This is to

be contrasted with exclusive observables where FJ can be a generic function with some

important restrictions that we will come to shortly. We have also studied how QCD matrix
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elements behave in the soft and/or collinear limits, with this knowledge of the soft and

collinear behaviour of QCD matrix elements we can analyse the more general question:

how do we compute exclusive quantities.

To see what happens we will return to the case of e+e− → hadrons (where we average

over the event orientation), only this time we will consider an exclusive measurement. We

parametrise the measurement using a jet function. We will do the calculation in the soft

and collinear limits to see the properties that our observable must satisfy to be calculable

within pQCD. In the soft (and optionally collinear) limit

|M(e+e− → qq̄g)| 2 = |M(e+e− → qq̄)| 16παsCF
sqq̄

sqgsq̄g
(2.116)

The soft approximation can be applied also to the loop amplitude. In this limit we

can in general neglect powers of the loop momentum q in the numerator if qµ �
√
Q2,

furthermore in the denominator we can use the fact that q2 � ki · q. The loop correction

to quark-antiquark pair production is therefore proportional to

ū(pq)Γ
µv(pq̄) = −ig2sµ2εCF

∫
ddk

(2π)d

ū(pq)γ
ρ(/pq + /k)γµ(/k − /pq̄)γρv(pq̄)

[(pq + k)2 + iε][(k − pq̄)2 + iε][k2 + iε]

= [ū(pq)γ
µv(pq̄)]Is(pq, pq̄) ,

(2.117)

where

Is(pq, pq̄) = −ig2sµ2ε2CF

∫
ddk

(2π)d
(2pq · pq̄)

[2pq · k + iε][−2k · pq̄ + iε][k2 + iε]
. (2.118)

The result in d = 4 can be evaluated in the centre of mass frame of the q and q̄ partons

with

pµq = Eq (1, 0, 0, 1) , pµq̄ = Eq̄ (1, 0, 0,−1) , kµ = (k0,~k) with ~k = (~k⊥, kz) , (2.119)

where ~k⊥ is the vectorial transverse momentum and we define k⊥ ≡ |~k⊥| . With this

parametrisation we can recast Eq. (2.118) into the following form

Is = −ig2sµ2ε2CF

∫
d3k

(2π)4
2 dk0

[k0 − kz + iε][−k0 − kz + iε][k20 − k2z − k2⊥ + iε]
. (2.120)

Eq. (2.120) has four poles in the complex k0 plane at

k0 = kz − iε, k0 = −kz + iε, k0 = ±(|~k| + iε) , (2.121)

closing the contour from below we find

Is = −g2sµ2ε2CF

∫
d3k

(2π)3

[
1

2|~k|
(2pq · pq̄)

(2pq · k)(2pq̄ · k)
+

1

2

1

(kz − iε)(k2⊥)

]
, (2.122)
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where the second integral is a pure phase∫
dkzd

2k⊥
(2π)3

1

(kz − iε)(k2⊥)
= −

∫
dkz

kz + iε

k2z + iε

∫
dk⊥
(2π)2

1

k⊥
= − (iπ)

(2π)2

∫
dk⊥
k⊥

. (2.123)

This phase term is referred to as a Coulomb phase. When considering physical observables

this phase term is often zero, however in the presence of many hard coloured legs this term

can give a measurable effect. For the observables considered in this thesis the Coulomb

phase will always cancel, and so we shall not discuss this term any further.

We can now combine everything together. Once again we use Eq. (2.2) to write down

the cross-section, we take the real contribution from Eq. (2.116) and the virtual contribu-

tion from the first term in Eq. (2.122). In d = 4 we have

σFJ
=

1

2s

∫
dΦ2

1

4

∑
spins.

|M(e+e− → qq̄)| 2F (2)
J (pq, pq̄)+

1

2s

∫
dΦ2

1

4

∑
spins.

|M(e+e− → qq̄)| 216παsCF

∫
d3k

(2π)3
1

2|~k|
sqq̄

sqgsq̄g

×
[
F

(3)
J (pq, pq̄, k)− F

(2)
J (pq, pq̄)

]
.

(2.124)

• To ensure that the IRC poles cancel between the real and the virtual contributions

the observable must be infrared and collinear safe [27]. Formally this means that

the jet functions FJ must satisfy the following properties

F
(n+1)
J (. . . , pi, . . . ) → F

(n)
J (. . . , pi−1, pi+1, . . . ) if pi → 0 , (2.125)

F
(n+1)
J (. . . , pi, pj , . . . ) → F

(n)
J (. . . , pi + pj , . . . ) if pi ‖ pj . (2.126)

for all n ≥ m, and

F
(m)
J (p1, . . . , pm) → 0 if pi · pj → 0 . (2.127)

Equations (2.125) and (2.126) respectively guarantee that the observable is infrared

and collinear safe for any number of n final-state partons to any order in pQCD. The

n-parton jet function F (n)
J on the right hand side of Eq. (2.125) is obtained from the

original F (n+1)
J by removing the soft parton pi, and that on the right-hand side of

Eq. (2.126) by replacing the collinear partons {pi, pj} by pi+pj . The final condition,

Eq. (2.127) defines the leading order cross section and ensures that the Born level

cross section is finite in d = 4.

These limits must hold not only for a single particle, but also for an ensemble of

partons becoming soft and/or collinear.

• In the case of inclusive observables, for which F
(m)
J (p1, . . . , pm) = 1 for all m, as

was the case in our computation of e+e− → hadrons. We see that for an inclusive
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observable in the IR limit the cancellation between the real and virtual is complete.

This tells us that the total cross section is unchanged by the emission of soft particles.

• In the case of an exclusive, IRC safe observable, the singularities cancel, but the

kinematic dependence of the observable can cause an imbalance in the cancellation

of the real and virtual corrections. In such cases the emission of soft and/or collinear

radiation can have a substantial impact on the observable. These remnants of the

imbalance in the cancellation of the real and virtual manifest as logarithms to all

orders in perturbation theory.
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Chapter 3

Jet observables

In our discussion of QCD we have performed some simple calculations in the perturbative

regime. This is not the full story, QCD is characterised by the phenomena of asymp-

totic freedom and confinement. Asymptotic freedom tells us that at high energies the

dynamics of QCD are those of quarks and gluons, yet confinement tells us that we do not

observe quarks and gluons, at low energies they exist only as bound states in the form

of hadrons. In the SM this peculiar feature is unique to QCD1 and it means that what

we measure in a detector are final states consisting of hadrons, leptons and photons, not

quarks and gluons. Between the hard scattering event (that we can compute in pQCD)

and the measured final state the formation of hadrons will take place via the mechanism of

hadronisation. Hadronisation is an entirely non-perturbative phenomenon and as a result

cannot be calculated within the framework of pQCD. In order to retain the predictivity

of our pQCD calculations we must find observables that are independent of the nature of

the final state particles.

The mechanisms between the hard scattering and the measurement of final state

particles are represented pictorially in Fig. 3.1 and can be qualitatively described as fol-

lows.

• Hard scattering event between the most energetic incoming partons taking place

at an energy of the order of the centre of mass energy Q, so that the coupling

αs(Q) � 1. These are the red circles in Fig. 3.1.

• High energy partons radiate many further real emissions of considerable energy,

each of these emissions has a scale of the order of the transverse momentum of the

emission kt. These are emitted such that αs(Q) � αs(kt) < 1. These are the red

1Confinement is a property of any theory with a negative β-function.
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Figure 3.1: Pictorial representation of a tt̄h event [28].

lines immediately attached to the small red circles in Fig. 3.1.

• The partons continue to radiate, as the energy of the partons becomes smaller the

emission of soft and/or collinear partons becomes highly probable, owing to the

singular structure of the QCD matrix elements. Again these emissions have a scale

of the order of the transverse momentum of the emission kt. However due to the small

kt of these emissions even though the coupling remains perturbative the integral over

the phase space and matrix element squared∫
dz

z

dkt
kt
αs(kt) � 1 , (3.1)

can become very large. This emission of many soft and collinear partons can be

modelled via the so called parton shower. The showering is approximately unitary,

meaning that the momenta of partons is shuffled around as further partons are

radiated but the rate remains constant. The couple ensemble of partons continue to

shower until they have energies around the scale ΛQCD. These are the red gluons

and quark antiquark pairs attached to the red lines and the the blue gluons and

quark antiquark pairs before the the central hard scattering in Fig. 3.1.
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• Hadronisation takes place at scales of the order ΛQCD, turning our collimated sprays

of partons into colourless hadrons. This means that the coupling αs(kt) ' 1. These

are the green ovals at the end of the red lines in Fig. 3.1, the green circles following

the green ovals are the final state hadrons that we see in the detector after the

primary hadrons decay.

• The purple lines and oval are multi-parton interactions (MPI), also referred to as

the underlying event (UE). The underlying event consists of all the secondary in-

teractions that are less energetic than the hard scattering event. In general the UE

mostly contributes a constant soft background of hadrons to each event.

• The light blue ovals are beam remnants, fragments of the colliding protons that did

not take part in the interaction. These fragments make up part of the UE.

This is the essence of what goes on at a hadron collider. Let us consider the structure of the

matrix elements further, the collinear singularities originate from k⊥ → 0, this indicates

that the most probable course of the shower is to generate very collinear partons. Rather

than trying to consider these huge final states we consider instead clustering hadrons

that are close by in terms of k⊥ together into so called jets. The idea being that for a

suitably defined jet we are able to capture the dynamics of the hard event in such a way

that hadronisation does not have a large impact on predictions made at the parton level.

A priori there is no reason to believe that the effect of hadronisation should be small,

fortunately studies at high energies have shown that these corrections are indeed small,

provided suitable observables are used.

The study of jets is important for measuring many aspects of QCD. Jets have become

a way to compare theoretical calculations at the parton level and experimentally measured

quantities in hadronic final states.

3.1 What is a jet

Having talked through some properties of QCD and the behaviours we would like in a jet

we must set about the topic with more formality. A formal definition of a jet is through

a jet definition, which consists of three elements:

1. A jet algorithm—a set of rules to recombine particles into a jet.

2. The parameters of the algorithm

3. A recombination scheme—a rule on how to define the four momentum of the jet.
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A good jet definition, as agreed upon by the scientific community, must meet some basic

requirements, this is outlined in a document known as the “Snowmass accord” [29]. The

requirements of a good jet definition are as follows

1. Simple to implement in an experimental analysis

2. Simple to implement in a theoretical calculation

3. Defined at any order of perturbation theory

4. Yields finite cross section at any order of perturbation theory

5. Yields a cross section that is relatively insensitive to hadronisation

These requirements ensure that jets are well defined and consistent regardless of the rep-

resentation of the hard scattering event that we choose to work with. By choosing a jet

definition that is insensitive to hadronisation we can treat jets as objects composed of

either hadrons or partons. Practically this allows us to directly compare the results of ex-

periments to the predictions of Monte Carlo event generators and theoretical calculations

performed at the parton level.

There are many different jet algorithms in the literature, however they can be divided

into two broad classes:

• cone algorithms, which take a “top down” approach to clustering. We look for stable

cone-like structures in the event.

• sequential recombination algorithms, which take a “bottom up” approach to cluster-

ing. We iteratively recombine the two particles closest to one another according to

a distance measure.

We will only be working with algorithms of the sequential recombination variety, so we

will briefly review the features of the most common sequential recombination algorithms,

discussing their relevant characteristics. A more comprehensive review on the topic of jets

can be found in Ref. [30].

Before we consider the sequential recombination algorithms we must first define a

suitable recombination scheme. The simplest, and the most commonly used, example of

such scheme is the so called E-scheme. In the E-scheme the four momentum of a jet

is given by the sum of the four momentum of each constituent. Whilst there are other

possible recombination schemes that are used in e.g. jet substructure, in this thesis we

will only consider jets defined using the E-scheme.
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3.2 Sequential recombination algorithms

One of the first sequential recombination algorithms is the Jade algorithm [31], proposed

by the JADE collaboration in the context of e+e− collisions. It depends on a single

parameter ycut. The algorithm proceeds as follows

1. For each pair of particles i, j compute the distance measure

yJadeij =
2EiEj(1− cos θij)

Q2
=
m2

ij

Q2
, (3.2)

where Q is the total energy in the event, θij is the angle between particles i and j,

and Ei is the energy of the particle i.

2. Find the minimum ymin of all the possible yJadeij ,

(a) If ymin < ycut, merge the particles i and j into a single new particle (or pseudo-

jet) k making use of the chosen recombination scheme to combine their mo-

menta, replace the particles i and j by the new particle k. Iterate from step

1.

(b) If ymin > ycut declare that all of the remaining particles are jets and terminate

the iteration.

Unfortunately the Jade algorithm suffers from an undesirable feature due to the use

of the invariant mass as a distance measure. In the early stages of clustering two very

soft particles travelling in opposite directions may be recombined into a single jet owing

to the invariant mass term in the measure, an example of such a configuration is shown

in Fig. 3.2.

Figure 3.2: An example of a configuration where the Jade algorithm does not recombine

child emissions with their correct parent [32].

The problems with the Jade algorithm can be overcome by a simple redefinition of the

distance measure, defining a new algorithm the kt algorithm or Durham algorithm [33].

The Durham algorithm uses the distance measure

yDurham
ij =

2min(E2
i , E

2
j )(1− cos θij)

Q2
, (3.3)
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which at small angles between the partons becomes the relative transverse momentum,

which alleviates the problems with the Jade algorithm. This new distance measure is

closely related to the singular structure of QCD matrix elements, and the clustering pro-

ceeds roughly in the inverse order in which the partons were emitted.

In defining jets at hadron colliders there are new technicalities that we must address.

The first is that in e+e− collisions we have made use of a dimensionless distance measure,

however in hadron collisions it is difficult to determine the total energy of the event. To

avoid this issue we can introduce a dimensional variant of the Durham measure [34, 35],

and, changing the variables such that they are invariant under longitudinal boosts

dktij = min(p2ti, p
2
tj)

∆R2
ij

R2
, (3.4)

where pti is the transverse momentum of the constituent i, R is a parameter relating to

the radius of the jet and ∆Rij is the distance between the constituents i and j,

∆R2
ij = (yi − yj)

2 + (φi − φj)
2 , (3.5)

where yi is the rapidity and φi is the azimuthal angle of parton i.

The second technicality is that in hadronic collisions we can have interactions between

the outgoing partons and the incoming beam, which can lead to extra emissions in the

detector. The inclusive-kt algorithm [35] was introduced to address these additional effects.

We introduce the notion of a particle beam distance

dktiB = p2ti . (3.6)

The algorithm then proceeds as follows

1. For each subjet and pair of subjets determine dktij and dktiB

2. Find the minimum among all distances dktij and dktiB

(a) If it is a distance between subjets dktij , merge i and j into a new subjet

(b) Otherwise, if it is a “beam distance” dktiB, i is a final state jet and it is removed

from the list

3. Return to step 1 until there are no more subjets, then stop

We can extend the inclusive kt algorithm by introducing an additional angular para-

meter p that defines the generalised-kt algorithm with a distance measure

dgen−kt
ij = min(p2pti , p

2p
tj )

∆R2
ij

R2
, dgen−kt

iB = p2pti , (3.7)
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from which we recover the inclusive-kt algorithm by setting p = 1. Setting p = 0 we

have the Cambridge/Aachen algorithm (C/A) [36], one of the standard algorithms. A

particularly important case of the generalised-kt algorithm is that of p = −1, this defines

the anti-kt algorithm [37], with the distance measure given explicitly by

danti−kt
ij = min

(
1

p2ti
,
1

p2tj

)
∆R2

ij

R2
, danti−kt

iB =
1

p2ti
. (3.8)

The distance measure of the anti-kt algorithm is such that the hardest particles in a jet

are clustered first, this makes the jets formed by the anti-kt algorithm very stable, and

has the interesting consequence that the jets formed are (almost) perfect cones. In some

sense the anti-kt algorithm is in fact the perfect cone algorithm. For these reasons the

anti-kt algorithm is the most used algorithm at hadron colliders.

3.3 Jet-rates and Jet-vetoes

With our jet definitions we can proceed to create observables that characterise specific

properties of the final-state jets in an event. The simplest such observables are jet cross

sections and the closely related jet-rate. The n-jet cross section is defined simply as the

cross section for the production of n final-state jets, i.e. we just count the number of jets.

The jet cross section clearly depends on our choice of jet algorithm and on the parameters

of the algorithm. Jet-rates are simply the fraction of events classified with a given number

of jets, i.e. the jet cross section normalised to the total hadronic cross section. For example

the three-jet rate can be written as

Σ3(ycut) =
σ3−jets(ycut)

σ
, (3.9)

where σ3−jets is the three-jet cross section, σ is the total hadronic cross section and ycut is

the cut-off used in the jet algorithm.

Another jet observable is the transverse momentum of the leading jet. We can define

the cumulative distribution of the leading jet transverse momentum as follows

Σ(pJt ) =

∞∑
n=0

∫
dΦn

dσn
dΦn

Θ
(
pJt −max({pti})

)
, (3.10)

where pti denotes the transverse momentum of the final-state jets {pt1, pt2, . . . }, and, we

note that we can have an arbitrary number of jets in the final-state, provided they all

satisfy the constraint due to the measurement function. The transverse momentum of the

leading jet can be measured directly from the hadronic final states in the event or final

state jets following the application of a jet algorithm.
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The transverse momentum of the leading jet is very closely related to an important

phase space cut that is of particular phenomenological relevance, the jet-veto. A jet-veto is

a cut placed on the kinematics of final-state jets in an event, and a veto on the maximum

transverse momentum of the leading jet is important for the study of Higgs production at

the LHC. This will be the subject of Chapter. 6.

3.4 Event shapes

Event shape variables are another, more granular, way in which we can probe the jet-like

characteristics of hadronic final states. The idea is to define a quantity that smoothly

parametrises the energy-momentum flow in an event. For example is the distribution of

the hadrons in the event pencil-like, planar, spherical and other such “shapes”. Event

shapes were originally designed to test QCD at electron-positron colliders, however they

have subsequently been generalised so that they can be measured at hadron-lepton and

hadron-hadron colliders.

Event-shape distributions are normalised to the total hadronic cross section, σ, so as

to be dimensionless and independent of the production cross section and so that the value

of the event shape v falls between [0, 1]. To ensure that the event shape variables we

construct are IRC safe, we must build them from linear sums of momenta.

3.5 Classical Event Shape variables

We will briefly give the definitions of the event shape variables that we will make use of

in this thesis. These are all classical event shapes and have been studied in the literature

for some time.

• Thrust: T [38] is defined with a unit vector ~nT , called the thrust axis, which

maximises the following quantity

T = max
~nT

∑
i |~pi · ~n|∑
i |~pi|

, τ = 1− T , (3.11)

where the sum runs over all the final state particles i in the event. It is conventional

to define a new quantity τ (also referred to as the thrust), so that the two-jet limit

of the thrust is at τ = 0.

• Spherocity: S [39–41] is defined in terms of all the eigenvalues of the linearised

energy-momentum tensor

S =
3

2
(λ2 + λ3) , (3.12)
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where the linearised energy-momentum tensor is given by

Θαβ =
1∑
i |~pi|

∑
i

pαi p
β
i

|~pi|
, (3.13)

where the index i runs over all the final state momenta ~pi. This tensor has three

eigenvalues λj , j = 1, 2, 3 satisfying

0 ≤ λj ≤ 1 ,
∑
j

λj ,

and we order these eigenvalues λ1 ≥ λ2 ≥ λ3.

• C-parameter: C [40, 41] is defined in terms of the eigenvalues of the linearised

energy-momentum tensor

C = 3(λ1λ2 + λ2λ3 + λ3λ1) . (3.14)

• D-parameter: D [40–42] is defined in terms of the eigenvalues of the linearised

energy-momentum tensor

D = 27λ1λ2λ3 . (3.15)

The D-parameter will be the subject of Chapter 5.
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Chapter 4

NNLL resummation

We saw in Chapter 2 that whilst IRC safe observables can be calculated in pQCD, we noted

that for non-inclusive observables there may be large contributions from the emission

of soft and collinear radiation. This radiation may lead to the development of large

logarithms that can spoil the convergence of the fixed-order perturbative expansion. To

restore predictivity we must resum these logarithms to all-orders in the coupling constant.

Namely we must determine all the diagrams that produce a certain class of logarithm and

treat them all simultaneously. To perform an all-orders calculation we must make use of

the singular limits of QCD matrix elements, which will allow us to treat the emissions of

an arbitrary number of emissions.

The traditional methods of resummation are observable-dependent, and consist of de-

termining a factorisation theorem for the specific observable under consideration. This

approach has been very successful yielding many interesting results [43–56]. However

there exist observables of considerable interest that do yet admit any such factorisation

theorem.

Recently a framework for performing resummation in direct space1 was developed in

the form of CAESAR [3, 57]. The CAESAR framework made the study of jet rate resummation

possible for the first time, and other difficult observables, such as those at hadron colliders.

Resummation in direct space is considerably different to the traditional factorisation based

approach. We consider only the scaling properties of the observable, and for a wide class

of observables—those that are continuously global and recursively infrared and collinear

safe—we are able to resum them at next-to-leading-logarithmic (NLL) accuracy.

In this chapter we will work with the ARES framework to provide a general resummation

1i.e. without using any integral transforms, and only relying on the factorisation properties of QCD

matrix elements in the soft and/or collinear limit.
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of events containing three final-state jets in e+e− annihilation.

4.1 Introduction to resummation

Before we dive into state-of-the-art resummation let us review some of the common features

of resummation calculations. We will look at an additional property of QCD that is

important and then we will consider the resummation of the thrust. We will be deliberately

light on the details and notation to try and emphasise the concepts. The rest of this chapter

will be dedicated to filling in the gaps.

First we look at an additional property of QCD. We saw that in eq. (2.113) that in the

soft and collinear limit the colour charge of an emission depends only on the leg it was

emitted from. That is to say that in the collinear limit the colour correlations that are

present in the soft case due to the interference of emissions between the different emitters

vanish. We say that the radiation is emitted coherently, this is a manifestation of the

phenomenon of colour coherence. In fact, this coherence phenomenon is actually a feature

that is common to all gauge theories. It tells us that radiated particles can only resolve

the effective colour charge of the emitter and cannot resolve the details of interactions

that take place at shorter distance scales and wider angles. When we generate emissions

in a parton shower we do so iteratively, inserting emissions one-by-one. To enforce the

colour coherence property of squared matrix elements we must generate emissions that are

ordered in angle. This is referred to as angular ordering and is common to parton shower

type simulations. Fig. 4.1 shows angular ordering diagrammatically for both QED and

QCD.

QED :

θ1 θ2 θn

QCD :

θ1 θ2 θn

Figure 4.1: Angular ordering in QED and QCD [58]
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Now we come to resummation. The first things to consider is which terms give rise to

logarithmic enhancement in the fixed-order perturbative series—the problem terms. Each

extra emission can contribute at most two logarithms, due to the two possible IR singu-

larities, there is one from the angular integration and one from the transverse momentum

integration. Terms that are double logarithmically enhanced are the most singular terms

and are thus the terms that we should consider first. To calculate these leading logarithms

(LL) we need only to consider emissions that are strongly ordered in energy and angle,

these are the terms that give rise to the most logarithms. Taking just the double logar-

ithmically enhanced terms is referred to as the double logarithmic approximation (DLA),

this is the simplest approximation that we can make, but it captures the dominant terms.

The LL terms are much like the LO terms in the fixed-order expansion, they typically

contribute the largest contribution to the quantity under consideration and are the easiest

terms to calculate.

Let us see how this works in practice with a specific observable, the thrust, τ , as we

defined in eq. (3.11). The thrust is the canonical variable to resum owing to its simplicity.

In the soft and collinear limit the thrust takes on the following simple form

τ '
∑
i

k2ti
ziQ2

=
∑
i

kti
Q
e−|ηi| + less singular terms. , (4.1)

where kt and η are the transverse momentum and rapidity with respect to the emitter.

We can now compute the Thrust cumulant in the soft and collinear approximation

Σhad,0(τ) = 1 (4.2)

Σhad,1(τ) = 2CF
αMS
s (Q)

2π

∫
dk2t
k2t

∫
dη

(
Θ

(
τ − kt

Q
e−|η|

)
− 1

)
Θ

(
log

Q

kt
− |η|

)
= −2CF

αMS
s (Q)

2π
log2

1

τ
(4.3)

≡ −2CF
αMS
s (Q)

2π
L2 . (4.4)

where we have defined L = log 1
τ . Combining these the various orders together we arrive

at the full NLO accurate result for the thrust cumulant

Σtot.(τ) = 1− 2CF
αMS
s (Q)

2π
log2

1

τ
+O

(
α2
s

)
. (4.5)

We can immediately see problems in the fixed-order perturbative approach. First we see

that as the thrust becomes small, the logarithmic terms become increasingly large. When

αsL ∼ 1 the higher order terms are no longer small, in fact they are enhanced with respect

to the leading order contribution, spoiling the convergence of the perturbative series. In
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fact we can see that as τ → 0 the cumulant actually becomes negative, which is completely

unphysical. The solution to this problem is to resum the logarithmically enhanced terms.

To do this we must reorganise the perturbative series so that we resum different classes of

logarithm.

There are different ways to classify the logarithms that we wish to resum, however for

simplicity we will focus on the method that is used in the case of the thrust and the other

event shape type observables that are considered in this thesis. The thrust is an example

of an observable with an extra property, exponentiation. That is to say that all of the

leading logarithms can be placed inside an exponent, summing up the LL contributions to

all-orders in the strong coupling. With this setup we can define the classes of logarithms

that we resum at the level of the exponent. In this case we define the LL contribution as

terms of order αn
sL

n+1, NLL as terms of order αn
sL

n and so on. This builds a tower of

logarithms that are resummed in analogy to the successive orders of αs that are included

in fixed-order calculations. For the case of non-exponentiating observables we must define

a different method to classify the logarithms that we resum, however that is beyond the

scope of what we will consider in this thesis.

So far we have only considered fixed-order pQCD. To perform the calculation to all-

order we must find the squared matrix element for the emission of an arbitrary number

of soft and collinear partons. Figure. 4.1 is rather suggestive, in the QED case we can

factorise the emission of n soft and collinear photons into a single emission raised to the

power n with an appropriate Bose symmetry factor, symbolically

(n− emissions) = 1

n!
(1− emission)n . (4.6)

However, unlike QED, we cannot simply factorise the emissions of QCD due to the non-

abelian nature of the theory. Gluons carry colour charge and are able to emit further

secondary gluons and soft quark anti-quark pairs. However it is possible to find a QED

type factorisation by redefining the coupling to include the subsequent branchings from

the primary emission [59]. This new coupling scheme is referred to in the literature as

the Monte Carlo or CMW scheme, but we will refer to it as the physical scheme. The

relationship between the physical coupling αphys.
s and the usual αMS

s coupling can be

computed in perturbation theory. To recap, in QCD we can factorise an arbitrary number

of soft and collinear emissions into a product of single emissions by using the physical

coupling to absorb the contribution of secondary emissions.

Now we have all the necessary ingredients to perform a resummation. To get the

leading logs correct we need only to include the most singular terms, that is the virtual
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corrections and the unresolved real emissions. In the ARES formalism we can exponentiate

the unresolved real terms up to power corrections given by δpv, where p is a positive number

and δ is a “resolution” at which we split the real emissions into resolved and unresolved.

All the resolved radiation contributes to higher order terms in the resummation (NLL and

beyond), and so can be neglected from our calculation of the leading singular behaviour.

Σ(τ) = exp

[
2CF

∫
dk2t
k2t

αphys.
s (k2t )

2π

∫
dη Θ

(
kt
Q
e−|η| − τ

)
Θ

(
log

Q

kt
− |η|

)]
(4.7)

' exp

[
−2CF

αMS
s (Q)

2π
log2

1

τ

]
, (4.8)

where have made DLA to evaluate the integral and leave just the dominant terms. We

see that by expanding the exponent in powers of αs we can exactly reproduce the singular

behaviour that was present in the fixed-order approach. However the exponent generates

all of the leading logarithmic terms at every order in αs. We can see also observe some of

the characteristic properties of resummations: the leading logarithms are exponentiated

and the negative value of cumulant has been replaced by an exponential suppression factor

that is well behaved in the limit τ → 0.

This introduction has been fairly brief and we have left out a lot of the details about

the objects involved in these calculations. We will address all of this in the following

material. A more detailed, pedagogical, exposition to the properties of QCD, including

colour coherence and angular ordering, can be found in Ref. [58, 60].

4.2 Problem specification

In the ARES framework we consider an observable, V (q1, q2, . . . ), that is a non-negative

function of final-state momenta q1, q2, . . . . We specialise to the case of e+e− annihilation,

although similar considerations can be made for hadron colliders. The observable under

consideration, V , must be IRC safe, and, there exists some positive integer number n such

that the observable goes smoothly to zero for momentum configurations that approach

the limit of n narrow jets. We will call this an (n+ 1)-jet observable.

To begin we must introduce a procedure that selects for us events with n or more hard

jets. This will usually be done through a jet algorithm that counts the number of hard,

well separated, jets in the event; or through a cut on a secondary, n-jet, observable2. We

can express this procedure in terms of an event selection function H(q1, q2, . . . ) that is 1

2For example, when we resum the the D-parameter, a 4-jet observable, we will select 3-jet events by

putting a cut on the Durham jet resolution parameter.
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for events that pass the selection cuts, and zero for those that do not. From this we can

define a hard n-jet cross section,

σH ≡
∞∑

N=n

∫
dΦN

dσN
dΦN

H(q1, . . . , qN ) , (4.9)

where dσN/dΦN is the normalised differential cross section for producing N final-state

particles.

We consider the integrated cross section, ΣH(v), for events satisfying the hard n-jet

cut, H, for which, the observable, V is smaller than some value v,

ΣH(v) ≡
1

σH

∞∑
N=n

∫
dΦN

dσN
dΦN

H(q1, . . . , qN )Θ(v − V (q1, . . . , qn)) , (4.10)

from Eq. (4.10) we can obtain 1/σH dΣH(v)/dv, the differential distribution for the ob-

servable.

In the case of n hard jets accompanied by an ensemble of soft and/or collinear radiation

we can factorise Eq. (4.10) into a hard n-jet differential cross-section and a term containing

the contribution of the soft and/or collinear radiation

ΣH(v) ≡
1

σH

∫
dΦB

dσn
dΦB

ΣB(ΦB; v)H(ΦB) . (4.11)

The form of Eq. (4.11) involves the differential cross section dσn/dΦB for producing an

event with “Born kinematics”, that consists of n outgoing hard momenta and an “observ-

able dependent” function ΣB(ΦB; v), roughly telling us the number of events for which

the value of the observable, V , is smaller than v.3 When v � 1, the function ΣB(ΦB; v)

develops large logarithms in v, which we will resum to all orders up to a given logarithmic

accuracy.

4.3 Conditions for resummation

We outlined at the beginning of this chapter that observables that can be resummed in

the ARES framework are those that are continuously global and recursively infrared and

collinear (rIRC) safe. We will address each of these properties in turn.

An observable is said to be global if it is sensitive to all of the emissions in an event.

Examples of global observables include the Thrust and all of the other event shapes de-

scribed in Chapter 3. Non-global observables are those that are only sensitive to emissions
3Actually we can always write ΣH(v) in the form of Eqs. (4.11), for any value of v. However the

factorisation property of these equations, namely that ΣB(ΦB; v) is independent of the procedure used to

select n-jet events, holds only in the limit of small v and for global observables.
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in a certain region of phase space, for example the hemisphere jet-mass. Continuous glob-

alness is the additional statement that the scaling of the observable with respect to the

energy of an emission is the same everywhere in phase space. This condition ensures that

(to all orders) there are no non-global logarithms.

In order to perform the all-orders resummation we need to know the exact behaviour

of the observable in the presence of an arbitrary number of soft and/or collinear emissions.

We consider only observables with the property of rIRC safety, rIRC safety encodes the

requirement that the observable should be insensitive to additional soft and/or collinear

emissions at widely separated scales. Further to this, the rIRC safety property ensures

that the leading logarithms of an observable exponentiate.

We will briefly review the key aspects of rIRC safety, we follow the presentation in

Section 2.2.4 of Ref. [3]. We begin by defining a momentum function ki = ki(ζ) such that

V ({p̃}, ki(ζ)) = ζ. A real emissions is fully determined by three variables η0i , ξi and φi, as

well as the leg index `i,

ηi(ζ) = η0i −
ξi log ζ

a+ b`i
, kti(ζ) =

(
ζeb`iηi(ζ)

d`ig`i(φi)

) 1
a

, φi(ζ) = φi , (4.12)

We require that in the presence of multiple emissions the observable scales in the same

fashion as it would for a single emission. We require that for any m such momentum

functions, the following limit,

lim
v̄→0

1

v̄
V ({p̃}, k1(v̄ζ1), . . . , km(v̄ζm)) , (4.13)

be well-defined and non-zero, for any choice of (non-zero) values of the ζi. Here v̄ is a

parameter that we vary to probe the observable’s properties. The above condition guaran-

tees that in the limit of small v̄, any set of emissions close to the boundary V ({p̃}, k) = v̄

will give a value of the observable that is of order v̄.

For regular IRC safety, given an ensemble of partons, any additional soft and/or collin-

ear splitting of one or more of these partons must not change the value of the observable

by more than a positive power of the softness/collinearity of the splittings, normalised to

the hard scale of the event Q.

In the context of resummations we have two relevant scales: the scale set by the event

Q and the scale set by the boundary V ({p̃}, k) = v. We require that, for sufficiently small

v, there exists some δ � v, that can be chosen independently of v, such that we can neglect

any splitting that is at a smaller scale than that defined by δv. Such splittings will change

the value of the observable by an amount δpv, where p is a positive power. The crucial

property is that δ can be chosen independently of v.
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In terms of the momentum functions ki(ζi), IRC safety can be expressed with the

requirement

lim
ζm+1→0

V ({p̃}, k1(v̄ζ1), . . . , km(v̄ζm), km+1(v̄ζm+1)) = V ({p̃}, k1(v̄ζ1), . . . , km(v̄ζm)) .

(4.14)

The analogous requirement for rIRC safety is expressed by the double limit

lim
ζm+1→0

lim
v̄→0

1

v̄
V ({p̃}, k1(v̄ζ1), . . . , km(v̄ζm), km+1(v̄ζm+1))

=
1

v̄
V ({p̃}, k1(v̄ζ1), . . . , km(v̄ζm)) .

