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"Touch is far more essential than our other senses. [...] and it affects

damn near everything we do. No other sense can arouse you like touch.

(Touch) it’s not only basic to our species but the key to it."

by Saul Schanberg in - A Natural History of the Senses
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SUMMARY

O
ver the last two decades, the sense of touch has received new attention

from the scientific community. Several haptic devices have been developed

to address the complexity of the sense of touch, the latest addition being

mid-air (contactless) haptic technology. An interesting series of previous research

has suggested an easier way to tackle the complexity of designing convincing tac-

tile sensations by exploiting tactile illusions. Tactile illusions rely on perceptual

shortcuts based on the psychophysics of the tactile receptors.

Currently, studies exploring the perceptual space of mid-air haptics and its

applicability in the tactile illusions field are still limited in number. This thesis aims

to contribute to the field of Human-Computer Interaction (HCI) by investigating the

perceptual design space of ultrasonic mid-air haptics technology.

Specifically, in a first set of three studies, we investigate the absolute thresholds

(minimal amount of a property of a stimulus that a user can detect) for control points

(CP) at different frequencies on the hand and arm (Study 1). Then we investigate

the optimal sampling rate needed to drive the device in an optimal fashion and its

relationship with shape size (Study 2). Next, we apply a new technique to increase

users’ performance in a shape discrimination task (Study 3).

In Study 4, we start the exploration of a tactile illusion of movement using

contact touch and later, we apply a similar procedure to investigate the feasibility of

creating a tactile illusion of movement between the two non-interconnected hands

by using mid-air touch (Study 5).
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Finally, in Study 6, we explore our sense of touch in VR, while providing an

illusion of rain drops through mid-air haptics, to recreate a virtual hand illusion

(VHI) to explore the boundaries of our sense of embodiment.

Therefore, the contribution of this work is threefold: a) we contribute by adding

new knowledge on the psychophysical space for mid-air haptics, b) we test the

potential to create realistic tactile sensations by exploiting tactile illusions with

mid-air haptic technology, and c) we demonstrate how tactile illusions mediated by

mid-air haptics can convey a sense of embodiment in VR environments.
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xv

LIST OF ABBREVIATIONS

AR Augmented Reality: is a technique to enhance by computer-

generated perceptual information, real world objects.

ATM Apparent Tactile Motion: a perceived single movement generated

by two separate but closely placed stimuli on the skin with different

onset times.

CIPA Congenital Insensitivity to Pain with Anhidrosis: a rare hereditary

neuropathy characterised by insensitivity to pain and temperature,

and impossibility to sweat.

CNS Central Nervous System: in humans, the brain and the spinal cord.

In contrast with the peripheral nervous system, which is formed by

the nerves external to the brain and the spinal cord.

CP Control Point: point at which the different sound waves of an array

of ultrasound speakers converge, creating a tactile sensation

DC Direct Current: flow of electric charge that does not change direction

FA Fast Adaptive: regarding tactile receptors, are those receptors that

stop sending information in answer to a sustained, continuous

stimulation.



xvi LIST OF ABBREVIATIONS

fMRI Functional Magnetic Resonance Imaging: a nonscientific technique

that help visualising the activity of the brain by detecting changes

associated with blood flow.

HCI Human-Computer Interaction: is a multidisciplinary field that stud-

ies the interaction between humans (the users) and computers.

HMD Head-Mounted Display: a screen mounted on the head of the user

(e.g., Oculus, HTC, etc. headsets)

IAT Implicit Association Task: a test used in social psychology to de-

tect people implicit association between mental representations of

objects/concepts/people.

JND Just Noticeable Difference: the amount of the property of a stimulus

that must be changed in order for a difference to be noticeable.

OBE Out of Body Experience: a phenomenon in which people experience

the world from outside their own body.

PCA Principal Component Analysis: is a dimensionality-reduction tech-

nique to reduce the dimension of a data set while still carrying the

same information.

PSE Point of Subjective Equality: any of the points at which an observer

judge a stimulus to be equal to a reference one.

PTSD Post-Traumatic Stress Disorder: a disorder that can develop in some

people following a shocking, scary, or other life threatening events.

RA Rapid Adaptive: regarding tactile receptors, are those receptors

that stop sending information in answer to a sustained, continuous

stimulation.



xvii LIST OF ABBREVIATIONS

RHI Rubber Hand Illusion: an illusion where a rubber hand is placed

in an anatomically plausible location instead of the real (hidden)

arm. When the participants’ real hand is stimulated synchronously

to the fake (and visible) hand, they will feel that the rubber hand is

their own.

ROC Receiver Operating Characteristic: is graphical representation of

the ability of a classifier system (e.g., a user) to discriminate be-

tween target and noise as its discrimination threshold is varied.

S1 Primary Somatosensory Cortex: that part of the cortex located in

the post-central gyrus (part of the parietal lobe), which is part

of the somatosensory system for the receptions of general bodily

sensation.

S2 Secondary Somatosensory Cortex: is that part of the brain located

more dorsally to the Primary Somatosensory Cortex and it seems

involved in the perception of pain, the evaluation of size, shape and

texture of touch or pressure.

SA Slow Adaptive: regarding tactile receptors, are those receptors that

continue sending information in answer to a sustained, continuous

stimulation.

SCR Skin Conductance Response: the phenomenon in which, while stim-

ulated, the skin becomes a better conductor of electricity.

SDT Signal Detection Theory: it is a technique to measure the ability of

a human to discriminate between a stimulus (target) and random

patterns (noise) that distract from the information.

SOA Stimulus Onset Asynchrony: the difference in time between the

activation of a first stimulus and the next one.



xviii LIST OF ABBREVIATIONS

SoE Sense of Embodiment: briefly, the sense of embodiment can be

defined as the system that makes us distinguish ourselves from the

rest; it is the perception of our physical boundaries. The embodiment

is telling us what is to be considered self-related and what it is the

external world.

TOJ Temporal Order Judgment: a task in which an observer is asked to

express the temporal order of two stimuli.

VE Virtual Environment: environments as presented inside a virtual

reality setting.

VHI Virtual Hand Illusion: this is the same illusion as in the Rubber

Hand Illusion, but the illusion happen in virtual reality with a

virtual hand representation.

VR Virtual Reality: a simulated experience similar (or not) to the real

world.
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INTRODUCTION

F
rom a historical and philosophical point of view, touch has been considered

a secondary sense. Furthermore, the sense of touch is multifaceted and

complex. This complexity has not allowed for a rapid evolution of tactile

rendering as has happened for vision and hearing. However, the recent breakthrough

of virtual reality systems into the consumer market has sparked new interest and

a need to integrate the sense of touch in virtual scenarios. VR fascinates game

designers for its possibility of creating impossible, desired, or simple everyday life

situations that have a power of immersion without precedent. It also fascinates

the scientific community, which now has the possibility of controlling variables of

interest when it was previously impossible to do so. Designers and scientists can

trick the brain to make it experience new worlds and situations that cannot be

encountered in reality. Intuitively, the first VR headsets exclusively relied on visuals

and auditory techniques. With the high availability of VR head-mounted displays

(HMDs) for private use, it was soon felt that our sense of touch needed to be included.

Tactile sensations are an intrinsic part of our everyday life. We use these compo-

nents of our complex somatosensory system even in the easiest part of our routine,

probably without being aware of it – when we walk, when we talk, when we eat, when
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we sit, and when we turn our head. Touch is extremely important in our everyday

life and so inherent to it that we might take it for granted. Yet, when it is missing,

we cannot continue to have a normal existence. The same can apply to a virtual

scenario: when we are in a new world we do not know, one of the first things we do is

to touch things to test our effect on our surroundings. If an action is not followed by a

reaction, our sense of immersion will vanish. That is why the sense of touch must be

taken into account in this new immersive technology. This is known to VR companies,

and they are starting to implement tactile feedback in their products (e.g., Oculus

Touch, HTC Vive Cosmos controllers, Sony PlayStation VR, etc.). Research on VR

has shown how tactile feedback enhances immersion in virtual environments (VEs)

[190] and how it is important that the technology becomes "transparent" to the user

[149]. The transparency we refer to here alludes to that situation in which the user

is not aware of the device but naturally perceives its effect. In other words, this is a

perceptual illusion of non-mediation [149], intended in the way that Nardi refers to

transparency in HCI, describing a supportive, unobtrusive interface to which the

user needs to pay little attention [168]. This renewed interest has been followed by

the development of new haptic technology for more advanced tactile rendering.

In the realm of haptic devices, a particular technology seems to satisfy the "need

for transparency": mid-air haptic devices. These devices allow a natural interaction

with the environment without the requirement of any attachment on the skin.

Hence, when in action, the user will not perceive its presence. Regardless of the

haptic device used, it is important to understand the perceptual effect those have

on users. Research from psychophysics provides important information for the

development of compelling tactile sensations. This is especially true for traditional

contact haptic technology (e.g., world-grounded and body-grounded technology (see

Chapter 4). Instead, mid-air haptic technology is relatively recent and psychophysical

understandings of it are still in their infancy. There are different kinds of mid-air

haptic systems (see Chapter 4, Section 4.3). In this thesis, we will focus on mid-air

haptic devices that use ultrasound to create tactile experiences (which we will refer

to as "ultrasonic mid-air haptics technology").
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Generally, all haptic devices aim to mimic the complexity of the tactile sense.

A plethora of haptic devices has been developed for specific use-cases and specific

tactile properties. A computationally and actuation-economic alternative to deliver

complex tactile sensations is represented by tactile illusions. Perceptual illusions

arise when our sense organs transmit misleading information to the brain. Illusions

can help to render a complete tactile percept, and even when we render only a part

of the percept (e.g., apparent tactile motion), the brain will fill in the gaps of the

tactile stimulation. Illusions can also serve as tools to study psychological concepts,

like with the feeling of embodiment that plays a key role in interactive spaces as VR.

1.1 Research aim and objectives

This thesis aims to deepen understanding of tactile perception in the new ultrasonic

mid-air haptic technology. Furthermore, we aim to explore tactile illusions to provide

new tactile sensations and deliver a sense of embodiment in VR scenarios. We will

achieve this aim by focusing on the following key objectives, represented as the three

core research questions of this thesis:

• RQ1: How do we perceive ultrasonic mid-air haptic technology? What are the

psychophysical properties of mid-air haptics?

• RQ2: How can we create realistic haptic and specifically mid-air haptic sensa-

tions by applying the principles of tactile illusions?

• RQ3: Using tactile illusions, can we convey the feeling of embodiment using

mid-air haptics in VR?

The above three research questions were addressed in a series of six studies

undertaken during this PhD. An overview of the research path is illustrated through

three stages, displayed in Figure 1.1: 1) Understand 2) Create, and 3) Apply.

The first stage includes three studies labelled as "Understand". In Study 1, 2,

and 3, through a series of psychophysical experiments, we aimed to expand basic
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Figure 1.1: An illustration of my research path. The mountains of knowledge are
based on top of each other. The path was not always that linear.

knowledge on the perceptual effects of ultrasonic mid-air haptics on users in terms of

absolute thresholds, optimal sampling rate, and optimal parameters for perceiving

2D shapes on the hand.

The second stage includes two studies and is labelled "Create". In Study 4, we

start to explore a tactile illusion of movement, namely the apparent tactile motion. In

this study, we created for the first time a sensation of continuous motion that extends

beyond the body from one hand to the other. Previous studies on apparent tactile

motion were conducted on contiguous parts of the body. In Study 4 we used a custom

contact haptic device. Study 5 was based on the experimental design of Study 4, but

replacing the contact haptic device with an ultrasonic mid-air haptic device testing

two tactile rendering techniques. For both Study 4 and 5 we provide perceptual
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models for achieving a smooth (continuous) illusion of motion that extends from one

hand to the other. With these two experiments, we confirm that tactile illusions are

an effective method for delivering compelling tactile stimulation and demonstrate

how mid-air devices can effectively provide an illusion of motion, thus making them

suitable for the delivery of traditional tactile illusions in VR.

The last stage includes one study and is labelled "Apply". In Study 6, we apply the

rubber hand illusion (RHI) in VR, namely virtual hand illusion (VHI). In this study,

we investigate additional variables (i.e., multiple congruent and incongruent tactile

stimulation and hand posture) compared to the traditional method. We demonstrate

how mid-air haptic devices can promote embodiment in VR, thus potentially helping

to increase presence levels in a virtual environment.

To conclude, in this thesis we want to show how the use of mid-air haptic tech-

nology can be a valuable tool to convey tactile feedback and favour embodiment

in VR. We provide psychophysical information on the human perception of mid-air

haptics and how to use this new technology to best achieve some tactile illusions in

VR. We hope designers and scientists will be inspired by this work and will expand

knowledge on mid-air haptics to deliver more immersive and realistic experiences in

VR. We believe that, after the achievement of a good level of graphical realism in VR,

to enhance the realism of the VE we need to program the fine details of our everyday

experiences. These could be the feeling of the wind on our skin, moving from one

side to another, feeling the rain on our body, being able to perceive the shape of an

object with our hands. It is our view that by adding all these details and more from

future research, we will become closer to feeling and believing in the "reality" part

of "virtual reality".

1.2 Research context

My PhD research was carried out in the Sussex Computer-Human Interaction

(SCHI) Lab at the Department of Informatics in the University of Sussex and
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included a four-month research internship at Disney Research in Pittsburgh, USA.

Before commencing my doctoral studies, I completed a master’s degree in "Clinical,

developmental and neuropsychology" with a specialisation in neuropsychology at

the Università degli studi di Milano-Bicocca, Italy.

During and after my degree, I worked at the Fondazione IRCCS Ca’ Granda

Ospedale Maggiore Policlinico di Milano in Milan for one year. There, we assessed

the cognitive capacities of patients with different kinds of neurocognitive disabilities

and tried to rehabilitate the residual functions. After my experimental master’s

thesis on Parkinson’s disease patients, I decided to expand my knowledge in the

experimental psychology field.

Hence, I spent one year in the University of Birmingham, UK, in the psychology

department. There, I had the opportunity to use for the first time different haptic

devices and virtual reality headsets. I decided to investigate the topic further and

applied for my current PhD research position. Before this PhD, I had no programming

experience and no engineering skills. This journey therefore helped me to challenge

myself and work beyond my comfort zone.

The starting point of my research was to acquire a better understanding of the

perceptual side of the new mid-air haptic technology. I started with a systematic

exploration of mid-air haptic sensations by applying psychophysical methods. The

first aim was to expand our tactile sensations from the hand to the whole body. I

followed an iterative trial and error approach to define the design space around

mid-air haptics. Although the idea was to expand touch beyond the hands, the results

of this exploration revealed that the most sensitive parts of the body were mostly

the glabrous parts, in other words, the non-hairy parts, such as the hands and feet.

After this exploration and after reflecting on the actual sensation the device inspired

in participants, like a gentle blow of air, or cold air/water, I started to envision a VR

experiment to study the possible effects of embodiment on a virtual arm, mediated

by mid-air tactile drops of water.

In the meantime, I had the opportunity to do an internship at Disney Research

Pittsburgh. While at the Disney lab, an idea already simmering in my mind took
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form; I started to become more interested in tactile illusions, an area in which I

could make the best use of my disciplinary background, gain new knowledge, and

challenge myself with new programming languages and software. Later, I was able

to use VR and apply my research curiosity in virtual environments.

Back in the SCHI Lab, I finalised and published the work from my internship at

Disney and deepened my research on illusions using mid-air haptic technology. At

the same time, I had the opportunity of collaborating with my colleagues on other

research ideas not presented in this thesis1.

I consider myself lucky as I have had the opportunity to be immersed in a multi-

disciplinary laboratory, travel the world presenting my research, and meet and listen

to brilliant minds in the field of HCI and haptics. Finally, I have had the opportunity

to extend my skill set through new programming skills which complement my

background in neuropsychology. I think research is a never-ending journey, and

fortunately, I have secured a position as a haptics research engineer at Ultraleap,

where I hope to continue to deepen knowledge in mid-air haptic perceptions and

create new, compelling experiences in VR.

1.3 Thesis structure

This thesis is composed of two main sections. In the first part, "Theory", we present

the theoretical understanding behind the work. In the second part, "Practice", we

present a series of studies aimed at deepening understanding of ultrasonic mid-air

haptics, of the creation of tactile illusions, and of their application in a VR scenario.

More specifically, this thesis is organised as follows:

• Chapter 1 - "Introduction": this is the introduction chapter. It provides an

overview of this thesis, the research questions, contributions, and thesis con-
11) E. Gatti, D. Pittera, J. Berna Moya, and M. Obrist, "Haptic rules! Augmenting the gaming

experience in traditional games: The case of foosball" 2017, in IEEE World Haptics Conference
2017 (WHC17), Munich, 2017, pp. 430-435.

2) Brianza G., Tajadura-Jiménez A., Maggioni E., Pittera D., Bianchi-Berthouze N., and Obrist
M. "As Light as Your Scent: Effects of Smell and Sound on Body Image Perception", in
Human-Computer Interaction – INTERACT 2019, 2019, Cyprus.
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text.

• Chapter 2 - "The sense of touch": in this chapter we describe the functioning

of our sense of touch. We describe its physiology, the way tactile information

reaches the brain, and how it is represented in the brain. Finally, we reflect on

the importance of the tactile sense.

• Chapter 3 - "Measuring tactile perception": in this chapter we present psy-

chophysics, that branch of psychology that aims to study the relation between

a physical stimulus and its percept. We introduce the main methods of psy-

chophysics and review related work on tactile thresholds and spatial and

temporal acuity.

• Chapter 4 - "Touch and technology": in this chapter we introduce the range

of haptic technologies that have emerged in the last 20 years and are used in

HCI to explore new interaction and interface opportunities. This also includes

a variety of mid-air haptics technologies.

• Chapter 5 - "Tactile illusions and embodiment": in this chapter we report a few

examples of perceptual illusions with a focus on those illusions exploited in

this thesis. We also define the concept of embodiment and introduce the VR

technology.

• Chapter 6 - "Understand: basic mid-air haptic perception": this is Study 1 (S.1),

an initial study of absolute thresholds for ultrasonic mid-air haptics on the

hand and arm.

• Chapter 7 - "Understand: varying technical parameters": this is Study 2 (S.2).

It is a published paper (CHI 2019) aimed at the investigation of the optimal

sampling rate for ultrasonic mid-air haptic technology. The study is composed

of two experiments: one that finds the optimal sampling rate and one that

investigates the relationship between the sampling rate and figure size.
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• Chapter 8 - "Understand: perception of mid-air shapes": this is Study 3 (S.3).

It is a submitted paper (IEEE Transaction on Haptics) that investigates the

optimal parameters to use for ultrasonic mid-air haptics to render 2D shapes.

This study is composed of four experiments, and the first experiment investi-

gates users’ performance in discriminating between three 2D geometric shapes.

Two further pilot experiments research the best parameters for increasing

users’ discrimination performance. The final experiment demonstrates how

the parameters obtained from the two pilot experiments increase the accuracy

by 30%.

• Chapter 9 - "Create: tactile illusions of movement": this is Study 4 (S.4).

This is a published paper (ICMI 2017) in which we study for the first time

the possibility of delivering an apparent tactile motion between two non-

interconnected hands with contact haptic technology. This study is composed

of four experiments. The first experiment finds the optimal parameters needed

to render a smooth illusion of motion between hands. The second is a pilot

experiment to tune the parameters to be used later in the third experiment.

The latter experiment explores whether adjustments in arm posture change

order perception in a temporal order judgement task (TOJ). Finally, the fourth

experiment studies the multisensory integration of vision and touch for the

apparent tactile illusion in VR.

• Chapter 10 - "Create: mid-air tactile illusion of movement": this is Study 5

(S.5). It is a published paper (IEEE Transaction on Haptics) aiming to replicate

the apparent tactile illusion, this time, exploiting ultrasonic mid-air haptics.

This study is composed of two experiments. In the first experiment, we obtain

the optimal parameters to deliver a smooth sensation of motion between the

hands using a fixed focal point on each hand. In the second experiment, we

investigate apparent tactile motion by using a moving point between the two

hands.

• Chapter 11 - "Apply: tactile illusion for embodiment in VR": this is Study 6 (S.6).
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It is a published paper (CHI 2019) in which we apply the phenomenon of the

virtual hand illusion mediated by an ultrasonic mid-air haptics device to convey

a sense of embodiment in VR. This study is composed of three experiments.

In the first experiment, we investigate the possibility of conveying the sense

of embodiment with ultrasonic mid-air tactile technology as well as further

variables with respect to the traditional paradigm. In the second and third

experiments, we control for the additional variables under analysis.

• Chapter 12 - "Discussion": in this chapter we present the implications of our

research. In addition, we discuss the limitations and future work.

• Chapter 13 - "Conclusions": in this chapter we present the conclusions of this

thesis.

Figure 1.2 illustrates how the studies presented in this thesis fit the research

questions previously individuated.

Studies 1, 2, and 3 are part of the stage "Understand". With these studies we aim

to deepen the psychophysical knowledge of ultrasonic mid-air haptic technology. We

contribute to RQ1: "How do we perceive mid-air haptics? What are the psychophysi-

cal properties of mid-air haptics?". Study 1 explores the tactile absolute thresholds

on different locations on the hand and arm. Results from Study 1 will be used as a

starting point for Study 4, 5, and 6. In study 2 we investigate the optimal sampling

rate to choose to maximise our perception with an ultrasonic mid-air device. Further

we discuss the relationship with sampling rate and tactile shape size. Results from

Study 2 are not applied to subsequent studies because the results were available

only at a later stage or because the studies are focusing on different aspects of touch.

Nevertheless, study 2 results will be useful to scientist who needs to render 2D

shapes on the hand or to make sense of data coming from tactile investigations

of shapes through mid-air haptics. Finally, the purpose of study 3 is to provide

designers and researchers with optimal parameters that can be used to deliver 2D

shapes with ultrasonic mid-air haptics.
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Figure 1.2: Schemata of the studies presented in this thesis, how they link to the
stages and research questions individuated.

Studies 4 and 5, while still maintaining a psychophysical objective, start to

"Create" a tactile illusion. Here, we try to answer to RQ2: "How can we create real-

istic haptic and specifically mid-air haptic sensations applying principles of tactile

illusions?". Studies 4 and 5 focus on a tactile illusion of movement; the apparent

tactile motion (see Chapter 5, Section 5.1). These studies follow a psychophysical

approach and are intrinsically related. In study 4, for the first time, we investigate

the optimal parameters to provide users with an illusion of movement between two

non-interconnected hands. Further, we provide a perceptual model to obtain the

effect of a smooth illusion of movement between the hands. We verify if changing

the position of the hands (e.g., left hand forwards) changes users’ perception in a

temporal order judgment task (TOJ). Finally, we test how visual and tactile informa-

tion interact in a VR environment. Study 5 replicates the apparent tactile motion

between two non-interconnected hands investigated in Study 4, although, this time,
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employing ultrasonic mid-air haptics. Since we could exploit some advantages of

mid-air haptics, we tested two different techniques. First, we used a static point

delivered on each hand modulating stimulus duration, frequency, and onset time

asynchrony. Then, we tested the same parameters using a point moving from one

hand to the other hand. For both techniques we provided a perceptual model to

obtain a smooth illusion of movement between the hands, and we compare the two

methods.

Finally, with Study 6, we enter into the "Apply" stage aimed to answer to RQ3:

"Can we convey a sense of embodiment using mid-air haptics in VR?". Study 6 is

composed of four experiments that explores and exploits the flexibility of our body

schema to provide users with a virtual experience of rain on their hand. Study 6,

exp. 1 and 2 investigate the VHI phenomenon using mid-air haptic stimulation.

Instead of the traditional conditions, we tested if users can embody a virtual arm by

delivering congruent visuo-tactile mid-air stimulation, incongruent visuo-tactile mid-

air stimulation or multiple congruent/incongruent visuo-tactile mid-air stimulation.

Study 6, exp. 3 and 4 serve as control experiments for the new setup employed.

Ethics approval for Study 1, 2, 3, 5, and 6 was obtained by the University of

Sussex’s Science and Technology Ethics Committee. Ethics approval for Study 4 was

obtained through the Ethics Committee of the Carnegie Mellon University.
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THE SENSE OF TOUCH

S
ince ancient time, the study of the sense of touch was often upstaged by

that of sight. According to Aristotle, the most important sense is the sense

of sight [6]; he believed that sight, better than the other senses, allows

grasping differences between objects. Besides, it can be used for the sole purpose of

selfless see objects, even not necessarily with the purpose of an action. Sight is "way

over all other eminent" for Galileo Galilei [63]. This view might be supported by

studies which show how often sight dominates on tactile sensations [91]. Finally, in

comparison to a visual percept, the tactile sensation is difficult to communicate. For

instance, to describe something we see we can take advantage of terms for colours,

shapes, and space; on the contrary, we do not have a proper vocabulary to express

tactile sensations.

In the last two decades, however, the sense of touch became of primary interest

(see Figure 2.1), especially in virtual reality (VR) research, where it represents an

important factor to enhance the immersion in virtual environments (VEs) [20].

The sense of touch is the first to develop in the fetus [5, 44]. After born, we

cannot clearly distinguish the shapes of an object by looking at them, but we start

instinctively to touch their edges and contours. In premature babies and institu-



15 THE SENSE OF TOUCH

tionalised kids, touch deprivation may result in developmental delays [46]. In our

everyday life, we use our tactile sense to touch the clothes’ fabric before buying them,

we caress our beloved ones, we put our hands ahead in the dark for fear of hitting

something. Our need for touch is constant, and it is fundamental when we explore

objects; we retrieve information regarding their texture, temperature, compliance,

and weight by means of precise exploratory procedures [141]. Contrarily to what

Aristotle believed, touch can be more reliable than vision in specific cases, as in case

of perceptual ambiguity [51]. However, more generally it seems that vision and touch

focus on different aspects of an object [133]: touch on texture and hardness, vision

on shape and size. Indeed, the sense of touch can be considered as effective as vision

when judging texture, and superior when evaluating the hardness of an object [133].

Touch is highly personal; we invite you to imagine being in a busy underground in

the City of London. Generally, we do not mind seeing other people, and sometimes to

hear them, or smell them (if they smell good), but being touched can be annoying.

After all, the skin is the interface that sets the boundaries between our person and

the external world. What touches our skin, can activate our temperature sensors, our

pain receptors, and potentially, can enter into our body affecting us in a multitude of

ways.

The sense of touch is so pervasive in our everyday life that its importance

is reflected in our language. We say that "someone is not in touch with reality"

Figure 2.1: A bar plot showing the number of publications on Google Scholar with
the keyword: "haptics" from 1975 to 2018. For further info, see the repository: [222].
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when we think someone lost his/her ability of clear, rational thought. We describe

a respectful and sensitive person as a "tactful person". If we want to maintain a

relationship with someone we hope to "keep in touch" with them. In some languages,

the corresponding sentence of "it doesn’t bother me" is translated as "it doesn’t touch

me". On the contrary, when an event hit us, we say that "it touches our heart", and

if we are really happy, "we can touch the sky with a finger". More essentially, the

sense of touch is necessary for the act of speaking itself.

It is clear that touch is a very important sense (see Section 2.5) but there is still

confusion when it comes to its definition. Below, we will first define the sense of

touch and its active/in-motion counterpart, the haptic sense. We will then describe

its mechanical functioning and how it is represented in the brain. Finally, we will

discuss the relevance of the sense of touch in our everyday life.

2.1 Defining the sense of touch

What we commonly define with a unique word as touch is, in reality, a complex sense.

This sense, conveys information about pressure, pain, proprioception, movement,

temperature, pleasure, texture, wetness, etc. The term touch can be used in the

strict sense as cutaneous touch, to indicate the mechanical deployments of the skin,

thermal reception, and pain; or in a wider sense as haptic sense, which includes the

perception of the internal sensations coming from the muscles, tendons, and joints

that inform us about the position of our limbs in the space and how they are moving

in it. This information is also called kinaesthetic.

It was the German psychologist Max Dessoir in 1892 to first propose the introduc-

tion of the term "haptik" (haptic) to refer to the study of the sense of touch [83, 195].

Dessoir was the first to address the problem of the terminology of the tactile sense.

During his studies, the scientist empirically encountered the numerous components

of touch, the ones we currently know. He felt that using only the term "touch" was

not enough any more to encapsulate all the different tactile sensations. Therefore,
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the new word haptic, indicated not only the aspects of contact and pressure but

also the perceptions coming from muscles and tendons. He called the firsts, "contact

sense", and the seconds, "Pselaphesie" (to feel) [195], giving rise to a classification

that opposed a static versus an active part of touch.

Later in the 1950s, Géza Révész, a psychologist representative of the Gestalt

school, formulated ten general principles characteristic of the haptic function [194]:

1. Stereoplastic principle: when getting hold of an object with the hand, vision

being excluded, subjects will not only touch the object, but they will enclose

it in the hand, trying to experience its plastic three-dimensional mode of

appearance.

2. Principle of successive perception: even when the object falls in the size of the

palm, subjects will make a series of piecemeal tactile actions that do not yet

provide a comprehensive view of the object.

3. Kinematic principle: this principle states that haptic can only take place

through the movement of the sensory apparatus.

4. Metric principle: the structural identification of an object always assumes an

orientation with respect to the location and the quantitative relationships of

the parties with each other and with respect to the whole.

5. Receptive attitude and the purposive attitude: receptive attitude derive qual-

itative information about the objects, such as shape. The purposive attitude

derives structural information.

6. Tendency to establish types and schemata: haptic generally categorise objects

in groups, according to types and well-known groups of shapes and objects.

7. Tendency to transpose: it consists in the optimization of haptic data into visual

information.

8. Principle of structural analysis: the haptic perception tends to the recognition

of the structure more than the shape of an object.
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9. Principle of constructive synthesis: after the preliminary analysis and the

perception of the structure, it begins a constructive process that summarizes

information on the form into a homogeneous whole.

10. Autonomous formative activity: the tendency to visualize shapes for touch, is

specific of the haptic domain and separate from sight.

In 1962 also Gibson ([76]), influenced by Révész, distinguished between two

tactile experiences: passive touch and active touch. In passive touch, people are

passively touched by an external agent and the focus of their attention tend to be

aimed at their subjective bodily sensations. Instead, during active exploration, people

focus on the properties of the external environment. Inputs from the cutaneous

receptors are sufficient to explain the nature of the passive touch perception, but

they seem crucial also in the active touch exploration. Further to this classification,

Gibson wanted to underline the volitional characteristic of active touch; when we

actively move our arms and hands to touch or grasp something, we are doing it for a

specific purpose [233].

Hence, haptic perception means sensing and/or manipulating objects in a natural

or synthetic environment through the use of active touch with the hand or a tool

acting as such. It can be considered a combination of tactile perception derived from

the objects in contact with the surface of the skin and the information obtained

from the proprioception that informs us about the position of the hand relative to

an object. In this respect, Lederman and Klatzky systematically described a set of

exploratory procedures used to recognise objects’ properties [141] (the most studied

are represented in Figure 2.2). For instance, to retrieve temperature information, we

tend to keep our hand static on the object’s surface, or to understand the firmness of

a mattress, we tend to press it.

Whether it is touch or it is haptic, these senses are mediated by a series of

receptors pervading the skin, joints, and muscles. The skin is the largest organ of

the human body. It is the interface between oneself and the external world. We will

now present the physiology of touch.
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Figure 2.2: Adapted from [142]. Six of the most studied exploratory movements
used to recognise objects’ properties with our sense of touch.

2.2 Touch physiology - tactile receptors

The sense of touch begins in the skin. This is the most extended organ in the human

body and is divided into three layers: epidermis, dermis, hypodermis (Figure 2.3a).

The receptors that allow the tactile sensations are contained in the skin. The most

numerous are the mechanoreceptors, which can be also found in the blood vessels,

internal organs, and joints. There are four fundamental receptors (see Figure 2.3b):

1. the Meissner corpuscles

2. the Merkel discs

3. the Pacinian corpuscles

4. the Ruffini corpuscles
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Distributed throughout the skin there are also free nerve endings responsible

for delivering signals related to pain and temperature to the brain. Some of these

nerve endings are twisted around the base of the hair follicles and the stems of

the hairs emerging from the skin; these fibres collect the hair movements. Each

mechanoreceptor differs from the others based on the sensory function, structure,

density, location, receptive field area, tactile channels, stimulus adaptation, and

psychophysical properties (see Figure 2.4).

Following, we report the frequency ranges for each of these mechanoreceptors

(note: different sources may indicate different values). The Merkel disks and the cor-

puscles of Ruffini provide information about pressure and low-frequency vibrations

[22, 42, 167, 188] (from 0 to 100 Hz). The Pacinian corpuscles perceive mechanical

stimuli, especially high-frequency vibrations (5 to 1000 Hz) [27, 94, 178], while the

Meissner corpuscles respond to low-frequency vibrations (1 to 300 Hz) and small

taps [22].

In the tactile neurons, the receptive field is the area of the skin, or of another

tissue, which provides information to that particular receptor. Pacinian and Ruffini

corpuscles have very large receptive fields (the entire hand and 60 mm2 respectively)

[22, 167], providing information on the general boundaries of a stimulus, while

Meissner corpuscles and the Merkel discs have very small receptive fields (22 mm2

and 9 mm2 respectively), allowing to identify the spatial limits of a small stimulus

Figure 2.3: a) The skin. It is the largest organ of the body. It can be divided in three
layers: epidermis, dermis, and hypodermis. b) the main tactile receptors.



21 THE SENSE OF TOUCH

Figure 2.4: A summary of the mechanoreceptors properties. Adapted from [188]
and [126]

[115, 188]. Based on the area of their receptive field, the mechanoreceptors are

named I, for small receptive fields, and II for bigger receptive fields.

These skin sensors are not equally distributed across the body [188] (Figure 2.4,

third column), with the Pacinian and Ruffini receptors being the scarcest in density.

For instance, if we consider the skin that covers the hand there is a higher density

of RA-I and SA-I receptors in comparison to the deeper localised RA-II and SA-II

receptors [92]. Overall, the sensitivity of tactile stimuli varies from part to part of

the body accordingly to the density and the size of the receptive field of the receptors

that serve that area. The peripheral parts of the body (arms and legs) are more

densely innervated than the trunk and the proximal parts [117]. This translates

in lower sensitivity thresholds in the former areas. We will discuss the absolute

thresholds and the spatial acuity of our sense of touch in a later section (see Section

3.9).

Finally, Pacinian and Meissner corpuscles are not sensitive to prolonged stimu-

lation, meaning that if the stimulus is kept constant on the skin, these receptors

will stop to "fire" (transmit information) to the central nervous system (CNS) (see

Figure 2.4, last column). These receptors are also called fast adaptive receptors (FA

or rapid adaptive, RA). On the contrary, Merkel and Ruffini receptors, are responsive

to sustained indentations on the skin. These receptors are also called slow adaptive

receptors (SA). Together with the nomenclature referring to their receptive fields,
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the mechanoreceptors are therefore called, RA-I (Meissner), RA-II (Pacinian), SA-I

(Merkel), SA-II (Ruffini).

2.3 Touch physiology - tactile pathways

Not every tactile information follows the same path to get to the CNS. The infor-

mation from the skin, internal organs, and muscles go through the spinal nerves;

while the information from the face and the head pass through the fifth cranial

nerve, the trigeminal nerve. Further, localised tactile information (fine touch, propri-

oception, vibrations) follow the so-called "dorsal column-medial lemniscal pathway".

Proprioceptive information that does not reach the level of consciousness, follow

the "pathway to the cerebellum". Finally, poorly localised tactile information (crude

touch, pain, and temperature) follow the "spinothalamic pathway".

Information entering the dorsal column-medial lemniscal pathway ascends from

Figure 2.5: (Left) Tactile pathways: how the tactile information reach the CNS.
Blue arrow: the dorsal column-medial lemniscal pathway, for localised info. Red
arrow: the spinothalamic pathway, for poorly localised info. Tactile information from
the face is mediated by the trigeminal nerve (right, in yellow).
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the nerves through the dorsal columns to the lower bulbar nuclei. Then it decussates

and continues the ascent through the medial lemniscus to the ventral posterior

nuclei of the thalamus, to finally reach the primary somatosensory cortex (S1) that

then projects information to the secondary somatosensory cortex (S2) (Figure 2.5).

Information following the pathway to the cerebellum is ipsilateral and is transmitted

directly to the cerebellum bypassing the thalamus and S1. Lastly, the information

travelling through the spinothalamic pathway forms synapses with the neurons in

the spinal cord, then it decussates towards the opposite side of the body and ascends

through the spinothalamic tract to the posterior ventral nuclei of the thalamus

(Figure 2.5).

It might exist an additional pathway that bypass S1. Brochier et al. [21] reported

the case of a patient with a lesion to S1 who lost his somesthetic sensitivity to his

left arm. The patience was still capable of locating the tactile stimulation occurring

on his arm, even if he was not aware of that stimulation. This case led the authors to

hypothesize an additional tactile pathway that bypass S1. To date, even if this hypo-

thesis represents a possibility, there is only scarce evidence from neurophysiological

studies.

Concluding, the tactile information arising from the mechanoreceptors in the

skin travels along one of the pathways described. Each receptor signal would not

be enough by itself to make a neuron release info to the brain. The process is

allowed by temporal and spatial summation of mechanoreceptors signals. How the

information is integrated into the CNS is still a matter of study. The latest studies

hypothesize that the brain works following a Bayesian framework when processing

tactile information [75, 174]. When we gain information from our environment, these

are encoded from our senses and passed to the brain, while our prior knowledge of

the world, works to modify the final percept. From this process, we will elaborate

posterior knowledge that will serve as prior knowledge when new information will

enter into our (neural) system. This process will repeat continuously for every

information gained from the external world.
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2.4 Tactile representation in the brain

Figure 2.6: The primary somatosensory

cortex. It is responsible of the tactile sen-

sation we receive from our body parts.

When we experience a tactile sensa-

tion, our receptors are stimulated, and

close receptors send information to close

neurons in the brain. The primary so-

matosensory cortex (Figure 2.6) resides

in the parietal lobe and contains a

neural representation of the different

parts of the body. S1 is responsible for

analysing the tactile information com-

ing from our body parts. In 1940, Wilder

Penfield, American-Canadian neurosur-

geon, in the process of individuating

problematic areas in epilepsy patients’

brain, mapped S1 following the quantity and density of receptors in various parts

of the body, giving birth to the so-called "sensory homunculus". In this illustration

(Figure 2.7), the size of the different body parts is not proportional to the absolute

size of the body surface, but the density of the tactile receptors contained in it. That

is why the hands, lips, and tongue appear as the biggest. It is to note that this

representation is far from being fixed. There is a phenomenon called neuroplastic-

ity which is responsible for the reorganisation of the body parts at a neural level.

Neuroplasticity is the reason why blind people can have an enhanced sense of touch,

or pianists, a larger area in S1 underlying the representation of the fingers. More

generally, neuroplasticity is an adaptive mechanism that our brain uses to face

changes in the amount or quality of stimulation.

We know from studies on the visual system, that there are two streams in the

cortical visual processing: a ventral stream that analyses the shape and visual

features (the "what" way), and a dorsal stream that analyse spatial characteristics of

an object (the "where" way). In 2005, Reed and colleagues, hypothesize the existence
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Figure 2.7: (left) A representation of S1 with Penfield’s homunculus superimposed
(right) Penfield illustration of the sensorial homunculus. The bigger the body part,
the bigger its receptors’ quantity and density.

of a similar organisation for the cortical tactile processing [193]. In their fMRI

study, participants performed two separate tasks. The first task aimed to recognise

an object ignoring its spatial features, while the second task aimed to localise an

object ignoring the physical properties of an object. Their results confirmed separate

processing streams for the two tasks. In particular, the object recognition task

activated the frontal pole as well as bilateral inferior parietal and left prefrontal

regions, and the object spatial recognition task activated bilateral superior parietal

areas. A subsequent behavioural study confirmed the existence of separate "what"

and "where" ways in the tactile system [29]. In particular, they demonstrated how

two "what" tasks or two "where" tasks interfere while mixing one "what" and one

"where" tasks reduce this interference.

