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Summary

An era of cosmological inflation is the preferred mechanism for producing primordial fluctu-
ations that are later amplified to become the observed large-scale structure. Unfortunately,
constraining inflation is problematic because there are numerous models that reproduce the
Gaussian power-spectrum found in the CMB. This problem is further elevated when multi-
field models are considered because the kinetic part of their Lagrangian often contains a
non-trivial field metric describing a curved geometry in the field-space. Additionally, these
models can produce measurable primordial non-Gaussianities which are now constrained
in the Planck data. The non-Gaussianities of an inflation model are measured using the
bispectrum B and its amplitude fNL for a specific triangular template and the Gaussian
statistics are described using the tensor-to-scalar ratio r and the scalar spectral index ns.

In the first part of this thesis, we extend the transport method, first introduced by
Mulryne, Seery and Wesley, to be able to calculate the power spectrum and the bispec-
trum and their associated observables from an inflation model with a non-canonical field
metric. We implement these in a publicly available code called CppTransport to automate
the calculation of the statistical properties of the primordial fluctuations. The results of this
code are tested using a model that can be described in both canonical and non-canonical
field coordinates with excellent agreement. We also demonstrate the code’s accuracy by
comparing our bispectrum results with a separate numerical implementation of the trans-
port method called PyTransport 2.0, again finding good agreement. Lastly, we consider a
class of gelaton models that were predicted to produce boosted equilateral configurations of
the bispectrum and showed this is difficult to accomplish for models with simple potentials
and a hyperbolic field-space.

In the second part of the thesis, we introduce a new code CpptSample, which is
a CosmoSIS module that adds sampling functionality and Bayesian model selection to
CppTransport. In this, we build an interface which allows the Monte-Carlo-Markov-Chain
(MCMC) samplers in CosmoSIS to provide cosmological and Lagrangian initial condi-
tions to CppTransport. The results for the primordial spectra are then passed on to the
Boltzmann code CLASS to calculate the theoretical CMB power spectrum based on the
underlying model and Bayesian evidence is found from the Planck2015 likelihood code.
Our implementation of this retains all the extensions needed for models with a non-trivial
field-space and does not rely on the slow-roll approximation. We demonstrate this by cal-
culating marginalised statistics for the quadratic, quartic, Gelaton/QSFI and α-attractor
models of inflation.
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Chapter 1

Introduction

1.1 Preface

The previous century saw cosmology develop at a great pace. The observation of the Cosmic

Microwave Background (CMB) radiation has meant we can now make precise astrophysical

measurements from the earliest measurable time periods. Cosmological models developed

from these observations are able to track the evolution of the universe from the first second

all the way to the present day. Despite these successes, there remains some unanswered

questions. Why do we have such a homogeneous universe after nearly 14 billion years of

expansion? Where did the inhomogeneities in the CMB come from? Fortunately, inflation

provides a testable framework for answering these questions.

The predictions made by inflation are characterised by the statistics of the primordial

curvature perturbation, ζ, which is usually measured using its power spectrum. However,

there are many inflation models each with similar predictions for the power spectrum.

Therefore, measurements of the CMB do not provide enough information about the power

spectrum to rule out many of these models which leaves cosmologists with a constraint

problem.

Non-Gaussianities based on higher-order statistics measured by a bispectrum could

provide the answer to the constraint problem because they allow us to demand the CMB

measurements are consistent with both of the N-point functions. This is of particular in-

terest to the particle physics community because theories such as string theory can produce

inflation based on interactions in their complex field-spaces.

In this thesis, I present work that enables us to calculate the bispectrum for these models

with a non-trivial field space and then test those predictions using a new cosmological code

I have developed.
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Synopsis.—In Chapter 1, we give an overview of inflationary theory. This begins in §1.2

where we describe Friedmann cosmology and identify some of the problems with it. In

§1.3, we discuss how inflation uses scalar fields to solve the problems with the hot big-bang

model. Next in §1.4, we describe how the inflation field is perturbed and show how the

power spectrum is calculated from the perturbations. Calculation of the bispectrum and

how to adapt this for non-canonical fields is given in §1.5 and §1.6 respectively. Finally in

§1.7, we show how these calculations are related to CMB measurements.

In Chapter 2, we present the published work [Butchers & Seery, 2018] where we per-

formed the calculations necessary to calculate the bispectrum for an inflation model with a

non-trivial field space. These calculations include perturbing the action to third-order and

then finding the transport equations, initial conditions and the gauge transformations to ζ

needed for numerical analysis. We then implemented these in the CppTransport code and

tested the calculations on several models by using residuals between our results and other

codes. Finally, we tested the gelaton model to show that it is difficult to produce boosted

equilateral modes on the Fourier bispectrum. For hyperbolic field-space manifolds and

simple inflationary potentials, we found the enhanced equilateral modes are not currently

measurable.

In Chapter 3, we present our work on a cosmological code CppTSample, which is de-

signed to add inflation parameter sampling to CppTransport. Our implementation uses the

samplers provided by CosmoSIS [Zuntz et al., 2015] to pass initial conditions to CppTrans-

port which then calculates the power spectrum and bispectrum from them. The spectra

results are used in the Boltzmann code CLASS [Lesgourgues, 2011] that calculates the

predicted CMB based on the initial condition sample. The Planck likelihood code is then

used to estimate the quality of fit to the data for the samples, and we extract best-fit

parameters for several inflation models.

In Chapter 4, we provide a summary of the work completed and explain what has been

added to the field of cosmology with our work. In addition, we provide an outlook for the

future with upcoming CMB measurements and the potential consequences related to the

work presented here.

Units.—We use natural units where the speed of light and Planck’s constant are set to

unity as c = ~ = 1. The reduced Planck mass is M2
P = (8πG)−1. We use the metric

signature (−,+,+,+). Greek indices (µ, ν, ...) label space-time indices, whereas lower-case

Roman indices from the middle of the alphabet, (i, j, ...), label spatial indices. We use an

over-dot to indicate a time-derivative such as ȧ ≡ da/dt and also use a compact notation
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for the covariant derivative where ∇νXµ ≡ Xµ
;ν .

1.2 Friedmann cosmology

Today, modern cosmology theories always begin with the cosmological principle, which is

the statement that the universe must be both homogeneous and isotropic when viewed on

large-enough scales, and the Copernican principle, which states that there are no privileged

observers in the universe. The evidence for these principles is given from large-scale struc-

ture surveys and the CMB where homogeneity is found on scales larger than ∼ 100Mpc

[Wu et al., 1999].

1.2.1 FLRW metric

These principles combined with the observations that the universe is expanding in all

directions in proportion to its physical distance [Hubble, 1929] led Friedmann, Lemaître,

Roberston and Walker to independently find the FLRW metric [Friedmann, 1924] to de-

scribe the geometrical and causal structure of the universe as

ds2 = gµνdxµdxν = −dt2 + a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ + dφ2

))
, (1.1)

where gµν is the space-time metric, a(t) is the time-dependent, dimensionless scale factor

giving the expansion rate of the universe and is normalised so that the present value is

a0 = 1. Finally k is the constant related to the spatial curvature and has dimensions of

[length]−2. The scale factor must be independently found from Einstein’s field equations

which can be derived from the Einstein-Hilbert action [Hilbert, 1915] given as

SEH =

∫
d4x
√−g

(
1

2
M2

PR+ LM − Λ

)
, (1.2)

where the reduced Planck mass is defined M2
P = (8πG)−1 with Newton’s gravitational

constant equal to G = 6.67 × 10−11 m3 kg−1 s−2, g ≡ det(gµν) is the determinant of the

space-time metric in (1.1), LM is the Lagrangian term describing any matter fields included

in the theory, Λ is the cosmological constant and R is the Ricci scalar. This scalar is found

from the Riemann tensor, Rρσµν which is given by

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ, (1.3)

where ∂µ ≡ ∂/∂xµ and Γρµν is an affine connection on the manifold given by

Γρµν =
1

2
gρσΓσµν

=
1

2
gρσ (∂νgσµ + ∂µgσν − ∂σgµν) .

(1.4)
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From equation (1.4), we may define a covariant derivative that can transform between

different tangent spaces using parallel transport as

Xµ
;ν ≡ ∂νXµ + ΓµνρX

ρ, (1.5)

where Xµ is some arbitrary contravariant vector. The Ricci curvature tensor may be found

by performing a contraction over the first and third indices of Rσµρν ,

Rµν = Rρµρν = gσρRσµρν , (1.6)

and the Ricci scalar can be found by contracting indices on the Ricci tensor as

R = gµνRµν = gσρgµνRσµρν . (1.7)

The Einstein field equations [Einstein, 1916] are given in terms of these different quantities

by varying (1.2) with respect to the field metric gµν as

Rµν −
1

2
Rgµν =

1

M2
P

(Tµν + Λgµν) , (1.8)

where Tµν is the stress-energy tensor and is given by the variation with respect to the

matter content as

Tµν = −2
δLM
δgµν

+ gµνLM . (1.9)

If we assume the matter content of the universe behaves as a perfect fluid that is homogen-

eous and isotropic as described by the FLRW metric then we can write the stress-energy

tensor in a simpler form as

Tµν = (ρ+ P )uµuν + Pgµν , (1.10)

where ρ denotes the energy density, P is the pressure and uµ(t,x) is the 4-velocity giving

the fluid’s flow. For a comoving observer, isotropy implies that the spatial components

of the 4-velocity must be zero since the energy and momentum should not depend on a

direction and homogeneity implies that the stress-energy tensor should only evolve with

the time components which means the 4-velocity is given by uµ(t,x) = (1, 0, 0, 0).

1.2.2 Friedmann equations

Equation (1.10) can be used to find conservation laws as the stress-energy tensor is a

conserved Noether current which means the covariant derivative must equal zero,

Tµν;µ = ∂µT
µ
ν + ΓµµλT

λ
ν − ΓλµνT

µ
λ = 0, (1.11)
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where the continuity equation is given from the evolution of the energy density (ν = 0) as

ρ̇+ 3
ȧ

a
(1 + w)ρ = 0, (1.12)

and the equation of state is given by w = p/ρ. This equation can be integrated to give

the evolution of the scale factor for each matter component by using each component’s

dependency on pressure. For non-relativistic matter, the pressure is negligible (P = 0 =⇒
wmat = 0), so equation (1.12) gives ρmat ∝ a−3. We can define radiation as any relativistic

particle having pressure equal to one-third of the energy density (P = 1
3ρ =⇒ wrad = 1

3),

which gives ρrad ∝ a−4. The dark-energy component associated with the cosmological

constant, Λ, has a negative-pressure (P = −ρ =⇒ wΛ = −1) which implies the energy-

density is constant with ρΛ ∝ a0 from equation (1.12). These densities can all be combined

by parametrising according to their equation of state as

ρ(a) ∝ a−3(1+w). (1.13)

Having specified the form of the stress-energy tensor and the metric, we can use the

Einstein field equations (1.8) to give the first Friedmann equation [Friedman, 1922] from

the time-time component as

H2 ≡
(
ȧ

a

)2

=
1

3M2
P

ρ− k

a2
+

1

3
Λ, (1.14)

where we have given the definition of the Hubble parameter as H ≡ ȧ/a. The second

Friedmann equation is obtained from the trace of the Einstein field equations (1.8) and

then using the first Friedmann equation (1.14) to eliminate terms to find

ä

a
= − 1

6M2
P

(1 + 3w) ρ+
Λ

3
, (1.15)

where ä ≡ d2a/dt2 and is also known as the acceleration equation. This can also be

rewritten in terms of a deceleration parameter q, which has the definition

q ≡ − äa
ȧ2

=
(1 + 3w)ρ

6M2
PH

2
− Λ

3H2
, (1.16)

where the sign convention is chosen so that when q > 0, the universe is decelerating and

when q < 0, it is accelerating instead.

Model building.—Cosmologists use these equations to determine how the geometry of the

universe depends on the individual matter components discussed previously. This is done

using a critical density which is defined from equation (1.14) for a flat universe (k = 0)

with no contribution from the cosmological constant (Λ = 0) as

ρcrit = 3H2M2
P, (1.17)
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which can then be used to define dimensionless density parameters

Ωi,0 ≡
ρi,0
ρcrit,0

, (1.18)

where i is an index specifying each matter component and the label 0 is used to indicate

when these are the present-day measured values. This allows the deceleration parameter

in equation (1.16) to be written more simply as

q =
1

2
Ωmat + Ωrad − ΩΛ, (1.19)

where we can see that when (Ωmat/2 + Ωrad) < ΩΛ the universe expansion is accelerating

as we measure today.

Equation (1.14) can also be rewritten in terms of these parameters by using each

component’s dependence on the scale-factor as

H

H0
=
√

Ωmata−3 + Ωrada−4 + Ωka−2 + ΩΛ, (1.20)

where the curvature and Λ density parameters are defined slightly differently as Ωk ≡
−k/(a0H0)2 and ΩΛ ≡ Λ/3H2 respectively so that there is no curvature contribution in

a flat universe. As equation (1.20) is a differential equation in a and t, we can find how

the scale factor for each matter component depends on time by assuming the evolution

of the scale factor is dominated by that single component (Ωi,0 = 1) and then integrat-

ing the equation. During matter-domination, we find a(t) ∝ t2/3, whereas for radiation-

domination, the solution gives a(t) ∝ t1/2 and for Λ-domination, the scale-factor evolves

exponentially as a(t) ∝ eHt which gives the accelerating expansion associated with dark-

energy. This can also be done with all the terms with their measured values included

and numerically integrated to find the time periods each component was dominant for and

when the dominant component changed.

From equation (1.20), we may define the cosmological redshift, z, which is given by

a(t) =
a

a0
=

1

(1 + z)
, (1.21)

where we recall that the scale-factor is normalised so that a0 = 1. This relation can be

used to determine the redshift of different epochs in the universe such as when the matter

and radiation density contributions are equal (zeq) or the epoch of reionisation (zre). The

redshift can also be used to form measures of distance such as the angular diameter distance

and the luminosity distance which are respectively used by observational cosmologists to

form standard rulers and standard candles. These standard measures were used to find

the Baryon Acoustic Oscillations (BAOs) peak [Eisenstein et al., 2005] and with type Ia
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Parameters Measurement 68% Confidence region

Ωbh
2 0.02242 0.00014

Ωch
2 0.11933 0.00091

H0[km s−1 Mpc−1] 67.66 0.42

ΩΛ 0.6889 0.0056

Ωm 0.3111 0.0056

Ωk 0.001 0.002

zeq 3387 21

ΩR[×10−5] 9.182 0.175

Table 1.1: Planck 2018 results taken from [Aghanim et al., 2018] for the present values

of the following cosmological parameters: baryon-density, cold dark-matter density (with

h ≡ H0/100km s−1 Mpc−1), Hubble constant, dark-energy density, matter density (baryons

+ cold dark-matter), curvature density, redshift of radiation-matter equality and radiation

density (given from ΩR = Ωm/(1 + zeq)).

supernovae to determine that the expansion of the universe is accelerating [Perlmutter

et al., 1999, Riess et al., 1998].

Thermal history & ΛCDMmodel.— These equations are enough to discuss the dynamics of

the early universe and to give a brief overview of the thermal history up until production of

the Cosmic Microwave Background (CMB). In this description, the equilibrium distribution

function for different particle species follow the Fermi-Dirac or Bose-Einstein distributions

for fermions and bosons respectively

fi(p, t) =
gi

(2π)3

[
exp

(
Ei(p)− µ

T

)
± 1

]−1

, (1.22)

where i denotes the specific particle, gi is the spin degeneracy factor, Ei(p) =
√
p2 +m2 is

the energy of the particle, µi is the chemical potential, Ti is the temperature, the ±1 is for

fermions and bosons respectively and we use natural units where the Boltzmann constant

is kB = 1. This distribution function gives the number of particles with a 3-momentum

element d3p contained in a volume element d3x. We can integrate equation (1.22) to

obtain the number density n, energy density ρ and pressure density P respectively as

n =

∫
fi(p, t)d

3p,

ρ =

∫
E(p)fi(p, t)d

3p,

P =

∫
p2

3E(p)
fi(p, t)d

3p.

(1.23)
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As the universe expands and cools, different particles become Boltzmann suppressed in

equation (1.22) when the temperature becomes less than the mass of a given particle and

their number density begins to decrease as the universe expands. This is interpreted as

the epoch when the universe is no longer hot enough to produce that particle via pair

production and the particle becomes non-relativistic so it instead begins to annihilate.

This particle history begins with baryogenesis where through a currently-unknown

process, an overabundance of matter is produced over antimatter. At a temperature of

100GeV, the electro weak phase transition begins where particles began to get their masses

via the Higgs mechanism and at T ∼ 150MeV, the universe is cool enough for the quarks

to form mesons and baryons in the QCD phase transition. As the lightest particles in the

standard model, the neutrinos were the first particles to decouple from thermal equilib-

rium at T ∼ 1MeV. Next, electron-positron annihilation begins at T ∼ 500keV and the

annihilation energy is transferred to the photons but not the decoupled neutrinos causing

there to be a Cosmic Neutrino Background (CνB) that is slightly cooler than the CMB.

The production of light elements in Big-bang Nucleosynthesis (BBN) is dependent ini-

tially on the abundances of protons and neutrons which are controlled in the early universe

via the weak interaction mainly in β± decay. This continues in equilibrium until T ∼ 1MeV

when the neutrinos decouple but nucleosynthesis cannot begin then because the lightest

elements like deuterium (D) have binding energies E ∼ O(MeV) so that any elements

formed are immediately broken down via photodissociation. BBN doesn’t begin producing

a significant amount of deuterium until T ∼ 100keV which is mainly used to produce

helium (4He) with much smaller abundances of beryllium (7Be) and lithium (7Li). BBN

finishes soon afterwards because the universe isn’t hot enough to produce heavier elements

due to their Coulomb barriers. However the predicted relative abundances of these ele-

ments [Peebles, 1966] is one of the most successful cosmological predictions when compared

with measurements.

The universe transitioned from being radiation dominated to matter dominated during

the matter-radiation equality epoch when the temperature is T ∼ 0.75eV. Eventually

the universe cools enough for electrons to preferentially combine with protons to form

neutral hydrogen in recombination at T ∼ 0.3eV where the decrease in the number of free

electrons causes Thomson scattering to stop between the electrons and photons. Finally,

the photons decouple entirely in photon decoupling at a temperature T ∼ 0.25eV and time

t ∼ 380, 000yrs where the photons can now free-stream in the observed CMB we see today.

The ΛCDM cosmological model describes these processes well using 6 independent
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parameters which are determined using measurements of the CMB made from various

space telescopes such as COBE [Mather et al., 1994], WMAP [Hinshaw et al., 2013]and

PLANCK [Aghanim et al., 2018]. The Planck 2018 results for some of these cosmological

parameters (see [Lahav & Liddle, 2014] for a detailed description of both the independent

and derived parameters) are summarised in Table 1.1. However, there are some problems

with this hot big-bang model description as will be seen in the following sections.

1.2.3 Problems with the hot big-bang model

Despite the many successes of the ΛCDM model for making measurable predictions of the

CMB and in giving a time-line of key events in the early universe, there are some problems

in the measurements that remain unexplained by this model. In fact, the standard model

of cosmology does not predict the observed homogeneities and isotropy we observe despite

the use of the FLRW metric given in equation (1.1).

The horizon problem.—If we consider the distance travelled by a photon from the big-

bang to recombination when the photon is able to travel freely as the CMB and then to

an observer today, we first note that photons follow a null geodesic which means ds2 = 0

in equation (1.1). This implies that

dt = a(t)dχ, (1.24)

where χ is the radial part of the FLRW metric and represents the comoving distance

travelled by the photon. We may define a conformal time, dη ≡ dt/a, equal to this

comoving distance

χ =

∫
dχ =

∫ η0

ηi

dη ≡
∫ t0

ti

dt

a(t)
=

∫ ln(a0)

ln(ai)
d ln a

1

aH
, (1.25)

where ti is the initial time, t0 is the present time and in the last step we defined the

comoving Hubble radius (aH)−1. We can use equation (1.20) to show that the conformal

time for a dominant matter component parametrised via its equation of state is

η(a,w) =
2

H0(1 + 3w)
a

1
2

(1+3w) =
2

H0(1 + 3w)
(aH)−1, (1.26)

where we see that the conformal time and Hubble radius are almost equal. This conformal

time is also known as the comoving particle horizon and is the furthest distance a photon

could have travelled in a time t. From equation (1.26), it is simple to see that the scale

factor evolves as a(η) ∝ η2/(1+3w) for the different cosmological components.

This can be used in equation (1.25) with t set to be the recombination time (tre ∼
370, 000yrs) to find the comoving distances between the big-bang and recombination and
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between recombination and today which are χre ∼ 300Mpc and χ0 ∼ 14000Mpc respect-

ively. The ratio of these is χre/χ0 = 300Mpc/14000Mpc ∼ 1° which gives the expected

angular size of patches in the CMB that are causally correlated. However, we measure

the CMB today to have a temperature T0 = (2.72548 ± 0.00057)K [Fixsen, 2009] with

∆T/T ∼ 10−4 which indicates the CMB temperature is strongly correlated across the

whole sky on angles much larger than causality predicts. A diagram demonstrating this

problem can be seen in Figure 1.1.

ηBB

ηre

η0

𝜃

>14,000 Mpc

300 Mpc

η

𝜒
300 Mpc

Figure 1.1: A space-time diagram demonstrating the horizon problem. The two grey

triangles indicate photons that have propagated from the big-bang (ηBB) up until the

CMB at ηre. Today at η0, we shouldn’t see correlated regions for θ larger than 1° because

it shouldn’t be possible for the grey triangles to be causally connected.

The flatness problem.—In the first Friedmann equation (1.14), we saw that the spatial

curvature parameter k is related to the energy densities and the Hubble parameter in a

FLRW universe. If we consider this equation without a contribution from the Λ term 1

and use the density’s dependence on the scale factor given in equation (1.13), we have

|Ω(t)− 1| = k

a2H2
∝ ka1+3w, (1.27)

1The Λ term is excluded here because it gives many of the same dynamics as inflation ie. ä > 0 and

a negative-pressure. Excluding it doesn’t make any difference to the outcome because the universe is

radiation and matter dominated before the cosmological constant dominates much later.
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where we recall that wmat = 0 & wrad = 1
3 . The right-hand side of this equation must be

increasing in size because |Ωmat(t) − 1| ∝ t2/3 and |Ωrad(t) − 1| ∝ t which all implies the

universe is being driven away from spatial flatness as time passes. Back in Table 1.1, we saw

that the current measurement of the curvature density parameter is Ωk = (0.001± 0.002)

or that the universe is spatially flat up to a 0.2% uncertainty. This means that the universe

must have been incredibly flat in the early universe to within ±10−30 during the electro-

weak phase transition [Liddle, 1998]. The ‘fine-tuning’ of this parameter is unlikely without

some physical process to describe why the early universe was so flat.

The hot-relics problem.—The third and final problem exists because the very early-universe

would have been very hot with temperatures well above the Grand Unified Scale (GUT) at

1016 GeV. At these temperatures, the three forces in the standard model of particle physics

are believed to become equal in strength and unify as one force and the GUT theories

from beyond the standard physics (BSM) models predict that heavy ‘relic’ particles were

produced and should be observed today. The most commonly discussed of these is the

magnetic monopoles [’t Hooft, 1974, Polyakov, 1974] where isolated poles with a magnetic

charge are produced due to a broken symmetry. Today, we haven’t found any of these relics

which either implies that the GUT and standard cosmology theories are incompatible or

that the unification ideas of GUT theories are incorrect.

1.3 Inflation

Cosmological inflation refers to the period of accelerating, quasi-exponential expansion of

space occurring from 10−36 s to 10−32 s after the initial big-bang. It was originally proposed

by several authors [Guth, 1981] [Linde, 1982] [Albrecht & Steinhardt, 1982] as a means

of resolving the aforementioned problems with the hot big-bang model. As we will later

see, it is also a way of producing the quantum fluctuations that later grew to produce the

large-scale structure seen in the universe today.

1.3.1 Conditions for inflation

Exponential expansion implies that the scale factor evolves in proportion to the Hubble

parameter as a(t) ∝ eHt. As this expansion is accelerating, this must mean that ȧ > 0 and

that the condition for inflation is

ä > 0. (1.28)
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If we then insert this condition into the second Friedmann equation (1.15), we find a

condition on the pressure that is

1 + 3w < 0 ⇐⇒ w =
P

ρ
< −1

3
, (1.29)

where we see that inflation requires the cosmological fluid to have a negative pressure as

the energy density ρ cannot be negative. This is clearly a violation of the strong energy

condition (SEC) [Visser & Barcelo, 2000] which states that for normal matter ρ+ 3P > 0.

Next we consider the Hubble radius which is related to ȧ as (aH)−1 = (ȧ)−1 which we can

then take a time-derivative of as

d

dt

(
1

aH

)
=

d

dt

(
1

ȧ

)
= − ä

ȧ2
, (1.30)

where if we use the first inflation condition (1.28) for

ä > 0 ⇐⇒ d

dt

(
1

aH

)
< 0, (1.31)

which means that during inflation the comoving Hubble radius is shrinking. This means

the Hubble radius is now distinct from conformal time because in the η solution (1.26) with

a → 0 and w < −1
3 , we have η → −∞. We can define the different length scales based

on their size relative to the Hubble radius where a comoving distance x will be causally

connected in the sub-horizon regime if x < (aH)−1 and disconnected in the super-horizon

regime when x > (aH)−1. Horizon-crossing occurs when x = (aH)−1. It is this property

in particular that allows the problems with the hot big-bang model to be resolved because

the particle horizon continues to expand while the Hubble radius shrinks.

Resolving the problems.—As we now have a shrinking Hubble radius with an expanding

particle horizon, the causality issues in the horizon problem are now solved provided that

the currently observable Hubble sphere is smaller than the Hubble radius at the start

of inflation. That would mean all observable scales are now causally related on angular

sizes with θ > 1°. In addition to this, the flatness problem is solved with w 6 −1/3 in

equation (1.27) because the scale-factor dependence now gives |Ω(t) − 1| → 0 indicating

the universe is tending to spatial flatness during inflation. Finally, the hot-relics problem

is also solved because the massive expansion caused by inflation now means the abundance

of relics should be dilute enough for them to be unobservable today.

The last question remaining is how much inflation is needed to solve these problems?

In order to calculate this, we define another measure of time known as e-foldings, which is

the number of times the universe has expanded by a factor of e

N = ln

(
a2

a1

)
=

∫ t2

t1

Hdt. (1.32)
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As previously mentioned, we have a condition on the Hubble radius to solve the horizon

problem

a0H0 < aiHi, (1.33)

where ‘i’ indicates these values are at the start of inflation. In order to estimate the value of

aiHi, we must assume something about the post-inflation history. This is usually a period

of reheating, evolving like matter, before radiation domination begins up until the epoch of

matter-radiation equality where matter becomes dominant until dark energy becomes more

significant in the Λ-dominated era. There are various estimates made by different authors

[Liddle & Leach, 2003] [Dodelson & Hui, 2003] [Remmen & Carroll, 2014] but typically

we need 55 < N < 70 e-folds to solve the horizon and flatness problems depending on the

model of inflation and the assumptions on reheating.

1.3.2 Scalar fields

We will now see how a homogeneous, slowly-rolling scalar field, φ(t) can satisfy all the

conditions set out in §1.3.1. For this scalar field, the Lagrangian term describing it is

LM = (∇φ)2/2− V (φ) which means the Einstein-Hilbert action (1.2) is

SEH =
1

2

∫
d4x
√−g

(
M2

PR+ ∂µφ∂
µφ− 2V (φ)

)
, (1.34)

where we have no contribution from the cosmological constant Λ = 0 as it has a negligible

effect on the dynamics in the early-universe. The second term above is the canonical

kinetic term and we define it as being non-canonical whenever it is modified by a term

such as the field-space metric GIJ which describes a non-trivial field space. As the field

is slowly-rolling, the dynamics are largely determined by the potential energy V (φ) in the

last term. It is usually the potential that determines a particular model of inflation; every

unique V (φ) corresponds with a different model. If we minimise the action with respect

to the field, we find the background field equation

φ̈+ 3Hφ̇+ V ′(φ) = 0, (1.35)

where V ′(φ) ≡ dV/dφ. If the potential term dominates over the 3Hφ̇ term, the solution

for φ exponentially decays with the potential value whereas if the potential is subdominant

then the solution is a harmonic oscillator solution with a damping term 3Hφ̇ known as

Hubble damping. We can now use LM in equation (1.9) to find the stress-energy tensor

Tµν = ∂µφ∂νφ− gµν
(

1

2
∂λφ∂

λφ− V (φ)

)
. (1.36)
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If we assume the scalar field is also a perfect fluid, then the energy density is

ρ =
1

2
φ̇2 + V (φ), (1.37)

and has a pressure given by

P =
1

2
φ̇2 − V (φ), (1.38)

where the field equation (1.35) can also be found by inserting equations (1.37) & (1.38)

into the continuity equation (1.12). The equation of state can be calculated for this scalar

matter fluid

wφ =
P

ρ
=

1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
' −V (φ)

V (φ)
= −1, (1.39)

and we can see the SEC inflation condition (1.29) is satisfied when the potential V (φ)

dominates over the kinetic term 1
2 φ̇

2. This is further verified when we use the energy

density and pressure solutions to write the Friedmann equations for the scalar field as

H2 =
1

3M2
P

(
1

2
φ̇2 + V (φ)

)
, (1.40a)

ä

a
= − 1

3M2
P

(
φ̇2 − V (φ)

)
, (1.40b)

where we have taken the spatial curvature to be flat with k = 0. From the second Fried-

mann equation (1.40b), we can see that if V (φ)� φ̇2, then the condition ä > 0 is satisfied

and the scalar field is generating accelerating expansion as we need. As the condition that

inflation gives a shrinking Hubble sphere is derived from the condition on ä, we find all

the requirements needed to solve the big-bang problems are met.

1.3.3 Slow-roll parameters and the attractor solution

The shrinking Hubble radius condition described by equation (1.31) can be used to show

that the Hubble parameter is slowly evolving and that the scalar field is slowly rolling. If

we perform a time derivative on that condition, we can define a slow-roll parameter ε

d

dt

(
1

aH

)
= − ȧH + aḢ

(aH)2
= −1

a

(
1− Ḣ

H2

)
< 0 =⇒ ε ≡ − Ḣ

H2
< 1, (1.41)

where we can immediately see the Hubble parameter must be slowly varying to satisfy

this condition on ε. We can better define ε in terms of the fields by differentiating the

Friedmann equation (1.40a) by using the field equation (1.35) to give φ̇2 = −2M2
PḢ and

find

εH ≡ −
Ḣ

H2
=

φ̇2

2M2
PH

2
� 1, (1.42)
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where inflation is usually defined to continue until εH = 1 and the sub-script H indicates

this parameter is defined in terms of H. In order to solve the horizon problem, we also

need ε to be evolving slowly to ensure we have enough inflation. This is used to define the

second slow-roll parameter η as

|ηH| ≡
d ln ε

dN
=

ε̇

Hε
� 1, (1.43)

where we can see this condition implies ε̇/ε is small compared with the Hubble radius

H−1. These parameters can be given in terms of potentials by first using the condition

that φ̇2 � V (φ) to approximate the field and Friedmann equations respectively as

3Hφ̇ ≈ V ′(φ), (1.44a)

H2 ≈ V

3M2
P

, (1.44b)

where collectively these equations are known as the slow-roll approximation. Equations

(1.44a) & (1.44b) are used to define the potential slow-roll parameters with εV as

εV ≡
M2

P

2

(
V ′(φ)

V (φ)

)2

� 1, (1.45)

and the parameter ηV as

ηV ≡M2
P

V ′′(φ)

V
� 1, (1.46)

where these parameters measure the slope and curvature of the potential respectively and

in the slow-roll limit they are related to the Hubble parameter definitions as εH → εV and

ηH → ηV − εV. From εH in equation (1.42), we can show that the slow-roll approximation

gives an attractor solution where we again use φ̇2 = −2M2
PḢ to find

φ̇ = −2M2
PH
′(φ), (1.47)

which can be inserted into the first Friedmann equation (1.40a) to give the Hamilton-Jacobi

equation [Lyth & Liddle, 2009] as

[
H ′(φ)

]2 − 3

2M2
P

H2(φ) = − 1

2M4
P

V (φ). (1.48)

This can be shown to have an attractor solution by inserting a linear perturbation in H

as H(φ) = H0(φ) + δH(φ) into equation (1.48) to obtain

H ′0δH
′ ' 3

2M2
P

H0δH, (1.49)

which has the solution

δH(φ) = δH(φi) exp

(
3

2M2
P

∫ φ

φi

H0(φ)

H ′0(φ)
dφ

)
= δH(φi) exp [−3N(φ)] , (1.50)
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ϕ

attractor

ϕ

m√
12π

−m√
12π

Fig. 5.3.

is ultra-hard, p≈ +ε. Neglecting mϕ compared to ϕ̇ in (5.27), we obtain

dϕ̇

dϕ
≃

√
12πϕ̇. (5.28)

The solution of this equation is

ϕ̇ = C exp
(√

12πϕ
)

, (5.29)

where C < 0 is a constant of integration. In turn, solving (5.29) for ϕ(t) gives

ϕ = const − 1√
12π

ln t. (5.30)

Substituting this result into (5.25) and neglecting the potential term, we obtain

H 2 ≡
(

ȧ
a

)2

≃ 1
9t2

. (5.31)

It immediately follows that a ∝ t1/3 and ε ∝ a−6 in agreement with the ultra-hard
equation of state. Note that the solution obtained is exact for a massless scalar field.
According to (5.29) the derivative of the scalar field decays exponentially more
quickly than the value of the scalar field itself. Therefore, the large initial value
of |ϕ̇| is damped within a short time interval before the field ϕ itself has changed
significantly. The trajectory which begins at large |ϕ̇| goes up very sharply and
meets the attractor. This substantially enlarges the set of initial conditions which
lead to an inflationary stage.

Inflationary solution If a trajectory joins the attractor where it is flat, at |ϕ| ≫ 1,
then afterwards the solution describes a stage of accelerated expansion (recall that
we work in Planckian units). To determine the attractor solution we assume that

Figure 1.2: A phase-space plot in φ and φ̇ showing the inflation trajectories converging

to the attractor solutions for the chaotic model of inflation with a potential V = m2φ2/2.

This is figure 5.3 taken from [Mukhanov, 2005].

where φi is the initial value of the scalar field at the start of inflation. From equation

(1.50), we can see that δH/H0 converges quickly to zero when εH 6 1 and the attractor

solution will be reached for most initial values of φi. This can be seen particularly well in

the φ − φ̇ phase-space for chaotic inflation [Linde, 1983] with a potential V (φ) = 1
2m

2φ2.

This is given in Figure 1.2, where we can see all initial values of φ and φ̇ form ‘trajectories’

that converge to the attractor solutions at ±m/
√

12π and remain together until they reach

their final values. As the Hamilton-Jacobi equation (1.48) holds true for any slow-roll

inflation model with εH < 1, we can see that most inflation models will have attractor

solutions with the incoming inflation trajectories converging to them.