(4.15)

The order of the limits on the left-hand-side is essential to the definition of rIRC safety: if

the softness/collinearity ζm+1 at which the (m+1)th emission becomes irrelevant depends

on v̄ (i.e. it scales as a power of v̄), then even for arbitrarily small v̄ the (m+1)th emission

will never become irrelevant and the equality in Eq. (4.15) will never be satisfied. We

can combine Eqs. (4.14) and (4.15) to obtain an alternative statement of the rIRC safety

condition in terms of the commutator of the limits:[
lim

ζm+1→0
, lim
v̄→0

]
1

v̄
V ({p̃}, k1(v̄ζ1), . . . , km(v̄ζm), km+1(v̄ζm+1)) = 0 . (4.16)

In addition to the limit where an extra emission is made soft/collinear to a hard leg,

we also need to consider the situation where one or more existing emissions split softly

and/or collinearly. We represent the collinear splitting of an existing emission with the

notation ki(ζ) → {kia , kib}(ζ, µ) such that µ2 = (kia +kib)
2/k2ti and limµ→0(kia +kib) = ki.

We then require

lim
µ→0

lim
v̄→0

1

v̄
V ({p̃}, k1(v̄ζ1), . . . , {kia , kib}(v̄ζi, µ), . . . , km(v̄ζm))

=
1

v̄
V ({p̃}, k1(v̄ζ1), . . . , ki(v̄ζi), . . . , km(v̄ζm)) .

(4.17)

regardless of how the limit is taken—whether at fixed relative energy fractions for kia , kib
or with one of them simultaneously becoming softer than the other. Again we can express

Eq. (4.17) in terms of the commutator of the limits:[
lim
µ→0

, lim
v̄→0

]
1

v̄
V ({p̃}, k1(v̄ζ1), . . . , {kia , kib}(v̄ζi, µ), . . . , km(v̄ζm)) = 0 . (4.18)

Eqs. (4.16) and (4.18), together with the condition that (4.13) encode the conditions

for an observable to be considered rIRC safe. The rIRC safety conditions ensure that the

observable has the same scaling behaviour for any number of soft and collinear emissions.

In addition the observable is insensitive to emissions that take place below a certain scale,
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which lets us split the emissions into a set that are resolved and a set that are unresolved.

rIRC safety allows us to place constraints on each emission individually:

V ({p̃}, k1, . . . , kn) < v =⇒ δv . V ({p̃}, ki) . v , (4.19)

where δ satisfies

v � δ � 1 . (4.20)

The rIRC safety conditions imply that the leading-logarithms will exponentiate and that

the region in which resolved real radiation exists is next-to-leading logarithmic.

4.4 Kinematics and notation

All the considerations we have made so far have been completely general. We will now

specialise to three-jet, rIRC safe, observables. At Born level, a three-jet event in e+e−

annihilation is made up of a quark of momentum p1, an antiquark p2 and a gluon p3, we

choose without loss of generality to define their momenta as

p1 = E1(1, 0, 0, 1) , p2 = E2(1, 0, sin θ12, cos θ12) , p3 = E3(1, 0,− sin θ13, cos θ13) ,

(4.21)

with θ12 and θ13 the angles between p1 and p2, and p1 and p3 respectively. The relation

between these angles and energies and the variables that are typically used to describe

three-jet events is reported in Appendix. C.5.

We consider event shapes that vanish in the three-jet limit, i.e. V ({p̃}) = 0, where {p̃}

denotes the set {p̃1, p̃2, p̃3}, the actual final-state momenta, which coincide with (p1, p2, p3)

in Eq. (4.21) at Born level. After many soft-collinear emissions (k1, . . . , kn) the three hard

partons will recoil, and {p̃} are the actual final-state momenta after recoil. In order to

parametrise the radiation momenta, ki, we introduce a so called Sudakov decomposition.

In the case of three-jet kinematics there is not a single natural choice for Sudakov decom-

position. So we adopt a different decomposition for the emission of soft (and optionally

collinear) radiation and the emission of hard-collinear radiation. The decomposition serves

to make the following calculations as simple as possible.

The soft radiation has a dipole structure that we shall come to shortly. As a result of

this structure a convenient decomposition for a single emission k is along any pair of Born

momenta {pi, pj}, which we shall call the (ij) dipole. This is done as follows

k = z(i)pi + z(j)pj + κ(ij) cosφn
(ij)
in + κ(ij) sinφn

(ij)
out . (4.22)
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where n(ij)in and n(ij)out are two space-like vectors that satisfy (n
(ij)
in )2 = (n

(ij)
out )

2 = −1, given

by

n
(ij)
in =

(
cot

θij
2
,
~ni + ~nj
sin θij

)
, n

(ij)
out =

(
0,
~ni × ~nj
sin θij

)
, ~n` ≡

~p`
E`

, ` = i, j . (4.23)

We have introduced the invariant transverse momentum with respect to the (ij) dipole(
κ(ij)

)2
=

(2pik)(2pjk)

(2pipj)
, (4.24)

where (pipj) is short-hand notation for the Lorentz-invariant product pi · pj .

On the other hand, for hard-collinear radiation we can choose to decompose the emis-

sion k along a single Born leg p`. This is done by defining the light-like momentum

p̄` = (E`,−~p`). Explicitly,

k = x(`)pµ` + x̄(`)p̄µ` + κ(`) , (4.25)

where κ(`) is a two-dimensional space-like vector lying in the transverse plane to leg p`,

and whose magnitude reads

−
(
κ(`)
)2

=
(2p`k)(2p̄`k)

(2p`p̄`)
≡
(
k
(`)
t

)2
. (4.26)

Note that, if k is collinear to the leg p`, we have κ(ij) → k
(`)
t .

We now introduce the rapidity η(ij) with respect to a dipole and its counterpart, η(`),

with respect to leg p`

η(ij) ≡ 1

2
log

z(i)

z(j)
, η(`) =

1

2
log

x(`)

x̄(`)
. (4.27)

For an emission k collinear to pi or pj , the rapidities η(ij), η(i), η(j) are related as follows

η(i) ' η(ij) + log
2Ei

Qij
, η(j) ' −η(ij) + log

2Ej

Qij
, Q2

ij = 2(pipj) . (4.28)

From z(i), z(j), x(`), x̄(`) < 1, for a light-like vector k we obtain the rapidity bounds

|η(ij)| < log
Qij

κ(ij)
, η(`) < log

2E`

k
(`)
t

. (4.29)

Last, we denote with φ(`) the azimuthal angle of κ(`). We adopt the convention φ(ij) =

φ(`) = 0 when an emission is in the plane formed by p1, p2, p3. Comparing the expressions

of the component of k outside the event plane in the Sudakov decompositions in Eqs. (4.22)

and (4.25), we have that, for an emission k collinear to p`, φ(ij) ' φ(`).

We note that for two-jet events the dipole Sudakov decomposition Eq. (4.22) and

Eq. (4.25) coincide. From the dipole perspective two-jet events are simple events consisting

of a single dipole.
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A last remark is in order. When dealing with multiple soft-collinear emissions, using

as reference vector the Born momenta p1, p2, p3 can lead to cumbersome, observable de-

pendent multiple-emission matrix elements. This is because, in the presence of multiple

emissions, an emission might be collinear to one of the final state partons {p̃} without

being collinear to the corresponding Born momentum. Therefore, the reference light-cone

vectors required to perform Sudakov decompositions might need to be redefined after each

emission. There is no unique way to redefine reference vecors. The prescription we adopt

here is explained in Appendix C. of ref. [3] and recalled in ref. [61].

4.5 General structure of NNLL resummation

We will now outline the considerations needed to perform at NNLL resummation of three-

jet observables in the ARES framework. We closely follow the structure and discussions

of Ref. [61]. We will attempt to stress as much as possible the new features that appear

when considering three-jet observables.

Any rIRC safe observable V ({p̃}, {ki}), can be parametrised in the following way for

a single soft and collinear emission k collinear to leg `

V ({p̃}, k) ' Vsc(k) ≡ d`

(
k
(`)
t

Q

)a

e−b`η
(`)
g`(φ

(`)) , (4.30)

where k(`)t , η(`), φ(`) are the transverse momentum, rapidity and azimuth of k with respect

to the emitter p`, and a, b`, d` are constants.4 The scale Q represents a typical hard

scale of the process, in our case the centre-of-mass energy of the e+e− collision. The

parametrisation of a single emission in eq. (4.30) may seem unduly limiting, however it

turns out that a great number of observables can be parametrised in this way in the

soft and collinear limit. This includes all of those observables discussed in chap. 3. The

reason for this is for these observables it is only the scaling properties with respect to

the transverse momentum and rapidity (captured in the a and b` coefficients) that are

needed to capture the leading logarithmic behaviour. The remaining terms d` and g`(φ(`))

are simply to appropriately normalise the observable and are necessary for computing

corrections beyond LL accuracy.

We will also make use of a dipole based version of Eq. (4.30) which we define as follows:

V (ij)
sc ({p̃}, k) = d

(ij)
`

(
κ(ij)

Qij

)a

e−b`η
(ij)
g`(φ

(ij)) , (4.31)

4IRC safety implies a > 0 and b` > −a. While b`, d` and g` can be different for each leg, continuous

globalness implies a has to be the same for all legs.
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where

d
(ij)
` = d`

(
Q

2E`

)b`

.

(
Qij

Q

)a+b`

, (4.32)

this is defined such that Eq. (4.30) and Eq. (4.31) are identical. Each expressing the

behaviour of the observable most transparently for the leg and dipole based structure

respectively.

Our aim is to resum large logarithms in the cumulative distribution ΣB(ΦB; v), the

fraction of events for which V ({p̃}, {ki}) < v, in the region v � 1. This is given by

Σ̃B(ΦB; v) ≡ V(ΦB)
∞∑
n=0

S(n)

∫ n∏
i=1

[dki] |M2({p̃}, k1, . . . , kn)|
2
Θ(v − V ({p̃}, k1, . . . , kn)) ,

(4.33)

where V(ΦB) is a form factor that includes all virtual corrections to the Born process,

|M({p̃}, k1, . . . , kn)| 2 is the squared matrix element for n real emissions off of the three-jet

Born antenna and the factor S(n) represents the multiplicity coefficient for each final state

(quarks or gluons). For instance, n identical gluons have a multiplicity factor S(n) = 1/n!.

The Lorentz-invariant phase-space in d = 4−2ε dimensions is denoted by [dk] and defined

as

[dk] ≡ ddk

(2π)d−1
δ(k2)Θ(k0). (4.34)

Given the Sudakov decomposition of any four-momentum k of (squared) invariant mass

k2 = m2 as in Eq. (4.22), the measure ddk can be expressed as

ddk = (pipj)dz
(i)dz(j)d2−2εκ(ij) =

dy(ij)

2
dm2d2−2εκ(ij), y(ij) ≡ 1

2
log

(
z(i)

z(j)

)
. (4.35)

The variable y(ij) is the rapidity of k (with respect to some reference light-like directions

pi and pj), and for real emissions (k2 = 0) it is bounded by∣∣∣y(ij)∣∣∣ < log

(
Qij

κ(ij)

)
, (4.36)

where Qij = (2pipj). It is immediate to link y to the rapidity of a massless emission k with

respect to a given leg `. In fact, η(i) = y(ij) for y(ij) > 0, and η(j) = −y(ij) for y(ij) < 0.

This implies that the phase space [dk] in Eq. (4.34) of a single dipole can be written as

follows

[dk] =
2∑

`=1

dη(`)

2
Θ(η(`))

d2−2εκ(ij)

(2π)3−2ε
. (4.37)

We have considered all of the momenta to be in d-dimensions, because dimensional regu-

larisation is needed to regulate the IRC divergences present both in V(ΦB) and in the real

radiation.
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4.5.1 The structure of the virtual corrections

The virtual corrections V(ΦB) can be expressed in the following factorised form

V(ΦB) = H(ΦB, αs(Q))×

× exp

∑
(ij)

C(ij)

∫
ddk

(2π)d
w(m2, (κ(ij))2 +m2; ε)×

×Θ

(
1

2
log

(
Q2

ij

(κ(ij))2 +m2

)
− |y(ij)|

)
Θ(Qij − κ(ij)

}
×

× exp

{
−

3∑
`=1

∫ Q2
dk2

k2
γ`(αs(k, ε))

}
.

(4.38)

Such a factorisation is possible because at all orders there are three physical principles

that apply to any hard scattering amplitude such as Eq. (4.38)

1. Soft gluons decouple from hard virtual partons (at leading power in the hard scale).

2. Virtual hard partons collinear to an external hard parton decouple from the remain-

ing hard subdiagram, these hard collinear partons are insensitive to the energy and

spin of hard partons that it is not collinear to.

3. Soft gluons decouple from jets, their long wavelength does not allow them to probe

the details of a narrow jet beyond its overall colour and direction.

For the details of the factorisation see [62, 63] as the references therein.

The virtual corrections are parametrised in terms of three objects:

1. The soft function

The first exponential in Eq. (4.38) represents the sum over all of the possible (ij)

dipoles, where there is a soft web associated with each dipole. We extract the dipole

colour factor C(ij) from each web so that w(m2, (κ(ij))2 +m2; ε) denotes the colour-

stripped soft web [64, 65] of total momentum k and squared invariant mass m2, in

d = 4 − 2ε dimensions. In our representation of V(ΦB), the integration boundaries

depend on which (ij) dipole we are considering. The upper integration bound for

the κ(ij)-integral of the web is set by the centre-of-mass energy of the dipole, Qij ,

and the upper bound for the rapidity integral to, |y(ij)| < log
(
Qij/

√
(κ(ij))2 +m2

)
.

2. The jet functions

The second exponential in Eq. (4.38) is the sum over all of the possible legs `,

where the function γ`(αs(k, ε)) coincides, up to an overall sign change, with the
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coefficient of the δ(1 − x) term of the regularised splitting functions Pq→qg(x) and

Pg→gg(x), according to whether leg ` is a quark or a gluon, respectively. The strong

coupling αs(k, ε) is defined as the solution of the d-dimensional renormalisation group

equation:

µ2R
dαs

dµ2R
= −ε αs + β(d=4)(αs), (4.39)

where β(d=4) is the β-function in four dimensions, given by the following expansion

β(d=4)(αs) = −α2
s

∞∑
n=0

βnα
n
s , (4.40)

namely the usual β-function.

3. The Hard function

The overall quantity H(ΦB, αs(Q)) is a multiplicative constant that is obtained by

matching Eq. (4.38) at each order in perturbation theory to the quark or gluon form

factor computed in the MS scheme.

We take a brief interlude to explain the dipole structure that will be omnipresent

throughout our considerations of the soft radiation. The dipole structure emerges naturally

for the emission of soft gluons as we saw in Eq. (2.99). Generally the factorisation of

soft radiation includes an eikonal factor and a colour correlation matrix. In the case

of three-jet events we can compute the colour factors explicitly, and they are scalars

rather than matrices—a special case for 2 and 3-jet events only. In our notation we

define C(ij) = −Ti · Tj . In the three-jet case this leads us to C(qq̄) = CF − CA
2 and

C(qg) = C(q̄g) =
CA
2 . We stress again that the same structure is present in the two-jet case,

only it is greatly simplified as there is only a single dipole to consider.

In order to proceed, we must devise a way to cancel the IRC singularities in Eq. (4.38)

against those in the real emissions. We do this via the introduction of a resolution para-

meter. The resolution parameter is engineered so as to divide the real radiation into a

resolved set and an unresolved set. The idea behind this division is to handle the unre-

solved part of the radiation analytically, and cancel these divergences against those of the

virtual corrections. The cancellation is performed in a way that the contribution of the

resolved set of radiation can subsequently be computed numerically in d = 4 dimensions.

The resolution parameter is defined through its action on the soft and/or hard-collinear

contributions to the squared matrix element, as we shall outline shortly.
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4.5.2 Cancellation of soft singularities

We start by considering the contribution of soft radiation. The soft squared matrix element

for n emissions off a hard antenna is denoted as |M({p̃}, k1, . . . , kn)| 2. Soft radiation from

such a hard antenna can be expressed as a sum over emissions off of all of the possible

dipole antennas that make up the hard antenna. This result holds to all orders in QCD

for any number of emissions. Schematically, this means that we can write

|M(ΦB, k1, . . . , kn)| 2 = |M(ΦB)| 2 |Ms(k1, . . . , kn)| 2 . (4.41)

Note that in general |Ms(k1, . . . , kn)| 2 will be a matrix in colour space. For concreteness

we reproduce the explicit expression for emissions off of a three-jet event. A single emission

can be written as

|M(ΦB, k)| 2 = |M(ΦB)| 2
∑
(ij)

16πµ2εRαs(µR)C(ij) Sij(k) , (4.42)

and for two emissions we can write

|M(ΦB, k1, k2)| 2 = |M(ΦB)| 2(4πµ2εRαs(µR))
2

∑
(ij)

2C(ij) Sij(k1)

∑
(ij)

2C(kl) Skl(k2)


+CA

∑
(ij)

C(ij) [2Sij − Sii − Sjj ]− TRnF
∑
(ij)

C(ij) [2Iij − Iii − Ijj ]

 ,
(4.43)

where Sij , Sii and Sjj account for the emission of two soft gluons and Iij , Iii and Ijj

account for the emission of a soft qq̄ pair. Explicit expression for each of these terms can

be found in Ref. [25].

Recalling Eq. (4.41), we denote squared matrix element for n soft emissions as |Ms(k1, . . . , kn)| 2,

which we can iteratively reorganised as follows

|Ms(k1)| 2 ≡ |M̃s(k1)|
2

|Ms(k1, k2)| 2 = |M̃s(k1)|
2
|M̃s(k2)|

2
+ |M̃s(k1, k2)|

2

|Ms(k1, k2, k3)| 2 = |M̃s(k1)|
2
|M̃s(k2)|

2
|M̃s(k3)|

2
+
(
|M̃s(k1)|

2
|M̃s(k2, k3)|

2
+ perm.

)
+ |M̃s(k1, k2, k3)|

2

...

(4.44)

where it is understood that each |M̃s(k1, . . . , kn)|
2
term takes the form of a sum over di-

poles. The quantities |M̃s(k1, . . . , kn)|
2
represent the correlated portion of the n-emission
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soft squared matrix element, together with its virtual corrections.5 The correlated portion

of the squared matrix element is strongly suppressed unless all emissions k1, . . . , kn are

close in angle. We refer to the |M̃s(k1, . . . , kn)|
2
terms as soft correlated blocks, they are

the building blocks of the soft webs, which in turn we will use to construct the Sudakov

radiator. Each correlated block admits a perturbative expansion in αs due to the virtual

corrections, hence

|M̃s(k1, . . . , kn)|
2
= |M̃s,0(k1, . . . , kn)|

2
+
αs(µR)

2π
|M̃s,1(k1, . . . , kn)|

2
+ . . . (4.45)

At tree level, the squared matrix element for the emission of a single soft gluon is given

by

|M̃s(k)|
2
' |M̃s,0(k)|

2
=
∑
(ij)

16π C(ij) µ
2ε
Rαs(µR)Sij(k), (4.46)

while at one-loop order we have [66]

|M̃s,1(k)|
2
= −

∑
(ij)

16π C(ij) µ
2ε
Rαs(µR)Sij(k)CA

1

ε2
Γ4(1− ε)Γ3(1 + ε)

Γ2(1− 2ε)Γ(1 + 2ε)

[
4πµ2R Sij(k)

]ε
.

(4.47)

In the following we will always renormalise the coupling in the MS scheme, i.e. we replace

µ2εRαs(µR) → µ2εRαs(µR)
eεγE

(4π)ε

(
1− β0

ε
αs(µR) + . . .

)
, (4.48)

where β0 is the first coefficient of the beta function in four dimensions of Eq. (4.40). The

tree-level correlated block with two emissions |M̃s,0(k1, k2)|
2
is reported in Appendix C.4,

and will be useful later. This decomposition is particularly convenient as it allows us to

define a logarithmic counting. Each soft correlated block |M̃s(k1, . . . , kn)|
2
will contribute

to log ΣB(ΦB; v) with at most with a factor αn
s log

n+1(v), with n powers of log(v) coming

from the soft singularities and an extra power from the only collinear singularity.

Rather than defining the resolution parameter as in Ref. [61], where it acts on the

full correlated squared matrix element, we will instead define it to act separately on each

dipole contribution. This will allow us to exponentiate the contribution of each dipole

separately. Following the same approach as Ref. [61] we begin by defining a clustering

algorithm that combines together the momenta of all particles emitted according to each

correlated dipole block |M̃s(k1, . . . , kn)|
2
. In the simple case of two emissions, we cluster

as follows

|Ms(k1, k2)| 2 = |M̃s(k1)|
2
|M̃s(k2)|

2︸ ︷︷ ︸
two clusters (k1,k2)

+ |M̃s(k1, k2)|
2︸ ︷︷ ︸

a single cluster kclust.=k1+k2

. (4.49)

5Note that the |M̃s(k1, . . . , kn)|
2

are not in general positive definite, they are defined as differences of

squared matrix elements.
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rIRC safety [3] ensures that all particles in a cluster are both close in angle and have

commensurate transverse momenta. This allows us to evaluate the QCD running coupling

of each cluster at the transverse momenta of the corresponding emissions. This procedure

allows us to absorb all logarithms of µR/κ(ij)i into the running of the coupling. As a

consequence of this procedure, for rIRC safe observables, using the decomposition (4.44),

every correlated block |M̃s(k1, . . . , kn)|
2
(when combined with the corresponding virtual

corrections) will contribute to log ΣB(ΦB; v) with terms of order αm
s logm+2−n(v) for m ≥

n. This allows us to build a logarithmic counting at the level of the squared matrix element,

which defines which contributions must be considered at a given logarithmic order.

In order to proceed with the calculation of ΣB(ΦB; v), we then choose a resolution

parameter δ � 1 such that all clusters of total momentum kclust. satisfying

Vres.(kclust.) < δv , (4.50)

are labelled as unresolved. This choice guarantees that one is able to compute analytically

the contribution of unresolved emissions for an arbitrary rIRC safe observable. For this

class of observables, the unresolved clusters can be neglected from the Θ function in

Eq. (4.33) since they do not contribute to the observable V up to corrections suppressed

by powers of δpv, with p being a positive parameter.

To make what we have described more transparent, we will work through the action of

the resolution variable on the soft correlated block: first for the case of a single emission

and then the case of two emissions. We will see how the momenta are divided into resolved

and unresolved. First we introduce the shorthand for the action of the resolution parameter

Θδv[{ki}] ≡ Θ[Vres.({ki})− δv]

Θδv[{ki}] ≡ Θ[δv − Vres.({ki})] .
(4.51)

We combine the action of the resolution parameter with the observable constraint and

making use of the rIRC safety of the observable we can write

Θ[v − V ({p̃}, k1, . . . , kn)]Θδv[{k1, . . . , kl}]

= Θ[V ({p̃}, kl+1, . . . , kn)]Θ[{k1, . . . , kl}] +O(v δp) ,
(4.52)

With this shorthand we can write down how the resolution variable divides the momenta
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into resolved and unresolved∫
[dk] |M̃(k)|

2
=

∫
[dk] |M̃(k)|

2 [
Θδv(k) + Θδv(k)

]
≡
∫ δv

[dk] |M̃(k)|
2
+

∫
δv
[dk] |M̃(k)|

2

≡ 16πµ2εRαs(µR)
∑
(ij)

C(ij)

∫
[dk]Sij(k)×

×
[
Θ
(
V (ij)
sc (k)− δv

)
+Θ

(
δv − V (ij)

sc (k)
)]

≡ 16πµ2εRαs(µR)
∑
(ij)

C(ij)

[∫ δv

[dk]Sij(k) +

∫
δv
[dk]Sij(k)

]
,

∫
[dk1][dk2] |M̃(k1, k2)|

2
=

∫
[dk1][dk2] |M̃(k1, k2)|

2
[Θδv(k1, k2) + Θδv(k1, k2)]

≡
∫ δv

[dk1][dk2] |M̃(k1, k2)|
2
+

∫
δv
[dk1][dk2] |M̃(k1, k2)|

2

≡ (4πµ2εRαs(µR))
2CA

∑
(ij)

C(ij)×

×
∫
[dk1][dk2]

[
2Sij(k1, k2)− Sii(k1, k2)− Sjj(k1, k2)

]
×

×
[
Θ
(
V (ij)
sc (k1 + k2)− δv

)
+Θ

(
δv − V (ij)

sc (k1 + k2)
)]

≡ (4πµ2εRαs(µR))
2CA

∑
(ij)

C(ij)×

×
[∫ δv

[dk1][dk2]
[
2Sij(k1, k2)− Sii(k1, k2)− Sjj(k1, k2)

]
+

∫
δv
[dk1][dk2]

[
2Sij(k1, k2)− Sii(k1, k2)− Sjj(k1, k2)

]]
,

(4.53)

where again the explicit form of Sij can be found in Ref. [25]. We can see the same

structure as was found for the two-jet case [61], only now acting on each dipole separately.

The above definition of the resolution parameter allows us to exponentiate the contri-

bution of unresolved soft blocks. From the decomposition of Eq. (4.44), we can connect

the soft correlated blocks |M̃s(k1, . . . , kn)|
2
to the webs introduced in Eq. (4.38), we find

∑
(ij)

Cijw(m
2, (κ(ij))2+m2; ε) =

∞∑
n=1

S(n)

∫ ( n∏
i=1

[dki]

)
|M̃s(k1, . . . , kn)|

2
(2π)dδ(d)

(
k −

∑
i

ki

)
,

(4.54)

Therefore, the contribution of an arbitrary number of soft clusters (and no hard-collinear

clusters) gives rise to the following exponential factor

exp

∑
(ij)

C(ij)

∫ Qij ddk

(2π)d
w(m2, (κ(ij))2 +m2; ε)Θ(δv − V (ij)

sc (k))

 . (4.55)
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Eq. (4.55) can be combined with the virtual corrections in (4.38) to give

V(ΦB) exp

∑
(ij)

C(ij)

∫ Qij ddk

(2π)d
w(m2, (κ(ij))2 +m2; ε)Θ(δv − V (ij)

sc (k))


= H(ΦB, αs(Q)) exp

−
∑
(ij)

C(ij)R
(ij)
s (δv)

 exp

{
−

3∑
`=1

∫ Q2
dk2

k2
γ`(αs(k, ε))

}
,

(4.56)

where we have defined the soft dipole radiator R(ij)
s (v̄), a function with argument v̄, as

R(ij)
s (v̄) =

∫ Qij d4k

(2π)4
w(m2, (κ(ij))2 +m2)Θ(V (ij)

sc (k)− v̄) , (4.57)

and we have taken the four-dimensional limit of the web since the integral is now finite.

We also introduce the complete soft radiator defined as

Rs(v̄) ≡
∑
(ij)

C(ij)R
(ij)
s (v̄) . (4.58)

4.5.3 Cancellation of collinear singularities and the structure of resolved

radiation

The procedure for the cancellation of the collinear singularities is unchanged with respect

to the original considerations made in the derivation of the ARES NNLL master equation,

however there are new finite terms that appear as compared to the original formulation.

We reproduce the discussion of Ref. [61], making clear where there are new contributions.

The next step is to handle the hard-collinear divergences, those present in the integral

over γ in Eq. (4.56). Exponentiation of the unresolved hard-collinear emissions is much

more delicate than for the soft. Every hard-collinear emission could change the colour

charge felt by all subsequent radiation. Fortunately, rIRC safety greatly simplifies the

treatment of the hard-collinear radiation, for rIRC safe observables we only need to con-

sider a fixed number of hard-collinear emissions at a given logarithmic order. Therefore,

instead of proceeding as in the soft case, we start from the integral over the anomalous

dimension γ in the virtual corrections (4.56) and split it into two pieces at the collinear

scale of the resolution variable6, which yields Vsc(k) ∼ ka+b`
t . Inspired by this, we split

the integral over γ at k = v1/(a+b`)Q

∫ Q2
dk2

k2
γ`(αs(k, ε)) =

∫ Q2

Q2v
2

a+b`

dk2

k2
γ`(αs(k)) +

∫ Q2v
2

a+b`

0

dk2

k2
γ`(αs(k, ε)) . (4.59)

6The collinear scale is found by setting the rapidity η(`) to its maximum (i.e. log(Q/kt)) in Eq. (4.30)
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Next, we expand the exponential of the second integral on the right hand side of the above

equation considering only a fixed number of terms in its expansion

exp

−
∫ Q2v

2
a+b`

0

dk2

k2
γ`(αs(k, ε))

 = 1−
∫ Q2v

2
a+b`

0

dk2

k2
αs(k, ε)

2π
γ
(0)
` +O

(
α2
s(Qv

1
a+b` )

)
.

(4.60)

The first non-trivial order in the expansion must be included at NNLL, the second at

N3LL (together with the squared of the first), and so on and so forth. The divergences in

these terms cancel order-by-order in perturbation theory against those of the hard-collinear

emissions in the real radiation.

The final step to obtain an NNLL accurate expression for ΣB(ΦB; v) is to handle

the squared matrix element for resolved real emissions in Eq. (4.33). At NLL accuracy,

rIRC safety ensures that resolved radiation contains no hard-collinear emissions, and the

real matrix element squared is simply the soft approximation |Ms| 2. In fact it simplifies

further, the squared matrix element at this order reduces to the product of n independent,

soft-collinear emission probabilities, [dk] |Ms,0(k)| 2 ' [dk] |Msc(k)| 2, where [4]

[dk] |Msc(k)| 2 ≡
∑
(ij)

2C(ij)

∑
`∈(ij)

dκ(ij)

κ(ij)
dη(ij)

dφ(ij)

2π

αs(κ
(ij))

π
Θ

(
log

(
Qij

κ(ij)

)
− η

(`)
ij

)
Θ(η

(`)
ij ) .

(4.61)

In order to achieve NNLL accuracy, it is sufficient to correct the products of independently

emitted single-particle clusters with the insertion of a single tree-level correlated cluster

of two soft and collinear emissions |M̃s,0(ka, kb)|
2
, and of the one-loop correction to the

single-emission cluster |M̃s,1(k)|
2
.

Moreover, beyond NLL, a finite number of hard-collinear emissions must be considered.

In particular, at NNLL, it is sufficient to allow one single emission to be hard and collinear.

This single collinear emission factorises as follows

|M({p̃}, khc, k1, . . . , kn)| 2 ' |M(ΦB)| 2|Mhc,`(ΦB, khc)| 2
n∏

i=1

|M̃s(ki)|
2
. (4.62)

Note that unlike in the soft case the hard-collinear matrix element can depend on the

Born kinematics through spin correlations. When combined with Eq. (4.60), this leads

to a finite, logarithmically enhanced, left over, as it will be shown shortly. In such con-

figurations, at NNLL, the remaining soft radiation consists of an arbitrary number of

single-emission clusters.

With the above decomposition, the NNLL resummed cross section ΣB(ΦB; v) of Eq. (4.33)
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takes the form

ΣB(ΦB; v) = H(ΦB, αs(Q)) exp

−
∑
(ij)

C(ij)R
(ij)
s (δv)

 exp

{
−

3∑
`=1

∫ Q2

Q2v
2

a+b`

dk2

k2
γ`(αs(k))

}

×
{ ∞∑

n=0

1

n!

∫ n∏
i=1

[dki] |Ms(k1, . . . , kn)| 2Θ(v − V ({p̃}, {ki}))
∏
clust.

Θ(Vsc(kclust.)− δv)

+
∞∑
n=0

1

n!

∫ n∏
i=1

[dki] |Msc(ki)| 2Θ(Vsc(ki)− δv)

×
3∑

`=1

[ ∫
[dkhc] |Mhc,`(ΦB, khc)| 2Θ(v − V ({p̃}, {ki}, khc))

−
∫ Q2v

2
a+b`

0

dk2

k2
αs(k, ε)

2π
γ
(0)
` Θ(v − V ({p̃}, {ki}))

]}
,

(4.63)

where it is understood that when we write |Msc(ki)| 2Θ(Vsc(ki)− δv), the Θ-function is

applied separately to each dipole with the appropriate dipole resolution variable

|Msc(ki)| 2Θ(Vsc(ki)− δv) =
∑
(ij)

16παs(κ)C(ij) Sij(ki)Θ
(
V (ij)
sc (ki)− δv

)
, (4.64)

and the squared matrix element |Ms(k1, . . . , kn)| 2 is approximated by

|Ms(k1, . . . , kn)| 2
∏
clust.

Θ(Vsc(kclust.)− δv) '
n∏

i=1

|Msc(ki)| 2Θ(Vsc(ki)− δv)

+
∑
a>b

n∏
i=1
i 6=a,b

|Msc(ki)| 2Θ(Vsc(ki)− δv) |M̃s,0(ka, kb)|
2
Θ(Vsc(ka + kb)− δv)

+
αs(µR)

2π

∑
a

n∏
i=1
i 6=a

|Msc(ki)| 2Θ(Vsc(ki)− δv) |M̃s,1(ka)|
2
Θ(Vsc(ka)− δv)

+ . . . ,

(4.65)

where Vsc(ka + kb) is defined as in Eq. (4.31), and κ(ij), η(ij), φ(ij) are the transverse mo-

mentum, rapidity and azimuth of the four-vector ka + kb with respect to dipole (ij).

The cancellation of infrared and collinear divergences in the first term of Eq. (4.63) can

be handled with a simple subtraction scheme as outlined in Ref. [4], which allows for a

numerical evaluation in d = 4 dimensions. The cancellation of collinear singularities in

the second term still requires the use of dimensional regularisation. In order to make

the second term suitable for a numerical evaluation, we add and subtract the following
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counter-term

H(ΦB, αs(Q))e−Rs(δv) exp

{
−

3∑
`=1

∫ Q2

Q2v
2

a+b`

dk2

k2
γ`(αs(k, ε))

}

×
∞∑
n=0

1

n!

∫ n∏
i=1

[dki] |Msc(ki)| 2Θ(Vsc(ki)− δv)

×
3∑

`=1

∫
[dkhc]|Mhc,`(khc)| 2Θ(v − V ({p̃}, {ki}))Θ(v − Vsc(khc)) ,

(4.66)

and recast Eq. (4.63) as follows

Σ(v) = H(ΦB, αs(Q))e−Rs(δv) exp

{
−

3∑
`=1

∫ Q2

Q2v
2

a+b`

dk2

k2
γ`(αs(k, ε))

}

×
{ ∞∑

n=0

1

n!

∫ n∏
i=1

[dki] |Ms(k1, . . . , kn)| 2Θ(v − V ({p̃}, {ki}))
∏
clust.

Θ(Vsc(kclust.)− δv)

+
∞∑
n=0

1

n!

∫ n∏
i=1

[dki] |Msc(ki)| 2Θ(Vsc(ki)− δv)

×
3∑

`=1

[ ∫
[dkhc] |Mhc,`(khc)| 2

×
(
Θ(v − V ({p̃}, {ki}))−Θ(v − V ({p̃}, {ki}))Θ(v − Vsc(khc))

)

+

(∫
[dkhc] |Mhc,`(khc)| 2Θ(v − Vsc(khc))−

∫ Q2v
2

a+b`

0

dk2

k2
αs(k, ε)

2π
γ
(0)
`

)
×Θ(v − V ({p̃}, {ki}))

]}
.