2.5 The relevance of the sense of touch

In everyday life, probably without realizing it, we make use of all those modalities

related to touch; when we have to decide if to buy a new dress, and we ensure the

fabric is to our liking, when we find ourselves in the darkness trying to make our

way between obstacles, when we press the virtual buttons of our phone, when we
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walk, when we talk. Without the sense of touch, we would not even be able to light a

match easily. Touch is the first sense to develop and seems to appear already in the

fetus [10, 44, 137]. It has been shown that at stimulations of the abdominal wall of

the mother correspond an increased activity of the child [137].

Touch also plays a key role from birth and during the child’s development,

managing to calm the infant in case of pain and discomfort. Winnicott identified three

important maternal functions for the healthy development of the child, including

that of handling, or the number of maternal physical manipulations (cares, cleaning,

caresses, etc.) that facilitate the psychosomatic integration. Some authors indicate

the sense of touch as the most reliable sense [15]. "Seeing is believing, but feeling is

the truth" according to the English clergyman and historian, Thomas Fuller (1732).

When we see an unknown object, we touch it to snatch the characteristics of form,

material composition or simply for curiosity; not surprisingly traders have to exhibit

the famous sign "DO NOT TOUCH". In this respect, Peck and Childers developed

the "need for touch" scale, aimed to measure individual differences in preference for

haptic information [179].

Our sense of touch is involved in many voluntary and involuntary functions,

some of those we might take for granted, as the following cases illustrate.

2.5.1 The need of contact

Studies illustrate how the lack of contact in infants and children (in nursing) is

related to a delay in cognitive and neurological development [154] which are often

below the average, and that, unfortunately, persist even several years after the

adoption or even for life [12]. The same can occur in cases of depressed mothers

who do not provide enough caresses to their children, who will spend more time

touching their skin as if to compensate for the maternal deficiency [98]. Other

researches show that the contact given by depressed mothers to their children can

make up for the lack of facial emotional and verbal communication [180]. Field et

al. [56], demonstrated how an additional amount of contact given to mothers with
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a depressive disorder, such as massages, decreases their depression and promotes

the growth and development of their infant. After the sixth week, they saw that the

child showed improvements in emotional and social skills, with decreased awake

time, thus promoting proper sleep. Importantly, both, the sender as well the receiver

of this type of tactile stimulation obtained some benefits.

Massage therapy was found to be effective on many hardships including pain,

stress, depression, attention deficit disorders, autoimmune diseases such as asthma,

dermatitis, diabetes, AIDS and diseases such as breast cancer [55]. Finally, contact

can also favour the level of attention associated with increased activity of the

vagus nerve that would reduce the heart rate typically associated with attentional

performance [54].

2.5.2 The importance of proprioception

The case of Ian Waterman helps us to realise how important the sense of touch is

and in particular the proprioceptive sense. IW contracted a viral infection at the age

of nineteen that destroyed the larger fibres of the cutaneous nerves that connect the

mechanical receptors to the central nervous system. As a result, he lost the sense of

touch and proprioception from the neck down. The patient had no awareness of his

body position in space, and without constantly watch his limbs, he was not even able

to walk. It was impossible for him to move in the dark as well as to focus on more

than one thing at the same time. IW never healed completely, but he learned to live

with his condition managing to walk, drive, and work.

Similarly, Oliver Sacks, in his book "The man who mistook his wife for a hat"

[199], describes the case of Christina. Christina developed a rare acute polyneuritis

that deprived her of the proprioceptive sense. The woman became unable to move,

and she had to come up with compensation methods to start walking again. She had

to constantly monitor herself with the eyes: "[...] looking carefully at each part of her

body as it moved, using an almost painful conscientiousness and care".
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2.5.3 The importance of pain in our life

Pain is part of the sense of touch. It has an adaptive function. It warns us about

something that is not working as it should. Even if at first sight it could seem

something relieving, the absence of pain leads to very serious consequences. This

is the case of the congenital insensitivity to pain with anhidrosis disease (CIPA).

The CIPA is a very rare autosomal recessive disease (less than sixty cases in the

medical literature [203]), characterized by congenital insensitivity to pain, lack of

temperature perception, intellectual disability, and self-mutilating behaviour.

“Pain is an unpleasant sensory and emotional experience associated with

actual or potential tissue injury, in other words, described in terms of

such damage. Pain is always subjective. Everyone learns the use of the

word through the experience of an injury at an early age" [34].

When this unpleasant experience is missing, inevitably we undergo more or less

serious problems, ranging from the lesion of the oropharynx tract to fractures by

trauma, bone deformation, and early death [202].

2.6 Summary

In this chapter, we introduced the sense of touch, a multifaceted sense composed of

an active and a passive modality, that help us to feel the world around us through

receptors located in the skin, muscles, tendons, and internal organs. We described

the different routes to the CNS the signal deriving from the tactile receptors follows

depending on the information encoded. We presented how this information is rep-

resented in the brain and observed how not every part of the body has the same

density of receptors. Hence, tactile sensitivity is not uniform across the body. Finally,

we discussed the importance of the sense of touch in our everyday life providing

some examples. Those examples make it clear how all the constituting part of touch

we give for granted, in addition to the cutaneous sensations, are essential for our
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life, even for the simplest everyday routine. This chapter gives us an idea of the com-

plexity of the sense of touch. A complexity that we need to take into account when

designing and implementing tactile/haptic feedback in human-computer interfaces

and applications. From our discussion, it appears how tactile information is intrinsic

in every aspect of our life. If we want to make users engage with technology in a way

that feels more natural and enjoyable, we cannot neglect our sense of touch. Indeed,

previous research highlights how tactile feedback can be considered an important

factor for the user immersion in a virtual reality (VR) application (see Chapter 5,

Section 5.4.2).

Following, we will introduce part of the main techniques at our disposal to

measure the human perception of tactile stimuli.
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MEASURING TACTILE PERCEPTION

W
e use our senses daily. We enjoy the colours of a beautiful sunset, we

listen to our favourite music, we foretaste our dishes inhaling their

scents, to finally eat carefully the food tasting it in our mouth, and we

share emotions through touch with our dears. Most of us can perceive the world

through the five senses, but how can we measure these percepts? Throughout the

history of science, a methodology has been developed that aims to answer this

question: the psychophysics.

3.1 Birth of the classical psychophysics

Psychophysics is the branch of psychology that studies the relationship between

physical stimuli and the sensation associated with those stimuli. Psychophysics

is a methodology to develop objective measures of all the human sensory systems.

The term "psychophysics" was coined by the German Psychologist Gustav Theodor

Fechner, who elaborated as a theoretic model a relationship discovered by Ernst

Heinrich Weber in 1834. Weber expressed as ΔR = kR, the relationship between

R (stimulation) and ΔR, that is the differential amount of stimulation needed to
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Figure 3.1: An illustration of the Weber-Fechner law. 5 Kg (ΔR) were added to an
initial amount of weight (R). However, the perception is different: on the left side, the
difference between weights will be easily perceived. On the contrary, the difference
between the weight on the right, will feel almost the same.

make a human aware of the change in stimulation. For instance, an athlete in the

gym is lifting some cast iron (R). To perceive an increment in the weight lifted,

the athlete will need to add a certain amount of cast iron to his dumbbell (ΔR)

before feeling an increment of weight. Weber discovered that the ratio ΔR / R does

not change with changing the stimulus R. The Weber constant (k) is a constant

that is specific for each sensorial channel, and varies depending on what we are

measuring. For instance, for lifted weights is 0.02, for sound intensity is 0.04, for

electric shock is 0.01. The Weber law introduces the concepts of differential threshold

or just noticeable difference (JND). The JND is defined as the minimum difference in

stimulation that a person can detect 50% of the time. The greater the stimulation

R, the more ΔR needs to be increased (or decreased) to experience a change in

the corresponding subjective feeling (see Figure 3.1). In other words, we are less

sensitive to differences in stimulus intensity as the intensity of a stimulus increases.

Starting from the assumption that the Weber law holds, and that the JND is

the basic unit of perceived magnitude, Fechner derived a mathematical relationship

where the perceived magnitude (P) and the stimulus intensity (I) are in a logarithmic

relationship: P = klog I. Where k is the Weber’s constant. Therefore, doubling the

light in a room, will not be equivalent to perceiving the room as twice bright. Indeed,

the relationship between perception and stimulation is not linear.
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At a later time, the Weber-Fechner law was expanded to a wider range of sensory

measurements with the so-called "Stevens’s power law". As anticipated by the name,

in this law the relationship between the stimulus and the percept are expressed

exponentially: S = c * Ia. Where S is the intensity of the sensation, I is the intensity of

the stimulation, c is a constant that depends on the unit of measure of the stimulus,

and a depends on the kind of measured stimulus. Therefore, the results will be

a family of curves where the intensity of the percept will be proportional to the

intensity of the stimulus powered to exponents typical of the investigated sensory

channel (Figure 3.2). Stevens’s Law was found to better describe the perception of

different kind of stimulations in comparison to Weber-Fechner’s law.

Figure 3.2: Possible curves originated from the Steven’s law. Depending on the
exponent of the stimulus investigated, the the perceived magnitude of a stimulus
will result in a different curve.

3.2 Psychophysics: areas of investigation

Psychophysics mainly focuses on three areas of investigation:

1. Absolute thresholds: it is the lowest intensity of a stimulus that can produce

a change in the neural activity. In other words, it is the minimum amount of

stimulation needed to be perceived by a system and create a sensation. For
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instance, the minimum amount of light in a dark room needed to perceive

that the light is on. A synonym of "threshold" is "limen". When a stimulation

remains under limen, we call it "sub-liminal".

2. Discrimination thresholds or difference threshold: it is the difference

in intensity between two stimuli needed to produce a change in the neural

cell. In other words, it is the minimum amount of difference between two

stimuli needed for the system to perceive that those stimuli are different 50%

of the time. For instance, the amount of brightness difference between two

lights that make an observer notice a difference between their brightness. As

explained in Section 3.1, the amount by which two stimuli must differ for the

observer to detect the difference is referred to as just noticeable difference or

JND. When studying differential thresholds, another key concept is that of

Point of Subjective Equality (PSE). The PSE is defined as the point where two

stimuli are subjectively perceived as the same. Thus, an observer would choose

randomly between them. In practise, it is the X-axis intercept that corresponds

to the 50th percentile of the Y-axis of a psychometric function (see Section 3.8).

3. Scaling: it is that branch of research that uses rating scales to assign quantita-

tive values to express qualitative constructs or sensory experiences. Examples

of scales used in psychophysics include Likert scale, Guttman scale, and Thur-

stone scale.

Each of these areas can make use of different methods elaborated by psy-

chophysics researchers. We will briefly introduce them in the following sections.

3.3 Classical methods

We will first introduce three methods used to investigate stimuli detection (if the

stimulus is present or not) and stimuli discrimination (if the stimulus changed in

some manner). These methods are now called classical and they were developed in

the nineteenth century:
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1. Method of adjustments

2. Method of limits

3. Method of constant stimuli

Method of adjustments: the participant is given a chance to directly modify

the intensity of the stimulus object of investigation. The experiment starts with the

intensity set at high (descending trials) or low (ascending trials) levels so that the

stimulus is surely perceived or not by the participant. The number of descending and

ascending trials must be equal. At this point, the participant modifies the stimulus

intensity until it can just perceive it, and this process is repeated many times. The

absolute threshold is the arithmetic mean of the chosen intensities.

Method of limits: the researcher set different stimuli organised in different

discrete levels of intensity. The stimuli are presented in a descending or ascending

intensity series. During the descending series, the participant will answer "no" when

the stimulus is not anymore perceived. In the ascending series, the participant will

answer "yes" when the stimulus is finally perceivable. The threshold is estimated

through the arithmetic mean of the values when the participant changes his/her

answer from "yes" to "no" and vice-versa.

Method of constant stimuli: a certain number of stimuli of different intensity

is presented to the participant many times, in randomised order. In each trial, the

subject will communicate if he/she perceived the stimulus. The threshold will be

that stimulus that has 50% of the probability of being perceived. Differently from

the method of limits, here the stimuli are presented in a randomised order.

There are several limitations concerning the methods presented above. For in-

stance, in the method of adjustments there can be sensory fatigue (neural adaptation)

working against accurate stimulus discrimination. In other cases, the observer could

have expectations regarding the next test stimulus. In the method of limits, starting

from subliminal stimulations will create an expectation of a supraliminal stimulus,

and vice-versa. The method of constant stimuli usually takes a long time to be

completed. Generally, the classical methods also include many trials at levels far



35 MEASURING TACTILE PERCEPTION

from threshold (with the exclusion of the method of adjustments). To obviate this

issue, adaptive methods have been developed.

3.4 Steven’s methods

After Fechner’s methods, psychophysics continued to evolve. An example is repre-

sented by the Thurstone’s law of comparative judgement. This law can be used to

compare physical stimuli and qualitative comparative judgements. The stimuli to

measure are presented pairwise, and the participant has to express which of the two

stimuli is expressing a certain characteristic in a greater or lesser extent. After the

whole series of comparisons, it is possible to order stimuli by the presence or absence

of the target quality.

As mentioned at the end of Section 3.1, Stevens was another protagonist of the

psychophysics evolution and creator of the direct psychophysics. Stevens thought

that the Weber-Fechner methods were unnecessarily indirect. For Stevens, it was

possible for participants to directly assign numerical values to the stimulation re-

ceived. These numerical values correspond to psychological values that are directly

communicable. The main methods introduced by Stevens are the magnitude estima-

tion, the magnitude production, and the cross-modal matching. In the magnitude

estimation method, extreme values for a certain stimulus (modulus) are showed,

as example, to the subjects. During the testing phase, subjects have to assign nu-

merical values to the stimulation perceived in each different trial. In the magnitude

production method, participants have to match a certain value given to them by the

researcher, to a stimulus. Lastly, in the cross-modal matching, participants need to

express their judgement on the intensity of a certain stimulus choosing an intensity

of a stimulus that belongs to another sensory modality. For example, consider to set

up a study to evaluate the brightness of a LED light. The researcher will present

different levels of brightness to the participants, and the participants will need to

express the light brightness by choosing a certain loudness of sound. Brighter lights
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will correspond to louder sounds (in dB).

3.5 Modern heuristic-based methods

Another set of methods of the psychophysics are those called modern methods. These,

originate from the classical methods, but they are usually adaptive. A method is

said to be adaptive if the intensity of a certain stimulus in a trial, depends on the

answer given by a participant on a previous trial. Following, we will describe the

main adaptive methods.

Simple Up-Down Staircase method: in this method, usually, the stimulus is

set at a supraliminal intensity, so that it is certain the participant will perceive the

stimulus. Later, the intensity is reduced to the point the participant can not feel

anymore the stimulation. When this happens, the staircase is reversed, and the

intensity increased back again until the participant perceives the stimulus again.

At this point, the staircase is reversed again, and the intensity decreased. After a

set number of inversions (termination rule), the experiment is concluded and the

values of a certain amount of last inversions are averaged and taken as a threshold

(decision). In practice, when the participant answers correctly one time in a row,

the stimulus intensity is reduced by one step size. When the participant makes an

incorrect response the stimulus intensity is increased by one step size. The threshold

is calculated averaging the mean midpoint of all runs. However, there are different

designs of staircase procedures, with different termination rules and decisions.

Transformed Up-Down Staircase method: The X-up-X-down staircase method

is maybe the most used staircase procedure. In general, we can have X up - X down

parameters where the X up decides the number of wrong answers for rising the

stimulus intensity, and X down decides the number of correct answers needed to

lower the stimulus intensity.

Details on further staircase procedures can be found in [66].
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3.6 Model-based methods

Bayesian and maximum-likelihood procedures: these two techniques can ap-

pear similar to the staircase procedures, in that they are adaptive procedures. In

the maximum-likelihood procedure, the threshold likelihood is calculated from the

set of all previous stimulus-answer responses. The point of maximum likelihood is

chosen as the threshold estimate, and the participant will be tested on stimuli at

that value. In a Bayesian procedure, we calculate the value of the next stimulus by

inserting a prior belief, or a prior likelihood.

3.7 Signal Detection Theory

In 1966 an important innovation was introduced in the realm of the psychophysical

methods, the Signal Detection Theory (SDT). The theory had already been developed

in the 1950s but applied only now in psychophysics, for the first time, by two

American psychologists, David Green and John Swets. The SDT theory assumes that

every sensorial process happens in a noisy background. That is, when an observer

needs to decide if the target stimulus (signal) is present in an environment, he/she

has to try to discriminate it from everything else that might be confused for the

target (noise). Here, noise is to be understood in a broad sense. We consider noise

external confusing stimuli, and random internal neural disturbance.

Let’s assume as an example that we want to test when observers discriminate

between an aeroplane in the sky (target), or a bird (noise). We collect the subjects’

answers under the form of four possible couplings between the physical presence of

the stimulus (aeroplane) and noise (bird), see Figure 3.3.

Hit: when an observer detects the presence of the signal that indeed it exists

(aeroplane when it is an aeroplane). Miss: when an observer does not detect the

presence of the signal that instead, it exists (birds when it is an aeroplane). Cor-

rect rejection: when an observer does not detect the signal and indeed there is no

signal (bird and it was a bird). False alarm: when an observer detects a signal, but
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Figure 3.3: SDT method generates four possible values depending on the answers
of the observer: 1) hit, 2) miss, 3) false alarm, and 4) correct rejection.

there is no signal (aeroplane but it was a bird).

Generally, the SDT theory assumes the existence of sensory and decision pro-

cesses and tries to find out the parameter characterizing those processes. The first

parameter is the d’ that describe the sensitivity of the sensory process, or the sep-

aration between the signal distribution and the noise distribution (the separation

between the green and red curve in Figure 3.4), and the β index that describes the

bias or response criterion of the decision process.

The d’ index is based on the difference between the percentage of hits and the

percentage of false alarms. The β index instead, is based on the ratio between

percentages of hits and false alarms. Therefore, the d’ index refers to the accuracy of

the system, and the β index refers to the criterion chose by the observer to be more

prone to detect or ignore the signal. In our example, the d’ describes how well an

observer could discriminate between an aeroplane or a bird in the sky. The β index

describe how much the observer would rather say "aeroplane" in comparison to

"bird". If the observer was a medical doctor, we could interpret the d’ as the skills of

the doctor to detect a tumour in a patient based on the information collected. The

β index would be the personal tendency of the doctor in case of noisy information

(e.g., functional and structural imaging) to decide that what he/she sees is a tumour

rather than not (Figure 3.4 exemplifies this concept).
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Figure 3.4: Visualisation of the d’ index and the criterion. Two distributions are
shown: in green, the probability distribution of a signal to be absent (noise), in red,
the probability distribution of a signal to be present. Depending on the criterion
chosen (vertical line), an observer will detect many signals but also many false
alarms (top), many hits and high false alarms (centre), high hits and low false
alarms (bottom).

Therefore, the SDT theory refuses the concept that the observer’s answers on a

psychophysical task depend only on the observer’s sensory sensitivity. Instead, it

prefers a vision where the answers depend not only on the sensory sensitivity but

also on a post-perceptive decision criterion adopted by the observer. Further, this

criterion depends on personal inclination to risk, mood, and several other factors.

The full range of an observer’s decisions can be described by the Receiver Operat-

ing Characteristic (ROC) curves (Figure 3.5). The ROC curves capture the sensitivity

(d’) through the bow in the curve. Moving along the bow captures the criterion

(β index). For example, take the d’=1 curve; in this case, the criterion is very low (a

point located towards the upper right part of the d’=1 curve), both, the number of

hits and false alarms will be high. We would call this choice, a strict criterion. On the

contrary, if the observer set a high criterion (a point located towards the bottom-left

part of the d’=1 curve), then the number of hits and false alarms will be low. We

would call this choice, a lax criterion. As indicated in Figure 3.5 right, the higher the
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Figure 3.5: Left: the ROC curves graph showing the full range of an observer’s
possible decisions. The ROC curves capture the sensitivity (d’) through the bow in
the curve. Moving along the bow captures the criterion (β index). Right: the higher
the d’ index, the more separable the curves of noise and signal will be.

d’ index, the more separable the curves of noise and signal will be. That is, to higher

levels of system sensitivity, correspond higher probabilities of catching the signal

(hits). Finally, it is interesting to note that for any choice of criterion with d’ 6= 0, the

hit rate will be always larger than the false alarm rate.

3.8 The psychometric function

The perception process cannot be described by specific values. Indeed, these values

can vary across people and depend on several factors. That is why we tend to

describe it by using probability functions, the psychometric functions. A psychometric

function describe the relationship between a property of the physical stimulus and

the observer’s percept, expressed as answers to yes/no tasks, forced-choice responses,

etc. Figure 3.6 shows one of the most famous psychometric function, the sigmoidal

curve. This curve is described by the relation of the intensity of a stimulus on the

x-axis, and by the probability that a subject will detect a stimulus with a certain

intensity (the proportion of "yes" responses or the percentage of correct responses)

on the y-axis. Different functions can be modelled from a psychophysics study (e.g.,

probit, logit, Naka-Rushton function, etc.). Psychophysics functions can be defined

by three concepts: 1) the slope, 2) the X-intercept, and 3) the goodness of fit. Let’s
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Figure 3.6: Example of a possible psychometric function, a sigmoidal function. On
the x-axis, the stimulus intensity. On the y-axis, the probability that a subject detect
a stimulus with a certain intensity. On the figure are highlighted the slope, PSE,
and goodness of fit of the curve.

take as example a task where an observer needs to detect if a light is brighter than

other ones.

The slope of a psychometric function, tell us how sensitive the observer is to the

changes of stimulations (on the x-axis). Flat curves means the observer is not good

at discriminating between the different brightness of the lights, and that the tested

stimuli (the lights) are too hard to discriminate between each other. Curves that

present a sudden change from one point to another one of the y-axis, indicate that

the observer can detect easily a difference between the lights. Our chosen stimuli,

are discriminated too easily. What we want to obtain is an incremental slope as the

one in Figure 3.6, where there is a progressive increment from the different easy to

detect (left values on the x-axis) to the zone of uncertainty (mean values) to again,

values easy to discriminate (right values on the x-axis).

The X-intercept, tell us the observer’s bias (or PSE, the stimulus quantity that is

associated with the 50% value of the y-axis). That is, the X-intercept, tell us what is

the point where two lights of different brightness will be perceived as equal. It might

be that for a certain observer this value corresponds to the centre value on the x-axis
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(no bias) or to one of the extreme values on the x-axis (liberal or conservative bias).

The goodness of fit can be defined as the correlation r between the data points

(our observers’ responses) and the function (the chosen psychometric function). The

more the data points lie on the psychometric function, the more the goodness of fit

is good. In other words, the goodness of fit, describe how good our function fit the

data. If we obtain a good goodness of fit, then we can be confident that the extracted

parameters from the psychometric function, such as absolute thresholds, differential

thresholds or JNDs, and PSEs, approximate well the phenomenon investigated.

3.9 Tactile psychophysics

Sensitivity is the ability to discriminate between two stimuli at a certain location

(differential threshold). The differential thresholds tell us the maximum closeness

possible between two pressure points before the subject perceives them as a single

stimulus. The tongue, fingertips and lips are the most sensitive parts of our body

[22, 186]. Knowing that the sensitivity varies from part to part of the body, it has

important implications for the development of haptic interfaces. For instance, it

informs us on the possibility to perceive shapes at a certain location. If thresholds

vary across a location, designers and programmers might want to adapt the system

spatial resolution to match the human one. Following the spatial acuity of a certain

body location, researchers could avoid reproducing a tactile stimulation in its en-

tirety still obtaining a convincing effect (see Section 5 on tactile illusions), avoiding

providing useless information. Similarly, there are other psychophysical properties

of our sensory system that can influence our perception of external stimuli. In the

next sections, we will present the main studies that investigated thresholds across

the body for different tactile properties.
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3.9.1 Tactile thresholds

Recall from Section 2.2 that in the glabrous skin we have four important tactile

receptors. Each one of these receptors is associated with a specific tactile channel.

A channel is a functional/structural pathway where the information rising from a

receptor is passed to the CNS. These channels are called NP-I (for RA-I receptor),

NP-II (for SA-II receptor), NP-III (for SA-I receptor), and PC (for RA-II receptor,

the Pacinian corpuscles). When we experience a certain tactile stimulation, our

mechanoreceptors encode this stimulation as a spatio-temporal pattern, trigging

certain neural afferent nerves. This activity is highly reproducible as long as the

stimulation is invariant [95]. What changes is the way each mechanoreceptor encode

this spatio-temporal pattern [118].

Thresholds for the detection of vibration changes depending on the spectrum of

frequencies. The detection curve can be described as mediated by a set of different

and partially overlapping sensory channels known as information-processing chan-

nels. Originally, it was hypothesised that two sensory channels were codifying the

tactile information, separating low- and high-frequency information [164, 238, 242].

Capraro et al. [25] hypothesised three sensory channels. As previously described,

now we know there are four channels to mediate the tactile information [16]: PC,

NP-I, NP-II, NP-III. These channels are frequency-sensitive (see Figure 3.7, left).

Different studies were aimed to assess their specific sensitivity [16, 17, 74, 239]. Fig-

ure 3.7, right, shows the resulting curve from the four overlapping sensory channels.

The curve can be described as being composed by three segments. The first, between

0.4 Hz and 3 Hz, is a low-frequency curve which appears frequency insensitive.

The second is a mid-frequency curve that appears as frequency-dependent. Finally,

the last part of the curve is a U-shaped curve that seems to describe the Pacinian

corpuscles sensitivity and ranges from 40 Hz to 500 Hz. Overall, it emerges how

oscillations of higher frequencies require lower stimulus amplitude to be perceived.

Further, Bolanowski et al. [16] investigated the influence of the area of the con-

tactor on the vibro-tactile thresholds. They noticed that the SA-II are not influenced
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by the tactor size. That is, the SA-II channel does not present spatial summation.

With spatial summation, we intend that effect for which at equal frequency and am-

plitude of the stimulation, the stimulus conveyed through a greater contact surface

is perceived as stronger. This effect seems specific to the PC channel [16, 237, 242].

Regarding a possible presence of temporal summation (i.e., a change in thresholds

due to the stimulus duration), only the PC channel seems to exhibit this effect. The

temporal summation characteristic of the PC channel seems to be dependent on the

spatial summation effect [242].

A fundamental study on absolute thresholds for pressure across different body

parts was carried by Weinstein in 1968 [248]. In Figure 3.8 are shown the different

thresholds obtained by his study in males subjects. Overall, the face is the most

sensitive area compared with the other parts of the body.

Tactile sensitivity may also vary for gender and age. If it is true that male and

female have no difference in tactile thresholds when young, it seems that ageing

brings a deterioration of the tactile acuity that is higher for men than women in all

the four tactile channels (> 65 years old) [72]. Other studies found a difference in the

thresholds between males and females [248], but it might be that the difference can

be explained by the different size of the hand. A smaller hand has a higher sensitivity

due to the equal number of receptors in the skin, concentrated in a smaller area

Figure 3.7: Adapted from Bolanowski et al., 1988 [16]. Left, the four different curves
describing the four tactile sensory channels sensitivity for vibrations on the thenar
eminence. Right, the curve resulting from the overlapping of the four channels. To
be noted how higher frequencies (x-axis) of vibrations are perceived using smaller
stimulus amplitude (y-axis).
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Figure 3.8: From Weinstein, 1968 [248]. The graph shows the different absolute
thresholds for pressure in males across different body parts.

(higher receptors’ density).

As anticipated, ageing is a crucial factor for tactile sensitivity. Overall, all the

channels have an increased threshold with ageing, but it is more substantial in the

PC channel (Pacinian corpuscles for high-frequency vibrations). Specifically to the PC

channel, this might be due because of the spatial summation property prerogative

of this channel. The functionality of the PC channel depends on the integration

of neural activity over numerous receptors. If these receptors are diminished or

deteriorated the effect on thresholds levels will be stronger compared to the other

tactile channels (that do not exhibit spatial summation). In general, the loss of

tactile sensitivity can be traced to the reduction in the tactile receptors’ density. In

favour of this hypothesis, Stuart et al. reported how tactile thresholds decrease with

ageing in different body parts but not in the fingertips, where the density of tactile

receptors is higher [224]. Changes in shape (and functionality) of the receptors might
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Figure 3.9: From Mancini et al. [157]. The graph shows the different spatial acuity
thresholds across 4 different studies. Weber and Weinstein studies used simultane-
ous multiple stimulation.

be another cause responsible for the impoverishment of tactile sensitivity [72]. These

hypotheses do not exclude other factors like the reduction of skin compliance and

changes in the nervous system functioning with ageing. Gescheider et al. showed

how the temporal summation effect goes into detriment with ageing [71]. Younger

subjects present lower thresholds associated with the increasing of stimulus duration.

Finally, absolute thresholds are influenced by other factors like the menstrual cycle,

skin moisture, alcohol and tobacco consumption, and the presence of diseases such

as bulimia/anorexia nervosa [92].

3.9.2 Spatial acuity

For spatial acuity, we intend the ability of a subject to discriminate two different

tactile stimuli as such. In other words, is the minimum amount of difference between
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two stimuli (e.g., in intensity, weight, frequency, etc.) that a subject needs to be able

to discriminate between the two stimuli. Usually, spatial acuity is tested using a

calliper with blunt ends. The experiment starts with the two ends of the caliper

opened at a certain discriminable distance. Then, this distance is reduced until the

observer is not able to discriminate the two stimuli. As illustrated in Section 2.4,

Figure 2.7, different areas of our body has a different topographic representation

in the CNS due to differences in receptors’ density. Indeed, many studies aimed

to investigate differential thresholds in different parts of the body are in line with

the Penfield sensorial homunculus. Figure 3.9 shows the results from two iconic

studies by Weber [247] and Weinstein [248], and a more recent study by Mancini

et al. [157]. With some variations depending on the study, this illustration clearly

shows how the fingertips, the palm, and the foot sole are the most sensitive parts

of the body. On the contrary, the lower back, the thigh, and the calf present the

higher differential thresholds. The different threshold levels across the body can be

explained by the difference in the receptive fields of the cortical neurons representing

a certain area. Neurons with smaller receptive fields will lead to smaller differential

threshold levels; when two stimuli occur at a small distance, they will activate

separate neurons that will bring a separate percept [80].

3.9.3 Temporal acuity

For temporal acuity, we mean the shortest time interval between the onset of two

tactile stimuli that allows an observer to perceive two different stimuli. In terms of

strictly measuring temporal acuity, there are only a few studies. The first is a study

by Gescheider in 1966 [70]. He investigated the difference between the tactile and

auditory perception of successive brief stimuli. In this work, he reported that the

tactile acuity between two successive stimuli delivered on the ring and index finger

of the same hand, or the same location on the index finger, is equal to 10 ms. When

the bilateral index fingers were stimulated, thresholds raised to 12.5 ms. From this

same research, emerged that thresholds are influenced by the stimulus strength.
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In particular, the first stimulus suppresses neural activity produced by the second

stimulus if its strength is considerably higher, and vice-versa, if the strength of the

second stimulus is considerably higher, the first stimulus is suppressed. Another

confirmation that temporal thresholds depend on the somatotopic distance comes

from Kuroki et al. Somatotopic distance is defined as the distance between two

different locations as encoded in the cortical topography. In their study, Kuroki et al.

demonstrated how temporal thresholds were lower when stimuli appeared on the

same location (same-site condition) [136]. Thresholds tended to increase with the

increasing distance of the stimulated location (see Figure 3.10).

Successive studies, tried to investigate other aspect related to the temporal acuity

of the tactile sense, e.g., the temporal order perception (i.e., how much time must

occur to perceive which stimulation came first), or temporal interval judgement (i.e.,

how long was the interval between the first and the second stimulation).

Figure 3.10: From Kuroki et al. [136]. Variation of tactile temporal thresholds with
varying the stimuli location.
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3.10 Summary

The Weber-Fechnerian methods were the first methods used to estimate human

absolute thresholds and differential thresholds. The classical techniques are the

method of limits, the method of adjustments, and the method of constant stimuli.

Each one of them has both, advantages and disadvantages. Choosing the "right"

methods it is often matter of a trade-off between time and precision. While classical

psychophysics offers some precise estimates points (values) indicative of a threshold,

modern methods, like the SDT offer a framework in which the threshold is seen as a

distribution of probabilities. A system, in our case, the human tactile system, will

have a certain sensitivity (d’) and an observer will select a criterion to discriminate

between the target signal and the background noise, which will be always present,

inside (in the form of neural noise) and outside the system. In this way, the quantity

of stimulation needed to be separated from the background noise will be variable

depending on several factors (e.g., mood, previous experiences, personality, etc.).

As we discussed in the previous chapter, the sense of touch is not an absolute

sense. Its functioning depends on age, gender, it presents individual differences, can

depend on the actual state of attention, mood, stress, training, temperature, etc. It is

not merely passive, but there is an active (haptic) part of it that is responsible for the

awareness of our movement and the extraction of objects features. Tactile receptors

are responsible for encoding the information we receive from the external world and

carry it to our CNS. The final percept will depend on a series of events and neural

activity which we try to measure using classical or modern psychophysical methods.

When designing for tactile interactions, we must think of the target location, the

spatial resolution of that location, what are the thresholds of that specific part of

the body. In Chapter 6, 7, and 8, we present three studies aimed to understand the

perceptive properties of our sense of touch when stimulated by an ultrasonic mid-air

haptic device (see Chapter 4, Section 4.3.4). Specifically, the first study investigates

the absolute thresholds of our left hand and arm. The second one analyses the

optimal sampling strategies to use when stimulating through ultrasonic mid-air
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technology and the relationship between sampling rate and shape size. The third

one, informs on some possible optimal parameters to facilitate the perception of 2D

basic shapes on the hand, through a mid-air haptic device. Finally, the following two

psychophysical studies (Chapter 9, and 10), investigate the apparent tactile motion

phenomenon (see Chapter 5, Section 5.1), both, with contact and mid-air haptics. In

these studies, we provide the optimal parameters to design a smooth sense of motion

that extends from one hand to the other hand.

In the next chapter, we will introduce the main devices we can exploit to stimulate

our sense of touch.
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TOUCH AND TECHNOLOGY

W
e have different methods that we can use to stimulate the sense of

touch. We can exploit the skin deformation, stretch, or friction. We

can use vibrations, electric stimulation, or temperature. Generally, we

need a tool that is capable of making our tactile mechanoreceptors sending signals

towards our brain (firing). To do that, we need to make use of some sort of external

skin perturbators: the haptic devices. We can think at the tactile interaction as an

exchange of input and output between the machine and the user. Following this view,

we can describe a continuum from actuators, that only provide output to the user

and more complex technology such as the haptic systems, where the communication

happens bidirectionally from the machine to the user and vice-versa. Further, we

can divide haptic systems in contact and contactless, or mid-air haptic.

4.1 Actuators

We refer to actuators for those devices that deliver an output on the human skin.

Actuators deliver tactile feedback stimulating the mechanoreceptors in the skin

(see Chapter 2, Section 2.2). These devices are only capable of sending a tactile
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stimulation, but they do not respond to the user’s status.

4.1.1 Vibrating motors

A first kind of actuators are the vibrating motors (Figure 4.1). They provide relatively

small-amplitude vibrations in a linear or a rotary sense. They can be applied directly

onto the skin or by using a structure, and they can work in a single unit or in arrays.

An example of this type of actuators can be found in classic game controllers, or

mobile phones. In particular, this kind of motors are called Direct Current motors

(DC motors) because they convert direct current energy into mechanical energy

through the rotation. DC motors are inexpensive, but they have a poor temporal

resolution, as it takes time to start and stop the rotational mass. Another kind

of vibrating motors are the voice coils. Voice coils are coils of wire which sit into

a magnetic field. When the current is switched on and off, this causes the coil to

move. They can be very fast and accurate and it is possible to control frequency and

amplitude separately. An example of these motors can be found in speakers.

Figure 4.1: An illustration of a simple vibrating motor. The ending part on the right
rotate, producing vibrations.

4.1.2 Linear motors

As we saw in the previous subsection, vibrating motors move in a rotatory way.

Linear motors, instead, move in and out along a linear plane. Usually, a motor
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converts rotational energy to linear energy by means of a screw or a gear. They can be

composed of one or more pins usually disposed in arrays that actuate independently,

in contact with the skin. These kinds of actuators are simple and versatile, allowing

a series of different tactile sensation (e.g., vibrations, pressure, shapes, etc.). One of

the main drawbacks is their cost and the cumbersomeness of the pins depending on

the specific application. Apart from industrial applications where some robotic arm

has to lift and moves objects, we can find this kind of actuators in Braille displays,

for instance.

4.1.3 Piezoelectric actuators

Piezoelectric actuators are transducers that convert electrical energy into a mechan-

ical displacement. Different materials show piezoelectric properties, but normally, is

used a piezoelectric ceramic layer (or a series of layers) that expands when voltage

is applied to it. Using multiple layers can amplify the effect. Piezoelectric actua-

tors have large forces even with small motion. The main advantage is that they

can be small (around 0.2 mm to 1 mm thick), they are inexpensive, they have fast

response time, and they consume little energy. However, they can be hard to control

(small displacements require accurate amplification) and they require high operating

voltages.

4.1.4 Dielectric elastomers

Dielectric elastomers transform electric energy into mechanical work through a

dielectric polymer film between two electrodes. When voltage is applied, the two

electrodes at the opposite sides of the elastic film attract each other. This makes the

elastic film to contract and expand its area. The stretch of the film is controlled by

the voltage applied to the electrodes. These actuators require less power compared

to vibrating motors and piezoelectric actuators.
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4.2 Contact haptic systems

Haptic technology, or haptics, is a technology which exploits the characteristic of

the sense of touch in its wider meaning (i.e., passive and active touch). Haptics can

convey forces, vibrations, or motion onto a user’s body. These, can confer realism

to virtual objects in virtual reality (VR) enhancing the user experience through

a sense of embodiment and presence (see Section 5.4.2). Additionally, they can

enhance teleoperation environments (i.e., operation of a system or machine at a

distance) by adding tactile sensors and actuators to mimic tactile sensation to and

from the remote machine. Unlike actuators, haptic systems offer a bidirectional

communication that goes from the user to the machine, and from the machine to

the user. Over the last 20 years, numerous haptic devices have been developed.

Haptipedia, a taxonomy of haptic devices conceived in the last 30 years [207], helps

to navigate through the history of haptic technology. In this section, we will revise

the main haptic systems delivering haptic feedback while directly in contact with

the users’ skin.

4.2.1 World-grounded devices

The most traditional haptic devices are the so-called world-grounded haptic in-

terfaces. Grounded because the device requires an anchor to provide users with

resistance or exert force against the user. Examples of these kinds of devices are

the Butterfly Haptic Maglev 200 System, the Haption Virtuose 6D, the Sensable

PHANTOM Premium, the Quanser 3-DOF Planar Pantograph, the Force Dimension

Omega.3, and the Motek HapticMaster (Figure 4.2). Usually, these devices convey

kinesthetic feedback or force-feedback. Typically, the user interacts in the virtual

world by grasping a held tool and receiving feedback through it. In receiving force-

feedback, it is possible to choose to control the device by impedance or admittance

control. Impedance control devices apply forces between the target position and the

actual position of the handle. Hence, they resist (impede) movement to controlled

directions. Admittance control devices allow (admit) users’ movement while applying
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force. We can imagine them as pushing a finger through a viscous substance while

applying larger forces than impedance devices.

Figure 4.2: Examples of grounded devices. From top, from the left: the Butterfly
Haptic Maglev 200 System, the Haption Virtuose 6D, the Sensable PHANTOM
Premium. Bottom row from left: the Quanser 3-DOF Planar Pantograph, the Force
Dimension Omega.3, and the Motek HapticMaster.