1.4 Field perturbations

So far we have always considered a homogeneous scalar field φ(t), which only depends

on time with no spatial dependence. However, if the scalar field is decomposed into a

background component φ0 that only depends on time and a small, spatially dependant

perturbation δφ as φ(x, t) = φ0(t) + δφ(x, t), then it was shown by various authors [Guth

& Pi, 1982] [Bardeen et al., 1983] [Mukhanov, 1985] [Lyth, 1985] [Sasaki, 1986] that these

small fluctuations in the field can generate the primordial density perturbations that later

formed the large-scale structure in our universe. In this section, we will see how the

predictions made from these calculations can later be used to constrain inflation using our

measurements of the CMB.
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1.4.1 Quantising the perturbations

We begin by considering an action that just contains the Lagrangian for the free-scalar

field as

S =
1

2

∫
d4x
√−g {∂µφ∂µφ− V (φ)} , (1.51)

where x is an arbitrary space-time coordinate. In order to apply our perturbation, we take

a Taylor expansion up to O(δφ2) in the action to obtain

S2 =
1

2

∫
d4x
√−g

{
∂µ(δφ)∂µ(δφ))− V,φφ(φ)δφ2

}
, (1.52)

where δφ(x, t) ≡ φ(x, t)− φ0(t) and V,φφ(φ) = d2V/dφ2. For now, we consider the FLRW

metric to be unperturbed and spatially flat which can be expressed using conformal time

as

ds2 = a2(η)
(
−dη2 + δijdx

idxj
)
. (1.53)

From equation (1.53), we have
√−g = a4, which allows us to rewrite equation (1.52) using

conformal time as

S2 =
1

2

∫
dη d3x a2

{
(∂ηδφ)2 − (∇δφ)2 − a2V,φφ(δφ)2

}
, (1.54)

where the action can be minimised by varying it with respect to the perturbation δφ. Next

we may define our Fourier convention as

f(η,x) =
1

(2π)3

∫
d3k f̂(η,k)eikx, (1.55)

and transform equation (1.54) to obtain

(δφ)′′ + 2
a′

a
(δφ)′ + |k|2(δφ) + a2V,φφ(δφ) = 0 (1.56)

where k is a comoving wave number defined as k = 2πa/x and a prime ′ denotes a differ-

entiation with respect to η here. The quantisation of this field requires the perturbation

is promoted to a quantum operator

δ̂φ(η,x) =

∫
d3k

(2π)3

{
â(k)f(η, k) + â†(−k)f∗(η, k)

}
eikx, (1.57)

where â† and â are creation and annihilation operators respectively, with canonical com-

mutation relations [â, â] = [â†, â†] = 0 and [â(k), â†(q)] = (2π)3δ(k−q). We also need the

canonical conjugate momentum which is given by

δπ =
dL

d(δφ)′
= a2(δφ)′, (1.58)
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which is promoted to a quantum operator

δ̂π(η,x) =

∫
d3k

(2π)3
a2(η)

{
â(k)f ′(η, k) + â†(−k)f∗′(η, k)

}
eikx, (1.59)

where f(η,x) is a function governing the time evolution that needs to be determined using

the commutation relations between δ̂φ and δ̂π. These relations are given by

[â(k), â†(q)] = (2π)3δ(k− q), (1.60a)

[δ̂φ(η,x), δ̂π(η,y)] = iδ(x− y). (1.60b)

If we insert equations (1.57) & (1.59) into commutation relation (1.60b) and use the com-

mutation relation (1.60a) for the creation and annihilation operators, we find theWronskian

condition

a2(η)
{
f(η, k)f∗′(η, k)− f∗(η, k)f ′(η, k)

}
= i. (1.61)

Finding f(η, k) needs us to use the η-dependance of a(η) for de-Sitter space with a = eHt

which gives η = −(aH)−1 and a(η) = −(Hη)−1. The function f(η, k) must satisfy the

perturbed field equation (1.56)

f ′′(η, k)− 2

η
f ′(η, k) +

{
k2 + a2V,φφ

}
f(η, k) = 0. (1.62)

In slow-roll inflation, we can assume k2 � a2V,φφ because the slow-roll parameter ηV is

proportional to V,φφ and ηV ∼ 0 during inflation. Neglecting the potential term means

equation (1.62) is satisfied with

f(η, k) = |A|(1− ikη)eikη, (1.63)

with |A| being a normalisation constant needed to satisfy the Wronskian condition. When

applying the Wronskian condition, we find |A| = H/
√

2k3 which allows us to fully define

the field operators [Chernikov & Tagirov, 1968] [Schomblond & Spindel, 1976] [Bunch &

Davies, 1978] as

δ̂φ(η,x) =

∫
d3k

(2π)3

{
H√
2k3

(
â(k)(1 + ikη)e−ikη + â†(−k)(1− ikη)eikη

)}
eikx, (1.64)

with a momentum operator

δ̂π(η,x)

∫
d3k

(2π)3

{
H√
2k3

(
â(k)k2ηe−ikη + â†(−k)k2ηeikη

)}
eikx, (1.65)

where the annihilation operator â now annihilates the vacuum state as â(k)|0〉 = 0 for all

k. The creation operator â† creates the particles compatible with the flat-field space state

on subhorizon scales. This is the vacuum state seen by an observer who is in free-fall with
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the expansion and is following a geodesic path. The two-point correlation function of this

vacuum state is given by

〈δ̂φ(η,k)δ̂φ(η,k′)〉 = (2π)3 H
2

2k3

(
1 +

k2

a2H2

)
δ(k + k′), (1.66)

where we can define a power-spectrum Pδφ(k) using the definition 〈δ̂φ(η,k)δ̂φ(η,k′)〉 ≡
(2π)3δ(k + k′)Pδφ(k) to obtain

Pδφ(k) =
H2

2k3

(
1 +

k2

a2H2

)
. (1.67)

The power spectrum measures the scale-dependence for the variation in the fluctuations

δφ so that a larger power spectrum value corresponds with a larger variance in δφ for

a particular value of k. From equation (1.67), we can see that it has almost no scale-

dependence as for super-horizon modes with k � aH, the second term above doesn’t

contribute significantly to the power spectrum. In fact, on super-horizon scales with kη �
1, we lose the terms ∝ ikη in equation (1.64) and the commutator [δ̂φ(η,k), δ̂π(η,q)] = 0

on these scales. This is known as the quantum-to-classical transition [Starobinsky, 1982]

[Polarski & Starobinsky, 1996] [Lyth & Seery, 2008] where the initial quantum fluctuations

in δφ become classical, stochastic perturbations after horizon-crossing. It is through this

process that the small-scale structure is amplified into the large-scale structure observed

today.

1.4.2 Gauges and super-horizon conservation

At this point, we have only considered scalar perturbations in the field and neglected the

scalar perturbations in the metric. However, there is not a unique way to choose the

coordinates that define these perturbations so we choose a gauge that slices the spacetime

onto a particular hypersurface. An observer in these gauge coordinates follows a time-like

world line known as a thread with a four-velocity uµ = dxµ/dη defining their frame. The

perturbations in the fields can then be uniquely defined using gauge-invariant variables

that do not change between different gauge choices. These can be defined using the FLRW

metric containing arbitrarily perturbed scalar fields as

ds2 = −(1 + 2A)dt2 + 2a2(t)∇iBdxidt+ a2(t) [(1− 2ψ)γij + 2∇i∇jE] dxidxj , (1.68)

where A, B, ψ & E are four independent functions of time and ∇i represents a covariant

derivative with respect to the unperturbed spatial metric γij . The quantity ψ can be

identified as the gauge-dependant curvature perturbation of a fixed-t hypersurface which
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in the gauge t→ t+ δt transforms as

ψ → ψ′ = ψ +Hδt, (1.69)

where we have first applied the transformation to a(t) and then applied that to the (1−2ψ)

term in equation (1.68) whilst only keeping linear terms. This can be related to the energy

density which transforms as

ρ→ ρ′ = δρ− ρ̇δt. (1.70)

If we set equation (1.70) to zero for constant density, we find δt = δρ/ρ̇ which can be used

in equation (1.69) to define the curvature perturbation on constant-density hypersurfaces ζ

[Bardeen, 1980] as

−ζ = ψ +H
δρ

ρ̇
. (1.71)

This can be related to the comoving curvature perturbation R as the spatially flat Ricci

scalar for the metric γij for constant conformal time is

R(3) =
4

a2
∇2ψ, (1.72)

which allows us to define R using 4∇2R = −a2R(3) and defines R in terms of ψ too. Under

a gauge transformation, ψ transforms as before, but we now define the comoving gauge

as the slicing that observes no momentum density with δT 0
i = −φ̇∂iδφ = 0 which implies

that δφ→ δφ− φ̇δt = 0 to give the definition of R [Lukash, 1980] [Lyth, 1985] as

R = ψ +H
δφ

φ̇
. (1.73)

During slow-roll inflation, the energy-density perturbation δρ is dominated by the scalar

field perturbation δφ which makes −ζ and R equivalent which is also true on super-horizon

scales where −ζ = R+O(k2) [Baumann, 2011].

The curvature perturbations ζ and R are vital because they are gauge-invariant –

the coordinate definitions do not change the values of these when using different gauges

so that no fictitious perturbations are produced when using them. We would also like

these perturbations to be conserved on super-horizon scales so that we can find a transfer

function to a given mode when that scale re-enters the horizon after inflation has ended.

This function will relate the primordial power spectrum to the temperature fluctuations

seen in the CMB today. To prove the conservation on super-horizon scales [Wands et al.,

2000], we define a time-like vector orthogonal to the constant-t hypersurface as

nµ =
(
1−A,−∇iB

)
. (1.74)
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As the energy-momentum tensor is covariantly conserved (Tµν;µ = 0), there is a locally

conserved conservation law nνTµν;µ = 0 for the density perturbation which gives

δ̇ρ = −3H(δρ+ δP ) + (ρ+ P )
[
3ψ̇ −∇2(σ + v +B)

]
, (1.75)

where σ = Ė − B is the shear and v represents the velocity of the fluid. We find ζ̇

by identifying that δρ = 0 and ψ = −ζ whilst neglecting the divergence term, ∇2(σ +

v + B) because on super-horizon scales the Fourier transformation gives ∇2/(aH)2 =

−k2/(aH)2 ∼ 0 to find

ζ̇ = − H

ρ+ P
δPnad, (1.76)

where δPnad is a non-adiabatic pressure perturbation. Equation (1.76) shows that ζ and

therefore R are conserved on super-horizon scales provided that the divergence term is neg-

ligible and that there are no non-adiabatic pressure perturbations – that is perturbations

that satisfy

δPnad = δP − Ṗ

ρ̇
δρ = 0, (1.77)

which can be integrated to show that the pressure P must be a unique function of ρ.

1.4.3 Tensor perturbations

Expansion into scalar modes is not the only way to perturb the space-time metric and the

corresponding Einstein equations. In fact, the metric can be further decomposed into two

divergence-free spatial vector perturbations and a traceless, symmetric tensor perturbation

as well as the four scalar modes discussed previously. This gives ten degrees of freedom in

the perturbations because the vectors and tensor both have two independent components.

For the vector perturbations, the Einstein equations all give solutions that decay with the

expansion of the universe [Bertschinger, 2001] [Mukhanov, 2005] and these perturbations

are not generated by inflation so we will not consider them here.

For the tensor modes, the perturbed FLRW line element is

ds2 = a2(η)
[
−dη2 + (δij + 2hij)dx

idxj
]
, (1.78)

where hij is the traceless and transverse tensor perturbation. The Einstein field equation

(1.8) can be used to find the equation of motion for this field as

(hsk)′′ + 2
a′

a
(hsk)′ + k2(hsk) = 0, (1.79)

where we have assumed that Tij has zero anisotropic stress like a perfect fluid. Under the

Fourier decomposition, the tensor perturbation is now split into two scalar modes s for
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each polarisation (+,×). This means there are two copies of the same field equation found

in the scalar mode: one for each polarisation ie. MPh
s
ij = 2(δφ) with a factor of the Planck

mass added to make h dimensionless. Therefore, we may use equation (1.66) to write the

tensor two-point correlation function for each polarisation as

〈hsij(k), hsij(k
′)〉 =

4

M2
P

〈δ̂φ(k)δ̂φ(k′)〉 = (2π)3 2H2

k3M2
P

δ(k− k′), (1.80)

where we define the total tensor power-spectrum Phij as the sum over the two polarisations

and use the definition 〈hij(k)hij(k
′)〉 ≡ (2π)3δ(k + k′)Phij (k) to obtain

Phij (k) =
4H2

k3M2
P

. (1.81)

It is through this mechanism that inflation generates primordial gravitational waves where

the fluctuations in the spatial metric are amplified by inflation. They are often called a

“smoking gun” for inflation because a detection of these waves would give strong evidence

as it is difficult to generate the tensor fluctuations without inflation. Moreover in the next

section, we will see how the tensor power spectrum can be combined with the tensor to

scalar ratio to probe the energy scale of inflation and hence the scales of structure for

quantum gravity.

1.4.4 Observables for two-point statistics

In summary so far, we have a power spectrum for the scalar fluctuations given by equation

(1.67) and a tensor power spectrum given by equation (1.81) as well as some gauge-invariant

variables ζ and R to describe them with. These variables are equivalent and conserved in

the super-horizon regime so we can use equation (1.73) in the zero-curvature gauge (ψ = 0)

to find the dimensionless power spectrum as

Pζ(k) =
k3

2π2

(
H

φ̇

)2

Pδφ(k)

∣∣∣∣
k=aH

=

(
H

φ̇

)2(H
2π

)2 ∣∣∣∣
k=aH

, (1.82)

where the dimensionless normalisation has been chosen so that 〈ζζ〉 =
∫∞

0 Pζ(k)d ln k and

the vertical bar indicates these should be evaluated at horizon crossing for the mode k.

Similarly for the tensor power spectrum, we have the dimensionless version given by

Phij (k) =
k3

2π2
Phij (k)

∣∣∣∣
k=aH

=
2H2

π2M2
P

∣∣∣∣
k=aH

. (1.83)

The scalar power spectrum can be parametrised in k-space with

Pζ(k) = As(k∗)
(
k

k∗

)ns(k∗)−1

, (1.84)
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where As gives the scalar spectrum amplitude and k∗ is a pivot scale used as a reference.

The k-dependence of the power spectrum is given by the scalar spectral index

ns − 1 =
d lnPζ(k)

d ln k
, (1.85)

where zero scale dependence is given by ns = 1. This is similarly done for the tensor power

spectrum with

Phij (k) = At(k∗)
(
k

k∗

)nt(k∗)
, (1.86)

and the tensor spectral index

nt =
d lnPhij (k)

d ln k
, (1.87)

with scale-invariance given by nt = 0 instead. We define the tensor-to-scalar ratio r as

r =
Phij (k)

Pζ(k)
=

8

M2
P

(
dφ

dN

)2

' AtAs
, (1.88)

where we have used dN = Hdt to simplify and assumed zero scale dependence for both

the scalar and tensor spectra with ns ' 1 and nt ' 0 in the approximation. As the tensor

power spectrum (1.83) depends on both H and MP, we can use this to determine the

energy scale of inflation because we have measured the scalar power spectrum amplitude

as As ∼ 2 × 10−9. If we assume the slow-roll approximation remains valid with ε � 1,

we can insert the tensor power spectrum (1.83) into r (1.88) and use the approximate

Friedmann equation (1.44b) to give the potential in terms of r as

V
1
4 '

( r

0.01

) 1
4 · 1016GeV, (1.89)

which implies that a large value of the tensor to scalar ratio r > 0.01 corresponds with

inflation happening at GUT scale energies. Therefore a measurement of primordial grav-

itational waves and hence a measurement of r would tell us about the energy scale of

inflation and the scale of structure for quantum gravity. Moreover, determining the value

of H during inflation would allow us to reconstruct and constrain the inflationary potential

values exactly via εH (1.42) and the Hamilton-Jacobi equation (1.48).

We can also use equation (1.88) to determine the variation of the scalar field φ during

inflation by rearranging for dφ and integrating to obtain the Lyth bound [Lyth, 1997]

[Efstathiou & Mack, 2005] [Easther et al., 2006]
(

∆φ

MP

)
&
( r

0.01

) 1
2
, (1.90)

where in his analysis Lyth chose the scales 1 < ` . 100 which exit the horizon over

∆N ' 4 and making this a lower limit on the field variation ∆φ. This assumes that r does
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not significantly vary over ∆N and that slow-roll is valid with the first Hubble slow-roll

parameter remaining small ε < 1. If the scalar field value changes by ∆φ = MP throughout

inflation, we have medium-field inflation with r ∼ 0.01, whereas we have r � 0.01 and

r � 0.01 for small- and large-field inflation respectively. We can also see from equation

(1.89) that an inflation model with V 1/4 ∼ 1016GeV must have a scalar field variation

of at least 1MP. The implication of this is that the effective field-theory description

of inflation breaks down [Lyth, 1997] for large-field models with ∆φ > MP and we are

unlikely to be able to determine the form of the potential even with a measurement of

r. Evidently measuring primordial gravitational waves and the tensor to scalar ratio is

critical for understanding the physics of inflation.

The parameters that describe the two-point statistics for inflation are accurately meas-

ured by the Planck 2018 [Akrami et al., 2018] and BICEP2/Keck Array [Ade et al., 2015]

collaborations and can be seen in Table 1.2. As we can see, there is only an upper limit

on the measurement of r indicating that the primordial gravitational waves have not been

detected yet so there are no measurements of At or nt. Nevertheless, the upper-limit on r

suggests that inflation was likely small-field and numerical calculations of As and ns can be

used to constrain inflation by comparing with confidence regions obtained from sampling

initial conditions. However as we will now see, the two-point correlation of the inflaton

field isn’t the only way to constrain inflation.

Parameters Measurement ±68% Confidence region

As[×10−9] 2.105 0.030

ns 0.9649 0.0042

r0.002 <0.064 –

Table 1.2: A table giving the parameters that describe the statistics for the two-point

correlation function taken from the Planck 2018 results [Akrami et al., 2018]. Note: r0.002

indicates the pivot scale is chosen to be 0.002Mpc−1.

1.5 Non-Gaussianities

At this point, we have seen that single-field inflation sources primordial density perturba-

tions from quantum fluctuations in the scalar field. The density perturbations are found

to be Gaussian-correlated since the two-point correlator is proportional to a delta-function

which implies statistical homogeneity. Additionally, the perturbations are nearly scale-

invariant because there is almost no k-dependance in the dimensionless power spectrum of
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the field perturbation δφ with a small amount measured by the spectral index. These ob-

servations also show that the primordial fields are adiabatic which means that the pressure

density P is a unique function of ρ for all particle species. However, these observations

do not describe all the information in the primordial perturbations because we can meas-

ure the small departures from these predictions using non-Gaussianities, which come from

higher-order correlation functions of the scalar perturbations.

1.5.1 The bispectrum and its shapes

If the primordial scalar fields were purely Gaussian, we would find that all odd-n correlation

functions are zero and the even-n correlation functions are all proportional to products of

2-point correlation functions. However, even single-field inflation models predict a small

amount of non-Gaussianity [Maldacena, 2003] [Falk et al., 1993] [Creminelli, 2003] and the

potential for using measurements of non-Gaussianity to constrain inflation led cosmologists

[Allen et al., 1987] [Salopek & Bond, 1990] [Falk et al., 1993] [Gangui et al., 1994] [Bartolo

et al., 2004] to calculate the 3-point correlation function and its associated bispectrum.

The 3-point function is conventionally written in terms of the curvature perturbation [Falk

et al., 1993] [Gangui et al., 1994] as

〈ζk1ζk2ζk3〉 = (2π)3δ3 (k1 + k2 + k3)B(k1,k2,k3), (1.91)

where B is the bispectrum and the subscripts indicate the momentum associated with each

field. The bispectrum is conventionally written in terms of the reduced bispectrum fNL as

B(k1,k2,k3) =
6

5
fNL(k1, k2, k3) [Pζ(k1)Pζ(k2) + cyclic perms] , (1.92)

where fNL parametrises the amplitude of the bispectrum and measures the non-linearity

of the fields.

The local model of bispectrum non-Gaussianities is defined by decomposing the curvature

perturbation into a Gaussian and non-Gaussian part [Komatsu & Spergel, 2001] as

ζ(x) = ζg(x)− 3

5
fLOC
NL

[
ζ2
g (x)− 〈ζ2

g (x)〉
]
, (1.93)

where ζg is a Gaussian perturbation and fLOC
NL is a constant parameter in the local model

and is not the reduced bispectrum. Equations (1.92) & (1.93) can be combined to obtain

[Maldacena, 2003] [Vernizzi & Wands, 2006]

BLOCAL(k1,k2,k3) = −6

5
fNLP

2
ζ

∑
i k

3
i∏

i k
3
i

, (1.94)
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Reduced bispectrum Measurement 68% CL, stat

f local
NL 0.8 5.0

f equil
NL -4 43

fortho
NL -26 21

Table 1.3: A table giving different measurements of the reduced bispectrum for the

different triangle configurations taken from the Planck 2015 results [Ade et al., 2016a].

Note: ‘68% CL, stat’ indicates there is an additional statistical error from not being able

to model all of the bispectrum configurations.

where LOCAL indicates this is the most generic form of non-Gaussianity that developed

on super-horizon scales and is local in real space. The main reason the bispectrum contains

more information about the primordial perturbations than the power spectrum is that it

is a function of three connected scales each giving different triangular shapes. In principle,

an inflation model could predict a larger correlation in ζ for a particular triangular shape

which allows us to look for the variations produced in the CMB by those scales and shapes

to constrain the inflationary potential.

Classifying the triangles

Effectively there is an infinite number of triangular shapes possible to form in the bispec-

trum but in practice different types of inflation models predict strong correlations only for

a particular triangular shape allowing them to be categorised. The first of these is the

“squeezed” bispectrum in which k3 → 0 and k1 ≈ k2, leaving an isosceles triangle with a

long wavelength modulator where the bispectrum has the proportionality

B(squ) ∝ 1

k3
1

1

k3
3

, (1.95)

which is also proportional to the long- and short-wavelength power spectra. Multi-field

models with detectable levels of squeezed non-Gaussianities typically obtain these via the

transfer of superhorizon isocurvature perturbations in the second field to the adiabatic

curvature perturbation. As this process is happening on superhorizon scales, we find the

squeezed configurations are also well described using the local bispectrum as [Falk et al.,

1993] [Gangui et al., 1994]

BLOC(k1, k2, k3) ' 2fLOC
NL

[
1

k4−ns
1 k4−ns

2

+ cyclic

]
. (1.96)

For single-field slow-roll models, Maldacena found a relation between the non-linearity

parameter and the scalar spectral index for squeezed configurations which is given by
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f sq
NL ' − 5

12O(ns − 1) [Maldacena, 2003] [Creminelli & Zaldarriaga, 2004] [Babich et al.,

2004] which implies the level of squeezed non-Gaussianities must be small because slow-roll

predicts almost no scale-dependence. This relation is therefore known as the single-field

consistency relation because a detection of squeezed limit non-Gaussianities would rule

out almost all single-field inflation models due to their unmeasurable squeezed bispectrum.

Many of the inflation models producing non-Gaussianities in the squeezed configuration

by using additional scalar field(s) are summarised in [Byrnes & Choi, 2010]. Alternatively,

the curvaton model can also predict a significant amount of squeezed non-Gaussianities

[Mollerach, 1990] [Lyth & Wands, 2002].

Single-field models typically produce non-Gaussianities in the “equilateral” configura-

tion where the sides of the triangle are approximately equal k1 ≈ k2 ≈ k3 and are often

associated with the inflaton perturbation propagating with a speed of sound cs smaller

than the speed of light [Chen et al., 2007]. Inflation models predicting equilateral non-

Gaussianity typically have non-standard kinetic terms with DBI inflation [Silverstein &

Tong, 2004] representing a good example of this behaviour. Single-field models with non-

canonical kinetic terms also have an “orthogonal” configuration [Senatore et al., 2010] which

is an isosceles triangle with k3 6= 0 and models of inflation exhibiting this include ghost

inflation [Arkani-Hamed et al., 2004] and Galileon-like models [Burrage et al., 2011]. There

are many other possible configurations in addition to those discussed here with some of

these discussed in the latest Planck data releases [Ade et al., 2014c] [Ade et al., 2016a]

with the latest measurements of fNL given in Table 1.3.

In order to simplify the parametrisation of the triangular shapes in the bispectrum,

Fergusson et al. [Fergusson & Shellard, 2007] introduced two parameters α and β that

measure the height and width of a triangle in terms of the total perimeter kt ≡ k1 +k2 +k3

so that each side is given as

k1 =
kt
4

(1 + α+ β), (1.97a)

k2 =
kt
4

(1− α+ β), (1.97b)

k3 =
kt
2

(1− β), (1.97c)

where these parameters have the domains 0 6 kt 6∞, −(1−β) 6 α 6 1−β and 0 6 β 6 1.

These parameters can be used along with the dimensionless bispectrum B defined as

B(k1, k2, k3) ≡ (k1k2k3)2B(k1, k2, k3), (1.98)

or with the reduced bispectrum magnitude |fNL| to represent these shapes in plots as

demonstrated in Figure 1.3. From this, we can see that the squeezed configurations give
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peaks in the corners of the triangle at (α = ±1, β = 0) & (α = 0, β = 1), whereas the

equilateral configurations peak in the centre of the triangle at (α = 0, β = 1/3). By calcu-

lating the bispectrum for a variety of possible shapes, we can find the bispectrum values

for particular templates and compare these with the CMB measurements to constrain the

model of inflation used.

Figure 1.3: Plots of the bispectrum shapes demonstrating the αβ-parameterisation with

the fNL values given as proportions of the maximum value. Left: local bispectrum shape;

right: equilateral bispectrum shape.

Isocurvature modes

The potential introduction of fields other than the inflating one means that we must con-

sider isocurvature modes coming from the interactions between the different fields which

could give non-adiabatic (or entropy) perturbations such as (1.77). These non-adiabatic

perturbations can change the curvature perturbations on super-horizon scales either dur-

ing inflation [Garcia-Bellido & Wands, 1995] [Garcia-Bellido & Wands, 1996] [Tsujikawa

& Yajima, 2000] or after inflation [Kodama & Hamazaki, 1996] [Hamazaki & Kodama,

1996]. Gordon et al. [Gordon et al., 2001] gave a gauge-invariant definition of the total

isocurvature perturbation as

S = H

(
δP

Ṗ
− δρ

ρ̇

)
, (1.99)

which is extended to the entropy perturbation between any two quantities x and y with

Sxy = H

(
δx

ẋ
− δy

ẏ

)
. (1.100)

Multiple-field models of inflation always have isocurvature modes producing non-adiabatic

perturbations like equation (1.100) where the different fields replace x and y. It is then

possible that these perturbations decay into standard model particles such as neutrinos or

a dark matter candidate. In this situation, the inflating adiabatic field is defined parallel

to the inflation trajectory and the isocurvature mode(s) are defined orthogonally instead

[Gordon et al., 2001], which can then be used to find non-adiabatic modes in the bispectrum
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[Seery et al., 2012] [Elliston et al., 2011]. In addition, the adiabatic limits must have been

reached with the isocurvature modes sufficiently decayed to guarantee that the multi-field

model is predictive with a constant power spectrum Pζ and stable values of ns and r

[Renaux-Petel & Turzynski, 2015]. It should be noted however that the latest Planck

constraints on inflation [Akrami et al., 2018] constrain the non-adiabatic contribution to

the CMB to be zero up to approximately 1.5% so an inflation candidate model must have

smaller isocurvature modes than the adiabatic modes.

1.5.2 Separate universes and the δN expansion

The previous discussion of the non-Gaussianity classifications should make it clear that

a framework for calculating the cosmological perturbations for multiple fields is needed.

This introduces problems because we must be able to accurately track these perturbations

on super-horizon scales and also calculate any non-adiabatic modes coming from field

interactions orthogonal to the inflaton trajectory.

It is for these reasons we make use of the separate universe assumption [Starobinsky,

1982] [Lyth, 1985] [Starobinsky, 1985] with regions smoothed on super-horizon scales (k �
aH) where each ‘universe’ evolves as a homogeneous and isotropic FLRW region locally and

has separate values for density, pressure and the field values. In this scenario, each field’s

perturbations are absorbed in to the initial conditions of each patch separately instead of

simultaneously solving the Einstein equations for each field. After each universe has been

smoothed on a comoving scale k−1, the spatial gradients of order O(k/a) are negligible

because k−1 � H−1 which makes the region homogeneous. The time evolution of the

curvature and non-adiabatic perturbations can then be calculated by patching together all

the different regions.

This approach was first used by Starobinsky [Starobinsky, 1982] [Starobinsky, 1985]

and later by Lyth [Lyth, 1985] to calculate the super-horizon perturbations. The method

was later developed to become the δN -expansion [Sasaki & Stewart, 1996] [Lyth et al.,

2005] which begins with the ADM formalism of the metric [Arnowitt et al., 2008] given as

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (1.101)

where N is the lapse function, N i is the shift vector and hij is the spatial metric. The

lapse function and the shift vector here are Lagrange multipliers because they have no

time-dependence and therefore they are not dynamical variables. Instead, they determ-

ine the particular foliation of the 4D spacetime which is decomposed into 3D space-like
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hypersurfaces Σt and the vector connecting two hypersurfaces is given by

tµ = Nnµ +Nµ, (1.102)

where the lapse N measures proper time and the shift vector N i relates the spatial co-

ordinates between the two hypersurfaces respectively. The time-like vector normal to the

const-t hypersurface has its components given by nµ = [−N, 0] and nµ = [1/N,−N i/N ]

as well as a spatial metric which is decomposed as

hij = a2(t)e2ψ(t,xi)h̃ij , (1.103)

where a(t) is the scale-factor, ψ(t, xi) is the curvature perturbation and det h̃ij = 1.

Instead of considering the perturbative expansion in terms of powers of the perturba-

tions, we can use a gradient expansion method instead where at a fixed time each spatial

gradient is multiplied by a factor ε which is then expanded as a power series. If ε is set to

be a sufficiently large cosmological scale, we may then state the universe is smooth above

this scale giving homogeneity on large scales as expected. If we use the observable scales

defined in terms of the Hubble radius, (aH)−1, to set ε as

ε =
k

aH
, (1.104)

we can see that on large scales with k → 0, we also have ε→ 0 allowing it to be expanded.

This also implies that on super-horizon scales with k � aH, we have ε → 0 too. Then

the locally measurable parts of the metric (1.101), with scales smaller than the smoothing

scale but larger than the Hubble scale, reduces to the FLRW metric allowing us to use the

separate universe approximation. As a result of this, the shift vector N i must be O(ε), the

time-derivative of h̃ij must be O(ε2) and the ADM metric simplifies to

ds2 = −N2dt2 + 2Nidx
idt+ hijdx

idxj . (1.105)

When using the separate universe assumption, we may assume the stress-energy tensor

takes the perfect fluid form given in equation (1.10) as well as having a perfect-fluid 4-

velocity. We can use time-like coordinates by using gµνuµuν = −1 and then expand in

terms of ε to find

uµ =

[
1√

N2 −NiN i
, 0

]
=

[
1

N
, 0

]
+O(ε2), (1.106a)

uµ =

[
−
√
N2 −NiN i,

Ni√
N2 −NiN i

]
=

[
−N, Ni

N

]
+O(ε2). (1.106b)
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The expansion of uµ up to linear order in these comoving coordinates is defined as

θ ≡ ∇µuµ =
1

Na3e3ψ
∂t

(
Na3e3ψ

N
+O(ε2)

)
=

3

N

[
ȧ

a
+ ψ̇

]
+O(ε2), (1.107)

where we have used
√−g = Na3e3ψ here. The results here are the same if we instead

expanded with respect to the hypersurface normal nµ so that θ = θn at linear order. This

means this result would be true for any gauge that gives N i = O(ε) and provided that no

component of the fluid exchanges energy with a different component. This means we can

define a local Hubble parameter using 3H̃ = θn to find

H̃ =
1

N

(
ȧ

a
+ ψ̇

)
+O(ε2). (1.108)

This can be related to the curvature perturbation ψ by applying the energy-conservation

equation −uµ∇νTµν = 0 to find

1

N
ρ̇+ 3H̃(ρ+ P ) +O(ε2) = 0. (1.109)

If we insert equation (1.108) into equation (1.109), we find

ψ̇ = − ρ̇

3(ρ+ P )
− ȧ

a
. (1.110)

This equation can be integrated to find [Lyth et al., 2005]

ψ(t2, x
i)− ψ(t1, x

i) = −1

3

∫ t2

t1

dt
ρ̇

ρ+ P
− ln

(
a(t2)

a(t1)

)

= N(t2, t1;xi)−N0(t2, t1) ≡ δN,
(1.111)

where we have identified the number of e-folds associated with moving along the world-line

xi as N(t2, t1;xi) and N0 as the background change in e-folds. This states that the change

in ψ between slicing is given by the background number of e-folds subtracted from the

actual number of e-folds giving the difference δN . If the pressure is adiabatic, it can be

written as a unique function of ρ and the integration variable can be changed to dρ so that

this equation becomes

ψ(t2, x
i)− ψ(t1, x

i) = −1

3

∫ ρ2

ρ1

dρ

ρ+ P
− ln

(
a(t2)

a(t1)

)
, (1.112)

which identifies the curvature perturbation on constant-density hypersurfaces ζ as

−ζ ≡ ψ(t, xi) +
1

3

∫ ρ2

ρ1

dρ

ρ+ P
. (1.113)

The δN formula can be used to calculate the bispectrum by expanding in terms of e-fold

derivatives [Lyth & Rodriguez, 2005] as

ζ(t,x) ≈
∑

i

N,i(t)δφi +
1

2

∑

ij

N,ij(t)δφiδφj + · · · , (1.114)
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where N,i = ∂N/∂φi and N,ij = ∂2N/∂φi∂φj . We therefore expect the power spectrum to

be written in terms of the first term only because the inner product must be O(δφ2
i ) in the

power spectrum. Similarly, the bispectrum terms of O(δφ3
i ) are given from combinations

of the first and second term as well as those containing the second term only. The power

spectrum can be simply written as

Pζ =

(
H

2π

)2∑

i

N2
,i(t)

∣∣∣∣∣
k=aH

. (1.115)

The three-point correlation function is harder to calculate where the function in Fourier

space to leading-order contains

〈ζ(k1)ζ(k2)ζ(k3)〉 ⊇N,iN,kN,m

〈
δφi(k1)δφk(k2)δφm(k3)

〉
+

1

2
N,iN,kN,mn

〈
δφi(k1)δφk(k2)(δφm ∗ δφn)k3

〉
+ perms,

(1.116)

where ∗ indicates a convolution and perms indicates permutations in k. The first term

above is the three-point function that was first calculated by Maldacena [Maldacena, 2003]

but was neglected in the original δN expansion as it was assumed to be zero because it is

an odd-n correlation function. If we only consider leading-order Feynman diagrams in the

second term, we find

〈ζ(k1)ζ(k2)ζ(k3)〉 ⊇1

2
N,iN,kN,mn(2π)3δ(k1 + k2 + k3)·
[
P im(k1)P kn(k2) + P in(k1)P km(k2)

]
,

(1.117)

where the momentum vector in the convolution has been integrated out and the combina-

tions of indices are leading-order. If we compare this with the bispectrum (1.91) and use

equation (1.115) for the power spectrum, we find

Bζ(k1, k2, k3) ⊇ N,iN,kN,ik
H4

4k3
1k

3
2k

3
3

(
k3

1 + k3
2 + k3

3

)
. (1.118)

This same procedure can be repeated for the local model and the curvature perturbation

defined as ζ = ζg − 3
5fNLζ

2
g to find Blocal as

Blocal ⊇ −6

5
f local
NL

(
(N,i)

2H
2

2

)2
k3

1 + k3
2 + k3

3

4k3
1k

3
2k

3
3

. (1.119)

As these expressions give the same local non-Gaussianities due to the separate universe

approximation, they may be equated to find an equation for fNL as

−3

5
fNL =

∑
ij N,iN,jN,ij

2
[∑

iN
2
,i

]2 + higher order terms. (1.120)

In principle, equations (1.115), (1.119) & (1.120) can be used to directly calculate the

power spectrum, bispectrum and reduced bispectrum respectively. A caveat of this method
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however is that one must be able to find the variational derivatives of N which becomes

computationally expensive for a large number of fields. In addition, these calculations also

assume a super-horizon limit because of the separate universe assumption and would break

down if we need to calculate sub-horizon effects.

1.5.3 Calculating the three-point function

In order to find all the quantum effects given in the sub-horizon regime of the bispectrum,

the action describing the scalar field matter must be expanded to third-order as we want to

calculate correlations of three fields. Maldacena [Maldacena, 2003] and later Seery [Seery

& Lidsey, 2005a], [Seery & Lidsey, 2005b] were the first to calculate the full three-point

function for canonical scalar fields which are defined with a Euclidean field-space metric

given by GIJ = δIJ . This calculation begins with the scalar field action (1.34) with N

fields denoted using the index I as

S =
1

2

∫
d4x
√−g

(
R+ ∂µφ

I∂µφI − 2V (φ)
)
, (1.121)

withMP = 1. We use the ADM decomposition (1.101) to write the perturbative expansion

of the action in terms of the lapse function and shift vector defined previously enabling

us to find the scalar and tensor contributions to the non-Gaussianities. This calculation

begins with splitting the kinetic terms into a temporal and spatial part as

∂µφ
I∂µφI = − 1

N2

(
πIπI

)
+ hij∂

iφI∂jφI , (1.122)

where we define πI ≡ φ̇I − N i∂iφ
I . In order to find equations of motion for these fields,

we must use the Gauss-Codazzi relation defined as

R = R(3) − (TrK)2 + Tr(K2), (1.123)

where R(3) is the spatial Ricci scalar, K is the extrinsic curvature of the hypersurface

orthogonal to the normal vector nµ and the Gibbons-Hawking boundary term [Gibbons

& Hawking, 1977] is removed to ensure the equations of motion are second-order. The

extrinsic curvature is calculated using Kµν = ∇µnν to find

Kµν =
1

N

(
−1

2
ḣij +Ni|j

)
, (1.124)

where the index i|j denotes the covariant derivative compatible with the spatial metric hij .