(4.67)

The integral in round brackets of the last line of the above equation can be evaluated

analytically as follows. For each leg ` = 1, 2, 3, we expand the Θ(v − Vsc(khc)) function in

the last line of Eq. (4.67) as

Θ(v − Vsc(khc)) = Θ

(
v − d`

(
k
(`)
t

Q

)a

e−b`η
(`)
g`(φ

(`))

)
= Θ

v −(k(`)t

Q

)a+b`
d`g`(φ

(`))

(z(`))b`


= Θ

v −(k(`)t

Q

)a+b`
− v δ

v −(k(`)t

Q

)a+b`
 log

d`g`(φ
(`))

(z(`))b`
+ . . .

(4.68)

where we neglect N3LL corrections in the expansion.

With the expansion Eq. (4.68) it is sufficient to use the azimuthally averaged splitting

function in d = 4−2ε dimensions to construct the hard-collinear squared matrix element in

the subtraction term Eq. (4.66). This is because in Eq. (4.68) the only term that involves
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a non-trivial φ(`) dependence is finite in d = 4 dimensions. In this approximation, the

hard-collinear squared matrix element relative to each leg ` is given by

[dk] |Mhc,`(k)| 2 = 2
eγEε

Γ(1− ε)

dk
(`)
t

k
(`)
t

(
µR

k
(`)
t

)2ε

dz(`)
dφ(`)

2π

αs(k
(`)
t )

2π
〈P`(z; ε)〉 , (4.69)

where the running coupling has been renormalised in the MS scheme, and

〈Pq(z; ε)〉 =
〈
P̂ (0)
q→gq(z; ε)

〉
− 2CF

z
, (4.70)

〈Pg(z; ε)〉 =
〈
P̂ (0)
g→gg(z; ε)

〉
+ nF

〈
P̂

(0)
g→qq̄(z; ε)

〉
− 2CA

z
, (4.71)

for a (anti)quark and gluon leg respectively. The factor −2C`/z
(`) eliminates the double

counting of the soft singularity which is already accounted for in the first line of Eq. (4.67).

After performing the integral in the last line analytically, Eq. (4.67) becomes7

ΣNNLL(v) = H({p̃}, αs(Q))e−Rs(v)−Rhc(v)

× e−Rs(δv)

e−Rs(v)

{ ∞∑
n=0

1

n!

∫ n∏
i=1

[dki] |Ms(k1, . . . , kn)| 2Θ(v − V ({p̃}, {ki}))
∏
clust.

Θ(Vsc(kclust.)− δv)

+

∞∑
n=0

1

n!

∫ n∏
i=1

[dki] |Msc(ki)| 2Θ(Vsc(ki)− δv)

×
3∑

`=1

∫
[dkhc] |Mhc,`(khc)| 2

(
Θ(v − V ({p̃}, {ki}, khc))−Θ(v − V ({p̃}, {ki}))Θ(v − Vsc(khc))

)

+

3∑
`=1

αs(Qv
1

a+b` )

2π
C

(1)
hc,`

∞∑
n=0

1

n!

∫ n∏
i=1

[dki] |Msc(ki)| 2Θ(Vsc(ki)− δv) Θ(v − V ({p̃}, {ki}))
}
,

(4.72)

where we have introduced the hard-collinear radiator defined as

Rhc(v̄) =

3∑
`=1

∫ Q2

Q2v̄
2

a+b`

dk2

k2
γ`(αs(k)) . (4.73)

The hard-collinear constant C(1)
hc,` is given by

C
(1)
hc,q = CF

(
7

2

b`
a+ b`

+
3

a+ b`

(
〈log d`g`〉 − b` log

2E`

Q

)
+

1

2

)
, (4.74)

C
(1)
hc,g =

(
67

18
CA − 13

9
TRnF

)
b`

a+ b`
+

4πβ0
a+ b`

(
〈log d`g`〉 − b` log

2E`

Q

)
+

1

3
TRnF , (4.75)

for hard parton with the flavour of a (anti)quark or gluon respectively, with

〈log d`g`〉 =
∫ 2π

0

dφ(`)

2π
log d`g`(φ

(`)) . (4.76)

7we abuse notation slightly: in the 4th line of Eq. (4.72) the hard squared matrix element |Mhc,`(khc)| 2

acting of the first Θ-function is the full hard-collinear matrix element with all of the spin dependence,

whereas it is the spin averaged hard-collinear matrix element that acts on the second Θ-function.
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Finally, the constant part of virtual corrections at NNLL is given by

H(ΦB, αs(Q)) = 1 +
αs(Q)

2π
H(1)(ΦB) +O

(
α2
s

)
, (4.77)

where the explicit expression for H(1)(ΦB) is in general rather long and complicated.

However for two-jet events H(1) takes the simple form

H(1)(ΦB) = CF

(
−8 + π2

)
, (4.78)

in fact in the two-jet case the hard constant is independent of the underlying Born con-

figuration.

For three-jet events H(1) is rather more complicated

H(1)(ΦB) =

(
π2

2
(2CF + CA)− 8CF +

F (y12, y13, y23)

|M(ΦB)| 2

)
, (4.79)

where F (y12, y13, y23) is defined in Eq. (2.21) of Ref. [42]. In general H(1) is given by the

finite part of the fixed-order one-loop virtual corrections after normalising with the Born

level matrix element squared.

4.5.4 The NNLL master formula

Each of the terms in the resolved contribution to Eq. (4.72) can be recast into a finite set

of corrections, so that the NNLL cross section ΣB(ΦB; v) can be parametrised with the

following master formula (we define λ = αs(Q)β0 log
1
v )

ΣB(ΦB; v) = e−Rs(λ)−Rhc(λ)

[
FNLL(λ)

(
1 +

αs(Q)

2π
H(1)(ΦB) +

3∑
`=1

αs(v
1

a+b`Q)

2π
C

(1)
hc,`

)

+
αs(Q)

π
δFNNLL(λ)

]
,

(4.80)

where the functions FNLL and δFNNLL have a general expression for any rIRC safe ob-

servable [3, 4, 67] and can be efficiently evaluated numerically in d = 4 dimensions. Let

us briefly describe the objects in eq. (4.80). First we have the soft radiator Rs which

includes the contributions due to the unresolved soft and optionally collinear radiation,

thus the soft radiator contributes terms of LL accuracy and above. The second term is

the hard-collinear radiator Rhc which includes the contributions due to the unresolved

hard-collinear radiation, thus the hard-collinear radiator contributes terms of NLL ac-

curacy and above. Next we have FNLL which includes contributions due to resolved soft

and collinear radiation, we truncate this term so that its contribution is purely NLL. The
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following terms H(1), C(1)
hc,` and δFNNLL are the first purely NNLL terms. H(1) and C(1)

hc,`

are constant terms due to the virtual corrections, by multiplying FNLL these terms are of

order NNLL. Finally there is the δFNNLL which is due to resolved radiation that is soft

and/or collinear and is a pure order NNLL term. The NNLL function is decomposed as

follows

δFNNLL = δFsc + δFwa + δFs + δFcorrel + δFclust + δFrec + δFhc , (4.81)

where each term has a well-defined physical origin.

• The correction terms δFsc, δFwa, δFs, δFcorrel and δFclust have their origin in soft

resolved radiation, the first term in the curly brackets of Eq. (4.72).

The soft-collinear correction function δFsc accounts for running coupling corrections

to the real emissions in the CMW scheme [59] and the correct rapidity boundary

for a single soft-collinear emission. For event shapes variables this correction is

particularly simple [4] as the rapidity dependence of the observable can always be

handled analytically. For observables with a more complicated rapidity dependence,

such as jet rates [67], the running coupling correction δF rc
sc and the correction due

to the rapidity boundary δF rap
sc must be treated separately.

The wide-angle correction function δFwa accounts for the difference between the

observable and its soft-collinear parametrisation for a single soft wide-angle emission

accompanied by many soft-collinear gluons.

The soft correction function δFs accounts for the emission of a soft wide angle gluon

at the level of the matrix element squared, but evaluated with the Vsc.

At NLL all resolved emissions are strongly ordered in angle, and thus emitted inde-

pendently. The matrix element used to compute the function FNLL is simply given

by a product of an arbitrary number of single-gluon emission squared matrix ele-

ment |M̃sc(ki)|
2
, in the decomposition of Eq. (4.44). Starting from NNLL two or

more resolved emissions can become close in angle. In this type of configurations,

the squared matrix element is given by an abelian term (defined by the product of n

single emission probabilities) and by non-abelian, correlated clusters of two or more

particles (see Eq. (4.44)). At NNLL it is sufficient to account for the effect of only

two emissions becoming close in angle, while the others can be considered far apart.

This induces two types of corrections: δFcorrel and δFclust.

The correlated correction function δFcorrel accounts for the insertion in the re-

solved ensemble of soft-collinear, independently emitted gluons of a single double-
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soft cluster |M̃s,0(k1, k2)|
2
that is defined as the non-abelian part of the square of

the double-soft current [4]. The clustering correction function δFclust (defined in

Ref. [67]), on the other hand, accounts for the contribution of two independently

emitted gluons that become close in angle. Due to the properties of most event

shapes, this correction usually vanishes. It becomes different from zero only when

the observable has a non-trivial dependence on the rapidity of the emissions, as for

instance in the case of jet rates [67].

• The hard-collinear correction δFhc and recoil correction δFrec originate from the

second term in the curly brackets of Eq. (4.72), and have a hard-collinear nature.

The emission of a hard collinear parton induces two types of corrections: at the level

of the squared matrix element (encoded in δFhc), and at the level of the kinematics,

due to the recoil of the whole event against the hard-collinear emission (encoded in

δFrec). Note that in general δFrec contains contributions due to spin correlations

and as a result may be dependent on the underlying Born momenta.

• Finally, the term

FNLL(λ)

(
1 +

αs(Q)

2π
H(1)(ΦB) +

3∑
`=1

αs(Qv
1

a+b` )

2π
C

(1)
hc,`

)
, (4.82)

arises from the first and third term in the curly brackets of Eq. (4.72), where N3LL

corrections were neglected. The function FNLL is purely NLL [3], while the mul-

tiplying constants H(1) and C(1)
hc,` induce NNLL corrections.

Before proceeding, we stress that in the definition of the unresolved soft radiation

given in Eq. (4.50) we have some freedom in deciding precisely how we define resolution

variable. In particular, instead of Vsc, we could use any observable Vres. that shares the

same leading logarithms as the full observable V that is being resummed. We choose

Vsc out of computational convenience, as for an rIRC safe observable this allows us to

compute all of the ingredients in the Sudakov radiator analytically. If we were to choose a

different resolution variable we would find a different Sudakov radiator, and consequently

the different functions FNLL and δFNNLL.

A particularly important aspect of the definition of the resolution variable concerns

the way Vsc in Eq. (4.50) is evaluated on the total momentum kclust. of a cluster of more

than one particle. Although the cluster has a non-zero invariant mass, Vsc (4.30) does

not depend on the mass, and hence, in the definition of the resolution scale, the cluster

is treated as if it were massless. This greatly simplifies the calculation of the Sudakov

radiator, as we can evaluate the integral over the invariant mass of the web analytically.
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4.6 The Sudakov radiator

In this section we explicitly compute the Sudakov radiator defined in Eqs. (4.57) and (4.73)

to NNLL.

4.6.1 The soft radiator

With the choice of resolution variable as in Eq. (4.31), the soft dipole radiator reads

R(ij)
s (v) =

∑
`∈(ij)

∫
d4k

(2π)4
w(m2, (κ(ij))2+m2)Θ

(
d
(ij)
`

(
κ(ij)

Qij

)a

e−b`η
(`)
ij g`(φ

(ij))− v

)
Θ(η

(`)
ij ) .

(4.83)

where the phase space is given in Eq. (4.35). We note that the phase-space measure

contains the massive rapidity y of the web as defined in Eq. (4.35), whilst the observable

is expressed in terms of the rapidity of a massless parton η(`). This miss-match in the

rapidity will give rise to two separate contributions to the soft dipole radiator. We separate

out the different contributions to Eq. (4.83) in a way in which LL, NLL and NNLL are

each separated. The first step to achieve this is to isolate the dependence on d`g`(φ) by

expanding the observable constraint in Eq. (4.83). This proceeds in the same fashion as

we did in Eq. (4.68), we find

Θ

(
d
(ij)
` g`(φ

(ij))

(
κ(ij)

Qij

)a

e−b`η
(`)
ij − v

)
' Θ

(
log

[(
κ(ij)

Qij

)a

e−b`η
(`)
ij

]
− log v

)

+ δ

(
log

[(
κ(ij)

Qij

)a

e−b`η
(`)
ij

]
− log v

)
log
(
d
(ij)
` g`(φ

(ij))
)

+ δ′

(
log

[(
κ(ij)

Qij

)a

e−b`η
(`)
ij

]
− log v

)
1

2
log2

(
d
(ij)
` g`(φ

(ij))
)
,

(4.84)

The first term in the above equation starts at LL accuracy, the second at NLL accuracy,

and so on. Inserting this expansion into the soft radiator Eq. (4.57) we find

R(ij)
s (v) '

∑
`∈(ij)

(
r`(v) + r′`(v) 〈log d`g`〉+

1

2
r′′(v)

〈
log2 d`g`

〉)
, (4.85)

with

r`(v) =

∫
d4k

(2π)4
w(m2, (κ(ij))2 +m2)Θ

((
κ(ij)

Qij

)a

e−b`η
(`)
ij − v

)
Θ(η

(`)
ij ) ,

r′` =
dr`

d log 1
v

= −vdr`(v)
dv

,

r′′` =
dr′`

d log 1
v

= −v
dr′`(v)

dv
.

(4.86)

We first cast our attention onto r`(v). The kinematic boundary for the rapidity integral

is
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log
(
Qij/

√
(κ(ij))2 +m2

)
, the boundary of the massive emission. Instead of computing

directly the integral in Eq. (4.86), we split it into the sum of two terms as

r`(v) ' r0` (v) + δr`(v) , (4.87)

where r0` (v) is defined as in Eq. (4.86) but with a massless rapidity boundary, i.e. log
(
Qij/κ

(ij)
)
.

This defines a massless radiator, in which η(`)ij coincides with yij , i.e.

r0` (v) =

∫
d4k

(2π)4
w(m2, (κ(ij))2+m2)Θ

(
log

Qij

κ(ij)
− η

(`)
ij

)
Θ

((
κ(ij)

Qij

)a

e−b`η
(`)
ij − v

)
Θ(η

(`)
ij ) .

(4.88)

The massless radiator beings at LL accuracy. The function δr`(v) defines a mass correction,

which accounts for the correct rapidity bound. By inspecting the phase space constraints

due to the physical rapidity bound and the observable, we find that the rapidity integral

is bounded by log
(
Qij/

√
(κ(ij))2 +m2

)
only when κ(ij) > v

1
a+b`Qij . This leads to the

following expression for the mass correction to the soft radiator

δr`(v) =

∫
d4k

(2π)4
w(m2, (κ(ij))2 +m2)Θ(κ(ij) − v

1
a+b`Qij)Θ(η

(`)
ij )

×
[
Θ

log

√
Q2

ij

(κ(ij))2 +m2
− η

(`)
ij

−Θ

log

√
Q2

ij

(κ(ij))2
− η

(`)
ij

] . (4.89)

We can justify the separation of the radiator in Eq. (4.87) on physical grounds. If we ignore

the running of the coupling constant, then the massless radiator r0` (v) only contains double

logarithmic terms, while the mass correction δr`(v) is purely single logarithmic.

Let us now focus of the massless radiator at NNLL. Eq. (4.88) can be evaluated by

recalling that the resolution variable was chosen so that it does not depend on the mass

of the web. Therefore, in Eq. (4.88) we can freely integrate over the mass of the web. The

integral of the web w(m2, (κ(ij))2 +m2) over its invariant mass defines a generalisation of

the physical CMW coupling [59]:∫ ∞

0
dm2w(m2, (κ(ij))2 +m2) ≡ (4π)2

1

(κ(ij))2
αphys.
s (kt) . (4.90)

The physical coupling αphys.
s is related to the MS coupling αs as follows

αphys.
s = αs

(
1 +

∞∑
n=1

(αs

2π

)n
K(n)

)
, (4.91)

where the set of constants K(n), are perturbatively calculable and, once identified, the

massless radiator r0` (v) is fully determined for any observable, and given by

r0` (v) =

∫
dκ(ij)

κ(ij)
αphys.
s (κ(ij))

π

∫ log
(
Qij/κ

(ij)
)

0
dηΘ

((
κ(ij)

Qij

)a

e−b`ηij − v

)
. (4.92)
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At NNLL accuracy, in the expression of αphys.
s we need to include onlyK(1) andK(2), whose

expressions are obtained by integrating the web up to order α3
s. This requires contributions

up to the triple-soft current at tree level [68], the single-soft two loop current [69], and the

double-soft current at one loop. We reproduce the explicit expression for K(1) in Eq. (C.6)

and K(2) in Eq. (C.7).

For the computation of the mass correction at NNLL, we only need to consider the web

up to α2
s. The only non-vanishing contribution is due to the double-emission soft block,

|M̃s,0(ka, kb)|
2
.8 We reproduce the form of |M̃s,0(ka, kb)|

2
in Appendix. C.4. Using the

rescaled variable µ2 = m2/(κ(ij))2, we find

δr`(v) =
1

2

∫ Qij

Qijv
1

a+b`

dκ(ij)

κ(ij)

(
αs(κ

(ij))

π

)2 ∫ ∞

0

dµ2

µ2(1 + µ)
×

×
(
CA log

1 + µ2

µ4
− 2πβ0

)
log

(√
1

1 + µ2

)
= πβ0ζ2

1

2

∫ Qij

Qijv
1

a+b`

dκ(ij)

κ(ij)

(
αs(κ

(ij))

π

)2

.

(4.93)

4.6.2 The hard-collinear radiator

The hard-collinear part of the radiator, defined in Eq. (4.73), starts at NLL accuracy. Up

to NNLL accuracy, its expression is

Rhc =

3∑
`=1

∫ Q2

Q2v
2

a+b`

dk2

k2
αs(k)

2π

[
γ
(0)
` +

(αs

2π

)
γ
(1)
`

]
. (4.94)

In our case, the coefficients γ(0)` and γ(1)` are the coefficients of the δ(1 − x) piece of the

Pqq(x) splitting functions with an overall minus sign. γ(0)q is given in Eq. (C.8), γ(0)g by

Eq. (C.9), γ(1)q by Eq. (C.10) and γ
(1)
g by Eq. (C.11). These are all of the ingredients

necessary to determine the hard-collinear radiator.

4.6.3 The radiator up to NNLL accuracy

The computation of the radiator proceeds by integrating the explicit form of the radiator

as defined in the above sections with the running of the coupling. At NNLL accuracy, we

must use the following renormalisation group equation

µ2R
dαs

dµ2R
= −β0α2

s − β1α
3
s − β2α

4
s, (4.95)

8The virtual corrections to the single-emission soft block are massless.
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where β0, β1 and β2 are given by Eqs. (C.2), (C.3) and (C.4) respectively. For resummation

purposes, it is sufficient to solve Eq. (4.95) using the following ansatz

αs(µR) =

∞∑
n=1

(
αs(Q)

1 + t

)n

fn(t) , t ≡ αsβ0 log
(
µ2R/Q

2
)
. (4.96)

Plugging the above in Eq. (4.95), we determine the fi coefficient functions to be

f1(t) = 1 , (4.97)

f2(t) = −β1
β0

log(1 + t) , (4.98)

f3(t) = −β2
β0
t+

(
β1
β0

)2

[t+ (log(1 + t)− 1)] log(1 + t) , (4.99)

and we can neglect the contributions of f4(t) and beyond, as these correspond to N3LL

terms.

It is customary to express the radiator in terms of λ = αs(Q)β0 log
1
v , and we will do

this for the hard-collinear radiator. Note however that each of the soft dipole radiators

is instead a function of λij = αs(Qij)β0 log
1
v . We can expand the soft dipole radiators

around αs(Q) to recover the usual parametrisation in terms of λ. This will be necessary

to ensure that our resummation is not contaminated by higher order terms originating in

the different scales of the running coupling. We will return to this point when we express

the complete resummation. We now parametrise the radiator in terms of functions of λ

and λij , in such a way as to separate LL, NLL and NNLL contributions:

r`(λij) ' r0` (λij) + δr`(λij) , (4.100)

r0` (λij) = − λij
αsβ0

g
(`)
1 (λij)− g

(`)
2 (λij)−

αs

π
g
(`)
3 (λij) , (4.101)

δr`(λij) = −αs

π
δg

(`)
3 (λij) , (4.102)

Rhc,`(λ) = −h(`)2 (λ)− αs

π
h
(`)
3 (λ) , (4.103)

To ensure that our result is NNLL accurate in terms of the λ variable we must expand

each of the soft dipole radiators around λ keeping only the terms up to NNLL accuracy.

This procedure is straightforward to carry out and the appropriate replacements are given

by Eqs. (C.24,C.25,C.26) for LL, NLL and NNLL accuracy respectively. For the hard-

collinear radiator no such replacement must be carried out.

4.7 Resolved radiation at NLL

In this section we will compute the contribution to the observable by the multiple resolved

emissions. At NLL accuracy we only need to consider soft-collinear emissions that are
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emitted independently. This contribution was originally determined in Ref. [3], we work

through the details showing the effects due to the dipole structure.

4.7.1 The NLL correction FNLL

At NLL accuracy the contribution of the resolved radiation is due to an ensemble of soft

and collinear gluons that are widely separated in rapidity, this is the first term in the

curly brackets in Eq. (4.72) where we take the matrix element to contain only the first

term of the clustering Eq. (4.65) (the matrix element is a product of independent soft and

collinear emissions). This gives rise to the function

F(v) =
e−Rs(δv)

e−Rs(v)

∞∑
n=0

1

n!

∫
δv

n∏
i=1

[dki]|Msc(ki)| 2Θ
(
v − Vsc({p̃}, {ki})

)
, (4.104)

at NLL accuracy we can make the replacement

e−Rs(δv)

e−Rs(v)
= exp

(
−
∫ v

δv
[dk] |Msc(k)| 2

)
, (4.105)

and using this expression we can rewrite F(v) as

F(v) = e−
∫ v
δv [dk] |Msc(k)|2

∞∑
n=0

1

n!

∫
δv

n∏
i=1

[dki] |Msc(ki)| 2Θ
(
v − Vsc({p̃}, {ki})

)
. (4.106)

Although this expression has all of the terms necessary to achieve NLL accuracy, it also

contains subleading effects. We would like to eliminate these to ensure a pure NLL result,

with no higher order contamination. We will address each of the NNLL corrections in

turn following our computation here.

Before finding the purely NLL approximation to F we will reparametrise Eq. (4.106)

to make it more amenable for numerical evaluation by Monte Carlo methods. In doing so

we will reveal what approximations are necessary to achieve a pure NLL result. We begin

by transforming ki to coordinates defined by the triplet (vi, ξ
(`i)
i , φ

(`i)
i ), there is such a

triplet for each dipole that we consider. The members of the triplet are defined as follows

• vi is the value of the observable in the presence of a single emission ki

v
(ij)
i = Vsc({p̃}, ki) = d

(ij)
`i

(
κ
(`i)
i

Qij

)a

e−b`iη
(`i)
i g`i(φ

(`i)
i ) , (4.107)

where all of these variables depend on the dipole we are considering. To avoid the

notation becoming too dense we only label vi with the dipole index.

• ξ
(`i)
i is the rapidity fraction defined as the rapidity of the emission divided by the

largest available rapidity for a given value of v(ij)i

ξ
(`i)
i =

η
(`i)
i

η
(`i)
i,max

, η
(`i)
i,max =

1

a+ b`i
log

d
(ij)
`i
g`i(φ

(`i)
i )

v
(ij)
i

(4.108)
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• φ
(`i)
i retains its usual definition, the azimuth of a given emission with respect to the

leg `i.

The relationship between the old variables and the new variables is given explicitly by

log
κ
(`i)
i

Q
=
a+ (1− ξ(`i))b`i

a(a+ b`i)
log

v
(ij)
i

d`ig`i(φ
(`i)
i )

, (4.109)

η
(`i)
i = ξ

(`i)
i η

(`i)
i,max , (4.110)

note that φ is unchanged between the two coordinate systems. In terms of the new

coordinates we can write the probability for a single emission as follows

∫
[dki] |Msc(ki)| 2 =

∑
(ij)

C(ij)

∑
`i∈(ij)

∫
dv

(ij)
i

v
(ij)
i

∫ 1

0
dξ

(`i)
i

∫ 2π

0

dφ
(`i)
i

2π
×

× 2

αphys.
s

Qij

(
v
(ij)
i

d
(ij)
`i

g`i (φ
(`i)
i )

)a+(1−ξ
(`i)
i

)b`i
a(a+b`i

)


π

log

(
d
(ij)
`i

g`i (φ
(`i)
i )

v
(ij)
i

)
a(a+ b`i)

, (4.111)

now we make some further approximations. The first thing we do is replace αphys.
s by the

explicit running, at NLL accuracy we only need to include the one loop running of the

coupling.

∫
[dki] |Msc(ki)| 2 =

∑
(ij)

C(ij)

∑
`i∈(ij)

∫
dv

(ij)
i

v
(ij)
i

∫ 1

0
dξ

(`i)
i

∫ 2π

0

dφ
(`i)
i

2π
×

× 2
αs(Qij)

1 +
a+(1−ξ

(`i)
i )b`i

a(a+b`i )
2β0αs(Qij) log

(
vi

d
(ij)
`i

g`i (φ
(`i)
i )

) log

(
d
(ij)
`i

g`i (φ
(`i))

v
(ij)
i

)
a(a+ b`i)

. (4.112)

Grouping terms together we see that the we have a complicated integral over the rapidity

fraction ξ(`i)i

N (αs(Q) log v̄) =

∫ 1

0

dξ(`)

1 + a+(1−ξ(`))b`
a(a+b`)

2β0 αs(Q) log v̄
. (4.113)

We now choose to normalise this integral, i.e. we would like to change the integration

measure to include this extra term. To that end we can multiply the integrand by 1 in a
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clever way

∫
[dki] |Msc(ki)| 2 =

∑
(ij)

C(ij)

∑
`i∈(ij)

∫
dv

(ij)
i

v
(ij)
i

∫ 1

0
dξ

′(`i)
i

∫ 2π

0

dφ
(`i)
i

2π
×

×
αs(Qij) log

1

v
(ij)
i

1 +
a+(1−ξ

′(`i)
i )b`i

a(a+b`i )
2β0αs(Qij) log v

(ij)
i

2

π

1

a(a+ b`i)
×

× 1

N (αs(Qij) log v
(ij)
i )

∫ 1

0

dξ
(`i)
i

1 +
a+(1−ξ

(`i)
i )b`i

a(a+b`i )
2β0αs(Qij) log v

(ij)
i

(4.114)

We introduce the variable λ′ij = αs(Qij)β0 log
d
(ij)
` g`(φ

(`))

v
(ij)
i

(another variant of the usual

λ) and focus on the integral over the dummy variable, ξ′i, that we introduced in our

normalisation of the ξi integral. This integration can be performed analytically, we find

2

πβ0

1

a(a+ b`)

∫ 1

0
dξ′(`)

λ′ij

1− 2a+(1−ξ(`))b`
a(a+b`)

λ′ij

=
2

πβ0

1

a(a+ b`)

[
a(a+ b`)

2b`

] [
log

(
1−

2λ′ij
a+ b`

)
− log

(
1−

2λ′ij
a

)]
=

1

b`πβ0

[
log

(
1−

2λ′ij
a+ b`

)
− log

(
1−

2λ′ij
a

)]
= r′NLL,`(λ

′
ij) , (4.115)

this expression is the derivative of the soft radiator at NLL accuracy. Making this identi-

fication we can rewrite the integral as

∫
[dki] |Msc(ki)| 2 =

∑
(ij)

C(ij)

∑
`i∈(ij)

∫
dv

(ij)
i

v
(ij)
i

∫ 2π

0

dφ
(`i)
i

2π
×

× 1

N (αs(Qij) log

(
v
(ij)
i

d`ig`i (φ
(`i)
i )

) ∫ 1

0

dξ
(`i)
i

1 +
a+(1−ξ

(`i)
i )b`i

a(a+b`i )
2β0αs(Qij) log

(
v
(ij)
i

d`ig`i (φ
(`i)
i )

)×

× r′NLL,`i

(
αs(Qij)β0 log

(
v
(ij)
i

d
(ij)
`i
g`i(φ

(`i)
i )

))
. (4.116)

In fact our choice to perform the running at one loop is what gives us r′NLL, considering

a more general running, at an arbitrary loop order, we would instead find the derivative

of the full soft radiator. There is one final transformation that we can make to aid our

calculation, and that is to introduce

ζ
(ij)
i =

v
(ij)
i

v
, (4.117)

the ratio of the observable’s value corresponding to the ith emission to the observable’s
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actual value v. Performing this change of variables we have our final result∫
[dki] |Msc(ki)| 2 =

∑
(ij)

C(ij)

∑
`i∈(ij)

∫
dζ

(ij)
i

ζ
(ij)
i

∫ 2π

0

dφ
(`i)
i

2π
×

× 1

N
(
αs(Qij) log

(
ζ
(ij)
i v

d
(ij)
`i

g`i (φ
(`i)
i )

)) ∫ 1

0

dξ
(`i)
i

1 +
a+(1−ξ

(`i)
i )b`i

a(a+b`i )
2β0αs(Qij) log

(
ζ
(ij)
i v

d
(ij)
`i

g`i (φ
(`i)
i )

)×

×R′
`i

(
αs(Qij)β0 log

(
ζ
(ij)
i v

d
(ij)
`i
g`i(φ

(`i)
i )

))
, (4.118)

where we have replaced r′NLL by the more general result r′.

Now that we have a parametrisation for F we can start consider the appropriate

approximations to make this a purely NLL result. We start by consider the integration

over the rapidity, at NLL accuracy we make is the following approximation

1

N (αs(Q) log vi)

∫ 1

0

dξ
(`i)
i

1 +
a+(1−ξ

(`i)
i )b`

a(a+b`)
2β0αs(Q) log vi

→
∫ 1

0
dξ

(`i)
i , (4.119)

this is legitimate because at NLL accuracy we only need to consider the ordering of the

emissions in rapidity. We can replace the complicated integral over ξ by any function

monotonic in ξ, so as to preserve the rapidity ordering of the emissions.

Next we see that r′ encodes the dependence of the observable on the true rapidity

boundaries. However these are NNLL contributions and in fact to ensure we only have

NLL terms we must approximate the true boundary by

η
(`i)
i,max =

1

a+ b`i
log

d
(ij)
`i
g`i(φ

(`i)
i )

v
(ij)
i

→ 1

a+ b`i
log

1

v
(ij)
i

. (4.120)

Equivalently we can expand r′ as this contains the dependence on the phase space bound-

ary of the observable

r′`

(
αs(Qij)β0 log

(
ζ(ij)v

d
(ij)
` g`(φ)

))
= r′`

(
αs(Qij)β0 log

1

v

)
+O

(
r′′`
)
. (4.121)

There is now no dependence on the d`, d
(ij)
` g` or φ. r′ also contains subleading contribu-

tions, we neglect these by making the further simplification

r′`(λij) = r′NLL,`(λij) +O(NNLL) . (4.122)

We have eliminated the subleading terms due to the functional form of r′, but this expres-

sion still contains subleading terms due to the running of the coupling. To remove this we

must expand r′(λij) around λ

r′NLL,`(λij) = r′NLL,`(λ) +O(NNLL) . (4.123)
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Before we proceed to the final statement of F it is helpful to examine the structure of the

sum over dipoles. This double sum is rather cumbersome, so we will work to remove it

and express everything that we can as a sum over legs. At this order we observe that∑
(ij)

C(ij)

∑
`∈(ij)

r′NLL,`(λ) =
3∑

`=1

C` r
′
NLL,`(λ) = R′

NLL(λ) , (4.124)

which allows us to replace the sum over dipoles by a sum over the legs. With these

simplifications F(v) ' FNLL(λ) where

FNLL(λ) =

∫
dZ[{R′

NLL,`i
, ki}] Θ

(
1− lim

v→0

Vsc({p̃}, {ki})
v

)
, (4.125)

and all of the subleading terms have been neglected. In Eq. (4.125) we have introduced

the average of a function G({p̃}, {ki}) over the measure dZ[{R′
NLL,`i

, ki}], which we have

defined as∫
dZ[{R′

NLL,`i
, ki}]G({p̃}, {ki}) =

δR
′
NLL(λ)

∞∑
n=0

1

n!

n∏
i=1

∫ ∞

δ

dζi
ζi

3∑
`i=1

∫ 1

0
dξ

(`i)
i

∫ 2π

0

dφ
(`i)
i

2π
R′

NLL,`i
(λ)G({p̃}, {ki}) . (4.126)

Note that the dependence on the regulator δ cancels in Eq. (4.126). The limit v → 0

in Eq. (4.125) is necessary to remove contributions that are power suppressed in v. The

existence of this limit in the Θ-function of Eq. (4.125) is guaranteed by the rIRC safety of

the observable, which imply that the quantity Vsc({p̃}, {ki})/v is independent of v, with

corrections that scale as a power of v.

Whilst we have considered the full dependence on the rapidity fraction ξ, we will not

do so in the following sections. We will specialise to event shape variables, where we can

integrate inclusively over ξ. For related variables such as jet rates and jet vetoes we must

keep the dependence on ξ.