4.2.2 Body-grounded devices

Another set of haptic devices are those grounded on the body. These devices are

also called wearables. Because they are located on the body, wearable technology

introduces limitations in terms of power. These devices need to be miniaturised and

power efficient. Further, their effect is limited to the part of the body where they re-

side. However, they allow users to move freely in the real world, removing workspace

limitations. Typically, wearable devices convey passive information. Hence, they

simplify the complexity needed for the world-grounded devices. Wearable devices can

also take the form of exoskeletons. In this case, they can convey kinaesthetic infor-

mation. In 2017, Pacchierotti et al. [176] tried to better define the differences among

wearable devices. Within their taxonomy, they differentiate between systems with

lower levels of wearability and those with higher levels of wearability. Systems less
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wearable are those whose ground is located at distance from the contact/interaction

area (see Figure 4.3a). In this case, when the user will interact with an object, a

force will be displayed on the contact area. At the same time, another undesired

force will be exerted on the ground location. Higher wearability systems are those

that are grounded as much as possible close to the contact area (see Figure 4.3b). In

this way, the undesired forces arising from the haptic interaction will be limited to

the same location of the interaction.

Figure 4.3: Adapted from [176]. a) Example of wearable device with low levels of
wearability. Here, the ground (red rectangle) is located far from the interaction area
(blue rectangle). b) Example of wearable device with high levels of wearability. Here,
ground and action area overlap.

Optimally, a wearable device would minimise cumbersomeness and unwanted

forces. Therefore, the more the ground will be close to the area of action, the higher

it will be wearable and comfortable. At the point when ground and interaction area

match, the information rendered by the device will be entirely cutaneous (e.g., in

fingertips mounted devices).

Among the realm of wearable devices, we can distinguish the aforementioned ex-

oskeletons, devices mounted on the fingertips, conveying haptic cutaneous feedback

through normal indentation (moving platforms, pin-arrays, pneumatic systems), lat-

eral skin stretch, relative tangential motion and vibration, and whole hand devices

operating through kinaesthetic stimuli and vibration.

There are numerous amounts of studies on grounded haptic devices and wear-

ables devices; it is out of the scope of this section to present the entirety of these

systems and their detail. We refer to [37, 41, 175, 176] for an extensive review on

haptic devices.
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4.3 Mid-air haptic systems

Work on the sense of touch across disciplines provides a valuable basis on its func-

tional and neurological understanding. These advancements together with the

exploration of novel interaction techniques have also led to the development of new

haptic systems. The most recent cutting edge haptic interactions happen through

touchless interfaces: the mid-air haptic systems.

The main advantage of mid-air haptics is that users do not need any attachments

on their body. The action becomes more ecological, simulating the way we normally

interact with the surrounding environment. On the contrary, cumbersome devices

on the skin can limit the tactile sensation and bias the tactile experience. In the

next sections, we will present the main mid-air haptic technologies.

4.3.1 Mid-air tactile laser

Mid-air laser technology is based on the principle of the thermoelastic effect (indirect

laser radiation) (Figure 4.4). In their study, Lee et al. [143] demonstrated how it

is possible to convey a tactile sensation through a laser beam on a finger covered

with an elastic material. The laser beam changes the material shape (thermoe-

lastic effect), providing the user with tactile feedback. This technique has some

advantages: it has a fine spatial resolution (9 mm), it has an instantaneous speed

(the light speed), it can travel virtually infinite distances, and has little diffusion

or attenuation. Albeit it represents an interesting media, this technology is not of

easy application, for several reasons. It is not absolute mid-air (an elastic material

needs to be applied on the target location and the tactile sensation is given by the

change of shape of that material), it is not highly reusable (the material needs to

be substituted after several usages). Finally, lasers could be dangerous if directed

towards sensitive areas such as the eyes and the resulting tactile sensation is weak.

Jun et al. proposed an alternative laser solution [120]. In their study they used a

laser at low-power radiation, evoking thermoelastic effect directly on the user’s skin,

making it contracting and pain-free.
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Figure 4.4: From [143]. This mid-air haptic device works by employing a laser beam
that hits a thermoelastic material. This one, expanding, provides a tactile sensation
on the user’s skin. In the picture, the PVDF sensor was used to measure the force of
the tactile stimulation.

4.3.2 Air-jet flow

Suzuki and Kobayashi [228] ideated a system that controls air-jets according to the

position and orientation of the air receiver, which is held by the user (a tool similar

to a spoon). At this point, the air impacts the receiver tool, making the user perceive

pressure as a force. As for the laser beam technique, the medium (air) do not touch

directly the body but a tool is still required to perceive the tactile stimulation. Unlike

laser technology, instead, the jet flow is harmless for the whole body.

The AIREAL device can be thought of as an evolution of the air jet technique.

Unlike standard jets of air, which are turbulent and dissipate quickly, vortex rings

can maintain their energy and travel several meters to impart perceptible feedback

at distance [84, 218].

This technology (Figure 4.5) has a discrete spatial resolution (10 cm), it can

be felt on the whole body, and through clothes. An interesting scenario sees the

possibility of sending cold or warm air within the vortex ring. Nevertheless, the

temporal resolution of the devices is limited by the following generated vortices.

The different vortices could interfere with each other. The air resistance represents

another limitation, decreasing the vortex velocity causing delays.
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Figure 4.5: Adapted from [218]. The Aireal device exploit the use of toroidal air jets
to deliver tactile stimulation at distance.

4.3.3 Electric arcs

In 2016 Spelmezan et al. presented yet another approach in the mid-air systems

scenario [219]. Using the same principle of a Tesla coil, the authors could display

electric arcs on the user’s finger pad. As for the technology presented above, the

electric arcs’ device was capable of delivering one stimulus at the time. The electric

arcs were 6 mm long and the area of skin stimulated small.

Figure 4.6: From [219]. The electric arcs were 6 mm long and the area of skin
stimulated small.
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4.3.4 Focused ultrasound

Ultrasound based systems represent cutting-edge technology in the mid-air haptics

realm. These systems provide contactless tactile feedback in mid-air, they are non-

invasive, they have a good spatial resolution (around 1 cm) [251], and they do not

represent any risk of damage for structures and surrounding tissues [68]. Ultrasound

has a long history that precedes the HCI’s one. The first study employing ultrasound

is dated back to 1927. Wood and Loom observed that a liquid can be atomized by a

vibration device operated at 300 kHz. This process was called ultrasonic atomization

[255]. In 1950, Fry et al. were one of the first to study the effect of ultrasound on the

nerve fibres of the frog and the crayfish [60]. Later in 1977, Leonid et al. studied the

tactile perception of focused ultrasound and the effects on the skin and deep receptor

structures in humans [67]. They were using frequencies up to 2.67 MHz, and the

participants’ hand was studied underwater. Given the high frequencies used in the

experiment, the tactile sensation was perceived at first as tactile sensation, then as

temperature, and finally as pain. Another study of Dalecki et al. in 1995, investigated

the tactile perception of ultrasound on the human arm and hand [39]. In this case,

a Corprene® disk was affixed on the part of interest to maximize the radiation

force delivered to the tissue. Only in 2001 Iwamoto, Maeda and Shinoda studied

the feasibility of focused ultrasound for tactile feeling display. They illustrated how

Figure 4.7: Adapted from [107]. The HoloVision display. This system mixes holo-
graphic images with an ultrasound haptic array, allowing seeing and touching objects
in mid-air.
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ultrasound from 1 MHz and 5 MHz can elicit a perceptible sensation through the

direct stimulation of the nerves and by the radiation pressure force generated [112].

In line with what we know on the tactile receptors, they obtained the best results in

the range of 30 Hz to 200-250 Hz, with a flat curve between 70 Hz and 100 Hz.

Researchers from the University of Tokyo, led by Takayuki Iwamoto presented

their prototype in 2008. Their device was formed by a group of ultrasonic speakers

placed in a concentric ring shape arranged into an array on a pad. Each transducer

could be set to emit a different modulated ultrasound pulse, allowing each to create

a pressure wave pushing through the air [113]. The year after they presented a

tactile display (HoloVision) integrated with their ultrasound array (Figure 4.7) [107].

Finally, in 2013 a team headed by Subramanian, developed the Ultrahaptics device,

a system composed of an array of ultrasound speakers capable of providing for the

first time multiple focused points of tactile feedback in mid-air directly on to users’

skin (Figure 4.8) [27]. This system works at an optimal distance of 20-30 cm, availing

the phenomenon known as acoustic radiation pressure. Ultrasonic phased arrays

focus sound waves coming from an array of ultrasonic transducers into a single

location in space. In this focal region, the acoustic pressure almost instantly builds

up and eventually becomes great enough to indent slightly the human skin and

therefore stimulate the sense of touch. This focal region is thus equivalent to a

tactile point. To convey a range of vibro-tactile haptic perception through this tactile

point, one needs to modulate the tactile point either in wave amplitude [107] also

Figure 4.8: Ultrahaptics (now Ultraleap, since September 2019) ultrasonic device.
A system composed of an array of ultrasound speakers capable of providing multiple
tactile focused points in mid-air directly on to users’ skin.
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Figure 4.9: Mid-air tactile display can use three kinds of modulation techniques to
produce a tactile pattern: (Left) Amplitude Modulation, (Middle) Lateral Modulation,
(Right) Spatio-temporal Modulation. Each modulation technique varies the position
and intensity of one or more mid-air tactile points differently over time.

referred to Amplitude Modulation (AM), or in its lateral position [229] also referred

to Lateral Modulation (LM). Obrist et al. has shown that varying the modulation

frequency varied the perception of tactile point strength among other aspects of

its perception [171]. Another approach that constitutes an even more advanced

modulation technique is to move the tactile point rapidly and repeatedly around a

given path across the user’s palm, hence producing a tactile pattern [127] referred

to as Spatio-Temporal Modulation (STM), see Figure 4.9.

By electronically shifting the transducer phases one could focus the acoustic pres-

sure to a point in space and use it to produce tactile stimuli on the user’s hand. The

force applied to the skin can reach 16 mN, for a contact area of 20 mm diameter [107].

More recently, with the use of 70 kHz (instead of 40 kHz) ultrasound transducers

one could produce even smaller focused points [111]. As already mentioned, similar

devices were used to create multiple focus points with different tactile properties

[27], or mixed with other mid-air tactile display [173]. Further, it is possible to use an

ultrasound board as an interface to pinch, twist and knead an object, the possibility
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of interaction by multiple users, and a low energy consumption, thus increasing

the range of applications for HCI. Ultrasound phased arrays have therefore rapidly

become a reliable and attractive technology for both researchers and developers

interested in mid-air tactile applications.

Currently, the main disadvantage is the limited force exerted on the skin. How-

ever, it still allows the creation of a multitude of sensations. For instance, Obrist et

al. provided a non-arbitrary map between emotions and haptic descriptions [172],

Long et al. were able to render volumetric shapes using mid-air haptic technology

[150]. Moreover, Carter et al. [27] employed ultrasound arrays as an input inter-

face, allowing colour rendering, pinch-to-zoom interaction, and the possibility of

interacting with a web application. Ablart et al., used mid-air touch to enhance

users’ experience while watching short films [1], and Vi et al. exploit mid-air touch

to enhance users’ experience during an art exhibition [240]. Further, Martinez et

al. employed ultrasonic mid-air touch to mimic supernatural interactions [160].

Finally, in Chapter 8 we will present a study to enhance the users’ performance in

a recognition task of 2D shapes, in Chapter 10 we use mid-air touch to create an

apparent tactile motion between the two non-interconnected hands, and finally in

Chapter 11, we present an illusion of ownership in VR mediated by mid-air haptics.

4.4 Summary

In this chapter we introduced the main haptic devices developed in the last thirty

years of research. This technology is the motor that activate our tactile receptors

firing information to the brain. There are different devices: the tactile actuators,

where the tactile information flow unidirectionally from the motors to the human

skin, and the haptic systems that include the human response into the loop. The

latest haptic technology available for researchers and designers is mid-air haptics

that allows contactless interaction. Among these, the ultrasonic devices seem to be

the most promising (and the only one commercially available) because of their rela-
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tively good spatial and temporal resolution. Besides, their characteristic of delivering

tactile feedback in mid-air, makes their usage unobtrusive and attachments-free.

This potentially allows users to freely interact in the environment without being

aware of the device.

Although recent technologies have tried to target specific properties of the tactile

sense, researchers and designers could exploit the perceptual organisation of our

sense of touch by means of tactile illusions. Tactile illusions are a powerful tool that

used symbiotically with haptic devices can increase or simplify the range of tactile

sensations available to the user.
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P
erceptual illusions were primarily studied in the visual modality and their

first descriptions dates as early as in the Greek and Roman literature [83].

Illusions are the result of misinterpretation of stimuli, neural processing,

and anatomical properties of a specific sense. They can be found in different sensorial

systems (i.e., vision, touch, hearing, taste, and smell), and they can be the product of

multisensory processing (e.g., pseudo-haptics illusions, rubber hand illusion, etc.).

For the aim of this thesis, we will focus on the tactile illusions. As described in

Chapter 2, our sense of touch is multifaceted, complex. It mixes cutaneous feedback

(passive touch) and kinaesthetic feedback (active touch). Hence, reproducing all the

tactile components seems an ambitious project and a hard one. Illusions can provide

design shortcuts for creating convincing tactile experiences. Gallace and Spence in

[64] provide an interesting reflection about the complexity of reproducing the tactile

sense in general, and how its lack in VR environments makes the user frustrated

because of the lack of realism and the impossibility of acting in the virtual world.

Further, the authors describe how currently, most virtual systems have tried to

reproduce the tactile sense exclusively on the hand, in particular on the surface of
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the fingers, which are the most sensitive parts of our body. Nevertheless, the goal of

achieving realistic tactile sensation, potentially extending on the entire body, seems

to appear less difficult than one might think. In support of this claim the authors

cite the following scientific discoveries:

1. The skin sensors are not distributed equally on the whole body (see Section 2.2)

and their receptive fields are wider in certain parts of the body. This translates

into the possibility of applying a lower quantity of stimuli to be able to simulate

the presence of an object in those less sensitive parts of the body.

2. The ability to be aware of a tactile stimulus disappears if more than three

stimuli are presented simultaneously [65]. It is also possible that under certain

conditions, the stimulus is recognized as a single pattern.

The researchers, drawing upon studies on haptic perception, suggested that prob-

ably it is not necessary to provide a complete and high-resolution tactile stimulation

on the entire surface of the body in order to tactilely render an object in VR. Provid-

ing superfluous information would have no advantage, neither in terms of complexity

nor in terms of bandwidth usage. This is in line with the concept of perceptual illu-

sions to convey realistic experiences in VR. The idea of exploiting illusions to convey

complex information, it is valid also outside a virtual environment.

5.1 Understanding tactile illusions

To date, many studies investigated and described more or less robust tactile illusions.

The Müeller-Lyer illusion (Figure 5.1), is a phenomenon that was discovered first in

the visual system and later, found also in the tactile system [246]. In this illusion,

the line with the arrows pointing inwards appears longer than the line with the

arrows pointing outwards. A possible explanation of the original visual illusion

can reside in the way we perceive the image; in the illusion, the image would be

erroneously perceived as 3D drawing, and our brain would decide to interpret the

arrows as depth cues, making us see an erroneous length of the object based on
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Figure 5.1: The Müeller-Lyer illusion. In the image, the first line appears longer
compared to the second line. This illusion was first observed in the visual domain,
and later studied also in its tactile version.

their distance from our point of view [82]. The haptic counterpart could be explained

by the confusion theory [246]. Simply, the illusion would be explained by the mere

confusion of the arrows’ heads with their fins.

Another famous illusion is the Aristotle illusion. If we cross two fingers, and we

touch an object (e.g., a pencil), we will perceive two objects. The illusion takes its

name from the famous Greek philosopher and it might be explained by our prior

knowledge of the world. In the everyday life when our fingers are touched at the

same time, it is usually because we are in contact with two objects. A series of tactile

illusions are capable of providing the user with an illusory sensation on movement.

In particular, scientists individuated three main types of illusions of movement

using a psychophysical approach [93, 100, 140] (see Figure 5.2): 1) the cutaneous

rabbit illusion (or cutaneous saltation), 2) the haptic funnelling illusion, and 3)

the apparent tactile motion (ATM) (more recent tactile illusions of movements are

described in [103, 143, 165]).

In the cutaneous rabbit illusion, two vibro-tactile actuators are modulated in

a timely fashion to create a third illusory perceptual sensation like that of “a

rabbit hopping” in-between the two real actuators [69] (Figure 5.2A). In the haptic

funnelling illusion, two actuators vibrate at different intensities, creating a third,

intermediate perceptual point whose position is determined by the variation in

intensity of the two vibrations [243] (Figure 5.2B). During the ATM illusion, two
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Figure 5.2: The main tactile illusions of movement. A) The cutaneous rabbit illusion,
B) the funnelling illusions, and C) the apparent tactile motion (ATM). The red
stimuli represent the physical actuators on the skin, the green stimuli represent the
perceived illusory actuators. T1-T... represent the temporal succession of stimuli.

actuators are activated while modulating the stimulus onset asynchrony (SOA) so

that the user will perceive a feeling of movement between the two sites of stimulation

(see Figure 5.2C) [131]. There are three possible scenarios: a) If the SOA is too long,

then the two vibrations will be perceived as discrete and no illusion of movement will

occur; b) if the SOA is too short, the two vibrations will be perceptually merged into

a single one and no illusion of movement will occur; c) if the SOA is optimal, the two

vibrations will be perceived as a movement. Goldreich proposed a Bayesian approach

to explain spatio-temporal illusions based on low-speed priors (expectations) that can

lead to underestimating spatial distances [79]. Specifically, the brain expects tactile

stimuli to move slowly. This low-speed expectation would lead to an underestimation

of the distance between two rapid sequential stimuli. Seen that the tactile stimuli

are moving fast, but we expect them to be slow, they have to be closer in space to

each other. This will make us perceive additional stimuli on the skin.

Another group of illusions deals with the body schema, like the rubber hand

illusion (RHI) and its virtual counterpart, the virtual hand illusion (VHI), or the

more general bodily illusions. These will be explained in more details in Subsections

5.3.1, 5.3.2, and 5.3.3. For the moment we can refer to Figure 5.3.
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Figure 5.3: A) the rubber hand illusion, B) the virtual hand illusion, and C) full
body illusion. All these illusions were first based on visuo-tactile integration.

Besides the mentioned illusions, many other tactile illusions were investigated.

The interested reader could find a more extensive overview of tactile illusions

in [23, 83, 93, 140].

All the above-mentioned illusions rely on visuo-tactile integration or more gen-

erally on multisensory integration. Gonzales-Franco and Lanier [81], the scientist

who first used the words virtual reality, proposed three neuro-perceptive models to

explain illusions in VR.

1) Bottom-up multisensory processing: our brain receives and combines bodily

signals adapting them continuously based on the feedback received. When multiple

sensory modalities provide congruent data, the brain is more likely to “believe” the

information to be true. When they cannot be integrated, issues will arise (e.g., motion

sickness). To tackle ambiguity in sensory information, the brain might seek higher

probabilistic confidence in one interpretive state over the others (e.g., a sense will

appear more reliable than another).

2) Sensorimotor self-awareness frameworks: these frameworks rely strongly on

the comparison of internal representations of the actual, desired, and predicted

states of the external world after a motor action has been executed. If the afferent

sensory input matches the predicted state, then the brain is more likely to infer that

the afferent input is correct.

3) Top-down prediction manipulations: discordant afferent inputs are recali-

brated or suppressed in the brain to confirm a predicted state of the world. In other
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words, the brain can “decide” that there is an error in measurement to reinforce a

preference for a predicted outcome. Proprioceptive information can be manipulated

in this way when reaching for objects in VR (e.g., haptic retargeting [9]). Neverthe-

less, the brain will reject an illusion when the discordance between afferent sensory

inputs and the predicted/intended state become too extreme.

Finally, a recent paper that studied 1039 subjects, suggests that imaginative

suggestibility (i.e., response to imaginative suggestions) can leads to the generation

of subjectively real experience that could justify results in the RHI [152].

The last three illusions reported (i.e., RHI, VHI, and full body swap illusion)

has been especially exploited to investigate the concept of embodiment. Numerous

studies examined this paradigm and many variables were studied. In the next

section, we introduce the concept of embodiment, and we discuss the main studies

concerning it.

5.2 Defining the concept of embodiment

The definition of embodiment is not straightforward as one might think [77, 151].

On a general level, the sense of embodiment (SoE) can be considered as a set of

beliefs that inform ourselves about being something, having a body and experiences.

It is that process that sets boundaries between the self and the external world,

differentiating ourselves from that external world. It can be referred to how we

incorporate, biologically, the material and social world in which we live.

Carruthers defines the SoE as an offline representation of the body [38]. The

offline body representation is what we know our body is usually, opposed to what

our body looks like moment by moment. The SoE mainly consist of the feeling of

being distinct from other objects and people [26]. The fact that everyone experiences

the world in the first person, with one’s perspective. The SoE is what makes us

different from the rest, it is the perception of our physical boundaries, what make

possible for us to recognize ourselves in the mirror. Longo et al. [151] approached
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the investigation of the SoE through a psychometric method. In their study, they

exploit the RHI phenomenon. Participants (131) had to rate on a Likert scale (from

-3 to +3) the grade of agreement on 27 statements. The statements were taken

from previous studies on RHI. The authors found four main components through a

principal component analysis (PCA): embodiment of the rubber hand, loss of own

hand, movement, and affect. More specifically, they applied another PCA to the

component "embodiment of the rubber hand". The new results individuated three

more sub-components: ownership, location, and agency. In the experiment, ownership

referred to the feeling of owning the rubber arm. Location explained the feeling of

co-location between one own arm and the rubber one. Agency was explained as the

feeling of being able to move the rubber arm.

De Vignemont [43] defines the SoE as that process that happens when some

properties of an object are processed in the same way as they were properties of

one’s body. He further distinguishes three levels of embodiment: spatial, motor,

and affective. For De Vignemont, there are also two different body representations:

short-term and long-term body representations. That is why in a RHI study, the

location of the rubber hand is embodied (short-term property), but not its texture

(long-term property). Kilteni et al. [129] distinguish three sub-components of the

SoE: self-location, sense of agency, and sense of body ownership. Self-location refers

to that feeling of being inside a body and it coincides with Slater’s place illusion [215].

Sense of agency is defined as having the feeling of being the cause of a motor action

as a result of a motor intention. Sense of ownership refers to one’s self-attribution

of a body, the feeling of owning a body. How these three sub-components correlate

between each other is still a matter of study. Authors conclude saying that to increase

the SoE one must aim to increase their sub-components.
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5.3 Extending our bodily boundaries

There are a plethora of studies that investigated the flexibility of our sense of embod-

iment. Probably the first scientist to discover a bodily illusion was Tastevin in 1937

[231]. While he was studying some aspects of the Aristotle illusion (see Section 5),

he noticed that participants often attributed ownership towards a plastic finger pro-

truding from underneath a cloth near their hand. Only many years later, Botvinick

and Cohen investigated this phenomenon naming it "rubber hand illusion" [19].

Far from providing a full review of these studies, we will limit to report the main

literature in the realm of bodily illusions (for a summary of the studies reported

refer to 5.1).

5.3.1 The rubber and the virtual hand illusion

Studies on bodily illusions have their official start with the work of Botvinick and

Cohen in 1998 [19]. In this original version of the RHI, participants sat on a chair

with their left arm hidden behind a standing screen. A realistic left rubber arm

model was placed in front of them. The researchers stroked participants’ real and

rubber arm at the same time with a brush (Figure 5.4), and they could see only

the rubber arm being stimulated. After ten minutes, participants reported tactile

sensations on the rubber arm. A further experiment confirmed also a distortion in the

proprioceptive information. Both before and after the viewing period, the researchers

asked participants to match with their right index finger the hypothesized location of

their left index finger (the covered arm), at closed eyes. On average, after the illusion,

this location resulted displaced rightward towards the rubber arm. Advances in VR

and mixed reality technology have made it possible to study additional factors of the

RHI [153, 201, 214, 258]. The reproduction of the RHI in VR is defined as virtual

hand illusion (VHI). The procedure to elicit the illusion is the same. Participants

wear an HMD and their arm is rendered as a virtual arm. The virtual arm is shifted

with respect to the real one, and participants can see the tactile stimulation in VR

through a HMD while feeling it on their real arm. After a while, the virtual arm will
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Figure 5.4: Participants left arm is hidden and a fake rubber arm is placed in front
of them. The researcher stimulates the real and fake arm at the same time. After
a while, participants will refer to feel the tactile stimulation as coming from the
rubber arm.

be embodied.

In the classical RHI phenomenon the real and fake hands are stimulated by

synchronous visuo-tactile stimulation. Later studies investigated how much visuo-

tactile delay can be tolerated by participants in the asynchronous condition before

the illusion breaks. In these studies, authors found that a delay of 300 ms between

the stroking of the two hands (i.e., real and fake) reduced the effect of the illusion,

and a delay of 500 ms broke the illusion [123, 211]. Regarding the maximum distance

between the real and fake arm, it seems that distances greater than 30 cm reduces

the strength of the illusion [147].

In one of the most famous variants of the RHI after the embodiment of the

fake arm, subjects are confronted with a threatening event. In [49], the researchers

threatened the rubber hand with a needle. Results showed an activation of those

brain areas responsible for anxiety and interoceptive awareness (insula and anterior

cingulate cortex) when a real limb is under threat. Suzuki et al. investigated the

role of interoceptive information on the representation of our limbs in the space.

Authors replicated the RHI by visually changing the shape of the hand according to
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participants’ heartbeat [227]. By being able to induce the illusion, they demonstrated

how not only exteroceptive information (visual and tactile feedback) but also internal

feedback can influence the feeling of ownership towards a body part.

These results demonstrate that when the rubber arm is embodied in the body

schema, our brain will treat it as a real part of the body. This could lead to hypothe-

size that when we incorporate an external object into our body schema, the rubber

arm will have to adhere to certain properties that are commonly found for body

parts.

Different authors investigated the importance of a fake arm position [35, 48, 102,

235]. They found that the illusion works only when the rubber arm is placed in an

anatomically plausible posture. Perez-Marcos et al. examined if seeing a virtual arm

disconnected from the rest of the body influences the strength of the illusion. Results

showed that when participants were able to see the full body connected to the virtual

arm, levels of ownership were greater [181]. The role of the hand’s appearance was a

concern of several studies. Armel and Ramachandran tested differences between the

stimulation of a rubber hand versus a table. Skin conductance responses (SCR) were

higher following a threatening stimulation on the anthropomorphic hand than on the

table [8]. Similarly, Haans et al. investigated the extent to which RHI is influenced

by visual discrepancies between the fake and participants’ hand. Inhibition of the

illusion was found for a non-human object (a white tabletop) in comparison to when

a cosmetic prosthesis of a man’s left hand was used. Tsakiris and Haggard showed

lower levels of ownership when reproducing the RHI phenomenon using a stick

instead of a rubber hand [235]. Lin et al. explored the role of graphics realism on

levels of ownership towards a virtual arm, using different geometric hands’ models

[146]. They concluded that even if ownership was present for all the different hands’

models, effects were stronger for the anthropomorphic ones. Unexpectedly, Ma et al.

found how participants could embody non-corporeal objects such as a virtual balloon

or a square [166]. They suggested that our body schema could be more flexible than

previously thought.

The flexibility of body schema is further supported by studies that demonstrated
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how it is possible to induce a sensation of supernumerary arms. Several studies

demonstrated how participants could perceive the feeling of having a third arm

[87, 97]. A recent study, induced the feeling of a fourth arm through synchronous

visuo-tactile and visuomotor stimulation [31]. Schwind et al. studied the effect

of gender on the perception of avatar male and female hands in VR [205]. They

demonstrated that, while males can accept female hands in their body schema

having lower levels of embodiment only for non-human hands, females have lower

ownership levels when trying to embody male hands. Preston and Newport were

able to make participants feel as if their arm was impossibly long [187]. Another

interesting study that challenges the stability of our body schema, is the one by

Guterstam et al. In this study, the researchers made participants embody an invisible

hand by stimulating synchronously their arm and an empty block of space [86].

The RHI has received interest also in the HCI field. Alonzo et al. carried a

preliminary study in healthy subjects to investigate if a visuomotor stimulation could

induce ownership towards a robotic arm. Participants wore a glove that allows for

recording the fingers’ movements. The same movements were sent and reproduced on

the robotic arm. Authors reported higher levels of ownership towards the robotic arm

in the visuomotor synchronous condition, compared to the visuomotor asynchronous

condition [4]. In the same year, in a series of three experiments, Aldhous et al.

replicated and extended the RHI phenomenon. The authors replaced the rubber arm

with a static or digitally animated realistic picture of it. In another experiment, they

replaced the rubber arm with a virtual image of it (virtual hand illusion). In both

the experiments, they successfully reproduced the illusion. Further, they confirmed

that in the visuo-tactile/visuomotor synchronous stimulation, levels of ownership

towards the fake arm were higher [3]. Horiuchi et al. exploited an ultrasonic mid-air

device to replicate the RHI phenomenon through a projected image on the rubber

arm. Once again, they reported higher levels of embodiment for the visuo-tactile

synchronous condition [104]. Further, they suggested that, when the screen used

to hide the participants’ arm was removed, a sensation of owning two arms was

facilitated. Finally, Choi et al. explored the feeling of embodiment in virtual games in
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an immersive VR space. During the game, participants were allowed to move, and in

the case where their body was rendered as a full-body, as opposite to a virtual cursor,

levels of ownership were higher. Besides, they showed that even when introducing

distortions in the tracking coordinates of the virtual hand, the level of embodiment

was preserved [33].

5.3.2 More than just hands

Beyond inducing ownership towards a fake arm, researchers were able to extend the

RHI illusion to other parts of the body.

For instance, Sforza et al. discovered that participants start recognising features

of others’ faces in the notion of self by synchronously touching participants and oth-

ers’ face [208]. This is particularly interesting because face plays a fundamental role

in someone self-recognition and this process is rarely impaired (see the conspicuous

incidence in the clinical population with prosopagnosia). Being able to enface other’s

people face provides yet another proof of the malleability of our body schema and

self-representation. The same year, Paladino et al. demonstrated how brushing one’s

face while watching another person’s face being touched, enhances the resemblance

of one’s face to the foreign face [177]. Further, observing synchronous stimulation

elicited more positive affective reactions toward the other, indicating a social compo-

nent of the illusion. Similarly, Ramachandran et al. by stroking with two hands the

back of participants’ head in synchrony with the back a mannequin’s head were able

to induce the illusion of transferring the tactile sensation from participants’ head to

the mannequin one [189].

In 2014 Michel et al. investigated the multisensory process giving rise of the

RHI on the tongue. They chose this location because it is a part of the body that we

rarely see. Indeed, the information coming from the tongue is usually proprioceptive

and somatosensory. Because the vision has a strong influence over the experience of

touch, authors wanted to test if an illusion of ownership towards an artificial tongue

could be elicited [162]. Their study showed that participants could refer the tactile
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feedback as coming from a dummy tongue. Besides, when the tongue was visually

stimulated with a beam of light, participants reported a tactile-like sensation or a

thermal sensation.

Crea et al. transferred the RHI phenomenon to the lower limb [36]. Participants

sat with their right leg hidden. A fake rubber leg was placed in front of them and

stimulated synchronously with the real leg. As for the RHI, the rubber foot illusion

requires synchronous visuo-tactile stimulation. In this study, the authors further

investigated a synchronous incongruent condition. In this case, the stimulation could

still be synchronous or asynchronous, but while the fake foot was stimulated using

a brush, the real one was stimulated through two vibrators connected to the first

two fingers of the foot (see Figure 5.5). The same year, Lenggenhager et al. tested

healthy subjects and xenomelia patient. Xenomelia is a mental condition where a

person does not accept one own limb. The researchers were able to reproduce the

rubber foot illusion obtaining results comparable to the RHI. In doing that, they

observed that xenomelia patients had stronger effects in the ownership of the fake

foot, indicating a less structured body schema [144].

In 2016 Ekroll et al. demonstrated how participants can be tricked into believing

they have a shorter finger when this is partially occluded by a semi-spherical

ball. When participants saw their finger from the top view, the semi-spherical ball

Figure 5.5: From [36]. Participants sat with their right leg hidden. A fake rubber
leg was placed in front of them and stimulated synchronously with the real leg.
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appeared to them as a complete sphere, therefore giving the feeling of having a

shorter finger [50].

5.3.3 Full body illusions

It is relatively simple to investigate further instances of the RHI phenomenon by

exploiting the use of VR technology. We described how scientists began to study the

feeling of ownership towards a hand and how this paradigm was extended to other

parts of the body. The missing piece is the research on full-body illusions or body

swap illusions.

In 2007 Ehrsson provided first indirect evidence of the possibility of estranging a

person from their own body. This illusion is called out-of-body experience (OBE). In

his study, Ehrsson touched participants with two plastic rods on the chest whilst

they were wearing a headset transmitting images from a camera located two meters

behind participants’ back. After two minutes of stimulation, participants referred

the sensation of looking at their own body from the camera perspective [47]. Lenggen-

hager et al. reported a similar illusion. Their participants saw the backs of their

bodies filmed from a distance of two meters and projected onto a three-dimensional

HMD. Their back was tactilely stimulated, and they could see the same stimulation

on their backs from a third-person perspective. After one minute of stimulation,

participants had the feeling of observing their own body from behind [145]. These

studies experimentally demonstrated the possibility of bending the body boundaries.

The next year Petkova and Ehrsson reported a perceptual illusion of body-swapping

[182]. This time, participants wore a headset displaying the images from the per-

spective of a mannequin located in front of them. A researcher synchronously or

asynchronously stroked participant’s and mannequin’s abdomen with a brush for

two minutes. Once again, the illusion of owning the mannequin body was reported

only in the synchronous condition.

Further, studies investigated the rules and different possibilities for "foreign"

bodies embodiment. Slater et al. studied the role of perspective in inducing ownership
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towards a different body [216]. Authors noted that a first-person perspective was

sufficient to create an ownership illusion towards an external body even in the

absence of synchronous stimulation. Normand et al. successfully induced the feeling

of having a larger belly size [170]. Participants looked at an enlarged version of

their belly while they were touching it through a probe. After a while, they reported

the feeling of having a larger belly size. Farmer et al. investigated if it would be

possible to embody a body of a different racial group. Authors demonstrated how it

is possible to embody a body of a different skin colour [52]. Interestingly, scores for

racial bias as measured by an implicit association task (IAT), were not predictive

of the strength of the illusion. Instead, its strength was predicting levels of racial

biases, with people reporting higher strength of illusion of embodiment towards a

different skin colour showing lower racial biases. Another interesting study saw the

illusion of ownership towards the body of a four years old child [11]. In this study, the

authors concluded that not only an adult person could embody the body of a child,

but that there might be behavioural correlation depending on the type of body in

which the embodiment occurs. In the previous section (Section 5.3.1), we described

an illusion of ownership towards an invisible hand [86]. Two years later, the same

authors tested the possibility of inducing ownership towards a full invisible body

[85]. In this study, participants wore a HMD that was allowing the view of their

own body from first person, with the twist of having a transparent body. In practice,

participants by looking downwards towards their chest could see just an empty

space. Nevertheless, after synchronous stimulation of "the empty space" and their

chest, participants referred the sensation of owning an invisible body. Furthermore,

in a following experiment, they showed how the fact of owning a transparent body

was correlating with reduced stress levels as measured by SCR following a stressful

situation (participants were exposed in front of a public in the VE). Therefore, also

in this study, it seems that the effect of owning a different body can correlate with

other high-level processes other than just the perception of a different body.

Finally, a recent study demonstrated how it is possible to embody animal bodies.

In particular, authors could induce a feeling of ownership towards the body of a cow
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or a coral using immersive virtual environments [2]. Interestingly, in subjects who

experienced immersive virtual environments (in contrast to those who were only

exposed to a video), there were long-lasting effects (1 week) regarding environmental

involvement and awareness.
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Authors Title Year Summary

Botvinick M. and Cohen J. Rubber hands ’feel’ touch that eyes see 1998 The first study that explain the RHI

Armel K. C. et al.
Projecting sensations to external objects: evi-

dence from skin conductance response
2003

RHI and skin conductance response

for anthropomorphic and non ob-

jects

Ehrsson H. H et al.
That’s my hand! Activity in premotor cortex

reflects feeling of ownership of a limb
2004 RHI and neural correlates

Tsakiris M. and Haggard P.
The rubber hand illusion revisited: visuotactile

integration and self-attribution
2005

RHI for anthropomorphic and non

objects, bottom up and top down

processes involved

Costatini M. and Haggard P.
The rubber hand illusion: Sensitivity and refer-

ence frame for body ownership
2007

RHI and importance of body posi-

tion

Lloyd D. M.

Spatial limits on referred touch to an alien limb

may reflect boundaries of visuo-tactile periper-

sonal space surrounding the hand

2007 RHI and spatial limits

Ehrsson H. H. et al.
Threatening a rubber hand that you feel is

yours elicits a cortical anxiety response
2007 RHI and neural correlates

Ehrsson H. H.
The experimental induction of out-of-body ex-

periences
2007 Out-of-body experience
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Lenggenhager B. et al.
Video ergo sum: Manipulating bodily self-

consciousness
2007 Full body illusion

Petkova V. I. and Ehrsson H. H.
If I were you: Perceptual illusion of body swap-

ping
2008 Body swapping illusion

Shimada S. et al.
Rubber hand illusion under delayed visual feed-

back
2009 RHI and time variable

Ehrsson H. H.
How many arms make a pair? Perceptual illu-

sion of having an additional limb
2009 RHI and additional limb

Sforza A. et al.
My face in yours: Visuo-tactile facial stimula-

tion influences sense of identity
2010 Embodiment of a stranger’s face

Slater M. et al.
First person experience of body transfer in vir-

tual reality
2010

Role of perspective in inducing full

body illusions

Holle H. et al.

Proprioceptive Drift without Illusions of Own-

ership for Rotated Hands in the ’Rubber Hand

Illusion’ Paradigm

2011
RHI and proprioceptive drift mea-

sure

Guterstam A. et al. The illusion of owning a third arm 2011 RHI with a third arm

Ramachandran V. S. et al. The phantom head 2011 Embodiment of a mannequin head

Norman J. M et al.
Multisensory stimulation can induce an illusion

of larger belly size in immersive virtual reality
2011 Embodiment of a different body size
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Perez-Marcos D. et al.

Is my hand connected to my body? The impact

of body continuity and arm alignment on the

virtual hand illusion

2012 RHI and body connection variable

Preston C. and Newport R.

How long is your arm? Using multisensory il-

lusions to modify body image from the third-

person perspective

2012 RHI with extra long arm

Farmer H. et al.
Beyond the colour of my skin: How skin colour

affects the sense of body-ownership
2012

Embodiment of a different skin

colour body

Suzuki K. et al.

Multisensory integration across exteroceptive

and interoceptive domains modulates self-

experience in the rubber-hand illusion

2013 RHI and interoceptive correlates

Guterstam A. et al.

The Invisible Hand Illusion: Multisensory Inte-

gration Leads to the Embodiment of a Discrete

Volume of Empty Space

2013 RHI for an invisible hand

Banakou D.

Illusory ownership of a virtual child body

causes overestimation of object sizes and im-

plicit attitude changes

2013
Embodiment of a body of different

age

Kalckert A. and Ehrsson H. H.

The moving rubber hand illusion revisited:

Comparing movements and visuo-tactile stimu-

lation to induce illusory ownership

2014
RHI with visuo-tactile and motor

variables
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Alonzo M. D. et al.
Vibro-tactile feedback elicits embodiment of

robotic hand in active motor task
2014 RHI with a robotic arm

Michel C. et al. The Butcher’s Tongue Illusion 2014 Embodiment of a fake tongue

Ma K. and Hommel B.
Body-ownership for actively operated non-

corporeal objects
2015 RHI for non-corporeal objects

Crea S. et al.
The rubber foot illusion, Journal of NeuroEngi-

neering and Rehabilitation
2015 Embodiment of a rubber foot

Guterstam A. et al.