Equations (1.122), (1.123) & (1.124) can be used to write the action as

S =
1

2

√
h

∫
d4x

[
N
(
R(3) − hij∂iφI∂jφI − 2V

)
+

1

N

(
πIπI + EijEij − E2

)]
,

(1.125)
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where Eij is the extrinsic curvature defined in (1.124). The constraint equations are found

by varying under the lapse and shift which gives

R(3) − hij∂iφI∂jφI − 2V − 1

N2

{
πIπI + EijEij − E2

}
= 0, (1.126)

from the lapse and

∇i
{

1

N
(Eij − hijE)

}
=

1

N
πI∂jφ

I , (1.127)

from the shift vector. Equations (1.126) & (1.127) can be solved for N and N i respect-

ively but we must first expand the spatial Ricci scalar to third-order for the tensor part.

Therefore, we write the spatial metric as

hij = a2eγij ⇐⇒ hij =
1

a2
e−γij . (1.128)

The calculation then uses equation (1.7) to calculate the Ricci scalar from equation (1.128)

with a third-order Taylor expansion of the exponential terms (ie. exp(γij) ≈ δij + γij +

1
2γikγkj + 1

6γikγklγlj + . . . ) to find [Maldacena, 2003] [Dias et al., 2015b]

R(3) =− 1

4a2
∂kγij∂kγij +

1

6a2
γacγfb(∂a∂bγcf ) +

1

4a2
γfm(∂mγba)(∂fγba)

− 1

6a2
γbd(∂bγac)(∂aγcd) +

1

6a2
γan(∂bγma)(∂mγnb),

(1.129)

which gives an O(γ2) term and four O(γ3) terms. Then we define an expansion of the

lapse as N = 1 + α1 + α2 + α3 + · · · and a transverse and traceless expansion of the shift

vector as Ni = ∂iθ(n) + β(n) where the numerical and (n) subscripts indicates the order of

expansion. These expansions can be used in equation (1.126) to obtain the lapse function

[Seery & Lidsey, 2005a]

N = 1 +
φ̇IδφI

2H
, (1.130)

and in equation (1.127) for the shift vector [Seery & Lidsey, 2005a]

Ni = − a2

2H
∂−2

{
V φ̇αδφα + Vαδφ

α + φ̇α ˙δφα

}
, (1.131)

where we see that these contain only linear functions of δφ as the second- & third-order

expansions of these contribute nothing to the third-order action so they are excluded here.

These expansions are inserted into the action (1.125) and simplified using the constraint

equations and integration by parts to obtain the second-order action as

S2 =

∫
d4xa3

{
˙δφ
I ˙δφI −

1

a2
∂iδφ

I∂iδφI −mIJδφ
IδφJ+

1

4
γ̇ij γ̇ij −

1

4a2
∂kγij∂kγij

}
,

(1.132)
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where the scalar interactions are on the first line with the tensor interactions on the second

line and a mass-matrix mIJ defined as

mIJ = V,IJ −
1

a3

d

dt

(
a3φ̇I φ̇J
H

)
. (1.133)

This process is repeated for the third-order action, which we split into each type of inter-

action. The action containing 3 gravitons is given by

Sγγγ =
1

2

∫
d4xa3

{
1

6a2
γacγfb(∂a∂bγcf ) +

1

4a2
γfm(∂mγba)(∂fγba)−

1

6a2
γbd(∂bγac)(∂aγcd) +

1

6a2
γan(∂bγma)(∂mγnb)

}
,

(1.134)

with the action containing 2 gravitons and a scalar given by

Sγγφ =
1

2

∫
d4xa3

{
− 1

2a2
γ̇ij∂kγij∂kθ(1) + α1

[
− 1

4a2
∂kγij∂kγij −

1

4
γ̇ij γ̇ij

]}
, (1.135)

with the action containing 1 graviton and 2 scalars given as

Sγφφ =
1

2

∫
d4xa3

{
1

a2
γij∂

iδφI∂jδφI −
1

a4
γij∂

2θ(1)∂
i∂jθ(1)−

1

a4
γij∂kθ(1)∂

i∂j∂kθ(1) +
α1

a2
γ̇ij∂

i∂jθ(1)

}
,

(1.136)

and the action containing 3 scalars given as

Sφφφ =
1

2

∫
d4xa3

{
− 1

3
VIJKδφ

IδφJδφK − 2 ˙δφ
I

a2
∂jθ(1)∂

jδφI+

α1

[
− 1

a2
∂iδφ

I∂iδφI − VIJδφIδφJ − δφ̇Iδφ̇I

− 1

a4
∂i∂jθ(1)∂i∂jθ(1) +

1

a4
∂2θ(1)∂

2θ(1)+

α1

(
2φ̇Iδφ̇I + α1

(
6H2 − φ̇I φ̇I

))]}
,

(1.137)

where we have written the action here in terms of α1 and θ(1) for brevity here. We will

later see how these can be used with the transport method to compute evolution equations

for the power spectrum and bispectrum during sub- and super-horizon regimes with all

tree-level quantum effects included. Before this however, we must see how this calculation

can be extended to include non-canonical fields.

1.6 Non-canonical fields

Thus far, the calculations for the bispectrum have all assumed a trivial relationship between

the participating fields in which the field metric defining the field-space geometry is a

Kronecker delta function. The motivation for the inclusion of these non-canonical fields
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largely comes from the supergravity community in which the field-space metric is given

by the Kähler potential and the scalar part of the superpotential is used as the inflating

potential [Baumann & McAllister, 2015] [Roest et al., 2013]. Other sources of a non-

trivial field-space include quasi-single-field inflation (QSFI) [Chen & Wang, 2010] and

more recently the α-attractor models [Kallosh et al., 2013] [Ferrara et al., 2013] [Kallosh

& Linde, 2013a].

The critical problem with introducing a non-trivial field-space is that each scalar field

becomes an additional coordinate in the theory with each field having a dependance on the

space-time coordinates as well as the field-space. Therefore, our gauge-invariant variables

introduced previously may no longer be invariant after performing the perturbative expan-

sion up to third-order. We will now see how this problem can be resolved by introducing

a systematic approach first used by Gong & Tanaka [Gong & Tanaka, 2011] to make the

field coordinates invariant similarly to the space-time coordinates.

1.6.1 Field-space covariance

If we now recall our field perturbation definition as δφI(x, t) ≡ φI(x, t)− φI0(t), we realise

the perturbation in the field δφI is given by the difference between the actual field φI and

the background field φI0. Provided this difference is sufficiently small, it should be possible

to define a unique geodesic between these two points that comes from the field-space metric

GIJ . This geodesic requires an initial point given by φI0 and the initial velocity QI which

is initially on the tangent-space of φI0 and is parametrised along the geodesic trajectory

with λ = 0 at φI0 and λ = ε at φI . The field-space invariant geodesic equation is then

D2
λφ

I =
d2φI

dλ2
+ ΓIJK

dφJ

dλ

dφK

dλ
= 0, (1.138)

with the initial conditions

φI
∣∣
λ=0

= φI0, (1.139)

Dλφ
I
∣∣
λ=0

=
dφI

dλ

∣∣∣∣
λ=0

≡ QI , (1.140)

where ΓIJK is the field-space affine connection compatible with parallel transport between

the vectors. If we expand φI as a power series around ε and use the geodesic equation to

simplify second- and third-order derivatives, we get

φI = φI0 +QIε− 1

2
ΓIJKQ

JQKε2 +
1

6

(
ΓILMΓMJK − ΓIJK;L

)
QJQKQLε3 + · · · , (1.141)

where we can subtract φI0 and set ε = 1 to obtain δφI as

δφI = QI − 1

2
ΓIJKQ

JQK +
1

6

(
ΓILMΓMJK − ΓIJK;L

)
QJQKQL + · · · . (1.142)
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This implies that we may write the field perturbation δφI in terms of QI at linear order

and use that instead to write the action in a form that is both spacetime covariant and

field-space covariant. The only part still needed is the covariant λ derivative of ∂µφI which

is

Dλ∂µφ
I = ∂µ

dφI

dλ
+ ΓIJK∂µφ

J dφK

dλ
= DµQ

I . (1.143)

The only question that remains is how does this change the perturbative expansion of the

scalar field action (1.121)? Elliston et al. [Elliston et al., 2012] were the first to compute

this before we later repeated the calculation [Butchers & Seery, 2018]. Under repeated

λ-derivatives, the kinetic term GIJ∂µφ
I∂µφJ needs commutation relations between the

derivatives Dµ and Dλ which will become Riemann curvature tensor terms in the form

[∇λ,∇µ]V I = RIJKLV
JQK∂µφ

L where V I is an arbitrary vector. The potential V (φI)

transforms as a scalar under a coordinate-change and the Ricci scalar R contains no in-

formation about the field indices, all of the extra terms needed for non-canonical terms are

Riemann curvature tensors and the action is otherwise equivalent to a naïve covariantisa-

tion of equations (1.132)-(1.137). More details of this are found throughout the paper

in Chapter 2 and particularly in the appendix 2.6 where the fully perturbed action is

given in equations (2.88)-(2.93), the transport equations are given in equations (2.106a) &

(2.106b) with the u-tensors given in equations (2.117a) & (2.117b), the 2-point and 3-point

initial conditions are given in equations (2.128)-(2.129c) & (2.143)-(2.146) and the gauge

transformations to ζ are given in (2.161a) & (2.161b).

1.6.2 The transport method

Having found the third-order action for the non-canonical scalar fields, we now need to

discuss how to compute the bispectrum from it. In principle, this could be done using tra-

ditional methods where Feynman diagrams are found for the scalar-field action and then

wave-functions and vertex integrals are calculated from them but this is complicated for

an action with many terms such as (1.137). Consequently the moment transport method

was first developed in [Mulryne et al., 2010] and [Mulryne et al., 2011] where the transport

equations are differential equations that evolve statistical moments like an N-point cor-

relation function of δφ. Then a gauge transformation is used to find the ζ perturbations

during the super-horizon epochs needed for computing observables like the power spec-

trum. This method was later extended to compute the spectral index in [Dias & Seery,

2012], before in [Seery et al., 2012] it was shown that raytracing techniques can be applied

to compute the ODEs and the gauge transformation. The method was first applied to
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find the bispectrum on curved field-space in [Elliston et al., 2012] and for the trispectrum2

in [Anderson et al., 2012]. An important advantage of using the transport method was

demonstrated in [Mulryne, 2013] where it was shown that the method can also be exten-

ded to compute inflationary perturbations on the quantum sub-horizon scales. Computing

the bispectrum meant that a second-order gauge transformation to ζ needed to be found

in [Dias et al., 2015a]. Finally, the method was deployed in several codes: mTransport

[Dias et al., 2015b] for the two-point function with non-canonical fields, then PyTransport

[Mulryne & Ronayne, 2016] and CppTransport [Dias et al., 2016] [Seery, 2016] initially for

computing the bispectrum with canonical fields. PyTransport was extended to compute

the bispectrum for non-trivial fields in [Ronayne & Mulryne, 2017] and in chapter 2, we

present our work from [Butchers & Seery, 2018] where CppTransport was extended to use

a curved field space.

1.7 Connecting inflation to the CMB

Inflation provides a framework for calculating numerous observable quantities that are dif-

ferent for each model analysed. However, these quantities are, at best, calculated at the end

of inflation which is approximately 380,000 years before the CMB photons can free-stream

after recombination. Therefore, further calculations are needed to relate the observed tem-

perature anisotropies seen in the CMB with the calculated anisotropies predicted by a

model of inflation and hence constrain the parameters of that model.

1.7.1 Temperature spectrum

The observed temperature fluctuations ∆T/T are seen as incoming photons streaming in

a direction n from the inside part of a sphere at a position x and at a time t0. We there-

fore define the temperature fluctuations in terms of spherical harmonics, Y`,m(n), where

statistical homogeneity implies these must only depend on the direction of the incoming

photon, n. Hence, the multipole expansion of the temperature fluctuations [Durrer, 2008]

[Lyth & Liddle, 2009] is given in terms of the expansion coefficients, a`m, as

∆T (n)

T
=
∑

`,m

a`mY`m(n), (1.144)

2The trispectrum comes from a 4-point correlation function such as 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 and is

measured by non-linearity parameters gNL & τNL. It won’t be further discussed in the thesis but for

a review, see [Byrnes & Choi, 2010] or [Sasaki et al., 2006] [Byrnes et al., 2006] [Seery et al., 2007] for

calculations.
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where statistical homogeneity and isotropy implies the ensemble average of the multipoles

contains no diagonal components as

〈a`ma∗`′m′〉 = δ``′δmm′C`, (1.145)

where C` is the power spectrum of the CMB anisotropies. These can be found directly

from the temperature power spectrum using the equation
〈

∆T (n)

T

∆T (n′)

T

〉
=
∑

`

2`+ 1

4π
C`P`(cos θ), (1.146)

where P` gives the Legendre polynomials and θ is the angle between n and n′. The

temperature fluctuations must be related to the Fourier modes of the incoming photons

which can be represented using the Rayleigh plane-wave expansion [Hu & Sugiyama, 1995a]

[Hu & Sugiyama, 1995b] [Hu & Sugiyama, 1996]. The primordial curvature perturbations,

ζ(k), are then related to the CMB anisotropies using transfer functions ∆`(k) which allow

the harmonic components of ∆T/T to be read from equation (1.144) as

a`m = 4πi`
∫

d3k

(2π)3
∆`(k)ζ(k)Y`m(k̂). (1.147)

The key CMB physics in equation (1.147) is contained in the transfer function ∆`(k)

which relates the curvature perturbation given at the end of inflation to the surface of

last scattering at recombination. They must describe how the matter perturbations evolve

throughout this period including all the cosmological events described in Section 1.2.2.

This is achieved using cosmological perturbation theory where the stress-energy tensor in

the Einstein equation is expanded in terms of perturbations in the energy density δρ and

the pressure density δP . The solutions of these equations have different effects on the

CMB power spectrum.

The first of these are the acoustic oscillations [Peebles & Yu, 1970] [Sunyaev & Zel-

dovich, 1970] which originate from when the baryons were tightly coupled to the photons

during the radiation-dominated era. Initially, the perturbations in the gravitational po-

tential cause a gravitational collapse which is stopped by the photon’s high pressure com-

ponent. This process of collapsing and expanding repeated until the photons decoupled

leaving peaks in the range 100 6 ` 6 1000 on the CMB. There is also the Sachs-Wolfe

effect [Sachs & Wolfe, 1967] which is caused by the photons being gravitationally redshif-

ted by varying amounts due to differences in the gravitational potential sourced from the

primordial fluctuations. Additionally, there is the Integrated Sachs-Wolfe effect [Rees &

Sciama, 1968] which is associated with the photons having to ‘climb’ out of potential wells

on the path between the last scattering surface and our observations. These effects both
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Planck Collaboration: Cosmological parameters
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Fig. 1. Planck 2018 temperature power spectrum. At multipoles ` � 30 we show the frequency-coadded temperature spectrum
computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit assuming
the base-⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum estimates from the Commander
component-separation algorithm, computed over 86 % of the sky. The base-⇤CDM theoretical spectrum best fit to the Planck
TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not
including uncertainties in the foreground model at ` � 30. Note that the vertical scale changes at ` = 30, where the horizontal axis
switches from logarithmic to linear.

the best-fit temperature data alone, assuming the base-⇤CDM
model, adding the beam-leakage model and fixing the Galactic
dust amplitudes to the central values of the priors obtained from
using the 353-GHz maps. This is clearly a model-dependent pro-
cedure, but given that we fit over a restricted range of multipoles,
where the TT spectra are measured to cosmic variance, the re-
sulting polarization calibrations are insensitive to small changes
in the underlying cosmological model.

In principle, the polarization e�ciencies found by fitting the
T E spectra should be consistent with those obtained from EE.
However, the polarization e�ciency at 143 ⇥ 143, cEE

143, derived
from the EE spectrum is about 2� lower than that derived from
T E (where the � is the uncertainty of the T E estimate, of the
order of 0.02). This di↵erence may be a statistical fluctuation or
it could be a sign of residual systematics that project onto cali-
bration parameters di↵erently in EE and T E. We have investi-
gated ways of correcting for e↵ective polarization e�ciencies:
adopting the estimates from EE (which are about a factor of
2 more precise than T E) for both the T E and EE spectra (we
call this the “map-based” approach); or applying independent

estimates from T E and EE (the “spectrum-based” approach). In
the baseline Plik likelihood we use the map-based approach,
with the polarization e�ciencies fixed to the e�ciencies ob-
tained from the fits on EE:

⇣
cEE

100

⌘
EE fit

= 1.021;
⇣
cEE

143

⌘
EE fit

=

0.966; and
⇣
cEE

217

⌘
EE fit

= 1.040. The CamSpec likelihood, de-
scribed in the next section, uses spectrum-based e↵ective polar-
ization e�ciency corrections, leaving an overall temperature-to-
polarization calibration free to vary within a specified prior.

The use of spectrum-based polarization e�ciency estimates
(which essentially di↵ers by applying to EE the e�ciencies
given above, and to T E the e�ciencies obtained fitting the T E
spectra,

⇣
cEE

100

⌘
TE fit

= 1.04,
⇣
cEE

143

⌘
TE fit

= 1.0, and
⇣
cEE

217

⌘
TE fit

=

1.02), also has a small, but non-negligible impact on cosmo-
logical parameters. For example, for the ⇤CDM model, fitting
the Plik TT,TE,EE+lowE likelihood, using spectrum-based po-
larization e�ciencies, we find small shifts in the base-⇤CDM
parameters compared with ignoring spectrum-based polariza-
tion e�ciency corrections entirely; the largest of these shifts
are +0.5� in !b, +0.1� in !c, and +0.3� in ns (to be com-

7

Figure 1.4: Planck 2018 results for the temperature power spectrum, taken from [Aghanim

et al., 2018]. Red dots are the measurements and the blue line is the best-fit ΛCDM model

with residuals given in the lower panel. D` ≡ `(`+ 1)C`/2π.

cause the C` values to be increased on multipoles with ` 6 90. Finally on the smallest

scales with ` > 1000, the CMB power spectrum is Silk damped [Silk, 1968] because the

recombination is not instantaneous so there is diffusion between the baryons and photons

with damped oscillations.

The transfer functions that describe these physical effects are calculated by Boltzmann

codes such as CAMB [Lewis et al., 2000] or CLASS [Lesgourgues, 2011] [Blas et al., 2011]

which take an input of a primordial spectrum and cosmological parameters to predict the

CMB power spectrum which can then be compared with observations. The results of these

codes for the ΛCDM model can be seen plotted alongside the CMB power spectrum in Fig-

ure 1.4. We see all of the physical effects described in the previous paragraph and observe

that ΛCDM gives an excellent fit apart from ` 6 30 where cosmic variance dominates the

uncertainties.
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1.7.2 Parameter inference

In principle, inflation should provide the initial conditions for the Boltzmann codes de-

scribed previously because the values of the power spectrum and bispectrum can be found

at the end of inflation which sets the initial values needed by the codes. The implication of

this is that an inflation model with a particular set of initial conditions predicts a unique

imprint on the CMB based on that model’s perturbations. Therefore, we can discriminate

between inflationary models by evaluating how well the model’s predicted CMB matches

the measurements. In addition, if we sample the underlying distributions for the paramet-

ers then we can estimate constraints on the inflation parameters using the quality of fit to

the data. The Bayesian framework is ideal for achieving this goal because it allows us to

update the probability of an event as we collect more data about the event. It relies on

Bayes’ theorem which is given as

P (θ|X, α) =
P (X|θ, α) · P (θ|α)

P (X|α)
, (1.148)

where θ is a vector containing the parameters of the model, X is the observed sample of n

data points for and α is any hyperparameter needed to describe the distribution function of

θ. The term P (X|θ, α) is known as the likelihood and measures the probability of obtaining

the data given the model M(θ, α). The term P (θ|α) is known as the prior probability

distribution function which measures the distribution of parameters before obtaining the

data and represents our underlying ‘beliefs’ about the model. The P (X|α) term is known

as the evidence which is the probability of obtaining the data from the model with the

uncertainty in the parameters marginalised out. The combination of these in equation

(1.148) give the posterior probability distribution functions, P (θ|X, α), for any parameter

in the model which collectively can be used to estimate the ideal parameters for obtaining

the data.

The evidence is often difficult to calculate so typically the posterior distribution is

calculated using only the numerator as

P (θ|X, α) ∝ P (X|θ, α) · P (θ|α), (1.149)

which is justified because the evidence effectively normalises the posterior to account for

all possible values of θ and is a constant when extracting parameters from the CMB.

Priors are much harder to choose since the posterior could be preferentially influenced

by the prior instead of the data. This is critical for a CMB analysis based on inflation

parameters because the only information we have on these parameters comes from what

is physically allowed by the theory. Hence, the priors on inflation parameters should be
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weakly informative and assign equal probabilities to physically allowed values in the theory.

The likelihood, L, is much easier to obtain since the Planck collaboration provide codes

[Aghanim et al., 2016] for computing it based on C` values from a predicted CMB spectrum.

For data-points that are Gaussian distributed, the likelihood is given by

L =
∏

i

1√
2πσ2

i

exp

(
−(yi − ȳi)2

2σ2
i

)
∝ exp

(
−χ

2

2

)
, (1.150)

where yi is the data, ȳi is the mean value, σi is the standard deviation and χ2 is the chi-

squared value for the data. When discriminating between models, the convention is often

to give the log likelihood value as

−2 ln(LML) ≈ χ2, (1.151)

where LML is the maximum likelihood which corresponds with the minimum χ2 value so

that a model giving a better fit has a smaller value.

The last tool needed to extract the posterior probability distributions for the inflation

parameters is a sampling method that fairly converges to the desired distribution. For

cosmological parameter extraction, we use Markov chain Monte Carlo (MCMC) samplers

[Christensen & Meyer, 2000] [Christensen et al., 2001] [Knox et al., 2001] [Kosowsky et al.,

2002] [Lewis & Bridle, 2002] to fairly sample a distribution function. In this method,

samples of a parameter θ are drawn randomly (Monte Carlo). For each successive sample,

we propose moving to a new position based only on the previous sample (Markov chain)

and accept the move based on the value’s agreement with the likelihood and prior dis-

tributions. Most of the parameter values in the chain will converge to the most probable

posterior distribution apart from those at the start of the chain which are in a region of low

probability. The low-probability part of the chain is referred to as the burn-in phase and

the parameter values here are removed to ensure the sampled posterior is representative of

the actual population distribution.

After sampling, the best-fit parameter values can be extracted by making a histogram

of the values in the chain where the mean of each distribution corresponds with the ideal

value. Uncertainties can be estimated by measuring the proportion of values lying in

confidence regions which are usually set to 68% and 95%. We perform this type of analysis

in Chapter 3 for several inflation models including an α-attractor model which was only

possible because of our work discussed in Chapter 2 based on a non-trivial field space.
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1.8 Summary of the thesis

After the review of inflationary theory and how it is connected to observations made from

the CMB, it is clear that the inflationary framework should be extended to include a non-

trivial field-space and applied in a numerical code. This work is presented in Chapter 2

where the major achievements are listed below.

• We found a field-covariant Hamiltonian with perturbations up to third-order. Fur-

thermore, we showed that this covariantises naïvely apart from several new Riemann

curvature terms appearing in the action.

• We found the initial conditions and gauge transformations to ζ also covariantise

simply by tracking the field-index position.

• We found the transport equations needed for the non-canonical fields and add ex-

tensions to CppTransport which enable numerical computations of the bispectrum for

these models.

• We tested the new additions to the code by using the Gelaton/QSFI model which can

be written using both canonical and non-canonical coordinates and found excellent

agreement to within 10−3%.

• We compared our results for the Quasi-two-field model with results from the Py-

Transport and mTransport codes where agreement was typically within 0.1% for most

cases.

• We showed that the gelaton model of inflation only produces a limited boost to the

bispectrum amplitude on equilateral configurations.

• Moreover, we showed why the boost is limited by using constraints given from the

speed of sound for the perturbations and the gelaton mass requirements.

Furthermore, it is clear that in order to find constraints on the parameters in non-trivial

models of inflation, we should add sampling and Bayesian model selection functionalities

to CppTransport. This work is presented in Chapter 3 where the major achievements are

listed below.

• We built a cosmological code CppTSample which is a CosmoSIS module that allows

for all of the CosmoSIS MCMC samplers to provide initial conditions for the inflation

parameters describing a model in CppTransport.
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• Furthermore, this can be used with the CosmoSIS likelihood modules for Planck and

WMAP data which enables us to find the likelihood of obtaining CMB data given a

non-trivial model.

• Additionally, the CppTSample module could be used to give initial conditions for

other modules that perform late-time cosmological calculations such as the galaxy

power spectrum.

• We tested our module with the single-field quadratic and quartic models of inflation

and showed that our results are consistent with slow-roll predictions and that they

are both ruled out based on CMB observations as expected.

• We found constraints that are consistent with the universality predictions in the

power spectrum and the bispectrum for an α-attractor model which wouldn’t have

possible without our non-trivial field calculations seen in Chapter 2.

• We found constraints on the Gelaton/QSFI model of inflation which also has a non-

canonical field metric and despite its long integration time we showed it can give

values for ns and r that are within their Planck constraints.
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Chapter 2

Project I – Numerical evaluation of

inflationary 3-point functions on

curved field space

2.1 Abstract

We extend the public CppTransport code to calculate the statistical properties of fluctu-

ations in multiple-field inflationary models with curved field space. Our implementation

accounts for all physical effects at tree-level in the ‘in–in’ diagrammatic expansion. This

includes particle production due to time-varying masses, but excludes scenarios where the

curvature perturbation is generated by averaging over the decay of more than one particle.

We test our implementation by comparing results in Cartesian and polar field-space co-

ordinates, showing excellent numerical agreement and only minor degradation in compute

time. We compare our results with the PyTransport 2.0 code, which uses the same com-

putational approach but a different numerical implementation, finding good agreement.

Finally, we use our tools to study a class of gelaton-like models which could produce an

enhanced non-Gaussian signal on equilateral configurations of the Fourier bispectrum. We

show this is difficult to achieve using hyperbolic field-space manifolds and simple inflation-

ary potentials.

2.2 Introduction

Inflation [Guth, 1981, Linde, 1982, Albrecht & Steinhardt, 1982] has become established

as a preferred framework in which to describe the early universe. In inflation, primor-
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dial quantum fluctuations are amplified, giving large-scale variations in energy density

that are inherited by later structure. Recent ideas from theories of beyond-the-Standard-

Model physics have introduced multiple-field models yielding 2-point statistics consistent

with measurement, but which may be theoretically preferable because their field values

remain sub-Planckian. In such theories the kinetic term X = −GIJ∂aφI∂aφJ/2 is often

non-canonical and is expressed in terms of a kinetic matrix GIJ(φ). (We define our nota-

tion more carefully below. Here, upper-case Latin indices label the different species of

scalar fields, and lower-case indices label spacetime dimensions.) The matrix GIJ is real,

symmetric, and transforms as a covariant 2-tensor under field redefinitions, so it may be

interpreted as a metric. The resulting ‘covariant’ formalism constrains the ways in which

GIJ can appear in observable quantities and offers a convenient computational framework

with the usual advantages of tensor calculus.

Examples in this class include models descending from string theory or supergravity

where the kinetic matrix is inherited from a Kähler potential K(φI , φI∗) [Lyth & Riotto,

1999, Baumann & McAllister, 2015]. The α-attractor scenario suggested by Kallosh &

Linde is of this type [Kallosh & Linde, 2013b, Ferrara et al., 2013, Kallosh et al., 2013],

including its multiple-field variants [Achúcarro et al., 2017]. Also, a full description of the

interesting Higgs inflation model, including Goldstone modes, requires a noncanonical met-

ric that derives from the Goldstone sigma model [Greenwood et al., 2013]. Alternatively,

the freedom to choose non-Cartesian coordinates on field space may simply provide a more

convenient option, as with the ‘gelaton’ and ‘quasi-single field inflation’ scenarios [Tolley

& Wyman, 2010, Chen & Wang, 2010].

Numerical tools.—Whatever the origin of the noncanonical kinetic structure, to constrain

such models using modern datasets we require precise numerical predictions. Numerical

tools for performing inflationary calculations have existed for some time, but their capab-

ilities have been limited. Ringeval et al. provided the early code FieldInf, which is capable

of computing 2-point functions with an arbitrary choice of metric GIJ [Ringeval et al.,

2006, Martin & Ringeval, 2006, Ringeval, 2008], but many other tools restrict to the ca-

nonical case GIJ = δIJ . Major examples include ModeCode/MultiModeCode [Mortonson

et al., 2011, Easther & Peiris, 2012, Norena et al., 2012, Price et al., 2015], PyFlation [Huston

& Malik, 2009, Huston & Malik, 2011, Huston & Christopherson, 2012] and BINGO [Hazra

et al., 2013, Sreenath et al., 2015]. ModeCode/MultiModeCode and PyFlation are 2-point

function solvers for canonical multiple-field models, and BINGO is a 2- and 3-point function

solver for single-field models.

http://cp3.irmp.ucl.ac.be/~ringeval/fieldinf.html
http://modecode.org
http://modecode.org
http://pyflation.ianhuston.net
https://sites.google.com/site/codecosmo/bingo


47

All these are traditional codes that require customization by the user for each model

of interest. Recent developments in inflationary perturbation theory [Mulryne et al., 2010,

Mulryne et al., 2011, Seery et al., 2012, Mulryne, 2013] have allowed the construction of

automated tools [Dias et al., 2015b, Dias et al., 2016, Ronayne & Mulryne, 2017]. These

accept the specification of an inflationary model by its Lagrangian and leverage symbolic

algebra methods to produce custom code that solves for the inflationary n-point functions.

We collectively refer to these as the transport tools (transportmethod.com). The suite

contains three tools, all of which apply to multiple-field models:

• mTransport [Dias et al., 2015b] is a 2-point function solver implemented in Math-

ematica. It allows a nontrivial kinetic matrix and is suited to interactive model

exploration.

• PyTransport [Mulryne & Ronayne, 2016, Ronayne & Mulryne, 2017] is a 2- and 3-

point function solver implemented in Python. Version 1 (September 2016) restricted

to canonical kinetic terms. Version 2 (September 2017) introduced support for an

arbitrary kinetic matrix. Because it is implemented as a Python library it is well-

suited to scripting or inclusion in other codes.

• CppTransport [Seery, 2016] is a 2- and 3-point function solver implemented in C++. It

has built-in functionality to parallelize computations and can postprocess correlation

functions to produce inflationary observables. It manages storage of its data products

as SQL databases. It is well-suited to larger calculations that benefit from its auto-

parallelization or which produce significant data volumes, and performs well with

‘feature’ models containing steps or kinks where its library of sophisticated steppers

offers assistance. It is less easy (but still possible) to incorporate within larger codes

than PyTransport. The original release 2016.3 restricted to canonical kinetic terms.

In this paper we describe a new release of CppTransport (2018.1) that extends its func-

tionality to nontrivial kinetic matrices. We apply these new tools to a class of gelaton-like

scenarios and show that (at least in the scenarios we study) the parameter space available

to generate enhanced equilateral correlations is very small. We compare our numerical res-

ults with the independent mTransport and PyTransport implementations, finding excellent

agreement.1

Synopsis.—The necessary equations for computation of the inflationary two-point function
1Although the transport tools all use the same computational framework, their numerical implementa-

tions vary considerably in detail and therefore this constitutes a nontrivial check on numerical correctness.

http://transportmethod.com
https://zenodo.org/record/1183518
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were given by Mulryne [Mulryne, 2013] and extended to a non-Euclidean field space by

Dias et al. [Dias et al., 2015b]. We have nothing novel to say about this part of the analysis.

The extension to three-point correlations was given in Ref. [Dias et al., 2016], but this was

limited to models with canonical kinetic terms.

This paper is divided into three principal parts. First, in §2.3, we highlight the key

modifications required to adapt the analysis of Ref. [Dias et al., 2016] for a nontrivial

field-space metric. A similar discussion has already been given by Ronayne et al. [Ronayne

& Mulryne, 2017]. We briefly review the field-space covariant formulation of inflationary

perturbations in §2.3.1, and use this to derive the covariant cubic Hamiltonian in §2.3.2.

In §2.3.3 we discuss the computation of initial conditions for each correlation function. We

formulate the covariant transport hierarchy in §2.3.4 and explain how to relate covariant

correlation functions to the curvature perturbation in §2.3.5.

Second, in §2.4 we present a selection of numerical results. For those wishing to rep-

licate our numerics, we explain how to obtain CppTransport in §2.4.1. In §§2.4.2–2.4.3 we

validate our numerical implementation by comparing results computed using polar field-

space coordinates with known results in Cartesian coordinates. In §2.4.4 we apply our

method to the ‘gelaton’ model proposed by Tolley & Wyman [Tolley & Wyman, 2010]. In

this scenario a light degree of freedom is ‘dressed’ by the interactions of a noncanonical

heavy mode, obtaining a subluminal phase velocity and potentially enhanced correlations

on equilateral Fourier configurations. Our numerical tools successfully reproduce the fea-

tures of the scenario, but we show that (at least for the range of potentials we consider)

it is difficult to find suitable parameters that allow both sufficient inflation and large en-

hancement of the equilateral modes. We conclude in §2.5.

Third, we include a large amount of supplementary information in Appendix 2.6. This

includes more detailed computations of the transport hierarchy given in §2.3, together with

a selection of intermediate results not discussed in the main text.

Obtaining CppTransport.—The latest builds of CppTransport and PyTransport are available

from the website transportmethod.com. Alternatively, both CppTransport and PyTransport

are permanently deposited at zenodo.org; at the time of writing, the current releases are

2018.1 for CppTransport and 2.0 for PyTransport.

Notation.—We use natural units where c = ~ = 1. The reduced Planck mass is M2
P =

(8πG)−1. We use the metric signature (−,+,+,+). Greek indices (µ, ν, ...) label space-

time indices, whereas lower-case Roman indices from the middle of the alphabet, (i, j, ...),

label spatial indices. Upper-case Roman indices (I, J, ...) label field-space coordinates. We

https://transportmethod.com
http://zenodo.org
https://zenodo.org/record/1183518
https://zenodo.org/record/848220
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employ a compressed Fourier notation defined in Eq. (2.4) in which these labels appear in

a bold, sans-serif font: (I, J, ...). For phase-space coordinates, we use Roman letters from

the start of the alphabet, (a, b, ...).

2.3 Differences from the canonical case

To accommodate a non-Euclidean field-space metric we require a covariantization (with

respect to the metric GIJ) of the formalism developed in Ref. [Dias et al., 2016] for the

Euclidean case. The advantage of a covariant formalism is that it naturally packages

additional terms arising from the metric as Christoffel and Riemann contributions in the

same way as spacetime covariance. Its construction entails the replacement of ordinary

derivatives by covariant derivatives and contraction of all indices with GIJ . However,

detailed computations show that Riemann terms also appear, meaning that the resulting

formalism is not ‘minimally coupled’ to the field-space curvature. The details of this

covariantization were given in Gong & Tanaka [Gong & Tanaka, 2011] and Elliston et

al. [Elliston et al., 2012].

Dias et al. [Dias et al., 2015b] applied these ideas to find a covariant formulation of

the transport equations for the two-point function. In this section we briefly review this

construction and extend it to the three-point function. A more detailed discussion is given

in Appendices 2.6.1–2.6.4.

2.3.1 Field-covariant formalism

Perturbation series.—In a covariant formalism our aim is to construct correlation functions

that transform tensorially under field redefinitions. These are coordinate transformations

in field space. Correlation functions of the field perturbations δφI ≡ φI(x, t) − φI(t) do

not have this property, because the coordinates φI do not themselves transform tensorially

(despite the species label ‘I’).

A suitable alternative was given by Gong & Tanaka [Gong & Tanaka, 2011], who ob-

served that in a normal neighbourhood of φI(t) we can associate φI(x, t) with the geodesic

that connects it to φI(t). The geodesic is uniquely determined by its tangent vector QI

at φI(t). By construction QI is field-space covariant and is defined in the unperturbed

spacetime. It is therefore a candidate to appear in correlation functions of the form 〈QI〉,
〈QIQJ〉, . . . , 〈QIQJ · · ·QK〉, each of which will inherit a tensorial transformation law from

QI . See Refs. [Gong & Tanaka, 2011, Elliston et al., 2012, Dias et al., 2015b] for further
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details.