4.8 Resolved radiation at NNLL

We now will consider the corrections to the NLL multiple emission function that are

necessary to achieve NNLL accuracy. The form of δFsc, δFwa, δFcorrel, δFrec and δFhc

was first determined in Ref. [4], where they were determined in the case of two-jet events

in e+e− annihilation. The correction δFclust was originally determined in Ref. [67] in the

context of jet rates. More recently δFcorrel was reformulated in Ref. [61]. We will derive

all of the NNLL correction function from their basic definitions so as to determine their

appropriate form. We have already anticipated a new correction due to the soft in the

form of δFs.
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4.8.1 The soft-collinear correction δFsc

The soft-collinear correction contains two sources of corrections. The first is due to the

running of the coupling due to the inclusion of additional terms from Eq. (4.65), and

the second from taking into account the exact rapidity boundary for a single emission in

the soft-collinear ensemble. For event shape variables we can treat these two corrections

simultaneously, by taking Eq. (4.118) and considering the next term in the expansion of

r′`, which takes the following form

r′`

(
ζv

d`g`(φ)

)
= r′NLL,`(v) + r′NNLL,`(v) + r′′NNLL,`(v) log

d`g`(φ)

ζ
+O

(
N3LL

)
. (4.127)

The first term encodes the NLL rapidity boundary, the second term contains the running of

the coupling and the third and final term contains the exact rapidity boundary. Including

the expansion of r′` at this order in we find [4]

F(v) = δR
′
NLL

1−
∑
(ij)

C(ij)

∑
`∈(ij)

(
r′NNLL,`(λij) + r′′NNLL,`(λij)

〈
log d

(ij)
` g`

〉)
log

1

δ

−1

2
r′′NNLL,`(λij) log

2 1

δ

)
×

×
∞∑
n=0

1

n!

n∏
i=1

∑
(ij)

C(ij)

∫ ∞

δ

dζ
(ij)
i

ζ
(ij)
i

∑
`i∈(ij)

∫
dφ

(`i)
i

2π
×

×

(
r′NLL,`i

(λij) + r′NNLL,`i
(λij) + r′′NNLL,`i

(λij) log
d
(ij)
`i
g`i(φ

(`i)
i )

ζ
(ij)
i

)
×

×Θ

(
1− lim

v→0

Vsc({p̃}, k, {ki})
v

)
, (4.128)

We can simplify the above equation by keeping only terms in the sum that are linear

in r′NNLL,` or r′′NNLL,`, i.e. we correct a single emission at a time. This ensures that no

contributions beyond NNLL accuracy are included. Next we must expand all of the terms
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around λ and separate out the dipole dependence

F(v) = δR
′
NLL

1−
∑
(ij)

C(ij)

∑
`∈(ij)

(
r′NNLL,`(λ) + r′′NNLL,`(λ)

(
〈log d`g`〉 − b` log

2E`

Q

))
log

1

δ

+r′′NNLL,`(λ) [a+ b` − 2λ] log
Qij

Q
log

1

δ
− 1

2
r′′NNLL,`(λ) log

2 1

δ

)
×

×
∞∑
n=0

1

n!

n∏
i=1

∑
(ij)

C(ij)

∫ ∞

δ

dζ
(ij)
i

ζ
(ij)
i

∑
`i∈(ij)

∫
dφ

(`i)
i

2π
×

×

(
r′NLL,`i

(λ) + r′NNLL,`i
(λ) + r′′NNLL,`i

(λ)

(
log

d`ig`i(φ
(`i)
i )

ζi
− b`i log

2E`i

Q

)

+rNNLL,`i(λ) [a+ b` − 2λ] log
Qij

Q

)
Θ

(
1− lim

v→0

Vsc({p̃}, k, {ki})
v

)
' FNLL(λ) +

αs(Q)

π
δFsc(λ) +

αs(Q)

π
δFs(λ) , (4.129)

Where we have made the dipole energy scale Qij explicit in F . In the final line we have

separated the expression into terms that are independent of the dipole energy scale and

terms with an explicit dependence on the dipole scale. The former make up the soft-

collinear correction (FNLL and δFsc) and the latter make up the soft correction (δFs).

Moreover, we can express the virtual corrections in Eq. (4.129) as the integral over an

extra dummy emission as follows

log
1

δ
=

∫ 1

δ

dζ

ζ
,
1

2
log2

1

δ
=

∫ 1

δ

dζ

ζ
log

1

ζ
. (4.130)

With this representation of the virtual corrections we can write the soft-collinear correction

δFsc(λ) =
π

αs(Q)

∫ ∞

0

dζ

ζ

3∑
`=1

∫ 2π

0

dφ(`)

2π

(
R′

NNLL,` +R′′
NNLL,`

(
log

d`g`(φ
(`))

ζ
− b` log

2E`

Q

))
×

×
∫

dZ[{R′
NLL,`i

, ki}]
[
Θ

(
1− lim

v→0

Vsc({p̃}, k, {ki})
v

)
−Θ(1− ζ)Θ

(
1− lim

v→0

Vsc({p̃}, {ki})
v

)]
,

(4.131)

where the average of a function over the measure dZ[{R′
NLL,`i

, ki}] is defined in Eq. (4.126).

In the first term of Eq. (4.131), k = k(ζ, φ, `) represents an additional real emission, and

the second term corresponds to the virtual corrections. In Eq. (4.131) we have set the ζ

lower integration limit to zero, because singular contributions from ζ → 0 cancel exactly

between the real and virtual corrections.

4.8.2 The soft correction δFs

The soft correction takes into account the emission of a single soft emission from the

correct matrix element and an ensemble of soft-collinear emissions with the soft-collinear
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observable definition. Considering the dipole dependent terms in Eq. (4.129) we perform

the following manipulations

r′′NNLL,`(λ) [a+ b` − 2λ] log
Qij

Q
=
αs(Q)

π

2

(a− 2λ)(a+ b` − 2λ)
[a+ b` − 2λ] log

Qij

Q

=
2

aπ

αs(Q)

1− 2λ
a

log
Qij

Q

=
2

aπ

αs(Q)

1 + αs(Q)β0 log
Q2v

2
a

Q2

log
Qij

Q

=
2

aπ
αs(v

1
aQ) log

Qij

Q
.

(4.132)

Which is sufficient to determine the soft correction,

δFs(λ) =
∑
(ij)

2C(ij)
αs(v

1
aQ)

αs(Q)

1

a
log

Qij

Q

∫ ∞

0

dζ

ζ

∫ 2π

0

dφ

2π

∫
dZ[{R′

NLL,`i
, ki}]×

×
[
Θ

(
1− lim

v→0

Vsc({p̃}, k, {ki})
v

)
−Θ(1− ζ)Θ

(
1− lim

v→0

Vsc({p̃}, {ki})
v

)]
.

(4.133)

4.8.3 The soft wide angle correction δFwa

This correction arises when one of the soft gluons is emitted at wide angles. We parametrise

observable dependence on the momentum of this wide angle gluon k as

V (ij)
wa ({p̃}, k) =

(
κ(ij)

Q

)a

f (ij)wa (η, φ) . (4.134)

In general, when η is close to zero (wide angles), the above expression will differ from the

expression of the observable after a soft and collinear emission k

V (ij)
sc ({p̃}, k) =

(
κ(ij)

Q

)a

f (ij)sc (η, φ) ,

f (ij)sc (η, φ) = d
(ij)
i e−biηgi(φ)Θ(η) + d

(ij)
j ebjηgj(φ)Θ(−η) .

(4.135)

With fixed values of (κ(ij), η, φ) for the extra emission k, we denote with Vwa({p̃}, k, {ki})

the observable computed by keeping the full η, φ dependence of the emission k, and the

the soft-collinear approximation for all the other emissions.

This gives the following correction [4]

Fwa = e−
∫ v
δv [dk] |Msc(k)|2

∞∑
n=0

1

n!

∫
δv

n∏
i=1

[dki]|Msc(ki)| 2
∑
(ij)

2C(ij)

∫ ∞

0

dκ(ij)

κ(ij)
αs(κ

(ij))

π

∫ ∞

−∞
dη×

×
∫ 2π

0

dφ

2π

[
Θ

(
1− lim

v→0

Vwa({p̃}, k, {ki})
v

)
−Θ

(
1− lim

v→0

Vsc({p̃}, k, {ki})
v

)]
.

(4.136)
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Up to corrections beyond NNLL accuracy, we can modify the phase space integration for

the extra soft gluon as follows

dκ(ij)

κ(ij)
αs(κ

(ij))

π
=

dζ

ζ

αs((ζv)
1
aQ)

aπ
' dζ

ζ

αs(v
1
aQ)

aπ
, (4.137)

where

ζ =
1

v

(
κ(ij)

Q

)a

. (4.138)

This gives Fwa ' (αs(Q)/π)δFwa(λ), where

δFwa(λ) =
∑
(ij)

2C(ij)
αs(v

1
aQ)

αs(Q)

1

a

∫ ∞

0

dζ

ζ

∫ ∞

−∞
dη

∫ 2π

0

dφ

2π

∫
dZ[{R′

NLL,`i
, ki}]×

×
[
Θ

(
1− lim

v→0

Vwa({p̃}, k, {ki})
v

)
−Θ

(
1− lim

v→0

Vsc({p̃}, k, {ki})
v

)]
.

(4.139)

4.8.4 The correlated correction δFcorrel

The definition of the correlated correction δFcorrel is given by [4, 61]

αs(Q)

π
δFcorrel(λ) = e−

∫ v
δv [dk] |Msc(k)|2

∞∑
n=0

1

n!

∫
δv

n∏
i=1

[dki]|Msc(ki)| 2
1

2!

∫
[dka][dkb]|M̃s,0(ka, kb)|

2
×

×
[
Θ(v − Vsc({p̃}, ka, kb, {ki}))−Θ

(
v − lim

m2→0
Vsc({p̃}, ka + kb, {ki})

)]
,

(4.140)

where ka and kb are the two soft emissions that are close in angle and collinear to the

same leg9. The remaining soft-collinear emissions ki are not close in angle and hence are

emitted independently. We denote the invariant mass of the web by m2 = (ka + kb)
2.

In the aid of clarity we will reproduce the discussion of Section. 3.4 of Ref. [61], the

discussion on how to obtain δFcorrel.

In order to make sense of the difference between the two Θ functions, we should first

discuss how the cluster of two soft partons is treated in the ARES algorithm.

The two-particle correlated soft block |M̃s,0(ka, kb)|
2
diverges when ka and kb are

collinear, i.e. when the invariant mass of the cluster tends to zero. Such a divergence is

entirely cancelled by the one-loop correction to the single-emission cluster |M̃s,1(k)|
2
, that

should be included at NNLL. In the evaluation of the Sudakov radiator, the cancellation

of the above collinear singularity can be performed analytically. This is because we chose

to define a resolution variable that does not depend on the invariant mass of the cluster,

and hence the corresponding integral becomes straightforward. This inclusive integration
9The configuration in which ka and kb are collinear to different Born legs requires the parent gluon to

be emitted at wide angles, and hence gives at most a N3LL contribution.
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of |M̃_s, 0(ka, kb)|
2
and |M̃s,1(k)|

2
produces the physical coupling in the radiator, see

Eq. (4.91).

In the resolved radiation the situation is more complicated, as in the full observable

we are not allowed to integrate over the invariant mass of the cluster inclusively. We

can, however, define a subtraction scheme to cancel the collinear singularity arising from

|M̃s,0(ka, kb)|
2
in four dimensions. We first treat the {ka, kb} cluster inclusively, as done in

the definition of the radiator. This can be done by considering only the total momentum

ka + kb when evaluating the contribution of the cluster to the observable, and treat it as

if it were a massless (lightlike) momentum in the computation of the observable. This

once again allows us to combine it with the one loop correction to the single-emission

cluster |M̃s,1(k)|
2
analytically. This contribution is captured by δFsc which features the

coefficient K(1) of Eq. (C.6), as explained in refs. [4, 67]. As a second step, we consider

the difference between the full observable, where the {ka, kb} cluster is treated exclusively,

and its inclusive approximation that we considered above to cancel the singularity against

the virtual correction. This is represented by the difference in the two Θ functions in

Eq. (4.140). It is important to bear in mind that in the second Θ function the observable

Vsc treats the momentum ka + kb as if it were massless, in order to exactly match our

convention for the cancellation of real and virtual corrections in δFsc. This is implemented

by the limit in the second Θ function in Eq. (4.140).

There are many ways to parametrise the phase space for ka and kb to keep, in δFcorrel,

only NNLL contributions that correspond to configurations in which ka and kb are collinear

to the same Born leg. We adopt the parametrisation of Ref. [61], we reproduce the details

in Appendix. C.4. This is the same parametrisation that we used to compute the NNLL

radiator. We define a rescaled invariant mass of the {ka, kb} cluster µ2 = m2/k2t , and

we introduce the pseudo-parent parton k of ka and kb with transverse momentum kt and

observable fraction ζ defined as

~kt = ~kt,a + ~kt,b , ζ ≡ Vsc(ka + kb)

v
. (4.141)

Using Eqs. (C.49) and (C.51), the squared amplitude for a double-soft correlated emission

reads

1

2!
[dka][dkb]|M̃s,0(ka, kb)|

2
= [dk]|Msc(k)| 2

αs(kt)

2π

dµ2

µ2(1 + µ2)
dz

dφ

2π

1

2!
Cab(µ, z, φ) ,

(4.142)

with Cab(µ, z, φ) = C(ka, kb) given by Eq. (C.52), and µ2 ∈ [0,∞), z ∈ [0, 1], φ ∈ [0, 2π).

We understand that this expression must be interpreted as a sum over dipoles. The matrix
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element squared and phase space for the pseudo-parent k is given in Eq. (4.61). Actually,

due to the fact that the pseudo-parent has a non-zero invariant-mass, the integral over its

rapidity η(`) should have the boundary |η(`)| < log
(
Q/
√
k2t +m2

)
. However, following

what is done in the computation of the NLL function FNLL [3], we observe that the

exact position of the rapidity integration bound in the resolved radiation enters at one

logarithmic order higher. Therefore, in order to neglect all N3LL corrections and obtain

a result that is purely NNLL, we replace the actual rapidity integration limit with the

massless one, as done in Eq. (4.61).

1

2!

∫
[dka][dkb]|M̃s,0(ka, kb)|

2
=
∑
(ij)

C(ij)

∑
`∈(ij)

∫
dκ(ij)

κ(ij)
dφ(ij)

2π
dη(ij)

αs(κ
(ij))

π
×

× αs(κ
(ij))

2π

∫ ∞

0

dµ2

µ2(1 + µ2)

∫ 1

0
dz

∫ 2π

0

dφ

2π

1

2!
Cab(z, µ, φ) ,

(4.143)

The integral over η(ij) can be evaluated analytically [4] and the correlated correction takes

the following simple form

1

2!

∫
[dka][dkb]|M̃s,0(ka, kb)|

2
=
∑
(ij)

C(ij)

∑
`∈(ij)

λijr
′′
NNLL,`(λij)

2πaβ0
×

×
∫ ∞

0

dζ

ζ

∫ 2π

0

dφ(ij)

2π

∫ ∞

0

dµ2

µ2(1 + µ2)

∫ 1

0
dz

∫ 2π

0

dφ

2π

1

2!
Cab(z, µ, φ) .

(4.144)

Using the fact that ka and kb are collinear to the same leg `, we can approximate φ(ij) '

φ(`), and to NNLL accuracy we can replace λijr′′NNLL,`(λij) ' λr′′NNLL,`(λ). With these

identifications we obtain δFcorrel

δFcorrel(λ) =

∫ ∞

0

dζ

ζ

3∑
`=1

∫ 2π

0

dφ(`)

2π

(
λ

2aβ0

R′′
NNLL,`(v)

αs(Q)

)
×

×
∫ ∞

0

dµ2

µ2(1 + µ2)

∫ 1

0
dz

∫ 2π

0

dφ

2π

1

2!
Cab(µ, z, φ)

∫
dZ[{R′

NLL,`i
, ki}]

×
[
Θ

(
1− lim

v→0

Vsc({p̃}, ka, kb, {ki})
v

)
−Θ

(
1− lim

µ2→0
lim
v→0

Vsc({p̃}, ka + kb, {ki})
v

)]
.

(4.145)

4.8.5 The clustering corrections δFclust

Clustering corrections arise when two soft and collinear partons that were emitted inde-

pendently become close in rapidity, and all other emissions remain strongly ordered. This

correction is not present in event shape variables as there is no dependence on the rapidity

fraction.
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4.8.6 The recoil and hard-collinear corrections δFrec and δFhc

The corrections arising due to the correct treatment of hard and collinear emissions is

more delicate than the treatment of the soft. Hard-collinear contributions arise when one

of the emissions is collinear to any of the legs and hard, namely it carries a sizeable fraction

of the emitters longitudinal momentum. The matrix element squared |M`(k)| 2 for the

emission of a gluon k collinear to leg ` is given by to leg `

[dk]|Mhc,`(k)| 2 = C`
αphys.
s (k̃

(`)
t )

2π

dφ(`)

2π

dk̃
(`)
t

k̃
(`)
t

dz(`)p`(z
(`)) . (4.146)

The important part is that the collinear singularities are with respect to the emitter, rather

than the Born momenta or even the final state momenta. A mapping between the Born

momenta and the emitter can be found [4].

We have two NNLL contributions coming from the hard-collinear radiation. we have

to take into account the exact expression for the observable when a single emission is hard

and collinear

Frec(v) = e−
∫ v
δv [dk] |Msc(k)|2

∞∑
n=0

1

n!

∫
δv

n∏
i=1

[dki]|Msc(ki)| 2×

×
3∑

`=1

∫ 1

0
dz p`(z, φ)

∫ 2π

0

dφ(`)

2π

∫
dk′t

2

k′t
2

αphys.
s (k′t)

2π
×

×
[
Θ
(
v − Vhc({p̃}, k[k′t, p′t,`, z], {ki})

)
−Θ

(
v − Vsc({p̃}, k[k′t, p′t,`, 0], {ki})

)]
.

(4.147)

In the above expression, Vhc({p̃}, k, {ki}) denotes the observable V where all of the emis-

sions except for k are treated in the soft-collinear approximation. In the second Θ-function

we have Vsc({p̃}, k, {ki}), here k is treated as though it were soft and collinear, so that

its transverse momentum with respect to the emitting leg k′t is equal to kt. Notice that

in Eq. (4.147) we can replace k′t by kt because we are integrating over this variable. We

make use of the shorthand notation

k′ = k[kt, p
′
t,`, z] , k = k[kt, p

′
t,`, 0] . (4.148)

To NNLL accuracy we can simplify the phase space for k, by introducing

ζ =
1

v

d`g`(φ)

zb`

(
kt
Q

)a+b`

, (4.149)

we have, at NNLL accuracy

dk2t
k2t

αs(kt)

2π
=
αs((z

b`ζv/(d`g`(φ)))
1/(a+b`)Q)

π(a+ b`)

dζ

ζ
' αs(v

1
a+b`Q)

π(a+ b`)

dζ

ζ
. (4.150)
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Making the same approximations to the soft-collinear radiation as we did for FNLL,

we eliminate the subleading contributions and obtain Frec(v) ' (αs(Q)/π)δFrec(λ) =

(αs(Q)/π)(δFavg.
rec + δF spins.

rec ), where

δFavg.
rec (λ) =

3∑
`=1

αs(v
1

a+b`Q)

αs(Q)(a+ b`)

∫ ∞

0

dζ

ζ

∫ 2π

0

dφ(`)

2π

∫ 1

0
dz p`(z)

∫
dZ[{R′

NLL,`i
, ki}]×

×
[
Θ

(
1− lim

v→0

Vhc({p̃}, k′, {ki})
v

)
−Θ

(
1− lim

v→0

Vsc({p̃}, k, {ki})
v

)]
,

(4.151)

and

δF spins.
rec (λ) = Sp(ΦB)

3∑
`=1

αs(v
1

a+b`Q)

αs(Q)(a+ b`)

∫ ∞

0

dζ

ζ

∫ 2π

0

dφ(`)

2π

∫ 1

0
dz∆p`(z, φ)×

×
∫

dZ[{R′
NLL,`i

, ki}] Θ
(
1− lim

v→0

Vhc({p̃}, k′, {ki})
v

)
,

(4.152)

where Sp(ΦB) encodes the spins correlations and their dependence on the underlying hard

event and ∆p`(z, φ) is the spin dependent part of the AP splitting functions.

The second NNLL contribution coming from the hard-collinear radiation is due to the

correct hard-collinear matrix element, but with the soft-collinear limit of the observable.

This correction is very similar to the soft correction Eq. (4.133), in that we must subtract

the double counting due to the inclusion of soft-collinear effects. After removing the double

counting we find the expression

δFhc(λ) =
3∑

`=1

αs(v
1

a+b`Q)

αs(Q)(a+ b`)

∫ ∞

0

dζ

ζ

∫ 2π

0

dφ(`)

2π

∫ 1

0
dz

(
p`(z)−

2C`

z

)∫
dZ[{R′

NLL,`i
, ki}]×

×
[
Θ

(
1− lim

v→0

Vsc({p̃}, k, {ki})
v

)
−Θ(1− ζ)Θ

(
1− lim

v→0

Vsc({p̃}, {ki})
v

)]
.

(4.153)

4.9 Additive observables

Some event shapes have the property that they are additive, meaning that for soft emis-

sions

V ({p̃}, {ki}) =
n∑

i=1

V ({p̃}, ki) +O
(
V 2
)
, (4.154)

while for a hard emission k collinear to leg `, the corresponding V ({p̃}, k) has to be

replaced by Vhc, as defined in Eq. (4.147). For this simpler class of observables, the NNLL

corrections can be significantly simplified. We will see that the soft-collinear multiple

emission function factorises from the NNLL contribution. For an additive observable the
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NLL multiple emission function reads

FNLL(λ) =
e−γER′

NLL(λ)

Γ(1 +R′
NLL(λ))

. (4.155)

4.9.1 The soft-collinear correction

We consider the expression for the soft-collinear contribution δFsc of Eq. (4.131), and use

the property of additivity to write the observable as

Vsc({p̃}, k, {ki}) = ζv + Vsc({p̃}, {ki}) . (4.156)

With this we can write the expression for δFsc as

δFsc(λ) =
π

αs(Q)

∫ ∞

0

dζ

ζ

3∑
`=1

(
R′

NNLL,` +R′′
NNLL,`

(
〈log d`g`〉 − b` log

2E`

Q
+ log

1

ζ

))
×

×
∫

dZ[{R′
NLL,`i

, ki}]
[
Θ

(
1− ζ − lim

v→0

Vsc({p̃}, {ki})
v

)
−Θ(1− ζ)Θ

(
1− lim

v→0

Vsc({p̃}, {ki})
v

)]
,

(4.157)

where we have used the property of additivity to carry out the φ(`) integrations.

We define rescaled momenta {k̃1, . . . , k̃n} such that for a single emission Vsc({p̃}, ki) =

(1 − ζ)Vsc({p̃}, k̃i). The recursive IRC safety of V guarantees that when considering an

ensemble of emissions the observable will scale in the same way as for a single emission,

Vsc({p̃}, {ki}) = (1− ζ)Vsc({p̃}, {k̃i}) . (4.158)

We can apply the momentum rescaling to the first Θ-function of Eq. (4.157), we find

Θ

(
1− ζ − lim

v→0

Vsc({p̃}, {ki})
v

)
= Θ

(
1− ζ − lim

v→0

(1− ζ)Vsc({p̃}, {k̃i})
v

)

= Θ

(
(1− ζ)

(
1− lim

v→0

Vsc({p̃}, {k̃i})
v

))

= Θ(1− ζ)Θ

(
1− lim

v→0

Vsc({p̃}, {k̃i})
v

)
.

(4.159)

We make use of the explicit expression for dZ[{R′
NLL,`i

, ki}] and define ζ̃i = Vsc({p̃}, k̃i)/v,
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so that we find

δFsc(λ) =
π

αs(Q)

∫ ∞

0

dζ

ζ

3∑
`=1

(
R′

NNLL,` +R′′
NNLL,`

(
〈log d`g`〉 − b` log

2E`

Q
+ log

1

ζ

))
×

×δR′
NLL

∞∑
n=0

1

n!

n∏
i=1

3∑
`i=1

∫ 2π

0

dφ
(`i)
i

2π
R′

NLL,`i
×

×

[
Θ(1− ζ)

∫ ∞

0

dζ̃i

ζ̃i
Θ

(
ζ̃i −

δ

1− ζ

)
Θ

(
1− lim

v→0

Vsc({p̃}, {k̃i})
v

)

−Θ(1− ζ)

∫ ∞

0

dζi
ζi

Θ(ζi − δ)Θ

(
1− lim

v→0

Vsc({p̃}, {ki})
v

)]
.

(4.160)

To simplify this expression we would like to reassemble FNLL, factorising the NLL function

from the NNLL correction term. This is straightforward to do, we must multiply the first

term in the square bracket of Eq. (4.160) by one in a clever way (the second term already

reproduces FNLL). The appropriate choice for this factor is(
1− ζ

1− ζ

)R′
NLL

. (4.161)

Performing the algebra that we have outlined above we find

(1− ζ)R
′
NLL

(
δ

1− ζ

)R′
NLL

∞∑
n=0

1

n!

n∏
i=1

3∑
`i=1

∫ 2π

0

dφ
(`i)
i

2π
R′

NLL,`i
×

×

[
Θ(1− ζ)

∫ ∞

0

dζ̃i

ζ̃i
Θ

(
ζ̃i −

δ

1− ζ

)
Θ

(
1− lim

v→0

Vsc({p̃}, {k̃i})
v

)]
= (1− ζ)R

′
NLL Θ(1− ζ)FNLL(λ) . (4.162)

Finally we factor out FNLL and we find for the soft-collinear correction

δFsc(λ) = FNLL(λ)
π

αs(Q)

∫ ∞

0

dζ

ζ

3∑
`=1

(
R′

NNLL,` +R′′
NNLL,`

(
〈log d`g`〉 − b` log

2E`

Q
+ log

1

ζ

))
×

×
(
(1− ζ)R

′
NLL − 1

)
Θ(1− ζ) , (4.163)

we can perform the ζ integration analytically and we find

δFsc(λ) = −FNLL(λ)
π

αs(Q)

3∑
`=1

[(
R′

NNLL,`

+R′′
NNLL,`

(
〈log d`g`〉 − b` log

2E`

Q

))(
ψ(0)(1 +R′

NLL) + γE

)
+
R′′

NNLL,`

2

((
ψ(0)(1 +R′

NLL) + γE

)2
− ψ(1)(1 +R′

NLL) +
π2

6

)]
.

(4.164)
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4.9.2 The soft correction

We consider the expression for the soft contribution δFs of Eq. (4.133). Using Eq. (4.156)

we obtain

δFs(λ) =
∑
(ij)

2C(ij)
αs(v

1
aQ)

αs(Q)

1

a
log

Qij

Q

∫ ∞

0

dζ

ζ

∫ 2π

0

dφ

2π

∫
dZ[{R′

NLL,`i
, ki}]×

×
[
Θ

(
1− ζ − lim

v→0

Vsc({p̃}, {ki})
v

)
−Θ(1− ζ)Θ

(
1− lim

v→0

Vsc({p̃}, {ki})
v

)]
.

(4.165)

Rescaling the momenta in the same way as for the soft-collinear correction we get

δFs(λ) = FNLL(λ)
∑
(ij)

2C(ij)
αs(v

1
aQ)

αs(Q)

1

a
log

Qij

Q

∫ ∞

0

dζ

ζ

∫ 2π

0

dφ

2π
×

×
[
(1− ζ)R

′
NLL Θ(1− ζ)−Θ(1− ζ)

]
= −FNLL(λ)

∑
(ij)

2C(ij)
αs(v

1
aQ)

αs(Q)

1

a
log

Qij

Q

(
ψ(0)(1 +R′

NLL) + γE

)
.

(4.166)

4.9.3 The soft wide angle correction

We consider the expression for the soft wide angle contribution δFwa of Eq. (4.139). Con-

sider an emission off of the dipole (ij) and we use the property of additivity to write

Vwa({p̃}, k, {ki}) =

(
κ(ij)

Q

)a

f (ij)wa (η, φ) + Vsc({p̃}, {ki}) , (4.167)

Vsc({p̃}, k, {ki}) =

(
κ(ij)

Q

)a

f (ij)sc (η, φ) + Vsc({p̃}, {ki}) , (4.168)

which can be written in terms of the rescaled ζ variable of Eq. (4.138) as follows

Vwa({p̃}, k, {ki}) = ζvf (ij)wa (η, φ) + Vsc({p̃}, {ki}) , (4.169)

Vsc({p̃}, k, {ki}) = ζvf (ij)sc (η, φ) + Vsc({p̃}, {ki}) . (4.170)

δFwa(λ) =
∑
(ij)

2C(ij)
αs(v

1
aQ)

αs(Q)

1

a

∫ ∞

0

dζ

ζ

∫ ∞

−∞
dη

∫ 2π

0

dφ

2π

∫
dZ[{R′

NLL,`i
, ki}]×

×
[
Θ

(
1− ζf (ij)wa (η, φ)− lim

v→0

Vwa({p̃}, {ki})
v

)
−Θ

(
1− ζf (ij)sc (η, φ)− lim

v→0

Vsc({p̃}, {ki})
v

)]
.

(4.171)

We define two sets of rescaled momentum:
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• The first rescaling {k̄1, . . . , k̄n} is of the momenta in the firstΘ-function of Eq. (4.171)

such that Vsc({p̃}, ki) = (1− ζf
(ij)
wa (η, φ))Vsc({p̃}, k̄i). The recursive IRC safety of V

guarantees that

Vsc({p̃}, {ki}) = (1− ζf (ij)wa (η, φ))Vsc({p̃}, {k̄i}) . (4.172)

• The second rescaling {k̃1, . . . , k̃n} is of the momenta in the second Θ-function of

Eq. (4.171) such that Vsc({p̃}, ki) = (1 − ζf
(ij)
sc (η, φ))Vsc({p̃}, k̃i). And once again

the recursive IRC safety of V guarantees that

Vsc({p̃}, {ki}) = (1− ζf (ij)sc (η, φ))Vsc({p̃}, {k̃i}) . (4.173)

We make use of the explicit expression for dZ[{R′
NLL,`i

, ki}] and define ζ̄i = Vsc({p̃}, k̄i)/v

and ζ̃i = Vsc({p̃}, k̃i)/v. We perform the same manipulation of the Θ-functions as we did

in the soft-collinear case, and we find

δFwa(λ) =
∑
(ij)

2C(ij)
αs(v

1
aQ)

αs(Q)

1

a

∫ ∞

0

dζ

ζ

∫ ∞

−∞
dη

∫ 2π

0

dφ

2π
δR

′
NLL

∞∑
n=0

1

n!

n∏
i=1

2∑
`i=1

∫ 2π

0

dφ
(`i)
i

2π
R′

NLL,`i
×

×

[
Θ
(
1− ζf (ij)wa (η, φ)

)∫ ∞

0

dζ̄i
ζ̄i

Θ

(
ζ̄i −

δ

1− ζf
(ij)
wa (η, φ)

)
Θ

(
1− lim

v→0

Vsc({p̃}, {k̄i})
v

)

−Θ
(
1− ζf (ij)sc (η, φ)

)∫ ∞

0

dζ̃i

ζ̃i
Θ

(
ζ̃i −

δ

1− ζf
(ij)
sc (η, φ)

)
Θ

(
1− lim

v→0

Vsc({p̃}, {k̃i})
v

)]
.

(4.174)

We can reconstruct FNLL making similar manipulations to those we made in the soft

collinear case, we find

δFwa(λ) = FNLL(λ)
∑
(ij)

2C(ij)
αs(v

1
aQ)

αs(Q)

1

a

∫ ∞

0

dζ

ζ

∫ ∞

−∞
dη

∫ 2π

0

dφ

2π
×

×
[
(1− ζf (ij)wa (η, φ))R

′
NLL Θ(1− ζf (ij)wa (η, φ))− (1− ζf (ij)sc (η, φ))R

′
NLL Θ(1− ζf (ij)sc (η, φ))

]
= FNLL(λ)

∑
(ij)

2C(ij)
αs(v

1
aQ)

αs(Q)

1

a

∫ ∞

−∞
dη

∫ 2π

0

dφ

2π
log

f
(ij)
sc (η, φ)

f
(ij)
wa (η, φ)

.

(4.175)

4.9.4 The soft correlated correction

We consider the expression for the soft correlated contribution δFcorrel of Eq. (4.145), and

use the property of additivity to write

Vsc({p̃}, ka, kb, {ki}) = Vsc(ka) + Vsc(kb) + Vsc({p̃}, {ki}) , (4.176)

Vsc({p̃}, ka + kb, {ki}) = Vsc(ka + kb) + Vsc({p̃}, {ki}) , (4.177)
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which can be written in terms of the rescaled ζ variable of Eq. (4.141) as follows

Vsc({p̃}, k, {ki}) = ζvf
(`)
correl(µ, z, φ) + Vsc({p̃}, {ki}) , (4.178)

Vsc({p̃}, k, {ki}) = ζv + Vsc({p̃}, {ki}) . (4.179)

Performing similar manipulations we obtain

δFcorrel(λ) = FNLL(λ)

∫ ∞

0

dζ

ζ

3∑
`=1

∫ 2π

0

dφ(`)

2π

(
λ

2aβ0

R′′
NNLL,`(v)

αs(Q)

)
×

×
∫ ∞

0

dµ2

µ2(1 + µ2)

∫ 1

0
dz

∫ 2π

0

dφ

2π

1

2!
Cab(µ, z, φ)×

×
[(

1− ζf
(`)
correl(µ, z, φ)

)R′
NLL

Θ
(
1− ζf

(`)
correl(µ, z, φ)

)
− (1− ζ)R

′
NLL Θ(1− ζ)

]
,

(4.180)

and finally

δFcorrel(λ) = −FNLL(λ)

3∑
`=1

∫ 2π

0

dφ(`)

2π

(
λ

2aβ0

R′′
NNLL,`

αs(Q)

)
×

×
∫ ∞

0

dµ2

µ2(1 + µ2)

∫ 1

0
dz

∫ 2π

0

dφ

2π

1

2!
Cab(µ, z, φ) log f

(`)
correl(µ, z, φ)

(4.181)

4.9.5 The recoil correction

We consider the expression for the recoil contribution δFrec of Eq. (4.151). We use the

property of additivity to write

Vhc({p̃}, k′, {ki}) =
(
k′t
Q

)(a+b`)

f
(`)
hc (z

(`), φ) + Vsc({p̃}, {ki}) , (4.182)

Vsc({p̃}, k, {ki}) =
(
kt
Q

)(a+b`)

f (`)sc (z(`), φ) + Vsc({p̃}, {ki}) , (4.183)

where the presence of k′, rather than k, denotes that the full recoil has been taken into

account in the calculation of the observable. Performing a similar rescaling as for the wide

angle correction we find

δFavg.
rec (λ) = FNLL(λ)

3∑
`=1

αs(v
1

a+b`Q)

αs(Q)(a+ b`)

∫ 1

0
dz

∫ 2π

0

dφ

2π
p`(z) log

f
(`)
sc (z, φ)

f
(`)
hc (z, φ)

, (4.184)

δF spins.
rec (λ) = −FNLL(λ)Sp(ΦB)

3∑
`=1

αs(v
1

a+b`Q)

αs(Q)(a+ b`)

∫ 1

0
dz

∫ 2π

0

dφ

2π
∆p`(z, φ) log f

(`)
hc (z, φ) .

(4.185)
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4.9.6 The hard-collinear correction

In a similar way, we can compute the hard-collinear contributing δFhc of Eq. (4.153).

Using Eq. (4.156) and performing similar manipulations we obtain

δFhc(λ) = −FNLL(λ)

3∑
`=1

αs(v
1

a+b`Q)

αs(Q)(a+ b`)
γ
(0)
`

(
ψ(0)

(
1 +R′

NLL

)
+ γE

)
. (4.186)

4.10 Conclusions

We have repeated the derivations of Ref. [61] allowing for all the possible contributions

to a three-jet observable. We stress that the derivation here reproduces exactly that of

Ref. [61] when we set the number of legs to 2. We have an extra resolved correction in

the form of δFs to account for the mismatch in the treatment of soft wide angle radiation.