Illusory ownership of an invisible body reduces

autonomic and subjective social anxiety re-

sponses

2015 Embodiment of an invisible body

Lenggenhager B. et al.
Disturbed body integrity and the ’rubber foot

illusion’
2015

Rubber foot illusion in neuropsycho-

logical patients

Lin L. and Jorg S.
Need a hand? How appearance affects the vir-

tual hand illusion
2016

VHI and importance of visual ap-

pearance of the hand

Choi W. et al.
Multisensory Integration in the Virtual Hand

Illusion with Active Movement
2016 VHI and hand tracking variable

Ekroll V. et al.

Illusory Visual Completion of an Object’s In-

visible Backside Can Make Your Finger Feel

Shorter

2016 Embodiment of a shorter finger
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Ahn S. J. G. et al.

Experiencing Nature: Embodying Animals in

Immersive Virtual Environments Increases In-

clusion of Nature in Self and Involvement With

Nature

2016 Embodiment of an animal body

Schwind V. et al.
"These are not my hands!": Effect of gender on

the perception of avatar hands in virtual reality
2017 VHI and gender effect

Aldhous J. et al. The digital rubber hand illusion 2017 RHI with a digital hand

Horiuchi Y. et al.
Rubber hand illusion using invisible tactile

stimulus
2017 RHI with an ultrasonic device

Chen W. Y. et al. Body ownership and the four-hand illusion 2018 RHI with a fourth arm

Pittera D. et al.

I’m Sensing in the Rain: Spatial Incongruity in

Visual-Tactile Mid-Air Stimulation Can Elicit

Ownership in VR Users

2019 VHI with mid-air haptics

Table 5.1: Table of the cited experiment where the main topic is the study of the embodiment.
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Taken together, the examples of perceptual tactile illusions presented in the

prior sections demonstrate how flexible our body schema is and that it is possible to

perturb it to include different body parts or even an entirely different body. From an

HCI perspective, these findings on the creation of bodily illusions and embodiment,

inspire the design of novel VR experiences involving the sense of touch, which can

reinforce the embodiment.

By analysing the previous works on bodily illusions, it emerges a common factor

that allowed to precisely control variables of interest and to render impossible

scenarios: virtual reality. This technology helped different kind of researchers and

scientists to create and recreate immersive worlds. VR is a key technology for the

study of the embodiment, mental health, clinical therapies, training situations,

simulations, etc.

5.4 Virtual reality: history and technology

The first multisensory experience in VR begins with Morton Heilig who conceived a

machine for a "multisensory cinema experience", the "Sensorama" (Figure 5.6).

Figure 5.6: The sensorama of Morton Heilig. This machine was the first example of
multisensory experience in VR.

This machine combined video projection, audio, wind, vibrations, and odours

to make the user feeling completely immersed in the film (lasting a few minutes)
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rather than participating only as an external spectator. In 1960 Heilig patented an

idea that many consider being the first example of Head-Mounted Display (HMD), a

HMD stereoscopic television (although McCollum had patented the idea of a HMD

in 1945) [132]. In 1961 Comeau and Bryan at the Philco Corporation built the

"Headsight", the first modern HMD. It employed a magnetic tracking system and

a single cathode-ray tube mounted on the helmet which showed the images on a

monitor according to the measured head movements.

The first true example of virtual reality as we understand it today is to be

attributed in the 1960s to Ivan Sutherland; he designed optical display glasses

(Figure 5.7) connected to a position sensor and two miniaturized cathode tubes to

transmit the image to the glasses in real-time. The position sensor sent the data

to a computer that updated the view of the virtual environment in the glasses in

real-time [226]. The allowed head movements were of 30°-40° up and down and

about one meter laterally. This system was called "the sword of Damocles" due to the

motion sensor hanging from the ceiling. Around the same time, Thomas A. Furness,

a scientist at the Wright-Patterson airbase in Ohio, began working on aircraft cabin

technology. The fighter jets were becoming so complex that the amount of information

a pilot had to assimilate from the cockpit instruments and command communications

had become unsustainable. The solution resided in a 3D cockpit that transmitted

sensory information directly to the pilot’s cockpit [61]. Today this instrumentation is

used for night flight as 3D images can replace the pilot’s direct view. The first virtual

reality system was "the Aspen Movie Map" created in 1978 by Andy Lippman and a

group of MIT researchers. The program consisted of a simulation of a walk in the

city of Aspen, Colorado. The system used discs containing photographs of all the

streets of Aspen, taken every three meters through the use of four cameras pointing

in different directions mounted on a pickup truck. In this way, the user could move

through the four directions (forward, backward, right, and left). Between the 60s and

the 70s, Myron Krueger, among other computer scientists, created the VIDEOPLACE

[135]. The computer had control of the interaction between the participant and the

graphic objects on the screen. It could match the movement of an object with the
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Figure 5.7: In the 1960s Sutherland ideated a first example of modern HMD. Left -
optical display glasses and two miniaturized cathode tubes to transmit the image to
the glasses in real time. Right - position sensors to update the view of the VE in real
time.

participant’s actions without necessarily considering the limits of physical reality. A

series of simulations could be programmed based on each action and VIDEOPLACE

offered more than 50 compositions and interactions, among these: critters, fractals,

finger painting, digital drawing, replay, etc.

The first sensory glove, the "Sayre Glove", was developed by Tom Defanti and

Daniel Sandin in 1977 during a project for the National Endowment for the Arts.

The first device recognized for measuring hand position was developed and patented

in 1983 by Dr Gary Grimes in the Bell laboratories: the "Grimes’ Digital Data Entry

Glove". This glove had sensors for bending fingers, tactile sensors on the fingertips,

orientation sensors and sensors on the wrist. Finally, it is imperative to mention

the "VPL Data Glove" by Zimmerman and Jaron Lanier, founder and CEO of VPL

research in 1987. The Data Glove consists of a lightly coated Lycra glove covered

by special optical fibres along the back of the fingers, with an inlet light and a

photodiode at the other end. In this way, the bending of the fingers reduces the light

transmitted by the optical fibres on the glove. The amount of light allowed to pass

through the channels is analysed by a processor that is thus able to calculate the

angle of finger bending [225]. To date, significant progress has been made concerning

the graphic resolution, tracking of virtual reality systems, but the virtualization of

other senses such as the tactile one has still to be improved.
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5.4.1 Types of VR

The term "virtual reality" was used for the first time by Jaron Lanier in 1989 [221],

by the at that time general director of VPL Research, a Californian company that

deals with VR. With this term, we indicate a three-dimensional visual simulation

of objects, spaces, and people generated and controlled employing a computer and

integrated with other stimuli (tactile, acoustic, olfactory, muscular, etc.). These

stimuli can be delivered to the user by wearing more or less sophisticated equipment

(visors, gloves, helmets, keyboard, mouse, etc.). In this way, users can experience a

surrogate of reality, whose limit theoretically coincides with human imagination.

It is possible to distinguish three types of virtual reality: immersive, semi-

immersive, and non-immersive. The VR is considered immersive when it manages to

create a sense of total absorption in the (VE) generated by the computer; usually this

happens through the use of a helmet capable of isolating the user from the external

reality, and by means of trackers, sensors that track the user’s movements and

transmit them to the computer adjusting the VE according to the user’s movements.

VR is considered semi-immersive when using a "cave", a projection chamber in which

the VE is projected on its internal walls creating a sensation of immersion (Figure

5.8).

Figure 5.8: A VR cave. A projection chamber in which the virtual environment is
projected on its internal walls, creating a sensation of immersion.
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Finally, the VR is non-immersive when a simple monitor or video projector (in-

stead of a helmet) is used to reproduce 3D images while still allowing a stereoscopic

vision thanks to the use of special glasses. Usually, the user’s interaction is allowed

through a joystick.

VR is different from Augmented Reality (AR); it represents a three-dimensional

interactive environment generated by a computer that allows the user to dive into a

completely fictitious world. AR, instead, enriches the existing reality with virtual

objects recreated by a computer.

5.4.2 Factors influencing VR experiences

Nowadays, VR found application in a great variety of cases; from therapies dedicated

to the treatment of post-traumatic stress disorder (PTSD) to phobias (social or

specific), eating and sexual disorders, and the study of schizophrenic behaviour [57].

Not limited to the clinical field, VR saw great success in the gaming and artistic

industry, and in the education field. The use of VR allows the study of scenarios

totally controlled by the researcher. This allows for finding more easily cause-effect

links when studying human behaviour. For example, it has been proved that subjects

with schizophrenic behaviour feel safer within a VE. Further, the neural correlates

of a certain behaviour can be studied by integrating VR with imaging techniques

like functional magnetic resonance imaging (fMRI).

To maximise the results when studying human behaviour in VR, users must

come to behave as they would in reality. In other words, they must immerse them-

selves in the artificial environment, and experience what is called the phenomenon

of presence. Generally, the term "presence" means the experience of being in a vir-

tual environment [108, 217, 245, 252], but this term has not always been defined

unanimously. Many researchers gave different definitions. Gibson defined presence

as the feeling of being in an environment. Sheridan [210] distinguishes between

presence (the feeling of being in an artificial world) and telepresence (the feeling

of being in a remote, real place). Heeter [96] makes a distinction between three
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types of presence: personal, social and environmental. Schloerb [204] describes a

subjective and objective presence. Lombard and Ditton [148] find a list of six possi-

ble applications of the term: social intensity, realism, transport, immersion, social

actor within a medium, medium as a social actor. Witmer and Singer [252] defines

presence as "the subjective feeling of being in one place or environment, even when

one is physically in another". Similarly, Nicovich et al. [169] define presence as

the subjective sensation of existence in an artificial environment that has been

experienced. Sacau et al. [198] use the term "spatial presence", distinguishing be-

tween the physical, perceptive, and social dimensions. Finally, Slater [215] proposes

that presence consists of two components: what he calls place illusion (PI), and the

illusion that what is apparently happening, is really happening, plausibility illusion

(PSI). The phenomenon of presence is not immutable. Studies aimed to individuate

the factors that influence the presence are still in progress, but in the meantime,

a series of data has emerged. Wallach et al. [245] divide these variables into three

groups: technological, individual, and interaction variables. Contrary to what one

might think, even when the virtual environment does not accurately or completely

represent the real one, presence phenomenon can still be present. According to the

authors, what seems to have more importance is the absence of conflicting elements

with respect to the experience of everyday life [244]. As Casati and Pasquinelli

pointed out [28]:

"It is not the fidelity to the real model (the real world) that makes the

artificial environment real, but the fidelity to the perceptive conditions

involved in the mental construction of the perceived objects.[...] The cred-

ibility of a synthetic object depends on the adequacy of the reproduction

of the relevant aspects of the perceptive system involved, and not on the

realism of the reproduction of the stimulus".

There are other technological factors correlated with higher degrees of presence.

These are vividness, defined as "the ability of a technology to produce a sensorially

rich mediated environment" [221], coherence of sensory input and the presence of
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Variable Contribution
Form variables - This group includes the more objective
Sensory outputs
- Number of sensory outputs
- Consistency of sensory outputs
- Visual outputs, various dimensions:
– display size
– viewing distance
– quality of image
– depth cues
– camera techniques

- Audible outputs, various dimension
- Other sensory outputs (smell, touch, etc.)

- Body movement and force feedback

Positive for higher numbers
Positive when consistent
Strong
Positive for larger proportion
Positive for larger proportion
Positive for high quality
Positive
Positive
Strong
Can be influential but usually
less strong than audio or visual
Positive when well done

Interactivity of medium
Visibility/obtrusiveness of medium
Interference from real world
Human contact

Positive
Negative
Negative
Positive

Content variables - Can be both objective and subjective
Characters and storylines
Media conventions
Nature of representation

Positive and negative
Usually negative
Positive and negative

Media user variables - These are highly subjective and depend
directly on the individual
Willingness to suspend disbelief
Previous experience

Positive
Positive or negative

Table 5.2: Adapted from [122]. Factors influencing presence in VR.

multisensorial stimulation [64, 245]. In this case there must be coherence between

the different sensory modalities, otherwise, we would obtain the opposite effect.

The use of immersive technologies, such as HMD, increase the degree of presence.

However, these technologies must respect the values of transparency and continuity.

The first term expresses the lack of awareness of the same medium. The second term

refers to the lack of interruption during the interaction. Interruptions can occur

when the user becomes aware of the medium and the physical interface [230]. For

this reason, mid-air haptics can be considered both, transparent and continuous, as

it provides tactile stimulation while being invisible to the user allowing a continuous

interaction in the VE.
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Further, individual variables weight into the phenomenon of presence (e.g.,

empathy, imagination, tendencies to dissociation, locus of control, cognitive style,

attachment and sensory processing, Big Five factors, levels of neuroticism, response

to reward or punishment, search for strong sensations, etc.) together with cognitive

abilities, level of anxiety, ethnicity and gender [245]. In this regard, a recent study

proposes to explain the effect of the RHI illusion as related to the suggestibility of

the subject [152].

Another factor influencing the level of presence is the possibility of moving in

reality influencing the VE [245]. The free movement seems better than on-site

movement, although current technologies have limitations in this sense. Cognitive

and emotive meaning of VEs seem to play a role in inducing the sense of presence

[245] among other factors that Kalawsky proposed (see Table 5.2) [122].

From the very beginning of VR research, it became clear that alone, sight and

hearing were not sufficient to achieve a powerful immersion in that new artificial

reality [13, 65]. Our sense of touch plays a fundamental role and it involves many

parts of the body. In a study by Hoffman and colleagues, it has been shown that the

introduction of tactile feedback increases the probability to perceive realistic VR

objects [99]. Indeed, users will have some expectations regarding those objects: they

will obey to the law of gravity, have a certain weight, consistency, etc.

The same authors in another experiment showed how biting a real chocolate

bar, enhances the enjoyment of the experience in VR. Further, it also increases the

level of presence, in comparison to the group that was asked only to imagine biting

chocolate. Also, Sallnas et al. [200] conclude that the group with visuo-audio-haptic

information had a better performance in a desktop VE collaborative task when

compared with the visual-auditory information group.

5.5 Summary

In this chapter we presented the concept of tactile illusions, and we reflected on

the possibility of using such illusions to help to tackle the complexity of rendering
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the sense of touch in a human-machine interaction. Then, we presented the main

tactile illusions related to this thesis, from illusions of motion to rubber and virtual

hand illusions. The latter are traditionally used to study the sense of embodiment.

After defining the SoE, we presented how it is possible to modify our body schema to

induce the illusion of owning different parts of the body until its entirety.

To do that, we make use of a technology now commonly available on the market:

virtual reality. We present VR and described briefly its history. We then discussed

the phenomenon of presence, or the feeling of behaving in a virtual scenario as

if we would do in real life. We discussed how presence can be facilitated by the

implementation of tactile feedback and in particular, by providing sensorial coher-

ence, possibly in an almost "transparent" way. Mid-air haptic technology has the

advantage of being potentially invisible to the interacting user and it allows for a

continuous experience in VR. Finally, it emerged how the sense of touch is needed

when thinking about VR applications. In the real world, we touch the floor with our

feet when standing and walking, we feel the movement of our limb in the space, we

touch objects around us, and we interact with them. When in a VE, graphic realism

will help in making us believe what we see. Presence will raise, but it is not enough;

if we cannot touch what we see or if we do not receive coherent information from our

virtual interactions, the illusion of being somewhere else will fade.

In Chapter 11 we will present a study of four experiments aimed to explore the

VHI phenomenon demonstrating that our brain can fill in the gap between spatially

incongruent visual-tactile stimulations (gap between what we see and what we feel

on the hand) maintaining the feeling of body ownership in situation other than

perfectly, spatially matched stimulation. In particular, we exploit the advantages

of an ultrasound mid-air haptic device (see Chapter 4, Section 4.3) and we recreate

the VHI illusion varying the congruency of the stimulation (i.e., congruence and

incongruence). We additionally test multiple incongruent visual-tactile stimulations

to overcome the effect of the current limitation of the free-hands tracking systems

(i.e., imprecise spatial tracking) on reported body ownership in VR. While the VHI

has been studied before, it has not been explored using the emerging mid-air haptic
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technology (see [104] for an early paper on the RHI, but not in VR). Hence, the

novelty of our study is the use of multiple mid-air tactile stimuli in VR, testing the

occurrence of the VHI in congruent and incongruent conditions, and the use of new

mid-air haptic technology.
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STUDY 1 - UNDERSTAND

BASIC MID-AIR HAPTIC PERCEPTION1

I
n Chapter 2 we described the complex nature of our sense of touch, specifying

the different properties of the mechanoreceptors in the skin. Since, the

distribution of the tactile receptors is not uniform across the body and since

that ultrasonic mid-air devices are a technology of recent implementation, in this

first experiment we explored the tactile absolute thresholds (see Chapter 3) in

the left hand and arm. This first step is needed if we want to develop new way of

interaction using this technology. We need to establish an understanding of what

people can perceive, so that we can make use of this information for the design

of future interfaces (similar as we know today how to present auditory or visual

stimuli).

Therefore, this initial study is part of the stage "Understand" and aims towards

answering RQ1, trying to understand the psychophysics of touch related to mid-air

haptics. The results of this study will provide the base for the following studies that

focus on the palm.
1S.1 - Unpublished work
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6.1 Introduction

As described in Chapter 4, mid-air haptics is the latest technology available to

researchers and designers to deliver tactile feedback to the user without need for

attachments on the skin. While various devices have been developed, ultrasonic

mid-air haptic devices seem the most promising (see Chapter 4, Section 4.3). These

devices seem to stimulate the Pacinian corpuscles (high-frequency vibration re-

ceptors) and to a minor degree the Meissner receptors (low-frequency vibrations

receptors) [171, 251, 257]. To create tactile feedback, parameters such as frequency,

intensity, duration, and direction can be manipulated to render different sensa-

tions [27].

Ultrasonic haptics has a lower spatial resolution compared to physical touch

(1 cm of diameter [150]). However, it still allows the creation of a multitude of

sensations. For instance, Long et al. were able to render volumetric shapes using

mid-air haptic technology [150], Carter et al. [27] employed ultrasound arrays as

an input interface, allowing colour rendering, pinch-to-zoom interaction, and the

possibility of interacting with a web application. Moreover, Ablart et al., applied

mid-air touch to enhance users’ experience while they were watching short films

[1], and Vi et al. applied mid-air touch to enhance users’ experience during an

art exhibition [240]. Finally, Obrist et al. provided a non-arbitrary map between

emotions and haptic descriptions [172].

In these researches, authors focused solely on the palm of the hands. Hence, it

raises the question if we can extend the ultrasonic tactile stimulation beyond the

hand. After testing an ultrasonic device on different parts of the body (i.e., hands,

feet, chest, abdomen, neck, back, calves, shins, thighs, buttocks, face) we confirmed

that the feedback was perceivable mainly on glabrous skin where the presence of

Pacinian and Meissner receptors is prevalent (see Chapter 2, Section 2.4). Hence,

in this study, we systematically investigate the absolute thresholds on 20 locations

across the left hand (palm and fingers) and arm.
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6.2 Method

In this experiment, we calculate the absolute thresholds for ultrasonic mid-air haptic

stimuli across the left hand and arm. In typical psychophysical methodology, the

perception of stimuli at each location is repeated leading to high experimental times.

To not strain participants and induce them to inaccurate answers, we limited the

tested locations in the number of 20. The experiment lasted 60 minutes in total. We

tested every phalanx of the left hand (faced upwards), the palm in two points (the

centre and the upper part near the junction with the fingers), the centre of the wrist,

the centre of the forearm, the centre of the biceps, and finally the shoulder in its

central—medial part (see Figure 6.1). We chose to stimulate the left arm because

there is no evidence of laterality for vibro-tactile absolute thresholds levels. The

mid-air stimuli were focal points in the range of 5 Hz to 250 Hz. These frequencies

were chosen because of the mechanoreceptors properties discussed in Chapter 2.

Figure 6.1: The 20 locations selected to test absolute thresholds for ultrasonic
mid-air tactile stimuli.
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In this experiment, participants sat comfortably on a chair with their hand facing

upwards laying on a soft mould specifically created to avoid movements of the hand.

Participants wore headphones playing white noise to cancel the noise from the haptic

device and to receive automatic instructions. We used an Ultrahaptics mid-air haptic

device to deliver tactile feedback to participants’ left hand that was resting on top of

the mould.

To control if the tactile feedback was delivered on the intended spot, we mounted

a laser pointer on the ultrasonic board so that the pointing light was matching

the tactile sensation on the skin at 20 cm of distance. This distance is the optimal

working distance for the haptic device. The researcher changed manually the position

of the device to focus on the intended 20 locations. Before starting the testing phase,

the researcher was delivering a supraliminal stimulation to double-check with the

participant that the tactile feedback was hitting the intended spot. To find the

absolute thresholds we employed the 1-up-1-down adaptive staircase method with

ascending and descending scales, repeated four times each. In practice, for each of

the twenty locations participants were stimulated starting with very low frequencies

(5 Hz, ascending scale) or very high frequency (250 Hz, descending scale). Each

stimulus was preceded by a "beep" sound. After the stimulation, participants could

hear a voice in the headphones asking if the stimulation was perceived or not. If

not, the next stimulus was delivered, at a frequency 5 Hz higher. When participants

were able to feel the tactile stimulus, the next stimulation was reduced by 5 Hz. The

sequence was stopping after four inversions. Absolute thresholds are given by the

average of the values of the last four inversions.

6.3 Participants

In this study, we recruited 21 participants (7 females, average age = 24). They had

normal or glasses/lens corrected vision and no history of neurological or psychological

disorders as captured through self—report. No subject had previous experience with

the ultrasonic mid-air device as measured by a pre-test questionnaire.
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6.4 Results

Figure 6.2 illustrates the calculated absolute thresholds for the mid-air stimulation

on the chosen 20 locations (refer to Table 6.1 for the precise values). By looking at

the figure it is evident that the most sensitive part is the palm near the phalanges

(µ: 19.59 Hz, SD: 9.01). The biceps is the least sensitive (µ: 136.88 Hz, SD: 93.65).

Further, only one subject could perceive the stimulation in this area.

Figure 6.2: Absolute thresholds for the 20 test locations.

Focusing on the fingers, it appears there is a trend where the proximal phalanges

(the ones near the palm) are the most sensitive, and the sensitivity reduces as we

go towards the finger pads. In particular, the proximal phalanx of the index finger

is the most sensitive, with a gradual increase of the thresholds as we move toward

the pinkie finger. The thumb is the less sensitive finger, however, once again, the

Location Hz Location Hz

palm (upper) 19.59 index1 22.68
mid1 23.32 palm (centre) 24.38
ring1 24.81 little1 28.30
ring3 29.72 ring2 29.75
mid2 29.97 thumb1 30.56
index2 31.49 index3 32.32
little3 32.67 mid3 35.42
little2 35.42 thumb2 39.32
wrist 60.01 forearm 115.98
shoulder 118.04 biceps 136.88

Table 6.1: Absolute thresholds in Hz for the 20 tested locations.
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proximal phalanx is more sensitive than the distal one.

6.5 Conclusion

While this study aimed to expand the ultrasonic mid-air haptics psychophysical

knowledge beyond the hand, an initial investigation revealed that, at the moment,

the perception of this kind of technology is limited on the glabrous skin of our body.

Hence, we proceeded with a systematic investigation of 20 locations on the palm,

fingers, wrist, forearm, biceps, and shoulder. We provided a first knowledge on the

absolute thresholds for ultrasonic mid-air touch providing a general picture on the

distribution of the sensitiveness across the hand and arm. These results will help

to inform designers and researchers for the development of future researches and

applications.
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Figure 7.1: (a) A mid-air tactile pattern such as a circle is sampled into a set of
successive positions, here 10. (b) Each sample point is presented during a given
interval of time proportional to the total number of sample points. (c) Increasing the
number of sample points will increase the rendering fidelity, but will also decrease
the stimulation duration of each sample point. (d) Our study shows that changing
the number of sample points affects the perceived strength of the pattern.

M
id-air tactile stimulation using ultrasound has been used in a variety of

human-computer interfaces in the form of prototypes as well as products.

When generating these tactile patterns with mid-air tactile ultrasonic
1Frier W., Pittera D., Ablart D., Obrist M., Subramanian S. "Sampling strategy for ultrasonic

mid-air haptics". In Proceedings of the CHI Conference on Human Factors in Computing Systems,
Glasgow, UK, 2019.
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displays, the common approach has been to sample the patterns using the hardware

update rate capabilities to their full extent.

In the current study, we show that the hardware update rate can impact percep-

tion. Specifically, in experiment 1, we show that the perceived strength of mid-air

tactile pattern is related to the sampling rate of a pattern, especially for low draw

frequencies (i.e. between 2 Hz and 10 Hz). The results show that for a high sampling

rate (i.e., above 200 points), which is the common approach used in previous re-

search, patterns with low draw frequency (i.e., under 20 Hz) could not be perceived

by the user. However, using our approach, which is to lower the sampling rate, users

could perceive a pattern with a draw frequency as low as 2 Hz. Fitting our results

to a quadratic mixed model, we were able to determine the relationship between

perceived strength and sampling rate, and further determine the optimal sample

rate that generates the strongest subjective perception of tactile feedback.

In experiment 2, we repeated the same method varying the pattern sizes, that is,

the diameter of a circular pattern displayed on a user’s palm as seen in Figure 7.1.

Combining these results with our first user study, we were able to determine the

optimal sample rate for each combination pattern size and pattern draw frequency.

Our results show that this optimal sample rate is proportional to the pattern size.

In other words, for a given draw frequency, one should optimise the sample rate

according to the distance between two consecutive samples.

Finally, we discuss the impact of our results on the design of tactile patterns

and propose how our guidelines could be integrated within tactile feedback designer

tools.

This study contributes to the stage "Understanding", RQ1, as it is still focused

on using a psychophysical approach to better understand how we can design mid-air

haptics that are optimally perceived by the users. Although the outcome of this

research has important implications for design guidelines, we could not apply them

in the following studies presented in this thesis due to the different nature of the

stimuli used (simple focal points/lines vs. complex shapes) and because the outcome

followed in time the other studies.
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7.1 Experiment 1: sampling rate

There are various modulation methods and sampling strategies that can produce

a mid-air tactile pattern using focused ultrasound. These methods and strategies

predominantly depend on the available hardware being used. There has not been

however any discussion on how sampling strategy affects the overall pattern percep-

tion. This section describes how we undertook to investigate the relation between

sampling strategy and pattern perception. In particular, we focus on the pattern

perceived strength relative to the pattern sampling rate.

7.1.1 Method

We hypothesized that the pattern sampling rate will affect the perceived strength.

To test this, we run a magnitude estimation task [119]. In this task, participants had

to estimate the perceived strength for patterns rendered with different sampling

rates.

Participants were sitting comfortably on an office chair, which they were free to

adjust to their liking. On the left of the participant, there was an acrylic box, roughly

at their hip level. The box was 200 mm high and a mid-air tactile display UHEV1

from Ultrahaptics Ltd. was lying at the bottom of the box. An aperture was cut on

Figure 7.2: The setup for the user studies. Participants were perceiving the mid-air
tactile pattern on their left palm while rating each pattern on a designated laptop.
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the top box. Participants could rest their left hand over it while experiencing the

different mid-air tactile patterns.

Before starting the experiment, an initial focal point was presented to the users’

hand, so that they could align their palm with the array output. To avoid participants

responses to be biased by surrounding noises, participants wore noise-cancelling

headphones playing pink noise. On the desk, in front of the participants, a laptop

was running the experimental protocol. Participants could read instructions from the

laptop screen and input their strength estimates via a computer mouse. Figure 7.2

shows the overall set-up.

To test our hypothesis we used a set of patterns with various sampling rates.

To avoid shape-related effects, all of these were variations on a circular pattern.

All patterns were a 150 mm circumference circle (i.e. ≈ 24 mm centimetre radius),

as it covers most of the palm of the participant (human palm width mostly varies

between 75 mm and 95 mm [134]). Circles have also a clear periodic property and

its intermediately positioned points can be easily made equally spaced, all of those

limiting possible artefacts due to shape geometry.

In this experiment, we also wanted to test whether the sampling rate of the

pattern will affect the sensations of different patterns equally. Therefore, we picked

6 different draw frequencies for the presentation of the pattern, as to cover different

octaves and the sensitivity ranges of different mechanoreceptors [116]. An illustra-

tion of a circular pattern is depicted in Figure 7.1-a, while Figure 7.1-b&c show

how the sampling rate affects the pattern spatio-temporal properties. The range of

possible samples rates varied with the draw frequency. Due to this, we picked a total

of 6 to 11 pattern sampling rates, depending on the draw frequency, which accounted

for a total of 51 distinct patterns. Each pattern was repeated 3 times, making for a

total of 153 stimuli in the experiment.

Each mid-air tactile pattern was presented to the participants left palm for 3

seconds. At the end of the stimulus, a numeric pad was displayed on the screen

as well as an instruction inviting participants to enter their perceived strength

estimates. Participants were asked to rate the perceived strength from 0 as the min-
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imum (i.e. did not feel the pattern), to infinite, using whole numbers (i.e. no decimal)

and to be as consistent as possible in their estimation throughout the experiment.

Finally, participants were reminded to focus only on the pattern perceived strength

and to omit any other qualitative evaluation from their rating (e.g., smoothness or

simultaneousness). After participants validated their response, the next pattern

was presented after a two seconds break until participants rated all stimuli. The

patterns order were presented in a randomised order. The whole experiment lasted

about 20 minutes.

7.1.2 Participants

In total 26 participants took part in the experiment (6 females, average age±SD:

29.3 ±5.2). Participants declared on the consent form that they did not have any

sensory impairments related to their sense of touch.

Figure 7.3: Standardised perceived strength as a function of number of sampling
points, for a 150 mm circumference circle rendered at different frequencies. Light and
bold curves represent participants responses and responses average, respectively.
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7.1.3 Results

As participants were using different scales to estimate the pattern perceived strength,

we first standardised participants’ responses. We divided each participant estimate

by their highest response [119, 223]. As we were interested in studying each pattern

sensation separately, we further separated the data into 6 subsets, one for each

pattern draw frequency. Post-processed participants perceived strength estimates

are shown in Figure 7.3 as a function of pattern sampling rate. We invite the reader

to note that the x-axis of the figure is logarithmically scaled as the pattern sampling

rates spread across 4 orders of magnitude.

Each data subset was found to be unlikely to follow a normal distribution

(Shapiro-Wilk, p < .05). Hence, we run a Friedman test on each data subset to

test whether the perceived strength ratings were significantly different across sam-

pling rate values. The Friedman test indicated significant differences between

sampling rates groups for each draw frequency: 2 Hz(χ2(10) = 199.1, p < .001),

5 Hz(χ2(9) = 179.4, p < .001), 10 Hz(χ2(8) = 109.9, p < .001), 20 Hz(χ2(7) = 43.4, p <
.001), 40 Hz(χ2(6)= 45.6, p < .001) and 80 Hz(χ2(5)= 15.26, p = .009).

To further determine whether the differences were significant across the whole

range of sampling patterns, we run a pairwise Wilcoxon signed-rank test with

Bonferroni correction to avoid type 1 error. For draw frequencies 20 Hz, 40 Hz and

80 Hz, the Wilcoxon test indicated significant differences only between 1 or 2 pairs

of sampling rates. We, therefore, discarded those draw frequencies for the end of the

data analysis. However, for draw frequencies of 2 Hz, 5 Hz and 10 Hz, the Wilcoxon

test indicated significant differences for all sampling rate pairs, as long as the

sampling rate was lower than 200, 96 and 48 points, respectively.

The fact that the upper sampling rate interval leads to no significant differences

suggests that no specific behaviour could be extracted from that part of the data. Fur-

thermore, the fact the corresponding perceived strength plateau around 0, suggest

that the participants did not perceive those patterns. Those two points, motivated us

to discard the data for the next step of the analysis and focus on the lower sampling
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Figure 7.4: Data post-processing steps. (a) Raw data, (b) Standardised data, (c)
Significant data, and (d) Fitted model.

Quadratic Mixed Model

Rate R2 N. opt. N. lim.

2 Hz 0.68 22.4 236.6
5 Hz 0.72 17.5 119.2
10 Hz 0.62 15.8 149.4

Table 7.1: Quadratic mixed model results for frequency 2 Hz, 5 Hz and 10 Hz. Re-
sults include R2, optimal sampling rate and sampling rate limit.

rate interval.

On the remaining data, which correspond to the left part of the curve on Fig-

ure 7.3, the reader can see that, the pattern perceived strength seems to follow a

quadratic behaviour. Hence, we fit our data to a quadratic model. The model we used

for regression can be seen in equation 7.1

(7.1) strength= a log2
10(sampling)+b log10(sampling)+ c

We remind the reader, that the model uses logarithmic values as the plots on

Figure 7.3, where the quadratic behaviour can be observed, are using logarithmic x-
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axes. The model gave R2 values of 0.68, 0.72 and 0.63 for the pattern draw frequency

2 Hz, 5 Hz and 10 Hz respectively.

We used the coefficient from the model to estimate the pattern sampling rate

that was giving the highest perceived strength. We found that the optimal pattern

sampling rate was 22.4, 17.5 and 15.8 points for draw frequency 2 Hz, 5 Hz and

10 Hz, respectively.

Finally, we estimated the sampling rate threshold that was leading to the pattern

to be perceived or not. We found a threshold of 236.6, 119.2 and 149.4 points for

pattern draw frequency 2 Hz, 5 Hz and 10 Hz, respectively. The post-processing step

can be visualised in Figure 7.4 and the results of the data fitting are summarized in

Table 7.1.

7.2 Experiment 2: sampling rate and pattern size

In experiment 1, we were able to determine a relation between pattern perceived

strength and sampling rate. However, this relation parameters are varying with the

pattern draw frequency. In this second experiment, we aim to determine whether

these relation parameters vary as well when the pattern size changes.

7.2.1 Method

For this second experiment, we used the same protocol and set-up as in experiment 1.

The new stimuli set was composed of 2 draw frequencies. We chose 0 Hz and 10 Hz,

as they are the two boundary frequencies for which the effect of sampling strategy

was observed in experiment 1. There were 11 and 9 pattern sampling rates for the

two draw frequencies, 2 Hz and 10 Hz, respectively. We used 3 different pattern sizes,

which were 100, 150 and 200 mm circumference. There was a total of 60 distinct

patterns. Each pattern was repeated 3 times, making a total of 180 stimuli. This

experiment lasted about 25 minutes.
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Figure 7.5: The standardised perceived strength as a function of the number of
sampling points, for different frequencies and circle circumferences. Light curves
represent participant responses and bold curves represent responses average.

7.2.2 Participants

For this second experiment we tested a total of 26 participants (4 females, average

age±SD: 30±5.9). Participants declared on the consent form that they did not have

any sensory impairments related to their sense of touch.

7.2.3 Results

The data collected were standardised as in the first experiment. We also separated

the standardised responses into 6 subsets according to pattern draw frequency and

pattern size. Figure 7.5 shows the resulting rating after standardisation for each

data subset.

Each data subset was likely not normally distributed (Shapiro-Wilk, p < .05).

Therefore, we run a Friedman test on each data set to test whether the perceived

strength rating was significantly different across the corresponding number of

sampling rate.

For patterns at 2 Hz, Friedman test indicates significant differences as χ2(10)=
200.5, p < .001, χ2(10) = 212.3, p < .001 and χ2(10) = 208.9, p < .001, for circumfer-
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Quadratic Mixed Model

Rate Circum. R2 N. opt. N. lim.

2 Hz 0.10m 0.69 18.72 240.55
2 Hz 0.15m 0.60 20.95 241.76
2 Hz 0.20m 0.61 27.95 260.29
10 Hz 0.10m 0.67 10.77 92.09
10 Hz 0.15m 0.60 15.01 90.54
10 Hz 0.20m 0.60 20.30 84.52

Table 7.2: Quadratic mixed model results for frequency 2 Hz and 10 Hz across the
different pattern sizes. Results include R2, optimal sampling rate and sampling rate
limit

ences 100 mm, 150 mm and 200 mm, respectively. For pattern at 10 Hz, Friedman

test indicated significant differences as χ2(8)= 138.1, p < .001, χ2(8)= 111.0, p < .001

and χ2(10)= 84.0, p < .001, for circumferences 100 mm, 150 mm and 200 mm, respec-

tively.

To further determine whether the differences were significant across the whole

range of sampling pattern, we run a pairwise Wilcoxon signed-rank test with Bonfer-

roni correction to avoid type 1 error on each data subset and thus determine which

pair of pattern sampling rate were significantly different.

As in experiment 1, we found that the pairs of sampling rates were significantly

different only for sampling rate below 200 and 96 points, for modulation 2 Hz

and 10 Hz, respectively. Hence, for the same motivations as in experiment 1, we

discarded the non-significant part of the data and run a quadratic mixed model on

the significant part of the data.

The model indicate R2 values of 0.70, 0.60 and 0.61 for the pattern draw fre-

quency 2 Hz and circumference 100 mm, 150 mm and 200 mm, respectively. For

pattern draw frequency of 10 Hz the model gave R2 of 0.67, 0.60 and 0.60 for the

patterns with circumference 100 mm, 150 mm and 200 mm, respectively.

We used the coefficients from the model to estimate the pattern sampling rate

that was giving the highest perceived strength. We found that for 2 Hz draw fre-

quency, the optimal sampling rate was 18.72, 20.95 and 27.95 points for circum-

ference 100 mm, 150 mm and 200 mm respectively. We also found a sampling rate
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threshold of 240.55, 241.76 and 260.29 points for circumference 100, 150 and 200 mm

respectively. For a draw frequency of 10 Hz, we found an optimal sampling rate of

10.77, 15.01 and 20.30 points for circumference 100 mm, 150 mm and 200 mm res-

pectively. As for 2 Hz modulation, the perceived strength of pattern at 10 Hz plateau

when the sampling rate is greater than a given number. Using the model parameters

and the plateau values, we found that the sampling rate threshold was 92.09, 90.54

and 84.52 for circumference 100 mm, 150 mm and 200 mm respectively. The results

of the data fitting are summarized in Table 7.2.

7.3 Discussion

In the current paper, we investigated a sampling strategy that maximised a pattern

perceived strength. Using circular patterns rendered with different amounts of

sampling points, we established a relationship between pattern sampling rate and

pattern perceived strength. After discussing the user studies results, we will try to

explain those same results using the psychophysical literature on the perception

of touch. Finally, we will cover the implication of our work for tactile feedback

designers.

7.3.1 User studies results

In the two user studies, we demonstrated that pattern sampling rate affects pattern

perceived strength. However, significant effects were limited to patterns with draw-

frequencies ranging from 2 Hz to 10 Hz. Although variability can be observed in

user results magnitude, which could be accounted for users’ subjective judgement,

the overall trends are common across participants and can be modelled. Using a

regression model, we fitted the pattern perceived strength to a quadratic function of

the logarithm of the sampling rate (see equation 7.1).

From these regression functions, we identified an optimal sampling rate for pat-

terns rendered at 10 Hz, of 10.77, 15.01 and 20.30 points for circumferences 100 mm,

150 mm and 200 mm respectively. By taking the ratio of the pattern circumference
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over the optimal sampling rates, we obtained an optimal distance between sample

points of 9.7mm±0.3. The low variation between optimal distances between sample

points, designate this distance as an invariant for maximising pattern perceived

strength across pattern sizes.

We found similar results with draw-frequency of 2 Hz, for which the optimal

distance between samples points was on average equal to 6.5mm±0.8. However, the

optimal distances obtained are different across pattern draw frequency and despite

our effort, we could not establish a clear relation between optimal distance and draw

frequency.

Using the experiments results, we also found that the perceived strength plateaus

when the pattern sampling rate is greater than a given threshold. This threshold

is in average 245±6.2 points and 89±3.3 points for patterns at 2 Hz and 10 Hz,

respectively. The low variation between threshold averages suggests the sampling

rate threshold to be invariant across pattern sizes, although we could not establish

the relation between threshold and pattern draw frequency.