Correlation functions.—After quantization, our intention is to compute 2- and 3-point

correlation functions of the Heisenberg-picture fields QI together with their canonical mo-

menta P J ≡ DtQ
J , where Dt ≡ φ̇I∇I is the covariant time derivative and φ̇I = dφI/dt. As

usual, in order to use time-dependent perturbation theory, we split the Hamiltonian into

free and interacting parts corresponding to the quadratic and cubic (or higher) terms [Dias

et al., 2016]. Notice that, with this definition, all mass terms are included in the free

Hamiltonian. Finally, we define interaction-picture fields qI and pJ that are related to the

Heisenberg-picture fields by a similarity transformation qI = F †QIF , pJ = F †P JF , where

F is the unitary operator

F = T̄ exp

(
i

∫ t

−∞+

Hint(t
′) dt′

)
, (2.1)

and T̄ is the anti-time ordering operator that arranges the fields in its argument in order

of increasing time. The interacting part of the Hamiltonian is Hint. The notation ‘−∞+’

indicates that the integral is to be performed over a contour deformed away from the real

axis into the positive complex plane in the distant past, with analytic continuation used

to define the integrand. This can be regarded as the theorem of Gell-Mann & Low in the

present context [Gell-Mann & Low, 1951, Weinberg, 2005].

We frequently collect the phase-space coordinates QI , P I into a single vector Xa =

(QI , P J), and likewise for the interaction picture fields xa = (qI , pJ). Latin indices a, b,

. . . , from the early part of the alphabet run over the dimensions of phase space, on which

the metric should be taken to have block-diagonal form

Gab =


GIJ 0

0 GKL


 . (2.2)

The vacuum expectation value of any (possibly composite) Heisenberg-picture operator

O(X) can be written in terms of F , F † and the interaction picture fields using

〈O(X)〉 =
〈

0
∣∣∣FO(x)F †

∣∣∣ 0
〉

=

〈
0

∣∣∣∣T̄ exp

(
i

∫ t

−∞+

Hint(t
′) dt′

)
O(x) T exp

(
−i

∫ t

−∞−
Hint(t

′′) dt′′
)∣∣∣∣ 0

〉
,

(2.3)

where |0〉 is the vacuum of the free Hamiltonian. We describe Eq. (2.3) as the ‘in–in’

formula, and use it to compute all correlation functions of cosmological perturbations in

our field-covariant formalism. For further details, see Appendix 2.6.1 for the definition of

the covariant variable QI , and Appendix 2.6.2 for the definition of correlation functions.
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2.3.2 Hamiltonian

In addition to the change from δφI to QI , the Hamiltonian acquires new terms generated

by derivatives of the metric. The procedure to calculate these follows Maldacena [Mal-

dacena, 2003, Seery & Lidsey, 2005b, Seery & Lidsey, 2005a]. We minimally couple N

fields to gravity, allowing a nontrivial kinetic matrix and a potential V , and use the ADM

decomposition to integrate out the Hamiltonian and momentum constraints. Finally the

result is expanded to the desired order in perturbations. The computation to third order

in QI was done by Elliston et al. [Elliston et al., 2012], or see Appendix 2.6.1 for further

details.

Summation convention.—To write the results, we use a compact notation in which re-

peated index labels imply both summation over species labels and integration over Fourier

wavenumbers. We indicate that this convention is in use by writing the species indices in

bold sans-serif. Specifically, such contractions should be interpreted to mean

AIB
I =

∑

I

∫
d3kI
(2π)3

AI(kI)B
I(kI), (2.4)

where, as always, the field metric GIJ is used to raise and lower indices. In some manip-

ulations a δ-function can be produced that changes the sign of a momentum label. We

indicate this by placing a bar on each index for which the sign of the momentum should

be reversed, eg.,

AIB
Ī =

∑

I

∫
d3kI
(2π)3

AI(kI)B
I(−kI). (2.5)

Second- and third-order kernels.—To third order, the result can be written

Sφ =
1

2

∫
dt a3

{
GIJDtQ

IDtQ
J +MIJQ

IQJ+

AIJKQ
IQJQK +BIJKQ

IQJDtQ
K + CIJKDtQ

IDtQ
JQK

}
,

(2.6)

where the second-order kernels GIJ and MIJ are defined as

GIJ ≡ (2π)3GIJδ(k1 + k2),

MIJ ≡ (2π)3δ(k1 + k2)

(
k1 · k2

a2
GIJ −mIJ

)
,

(2.7)

and the mass-matrix mIJ satisfies

mIJ ≡ V;IJ −RKIJLφ̇K φ̇L −
1

a3M2
P

Dt

(
a3φ̇I φ̇J
H

)
. (2.8)
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Then the third-order kernels AIJK, BIJK and CIJK are given by

AIJK ≡ (2π)3δ(k1 + k2 + k3)AIJK , (2.9a)

BIJK ≡ (2π)3δ(k1 + k2 + k3)BIJK , (2.9b)

CIJK ≡ (2π)3δ(k1 + k2 + k3)CIJK , (2.9c)

and the corresponding ‘species tensors’ are

AIJK ≡ −
1

3
V;IJK −

φ̇IV;JK

2HM2
P

+
φ̇I φ̇JZK
4H2M4

P

+
φ̇IZJZK
8H3M4

P

(
1− (k2 · k3)2

k2
2k

2
3

)

+
φ̇I φ̇J φ̇K
8H3M6

P

(6H2M2
P − φ̇2)− φ̇K φ̇

Lφ̇M

2HM2
P

RL(IJ)M +
1

3
R(I|LM |J ;K)φ̇

Lφ̇M

+
φ̇IGJK
2HM2

P

k2 · k3

a2
,

(2.10a)

BIJK ≡
4

3
RK(IJ)Lφ̇

L − φ̇IZJ φ̇K
4H3M4

P

(
1− (k2 · k3)2

k2
2k

2
3

)
+
φ̇I φ̇J φ̇K
4H2M4

P

− ZIGJK
HM2

P

k1 · k2

k2
1

, (2.10b)

CIJK ≡ −
GIJ φ̇K
2HM2

P

+
φ̇I φ̇J φ̇K
8H3M4

P

(
1− (k1 · k2)2

k2
1k

2
2

)
+
φ̇IGJK
HM2

P

k1 · k3

k2
1

. (2.10c)

The brackets surrounding indices in the Riemann terms indicate that the enclosed indices

should be symmetrized with weight unity, except for indices between vertical bars | which
are excluded. Further, note that the tensor AIJK should be symmetrized over all three

indices IJK with weight unity, and BIJK , CIJK should be symmetrized over IJ with

weight unity. The numbered-indices on the momentum labels k1, k2, k3 are mapped to

the field-space labels as 1 → I, 2 → J and 3 → K (e.g. the momentum k2 comes from

a Fourier-transformed spatial-derivative of a J field-coordinate like ∂iQJ), and should be

permuted during symmetrization. The quantity ZI is defined by

ZI ≡ Dtφ̇I +
φ̇I φ̇J φ̇

J

2HM2
P

. (2.11)

From these expressions it is simple to calculate the Hamiltonian using a Legendre trans-

formation. We define the canonical momentum PI to satisfy

PI(t) ≡
δSφ

δ(DtQI)
, (2.12)

where the variational derivative can be computed using the rule

δ[QI(kI , t)]

δ[QJ(kJ , t′)]
= δIJ(2π)3δ(t− t′)δ(kI + kJ) = δIJδ(t− t′). (2.13)

To compute the Hamiltonian we require the relation H =
∫

dt [P I(DtQĪ)−L] which should

be regarded as a function of QI and P I . Finally, for convenience, we rescale the momentum
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by a factor a3, viz. PI → a3PI, to obtain the final third-order Hamiltonian,

H =
1

2

∫
dt a3

(
GIJP

IP J −MIJQ
IQJ−

AIJKQ
IQJQK −BIJKQ

IQJPK − CIJKP
IP JQK

)
.

(2.14)

The second-order terms on the first line represent the free part of the Hamiltonian H0, and

the third-order terms on the second line represent the interacting part of the Hamiltonian

Hint. The new contributions introduced by derivatives of the nontrivial field-space metric

are given by the Riemann terms found in the MIJ , AIJK and BIJK tensors.

2.3.3 Initial conditions

We will require suitable initial conditions for each correlation function on subhorizon scales.

To compute these we use Eq. (2.3) to compute each correlation function at sufficiently

early times—normally between four and ten e-folds inside the horizon, although the pre-

cise numbers are model-dependent; see Ref. [Dias et al., 2015b]—that all species can be

approximated as massless. Such a time can normally be found, provided all masses re-

main bounded, because the physical wavenumber k/a corresponding to a fixed comoving

wavenumber k is pushed into the ultraviolet at early times, making each mode kinetically

dominated for sufficiently small a. The outcome is that we can compute universal initial

conditions applicable to any model, no matter what mass spectrum or interactions it con-

tains, provided the computation of its correlation functions begins sufficiently far inside

the horizon [Dias et al., 2015b, Dias et al., 2016]. For more details see §3 of Ref. [Dias

et al., 2015b] and §6 of Ref. [Dias et al., 2016].

Two-point function.—A suitable initial condition for the covariant equal-time 2-point func-

tion was computed by Dias et al. [Dias et al., 2015b], following Elliston et al. [Elliston et al.,

2012]. In our notation their results can be written

〈QI(k1)QJ(k2)〉init = (2π)3δ(k1 + k2)GIJ
(

1

2ka2
+
H2

2k3

)
, (2.15a)

〈QI(k1)P J(k2)〉init = (2π)3δ(k1 + k2)GIJ
(
− H

2ka2
+

i

2a3

)
, (2.15b)

〈P I(k1)QJ(k2)〉init = (2π)3δ(k1 + k2)GIJ
(
− H

2ka2
− i

2a3

)
, (2.15c)

〈P I(k1)P J(k2)〉init = (2π)3δ(k1 + k2)GIJ
(
k

2a4

)
, (2.15d)

where the time-dependent quantities H, a and GIJ appearing on the right-hand sides

should be evaluated at the initial time tinit, indicated by the subscript ‘init’ attached to

each correlation function.



54

Eqs. (2.15a)–(2.15d) are effectively the same as those found in the canonical case [Dias

et al., 2016] except that the Euclidean kinetic matrix δIJ is replaced by the metric GIJ .

For further details of the computation see Appendix 2.6.3.

Three-point function.—Initial conditions for the 3-point functions require the in–in for-

mula (2.3). The lowest-order nonzero contribution to each correlator is given by

〈XIXJXK〉 ⊆ i

∫ η

−∞+

dτ HLMN

∫ ( 3∏

n=1

d3qn
(2π)3

)
(2π)3δ

( 3∑

i=1

qi

)

×
{
〈XL

q1X
I
k1〉 〈XM

q2X
J
k2〉 〈XN

q3X
K
k3〉+ perms

}
+ c.c.,

(2.16)

where ‘perms’ indicates a sum over permutations of the pairing between ‘external’ indices

IJK and the ‘internal’ indices LMN, ‘c.c.’ indicates the complex conjugate of the preceding

term, and HLMN contains all the cubic terms found in Eq. (2.14). For further details we

refer to Appendix 2.6.3.

To express the results we require some extra notation. First, we divide AIJK into ‘fast’

terms, which involve the scale factor a and evolve exponentially fast in e-folds, and ‘slow’

terms, which evolve on slow-roll timescales,

AIJK ≡ AIJKslow +AIJKfast = AIJKslow +
φ̇IGJK

2HM2
P

k2 · k3

a2
(2.17)

The fast term grows rapidly on subhorizon scales and is always relevant when computing

initial conditions. In Ref. [Dias et al., 2016] it was explained that the slow terms can also

be relevant in scenarios with enhanced three-body interactions such as a QSFI model.

Second, we introduce the quantities ktot ≡ k1 + k2 + k3, kt ≡ k1 + k2 + k3 and

K ≡ k1k2 + k1k3 + k2k3. The results for each correlation function are2

〈QIQJQK〉init =
(2π)3δ(ktot)

4a4k1k2k3kt

{
φ̇IGJK

4HM2
P

k2 · k3 +
a2

2
AIJKslow − CIJK

k1k2

2

+
a2H

2
BIJK

[
(k1 + k2)k3

k1k2
− K2

k1k2

]
+ 5 perms

}
,

(2.18a)

〈P IQJQK〉init =
(2π)3δ(ktot)

4a4(k1k2k3)2kt

×
{
k2

1(k2 + k3)

[
φ̇IGJK

4HM2
P

k2 · k3 +
a2

2
AIJKslow − CIJK

k1k2

2
+ 5 perms

]

+ k1

[
− φ̇

IGJK

4HM2
P

k2 · k3

(
K2 +

k1k2k3

kt

)
− a2

2
AIJKslow

(
K2 − k1k2k3

kt

)

+BIJK k1k2k
2
3

2H
+ CIJK

k2
1k

2
2

2

(
1 +

k3

kt

)
+ 5 perms

]}
,

(2.18b)

2Eq. (2.18d) corrects a minor typo in v1 and v2 of the arXiv version of Ref. [Dias et al., 2016]. This

typo was corrected in the arXiv v3.
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〈P IP JQK〉init =
(2π)3δ(ktot)

4a6H2(k1k2k3)2kt

×
{
k2

1k
2
2k3

[
− φ̇

IGJK

4HM2
P

k2 · k3 −
a2

2
AIJKslow + CIJK

k1k2

2
− a2H

2
BIJK (k1 + k2)k3

k1k2

+ 5 perms
]

+ k2
1k

2
2

[
a2H

2
BIJKk3 + 5 perms

]}
,

(2.18c)

〈P IP JPK〉init =
(2π)3δ(ktot)

4a6H2k1k2k3kt

{
φ̇IGJK

4HM2
P

k2 · k3

(
K2 +

k1k2k3

kt

)
+
a2

2
AIJKslow

(
K2 − k1k2k3

kt

)

−BIJK k1k2k
2
3

2H
− CIJK k

2
1k

2
2

2

(
1 +

k3

kt

)
+ 5 perms

}
.

(2.18d)

All time-dependent quantities on the right-hand side are to be evaluated at the initial time

tinit, and the tangent-space indices I, J , K, . . . , live in the tangent space associated with

this time.

Where permutations are specified, they should be carried out only within the bracket

in which the instruction to sum over permutations is given. (Notice that these means some

momentum factors, such as those multiplying the square-bracket terms in Eqs. (2.18b)

and (2.18c), are not symmetrized. This is correct because these momentum factors arise

from wavefunctions associated with the external fields, and these are not symmetric.) Each

permutation should be formed by simultaneous exchange of the species labels I, J , K and

their partner momenta k1, k2, k3.

The form of these equations matches the canonical case [Dias et al., 2016], except for

the Riemann terms embedded in AIJKslow and BIJK . For further details of the calculation,

see Appendix 2.6.3.

2.3.4 Covariant transport equations

Next, we require differential equations to evolve each correlation function from its initial

value to any time of interest. These equations were derived in the superhorizon limit by

Mulryne et al. [Mulryne et al., 2010, Mulryne et al., 2011, Elliston et al., 2012] and later

extended to cover the subhorizon era [Mulryne, 2013, Dias et al., 2015b].

The procedure to derive these evolution equations matches that of Dias et al. [Dias

et al., 2016]. We begin from the Hamiltonian (2.14), which can be written in the generic

form

H =
1

2!
HabX

aXb +
1

3!
HabcX

aXbXc + · · · . (2.19)
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The corresponding covariant evolution equation is

DtX
a = uabX

b +
1

2!
uabcX

bXc + · · · , (2.20)

where uab and uabc are phase-space tensors that can be expressed in terms of Hab and

Habc [Dias et al., 2016]. The derivative Dt should be taken to act in phase space with

a block-diagonal connexion. For example, acting on contra- and covariant indices this

produces

DtX
a
b =

d

dt
Xa + ΓacX

c
b − ΓcbX

a
c, (2.21)

where Γab is the block matrix

Γab =


φ̇

KΓIJK 0

0 φ̇KΓIJK


 . (2.22)

In each block I represents the species label associated with the phase-space label a, and J

represents the species label associated with b.

A similar equation can be found for the fields in the interaction picture. Using Eq. (2.3)

to deduce tree-level expressions for the 2- and 3-point functions in terms of interaction-

picture fields, it follows that evolution equations can be derived by direct differentiation

and use of the interaction-picture equations of motion to rewrite time derivatives. The

results are

DtΣ
ab = uacΣ

cb + ubcΣ
ac, (2.23a)

Dtα
abc = uadα

dbc + uadeΣ
dbΣec + 2 cyclic (a→ b→ c), (2.23b)

where we have written the phase-space 2- and 3-point functions as

〈XaXb〉 ≡ (2π)3δ(ka + kb)Σ
ab, (2.24a)

〈XaXbXc〉 ≡ (2π)3δ(ka + kb + kc)α
abc. (2.24b)

These equations match those in the canonical case except that the time derivative Dt ≡
φ̇I∇I is now covariant and will introduce terms involving the connexion components. A

more detailed derivation of these equations can be found in Appendix 2.6.2.

For practical calculations we need explicit expressions for the u-tensors. They are [Dias



57

et al., 2016]

uab =


 0 δIJ

M I
J −3HδIJ


 , (2.25a)

uabc =







−B I

JK −CIJK
3AIJK BI

KJ





−C

I
KJ 0

BI
JK C I

KJ








, (2.25b)

in which the index a labels rows of the top-level matrix. For uab, the index b labels the

remaining columns; for uabc, the indices bc label rows and columns of each submatrix. As

above, the field-space labels I, J , K represent the species associated with the phase-space

labels a, b and c.

Further details of the calculation, including the Heisenberg equations of motion for QI

and P I , can be found in Appendix 2.6.2.

2.3.5 Gauge transformation

Although the formalism of covariant correlation functions is computationally convenient,

the covariant perturbations QI and their statistical properties are not directly measurable.

The final step is therefore to express correlation functions of measurable quantities such

as the curvature perturbation ζ in terms of the covariant correlation functions. This is a

covariantization of the gauge transformation from the spatially flat gauge to the uniform

density gauge [Dias et al., 2015a, Dias et al., 2015b, Dias et al., 2016].

Using the methods of Ref. [Dias et al., 2015a] we find that the density fluctuation on

spatially flat slices can be written in terms of the covariant perturbations QI ,

δρ = φ̇IDtQI + VIQ
I +

1

2

(
3α2

1 − 2α2 − 2α1

)
φ̇I φ̇I

+
1

2
VIJQ

IQJ +
1

2
DtQ

IDtQI − 2α1φ̇
IDtQI +

1

2
RIJKLQ

I φ̇J φ̇KQL,

(2.26)

where α1 and α2, respectively, are the first- and second-order perturbations to the lapse.

We have neglected spatial gradients that become negligible on superhorizon scales.

Eq. (2.26) is superficially different to the canonical case due to the final term involving

the Riemann tensor. However, the same term appears in the Hamiltonian constraint (see

Eq. (2.85)), and after using this constraint to simplify (2.26) the result matches the naïve

covariantization of the canonical formula [Dias et al., 2015a].
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Using the results of Dias et al. [Dias et al., 2015a] to express ζ in terms of δρ, it follows

that the curvature perturbation can be written in the form

ζ(k) = NaX
a +

1

2
NabX

aXb. (2.27)

The coefficient matrices Na and Nab are given by

Na = − φ̇I
2HM2

Pε


1

0


 , (2.28a)

Nab =
1

3H2M2
Pε




φ̇I φ̇J
M2

P

[
− 3

2
+

9

2ε
+

3

4ε2
VKπ

K

H3M2
P

] 3

Hε

φ̇I φ̇J
M2

P

− 3H

k2

[
ka · kb + k2

a

]
GIJ

3

Hε

φ̇I φ̇J
M2

P

− 3H

k2

[
ka · kb + k2

b

]
GIJ 0



.

(2.28b)

2.4 Numerical results

We are now able to solve the equations obtained in §2.3 and use them to compute the

observable 2- and 3-point functions of an arbitrary model with user-defined kinetic mixing

matrix.

Overview.—In summary, this involves obtaining numerical solutions to the 2- and 3-point

function transport equations (2.23a)–(2.23b), using the u-tensors specified in (2.25a)–

(2.25b). In turn, these depend on the kinetic matrix GIJ and the ‘species tensors’ mIJ ,

AIJK , BIJK and CIJK that specify the Hamiltonian (cf. Eq. (2.14)). They must be de-

termined for each model from the general formulae (2.7) and (2.10a)–(2.10c). The initial

conditions are given by Eqs. (2.18a)–(2.18d), provided a suitable initial time can be found

at which the massless approximation is valid for all species. These initial conditions also

depend on GIJ , mIJ , AIJK , BIJK and CIJK . Finally, Eqs. (2.28a) and (2.28b) are used

to construct the correlation functions of ζ.

Each of the transport tools mTransport, CppTransport and PyTransport uses symbolic

algebra to automate the calculation of MIJ , AIJK , BIJK and CIJK from a specification

of the kinetic matrix GIJ and the potential V . With explicit expressions for each tensor,

it is possible to set up the transport equations and compute suitable initial conditions.

Additionally, both CppTransport and PyTransport automate the task of finding a suitable

https://transportmethod.com/mtransport
https://transportmethod.com/cpptransport
https://transportmethod.com/pytransport/
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initial time at which the massless approximation is valid; in mTransport this currently has

to be done by hand, or a suitable initial time estimated.

Notation.—When discussing concrete models we generally use the dimensionless power

spectrum P(k), defined in terms of the ordinary power spectrum P (k) (see Eq. (2.163))

using

P(k) ≡ k3

2π
P (k), (2.29)

The analogous quantity for the three-point function is the ‘dimensionless bispectrum’,

defined by

B(k1, k2, k3) ≡ (k1k2k3)2B(k1, k2, k3). (2.30)

We also use the reduced bispectrum, conventionally written fNL(k1, k2, k3), which is defined

to satisfy

6

5
fNL(k1, k2, k3) ≡ B(k1, k2, k3)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)
. (2.31)

Notice that this is not the same as the parameter f local
NL measured by CMB experiments,

although in models where the bispectrum is dominantly of the ‘local’ type it is closely

related to it.

To specify the configuration of Fourier wavenumbers that characterize the bispectrum

we use the parametrization suggested by Fergusson & Shellard [Fergusson & Shellard,

2007],

k1 ≡
kt
4

(1 + α+ β) , (2.32a)

k2 ≡
kt
4

(1− α+ β) , (2.32b)

k3 ≡
kt
2

(1− β) . (2.32c)

The overall scale of the momentum triangle is measured by its perimeter kt ≡ k1 +k2 +k3,

and its shape is measured by α and β. The allowed ranges are −1 6 α 6 1 and 0 6 β 6 1.

By default, CppTransport uses its own ‘internal normalization’ in which a distinguished

e-fold number N∗ is user-chosen and the wavenumber k∗ is set to exit the horizon at this

time by making k∗ = aH which gives k in units of energy internally. In this normaliz-

ation, other wavenumbers are measured relative to k∗ by giving the ratios k/k∗ or kt/k∗

respectively. This convention means that all wavenumbers quoted in this section are di-

mensionless. In each case we quote the corresponding value of N∗. Where other horizon

exit times are given, these are measured relative to the initial conditions at N = 0.



60

2.4.1 Obtaining the transport codes

All tools (mTransport, CppTransport and PyTransport) can be downloaded from the website

transportmethod.com. At the time of writing the current version of PyTransport is v2.0

and the current version of CppTransport is 2018.1. Alternatively, development versions of

CppTransport and PyTransport can be downloaded from their respective GitHub repositor-

ies. In this paper we focus on the new features in CppTransport that support an arbitrary

metric GIJ .

An introduction to CppTransport was given in §8 of Dias et al. [Dias et al., 2016] and a

comprehensive user guide is available on the arXiv [Seery, 2016]. When making use of the

new features available in 2018.1 most steps remain the same, with only minor variations:

• To use a nontrivial metric GIJ it is first necessary to specify that the model is non-

canonical by including the directive

l ag rang ian = nont r i v i a l_met r i c ;

in the model block of the input file. Having done so the metric can be specified along

with the potential as a list of components surrounded by square brackets [ · · · ]. For
example, the metric on a flat two-dimensional field-space in polar coordinates would

be written

metr ic = [ R, R = 1 ; theta , theta = R^2; ] ;

Off-diagonal elements need be specified only for the upper or lower triangle, and

entries that are not given are assumed to be zero. Elements can make use of subex-

pressions declared elsewhere in the model file.

• A suitable set of templates must be chosen for the core and implementation files that

use correct index placement and employ the covariantized formulae given in §2.3. An

extra set of templates with these properties is bundled with 2018.1. To use them,

the template block of the model file should read

templates

{ core = " nontr iv ia l_metr i c_core " ;

implementation = "nontr ivial_metric_mpi " ;

} ;

All Riemann terms will be correctly included in the u-tensors and initial conditions,

and the transport equations will include correct connexion components.

http://transportmethod.com
https://zenodo.org/record/848220
https://zenodo.org/record/1183518
https://github.com/ds283/CppTransport
https://github.com/jronayne/PyTransport
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2.4.2 Cartesian versus polar coordinates

We begin by reproducing results for the gelaton-like scenario [Tolley & Wyman, 2010]

studied in Dias et al. [Dias et al., 2016]. This is an ‘adiabatic-like’ model in which a

continuously-turning light field is dressed by the fluctuations of a transverse heavy field,

and has similarities to the scenario of quasi-single field inflation [Chen & Wang, 2010].

Because the heavy field tracks the minimum of the effective potential, slightly displaced

due to the radial motion of the light field, the model behaves as if it has a single collective

degree of freedom.

The model is most conveniently expressed in polar field-space coordinates R and θ, and

therefore Ref. [Dias et al., 2016] performed a coordinate transformation to Cartesian fields

X = R cos θ, Y = R sin θ to produce a Euclidean kinetic matrix. In this section we study

the model in its original polar formulation, finding excellent agreement. The Lagrangian

is

S =
1

2

∫
d4x
√−g

[
(∂R)2 +R2(∂θ)2 + 2V (R, θ)

]
, (2.33)

where R is the heavy field and θ is the light field. The field-space metric is

GIJ =


1 0

0 R2


 . (2.34)

In Ref. [Dias et al., 2016] the potential was chosen so that it represents a circular valley at

fixed R. The angular velocity ω = θ̇/H was chosen so that a rotation through π occurred

over approximately 30 e-folds. A suitable choice is

V = V0

(
1 +

29π

120
θ +

1

2

ηR
M2

P

(R−R0)2 +
1

3!

gR
M3

P

(R−R0)3 +
1

4!

λR
M4

P

(R−R0)4

)
, (2.35)

with the parameters V0 = 10−10M4
P, ηR = 1/

√
3, gR = M2

PV
−1/2

0 , λR = 0.5M3
Pω
−1/2V

−3/4
0

and R0 = (30M2
P/π

2)1/2.

Ref. [Dias et al., 2016] used initial conditions corresponding to

Xinit = −R0, (2.36a)

Yinit = 10−2R0. (2.36b)

In polar coordinates these become

Rinit =
√
X2

init + Y 2
init, (2.37a)

θinit = tan−1

(
Yinit

Xinit

)
. (2.37b)
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Figure 2.1: Field plots for the QSFI/Gelaton model (2.35) until end of inflation. Left:

time evolution of the canonical fields X and Y . Right: time evolution of the non-canonical

fields R and θ.
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Figure 2.2: QSFI/Gelaton residual plots for the dimensionless power spectrum (left) and

bispectrum (right) on equilateral configurations for a k and a kt mode both leaving the

horizon at N = 8.0 respectively.
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Figure 2.3: QSFI/Gelaton residual plots for the reduced bispectrum on equilateral config-

urations. Left: time evolution of fNL for a kt mode leaving the horizon at N = 8.0. Right:

kt-dependence of fNL for a range of kt values leaving between 17.0 and 24.2 e-folds after

the initial conditions.

The background evolution is plotted in Fig. 2.1. Inflation lasts for 28 e-folds, and the field

evolutions match to high accuracy.

In the left panel of Fig. 2.2 we plot the dimensionless power spectrum of ζ together

with its residual, defined by ∆P = |Pn.can − Pcan|/Pcan. The results agree to better than

10−6%. The right panel gives a similar comparison for the dimensionless bispectrum,

showing agreement to better than 10−5%.

In Fig. 2.3 we compare the predicted value of the reduced bispectrum fNL. The left-

hand panel shows its time evolution for a single Fourier configuration that exits the horizon

at 8.0 e-folds. The results agree to within 10−5%, where the largest residual is given during

the rapid evolution of fNL during horizon crossing.

The right panel of Fig. 2.3 shows the values measured at the end of inflation as a

function of wavenumbers that exit the horizon between 17.0 and 24.2 e-folds after the initial

conditions are set. Here the residuals are typically at the 10−2% level with the maximum

residual at 0.07%. These are different from the left panel due to the kt values exiting much

later, at a time closer to the end of inflation at 28.0 e-folds where the bispectrum has rapid

small-amplitude oscillations.

Despite the fNL vs. kt plot having larger residuals, these results indicate that the

non-canonical transport formalism agrees with its canonical counterpart to within at least

0.1% when applied to this model.
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Figure 2.4: Power spectrum residuals from the quasi-two-field model. Left: residual as a

function of time for the k-mode that exits the horizon at 19.0 e-folds from the initial time.

Right: residual of ln(Pζ) as a function of ln(k/k∗) for a range of k numbers exiting the

horizon between 0.0 and 5.2 e-folds after the scale, k∗, which exits at N∗ = 13.5.

2.4.3 Quasi-two-field inflation

Dias et al. [Dias et al., 2015b] introduced a ‘quasi-two-field’ model in which two light scalars

drive inflation. One of these fields excites a heavy third field via a noncanonical kinetic

coupling, giving rise to oscillatory features in the power spectrum. This is an extension

of a simpler two-field model suggested by Achúcarro et al. [Achúcarro et al., 2011]. Such

oscillatory features have been well-studied in the literature [Gao et al., 2012, Achúcarro

et al., 2011, Achúcarro et al., 2014, Adshead et al., 2013, Flauger et al., 2017]. The

power spectrum was computed using mTransport by Dias et al. [Dias et al., 2015b], and

the bispectrum was computed using PyTransport by Ronayne et al. [Ronayne & Mulryne,

2017], giving us an opportunity to benchmark CppTransport against the other transport

tools. Note that this is not an empty comparison, because although all the transport

tools use the same underlying framework they make very different numerical choices in

implementation.

The three fields in the model are labelled φ1, φ2 and φ3, and the field-space metric is

GIJ =




1 Γ(φ1) 0

Γ(φ1) 1 0

0 0 1


 , (2.38)

where Γ(φ1) is defined to equal [Achúcarro et al., 2011]

Γ(φ1) =
Γ0

cosh2 2(φ1−φ1(0))
∆φ1

, (2.39)
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where Γ0 = 0.9 is the maximum value of Γ(φ1), φ1(0) = 7MP is the value of φ1 at the apex

of the turn and ∆φ1 = 0.12MP is the range of φ1 during the turn. The potential is

V =
1

2
g1m

2φ2
1 +

1

2
g2m

2φ2
2 +

1

2
g3m

2φ2
3, (2.40)

with parameters g1 = 30, g2 = 300, g3 = 30/81, m = 10−6. The initial conditions are

φinit
1 = 10.0MP, (2.41a)

φinit
2 = 0.01MP, (2.41b)

φinit
3 = 13.0MP. (2.41c)

Two-point function.—In this section, we define the residual between the mTransport and

CppTransport power spectrum as

|∆P| = |PCppT − PmT|
PmT

. (2.42)

In the left panel of Fig. 2.4 we plot the residual as a function of time for the k-mode that

exits the horizon N = 19.0 e-folds from the initial time. During the superhorizon phase

the agreement is typically at 0.01% or better, except at a small number of points where

the evolution is particularly rapid.

Note that the solutions diverge on subhorizon scales. As explained in Ref. [Dias et al.,

2015a], the curvature perturbation ζ does not have a unique definition on subhorizon scales,

and the precise value we assign depends which k-dependent terms are kept. mTransport

uses the ‘local’ form of ζ defined in Ref. [Dias et al., 2015a], whereas CppTransport and

PyTransport uses the ‘simple’ form (which agrees with Eqs. (2.28a)–(2.28b)). At linear level

these are [Dias et al., 2015a]

ζlocal =
1

2H2M2
Pε(3− ε)

(
φ̇IQ̇

I + VIQ
I
)

(2.43a)

ζsimple = − φ̇IQ
I

2HM2
Pε
. (2.43b)

The ‘local’ form mixes QI and Q̇I whereas the ‘simple’ form involves only QI . Correl-

ation functions involving Q̇I increase on subhorizon scales more rapidly than correlation

functions of QI alone, which accounts for the different time-dependence visible in Fig. 2.4

on subhorizon scales. The discrepancy is harmless. On superhorizon scales the two forms

agree to high accuracy, as they should.

Although this difference means that the ζ correlation functions cannot be compared

directly on subhorizon scales, we have verified that the field correlation functions (which

are unambiguous) agree to 5 significant figures.
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Figure 2.5: Quasi-two-field residual time-plots for three-point functions on equilateral con-

figurations. Left: dimensionless bispectrum, B, for a kt value that exits the horizon at

Nexit = 19.9 plotted against time. Right: reduced bispectrum, fNL, plotted against time

for the same kt and Nexit values.

In the right panel of Fig. 2.4 we plot the residuals as a function of scale for a range of

k-modes exiting the horizon up to 5.3 e-folds from the pivot scale. The residuals remain

below 0.1% over the whole range. This shows excellent agreement between mTransport and

CppTransport despite the rapid oscillations visible in the power spectrum.

Three-point function.—To compare 3-point functions we use the latest version of PyTrans-

port [Ronayne & Mulryne, 2017]. For each measure X of 3-point correlations we define the

residual |∆X| = |XCppT −XPyT|/XCppT.

In the left-hand panel of Fig. 2.5 we plot the residual of the dimensionless bispectrum

as a function of time for an equilateral configuration where kt exits the horizon roughly

20 e-folds after the initial time. Our results agree at roughly 0.3% through most of the

evolution, with short-lived excursions to larger values at times of rapid evolution. In the

right-hand panel we give an equivalent plot for the reduced bispectrum fNL. We conclude

that the variation in numerical results between any two of the transport tools is negligible

in comparison with current experimental errors.

The left panel of Fig. 2.6 shows the residual of the reduced bispectrum as a function of kt

for scales exiting the horizon between 10.9 and 19.9 e-folds after the initial time. Agreement

between CppTransport and PyTransport is at the level 6 1% over almost the entire range of

kt, despite the extremely rapid oscillations visible in the range 107 . kt . 108. In the right

panel we show a zoomed-in section highlighting the region of most significant disagreement.

The cause of the discrepancy is currently under investigation. This is the only model we

have encountered in which our codes show a small disagreement of this kind.
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Figure 2.6: Reduced bispectrum residuals in equilateral kt space where k∗ = 1 and N∗exit =

0.1. Left: residuals for the reduced bispectrum fNL plotted against a range of kt values

exiting the horizon between 10.9 & 19.9 e-folds after inflation begins. Right: zoom-in of

the largest residual at kt ≈ 2.2× 108.

Shape plots.—Up to this point we have focused on the bispectrum amplitude as a func-

tion of time or scale, but important information is also encoded in the shape regarding

the type of interactions that appear in the Lagrangian. In Fig. 2.7 we show the dimen-

sionless bispectrum as a function of α and β at fixed kt, rescaled to have unit amplitude

on the equilateral configuration [Fergusson & Shellard, 2007]. We choose kt so that the

wavenumber characterizing this configuration exits the horizon 16.6 e-folds after the initial

conditions, and the plots depict the shape given 14.232 e-folds after the initial conditions.

In the left panel we show the amplitude as a surface plot with the z-height representing the

(rescaled) bispectrum amplitude, and in the right panel we give a corresponding contour

plot.

At the time given in Fig. 2.7, the shape shows 15 separate peaks that have evolved from

an equilaterally-dominated bispectrum with a single maximum at the equilateral config-

uration. During the subhorizon phase of inflation, each region of the shape continuously

subdivides, generating further peaks. The subdivision continues until horizon-crossing at

N ≈ 17, after which 8 peaks have formed along each side of the shape plot. The bispectrum

shape is briefly re-excited during the turn at N = 30 e-folds before settling to a constant

value until the end of inflation. This behaviour is best seen in our video of the surface plot

evolution available on Vimeo.