At NNLL accuracy the other soft corrections remain the same, however we note that this

would not be the case at N3LL, where instead we would start to see additional dipole

contributions, although it may be possible to absorb these into δFs or a similarly defined

soft correction. In the case of collinear corrections we see that the addition of a final-state

gluon leads to spin-correlations, and we are no longer able to factorise the Born squared

matrix element and the hard-collinear squared matrix element.

We have calculated the main building blocks for a general NNLL resummation of rIRC

safe final-state observables with an arbitrary number of hard emitting legs. The only

missing ingredient is a general treatment of both initial-state radiation and soft wide-angle

corrections for a system with more than three hard emitting legs. Despite the technical

difficulties, the philosophy of the ARES method remains unchanged. In particular, ARES

does not depend on the specific factorisation properties of an observable, and gives promise

to achieve a fully general solution to the problem of NNLL resummation in the near future.
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Chapter 5

The D-parameter at NNLL

accuracy

In the previous chapter 4 we extended the ARES method to include the resummation

of three-jet event shape variables in e+e− annihilation at NNLL accuracy. With the

extended ARES method we will examine the phenomenology of the D-parameter (defined

in Eq. (3.15)) in near-to-planar three-jet events.

Much like other event-shape distributions, the D-parameter can be used to measure

the strong coupling constant αs and to test models of non-perturbative physics e.g. had-

ronisation. For details see e.g. [70] and the references therein.

5.1 Observable setup

In order to study event shapes in the near-to-planar limit, we need a procedure to select

hadronic events with at least three jets. In our case, we use the Durham algorithm [33]

and we select three-jet events if the three-jet resolution variable y3(p1, . . . , pn) is greater

than ycut. Correspondingly, we have a total three-jet cross section given by

σH ≡
∞∑
n=3

∫
dΦn

dσn
dΦn

H(p1, . . . , pn) =
∞∑
n=3

∫
dΦn

dσn
dΦn

Θ(y3(p1, . . . , pn)− ycut) , (5.1)

with dΦn the n-particle phase space. We now consider the cumulative distribution of a

three-jet event shape V (p1, . . . , pn), defined as:

ΣH(v) ≡
1

σH

∞∑
n=3

∫
dΦn

dσn
dΦn

H(p1, . . . , pn)Θ(v − V (p1, . . . , pn))

=
1

σH

∞∑
n=3

∫
dΦn

dσn
dΦn

Θ(y3(p1, . . . , pn)− ycut) Θ(v − V (p1, . . . , pn)) .

(5.2)
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In near-to-planar kinematics, i.e. for v � 1, the cumulative distribution ΣH(v) assumes

the factorised form (see e.g. [3])

ΣH(v) '
1

σH

∫
dB dσ3

dB
ΣB(v)H(p1, p2, p3) , (5.3)

where p1, p2, p3 are now the three Born momenta in Eq. (4.21), and dB their phase space.

When v � 1, the function ΣB(ΦB; v) develops large logarithms of v, which we want to

resum to all orders up to a given logarithmic accuracy.

5.2 NNLL resummation of the D-parameter in near-to-planar

three-jet events

We recall that the D-parameter is defined in terms of the determinant of the linearised

spherocity tensor Eq. (3.15). In the case of e+e− annihilation we can write a slightly

simpler expression

Θαβ =
1

Q

∑
i

piαpiβ
Ei

, (5.4)

where the sum runs over all hadron momenta pi and Q is the centre-of-mass energy of e+e−

anninilation. The spherocity tensor has three eigenvalues λ1, λ2, λ3 satisfying λ1+λ2+λ3 =

TrΘ = 1. Using these eigenvalues we construct the C-parameter

C = 3(λ1λ2 + λ1λ3 + λ2λ3) , (5.5)

and the D-parameter

D = 27detΘ = 27λ1λ2λ3 . (5.6)

For an isotropic event all eigenvalues are equal to 1/3, and hence both the C- and the

D-parameter are equal to 1.

The D-parameter can be recast in the form [71]

D =
27

Q3

∑
i<j<k

[~pi · (~pj × ~pk)]
2

EiEjEk
. (5.7)

The above form is very useful to obtain analytic expressions for the D-parameter in the

soft and collinear regions, as neeeded for the resummation of large logarithms with the

ARES method. In particular, in the presence of multiple soft emissions k1, . . . , kn, Eq. (5.7)

can be approximated as follows:

D({p̃}, k1, . . . , kn) '
27

Q3

3∑
j<k=2

EiEj sin
2 θij

∑
i

k2ix
ωi

, (5.8)
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where ki = (ωi,~k), and kix is the component of ~ki in the direction of ~pi× ~pj , i.e. out of the

event-plane determined by the three Born momenta p1, p2, p3. Note that, in the presence

of soft emissions, the final-state hard momenta p̃1, p̃2, p̃3 can be approximated by their

Born counterparts p1, p2, p3. Using the fact that, for three particles (see e.g. [71])

C = 3λ1λ2 =
3

Q2

3∑
j<k=2

EiEj sin
2 θij , (5.9)

we obtain the final expression for the D-parameter in the presence of soft emissions:

D({p̃}, k1, . . . , kn) ' 27λ1λ2
∑
i

k2ix
Qωi

. (5.10)

NLL resummation. To compute the NLL resummation of theD-parameter we consider

its behaviour after a single soft emission, collinear to leg `. Using Eq. (5.10) and the

Sudakov parameterisation in Eq. (4.25) we obtain

D({p̃}, k) ' 54λ1λ2
k
(`)
t

Q
e−η(`) sin2 φ(`) . (5.11)

Comparing the above expression with Eq. (4.30) we get:

a = 1 , b(`) = 1 , d` = 54λ1λ2 , g`(φ) = sin2 φ , ` = 1, 2, 3 . (5.12)

From this we can determine

〈log(d`g`)〉 = log
d`
4
. (5.13)

Furthermore, since for soft and collinear emissions the D-parameter is additive, we recall

the NLL accurate multiple emission function is given by Eq. (4.155), which we reproduce

here

FNLL(λ) =
e−γER′

NLL(λ)

Γ(1 +R′
NLL(λ))

. (5.14)

NNLL resummation. In order to use our prescription for the NNLL radiator, we first

compute d(ij)` for each dipole by combining Eq. (5.12) with Eq. (4.32). Once we have d(ij)` ,

we can compute the soft NNLL radiator using Eq. (4.85). This gives

d
(ij)
` = 54λ1λ2

(
Q

2E`

)(
Qij

Q

)2

. (5.15)

In particular

〈log2(d`g`)〉 = log2
d`
4

+
π2

3
. (5.16)
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The hard-collinear coefficients C(1)
hc,` can be computed by replacing 〈log(d`g`)〉 in eqs. (4.74)

and (4.75) with the appropriate expression in Eq. (4.76).

We now consider the various real-emission NNLL corrections. The functions δFsc,

δFs and δFhc are the ones for additive observables, as there is no specific observable

dependent input needed. Their expressions can be found in Eqs. (4.164), (4.166) and

(4.186) respectively.

To compute the function δFrec we need to obtain the expression for the D-parameter

after a single hard splitting of leg `. This produces an emission k with a fraction z(`) of

the energy E` of the parent momentum p`, and a final-state momentum p̃ carrying the

remaining energy fraction 1−z(`). Both particles carry equal and opposite out of plane

momenta, p̃x = −kx. From Eq. (5.7), labelling the remaining two hard partons with the

indexes `1, `2 6= `, we have

D({p}, k) = 27

Q3
E`1E`2 sin

2 θ`1`2

(
k2x

z(`)E`
+

k2x
(1−z(`))E`

)
' 54λ1λ2

k2x
2z(`)(1−z(`))E`Q

.

(5.17)

If we add an arbitrary number of soft and collinear emissions k1, . . . , kn, their transverse

momenta are much smaller than that of the hard collinear emission, which is the only

one that effectively recoils agains hard parton p̃`. Therefore, kx is the out-of-event-plane

component of the transverse momentum with respect to the emitter p`. This gives

Dhc({p}, k, k1, . . . , kn) =
k2t
Q2

f
(`)
hc (z

(`), φ(`)) +Dsc({p}, k1, . . . , kn) (5.18)

with

f
(`)
hc (z, φ) =

54λ1λ2Q

2z(1− z)E`
sin2 φ . (5.19)

This means that the D-parameter is additive also in the presence of an extra hard and

collinear emission. For z → 0 we have

f
(`)
hc (z, φ) '

54λ1λ2Q

2zE`
sin2 φ ≡ f (`)sc (z, φ) . (5.20)

Using eqs. (5.19) and (5.20), as well as the additivity of the D-parameter, we can compute

δFrec using Eq. (4.151) as follows:

δFavg.
rec (λ) = FNLL(λ)

3∑
`=1

αs(
√
DQ)

2αs(Q)

∫ 2π

0

dφ

2π

∫ 1

0
dz p`(z) log(1− z)

= FNLL(λ)
αs(

√
DQ)

2αs(Q)

(
2CF

(
5

4
− π2

3

)
+ CA

(
67

36
− π2

3

)
− TRnF

13

18

)
.

(5.21)
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Using Eq. (5.19) we can also compute δF spins.
rec from Eq. (4.185), as follows:

δF spins.
rec (λ) = −FNLL(λ)Sp(ΦB)

αs

(√
DQ

)
2αs(Q)

(
1

2!
CA − TRnF

)
×

×
∫ 1

0
dz 4z(1− z)

∫ 2π

0

dφ

2π
(2 cos2 φ− 1) log

(
sin2 φ

)
= FNLL(λ)

αs

(√
DQ

)
3αs(Q)

(
CA

2
− TRnF

)
Sp(ΦB) ,

(5.22)

where Sp(ΦB) for e+e− → qq̄g events is

Sp(ΦB) ≡ Sp(x1, x2) =
x1 + x2 − 1

x21 + x22
, (5.23)

where the details of the x1 and x2 variables are explained in Appendix. C.5.

The next NNLL correction we need to compute is δFwa. According to Eq. (5.10), for

soft emissions the D-parameter is additive, so we can make use of the general expression

in Eq. (4.175). In order to do this, we need to recast the expression of the D-parameter

with a single soft wide-angle emission in the form of Eq. (4.167). Using the Sudakov

decomposition in Eq. (4.22), we obtain

f (ij)wa (η, φ) = 27λ1λ2 sin
2 φ

sin(θij/2)

cosh
(
η + η

(ij)
0

)
+ cos(θij/2) cosφ

, η
(ij)
0 ≡ 1

2
log

Ei

Ej
.

(5.24)

From the above expression, taking the limit |η| → ∞, we obtain

f (ij)sc (η, φ) = 54λ1λ2 sin
θij
2

[
e−(η+η

(ij)
0 )Θ(η) + eη+η

(ij)
0 Θ(−η)

]
sin2 φ . (5.25)

Inserting the above expressions in Eq. (4.175) we obtain

δFwa(λ) = FNLL(λ)
∑
(ij)

Cij
αs(DQ)

αs(Q)

∫ 2π

0

dφ

2π

∫ ∞

−∞
dη×

×
(
log

[
2e−(η+η

(ij)
0 )

(
cosh

(
η + η

(ij)
0

)
+ cos

θij
2

cosφ

)]
Θ(η)

+ log

[
2eη+η

(ij)
0

(
cosh

(
η + η

(ij)
0

)
+ cos

θij
2

cosφ

)]
Θ(−η)

)
= FNLL(λ)

∑
(ij)

Cij
αs(DQ)

αs(Q)
×

×

(
(η

(ij)
0 )2 + 2

∫ ∞

0
dη log

[
e−η

(
cosh η +

√
cosh2 η − cos2

θij
2

)])
,

(5.26)

the final term must be evaluated numerically, and it depends on the configuration of the

Born event through the term θij .

The last contribution we need to compute is δFcorrel. Since theD-parameter is additive,

we can again use the general formula for additive observables in Eq. (4.181). In order to
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do this we need to recast the D-parameter with two soft and collinear emissions in the

form of Eq. (4.176). This gives

f
(`)
correl(µ, z, φ, φ

(`)) = 1 + µ2
sin2(φ+ φ(`))

sin2 φ(`)
, (5.27)

the same for all three legs. This gives

δFcorrel(λ) = −FNLL(λ)
λR′′

NNLL

2β0αs(Q)
(CA〈log fcorrel〉CA

+ 2TRnF 〈log fcorrel〉nF ) , (5.28)

where

〈log fcorrel〉CA
=

1

2!

∫ 2π

0

dφ(`)

2π

∫ ∞

0

dµ2

µ2(1 + µ2)

∫ 1

0
dz

∫ 2π

0

dφ

2π
(2S +Hg) log fcorrel(µ, z, φ, φ

(`)) ,

〈log fcorrel〉nF =
1

2!

∫ 2π

0

dφ(`)

2π

∫ ∞

0

dµ2

µ2(1 + µ2)

∫ 1

0
dz

∫ 2π

0

dφ

2π
Hq log fcorrel(µ, z, φ, φ

(`)) ,

(5.29)

We evaluate these expressions numerically and find,

〈log fcorrel〉CA
= 1.8139 , 〈log fcorrel〉nF = 1.1562 . (5.30)

With these corrections we and the Sudakov radiator we have all of the ingredients

necessary to perform the resummation of the D-parameter.

5.3 Phenomenology

In order to provide a suitable cumulative distribution that paves the way for phenomeno-

logical studies, one has to match the resummation to fixed order. Matching is required to

provide results across all values of the observable. The basic idea is to combine the results

of both the resummation and fixed order, while making sure to get rid of contributions

that are double counted. There are two generic conditions that the matching procedure

must satisfy. First, based on physical grounds the matched total cross section should go

to zero as v → 0. Second, the matched distribution, or likewise the total cross section,

must reproduce the fixed order at the kinematic endpoint v → vmax.

The two most popular matching schemes for e+e− annihilation are the R and log-R

schemes [44, 46]. In other contexts, multiplicative matching schemes are used [72, 73]. Ad-

opting one over the other is a choice that depends on the problem at hand. In our case, we

could not achieve a stable matched distribution using the R and log-R schemes, given that

the available data sets for the D-parameter forces us to use low values of ycut. The prob-

lem with both schemes is that, given that the various components of the resummed cross

section contain powers of log ycut, the resummation does not switch off quickly enough
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and ends up substantially contributing to the tail of the matched distribution. This situ-

ation might be expected given that the K-factor NLO/LO is very large, approximately

100%. This is similar to the case of resumming the distribution in the Higgs transverse

momentum pt,H where the K-factor is also known to be large [74]. Therefore, we supple-

ment our matching scheme with a factor that effectively damps the resummation at large

values of D.

Based on the above discussion, we use the multiplicative matching scheme designed in

ref. [74]. The goal of that scheme is precisely to suppress the large terms, present in the

resummation, which emerge outside the resummation region. This enables us to control

the tail of the distribution and achieve a stable matching. In this scheme, matching is

performed on the level of the total cross section. Given that NLOJet++ simulates the

inclusive cross section, i.e. integrated over Born kinematics with the three-jet selection

cut, we have to match on the same level. Explicitly, we have

ΣMat.
H (v) =

(
ΣRes.
H (v)

)Z ΣFO.
H (v)(

ΣExp.
H (v)

)Z , (5.31)

where

Z =

(
1−

(
v

v0

)u)h

Θ(v − v0) , (5.32)

is a damping factor that controls how quickly the logarithms are shut down outside the

resummation region. In eq. (5.31), ΣRes.
H is the resummed cross section, ΣFO.

H is the cor-

responding fixed-order quantity and ΣExp.
H denotes the expansion of the resummation to

NLO. The details of the matching can be found in appendix C.6 and the expanded version

of eq. (5.31) is given in full in eq. (C.64). We carry out the matching using the values

u = 1, h = 3 and v0 = 1/2.

As is customary in resummed calculations, we need to probe the size of sub-leading

logarithmic terms. This is done using two simultaneous variations. The first introduces a

rescaling xV as follows

log
1

v
= log

xV
v

− log xV , xV ≡ X ·XV . (5.33)

In the above, X is a variable choice to define the resummation scale, i.e. the logarithms

being practically resummed, while XV controls the scale variation. We expand the total

cross section around log(xV /v) neglecting sub-leading terms. Furthermore, the resummed

logarithm, log(xV /v), must be modified in order to impose that the total cross section is

reproduced at the kinematic endpoint vmax [73]

log
xV
v

→ L̃ ≡ 1

p
log

((xV
v

)p
−
(
xV
vmax

)p

+ 1

)
, (5.34)
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where p denotes a positive number that controls how quickly the logarithms are switched off

close to the endpoint. The parameter p is free, but is only constrained by the behaviour

of the fixed order distribution near the endpoint [73]. In our case, we set p = 1, as is

customary in event-shape studies.

Another estimate for the uncertainty in our matched distribution comes from varying

the renormalisation scale, µR, around a central scale that we take to be the centre-of-

mass energy of the hard scattering, Q. For LEP-1 energies, Q = MZ corresponding to

αs(MZ) = 0.118 while for FCC-ee energies, Q = 500GeV corresponding to αs(500GeV) =

0.094.

We implement two different choices for X in eq. (5.33). The first is referred to as the

Xconst scheme which corresponds to setting X = 1 in eq. (5.33), while the second is the

Xprod scheme which corresponds to setting

X =
3

2CF + CA
log

27λ1λ2
2

, (5.35)

which is a function of the Born kinematics. Finally, we construct the uncertainty bands

by varying µR by a factor of two in either direction and XV by a factor of three-halves in

either direction.

In figs. 5.1 and 5.2 we plot the matched distribution for Q = MZ using the two

resummation schemes and for two different values of ycut, namely ycut = 0.1 and ycut =

0.05. We immediately notice the following features:

• The uncertainty bands are not drastically reduced when increasing the logarithmic

accuracy of the resummation, at least when compared to the typical situation with

two-jet observables.

• The position of the peak is stable under varying ycut.

• For NLL, the uncertainty bands remain almost unchanged with decreasing ycut. In

contrast, the uncertainty bands for NNLL are noticeably enhanced as we increase

ycut.

The fact that the uncertainty does not reduce significantly from NLL to NNLL might be

due to the fact that not all possible sources of theoretical uncertainties have been explored.

In fact, varying the renormalisation scale probes the typical scale of hard QCD radiation,

whereas the sensitivity to soft and collinear physics is probed by varying the parameterXV .

By doing so, we vary the typical scales of soft radiation (∼ Qv1/a) and collinear radiation

(∼ Qv1/(a+b`)) in a correlated way. One way to decorrelate the two regions might be that
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of introducing a “jet scale” QJ that probes variation of the collinear scale only, as done

in SCET, see e.g. [75]. Since in our formalism all the scales introduced have a definite

physical meaning, the only place where we can introduce a new scale is in eq. (4.60). There

we can split virtual corrections at the scale QJv
1/(a+b`). As a consequence, Rhc has to be

evaluated at v(QJ/Q)a+b` , and this change is compensated, up to sub-leading corrections,

by the following change in the coefficients Chc,`(1) in Eqs. (4.74) and (4.75):

C
(1)
hc,` → C

(1)
hc,` + γ

(0)
` log

(
Q2

Q2
J

)
, . (5.36)

An equivalent procedure up to N3LL corrections is to vary the quantity XV introduced in

eq. (5.33) in the hard collinear radiator only by a factor (QJ/Q)a+b` . Note that, for the

D-parameter, since a+ b` = 2, changing QJ by a factor of two around Q means changing

XV by a factor of four around XV = 1. This is way beyond the range of XV that is

customary explored in event-shape studies, that involves variation at most by a factor of

two (see e.g. [4]). As a check, we have indeed varied XV for the hard-collinear radiator

only, in the range 1/4 < XV < 4. Although we have observed that the corresponding

uncertainty band increases, reaching deviations up to 40% from the central value in the

peak region, the size of the band does not decrease in moving from NLL to NNLL. This

issue definitely calls for further studies. However, we believe that choosing an appropriate

range for the variation of QJ requires at least a comprehensive re-analysis of two-jet event

shapes, as well as another three-jet event-shape for comparison. Therefore, we leave this

investigation to future work.

We believe that the issues we have with theory uncertainties can partly be traced to

the fact that jet selection generates terms that go as log2 ycut, for each power of αs relative

to the Born cross section. The largest transverse momentum of soft-collinear emissions,

at fixed value of D, is of the order of
√
DQ. Our resummation is strictly defined when

the largest momentum is much smaller than the largest transverse momentum available,

the latter being of the order of √ycutQ. Essentially, our resummation is formally correct,

as D � 1, but phenomenologically viable only in the limit D � ycut � 1. Inspection

of figs. 5.1 and 5.2 shows that the most probable value of D, which corresponds to the

position of the peak of differential distributions, is of the same order as ycut and that is

why we see the features described above. This is also reflected in the sensitivity of the

uncertainty bands of the NNLL distribution to the variation of ycut in comparison to NLL.

Simply, the NNLL pieces in the cross section, e.g. δFs, contain extra powers of log ycut

compared to NLL. These logarithms are large, for ycut = 0.05− 0.1, and thus we observe

this behaviour of the uncertainty bands.
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The situation becomes better at FCC-ee energies, as we see clearly in figs. 5.3 and

5.4. Noticeably the position of the peak tends towards smaller values of D, and we

start approaching the strict resummation regime D � ycut � 1. Simultaneously we see

a reduction in the uncertainty by almost 50%. To conclude, for this observable, and

depending on the value of ycut, we expect large sub-leading corrections that are not under

control in any resummation formalism. This calls for a joint resummation of both types of

logarithms, the observable and ycut, along the line of the presented resummation of both

pt,H and the transverse momentum of the leading jet [76].

Leaving these caveats aside, we note that NNLL corrections generically yield harder

D-parameter distributions. The effect is larger using the Xprod scheme, because the re-

summed logarithms in the latter scheme are typically larger than the Xconst scheme. In-

deed, this is one of the reasons why the NNLL uncertainty bands get larger when we use

the Xprod scheme, while their counterparts at NLL remain virtually the same. Note that

in the Xprod scheme the resummation scale is effectively of the order √ycutQ which is the

appropriate upper bound for transverse momenta. Therefore, this scheme automatically

captures some of the terms which are enhanced by logarithms of ycut.
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Figure 5.1: The matched distribution for ycut = 0.1 and Q =MZ . The left plot using the

Xconst scheme and the right using the Xprod scheme.

Last, we compare our predictions to existing LEP-1 data [77–79]. In order to do so, we

need to supplement our perturbative resummation with some estimate of non-perturbative
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Figure 5.2: The matched distribution for ycut = 0.05 and Q = MZ . The left plot using

the Xconst scheme and the right using the Xprod scheme.
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Figure 5.3: The matched distribution for ycut = 0.1 and Q = 500GeV. The left plot using

the Xconst scheme and the right using the Xprod scheme.
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Figure 5.4: The matched distribution for ycut = 0.05 and Q = 500GeV. The left plot

using the Xconst scheme and the right using the Xprod scheme.

hadronisation corrections. Before we do this, we need to choose whether to use Xconst or

Xprod as our default choice for the resummation scale. We have observed that NNLL

distributions obtained with Xprod are not very stable with respect to the choice of the

matching parameter v0, which points to the fact that such a choice brings in numerically

large sub-leading corrections, which we cannot control within our framework. Therefore,

we decide to present non-perturbative plots using Xconst as our resummation scale, and

v0 = 1/2. We have checked that using other values of v0 does not change considerably

our findings. We include hadronisation corrections in the dispersive approach of ref. [80],

where leading hadronisation corrections result in a shift of the corresponding perturbative

distributions. In our case, we use the non-perturbative shift computed in ref. [81], and

define

ΣNP
H (D) =

1

σH

∫
dΦ3

dσ3
dΦ3

ΣB ({p1, p2, p3}, D − ZNP δD ({p1, p2, p3})) H(p1, p2, p3) ,

(5.37)

where

δD({p1, p2, p3}) =
aNP

Q
27λ1λ2

∑
(ij)

C(ij) gij (θij) . (5.38)

In the above equation, the geometry dependent functions gij are those of ref. [81], which
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we rewrite using our own notation and conventions as follows:

gij(θij) = sin
θij
2

∫ 2π

0

dφ

2π

∫ ∞

−∞
dη

sin2 φ

cosh η + cos(θij/2) cosφ
. (5.39)

The non-perturbative parameter aNP is given by

aNP =
4µI
π2

M

(
α0(µI)− αs(Q)− 2β0α

2
s(Q)

(
log

Q

µI
+
K(1)

4πβ0
+ 1

))
, (5.40)

where

α0(µI) =

∫ µI

0

dk

µI
αs(k) , (5.41)

and αs(k) is the dispersive coupling defined in ref. [80], and M ' 1.49 is the Milan

factor [82–85] corresponding to three light flavours, as appropriate for non-perturbative

corrections in the dispersive model [82, 83]. As in previous non-perturbative studies, we

set µI = 2GeV. In eq. (5.37), we have also introduced the factor

ZNP = 1−
(

D

Dmax

)q

, (5.42)

that ensures that the shift vanishes at the endpoint of the distribution. Also, to ensure

that the distribution vanishes at its endpoint, we replace L̃ defined in eq. (5.34) with

L̃NP ≡ 1

p
log

((
xD

D − δD

)p

−
(

xD
Dmax − δD

)p

+ 1

)
. (5.43)

Specifically, we have set q = 2 and p = 1. Last, in order to produce matched non-

perturbative distributions, we compute δDH defined by

ΣH(D − δDH) = ΣNP
H (D) , (5.44)

and define our matched non-perturbative distribution as ΣMat.
H (D − δDH). In Fig. 5.5 we

produce plots for non-perturbative matched distributions, with central scales, correspond-

ing to NLL and NNLL accuracy. The non-perturbative shift corresponds to a value of

α0(2GeV) that is inside the range favoured by existing fits to event-shape data [86]. We

see that, for this value of α0, namely α0 = 0.5, the NNLL resummation has a shape that

resembles the data more closely than NLL resummation. This trend persists irrespective

of the value of ycut. Note that this value of α0 is similar to the central value of a fit ob-

tained with the NNLL thrust distribution [87]. We also observe that increasing the value

of v0 up to Dmax does not change the distributions close to the peak, but gives a better

agreement with the data in the tails.

Despite the fact that our choice of the NP parameter α0 provides a good description

of the D-parameter distributions for intermediate values of D, the peak region is not
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Figure 5.5: The matched distribution, including the non-perturbative corrections, is com-

pared to data from LEP-1 for the two values of ycut we adopt in this article.

well described. However, this is hardly surprising, given that including hadronisation

corrections as a shift is strictly valid only for δD � D, i.e to the right of the peak of

the D-parameter distributions. Due to an extra radiating gluon, the shift for three-jet

event shapes is roughly twice as big as that for two-jet event shapes. Therefore, at LEP

energies, we expect that a shift alone is not enough to accurately describe the peak of

three-jet event-shape distributions, as was generally the case for two-jet event shapes [86].

To obtain a good description of the peak, one needs to upgrade the shift to a shape

function, as done for instance in refs. [88–91].

5.4 Conclusions

We have applied the ARES method for three-jet events, derived in chapter 4, to the

D-parameter to NNLL accuracy. Since this is an additive observable, we are able to

compute most of the NNLL functions analytically, with only a couple of integrals that

must be computed numerically. We have performed phenomenological studies by match-

ing our resummation to exact fixed-order and presenting predictions for LEP-1 and future

colliders. We have seen that using the LEP-1 cuts to select three-jet events gives rise to

large sub-leading effects at LEP-1 energies, the situation is somewhat improved at FCC-ee.

Nevertheless, we envisage that, to improve phenomenological studies of the D-parameter,

one should attempt a joint resummation of logarithms of the D-parameter and of the

variable determining the three-jet selection. A similar procedure to that used for the case

of angularities, or for the transverse momentum of a colour singlet and an accompanying
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leading jet.

A comparison with LEP-1 data requires the inclusion of non-perturbative hadronisa-

tion corrections. We have added the leading hadronisation corrections evaluated in the

dispersive model to our NNLL resummation. In general, the NNLL distribution has a

shape that is similar to data. And, for values of the D-parameter larger than those at

the peak of distribution, hadronisation corrections are compatible with a shift of the per-

turbative distribution. We find that, in order to describe the data in the region following

the peak, we can set the non-perturbative parameter α0, that determining the size of the

shift, to a value that is comparable to the one obtained from fits of NLL event shape dis-

tributions. A very interesting piece of future work would be to perform a comprehensive

simultaneous fit of αs and α0 using NNLL resummations for different event shapes.
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Chapter 6

BSM WW production with a jet

veto

In chapters 4 & 5 we extended the ARES method to observables with higher multiplicity. In

this chapter we apply the ARES method to the resummation of jet-veto effects at hadron

colliders. Jet-veto effects for colourless final states have already been resummed up to

NNLL accuracy within the ARES framework [92, 93]. These resummations were implemen-

ted in the code JetVHeto, for the production of Z and Higgs bosons at threshold. In this

chapter we take these resummations and re-implement them as a extension to the Monte

Carlo integrator MCFM. This implementation resums jet-veto for all colourless final states1

and is differential (exclusive) in the kinematics of the Born.

We examine the possibility of using the di-boson channels to constrain new physics

models, in particular the WW channel is challenging to model correctly due to presence

of a jet-veto on the final state. We use this new implementation of ARES inside MCFM to

make projections for constraining power of the WW channel relative to the ZZ channel.

6.1 Introduction

Di-boson production at the Large Hadron Collider constitutes a promising window into

physics beyond the SM. This is particularly true for di-boson pairs with high invariant

mass, which have been already probed by a number of recent experimental analyses [94–

104]. On the one hand, their production through gluon fusion receives contributions from

an off-shell Higgs boson [105–107]. In particular, the interference of the contribution of an

off-shell Higgs boson and di-boson continuum background makes it possible to access the

1Naturally we can only resum those processes that are implemented in MCFM.
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Higgs width in a model-independent way [108]. On the other hand, contact interactions

arising from higher-dimensional effective field theory operators [109–113] could give rise

to spectacular effects in the tails of di-boson differential distributions, due to the fact

that some of their contribution increases with energy. Technically, in the SM, di-boson

production via gluon fusion is a loop-induced process. At low di-boson invariant masses,

top quarks in the loops behave as very heavy particles, thus giving rise to effective contact

interactions. At high invariant masses, the two bosons probe virtualities that are much

larger than the masses of the top quarks running in the loops, hence suppressing their

contribution and enhancing the effect of BSM contact interactions. Such a feature has

been already used to constrain the coefficient of a number of higher-dimensional operators,

see e.g. [114] for a recent study.

We restrict ourselves to considering the unique dimension-six operator coupling gluons

to the Higgs boson, given by [110]

L ⊃ cgg
Λ2

Ga
µνG

a,µνφ†φ, (6.1)

with Ga
µν the gluon field strength and φ the Higgs field. This operator can be used to

represent contributions to SM Higgs production from particles with mass of order Λ � mH .

This operator has previously been considered in high-invariant-mass ZZ production with a

fully leptonic final state in [115, 116]. However, the leptonic final state for WW has larger

cross section and soWW could give complementary or better sensitivity than leptonic final

states for ZZ. However, inWW production, a tight jet veto is employed by experiments to

suppress the background from top-pair production. Such a veto “forbids” the radiation of

jets from the initial-state partons, with the effect of suppressing not only the background,

but also the operator-mediated signal. In the present case, the signal occurs through

gluon fusion, whereas WW production is mainly driven by quark-antiquark annihilation.

Since gluons radiate more than quarks, one expects the suppression due to a jet veto to

be stronger for the signal than for the background. It is therefore important to address

the general question of how BSM searches with WW production compare to ZZ in the

presence of a jet veto.2

We wish to quantify in a simple way how the significance of such a BSM signal is

affected by the presence of a jet veto. The same procedure can be applied to any BSM

scenario that modifies the production rate of a colour singlet, for instance dimension-

8 operators [125]. A similar study [126] investigates the impact of a jet veto in the
2In fact, a supposed discrepancy of the total WW cross section from SM predictions [117–119] could

be partly ascribed to mismodelling of jet-veto effects [120–124].
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determination of the Higgs width using interference. To be more specific, we veto all

jets that have a transverse momentum (with respect to the beam axis) above pt,veto. First

we observe that, at the level of the matrix element squared, a generic BSM signal mediated

by a single higher-dimensional operator consists of an interference piece and a quadratic

piece:

|MSM|2 + 2Re(M∗
SMMBSM) + |MBSM|2. (6.2)

The last piece is of higher order 1/Λ4. Therefore, if the interference piece is not suppressed

or vanishing for some reason, then, to a first approximation, we can neglect it relative to

the 1/Λ2 interference piece.3 The presence of a jet veto induces large logarithms of the

ratio of pt,veto and the invariant mass of the WW pair MWW . Such logarithms arise at all

orders in QCD, and originate from vetoing soft-collinear parton emissions. Considering

just the leading logarithms, and neglecting the quadratic piece |MBSM|2, the deviation of

a BSM signal that proceeds from gluon fusion from the SM prediction is approximately

given by

Lgg(MWW )× 2Re(M∗
SMMBSM) e

−2CA
αs
π

log2
(

MWW
pt,veto

)
, (6.3)

where CA = 3, αs is the strong coupling, and Lgg(MWW ) is the gluon-gluon luminosity

corresponding to a partonic centre-of-mass energy equal to MWW . The effect of the jet

veto is an exponential (Sudakov) suppression with respect to a naive Born-level estimate.

Note also that, for fixed pt,veto, such a suppression becomes more and more important, the

higher the invariant mass of the WW pair. This is precisely where the contribution of the

BSM operator in eq. (6.1) has the most impact on the signal. For the SM background,

dominated by quark-antiquark annihilation, we have instead a contribution proportional

to

Lqq̄(MWW )× |MSM|2 e−2CF
αs
π

log2
(

MWW
pt,veto

)
, (6.4)

with CF = 4/3 and Lqq̄(MWW ) the quark-antiquark luminosity. The relative deviation

from the SM can be obtained by integrating eqs. (6.3) and (6.4) over the appropriate

phase space. Note that, for a fixed value of MWW , the exponential encoding jet-veto

effects factorise completely. Therefore, the relative deviation from the SM in the presence

of the jet-veto is different from that obtained with a Born-level calculation by a factor

e
−2(CA−CF )αs

π
log2

(
MWW
pt,veto

)
. (6.5)

3Note that, if we consider more than one higher-dimensional operator, there are possibly other BSM

effects of order 1/Λ3 or 1/Λ4 in the interference piece in general, which might still compete with or dominate

over the quadratic piece.