Even though our experiment showed no effect of sampling rate on perceived

strength for patterns at high frequency, we would like to point out that, when

observed, the effect occurs only for sampling rate under 200 points. However, high-

frequency patterns can not currently be rendered with sampling rates up to 200

points. For instance, the mid-air tactile display we used could render a pattern

at 80 Hz with only 24 points at most. Technology will likely improve and allow

rendering high-frequency patterns with a sampling rate of 200 points or more. Until

then, we cannot completely rule out the effect of sampling rate on perceived strength

in the case of high-frequency patterns.

Finally, on Figure 7.5, one may note that the maximum perceived strength varies

with the pattern draw frequencies and sizes. However, this is in agreement with

Frier et al., which claim that perceived strength varies with the tactile point speed

(i.e., draw frequency times pattern circumference) . [58].
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7.3.2 Psychophysical explanation

In an attempt to further understand the results reported in this study, we discuss

here some hypotheses related to the psychophysics of the sense of touch. Testing

these hypotheses is beyond the present scope of this paper, yet we believe it could be

informative towards the reader.

Firstly recall that, for AM, different modulation frequencies are perceived with

different strength, even though the amplitude of the stimulation remains the same,

200 Hz being the frequency perceived the strongest [73]. However, STM stimulation

can no longer be described as a sinusoid like for AM and LM, but more like a pulse

train with alternation between intervals of stimulation and non-stimulation. Using

a Fourier expansion, this pulse train can be decomposed as a sum of sinusoidal

signals, thus unveiling the presence of harmonics that are higher in frequency,

with an amplitude depending on the pulse width. Decreasing the sampling rate

may inadvertently increase the harmonic’s amplitude close to 200 Hz, and thereby

increase the associated perceived strength.

Another hypothesis is related to skin viscoelastic properties. High sampling rate

stimulation leads to stimulation durations being too short for the skin deformation

to reach the required mechanoreceptors’ depth. At first, this hypothesis might seem

unlikely since higher frequency patterns yield to tactile perception nonetheless.

However, by definition, the rate at which the stimulation is repeated at a single

location is much faster for high draw frequencies than for low draw frequencies.

Therefore, it is plausible that at high frequencies the skin indentation builds up as

the pattern is repeated over and over again whereas at low frequencies the elastic

skin relaxes entirely between stimulation intervals.

Until now, mid-air haptics was relying on stimulating RA and PC mechanore-

ceptors that are sensitive to vibrations higher in frequency than the one involved

in this study [116]. However, one could note that as the tactile points move across

the skin surface, different groups of SA1 mechanoreceptors might be stimulated.

Indeed, SA1 mechanoreceptors are mostly sensitive to the stimulus onset and offset
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(i.e., transient stimulus). Therefore, as the mid-air stimulus moves from one position

to another, the stimulus is offset at the old position and onset at the new position.

However, when a sampling rate is too high the sample position difference is lower

than SA1 receptive field [236], and do not lead to this transient behaviour and

therefore to tactile perception.

Ultimately, using a mechano-transduction model as the one presented by Saal

et al. [197], one could test some of these hypotheses. Although, such models only

predict stimulus detection, but will not determine optimal stimulation.

7.4 Conclusion

With this study we demonstrate that higher sampling rate does not always improve

tactile perception and quite often the old cliché is true: less is more (see Section

12.5). Such design insights can be hugely beneficial to haptic engineers, developers

and designers. Using the general trend found in the user-study results, we have

therefore proposed ways and relationships for such parameters and variations to be

hidden behind easy-to-use software packages.

We would like to emphasise that since the tactile perception of frequency follows

a Weber-law, the range 2-10 Hz is half as wide as the range 10-200 Hz. Hence,

increasing by 50% the range of discriminable frequency one could now apply to

mid-air tactile patterns. We also would like to remind our readers, that in our study,

we consider low frequency any frequency less than or equal to 10 Hz. However, our

study focusing only on circular patterns, the 10 Hz frequency threshold might vary

for other patterns, and hence ask the reader to interpret the values of this study

carefully when applied to different shapes.

Then, we would like to invite feedback designers to adjust the sampling rate of

a given mid-air tactile pattern, whenever it is possible, to maximise its perceived

strength. We also remind designers that this optimal sampling rate is proportional

to the pattern size. Hence, when scaling a given pattern, the sampling rate should

be scaled accordingly.
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Until now, we explored the absolute tactile thresholds for ultrasonic mid-air

haptics in Chapter 6 and investigated the optimal sampling strategy to improve

tactile perception. In the following chapter, we will present a study that probes the

optimal parameters to make users perceive simple 2D geometric shapes.
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PERCEPTION OF MID-AIR SHAPES1

Figure 8.1: Experimental set-up. An ultrasonic array is positioned inside an acrylic
box. On top of the box there is an opening that allows participants’ hand, specifically
the palm, to be stimulated with mid-air touch.

A
n important challenge that affects ultrasonic mid-air haptics, in contrast

to physical touch, is that we lose certain exploratory procedures such as

contour following. This makes the task of perceiving geometric properties
1Hajas D., Pittera D., Nasce A., Georgiou O., Obrist M. "Mid-Air Haptic Rendering of 2D

Geometric Shapes with a Dynamic Tactile Pointer". In IEEE Transaction on Haptics, 2019 -
under review, response to first round of review submitted.
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and shape identification more difficult. Meanwhile, the growing interest in mid-air

haptics and their application to various new areas requires an improved understand-

ing of how we perceive specific haptic stimuli, such as icons and control dials in

mid-air. We address this challenge by investigating static and dynamic methods of

displaying 2D geometric shapes in mid-air.

We display a circle, a square, and a triangle in either a static or dynamic condition,

using ultrasonic mid-air haptics. In the static condition, the shapes are presented

as a full outline in mid-air, while in the dynamic condition, a tactile pointer is

moved around the perimeter of the shapes. We measure participants’ accuracy and

confidence of identifying shapes in two controlled experiments (n1 = 34,n2 = 25).

Results reveal that in the dynamic condition people recognise shapes significantly

more accurately, and with higher confidence. We also find that representing polygons

as a set of individually drawn haptic strokes, with a short pause at the corners,

drastically enhances shape recognition accuracy. This paper contributes both novel

scientific insights about the tactile perception of 2D shapes, and also provides design

guidelines for improved mid-air haptic interfaces and haptic visualisations. Both

of these contributions are discussed within the context of two application areas

(automotive and education) from a haptics and HCI perspective. Specifically, we

provide parameter recommendations for optimal shape recognition renderings that

could be used for novel assistive technologies that enhance teaching of geometry

and mathematics for visually impaired students, or for the rendering of haptic

icons and controls in novel gesture controlled car user interfaces [90]. In both

cases, a more accurate and confident identification of the communicated haptic

shapes can significantly improve their effectiveness and thus future adoption rate of

mid-air haptic interfaces. Our research supports the design of mid-air haptic user

interfaces in application scenarios such as in-car interactions or assistive technology

in education.

This study concludes the effort of investigating the perceptual side of the ul-

trasonic mid-air haptic technology and falls into RQ1, under the "Understanding"

stage. This research happened before the outcome of the study previously presented
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(Chapter 7). Therefore, we do not know if applying the principles highlighted in the

previous chapter (optimal sampling strategy) will lead to different results.

8.1 Experimental design

To investigate the main research question on how accurately and confidently people

can identify 2D shapes in mid-air, when displayed with a dynamic tactile pointer

instead of a static outline, we defined the following two hypotheses:

H.1 Shapes will be correctly recognised on significantly more occasions in the

dynamic condition than in the static condition.

H.2 Shapes will be correctly recognised with significantly more confidence in the

dynamic condition than in the static condition.

Evaluating our hypotheses, we performed a user study, involving two controlled

experiments and two pilot studies. Both experiment 1 and experiment 2 investigated

the primary hypotheses (H.1 and H.2), as described in sections 8.2 and 8.4. However,

in experiment 2, we modified the dynamic stimuli to also evaluate a new hypothesis

(H.3, see section 8.3), conceived after the analysis of experiment 1. Namely, in

experiment 2, the stimuli used for the dynamic condition were changed from a

continuous loop to an interrupted loop, which means that the tactile pointer paused

its movement for 300 ms and 467 ms at the corners of the square and triangle

respectively. To find the optimal pause times in the movement of the tactile pointer

for the different shapes, we ran an additional pilot study, involving two parts, as

described in section 8.3. An overview of all the experimental conditions and variables

studied is shown in Figure 8.2.

8.2 Experiment 1: Single-stroke shapes

In experiment 1, we tested hypotheses H.1 and H.2 by taking measurements of the

dependent variables in the static and dynamic conditions. Importantly, the dynamic
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Figure 8.2: Summary of the two main experiments including two in-between pilot
studies to determine optimal parameters for experiment 2.

tactile pointer was moved around the displayed shape giving no emphasis to any

corners, as if drawn using a single continuous (brush) stroke.

8.2.1 Method

8.2.1.1 Participants

Participants were selected from the public and aged 18 to 50 years. We set an

upper age limit to account for the potential decline of tactile acuity with age [196].

In experiment 1, we recruited 34 participants (f=20, m=14), with a mean age of

27.21±5.79 years. 30 participants were right-handed, two left-handed, and two

reported non-dominant hand. On a scale from 1 to 7, where 1 meant “no experience

at all”, and 7 meant “regular user for at least one year”, participants’ experience

with the haptic interface was a mean of 2.00±1.42. Participants declared on the

consent form that they did not have any sensory impairment related to their sense

of touch.

8.2.1.2 Materials

In this section, we describe the stimuli and device used, as well as the experimental

task.

Stimuli Originally, we considered eight shapes to test our hypothesis on. These

were a: circle, square, right-angle triangle, plus-cross, ellipse, rectangle, equilateral
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Figure 8.3: Overview on the original set of shapes considered in the study design
phase. The final selection of three shapes used in our experiments are highlighted in
green.

triangle and x-cross (see Figure 8.3). However, for simplification, we decided to limit

the study to only three shapes: a circle, square and an upright equilateral triangle,

as often seen in literature (e.g. [121, 232]). Using only three prototypical geometric

patterns [232], we wanted to eliminate any potential confounding variables due to

similarities of shape geometry.

The method of rendering static and dynamic haptic shapes differ both per-

ceptually and in the way that they are generated. The static condition employed

spatio-temporal modulation (STM) [127], where a single focus of constant amplitude

(intensity = 1) is rapidly moved round the shape perimeter. The rotation frequency

causes the human skin to vibrate at the same frequency (and its harmonics [32])

along the entire path trajectory, resulting in the perception of a static tactile sensa-

tion analogous to pressing a cookie cutter against the palm. The dynamic condition

employed amplitude modulation (AM) [27, 107], where a single focus of oscillating

amplitude intensity between 0 and 1, is slowly moved round the shape perimeter.

The oscillating frequency causes the human skin to vibrate at the same frequency

(and its harmonics [32]) but only at the focus, resulting in the perception of a dy-

namic tactile sensation, analogous to a pointy object or brush drawing shapes on the

palm.

To study the effect of the independent variable, i.e. the mode of display (static vs

dynamic) on the three chosen shapes (circle, square, triangle), we prepared a total
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of six tactile stimuli. The parameters were kept constant across all samples. We

chose the size of the shapes (6 cm diameter/side length) to fit an average adult palm

(anthropometric mean of palm length: 10.56 cm ± 0.46 cm) [30]. We chose 70 Hz for

the STM rotational frequency, as it is near the optimal 5 ms−1 to 10 ms−1 draw

speed, for path lengths given by the static shape outlines [58]. For consistency, we

chose 70 Hz as the AM oscillation frequency, even though the optimal value for a

point like stimulus is near 200 Hz. We used anti-clockwise pointer movements which

is the default setting in the experimental device. The rate of drawing the shapes

in the dynamic condition was chosen to be 0.5 Hz such that the movement feels

natural, i.e., as if a finger drew on the palm. The pointer itself had a diameter of

0.8 cm, corresponding to the wavelength of the ultrasonic carrier, and simulating the

size of a fingertip. The centre of the shapes coincided with the origin of the haptic

interface’s coordinate system, but vertically translated by 15 cm above the surface of

the device (see Figure 8.1).

Device We used a mid-air haptic device manufactured by Ultrahaptics Ltd, which

generates the tactile sensation using 256 ultrasound transducers. In order to fix

participants hand at the same height and position area where the stimuli are

displayed, we placed the device within a hand-support cavity. Participants were

instructed to rest their hand on top of the support, over an ∼ 10×10 cm opening,

as shown in Figure 8.1. To create the stimuli, we used the Ultrahaptics Sensation

Core Library (SCL). The SCL includes a Python scripting interface, which allows

developers to design sensations by constructing a graph of inter-connected operations

(path geometry, transforms, animation, rendering etc.), known as "blocks". The

sensations were prepared in advance, such that a Python script can call and display

the stimuli on the haptic interface. The script was responsible for logging data, and

randomising the order of stimuli.

Task The experimental task was simple: “Tell the researcher the shape you felt,

and how confident you are in your answer”. We evaluated our hypotheses in two
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conditions: (1) passive, and (2) active touch as part of the same experiment. In the

active condition, participants were allowed to move their hand to explore the stimuli.

In passive touch, participants were instructed to keep their hand still.

Prior to displaying the sequence of shapes, participants were given a chance to

familiarise themselves with the area and tactile sensation of the stimuli. A matrix of

3×3 focal points were projected on the palm sequentially, from top left to bottom right,

with the central point coinciding with the centre of the shapes. This was followed

by displaying the three shapes in both conditions for 6 s, but without disclosing

what the shapes are. Although we did not set a maximum number of times the

familiarisation could be repeated, none of the participants did the familiarisation

session more than twice.

After the familiarisation stage, participants were shown the first stimulus and

asked to announce what shape they felt. At the moment of announcement the

stimulus was terminated. Participants were told that their options are limited to

“circle”, “square” or “triangle”. In experiment 1, we also emphasised, that a “I don’t

know” response is also allowed. Before moving to the next stimulus, the confidence

rating was asked and recorded. This task was repeated 24 times in a randomised

order, with each of the three dynamic, and three static stimuli repeated four times,

in both of the active and passive conditions. We measured two dependent variables:

the accuracy of the named shape, and participants’ confidence in the perceived shape.

Accuracy (a dichotomous variable) simply indicated whether the shape was correctly

perceived or not. The confidence rating was a self-report scale, from 1 to 7, where 1

meant “not sure at all” and 7 meant “most certain”.

8.2.1.3 Procedure

Upon arrival to the experimental space, participants were introduced to the ex-

perimental procedure, and informed consents were obtained. We started collecting

demographic data, then participants were instructed to place their right hand above

the haptic interface. We carried out a within subject experiment, where The active

vs. passive conditions were counter balanced.
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We strived to keep the experimental setup as controlled as possible by keeping

the room temperature comfortably warm (∼ 21◦), to prevent participants from having

cold hands and reduced skin sensitivity. Ambient white noise was setup to prevent

any audible clues from the haptic device. In the active touch condition, participants

were asked to fix their sight on the wall in front of them to avoid speculative guesses

of the felt shape, based on the visual inspection of their moving hand. Between the

active and passive touch conditions, a 30 s break was allowed. Participants were

given a sponge ball to fidget with, and refresh their hand muscles, skin and joints.

At the end of the experimentation, we asked participants two qualitative ques-

tions: (1) “Q1: Would you say either the static or the dynamic condition was easier for

you to discriminate the shapes in?”; and (2) “Q3: What strategies did you use, if any,

to try to understand the shape?”. We kept written notes on the responses, but did not

collect qualitative data systematically in experiment 1. The entire procedure took 30

minutes per participant, who received a £5 Amazon voucher for their time.

8.2.2 Results

For the analyses we use R (v3.5.2) statistical software. For ease of reading, we

grouped the report according to passive and active touch conditions.

8.2.2.1 Passive touch – accuracy metrics

A McNemar’s test showed a statistically significant difference (p < 0.001) in accuracy

across the static and dynamic conditions. We also analysed data with respect to

individual classes (i.e. circle, triangle and square). Figure 8.4 shows the confusion

matrices for both the static and the dynamic conditions, but excluding the “I don’t

know" answers. The overall accuracy for the static condition was 50.6% and for the

dynamic condition was 56.7%. In both conditions, the matrices show a high level of

confusion in participants’ answers. In particular, the circle and the square shapes

are the most confused. For example, excluding “I don’t know” answers, 38% answers

of square when the stimuli was a circle, or 33% answers of circle when the stimuli

was a square in the static condition, with occasional mistakes in recognising the
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triangle. This is also supported by the subjective reports of users: P9: “You could not

feel whether it was supposed to be a circle or a square because the shape filled up all

the space, and because you couldn’t feel the edges.”.

Figure 8.4: Confusion matrix for the passive static (left) and passive dynamic (right)
conditions, expressed as percentage.

8.2.2.2 Passive touch – confidence levels

Figure 8.5 illustrates the box plot of confidence level for both static and dynamic

conditions. The sample deviates from a normal distribution as assessed by the

Shapiro-Wilk’s test (p < 0.05). Therefore, we ran a Wilcoxon signed-rank analysis

to test differences between the confidence levels in static and dynamic conditions.

The test resulted statistically significant (V = 4794, p < .001). Participants are more

confident in their choices when feeling shapes dynamically drawn (median = 5), than

in the static condition (median = 3).

8.2.2.3 Passive touch – qualitative results

We also found coherent responses to the two qualitative questions asked. In the

passive condition, without exception every participant said that comprehending

the shape, when drawn in the dynamic condition was easier. Some only expressed

a milder difference: P15: “It’s easier because it feels clearer, whereas the ’cookie

cutter’ case is more blurry.”; while others expressed a stronger disliking of the static

condition: P7: “Oh, not again the muddy.”, or P33: “It’s very difficult to grasp when it’s
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Figure 8.5: Box plot of confidence levels across the passive static (red), and passive
dynamic (green) conditions.

a full blast. It just feels like air.”. Multiple participants described the static shapes as

too “muddy”, “blurry”, or “fuzzy” to tell what shape it is. In the dynamic condition, we

observed people reporting the use of typically two different strategies. First, focusing

on curvature characteristics: P27: “The circle felt like a smooth curve, whereas with

triangle and square you could feel the corners.”. Second, observing the dynamics of

the moving point" P26: “It slows down around the corners.”. Multiple participants

also referred to the “mental eye” as means of reconstructing the shape they felt.

8.2.2.4 Active touch – accuracy metrics

McNemar’s test did not find significant differences between active static and active

dynamic stimuli (p = 0.22). As for passive touch, we also analysed data with respect

to individual shapes and created confusion matrices (see Figure 8.6). The overall

accuracy for the static condition was 57.3%, and for the dynamic condition was 52.7%.

Similarly to the passive touch, both conditions brought participants to a high level

of confusion in the active condition too.

8.2.2.5 Active touch – confidence levels

As in passive touch, from the box plot shown in Figure 8.7, it appears that reported

confidence levels are higher for the dynamic condition. This is confirmed by a



128 PERCEPTION OF MID-AIR SHAPES

Figure 8.6: Confusion matrix for the active static (left) and active dynamic (right)
conditions, expressed as percentage.

Wilcoxon signed-rank analysis (V = 10591, p < .001). The median scores are 3 and 4,

for the static and dynamic conditions respectively.

Figure 8.7: Box plot of confidence levels across the active static (red), and active
dynamic (green) conditions.

8.2.2.6 Active touch – qualitative results

In the active touch condition, the coherency of qualitative data broke down, de-

pending on the strategies people followed. Some people found the active dynamic

condition still easier, if they tracked the tactile pointer: P32: “The moving point was

even easier, as you could almost place your hand on it and follow”. However, the ma-

jority of people reported the static condition to be slightly easier to recognise shapes,
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adapting the strategy of tilting their hand, or focusing on points of stimulation on

their palm.

8.2.3 Summary

In summary, our results show that participants are significantly more accurate in

recognising shapes, when these are displayed in the dynamic condition (56.7%) vs. a

static representation (50.6%), but only when their hand is fixed in space. Hence, for

passive touch we can verify H.1 to be true even though the difference is not large.

Reported confidence levels are also significantly higher in the dynamic condition, for

both passive and active conditions. Hence, H.2 is also true. The qualitative data also

revealed commonly used descriptors referring to the clarity of sensations, which we

explore further in experiment 2.

8.3 Pilot Studies: Increasing recognisability

The results of experiment 1, backed up with qualitative reports, suggested that

participants could not discriminate well between shapes, even in the dynamic condi-

tion. In particular, people were repeatedly confusing circles and squares. In order

to address this, we devised a second experiment that would test an additional

hypothesis:

H.3 In the dynamic condition, displaying shapes as a collection of discrete haptic

strokes in form of an interrupted loop, instead of a continuous loop, will further

improve the accuracy of shape recognition.

8.3.1 Parametrisation and chunking of haptic output

We motivated this hypothesis based on the literature discussing unistroke I/O and

cognitive chunking. Considering visual chunking representations, such as a study

performed by Dake et al. [259], it is known that a single continuous line may form

a chunk, which represents a straight line, a curve, or a circle. For polygons, it’s

expected that the number of edges, and angles are perceived independently as
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single strokes, but grouped into the appropriate chunk. For example, a group of

three strokes form a chunk representing a triangle. Chunking in HCI was discussed

by Buxton [24] through multiple scenarios, in search for methods of accelerating

the transition between novice and expert users of a computer interface. Buxton

concludes that “The key is gesture-based phrasing to chunk the dialogue into units

meaningful to the application. – This desired one-to-one correspondence between

concept and gesture leads towards interfaces which are more compatible with the

user’s model.” [24]. He suggests that this principle is desirable for any application,

from terminal commands to input-output interfaces, hence it is worth investigating

in cases of novel haptic output devices. Goldberg & Richardson [78] designed a

unistroke alphabet to find equivalents of touch typing with the use of a stylus. Such

touch input system enables the transition from novice to expert user by means of

increased input speed, while also enables higher accuracy interpretation for the

recognition system. Robust tools, such as the $ 1 Recognizer [253] enabled non-

experts to incorporate gesture recognition in their UI. However, it also opened up

new research topics, such as how gesture articulation speeds affect recognition

accuracy. In other words, what parameters of the input contribute to successful

recognition by the system. With the evolution of haptic output devices, researching

unistroke related parameters, in context of human recognition abilities becomes

an interesting research topic. For instance, Hoshi [105] used ultrasonic mid-air

haptics to transmit gesture based touch input to dynamically drawn, unistroke like

haptic letters on the palm. An accuracy of 44% recognition was demonstrated, but

no drawing parameters were discussed or evaluated.

To test hypothesis H.3, we altered the stimuli used for the dynamic condition,

such that it is composed of a collection of discrete haptic strokes. In experiment 2, the

tactile pointer paused its movement when it reached an angle, while in experiment

1, the tactile pointer moved without interruption around the perimeter of the shapes.

However, the duration of interruption (referred to as “pause”) remained a question.

To determine the optimal duration of the pause, making the largest impact on

recognisability, we ran two pilot studies as described below. In the first pilot, we
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wanted to find out the answer to the question: “Does recognisability of the shape

increase with the increase in duration of pauses at the angles?”. The second pilot was

responsible for optimising the duration parameter, by determining the model for

correlating duration and recognisability, such as a linear or quadratic fitting model.

8.3.2 Pilot study 1

8.3.2.1 Method

Participants In the first pilot study we recruited nine participants (f=4, m=5,

mean age 29.6±4.8 years). All the qualifying criteria reported in experiment 1 was

applicable in this pilot study too.

Materials We compared nine stimuli for potential candidates of displaying both a

square and a triangle, in the dynamic condition. Participants were given two tasks,

in the same setup as experiment 1. In task 1, we displayed four repetitions of nine

squares drawn at the rate of 2 s, with increasingly long pauses of 0 ms to 400 ms,

in steps of 50 ms, at the angles. We asked participants to rate “How much does the

shape you felt resemble a square, on a scale from 1 (not at all) to 7 (very much)?”. In

task 2, the same task was completed for the triangle.

Procedure The 36 stimuli were randomised. Participants were told what the

shape was on the display, and they were given a print standardised instruction of

the task, since it was crucial they report how much the sensation resembles a shape,

and not their ability to recognise it. We measured performance in only the passive

touch condition. The pilot took 20 minutes, and a short break was allowed between

the two tasks. Task 1 and task 2 were counter balanced. No compensation was paid.

8.3.2.2 Results

Figure 8.8 plots the mean scores of participants’ rating of recognisability for the

different pause durations at the corners of the triangle (left) and square (right). The

graphs show that increasing the pause increases participants’ perception of feeling
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Figure 8.8: Scatter plot of recognisability: The mean scores of participants’ rating
(1-7) is plotted against the nine pause durations tested (ms) for the triangle (left)
and square (right) in pilot study 1. A best fit curve is shown in blue.

a well resembled shape. We ran Wilcoxon tests to investigate differences across the

various durations. From these analyses, we isolated three groups: 1) [0, 50, 100] ms;

2) [150, 200] ms; 3) [250, 300, 350, 400] ms, for both shapes. Although, the difference

between instances of each group were not statistically significant (p > 0.05), the

scores for the three groups are statistically significantly different.

The results confirm that, in the dynamic condition, there is a direct relation

between the time spent at the corners, a kind of emphasis, and the participants’

perceived sensation of a shape. However, from the graphs’ in Figure 8.8, it is not

clear if the trend would descend for longer pauses or continue increasing linearly. To

investigate this, we ran a second pilot study.

8.3.3 Pilot study 2

8.3.3.1 Methods

Participants In pilot study 2, the pool of participants was identical to the group

of participants taking part in the first pilot study.

Materials We reduced the variation of stimuli by decreasing the tested conditions

of the pause duration. However, we increased the repetitions from four to ten, to

obtain a cleaner dataset. In task 1, for squares we chose to test values of 0, 150,

300, and 500 ms. Another factor we accounted for in pilot study 2, is the difference
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between the draw speed of sides in triangles and squares. Since the overall rate of

drawing and duration of pauses at corners were identical for both shapes, the speed

at which sides are drawn differed. However, since pilot study 1 showed that there

are intervals of pause durations at corners, at which no significant differences are

observed, we chose to keep the draw speed of sides constant by varying the pause

duration. Based on this speed, and the overall rate, we computed the equivalent

duration of pauses in the triangle to be 167, 317, 467, and 667 ms respectively. For

completeness, we also added the 0 ms baseline condition.

Procedure the procedure was identical to that used in pilot study 1, except the

number of trials. Task 1 involved 10 repetitions of four variations on the square, and

task 2 involved 10 repetitions of five variations on the triangle.

8.3.3.2 Results

Figure 8.9: Scatter plot of recognisability: The mean scores of participants’ rating
(1-7) is plotted against the five/four pause durations tested (ms) for the triangle (left)
and square (right) respectively, in pilot study 2. The best fit curve is shown in blue.

In case of the triangle, we see from Figure 8.9 that the best fit curve follows

a quadratic trend, although it is less sharp than in the case of the square. The

central values of 467 ms and 300 ms for the triangle and square respectively were

statistically different from other values tested. We see that a too long pause may

decrease performance. In case of the square, participants benefited from feeling the
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edges being drawn in identifying the shape 2..

8.3.4 Summary

Two pilot studies were conducted to investigate the effect that corner pauses have on

shape recognisability. The pauses caused interruptions in the way a dynamic tactile

pointer displays a haptic shape. It was shown that different pause durations can have

a noticeable impact on shape recognisability, and that the optimal pause durations

differ from shape to shape. Although the results we obtained were indicative of

the most appropriate duration to use (), it was not conclusive whether participants

were going to be able to discriminate the shapes, once the stimuli were mixed, as in

experiment 1. This was the objective of experiment 2.

8.4 Experiment 2: Multi-stroke shapes

This experiment studied all three hypotheses H.1, H.2 and H.3. We measured both

participants’ accuracy and their reported confidence levels for mid-air haptic shape

recognisability, under the static and dynamic conditions for both passive and active

exploration (see Figure 8.2). Importantly, we employ the modified dynamic condition

where the dynamic tactile pointer experiences short pauses at the corners of the

displayed shape, as if drawn using multiple (brush) strokes. The optimal pause

durations were determined in the pilot studies described in the previous section.

8.4.1 Method

8.4.1.1 Participants

We recruited 25 participants (f=14, m=11), with a mean age of 30.24±7.80 years.

22 participants were right-handed and 3 were left-handed. Their experience with

the haptic interface was 2.08±1.20. Nobody declared a disorder compromising their
2For a square drawn in 2 s, a 500 ms long pause at every corner means no time left to draw sides,

i.e. the tactile pointer is repositioned from corner to corner in a discontinuous way.
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tactile acuity. Participants of the pilot studies were excluded from taking part in this

experiment.

8.4.1.2 Materials

The stimuli used in the static condition were identical to those used in experiment 1.

In the dynamic condition, we exchanged the single-stroke stimuli with multi-stroke

sensations. Based on the results of the two pilot studies, we chose 300 ms and 467 ms

long pauses at the angles of the squares and triangles respectively. We expected that

this method would help in distinguishing between circles and squares displayed in

the dynamic condition.

8.4.1.3 Procedure

The task and procedure for experiment 2 followed the same protocol as in experiment

1, except two aspects. First, we did not allow for an “I don’t know” answer when

identifying the presented shape. We chose to make this change to feed the confusion

matrix with more relevant data. The minimum confidence score accounted for the

“I don’t know” option. Secondly, we wanted to perform a more thorough qualitative

analysis, hence, we audio-recorded the final five-minute interviews, and included a

third question, asking participants “Q2: Using 2-3 adjectives, how would you describe

the clarity, or sharpness of the shapes you felt in each of the conditions?”.

8.4.2 Results

8.4.2.1 Passive touch – accuracy metrics

As in experiment 1, we created confusion matrices for the two conditions, shown

in Figure 8.10. The overall accuracy for the static condition was 51.7%, and for

the dynamic condition was 83.0%. The values for the dynamic condition highlight

how the shapes are better perceived with the introduction of multi-stroke shapes.

Only 14% answers of square were given, where the shape was a circle; and only 9%

answers of circle were given, where the shape was a square. This is a statistically
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different result and significant improvement compared to the results in experiment

1.

Figure 8.10: Confusion matrix for the passive static (left) and passive dynamic
(right) conditions, expressed as percentage.

8.4.2.2 Passive touch – confidence levels

A Wilcoxon signed-rank analysis confirmed a significant difference (V = 912, p < .001)

between confidence levels in the two conditions. Once again, participants are more

confident in the dynamic condition (median = 5), than in the static condition (median

= 3), as shown on the box plot in Figure 8.11.

Figure 8.11: Box plot of confidence levels across the passive static (red), and passive
dynamic (green) conditions, in experiment 2.
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8.4.2.3 Active touch – accuracy metrics

Figure 8.12 shows the confusion matrices for both the active static and active

dynamic conditions. The overall accuracy for the static condition was 57.3%, and for

the dynamic condition was 84.7%. For the dynamic condition, the confusion matrix

shows that the shapes were recognised with only marginal confusion.

Figure 8.12: Confusion matrix for the active static (left) and active dynamic (right)
conditions, expressed as percentage.

8.4.2.4 Active touch – confidence levels

In active touch, the reported confidence levels are again higher for the dynamic

condition (Wilcoxon signed-rank test: V = 2574, p < 0.001). The median score for the

confidence level rating is 4 for the static condition and 5 for the dynamic one (see

Figure 8.13).

8.4.2.5 Qualitative results

In experiment 2, our aim was to quantify the observations on participants’ comments

from experiment 1 and systematically collect linguistic descriptors of the two types

of stimuli. To do this, we transcribed all five minute interviews conducted at the end

of the experiment. Relevant snippets of the transcripts were extracted, and grouped

into three categories, coded as: (Q1) Preference, (Q2) Descriptor, and (Q3) Strategy.

After the coding and extraction process, we further abstracted information relevant

to the respective category.
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Figure 8.13: Box plot of confidence levels across the active static (red), and active
dynamic (green) conditions, in experiment 2.

In Q1, we looked for how many people find either of the conditions easier based

on their subjective reports, and how varied the spectrum of expressed difficulty is

(from a little easier to a lot easier). We found that 22 of 25 participants reported that

the dynamic condition was “easier”. 3 participants said it depended on whether they

explored actively or not. In the active touch they felt the static shapes were easier to

recognise, though they still preferred the dynamic display mode when their hand was

fixed. We also identified 11 positive, and 5 negative signifiers. Positive signifiers in-

cluded adjectives, such as “definitely” (7 instances), or “much” (2 instances): P9: “The

moving one was definitely a lot easier.”. On the other hand, negative signifiers, such

as “I think” (4 instances) or “perhaps” (1 instance) indicated a weaker preference:

P2: “I think the moving one was perhaps better.”.

In Q2, we abstracted a list of 28 adjectives, descriptive phrases associated with

the individual conditions. We counted the frequency of these descriptors, and coded

them according to three themes. The themes were divided into positive and negative

attributes. For the themes, most frequent adjectives and frequency counts, see Table

8.1.

In Q3, we abstracted two key strategies. First, people who counted corners or

edges in the passive dynamic condition, and people who moved their hand with the

moving tactile pointer, in the active dynamic condition. In the former case, people
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Valance Positive Negative
Theme Perceived quality of sensation
Total count (static) 4 13
Total count (dynamic) 12 3
Frequent descriptors – blow, wall of air (5)
(static) – block (3)
Frequent descriptors pencil/fingertip (3), –
(dynamic) smooth (1) –
Theme Perceived quality of shapes
Total count (static) 2 32
Total count (dynamic) 28 4
Frequent descriptors – fuzzy (7), blurry (3)
(static) – unclear (5)
Frequent descriptors clear (8), sharp (5), –
(dynamic) higher definition (4) –
Theme Perceived ability to recognise shapes
Total count (static) 3 20
Total count (dynamic) 17 1
Frequent descriptors – hard (10),
(static) – indistinguishable (5)
Frequent descriptors easy (10), –
(dynamic) makes mental image (3) –

Table 8.1: Descriptors of perceived quality of sensations, quality of shapes, and
ability to recognise shapes.

reported that counting helped them create a mental picture of the shape: P19: “I

could see this almost like tracing something on my skin, so I could kind of mentally

construct the shape”. In the latter case, participants relied on whether the movement

of tactile stimulus on their hand, matched the self-initiated, kinaesthetic movement.

8.4.3 Summary

We can claim H.3 to be true, since the results of experiment 2 show that displaying

shapes as a collection of multiple strokes rather than a single stroke, can significantly

improve accuracy of shape recognition. In particular, the overall accuracy for the

passive touch in the dynamic condition increased from 56.7% to 83.0%; while the

accuracy also increased in the active touch, dynamic condition, from 52.7% to 84.7%.

We note that these ∼30% improvements are both significant and important. We

also see that in both passive and active touch, the median value of confidence is
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5, which is significantly different from that in the static condition. In the active

touch condition, the confidence increased compared to the results of experiment 1.

The qualitative analysis also shows that people found static shapes more blurry or

fuzzy, compared to dynamically drawn shapes, which were named as clear, or having

a higher definition. The self-assessment of participants showed that recognising

shapes in the dynamic condition is easy, while it is harder in the static condition.

8.5 Discussion

We investigated how accurately and confidently people can identify 2D shapes

using mid-air haptic stimulation. Here we discuss how our work contributes novel

insights to the haptics and HCI research communities. Then we reflect upon possible

application scenarios that can benefit from our findings.

8.5.1 Mid-Air haptic shape recognition

We learnt three key lessons. First, in experiment 1 we showed that people can

recognise significantly more accurately and confidently the tested shapes, when a

dynamic tactile pointer traces the perimeter of the displayed shape, rather than

presenting the shape as a full outline. In experiment 1, we also see that, while in

passive touch the dynamic display mode performed 6.1% better on accuracy than

static shapes, in the active exploration the dynamic condition performed just 4.6%

less accurately overall. Although the results in active touch are not statistically

different, this is in line with prior work [114]. There is more chance that a shape

presented as a full outline is better understood while explored actively, than when

passively felt. In contrast, if both the tactile pointer and the participant’s hand

is moving, this may conflict the creation of an accurate mental representation of

shapes.

Secondly, experiment 2 showed that breaking down a shape into individual

chunks (i.e. using multi-stroke brushes) can increase the accuracy of shape recogni-

tion by ∼ 30%. The confusion between the shapes plummeted. This is in line with



141 PERCEPTION OF MID-AIR SHAPES

H.3, based on chunking theory [259], and is supported by participant reports. Feeling

a continuous loop led to a higher level of association with a circle, and feeling well

distinguished numbers of corners, or edges enabled participants to make a link with

either a triangle, or square: P18: “Counting the corners, and if I didn’t feel a corner

and I felt a constant movement, then I thought it was a circle.”.

Thirdly, we obtained comparable results to those results cited in the literature.

Gibson found a 72% accuracy of shape recognition, in a passive (rotation) touch

condition. He also reported participants’ recognition strategy to be “counting corners

and points” [114]. The results by Kaczmarek et al. using an electro-tactile display

are also a comparable 78.5% [121]. Ion et al. [109] also found vibro-tactile interfaces

to perform ∼20% less accurately on a shape recognition task, compared to a skin

drag display. This is in line with the ∼30% difference between accuracy of identifying

dynamic and static shapes in our second experiment. Similarly, the qualitative

reports of Ion et al. “clearer” skin drag stimulus vs. “blurry” vibro-tactile stimulus

are matching our qualitative findings.

In addition, a relevant in-between step in our research were the two pilot studies.

Those studies provided the optimal pause duration parameters for the specific size

and draw speed of the tested shapes. These were experimentally deduced, however

we also believe that this parameter can be defined precisely for a general geometry,

as a function of other parameters, such as perimeter, number of sides, rate of drawing

and so on. Reports of participants also clearly support the numerical findings. One

participant said: P9: “Having definitive pauses at the vertices, at the corners, meant

that I could definitely feel four points. That must mean it’s a square. I can definitely

feel three points. That must mean it’s a triangle. That helped immensely.”. Although

we obtained an optimal pause duration for shape identification in a lab experiment,

it did not consider any use case restrictions. For example, in some control interfaces

such as automotive, time is of the essence and therefore a trade-off may exist between

accuracy and sensation duration. This might be a good open research question for

future investigation.
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8.5.2 Application opportunities: two user scenarios

8.5.2.1 Scenario 1: Haptic controls in automotive systems

Imagine a driver wishing to turn the volume of the radio down, and increase the

temperature in the car. It’s an important interaction design task of in-car interaction

to provide interfaces that do not require the driver to take their eyes of the road [90,

209]. One possibility is using gesture control interfaces, with integrated haptic

feedback. Given that people can easily distinguish between simple shapes, such

as a circle and triangle, it becomes possible to design a gesture control interface

with added haptic feedback. Placing the hand in an interaction space, a haptic icon

appears. If it’s a circle, a rotating movement in either direction would increase or

decrease the radio volume. Swiping movement brings up a new icon, for instance a

triangle. In this case, rotating movement of the hand in either direction results in

increasing or decreasing the inside temperature. Additionally, the 3 shapes studied:

triangle, square and circle are the typical symbols one associates with play, stop, and

record for music. Therefore, there is good motivation in using haptic shapes that have

a close relationship with existing Human-Machine-Interface (HMI) icons. To evaluate

the effectiveness and safety of such a system, we foresee an experiment which

replicates our findings in a car simulator, and especially focuses on circumstances

where users are subject to high cognitive demand, or potential risk.

8.5.2.2 Scenario 2: Geometry instruction for visually impaired students

Imagine a visually impaired student needs to learn trigonometry or other elementary

geometry. Traditionally tactile graphics is embossed on paper, to aid the instruction.