2.4.4 The gelaton model

We now apply our tools to a new example: the gelaton model introduced by Tolley &

Wyman [Tolley & Wyman, 2010]. In this model a heavy gelaton field, with a mass m & H,

https://vimeo.com/user81717348/quasi-2-field-inflation-shape
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Figure 2.7: Shape plots for the quasi-two-field model. Left: 3D surface plot of the di-

mensionless bispectrum, B(α, β), taken at N = 14.232 e-folds for a range of shapes with

−0.98 6 α 6 0.98 and 0 6 β 6 0.99 and a fixed kt mode with Nexit = 16.6 e-folds. Right:

2D contour plot for the same values.

is strongly coupled to a light field and dresses its excitations. This causes the light field’s

dynamics to be modified. Tolley & Wyman modelled this behaviour using an action with

nontrivial kinetic mixing,

S =
1

2

∫
d4x
√−g

[
M2

PR− ∂µφ∂µφ− e2b(φ)∂µχ∂
µχ− V (φ, χ)

]
. (2.44)

Here φ is the gelaton, χ is the inflaton, and we can see that the field-space metric is given

by:

GIJ =


1 0

0 e2b(φ)


 . (2.45)

The function b(φ) is chosen so that the effective mass of the gelaton is much larger than

H, ensuring that it remains at the minimum of its effective potential. This is displaced

from the minimum of the bare potential V (φ, χ) due to the kinetic coupling. We label the

true minimum φ0, which should be determined by the condition that the φ field is in static

equilibrium,

V,φ(φ0, χ)− 2b,φ(φ0)e2b(φ0)X = 0, (2.46)

where X = −1
2(∂χ)2 is the kinetic energy of χ. After integrating out φ from the ac-

tion (2.44) it can be shown that the resulting low-energy theory is equivalent to a P (X,χ)

model [Tolley & Wyman, 2010] in which the action is an arbitrary function of X and χ.

Expanding the low-energy action to second order shows that the dressed χ fluctuations

propagate with phase velocity

c2
s =

(
1 +

4e2b(b,φ)2χ̇2

m2
gelaton

)−1

, (2.47)
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where mgelaton is the effective gelaton mass. It is known that P (X,χ) models in which the

speed of sound is significantly different from unity give enhanced three-point correlations

on equilateral configurations [Seery & Lidsey, 2005b, Chen et al., 2007, Silverstein & Tong,

2004, Alishahiha et al., 2004]. The gelaton model will exhibit such a phenomenology if

the speed of sound can be depressed significantly below unity, cs � 1, while keeping the

gelaton mass large, mgelaton & H.

DBI potential.—We now specialize to the ‘hyperbolic manifold’ scenario suggested by

Tolley & Wyman in which b(φ) = gφ/MP. With this choice, the dynamics of DBI inflation

can be replicated by adopting the following potential

VDBI(φ, χ) = T (χ) cosh

(
2gφ

MP

)
− T (χ) +W (χ), (2.48)

where g = 0.43 is a free parameter used to adjust the gelaton mass, T (χ) is the brane ten-

sion in the DBI interpretation, and W (χ) is a potential representing interactions between

the brane and other degrees of freedom in the geometry. The gelaton mass is

m2
gelaton = 4g2M−2

P T (χ) exp

(
−2gφ

MP

)
. (2.49)

To fix the model we must specify T (χ) and W (χ). We adopt

T (χ) =
1

2
λ2χ2, (2.50a)

W (χ) = Λ4 − 1

2
m2χ2, (2.50b)

where λ = 0.001MP, Λ = 0.005MP, and m = 10−5MP. The potential W (χ) is chosen to

keep the expectation value of χ sub-Planckian. It can be assumed to be representative of

any hilltop potential provided χ does not become too large.

The initial conditions for the two fields are φinit = 1×10−3MP and χinit = 1×10−4MP

respectively.

Results.—We perform numerical computations with the full two-field model, to determine

whether the low-energy effective description containing only the dressed light fluctuation

is an accurate representation of the dynamics. We find very good agreement between our

numerical results and the predictions of the low-energy effective theory.

In the left panel of Fig. 2.8 we plot the evolution of the background fields from their

initial values at N = 0 until the end of inflation at Nend = 51. At early times the evolution

of χ is dominated by its kinetic coupling. The φ field is driven by the cosh term in VDBI.

In the right panel we show the evolution of the power spectrum for a single k-mode leaving

the horizon at N = 8.0. It exhibits smooth decay inside the horizon and asymptotes to a

constant value on superhorizon scales, as it should for an effectively single-field model.
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Figure 2.8: Background fields and power spectrum for the gelaton model. Left: e-fold

evolution of fields φ and χ with inflation ending at N = 51. Right: dimensionless power-

spectrum Pζ for a k mode exiting the horizon 8.0 e-folds after the initial conditions.

0 10 20 30 40 50

No. of e-folds, N

10−7

10−4

10−1

102

105

108

1011

1014

B
am

p
lit

u
d

e

B(k1, k2, k3)

0 10 20 30 40 50

e-folds from horizon exit of k∗

0.10

0.15

0.20

0.25

0.30

0.35

|f N
L
|

fNL(k1, k2, k3), Nend = 51

Figure 2.9: Left: dimensionless bispectrum B for an equilateral configuration where kt = 3

with each individual k mode exiting the horizon at N = 8.0. Right: reduced bispectrum

fNL plotted against a range of k values exiting the horizon between 0-46 e-folds after the

scale k∗ with N∗exit = 3.0.
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fNL(α, β), taken at a timeN = 25.0 e-folds for a kt mode that leaves the horizon 18.9 e-folds

after the initial time. Right: contour plot of the data in the left panel.

In the left panel of Fig. 2.9 we plot the evolution of the dimensionless bispectrum for an

equilateral configuration with fixed kt corresponding to horizon exit at a time Nexit = 8. In

the right panel we show the reduced bispectrum fNL evaluated on equilateral configurations

as a function of scale, for a range of kt exiting the horizon between N = 0 and N = 46

e-folds after the scale k∗ which exits 3.0 e-folds after the initial time. We see that, with

this choice of parameters, the enhancement of equilateral configurations is only modest,

yielding |fNL| ≈ 0.13 for a large range of k before the end of inflation causes |fNL| to grow

slightly as ε increases.

In Fig. 2.10 we plot the shape of the reduced bispectrum fNL(α, β) for a single kt-

value that exits the horizon 18.9 e-folds after the initial conditions. As before, the left

panel shows a three-dimensional surface plot and the right panel shows the corresponding

contour plot. Both are evaluated at time N = 25.0, when the time dependence has settled

down to become constant. At peak, |fNL| ≈ 0.1297 in agreement with the values plotted

in Fig. 2.9 (for a different value of kt), which is still some way from the smallest observable

value |fNL| ≈ 10. The shape plot shows that the detailed structure of the bispectrum

is somewhat complicated, although it resembles the equilateral template in its overall

structure.

In the next section we will show that an observationally-relevant amplification of the

bispectrum is difficult to achieve for a gelaton model of this type, because consistency

constraints give very little parameter space to depress the speed of sound.
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Gelaton model parameter constraints

The effective single-field description of the gelaton model is applicable only when the

gelaton mass mgelaton is significantly larger than H. For smaller masses we must revert

to the full two-field description. We now argue that the modest amplitude of fNL seen in

Figs. 2.9 and 2.10 is a consequence of simultaneously satisfying this and other consistency

conditions.

Gelaton mass.—First, we require m2
gelaton � H2. With our choice of tension T (χ),

Eq. (2.49) shows that

m2
gelaton = 2g2M−2

P λ2χ2 exp

(
−2gφ

MP

)
. (2.51)

Evidently, if the argument of the exponential term is large then the gelaton mass will

be exponentially suppressed. Therefore we suppose |2gφ/MP| . 1, allowing a Taylor

expansion of mgelaton. The leading term is

m2
gelaton ≈ 2g2M−2

P λ2χ2 + · · · . (2.52)

To estimate the Hubble parameter we assume that the slow-roll approximation applies,

making the kinetic terms are sub-dominant to the potential. Under these circumstances a

reasonable approximation to H2 will be

H2 ≈ VDBI

3M2
P

=
1

6

λ2

M2
P

χ2

(
cosh

2gφ

MP
− 1

)
+

1

3M2
P

(
Λ4 − 1

2
m2χ2

)
, (2.53)

where VDBI from Eq. (2.48) has been inserted assuming our choices for T (χ) and W (χ).

Our assumption that the exponential in Eq. (2.51) is not significantly suppressed makes

the cosh term in (2.53) negligible. Therefore the most significant contribution to H will

come from the potential W (χ). Meanwhile, to prevent higher order terms become relevant

we must constrain the negative term m2χ2/2 to be significantly smaller than the hilltop

amplitude Λ4. This yields

χ2 � 2Λ4

m2
. (2.54)

In this regime the dominant contribution to the Hubble rate will come from the hilltop,

H2 ≈ Λ4

3
. (2.55)

Eqs. (2.52) and (2.55) can be used together with the consistency condition m2
gelaton � H2

to yield a minimum value of the χ expectation value,

χ2 � Λ4

6g2λ2
. (2.56)
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Figure 2.11: Left: a plot of the gelaton mass m2
gelaton and H2 demonstrating that the

constraint m2
gelaton � H2 is satisfied. Right: a plot showing the departure in the speed of

sound, |cs − 1| is very small due to the constraints described in §2.4.4.

Consistency of Eqs. (2.54) and (2.56) yields a constraint on the mass m2,

m2 � 12g2λ2. (2.57)

Speed of sound.—Second, to give at least modest suppression of the sound speed we suppose

c2
s � 10/11 ≈ 0.9. Eq. (2.47) then requires

1

c2
s

= 1 +
2

λ2

(
χ̇

χ

)2

� 11

10
, (2.58)

where, as before, we have performed a Taylor expansion in exponentials of φ. The slow-roll

approximation can be used to estimate χ̇,

χ̇2 =
m4χ2

9H2
=
m4χ2

3Λ4
. (2.59)

Combining Eq. (2.59) and (2.58) now yields a lower bound for m2,

m2 �
√

3λ2Λ4

20
. (2.60)

The constraint is the principal obstruction to finding parameter combinations that

would yield significant amplification of the equilateral correlations. Most obviously, Eq. (2.60)

creates a tension with the upper bound (2.57) causing the available parameter window for

m to be rather narrow. The lower limit scales parametrically with λ whereas the upper

limit scales with λ2, and therefore one strategy to increase the size of the window is to

increase λ. Unfortunately, Eq. (2.58) shows that increasing λ will typically force the speed

of sound towards unity unless χ̇/χ can be changed to compensate. This cannot happen in

the slow-roll regime because (2.59) shows that χ̇/χ is independent of λ.
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For example, with the above choices of g, λ and Λ, the window for m is 0.00139MP �
m � 0.00145MP. This is so narrow that it is not really possible to have the strong ‘�’

inequality satisfied on either side. As we will see below, our choice m = 10−5MP amply

satisfies the upper bound (2.57) and is sufficient to guaranteemgelaton � H2, but it violates

the lower bound and therefore does not yield a suppressed speed of sound.

The limits on the χ expectation value (2.54) and (2.56) give another constraint. Both

limits scale with Λ4 and therefore the relative size of the window does not change with

scaling Λ. Instead, we must rely on changing the parameters m or gλ that appear in

the denominators of (2.54) and (2.56) respectively. We have already seen that m is tightly

constrained, making the upper limit practically fixed once Λ is prescribed. Also, if m is not

too close to its lower limit then it will also scale roughly with λ. Therefore parametrically

widening the available window for the χ expectation value depends on increasing g to

decrease the lower limit relative to the upper one. Unfortunately g must be fairly small

in order to keep e2gφ/MP reasonable small. If the exponential becomes too large then ε

typically grows also, causing inflation to end exponentially quickly. Therefore, in addition

to the small range of m, there is a very small range of χ values that satisfy the constraints

for a suppressed speed of sound. In our example the range is roughly 0.0237MP � χ �
0.0254MP. This means that it is typically not possible to sustain enhanced three-point

correlations for a significant number of e-folds.

We have not succeeded in finding parameter combinations that give a significant en-

hancement to equilateral correlations while respecting the consistency conditions of the

theory. This does not rule out the possibility that the gelaton model can do so, but

it would require a different functional form for the potential or the brane tension. We

have verified that similar constraints operate for the simplest monomial chaotic models

W (χ) ∝ χn for integer n, and that these constraints likewise lead to very narrow windows

for m and χ. A modification to the brane tension is possible, but any exotic form would

need careful microphysical justification.

Numerical comparison.—In the left panel of Fig. 2.11 we plot the gelaton mass, m2
gelaton,

together with the Hubble rate, H2. We demonstrate that m2
gelaton � H2 so that it is

consistent to integrate out the gelaton. Comparison of our numerical results and the

analytic estimates given in this section shows that our approximations for mgelaton, cs, H

and χ̇ are each accurate to within an order of magnitude. In the right panel we plot the

departure of the speed of sound from unity, |cs − 1|. This is very small, with approximate

value |cs − 1| ≈ 10−8 using our parameter choices.
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Together, the constraints on the gelaton model with a hilltop potential mean that it is

possible to get an inflating solution lasting for approximately 50 e-folds, but only without

significant amplification of equilateral non-Gaussianities. A similar conclusion applies if

we replace the hilltop potential by a monomial large-field model. This does not rule out

the possibility that a different gelaton model could achieve significant enhancement, but

the resulting model is likely to be more complex than the one considered here.

2.4.5 Isocurvature modes

Throughout this paper, we have always given results for the power spectrum and the

bispectrum of the comoving curvature perturbation ζ, because it is only the adiabatic

perturbations that are required by observations. However in multi-field models of infla-

tion, there are always isocurvature modes that can give non-adiabatic perturbations which

could decay into standard model particles (ν,B, γ) or in to a dark matter candidate such

as an axion. Calculating these non-adiabatic perturbations require that the fields are

decomposed into an adiabatic perturbation parallel to the background inflation traject-

ory and non-adiabatic perturbations that are orthogonal to it [Garcia-Bellido & Wands,

1996, Gordon et al., 2001, Lyth & Wands, 2003]. This decomposition was later used with

the phase-space description of inflation to find non-adiabatic effects on the bispectrum in

Refs. [Elliston et al., 2011, Seery et al., 2012].

CppTransport can be used to give all of the n-point functions with mixed fields all written

in the flat-space gauge either in a plot or a data table. This feature is demonstrated in

Fig. 2.12 above where the left panel gives all of the unique three-point correlation functions

from the quasi-two-field model and the right panel gives all of these for the gelaton model.

In principle, it would be simple to use the phase-space methods given in Refs. [Elliston

et al., 2011, Seery et al., 2012] to calculate the non-adiabatic perturbations for these models

or any other inflation model candidate. This could later be used to identify a field decaying

into dark matter or another exotic particle.

2.5 Conclusions

We have applied the transport method to calculate the primordial bispectrum produced

by inflationary models containing non-canonical kinetic terms. To do so we leverage the

formalism of covariant perturbations suggested by Gong & Tanaka [Gong & Tanaka, 2011]

to obtain a covariant Hamiltonian up to third order (§§2.3.1–2.3.2). In agreement with

other analyses, we show that up to a small number of Riemann terms appearing in MIJ ,
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Figure 2.12: Left: a plot of every dimensionless three-point function from the three fields in

the quasi-two-field model given for an equilateral kt mode exiting the horizon 19.1 e-folds

after the initial time. Right: a plot of all of the three-point functions possible for the two

fields in the gelaton model which is given for an equilateral kt mode exiting the horizon

49.2 e-folds after the initial time.

AIJK and BIJK , the formalism covariantizes naïvely. Moreover, the initial conditions and

gauge transformation to ζ also covariantize naïvely provided index positioning is respected

(§§2.3.3–2.3.5). In §2.3.4 we demonstrate how to obtain a covariant hierarchy of transport

equations.

We have implemented these equations in a new version of the CppTransport tool, which

is now capable of handling models with an arbitrary kinetic mixing matrix. At this time,

all three transport tools (mTransport, CppTransport and PyTransport) support models of

this kind and we can perform a meaningful comparison between them. We find excellent

agreement between the different codes (§2.4.3), with differences typically less than 1%. We

also find excellent agreement for the same model written in different field-space coordinates

(§2.4.2) for which differences typically manifest at less than 0.1%.

In §2.4.4 we used CppTransport to obtain numerical predictions for a concrete imple-

mentation of the gelaton model. We find good agreement between our numerical results

(which capture the full dynamics of the two-field model) and the predictions of the single-

field effective description in which the gelaton dresses the light fluctuations, giving them a

suppressed speed of sound. We find a small boost in the equilateral bispectrum at the level

|fNL(k1, k2, k3)| ≈ 0.1 on equilateral configurations. We give an analytic argument that it

is not possible to achieve more dramatic enhancements, at least with the potential VDBI

designed to reproduce the dynamic of the Dirac–Born–Infeld model, without considering

more exotic forms for the potential or brane tension.

To summarise, we have extended the automated numerical framework presented by
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Dias et al. [Dias et al., 2016] to include more complex models with a non-trivial kin-

etic term GIJ(φ)∂µφ
I∂µφJ . As before, this allows numerical calculation of all tree-level

contributions to the bispectrum and includes physical effects both before and after horizon-

crossing. Practically, this means that observable statistics can be found for inflationary

models containing a non-trivial kinetic sector, which can include supergravity theories (eg.

Refs. [Kallosh & Linde, 2013b, Kallosh et al., 2013]) or models motivated by string-theory

(eg. Refs. [Ibanez et al., 2015, Bielleman et al., 2016]). In future we plan to extend

CppTransport to allow sampling over the prior probabilities for initial conditions or Lag-

rangian parameters, enabling estimates of the important observable parameters such as ns

or r in multiple-field models [Mortonson et al., 2011, Easther & Peiris, 2012, Norena et al.,

2012, Price et al., 2015].
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2.6 Appendix: Detailed calculations

2.6.1 Perturbed action in curved field space

We begin with an action coupled to N scalar fields φI , minimally coupled to gravity with

a self-interaction potential V ,

S ⊇ 1

2

∫
d4x
√−g

[
R−GIJgµν∂µφI∂νφJ − 2V

]
, (2.61)

where R is the Ricci scalar, g ≡ det g and we use Greek indices and upper case Roman

indices for the space-time and field-space coordinates respectively. The kinetic mixing

matrix GIJ is symmetric and positive definite, and can be regarded as a metric on field-

space. The case of canonical kinetic terms GIJ = δIJ corresponds to a flat, Euclidean

metric.

In this section we simplify calculations by setting the Planck mass to unity, MP = 1.

Field-covariant perturbations

For a bispectrum calculation we require an expansion in the field perturbations up to third

order, where each fluctuation is given by a coordinate displacement δφI = φI(x, t)−φI(t).
Here, φI(t) is the background field and φI(x, t) is the perturbed field. Unfortunately this
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expression is not covariant under a change of field coordinates. To obtain a covariant

formulation we follow the treatment of Gong & Tanaka [Gong & Tanaka, 2011], who

focused on the unique geodesic connected the field-space coordinates of the perturbed and

unperturbed fields. We take this geodesic to be labelled by an affine parameter λ, with

normalization adjusted so that λ = 0 at the unperturbed coordinate at λ = 1 at the

perturbed coordinate. The initial tangent vector to the geodesic is then defined by

QI ≡ dφI

dλ

∣∣∣∣
λ=0

. (2.62)

We can then assume parallel transport for our affine parameter λ and write the geodesic

equation as

D2
λφ

I =
d2φI

dλ2
+ ΓIJKQ

JQK = 0, (2.63)

where Dλ denotes a covariant derivative QI∇I and ΓIJK is a field-space Christoffel symbol.

We can then introduce a covariant Taylor expansion of the perturbation, δφI ,

δφI =
dφI

dλ
+

1

2!

d2φI

dλ2
+ · · · . (2.64)

(Note that the appearance of this equation depends on our normalization convention for

λ, but its physical content is independent of it.) Equations (2.62) & (2.63) can then be

inserted into Eq. (2.64) to obtain

δφI = QI − 1

2!
ΓIJKQ

JQK + · · · , (2.65)

where ‘· · · ’ denotes terms cubic and higher in QI that we have neglected. When applying

these perturbations to the action in Eq. (2.61), we will only need to use this formalism for

the kinetic part in the second and third terms as the Ricci scalar is zero in the spatially flat

gauge. Before doing this however, we will need the field-covariant background equations

which can be found [Lee et al., 2005] similarly

Dtφ̇
I + 3Hφ̇I +GIJV,J = 0, (2.66)

3H2 = ρ =
1

2
GIJ∂µφ

I∂µφJ + V (φ), (2.67)

ε ≡ − Ḣ

H2
=
GIJ φ̇

I φ̇J

2H2
, (2.68)

which are the field-covariant Klein-Gordon equation, Friedman equation and the inflation

condition respectively. The covariant time-derivative in Eq. (2.66) appears frequently in

expressions and is defined by

DtQ
I = Q̇I + φ̇JΓIJKQ

K . (2.69)
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Next we define X = −GIJgµν∂µφI∂νφJ − 2V and apply λ derivatives up to third order

which will add new terms to our perturbed action. However we first need the field-covariant

derivative of ∂µφI which is given by

Dλ∂µφ
I = ∂µQ

I + ΓIJK∂µφ
JQK ≡ DµQ

I . (2.70)

Then Eq. (2.70) is used to give the first λ derivative on X,

DλX|λ=0 = −gµν∂µφIDνQ
I − V;IQ

I , (2.71)

which gives no new terms. The second derivative yields

D2
λX
∣∣
λ=0

= −gµν
{
RIJKL∂µφ

I∂νφ
LQJQK +DµQIDνQ

I
}
− V;IJQ

IQJ , (2.72)

where we see that working with a non-canonical field metric has introduced a curvature

term over the field coordinates. Finally the third derivative gives

D3
λX
∣∣
λ=0

=− gµν
{
RMJKL;I∂µφ

M∂νφ
LQIQJQK + 4RIJKL∂νφ

LDµQ
IQJQK

}

− V;IJKQ
IQJQK ,

(2.73)

where we have a Riemann tensor term as before as well as a covariant derivative of the

curvature term. Equations (2.71)–(2.73) will be inserted into the action in Eq. (2.61) along

with the metric perturbations to find the perturbed action later.

ADM decomposition and metric perturbations

We will follow the treatment of Maldacena [Maldacena, 2003, Seery & Lidsey, 2005a, Seery

& Lidsey, 2005b] and use the (3+1) ADM decomposition [Arnowitt et al., 2008] of the

metric which is given by

ds2 = −N2 dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (2.74)

where N is the lapse function, N i is the shift vector, and hij is the spatial metric. With

this decomposition, the action in (2.61) can now be rewritten using the Gauss–Codazzi

relation to remove the Gibbons–Hawking–York boundary term [York, 1972, Gibbons &

Hawking, 1977]

S =
1

2

√
h

∫
d4x

{
N
(
R(3) −GIJhij∂iφI∂jφJ − 2V

)
+

1

N

(
πIπI + EijEij − E2

)}
,

(2.75)

where R(3) is the Ricci scalar built from the spatial metric and Eij is related to the extrinsic

curvature of constant slices,

Eij =
1

2

(
ḣij −Ni|j −Nj|i

)
, (2.76)
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where the vertical bar index denotes a covariant derivative compatible with hij and we

have made the definition

πI ≡ φ̇I −N jφI|j . (2.77)

We will later expand the lapse function and shift vector in terms of scalar perturbations

in our field perturbations for the spatially flat gauge with hij = a2δij ,

N = 1 + α1 + α2 + · · · (2.78a)

N i = θ,i1 + θ,i2 + · · · , (2.78b)

where the subscripts 1, 2, ... indicate the order of expansion and α is a perturbation in the

lapse function with θ being an expansion in the shift vector.

Perturbing the action

We must now insert the expressions for the kinetic term, X = −GIJgµν∂µφI∂νφJ − 2V ,

found in equations (2.71)–(2.73) as well as the metric perturbations found in equations

(2.75) and (2.78) into our action found in Eq. (2.61) which gives the results found by

Elliston et al. [Elliston et al., 2012]

S2 =
1

2

∫
d4x a3

{
α1

[
−6H2α1 + φ̇I φ̇

Iα1 − 2φ̇DtQ
I − 2V,IQ

I
]

− 2

a2
∂2θ1

[
2Hα1 − φ̇IQI

]

+RKIJLφ̇
K φ̇LQIQJ +DtQIDtQ

I − ∂iQI∂iQI − V;IJQ
IQJ

}
(2.79)

and

S3 =
1

2

∫
d4x a3

{
6H2α3

1 +
4H

a2
α2

1∂
2θ1 −

α1

a4

(
∂i∂jθ1∂i∂jθ1 − ∂2θ1∂

2θ1

)

− α3
1φ̇I φ̇

I + 2α2
1φ̇IDtQ

I +
2

a2
α1φ̇I∂iθ1∂iQ

I − α1RK(IJ)Lφ̇
K φ̇LQIQJ

− α1

(
DtQIDtQ

I +
1

a2
DiQIDiQ

I

)
− 2

a2
∂iθ1DtQI∂iQ

I +
4

3
RI(JK)Lφ̇

LDtQ
IQJQK

+
1

3
R(I|LM |J ;K)φ̇

M φ̇LQIQJQK − α1V;(IJ)Q
IQJ − 1

3
V;(IJK)Q

IQJQK
}
,

(2.80)

at second and third order respectively where brackets around indices indicate that they

can be cyclically permuted and vertical bars exclude indices from that symmetrisation. It

should be noted that neither of these actions contain second order terms in the lapse and

shift just like the canonical case but we will need them regardless because they are used

in the gauge transformation calculation.
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Applying constraints for Fourier-space action

We may now vary the second-order action in Eq. (2.79) with respect to the lapse and shift

to find expressions for α1 and θ1 in terms of the perturbed fields QI which are

α1 =
φ̇IQ

I

2H
, (2.81)

and

θ1 =
a2

2H
∂−2

(
−V,IQI − φ̇IDtQ

I + 2α1

[
−3H2 +

1

2
φ̇I φ̇

I

])
. (2.82)

Here ∂−2 denotes the inverse Laplacian operator over spatial coordinates and Eq. (2.82)

may be further simplified using the background Eq. (2.66) and Eq. (2.81) for an expression

in terms of fields only. As mentioned previously, we also need second-order expressions for

the lapse and shift which are found by varying Eq. (2.75) with respect to N and N i and

then expanding perturbatively to find

α2 =
α2

1

2
+

1

2H
∂−2

{
∂i(DtQ

I)∂iQI +DtQ
IDtQI +

1

a2

(
∂2α1∂

2θ1 − ∂i∂jα1∂i∂jθ1

)}
,

(2.83)

and

θ2 =
a2

4H
∂−2

{
2α1

(
4H

a2
∂2θ1 + 2φ̇IDtQI

)
− VIJQIQJ −DtQ

IDtQI

+
1

a2

(
2φ̇I∂iθ1∂iQI − ∂iQI∂iQI +

1

a2

(
∂2θ1∂

2θ1 − ∂i∂jθ1∂i∂jθ1

))

+ 2H2(2α2 − 3α2
1)(ε− 3)−RIJKLQI φ̇J φ̇KQL

}
.

(2.84)

Equations (2.82) and (2.84) can then be used to give the Hamiltonian constraint for a

non-trivial metric on super-horizon scales,

0 = VIQ
I +

1

2
VIJQ

IQJ + φ̇IDtQI +
1

2
DtQIDtQ

I +
1

2
RIJKLQ

I φ̇J φ̇KQL

+H2
(
2α1 + 2α2 − 3α2

1

)
(3− ε)− 2α1φ̇

IDtQI ,

(2.85)

where the spatial derivatives have been omitted due to them decaying on super-horizon

scales. Equations (2.81) and (2.82) can be used to rewrite the second- and third-order

actions in terms of only background fields and their perturbations. We would also like

to write these in terms of the Fourier modes instead of spatial coordinates so we must

adopt a convention and notation to express this. Therefore we use bold sans-serif indices

to indicate an integration over Fourier modes for an index contraction such as

AIB
I =

∑

I

∫
d3kI
(2π)3

AI(kI)B
I(kI), (2.86)

where the indices on the right-hand side represent phase-space coordinate labels and indices

may be changed to be co- or contravariant using the field-space metric GIJ . This can be
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a problem if the δ-function GIJ = (2π)3GIJδ(kI + kJ) is produced, because this reverses

the sign of a momentum label; we use a prime on the index to indicate this,

AIB
Ī =

∑

I

∫
d3kI
(2π)3

AI(kI)B
I(−kI). (2.87)

Using these conventions and by substituting equations (2.81) and (2.82) into the second-

and third-order actions in equations (2.79) and (2.80), we find

Sφ =
1

2

∫
dt a3

{
GIJDtQ

IDtQ
J +MIJQ

IQJ+

AIJKQ
IQJQK +BIJKQ

IQJDtQ
K + CIJKDtQ

IDtQ
JQK

}
,

(2.88)

where the second-order and third-order parts of the action are written on the first and

second lines respectively. The second order kernels are given by

GIJ = (2π)3GIJδ(k1 + k2),

MIJ = (2π)3δ(k1 + k2)

(
k1 · k2

a2
GIJ −mIJ

)
,

(2.89)

where mIJ satisfies

mIJ = V;IJ −RKIJLφ̇K φ̇L −
1

a3
Dt

(
a3φ̇I φ̇J
H

)
. (2.90)

Then the third-order kernels are given by

AIJK = (2π)3δ(k1 + k2 + k3)AIJK , (2.91a)

BIJK = (2π)3δ(k1 + k2 + k3)BIJK , (2.91b)

CIJK = (2π)3δ(k1 + k2 + k3)CIJK , (2.91c)

with

AIJK = −1

3
V;IJK −

φ̇IV;JK

2H
+
φ̇I φ̇JZK

4H2
+
φ̇IZJZK

8H3

(
1− (k2 · k3)2

k2
2k

2
3

)

+
φ̇I φ̇J φ̇K

8H3
(6H2 − φ̇2)− φ̇K φ̇

Lφ̇M

2H
RL(IJ)M +

1

3
R(I|LM |J ;K)φ̇

Lφ̇M

+
φ̇IGJK

2H

k2 · k3

a2
,

(2.92a)

BIJK =
4

3
RI(JK)L −

φ̇IZJ φ̇K
4H3

(
1− (k2 · k3)2

k2
2k

2
3

)
+
φ̇I φ̇J φ̇K

4H2
− ZIGJK

H

k1 · k2

k2
1

, (2.92b)

CIJK =
GIJ φ̇K

2H
+
φ̇I φ̇J φ̇K

8H3

(
1− (k1 · k2)2

k2
1k

2
2

)
+
φ̇IGJK
H

k1 · k3

k2
1

, (2.92c)

and where ZI is given by

ZI = Dtφ̇
I +

φ̇I φ̇J φ̇
J

2H
. (2.93)
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Expression (2.92a) should be symmetrised over all three indices and expressions (2.92b)

and (2.92c) should be symmetrised over the first two indices where an exchange of indices

corresponds with a matching change of k vectors. The results for these kernels are identical

to those found for the canonical case in [Dias et al., 2016] apart from the addition of

Riemann terms appearing on the second line of AIJK above and in the first term of BIJK .

We also note that the last term in AIJK is proportional to (k/a)2 so will grow exponentially

on sub-horizon scales which we will later need to treat separately when computing initial

conditions.

2.6.2 Transport method

We want to use the action we have found in the previous section to find evolution equations

for our correlation functions and therefore compute the 2- and 3-point functions on sub-

and super-horizon scales. For this we can use the transport method as first detailed in

[Mulryne et al., 2010, Mulryne et al., 2011, Seery et al., 2012, Mulryne, 2013], which

relates correlation functions of Heisenberg picture operators to those in the interaction

picture where the Heisenberg equations of motion can be used to give evolution equations

of interaction-picture fields.

Correlation functions

We begin by defining Heisenberg fields and their momenta as QI and P I respectively,

which we then can use to write a Hamiltonian split into free and interacting parts,

H(Q,P ) = H0(Q,P ) +Hint(Q,P ), (2.94)

where the index 0 denotes the free part and int gives the interacting part. Next we must

define our new interaction-picture operators using some unitary operator, F , as

qI = F †QIF,

pJ = F †PJF,
(2.95)

where qI and pJ are in the interaction picture. From these relations, it is simple to rewrite a

vacuum expectation value of Heisenberg picture operators, O(Q,P ), in terms of interaction

picture operators,

〈vac|O(Q,P )|vac〉 = 〈vac|FO(q, p)F †|vac〉 , (2.96)

where 〈vac| · · · |vac〉 denotes an expectation value in the Minkowski vacuum. We can use

the Heisenberg equation of motion, dQ/dt = −i[Q,H(Q,P )], to show that the differential
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equation needed to find the unitary operator F is

dF

dt
= iFHint(q, p), (2.97)

where the equation for F † is found by taking the complex conjugate. These differential

equations can be solved using a power-series method to give the solution

F = T̄ exp

(
i

∫ t

Hint(t
′)dt′

)
(2.98)

where T̄ is the anti-time ordering operator which orders its argument in terms of increasing

time. We can set the lower limits of these integrals by using a theory by Gell-Mann and

Low [Gell-Mann & Low, 1951] which states that the vacuum state of an interacting theory

can be related to the ground state of a non-interacting theory with an adiabatic ‘switch

on’ of the interacting theory. Then the integrals are performed over contours deformed

into the complex plane in the distant past with analytic continuation used to define the

fields for each ladder operator. These results are used in Eq. (2.96), yielding

〈vac|O(X)|vac〉 =

〈
0

∣∣∣∣T̄ exp

(
i

∫ t

−∞+

Hint(t
′)dt′

)
O(x) T exp

(
−i

∫ t

−∞−
Hint(t

′′)dt′′
)∣∣∣∣ 0

〉
,

(2.99)

where −∞+ and −∞− show that the integration contour should be deformed into the

positive and negative imaginary half-planes respectively with Xa = (QI , P J) and xa =

(qI , pJ) defined as phase-space vectors containing fields and momenta in the Heisenberg

and interaction picture respectively. This is known as the ‘in–in’ formalism [Adshead et al.,

2009] used for computing correlation functions and is a sum over all possible ‘out’ states

for the theory.

Evolution equations

We can now use these relations between Heisenberg and interaction picture fields along

with our Fourier convention found in equations (2.86) and (2.87) to write the Hamiltonian

as

H =
1

2!
HabX

aXb +
1

3!
HabcX

aXbXc + · · · , (2.100)

where all fields are in the Heisenberg picture and ‘· · · ’ denotes higher-order terms. This

allows the Heisenberg equations of motion to be written

DtX
a = uabX

b +
1

2!
uabcX

bXc + · · · , (2.101)

which gives definitions for the ‘u-tensors’, uab and uabc. There is also a Christoffel symbol

appearing on the left hand side of (2.101) because of the field-covariant time derivative
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defined in Eq. (2.69). For our action in Eq. (2.88), we choose the free part of the Hamilto-

nian to be the quadratic terms in perturbations and the interacting part is given by the

cubic terms. The time evolution of an interaction-picture field is

Dtx
a = uabx

b. (2.102)

This allows us to use equations (2.99) and (2.100) to give tree-level two- and three-point

correlation functions

〈
XaXb

〉
=
〈

0
∣∣∣xaxb

∣∣∣ 0
〉
, (2.103a)

〈
XaXbXc

〉
=

〈
0

∣∣∣∣
[

i

3!