110

For αs = 0.1,MWW = 1TeV, pt,veto = 20GeV, the above factor is about 0.2. Therefore,

despite the gain in the number of events one has in WW production with respect to ZZ,

the significance of the signal might be reduced due to jet-veto effects. This is why it is

crucial to have an estimate of jet-veto effects that is as accurate as possible.

The first question we address is what accuracy we can aim for in the description of a

BSM signal and a QCD background involving the production of a colour singlet. In the

absence of large jet-veto corrections, a generic BSM signal can be predicted at Born-level,

or leading order (LO), in QCD, whereas any QCD background is nowadays known at least

at next-to-leading order (NLO). In the presence of a jet veto, the production of a system of

invariant mass M is affected by logarithms of the ratio pt,veto/M , which make fixed-order

predictions unreliable. After the all-order resummation of log(pt,veto/M), the differential

cross-section dσ(pt,veto)/dM
2 with no jets with a transverse momentum above pt,veto can

be written in the form4

dσ(pt,veto)

dM2
=

dσ0
dM2

eLg1(αsL) (G2(αsL) + αsG3(αsL) + . . . ) , L ≡ log
M

pt,veto
. (6.6)

with dσ0/dM
2 the corresponding LO cross section. The above expression is meaningful

for αs log(M/pt,veto) ∼ 1 and misses terms that vanish as powers of pt,veto/M (possibly

enhanced by logarithms). The leading logarithmic (LL) contributions exponentiate giving

rise to the function g1(αsL), with αs evaluated at a renormalisation scale of order M .

Next-to-leading logarithmic terms (NLL) factorise from LL ones, and are embedded in the

function G2(αsL). Next-to-next-to-leading logarithmic (NNLL) contributions, resummed

by G3(αsL), are of relative order αs with respect to NLL ones, and similarly one can define

higher logarithmic accuracy. The knowledge of NLO corrections to a QCD background

process gives access to all ingredients to compute G3, i.e. to achieve NNLL accuracy,

whereas the lack of knowledge of corrections of relative order αs to a generic BSM process

implies that the best accuracy one can aim at for such processes is NLL. Therefore, from

the point of view of the accuracy of the resummation, having LO makes it possible to

reach NLL accuracy, whereas NLO gives access to NNLL accuracy.

The most widely used method to estimate jet-veto effects are Monte Carlo event gener-

ators, which simulate the contribution of multiple soft-collinear QCD emissions. Although

very flexible, these tools cannot formally guarantee more than LL accuracy, and at the

moment require a considerable amount of tuning to reliably describe observables, like the

cross section with a jet-veto in eq. (6.6), sensitive to QCD radiation from the initial state
4The general expression in eq. (6.6) holds because the transverse momentum of the leading jet has the

property of recursive infrared and collinear (rIRC) safety [3].
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(see e.g. [127] for a recent study). In order to have more accurate predictions, one needs

to consider analytical resummations.

Jet-veto effects in the production of a colour singlet have been computed at NNLL

accuracy in QCD [93] and in soft-collinear effective theory (SCET) [128, 129]. The cal-

culation of [93] is implemented for Higgs and Z-boson production, inclusive in all decay

products, in the program JetVHeto [130]. The calculation of [128] has been implemen-

ted in aMC@NLO for the production of a generic colour singlet, fully exclusive in its decay

products [122]. This implementation has been used to estimate jet-veto effects in WW

production [122] in the SM, and for hypothetical Z ′ and W ′ bosons [131]. The specificity

of this SCET calculation is the presence of beam functions, that are precomputed and

replace traditional parton distribution functions. We discuss an alternative approach that

implements the QCD resummation of ref. [93], fully exclusive in the decay products of the

colour singlet, in a way that is not tied to a specific event generator (e.g. aMC@NLO), but

that requires minimal and simple modifications of the setup that is already available in any

NLO QCD program. The starting point is to observe that, in eq. (6.6), the factor multiply-

ing leading logarithms is in fact a new perturbative series, whose coefficients are functions

of αsL. As stated previously, NLL corrections have the same structure as Born-level con-

tributions, while NNLL corrections closely resemble NLO contributions. Therefore, NLL

resummation could just be obtained by an event-by-event reweighting of a Born-level gen-

erator by keeping only the functions g1 and G2 in eq. (6.6). This is enough to estimate

jet-veto effects to the BSM production of a colour singlet. Including NNLL corrections,

needed for a precise estimate of the corresponding SM background, is also possible in a

general way. In fact, resummation effects originate from soft and/or collinear emissions in

such a way that NNLL corrections share the same phase space with Born-level contribu-

tions, but are of relative order αs. In all NLO calculations there is always a contribution

that lives in the same phase space as the Born, and is of relative order αs. This is the

subtraction term that cancels the infrared singularities of virtual corrections. Therefore,

to implement NNLL effects, we can just modify the appropriate subtraction term in the

NLO event generator. Having done this, all other NNLL effects factorise, and can be

accounted for by an event-by-event reweighting, so as to reproduce eq. (6.6). The whole

procedure requires generating Born-level events only, and hence is much faster than a full

NLO calculation.

In the following two sections we give a detailed description of this procedure for the

specific case of BSM effects induced by the operator in eq. (6.1). In section 6.2, we study
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the effect of such an operator on WW production with a jet veto. As discussed above,

this operator induces a modification of the cross section ofWW production through gluon

fusion. We denote the (differential) cross section for gluon fusion, potentially including

an additional BSM contribution, with dσgg. The main result of this section is a recipe

to compute cross sections for WW production with a jet veto at NLL accuracy, fully

exclusive in the decay products of the W bosons. In section 6.3 we compute the cross

section for the dominant contribution to the SM background, which is WW production

via quark-antiquark annihilation, again in the presence of a jet veto. We denote the

cross-section for this process with dσqq̄, and compute exclusive cross sections in the decay

products of the W bosons, while resumming log(MWW /pt,veto) at NNLL accuracy. The

main result of this section is a general recipe to modify a NLO event generator for the

production of any colour singlet so that it produces resummed cross-section with a jet veto

at NNLL accuracy. In section 6.4 we present some numerical results for a simplified model

derived from the Lagrangian in eq. (6.1), corresponding to a realistic experimental setup.

We compare our resummed predictions with parton-shower event generators, and assess

the size of effects, such as limited detector acceptances, hadronisation and the underlying

event, that are not included in our resummation. In section 6.5 we perform some basic

sensitivity studies to investigate the exclusion potential of the HL-LHC for the parameters

of the simplified model of section 6.4. Finally, section 6.6 presents our conclusions.

6.2 Gluon fusion (including BSM effects)

Let us first consider WW production via gluon fusion, possibly with a modification of

the amplitude induced by the BSM operator in eq. (6.1). For simplicity, we consider here

the decays WW → e+νeµ
−ν̄µ and WW → e−ν̄eµ

+νµ. As explained in the introduction,

if we impose that all jets have a transverse momentum below a threshold value pt,veto,

the distribution in M2
WW , differential in the phase space of the leptons, is affected by the

presence of large logarithms log(MWW /pt,veto), that have to be resummed to all orders to

obtain sensible theoretical predictions. Specifically, we consider jets obtained by applying

the anti-kt algorithm [37] with a given radius R. At NLL accuracy, the best we can achieve

for gluon fusion, the aforementioned observable is given by [92, 93]

dσNLL
gg (pt,veto)

dΦleptonsdM
2
WW

= L(0)
gg (L,MWW ) eLg1(αsL)+g2(αsL) , (6.7)

where L = log(MWW /pt,veto), αs = αs(MWW ), and explicit expressions for the functions

g1(αsL) and g2(αsL) can be found, for instance, in ref. [93]. In particular, they are the
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same for any colour singlet that is produced via gluon fusion (e.g. Higgs production).

Note that, at NLL accuracy, the resummed distribution in eq. (6.7) does not depend on

the radius R of the jets [92].

The phase space of the leptons is given by

dΦleptons =
d3~pe

(2π)32Ee

d3~pνe
(2π)32Eνe

d3~pµ
(2π)32Eµ

d3~pνµ
(2π)32Eνµ

(2π)4δ
(
pe + pµ + pνe + pνµ − p1 − p2

)
,

(6.8)

with p` = (E`, ~p`) is the four-momentum of lepton ` = e, µ, νe, νµ, and pi = xiPi, i = 1, 2

are the momenta of the incoming partons, carrying each a fraction xi of the incoming

proton momentum Pi.

Last, we have a process dependent “luminosity” factor L(0)
gg , given by5

L(0)
gg (L,MWW ) =

∫
dx1dx2 |M (gg)

SM +M
(gg)
BSM|2 δ(x1x2s−M2

WW )×

× fg(x1, pt,veto) fg(x2, pt,veto) . (6.9)

The two main ingredients entering L(0)
gg are:

• the SM amplitude M (gg)
SM for the production of a WW pair (and its decay products)

through gluon fusion, which can be supplemented with an additional contribution

M
(gg)
BSM accounting for BSM effects;

• the gluon density in the proton fg(x, µF ) at the factorisation scale µF = pt,veto.

This value of µF reflects the fact that the factorisation scale is the highest scale

up to which the considered observable is inclusive with respect to multiple collinear

emissions from the initial-state partons. Since all collinear emissions with a trans-

verse momentum above pt,veto are vetoed, the factorisation scale has to be pt,veto (see

e.g. [3] for a formal derivation).

By comparing eq. (6.7) to eq. (6.6), G2(αsL) resumming all NLL contributions:

G2(αsL) =
L(0)
gg (L,MWW )

L(0)
gg (0,MWW )

eg2(αsL) . (6.10)

So far, with the exception of ref. [122], such resummations have been obtained by

devising process-dependent codes that produce numerical results for L(0)
gg (L,MWW ). For

5Note that, since jet-veto measurements do not keep track of any correlation between the angle of the

jet and the outgoing leptons, the logarithmically enhanced contributions due to the helicity of incoming

gluons described in [132] are not present in our case, so eq. (6.9) is valid as is.
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instance, the program JetVHeto [130] returns NNLL resummations integrated over the

full phase space of the decay products of a Higgs or a Z boson. However, the luminosity

in eq. (6.9) can be obtained by running any Born-level event generator. In fact, any

such program will compute a Born-level cross-section in WW production via gluon fusion

(possibly with BSM contributions) starting from the formula:

dσ
(0)
gg

dΦleptonsdM
2
WW

=

∫
dx1dx2 |M (gg)

SM +M
(gg)
BSM|2 δ(x1x2s−M2

WW )×

× fg(x1, µF ) fg(x2, µF ) = L(0)
gg (0,MWW ) , (6.11)

where µF here is the default factorisation scale in the considered Born-level generator.

Therefore, to obtain the differential distribution in eq. (6.7), it is enough to set that

factorisation scale µF to pt,veto, and multiply the weight of each phase-space point by

exp[Lg1(αsL) + g2(αsL)]. Note that, if the programs returns event files with information

on MWW for each event, or if one produces histograms binned in MWW , the reweighting

can be performed without any need to touch the Born-level generator code.

6.3 Quark-antiquark annihilation (SM only)

Since SM background processes are typically known at least to NLO, in the presence of a

jet veto, the SM cross-section for WW production can be computed at NNLL accuracy.

The corresponding NNLL resummed expression is given by

dσNNLL
qq̄ (pt,veto)

dΦleptonsdM
2
WW

=
(
L(0)
qq̄ (L,MWW ) + L(1)

qq̄ (L,MWW )
)
×

× (1 + Fclust(R) + Fcorrel(R))× eLg1(αsL)+g2(αsL)+
αs
π
g3(αsL) , (6.12)

where again L = log(MWW /pt,veto), αs = αs(MWW ), and dΦleptons is the lepton phase

space defined in eq. (6.8). The functions g1, g2 and g3 are reported in [93], and are the

same as for Drell-Yan production. The dependence on the jet radius R appears for the first

time at NNLL accuracy in the functions Fclust(R), Fcorrel(R), whose explicit expressions

can be found in [92].

At NNLL accuracy we have two process-dependent “luminosities” L(0)
qq̄ and L(1)

qq̄ . The

luminosity L(0)
qq̄ is the analogue of L(0)

gg of eq. (6.9), this time for a qq̄ initiated process:

L(0)
qq̄ (L,MWW ) =

∑
i,j

∫
dx1dx2|M (qq̄)

ij |2δ(x1x2s−M2
WW )fi(x1, pt,veto) fj(x2, pt,veto) .

(6.13)
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The only difference with respect to L(0)
gg is the LO SM amplitude M (qq̄)

ij , which is different

from zero only if i, j is a quark-antiquark pair with the same flavour.

At NNLL accuracy we need to add the luminosity L(1)
qq̄ , which is of relative order αs

with respect to L(0)
qq̄ , and is given by

L(1)
qq̄ (L,MWW ) =

∑
i,j

∫
dx1dx2|M (qq̄)

ij |2δ(x1x2s−M2
WW )× (6.14)

×
[
fi(x1, pt,veto) fj(x2, pt,veto)

αs(MWW )

2π
H(1)+

αs(pt,veto)

2π

∑
k

(∫ 1

x1

dz

z
C

(1)
ik (z)fk

(x1
z
, pt,veto

)
fj(x2, pt,veto) + {(x1, i) ↔ (x2, j)}

)]
.

(6.15)

Here new ingredients appear:

• one-loop virtual corrections toWW production. They are included in the term H(1),

the coefficient of αs(MWW );

• coefficient constants arising from real collinear radiation. They are included in the

terms C(1)
ik (z), whose explicit expressions can be found in ref. [93], and are the same

as for Drell-Yan production. They multiply αs(pt,veto), which reflects the fact that

the characteristic scale of collinear radiation in jet-veto cross sections is pt,veto.

With reference to eq. (6.6), the function G2 resumming NLL contributions is

G2(αsL) =
L(0)
qq̄ (L,MWW )

L(0)
qq̄ (0,MWW )

eg2(αsL) , (6.16)

whereas the function G3 resumming NNLL contributions is

G3(αsL) =
eg2(αsL)

αsL(0)
qq̄ (0,MWW )

[
L(1)
qq̄ (L,MWW )

+L(0)
qq̄ (L,MWW )

(
Fclust(R) + Fcorrel(R) +

αs

π
g3(αsL)

)]
. (6.17)

As explained in the previous section, the function L(0)
qq̄ can be obtained from an ap-

propriate Born-level program. The function L(1)
qq̄ instead represents a correction to L(0)

qq̄ of

relative order αs, that cannot be obtained from a LO calculation. A viable possibility to

perform NNLL resummation would be to modify eq. (6.9) so that it includes the convo-

lutions over the variable z in eq. (6.14), and implement the modification in a Born-level

generator. This is the approach taken in ref. [122], and in some way underlying the current

implementation of the JetVHeto program [130]. Here we want to present an alternative
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procedure. First, let us consider how the NLO WW cross section is calculated in a NLO

event generator:

dσNLO
qq̄ (pt,veto)

dΦleptonsdM
2
WW

=
dσ

(0)
qq̄

dΦleptonsdM
2
WW

+
dσ

(1)
qq̄,v+ct

dΦleptonsdM
2
WW

+
dσ

(1)
qq̄,r

dΦleptonsdM
2
WW

. (6.18)

The first term in the sum is the LO SM cross section dσ
(0)
qq̄ /dΦleptonsdM

2
WW = L(0)

qq̄ (0,MWW ).

The last term, dσ(1)qq̄,r/dΦleptonsdM
2
WW , represents NLO corrections coming from the emis-

sion of an extra parton. They include the counterterms needed to ensure their finiteness

in four space-time dimensions. The second term, dσ(1)qq̄,v+ct/dΦleptonsdM
2
WW , gives NLO

corrections arising from the sum of virtual corrections, and the counterterms integrated

over the full extra-parton phase space. This contribution lives in the same phase-space as

the Born contribution, and is of relative order αs. It has the form

dσ
(1)
qq̄,v+ct

dΦleptonsdM
2
WW

=
αs(µR)

2π

∑
i,j

∫
dx1dx2|M (qq̄)

ij |2δ(x1x2s−M2
WW )

[
fi(x1, µF ) fj(x2, µF ) H̃(1)+

∑
k

(∫ 1

x1

dz

z
C̃

(1)
ik (z)fk

(x1
z
, µF

)
fj(x2, µF ) + {(x1, i) ↔ (x2, j)}

)]
.

(6.19)

In the above equation, µR, µF are the renormalisation and factorisation scales used by

the NLO generator, H̃(1) represents virtual corrections to qq̄ → WW , and C̃
(1)
ik (z) the

integrated counterterms. The explicit expressions of H̃(1) and C̃
(1)
ik (z) depend on their

actual implementation in the NLO generator, in particular on the employed subtraction

scheme. However, the form of eq. (6.19) is the same as that of the NNLL luminosity

L(1)
qq̄ (L,MWW ) in eq. (6.14). Therefore, by comparing eqs. (6.14) and (6.19), we find

that L(1)
qq̄ (L,MWW ) can be implemented in a NLO event generator by performing the

replacements

αs(µR)

2π
H̃(1) → αs(MWW )

2π
H(1) ,

αs(µR)

2π
C̃

(1)
ik (z) → αs(pt,veto)

2π
C

(1)
ik (z) ,

(6.20)

and by evaluating the parton distribution functions at the factorisation scale µF = pt,veto.

Finally, in order to obtain the resummed distribution in eq. (6.12), we need to reweight

each phase space point by

(1 + Fclust(R) + Fcorrel(R)) e
Lg1(αsL)+g2(αsL)+

αs
π
g3(αsL) . (6.21)

This rescaling can also be performed when constructing histograms, as long as one has

access to MWW for each bin, or for each event in an event record.
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We have implemented this procedure in the code MCFM-RE [133], a suitable modification

of the NLO program MCFM [134]. The actual implementation is richer than what has

been discussed so far, because it allows a user to change the default renormalisation and

factorisation scales, and contains additional features. Since these details are not relevant

for a general discussion, we have omitted them here. The interested reader is referred

to appendix D.1 for the actual formulae we implement, and to appendix D.2 for a short

manual of the code.

In the following two sections, we use this implementation to produce numerical results

and sensitivity studies for an explicit BSM model.

6.4 Numerical results

Let us discuss first our results for WW production via qq̄ annihilation. We consider W

pairs produced at the LHC with
√
s = 13TeV, specifically W+W− → e+νeµ

−ν̄µ and

W+W− → µ+νµe
−ν̄e, and select the final state according to a simplified version of the

experimental cuts of ref. [96], reported in table 6.1. Jets are reconstructed according to

the anti-kt algorithm [37] with a jet radius R = 0.4. In table 6.1 we encounter the newly

Fiducial selection requirement Cut value

p`T > 25GeV

|y`| < 2.5

Meµ > 10GeV

Number of jets with pT > 30GeV 0

E/T,Rel > 15GeV

E/T > 20GeV

Table 6.1: Definition of theWW → eµ fiducial phase space, where p`T , y` are the transverse

momentum and rapidity of either an electron or a muon, Meµ is the invariant mass of the

electron-muon pair, E/T is the missing transverse energy, and E/T,Rel is defined in eq. (6.22).

introduced observable E/T,Rel, which is defined as follows [135]:

E/T,Rel =


E/T sin∆φ , if ∆φ ≤ π

2

E/T , if ∆φ > π
2

(6.22)

with ∆φ = min (|φe − φMET|, |φµ − φMET|), and φe, φµ and φMET the azimuthal angle of

the electron, the muon and the missing transverse energy respectively.
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In our analysis, we omit b quark-initiated contributions to pp → WW . At LO, the

bb̄ scattering subprocess contributes only 1% to the cross section. The gb and gb̄ subpro-

cesses, which enter at NLO QCD increase the NLO cross section by a factor 1.5. This

large increase is due to graphs like gb → W−(t → W+b). Such graphs feature a resonant

top quark propagator, which effects an enhancement of O(mt/Γt) = O(102), which com-

pensates the O(1%) suppression due to the b PDF, and altogether an O(1) contribution

is obtained. This contribution is commonly attributed to Wt production and decay (at

LO QCD) [136], and hence has to be omitted in the NLO QCD corrections to WW pro-

duction, which we consider here. We note that this treatment is somewhat ad-hoc, the

most consistent way to perform this calculation would be to use the four-flavour scheme,

where there are only four massless flavours of quark. In such a scheme the resonant top

diagrams are explicitly absent at this order in perturbation theory. However MCFM makes

use of the five-flavour scheme for di-boson production leading to the above prescription.

We now produce both NLO, NNLL resummed, and matched NLO+NNLL (with the

matching procedure explained in appendix D.1.3) predictions for the differential distri-

bution dσ/dMWW using PDF4LHC15 parton distribution functions (PDFs) at NLO [137],

accessed through LHAPDF6 [138], corresponding to αs(MZ) = 0.118, and we set both

renormalisation and factorisation scales atMWW /2, as customary in Higgs precision stud-

ies [139]. We note that the observable dσ/dMWW is of theoretical interest only, because we

do not have access to the momenta of the neutrinos. We will consider related observables

that are experimentally accessible after our discussion of MWW . Fig. 6.1 shows the differ-

ential cross section in the invariant mass MWW of the WW pair. We first note that both

NLO and NNLL+NLO are both smaller than the LO, as expected due to the presence of

a jet veto, with the suppression with respect to LO increasing with MWW . This implies

that, in this situation, a naive Born-level calculation fails to capture this effect and that,

in the absence of a resummation, one should use at least a NLO prediction. NNLL+NLO

gives a mild extra suppression with respect to NLO, revealing that logarithms are not par-

ticularly large in the considered kinematical region. However, we note that the difference

between pure NNLL resummed and matched NNLL+NLO (the so-called “remainder”),

which contains the part of the NLO which is not enhanced by logarithms, is basically

negligible. This means that the resummation alone is very close to the best prediction we

have at this order. This is remarkable in view of the fact that to obtain NNLL predictions

we need to perform a calculation with Born-level kinematics. On the contrary, the com-

putational cost of the NLO calculation is larger due to the presence of an extra emission,
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Figure 6.1: The differential distribution dσ/dMWW in the Standard Model, computed at

different accuracies, and for the cuts described in the main text.
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without any significant gain in accuracy compared to the NNLL prediction.

To complete our discussion of the qq̄ channel, we compare our predictions to those

obtained from SCET via the program aMC@NLO-SCET of ref. [122]. The comparison is

shown in Fig. 6.2. Our results contains theoretical uncertainties evaluated both with the
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Figure 6.2: The differential distribution dσ/dMWW in the Standard Model, computed with

our method, and with the program aMC@NLO-SCET [122]. See the main text for details.

most recent jet-veto efficiency (JVE) method [140] at the relevant accuracy (the wider,

lighter band), and pure scale variations (the tighter, darker band). The details of both

prescriptions can be found in appendix D.1. The SCET prediction corresponds to the

default scale choices, and is at the boundary of scale variation uncertainties and well

within JVE uncertainties. We remark that we do not expect perfect agreement, because,

although both methods share the same formal accuracy, they differ in the treatment of

subleading effects.

A last comment on uncertainties is in order here. Within MCFM, we do not have access to

NNLO calculations for di-boson production, so we cannot match our resummed predictions

to NNLO. As a result of this, the JVE method may be overly conservative, due to the

largish (∼ 1.5) K-factor of the WW inclusive total cross-section, which propagates in the

evaluation of the uncertainty according to the JVE method. If we were to match to NNLO,
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the JVE uncertainty would be reduced, and, as happens for Higgs production [93], would

probably be much closer to plain scale uncertainties.

In order to have a specific example of a BSM theory that implements the effective

operator of eq. (6.1), we consider the following modification of the SM Lagrangian [141]:

L ⊃ −κt
mt

v
ht̄t+ κg

αs

12π

h

v
Ga

µνG
µν
a , (6.23)

with t, h, Ga
µν the top field, the SM Higgs field, and the gluon field strength respectively.

The SM corresponds to (κt, κg) = (1, 0), and in this section we will only explore BSM

scenarios such that κt + κg = 1, which ensures that the Higgs total cross section stays

unchanged (modulo quark-mass effects, which give a correction of a few percent [140]).

Such modifications of the SM Lagrangian has only an appreciable affect the gluon-fusion

contribution to di-boson production. Their effect has been investigated before for the

case of ZZ production [116], where one does not need to impose a jet veto to suppress

unwanted background. Here we wish to study how the presence of a jet veto, required for

studies of WW production, affects the relative size of a BSM contribution with respect to

the SM background. We consider the three benchmark scenarios studied in ref. [116], i.e.

(κt, κg)SM = (1, 0) , (κt, κg)BSM1 = (0.7, 0.3) , (κt, κg)BSM2 = (0, 1) . (6.24)

First, in Fig. 6.3 we compare the loop-induced gluon fusion contribution to the MWW

distribution at LO, which is what is given by default by any automated Born-level event

generator, with the NLL analytic resummation, which gives the best modelling of jet-

veto effects at the currently available accuracy. Our best qq̄ prediction is also shown

for comparison. We see that, if we include resummation effects, the cross section for each
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Figure 6.3: The differential cross section dσ/dMWW for the three benchmark scenarios of

eq. (6.24), at LO (left) and at NLL (right) accuracy.
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benchmark point is reduced by almost an order of magnitude in the tail of the distribution,

where BSM effects start to become important. We then investigate more quantitatively

how this impacts the deviations we might observe with respect to the SM, by plotting the

quantity

δ(MWW ) =
dσBSM

gg /dMWW − dσSMgg /dMWW

dσqq̄/dMWW
. (6.25)

In the above equation, dσBSM
gg is computed according to eq. (6.7), dσSMgg differs from dσBSM

gg

by the fact that the BSM contribution to the amplitude (MBSM
gg in eq. (6.9)) is set to zero,

and dσqq̄ follows from eq. (6.12). Fig. 6.4 (left) shows δ(MWW ) for the benchmark point

(0.7, 0.3). We first note the growth of this quantity with energy, as expected from the

effective nature of the ggH vertex. Fortunately, the growth persists after including jet-

veto effects through NLL resummation, however the deviation from the SM reduces from

the 1% that one would obtain using fixed-order calculations (see fig. 6.3) to fractions of a

percent. The same quantity shown in the right panel of fig. 6.4 for the benchmark point

(0.0, 1.0) displays qualitatively the same behaviour, although the deviation is a factor ten

bigger. We see that, in the presence of jet-veto restrictions such as the one in the ATLAS

cuts [96], one is bound to use a theoretical tool that resums large logarithms. This could

be either resummed predictions, or simulations with parton-shower event generators. We

will first consider resummed predictions and then the predictions of parton-shower event

generators.
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Figure 6.4: The relative difference between BSM and SM dσ/dMWW defined in eq. (6.25)

for the two benchmark scenarios (κt, κg)BSM1 (left) and (κt, κg)BSM2 (right). The la-

bels refer to the accuracy employed in the calculation of numerator and denominator in

eq. (6.25).

The variable δ(MWW ) is of theoretical interest only, because, as mentioned above, we
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do not have access to the momenta of the neutrinos. To have experimentally accessible

observables, we consider differential distributions in MT1 [142], MT2 [143] and MT3 [142],

three measurable variables that are strongly correlated with MWW

MT1 =

√
(MT,eµ + p/T)

2 − (~pT,eµ +~p/T)
2 , MT,eµ =

√
p2T,eµ +M2

eµ , (6.26a)

MT2 =
√
2pT,eµp/T(1− cos∆φeµ,miss) , (6.26b)

MT3 =

√
(MT,eµ +M/T)

2 − (~pT,eµ +~p/T)
2 , M/T =

√
p/2T +M2

eµ . (6.26c)

In the above equations, ~pT,eµ = ~pT,e + ~pT,µ, and M2
eµ = (pe + pµ)

2. The vector ~p/T
is the missing transverse momentum, defined as minus the vector sum of all detectable

particles. Note that, if no jets are present, as at Born-level and in NNLL resummed

predictions, ~p/T = −~pT,eµ. Last, ∆φeµ,miss is the azimuthal angle between ~pT,eµ and ~p/T.

The corresponding results for δ are shown in Fig. 6.5. We note that MT2 gives rise to
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Figure 6.5: The relative difference between BSM and Standard Model WW production,

differential in MT1 (left) and MT2 (right).

considerably larger deviations with respect to MT1. This is because low values of MT2 are

correlated to larger values of MWW , so MT2 effectively probes the MWW distribution in

the high-mass tail, where BSM effects are appreciable. However, this also means that the

differential cross section in MT2 is much smaller than that in MT1, as can be seen from

Fig. 6.6. Therefore, the discriminatory power of MT2 is only of use if we have a very large

number of events. We have also studied the variable MT3 defined again in ref. [143] and

first devised in ref. [144]. The distribution in this variable looks very similar to that of

2MT1, so the same discussion as for MT1 applies here.

We now compare our results to parton-level predictions from parton-shower event

generators, using existing tunes. In particular, for qq̄ we consider POWHEG [145–148]
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Figure 6.6: The distributions in M =MWW ,MT1,MT2 for the gg incoming channel.

matched to the AZNLO [127] tune of PYTHIA v8.230 [149], and aMC@NLO [150–154] matched

to PYTHIA, this time with the default parameters. To investigate the dependence on

the shower algorithm, we also consider the parton shower HERWIG v7.1.0 [155, 156]

matched as POWHEG+HERWIG, and aMC@NLO+HERWIG, both with the default parameters.

For POWHEG+PYTHIA, we use the PDF set by the AZNLO tune, i.e. CT10 [157] for POWHEG

and CTEQ6L1 [158] for the parton shower. For consistency, we use CT10 everywhere for

POWHEG+HERWIG. For POWHEG+HERWIG, we also performed runs with default shower PDFs,

and noted no significance difference in the resulting distributions. For all the aMC@NLO

runs we use PDF4LHC15 PDFs, both for the generation of the hard configurations and the

shower.

The comparison of resummation with event generators is shown in Fig. 6.7 for the SM

(for qq̄ → WW and gg → WW separately), and in Fig. 6.8 for the two BSM scenarios

considered above. Resummed predictions include an estimate of theory uncertainties at the

appropriate accuracy, as explained in appendix D.1.3. Note that, due to the missing NLO

total cross-section for the incoming gg channel, JVE and scale uncertainties for gg →WW

are of comparable size, with the JVE ones slightly larger. We first observe that, both for

qq̄- and for gg-initiated WW production, all event generators agree with the resummation

within its uncertainties. For qq̄, where we can match parton-shower predictions to NLO,

POWHEG+PYTHIA shows a remarkable agreement with the resummation, but other event

generators give comparable results. We note that predictions obtained with aMC@NLO show

a slightly different trend with MWW . In particular aMC@NLO+PYTHIA is slightly above our
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Figure 6.7: Analytical predictions for the SM distribution in the invariant mass of a WW

pair, compared to results from various parton-shower event generators, corresponding to

the details given in the main text.
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central prediction at low MWW , and a bit lower at high MWW , whereas aMC@NLO+HERWIG

shows the same trend but is everywhere lower than our predictions.

In the gg case, both for the SM and the considered BSM scenarios, we can only

compare to unmatched parton-showers results, as no NLO calculation is available. We

observe that PYTHIA is in better agreement with our predictions at large values of MWW ,

whereas HERWIG’s predictions have the same shape as ours, but are systematically lower

by about 10%. Overall, there is agreement between our predictions and parton showers

within uncertainty bands, so the latter can be reliably used for this process. We remark

that parton-shower predictions not only have lower formal accuracy, but are also much

more expensive computationally. Hence it might be lengthy to assess with those tools if

a range of BSM parameters leads to sizeable deviations from the SM, whereas with our

numerical implementation such analyses could be performed at the cost of an unshowered

Born-level calculation.
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Figure 6.9: Impact of different cuts on the jets on dσ/dMWW in the SM for qq̄ (left)

modelled with POWHEG+PYTHIA and gg (right) modelled with plain PYTHIA.

We now investigate the impact of actual ATLAS cuts on the jets with respect to the

simplified cuts in table 6.1. First, ATLAS vetoes only jets with |y| < 4.5. This does

not cause problems for our resummed calculation because, according to the arguments in

ref. [159], it just limits its validity to the range log(MWW /pt,veto) < 4.5, which is within

the region we consider. However, ATLAS employs an additional cut on the jets, vetoing
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Figure 6.10: Impact of hadronisation and underlying event on dσ/dMWW in the SM

for qq̄ (left) modelled with POWHEG+PYTHIA and gg (right) modelled with plain PYTHIA.

The fluctuations in the right plot are due to statistical uncertainties in the Monte Carlo

samples.
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also jets with pT > 25GeV and |y| < 2.5. If we compute dσ/dMWW with the cuts in

table 6.1, we miss a contribution of order exp[−C(αs/π)∆y log(30GeV/25GeV)]6, with

C = CF or C = CA according to whether we have quarks or gluons in the initial state

and ∆y the size of rapidity region in which the jet veto cuts differ, in this case ∆y = 5.

This contribution is formally NNLL, because the rapidity region where ATLAS applies

a more stringent jet-veto cut does not increase with increasing MWW , for fixed pt,veto.

Last, the definition of E/T,Rel used to define the cuts in table 6.1 considers only leptons,

whereas ATLAS considers all reconstructed particles, including jets. This leads to small

NNLL corrections that depend on the area in the y-φ plane occupied by the rejected jets.

We study these effects using parton-shower event generators. In particular, in fig. 6.9 we

assess the impact of different cuts on the jets on dσ/dMWW , using parton shower event

generators at parton level, in particular we use POWHEG+PYTHIA for qq̄ and plain PYTHIA for

gg. We observe that the rapidity cut |y| < 4.5 has essentially no effect. On the contrary,

implementing the full ATLAS cuts gives a sizeable but constant extra suppression. This

is reasonable given that the jet veto cut imposed by ATLAS in the central region |y| < 2.5

is tighter than the one corresponding to our simplified cuts. Although the contribution

we miss is formally NNLL, for the values of MWW we consider here, the rapidity region

in which pt,veto = 25GeV is larger than that where pt,veto = 30GeV. Therefore, using our

simplified cuts to mimic the ATLAS cuts we miss a potentially large contribution. In the

case of gg, the suppression is larger with respect to qq̄ due to the larger colour factor of

the initial-state gluons with respect to the quarks.

Last, in fig. 6.10 we investigate the impact on dσ/dMWW of non-perturbative correc-

tions due to hadronisation and underlying event, using parton shower event generators.

Again we make use of POWHEG+PYTHIA for qq̄ and plain PYTHIA for gg. We observe that

hadronisation corrections are essentially negligible, which is expected since they scale like

inverse powers of the hard scale, in this case MWW . Corrections arising from the un-

derlying event are a few percent, smaller than the typical theoretical uncertainties of our

predictions.

To summarise, the effect with the greatest impact is the different jet-veto procedure

employed by ATLAS. This could be modelled more accurately, either by making use of

an effective pt,veto, or even better by performing a resummation of jet-veto effects with

rapidity cuts, as done in [161]. Both improvements are beyond the scope of the present

work.