In certain scenarios, such as in rural areas, or a weekend before a school exam, the

student requires remote help revising the concepts. In this case, through a voice

call and the haptic interface, the tutor is able to assist, as illustrated in Figure

8.14. The teacher can also provide recorded materials, involving the explanations of

geometric identities through the tactile pointer. If the tactile paper is acoustically

transparent, the mid-air haptics can be used as an auxiliary tool, highlighting
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Figure 8.14: (left) A closeup photo of a finger, drawing a triangle into a palm;
(middle) A person drawing a triangle on a tablet computer; and (right) A mid-air
haptic kit stimulating a hand, in the pattern of a triangle.

the embossed features on the paper. The regions of interest are discussed through

guided exploration using the tactile pointer. Providing appropriate input devices for

content creation, the immediate tactile feedback is also possible, which is a critical

requirement [18]. To evaluate the merit of such a system, we foresee an experiment,

which studies tactile shape perception in mid-air vs. tactile graphics in novice users.

One could also imagine that through the internet, e-learning could attain a new

mid-air haptic dimension that could benefit both sighted and visually impaired/blind

users.

8.5.3 Limitations and future work

One of the drawbacks of our method is the arbitrary choice of shape size. Recent

work by Frier et al [59] suggests that the size of stimulus is affecting the perceived

intensity of ultrasonic mid-air haptics. A potential solution is to personalise the size

of the stimulus. Similarly, the arbitrary choice of rate at which the dynamic tactile

pointer completed a loop needs to be tested to identify the optimal parameters. In

physical touch it was shown that slower movement creates a sensation of curvature,

while faster rates are perceived straighter [138]. This could contribute to confusions

between a square and a circle when described with a continuously moving pointer.

Further limitation of our study is the number of shapes tested. We have shown that
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displaying dynamic shapes is statistically better recognised if it’s either a circle,

square or equilateral triangle; however, we know little about how well people could

distinguish between shapes, such as a circle and an oval, or a triangle in different

orientations. Further, we cannot be sure if participants performance rate increment

reflects a better performance in a shape discrimination task or if participants applied

a vertex counting strategy. It might be that knowing the shapes they were asked to

recognise, participants were focusing their attention on counting the vertices of the

perceived shape. From the informal interviews after the study and from personal

experience of the researchers the shape felt clearer with the discussed technique,

it was still possible to perceive movement between the edges of the figure, and no

explicit strategy seemed to be used. Although we did not detect such behaviour, we

cannot completely dismiss it. Nevertheless, from an application point of view, the

method we introduced in experiment 2 would be still useful to discriminate between

shapes that are known to the user, regardless of the strategy used. In future work,

we wish to optimise parameters, such as rate, orientation, size, or type of stimulus

used as a tactile pointer; as well as conduct research to exclude possible secondary

strategies used in the shape discrimination task as discussed above.

Figure 8.15: The Kanizsa triangle is a classic example used by the Gestalt psychol-
ogists to describe the law of closure. Even though the perimeter of the triangle does
not exist, one can still perceive an equilateral triangle.
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Finally, we could exploit tactile illusions in the attempt of increasing the shape

recognition rate. For instance, we can imagine delivering mid-air focal points at the

vertexes of a shape in an optimal timely fashion to convey a sensation of movement

between the static points. Alternatively, we could haptically render only partial

parts of the shape we want to convey delegating to the brain the task of completing

the missing information and feeling the totality of such a shape, similar to what

happens in the vision for the Kanizsa triangle (Figure 8.15).

8.6 Conclusion

Based on the work presented in this paper, we recommend using a dynamic tactile

pointer, instead of rendering the full outline of the shape, when displaying two-

dimensional geometric shapes with mid-air haptics. We also recommend to break

down polygons into discrete sides, by interrupting the movement of the pointer at

the angles. The optimal pause duration for a 6 cm side length square, displayed

at a rate of 2 s, is 300 ms, and 467 ms for an equilateral triangle, at the same rate

and side length parameters. According to these specifications, the accuracy of shape

recognition is 83.0% and 84.7% in passive, and active touch respectively. These

are comparable results to those found in the literature, studying raised pin arrays,

electro-tactile or vibro-tactile displays, skin drag interfaces, and mid-air haptic

displays creating 3D geometric shapes. These insights may play a crucial role in a

plethora of application areas, such as mid-air haptics control design in an automotive

context or as assistive technologies for visually impaired children, who are distance

learners.

With this study it ends the "Understand" stage. In the next chapter we introduce

the studies that will be part of the "Create" stage, aimed to demonstrate how mid-

air haptics can be used to create a realistic illusion of movement between the two

non-interconnected hands.
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Figure 9.1: Illustration of the intermanual illusion of movement using the Hand-to-
Hand vibrotactile device.

T
ouch constitutes a complex experience [14, 128]. The everyday action

of touching an object is in fact a multifaceted task that consists of an

awareness of both the object’ substance and structural properties [142, 184,

192]. Due to this complexity, haptic experience designers and developers struggle

in fully replicating the tactile sensation needed to achieve realistic and compelling

experiences. Hence, tactile rendering in interactive technologies, including virtual
1Pittera D., Obrist M., Israr A. "Hand-to-Hand: an intermanual illusion of movement". In

Proceedings of the 19th ACM International Conference on Multimodal Interaction, Glasgow, UK, 2017.
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and augmented reality, is still limited. Research into tactile illusions provides a

relatively simple, technically and computationally economical way of addressing the

challenge [93].

Apparent tactile motion has been shown to occur across many contiguous part

of the body, such as fingers, forearms, and back. A recent study demonstrated the

possibility of eliciting the illusion of movement from one hand to the other when

interconnected by a tablet. In this paper we explore inter-manual apparent tactile

motion without any object between them. In a series of psychophysical experiments

we determine the control space for generating smooth and consistent motion, using

two vibrating handles which we refer to as the Hand-to-Hand vibro-tactile device. In

a first experiment we investigated the occurrence of the phenomenon (i.e., movement

illusion) and the generation of a perceptive model. In a second experiment, based on

those results, we investigated the effect of hand postures on the illusion. Finally, in

a third experiment we explored two visuo-tactile matching tasks in a multimodal

VR setting. Our results can be applied in VR applications with inter-manual tactile

interactions. The core idea behind tactile illusions is that a tactile sensation can

be reproduced convincingly without the need to render every single aspect of the

phenomenon [69, 131, 139].

In this paper, we focus particularly on the apparent tactile movement illusion

(Figure 9.2) where two actuators are activated, and the stimulus-onset asynchrony

(SOA) is modulated, so that the user will perceive a feeling of movement between

two sites of stimulation. Here we present Hand-to-Hand (Figure 9.1), a vibro-tactile

illusory movement between two hands. We investigated the possibility of an inter-

manual illusion of movement without a device connecting the two hands (e.g., holding

a tablet), but relying only on a handle held in each hand. In the first experiment, we

investigated the feasibility of the illusion and determined the optimal parameters to

evoke it. In the second experiment, the effect of postures on the users’ perception

is examined. Finally, we applied the developed perceptive model to assess users’

multimodal integration between touch and vision in a VR setting. The contributions

of this paper are threefold: (1) A systematic psychophysical investigation of the
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Figure 9.2: Representation of the tactile illusion of movement, showing the percep-
tive effect according to different stimulus onset asynchrony (SOA). If the SOA is too
long, the perception will result in two discrete vibrations (right). If the SOA is too
short, the perception will be merged in a single point (left). With an optimal SOA, a
motion will be perceived (middle).

occurrence of the apparent tactile movement illusion on non-contiguous and not

interconnected parts of the body, which allowed us to determine the parameters for

establishing a perceptive model for tactile rendering. (2) Previous studies had shown

that the temporal order judgment (TOJ) of a tactile stimuli’s onset between two

hands may vary according to different postures, in particular, varying the distance

between the hands [212]. From the point of view of free-space user interactions,

where a user is free to move the limbs in space, the perception of tactile stimuli with

varying postures of the arms is important. Therefore, in the second experiment, we

investigated different postures of the hands to assess the possible perceptual influ-

ence on the model previously established. (3) Lastly, we applied the model in a VR

environment to examine the visuo-tactile integration. Overall, our results contribute

to a richer understanding of multimodal integration, and will guide designers in

their effort to design more immersive, realistic, and even more compelling tactile

experiences when interacting with technology.

With this study we open stage two, "Create", aimed to answer RQ2. Here, we start

the investigation of tactile illusion to tackle the complexity of reproducing the sense

of touch with haptic devices. The following study will still follow a psychophysical

approach to individuate the optimal parameter for conveying an illusion of movement



149 TACTILE ILLUSION OF MOVEMENT

between the two non-interconnected hands.

9.1 The Hand-to-Hand device

To facilitate the exploration of inter-manual tactile illusions of movement for non-

contiguous parts of the body (hand to hand) we built a vibro-tactile device, we refer

to as Hand-to-Hand. The device consists of two 3D printed handles (see Figure

9.3), each containing a voice coil actuator (www.moticont.com, model GVCM-019-

032-02) sandwiched between two springs. The spring stiffness is selected such

that the transfer function of the handle is similar to that of the human detection

threshold functions [89]. The device is controlled through audio production software

(www.puretata.com) and interfaced using UDP (User Datagram Protocol). This

simple but effective framework allowed us to design a series of experiments where

we precisely controlled the delivery of a tactile sensation (i.e., frequency, amplitude,

SOA, ramp up/down of the signal) using integrated development environments (IDE)

and game engines (Unity). In the third experiment, we attached an additional button

to the top of each handle to allow participants to enter their responses.

Figure 9.3: The Hand-to-Hand device consists of two 3D printed handles containing
two voice coils sandwiched between springs and controlled by real-time software
systems for interactive control.
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9.2 Experiment 1: Finding the optimal parameters

The aim of this experiment was firstly to investigate whether the inter-manual

illusion between the hands occurred when no objects were present between the

hands, and secondly, if the illusion occurs, to determine optimal parameters to

elicit a smooth illusion of movement. The experiment follows a psychophysical

approach that establishes a mathematical model relation between the duration of

the stimulation (D) and the temporal onsets (SOA).

9.2.1 Experimental setup

Participants sat on a chair with arm supports. To control the inter-manual distance

we created a board to constrain the participants’ hand movements. Two areas were

marked on the board using foam strips, 2 cm tall, as boundaries (Figure 9.4).

Figure 9.4: Experiment 1 set up: A) Regular hand posture. B) Wide hand posture.

9.2.2 Methods

Participants were provided with the Hand-to-Hand device (Figure 9.3). Before be-

ginning the main experiment, participants had the opportunity to familiarize them-

selves with the stimuli. In a pilot study with another 10 participants, we determined

that the frequency (70, 100 or 250 Hz) of stimulation did not influence the rating

of the smoothness of the illusory motion, however, the duration settings (100 and

400 ms) varied subjective ratings on the smooth motion. Therefore, we set the test

frequency at 70 Hz. The amplitude was set at 28 dB SL (dB above the detection
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threshold), to be sure participants could perceive the vibrations distinctly. In addi-

tion, we chose two durations (i.e., D = 100 and 400 ms) based on prior work [261].

For each duration we chose a different set of 7 temporal onset separations, SOA,

equally divided as in [261]. For the 100 ms duration the SOAs ranged from 15 ms

to 160 ms, and for the 400 ms duration SOAs ranged from 15 ms to 350 ms. These

SOA ranges are required to reach a plausible effect of movement [261]. Every tactile

stimulus was set to a linear ramp up and ramp down at a time equal to 20% of the

stimulus duration [261].

Each duration and SOA was tested in two motion directions (left-to-right and

right-to-left) and two postures. Participants’ arms were comfortably leaning on the

chair’s arm supports, with the hands resting on the board at 31 cm distance for

the regular posture (Figure 9.4A), and 38 cm for the wide posture (Figure 9.4B).

For each duration and posture, participants were also tested in a control condition

(SOA = 0, 12 times) to account for their random responses. In total, this experiment

consisted of 180 trials, three repetitions of 2 duration, 2 direction, 2 posture 7 SOAs

+ 12 control conditions, divided in three blocks of 60 tactile stimuli.

Stimuli were presented in a randomized order one at the time, with at least 5

seconds gap to avoid tactile habituation. After the stimulus was presented, partici-

pants were verbally asked if the sensation of movement occurred. In the case of a

negative response then the participant’s rating was marked ’0’ and the next trial

was presented. In the case of positive response, the same stimulus was repeated and

participants were asked to verbally rate the smoothness of motion on a scale from 1

(discrete) to 7 (continuous). Each block was separated by a 2-minute break. Partici-

pants wore headphones to mask environmental and the device sounds. Moreover, a

"beep" sound was played through the headphones before the beginning of every trial.

Overall, the experiment lasted for 30 minutes.
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Figure 9.5: Plots of user ratings of the illusion of movement (y-axis) per SOAs
(x-axis) at A) 100 ms and B) 400 ms.

9.2.3 Participants

The study was carried out in a single session with 10 participants (6 female, median

= 24). They had normal or glasses/lens corrected vision and no history of neurological

or psychological disorders. All participants were right-handed. Upon arrival, partici-

pants were asked to read the information sheet and sign a consent form, followed by

a task explanation. All participants were compensated with US $10.

9.2.4 Results

To ensure that the rating scale was used appropriately, users’ ratings (0, no motion,

through 7, continuous motion) were averaged for the two durations across partici-

pants. At SOA = 0 (catch trials), the overall ratings were 1.68 and 3.2 for 100 ms

and 400 ms, respectively. Figure 9.5 illustrates the average ratings as a function of

SOA for the 2 durations, 2 directions, and 2 postures. The error bars show standard

errors of the mean. Each plot was regressed with a best-fit quadratic trend, and the

corresponding correlation coefficients are shown in Table 1. The two lowest parts of

the curves correspond

to low SOAs (merged tactile perception) and to high SOAs (discrete tactile
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perception). The peaks of the curves correspond to the optimal values of SOAs and

are reported in Table 1.

We checked the rating scores divided per stimulus’ duration, and found that the

data significantly deviates from a normal distribution. Therefore, we proceeded using

a Friedman test. Results show a significant difference between the two durations,

χ2(1) =183.95, p<0.001. Looking at Figure 9.5, it is clear that the 400 ms duration

(right) has a more powerful effect. That is, the illusion of movement is perceived

strongly. The different SOA resulted significantly different as well, χ2(6)=143.59,

p<0.001 for 100 ms, and χ2(6)=99.56, p<0.001 for 400 ms.

When analysing the direction of vibrations, we did not find an effect, χ2(1)=0.214,

p=0.64 for 100 ms and χ2(1)=1.667, p=0.2 for 400 ms. The posture of the hands did

not result in a significant difference, χ2(1)=0.44, p=0.51 for 100 ms and χ2(1)=0.68,

p=0.41 for 400 ms. In conclusion, our results show that the duration and SOA are the

only significant parameters with an effect on the illusion of movement, confirming

previous works [261]. Fitting the peaks’ data in Table 1 into a regression model,

resulted in the following model:

(9.1) y= 0.38x+58.8,R2 = .99

where, x is representing the duration of the stimulus in milliseconds and y is the

optimal SOA in milliseconds related to that specific duration.

Stimulus Peak R2

100 ms - regular posture, rightward motion 98.31 0.69
100 ms - regular posture, leftward motion 92.00 0.87
100 ms - wide posture, rightward motion 96.82 0.75
100 ms - wide posture, leftward motion 98.85 0.82
400 ms - regular posture, rightward motion 215.99 0.92
400 ms - regular posture, leftward motion 211.87 0.73
400 ms - wide posture, rightward motion 205.75 0.91
400 ms - wide posture, leftward motion 205.00 0.83

Table 9.1: The optimal values of SOA for the eight curves, along with the quadratic
fit (R2).
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9.3 Experiment 2: Temporal order judgment

The illusion of movement is the result of an implicit temporal order judgment (TOJ)

between the two stimuli perceived on the hands. The aim of this second experiment

was to explore whether changing the posture of the arms (see Figure 9.6) influences

the users perception and temporal judgment. In fact, prior works suggest that

changing the posture of the arms could affect the temporal judgment of the two

stimuli [212], and consequently could also affect the perception of the illusion of

inter-manual movement. If an effect was observed, it would have been used to

redefine the model established in experiment 1.

9.3.1 Pilot experiment: participants

To explore and choose the device’s settings we conducted a pilot study with 12

participants (4 female, median = 24.5). They had normal or glasses/lens corrected

vision and no history of neurological or psychological disorders. All participants

were right-handed. Upon arrival, participants were asked to read the information

sheet and sign a consent form, followed by a task explanation. All participants were

compensated with US $10.

9.3.2 Experimental setup

Figure 9.6: Experiment 2 set up including three different postures: left arm forward,
neutral, right arm forward.

The experimental setting used for this pilot study was the same as in Experiment
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1, with the difference being that participants were tested on a TOJ task. In other

words, participants had to answer which of the two handles vibrated first. Since

participants had to hold the two handles, we provided them with a 4 buttons foot

pedal (Olympus America Inc., model RS31H) to enter their response.

9.3.3 Methods

For the tactile stimuli we used one frequency (70 Hz), two durations (100 and 400 ms)

and a set of 11 SOAs (from -100 ms to a 100 ms in 20 ms increments). Positive SOA

corresponded to the left handle vibrated first, and the negative SOA corresponded

to the right handle vibrated first. The stimuli’s ramp-up and -down time was kept

at 20% of the stimulus duration. The amplitude of the signal frequency was 18 dB

SL. Participants were required to switch posture of the arms in three possible ways

(Figure 9.6): regular posture (as in Experiment 1), left arm completely extended in

front of the shoulders and the right arm in neutral posture (condition left forward),

or vice-versa (right forward).

We controlled the distance between participants’ hands again using the board in

Figure 9.4. A picture showing the testing posture appeared on the interface before

the trial started. Participants had to press the central button of the pedal to play

the stimulus. Stimuli could start from the left or from the right hand. After the

stimulation, the participant had to indicate which hand they felt was stimulated

first; pressing the left button on the pedal if the left handle vibrated first and vice-

versa for the right side. After they answered, another posture followed and the entire

procedure was repeated until the end of the block of 33 stimuli. Participants wore

headphones to cover the environmental and the device noises. Each stimulus was

repeated three times for a total of 198 trials (3 x 2 duration x 3 postures x 11 SOA).

Overall, the experiment lasted for one hour.
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Figure 9.7: The three cumulative Gaussian functions for duration equal to 100 ms
(top), and 400 ms (bottom). On the y-axis, the probability of choosing left as the first
vibrating. On the x-axis, the SOAs: negative values correspond to the vibrations
starting from right.

9.3.4 Results

Figure 9.7 shows the three psychophysics curves resulting from the data collection,

for d = 100 ms and d = 400 ms. Each curve corresponds to a posture. The SOAs

values appear on the x-axis: negative if the direction was going from right to left,

positive when the vibrations were starting from the left handle. The probability

of selecting the left handle as the first vibration is plotted on the y-axis. In a

psychophysics curve, the point of subjective equality (PSE) indicates the point at
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which one can no longer perceive two stimuli as distinct. In our case, it is the point

where participants could not feel which vibration was coming first, either the right

or the left one. For d = 100 ms, the green curve appears shifted to the right. An

ANOVA repeated measures showed a non-significant difference between the three

postures (F(2,20)=3.11, p=0.07), although with a low p-value. For d = 400 ms, data

were not following a normal distribution. We used a Friedman test to test differences

between the three curves. The test did not show any significant difference between

the three postures, (χ2(2)=5.09, p=0.08), and also in this case the p-value appeared

low.

These results suggest that the posture did not clearly influence participant’s

performance in the TOJ task, but there might be a tendency in doing that. With

the amplitude chosen participants reported uncertainty regarding the occurrence of

both the vibrations, and this could explain the noisy distributions of data in Figure

9.7. Hence, we conducted another experiment with a higher amplitude equal to 28

dB SL to ensure a clear vibrotactile perception. We chose only one duration (100 ms)

and repeated each stimulus 7 times instead of three to get more robust data.

9.3.5 Main experiment: participants

The experiment was carried out in a single session by 10 participants (8 female,

median age = 22.5 years old). They had normal or glasses/lens corrected vision and no

history of neurological or psychological disorders. All participants were right-handed.

Upon arrival, participants were asked to read the information sheet and sign a

consent form, followed by a task explanation. All participants were compensated

with US $5.

9.3.6 Experimental setup

The experimental setting was same as in the pilot study (see Section 5.1.1).
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9.3.7 Methods

For this experiment we followed the same procedure used in the pilot study (see

Section 5.1.2) with the only difference being we had one vibration’s duration (100

ms) at an amplitude of 28 dB SL. This experiment consisted of 33 stimuli repeated

three times in three postures (99 trials). Participants wore headphones to cover the

environmental and the device noises. Overall, the experiment lasted for 30 minutes.

9.3.8 Results

Figure 9.8 shows three psychophysics curves resulting from the data collection. Each

curve corresponds to a posture. The SOAs values appear on the x-axis: negative

values refer to the direction going from right to left, positive when the vibrations

were starting from the left handle. The probability of selecting the left handle as

the first vibration is plotted on the y-axis. In a psychophysics curve, the point of

subjective equality (PSE) indicates the point at which one can no longer perceive

two stimuli as distinct. In our case, it is the point where participants could not feel

which vibration was coming first, either the right or the left one.

Figure 9.8: The three cumulative Gaussian functions. On the y-axis, the probability
of choosing left as the first vibrating. On the x-axis, the SOAs: negative values
correspond to the vibrations starting from right.
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The three curves in Figure 9.8 appear to be very similar. Our data were following

a normal distribution and no outliers were found. An ANOVA repeated measures

performed on the 10 participants PSE data confirmed a non-significant difference

between the three curves, F(2,18)=2.595, p=0.102. Therefore, our results suggest

that the posture does not influence participant’s performance in the TOJ task and

thus has no crucial effect on the perception of the illusion of movement.

Looking at Figure 9.8 it is possible to infer that when the SOA was equal to 0,

participants’ answers were random, as expected. For very high SOAs instead, the

probability of a correct answer (i.e., ’the left hand vibrated first when the left was

vibrating first’) was almost 100%, as indicated by the saturation of the curve on

the value equal to 1. The threshold was set at 75% and computed pairing the three

curves, and corresponded to a SOA equal to 66.4 ms.

9.4 Experiment 3: Multimodal interaction

With the two previous experiments we investigated the optimal parameters for the

illusion of movement and defined a perceptive model that is not affected by the

posture. In a final third experiment, we programmed an application that exploits the

illusion of inter-manual movement in VR, using our established model. Moreover,

we are interested in investigating the perceptual integration of visuo-tactile stimuli.

9.4.1 Experimental Setup

We created a virtual environment (VE) using Unity 3D to investigate the synchro-

nization between tactile and visual stimuli. Participants wore an Oculus DK2 VR

headset (960 x 1080 per eye, ca. 75 Hz, 100° FoW), and they could see in the VE

two hands attached to a body, while sitting on a chair in front of a desk (see Figure

9.9). To navigate the VR interface, participants were provided with a pedal. The

Hand-to-Hand device with the two buttons on the top allowed them to select the

different settings of the interface and to skip to the next trial as follows.
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Figure 9.9: Experiment 3 setup. Participants wore an HMD for VR. In the VE they
could see two hands, changing in posture according to the different parameters of
the experiment, a body attached, and a white ball moving from one hand to the other
at different speeds. (Right) The interface used in VR to complete the matching tasks.

9.4.2 Methods

During the experiment, the posture of the two hands was visually adjusted in the VE

to create the four conditions: regular, wide, left forward and right forward posture

(see Figure 9.9). In practice, at the beginning of the trial, participants could see the

VE, and they had to adjust their arms’ posture to match the ones in VR. The posture

also appeared written on the screen in the VE to avoid misunderstanding. The visual

stimulus was represented by a white ball moving from one hand to the other at five

different speeds (2, 4.5, 7, 9.5 and 12 m/s for a total of 90, 120, 170, 250, 570 ms for

the regular posture, and 110, 140, 200, 300 and 680 ms for the rest of the postures).

We controlled and counter-balanced the direction of the ball (left to right and

right to left). At the beginning of every trial, an arrow was indicating the initial hand

from which the ball would move from. The tactile stimulus was rendered through

the two 3D printed vibro-tactile handles used in the previous experiments. This time,

we added two buttons on the top of the handles, to allow participants to interact
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Figure 9.10: The two matching tasks used in Experiment 3. Task 1) Participants
had to match the onset of the visual and tactile stimuli. Task 2) Participants had to
match the duration of the visual and tactile stimuli.

with the VR interface fixed in front of the participants’ point of view (see Figure 9.9).

To navigate, participants were provided with the same pedal as in experiment 2;

pressing the central button to select the different options shown in Figure 9.9. They

had the possibility of changing two settings: they could increase or reduce the delay

of the onset time of the vibration on the first hand (starting point in Figure 9.10)

and they could extend or shorten the total duration of the tactile event (duration in

Figure 9.10), intended as the SOA plus the duration

of the two vibrations (including the time for the signal to rump up and down).

Participants had to complete two tasks:

Task 1: the aim of the first task was to match the visual and the tactile cue

onset (Figure 9.10 left). The visual cue (the white ball) was always visible for a fixed

amount of time depending on the speed. Instead, the first vibration on the hand

was randomly selected ± 50 ms respect to the visual cue. When the tactile stimulus

appeared before the visual one, participants had to press the right button on the

handle, increasing the stimulus delay by 5 ms. Conversely, if the first vibration was

starting after the visual cue, participants had to press the left button on the handle,

reducing the delay of the tactile cue by 5 ms. Every time that participants pressed

one of the two buttons, the trial was restarted with the new values.

Task 2: The second task consisted of matching the total duration of the two
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events, the tactile and the visual one. Once participants completed task 1, they had

to match the ending point of the two stimuli (Figure 9.10, right). When the ball was

disappearing (once it reached the second hand), also the second vibration (on the

second hand) had to disappear. If the tactile stimulus’ duration (intended as the

duration of the first vibration, plus the SOA, plus the second vibration) was shorter

than the visual one, participants had to press the button on the right handle to

extend the total tactile duration by 30 ms.

Vice-versa, if the total tactile duration was too long, participants had to press

the button on the left handle, shortening the total duration by 30 ms. Also in this

case, pressing a button meant restarting the stimulus from the first hand with the

new values. The duration of the tactile stimulus was randomly selected between

100 ms and 400 ms, with the SOA changing in consequence of the duration’s value,

according to the model obtain from experiment 1 (y = 0.38x + 58.8).

This experiment consisted of two blocks of 60 randomized stimuli. For the tactile

stimuli we used one frequency (70 Hz) and the duration and SOA were varying

according to the model of experiment 1. The stimuli’s ramp-up and -down time, was

kept at 20% of the stimulus duration. The amplitude of the signal frequency was 28

dB SL.

We used the same board as from experiment 1 and 2 to control participants

hands’ distance (Figure 9.4). In total, participants had to complete two blocks of 40

trials in one hour.

9.4.3 Participants

The experiment was carried out in a single session by a new pool of 10 participants

(6 female, median = 21). They had normal or glasses/lens corrected vision and no

history of neurological or psychological disorders. All participants were right-handed.

Upon arrival, participants were asked to read the information sheet and sign a

consent form, followed by a task explanation. All participants were compensated

with $10. Six participants could not complete the whole set of trials within the given
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time of 60 minutes. In total, we collected 692 trials out of 800.

9.4.4 Results

The data for Task 1 was negatively skewed, hence we normalized the data using

the formula: lg10 (max value - value). We then analysed the data using a two-way

ANOVA repeated measures test, with speed and posture as factors. The results show

a non-significant effect neither of postures (F(3,72) = 1.131, p = .342) nor speed

(F(4,96) = .774, p = .545). Their interaction was also not significant (F(12,288) = .440,

p = .946). The data for Task 2 was also negatively skewed, hence, we normalized the

data before proceeding with the analysis. We again performed a two-way ANOVA

repeated measures test with speed and posture as factors.

The results indicate a significant main effect of speed, F(4,96) = 8.585, p < .001,

and posture, F(3,72) = 7.173, p < .001. The pairwise comparisons between the visual

minus tactile duration for specific speeds indicate that the visuo-tactile deltas’ scores

for the speed of 2 m/s and 4.5 m/s were different from all the other speeds (p < .001),

meanwhile the other three speeds were not significantly different from each other

(p > 0.05). The right forward posture was the only one to differ from the others (p <

.05). The interaction between posture and speed was significant as well, F(12,288)

= 11.053, p < .001. To further investigate this interaction, we analysed the simple

effects. In particular, it appears that for speed equal to 4.5 m/s, in the right forward

posture, the tactile cue need a shorter duration to be perceived as matching the

visual cue (p = 0.048). The same is valid for speed equal to 7 m/s (p = 0.019).

Finally, for speed equal to 12 m/s, the posture right forward seems to significantly

differ for all the other postures (p < 0.001). Figure 9.11 illustrates the linear fit of

our data (the red lines) compared with the 1:1 uncompressed visuo-tactile relation

(the black lines). For the regular posture (31 cm distance between the two hands) it

appears that the tactile duration is compressed with respect to the visual one by a

factor of approximately 1/4, meaning that even if the visual duration is increasing,

the tactual duration is not increasing accordingly. This is especially true for the
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Figure 9.11: Linear fits of visual and tactile duration, divided per postures (regular,
wide, right and left forward). The black line represents the 1:1 uncompressed visuo-
tactile relation. The red line represents the linear fit of our data.

wide and right forward posture, where the red line appears to be almost flat. The

left forward posture instead, indicates an inverse tendency: the slower the visual

stimulus is (long visual duration), the shorter the tactile stimulus is perceived.

9.5 Discussion

Here, we investigated the occurrence of the tactile illusion of movement and its

particularities as well as the effects of the postures of the hand, and when integrated

in a virtual environment. With the first experiment we established that it is possible

to elicit an illusion of movement using tactile stimuli delivered on two hands that

are not interconnected by any means, such as a tablet used in prior research [261].

Based on that initial step, we then determined and described the optimal parameters

to achieve a smooth tactile illusion of movement using a psychophysical approach.

We generated a perceptual model that expresses the relation between duration

and SOA of the tactile stimuli: y = 0.38x + 58.8. This model, specifies the optimal

parameters to use for achieving a smooth illusion of motion between the hands. In

short, the most relevant variables impacting users’ perception are duration and the
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stimulus-onset asynchrony (SOA) of the tactile stimuli, confirming previous results

[261]. To understand whether the position of the users’ arms (i.e., posture) influences

the temporal perception of the two tactile stimuli, we used a temporal order judgment

task (TOJ). This is important because judging the movement means ultimately

recognizing which stimulus occur first and hence can guide design decisions in an

interactive system based on touch.

Our results showed that the posture does not have any effect on the perception

of movement, which is in contrast to prior findings presented by Shore [212]. The

difference could be explained based on the use of different SOAs, which are also

different to the work presented by Siyan [261]. In particular, the SOAs used in Shore,

were 10 ms, 30 ms, 55 ms, 90 ms and 200 ms and no indication about the amplitude

is provided, which might have a key role in the different results obtained. In fact, in

our pilot study, where we used a lower amplitude of about 18 dB SL, the results had

a different trend, near the significance level. Another difference was the modality of

delivering the tactile stimuli, on the finger vs. through a vibro-tactile handle. We

initially thought that the manual laterality of the participants could have had an

effect on the outcome. Our participants were all right-handed, hence, it is hard to

answer this question. It is known that crossing the hands has an impact on the TOJ

of tactile stimuli [213, 256]. On the contrary, we found only one study investigating

the effect of the hands’ distance (not crossed) on a TOJ task [136], other than [212].

In Kuroki’s study [136], authors demonstrated how the spatio-topic distance does

not influence participants’ performance in a simultaneity judgment task, similarly

to our results.

In a final step, we programmed a virtual environment, where participants were

able to perceive tactile stimuli integrated with visual stimuli in order to assess our

perceptive model. In addition, we also investigate the visuo-tactile integration in a

specific application context, relevant for exploiting tactile illusions and multimodal

interaction. The results as summarized in the previous section do not allow clear

conclusions. However, one could speculate that for slower velocities, the tactile cue

is perceived before the visual one. What we know for certain is that there are no
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negative visuo-tactile duration deltas (visual delay minus tactile delay). In other

words, the tactile stimulus is never happening after the visual cue, as the tactile

perception is faster than the visual one. One possible explanation could be that

the task used during the exposure phase resulted in an attentional bias towards

the tactile modality. According to the ’law of prior entry’, attending to one sensory

modality speeds up the processing of stimuli in that modality [249], resulting in a

change in the PSS (point of subjective simultaneity).

9.6 Limitations

This work is a first step into the analysis of the tactile illusion of movement without

any object in between the two hands. Although our results are promising, we also

need to acknowledge some limitations.

One limitation is that participants’ hands were static in our experiments, which

does not reflect users’ behaviour in a virtual environment where they move around

a space and interact with objects. In order to establish our perceptual model it was

necessary to control the movement. However, future work can take users movement

into account by creating a more interactive scenario, and consequently also extend

our perceptive model. Moreover, future investigations of kinaesthetic cues only (with

no visual feedback) can now be explored.

Another limitation are the sample sizes in our studies. With a larger number of

participants some effects (e.g., posture in experiment 2) could become significant,

although we consider that unlikely based on our repeated tests in preparation for our

studies. Yet, it will be important that future work verifies our findings to strengthen

our model and in particular considers any potential bias in the temporal order

judgment task towards the right hand.

Finally, we are using a specific actuation technology and focusing on one specific

type of illusion. Future work should consider other sensory illusions such as the

phantom tactile sensation and sensory saltation, as well as explore the different types

of illusions of movements (i.e., cutaneous rabbit illusion, the haptic funnelling, and
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the apparent tactile movement illusion) with other tactile devices and technologies

entering the realm of virtual reality (e.g., mid-air touch [150]).

9.7 Conclusion

The findings from our three experiments demonstrate that eliciting a sense of illusory

movement between two hands is not limited to situations when holding an object

with both hands, or across two contiguous parts of the body. This work sets the stage

for future investigations of tactile experiences exploiting tactile illusions. Findings

with respect to the visuo-tactile integration require additional validation, however

the findings are promising with respect to the temporal perception and consequently

the design of applications in virtual environments and beyond.

In the following chapter, we take inspiration from the current study to explore

the feasibility of the apparent illusion of movement when using mid-air haptic

stimulation. Study 5 will make use of a similar methodology adding two different

techniques to investigate what will give the best perception of movement between

the two non-interconnected hands.
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A
pparent tactile motion (ATM) has been shown to occur on many contiguous

parts of the body, such as the fingers, forearms, and back. More recently,

the illusion has also been elicited on non-contiguous parts of the body,

such as between one hand and the other, either when the hands are interconnected

or not interconnected by an object (e.g., when holding a tablet or not). In the previous

chapter, we showed that it is possible to obtain ATM between non-interconnected

hands by means of tactile actuators, here we explore the reproducibility of ATM

between two free hands by employing mid-air tactile stimulation. We investigate the

optimal parameters to generate a continuous and smooth motion using two arrays of

ultrasound speakers. Having the ability to easily create different tactile patterns, we

investigated the optimal values (in terms of frequency, duration, SOA, and direction)

needed to render a smooth tactile sensation of movement. In the first experiment,

we investigate the occurrence of the illusion when using a static focal point, and we

define a perceptive model. In the second experiment, we examine the illusion using

a dynamic focal point, defining a second perceptive model (see Fig. 10.1). Finally, we
1Pittera D., Ablart D., Obrist M. "Creating an illusion of movement between the hands

using mid-air touch". In IEEE Transaction on Haptics, 2019.
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Figure 10.1: Experiments setting. TOP: For both experiments, a) the distance
between the palm of the two hands was set at 31 cm, and b) the hands were resting
on the two acrylic boxes at a distance of 15 cm above the two mid-air haptic devices.
LEFT: In experiment 1, a static focal point was delivered to the centre of the distal
part of each palm. RIGHT: In experiment 2, a dynamic focal point was delivered to
the distal part of each palm.

compare the two perceptive models, one for each of the above techniques.

This investigation contributes to the basic understanding of mid-air tactile

perception, allowing the representation of more complex scenarios that include

tactile movement. With this investigation, we also aim to provide designers of tactile

displays with an understanding of the optimal parameters for the design of a smooth

tactile movement.

The current study is a follow-up of Study 4 (see Chapter 9) and is also part of the

stage "Create", RQ2. Here, after starting the investigation of an illusion of movement

obtained by using physical actuators, we try to shift the phenomenon using mid-air
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technology. To achieve this goal we used the procedure established in Study 4.

10.1 Setup and approach

The objective of this study is to investigate the reproducibility of ATM between

two non-interconnected hands using mid-air tactile stimulation. Furthermore, we

are interested in learning whether a static or dynamic focal point will provide

the smoothest tactile motion sensation. In the following two sections, we present

two studies that explore the optimal parameters needed for creating a smooth

tactile transition from one hand to the other. In both experiments, we followed a

psychophysical approach to determine the relationship between the mid-air stimuli

and the resulting tactile perception (i.e., occurrence of ATM).

We used two mid-air haptic devices developed by Ultrahaptics Ltd. This device

consists of an array of ultrasound speakers (16 x 16) that allows precise control

of the tactile stimuli delivery (e.g., frequency, amplitude, SOA, ramp up/down of

the signal, waveform, and duration) (see Fig. ??). We programmed a graphical user

interface (GUI) in C# to guide participants through the experiment. The ultrasonic

haptic boards were controlled through a program written in C++ and connected to

the GUI through the TCP/IP protocol. The boards were synchronized using high

precision timers (ms order). The tactile focal points employed in the two experiments

were designed using amplitude modulation (i.e., to create a 200 Hz focal point, the

intensity of the point was alternating from 0% to 100%, 200 times per second). The

intensity change followed a sinusoid curve to minimize the noise of the devices. In

experiment 1, we projected a single static focal point onto the distal part of each

palm. In experiment 2, the focal point moved along the distal part of each palm in a

straight line, from the right to left or left to right, at different SOA values. We chose

to project the tactile feedback onto the distal part of the palm because, especially for

experiment 2, we needed a uniform (flat) area on which to display the focal point. In

fact, if the dynamic mid-air point hit the skin at different heights, the perception

could be non-uniform and hard to perceive.



171 MID-AIR TACTILE ILLUSION OF MOVEMENT

Participants were sitting on a chair with their two arms leaning on arm supports

and their palms downwards on two boxes (see Fig. 10.1). The boxes were acrylic

structures, each containing a mid-air haptic device with a rectangular hole of 10

x 8 cm in the centre to allow the mid-air stimulation to reach the distal part of

participants’ palms. The distal part of the palm of each hand was aligned with the

centre of the boxes’ hole, where the mid-air stimulation was provided. The location

of the stimulus delivery did not vary with the hand size; the hand was always hit

at the centre of the distal part of the palm. The boxes were designed to keep users’

hands at a constant distance of 15 cm above the ultrasound array, which is within

the optimal working range of the device. The distance between the palms was kept

at 31 cm as in [185]. Instructions were provided on a screen.

10.2 Experiment 1: Mid-air apparent motion:
static point optimal parameters

The aim of this experiment was first to investigate whether ATM between the

hands occurs when using a mid-air stimulation. If the illusion did occur, the second

objective was to determine the optimal parameters to elicit a smooth illusion of

movement to define a perceptive model. In this first experiment, we investigated the

illusion using a single static focal point projected onto the distal part of participants’

palms.

10.2.1 Methods

We first conducted a pilot experiment with seven participants (three females, age

µ= 27.4, SD ±3.6) to determine the frequency and duration of the mid-air tactile

stimulation. Based on previous studies [185, 260, 261], we tested three different

frequencies (70 Hz, 100 Hz, and 250 Hz), and two durations (100 ms and 400 ms).