∫ t

Hdefx
dxexf dt′, xaxbxc

]∣∣∣∣ 0
〉
. (2.103b)

Evolution equations can now be found for the two-point function first by differentiating

Eq. (2.103a) with respect to time and using Eq. (2.102) to simplify the result. We find

Dt

〈
XaXb

〉
= uac

〈
XcXb

〉
+ ubc

〈
XaXc

〉
, (2.104)

where uab can be found by finding the Hamiltonian from our action and then using the

Heisenberg equations from it to compare with Eq. (2.101) above. The evolution equation

for the 3-point correlation function is slightly harder to calculate than the 2-point function

because it requires rewriting some of the commutation relations found after differentiating

Eq. (2.103b) as seen in Ref. [Dias et al., 2016]. The result is

Dt

〈
XaXbXc

〉
= uad

〈
XdXbXc

〉
+ uade

〈
XdXb

〉〈
XeXc

〉
+ 2 perms, (2.105)

where there are contributions from both of the u-tensors defined in Eq. (2.100) above and

the permutations preserve the ordering of indices. Equations (2.104) and (2.105) both

contain a Christoffel symbol term for each of the phase-space indices appearing on the

left hand side of each equation. These equations may be further simplified by defining

〈XaXb〉 ≡ (2π)3δ(ka + kb)Σ
ab and 〈XaXbXc〉 ≡ (2π)3δ(ka + kb + kc)α

abc as the two- and

three-point functions to obtain

DtΣ
ab = uacΣ

cb + ubcΣ
ac, (2.106a)

Dtα
abc = uadα

dbc + uadeΣ
dbΣec + 2 cyclic (a→ b→ c), (2.106b)

The two differential equations found in equations (2.106a) and (2.106b) can both be solved

numerically to find a power spectrum or bispectrum for an inflation theory and only require

calculation of the u-tensors and initial conditions.
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Calculating the u-tensors

As mentioned previously, we must find the Hamiltonian from our action in Eq. (2.88) so

we begin by defining the momentum canonically conjugate to the field perturbations QI ,

PI(t) =
δSφ

δ(DtQI)
, (2.107)

with a variational derivative defined by

δ[QI(kI , t)]

δ[QJ(kJ , t′)]
= δIJ(2π)3δ(t− t′)δ(kI + kJ) = δIJδ(t− t′). (2.108)

Equations (2.107) and (2.108) can then be used on Eq. (2.88) to obtain the momentum,

PI = a3

{
DtQI +

1

2
BJKĪQ

JQK + CĪJKP
JQK

}
, (2.109)

where a prime on an index indicates a sign reversal of momentum. From Eq. (2.109), it is

simple to rearrange for DtQI,

DtQI =
PI
a3
− 1

2
BJKĪQ

JQK − CĪJKP
JQK. (2.110)

Then we may use the relation H =
∫

dt [P I(DtQĪ) − L] and rescale the momentum by a

factor of a3 as PI → a3PI to obtain the Hamiltonian

H =
1

2

∫
dt a3

(
GIJP

IP J −MIJQ
IQJ−

AIJKQ
IQJQK −BIJKQ

IQJPK − CIJKP
IP JQK

)
,

(2.111)

where the terms on the first line are quadratic in perturbations and the terms on the second

line are cubic in perturbations which represent H0 and Hint in Eq. (2.94) respectively. Next

we must find the Heisenberg equations for the fields QI and P I , which are given by

DtQ
I = −i[QI, H], (2.112a)

DtP
I = −i[P I, H]− 3HP I, (2.112b)

where Eq. (2.112b) is slightly different from the typical canonical relation because of the

rescaled momentum. If the Hamiltonian in Eq. (2.111) is inserted into equations (2.112a)

and (2.112b), then we find

DtQ
I = δ ĪJP

J − 1

2
B Ī
JK Q

JQK − C Ī
JKP

JQK, (2.113)

and

DtP
I = −3Hδ ĪJP

J +M Ī
JQ

J +
3

2
AĪ

JKQ
JQK +B Ī

JKQ
JPK +

1

2
C Ī
JK P JPK. (2.114)
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By comparing the linear terms in equations (2.113) and (2.114) with Eq. (2.101), we first

find the uab tensor to be

uab =


 0 δ ĪJ

M Ī
J −3Hδ ĪJ


 , (2.115)

where we identify each row with terms coming from the evolution equation for Q and

P respectively and each column as having terms proportional to Q and P respectively.

Similarly, we find the uabc tensor to be

uabc =






−B

Ī
JK −C Ī

JK

3AĪ
JK B Ī

KJ





−C

Ī
KJ 0

B Ī
JK C Ī

KJ








, (2.116)

where the rules are the same as before for each 2-by-2 matrix and the extra index c identifies

which 2-by-2 matrix is being referred to. There are also further simplifications to be made

regarding the primed indices in (2.115) and (2.116). For both of the equations above, it

is the index I that has a prime which corresponds with a sign reversal of all momenta

in equations (2.89) and (2.92a)–(2.92c). However because the k terms in these equations

always appear as an inner product of pairs of momenta, then all of the sign reversal will

be cancelled out. This means our u-tensors can be written with plain phase-space indices,

uab =


 0 δIJ

M I
J −3HδIJ


 , (2.117a)

uabc =







−B I

JK −CIJK
3AIJK BI

KJ





−C

I
KJ 0

BI
JK C I

KJ








. (2.117b)

It should be noted that all of the extra terms added by the non-canonical field metric

here are contained within the kernels introduced earlier and the only other differences are

caused by Christoffel symbols in field coordinate space coming from covariant derivatives.

2.6.3 Initial conditions

Having found the differential equations needed to be solved for a numerical implementation,

the next task is to use the formalism developed in section 2.6.2 to find appropriate initial
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conditions for the equations giving both the 2- and 3-point correlation functions. We will

again need to be careful to ensure that our expressions are kept field-covariant and to find

any new field curvature times arising from the inclusion of a non-canonical field metric.

2-point correlation functions

We begin by writing the second-order action in terms of our perturbed fields,

S(2) =
1

2

∫
dt a3

{
−GIJ∂µQI∂µQJ −MIJQ

IQJ
}
, (2.118)

where MIJ is a mass-term encompassing all terms involving potentials and other non-

kinetic terms. This calculation is done using the path-integral formalism so we integrate

by parts whilst assuming boundary terms vanish at infinity and change the time variable

to conformal time, defined by dt = adη. We find

S(2) = −1

2

∫
dη d3x a2QI

[
GIJ

(
D2
η + 2

a′

a
Dη − ∂i∂i

)
+ a2MIJ

]
QJ

= −1

2

∫
dη d3x

{
a2QI∆IJQ

J
}
,

(2.119)

where we have written a covariant derivative over conformal time as Dη and use a prime

(′) to indicate a derivative d/dη and defined the quantity ∆IJ as the differential operator

in brackets (· · · ) above. We now seek to use Eq. (2.99) to find the two-point correlation

function but we must distinguish between fields on the left anti-time-ordered product

and the right time-ordered product which we do using a Q+ and Q− field respectively.

Therefore, there are four separate two-point functions for the correlations between ‘++’,

‘+−’, ‘−+’ and ‘−−’ fields which need to be calculated with the ‘in–in’ formalism.

It can be shown [Weinberg, 2005] that Eq. (2.99) is written in the path integral form-

alism with the action above as

Z =

∫
[DQI+DQ

I
−] exp



−

i

2

∫ τ

τ0

dηd3x a2Q̄I


∆

−∆



IJ

QJ



 , (2.120)

where QI = (QI+, Q
I
−) and Q̄I denotes the transpose matrix with τ0 being a time well

before horizon-crossing and τ being the time we’re seeking initial conditions for. We define

the two point function with a time-ordered product of fields to be

DJK′
++ (η,x;σ,y) = 〈TQJ+(η,x)QK

′
+ (σ,y)〉 , (2.121)

with similar definitions for the other products of fields and unprimed indices label tangent

spaces at η and primed ones label tangent spaces at σ. Using the rules of Gaussian

integration for a matrix with vectors that are transpose to one another and by making a
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Fourier transform on D±± to diagonalise the dependence on x and y, we can calculate

D++ using the following differential equation

GIJ
(
D2
η + 2HDη + k2

)
DJK′

++ (k) = − i

a2
GK

′
I δ(η − σ), (2.122)

where we have set H ≡ a′/a as the conformal Hubble constant and we’re now ignoring the

MIJ term but only for the initial conditions in the early, sub-horizon times where they

will make a small contribution. We would now like to factorise the tensor structure so

we introduce a bi-tensor ΠJK′ which must solve DηΠJK′ = 0 and a bi-scalar ∆±±(η, σ,k)

that contains all of the dimensionful quantities. This means we can now write the 2-point

function as

DJK′
++ (η, σ,k) = ΠJK′∆++(η, σ,k) with

D

dη
ΠJK′ = 0. (2.123)

We are now able to make this substitution into Eq. (2.122) where the bi-tensor can now

be factorised out,

GIJΠJK′ (∆′′++ + 2H∆′++ + k2∆++

)
= − i

a2
GK

′
I δ(η − σ). (2.124)

The evolution equation for ΠJK′ can be solved using

DηΠJK′ =
dΠJK′

dη
+ ΓJLM

dφL

dη
ΠMK′ = 0

=⇒ ΠJK′ = P̂ exp

(
−
∫ η

σ
dτ ΓJ

′′
L′′M ′′

dφL
′′

dτ

)
GM

′K′ ,

(2.125)

where P̂ indicates the exponential is path-ordered and double primed indices label tangent

spaces evaluated at τ . This bi-tensor is known as the ‘trajectory propagator’ which is the

parallel propagator evaluated along the inflationary trajectory with the boundary condi-

tion chosen so that when σ → η, we have ΠJK′ → GJK
′ . This means that field metric

dependence is removed from Eq. (2.124) and ∆++ satisfies

(
D2
η + 2HDη + k2

)
∆++ = − i

a2
δ(η − σ). (2.126)

This equation is identical to the canonical field-space solution and we see that the com-

plexity introduced by the field-space metric is captured by the trajectory propagator and

the use of the in–in formalism. Now we only need to identify each of the different field com-

binations mentioned earlier. From the boundary conditions in Eq. (2.120) it can be seen

[Weinberg, 2005, Elliston et al., 2012] that ‘++’ and ‘−−’ as well as ‘+−’ and ‘−+’ field

combinations are Hermitian conjugates of one another. This yields the following solutions
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for the 2-point correlation function,

DIJ ′
++ = (2π)3δ(k1 + k2)ΠIJ ′ H

2
∗

2k3
(1 + ikη)(1− ikσ)eik(σ−η), (2.127a)

DIJ ′
−+ = (2π)3δ(k1 + k2)ΠIJ ′ H

2
∗

2k3
(1 + ikη)(1− ikσ)eik(σ−η) (2.127b)

with DIJ ′
−− and DIJ ′

+− being given by the complex conjugates of equations (2.127a) and

(2.127b) respectively with H∗ denoting the Hubble parameter taken at horizon crossing.

At equal-time with σ = η, these all give the same solution so that the field-field initial

condition is

〈QI(k1)QJ(k2)〉init = (2π)3δ(k1 + k2)GIJ
(

1

2ka2
+
H2

2k3

)
, (2.128)

where we have used η = −1/aH to remove time dependence. Similarly for field-momentum,

momentum-field and momentum-momentum correlations, we have

〈QI(k1)P J(k2)〉init = (2π)3δ(k1 + k2)GIJ
(
− H

2ka2
+

i

2a3

)
, (2.129a)

〈P I(k1)QJ(k2)〉init = (2π)3δ(k1 + k2)GIJ
(
− H

2ka2
− i

2a3

)
, (2.129b)

〈P I(k1)P J(k2)〉init = (2π)3δ(k1 + k2)GIJ
(
k

2a4

)
. (2.129c)

In summary, the introduction of the trajectory propagator, ΠIJ ′ , has ensured we are track-

ing all of the fields correctly on sub-horizon scales before becoming GIJ on equal time

correlations.

3-point correlation functions

For calculation of the 3-point correlation function initial conditions, it is more convenient

to use the operator formalism as used in Eq. (2.99). Each of the exponential functions are

expanded using the in–in formalism and the leading-order, non-vanishing terms are given

by

〈XIXJXK〉 ⊆
〈

0

∣∣∣∣i
∫ η

−∞
dτ
[
Hint, X

I(η,k1)XJ(η,k2)XK(η,k3)
] ∣∣∣∣0
〉
, (2.130)

whereHint ≡ HLMNX
LXMXN which comes from the cubic terms in the action in Eq. (2.88)

along with the kernels defined in equations (2.91a)–(2.92c). If we perform a Fourier trans-

form on the X terms in Hint, the first term from the commutator is

〈XIXJXK〉 ⊆ i
∫ η

−∞
dτ HLMN

∫
Πnd3qn
(2π)9

(2π)3δ(Σqi)
〈

0
∣∣∣XL

q1X
M
q2X

N
q3X

I
k1X

J
k2X

K
k3

∣∣∣ 0
〉
,

(2.131)
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where we have compacted our notation for each Q’s dependence on wave number by placing

it as a subscript. Now we can Wick-contract between different fields to rewrite this in terms

of 2-point functions as

〈XIXJXK〉 ⊆ i
∫ η

−∞
dτ HLMN

∫
Πnd3qn
(2π)9

(2π)3δ(Σqi)
{
〈XL

q1X
I
k1〉 〈XM

q2X
J
k2〉 〈XN

q3X
K
k3〉+ cyclic

}
,

(2.132)

where ‘cyclic’ indicates there are extra terms omitted that are permutations of the field

labels on the inner products. Now we can use this to find 〈QIQJQK〉 whilst just using the

ALMN term from Hint as an example to evaluate the Fourier integral using Eq. (2.128) as

〈QIQJQK〉 ⊆ i(2π)3δ(Σki)
H6
∗

8(
∏
i k

3
i )

ΠILΠJMΠKN (1 + ik1η) (1 + ik2η) (1 + ik3η) e−ktη

×
∫ η

−∞
dτ
{

(1− ik1τ) (1− ik2τ) (1− ik3τ) eiktτALMN (τ)
}
,

(2.133)

where we have defined kt = k1 + k2 + k3 and
∏
i k

3
i indicates a product of k3 terms. We

would like to remove the ALMN term from the τ integral which can be done using a Taylor

series at time N∗ and using some more trajectory propagators between times η and N∗ as

ALMN ≈ Πi
LΠj

MΠk
N

{
Aijk|∗ + (N −N∗)

d

dN
Aijk

∣∣∣∣
∗

+ · · ·
}
, (2.134)

where we use lower-case indices here to indicate that we’re in the N∗ tangent space. Indices

between trajectory propagators contract in the normal way (ie. Πi
LΠIL = ΠIi) so that when

we insert this approximation into Eq. (2.133) whilst keeping the lowest order terms and

multiplying by 2 for the complex conjugate of a real observable, we find that the 3-point

function is given by

〈QIQJQK〉 ⊆ ΠIiΠJjΠKk · i(2π)3δ(Σki)
H6
∗A
∗
ijk

4(
∏
i k

3
i )

× (1 + ik1η) (1 + ik2η) (1 + ik3η) e−ktη

×
∫ η

−∞
dτ
{

(1− ik1τ) (1− ik2τ) (1− ik3τ) eiktτ
}
,

(2.135)

where we have placed ‘constant’ terms on the first line, the second line is the ‘external

polynomial’ and the third line is the ‘internal polynomial’. While all the ‘constants’ on

the first line are not constant, the same terms do appear for every 3-point correlation

possible. The external polynomial is determined by the particular interaction chosen on

the left hand side of Eq. (2.132) so could be QIQJQK , P IQJQK , P IP JQK or P IP JPK

where P I ≡ dQI/dt which are easy to handle because they are effective constants in the

calculation. The internal polynomials however come from the particular cubic Hamiltonian
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term chosen in Eq. (2.111) and must be carefully integrated to keep leading-order, real and

imaginary terms to ensure the result of Eq. (2.135) is real with its factor of i.

External polynomials.— There are 4 different types of external polynomials from each of

the possible 3-point interactions that need to be computed. From Eq. (2.135) above, we

can see that QI contributes the following polynomial,

QI(η) ≈ (1 + ikη) e−ikη. (2.136)

It is then simple to take a derivative with respect to η to find

P I(η) ≈ −ik (1 + ikη) e−ikη + ike−ikη = k2ηe−ikη. (2.137)

Using these relations, we can find each of the possible polynomials as

〈QIQJQK〉 =
(
1 + iktη −K2η2 − ik1k2k3η

3
)
e−iktη, (2.138a)

〈P IQJQK〉 =
(
k2

1η + ik2
1(k2 + k3)η2 − k2

1k2k3η
3
)
e−iktη, (2.138b)

〈P IP JQK〉 =
(
k2

1k
2
2η

2 + ik2
1k

2
2k3η

3
)
e−iktη, (2.138c)

〈P IP JPK〉 =
(
k2

1k
2
2k

2
3

)
e−iktη, (2.138d)

where we have defined K2 ≡ k1k2 + k1k3 + k2k3 in (2.138a).

Internal polynomials.— From Eq. (2.141) above, we have 4 different vertex integrals to

perform where we keep the highest-order terms in η to ensure we have the correct initial

conditions on sub-horizon scales. From Eq. (2.135), we see that Q(τ) is given by

Q(τ) = (1− ikτ)eikτ , (2.139)

which we can differentiate to obtain P (τ) as:

P (τ) =
dQ(τ)

dt
=
k2τ

a
eikτ . (2.140)

As mentioned at the end of section 2.6.1, the AIJK kernel contains a ‘fast’ term that grows

exponentially on sub-horizon scales whereas all of the other terms are ‘slow’ and do not

grow quickly. In order to numerically model inflationary paradigms that exhibit one or

both of these behaviours, we split up the third-order action as follows

S
(3)
φ =

∫
dτ
a4

2

{(
φ̇IGJK

2H

k2 · k3

a2
+AIJKslow

)
QIQJQK +

1

a
BIJKQ

IQJPK +
1

a2
CIJKP

IP JQK

}
,

(2.141)

where AIJKslow denotes the ‘slow’ term which is AIJK with the first term above removed.

We can then insert equations (2.139) and (2.140) into Eq. (2.141) and use τ = −1/aH to
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obtain the internal polynomials,

AIJKfast =
φ̇IGJK(k2 · k3)

4H3

{
k1k2k3

kt
η +

i

kt

(
K2 +

k1k2k3

kt

)
+O(η−1)

}
eiktη + perms.,

(2.142a)

AIJKslow =
AIJKslow
2H3

{
k1k2k3

kt

1

η
+

i

ktη2

(
K2 − k1k2k3

kt

)
+O(η−3)

}
eiktη + perms., (2.142b)

BIJK = −B
IJK

2H3

{
i
k1k2k

2
3

kt
− (k1 + k2)k2

3

kt

1

η
+O(η−2)

}
eiktη + perms., (2.142c)

CIJK =
CIJK

2H2

{
−k

2
1k

2
2k3

kt
− i

k2
1k

2
2

kt

(
1 +

k3

kt

)}
eiktη + perms. (2.142d)

3-point initial conditions.— Now we use the external polynomials in equations (2.138a)–

(2.138d) with the internal polynomials in equations (2.142a)–(2.142d) with the ‘constant’

terms found in Eq. (2.135) to obtain the initial conditions for a correlation of 3 fields,

〈QIQJQK〉init =
(2π)3δ(ktot)

4a4k1k2k3kt

{
φ̇IGJK

4HM2
P

k2 · k3 +
a2

2
AIJKslow − CIJK

k1k2

2

+
a2H

2
BIJK

[
(k1 + k2)k3

k1k2
− K2

k1k2

]
+ 5 perms

}
,

(2.143)

with a correlation of 1 momentum and 2 fields,

〈P IQJQK〉init =
(2π)3δ(ktot)

4a4(k1k2k3)2kt

×
{
k2

1(k2 + k3)

[
φ̇IGJK

4HM2
P

k2 · k3 +
a2

2
AIJKslow − CIJK

k1k2

2
+ 5 perms

]

+ k1

[
− φ̇

IGJK

4HM2
P

k2 · k3

(
K2 +

k1k2k3

kt

)
− a2

2
AIJKslow

(
K2 − k1k2k3

kt

)

+BIJK k1k2k
2
3

2H
+ CIJK

k2
1k

2
2

2

(
1 +

k3

kt

)
+ 5 perms

]}
,

(2.144)

with a correlation of 2 momenta and a field,

〈P IP JQK〉init =
(2π)3δ(ktot)

4a6H2(k1k2k3)2kt

×
{
k2

1k
2
2k3

[
− φ̇

IGJK

4HM2
P

k2 · k3 −
a2

2
AIJKslow + CIJK

k1k2

2
− a2H

2
BIJK (k1 + k2)k3

k1k2

+ 5 perms
]

+ k2
1k

2
2

[
a2H

2
BIJKk3 + 5 perms

]}
,

(2.145)

and a correlation of 3 momenta,

〈P IP JPK〉init =
(2π)3δ(ktot)

4a6H2k1k2k3kt

{
φ̇IGJK

4HM2
P

k2 · k3

(
K2 +

k1k2k3

kt

)
+
a2

2
AIJKslow

(
K2 − k1k2k3

kt

)

−BIJK k1k2k
2
3

2H
− CIJK k

2
1k

2
2

2

(
1 +

k3

kt

)
+ 5 perms

}
.

(2.146)
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where ‘perms.’ indicates there are terms omitted which are cyclic permutations of the

indices but only within the surrounding brackets of where the permutation instruction is

given.

2.6.4 Gauge transformation to curvature perturbations

The final calculation needed before finding numerical results for inflationary models that

use a non-trivial metric is a gauge transformation that translates our correlations functions

in phase-space (eg. 〈QIQJPK〉) into correlation functions of the curvature perturbation, ζ.

We follow much of the same treatment as in [Dias et al., 2015a] and use some of their results

that still apply with a non-trivial field metric in order to find the gauge transformations

used in our code.

Calculating ζ

We would like to switch from the spatially-flat gauge used in our calculations so far to

the uniform density gauge mainly because ζ is a quantity that is conserved to all orders

in perturbation theory [Lyth et al., 2005, Malik & Wands, 2004] and can then be used to

calculate the power spectrum and bispectrum for an inflation model. As in [Dias et al.,

2015a], we use an exponential mapping of the Lie derivative that is used to change gauges,

xµ(p)→ xµ(p′) = exp (Lξ)xµ(p). (2.147)

The Lie derivative is performed along a vector, ξ, which is given by

Lξ =⇒ ξ = ξ0 ∂

∂f
+ ξi

∂

∂xi
, (2.148)

where f here is a label for a time on the flat hypersurface. This exponential mapping is

then used with a Taylor expansion on fields and their derivatives to find equations that

translate fields in one gauge to another. These expressions can then be applied to the

hijdx
idxj part of the ADM decomposition found in Eq. (2.74) to rewrite it in terms of

uniform density quantities. Finally, the ADM expression for the curvature perturbation,

ζ = det(hij)/a
6, is used to find

ζ = Hξ0 +
H

4

∂(ξ0)2

∂f
+
Ḣ

2
(ξ0)2, (2.149)

where we have chosen to write the gauge transformation only in terms of ξ0 and we have

neglected spatial gradients due to them vanishing on the super-horizon scales we are in-

terested in. We can also use the above expression to find the density perturbation in the
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uniform-density gauge, δρ(u), by employing the δN formula [Lyth et al., 2005] to identify

ζ with δρ(u) and substitute ρ̇→ Ṅ = H with ρ̈→ N̈ = Ḣ to give

δρ(u) = δρ+ ρ̇ξ0 + δ̇ρξ0 +
ρ̇

2
ξ0ξ̇0 +

ρ̈

2

(
ξ0
)2
, (2.150)

where spatial gradients have been dropped. Equations (2.147)–(2.150) were first found in

[Dias et al., 2015a] and still apply in the non-trivial field space used in our calculations.

Eq. (2.150) can be used with δρ(u) = 0 to find first- and second-order expressions for ξ0

which are then substituted into Eq. (2.149),

ζ = −Hδρ

ρ̇
+H

δρ

ρ̇

δρ̇

ρ̇
− H

2

ρ̈

ρ̇

(
δρ

ρ̇

)2

+
Ḣ

2

(
δρ

ρ̇

)2

. (2.151)

An expression for ρ is now needed specifically for our matter theory. We may assume that

the perfect fluid equations apply, in which case the stress-energy tensor satisfies

T ab = ∂aφI∂bφI − δab
(

1

2
∂cφ

I∂cφI + V

)
. (2.152)

The energy density is then related to the T 0
0 component where spatial gradients are neg-

lected and the inverse ADM metric is used to find the second order density ,

ρ = −T 0
0 =

1

2N2
φ̇I φ̇I + V, (2.153)

where at zeroth order, ρ = 1
2 φ̇

I φ̇I +V , as expected. Eqs. (2.71), (2.72) and (2.78) are then

used to perturb Eq. (2.153) to second-order and find the density perturbation, δρ,

δρ = φ̇IDtQI + VIQ
I +

1

2

(
3α2

1 − 2α2 − 2α1

)
φ̇I φ̇I

+
1

2
VIJQ

IQJ +
1

2
DtQ

IDtQI − 2α1φ̇
IDtQI +

1

2
RIJKLQ

I φ̇J φ̇KQL.

(2.154)

The Hamiltonian constraint given in Eq. (2.85) can then be used to reduce this expression

to

δρ = 3H2
(
3α2

1 − 2α2 − 2α1

)
(2.155)

Then the lapse perturbations given in equations (2.81) & (2.83) can be used to find the

density perturbation in terms of fields only,

δρ =− 3Hφ̇IQI

+
3

2
φ̇I φ̇JQIQJ − 3H∂−2

[
∂iDtQ

I∂iQI +DtQ
I∂2QI

]
,

(2.156)

where the first- and second-order terms are on the first and second lines respectively and the

spatial derivatives have been neglected for the large scales we’re interested in. Eq. (2.153)
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can be used to find ρ̇ and ρ̈ and those results can be used with Eq. (2.156) in Eq. (2.151)

to find the uniform-density curvature perturbation, ζ,

ζ1 = − φ̇
IQI

2Hε
, (2.157)

and

ζ2 =
1

6H2ε

{
φ̇I φ̇J

(
−3

2
+

9

2ε
+

3

4ε2
φ̇KVK
H3

)
QIQJ+

3

εH
φ̇I φ̇JQ

IDtQ
J − 3H∂−2

(
∂iDtQ

I∂iQI +DtQ
I∂2QI

)
}
,

(2.158)

where ζ1 and ζ2 are the first- and second-order terms respectively. These results are

identical to the canonical case as given in [Dias et al., 2015a] but it was important to check

no curvature terms were introduced for the non-canonical field space here.

Power spectra and N tensors

We now need to use equations (2.157) & (2.158) to find the statistics of ζ in order to find

the power spectrum and bispectrum for a multi-field inflation theory. For this we write ζ

in Fourier space,

ζ(k) = NaX
a +

1

2
NabX

aXb, (2.159)

where the N tensors are

Na(k) = (2π)3δ(k− ka)Na, (2.160a)

Nab(k) = (2π)3δ(k− ka − kb)Nab, (2.160b)

and Xa = (QI , P J). We can now Fourier transform equations (2.157) & (2.158) to see that

the coefficient matrices Na and Nab are

Na = − φ̇I
2Hε


1

0


 , (2.161a)

Nab =
1

3H2ε


 φ̇I φ̇J

[
− 3

2 + 9
2ε + 3

4ε2
Vγπγ

H3

]
3
Hε φ̇I φ̇J − 3H

k2

[
ka · kb + k2

a

]
GIJ

3
Hε φ̇I φ̇J − 3H

k2

[
ka · kb + k2

b

]
GIJ 0


 .

(2.161b)

The spectrum and bispectrum are given from the two and three point correlations of ζ.

They are defined by

〈ζ(k1)ζ(k2)〉 = (2π)3δ(k1 + k2)P (k) (2.162a)

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(k1 + k2 + k3)B(k1, k2, k3), (2.162b)
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with the power spectrum, P (k), given by

P (k) = NaNb 〈Xa(ka)X
b(kb)〉 , (2.163)

and the bispectrum B(k1, k2, k3) given by

B(k1, k2, k3) =NaNbNc 〈Xa(ka)X
b(kb)X

c(kc)〉+
(
NaNbNcd 〈Xa(ka)X

c(kc)〉 〈Xb(kb)X
d(kd)〉+ 2 cyclic

)
,

(2.164)

where ‘2 cyclic’ indicates that there are 2 extra terms that are cyclic permutations of the

indices.
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Chapter 3

Project II – CpptSample: sampling

the primordial perturbation using

CppTransport

3.1 Abstract

We introduce a new cosmological code, CppTSample – a module for the CosmoSIS parameter

estimation framework which enables the CppTransport tool for computing inflationary cor-

relation functions to provide initial conditions for the CLASS Boltzmann code. Our code

can then interface with any of the samplers provided by CosmoSIS allowing for a large

number of parameter samples for an inflation model to be efficiently obtained. The imple-

mentation also includes all of the 3-point function and non-trivial field space capabilities of

CppTransport allowing for bispectrum constraints to be evaluated for non-canonical mod-

els. For computing CMB likelihoods, we pass the numerical form of the power spectrum

into CLASS to ensure all features in the power spectrum are accounted for in the Bayesian

analysis. We then demonstrate the module by reproducing results for several well-known

models, including estimations of their equilateral bispectrum values. Next, we analyse the

multi-field α-attractor and Gelaton/QSFI models which both rely on the non-trivial field

space additions recently made to CppTransport.

3.2 Introduction

Inflation [Guth, 1981, Linde, 1982, Albrecht & Steinhardt, 1982] has largely been accepted

by cosmologists as the primordial mechanism that produced the observed scale-invariant
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power spectrum as well as being the source of quantum fluctuations that later grew to be-

come large-scale structure (LSS). For simple inflation models, this prediction is constrained

simply using the scalar power spectrum amplitude As and the scalar spectral index ns which

are both accurately calculated using their slow-roll predictions. Additionally, we also con-

strain inflation using the tensor power spectrum with an amplitude At, which defines the

tensor to scalar ratio r ≡ At/As. These inflation models are accurately constrained by

calculating the observables ns and r with the slow-roll estimators before comparing them

with the values inferred from cosmic microwave background (CMB) measurements given

from experiments such as the WMAP [Larson et al., 2011, Komatsu et al., 2011, Dunkley

et al., 2005, Hinshaw et al., 2013] or Planck [Adam et al., 2016, Ade et al., 2016b, Aghanim

et al., 2018, Akrami et al., 2018] telescopes.

Applying constraints rapidly becomes more complicated for inflation models that are

either multi-field or do not fulfil all the slow-roll approximations. Typically these models are

multi-field with a non-canonical kinetic term defined using a field-space matrix GIJ(φ) with

examples including gelaton inflation [Tolley & Wyman, 2010] or quasi-single field inflation

[Chen & Wang, 2010]. In particular, there are many beyond the Standard Model models

based on string theory where the field metric is given by the Kähler potential K(φI , φI∗)

[Lyth & Riotto, 1999, Baumann & McAllister, 2015] and can include many fields. These

models can produce large non-Gaussianities measured using the various reduced bispectrum

shape configurations (e.g. f squeezed
NL or f equilateral

NL ) which are constrained to be small by

Planck [Ade et al., 2016a]. Additionally, multi-field inflation models can give significant

isocurvature perturbations which are also constrained by Planck to be small [Ade et al.,

2016a].

Clearly, accurate calculations of the predictions made by these complex models are

needed because they allow for some of the most novel physics theories to be tested and

constraints on non-Gaussianities provide an additional test on all inflation models re-

gardless of their complexity. Therefore the ‘transport method’ was developed [Mulryne

et al., 2010, Mulryne et al., 2011, Seery et al., 2012] to calculate the power spectrum and

bispectrum using inflationary perturbation theory before applying the method in several

automated numerical codes: mTransport [Dias et al., 2015b], CppTransport [Dias et al.,

2016, Seery, 2016] and PyTransport [Mulryne & Ronayne, 2016]. Recently, we have ex-

tended CppTransport and PyTransport to calculate the bispectrum for models with the

aforementioned non-canonical field space [Ronayne & Mulryne, 2017, Butchers & Seery,

2018].
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Bayesian evidence for models.—The problem with this approach to constraining an in-

flation model is there are many models with parameter combinations that produce ob-

servables that are compatible with the current measurements. An inflation model with a

wide parameter-space giving ‘successful’ inflation would not be preferentially chosen over

a model with a smaller parameter-space compatible with observations as expected based

on the ‘fine-tuning’ of the model parameters. Instead the method has been to apply

Markov Chain Monte Carlo (MCMC) analysis [Christensen & Meyer, 2000, Christensen

et al., 2001, Knox et al., 2001, Kosowsky et al., 2002, Lewis & Bridle, 2002, Verde et al.,

2003, Dunkley et al., 2005] to estimate both the cosmological and inflation parameters

for a model and then use Bayesian model selection [Hobson et al., 2010, Parkinson et al.,

2006, Bridges et al., 2007, Liddle et al., 2006, Gordon & Trotta, 2007] to discriminate

between each model’s ability to describe the data.

Bayesian inference has already been successfully applied in several cosmological codes.

The Planck collaboration [Akrami et al., 2018] used the ASPIC code [Martin et al., 2014]

to compute the observables ns and r with MCMC samples coming from CosmoMC [Lewis

& Bridle, 2002] and MontePython [Audren et al., 2013] or nested samples coming from

programs such as MultiNest [Feroz et al., 2009, Feroz et al., 2013]. PolyChord [Handley

et al., 2015] is then used to interface with the Boltzmann codes CAMB [Lewis et al., 2000]

or CLASS [Lesgourgues, 2011, Blas et al., 2011] for computing the CMB observables before

calculating the Bayesian evidence for the given model. Alternatively in [Mortonson et al.,

2011, Easther & Peiris, 2012, Norena et al., 2012], ModeCode/MultiModeCode [Price et al.,

2015] is used to compute the scalar, tensor and isocurvature power spectra by applying the

δN formalism [Sasaki & Stewart, 1996, Wands et al., 2000] with samples obtained from

MultiNest for the Bayesian analysis. However, none of these analyses can compute the

bispectrum for the previously discussed models that have a non-canonical field-space.

Therefore, we introduce CppTSample, a CosmoSIS module [Zuntz et al., 2015] that is

designed to provide samples of the inflationary and cosmological parameters to CppTrans-

port before using a modified CLASS module to find the CMB spectra (TT, EE, TE, and

BB) from the model’s power spectrum. Finally, it passes the CMB spectra to the CosmoSIS

modules for the Planck2015 [Aghanim et al., 2016] and WMAP5 likelihoods [Dunkley et al.,

2009, Hinshaw et al., 2013] to compare with observational data. This approach allows for

both the power spectrum and bispectrum to be sampled, with weights assigned by how

well the two-point function fits the CMB data. CppTransport does not make use of the

slow-roll approximation and therefore can be used to analyse the sophisticated models
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previously mentioned. In future, the modular structure of CosmoSIS allows for late-time

observables like the matter power spectrum to be found from the inflation model and then

used to compute other observables such as the galaxy power spectrum and other measures

of large-scale structure1.

Synopsis.—This paper is split into four key parts. Initially, we give a brief overview of

the transport method and describe the different observables that can be computed by

CppTransport in section 3.3. In Section 3.4, we first discuss the modular structure of

CosmoSIS and give examples of modules to use with our code. Then we explain the

numerical methods used to pass information between the different CosmoSIS modules, and

how we use CppTSample to extract the inflationary observables from CppTransport in a

MCMC sample run.

In Section 3.5, we present some numerical results obtained from our code. We begin

by reproducing well-known results for the quartic inflation model in section 3.5.1 and for

the quadratic model in section 3.5.2. Next in section 3.5.3, we analyse an α-attractor

model which has a non-trivial field metric and use the results to show the ‘universality’

[Achúcarro et al., 2017] of these models. In section 3.5.4, we show how CppTSample can

be used on the Gelaton/QSFI model. This is numerically expensive but demonstrates

how CppTransport can be used separately with the best-fit parameters to measure the

bispectrum. We conclude in Section 3.6.

Obtaining CppTSample and requirements.—CppTSample can be downloaded as part of the

CppTransport platform available from the main GitHub repository. Installation instruc-

tions and necessary dependencies2 are given in the user guide [Seery, 2016]. Examples of

all models discussed in this paper are provided as example .model files in this repository.

CosmoSIS needs to installed separately to interact with the samplers, with download and

installation instructions available from the CosmoSIS Wiki. Additionally, both CppTrans-

port and CosmoSIS must be installed with the same version of the GNU compiler for the

shared libraries to be read correctly. Alternatively, the Docker images of CppTransport &

CosmoSIS can be used instead.

Notation.—We use natural units where c = ~ = 1. The reduced Planck mass is M2
P =

(8πG)−1. We use the metric signature (−,+,+,+). Greek indices (µ, ν, ...) label space-

time indices, whereas lower-case Roman indices from the middle of the alphabet, (i, j, ...),

1See [de la Bella et al., 2018] for an example of a CosmoSIS module that calculates the halo power

spectrum.
2These are CMake, OpenMPI, Boost, GiNaC and OpenSSL.

https://github.com/ds283/CppTransport/tree/FYP/Documentation/SamplingExamples
https://bitbucket.org/joezuntz/cosmosis/wiki/Home
https://www.docker.com
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label spatial indices. Upper-case Roman indices (I, J, ...) label field-space coordinates. For

phase-space coordinates, we use Roman letters from the start of the alphabet, (a, b, ...).

An index with a comma denotes a field derivative (V,I ≡ ∂V/∂φI) and an index with a

semi-colon indicating a covariant derivative (V I
;J ≡ DJV

I) where the covariant derivative

is

DJV
I ≡ ∂V I

∂φI
+ ΓIJKV

K . (3.1)

We also use a compressed Fourier notation where the index labels indicate both a summa-

tion over the fields and integration over the Fourier wavenumbers. They appear in a bold,

san-serif font: (I, J, ...), which is defined using the equation

AIB
I =

∑

I

∫
d3kI
(2π)3

AI(kI)B
I(kI), (3.2)

where indices are always raised and lowered using the field-metric GIJ .