6This naive estimate neglects the so-called non-global logarithms [160].
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6.5 Sensitivity studies

In this section, we compare the sensitivity of WW and ZZ production at HL-LHC (
√
s =

14TeV, with 3 ab−1 of integrated luminosity) to the BSM operator considered in eq. (6.1).

Here we consider only the decay ZZ → e+e−µ+µ−. First we present the best predictions

that could be obtained with the theoretical tools considered here, for a given choice of

observables for the two processes. For WW we choose MT1 in eq. (6.26a), and our best

prediction is NNLL for qq̄ →WW and NLL for gg →WW . For ZZ we considerMZZ , and

our best prediction is NLO for qq̄ → ZZ and LO for gg → ZZ. Note that the accuracy of

the predictions for qq̄ annihilation for both WW and ZZ production can be improved to

include the most recent NNLO calculations of refs. [162–166]. For gluon fusion, full NLO

corrections have yet to be calculated, although approximate results are available [167–173]
7. While the inclusion of NNLO corrections to ZZ is straightforward, and can be obtained

by running the code MATRIX [163, 164, 166, 174–176], the use of NNLO corrections toWW

requires matching of fixed-order predictions to the NNLL resummation. Although this

can be achieved by interfacing the NNLL resummation to MATRIX, it is technically more

involved than the simple procedure described in section 6.3. Therefore, we leave matching

to NNLO to future work. The differential distributions in MT1 and MZZ are shown in

figure 6.11. We observe that, in the qq̄ channel, the cross section dσ/dMT1 with a jet-veto
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Figure 6.11: Our best predictions for the differential distributions dσ/dMT1 for WW

production with the experimental cuts in table 6.1 (left) and dσ/dMZZ for ZZ production

with the cuts in ref. [177] (right) for qq̄ and gg processes.

7The two-loop diagrams with internal masses have not yet been calculated. Thus the contribution of

third generation quarks to the gg → W+W− matrix element must either be neglected or approximated by

another massless generation.
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is comparable to the cross section dσ/dMZZ where no jet veto is applied. We note that,

even with a jet veto, the qq̄ background is much larger in the WW case. Therefore, we

naively expect WW to perform slightly worse than ZZ for exclusion of BSM effects.

To be more quantitative, we generate exclusion plots for a range of values of the

parameters κt and κg entering the Lagrangian of eq. (6.23). To do this we ask ourselves

how likely it is that predictions corresponding to different values of (κt, κg) are compatible

with data that agree with the SM. Quantitatively, given a value of (κt, κg), we compute

ni(κt, κg), the expected number of events in bin i of the distribution in a suitable leptonic

observable. Specifically, we choose MT1 for WW production and MZZ for ZZ. Given a

set of data points {ni}i=1,...,N , and a given value of (κt, κg), we define

χ2(κt, κg) ≡
∑
i

(ni(κt, κg)− ni)
2

ni
, (6.27)

and from that we construct our test statistic

∆χ2(κt, κg) ≡ χ2(κt, κg)− χ2(κ̂t, κ̂g) , (6.28)

where (κ̂t, κ̂g) are the values of (κt, κg) that minimise χ2(κt, κg). This test statistic is a

good approximation to the usual log-likelihood ratio for counting experiments [70] in the

limit of a large number of events, and in the assumption that there are no correlations

between bins. Assuming ni(κt, κg) is the expected number of events, in the denominator

of eq. (6.27) we can approximate ni ' ni(κt, κg). Therefore, ∆χ2(κt, κg) is asymptotic-

ally distributed according to a chi-squared distribution with two degrees of freedom (see

e.g. [178]), which we denote by f(∆χ2(κt, κg) | κt, κg).

We now consider data {ni}i=1,...,N generated in such a way that the expected number

of events in each bin is the “central” SM prediction, corresponding to µR = µF = Q =

MWW /2 for WW and µR = µF = MZZ/2 for ZZ, which we denote with n̄i(1, 0). This

constitutes our “background-only” hypothesis. We now set exclusion limits in the (κt, κg)

plane using the median significance [70, 179], assuming those data, with which one reject

the hypothesis corresponding to each value of (κt, κg) (our “signal” hypothesis). More

precisely, for each value of (κt, κg), we construct the distribution in ∆χ2(κt, κg) under the

assumption of the background-only hypothesis, which we denote by f(∆χ2(κt, κg) | 1, 0).

We then compute the median of that distribution, which we denote with ∆χ2
med(κt, κg).

The p-value for each (κt, κg) is given by

p(κt, κg) =

∫ ∞

∆χ2
med(κt,κg)
f(∆χ2 | κt, κg) d

(
∆χ2

)
, (6.29)

and we exclude at the 95% confidence level all (κt, κg) such that p(κt, κg) < 0.05. In

practice, we have binned the variablesMT1 andMZZ in such a way that, when computing
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∆χ2
med(κt, κg), in the denominator of eq. (6.27) we can always approximate ni with n̄qq̄i ,

the number of events obtained using central scales and the qq̄ subprocess only.

We first consider the case in which the expected number of events for the signal hy-

pothesis corresponds to n̄i(κt, κg). We have examined two cases, both corresponding to

di-boson invariant masses above the Higgs mass, so as to ensure to have complementary

information with respect to Higgs cross sections. In one case, we have considered only two

bins, a low-mass bin (200GeV < MT1,MZZ < 400GeV) and a high-mass bin containing

the rest of the distributions. The low-mass bin is more sensitive to κt, and the high-mass

bin to κg. The corresponding exclusion regions in the (κt, κg) plane are bounded by the

dashed contours in Fig. 6.12. We see that WW is complementary to ZZ for low values
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Figure 6.12: Exclusion contours at 95% level for WW and ZZ production. See the main

text for details.

of κt, whereas the sensitivity to κg of ZZ is larger. This can be understood from fig-

ure 6.11. Note that, despite the fact that the WW cross-section is larger, the presence of

the jet veto kills a good fraction of the gg signal, with the net effect that its cross-section

decreases with increasing MT1. In the ZZ case, where there is no suppression due to a
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jet veto, the contact interaction driven by κg is fully effective, and makes the gg signal

flatter with respect to the qq̄ background, thus giving a larger sensitivity to κg. We gain

sensitivity by considering a greater number of bins. For instance, we have considered 60

bins equally spaced from 200GeV to 1400GeV, and an extra bin containing the distri-

bution with larger values of MT1 or MZZ . The corresponding exclusion contours are the

solid lines in Fig. 6.12. For reference, we also plot the line κt + κg = 1, and three points

corresponding to the SM, and the scenarios BSM1 and BSM2 considered in the previous

section. We also draw bands corresponding to 95% confidence-level bounds on κt+κg and

κt obtained from ref. [180]. These give more stringent constraints than our observables,

which have nevertheless complementary sensitivity, since the analysis of ref. [180] probes

regions of di-boson invariant masses that we do not consider here. Also, having full con-

trol of theoretical predictions for both the signal and the background, our procedure is

suitable for optimisation of both the observables and the binning procedure, and is open

to improvements of the theoretical predictions.

The exclusion contours we have obtained so far do not take into account theoretical

uncertainties. Including theoretical uncertainties, the true theory value ni(κt, κg) will

differ from its central prediction n̄i(κt, κg) by some theoretical error δi, taken to lie in

some interval ∆i. In every bin, ni(κt, κg) will be the sum of a contribution n(qq̄)i arising

from quark-antiquark annihilation, and a contribution n(gg)i (κt, κg) arising from gluon fu-

sion. Denoting by ∆
(gg)
i (κt, κg) and ∆

(qq̄)
i the theoretical uncertainties on (respectively)

n
(gg)
i (κt, κg) and n(qq̄)i , and considering the fact that these predictions correspond to com-

pletely uncorrelated processes, we take the theoretical uncertainty on ni(κt, κg) to be given

by

∆i(κt, κg) =

√(
∆

(gg)
i (κt, κg)

)2
+
(
∆

(qq̄)
i

)2
. (6.30)

Therefore, the χ2 corresponding to a given value of (κt, κg, ~δ ≡ {δ1, δ2, . . . }) is given by

χ2
exp(κt, κg,

~δ) ≡
∑
i

(n̄i(κt, κg) + δi − ni)
2

ni
. (6.31)

In order to estimate the impact of theoretical uncertainties on our sensitivity contours, we

adopt the approach of ref. [178], and add to χ2
exp a Gaussian “theory term”, with a width

∆i(κt, κg)/2, as follows:

χ2
th(κt, κg,

~δ) ≡
∑
i

δ2i
(∆i(κt, κg)/2)

2 . (6.32)

The test statistic corresponding to (κt, κg) is then obtained by profiling with respect to ~δ,

i.e. computing

χ2(κt, κg) ≡ min
~δ

[
χ2
exp(κt, κg,

~δ) + χ2
th(κt, κg,

~δ)
]
. (6.33)
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For χ2
exp and χ2

th as in (6.31) and (6.32) this gives

χ2(κt, κg) =
∑
i

(n̄i(κt, κg)− ni)
2

ni + (∆i(κt, κg)/2)
2 . (6.34)

In other words, for a Gaussian theory term our treatment is equivalent to the common

prescription to combine theoretical and experimental errors in quadrature.8 With our

choice of bins, we can approximate ∆i(κt, κg) ' ∆
(qq̄)
i .

Before presenting sensitivity contours including theory uncertainties, it is worth com-

paring the impact of statistical and theoretical uncertainties. In the case of WW pro-

duction, theory uncertainties differ according to whether we use the efficiency method

described in appendix D.1.3, or we just perform 9-point scale variations in the resummed

cross section. In the former case, as can be seen from Fig. 6.7, relative theory uncertainties

are of order 40%, whereas in the latter they are of order 10%, with a mild dependence

on MWW . In both cases then ∆
(qq̄)
i roughly scales like ni. Therefore, by looking at the

denominator of eq. (6.34), we see that in the bins with larger ni, theory uncertainties

will dominate over statistical uncertainties (∼
√
ni), and hence these bins have very little

power to constrain (κt, κg). In the case of ZZ, theory uncertainties are smaller, around

5%, so all bins retain their constraining power. This is illustrated in Fig. 6.13. All contours

have been obtained with 61 bins, as explained above. The outer contour (dotted) corres-

ponds to WW production with theory uncertainties estimated with the JVE method. As

explained in sec. 6.4, the method is probably overly conservative, and the corresponding

contour cannot compete with the constraints from ZZ production. Note in particular that

large theoretical uncertainties affect mostly the bins with lowest values of MT1, which are

the most sensitive to κt. This explains why the JVE contour is so wide compared to the

others. The solid contours correspond to uncertainties obtained with the appropriate scale

variations, both for WW and for ZZ. Based on previous works on Higgs production with

a jet-veto [92, 93, 140], we believe that scale variations for WW give a realistic estimate of

the best theoretical uncertainties that could be obtained with a matching to NNLO with

the JVE method. We see that, taking into account theory uncertainties at the currently

achievable accuracy, WW does not have complementary constraining power with respect

to ZZ. However, the dashed curves, corresponding to all predictions fixed at their central

value without theory uncertainties, show that WW might compete with ZZ. We have

8In fact, (6.32) itself can similarly be obtained as follows: (i) introduce separate δ
(gg)
i and δ

(qq̄)
i para-

meters for the two components of ni(κt, κg), (ii) add separate Gaussian theory terms for the former, of

respective widths ∆
(gg)
i /2 and ∆

(qq̄)
i /2, (iii) define δi = δ

(gg)
i + δ

(qq̄)
i and rewrite the χ2 in terms of δ and

δ
(qq̄)
i , (iv) profile (minimise) the χ2 with respect to δ

(qq̄)
i . This again gives the expression (6.34).
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Figure 6.13: Exclusion contours at 95% level for WW and ZZ production, corresponding

to different ways of estimating theoretical uncertainties, see the main text for details.



135

therefore determined the necessary accuracy on WW production such that one obtains a

comparable sensitivity with ZZ. First, we have observed that, in the case of ZZ, adding

the NNLO contribution to qq̄ does not improve the overall theory accuracy, due to missing

higher orders in the gg channel. So we assume that the uncertainties on ZZ production

will remain the NLO ones, i.e. around 5%. The solid contour for WW in Fig. 6.14 corres-
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Figure 6.14: Exclusion contours at 95% level for WW and ZZ production, corresponding

to an optimistic reduction of theoretical uncertainties, see the main text for details.

ponds to an estimated theoretical uncertainty of 3% in every bin, which is approximately

the one you need for WW to be competitive with current ZZ predictions. Based again

on previous work on Higgs production [140], such an uncertainty could be reached by

matching NNLL resummation to a future NNLO calculation for WW plus one jet, and

maybe even further decreased after an N3LL resummation. We note that improving ZZ

predictions hardly offers any stronger constraint. However, improved predictions for the

gg channel, both for WW and ZZ, might move the central prediction, and may open up

further space for constraints.

We conclude this section with a comment on the actual implementation of the calcu-

lation of χ2(κt, κg). If we consider the numerator of χ2(κt, κg) in eqs. (6.27) and (6.34),
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we see that it involves n(gg)i (κt, κg). This quantity is a second-order polynomial in κt and

κg, arising from the square of the matrix element

M
(gg)
SM +M

(gg)
BSM = κtM

(gg)
t + κgM

(gg)
g +M (gg)

c , (6.35)

where M (gg)
t and M (gg)

g are the contributions of the Higgs produced via a top loop and a

contact interaction respectively, and M (gg)
c the remaining contributions, giving rise to the

so-called “continuum” background. The fact that we have full control over M (gg) allows

us to compute the coefficient of each power of κt and κg separately, and once and for all.

This is crucial for an accurate calculation of χ2(κt, κg), because a naive implementation of

this quantity might involve cancellations between large numbers, whose control requires

Monte Carlo samples with large statistics.

6.6 Conclusion

We have studied the impact of a veto on additional jets on setting limits on the coupling

of a dimension-6 operator affecting WW production. In the presence of such a veto, large

logarithms of the ratio of the maximum allowed jet transverse momentum pt,veto and the

invariant mass of the WW pair MWW have to be resummed at all orders in QCD. These

logarithmically enhanced contributions give rise to the so-called Sudakov suppression of

cross sections with respect to naive Born-level predictions. The dimension-6 operator we

considered affects WW production via gluon fusion, but does not affect WW production

via quark-antiquark annihilation, which stays unchanged with respect to the SM. At Born

level, the effect of this operator amounts to a growth of the cross section at large values

of MWW . Unfortunately, the suppression due to the jet-veto gets larger with increasing

MWW . Also, such suppression affects gluon fusion more than quark-antiquark annihilation

due to the fact that gluons radiate roughly twice as much as quarks, so vetoing radiation

off gluons cuts a larger portion of cross sections. Therefore, enhancement due to a contact

interaction and Sudakov suppression are in competition.

To investigate quantitatively the impact of a jet veto on WW production, we have

devised a new method to interface the most accurate resummed predictions for the gg and

qq̄ channels to fixed-order QCD event generators. This procedure provides events that

are fully differential in the decay products of the WW pair, so that suitable acceptance

cuts can be applied. The method involves minimal modifications of the ingredients already

present in fixed-order event generators, and can be applied to the production of any colour

singlet. In particular, we have implemented the procedure in the fixed-order program MCFM,
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which resulted in the code we called MCFM-RE, a Resummation Edition of MCFM.

Our program MCFM-RE has been used to produce differential cross sections for WW

production with a simplified version of the ATLAS acceptance cuts, both in the SM, and

including BSM effects induced by the aforementioned dimension-6 contact interaction.

The main message is that, with the value of pt,veto used in current analyses, Sudakov

suppression effects dominate over the enhancement produced by a contact interaction, so

that deviations from the Standard Model are in general quite small for reasonable values

of the strength of the contact interaction.

We have compared our results with those obtained from a number of parton-shower

event generators, and we have found very good agreement. We have used parton-shower

event generators to estimate effects that cannot be not be taken into account by our

analytical calculation, and found that they have a small impact, well within our theory

uncertainties. We emphasise that our predictions have the computational cost of a Born-

level event generator, and provide full analytical control of theoretical uncertainties. Our

predictions are also in agreement, within uncertainties, with those obtained by interfacing

a SCET calculation with the same formal accuracy with aMC@NLO.

We produced projections for the sensitivity to the considered BSM effects for HL-LHC,

and compared with what could be obtained using ZZ production, which is not affected

by the presence of a jet veto. We have found that WW has complementary sensitivity,

provided it is possible to reduce theory uncertainties below 3%. This could be achieved by

both matching current resummed predictions with a future calculation of WW plus one

jet at NNLO, and improving the resummation to achieve N3LL accuracy. We hope this

work encourages further theoretical work in both directions. We remark that the main

advantage of using MCFM-RE for such studies compared to parton-shower event generators is

that we have access to amplitudes, so we can compute separately all terms contributing to

square matrix elements, in particular interference terms which can be computed separately

with an arbitrary numerical accuracy.

We have found that, with the current acceptance cuts, the observables we have con-

sidered are not yet competitive with Higgs total cross sections, although they do provide

additional information. However, our code does provide an accurate and fast tool to ex-

plore different choices of cuts and observables, so could be used for further studies in this

direction. Also, it makes it possible to implement other models of new physics affecting

the production of a colour singlet.

Last, our code is the only implementation of the jet-veto resummation of ref. [140]
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that is fully exclusive in the decay products of a colour singlet, so it can be used for

precision determinations of Standard Model parameters, notably those characterising the

Higgs boson.
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Chapter 7

Conclusion

The quest for ever increasing precision in elementary particle physics is a never ending

one, the discovery of new physics at higher energy scales demands that we know the QCD

background at the sub-percent level. We have contributed to this quest through our study

of the soft and collinear behaviour of QCD. We have provided better predictions of the

QCD background at the LHC for the study of processes that require a jet veto. And

we have been able to study at NNLL accuracy the D-parameter, a three-jet event-shape,

measured during the LEP era for the first time. The extension we have made to the ARES

framework offer new opportunities to study the phenomenology of interesting observables

at present and future colliders.

In Chapter. 4 we extended the ARES method to the calculation of three-jet event-shapes

in e+e− annihilation. We kept the presentation as general as possible so that any rIRC

safe observable can be computed. To account for additional sources of NNLL corrections

we introduced a new correction function δFs to account for the emission of soft wide angle

radiation. We encountered spin-correlations in the final-state for the first time, due to the

presence of a gluon in the final state of three-jet events. We were able to account for this

correlation by extending the definition of δFrec and for the case of e+e− → qq̄g we were

able to factorise the spin correlations into a terms that depends onto on the momentum of

the hard-collinear gluon ∆p` and a single function that depends on the Born configuration

Sp(ΦB). We re-derived the remaining multiple emission functions from first principles,

and were able to, for the most part, retain their previous definitions.

Following the considerations made in Chapter. 4, in Chapter. 5 we made use of the

newly extended ARES method to resum the D-parameter in near-to-planar three-jet events

at NNLL accuracy for the first time. The D-parameter is an additive observable and as

a result of this we were able to determine most of the ingredients for the resummation
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analytically, for the remaining pieces we determined their numerical value with simple

Monte Carlo methods. We were able to produce predictions that can be compared to

data taken by the ALEPH detector at LEP-1. And we made predictions for a future

e+e− collider. The commonly used log-R matching scheme does not work particularly

well for this observable and more aggressive matching schemes are needed to perform

comprehensive phenomenology.

In Chapter. 6 we took the results of the jet veto resummation of Ref. [92, 93] and

extended them to be differential in the leptonic final state. We devised a completely

general procedure to allow the interface of resummation and fixed-order event-generators.

We rely only on elements that must be present in all event-generators. We produced a

code, MCFM-RE, that demonstrates the method. The code interfaces the JetVHeto code [93]

with the fixed-order event-generator MCFM. This greatly extends the code of JetVHeto, it

can now be used to resum jet veto effects for any colour singlet final state at NNLL

accuracy, provided that the virtual corrections to the process are implemented in MCFM.

And we gain access to the phase space generation of MCFM, so we are able to produce

predictions that are differential in the leptonic final-states. Then we used the MCFM-RE

code to constrain the BSM operator Eq. (6.1). With the jet veto under control we are able

to examine how the WW channel impacts constrains on the operator. Previous studies

had only been able to consider ZZ, as there was no way to correctly account for the jet veto

effects. We discovered that WW , while somewhat complementary to constraints coming

from ZZ, is not particularly competitive. The situation is however dominated by the error

on the background prediction, with an N3LL resummation of the jet veto and matching

to N3LO fixed-order the bound could be made competitive. As an aside to this, using

MCFM as a matrix element provider gives us full control over the amplitudes. Using this

technique we were able to compute only the coefficients of the different contributions. This

makes our constraints very cheap to compute, as there is no need to run a parton-shower

event-generator for every parameter value of interest.

Looking to the future, our extension of the ARES framework to three-jet observables

encapsulates the majority of the work necessary for predictions of n-jet observables. The

opening of three-jet event phenomenology gives us access to new precision observables

that contribute to the precise determination of αs. Further, the D-parameter is not the

only three-jet event shape for which there exists interesting data, at ALEPH data for

thrust-minor was taken, and further work with ARES will enable us to study it for the first

time at NNLL accuracy.
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By making use of fixed-order event-generators as we have done in Chapter. 6 we gain

access to matrix elements and phase space generation. These can be interfaced with

resummed calculation, only now we can easily make these calculations differential in the

leptonic final-states, and we are able to consider many underlying hard processes for any

given observable provided that associated virtual corrections are includes in the event-

generator. We can use the well tested event-generation frameworks as a base for our

predictions, this way we need only concern ourselves with the performing resummation,

and the implementation follows very simply.

These extensions we have made to the ARES framework pave the way for interesting

studies on the phenomenology of multi-jet events and for increasingly exclusive resumma-

tion predictions.
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Appendix A

The SU(Nc) Lie Algebra

The SU(Nc) Lie group can be represented by Nc × Nc complex unitary matrices U,

meaning that U must satisfy U†U = I and detU = 1 where I is the identity matrix. An

infinitesimal group element U(~θ) can be written as

U(~θ) = I+ iθATA +O
(
θ2
)
, (A.1)

where we adopt the convention that U(~0) = I, θA are the parameters of the transformation

and the set of matrices TA are called the generators of the Lie group. The vector space,

su(Nc), spanned by the generators is referred to as a Lie algebra1. We can construct the

elements of the Lie group from the Lie algebra by making use of the exponential map

U(~θ) = exp
(
iθATA

)
. (A.2)

For a finite dimensional representation, the generators of su(Nc) are a set of traceless

Hermitian matrices. For a generic representation of su(Nc) we will denote the generators

by the matrix TA
r . The generators satisfy the Lie bracket

[TA
r , T

B
r ] = ifABCTC

r , (A.3)

where fABC are the structure constants of the Lie algebra. The structure constants are

unique to a given Lie algebra, irrespective of the chosen representation of the generators.

The uppercase indices run over A,B, . . . = {1, . . . , N2
c − 1}. The Lie bracket of Eq. (A.3)

must also satisfy the Jacobi identity

[TA
r , [T

B
r , T

C
r ]] + [TB

r , [T
C
r , T

A
r ]] + [TC

r , [T
A
r , T

B
r ]] = 0 . (A.4)

1Strictly a Lie algebra is a vector space g, together with a Lie bracket that satisfies the Jacobi identity.

So really, on its own, su(Nc) is just a vector space.
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However, in our case, we are only interested in two specific representations, the so

called fundamental (or defining representation) and the adjoint representation. These

representations correspond to the quarks and gluons respectively. For these specific rep-

resentations of su(Nc), we denote the generators by the matrices (tA)bc and (TA)BC for

the fundamental and the adjoint respectively. Here we make the connection between the

case of the indices and the associated representations. Uppercase indices are associated

with the adjoint and lowercase indices are associated with the fundamental and run over

a, b, . . . = {1, . . . , Nc}.

The generators of the fundamental representation, tA are provided by the eight Gell-

Mann matrices, tA = 1
2λ

A. And we construct the generators of the adjoint representation

from the structure constants, (TA)BC = −ifABC . The conventional normalisation for the

generators of su(Nc) is chosen to be

Tr
(
tAtB

)
= TR δ

AB , TR =
1

2
. (A.5)

Certain combinations of generators can yield quantities that are invariant under the action

of the Lie algebra. The simplest, and most useful of these comes from considering an

operator T 2
r ≡ TA

r T
A
r . This operator is an invariant and so it commutes with all the

generators of the Lie algebra, it is therefore proportional to the identity. We then write

this operator as T 2
r = CrI, where Cr is the quadratic Casimir. For the fundamental and

adjoint representations we have

(tA)ab(t
A)bc = CF δac , with CF =

N2
c − 1

2Nc
, (A.6)

(TA)BC(T
A)CD = CA δBD , with CA = Nc . (A.7)

This is all of the background on Lie groups and Lie algebras that is necessary to construct

the theory of the strong force. A more pedagogical review on the application of Lie groups

and Lie algebras to elementary particle physics can be found in any of the standard

textbooks on QFT, for example Refs. [181–184].
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Appendix B

The QCD Feynman Rules

p

B, ν A, µ
= i

−gµν + (1− ξ)p
µpν

p2

p2 + iε
δAB (B.1)

p

B A =
iδAB

p2 + iε
(B.2)

p

b a =
iδab

/p−m+ iε
(B.3)
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ΓA
µ =

A,µ

bc

= −igs(tA)bcγµ (B.4)

ΓABC
µνρ (p, q, r) =

p

r

q

A, µ

C, ρB, ν

= −igs(TA)BCVµνρ(p, q, r) (B.5)

ΓABCD
µνρσ =

A,µ B, ν

D, σC, ρ

= −ig2s


+fEACfEBD(gµνgρσ − gµσgνρ)

+fEADfEBC(gµνgρσ − gµρgνσ)

+fEABfECD(gµρgνσ − gµσgνρ)


(B.6)

ΓABC
µ =

p

r

q

A, µ

BC

= −igs(TA)BCrµ (B.7)

Vµνρ(p, q, r) = (p− q)ρ gµν + (q − r)µ gνρ + (r − p)ν gµρ , p+ q + r = 0 . (B.8)
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Appendix C

Resummation coefficients

C.1 Radiator

The renormalisation group equation for the QCD coupling constant is

dαs(µ
2)

d log µ2
= −α2

s(µ
2)

∞∑
n=0

βnα
n
s (µ

2) , (C.1)

where the coefficients of β(αs) are given by

β0 =
11CA − 4TRnF

12π
, (C.2)

β1 =
17CA − TRnF (10CA + 6CF )

24π2
, (C.3)

β2 =
2857C3

A + 2TRnF (54C
2
F − 615CFCA − 1415C2

A) + (2TRnF )
2(66CF + 79CA)

3456π3
.

(C.4)

The physical coupling αphys.
s is related to the MS coupling αMS

s as follows

αphys.
s = αMS

s

(
1 +

∞∑
n=1

(
αMS
s

2π

)n

K(n)

)
, (C.5)

where the set of coefficients K(n) are given by

K(1) = CA

(
67

18
− π2

6

)
− 10

9
TRnF , (C.6)

K(2) = C2
A

(
245

24
− 67

9
ζ2 +

11

6
ζ3 +

11

5
ζ22

)
+ 2TRnFCF

(
−55

24
+ 2ζ3

)
+ CATRnF

(
−209

54
+

20

9
ζ2 −

14

3
ζ3

)
− 4

27
(TRnF )

2

+
πβ0
2

(
CA

(
808

27
− 28ζ3

)
− 2TRnF

224

54

)
. (C.7)
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Minus the coefficient of δ(1− x) in the AP splitting functions is given by

γ(0)q = −3

2
CF , (C.8)

γ(0)g = −2πβ0 , (C.9)

γ(1)q = −CF

2

(
CF

(
4

3
− π2 + 12ζ3

)
+ CA

(
17

12
+

11π2

9
− 6ζ3

)
−2TRnF

(
1

6
+

2π2

9

))
, (C.10)

γ(1)g = 2TRnF

(
1

2
CF +

2

3
CA

)
− C2

A

(
8

3
+ 3ζ3

)
. (C.11)

The massless radiator r0` is composed of the g(`)i functions that are defined in Eq. (4.101),

and the massive radiator δr` is determined solely by δg(`). Their explicit expressions are

given by

g
(`)
1 (λ) =

1

2

(a+ b` − 2λ) log
(
1− 2λ

a+b`

)
− (a− 2λ) log

(
1− 2λ

a

)
πb`β0λ

, (C.12)

g
(`)
2 (λ) =

1

2

[K(1)
(
a log

(
1− 2λ

a

)
− (a+ b`) log

(
1− 2λ

a+b`

))
2π2b`β

2
0

+
β1(a+ b`) log

2
(
1− 2λ

a+b`

)
2πb`β

3
0

+
β1(a+ b`) log

(
1− 2λ

a+b`

)
πb`β

3
0

− β1
a log

(
1− 2λ

a

) (
log
(
1− 2λ

a

)
+ 2
)

2πb`β
3
0

]
, (C.13)

g
(`)
3 (λ) =

1

2

[
K(1)

β1

(
a2(a+ b` + 2λ) log

(
1− 2λ

a

)
− (a+ b`)

2(a− 2λ) log
(
1− 2λ

a+b`

)
+ 6b`λ

2
)

2πb`β
3
0(a− 2λ)(a+ b` − 2λ)

+

(
β21(a+ b`)

2(a− 2λ) log2
(
1− 2λ

a+b`

)
− 4b`λ

2
(
β0β2 + β21

))
2b`β

4
0(a− 2λ)(a+ b` − 2λ)

−
a log

(
1− 2λ

a

) (
2β0β2(a− 2λ) + aβ21 log

(
1− 2λ

a

)
+ 4β21λ

)
2b`β

4
0(a− 2λ)

+
(a+ b`) log

(
1− 2λ

a+b`

) (
β0β2(a+ b` − 2λ) + 2β21λ

)
b`β

4
0(a+ b` − 2λ)

−K(2) 2λ2

4π2(a− 2λ)(a+ b` − 2λ)β20

]
, (C.14)

δg
(`)
3 (λ) = −ζ2

λ

(a+ b` − 2λ)
, (C.15)

note that compared to the functions defined in Ref. [61], we have stripped away the colour

factor.
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Similarly we provide explicit expressions for the derivative of the soft radiator

r′NLL,`(λ) =
1

b`πβ0

(
log

(
1− 2λ

a+ b`

)
− log

(
1− 2λ

a

))
, (C.16)

r′NNLL,`(λ) =
αs(Q)

b`π2β
2
0(a− 2λ)(a+ b` − 2λ)

[
b`β0λK

(1) − 2πb`β1λ

− πa(a+ b` − 2λ)β1 ln

(
1− 2λ

a

)
+ π(a+ b`)(a− 2λ)β1 ln

(
1− 2λ

a+ b`

)]
, (C.17)

r′′NNLL,`(λ) =
αs(Q)

π

2

(a− 2λ)(a+ b` − 2λ)
. (C.18)

We note that we can build the derivatives of the radiator for each leg by restoring the

colour factors

R′
NLL,`(λ) = C` r

′
NLL,`(λ) , (C.19)

R′
NNLL,`(λ) = C` r

′
NNLL,`(λ) , (C.20)

R′′
NNLL,`(λ) = C` r

′′
NNLL,`(λ) . (C.21)

The hard-collinear radiator is composed of h(`)i functions that are defined in Eq. (4.103).

Their explicit expressions are given by

h
(`)
2 (λ) =

γ
(0)
`

2πβ0
log

(
1− 2λ

a+ b`

)
, (C.22)

h
(`)
3 (λ) = γ

(0)
`

β1

(
(a+ b`)

(
log
(
1− 2λ

a+b`

))
+ 2λ

)
2β20 (a+ b` − 2λ)

− γ
(1)
`

λ

2πβ0(a+ b` − 2λ)
. (C.23)

C.2 Scale variations

To vary the renormalisation scale we must expand all of the terms in the radiator, which

are functions of λ = αs(Q)β0 log
1
v , around λ̄ = αs(µR)β0 log

1
v . Keeping terms only up to

NNLL accuracy we find that in the soft radiator we must make the following replacements

for the g(`)i functions

g1(λ) → g1(λ̄, µ
2
R) = g1(λ̄) , (C.24)

g2(λ) → g2(λ̄, µ
2
R) = g2(λ̄) + λ̄2g′1(λ̄) log

µ2R
Q2

, (C.25)

g3(λ) → g3(λ̄, µ
2
R) = g3(λ̄) + π

(
β0λ̄g

′
2(λ̄) +

β1
β0
λ̄2g′1(λ̄) log

µ2R
Q2

)
+ π

(
β0λ̄

2g′1(λ̄) +
β0
2
λ̄3g′′1(λ̄)

)
log2

µ2R
Q2

. (C.26)
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For the derivative terms that appear in the soft radiator, we must make the following

replacements

r′NLL,`(λ) → r′NLL,`(λ̄, µ
2
R) = r′NLL,`(λ̄) , (C.27)

r′NNLL,`(λ) → r′NNLL,`(λ̄, µ
2
R) = r′NNLL,`(λ̄) + λ̄r′′NNLL,`(λ̄) log

µ2R
Q2

, (C.28)

r′′NNLL,`(λ) → r′′NNLL,`(λ̄, µ
2
R) = r′′NNLL,`(λ̄) . (C.29)

For the hard-collinear radiator we must make the following replacements

h2(λ) → h2(λ̄, µ
2
R) = h2(λ̄) , (C.30)

h3(λ) → h3(λ̄, µ
2
R) = h3(λ̄) + πβ0λ̄h

′
2(λ̄) log

µ2R
Q2

. (C.31)

Note that the ratio logµ2R/Q
2 is a feature of using λ and λ̄, if we were to use λij we would

pick up a term logµ2R/Q
2
ij instead.

Similar to the variation of µR we would also like to probe the dependence of the observ-

able on xV . We must perform similar set of replacements as we did for the renormalisation

scale. This time we wish to expand λ = αs(Q)β0 log
1
v around λ̂ = αs(Q)β0 log

xV
v . Keep-

ing terms only up to NNLL accuracy we find that in the soft radiator we must make the

following replacements for the g(`)i functions

g1(λ) → g1(λ̂, xV ) = g1(λ̂) , (C.32)

g2(λ) → g2(λ̂, xV ) = g2(λ̂) +
(
g1(λ̂) + λ̂g′1(λ̂)

)
(− log xV ) , (C.33)

g3(λ) → g3(λ̂, xV ) = g3(λ̂) + πβ0g
′
2(λ̂) (− log xV )

− πβ0

(
g′1(λ̂) +

1

2
g′′1(λ̂)

)
(− log xV )

2 . (C.34)

For the derivative terms that appear in the soft radiator, we must make the following

replacements

r′NLL,`(λ) → r′NLL,`(λ̂, xV ) = r′NLL,`(λ̂) , (C.35)

r′NNLL,`(λ) → r′NNLL,`(λ̂, xV ) = r′NNLL,`(λ̂) + r′′NNLL,`(λ̂) (− log xV ) , (C.36)

r′′NNLL,`(λ) → r′′NNLL,`(λ̂, xV ) = r′′NNLL,`(λ̂) . (C.37)

For the hard-collinear radiator we must make the following replacements

h2(λ) → h2(λ̂, xV ) = h2(λ̂) , (C.38)

h3(λ) → h3(λ̂, xV ) = h3(λ̂) + πβ0h2(λ̂) (− log xV ) . (C.39)
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C.3 Expansion coefficients

ΣNNLL(v) =

[
FNLL(λ)

(
1 +

αs(Q)

2π
H(1) +

∑
`

αs(v
1

a+b`Q)

2π
C

(1)
hc,`

)
+
αs(Q)

π
δFNNLL(λ)

]
×

× exp

[ ∞∑
n=1

n+1∑
m=0

Gnmᾱ
n
sL

m

]

=
∞∑
n=1

n+1∑
m=0

Hnmᾱ
n
sL

m .