While testing the smoothness of the motion in our pilot experiment (using the

same study set-up as described above, see Fig. 10.1), the only pair of frequencies

that was statistically similar was the 70 Hz and 100 Hz (p > .5). Hence, for the
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Figure 10.2: Experimental design for experiment 1. Every mid-air haptic stimulus
was a combination of the four variables (i.e., duration, direction, frequency, SOA),
and a control condition with SOA set at 0, for a total of 288 randomized stimuli. The
picture is not representative of the order of presentation of the stimuli.

main experiment we selected only the 100 Hz and 250 Hz frequencies. In addition,

knowing that mid-air touch perception is associated not only with the Pacinian

corpuscles (receptors for high-frequency vibrations from 50 Hz to 10 kHz) but also

with the Meissner corpuscles (receptors for low-frequency vibrations < 80 Hz) [171],

we additionally tested the 40 Hz frequency, for a total of three frequencies (40 Hz,

100 Hz, and 250 Hz).

Based on the pilot study and accounting for the mechanoreceptors relevant

for high and low-frequency vibrations, the experimental design for experiment 1

consisted of three blocks of 96 randomized mid-air tactile stimuli, for a total of 288

stimuli.

We chose two stimulus durations (i.e., 100 and 400 ms). For each duration, we

chose a different set of SOAs, equally divided as in [185, 261]. For the 100 ms

duration, the SOAs ranged from 15 ms to 190 ms for a total of eight intervals, and

for the 400 ms duration, SOAs ranged from 15 ms to 350 ms, for a total of seven

intervals. These different SOA ranges are required to reach a plausible effect of

movement [185, 261]. For each duration, we also added an SOA = 0 as a control

condition to account for random responses from participants. Every tactile stimulus

was set to ramp up and down at a time equal to the 20% of the stimulus duration, as

in [185, 261]. Therefore, every stimulus was a combination of duration (100 ms and
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400 ms), SOA (the two different sets, plus the control SOA), frequency (40 Hz, 100

Hz, and 250 Hz) and direction (from left to right and vice-versa) (see Fig. 10.2 for an

overview).

Before the testing phase began, participants had the opportunity to familiarize

themselves with the mid-air tactile stimulation. A minimum of three pairs of stimuli

were presented in a series to participants’ palms while the researcher ensured

that the user understood the experimental procedure. After this training phase,

stimuli were presented one at a time, with at least a five-second gap to avoid tactile

habituation. After the stimulus occurred, participants were guided by the GUI to

report verbally if they felt a sensation of movement between the hands. In the case of

a negative answer, the subsequent trial was presented. Instead, if a feeling of motion

was reported, the participant was asked to indicate verbally the smoothness of the

motion on a rating scale visible on the GUI, ranging from 1 (discrete motion) to 7

(continuous motion). Participant’s answers were recorded on the computer by the

researcher. Additionally, participants could ask to repeat the stimulation. Each block

of 96 stimuli was separated by a two-minute break. Participants wore headphones to

mask environmental and device noises. Moreover, a “beep” sound was played through

the headphones before the beginning of each trial. Overall, the experiment lasted 45

minutes. All participants were compensated with a £7.5 voucher for participating in

the experiment.

10.2.2 Participants

A total of 20 participants took part in the study (nine females, age µ = 26.8, SD

± 7.7). They had normal or glasses/lens corrected vision and no history of neurolog-

ical or psychological disorders. All participants were right-handed. Upon arrival,

participants were asked to read the information sheet and sign a consent form before

the task was explained to them.
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10.2.3 Results

To ensure that the rating scale was used appropriately, we checked the ratings

for the SOA = 0 (control trials). The overall ratings were respectively 0.39 and

0.12 for durations of 100 ms and 400 ms, meaning that participants did not feel

movement when the tactile point was provided at the same time on the two hands.

Users’ ratings (1, discrete motion to 7, continuous motion) were averaged for the two

durations across participants.
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Figure 10.3: Plots of the ratings of the illusion of movement (x-axis) per SOAs
(y-axis). The left graph shows the plot for 100 ms duration, and the right graph
shows the plot for 400 ms duration. Dots and lines represent raw data and model
fitting, respectively.

Fig. 10.3 illustrates the average ratings as a function of SOA for the two durations,

the two directions, and the three frequencies, along with best-fit quadratic trends.

The two lowest parts of the curves correspond to low SOAs (left part of the curves

= merged tactile perception) and to high SOAs (right part of the curves = discrete

tactile perception). The peaks of the curves are reported in Table 10.1, and they

correspond to the optimal values of the SOAs needed to achieve a smooth sense of

motion. On average, the optimal SOA value was found to be 177.21 ms.
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Duration Frequency Direction SOA peak (ms.) R2

100 ms 40 Hz from left 158.57 .95

100 ms 40 Hz from right 123.62 .83

100 ms 100 Hz from left 123.32 .89

100 ms 100 Hz from right 133.06 .94

100 ms 250 Hz from left 125.33 .66

100 ms 250 Hz from right 120.51 .86

400 ms 40 Hz from left 247.45 .96

400 ms 40 Hz from right 226.12 .95

400 ms 100 Hz from left 216.27 .89

400 ms 100 Hz from right 226.04 .96

400 ms 250 Hz from left 213.09 .86

400 ms 250 Hz from right 213.05 .90

Table 10.1: Optimal SOA values (in ms) and quadratic fit (R2) for the different
combinations of duration, frequency, and direction.

Fig.10.3 suggests non-linear trends of the rating scores. Moreover, comparing our

results with previous research ([106, 261]), we can hypothesize that with very small

and very large values of SOA, participants’ ratings of the smoothness of motion

will decrease. Therefore, a quadratic model seems more appropriate for describing

our dataset. Using R software (v. 3.5.1) with the nlme package, we fit our data

to a quadratic model accounting for individual differences between the subjects.

“Subjects” represented our random variable (model 1). Our model, had a R2 = .52,

AIC2 = 6541.12.

When inspecting Fig.10.3, there seems to be an interaction between the duration

and SOA. Hence, we accounted for this interaction in our model. After fitting our

dataset into a quadratic function, y = duration + SOA + SOA2 + duration:SOA

(model 2), the AIC decreased to 6386.93 (R2 = .56). A likelihood ratio test between

the two models suggested model 2 as more accurate in predicting our data, p < .0001.

Therefore, our final model is:
2The Akaike information criterion (AIC) is a parameter used to compare different models, whereby

the smaller the value between two models, the better the model fits the data (F. Korner-Nievergelt,
T. Roth, S. von Felten, J. Gu´elat, B. Almasi, and P. Korner-Nievergelt (2015). “Chapter 11 - Model
Selection and Multimodel Inference,” in Bayesian Data Analysis in Ecology Using Linear Models
with R, BUGS, and STAN, pp. 175-196.).
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1) y= 0.47−5∗10-4 ∗dur+2∗10-2 ∗SOA−9∗10-5 ∗SOA2

+4∗10-5 ∗dur : SOA

where the colon (:) represents an interaction. In this experiment we investigated

the optimal parameters to achieve a smooth ATM between the two hands, employing

a static point. In the next section, we will discuss the optimal parameters needed

when using a dynamic point.

10.3 Experiment 2: Mid-air apparent motion:
moving point optimal parameters

The aim of this second experiment was to investigate whether using a dynamic

point instead of a static focal point on the palms would result in a smoother sensation

of movement. For this experiment, we used again the same psychophysical approach

used for experiment 1 (see Section 10.2.1).

10.3.1 Method

This second experiment consisted of 102 randomized tactile stimuli repeated three

times, for a total of 306 stimuli. Participants received the same familiarization as in

experiment 1 before proceeding to the study phase. An overview of the experimental

design and conditions is shown in Fig. 10.2.

The procedure was the same as for experiment 1, with the key difference that

the mid-air tactile stimulus was a dynamic focal tactile point instead of a static

one. The focal point moved along a straight line from one hand to the other (see

Fig. 10.1), being in contact with the participants’ palm for a length of 4 cm, with

a speed varying according to the duration of the stimulus. During the experiment,

every stimulus was a combination of four variables: duration (100 ms and 400 ms),

SOA (two different sets of eight and seven intervals, depending on the stimulus’s

duration, plus the control SOA), frequency (40 Hz, 100 Hz, and 250 Hz) and direction
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Figure 10.4: Experimental design for experiment 2. Every mid-air haptic stimulus
was a combination of the four variables (i.e., duration, direction, frequency, and SOA),
and a control condition with SOA set at 0, for a total of 306 randomized stimuli. The
picture is not representative of the order of presentation of the stimuli.

(from left to right and vice-versa). Stimuli were presented one at a time, with at

least a five-second gap to avoid tactile habituation. Each block was separated by

a two-minute break. Participants wore headphones to mask environmental and

device noises, and a “beep” sound was played through the headphones before the

beginning of each trial. Overall, the experiment lasted 50 minutes. All participants

were compensated with a £7.5 voucher for participating in the experiment.

10.3.2 Participants

A total of 20 participants took part in the study (nine females, age µ = 26, SD =

± 6.36). They had normal or glasses/lens corrected vision and no history of neuro-

logical or psychological disorders. All participants were right-handed. Upon arrival,

participants were asked to read the information sheet and sign a consent form before

the task was explained.

10.3.3 Results

To analyse the data, we followed the same procedure as in experiment 1. Fig. 10.5

illustrates the average ratings as a function of SOA for the two test durations, the

two directions, and the three frequencies, along with best-fit quadratic trends. The

two lowest parts of the curves correspond to low SOAs (merged tactile perception)
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and high SOAs (discrete tactile perception). The peaks of the curves correspond to

the optimal values of the SOAs and are reported in Table 10.2.
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Figure 10.5: Plots of the ratings of the illusion of movement (x-axis) per SOA (y-
axis). The left graph shows the plot for the 100 ms duration, and the right graph
shows the plot for the 400 ms duration. Dots and lines represent raw data and model
fitting, respectively.

On average, the optimal SOA value was found to be 175.53. As in experiment 1,

our hypothesis was that with very small and very large SOA values, participants’

rating of the smoothness of the illusion of movement should decrease. Therefore, we

fit a quadratic model to describe our dataset: y = duration + SOA + SOA2 (model 1).

Moreover, from Fig.10.5, the curve for the 40 Hz frequency seems to have obtained a

lower rating compared to the other two frequency curves (i.e., the 100 and the 250

Hz). Indeed, during the study, some participants referred to not being sure of the

perception of this frequency because it was "too weak" and "subtle". Therefore, in our

model we treated the variable frequency as categorical and used the 40 Hz frequency

as the baseline. Our model obtained a R2 = .45. Below, we report the equations for

the 40 Hz, 100 Hz, and 250 Hz frequencies:
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2) y= .66+4∗10-3 ∗dur+6∗10-3 ∗SOA−1.2∗10-5 ∗SOA2

3) y= 1.2+4∗10-3 ∗dur+6∗10-3 ∗SOA−1.2∗10-5 ∗SOA2

4) y= 1.1+4∗10-3 ∗dur+6∗10-3 ∗SOA−1.2∗10-5 ∗SOA2

These results are consistent with the shape of the curves shown in Figure 10.5

(see the intercept term), where the 100 and 250 Hz frequencies seem to overlap,

with the 40 Hz frequency having the lowest rating scores. In fact, some participants

mentioned uncertainty about perceiving this frequency or described it as very light

and hard to perceive.

In summary, based on our two experiments, we have created a first-time insight

into the use of mid-air haptics for creating a tactile illusion of movement, testing a

static versus a dynamic focal point. Below, we first discuss the findings by comparing

both stimulation approaches, and then we present a discussion comparing our

results using mid-air touch with the use of physical touch in the creation of ATM.

We conclude with a discussion on future investigations and opportunities for design.

Duration Frequency Direction SOA peak (ms.) R2

100 ms 40 Hz from left 58.49 .07

100 ms 40 Hz from right 107.34 .83

100 ms 100 Hz from left 121.75 .80

100 ms 100 Hz from right 124.48 .40

100 ms 250 Hz from left 104.20 .95

100 ms 250 Hz from right 112.95 .82

400 ms 40 Hz from left 266.78 .87

400 ms 40 Hz from right 280.84 .96

400 ms 100 Hz from left 200.79 .87

400 ms 100 Hz from right 285.47 .85

400 ms 250 Hz from left 214.88 .90

400 ms 250 Hz from right 228.40 .45

Table 10.2: Optimal SOA values (in ms.) and quadratic fit (R2) for the different
combinations of duration, frequency, and direction.
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10.4 Comparing static vs. dynamic mid-air focal
points

In this section, we are interested in comparing results from experiment 1 (static

point) with experiment 2 (dynamic point), to understand how the perception of ATM

is affected by the two different approaches employed in this study.

Upon a preliminary inspection, the rating curves of experiment 1 and experiment

2 (see Fig. 10.3 and 10.5) appear different, with the curves of experiment 1 being

sharper and having a clear peak for the optimal SOAs. Moreover, when the SOAs

are too short or too long, participants’ ratings clearly decrease. On the contrary, for

experiment 2, it is harder to visualize the same trend.

We hypothesize that when a dynamic focal point is delivered to the hands (exper-

iment 2), subjects will always perceive a certain amount of movement, that is, the

perceptual information will be perceived as more confusing compared to a static focal

point (experiment 1). In other words, in the dynamic focal point condition, the SOA

seems to play a minor role in the delivery of the illusion of movement. This means

that when we want to render a smooth sensation of movement using a dynamic focal

point, the SOA is not as crucial as for a static focal point.

Next, to compare the results obtained from experiment 1 with those of exper-

iment 2, we estimated the linear and quadratic terms for predicting smoothness

ratings from SOA at each duration (100 ms and 400 ms) and frequency (40 Hz, 100

Hz, and 250 Hz) for each subject (20). Therefore, we extracted six linear and six

quadratic terms for each subject. We checked the distribution of these data through

a Shapiro-Wilk test. Then, we ran separate independent t-tests between the linear

and quadratic terms of data from experiment 1 and 2 across duration and frequency.

If the distribution of a certain set of data did not follow a normal distribution, we

employed a Mann-Whitney U test for the comparison.

When compared across the two experiments (static vs. moving mid-air point),

the linear and quadratic terms obtained from the quadratic fitting of the smooth-

ness ratings led to statistical differences in all cases (all the p-values < .001). The
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linear and quadratic coefficient of data from experiment 2 were lower in all cases

compared to those of experiment 1. This demonstrates that the curves from Fig. 10.5

(experiment 2) are indeed flatter than those from Fig. 10.3 (experiment 1). Further,

it confirms that when we deliver a moving point to the hands, the SOA does not play

a fundamental role, and participants tend to rate the smoothness of motion always

in the same way. This could mean that the physical and illusory movement provided

on the hands are conflated in participants’ perception.

Further, we were interested in understanding if the smoothness of motion ratings

for experiment 2 were higher than those of experiment 1. We calculated the peaks of

the curves for the smoothness of motion ratings for each participant (N = 20), for

each duration (100 ms and 400 ms), and at each frequency (40 Hz, 100 Hz, and 250

Hz). Similarly to the previous analyses, we used an independent t-test or a Mann-

Whitney U test, depending on the shape of the data distribution. For the duration

= 100 ms we did not obtain any significant results (p. > .05). On the contrary, for

the duration = 400 ms, we found two statistical differences: between the 40 Hz

frequencies (p. = .01, 40 Hz-exp1-mean = 4.8; 40 Hz-exp2-mean = 3.8) and between

the 250 Hz frequencies (p. = .05, 250 Hz-exp1-mean = 4.4; 250 Hz-exp2-mean = 5.1).

In light of these results, we cannot say if experiment 2 achieved a higher illusion

of movement. Indeed, as previously stated, the 40 Hz frequency in experiment 2

was not well perceived, hence the significant difference. Participants reported the

40 Hz frequency as “too low”, “too subtle”, or “too sparse.” It might be that the

skin sensitivity along the stimulated location was not uniform, and an already

subtle frequency would result in a confused perception. For the 250 Hz, the p.

value is borderline, and it does not allow for strong conclusions. As this is the first

investigation of mid-air tactile stimuli for creating ATM, further studies are needed

to validate our research.

10.5 Discussion

This study investigated, for the first time, the occurrence of ATM using mid-air haptic

technology, comparing a static versus a dynamic tactile focal point. With experiment
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1 we established that it is possible to elicit an illusion of movement between two

unconnected hands by using a static focal point. We then determined and described

the optimal parameters to achieve a smooth tactile illusion of movement using

a psychophysical approach. We generated a perceptual model that expresses the

relation between the duration and SOA of the tactile stimuli (model 1). This model

specifies the optimal parameters to use for achieving a smooth illusion of motion

between the hands. The most relevant variables impacting users’ perception are the

duration and the SOA of the tactile stimuli, confirming previous results ([185, 260,

261]). In experiment 2, we replicated experiment 1 using a dynamic focal point. We

derived a perceptual model (model 2,3,4) for the optimal parameters to achieve a

smooth illusion of movement.

To enrich our understanding of creating a tactile illusion of movement, we com-

pared results from experiment 1 and experiment 2 with respect to their effectiveness

in achieving a smooth sensation of movement. The results suggest that there is no

difference in the perceived smoothness of motion, but using a moving point could

inflate the rating of the illusory motion.

10.6 Limitations and future research

Our results indicate that mid-air touch represents a promising approach to deliver

an illusion of motion. In this section, we discuss some limitations and challenges of

employing mid-air tactile technology, and we provide ideas for future research.

The mid-air haptic device provides a subtle tactile feedback (like puffs of air, or

a breeze [171]), and as shown in experiment 2, low frequencies might constitute a

limitation. Previous research has shown that the waveform of a tactile stimulus

can lower or increase the absolute tactile thresholds (e.g., sinusoidal vs. square)

[155]. Future work could investigate ATM produced by delivering the tactile mid-air

stimulus through a different waveform (e.g., square shape) to observe whether the

effect of the illusion would be strengthened.

In this study, we investigated ATM using a device positioned statically on a desk
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Figure 10.6: Example of applications where vision could be unreliable and ATM
could provide alternative orientation information. 1) Skydiving: the environment
could appear visually flat. 2) Underwater: humans can lose orientation underwater.
3) ATM could be used to provide information on balance (e.g., when hanging a picture
on the wall, when the picture is straight, the motion will not be perceived anymore).
4) In space, humans can lose orientation.

to set the basis for understanding the phenomenon as mediated by mid-air touch.

Future work could explore how this illusion of movement would change when the

participant is free to move their hands in space.

Our findings and prior work [185, 261] have shown the occurrence of ATM

between the hands. It would be interesting to test, with both mid-air and physical

touch, the possibility of recreating an effect of movement between different parts of

the body, for example, hands and feet, and to observe if the relationship between the

durations and SOA of the tactile stimuli would change. Finally, other technologies

could be used to explore ATM perception, such as wearable devices.

10.7 Conclusion

This study investigated, for the first time, the occurrence of ATM using a mid-air

haptic device. We obtained the optimal parameters to achieve a smooth motion using

a static versus a dynamic mid-air focal point. We provided a perceptual model for
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each approach used and then compared the results obtained from a static versus

a dynamic point on the palms. These data suggest no difference between the two

approaches, but the first (static point) might be preferable to achieve a cleaner

sensation of motion.

Knowing the optimal parameters required to model a smooth sensation of move-

ment can allow for new experiences in VR and non-VR environments. We can now

feel the movement of the wind and the waves of the sea. In addition, the phenomenon

of ATM could be used to provide directional information (e.g., as a tactile GPS) in

cases where visual cues may be unreliable (e.g., in space, underwater, or when sky-

diving) or absent (e.g., in the dark or in the case of the visually impaired population).

When in space, underwater, or free-falling in the sky, our vision may be unreliable

and tactile motion could help to guide us towards our target. Furthermore, this

sense of motion could provide hands-free information about the current position and

balance of an object we are hanging or carrying (e.g., acting as a tactile bubble level)

(Fig. 10.6).

We believe that this study provides a valuable insight into users’ perception

of mid-air tactile stimulation, and it will open a space for new immersive and

realistic scenarios in gaming experiences in VR, AR, and traditional games. Next,

we introduce our last study, for the "Apply" stage. In Study 6 while we apply an

illusion of embodiment towards a virtual arm, we also create a virtual illusion of

rain drops on the hand. Here, we demonstrate how our brain is capable to perceive

visual-tactile congruence even when absent, to provide a more coherent version of

the reality.
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STUDY 6 - APPLY

TACTILE ILLUSION FOR EMBODIMENT IN VR1

M
ajor virtual reality (VR) companies are trying to enhance the sense of

immersion in virtual environments by implementing haptic feedback in

their systems (e.g., Oculus Touch). It is known that tactile stimulation

adds realism to a virtual environment and when users are not limited by wearing any

attachments (e.g., gloves), it is even possible to create more immersive experiences.

This means that when we try to convey haptic feedback through additional devices,

such as hand-held controllers or haptic gloves, the users’ presence could be disrupted.

Therefore, it is important that we provide the user with a tactile medium that can

be perceived as much as "invisibly" as possible, achieving a "perceptual illusion of

non-mediation" [53, 148, 149, 159, 230]. In other words, users need to be unaware

of the presence of the tactile device, while still being able to feel the stimulation

generated from them.

Mid-air haptic technology provides contactless haptic feedback and offers the

potential for creating such immersive VR experiences. However, one of the limitations
1Pittera D., Gatti E., Obrist M. "I’m sensing in the rain: spatial incongruity in visual-

tactile mid-air stimulation can elicit ownership in VR users". In Proceedings of the CHI
Conference on Human Factors in Computing Systems, Glasgow, UK, 2019.
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Figure 11.1: Illustration of the virtual hand illusion (VHI). A virtual arm is dis-
played in VR at the same height of the participant’s hand. Both the virtual and
the real arm receive synchronous tactile stimulation (e.g., raindrops simulated by
mid-air touch). After few seconds, the participant will embody the virtual hand.

of mid-air haptics resides in the need for freehand tracking systems (e.g., Leap

Motion) to deliver tactile feedback to the user’s hand. These tracking systems are

not accurate, limiting designers’ capability of delivering spatially precise tactile

stimulation.

In this paper, we investigate the illusion of falling raindrops that creates the

illusion of real rain using mid-air tactile stimulation. To measure the illusion we

exploit the phenomenon of the RHI in VR (referred to as VHI, see Fig. 11.1) using mid-

air tactile stimulation. We use, not only the traditional congruent and incongruent

visual-tactile stimulation approach, but for the first time exploiting mid-air touch in

VR, we also use incongruent multiple stimulations. We demonstrate the occurrence

of the illusion even during an incongruent visual-tactile condition, opening up new

design explorations that help to overcome the effect of the current limitations of

hand-free tracking systems (i.e., imprecise spatial tracking, thus, wrong tactile

delivery on the hand). We hypothesize that mid-air touch is the right technology for

this first time exploration, due to its controllability and requirement for no physical

attachments in VR.
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The contributions of this paper are: a) a systematic investigation of the repro-

ducibility of the RHI in VR with real-time tracking and rendering of the human hand

using mid-air tactile stimulation, b) demonstrating whether the illusion occurs with

a multiple incongruent and multiple congruent stimulation approach, accounting

for c) the relevance of the hand’s posture (palm upward vs. palm downward) and d)

demonstrating the importance of the stimulation type (tapping vs. stroking).

This is the last experimental study presented in the thesis and it falls under the

"Apply" stage, aimed to answering if it is possible to convey the feeling of embodiment

using mid-air haptics in VR (RQ3). While this research may seem unrelated to the

previous studies investigating tactile illusions, also in this work we exploit a tactile

illusion in a virtual context and replicating the illusion through mid-air technology.

Further, we demonstrated the feasibility of embodying a virtual arm in our body

schema.

11.0.1 The rubber hand illusion in VR

The RHI phenomenon has been widely studied since the late 90s. The key to achiev-

ing the illusion of ownership towards a fake arm is the visual-tactile congruency.

That is when users can see the fake arm being stimulated, and they can feel the same

stimulation at the same location and time on their own arm, they will be tricked to

believe that the fake arm is actually their own. Following the first study by Botvinik

et al. [19], many researchers investigated the key factors of this illusion. For instance,

it has been demonstrated that a delay of 300 ms between the stroking of the two

hands (i.e., real and fake) reduces the effect of the illusion, and a delay of 500 ms

breaks the illusion [123, 211]. Kanayama et al. [125] used electroencephalography

(EEG) activity in the gamma range to study the correlate of multimodal integration

during the RHI using congruent and incongruent stimulation.

The advances in VR technology have made it possible to study new factors of the

RHI illusion within psychology and other disciplines, including HCI [4, 104, 241]. VR

technology allowed the study of additional variables of the RHI [153, 201, 214, 258].
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The reproduction of the RHI in VR is defined as virtual hand illusion (VHI). The

illusion is the same but is created in VR; participants wear an HMD and their arm

is rendered as virtual arm. The virtual arm is shifted with respect to their physical

arm. The researcher stimulates the participants’ physical arm while they can see

the physical stimulation through the HMD and feel it on their arm. After a while,

participants will embody the virtual arm. Perez-Marcos et al. examined the results

of seeing a body attached to a virtual arm [181]. Ma et al. investigated whether

subjects can embody a non-corporeal object such as a virtual balloon or a square [166],

and Lin et al. explored the role of graphics realism in the illusion, using different

geometric hand models [146]. Choi et al. [33] studied the multisensory integration in

the virtual hand illusion with active movement. Finally, Schwind et al. investigated

the effect of visual realism on visual-haptic integration [206]. Successive researchers

extended the VHI to the entire body [215], and studied the phenomenon of the body

swap illusion (i.e., embodying another person’s body) [7, 11, 156, 170, 182, 216].

Furthermore, other studies showed that people can embody a body with a different

skin colour [52], a body of a different size [170], and a body of a different age [11].

Several studies explored the occurrence of the illusion for other parts of the body.

For example, it has been shown that it is possible to achieve the embodiment of a

fake foot (rubber foot illusion) [36, 144], and of an artificial tongue [162]. Moreover,

Ramachandran et al. [189] showed that it is possible to embody a mannequin’s head,

and Ekroll et al. illustrated that people can be tricked into believing they have a

shorter finger [50]. Finally, several researchers have demonstrated that it is possible

to embody supernumerary hands [31, 87].

Taken together, these examples demonstrate how flexible our body schema is

and that it is possible to perturb it to include different body parts or even an entirely

different body. From an HCI perspective, these findings on the creation of bodily

illusions and embodiment, provide inspiration for designing novel VR experiences

involving the sense of touch, which can reinforce the embodiment. Here we explore

to what extent mid-air haptics can be used to push the boundaries of the body

ownership and recreate the RHI in VE.
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11.0.2 Contribution of the present work to HCI

With our work we explore the VHI phenomenon demonstrating that our brain

can fill in the gap between spatially incongruent visual-tactile stimulations (gap

between what we see and what we feel on the hand) maintaining the feeling of

body ownership in situation other than perfectly, spatially matching, stimulation.

In particular, we exploit the advantages of an ultrasound mid-air haptic device,

and we recreate the VHI illusion varying the congruency of the stimulation (i.e.,

congruence and incongruence). We additionally employ multiple incongruent visual-

tactile stimulations to overcome the effect of the current limitation of the free-hands

tracking systems (i.e., imprecise spatial tracking) on reported body ownership in VR.

While the VHI has been studied before, it has not been explored using the emerging

mid-air touch technology (see [104] for an early paper on the RHI, but not in VR).

Hence, the novelty of our study is the use of multiple mid-air tactile stimuli in VR,

testing the occurrence of the VHI in congruent and incongruent conditions. This has

never been attempted before but offers interesting directions because it could solve

the lack of precision of free-hand tracking devices.

Following, we 1) present a first experiment in VR that exploits the VHI using

multiple incongruent visual-tactile stimuli. Then, we present two additional control

experiments in which we 2) assess the influence of the hand’s posture when partici-

pants are stimulated with a tapping stimulation (as in our VR study) by means of

physical touch, and we 3) assess the influence of the hand’s posture with a stroking

stimulation.

11.1 Experiment 1: VHI mediated by mid-air
haptics

With this experiment, we tested if the VHI can be mediated through mid-air

tactile stimulation (comparing congruent and incongruent tactile stimulation) and

if it is possible to maintain a sense of ownership toward a virtual arm even when
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Figure 11.2: Set-up. The participant wore an HMD Oculus DK2 and sat on a
chair with the arm resting on a support between the mid-air haptic device using
ultrasound and the tracking system (Leap Motion). A knob was used to measure the
proprioceptive drift.

using visual-tactile incongruent stimulation (multiple incongruent stimuli condition).

These conditions have not been studied before, and it is interesting because it may

allow the creation of an illusion overcoming the limitations of the current free-hand

tracking systems.

11.1.1 VR and device set-up

We used the mid-air haptic device (by Ultrahaptics) to deliver tactile feedback to

the participant’s real hand using stimuli modulated at 200 Hz frequency. The VE

consisted of a virtual version of the space where the study took place. Fig. 11.2 shows

the set-up with the participant resting his/her arm facing upward on an arm support.

Participants received a tactile stimulation on their palm from the top, mimicking

raindrops. We used raindrops as the scenario for our experiment, taking inspiration
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Figure 11.3: The five locations stimulated by the mid-air haptic device during the
congruent and incongruent conditions.

from a work by Obrist et al., where users described the sensation of the mid-air

haptic device as "dry rain" [171]. This hand posture is different from the one used

in the standard RHI/VHI set up, where the hand is maintained facing down. We

could not use a facing down posture to experience the raindrops, as the mid-air

stimulation is best perceived on the glabrous (non-hairy) part of the hand [251], and

also to simulate the natural movement of a raindrop. Participants experienced a

virtual arm through an HMD (Oculus Rift DK2, field of view: 100 degrees with an

estimated 960 x 1080 pixels per eye resolution, displayed at 60 to 75 Hz) that was

real-time tracked by a hands-free tracking device by Leap Motion. Although we did

not allow for movement during our experiment, the tracking device was necessary

to render the arm in VR. The virtual arm was rendered by using the Leap Motion

Core Asset for Unity 3D. This package comes with the UV maps for the 3D hands

allowing matching participants’ gender and skin colour.

Our experimental design, presented in the following sections, accounts for the

difference in the set-up compared to the traditional VHI. Hence, we performed two

control experiments to verify that the different hand’s posture and stimulation type

are not necessary for the illusion of ownership.
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11.1.2 Study conditions

We investigated the VHI with the two traditional conditions: 1) a congruent visual-

tactile stimulation, 2) an incongruent visual-tactile stimulation, and we additionally

tested 3) a multiple incongruent stimulation condition, and 4) a multiple congruent

stimulation condition.

1) Congruent condition: stimuli in VR were rendered visually by virtual drops

of water falling one after the other, with a one-second interval, onto five locations on

participants’ virtual right hand (see Fig. 11.3). The mid-air tactile stimulation on

the participants’ real hand matched the location seen in VR.

2) Incongruent condition: the tactile stimulation on the participants’ real

hand did not match the location seen in VR. According to previous research [19], an

incongruent visual-tactile stimulation breaks the illusion. We tested this condition

delivering the tactile feedback (i.e., drops of water) randomly on a different location

from that which participants could see in the VE.

Figure 11.4: The six patterns used in the multiple incongruent and multiple con-
gruent stimulation in VR. Each drop (rendered by a focal point) is approximately 1
cm of diameter, and at least 1 cm distant from the others, allowing the delivery of
discrete mid-air tactile stimuli.

3) Multiple incongruent stimuli: this was one of the new conditions we in-
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troduced in our study. We were interested to investigate whether the illusion can

also occur using multiple incongruent stimuli enabled through the mid-air haptic

device. Previous work established that a minimum of 1 cm distance between mid-air

focal points is needed to ensure the discriminability of two tactile points [251]. The

diameter of the focal point is also approximately 1 cm, hence, we divided the hand

into a 3x3 grid (see Fig. 11.4). We delivered different patterns of three stimuli at a

time, to make sure that all of our participants could have enough surface available

on the palm to receive the stimulation, and so that the perception areas of the stimuli

were not overlapping. Participants could see three drops of water in VR hitting the

hand at the same time. The tactile stimulation on the real hand was rendered on

three random incongruent locations.

4) Multiple congruent stimuli: as a control condition for the multiple incon-

gruent stimulation, we also tested a multiple congruent stimuli condition. In this

condition, we delivered three drops in VR visually congruent with three congruent

tactile stimuli on the participant’s real hand.

Overall, our investigation followed a repeated measures design with one factor

at four levels (i.e., congruent, incongruent, multiple incongruent, and multiple

congruent). The four conditions were randomized across participants. Participants

were compensated with a £5 Amazon voucher.

11.1.3 Measures

To investigate the VHI illusion mediated through mid-air touch we gathered two

established measures: a questionnaire for the subjective feeling of the illusion, and

the proprioceptive drift measurement, an objective indicator of the illusion.

11.1.3.1 The questionnaire

We used the questionnaire originally used in Botvinick and Cohen [19] adapting the

wording to take into account the difference in our set-up (e.g., the tactile stimulus

was provided through drops of water in VR, rendered through mid-air tactile stimuli,

instead of a brush). The questionnaire consisted of 9 items as shown in Table 11.1.
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QUESTIONS

Q1. It seemed as if I were feeling the mid-air touch in the
location where I saw the drop touching my virtual hand

Q2. It seemed as though the touch I felt was caused by the
drops touching the virtual hand

Q3. I felt as if the virtual hand were my hand

Q4. It felt as if my (real) hand were drifting toward the
left (toward the virtual hand)

Q5. It seemed as if I might have more than one left hand or arm

Q6. It seemed as if the touch I was feeling came from
somewhere between my own hand and the virtual hand

Q7. It felt as if my (real) hand were turning "virtual",
less consistent

Q8. It appeared (visually) as if the virtual hand were
drifting toward the right (toward my real hand)

Q9. The virtual hand began to resemble my own (real hand,
in term of shape, skin tone, freckles, hairs or some other
visual feature)

Table 11.1: The 9-item questionnaire (from [19]). We adapted the wording to take
into account the difference in our set-up (e.g., the tactile stimulus was provided
through drops of water in VR, rendered through mid-air tactile stimuli, instead of a
brush).

Figure 11.5: The proprioceptive measurement. Participants saw a black screen
with an infinite white line and a cursor (green sphere) on it. By rotating the knob
(left) they could move the cursor on the line until they felt the cursor position was
matching their index finger.
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The answers could vary on a Likert scale from 1 ("I strongly disagree") to 7 ("I

strongly agree"). Q1 to Q3 measure the subjective illusion effect [19]. The remaining

questions are considered as control questions.

11.1.3.2 Proprioceptive drift

The proprioceptive drift is a measure to determine the relative displacement of

the perceived location of one’s own hand toward the location of the fake hand

after the stimulation, compared with a pre-stimulation baseline. To measure the

proprioceptive drift we followed a similar approach to Suzuki et al. [227]. Before and

after each stimulation, participants were shown a black background in VR, with an

infinite white 3D line fronto-parallel to their right hand, where a cursor (a green

ball) could be moved by the rotation of a knob (Fig. 11.5). Participants had to move

the cursor with their left hand to match the perceived location of their index finger

and press the knob to register the cursor coordinates. In all cases, the difference

between the cursor’s position in the pre and post-stimulation corresponded to the

proprioceptive drift. A drift toward the virtual hand is considered an indicator of the

illusion [19].

11.1.4 Methods

At the beginning of the study, participants sat on a chair. After putting on the HMD,

participants had the possibility to explore the VE to familiarize themselves with the

virtual set-up and the HMD. They were also invited to move their hand over the

hand tracker system (Leap Motion), to experience the render of their hand in VR.

The virtual hand was rendered but shifted about 20 cm to the left of the real hand

location, to allow an appropriate mismatch for the proprioceptive drift measurement

(following past procedures, see [35, 123, 158, 254]). Participants could see in VR

their right arm from a first-person perspective. After this initial familiarization, the

test phase started where the participants’ right arm was guided onto an arm support

at mid-way between the hand tracking device (Leap Motion) and the ultrasound

array (see Fig. 11.2). The centre of the participants’ palm matched the centre of
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the ultrasound array, allowing a real-time tracking of the hand. The mid-air device

faced down toward the tracking device, with the subject’s hand in between. The

mid-air device was placed at 20 cm of distance above participants’ hand, which

is the optimal operative distance suggested for this device [27], and at the same

time, allowed the hand tracking device to work smoothly. The chair was kept in a

fixed position for every participant. In previous studies, the stimulation duration

ranged from a minimum of 45 s to a maximum of 240 s [36, 40, 102, 124, 234].

As no specific explanation is provided in prior work, and given that the illusion

occurred in all cases, we selected the middle value of 120 s. Participants experienced

all four conditions in a randomized order (see the section Study Conditions). They

were asked to focus exclusively on the palm of the hand, and to not move the right

arm and hand (the one rendered in VR) to avoid receiving updated information

regarding the position of their real hand. The proprioceptive drift was measured

at the beginning and at the end of each condition. Additionally, at the end of each

condition, participants completed the 9-item questionnaire illustrated in Table 11.1.

The study consisted of four conditions for a total of 30 minutes. Participants wore

headphones reproducing white noise to cover any environmental and device noises.

11.1.5 Participants

For this study, we recruited 20 participants (9 females). Their mean ± SD age

was 25.5 ± 7.9. They had normal or glasses/lens corrected vision and no history of

neurological or psychological disorders.

11.1.6 Results

Here, we present the results of the study based on the combination of the subjective

(questionnaire) and the objective (proprioceptive drift) measures.

Questionnaire: All the participants completed the 9-item questionnaire four

times. Q1, Q2, and Q3 were likely not following a normal distribution (Shapiro-Wilk,

p < .05). We ran a Friedman test on the calculated means of the answers given
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Descriptives for Q1 + Q2 + Q3
Condition Mean rank Mean Std. Deviation

Congruent 2.93 5.38 1.70
Incongruent 1.84 3.75 2.05
Multiple incongruent 2.81 4.98 1.74
Multiple congruent 2.43 4.77 1.60

Table 11.2: Descriptives for Q1 + Q2 + Q3. The higher the values, the more owner-
ship was felt by the participants.

by the participants to Q1, Q2, and Q3, for the congruent, incongruent, multiple

incongruent, and multiple congruent conditions. The Friedman test indicated a

significant difference between groups, χ2(3) = 32.2, p < .001. A Wilcoxon signed-rank

test was performed to further investigate the difference between groups. We used a

Bonferroni adjustment for the Wilcoxon test’s results to interpret the data and avoid

a type I error. Hence, we divided the significance level of .05 by the number of tests

made (six). Therefore, the new significance level was set at .05/6 = .008. Descriptive

statistics of Q1, Q2, and Q3 are shown in Table 11.2.

The congruent and the incongruent condition were significantly different, Z =

-4.69, p < .001, with the congruent condition being more able to convey the illusion

of ownership. There was no difference between the congruent condition and the

multiple congruent and incongruent conditions (p > .008). In addition, there was no

significant difference between the multiple congruent and the multiple incongruent

conditions (p > .008). Lastly, our two multiple stimulation conditions significantly

differed from the incongruent condition, p < .001. Q4 to Q9 are traditionally con-

sidered control questions. As expected, their ratings did not show any significant

differences, therefore, they will not be discussed further.

Proprioceptive drift: The Shapiro-Wilk test indicated our data to likely follow a

normal-like distribution (p > .05). In our dataset, there were no outliers. Thus, we ran

an ANOVA repeated measures to compare the averages of the results (proprioceptive

displacement in cm) of our four conditions. Mauchly’s test of sphericity indicated

that the assumption of sphericity had not been violated, χ2(9) = 8.903, p = .448. The

ANOVA highlighted a statistical difference between our four conditions, F(3,76) =
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Cong. Incong. M. incong. M. cong.

Cong. = 6= = =
Incong. 6= = 6= 6=

Table 11.3: Pairwise comparisons for the four conditions: congruent, incongruent,
multiple incongruent, and multiple congruent. "=", no difference between groups.
" 6=", difference between groups.

10.01, p < .001. To better investigate the differences between groups, we analysed

the pairwise comparisons. Fig. 11.6 shows the box plot of the proprioceptive drift for

the different conditions.