3.3 The transport method and CppTransport

CppTransport makes use of the transport method [Mulryne et al., 2010, Mulryne et al.,

2011, Seery et al., 2012, Dias et al., 2015b, Dias et al., 2016, Ronayne & Mulryne, 2017,

Butchers & Seery, 2018] in which the code reads in a model file defining a Lagrangian

which gives definitions of the potential V (φI) and the field-space metric GIJ for the case

of a non-trivial model. Initially the background field equation is solved

Dtφ̇
I + 3Hφ̇I +GIJV,J = 0, (3.3)

with the dynamics of H determined using

3H2 = ρ =
1

2
GIJ∂µφ

I∂µφJ + V (φ), (3.4a)

ε ≡ − Ḣ

H2
=
GIJ φ̇

I φ̇J

2H2
, (3.4b)

which are the covariant field equation, Friedman equation and Hubble slow-roll parameter

respectively. We define our perturbed coordinate QI using the method given by Gong and

Tanaka [Gong & Tanaka, 2011] where QI is defined on the tangent-space of φI(t) so that

it forms a geodesic connected to φI(x, t) and can therefore be related to δφI . The action

is symbolically expanded to third-order [Elliston et al., 2012, Dias et al., 2016, Ronayne &

Mulryne, 2017, Butchers & Seery, 2018] to obtain

Sφ =
1

2

∫
dt a3

{
GIJDtQ

IDtQ
J +MIJQ

IQJ+

+AIJKQ
IQJQK +BIJKQ

IQJDtQ
K + CIJKDtQ

IDtQ
JQK

}
,

(3.5)
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where the second-order kernels GIJ and MIJ are defined as

GIJ ≡ (2π)3GIJδ(k1 + k2),

MIJ ≡ (2π)3δ(k1 + k2)

(
k1 · k2

a2
GIJ −mIJ

)
,

(3.6)

with the mass-matrix defined by

mIJ ≡ V;IJ −RKIJLφ̇K φ̇L −
1

a3M2
P

Dt

(
a3φ̇I φ̇J
H

)
. (3.7)

The third-order kernels AIJK, BIJK and CIJK are [Butchers & Seery, 2018]

AIJK ≡ (2π)3δ(k1 + k2 + k3)AIJK , (3.8a)

BIJK ≡ (2π)3δ(k1 + k2 + k3)BIJK , (3.8b)

CIJK ≡ (2π)3δ(k1 + k2 + k3)CIJK , (3.8c)

while the tensors AIJK , BIJK and CIJK are [Butchers & Seery, 2018]

AIJK ≡ −
1

3
V;IJK −

φ̇IV;JK

2HM2
P

+
φ̇I φ̇JZK
4H2M4

P

+
φ̇IZJZK
8H3M4

P

(
1− (k2 · k3)2

k2
2k

2
3

)

+
φ̇I φ̇J φ̇K
8H3M6

P

(6H2M2
P − φ̇2)− φ̇K φ̇

Lφ̇M

2HM2
P

RL(IJ)M +
1

3
R(I|LM |J ;K)φ̇

Lφ̇M

+
φ̇IGJK
2HM2

P

k2 · k3

a2
,

(3.9a)

BIJK ≡
4

3
RK(IJ)Lφ̇

L − φ̇IZJ φ̇K
4H3M4

P

(
1− (k2 · k3)2

k2
2k

2
3

)
+
φ̇I φ̇J φ̇K
4H2M4

P

− ZIGJK
HM2

P

k1 · k2

k2
1

, (3.9b)

CIJK ≡ −
GIJ φ̇K
2HM2

P

+
φ̇I φ̇J φ̇K
8H3M4

P

(
1− (k1 · k2)2

k2
1k

2
2

)
+
φ̇IGJK
HM2

P

k1 · k3

k2
1

, (3.9c)

where brackets around field-space indices indicates symmetrisation with weight unity and

vertical bars indicates indices that are excluded. In this form, the numbered indices on the

momentum vectors map to field space indices as 1 → I, 2 → J and 3 → K respectively.

Finally, ZI is given by

ZI ≡ Dtφ̇I +
φ̇I φ̇J φ̇

J

2HM2
P

. (3.10)

These expressions are all given for the case of a non-trivial field metric. For the canonical

case, all Riemann terms should be removed, the field-metric replaced with GIJ = δIJ

and the covariant time derivatives replaced with partial time derivatives (cf. Dias et al.

[Dias et al., 2016]). Next the transport equations are found by first applying a Legendre

transformation with the momentum identified as P I = DtQ
I to find the Hamiltonian H

before using it to calculate the Heisenberg equations of motion, which have the form

DtΣ
ab = uacΣ

cb + ubcΣ
ac, (3.11a)

Dtα
abc = uadα

dbc + uadeΣ
dbΣec + g2 cyclic (a→ b→ c), (3.11b)
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where we define a phase-space Xa = (QI , P J) with the 2- and 3-point functions given as

〈XaXb〉 ≡ (2π)3δ(ka + kb)Σ
ab, (3.12a)

〈XaXbXc〉 ≡ (2π)3δ(ka + kb + kc)α
abc, (3.12b)

The ‘u-tensors’ are given by

uab =


 0 δIJ

M I
J −3HδIJ


 , (3.13)

with a giving the row and b giving the column in uab and

uabc =







−B I

JK −CIJK
3AIJK BI

KJ





−C

I
KJ 0

BI
JK C I

KJ








, (3.14)

where a identifies the 2 × 2 matrix with b and c giving the row and column respectively

for the 2×2 matrix. The equations of motion for these correlation functions require initial

conditions for a numerical solution which are given in Dias et al. [Dias et al., 2016] for

the canonical case and originally by Elliston et al. [Elliston et al., 2012, Butchers & Seery,

2018] for the non-canonical case. A similar procedure is needed to compute the transport

equations for the tensor perturbations γij with the details given in [Dias et al., 2015b, Dias

et al., 2016].

Finally, a second-order gauge transformation [Dias et al., 2015a] is needed to convert

the flat-space field perturbationsXa to the conserved curvature perturbation ζ. This allows

it to be compared with the CMB spectrum and is given as

ζ(k) = NaX
a +

1

2
NabX

aXb, (3.15)

with the coefficient matrices Na and Nab first given in Dias et al. [Dias et al., 2015a] as

Na = − φ̇I
2HM2

Pε


1

0


 , (3.16a)

Nab =
1

3H2M2
Pε




φ̇I φ̇J
M2

P

[
− 3

2
+

9

2ε
+

3

4ε2
VKπ

K

H3M2
P

] 3

Hε

φ̇I φ̇J
M2

P

− 3H

k2

[
ka · kb + k2

a

]
GIJ

3

Hε

φ̇I φ̇J
M2

P

− 3H

k2

[
ka · kb + k2

b

]
GIJ 0



.

(3.16b)
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Observables.—The dimensionless power spectrum P(k) can be written as

P(k) =
k3

2π
Pζ(k), (3.17)

where the power spectrum Pζ(k) is defined by

〈ζ(k1)ζ(k2)〉 = (2π)3 δ(k1 + k2)Pζ(k). (3.18)

Similarly for the tensor power spectrum, we have

〈γij(k1)γij(k2)〉 = (2π)3 δ(k1 + k2)Pt(k), (3.19)

where the tensor field is defined as γij ≡
√

2MPhij and hij is the spatial part of the metric.

The scale-dependence for the two-point statistics is measured using the scalar and tensor

spectral indices ns and nt which are given by

ns − 1 ≡ d lnAs

d ln k
, (3.20)

nt ≡
d lnAt

d ln k
. (3.21)

where As and At are the amplitudes of the scalar and tensor power spectra respectively.

The dimensionless bispectrum B(k1, k2, k3) is defined to be

B(k1, k2, k3) = (k1k2k3)2B(k1, k2, k3), (3.22)

where the bispectrum B(k1, k2, k3) satisfies

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3 δ3(k1 + k2 + k3)B(k1, k2, k3). (3.23)

The reduced bispectrum fNL(k1, k2, k3) is defined in terms of the bispectrum and the power

spectra as

6

5
fNL(k1, k2, k3) =

B(k1, k2, k3)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)
. (3.24)

The triangles formed by the three Fourier wavenumbers are then categorised based on their

shapes where an equilateral configuration has all three sides equal in size (k1 = k2 = k3),

whereas a squeezed configuration has one side much smaller than the others as (k1 '
k2 � k3) and a folded configuration has one side that is much larger than the others

(k1 ' k2 � k3). These shapes are parameterised using kt, α and β as introduced by

Fergusson & Shellard [Fergusson & Shellard, 2007]

k1 ≡
kt
4

(1 + α+ β) , (3.25a)

k2 ≡
kt
4

(1− α+ β) , (3.25b)

k3 ≡
kt
2

(1− β) , (3.25c)
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where kt = k1 + k2 + k3 is the perimeter of the triangle, with α and β having the ranges

−1 6 α 6 1 and 0 6 β 6 1, respectively. An equilateral configuration can be achieved

by setting α = 0 and β = 1
3 , we define a squeezed configuration as having the parameters

α = 0 and β = 0.98, and a folded configuration as having the parameters α = 0 and

β = 0.005.

3.4 Code methodology

Here we describe each code used in the sampling pipeline and give the details of the

calculations performed by each of them. Initially, we will describe the modular structure of

CosmoSIS and how data is passed between the modules using a datablock. This will focus on

the different modules available for our MCMC analysis. We will then discuss how to adapt

existing CppTransport model files to include sampling functionality and how the physical

wavenumbers are found from the matching equation to create different integration tasks.

We will then discuss how we use CppTSample to extract observables and how to produce

parameter estimation and covariance plot generation using the existing GetDist MCMC

analysis framework. Finally, the whole CppTSample analysis pipeline will be summarised

in a diagram.

3.4.1 CosmoSIS modules

CosmoSIS [Zuntz et al., 2015] provides a modular environment for performing its cosmo-

logical calculations where each step of the computation is split into a separate module,

sharing a common data member known as a datablock. This modularity means the prob-

lem of creating a pipeline of codependent numerical calculations is reduced to just making

sure they can all receive inputs and write outputs to the datablock. Installation instruc-

tions with documentation on all of the different modules is available on the CosmoSIS Wiki.

For our numerical implementation, we make use of the samplers, a Boltzmann code and

the likelihood modules in CosmoSIS. Throughout this section, the specific module names

are referred to in this font.

Sampler modules.—CosmoSIS provides a variety of samplers that fulfil different purposes

depending on the requirements for the user’s parameter estimation task. Initially for test-

ing, the test sampler will analyse a single parameter set which can be used to find appropri-

ate initial conditions for successful inflation. A simple exploration of the parameter-space

can be done by taking N points between two limits for each parameter in the grid and

https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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snake samplers. Alternatively, the maximum likelihood samplers (maxlike, minuit & gridmax)

can be used with a likelihood module to find the inflationary initial conditions that give

the best fit to data (e.g Planck or WMAP). After finding the best-fit to CMB data, there

are several classic MCMC samplers including a Metropolis-Hastings sampler [Metropolis

et al., 1953] (metropolis), an importance sampler (importance) and a Fisher matrix sampler

( fisher ). Additionally, there are more advanced ensemble algorithms available such as the

emcee sampler [Foreman-Mackey et al., 2013] as well as the multinest sampler [Feroz et al.,

2009, Feroz et al., 2013].

CLASS module.—CosmoSIS also provides modules for several Boltzmann codes including

both CAMB [Lewis et al., 2000] and CLASS [Lesgourgues, 2011, Blas et al., 2011]. In

addition to these, there are modules for computing the non-linear matter power spectrum

using halofit [Smith et al., 2003, Takahashi et al., 2012] or for studying modified gravity

with mgcamb [Hojjati et al., 2011, Zhao et al., 2009]. When computing the predicted CMB

power spectrum in our numerical implementation, we use a slightly modified version of

the CLASS module that uses the external_Pk [Achúcarro et al., 2014, Achucarro et al.,

2014] feature instead of specifying the primordial power spectrum by only using As and

ns. With this modification, we use CppTransport to write a data table of power spectrum

values for a range of scales which is passed on to the CLASS module. The resulting CMB

power spectrum predictions are based on the primordial power spectrum produced by the

inflation model instead of setting priors on the cosmological parameters As and ns. This

set-up ensures any features in the primordial power spectrum are taken into account when

calculating the CMB power spectrum and hence will affect the likelihoods calculated from

CMB data. This modified CLASS code is distributed within the CppTSample platform.

Likelihoods and other calculations.—There are numerous likelihood codes implemented

as modules in CosmoSIS. For the CMB predictions, there is the WMAP7 [Larson et al.,

2011, Komatsu et al., 2011] and WMAP9 [Hinshaw et al., 2013] data accessed via the wmap

module, with BICEP2 data [Ade et al., 2014a, Ade et al., 2014b] given in the bicep2 module,

and Planck 2015 data [Ade et al., 2016b, Aghanim et al., 2016] given in the planck module.

In addition to these, there are likelihood modules available for BAO data [Chuang et al.,

2013, Kazin et al., 2014] and supernovae data [Riess et al., 2011] too. We make use of

some of the MCMC samplers discussed previously to determine the underlying probability

distribution for the inflation observables and then use the Planck data for the likelihoods.

While we only use the CMB data for our analyses a user could, in principle, use our module

to compute the CMB power spectrum which can be used to study LSS by using the galaxy
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bias and likelihood modules available in CosmoSIS.

3.4.2 Using CppTSample

Now we have samplers and likelihood codes accessible via the CosmoSIS datablock, we will

describe how CppTSample obtains its initial conditions and constructs integration tasks for

CppTransport.

Initial conditions.—The crux of sampling a model is determining what values and priors

parameters in a model will be sampled over. CosmoSIS provides three default priors:

uniform prior taking lower and upper values, Gaussian prior taking the mean and standard

deviation, and an exponential prior P(x) ∝ exp (x/β) with only one parameter β. Priors

can be set for parameters as well as both field initial values and the derivative of the

field initial value. This allows for an in-depth analysis of the inflationary dynamics of a

model with varying parameters. A prior doesn’t need to be specified for either a field or

parameter, where instead it is set to a fixed value. This allows for some numbers to be

held constant, while other parameters are being sampled over. Values and priors are both

specified in the CppTransport model file as described below.

Updated model file.—The basis of the CppTransport platform is the use of a model file

which describes the fields and parameters of an inflationary model that form the model’s

potential and a metric when using a non-canonical field-space. CppTSample extends the

use of the model files by allowing users to specify priors and values directly in the model

file, ensuring that all information about a model is in the same location. To enable auto-

generation of the CosmoSIS files needed for sampling, the following line needs to be added

anywhere to the model file.

1 sampling { generate_sampling = "True"; };

This will then trigger the CppTransport translator to generate the additional files needed

for sampling. Adding priors and values to parameters and fields is very simple through the

use of prior and value commands and for fields also setting conditions on the initial field

derivative through deriv_prior and deriv_value . These values get written out to CosmoSIS

.ini files which means that the entire information about a model and the sampling strategy

is held within the model file. This also ensures that only one file needs to be viewed and

changed – making the CppTSample platform very easy to customise.

An example model file with values and priors for the double quadratic model with po-

tential V (φ, χ) = 1
2M

2
φφ

2+ 1
2M

2
χχ

2 is given below. See the existing CppTransport user-guide
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[Seery, 2016] for a more detailed explanation on how to write a model file, or browse some

provided examples in the CppTransport GitHub repository and adapt them as necessary.

1 sampling { generate_sampling = "True"; };

2

3 field phi

4 {

5 latex = "\phi";

6 value = "9.0 10.0 11.0";

7 prior = "uniform 9.0 11.0";

8 deriv_value = "0.0";

9 };

10

11 field chi

12 {

13 latex = "\chi";

14 value = "5.0 12.9 15.0";

15 prior = "gaussian 13.0 1.5";

16 deriv_value = "-1.0 0.0 1.0";

17 deriv_prior = "exponential 0.05"

18 };

19

20 parameter Mphi

21 {

22 latex = "M_\phi";

23 value = "8E-5 9E-5 1E-4";

24 prior = "gaussian 9E-5 1E-6";

25 };

26

27 parameter Mchi

28 {

29 latex = "M_\chi";

30 value = "1E-5";

31 };

32 cd

33 potential = Mphi^2 * phi^2 / 2 + Mchi^2 * chi^2 / 2;

When using a prior for a parameter or field, three values can be given in the value property.

The first is the lower-bound, the second is the optional starting value, and the third is the

upper-bound. The starting value is used by many MCMC samplers (e.g. Metropolis-

Hastings) and is where the MCMC chain will start from. The starting point allows us

to verify whether the MCMC chain has converged on the maximum-likelihood point and

the lower- and upper-bounds allow for further constraints to be placed on a parameter

in addition to the prior such as ensuring that a parameter is positive-definite or below a

certain value.

https://github.com/ds283/CppTransport/
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We can also construct a log-uniform prior for parameters that span several orders of

magnitude by rewriting the parameter p as an exponent with base b in the potential and/or

metric as exp(ln(b) · p)3. As an example, we can sample the parameter m appearing in the

potential V = 1
2m

2φ2 uniformly between 10−7 and 10−5, we write the model file as follows.

1 parameter m

2 {

3 latex = "m";

4 value = "-7 -5";

5 prior = "uniform -7 -5";

6 };

7 potential = (1/2) * ( exp(m * log(10.0)) )^2 * phi^2;

With the translator successfully installed (see CppTransport user-guide [Seery, 2016]), we

can generate the sampling output files for a model file named ‘MODEL.model’ via the fol-

lowing command.

CppTransport --verbose --generate-cmake MODEL.model

We have added the optional argument --generate-cmake which automatically produces a

CMakeLists.txt file for use with the CMake build system utilised by CppTransport. The

CppTransport command translates the MODEL.model file into the C++ header files needed by

CppTSample and places them in the build/ directory as well as the CosmoSIS MODEL_mcmc.

ini, MODEL_values.ini and MODEL_priors.ini files in the MODEL_mcmc/ directory. The

build environment is configured for CppTSample by navigating into the build/ directory

and issuing the following CMake command

cmake .. -DCMAKE_BUILD_TYPE=Release

-DCMAKE_INSTALL_PREFIX=/path/to/CppTransport/installation/location

-DCOSMOSIS_SRC_DIR=$COSMOSIS_SRC_DIR

↪→

↪→

where the $COSMOSIS_SRC_DIR environment variable is set when installing CosmoSIS, and

/path/to/CppTransport/installation/location is the location of the run-time header

files when installing CppTransport. If CMake ran successfully, we can now build the

CppTSample shared library by issuing the following build command

3Having to use exp is an unfortunate caveat of the CppTransport translator because it can’t differentiate

an exponent with an arbitrary base but can differentiate exp.
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make MODEL_sampling

If compiling was successful, we can now start sampling the model by using the following

CosmoSIS command in the model’s root directory.

cosmosis MODEL_mcmc/MODEL_mcmc.ini

By default, this will use the Metropolis-Hasings sampler to sample over 25 000 points. It

will write to an output file located at MODEL_mcmc/mcmc_output.txt. Many different cus-

tomisation options can be used in CosmoSIS where the CosmoSIS wiki provides instructions

to use different samplers or including additional likelihood modules.

Customising sampling runs.—When a model is first analysed, baseline performance of the

sampler is normally assessed and likelihoods of the samples is checked so initially the

sampling should happen quickly. Therefore, by default the CosmoSIS MODEL_mcmc.ini

file does not have any of the three-point function analysis turned on. Since evaluating

the three-point function takes significantly longer than the two-point function, this causes

unnecessary time usage when simply evaluating the performance of the model. The three-

point function analysis can be freely turned on and off by adjusting the relevant section in

the MODEL_mcmc.ini file. This is in the [cppt_sample] block, which is generated as:

[cppt_sample]

file = ${PWD}/build/libMODEL_sampling.so

M_P = 1.0

k_samples = 400

k_pivot = 0.002

Debug = F

ThreepfEqui = F

ThreepfSqueeze = F

ThreepfFold = F

MassEigenSquare = F

The options ThreepfEqui, ThreepfSqueeze and ThreepfFold govern running the equilat-

eral, squeezed and folded three-point function configurations. Setting any of these to true,

represented by ‘T’, will trigger CppTSample to include the respective three-point function

calculation when sampling. Performance is generally good for the equilateral and folded

configurations, with squeezed triangles taking longer – however this is very model specific.

We can also customise how the mass-matrix eigenvalues are reported from CppTSample.

CppTSample returns the normalised eigenvalues of the mass matrix (mi/H) at four points

in the fields evolution: 55 e-folds before the end of inflation – which is roughly at horizon

https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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crossing – and 2.5, 1 and 0 e-folds before the end of inflation. This allows the rough

evolution of the mass matrix to be determined, and specifically allows us to check whether

a sample has reached an adiabatic limit at the end of inflation [Elliston et al., 2011].

CppTSample can instead return the squares of the eigenvalues of the mass matrix by setting

the MassEigenSquare option to true. This could be desired if using the squared values

makes comparisons between CppTSample and existing data easier.4

The value for kpivot is also changed here by changing the k_pivot variable. The default

value is 0.002 Mpc−1 for comparison with the Planck measurements, but 0.05Mpc−1 can

be chosen for comparison with WMAP results.

If for any reason sampling runs are not successfully completing or taking a long time

to complete, the Debug flag can be turned to true which automatically prints debugging

information about how CppTSample is progressing through each sample which can help

determine where errors are occurring in the pipeline.

GetDist integration.—CppTSample provides native integration to the GetDist MCMC ana-

lysis framework, which is included as part of CosmoMC [Lewis & Bridle, 2002, Lewis, 2013],

through the use of an automatically generated Python file. This reads in the CosmoSIS

output file containing the sampled parameters, output files and likelihood for each sample

and formats it in a way that GetDist is able to understand. It then calls GetDist to produce

parameter estimation tables at both the 68 % and 95 % confidence level, saving the outputs

as LATEX tables and printing them to the terminal as well as producing a triangle covari-

ance plot for the sampled and output parameters. Examples of these parameter tables and

triangle plots can be seen in our numerical results in Section 3.5.

The Python file also utilises the Seaborn plotting package to produce histograms for

the main cosmological parameters of interest (ns, nt, As, At, r, fNL, ends of inflation, and

mass matrix eigenvalues) from the CosmoSIS output file. This allows for detailed, high-

quality figures for publication to be automatically produced without any extra files. The

automatically generated file requires the Python GetDist, Matplotlib, NumPy, Pandas and

Seaborn libraries are installed which are easily available via pip or conda and the plots

are produced by running python MODEL_GetDist.py from the terminal. All plots are written

using standard Matplotlib code so they can easily be customised by the user.

Matching equation for physical scales.—In order to connect the observed scales in the

4CppTSample is sign-aware when returning the mass-matrix eigenvalues, and so irrespective of if asked

for mi/H or m2
i /H

2, the negative values are preserved so it is easy to identify any tachyons in the mass

spectrum.

https://getdist.readthedocs.io/en/latest/intro.html
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CMB with the wavenumbers used in CppTransport, we need the matching equation [Liddle

& Leach, 2003, Adshead et al., 2011, Mortonson et al., 2011] which gives the number

of e-folds between the horizon exit time of the pivot scale k∗ [Mpc−1] and the epoch of

recombination when the CMB is produced. If we assume the universe instantaneously

reheats to an energy density ρ = σT 4
reheat = 1016 GeV, the matching equation is

N IRH(k) = ln

(
aend

ak

)
= 55.75− ln

(
k

k∗

)
− ln

(
1016 GeV

V
1/4
k

)
+ ln

(
V

1/4
k

V
1/4
end

)
, (3.26)

where k is some scale given in units of [Mpc−1], Vk is the value of the potential at the

horizon-exit time of k and Vend is the potential value at the end of inflation. In Equa-

tion (3.26), the slow-roll approximation has been used to re-write factors of the Hubble

parameter H in terms of the potential V using the equation H2 ≈ V/3M2
P which is an

accurate estimation for single-field models. However for multi-field models, this approx-

imation can become less accurate if any of the fields have a sufficiently large kinetic term

with GIJ∂µφI∂µφJ ≈ V (φI).

Therefore in our module, we use CppTransport to return the Hubble values during

inflation and replace factors of V 1/4 with (3H2)1/4 to include all parts of the kinetic sector

for these non-trivial models. We use MP = 1 in the numerical implementation so that the

reheating energy density is rewritten as 1016 GeV/MP = (2.435× 102)−1 which gives

ln

(
k

k∗

)
= 55.75−N IRH(k) + ln

(
243.5 · 31/4H

1/2
k

)
+ ln

(
H

1/2
k

H
1/2
end

)
, (3.27)

where all quantities are evaluated in units where MP = 1.

In CppTSample, the background solution for H is used in Equation (3.27) to find the

physical scales corresponding with different exit times. CppTransport requires that the

wavenumbers are written in terms of akHk for its own normalisation where all scales

are divided by a scale kpre exiting at a user-set time Npre. We therefore exponentiate

Equation (3.27) to find

kphys =

(
31/4 · 243.5 k∗ e

55.75

aendH
1/2
end

)
akHk, (3.28)

where we can see that kphys ∝ akHk which implies there is a relation kphys = γkcppt

with the constant set using the physical scale exiting at Npre as γ = kphys[Npre] when

the CppTransport wavenumber is normalised to be kcppt = 1. This method is used to

calculate all the wavenumbers for each sample; we have checked this linear relationship

matches the results of Equation (3.28). The exit-time of a physical scale is found using

the compute_Nexit_for_physical_k function which uses bisection to return the number
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of e-folds left until the end of inflation and is used to return the exit-time of the pivot scale

Npivot.

General reheating.—There is also an inherent uncertainty in N(k) because the matching

between physical scales depends on the post-inflationary reheating between the end of

inflation and reheating when the inflaton field decays into standard model particles and the

universe is rethermalised. The typical assumption [Adshead et al., 2011] [Mortonson et al.,

2011] is that the universe evolves like matter until it reaches the reheating temperature

Trh where it becomes radiation-dominated until the epoch of matter-radiation equality.

However the equation of state and the mechanism for the transfer of energy from the

inflaton to the reheating energy density ρrh are unknown which corresponds to a shift

∆N relative to the instantaneous reheating pivot exit-time in equation (3.26). We account

for this by using an additional MCMC sample parameter Nsamples which is added to the

matching equation by setting it in the [inflation_parameters] section of the value and prior

CosmoSIS files as follows

[inflation_parameters]

Nsamples = uniform 0 10

where the above example sets a uniform prior on Nsamples between 0 and 10. Positive

values5 should be chosen for Nsamples to ensures the pivot scale exits the horizon after the

instant reheating time with N(k) < N IRH.

Integration tasks.—The first integration task constructed and executed by the CppTSample

module is the two-point function pivot task, tk2_piv. This task contains 15 wavenumbers

centred on the chosen kpivot value in a log-spaced range (1 − 0.007)kpivot 6 k 6 (1 +

0.007)kpivot. This task is used to extract the observable As, At, r values at the pivot scale

allowing for comparison between experimentally measured values.

Next, CppTSample constructs and integrates a much broader two-point function task

tk2. As mentioned previously in Section 3.4.1, we are using a modified version of the

CosmoSIS CLASS module that predicts the CMB spectrum based on a table of power spec-

trum values corresponding to different physical scales. CppTSample produces the requested

physical scales with the number of points corresponding to the k_samples variables in the

[cppt_sample] section in the CosmoSIS .ini run file. The default value of this is 400, as

5Negative values can be chosen for Nsamples but these correspond with an exit time before the instant-

aneous reheating exit time and a non-standard equation of state which gives an accelerating expansion

during reheating.
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this ensures that CLASS is using a high-fidelity power spectrum. For long running mod-

els, this can be reduced to improve performance at the cost of numerical accuracy. The

value of k_samples should not be set below 80 for CLASS to function correctly. The two-

point function task that CppTSample creates is integrated over a range of 13 time samples

between Nend − 11.0 and Nend so that we can extract the observable values from the end

of inflation to ensure the initial conditions are correct for post-inflationary history. These

time samples are also used to measure the dispersion in the power spectrum to account

for inflation models that are unstable in their super-horizon evolution and so reject them

from any analysis.

The two-point function integration results are given to CLASS as a temporary data file

which allows for the full precision of the numerical results to be used by CLASS. We use

our modified CLASS module which utilises the external_Pk feature and is used to return

the CMB predictions based on the sample processed. The results from this are passed on

to the Planck2015 module to calculate the likelihoods with the results returned for each

sample in a text file by CosmoSIS. This set-up allows for both the inflation parameters

and the cosmological parameters to be explored simultaneously by our module provided

enough MCMC samples have been requested.

Then, if requested, CppTSample sets up and integrates any of the three-point function

tasks that have been requested in the CosmoSIS .ini run file. All three-point function

integrations are run over the same 13 e-fold range at the end of inflation so that the

observables extracted are computed at the end of inflation. The equilateral three-point

function tk3e is constructed from an equilateral configuration with kt = 3kpivot, and is used

to obtain values for Beq and f eq
NL. The squeezed three-point function tk3s is constructed

with configuration kt = 3kpivot, α = 0 and β = 0.98, and is used to obtain values for Bsq

and f sq
NL. Finally, the folded three-point function tk3f is constructed with configuration

kt = 3kpivot, α = 0 and β = 0.005 which is used to obtain values for Bfold and f fold
NL .

Error checking.—In an MCMC run over inflation parameters, there are many reasons why

an integration could fail or for numerical instabilities to cause the results to be unreliable.

In either of these scenarios, the sampler needs to fail gracefully without cancelling the

current sampling run while keeping a record of the reason for the failure if possible. Thus,

CppTSample does its calculations in a try-catch block with exceptions specifically chosen

to catch various error states that a sample may encounter.

If any of the spectrum values are varying significantly near to the end of inflation then

we should conclude that either the chosen scale hasn’t exited the horizon yet or that the
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power spectrum has strong scale-dependence with a significant running of the spectral

index. Hence we chose the time sample near the end of inflation to allow us to perform

a dispersion test on the spectra values which is implemented using the dispersion class

and calculates the coefficient of variation [Fienberg, 1970]. This measures the variability

of values compared to the mean and our test fails when this is larger than 5%
(

1 +
1

4n

)
σspec

µspec
> 0.05, (3.29)

where n is the number of time samples used, σspec is the standard deviation of the spectrum

values, µspec is the mean of the spectrum values and the pre-factor in brackets ensures the

estimate isn’t biased. If the test is failed, the time_varying_spectrum exception is used to

log when the spectrum values are varying and sets the variable time_var_pow_spec equal

to one in the returned results.

Additionally, we use CppTransport exceptions to check whether there has been a failed

integration due to the following reasons

• no_end_inflate: no end-time found for inflation,

• neg_Hsq: negative H2 value found,

• integrate_nan: integration yielded NaN,

• zero_massless: zero massless time found,

• neg_epsilon: negative ε value found,

• large_epsilon: a value ε > 3 was found,

• neg_V: negative value of V (φI) was found,

• ics_before_start: sampler gave initial conditions starting before Ninit = 0,

• runtime_exception: generic CppTransport runtime exception (see terminal output).

If any of these exceptions are thrown during a sample, CppTSample records that there is

an issue with the current sample and immediately ceases the calculations, moving onto

another sample. The reason for this failure is printed to the terminal to help debug models

that frequently trigger these warnings.

3.4.3 Full pipeline

In summary, a user simply needs to create a CppTransport model file describing the fields

and parameters of a model, with any values or priors for sampling over, and how they com-

bine to create the model’s potential and optional field-space metric. From this CppTransport
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Figure 3.1: Diagram demonstrating the code pipeline used by CppTSample.

automatically generates all files needed for CosmoSIS sampling. Two 2-point function power

spectra tasks and (optionally) three 3-point function bispectrum tasks are integrated. One

of the power spectrum tasks solves over a wide range of wavenumbers which is used to

compute the likelihoods based on Planck data whereas the other is used to measure r, ns

and nt at a chosen pivot scale. The three bispectrum tasks are used to measure B and fNL

for equilateral, squeezed and folded triangle configurations all with perimeter kt = 3kpivot.

The results for the MCMC chains are returned by CosmoSIS in a text file which can then

be passed into our custom GetDist integration file which enables automatic generation of

triangle covariance plots. The code pipeline can be seen diagrammatically in Figure 3.1.

3.5 Numerical results

In this section, we present results for several inflation models obtained with the CppTSample

module. All plots and marginalised parameter constraints are found by passing res-

ults to the GetDist analysis program which is included as part of CosmoMC [Lewis &

Bridle, 2002, Lewis, 2013]. All observable parameters are given for a pivot scale set to

kpivot = 0.002 Mpc−1 for comparison with Planck measurements and we set MP = 1

throughout this section. Furthermore, we chose to only measure constraints on the equi-

lateral bispectrum parameter (f eq
NL) as the integration time is often long for squeezed and
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Cosmological parameter Planck 2015 values Uniform prior ranges

Ωch
2 0.1198± 0.0015 0.095 6 Ωch

2 6 0.145

Ωbh
2 0.02225± 0.00016 0.019 6 Ωbh

2 6 0.025

h0 0.6727± 0.0066 0.6 6 h0 6 0.75

τ 0.079± 0.017 0.01 6 τ 6 0.4

Table 3.1: Planck 2015 cosmological parameters used for the cold dark matter density,

baryon density, the reduced Hubble constant and the optical depth for CppTSample runs

with the second column giving the values used when only inflation parameters are varied

and the third column giving the uniform priors used for the full MCMC runs.

folded configurations6. The larger covariance plots that vary the cosmological parameters

as well as the inflation model parameters are given in Appendix 3.7 to display them as

clearly as possible.

MCMC runs.—We aimed to replicate the process of testing a new inflation model as much

as possible despite using some well measured models. Initially, we use the apriori sampler

[Foreman-Mackey et al., 2013] in CosmoSIS to explore the inflation model’s parameters

with wide prior ranges whilst keeping the cosmological parameters (Ωch
2, Ωbh

2, h0 & τ as

needed by CLASS) constant with the values given in the second column of Table 3.1. The

values used are the best-fit ΛCDM Planck 2015 measurements [Aghanim et al., 2018] as

their values are unlikely to differ significantly when sampling the cosmological parameters

too. Typically the wide prior ranges will produce many samples with zero likelihood or

give an integration error so we define successful inflation as a sample giving a likelihood

above the CosmoSIS limit of ln(L) = −1× 1030.

After finding the viable inflation model parameter ranges that give ‘successful’ inflation

with a non-zero likelihood, we use each range to set the priors on a second run using the

Metropolis-Hastings sampler [Metropolis et al., 1953] [Hastings, 1970] whilst also varying the

cosmological parameters. This allows the inflation model to slightly vary the underlying

cosmological model and hence ensure the maximum likelihood is found for that inflation

model. The uniform priors used for the cosmological parameters are given in Table 3.1

where these are chosen to allow for a deviation from the corresponding Planck measure-

ments without forcing them to be identical. We then cut 50% of the samples before giving

covariance plots and marginalised constraints for all sampled and derived parameters in

6We demonstrate using squeezed and folded configurations in our forthcoming analysis of non-

Gaussianities in D3-brane inflation [forthcoming].
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each model and compare these with Planck constraints [Ade et al., 2016b] to determine the

models that best describe CMB data.

Convergence criteria.—Evidently there is no requirement for convergence criteria for the

parameter exploration runs with the apriori sampler because these are used to find vi-

able parameter ranges for the Metropolis-Hastings data. For all MCMC runs using the

Metropolis-Hastings sampler, we collect up to 200,000 samples/chain and require the

Gelman-Rubin statistic [Gelman & Rubin, 1992] of the eigenvalues of the covariance mat-

rix is R 6 1.01 to declare convergence and in all models we use > 10 chains/data-set with

randomly assigned start positions for the single-field models and set start positions for the

multi-field models. The R values returned by CosmoSIS for each sampled parameter are

given for each model with the marginalised constraints and maximum likelihood values

and we provide trace plots of ln(L) against sample number for each model in Appendix

3.8.

CMB data.—Every inflation model analysed uses the Planck 2015 likelihood codes7 [Agh-

anim et al., 2016] as it is packaged with CosmoSIS which returns the likelihood to the

likelihoods/planck2015_like part of the datablock. For the initial run with the apriori

sampler, we use the commander TT CMB data in the multipole range 2 6 ` < 30 and

the plik_lite TT data for the multipole range 30 6 ` 6 2508. The Metropolis-Hastings

sampler run uses the full CMB polarisation data with the TT, EE, BB and TE likelihoods

for the multipoles 2 6 ` < 30 returned by the bflike library and the TT, TE, and EE

likelihood for the multipoles 30 6 ` 6 2508 returned by the plik_lite library. We did

not use the lensed power spectrum data or the Bicep-Keck-Planck (BKP) data [Ade et al.,

2015]. Therefore our results will be most similar to the TT,TE,EE+lowP Planck 2015

results with less constraining power in the tensor to scalar ratio r due to the lack of BKP

data.