(C.40)

Gnm =
∑
(ab)

G(ab)
nm +

∑
`

H(`)
nm . (C.41)

G12 = −
∑
(ab)

Cab

∑
`∈(ab)

1

a(a+ b`)
, (C.42a)

G11 = −
∑
(ab)

Cab

∑
`∈(ab)

2

a(a+ b`)
〈log d`g`〉 , (C.42b)

G10 = −
∑
(ab)

Cab

∑
`∈(ab)

1

a(a+ b`)

〈
log2 d`g`

〉
, (C.42c)

G23 = −
∑
(ab)

Cab

∑
`∈(ab)

4πβ0
3a2

(2a+ b`)

(a+ b`)2
, (C.42d)

G22 = −
∑
(ab)

Cab

∑
`∈(ab)

4πβ0
a2

(2a+ b`)

(a+ b`)2
〈log d`g`〉

−
∑
(ab)

Cab

∑
`∈(ab)

K(1)

a(a+ b`)
, (C.42e)

G21 = −
∑
(ab)

Cab

∑
`∈(ab)

π3β0
3

1

a+ b`

−
∑
(ab)

Cab

∑
`∈(ab)

2K(1)

a(a+ b`)
〈log d`g`〉

−
∑
(ab)

Cab

∑
`∈(ab)

4πβ0
a2

(2a+ b`)

(a+ b`)2
〈
log2 d`g`

〉
. (C.42f)
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H12 = 0 , (C.43a)

H11 = −
∑
`

2γ
(0)
`

(a+ b`)
, (C.43b)

H10 = 0 , (C.43c)

H23 = 0 , (C.43d)

H22 = −
∑
`

4πβ0
γ
(0)
`

(a+ b`)2
, (C.43e)

H21 = −
∑
`

2γ
(1)
`

a+ b`
. (C.43f)

C.4 Correlated two-parton emission

In the interest of completeness we reproduce Appendix. A of Ref. [61], the definition of

the double-soft block and the decomposition of the two-particle phase space into that of

a pseudo-parent and internal variables.

We start by decomposing the momenta of the two partons ka and kb as in Eq. (4.25).

We then introduce relative variables to parameterise the two-parton phase space, as follows

z(`)a = z z(`) , z
(`)
b = (1− z) z(`) ,

~qa =
~kta
z
, ~qb =

~ktb
1− z

,

(C.44)

in terms of which the Lorentz invariant phase-space in 4− 2ε dimensions becomes

[dka][dkb] =
1

(4π)2
dz(`)

z(`)
dz[z(1− z)]1−2ε d

2−2εqa
(2π)2−2ε

d2−2εqb
(2π)2−2ε

. (C.45)

Another useful change of variables is

~kt = ~kta + ~ktb , ~q = ~qa − ~qb , (C.46)

in terms of which the phase-space becomes

[dka][dkb] =
1

(4π)2
dz(`)

z(`)
d2−2εkt
(2π)2−2ε

dz[z(1−z)]1−2ε d2−2εq

(2π)2−2ε
= [dk]

dz[z(1− z)]1−2ε

4π

d2−2εq

(2π)2−2ε
,

(C.47)

where we have been able to factor out the phase space [dk] defined in Eq. (4.37). Last, we

can isolate the integration over φ, the angle between ~kt and ~q, and introduce

m2 ≡ (ka + kb)
2 = z(1− z)q2 , (C.48)
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to obtain yet another expression for the two-body phase space

[dka][dkb] = [dk]
dz[z(1− z)]−ε

(4π)2
dm2

(m2)ε
dΩ2−2ε

(2π)1−2ε
. (C.49)

The factor dΩ2−2ε is the azimuthal phase space for the vector ~q with respect to ~kt. Expli-

citly, this is given by

dΩ2−2ε =
(4π)ε

√
πΓ(12 − ε)

dφ(sin2 φ)−ε . (C.50)

where the relative angle φ in the range 0 < φ < π.

In terms of these variables, the correlated matrix element |M̃s,0(ka, kb)|
2
is given by

|M̃s,0(ka, kb)|
2
= (4παsµ

2ε
R )2

8C`

m2(m2 + k2t )
Cab(ka, kb) , (C.51)

where µR is the renormalisation scale, C` is the colour factor associated with the emitting

leg, and

Cab(ka, kb) = CA(2S +Hg) + 2TRnFHq . (C.52)

The contribution due to two final-state quarks in Eq. (C.52) has been multiplied by two,

to compensate for the overall 1/2! factor. The three functions S, Hg and Hq are the 4−2ε

dimensional counterparts of the homonymous terms defined in Ref. [82]. They depend

only on the dimensionless variables z, φ and µ2 ≡ m2/k2t . It is also useful to introduce

the rescaled momenta ~ui = ~qi/kt, such that

u2a = 1 + 2

√
1− z

z
µ cosφ+

1− z

z
µ2 , u2b = 1− 2

√
z

1− z
µ cosφ+

z

1− z
µ2 . (C.53)

In terms of these variables, we have

2S =
1

z(1− z)

[
1− (1− z)µ2/z

u2a
+

1− zµ2/(1− z)

u2b

]
(C.54a)

Hg = −4 + (1− ε)
z(1− z)

1 + µ2

(
2 cosφ+

(1− 2z)µ√
z(1− z)

)2

+
1

2(1− z)

[
1− 1− (1− z)µ2/z

u2a

]
+

1

2z

[
1− 1− zµ2/(1− z)

u2b

]
(C.54b)

Hq = 1− z(1− z)

1 + µ2

(
2 cosφ+

(1− 2z)µ√
z(1− z)

)2

. (C.54c)

Note that, in the limit µ2 → 0, we recover the azimuthally unaveraged splitting functions,

in particular

2S +Hg → 2

[
1

z(1− z)
− 2 + 2(1− ε)z(1− z) cos2 φ

]
, (C.55a)

Hq → 1− 4z(1− z) cos2 φ . (C.55b)
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C.5 Three-parton kinematics

We consider three momenta p1, p2, p3, with p1+p2+p3 = q = (Q, 0, 0, 0). Using a flavour-

based labelling, p1 is a quark, p2 an antiquark and p3 a gluon. We define the dimensionless

variables xi = 2(pi · q)/Q2 < 1, satisfying x1 + x2 + x3 = 2. In terms of these variables,

Ei = xi
Q

2
, 2(pi · pj) = (xi + xj − 1)Q2 . (C.56)

This makes it possible to write the angles between pairs of momenta in terms of the xi’s.

The three-parton cross section, differential in x1 and x2, in four dimensions reads

dσ

dx1dx2
= σ0CF

αs

2π

x21 + x22
(1−x1)(1−x2)

, (C.57)

with σ0 the Born cross section for producing a quark-antiquark pair in e+e− annihilation.

To obtain the Born three-jet cross section σ0(ycut) with the Durham algorithm [33] we

need to integrate the differential cross section in Eq. (C.57) with the constraint y3(p1, p2, p3) =

min{y12, y13, y23} > ycut, where yij is the “distance” between pairs of partons defined by

yij ≡ 2
min{E2

i , E
2
j }

Q2
(1− cos θij) = min

{
xi
xj
,
xj
xi

}
(xi + xj − 1) . (C.58)

The Durham algorithm defines a six-sided region in the (x1, x2) plane, as shown in Fig. C.1.
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Figure C.1: Durham algorithm three jet region
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The corresponding Born cross section σ(0)H is

σ
(0)
H = σ0CF

αs

2π

∫ 1

0
dx1

∫ 1

0
dx2

x21 + x22
(1−x1)(1−x2)

Θ(x1 + x2−1)Θ (min{y12, y13, y23}−ycut) .

(C.59)

This cross section can be computed analytically. Its expression, not particularly illumin-

ating, can be found in [185].

C.6 Full matching formulae

In our matching formulae ΣMat.
H (v) we normalise all of the distributions to the total cross

section σH. However this is not what is provided by NLOjet++, instead it provides the

un-normalised differential distribution for the D-parameter. We can transform the output

of NLOjet++ into our conventions as follows. First we compute the un-normalised, barred,

total cross section

Σ̄
(i)
NLOJet = −

∫ vmax

v
dv′

dΣ
(i)
NLOJet(v

′)

dv′
, (C.60)

where i refers to the power of αs in perturbation theory. To transform this result into our

conventions we perform the following manipulations

Σ̄
(1)
FO.(v) =

Σ̄
(1)
NLOJet(v)

σ
(0)
H

,

Σ̄
(2)
FO.(v) =

Σ̄
(2)
NLOJet(v)

σ
(0)
H

−
σ
(1)
H

σ
(0)
H

Σ̄
(1)
FO.(v) .

(C.61)

In terms of the barred variables we have

ΣFO.(v) =

2∑
i=0

Σ
(i)
FO.(v)

= 1 +
2∑

i=1

Σ̄
(i)
FO.(v) ,

(C.62)

and analogously for the expansion of the resummation

ΣExp.(v) =

2∑
i=0

Σ
(i)
Exp.(v) . (C.63)

Finally we can present the explicit form of our matched distribution in eq. (5.31)

ΣMat.(v) = (ΣRes.(v))
Z
[
1 + Σ̄

(1)
FO.(v)− ZΣ

(1)
Exp.(v)+

+Σ̄
(2)
FO.(v)− ZΣ

(2)
Exp.(v)− ZΣ

(1)
Exp.(v)

(
Σ
(1)
FO.(v)−

Z + 1

2
Σ
(1)
Exp.(v)

)]
.

(C.64)
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Appendix D

MCFM-RE

D.1 Collection of relevant formulae

In this appendix we report the explicit expressions that we have implemented in MCFM to

achieve NLL and NNLL resummation of the cross section for the production of a colour

singlet with a jet-veto. This discussion is of a technical nature, and we assume that the

reader is familiar with the details of the jet-veto resummations performed in refs. [92, 93,

140].

In general, we consider the production of a colour singlet of invariant mass M , for

instance a Higgs, a Z boson, or a pair ofW bosons. At Born-level, this proceeds via either

qq̄ annihilation or gluon fusion. We then compute the cross section dσi.s./(dM
2dΦn), with

i.s. = qq̄, gg, fully differential in the phase space of the decay products of the colour singlet.

Given their momenta q1, q2, . . . , qn, and incoming momenta p1 and p2, the phase space dΦn

is defined as

dΦn =

n∏
i=1

d3~qi
(2π)32Ei

(2π)4δ

(
p1 + p2 −

n∑
i=1

qi

)
, (D.1)

with Ei and ~qi the energy and three-momentum of particle qi.

Any prediction for dσi.s./(dM2dΦn) depends on the renormalisation scale µR at which

we evaluate the strong coupling αs, as well as the factorisation scale µF at which we

evaluate the PDFs. Both scales are typically set at values of orderM . Furthermore, in the

presence of a jet-veto, dσ(i.s.)/(dM2dΦn) is affected by large logarithms L ≡ log(M/pt,veto),

with pt,veto the maximum allowed transverse momentum of the observed jets. When

resumming such logarithms at all orders, our predictions become functions of L̃, defined

as

L̃ =
1

p
log

((
Q

pt,veto

)p

+ 1

)
. (D.2)
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The quantity L̃ is such that for large pt,veto, L̃ → 0, which implements the fact that,

in this regime, there are no large logarithms to be resummed. Also, at small pt,veto,

L̃ ' log(Q/pt,veto), so in fact we resum logarithms of the ratio of pt,veto and the so-called

resummation scale Q. The three scales µR, µF , Q are handles that we will use to estimate

theoretical uncertainties, as explained in app. D.1.3. The power p determines how fast the

resummation switches off at large pt,veto. We choose p = 5, as in refs. [92, 93, 140].

D.1.1 NLL resummation

At NLL accuracy, the distribution dσi.s./(dM
2dΦn) is given by

dσNLL
i.s.

dM2dΦn
= L(0)

i.s.(L̃,M) eL̃g1(αsL̃)+g2(αsL̃) , αs = αs(µR) . (D.3)

Explicit expressions for the functions g1, g2 can be found in the supplemental material of

ref. [93]. The NLL “luminosity” L(0)
i.s.(L,M) is given by

L(0)
i.s. (L,M) ≡

∑
i,j

∫
dx1dx2

∣∣∣M (i.s.)
ij

∣∣∣2 δ(x1x2s−M2)fi
(
x1, µF e

−L
)
fj
(
x2, µF e

−L
)
.

(D.4)

In the above expression,M (i.s.)
ij is the Born-level amplitude for the production of the colour

singlet via annihilation of the two partons i and j, and fi,j is the density of parton i, j in

the proton.

Given any Born-level event generator, the recipe to implement the NLL resummation

of eq. (D.3) is straightforward:

1. change the factorisation scale µF provided by the generator to µF e−L̃;

2. multiply the weight of every event by a factor exp
[
L̃g1(αsL̃) + g2(αsL̃)

]
.

Note that, if pt,veto is fixed, and we do not integrate over different values of M2, both

operations can be performed without touching the Born-level generator code. In fact,

many programs allow a change in the factorisation scale by a constant factor. Also, the

rescaling of the weight can be performed by the analysis routines that produce histograms

for physical distributions. In our implementation, since we do want to integrate over M2,

we have implemented the change in factorisation scale inside the MCFM code.

Another advantage we have in using MCFM is that it gives us access to the matrix

elements in a form that is human readable. This is particularly useful in case one wishes

to separate contributions from different parts of the matrix element, for instance a possible

BSM contribution from that of the SM background. We consider here the case of WW

production via gluon fusion, but the argument applies to other processes as well. There,



175

the Born-level matrix element has the form M (gg) = M
(gg)
SM +M

(gg)
BSM, where M (gg)

SM is the

SM amplitude, and M (gg)
BSM a BSM contribution. For each phase space point, we can then

isolate individual contributions to the luminosity by computing separately each term in

the square

|M (gg)|2 = |M (gg)
SM |2 + |M (gg)

BSM|2 + 2Re
[
M

(gg)
SM

(
M

(gg)
BSM

)∗]
. (D.5)

In the specific case, given the expression ofM (gg) in eq. (6.35), we compute the luminosity

L(0)
gg (L,M) as follows

L(0)
gg (L,M) = κ2t L(t2)

gg (L,M) + κ2g L(g2)
gg (L,M) + κtκg L(tg)

gg (L,M)+

+ κt L(tc)
gg (L,M) + κg L(gc)

gg (L,M) + L(c2)
gg (L,M) , (D.6)

where we have used the notation

L(i2)
gg (L,M) =

∫
dx1dx2

∣∣∣M (gg)
i

∣∣∣2 δ(x1x2s−M2)fg
(
x1, µF e

−L
)
fg
(
x2, µF e

−L
)
, (D.7)

with i = t, g, c, and

L(ij)
gg (L,M) =

∫
dx1dx2 2Re

[
M

(gg)
i

(
M

(gg)
j

)∗]
δ(x1x2s−M2)×

× fg
(
x1, µF e

−L
)
fg
(
x2, µF e

−L
)
, (D.8)

with ij = tg, tc, gc. Using these luminosities we can interpret L(0)
gg as a polynomial in the

various κi, and compute each coefficient separately. All one has to do then is to reweight

each phase-space point using the Sudakov exponent exp
[
L̃g1(αsL̃) + g2(αsL̃)

]
. In doing

so, we have used the fact that the Sudakov exponent depends only on the colour and

kinematics of the incoming partons, and therefore is the same for every single contribution

to the luminosity.

D.1.2 NNLL resummation

At NNLL accuracy, the cross section dσi.s./(dM
2dΦn) with a jet veto is given by

dσNNLL
i.s. (pt,veto)

dM2dΦn
=
(
L(0)
i.s.(L̃,M) + L(1)

i.s.(L̃,M)
)
×

× (1 + Fclust(R) + Fcorrel(R))× eL̃g1(αsL̃)+g2(αsL̃)+
αs
π
g3(αsL̃) , (D.9)

where the function g3 can be found in ref. [93]. The functions Fclust(R),Fcorrel(R) de-

pend on the jet radius R. Their expressions can be found in ref. [92]. As for the NLL

resummation, αs = αs(µR). The remaining new ingredient for NNLL resummation is the
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luminosity L(1)
i.s.(L,M), defined as

L(1)
i.s.(L,M) =

∑
i,j

∫
dx1dx2|M (i.s.)

ij |2δ(x1x2s−M2)
αs

2π

[
H(1)

i.s.fi
(
x1, µF e

−L
)
fj
(
x2, µF e

−L
)

+
1

1− 2αsβ0L

∑
k

(∫ 1

x1

dz

z
C

(1)
ik (z)fk

(x1
z
, µF e

−L
)
fj
(
x2, µF e

−L
)
+ {(x1, i) ↔ (x2, j)}

)]
,

(D.10)

with β0 = (11CA − 4TRnF )/(12π). Using the conventions of ref. [93], we have

H(1)
qq̄ = H(1) − 2CF

(
3

2
+ log

M2

Q2

)
log

M2

Q2
,

H(1)
gg = H(1) − 2CA

(
2πβ0 + log

M2

Q2

)
log

M2

Q2
.

(D.11)

withH(1) the finite part of one-loop virtual corrections to the process in question, e.g.WW

production through qq̄ annihilation. The coefficients C(1)
ij depend on whether incoming

partons i and j are quarks/antiquarks (q) or gluons (g), and are given by:

C(1)
qq (z) = CF

[
(1− z)− π2

12
δ(1− z) +

(
1 + z2

1− z

)
+

log
Q2

µ2F

]
,

C(1)
qg (z) =

1

2

[
2z(1− z) + (1− 2z(1− z)) log

Q2

µ2F

]
,

C(1)
gq (z) = CF

[
z +

(
1 + (1− z)2

z

)
log

Q2

µ2F

]
,

C(1)
gg (z) = CA

[(
2πβ0 −

π2

12

)
δ(1− z) + 2

(
z

(1− z)+
+

1− z

z
+ z(1− z)

)
log

Q2

µ2F

]
.

(D.12)

As explained in the previous section, the NLL luminosity L(0)
i.s. can be obtained from a

Born-level event generator. The function L(1)
i.s. represents a correction to L(0)

i.s. of relative

order αs. Therefore, its implementation requires at least a NLO generator. Any NLO event

generator includes the calculation of virtual corrections, as well as integrated counterterms.

This contribution, which we denote by dσ
(1)
i.s.,v+ct/(dΦndM

2), has the same form as the

luminosity L(1)
i.s. , but with PDFs evaluated at a different factorisation scale, and different

functions replacing H(1)
i.s. and C

(1)
ij (z). Its expression in general depends on the way each

process is implemented in the NLO event generator. For instance, the implementation

of WW production in the NLO program MCFM follows from the general coding of the

production of a colour singlet, whose details can be found in ref. [186]. Schematically,(
dσ

(1)
i.s.,v+ct

dΦndM2

)
MCFM

=
∑
i,j

∫
dx1dx2|M (i.s.)

ij |2δ(x1x2s−M2)
αs

2π

[
H(1)

MCFM,i.s. fi(x1, µF ) fj(x2, µF )

+
∑
k

(∫ 1

x1

dz

z
C

(1)
MCFM,ik(z)fk

(x1
z
, µF

)
fj(x2, µF ) + {(x1, i) ↔ (x2, j)}

)]
. (D.13)
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After direct inspection of the MCFM code, we realised that the term H(1)
MCFM,i.s. does not

contain just the finite part of the virtual correctionsH(1), but also the terms−(π2/12) δ(1−

z) in the coefficients C(1)
qq (z) and C(1)

gg (z), as well as terms containing log
(
M2/µ2R

)
. Keeping

this in mind, to compute the luminosity L(1)
i.s. through MCFM, we had to perform the following

changes to the MCFM code:

1. replace H(1)
MCFM,i.s. as follows

H(1)
MCFM,qq̄ → H(1)

MCFM,qq̄ + 2CF

(
π2

12
+

3

2
log

Q2

µ2R
+

1

2
log

M2

µ2R
− log2

M2

Q2

)
,

H(1)
MCFM,gg → H(1)

MCFM,gg + 2CA

(
π2

12
+ 2πβ0 log

Q2

µ2R
+

1

2
log

M2

µ2R
− log2

M2

Q2

)
;

(D.14)

2. modify the integrated counterterms as follows

C
(1)
MCFM,ij(z) →

1

1− 2αsβ0L̃
C

(1)
ij (z) ; (D.15)

3. change the factorisation scale in all PDFs from µF to µF e−L̃.

Last, to implement the full NNLL resummation, we just rescale the weight of each event

by the factor

(1 + Fclust(R) + Fcorrel(R)) e
L̃g1(αsL̃)+g2(αsL̃)+

αs
π
g3(αsL̃) . (D.16)

D.1.3 Matching to fixed order and theoretical uncertainties

Our MCFM implementation includes the matching of resummed predictions with NLO cal-

culations. In particular, we have implemented the relevant contributions to the two mul-

tiplicative matching schemes introduced in refs. [93, 140]. At NLO, the total cross section

σNLO for the production of a colour singlet, satisfying a set of kinematical cuts for its

decay products, is given by

σNLO = σ(0) + σ(1) , (D.17)

with σ(0) its Born-level contribution, and σ(1) a correction of relative order αs. Similarly,

at NLO, the corresponding cross section with a jet-veto ΣNLO(pt,veto) is given by

ΣNLO(pt,veto) = σ(0) +Σ(1)(pt,veto) . (D.18)

For computational convenience, it is customary to introduce

Σ̄(1)(pt,veto) = Σ(1)(pt,veto)− σ(1) , (D.19)
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which implies ΣNLO(pt,veto) = σNLO + Σ̄(1)(pt,veto). We also denote by ΣNkLL(pt,veto)

the resummed jet-veto cross section at NkLL accuracy, again satisfying the chosen set of

kinematical cuts for the decay products of the considered colour singlet. At this order, it

has the following expansion in powers of αs:

ΣNkLL(pt,veto) = σ0 +Σ
(1)

NkLL
(pt,veto) . (D.20)

As in refs. [93, 140], the matching is performed at the level of the jet-veto efficiency

ε(pt,veto), the fraction of events that survives the jet veto. This quantity is matched to

exact NLO, as follows:

ε(a)(pt,veto) =
ΣNkLL(pt,veto)

σNLO

[
1 +

Σ(1)(pt,veto)− Σ
(1)

NkLL
(pt,veto)

σ0 (1 + δLNkLL(pt,veto))

]
, (D.21a)

ε(b)(pt,veto) =
ΣNkLL(pt,veto)

σ0

[
1 +

Σ̄(1)(pt,veto)− Σ
(1)

NkLL
(pt,veto)

σ0 (1 + δLNkLL(pt,veto))

]
. (D.21b)

At NLL accuracy, δLNLL = 0. At NNLL accuracy, if we define
〈
L(0)

〉
and

〈
L(1)

〉
as the in-

tegral of the luminosities L(0) and L(1) in eqs. (D.4) and (D.10) respectively over the appro-

priate configurations of the decay products of the colour singlet, we have δLNkLL(pt,veto) ≡〈
L(1)

〉
/
〈
L(0)

〉
. Both matched efficiencies reduce to ΣNkLL(pt,veto)/σNLO for pt,veto � M ,

up to N3LL corrections. On the other hand, for pt,veto ∼M , we have

ε(a)(pt,veto) '
ΣNLO(pt,veto)

σNLO
, ε(b)(pt,veto) ' 1− Σ̄(1)(pt,veto)

σ0
. (D.22)

Note also that, for pt,veto → ∞, both efficiencies tend to one, as is physically sensible.

In order to estimate the theoretical uncertainties on jet-veto cross sections, we adapt

the jet-veto efficiency method of ref. [140] to the present situation. First, our “central”

prediction is ε(a)(pt,veto) with µR = µF = Q = Q0, with Q0 = M/2. Then, we vary

renormalisation and factorisation scale for ε(a)(pt,veto) in the range

1

2
≤
µR,F

Q0
≤ 2 ,

1

2
≤ µR
µF

≤ 2 . (D.23)

Then, we vary the resummation scale Q for ε(a)(pt,veto) in the range 2/3 ≤ Q/Q0 ≤ 3/2,

with µR = µF = Q0. In practice, we do not vary the scales continuously, but we consider

only µR,F = {1/2, 1, 2}Q0 and Q = {2/3, 1, 3/2}Q0. Our uncertainty band is the envelope

of the curves obtained by fixing the considered scales at the boundaries of the allowed

range (i.e. 9-point scale variation), plus ε(b)(pt,veto) with all scales set to Q0.

We then compute the total cross section σNLO by choosing as our central prediction

the one with both renormalisation and factorisation scales set at Q0. We then perform
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renormalisation and factorisation scale variations in the range (D.23), and constructing an

uncertainty band as for the efficiency, i.e. using the values of the scales at the boundaries

of the allowed region (7-point scale variation).

Last, the central value for the jet-veto cross section is defined as the product of the

central prediction for σNLO and ε(a)(pt,veto), and the corresponding uncertainty band is

obtained by adding the uncertainties of the total cross section and the efficiency in quad-

rature.

If the total cross section is only available at leading-order, we perform the resumma-

tion at NLL accuracy. Since we cannot normalise resummed cross sections using σNLO,

ε(a)(pt,veto) = ε(b)(pt,veto). Once we have the efficiency, we evaluate theoretical uncertain-

ties by adding in quadrature the uncertainties on σLO and the jet-veto efficiency.

D.2 Numerical implementation in MCFM

In this section we give the details of the implementation of the resummation of jet-veto

effects for colour singlets in MCFM. We assume that the reader can successfully compile and

run the MCFM code, in all its operation modes. If not, the interested reader should consult

the MCFM manual [134].

D.2.1 Overview

MCFM-RE (an acronym for Resummation Edition) is a modification of MCFM-8.0 to include

the resummation of jet-veto effects in colour-singlet processes up to NNLL+LLR accuracy.

The modifications are modular, as most of the resummation effects are included through

an interface to the code JetVHeto [130], suitably modified to become a library linkable to

MCFM. Although a small number of modifications require us to directly change the MCFM

code, these do not interfere with its usual modes of operation. The program is available

at [133]. Included in the package are a README file and an example input card.

To run MCFM-RE, one must simply provide a suitably modified MCFM input card. We list

here the new parameters we have added or changes made to existing parameters, described

with the same conventions and terminology as the MCFM manual.

• file version number. This should match the version number that is printed when

mcfm is executed.

{blank line}

[Flags to specify the mode in which MCFM is run]
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• part

– ll. Jet-veto resummation at LL accuracy, i.e. each event produced by MCFM is

reweighted with exp
[
L̃g1(αsL̃)

]
.

– nll. Jet-veto resummation at NLL accuracy, see eq. (D.3).

– nnll. Jet-veto resummation at NNLL accuracy, with or without the inclusion

of small jet radius resummation (LLR), see eq. (D.9).

– lumi0. Calculation of the luminosity L(0) in eq. (D.4)

– lumi1. Calculation of the luminosity L(1) in eq. (D.10)

– nllexp1. Expansion of the NLL resummation at order αs (for matching).

– nnllexp1. Expansion of the NNLL resummation at order αs (for matching).

{blank line}

[JetVHeto resummation options]

• observable.

– ptj. The default mode of the resummation, resum logarithms of the jet-veto.

– ptj+small-r. Available for NNLL resummations only. Include the effect of

resumming the jet radius at leading logarithmic accuracy.

• Qscale. This parameter may be used to adjust the value of the resummation scale

Q introduced in eq. (D.2). It behaves in the same way as the MCFM parameters

scale and facscale do, i.e. if dynamicscale is .false., Q is set to Qscale, oth-

eerwise Q = Qscale × µ0, with µ0 the dynamic scale specified by the parameter

dynamicscale.

• Rscale. This parameter may be used to adjust the value of the jet-radius resumma-

tion scale.

• ptjveto. The value of the jet-veto cut pt,veto in units of GeV.

{blank line}

[Coupling rescaling in the kappa formalism]

• kappa_t. The parameter κt of the Lagrangian in eq. (6.23), a.k.a the anomalous top

Yukawa coupling.
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• kappa_b. Anomalous bottom Yukawa coupling.

• kappa_g. The parameter κg of the Lagrangian in eq. (6.23).

• interference only. Flag to control whether to compute just the interference terms,

e.g. the coefficient of κtκg arising from squaring the amplitude in eq. (6.35). All

other coefficients can be determined by setting a single κi, i = t, g, b to zero.

Normally, MCFM identifies whether a process is qq̄- or gg-initiated, and running MCFM-RE in

resummation mode does not lead to any problems. However, in cases like process 61, in fact

WW production, MCFM includes in the NLO correction to a qq̄-initiated process formally

higher-order gg-initiated contribution. As a consequence, not specifying the colour of the

initial state leads to an ambiguity that is impossible to resolve. To avoid such problems,

we have decided that, when running MCFM-RE in any resummation mode for ambiguous

processes, the user must impose that a process is either qq̄- or gg-initiated, by making use

of the MCFM flags omitgg and ggonly. Failure of doing so will result in MCFM-RE stopping

and returning an error message.

D.2.2 Details of MCFM implementation

We modify MCFM version 8.0 to include the resummation of jet-veto effects. To this end

there are two pieces that we must include, the computation of the luminosities L(0)
i.s. ,L

(1)
i.s. ,

and the Sudakov form factor combined with the functions Fclust,Fcorrel. The computation

of the luminosities requires structural changes to MCFM whereas we are able to include the

Sudakov form factor through an interface in src/User/usercode.f90.

The inclusion of the Sudakov form factor is the simplest change. The reweighting is

included through the subroutine userplotter,

interface

function sudakov(proc, M, muR, muF, Q, as, p, jet_radius, &

&observable, small_r, small_r_R0, ptj_veto, order)

....

end function

end interface

The user should not normally make changes to this function. The reweighting is applied

to all histograms, including the default MCFM ones, as wt and wt2 are intent(inout), so

our reweighting is applied globally. The cost of doing the reweighting here is that the
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cross section returned by the main MCFM program is wrong, or rather it includes only the

contribution of the luminosities and not the Sudakov exponent. To that end we include

the extra histogram xsec, a single-bin histogram to record the correct total cross section

for runs with the jet-veto.

To include the luminosities we have to modify the factorisation scales of the PDFs. In-

stead of adding lots of switches to the default MCFM integration routines, we create our own

special routines resmNLL.f (based on lowint.f) and resmNNLL.f (based on virtint.f),

which we include in the src/Procdep directory along with the other default integration

routines. The changes made in resmNLL.f are modest with respect to lowint.f, schem-

atically

function resmNLL(r,wgt)

use rad_tools, only: Ltilde

implicit none

include `types.f'

real(dp):: resmNLLint

! resummation

include `jetvheto.f'

real(dp) :: facscaleLtilde

real(dp) :: L_tilde_arr(1)

L_tilde_arr = Ltilde((/ptj_veto/q_scale/), p_pow)

L_tilde = L_tilde_arr(1)

if (do_lumi) then

facscaleLtilde = facscale*exp(-L_tilde)

else

facscaleLtilde = facscale

end if

call fdist(ih1,xx(1),facscaleLtilde,fx1)

call fdist(ih2,xx(2),facscaleLtilde,fx2)

end

At the beginning of each event we determine L̃, and the modified facscale which we call

facscaleLtilde. We then use this scale in the computation of the PDFs. The simplicity

here is that at NLL accuracy all we need to do is change the factorisation scale and

reweight, so these changes are very modest.

To perform the same calculation at NNLL is much more involved, since there are three
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separate actions that must be performed to compute the luminosity. First, we need to cast

the virtual matrix element into the correct form for the resummation. We do this with

a utility function in the file src/Procdep/virtfin.f, which performs the replacement

detailed in eq. (D.14). This is carried out by the subroutine

subroutine virtfin(p,msq,msqv)

real(dp) :: p(mxpart, 4)

real(dp) :: msq(-nf:nf,-nf:nf), msqv(-nf:nf,-nf:nf)

end subroutine virtfin

where one must provide the array of momenta p(mxpart,4), the tree level matrix element

squared msq(-nf:nf) and the matrix element of the virtual corrections msqv(-nf:nf)

(using the conventions of MCFM).

The second contribution to the luminosities comes from the convolution of the coeffi-

cient functions. To include this coefficient function we modify the integrated dipole func-

tions located inside src/Need/dipoles.f, adding switches to choose between the different

types of “dipoles” that we have added as well as the default MCFM subtraction dipole.

The third and final piece is performed in the new integration routine src/Procdep/resmNNLL.f.

This calls the previous two routines, and then performs the convolutions of all coefficient

functions with the PDFs.

function resmNNLL(r,wgt)

use rad_tools, only: Ltilde

implicit none

include `types.f'

real(dp):: resmNNLLint

! resummation

include `jetvheto.f'

real(dp) :: facscaleLtilde

real(dp) :: L_tilde_arr(1)

L_tilde_arr = Ltilde((/ptj_veto/q_scale/), p_pow)

L_tilde = L_tilde_arr(1)

if (do_lumi) then

facscaleLtilde = facscale*exp(-L_tilde)

else

facscaleLtilde = facscale

end if

!! Move contribution of collinear counterterm into the ``dipoles''

! AP(q,q,1)=+ason2pi*Cf*1.5_dp*epcorr
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! AP(q,q,2)=+ason2pi*Cf*(-1._dp-z)*epcorr

! AP(q,q,3)=+ason2pi*Cf*2._dp/omz*epcorr

!! all AP terms are removed, those displayed here are just schematic

! extract the finite part of the virtual and modify for resummation

! must come before subtraction to get coefficient correct in checks

call virtfin(p, msq, msqv)

call fdist(ih1,xx(1),facscaleLtilde,fx1)

call fdist(ih2,xx(2),facscaleLtilde,fx2)

call fdist(ih1,x1onz,facscaleLtilde,fx1z)

call fdist(ih2,x2onz,facscaleLtilde,fx2z)

end

In addition, we can perform the matching with fixed-order using the same method we

have used in computing the resummation. We modify the dipoles, this time to include

the terms from the expansion of the resummation. With these one can then compute the

matched distribution up to NNLL+NLO accuracy.
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