First, the congruent and the incongruent condition were statistically different (p <

.01), with the congruent condition having higher scores as suggested by literature. As

for the subjective feeling of ownership (questionnaire), the data for the proprioceptive

drift highlighted no difference between the multiple congruent and the multiple

incongruent conditions (p > .05). Interestingly, the congruent condition was not

statistically different from the multiple incongruent (p > .05) and from the multiple

congruent conditions (p > .05). The incongruent condition resulted to be statistically

different from the multiple congruent condition (p < .05) and from the multiple

incongruent condition (p < .05). See Table 11.3 for an overview of these results.

Figure 11.6: Box plot of the proprioceptive drift. The highest the values, the bigger
the drift toward the virtual hand. In our scenario, 0.1 Unity units correspond to 1
cm.
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11.2 Summary

As expected, results from the questionnaire indicated that the illusion of ownership

toward the virtual arm is subjectively felt during the congruent condition. The same

is true for the multiple congruent condition. However, the illusion also occurred in the

multiple incongruent condition. This means that even when we deliver incongruent

visual-tactile stimulation (i.e., participants see visual stimuli in one location, but

they feel them on a different location) it is still possible to achieve an illusion of

ownership of the virtual hand. These results are additionally confirmed by the

proprioceptive measurements. Our data indicated that participants experienced the

same amount of proprioceptive drift toward the virtual arm during the congruent,

the multiple congruent and the multiple incongruent conditions.

Finally, we provide some hypotheses to justify why multiple incongruent stimuli

felt as congruent. These hypotheses are: 1) Effect of temporal saliency: when the

stimuli happen together we are not able to perceive the visual-tactile incongruence.

2) Spatial acuity: it decreases by increasing the number of stimuli. 3) Cognitive load:

it is hard to focus the attention on the visual stimuli and their tactile effect, hence,

we are not aware of the discrepancy.

Additionally, one may argue that the upward posture of the hand constricts the

user to a more unnatural hand position in comparison with the downward posture.

Hence, the user will receive more proprioceptive information (information regarding

the position of the limbs across space) from tendons and muscles with the possible

effect of reducing the strength of the illusion. Hence, we conducted two more studies

(in what follows, control studies) exploiting the traditional RHI set-up, to assess the

influence of the hands posture (downward vs. upward).

11.3 Experiment 2, RHI: tapping

With this first control experiment we aimed to assess the influence of the hand’s

posture when participants were stimulated by tapping stimulation (as in our VR

study) by mean of physical touch.
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Figure 11.7: The RHI set-up. A cardboard box was built. The box had two entrances,
one for the participant’s right arm, and one for the fake arm. Once inside the
structure, participants could see only the fake arm.

11.3.0.1 Conditions

We delivered tactile stimulation through two paint brushes (simulating the raindrop

sensation in our mid-air stimulation in VR) with a diameter of 1 cm at the tip. The

physical tactile stimulation was delivered on the real and on the rubber arm. The

study was composed of four randomized conditions:

1. Palm down and synchronous stimulation.

2. Palm down and asynchronous stimulation.

3. Palm up and synchronous stimulation.

4. Palm up and asynchronous stimulation.

During each condition, the rubber hand was at a distance of 20 cm from the

participant’s hand. The stimulation was a tapping-like (non-continuous) stimulation

lasting 120 seconds. The experiment lasted 30 min and participants received £5

Amazon voucher.
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11.3.0.2 Methods

The behavioural measures obtained were the same as in our previous study: the

questionnaire and the proprioceptive drift. We measured the proprioceptive drift

before and after each condition. To do that, we built a cardboard box that had two

entrances (see Fig. 11.7). The right entrance was for the participant’s right arm;

once in it, they were not able to see their real arm. The rubber arm was introduced

in the left entrance. Furthermore, participants’ right shoulder was covered with a

black cloth. Before and after each condition, we asked participants to close their

eyes and to mark over the cardboard box where they thought the position of their

right index finger was. For a more accurate measurement, they repeated this process

six times for each condition, three times before the stimulation, and three times

after the stimulation. We calculated the averages of the three measurements before

the stimulation and of the three after the stimulation. The difference between the

averages of the pre- and post-stimulation was then used to assess the proprioceptive

drift (in cm). As before, after each stimulation participants were asked to complete

the 9-item questionnaire (see Table 11.1).

11.3.0.3 Participants

For this control experiment, we recruited 10 new participants (5 females). Their

mean ± SD age was 21.8 ± 1. They had normal or glasses/lens corrected vision and

no history of neurological or psychological disorders.

11.3.0.4 Results

Questionnaire: All the participants completed the 9-item questionnaire four times.

Our data did not follow a normal-like distribution, therefore we proceeded with

a Friedman test on the grouped Q1, Q2, and Q3, of our four conditions: palm

down synchronous, palm down asynchronous, palm up synchronous, and palm

up asynchronous. The Friedman test indicated a significant difference between

groups, χ2(3) = 38.8, p < .000. A Wilcoxon signed-rank test was performed to further

investigate the difference between groups. We employed a Bonferroni adjustment
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on the Wilcoxon tests results, in order to avoid a type I error. Hence, we divided

the significance level of .05 by the number of tests made (six). Therefore, the new

significance level was set at .05/6 = .008. Data showed a significant difference

between the palm down synchronous vs. palm down asynchronous condition, Z =

-3.67, p < .001. There was also a significant difference between the results for the

palm up synchronous vs. the palm up asynchronous condition, Z =-4.01, p < .000.

A comparison between the palm down synchronous and the palm up synchronous

condition did not highlight any difference (p = .574).

Descriptives for Q1 + Q2 + Q3
Condition Mean rank Mean Std. Deviation

Palm down sync 3.25 4.83 1.64
Palm down async 2.13 3.20 1.44
Palm up sync 3.05 4.67 1.86
Palm up async 1.57 2.57 1.13

Table 11.4: Descriptives for Q1 + Q2 + Q3. The higher the values, the more owner-
ship (occurrence of the illusion) was felt by the participants.

Proprioceptive drift: We first checked the proprioceptive drift data for normality.

The Shapiro-Wilk test indicated a normal-like distribution (p > .05). Thus, we ran a

two-way repeated measures ANOVA to compare the averages of the results of the

four conditions. While we found a significant difference between the synchronous

and asynchronous conditions (p = .013), as expected we did not find a significant

difference between the palm’s postures (p = .73).

This first control experiment demonstrated that the hands’ posture is not crucial

to ensure a successful embodiment of the fake arm. Hence, our study results using

the upward posture in the mid-air haptics VHI set-up are strengthened. In the

next control experiment, we again tested the hands’ posture, this time using a

stroking-like tactile stimulation (as in the traditional RHI/VHI set-up).

11.4 Experiment 3, RHI: stroking

We now test the hands’ posture with a stroking stimulation.
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11.4.0.1 Conditions

This experiment was structured identically to the previous control experiment,

however, instead of a tapping stimulation, we stimulated the real and the rubber

hand with a stroking (continuous) stimulation.

11.4.0.2 Methods

The behavioural measures were the same as in the previous control experiment: the

9-item questionnaire and the proprioceptive drift measurement.

11.4.0.3 Participants

For this experiment, we recruited a new set of 10 participants (6 females). Their

mean ± SD age was 22.3 ± 1.4. They had normal or glasses/lens corrected vision and

no history of neurological or psychological disorders.

11.4.0.4 Results

Questionnaire: All the participants completed the 9-item questionnaire four times.

The resulting data did not follow a normal distribution, therefore we proceeded with

a Friedman test on Q1, Q2 and Q3 of the four conditions: palm down synchronous,

palm down asynchronous, palm up synchronous, and palm up asynchronous. The

Friedman test indicated a significant difference between groups, χ2(3) = 52.9, p <

.000. A Wilcoxon signed-rank test was performed to further investigate the difference

between groups. We applied a Bonferroni adjustment to the Wilcoxon tests results,

in order to avoid a type I error. Hence, we divided the significance level of 0.05 by

the number of tests made (six). Therefore, the new significance level was set at .05/6

= .008. Data showed a significant difference between the palm down synchronous

vs. asynchronous condition, Z = -4.38, p < .000. We found the same result for the

palm up synchronous vs. asynchronous condition, Z =-4.32, p < .000. A comparison

between the palm up vs. palm down synchronous conditions did not highlight any

significant difference (p = .284).
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Descriptives for Q1 + Q2 + Q3
Condition Mean rank Mean Std. Deviation

Palm down sync 3.38 6.10 1.39
Palm down async 1.75 3.10 1.66
Palm up sync 3.20 5.93 1.59
Palm up async 1.67 3.33 1.90

Table 11.5: Descriptives for Q1 + Q2 + Q3. The highest the values, the more owner-
ship was felt by the participants.

Proprioceptive drift: We checked the proprioceptive drifts’ data for normality.

The Shapiro-Wilk test indicated a normal-like distribution (p > .05). Thus, we ran

a two-way repeated measures ANOVA to compare the averages of the results of

the four conditions. We found a significant difference between the synchronous and

asynchronous conditions (p = .025). There was no difference between the palm’s

postures (p = .31).

This second control experiment re-confirmed that the hands’ posture is not

affecting the RHI, even when we use a stroking-like stimulation. Thus, our findings

using mid-air tactile stimulation in VR are strengthened.

11.5 Discussion

Our main experiment in VR demonstrated how multiple visual-tactile incongruent

stimulations were perceived as a congruent experience by the user. This can con-

tribute to the design of even more realistic and immersive experiences in VR. Below

we provide a final discussion on the findings and their relevance for HCI.

11.5.1 VHI mediated through mid-air touch

We investigated the virtual hand illusion introducing five variants to the traditional

paradigm. Such variants regarded 1) the posture of the hand (palm upward vs.

downward), 2) the stimulation type (tapping vs. stroking), 3) the number of incon-

gruent stimuli delivered simultaneously during the stimulation (in the condition

where multiple spatially incongruous/congruous taps were delivered to the virtual

hand), 4) the use of a mid-air haptic device to deliver the tactile feedback. Our
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results indicated a subjective feeling of ownership toward the virtual arm during

spatially congruent visual-tactile stimulation (see [19]), regardless of the number

of the stimuli delivered simultaneously on the hand. Interesting, multiple spatially

incongruent stimuli were also able to induce feeling of ownership in the users. In

other words, it is possible to elicit body ownership toward a virtual arm even when

there is a gap between what we see in VR and what we feel in reality, as long as the

stimulation happens in multiple location simultaneously.

To test the influence of the new variants which we introduced in our set-up com-

pared to the traditional RHI/VHI, we performed two additional control experiments,

accounting for two different hand postures (upward vs. downward) and two different

stimulation type (tapping vs. stroking). The results from the subjective reports and

from the objective measurement did not highlight any influence of hand posture or

stimulation type on the occurrence of the illusion, which took place as described in

literature in cases where the palm was facing downward and the tactile stimulation

was delivered by stroking.

11.5.2 Design potential for multiple incongruent stimulation

We envision three design scenarios that exemplify the benefit from the visual-tactile

incongruence stimulation and highlight potentials for future research.

Scenario 1: We can imagine an AR/VR interface (e.g., computer desktop) where

the user can select the icons receiving tactile feedback. The free-hand tracking

system does not allow a precise matching between the visual and the tactile cues.

Therefore, when touching the edges of the virtual icons on the interface, one could

receive the tactile feedback on the wrong location on the hands with respect to

what he is looking at in the VR/AR environment. This is a situation where multiple

incongruent tactile points (the edges of the virtual icons’ shape) are displayed visually

in a certain location but rendered tactilely on a different one. Nevertheless, our

design could provide a solution, since that users would be able to feel the multiple

incongruent stimulation as congruent. In this way, we can provide the user with an
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understandable and realistic tactile percept, even in an incongruent visual-tactile

stimulation. We still do not know if our paradigm could be applied on the fingertips;

future research needs to investigate tactile perception of multiple incongruent

stimulation on the fingertips in which the density of tactile receptors varies.

Scenario 2: Similarly, our paradigm could be applied to those applications where

the system (e.g., VR or AR) would need to render a perfect reproduction of the

real environment to allow physical social interaction. For instance, one of the last

VR social networks, Facebook Spaces, shows how multiple people from different

locations can join together in a shared virtual space. Each of the users is represented

in the VE through an avatar simulating their body presence. These avatars are

obviously different from the bodies of the users. This means we do not have a one

to one representation of the users’ body. In other words, if one of the users in the

VE would like to express something via touch to another virtual user, both of the

users will have to deal with a non-perfect visual-tactile correspondence. Our study

indicates that even if the users A and B will see the tactile stimulus happening on

a certain spot (on the virtual avatar) and they will feel it on another (on their real

body), the experience will be perceived as congruent. Future work can expand this

knowledge towards an exploration of multiple incongruent stimulation at different

body parts (e.g., fingertips, shoulders, torso, etc.).

Scenario 3: In the famous film "Singing in the rain", Gene Kelly is dancing

and singing in the rain. What few knows, is that after that scene, Gene endured

a 103 F (39◦ Celsius) fever. Based on our work, we can imagine people watching

this film scene in a cinema or home cinema setting, feeling the sensation of being

under the rain, without getting wet or sick. In fact, mid-air haptics can provide

the sensation of "dry rain" [171]. For such complex scenario, further insights into

the tactile perception of mid-air haptics and the creation of illusions is required.

However, as shown by prior work (see [1]), there is the potential to design more

immersive and emotionally engaging film experiences through the use of mid-air

haptic technology.

In summary, all the three design scenarios will benefit from the "invisibility" of
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the mid-air haptic device, which provides attachment-free interactions strengthening

the immersion in the fictional environment (see [53]). Furthermore, we can imagine a

wall consisting of ultrasonic arrays that will surround the user providing a 360◦ free-

hands multi-user interaction room that will deliver tactile stimulation as desired

without the user being aware of the stimulation medium. In this way, the tactile

stimulation could follow the natural movement of the user and allow scalability

beyond the user’s hands.

11.5.3 Limitations and future works

Although this work presents a first of its kind investigation into the use of mid-

air tactile stimulation to investigate the occurrence of body ownership during a

visual-tactile incongruence, we also need to acknowledge some limitations.

While the technology opens up new possibilities for HCI designers, the range

of perceivability of the tactile stimulus on the body is still limited, following the

Pacinian mechanoreceptors distribution on the body. We focused our research on the

hand but the occurrence of the illusion at other parts of the body still remains to

be explored, once the technical limitations will be overcome. Regarding the optimal

operative distance from the skin (15 cm), different researchers are looking for

ways to extend the performance of transducer arrays. One promising way is the

use of acoustic meta-materials: classic materials (like paper, plastic, wood) micro-

engineered to have specific acoustic properties, that have already been used in

combination with the device employed in this paper [161]. Moreover, our design

could be tested with other mid-air devices. This will help in establishing a solid

foundation for creating full-body immersive experiences in VR.

We started the investigation of the visual-tactile incongruence using three stimuli

on the hand to make a clean setup and a first exploration of the VHI with multiple

incongruent visual-tactile mid-air stimulation. Future work could explore further

the phenomenon of the VHI using a different number of stimuli to establish a model

of our perception under visual-tactile incongruence. Although in this case, one would
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have to keep in mind the nature of the mid-air tactile stimulation, which has a lower

and not precisely defined spatial resolution compared to physical touch (e.g., the

mid-air focal point is maximally perceived at the centre of its focus, and less on the

boundaries).

Finally, it would also be interesting to study the time variable, investigating if

it is possible to achieve the same results with time asynchrony. Moreover, in our

set-up, we used the mid-air technology statically, under controlled variables, with

less confounding variables. Future studies could investigate similar effects while

users are free to move across space.

11.6 Conclusion

The findings from our three experiments demonstrate that it is possible to convey a

sense of embodiment by using ultrasonic mid-air haptic technology. In this study,

we systematically studied the occurrence of the virtual hand illusion by introducing

new variables such as a multiple mid-air tactile stimulation, a different hand’s

posture, and a mid-air tapping stimulation. With two additional studies exploiting

the traditional rubber hand illusion phenomenon, we controlled the hand’s posture

and tapping like stimulation, confirming those variables does not play a key role in

the occurrence of the illusion. This work demonstrate how researchers and designer

in HCI can rely on the brain ability to match small visuo-tactile gaps when a

free-hands tracking device might result inaccurate.
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12
DISCUSSION AND IMPLICATIONS FOR DESIGN

The findings of the individual papers presented in this thesis have been discussed

in detail in the previous six chapters. Here, we will discuss the implications of our

results for the HCI field. We highlight three main contributions: 1) in the "Under-

standing" stage, we aim to answer RQ1, broadening the perceptual understanding

of ultrasonic mid-air haptic technology, 2) to answer RQ2, in the "Create" stage, we

create an illusion of motion with contact and non-contact (mid-air) haptic technology,

and 3) in the "Apply" stage, to tackle RQ3, we demonstrate how using tactile illusions

mediated by mid-air haptic technology can convey a sense of embodiment in VR (see

Table 12.1 for a reminder of the research questions).

Research Question

RQ1 How do we perceive ultrasonic mid-air haptic technology?
What are the psychophysical properties of mid-air haptics?

RQ2 How can we create realistic haptic and specifically mid-air
haptic sensations applying principles of tactile illusions?

RQ3 Using tactile illusions, can we convey the feeling of embodi-
ment using mid-air haptics in VR?

Table 12.1: The three research questions of this thesis.
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12.1 Inspiration for the design of mid-air haptics
experiences

When we think of using new haptic technology, the first step is to know how the

user will perceive it. In the first three studies presented in this thesis, we provide

grounding knowledge that future haptic designers can use to create new experiences

and upon which future researchers can expand. Due to the novelty of mid-air haptic

technology, much is unknown of its psychophysical properties. The first research

question was, therefore, How do we perceive ultrasonic mid-air haptic tech-

nology, and what are the psychophysical properties of mid-air haptics?.

Previous authors have discussed how ultrasonic mid-air haptic devices possibly

stimulate only the Pacinian corpuscles and to a small degree, the Meissner receptors

[171]. These mechanoreceptors are those responsible for decoding vibrations at

high and low frequency (see Chapter 2, Section 2.2). Our first exploration seems to

agree with this hypothesis. Before focusing on the hand and arm, we explored the

perception of ultrasonic mid-air touch on the whole body. The only locations where

the stimulation was perceivable were those in which the Pacinian corpuscles are

diffused, glabrous skin. Furthermore, we studied absolute thresholds at 20 locations

across the left hand and arm, providing an initial map for absolute thresholds.

These first results indicate that the palm might be the most sensitive area for mid-

air haptic stimuli and that the absolute thresholds vary depending on the area of

stimulation on the hand. Therefore, when designing for tactile interactions, one

may want to consider the variable nature of our perception to adapt the tactile

stimulation and create an optimal tactile sensation on the hand.

Another question is related to the way we can use a haptic device to optimally

convey a tactile sensation in terms of perceivability. For visual and sound stimuli, a

higher update rate corresponds to better outcomes (e.g., avoiding motion blur) [45].

One may be inclined to think that the same will apply to tactile stimuli. In Study

2, we demonstrated that the sense of touch does not work in the same way as for

vision or hearing, and we provide information on the optimal sampling rate to use to
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render shapes with mid-air haptic technology. This means that HCI designers will

have a better idea of how to design their tactile experiences in a way that the user’s

sense of touch is optimally triggered to feel the intended stimulus.

Finally, as stated in Chapter 4, Section 4.3, mid-air haptic stimuli have the dis-

advantage of not having clear physical boundaries. Their output appears like a circle

fading outwards from the centre. This means that when delivering a certain shape

through ultrasonic mid-air haptics, the user might be puzzled about the actual shape

perceived. Considering the potentiality of using mid-air haptics for monosensorial

applications in which the user has only his/her sense of touch available, it is crucial

to find a way the user can correctly interpret the stimulus delivered. Study 3 sets

the first step in this direction. Relying on the concept of chunking from cognitive

psychology [62], we hypothesised that facilitating this chunking process for the

tactile stimulus will improve users’ recognition rates for simple shapes. Our results

show that we were able to obtain an improvement of ≈30% on users’ performance in

a shape recognition task compared to the traditional method. This means that users

were ≈83.5% accurate in discriminating a 2D shape delivered through ultrasonic

mid-air haptics.

Taken altogether, these first three studies provide future designers with psy-

chophysical methods that have been proven to deliver optimal tactile sensations

with ultrasonic mid-air haptic technology. Having basic knowledge of the optimal

frequencies to use, the sampling rate, and techniques to render mid-air haptic shapes

will constitute an advantage when designing tactile experiences. We do not need

to treat our skin as a uniform surface, but we do need to be aware of the different

receptors populating it. We also need to be aware of how to use a certain haptic

system and understand the best way to render an intended output. Hence, we need

to functionally adapt the output of our haptic devices if we want to render compelling

tactile sensations.
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12.2 Tactile illusions reduce tactile complexity

In Chapter 2, we described the functioning of our sense of touch, both in its passive

and active (haptic) components. We described tactile physiology and the way our

central and peripheral nervous system is organised to transfer the tactile information

from the mechanoreceptors in the skin to the somatosensory cortex in the brain.

The plethora of studies revolving around each of the specific components of

touch and its final sensations (e.g., pressure, weight, temperature, texture, etc.)

demonstrate how the nature of our sense of touch is extremely complex. However, sci-

entists have thought of using tactile illusions to tackle this complexity [89, 110, 220].

Because of the advantages of using a tactile technology which is unobtrusive and

potentially "transparent", we further questioned if and how it is possible to use

mid-air haptic systems to convey tactile illusions. Hence, we defined our second

research question as "Can we use tactile illusions to perceive realistic tac-

tile sensations? If yes, can we use mid-air haptics to convey these tactile

illusions?"

In Study 4 and 5, we provide further knowledge on the apparent tactile illusion

(see Chapter 5, Section 5.1). We demonstrate for the first time how a smooth illusion

of motion can be delivered between two non-interconnected hands. We first show

this by using a contact haptic device. Later, in Study 5, we adapted and expanded

the apparent tactile motion illusion by using an ultrasonic mid-air haptic device. For

both studies, we provided perceptual models to render a smooth feeling of motion

between the two hands. Now, not only we know that it is possible to use mid-air

haptic stimulation to convey tactile illusions but have also expanded the illusory

stimulation beyond the body. We can now envision new sensations extending around

our body, moving from one side to the other, potentially transferring between more

users (see, for example [88, 183]).

We believe that future haptic designers could use these perceptual models to

deliver optimal tactile sensations to users by exploiting tactile illusions, continuing

the recent trend in HCI. For example, recent work by Azmandian et al. illustrates
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how using perceptual illusions can be an effective way to overcome technological

limitations or satisfy perceptual complexity. In this study, the authors enhance the

sense of presence in the VE and successfully convey the feeling of moving an object

in VR by exploiting visual dominance over the sense of touch. Meanwhile, Razzaque

et al. have developed a new interactive locomotion technique for VEs by rotating

the virtual scene with respect to the user [191]. Israr and Poupyrev have elaborated

an algorithm derived from the psychophysical study of two tactile illusions to allow

a wide variety of moving tactile sensations onto users’ skin. Hanamitsu and Israr

[89] were able to simulate a variety of tactile properties (i.e., texture, patterns,

pull/push sensation, vibration) in VR by implementing a spring device in the haptic

controller. For their part, Whitmire et al. [250] have designed a haptic controller

that simulates arbitrary textures, shapes, or interactive elements by mimicking

specific tactile attributes. As defined in [163], if we think of a continuum going

from the real environment to the virtual environment, with the augmented/mixed

reality environment in between the two, we believe that ultrasonic mid-air haptic

systems are a suitable medium for conveying tactile information in both real and

augmented/virtual environments, through screens or HMDs.

Finally, Study 4, in accordance with previous studies ([260]), provides interesting

results regarding the multisensory effects of vision and touch in VR. We believe

that these studies will stimulate further insights for future works (see Section 12.6)

and serve as a basis from which to continue the exploration of tactile illusions to

create new forms of realistic stimulation to use in multimedia and virtual reality

environments.

12.3 Perceptual illusions as a methodology to
study novel haptic interfaces

As described in the previous section, tactile illusions can reduce the complexity

that designers and researchers need to convey to our sense of touch to provide a
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realistic tactile sensation. Further, in this thesis, we demonstrated how the same

perceptual illusions could be exploited as a methodology to study novel haptic

interfaces, such as mid-air haptic ultrasonic technology.

Study 6 is maybe the most representative example. A well known psychological

phenomenon, the rubber hand illusion, was exploited to investigate the brain ability

of integrating in a coherent way incongruent visual and tactile stimulations. This

also inform us on the capability of the device used, regarding its psychophysical

properties. For instance, we could indirectly infer the minimum amount of distance

required between two mid-air focal points to be perceived as one (instead of two or

more). In Study 6, three tactile stimuli were presented incongruently with respect

to their visual counterparts. As shown in the results section, our brain was not

able to detect this visual-tactile incongruence. Hence, it could be that three mid-air

focal points presented on the hand may saturate the brain ability to discriminate

between multiple points. A similar study could investigate if the same effect exists

for two or more than three mid-air focal points. In this way we could avoid a two-

point discrimination task test for assessing our system (the brain) spatial acuity for

mid-air stimuli.

As previously explained in Chapter 7, some of the illusions explored in this work

could serve as methodology to enhance the haptics sensations we can deliver with

mid-air interfaces. For example, we could exploit results from the tactile illusion of

movement from Study 5, to increase participants’ ability of discriminating between

different 2D shapes. Instead of delivering a one focal point moving along the perime-

ter of the intended shape, we could provide one mid-air tactile points at each shape

vertexes, and by modulating their intensity in time, provide a perceptual illusion

of movement between the point resulting in a continuous and recognisable shape.

Alternatively, we could simulate only crucial parts of the shape we want to convey,

and delegate to the brain the task of completing the shape perception (see Figure

8.15).
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12.4 Feeling embodied in VR through mid-air
haptics

The development of more economical and less cumbersome VR HMDs has allowed

the everyday use of VR systems on a large scale. One of the requirements of virtual

systems is that they must be immersive. This means that the final aim is for the

user to be transported to a new reality where their actions will be effortless and

natural, in line with the sensorial expectations encountered in reality. The SoE is

what makes a user embody something that originally did not belong to his/her body

schema, such as the avatar used in a VE. Seen that it is fundamental for the user

to perceive visuo-tactile congruence, mid-air haptic devices seem to be an effective

means of conveying tactile information without disrupting users’ sense of presence.

Based on what we discovered in the previous studies, Study 6 aimed to answer the

third research question: Using tactile illusions, can we convey the feeling of

embodiment using mid-air haptics in VR?

We demonstrate through the phenomenon of the virtual hand illusion that it is

possible to convey embodiment mediated by ultrasonic mid-air touch. In line with

previous work [19], we were able to elicit an illusion of ownership by using visuo-

tactile congruence. In particular, our participants reported the sensation of owning

the virtual (fake) hand we were rendering and stimulating in VR with virtual drops

of water. The drops of water were tactilely felt through the use of a mid-air haptic

device.

However, what is more interesting is that in our study we were able to convey

the virtual hand illusion even in the presence of visuo-tactile incongruence. This, at

first, might seem in opposition to previous work which has found that visuo-tactile

incongruence is known to break the illusion of ownership [19, 101, 130]. However,

we underline that here, in the case of visuo-tactile incongruence for tactile stimuli

presented one at a time, our results do follow previous studies. It is only when we

delivered multiple "visuo-tactilely" incongruent stimuli at the same time that we

were able to obtain an illusion of ownership. It appears that, in this case, the brain
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can feel the gap and make the user still perceive the illusion of owning a foreign

virtual hand (we propose a few hypotheses in Chapter 11). The fine details and

limits of this "perceptual forgiveness" are still to be fully explored, but these first

results indicate that our brain could fill in some gaps when some incongruence in the

VE is provided. Besides, we demonstrate that mid-air haptic technology is indeed

a potential tool that could favour embodiment in VR. Now, in addition to having

perceivable and realistic tactile sensations across the body, the user will recognise

the virtual body as his/her own: a body that will act and react according to the user’s

expectations.

12.5 Less is more

We report Figure 1.2 from Chapter 1. As illustrated, our first three studies are con-

tained in the "Understand" stage, where we aim to contribute to the psychophysical

knowledge of mid-air haptics. Study 1 serves as starting point for the exploration of

mid-air haptics on the palm. Data from Study 1 makes researchers certain that mid-

air haptic stimuli at certain frequencies are perceived by the subjects. In particular,

Study 5 makes use of the results of Study 1 by applying the mid-air haptic feedback

on the upper part of the palm, as this area appears to be the most sensitive.

Study 2 is suggesting that there is an optimal sampling rate to use when deliver-

ing mid-air haptic stimulations and that this sampling rate changes by changing

the size of the stimulus. Although these results could not be applied in the following

studies of this thesis as explained in Chapter 1, we believe these results provide im-

portant guidelines for researchers in the mid-air haptic field. Similarly, the purpose

of Study 3 was to provide designers and researchers with optimal parameters to use

when delivering "understandable-by-the-user" 2D shapes through ultrasonic mid-air

haptic.

From this point forth, we move to creating illusions making use of mid-air haptics.

Studies 4 and 5, fall into the "Create" stage. With these two studies we successfully

demonstrate a tactile illusion of movement even in between not contiguous parts

of the body. Study 4 starts investigating the phenomenon in traditional contact
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Figure 1.2: Schemata of the studies presented in this thesis, how they link to the
theory stages and research questions individuated.

touch, to be then applied in a mid-air touch scenario. As previously mentioned,

Study 5 exploited results of Study 1. Finally, Study 6 is part of the "Apply" stage,

where we demonstrate the flexibility of our body schema, and we apply an illusion

of embodiment while we create a virtual illusion of rain drops on the hand. Here,

we demonstrate how our brain is capable to perceive visual-tactile congruence even

when absent, to provide a more coherent version of the reality. Study 1 was helpful

to make sure participants could feel all the stimuli we delivered.

During the exploration of the proposed themes of this thesis, it seems that we

can highlight a recurrent topic. It seems that when it comes to the sense of touch

"less is more". If maybe not unexpected, in Study 1 it appears that, even if the

ultrasonic device can reach very high frequencies (kHz order), our perception is

tuned for frequencies in the range of around 50 - 250 Hz.

Similarly, in Study 2, we demonstrate how the optimal sampling strategy to adopt
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does not coincide with reaching the maximum capability of the device. Therefore,

also in this case, less is more. We encourage tactile feedback designers working with

mid-air tactile display to decrease the sampling rate whenever rendering tactile

pattern with low frequency. Decreasing the sampling rate for a sensation that

initially cannot be perceived, might suddenly unlock the said sensation. For instance,

circular patterns as studied here, could not be perceived below 20 Hz with a high

sampling rate. However, when the sampling rate was lowered, the same circular

pattern could be perceived as low as 2 Hz. As no previous work exploring adjusting

sampling strategy has been undertaken, we expect the possibility to render low-

frequency patterns to be unveiled for most designers working with mid-air tactile

display. Moreover, low-frequency patterns, operating at a much slower speed than

usual pattern rendered with STM, are now expected to be perceived as moving points

rather than complete shapes. Moving points, providing richer information (such as

start & end locations, the direction of motion and rate of movement, all of which are

masked at higher speeds), are better recognised than multi-points patterns. This has

already been demonstrated for contact devices by Ion et al. [109] who used unistroke

patterns.

In Study 3 we observed that the performance at a shape recognition task in-

creases when we introduce some pauses at the angles of a 2D shape. Hence, we slow

down the time of shape delivery, but we increase the shape recognisability. Although

we cannot be sure if this applies to every 2D shape, in the three tested shapes we

measured an increase of the performance of 30&, which is a good initial indication.

As discussed in Section 8.5.3, it would be interesting exploring if it would be possible

to provide only the vertexes of a shape, activated in timely-fashion, to render the

sensation of a full displayed shape on the hand.

Study 4 and 5 shows how it is sufficient to deliver static stimuli (or quasi static

stimuli in Study 4) to achieve a smooth sensation of movement. In Study 4 par-

ticipants held in each hand a vibrating 3D printed handle. These handles were

activated in an optimal timely-fashion to render an illusion of movement that was

flowing from one hand to the other one. Although the movement of the motors inside
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the handles are in nature dynamic, the sensation on the hand is static. Only when

we find the optimal SOA between the activation of the two handles, the user can

feel an illusory sensation of motion. The same is true for Study 5. There, we exploit

static mid-air control points, that, when activated in an optimal way, feels like a

continuous motion. Further, it seems that for delivering an illusion of motion we

should prefer static control points in contrast to moving control points.

Finally, in Study 6 results shows how even when we provide users with less

visual-tactile congruence, it is still possible to achieve believable results, in our case

a sensation of rain drops on the hand.

We believe that illusions are indeed part of a "less is more" approach and con-

stitute a powerful tool in the hands of haptic researchers and designers to provide

realistic information without having to fully reconstruct the complexity of a tactile

stimulation.

12.6 Limitations and future work

Although every care has been taken to ensure the accuracy of the research here

presented, no work is free from limitations, and we will discuss them in this section.

Furthermore, we provide suggestions for future work, as illustrated in Figure 12.1.

Regarding our psychophysical studies, human perception is variable across differ-

ent participants, and the studies presented will need more validation by future work.

When applying psychophysical methods (e.g., in Study 1), we make a compromise

between accuracy and time constraints. Indeed, as discussed in Chapter 3, there

might be different methods from those used by the authors that could be more accu-

rate. However, they would inevitably result in more time-consuming experiments.

In these cases, one needs to decide if a longer experiment will compromise the user’s

attention and, therefore, their performance.

In Study 3, we presented a specific technique based on the segmentation of a

whole shape into single lines (i.e., we introduce small pauses at the shapes’ corners).

This adjustment alone led to an increase of 30% in participants’ accuracy. Whether
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focusing on different variables will increase participants’ performance even more has

still to be tested. At the same time, it would go beyond the scope of one PhD to take

into account the full spectrum of variables (e.g., frequency, sampling rate, intensity,

motion, direction, pauses, drawing methods, stimulus waveform, etc.). In our case,

the intention was to start a first exploration on the topic, exploiting ultrasonic mid-

air technology. Future work can build on this thesis and deepen our understanding

of haptic shape recognition by exploring further variables (Figure 12.1). Another

interesting variable to investigate further is the shape recognition time. In fact, it

would be useful to compare the time recognition for mid-air haptics compared to

visual and auditory stimuli. Considering applications for in-car interaction, this

could be relevant to explore. Still, there might be situations in which the recognition

time might not be an issue, for instance, in the case of data visualisation or science

communication for visually impaired people.

Generally, we feel that more work is required to fully comprehend psychophysical

behaviour in response to ultrasonic mid-air haptic technology. Further, body locations

could be investigated and different tactile rendering techniques exploited.

As discussed in Chapter 9 and 10, our investigation was solely focused on the

apparent tactile motion illusion. Further illusions could be investigated in future

work to expand the set of tools available to designers to render a more engaging

experience in multimedia environments and VR. Additionally, we could study the

rendering of the apparent tactile motion while the user is moving (Figure 12.1)

and between different body locations (Figure 12.1) to expand tactile interaction

beyond the hands. In doing so, there might be an implicit limitation linked to the

intensity of the mid-air haptic device employed. It is possible that this limitation

could be overcome by future technological advancements or by experimenting with

new variables, such as the stimulus waveform. Furthermore, it would be interesting

to extend tactile illusions to more users (Figure 12.1). Other interesting information

could be provided by a direct comparison between contact and mid-air haptic systems.

Finally, although an illusion of ownership of a virtual arm was successfully

conveyed in Study 6, we did not directly study participants’ presence in VR. We still
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Figure 12.1: Inspiration for future work on the opportunities around mid-air hap-
tics.

believe that if a user feels as if they are impersonating the virtual avatar, he/she

will automatically feel more immersed in the virtual scenario, but further evidence

needs to be collected. Moreover, concepts like immersion, presence, and embodiment,

and the way we can measure them, are still in the process of being clearly defined,

as discussed in Chapter 5, Section 5.2.

Although, as discussed, many aspects of our research still need to be taken

forward, and more work is needed to strengthen and extend the results, we believe

that this thesis contributes to the advancement of psychophysical knowledge of new

ultrasonic mid-air haptic systems and to the use of tactile illusions to tackle the

complexity of the sense of touch. We hope that this work will serve as an inspiration

to designers and researchers in the field of HCI and related disciplines such as
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psychology and sensory science to continue to deepen psychophysical knowledge,

investigate more tactile illusions employing mid-air haptic devices, and ultimately

enable us to design novel and compelling interactive experiences and applications

that extend the currently dominated audio-visual design space. The final aim could

be that of having fine-tuned mid-air haptic widgets ready to be used in interactive

scenarios. Let us imagine a developer creating a simple game in VR with Unity.

When the developer instantiates an object in the VE, say a button, they will now

have the possibility of dragging and dropping an already made haptic effect, say a

haptic click effect, onto the object. In the same way, we can envision having several

other types of mid-air haptic feedback ready to use for easy implementation in films,

games, and multimedia experiences in general.
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CONCLUSIONS

This thesis started by giving an overview of the complexity of the sense of touch and

how the current trend is that of implementing tactile sensations in new applications.

Specifically, because the accessible prices and compact sizes of VR HMDs have made

them suitable for the commercial market, there is a renewed interest in integrating

tactile sensations in virtual environments. In Chapter 4, we illustrated the main

haptic devices developed with the aim of providing realistic tactile feedback to the

user. The latest technology is represented by mid-air (contactless) haptic devices.

These seem particularly suitable for VR because they do not require any attachments

on users’ skin, being potentially "transparent", as discussed in Chapter 1. This

means that when a user is immersed in a VE, the haptic device will not represent a

distraction and will not be a reason for visuo-tactile incongruence, allowing for more

natural and immersive interactions. Nevertheless, given the high complexity of our

tactile system, the issue of delivering a realistic tactile sensation remains. To tackle

this issue, some researches have suggested that we can exploit the organisation of

the sense of touch to create tactile illusions.

Mid-air haptic technology is quite recent and an extensive understanding of its

potential is still missing. We have reported on six studies. Study 1, 2, and 3 aimed to

provide a better understanding of the user’s perception of ultrasonic mid-air haptic
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systems. Study 4 and 5 present a successful rendering of an illusion of motion that

extends beyond contiguous parts of the body, moving from one hand to the other. We

demonstrate how mid-air haptic technology is equally suitable for conveying this

illusion, providing a realistic sensation of continuous motion on the users’ hands.

We additionally provide perceptual models that VE developers could use to provide

realistic tactile sensations. Finally, with Study 6, we demonstrate how it is possible

to convey a feeling of embodiment using mid-air haptics, additionally showing how

the user is not distracted by visuo-tactile incongruence.

To provide the users with the illusion that the virtual environment is real, it is

fundamental that they act and react as if they were in the real world. To achieve

these results, great advancements have been made in terms of graphics realism

and compelling 3D sounds. We and many other researchers believe that the next

implementation has to be the tactile system. Our sense of touch is the ultimate sense

that informs us that what we see is real. Ultimately, we believe that what makes a

user perceive a virtual environment as real resides in the details.
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Note from the author:

"Last night I was playing a computer game. Some time had passed

since my last car game, and I was wondering what it was that made

this title so compelling and realistic. Then, I started to notice the lights

reflecting on the body of my car, the warm glow of the sunset, the lights

of the night, the dust on the bumpers. Later, I also noticed that hitting a

traffic light (it is a game) caused its lights to turn off before it started to

fly across the road. The way the damage looked on my car (a Lamborghini

Huracan LP 610-4) and its behaviour when crashing into another inter-

actable object were all in line to my expectations. Together, all these details

constructed a realistic experience in my mind that eventually caused me to

lose several hours of sleep (also due to the fact that I was procrastinating

on the finishing of this thesis). In the same way, I believe that the studies

presented here might contribute to fill some details still missing from our

virtual experiences: those details that will engage the user in a virtual

world that feels more realistic, because touching is believing. The ethical

implications involved are, however, outside the scope of this thesis."
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