3.5.1 Quartic inflation

Initially we analysed the single-field, quartic model of inflation [Linde, 1983] with the

potential given by

V (φ) =
1

4
λφ4, (3.30)

where the initial field value used was φi = 35.0 which caused inflation to end after Nend =

153.7 e-folds.

7See the Planck PLA 2015 Wiki page for full details of all likelihood codes.

https://wiki.cosmos.esa.int/planckpla2015/index.php/CMB_spectrum_%26_Likelihood_Code
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Initial parameter exploration.— In this model, the only sampled parameters are λ and

Nsamples because λ controls the amplitude of the scalar and tensor power spectra with

some dependence on the pivot-scale exit-time. We therefore set a log-uniform prior on λ

in the range −14.4 6 log10(λ) 6 −13.2 and a uniform prior on Nsamples in the range 0 6

Nsamples 6 10 to explore pivot exit-times after the instantaneous reheating (IRH) exit-time

which is N (IRH)
piv = 58.4 e-folds before Nend. For each set of sample parameters, we find the

power spectrum values at 200 log-spaced scales in the range 10−6 Mpc−1 6 k 6 50 Mpc−1

for CLASS to compute the CMB power spectrum from.

The CosmoSIS apriori sampler was then used to sample from the prior distributions

where we were able to find 142,066 samples that gave successful inflation with a non-

zero likelihood. These results can be seen in Figure 3.2 where we see the observables are

determined using λ and the pivot exit-time Npiv where the power spectrum values As and

At are both linearly dependent on λ and the ns, nt, r and f
eq
NL observables depend linearly

on Npiv. The central values ns ' 0.942, nt ' −0.038, r ' 0.30 and f eq
NL ' 0.038 are all in

good agreement with the slow-roll predictions for this well-tested model.

Marginalised constraints.—We used the constraints from the parameter exploration run to

set the prior on λ as a log-uniform distribution in the range −14.299 6 log10(λ) 6 −13.4

alongside the extra priors on the cosmological parameters given in Table 3.1. We then ran

the Metropolis-Hastings sampler with 10 chains starting from randomly assigned starting

positions which almost passed our convergence criteria with the worst Gelman-Rubin value

being R = 1.0102 after 200,000 samples/chain to give a total of 2,000,000 samples. The

marginalised constraints, best-fit values and Gelman-Rubin values are given in Table 3.2

with the covariance and convergence plots given in Figures 3.6 and 3.10 respectively.

Discussion.—From the marginalised parameters ns = 0.9454 and r = 0.2829 in Table 3.2,

we can see that the quartic model is incompatible with the Planck CMB constraints [Ade

et al., 2016b] where ns differs from ns = 0.968 ± 0.006 by −3.8σ and the r value is well

above the limit r0.002 < 0.11. This model being disfavoured by CMB data has been well

known since the WMAP releases but remains a valuable check on the results from our code.

Moreover the constraints for ns, nt, r and f
eq
NL are consistent with the slow-roll predictions

for single-field models.

The incompatibilities with CMB data are also in the cosmological parameters Ωch
2 =

0.1257, Ωbh
2 = 0.02110, h0 = 0.6458 and τ = 0.051 in Table 3.2 which differ from the

Planck 2015 values given in Table 3.1 by +3.9σ, −7.2σ, −4.1σ and −1.6σ respectively.

While it is unsurprising that these values differ because the cosmological parameters will
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Figure 3.2: Covariance plots of log10(λ), Npiv, ln(1010As), ln(1010At) ns, nt, r and f
eq
NL for

the chaotic quartic inflation model as returned by the apriori sampler on Planck 2015 TT

data.
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Parameter 68% limits Best-fit values R-values

log10(λ) −13.965+0.027
−0.062 -14.0226 1.0087

Npiv 55.6+2.4
−0.68 57.9236 1.0102

Ωch
2 0.1257+0.0011

−0.0012 0.124987 1.0064

Ωbh
2 0.02110± 0.00013 0.0211662 1.0060

h0 0.6458± 0.0050 0.648864 1.0079

τ 0.051± 0.019 0.051915 1.0008

ln(1010As) 3.223± 0.038 3.21556 –

ln(1010At) 1.959+0.045
−0.062 1.91113 –

ns 0.9454+0.0024
−0.00060 0.947661 –

nt −0.0367+0.0016
−0.00041 -0.0351432 –

r 0.2829+0.0030
−0.012 0.271327 –

f eq
NL 0.03616+0.00036

−0.0015 0.0347216 –

Table 3.2: Marginalised 68% limits with best-fit values and Gelman-Rubin values for

the quartic model returned by the Metropolis-Hastings sampler on the Planck 2015

TT+TE+EE+lowP likelihood with sampled parameters in bold.

adjust to compensate for the power spectrum produced by the inflation model, the devi-

ations are the largest of any model making quartic inflation the least favourable model

here.

3.5.2 Quadratic inflation

Next we analysed single-field, chaotic quadratic inflation [Linde, 1983] with the potential

V (φ) =
1

2
m2φ2, (3.31)

where the initial field value used was φi = 25.0 which causes inflation to end after Nend =

157.3 e-folds.

Initial parameter exploration.— In this model, the only parameters to sample are the

parameterm in the potential and the exit-time Nsamples because these determine the power

spectrum amplitudes and observables similarly to the quartic model. We therefore set a

log-uniform prior distribution onm in the range −6.5 6 log10(m) 6 −5 and a uniform prior

distribution on Nsamples in the range 0 6 Nsamples 6 10 to explore the pivot exit-time after

the IRH exit-time of N (IRH)
piv = 57.2 e-folds before Nend. For each set of sample parameters,

we find the As and At values at 200 log-spaced scales in the range 10−6 Mpc−1 6 k 6

50 Mpc−1 for CLASS to compute the CMB power spectrum from.
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Figure 3.3: Covariance plots of log10(m), Npiv, ln(1010As), ln(1010At) ns, nt, r and f eq
NL

for the chaotic quadratic inflation model returned by the apriori sampler on Planck 2015

TT data.
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Parameter 68% limits Best-fit values R-values

log10(m) −5.762+0.025
−0.012 -5.7414 1.009

Npiv 49.29+0.51
−2.3 47.0134 1.010

Ωch
2 0.1220± 0.0011 0.122289 1.006

Ωbh
2 0.02132± 0.00014 0.0212787 1.004

h0 0.6613± 0.0049 0.659705 1.007

τ 0.059± 0.021 0.0561435 1.004

ln(1010As) 3.185± 0.041 3.18656 –

ln(1010At) 1.356+0.068
−0.049 1.40357 –

ns 0.95904+0.00049
−0.0019 0.957114 –

nt −0.02073+0.00025
−0.0010 -0.021725 –

r 0.1607+0.0075
−0.0019 0.168134 –

f eq
NL 0.0246+0.0011

−0.00029 0.0257735 –

Table 3.3: Marginalised 68% limits with best-fit values and Gelman-Rubin values for

the quadratic model returned by the Metropolis-Hastings sampler on the Planck 2015

TT+TE+EE+lowP likelihood with sampled parameters in bold.

The CosmoSIS apriori sampler was then used to obtain 200,000 samples where 91,381

successfully inflating samples were found with a non-zero likelihood. These results can be

seen in Figure 3.3. Here we can see the mass of the field m determines the power spectrum

amplitudes As and At with an increase in the viable values caused by later pivot exit-times

with smaller values of Npiv. The pivot exit-time also determines the values of ns, nt, r and

f eq
NL where an earlier exit-time gives larger values of ns and nt and smaller values of r and

f eq
NL. As expected the central values ns ' 0.960, nt ' −0.020, r ' 0.155 and f eq

NL ' 0.024

are all in good agreement with the slow-roll predictions for this well-tested model.

Marginalised constraints.—The results found from the parameter exploration run were

used to set the prior on m as a log-uniform distribution from the previously found lower-

and upper-limits in the range −5.97 6 log10(m) 6 −5.5 with the priors on the cosmolo-

gical parameters set using Table 3.1. We then ran the Metropolis-Hastings sampler with

15 chains starting from randomly assigned values which passed our convergence criteria

after 177,080 samples per chain giving a total of 2,656,200 samples. The marginalised con-

straints, best-fit values and Gelman-Rubin values are given in Table 3.3 with the covariance

and convergence plots given in Figures 3.7 and 3.11 respectively.

Discussion.—As seen from the marginalised parameters in Table 3.3, the quadratic model
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gives results for ns = 0.95904 and r = 0.01607 which disagree with the Planck 2015

constraints by −1.5σ for ns = 0.968± 0.006 and a value well above the limit r0.002 < 0.11.

These values are closer than the quartic model seen in §3.5.1 so this model is favoured

in comparison, the single-field quadratic potential is effectively ruled out based on Planck

data. While both of these conclusions are well known for this model [Ade et al., 2016b]

[Akrami et al., 2018], this is still a valuable test of our code. Moreover, our constraints on

ns and r match the slow-roll estimations based on the exit-time of the pivot scale and we

are able to give constraints on the equilateral bispectrum based on an MCMC analysis.

Despite the incompatibility of the power spectrum observables with CMB data, we

compare the cosmological constraints Ωch
2 = 0.1220, Ωbh

2 = 0.02132, h0 = 0.6613 and

τ = 0.059 in Table 3.3 with the Planck 2015 constraints in Table 3.1 which differ by

+1.5σ, −5.8σ, −1.7σ and −1.2σ respectively. All of these parameters differ by at least 1.5σ

which is because they would have been adjusted by the sampler to attempt to compensate

for the incompatible power spectrum values. Although these results suggest that single-

field inflation models with a monomial potential are not possible, there are smaller-order

potentials [Silverstein & Westphal, 2008] and hilltop models [Boubekeur & Lyth, 2005]

that are still compatible with data [Akrami et al., 2018].

3.5.3 α-attractor inflation

Achùcarro et al. proposed an α-attractor inflation model in [Achúcarro et al., 2017] where

inflation is produced by a complex scalar field Z = ρeiθ which is decomposed into two fields

with a radial component ρ = tanh(φ/2) and an angular component θ. These fields are em-

bedded on a hyperbolic manifold in field-space that originates from either a maximalN = 4

superconformal symmetry or a N = 8 supergravity. The hyperbolic field-space causes the

multi-field model to give the same results for ns and r as single-field α-attractors which

means the cosmological predictions made from α-attractors have ‘universal’ predictions for

ns, r and fNL which are given in terms of the pivot exit time N∗ as

ns ' 1− 2

N∗
, (3.32a)

r ' 4

N2
∗
, (3.32b)

fNL '
5

6N∗
. (3.32c)

Therefore this is an ideal candidate model to demonstrate the capacity for CppTSample to

apply MCMC sampling to non-canonical inflation models and extract the optimal inflation

parameters with the corresponding best-fit CMB observables that should correspond with
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the universal predictions in equation (3.32). The potential is defined as

V (φ, θ) = V0 tanh2

(
φ√
2

)[
1 + 2A cos(2θ) tanh2

(
φ√
2

)]
, (3.33)

and the field-metric is defined as

GIJ(φ, θ) =


1 0

0 1
2 sinh2(

√
2φ)


 , (3.34)

where the rows and columns are in the order (φ, θ). The initial field values used were

φi = 5.0 and θi = 0.4 which caused inflation to last for approximately Nend ' 156 e-folds

where the inclusion of multiple fields now causes Nend to vary via the extra parameter in

the potential (3.33) and the field-metric (3.34).

Initial parameter exploration.—The sampled parameters in this model are the Lagrangian

parameters V0 and A as well as the pivot exit-time via Nsamples. We therefore set a log-

uniform prior on V0 in the range −13 6 V0 6 −11 and a uniform prior on A in the range

0.1 6 A 6 0.3 as well as a uniform prior on Nsamples in the range 0 6 Nsamples 6 10

to explore the pivot exit-times after the IRH time of N (IRH)
piv = 55.0 e-folds before Nend.

For each sample, we found the As and At values at 125 log-spaced scales in the range

10−6 Mpc−1 6 k 6 50 Mpc−1 for CLASS to compute the CMB power spectrum from.

The CosmoSIS apriori sampler was then used to sample from these prior distributions

where 63,927 samples gave successful with a non-zero likelihood. These results can be seen

in Figure 3.4 where we can see that V0 modulates the amplitudes of the two spectra As &

At whereas the parameter A controls the observable values ns, nt, r and f eq
NL. The central

values ns ' 0.963, nt ' −3 × 10−4, r ' 0.0014 and f eq
NL ' 0.0155 are all in excellent

agreement with the corresponding Planck parameter constraints.

Marginalised constraints.—The results from the apriori sampler were used to reduce the

log-uniform prior range on V0 to −12.0 6 V0 6 −11.0 and to expands the uniform prior

range on A as 0.01 6 A 6 0.3. The Metropolis-Hastings sampler was then ran with 15

chains with the starting values set as log10(V0) = −11.5, A = 0.15, Nsamples = 0 and

the cosmological parameter values in Table 3.1. We obtained 200,000 samples per chain

giving a total of 3,000,000 samples which almost passed our convergence criteria where the

marginalised constraints, best-fit values and Gelman-Rubin values are given in Table 3.4

with the covariance and convergence plots given in Figures 3.8 and 3.12 respectively.

Discussion.—From the marginalised parameters in Table 3.4, we can see that the alpha-

attractor model gave values for ns and r that are well within the constraints ns = 0.968±
0.006 and r0.002 < 0.11. Moreover the constraint on f eq

NL is well within 1σ of the Planck
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Figure 3.4: Covariance plots for the parameters log10(V0), A, Npiv, ln(1010As), ln(1010At)

ns, nt, r and f
eq
NL in the alpha-attractor inflation model as returned by the apriori sampler

on Planck 2015 TT data.
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Parameter 68% limits Best-fit values R-values

log10(V0) −11.573+0.032
−0.054 -11.4831 1.016

A 0.194+0.11
−0.043 0.296911 1.014

Npiv 54.932± 0.050 55.0137 1.005

Ωch
2 0.1210± 0.0010 0.121904 1.003

Ωbh
2 0.02138± 0.00013 0.0213269 1.001

h0 0.6656± 0.0045 0.661804 1.002

τ 0.061± 0.021 0.0595623 1.001

ln(1010As) 3.175± 0.042 3.18031 –

ln(1010At) −3.360+0.066
−0.11 -3.16871 –

ns 0.9624± 0.0010 0.960202 –

nt −0.00036+0.00019
−0.00010 -0.000643348 –

r 0.00146± 0.00012 0.00174845 –

f eq
NL 0.01552+0.00063

−0.00037 0.0161446 –

Table 3.4: Marginalised 68% limits with best-fit values and Gelman-Rubin values on the

parameters in the alpha-attractor model as returned by the Metropolis-Hastings sampler

on the Planck 2015 TT+TE+EE+lowP likelihood (sampled parameters in bold).

equilateral bispectrum constraint f eq
NL = −4 ± 43. We also compare the cosmological

parameters with the constraints given in Table 3 of the Planck 2015 inflation constraints

paper [Ade et al., 2016b] where our values for Ωch
2, Ωbh

2, h0 and τ differ by 0.8σ, −5.4σ,

−1.1σ and −1.1σ respectively. Most of these are within approximately 1.1σ of the Planck

data apart from Ωbh
2 but it is typical for the inflation model to have some effect on the

cosmological parameters.

We now use the marginalised values in Table 3.4 to compare our data with the estim-

ations given in equation (3.32). The estimations at the pivot exit-time Npiv = 54.932 give

ns ' 0.9636, r ' 0.00133 and fNL ' 0.001517 which differ from the corresponding values in

Table 3.4 by +0.12%, -8.90% and -2.25% respectively. The equivalent differences between

the best-fit values in Table 3.4 are +0.35%, -24.4% and -6.17% respectively. Clearly the

best predictions are for ns and fNL where we can consistently expect the predictions to

be within 2 significant figure of the calculated values but the r value can differ by more

than 10%. This is the first time the universality prediction [Achúcarro et al., 2017] for the

bispectrum of α-attractors has been checked using an MCMC analysis as we have done.

We also note that the equilateral bispectrum f eq
NL has a very sharply defined constraint

which potentially makes it an excellent candidate model to search for in future surveys if
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it will ever be possible to measure fNL ' O(10−1).

These conclusions were found despite not reaching the R < 1.01 convergence criteria

with the worst values given as 1.016 for the log10(V0) parameter and 1.014 for the A

parameter. The failure to converge was due to the strong dependence on the V0 and A

parameters in the potential (3.33) which meant that after 160,000 samples we initially

reached R ' 1.01 for all parameters. Subsequently a change in the R value for one of these

parameters was then countered by a change in R for the other parameter which could mean

the R < 1.01 test is too strict for some multi-field models. Despite this our trace plot in

Figure 3.12 and the R values being so close to 1.01 suggests we still have good convergence

in this model.

3.5.4 Gelaton/QSFI inflation

Next, we studied a gelaton-like scenario [Tolley & Wyman, 2010] with the model defined

in [Dias et al., 2016] where there is a light adiabatic field rotating on a circular trajectory.

This field is dressed by the fluctuations of a heavier orthogonal field whose value tracks the

minimum of the effective potential resulting in the two-field model behaving as if it has one

field similarly to quasi-single field inflation [Chen & Wang, 2010]. The model is difficult to

perform an MCMC analysis with since it has a large number of sampled parameters as well

as an integration time that is typically longer than the other models seen here. Therefore

it is an excellent example to demonstrate CppTSample’s parameter estimation capabilities

on a complex model with a non-trivial field space metric.

In this model, the angular field θ is the adiabatic, light mode and the radial field R is

the heavier mode with a potential defined as

V (R, θ) = V0

(
1 + αθ +

1

2
ηR(R−R0)2 +

1

3!
gR(R−R0)3 +

1

4!
λR(R−R0)4

)
, (3.35)

and a field-metric given as

GIJ(R, θ) =


1 0

0 R2


 , (3.36)

with the rows and the columns given in the order (R, θ). The initial field values were set to

be Ri = 2.325 and θi = 4.3 which typically caused inflation to last for Nend ' 101 e-folds

where there is a small variation due to including multiple fields similarly to the α-attractor

model.

MCMC analysis and marginalised constraints.—In order to account for the slow integration

time, we didn’t do the parameter exploration run and instead perform the Metropolis-

Hastings using 15 chains with start values based on our previous work with this model
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Parameter Start values Uniform prior range

V0 -10 −11 6 log10(V0) 6 −9

R0 2.325 2.25 6 R0 6 2.4

ηR 0.6 0.5 6 ηR 6 0.7

gR 100000 99900 6 gR 6 100100

λR 5.6× 107 5.5× 107 6 λR 6 5.7× 107

α 0.55 0.5 6 α 6 0.6

Table 3.5: The start-values and priors used for the Gelaton/QSFI model described in

Equations (3.35) & (3.36).

[Butchers & Seery, 2018]. The priors and starting values are given for the Lagrangian

parameters in Table 3.5 and for the cosmological parameters in Table 3.1. A uniform prior

was set on Nsamples in the range 0 6 Nsamples 6 10 with a starting value of Nsamples = 10

to explore the pivot exit-times after the IRH time of N (IRH)
piv = 56.2 e-folds before Nend.

The power spectrum amplitudes As and At were computed over 80 log-spaced k values

between 10−6 Mpc−1 and 50 Mpc−1 and we did not compute the 3-point function for

this model. Instead we will use the optimal values given from the Planck likelihood by

CppTSample to calculate the bispectrum separately using CppTransport. Our convergence

criteria was passed after 60,320 samples per chain to give a total of 904,800 samples with

the marginalised constraints, best-fit values and Gelman-Rubin values given in Table 3.6

as well as the covariance and convergence plots given in Figures 3.9 and 3.13 respectively.

Discussion.—In this model, we have found constraints by sampling 11 different parameters

to produces the constraints on the power spectrum observables As, At, ns, nt and r.

This further demonstrates that CppTSample can perform an MCMC analysis on models

with a non-canonical field space and a potential with a large number of free parameters.

The covariance plot in Figure 3.13 shows that the power spectrum observables are almost

entirely determined by the values of V0 and the pivot scale exit-time Npiv which implies

the fit to power spectrum data is controlled by the leading terms of the potential (3.35).

The constraints ns = 0.96847 and r = 0.0832 in Table 3.6 are well within 1σ of the Planck

2015 constraints ns = 0.968± 0.006 and r0.002 < 0.11.

The cosmological parameter constraints Ωch
2 = 0.1195, Ωbh

2 = 0.02147, h0 = 0.6723

and τ = 0.066 deviate from the Planck 2015 values given in Table 3.1 by −0.2σ, −4.9σ,

−0.1σ and −0.8σ respectively. Again most of these with the exception of Ωbh
2 lie com-
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Parameter 68% limits Best-fit values R-values

log10(V0) −10.201+0.031
−0.023 -10.1905 1.004

R0 2.325± 0.014 2.304 1.008

ηR 0.570± 0.029 0.550855 1.008

gR ( 1.00001± 0.00058 ) · 105 99972.1 1.010

λR ( 5.600± 0.057 ) · 107 5.56927 · 107 1.006

α 0.5594+0.0081
−0.018 0.570577 1.010

Npiv 47.78+0.27
−1.5 46.3132 1.007

Ωch
2 0.1195± 0.0010 0.119695 1.004

Ωbh
2 0.02147± 0.00014 0.0214656 1.002

h0 0.6723± 0.0045 0.671279 1.004

τ 0.066± 0.022 0.0671299 1.006

ln(1010As) 3.159± 0.044 3.16649 –

ln(1010At) 0.673+0.057
−0.047 0.710462 –

ns 0.96847+0.00021
−0.00098 0.967507 –

nt −0.010684+0.000075
−0.00034 -0.0110162 –

r 0.0832+0.0026
−0.00054 0.0857748 –

Table 3.6: Marginalised 68% limits with best-fit values and Gelman-Rubin values on the

parameters in the Gelaton/QSFI model as returned by the Metropolis-Hastings sampler

with the Planck 2015 TT+TE+EE+lowP likelihood (sampled parameters in bold).
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Figure 3.5: Two plots showing the bispectrum given by the Gelaton/QSFI model with

parameters set from the values in Table 3.6. Left: dimensionless bispectrum (3.22) and

right: reduced bispectrum (3.24) both for an equilateral configuration with kt = 3 ×
0.002 Mpc−1.

fortably within 1σ of the Planck values which implies this model requires less adjustment

of the cosmological parameters compared with other shown here.

Overall this model produces constraints that are highly compatible with current Planck

constraints which means that Gelaton/QSFI inflation is favourable based on CMB data.

We can further test the compatibility with CMB data by computing the bispectrum ob-

servables given by the best-fit parameters given in Table 3.6 with CppTransport. These

parameters give the bispectrum plots seen in Figure 3.5 where the bispectrum values can

be found from the sqlite databases stored by CppTransport which are Beq = 2.58× 10−19

and f eq
NL = 0.0141 respectively in Figure 3.5. This demonstrates that estimations of the

bispectrum can be found from MCMC results given by CppTSample despite using a model

with a long integration time.

3.6 Conclusions

We have presented CppTSample, a new C++ module implemented using CosmoSIS, CppTrans-

port and CLASS which applies MCMC sampling to find inflation parameter constraints

based on the agreement with CMB data for models with a non-trivial field-space. Further-

more, these constraints are found by passing the numerical form of the primordial power

spectrum with the external_Pk feature of CLASS so that all features of the power spectrum

produced by an inflation model are accounted for when computing the likelihood. Addi-

tionally, the module uses CppTransport to compute the bispectrum observables, B and fNL,

for equilateral, squeezed and folded configurations allowing for an inflation paradigm to be
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constrained based on the three-point statistics given from the best-fit to the CMB power

spectrum.

This functionality is demonstrated with four different inflation models of varying com-

plexity. We successfully reproduced all of the slow-roll predictions for the well constrained

quartic and quadratic single-field models in Sections 3.5.1 & 3.5.2 where we gave equilateral

bispectrum constraints produced by the Planck likelihood codes. These results reproduced

established results for two well-known models and therefore demonstrates that the new

framework gives reliable estimations of the observable parameters ns, r and f eq
NL.

We also applied the module to two multi-field inflation models which both have a non-

trivial field-space metric. The first of these was an α-attractor model in Section 3.5.3

which demonstrates the full functionality of CppTSample. This model gave ns and r values

in good agreement with the CMB constraints given in the Planck releases [Akrami et al.,

2018]. In addition, we were able to reproduce the ‘universality’ of attractor models found

in [Achúcarro et al., 2017] using our module results as well as finding tight constraints on

f eq
NL which shows the bispectrum could potentially be used for model selection in a future

survey.

The second multi-field model in Section 3.5.4 was a Gelaton/QSFI model which showed

that our module can still be used on a complex model with 11 MCMC parameters to sample

and a long integration time. This model gave ns and r values that are very compatible with

Planck constraints which makes this model favourable compared with the others presented

here. Despite the long integration time, we are still able to find the bispectrum observ-

ables given from the best-fit parameters found in an MCMC run by using the results of

CppTSample to compute the bispectrum in CppTransport.
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3.7 Appendix: Full covariance plots

Figure 3.6: Covariance and distribution plots for the parameters log10(λ), Npiv, Ωch
2,

Ωbh
2, h0, τ , ln(1010As), ln(1010At), ns, nt, r & f eq

NL in the quartic inflation model and

based on Planck 2015 TT+TE+EE+lowP data.
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Figure 3.7: Covariance and distribution plots for the parameters log10(m), Npiv, Ωch
2,

Ωbh
2, h0, τ , ln(1010As), ln(1010At), ns, nt, r & f eq

NL in the quadratic inflation model and

based on Planck 2015 TT+TE+EE+lowP data.
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Figure 3.8: Covariance and distribution plots for the parameters log10(V0), A, Npiv, Ωch
2,

Ωbh
2, h0, τ , ln(1010As), ln(1010At), ns, nt, r & f eq

NL in the α-attractor model and based on

Planck 2015 TT+TE+EE+lowP data.
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Figure 3.9: Covariance and distribution plots for the parameters R0, log10(V0), ηR, gR,

λR, α, Ωch
2, Ωbh

2, h0, τ , ln(1010As), ln(1010At), ns, nt & r in the Gelaton/QSFI model

and based on Planck 2015 TT+TE+EE+lowP data.
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3.8 Appendix: Convergence plots

3.8.1 Quartic model

Figure 3.10: A trace plot of ln(L) vs. sample number for the 15 chains used in the quartic

model MCMC data with the first 4000 samples removed.

3.8.2 Quadratic model

Figure 3.11: A trace plot of ln(L) vs. sample number for the 15 chains used in the quadratic

model MCMC data with the first 4000 samples removed.
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3.8.3 Alpha-attractor model

Figure 3.12: A trace plot of ln(L) vs. sample number for the 15 chains used in the alpha-

attractor model MCMC data with the first 4000 samples removed.

3.8.4 Gelaton/QSFI model

Figure 3.13: A trace plot of ln(L) vs. sample number for the 15 chains used in the

Gelaton/QSFI model MCMC data with the first 500 samples removed.
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Chapter 4

Conclusions

Constraining the theory of inflation requires solving substantial theoretical and experi-

mental problems where the precise interplay between the underlying microphysics of the

theories and the observed CMB signatures is well understood yet frustratingly incomplete.

This problem is exacerbated when there are numerous candidate models for inflation, with

many consistent with the two-point observables, that need to be systematically tested us-

ing higher-order observables such as the bispectrum and other non-Gaussian quantities.

Furthermore, there is an increasing number of inflation paradigms originating from exotic

beyond the Standard Model theories such as string theory which include multiple fields

that are frequently embedded on a non-canonical field space.

My research presented in this thesis represents my contribution towards solving these

problems where in chapter 2 we have seen how I have used the transport method approach

to perturbation theory to build a numerical framework for computing the bispectrum in

a non-trivial field space. In chapter 3, we have seen how I have developed an additional

numerical package for performing a Bayesian analysis of these non-canonical models and

therefore enable cosmologists to find constraints on both the power spectrum and the

bispectrum. In the following section, I will list the key outcomes of each project.

4.1 Summary of the research

Project I: Numerical evaluation of inflationary 3-point functions on curved field

space

In Chapter 2, we applied the formalism of covariant perturbations suggested by Gong

& Tanaka [Gong & Tanaka, 2011] to the transport method which allowed us to find a

field-covariant Hamiltonian with third-order perturbations of the field metric GIJ . This
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meant we could use the interaction picture of quantum mechanics and the “in-in” formalism

[Schwinger, 1960] [Calzetta & Hu, 1987] [Weinberg, 2005] [Adshead et al., 2009] to compute

the bispectrum produced by models with non-canonical field-spaces. Our approach meant

that the majority of terms in the Hamiltonian covariantize naïvely where the only require-

ment is to track field index placement as well as the space-time indices. The only new terms

appearing with this method are curvature quantities, such as RIJKL, that only appear in

the mIJ , AIJK and BIJK species tensors which describe the interactions between 2 fields,

3 fields and 2 fields + 1 momenta respectively. The evolution of these interaction-picture

fields was then found using the Heisenberg equations of motion to obtain the covariant

transport equations which are the differential equations that give the correlation function

values throughout both the sub- and super-horizon eras of inflation.

As this formalism ensures extra terms from the field-metric are packaged into Christoffel

and Riemann quantities, we found that the initial conditions for the two- and three-point

functions and the gauge transformation to ζ also covariantize naïvely. This is a highlight

of our approach since it means we are adding the minimal amount of extra terms needed to

describe interactions in a non-trivial field space. Moreover, this simplicity meant that the

enabling CppTransport to find correlation functions on a curved field-space mainly required

adding code to calculate the curvature quantities and add these to the corresponding species

tensors. Additionally, we used the index symmetries in the Riemann tensor to ensure the

minimum number of unique components are computed by CppTransport.

We then tested the accuracy of the additions made to our code by using the Gelaton/QSFI

model [Chen & Wang, 2010] [Tolley & Wyman, 2010] which has a Lagrangian that can

be written using either canonical or non-canonical field coordinates. CppTransport was

used to compute the power spectrum and bispectrum in both of these coordinates and the

results were compared by measuring the residuals between their results. This comparison

showed that the worst residual was just 0.07% with values typically around 10−5% for

bispectrum values which demonstrated that both our calculations and the additions made

to the code are successful.

Furthermore, we tested our implementation on the ‘quasi-two-field’ model [Dias et al.,

2015b] against two other codes: mTransport and PyTransport. Although these both use

the transport method, the comparison was valid as each code uses an entirely different nu-

merical implementation. For mTransport, the residuals on the power spectrum remained

below 0.1% throughout apart from on subhorizon scales where the two codes have differ-

ent definitions of the gauge transformation to ζ. Nonetheless, the solutions converge to
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the same values on super-horizon scales indicating strong agreement on the scales where

observables are computed. The bispectrum residuals from PyTransport were typically less

than 0.3% throughout for time evolutions of the 3-point function despite the model having

super-horizon features in the spectrum. We made residuals of the reduced bispectrum as

a function of kt where agreement is usually 6 1% apart from a small region after a section

with extremely rapid oscillations.

Finally, we tested the code on a two-field gelaton model suggested in [Tolley & Wyman,

2010] which has a DBI potential defined on a hyperbolic manifold specifically chosen to

give an enhanced equilateral bispectrum by adjusting the speed of sound for the inflaton

perturbations. Our work showed that for monomial and hilltop potentials, a boost is found

on equilateral configurations with a magnitude |fNL| ' 0.1 but the effect is suppressed due

to the competing requirements that the gelaton mass is larger than H whilst giving a

reduction in cs. Despite this, our work successfully demonstrated there is a boost in the

equilateral bispectrum which could be observable with future measurements potentially

making it a candidate model to search for.

Project II: CpptSample: sampling the primordial perturbation using CppTrans-

port

In Chapter 3, we used the results discussed previously in Chapter 2 to build a cosmolo-

gical code called CpptSample which is designed to add MCMC sampling functionality to

CppTransport specifically so that we may find constraints on the non-trivial, multi-field

models. The C++ code is implemented as a CosmoSIS module [Zuntz et al., 2015] so that

we can pass the results from our framework to the numerous other modules available. This

means a full Bayesian analysis can now be performed on multi-field models that require

accurate tracking of the non-canonical field effects for the first time.

When computing the predicted CMB power spectrum from a model of inflation, the

code uses the external_Pk feature of the CLASS module to pass the numerical form of the

power spectrum so that all features of the primordial spectrum are included in the likelihood

calculated from Planck 2015 data. Furthermore, our implementation of the matching

equation defining the physical scales is rewritten in terms of the Hubble parameter H

to account for non-trivial field interactions that wouldn’t affect the value of the potential

V (φ). This means we can use our module to accurately extract the values of the bispectrum

and the reduced bispectrum for equilateral and squeezed configurations where the optimal

model parameters come from the best-fit to the CMB data.
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We tested the accuracy of our code on two well-known, single field models: the chaotic

quadratic and quartic potentials. For these models, our MCMC analysis reproduced the

slow-roll predictions of ns, r and fNL as expected for these simple inflation paradigms.

Furthermore this confirmed that these models are disfavoured based on the values of ns

and r produced by them as well as a corresponding shift in the cosmological parameters to

compensate for the ill-fitting power spectrum values. We were also able to give a constraint

on the equilateral bispectrum value as expected for single-field inflation models.

We also applied the module to two multi-field models: an α-attractor model suggested

by [Achúcarro et al., 2017] and the Gelaton/QSFI model. The α-attractor model gave ns

and r values that agreed well with the Planck constraints and we were able to show that

the ‘universality’ predictions for ns, r and fNL made in the original paper are accurate

to within 10% in most cases. Furthermore, we found that the marginalised equilateral

bispectrum values are tightly constrained which would make it an excellent candidate to

search for in future surveys if it didn’t have a small value of f eq
NL ' 0.015 which is unlikely

to be observable.

The Gelaton/QSFI results demonstrated that we could apply our framework to a model

with 11 MCMC parameters to sample over with each having a long integration time. In

this case, we used the best-fit model parameters given from the samples to compute the

bispectrum values separately in CppTransport. We consider this an advantage of our

method as it allows for bispectrum constraints to be easily found if the model has a long

time per sample. The ns and r values are also consistent with Planck constraints on these

which makes it a favourable model compared to the other models analysed.

In all of the models analysed, we sampled the cosmological parameters Ωch
2, Ωbh

2,

h0 and τ as well as the inflation parameters to compare these to the ΛCDM Planck con-

straints and determine how much they were changed by the underlying inflation model. As

expected, we found that inflation models with poorer ns and r values needed much larger

changes in their cosmological parameters to compensate for their poor power spectrum

observables.

4.2 Prospects for the future

Clearly, there remains many important questions to be answered on inflation. At the level

of the power spectrum, there is still a lot to be learned about the exact form of the potential

where we are really hoping to detect the elusive B-modes associated with the primordial

gravitational waves from inflation. Moreover, detecting these would tell us the precise



144

energy scale of inflation and allow us to provide a lower bound on the tensor to scalar ratio

which could instantly rule out many models. Furthermore, we are finding more evidence

that the ‘running’ of the scalar spectral index, αs ≡ dns/d ln k is consistent with slow-

roll predictions implying it should also be used to constrain inflation. This would also be

supplemented with a tensor spectral index measurement with the detection of gravitational

waves.

Thankfully, there is good reason to be optimistic about the potential detection of the

B-mode polarisations as there are many CMB experiments (eg. CMB-S4 [Abazajian et al.,

2016], CoRE [Di Valentino et al., 2018], LiteBIRD [Hazumi et al., 2019], Pico [Hanany

et al., 2019], PIXIE [Kogut et al., 2011], Simons Observatory [Aguirre et al., 2019]) planned

within the next decade that are designed specifically for their detection. Many of these S3

and S4 CMB experiments hope to measure an uncertainty in r that is potentially as small

as σr ∼ 1 × 10−4 which could rule out many of the models of inflation being discussed

presently.

However, what if the B-modes are too small to be measured? Would that mean inflation

should be abandoned? Even if we do measure the primordial gravitational waves and r,

will we still have multiple models consistent with the two-point statistics of the CMB? In

all of these cases, we have to find further constraints from non-Gaussianities to confront

the inflation models with observation. Moreover, many of the new physics beyond the

standard model theories promise to give inflation a theoretical understanding from particle

physics but need their predictions to be calculated in a curved field-space. Evidently, there

is a plethora of information to still be found about the early universe and my hope is that

this thesis contributes towards achieving that goal.
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